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Abstract

This thesis takes into account the different levels of infectiousness of the human immunod-

eficiency virus (HIV) infected individuals throughout their period of infection. Infectious-

ness depends on the time since infection. It is high shortly after the infection occurs and

then much lower for several years, and thereafter a higher plateau is reached before the ac-

quired immunodeficiency syndrome (AIDS) phase sets in. In line with this, we formulated

a mathematical model which is structured according to the age of infection. To understand

the dynamics of the disease, we first discuss and analyse a simple model in which the age

of infection is not considered, but progression of the HIV-AIDS transmission is taken into

consideration by introducing three stages of infection. Analysis of these models tells us

that the disease can be eradicated from the population only if on average one infected

individual infects less than one person in his or her infectious period, otherwise the disease

persists. To investigate the reduction of the number of infections caused by a single infec-

tious individual to less than one, we introduce different treatment strategies for a model

which depends on the age of infection, and we analyse it numerically. Current strategies

amount to introducing treatment only at a late stage of infection when the infected indi-

vidual has already lived through most of the infectious period. From our numerical results,

this strategy does not result in eradication of the disease, even though it does reduce the

burden for the individual. To eradicate the disease from the population, everyone would

need to be HIV tested regularly and undergo immediate treatment if found positive.



Opsomming

Hierdie tesis hou rekening met die verskillende aansteeklikheidsvlakke van die menslike

immuniteitsgebreksvirus (MIV) deur besmette individue gedurende hulle aansteeklikheid-

stydperk. Die graad van aansteeklikheid hang af van die tydperk sedert infeksie. Dit is

hoog kort nadat die infeksie plaasvind en daarna heelwat laer vir etlike jare, en dan volg

n hoer plato voordat uiteindelik die Verworwe-Immuniteitsgebreksindroom (VIGS) fase

intree. In ooreenstemming hiermee, formuleer ons n wiskundige model van MIV-VIGS-

oordrag met n struktureer waarin die tydperk sedert infeksie bevat is. Om die dinamika

van die siekte te verstaan, bespreek en analiseer ons eers n eenvoudige model sonder inag-

neming van die tydperk sedert infeksie, terwyl die progressie van MIV-VIGS-oordrag egter

wel in ag geneem word deur die beskouing van drie stadiums van infeksie. Analise van die

modelle wys dat die siekte in die bevolking slegs uitgeroei kan word as elke besmette mens

gemiddeld minder as een ander individu aansteek gedurende die tydperk waarin hy of sy

self besmet is, anders sal die siekte voortduur. Vir die ondersoek oor hoe om die aantal

infeksies per besmette individu tot onder die waarde van een te verlaag, beskou ons verskeie

behandelingsstrategiee binne die model, wat afhang van die tydperk sedert infeksie, en on-

dersoek hulle numeries. Die huidige behandelingstrategiee kom neer op behandeling slegs

gedurende die laat sta- dium van infeksie, wanneer die besmette individu reeds die grootste

deel van die aansteeklikheidsperiode deurleef het. Ons numeriese resultate toon dat hierdie

strategie nie lei tot uitroeiing van die siekte nie, alhoewel dit wel die las van die siekte vir

die individu verminder. Om die siekte binne die bevolking uit te roei, sou elkeen gereeld

vir MIV getoets moes word en indien positief gevind, dadelik met behandeling moes begin.
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Chapter 1

Introduction

1.1 Epidemiology of HIV/AIDS

The human immunodeficiency virus, HIV, infects cells in the immune system and the

central nervous system. The T-helper lymphocytes are the main type of cell that HIV

infects. The role of these cells in the immune system is to coordinate the actions of other

immune system cells. A large reduction in the number of these cells results in weakening

the immune system [12, 56]. HIV infects the T-helper cells because it has the protein called

CD4+ on its surface, which HIV uses to attach itself to cells before entering to them. That

is why the T-helper cell is referred to as a CD4+T lymphocyte. Once it attaches itself into

a cell, HIV produces new copies which are capable of infecting other cells. When the age

of infection increases1, HIV infection leads to a severe reduction in the number of T-helper

cells which are responsible to help fight diseases [56].

According to WHO2 clinical staging of HIV/AIDS, HIV infection has four distinct stages:

acute stage, asymptomatic stage, symptomatic stage and advanced AIDS stage [6, 24, 25,

50, 55]. The staging is based on clinical findings which gives implication for diagnosis,

evaluation and management of HIV/AIDS. This staging system helps clinicians to decide

whether the patient is eligible for treatment or not, especially in resource-constrained

settings where CD4+ count measurement or other diagnostic methods are not yet developed

[25].

1Age of infection is a time since the person become infected.
2the World Health Organization

1
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The acute stage can be represented by a period following HIV acquisition during which HIV

RNA (HIV genetic material) and p24 antigen (a protein of HIV) can be detected when the

usual screening tests for HIV antibodies are negative [48]. Since antibodies (HIV specific)

have not yet developed, HIV continues to replicate and results in very high levels of the

virus. In the first few weeks after being infected, infected individuals are highly infectious

[6, 55]. At the acute stage there is a large amount of HIV in the peripheral blood (the

blood in the circulating system not in the lymphatic system, bone marrow, liver or spleen),

around 106 copies of virus per µl of blood [48]. Antibodies and cytotoxic lymphocytes start

being produced as a response to the virus which is known as sero-conversion. At this stage,

about 20% of people who are HIV positive show symptoms which are not mild. However,

the diagnosis of HIV infection is missed at this stage [6].

The asymptomatic stage lasts for an average of eight years and can be characterized by

a CD4+ count around 500 cells per µl [25]. This stage is free from major AIDS related

diseases, although there may be swollen glands. The level of HIV in the peripheral blood

settles down to a low level, even though infected individuals remain infectious. HIV anti-

bodies are detectable in the blood and as a result antibody tests will show a positive result.

A test which measures HIV RNA is referred to as the viral load test, and it has a crucial

role to play in the treatment of HIV infection [6].

Infected individuals can progress to the symptomatic stage because of the lymph nodes

and tissues become damaged due to the years of activity or HIV mutates and becomes

more resistant or any other reasons. As a result, it leads to greater CD4+ cell destruction

and the immune system is not able to keep up with replacing the CD4+ cells that are lost.

As the immune system fails, symptoms start to develop. Initially many of the symptoms

are mild, but as the immune system weakens, the symptoms increase. Symptomatic HIV

infection is mainly caused by the emergence of opportunistic infections and cancers that

the immune system is able to prevent and control in normal situations. This stage of HIV

infection is often characterised by multi-system diseases and infections in almost all body

systems. Treatment for the specific infection or cancer is often carried out, however the

the main cause is the action of HIV as it attacks the immune system. Unless HIV itself

can be slowed down, immune suppression will continue to be weaker [6].

AIDS is a condition diagnosed when there are a group of related symptoms that are caused
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by severe HIV infection [6]. These infections are the cause of illness or death for HIV-

positive individuals. On the other hand, progression to AIDS can be characterised by

having a CD4+ count of 200 per ml or below, while in the normal situation it is around

1000 per ml [51]. At this stage, the infected individual is likely to develop opportunistic

infections in their respiratory system, gastro-intestinal system, central nervous system and

on the skin as well.

HIV is highly concentrated in the body fluids’ such as, blood, fluids from reproductive

organs and breast milk. Then an individual can contract HIV through untested blood

transfusions, from infected sexual partners or from infected mothers during pregnancy,

labour or delivery (vertical transmission), or through breast feeding. There are also other

means for HIV transmission, like sharing sharp materials especially injecting drug users,

[4]. In this work, we only consider the transmission from an infected partner through sexual

intercourse.

1.2 Motivation

HIV is among the world’s biggest health problem which increases morbidity and mortality

of an infected individual. Millions died of AIDS and a large number of children became

orphans because of AIDS deaths. According to the statistics from UNAIDS3/WHO in

2008, more than 25 million people have died of AIDS since the starting of the epidemic,

1981. In South Africa for instance, an estimated 5.2 million people were living with HIV

and AIDS in 2008, more than in any other country in the world. It is estimated 250, 000

South Africans died of AIDS in the same year. Currently, the national prevalence is around

11% [6] (which is taken from antenatal clinic attendees).

Ever since the first observation of HIV, mathematical models have been developed to

understand and explain the dynamics of the disease and suggest prevention in terms of

education, counselling and also by providing anti-retroviral treatment (ART). Currently

there are different kinds of ART. Among them, protease inhibitors and reverse transcrip-

tase inhibitors are widely used. The former helps the immune system by opposing the

replication of the virus and the latter inhibits the transcription of the viral single strand

3United States Agency for International Development
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RNA into double strand DNA. As a result it interrupts the viral fusion to the host cell and

further multiplication. Hence, it is believed that providing ART reduces the mortality and

morbidity of already infected individuals and also reduces the rate of transmission of HIV

by reducing the viral load up to an undetectable level [17].

Figure 1.1. Source: [51], The viral load and CD4 count as a function of age of infection

In a newly infected individual, the number of CD4+ cells starts decreasing since HIV

affects them directly. At the same time, the viral load increases rapidly. This phenomenon

continues up to three months on average. Because the number of CD4+ cells is small and

the number of viruses is large, the virus will not find free CD4+ cells to infect, and hence

their number starts decreasing, followed by a slight increase in the number of CD4+ cells.

The process is known as the prey-predator effect. The above diagram from [51] explains

this effect. Then CD8 cells (sometimes called killer cells) kill infected CD4+ cells on the

process of fighting antigen (virus) [1]. As a result, the number of CD4+ cells and viral

load will remain lower for longer (about eight years) after the initial infection. When the

immune system gets weaker and weaker, the viral load starts increasing and the number

of CD4+ cells decrease and the person is said to be in the final phase of HIV infection.

Hence, one can say that the number of CD4+ and viral particles are functions of age of

infection.

As studies have suggested, infectiousness highly depends on the stage of infection of the

infected individual [23, 24, 55]. Infected individuals in primary and late stages of infec-

tion are estimated to be 26 and 7 times, respectively, more infectious than those in the
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asymptomatic stage [24].

Figure 1.2. Source: [55], Infectiousness as a function of age of infection

1.3 Aim and Objectives

From Figure 1.2, as suggested by Reuben et al., infectiousness abruptly initially increases

and drops down after the end of the acute stage. Then, it stays with the same probability of

transmission for about ten years and starts to increase at the symptomatic stage [55]. Most

epidemiological models of HIV consider one class of infected individuals by assuming that

infected individuals have constant infectiousness throughout the infection period. But, it

is observed that an HIV infected individual with different stages of infection has different

viral load and different infectiousness as a result [24, 64, 55]. Considering a single class

of infected individuals in a model means that an infected individual is assumed to have

a constant viral load and infectiousness throughout the course of the infection. Thus,

considering as many infectious classes as possible, is very important because it ends up

considering uniform classes of infected individuals in a class. Hence age of infection of

infected individuals is crucial in understanding the dynamics of the disease and provides

interventions to counteract its effect.
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Once we notice the variation of infectiousness when age of infection increases, it is impor-

tant to consider it in the modelling of the transmission of the disease. Depending on the

above fact, the aim of the thesis is:

• To investigate the effect of treatment on the transmission of HIV/AIDS in the pop-

ulation using the age of infection structured model.

To achieve our aim, we have the following objectives:

1. Implement the test and treat strategy using the age of infection structured HIV/AIDS

model at different stages of the infection.

2. Investigate the effect of each stage of infection for the dynamics of the disease.

3. Compare results with the strategy presented by [55].

1.4 Methodology

According to Hollingsworth et al. and Reuben et al., the early and last stage of infection

are responsible for the high rate of infectiousness [24, 55]. Even within one stage, there

are different individuals with different infectiousness, [55]. If we consider the early stage,

it lasts for about three months. Infected individuals with one month of infection and after

three months of infection will have different viral loads and therefore different immune

responses. In most compartmental HIV models infected individuals are assumed to have

the same probabilities of infectiousness in every stage and the same rate of progression

to the next stage (compartment). In our work, we will take into account that infected

individuals in one class have different probability of infectiousness and rate of progression

to AIDS depending on the age of infection.

In this research, the following points have been our methodologies to attain our objectives:

• Present a basic HIV/AIDS deterministic model by considering infected individuals

to have the same effect for the dynamics of the disease throughout the course of the

infection. This model gives a background of deterministic HIV/AIDS models.
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• Formulate and analyse a staged progression HIV/AIDS model by dividing the infected

class I(t) into three further classes, I1(t), I2(t) and I3(t) depending on the age of

infection.

• Formulate age of HIV infection structured model which generalises the above two

deterministic models.

• Investigate the asymptotic behaviour of solutions and the stability analysis.

• Verify analytic solutions using numerical simulations.

• Introduce treatment for the model with age of infection at different stages of infection.

• Investigate how each stage of the infection affects the dynamics of the disease.

1.5 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we present an epidemiology

model of HIV/AIDS by formulating and analysing two classic deterministic models. Chap-

ter 3 presents an HIV/AIDS model structured by age of infection. It is a modification of

the work done by [64]. In Chapter 4 we introduce antiretroviral treatment (ART) for the

model presented in Chapter 3 and discuss results. Conclusions and recommendations for

future work are presented in Chapter 5.



Chapter 2

Review of Deterministic HIV/AIDS
Models

During the development of epidemiology in the population, deterministic (compartmental)

models played a central role. Hamer used a deterministic model for measles in 1906 [19].

Such models divide the population into homogeneous sub-populations. Among them, mod-

els labelled by SI, SIS, SEIS, SIR and SEIR are mostly used where the sub-populations

are Susceptible, Exposed, Infected and Recovered or Removed. In 1926, Kermack and

McKendrick, while also using deterministic models, obtained the epidemic threshold result

which shows that the density of susceptibles must exceed a critical value in order for a

disease outbreak to occur [66]. In this Chapter, we discussed two SIR type models for

HIV/AIDS transmission, where R is replaced by A to represent AIDS class.

2.1 Basic HIV Infection Model

In this standard model, the sexually matured population is divided into three classes, a class

of susceptible individuals, a class of infected individuals and a class of AIDS progressed

individuals, with population numbers in each class represented as functions of time by

S(t), I(t) and A(t), respectively. Individuals S(t) are those who are sexually active and

had no exposure to the virus. Infectives I(t) are those who are sexually active, infected

and infectious for susceptible individuals. We consider I(t) to be homogeneous with the

same infection towards susceptible individuals and progress to AIDS class with the same

8
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rate of progression. Individuals in the AIDS class, A(t) are supposed to show AIDS-related

symptoms and we assume that they do not involve much in sexual activities as a result of

sickness [24].

2.1.1 Model Formulation

The number of susceptible individuals can increase due to newly recruited individuals,

while the number can decrease due to new infection as a result of interaction with infected

individuals in class I(t) and also due to natural death. Infected individuals who joined the

class I(t) can progress into A(t) or may die due to natural death. After progression to class

A(t), individuals are removed from this class due to natural or disease induced deaths.

The total sexually matured population at a given time is the sum of all individuals in all

classes given by,

P (t) = S(t) + I(t) + A(t),

which varies with time since the disease induced death rate is far from negligible. Whereas,

sexually active proportion is given by

N(t) = S(t) + I(t).

To express the dynamics mathematically, we considered Λ the recruitment rate per unit

of time into the susceptible class, c the rate of sexual contact of an infected individual

with susceptible individual per unit of time, β is the probability of infecting per effective

contact, µ the per capita natural death rate per unit of time (for individuals in each class),

α the per-capita rate of progression of infected individuals to AIDS class per unit of time

and ν the per-capita disease-induced death rate of individuals in AIDS class per unit of

time.

The dynamics of the disease can be depicted in the following diagram:
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µµµ

Λ λ(t)
νS(t)

α
A(t)I(t)

Figure 2.1. Diagrammatic representation of the basic HIV/AIDS model

where λ(t) =
cβI(t)

N(t)
represents the standard incidence function.

Under the above assumptions and descriptions, the mathematical model of HIV transmis-

sion across S, I, A compartments for t > 0 is given as follows:



























dS(t)

dt
= Λ−

cβS(t)I(t)

N(t)
− µS(t),

dI(t)

dt
=

cβS(t)I(t)

N(t)
− (µ+ α)I(t),

dA(t)

dt
= αI(t)− (µ+ ν)A(t),

(2.1)

with initial conditions,

S(0) = S0 > 0, I(0) = I0 > 0, A(0) = A0 > 0.

2.1.2 Positivity of Solutions and the Invariant Region

The system in model (2.1) describes a human population, and hence we need to prove

that the solutions S(t), I(t), A(t) of the model (2.1) remain non-negative all the time. The

model given (2.1) is studied in the following region for biological feasibility:

D =
{

(S, I, A) ∈ R
3
+ : S + I + A 6

Λ

µ

}

. (2.2)

In other words, solutions of model (2.1) with given non negative initial data remain positive

all the time and are bounded in region D above.

Lemma 2.1.1. All solutions of the system with positive initial conditions are non-negative
for all time t ≥ 0.
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Proof. Assume if S(0) > 0, I(0) > 0 and A(0) > 0, then for all t ≥ 0, we have to prove
that S(t) > 0, I(t) > 0 and A(t) > 0. We define:

T = sup{t > 0|∀s < t, S(s) > 0, I(s) > 0, A(s) > 0} (2.3)

From the continuity of S(t), I(t) and A(t), we deduce that T > 0. If T = +∞, then the
claim holds. But, if 0 < T < +∞,

S(T ) = 0 or I(T ) = 0 or A(T ) = 0. (2.4)

In the case when S(T) = 0,

dS(T )

dt
= lim

t→T−

S(T )− S(t)

T − t
6 0 (2.5)

From the first equation of (2.1) we have,

dS(T )

dt
= Λ > 0,

resulting in contradiction with (2.5). Hence,

S(T ) 6= 0. (2.6)

The second case is

I(T ) = 0. (2.7)

From the second equation of (2.1), if we denote

x(t) =
cβS(t)

N(t)
− (µ+ α),

we have,

I(T ) = I(0) exp
(

∫ T

0

x(t)dt
)

> 0. (2.8)

which is contradiction with (2.7). Thus

I(T ) 6= 0. (2.9)

From (2.6) and (2.9), we necessarily have

A(T ) = 0. (2.10)

Then from the third equation of (2.1), using the variation of constant formula we have,

A(T ) = A(0) exp (−µ − ν)T + α

∫ T

0

I(s) exp (−µ− ν)(T − s)ds > 0.

Hence, also A(T ) could not be zero. Consequently T = +∞. By this we have shown that
all the solutions of (2.1) are in R

3
+, provided that the initial conditions are positive.
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Lemma 2.1.2. The region D given by (2.2) is positively invariant and attracts all solutions
in R

3
+.

Proof. Adding all equations of the system (2.1) gives us

P (t) 6
Λ

µ
+ exp(−µt)

{

P0 −
Λ

µ

}

. (2.11)

If we start inside the region D, that is P0 6
Λ

µ
, then,

P (t) 6
Λ

µ
.

So we stay inside the regionD, hence D is a positively invariant region. However, if P0 >
Λ

µ
from equation (2.11), we get

lim sup
t→∞

P (t) 6
Λ

µ
.

This implies that every solution of the system (2.1) either enters in the region D or ap-
proaches asymptotically.

2.1.3 Basic Reproduction Number and Equilibria

The analysis of the model includes finding equilibrium points (steady states) of the model,

finding the threshold value, basic reproduction number R0 and investigate the stability

of the equilibrium points (disease-free and endemic which will be characterized using the

threshold value R0).

Definition 2.1.3. Basic reproduction number, R0, is the average number of new cases of
disease generated by a single infectious individual during the entire infectious period, in a
totally susceptible population [14, 15] .

If R0 < 1 the number of infected individuals will decrease from generation to the next and

the disease dies out asymptotically. However, if R0 > 1 the number of infected individuals

will increase from generation to the next with a ratio R0 > 1 and the disease will persist.

The basic reproduction number R0 can be determined using the method of next-generation

matrix as presented in [14, 15].
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Taking the infectious compartment to be I, from the system (2.1) we have,

F =

[

cβS(t)I(t)

N(t)

]

and

V =
[

(α+ µ)I(t)
]

,

where F and V are transmission and transition matrices, respectively, as presented in

[14]. We need to differentiate both matrices F and V with respect to I(t) to get f and

v respectively, since I(t) is the cause for further new infections. Then we substitute S(t)

by N(t) in the expression of f ,
(

when there is no disease in the population we have

S∗ = N∗ =
Λ

µ

)

. Hence,

f =
[

cβ
]

,

and

v =
[

α + µ
]

.

The next generation matrix is given by

K = fv−1.

Then, the basic reproduction number R0, can be given by the spectral radius of the matrix

K. That is,

R0 = ρ(K) =
cβ

µ+ α
.

The expression of R0 is a product of probability of infecting per effective contact β, rate

of contact per unit of time c, and
1

µ+ α
the life expectancy of infected individuals in I(t)

before leaving the class by natural death or progression to AIDS.

Definition 2.1.4. Given a system of differential equations x′(t) = f(t), an equilibrium x∗

of this system is a point in the state space for which x(t) = x∗ is a solution for all t. Th

To find the equilibrium of the system (2.1), we equate the right-hand side to zero,


















0 = Λ−
cβS∗I∗

N∗
− µS∗,

0 =
cβS∗I∗

N∗
− (µ+ α)I∗,

0 = αI∗ − (µ+ ν)A∗.

(2.12)
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Let

cβS∗I∗/N∗ = Γ. (2.13)

Substituting (2.13) into (2.12) gives,

S∗ =
Λ− Γ

µ
, I∗ =

Γ

(α + µ)
, A∗ =

α

µ+ ν

Γ

α + µ
. (2.14)

Substituting equation (2.14) into (2.12) results

Γ0 = 0, or Γ∗ =
Λ(R0 − 1)(µ+ α)

(µ+ α)(R0 − 1) + µ
. (2.15)

Substituting equation (2.15) into (2.14) gives

S0 =
Λ

µ
, I0 = 0, A0 = 0,

or,

S∗ =
Λ

(R0 − 1)(µ+ α) + µ
, I∗ =

Λ(R0 − 1)

(R0 − 1)(µ+ α) + µ
,

A∗ =
Λα(R0 − 1)

(µ+ γ) ((µ+ α)(R0 − 1) + µ)
.

Hence, the following theorem gives us the disease-free and endemic equilibrium.

Theorem 2.1.5. The model given by the system (2.1) has a unique feasible disease-free
equilibrium given by

E0 = (S0, I0, A0) =

(

Λ

µ
, 0, 0

)

.

If R0 > 1, in addition to the disease-free equilibrium the model given by (2.1) has a unique
endemic equilibrium point given by,

E∗ = (S∗, I∗, A∗) =

(

Λ

(µ+ α)(R0 − 1) + µ
,

Λ(R0 − 1)

(µ+ α)(R0 − 1) + µ
,

Λ(R0 − 1)α

(µ+ ν) ((µ+ α)(R0 − 1) + µ)

)

.

Hence the equilibrium with all states positive exists for R0 > 1.



Chapter 2. Review of Deterministic Models 15

2.1.4 Linear Stability of Equilibria

In the following section we show that the disease-free equilibrium of the model (2.1) is

linearly (locally) stable if R0 < 1 and unstable if R0 > 1.

Theorem 2.1.6. If R0 < 1, the disease-free equilibrium of the model given (2.1) is locally
asymptotically stable.

Proof. Substituting N = S + I and linearising the system (2.1) gives the Jacobian matrix

J =





−Q1 − µ −Q2 0
Q1 Q2 − (µ+ α) 0
0 α −(ν + µ)



 ,

where

Q1 =
cβI

N

(

1−
S

N

)

and Q2 =
cβS

N

(

1−
I

N

)

.

Evaluating the above Jacobian matrix at the disease-free equilibrium gives

J0 =





−µ −cβ 0
0 cβ − (µ+ α) 0
0 α −(ν + µ)



 ,

where the characteristic polynomial of the Jacobian matrix is

(µ+ λ)(µ+ ν + λ)(cβ − (µ+ α+ λ)) = 0.

Solving the characteristic polynomial gives

λ1 = −µ, λ2 = −(µ+ ν), λ3 = (µ+ α)(R0 − 1). (2.16)

Since for R0 < 1 all the eigenvalues are negative, which confirms that the disease-free
equilibrium is linearly asymptotically stable.

Theorem 2.1.7. If R0 > 1, the endemic equilibrium is locally asymptotically stable.

Proof. By evaluating the Jacobian of the system (2.1) at the endemic equilibrium, we get

JE∗ =





−Q∗

1 − µ −Q∗

2 0
Q∗

1 Q∗

2 − (µ+ α) 0
0 α −(ν + µ)



 ,
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where

Q∗

1 =
cβI∗

N∗

(

1−
S∗

N∗

)

and Q∗

2 =
cβS∗

N∗

(

1−
I∗

N∗

)

.

To get the eigenvalues, we need to find the roots of the characteristic polynomial

P (λ) = −(ν +µ+λ)
(

λ2+λ(Q∗

1−Q∗

2+2µ+α)+µ(Q∗

1−Q∗

2+µ+α)+Q∗

1α
)

= 0, (2.17)

which implies

−(µ+ ν + λ) = 0 or
(

λ2 + λ(Q∗

1 −Q∗

2 + 2µ+ α) + µ(Q∗

1 −Q∗

2 + µ+ α) +Q∗

1α
)

= 0.

It could be written as

(µ+ ν + λ) = 0 or λ2 + λa1 + a2 = 0,

where

a1 = Q∗

1 −Q∗

2 + 2µ+ α, a2 = µ(Q∗

1 −Q∗

2 + µ+ α) +Q∗

1α.

We can easily see that Q∗

1 and Q∗

2 are positive since the fractions
I∗

N∗
and

S∗

N∗
are less than

unity.

From Routh−Hurwitz criteria, we need to check the sign of a1 and a2: if they are positive,
the endemic equilibrium is linearly stable. In other words we need to show

Q∗

1 −Q∗

2 + 2µ+ α > 0 and µ(Q∗

1 −Q∗

2 + µ+ α) +Q∗

1α > 0.

One can see that if

0 < (Q∗

1 −Q∗

2 + µ+ α), (2.18)

then a1 > 0 and a2 > 0. Substituting back the value of Q1 and Q2 into Equation (2.18)
results,

−(µ + α) <
cβ

N∗
(I∗ − S∗)

<
cβ

N∗
((R0 − 1)S∗ − S∗)

<
cβ

R0
(R0 − 2)

< (R0 − 2)(µ+ α)

1 < R0.

We have got that if R0 > 1, then the roots of characteristic polynomial given by equation
(2.17) are with negative real parts. Consequently, the endemic equilibrium of the model
(2.1) is linearly stable.
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2.1.5 Global Stability of Equilibria

For global stability of the disease-free equilibrium, we used Lyapunov Function as dis-

cussed in [59].

Theorem 2.1.8. If R0 6 1, the disease-free equilibrium given by Theorem 2.1.5 is globally
stable.

Proof. Let V be a positive definite function given by

V (I(t)) =
cβ

µ+ α
I(t).

Hence,

dV (I(t))

dt
=

cβ

µ+ α

dI(t)

dt

=
cβ

µ+ α

(cβS(t)I(t)

N(t)
− (µ+ α)I(t)

)

=
cβI(t)

µ+ α

(cβS(t)

N(t)
− (µ+ α)

)

= V (I(t))(R(t)− 1)(µ+ α)

where

R(t) =
cβ

µ+ α

S(t)

N(t)

is the reproduction function. The fact that S(t) 6 N(t) implies, R(t) 6 R0. Hence,
V ′ 6 0. As a result, V ′ is negative definite and using La Salle principle, the disease-free
equilibrium is globally asymptotically stable when R0 < 1.

To discuss global stability of the endemic equilibrium given by Theorem 2.1.5, we use the

Duluc−Bendixson criterion. Duluc−Bendixson criterion is stated for a system of two

equations. Since the third equation in system (2.1) is decoupled, we can reduce the system

to the first two equations and deduce the asymptotic behaviour of the third state variable

from the above two. Hence, the invariant region for the reduced system is given by

D1 =

{

(S(t), I(t)) ∈ R
2
+ : S(t) + I(t) 6

Λ

µ

}

.
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Lemma 2.1.9. Duluc-Bendixson criterion: Consider a dynamical system,

dN1(t)

dt
= f1 (N1(t), N2(t)) ,

N2(t)

dt
= f2 (N1(t), N2(t)) , (2.19)

where f1 and f2 are continuously differentiable functions on some simply connected domain
Ω ⊂ R

2 . If there is a function ρ : Ω → R such that,

∂ (ρf1) (N1, N2)

∂N1

+
∂ (ρf2) (N1, N2)

∂N2

> 0, (2.20)

then there will not be a closed orbit contained within Ω.

Theorem 2.1.10. If R0 > 1, the endemic equilibrium E∗, given by Theorem 2.1.5, is
globally stable.

Proof. In our case, we have,














dS(t)

dt
= f1(S(t), I(t)) = Λ−

cβS(t)I(t)

(I + S)
− µS(t),

dI(t)

dt
= f2(S(t), I(t)) =

cβS(t)I(t)

(I + S)
− (µ+ α)I(t)

and

Ω = D1.

Define

ρ(S, I) =
−1

S(t)I(t)
.

Then we need to check whether (2.20) is satisfied or not, that means, we need to check if
the following condition holds:

∂

∂S
(ρf1) +

∂

∂I
(ρf2) > 0.

To this end, we have

∂

∂S
(ρf1) +

∂

∂I
(ρf2) =

∂

∂S

(

β

S + I
+

µ

I
−

Λ

SI

)

+
∂

∂I

(

µ+ α

S
−

β

S + I

)

=
Λ

IS2
−

β

(S + I)2
+

β

(S + I)2

=
Λ

IS2
> 0.

By this we ensure that there will not be a closed orbit contained within Ω. If there is no
closed orbit, the solution should converge to one of the equilibrium points.

When R0 > 1, the system has two equilibrium points, the disease-free E0 and endemic
equilibrium E∗. Here the disease-free equilibrium is unstable from equation (2.16). Then
the solution converges to the endemic equilibrium. In other words, the endemic equilibrium
point is globally stable for R0 > 1.
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Parameter Description Value Reference
Λ Recruitment rate 801403 Estimated [52]
µ Natural death rate 1/34 [65]
c Contact rate 0.3 and 2.5 Estimated
β Probability of infecting per contact 0.12 [65]
α Progression rate 0.125 [9]
ν Disease related death rate 0.115 [36]

Table 2.1. Parameters used for the numerical simulations

2.1.6 Numerical Simulations

In the following section we illustrate the analytic results with numerical simulations. We

use the odesolver package in Python. To determine the annual recruitment rate Λ, we used

the method used by S. Kassa and A. Ouhinou [36]. The total population of South Africa

in 1990 was 36, 877, 000 with adult population of 56.3%. The annual rates of increase for

adult population of South Africa were estimated to be 3.5% in the years 1990−1995, 2.2%

in the years 1995− 2000, and 0.8% in the years 2000− 2005 [52].

Average annual rate of increase becomes 2.16%. Whereas, annual rate of increase for adult

population is the net increase which includes the death. However, Λ is crude income to

the population per year. Hence, we need to add individuals who were removed by natural

death rate. We take the average life expectancy at birth to be 60 years. Therefore,

Λ = 36, 877, 000× 56%× (2.16% + 1.7%) = 801403.

The initial conditions are S0 = 36, 877, 000 × 56% = 20651120 individuals, I0 = 144557

individuals and A0 = 0 individual. The parameter values used for the simulation are given

in Table (2.1.6). The figure below, Fig.(2.2) is for c = 0.3. The corresponding value for the

basic reproduction number is R0 = 0.2. The number of susceptible individuals increased

and stabilised at the disease free equilibrium. Whereas the number of infected and AIDS

progressed individuals goes to zero eventually, as we have obtained from mathematical

discussion when R0 < 1.
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Figure 2.2. The dynamics of the disease when R0 < 1

Figure 2.3. The dynamics of the disease when R0 > 1 with different I0

Figure 2.3 represents the dynamics of the disease when R0 = 1.9 and c = 2.5. We observed

that different initial conditions for infected individuals does not affect the stability. The
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prevalence peaks with high value and the number of susceptible individuals decreases ex-

tremely, which is far from reality. To fit the model into data, we need to consider behaviour

change as a result of mortality and morbidity of the disease. The simple model is widely

used model for national projection of the disease prevalence. However, the projection is

lower because the model disregards the initial epidemic growth phase [9]. Hence, we extend

our work to staged progression model for better understanding of HIV/AIDS dynamics.

2.2 Staged Progression HIV Model

In this model, we take into account the different infection rates during the course of HIV

infection. According to reports from WHO and many other resources, HIV positive indi-

viduals pass through three main stages of infection before progressing to full-blown AIDS

[6, 9, 18, 64, 33]. Among these, the acute and symptomatic stages are responsible for a

high rate of infection. According to Hollingsworth et.el. [24], the acute stage is 26 times

more infectious than at the asymptomatic stage and the symptomatic (chronic) stage is 7

times more infectious as compared to the asymptomatic stage. In another study, Reuben

et.al suggested that the acute stage is 10 times more infectious than the asymptomatic

stage and the symptomatic stage is 5 times infectious than asymptomatic stage [55]. Nev-

ertheless, the asymptomatic stage is by no means negligible due to its long life span. It

lasts for an average of 8 - 12 years [50].

2.2.1 Model Formulation

In addition to the assumptions and descriptions of the basic model of Section 1, in this

model the infected class is further divided into three classes according to the probability

of infecting for susceptible individuals. Let I1(t), I2(t) and I3(t) represent the number

of infected individuals at the acute, asymptomatic and chronic stage, respectively. If

susceptible individuals make sufficient contact with individuals in one of the stages, new

infections will result, and all the newly infected individuals will join the acute stage. Once

infected individuals join the acute stage, they will stay there until they either will be

progressed to second and then third classes or they may die due to natural causes at each

stage.
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The parameters used in this model are, Λ the recruitment rate of sexually matured indi-

viduals into a susceptible class, c the contact rate of susceptible individuals with infected

individuals, µ the per-capita natural death rate of individuals in all classes, irrespective of

being susceptible or infected. Furthermore, β1, β2 and β3 represent the transmission prob-

ability per effective contact of susceptibles with I1(t), I2(t) and I3(t), respectively, α1, α2

and α3 are progression rates of infected individuals from classes I1(t), I2(t) and I3(t) to

I2(t), I3(t) and A(t) respectively, whereas ν represents the per-capita disease-induced death

rate per unit time.

The flow diagram of the infection will be summarized as follows:

µµµµµ

Λ λ(t) α1 α2 α3 ν
S(t) I1(t) I2(t) I3(t) A(t)

Figure 2.4. Diagrammatic representation of staged progression HIV/AIDS model

where λ(t) =
c

N(t)

(

β1I1 + β2I2 + β3I3

)

is the standard incidence function.

The resulting system of equations is given by:






















































dS(t)

dt
= Λ−

cS(t)

N(t)

(

β1I1(t) + β2I2(t) + β3I3(t)
)

− µS(t),

dI1(t)

dt
=

cS(t)

N(t)

(

β1I1(t) + β2I2(t) + β3I3(t)
)

− (µ+ α1)I1(t),

dI2(t)

dt
= α1I1(t)− (µ+ α2)I2(t),

dI3(t)

dt
= α2I2(t)− (µ+ α3)I3(t),

dA(t)

dt
= α3I3(t)− (µ+ ν)A(t),

(2.21)

where N(t) represents the sexually active proportion of the population given by

N(t) = S(t) + I1(t) + I2(t) + I3(t). (2.22)

Total adult population is given by

P (t) = N(t) + A(t).
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Since it could be done in the same way as the basic model, we left some of the details of

the model described by system (2.21).

2.2.2 Basic Reproduction Number

By the method used in the previous section, the basic reproduction number of model (2.21)

is given by

R0 = R1 +R2 +R3, (2.23)

where

R1 =
cβ1

µ+ α1
,R2 =

cβ2

(µ+ α2)

α1

(µ+ α1)
,R3 =

cβ3

(µ+ α3)

α1α2

(µ+ α2)(µ+ α1)
, (2.24)

which represents the average number of infected individuals as a contribution of each class

I1(t), I2(t) and I3(t) respectively.

The expression of R0 meets the discussion given by [15] for the staged progression model.

The term
cβ1

µ+ α1
represents the new infections resulted by infected individuals in the first

stage I1 where
1

µ+ α1

is the average time that infected individuals spend in the first stage

before progressing to the second stage or before dying due to natural causes.

From the second term of R0,
α1

µ+ α1
represents the fraction of individuals who progressed

from stage one and
cβ2

µ+ α2

represents the new infections caused by the infected individuals

in the second stage.

The last term,
cβ3

µ+ α3
, represents the number of new infections from infected individuals

at the third stage,
α1α2

(µ+ α1)(µ+ α2)
is a proportion of individuals progress to the third

stage and
1

µ+ α3

the average time an infected individual will stay in the third stage.

As a generalization in the staged progression models, the ith term in R0 is the product of

the infection of individuals in stage i, the fraction of initially infected individuals surviving

at least to stage i and the average infectious period of an individual in stage i.



Chapter 2. Review of Deterministic Models 24

2.2.3 Equilibria

To find the steady states, we equate all the derivatives in the model in (2.21) to zero and

we solve the following system for the state variables:







































0 = Λ−
cS∗

N∗

(

β1I1
∗ + β2I2

∗ + β3I3
∗

)

− µS∗,

0 =
cS∗

N∗

(

β1I1
∗ + β2I2

∗ + β3I3
∗

)

− (µ+ α1)I1
∗,

0 = α1I1
∗ − (µ+ α2)I2

∗,

0 = α2I2
∗ − (µ+ α3)I3

∗,

0 = α3I3
∗ − (µ+ ν)A∗,

(2.25)

and

N∗ = S∗ + I1
∗ + I2

∗ + I3
∗. (2.26)

Adding the first two equations of (2.25) gives

S∗ =
Λ− (µ+ α1)I1

∗

µ
. (2.27)

From the third equation in system (2.25), we have

I2
∗ =

α1

(µ+ α2)
I1

∗. (2.28)

Substituting equation (2.28) into the fourth equation in system (2.25) gives us

I3
∗ =

α1α2

(µ+ α2)(µ+ α3)
I1

∗ (2.29)

Substituting equation (2.29) into the fifth equation in system (2.25) gives

A∗ =
α1α2α3

(µ+ ν)(µ+ α2)(µ+ α3)
I1

∗. (2.30)

From equation (2.26), we have

N∗ =
Λ

µ
−

α1α2α3I
∗

1

µ(µ+ α2)(µ+ α3)
. (2.31)

Substituting equations (2.27) up to (2.31) into the second equation in system (2.25) gives

I1 = 0 or I1
∗ =

Λ(R0 − 1)

(µ+ α1) (R0 − k)
, (2.32)



Chapter 2. Review of Deterministic Models 25

where

k =
α1α2α3

(µ+ α1)(µ+ α2)(µ+ α3)
.

By substituting equation (2.32) into equation(2.27) up to equation (2.31) we have

E0 = (S0, I1, I2, I3, A0) =

(

Λ

µ
, 0, 0, 0, 0

)

or E∗ = (S∗, I1
∗, I2

∗, I3
∗, A∗)

where


























































S∗ =
Λ(1− k)

µ(R0 − k)
,

I1
∗ =

Λ(R0 − 1)

(µ+ α1)
,

I2
∗ =

Λα1(R0 − 1)

(R0 − k)(µ+ α1)(µ+ α2)
,

I3
∗ =

Λ(R0 − 1)k

(R0 − k)α3
,

A∗ =
Λ(R0 − 1)k

(R0 − k)(µ+ ν)
.

(2.33)

Then we have the following result:

Theorem 2.2.1. i) If R0 < 1, the model given by the system (2.21) has a unique feasible
disease-free-equilibrium given by,

E0 =

(

Λ

µ
, 0, 0, 0, 0

)

.

ii) If R0 > 1, in addition to the disease-free equilibrium the model given (2.21) has a unique
endemic equilibrium point given by E∗ = (S∗, I1

∗, I2
∗, I3

∗, A∗), given by (2.33).

2.2.4 Local Stability of Equilibria

By linearising the model (2.21) around the disease-free equilibrium given by Theorem 2.2.1,

we have the following Jacobian matrix:

JE0
=



















−µ −cβ1 −cβ2 −cβ3 0

0 cβ1 − (µ+ α1) cβ2 cβ3 0

0 α1 −(µ+ α2) 0 0

0 0 α2 −(µ + α3) 0

0 0 0 α3 −(µ+ ν)
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The corresponding eigenvalues are

λ = −µ, λ = −(µ+ ν),

and

(cβ1 − (µ+ α1 + λ)) (µ+ α2 + λ)(µ+ α3 + λ) + α1 (cβ2(µ+ α3 + λ) + cβ3α2) = 0,where as

λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = (µ+ α1) + (µ+ α2) + (µ+ α3)− cβ1,

a2 = (µ+ α2)(µ+ α3)) ((µ+ α1)− cβ1) + cα1β2 + (µ+ α2)(µ+ α3),

a3 = α1cβ2(µ+ α3)− α1α2cβ3 − (µ+ α3)(µ+ α2) ((µ+ α1)− cβ1) .

From Routh − Hurwitz criteria of third order polynomials, we need to check that a1 >

0, a3 > 0 and a1a2 > a3 so that all eigenvalues will have negative real parts.

a1 > 0 ⇒

(µ+ α1) + (µ+ α2) + (µ+ α3)− cβ1 > 0 ⇒

(µ+ α2) + (µ+ α3) > cβ1 − (µ+ α1),

(µ+ α2) + (µ+ α3) > (µ+ α1)(R1 − 1).

Since at the disease-free equilibrium R0 < 1, R1 < 1. Hence, the inequality

(µ+ α2) + (µ+ α3) > (µ+ α1)(R1 − 1)

holds.

Therefore a1 > 0.

a3 > 0 ⇒

α1cβ2(µ+ α3)− α1α2cβ3 − (µ+ α3)(µ+ α2)
(

(µ+ α1)− cβ1

)

> 0 ⇒

(1−R1)−R2 +R3 > 0,

(1−R1) > R2 −R3.
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Whereas, from the fact that at the disease-free equilibrium R0 < 1,

R0 = R1 +R2 +R3 < 1,

R2 +R3 < 1−R1,

1−R1 > R2 +R3.

Therefore

(1−R1) > R2 −R3

holds and as a result, a3 > 0. We still need the condition a1a2 > a3 so that the disease-free

equilibrium to be locally stable which is not easy to show from the above expression. The

numerical simulation will help to asses the linear stability of the disease-free equilibrium

in the following section.

To investigate the local stability of the endemic equilibrium, the linearised system of the

model (2.21) around the endemic equilibrium given by Theorem 2.2.1 results in

JE∗ =



















−E1 − µ −E2 −E3 −E4 0

E1 E2 − (µ+ α1) E3 E4 0

0 α1 −(µ + α2) 0 0

0 0 α2 −(µ+ α3) 0

0 0 0 α3 −(µ+ ν)



















where

E1 = λ∗(1−
S∗

N∗
), λ∗ =

I1
∗

N∗
(R0(µ+ α1)), E2 = cβ1

S∗

N∗
(1−

I∗1
N∗

),

E3 = cβ2
S∗

N∗
(1−

I∗2
N∗

), E4 = cβ3
S∗

N∗
(1−

I∗3
N∗

)

We can see that the expressions λ∗, E1, E2, E3 and E4 are all positive. To find the eigen-

values of the Jacobian matrix we need to determine λ from the expression

−(µ+ ν + λ)
(

− (E1 + µ+ λ) det(A1)−E1 det(A2)
)

= 0,

where

A1 =









E2 − λ E3 E4

E2 − (µ+ α1) −(µ + α2 + λ) 0

0 α2 −(µ+ α3 + λ)
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and

A2 =









−E2 −E3 −E4

E2 − (µ+ α1) −(µ+ α2 + λ) 0

0 α2 −(µ + α3 + λ)









.

This yields

−(µ+ ν + λ)(λ4 + a1λ
3 + a2λ

2 + a3λ+ a4) = 0,

where

a1 = E1 + E2 + 3µ+ α2 + α3,

a2 = (E1 + E2 + µ)(α2 + 2µ+ α3) + E3(E2 − (µ+ α1)) + µ(α2 + α3 + µ) + E2µ+ α2α3,

a3 = E1(µ(α2 + α2 + µ) + α2α3) + E3(E2 − (µ+ α1))(2µ+ α3)

+µ
(

E2(α2 + µ+ α3) + 1 + (E2 + µ)(α2 + α3)
)

+ α2α3 − E4α2(E2 − (µ+ α1))

a4 = E2µ
3 + E2µα2α3 + E2µ

2(α2 + α3) + E3µ(E2 − (µ+ α1))(µ+ α3)−

E4µα2(E2 − (µ+ α1))

One of the eigenvalues is given by λ = −(µ+ ν).

To determine the sign of the other eigenvalues by using Routh−Hurwitz criteria, we need

to check the condition a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2 + a2a4.

But it is not obvious. For that reason we use the numerical simulations to show the local

stability of the endemic equilibrium in the following subsection.

2.2.5 Numerical Simulations

The Odesolver package is used in Python for the numerical simulations. The parameter

values are given in Table (2.3). The initial conditions for our numerical solutions are

S0 = 20651120, I1,0 = 144557, I2,0 = 0, I3,0 = 0 and A0 = 0.
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Parameter Description
Λ Recruitment rate
µ Natural death rate
c contact rate
β1 Probability of infecting per contact in I1
β2 Probability of infecting per contact in I2
β3 Probability of infecting per contact in I3
α1 Rate of progression to I2
α2 Rate of progression to I3
α3 Rate of progression to A
ν Disease related death rate

Table 2.2. Description of parameters used in the model

M. Reuben et.al. suggested the relation among β1, β2 and β3 as, β1 = 10β2 and β3 = 5β2

[55], whereas a study by Hollingsworth et.al. give β2 = 0.1, [24]. By combining the two we

get the values of β1 and β3 as given in Table 2.3.
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Parameter Value Reference
Λ 801403 Estimated from [52]
µ 1/34 [65]
c c=0.3 and 2.5 Fitted
β1 1.0 [24, 55]
β2 0.1 [24]
β3 0.5 [24, 55]
α1 8.7 [9]
α2 0.167 [9]
α3 0.5 [9]
ν 0.115 [36]

Table 2.3. Parameter values used for the simulation

Figure 2.5. The dynamics of the disease when R0 < 1

Figure 2.5 depicts the dynamics of the disease with c = 0.3, R0 = 0.6 and other parameters

as given in Table 2.3.
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Figure 2.6. The dynamics of the disease when R0 > 1

Figure 2.6 shows the dynamics of the disease with c = 2 and R0 = 4.8. The prevalence

peak and the time of the peak are not exactly the same as the national prevalence since we

considered that there is no change of behaviour as a result of hazards due to the disease.

2.3 Summary

In this chapter we have seen two HIV compartmental models as a background. The first

model is a classical model which assumes the infected class is homogeneous throughout the

course of the infection. The second model considers three classes of infected individuals,

having different probability of infecting and rate of progression to the next stage. Numerical

results gave us that high peak of the early infection does not affect the stability of the

system, rather it changes the speed with which the disease spreads. Stability analysis and

numerical simulations are presented for both models.

The staged progression model presented in (2.21) is better than the simple model (2.1) by

considering different infection for the three stages of infection. However, it considers that

infection is constant in each stages, which is not the case. In addition, infected individuals
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are supposed to pass through all the three infectious stages before progressing to AIDS.

In reality, infected individuals may progress to AIDS from one of the three classes, not

necessarily from the third stage. For these and other reasons (which we explain in the next

chapter), we considered a mathematical model of HIV/AIDS dynamics structured by age

of infection.



Chapter 3

Model of HIV/AIDS Transmission
Structured by age of infection

Research shows that infecting varies as age of HIV infection increases [18, 21, 64]. In

addition to the assumptions and descriptions of the above two models, in this chapter I(t)

is divided into infinitely many classes according to the probability of infecting per effective

contact. In the model (2.21), infected individuals are assumed to progress to each class

of infection before progressing to AIDS. In actual fact, infected individuals may progress

to AIDS at any time after infection, and not necessarily only after passing through all the

stages of infection. For that reason this model allows fast progression of infected individuals

into the AIDS class at any time of infection with a specific progression rate.

3.1 Model Formulation

Let i(t, a) be an integrable function which represents the age-density function of infected

individuals at time t and age of infection a ∈ [0, a+] where a+ is the maximum time infected

individuals will spend in the infectious class before they die or progress to AIDS. We will

be using a ∈ [0,∞) for convenience of a mathematical description, knowing that i(t, a) ≃ 0

for a > a+ since a+ is the maximum time infected individuals can survive in the infectious

class. The total number of infected individuals at a given time t, I(t), is the sum of all

infected individuals in the infectious class with different ages of infection. Mathematically,

33
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it can be written as

I(t) =

∫

∞

0

i(t, a)da. (3.1)

Let the probability of infecting per effective contact with infected individuals with age of

infection a be β(a). The infecting of infected individuals is highly connected to the viral

load in their blood [48]. Thus, in average the infecting of an infected individual follows the

same slope as the viral dynamics in the plasma, see Figure (1.1). The functional value of

β(a) quickly increases after few days of infection to reach its maximum. After a couple of

weeks, it decreases sharply to a lower level from which it starts increasing slightly for 8-10

years in average. Then this phase is followed by a late plateau before AIDS symptoms

develop (see Fig.(1.2) from [55] and [24, 32, 51]). In what follows we assume that β(a) is

a bounded function and we take

β̂ := sup
a>0

β(a). (3.2)

Interaction between infected individuals in class I(t) and susceptible individuals in class

S(t) with sufficient contact per unit time will result new infections, which is in-flow for

class I(t). The number of new infections at time t who will be removed from susceptible

class, which is represented in our model by infected individuals with age of infection equals

to zero, is given by:

i(t, 0) =
cS(t)

N(t)

∫

∞

0

β(a)i(t, a)da, (3.3)

where c is the contact rate and N(t) is the sexually active proportion of the population.

From the expression (3.3), we separate the following quantity

λ(t) =
c

N(t)

∫

∞

0

β(a)i(t, a)da (3.4)

which is known as the force of infection. As a result, the number of susceptible individuals

can vary according to the following scenario

dS(t)

dt
= Λ−

cS(t)

N(t)

∫

∞

0

β(a)i(t, a)da− µS(t),

where Λ and µ are as described in the above two models. Infected individuals who have

survived a units of time after infection will progress to the AIDS class with a rate of



Chapter 3. Model of HIV/AIDS Transmission Structured by Age of Infection 35

progression α(a). As a increases, α(a) also increases because of the increment in the viral

load and weakness of the immune system [32]. The number of individuals who progress to

AIDS class at time t is given by
∫

∞

0
α(a)i(t, a)da.

Whereas the number of deaths at time t in the class of infected individuals I(t) is given by

∫

∞

0

µi(t, a)da = µI(t). (3.5)

The following diagram summarizes the dynamics of the disease, where λ(t) is as given in

equation (3.4).
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νS(t) A(t)

Figure 3.1. Diagrammatic representation of HIV model structured by age of infection

As the above diagram shows, the out-flow of infected individuals from the infected class is

either due to natural death or due to the progression to AIDS.

Hence, the variation of infected individuals with age of infection a at time t is given by:

(

∂

∂t
+

∂

∂a

)

i(t, a) = −(µ + α(a))i(t, a).

The number of individuals who progress to AIDS, who are in class A(t), are those who are

removed from class I(t) with rate of progression α(a). Individuals in class A(t) will leave
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the class due to both natural and AIDS related deaths. Hence, the number of individuals

in class A(t) varies as follows:

dA(t)

dt
=

∫

∞

0

α(a)i(t, a)da− (µ+ ν)A(t).

Then, the age of infection structured mathematical model for HIV/AIDS dynamics is given

by the following system of ordinary differential equations mixed with partial differential

equation having non-local boundary condition:











































dS(t)

dt
= Λ−

cS(t)

N(t)

∫

∞

0

β(a)i(t, a)da− µS(t),
( ∂

∂t
+

∂

∂a

)

i(t, a) = −(µ+ α(a))i(t, a),

i(t, 0) =
cS(t)

N(t)

∫

∞

0

β(a)i(t, a)da,

dA(t)

dt
=

∫

∞

0

α(a)i(t, a)da− (µ+ ν)A(t),

(3.6)

with initial conditions, S(0) > 0, i(0, a) = φ(a) > 0 for a > 0 and A(0) > 0.

3.2 Solutions Along Characteristic Lines

Here, we use the characteristic method to solve the PDE as ODE, as presented in [12].

Define ĩ(h) = i(t0 + h, a0 + h), for constant values of t0 > 0 and a0 > 0. Hence, the second

equation of (3.6) can be written as,

d̃i(h)

dh
= − (µ+ α(a0 + h)) ĩ(h). (3.7)

Solving (3.7) explicitly, we get

ĩ(h) = ĩ(0) exp

(

−µh−

∫ h

0

α(r)dr

)

,

i(t0 + h, a0 + h) = i(t0, a0) exp

(

−µh−

∫ h

0

α(r)dr

)

.

For a 6 t, setting (t0, a0) = (t− a, 0) and h = a, gives the following expression:

i(t, a) = i(t− a, 0) exp

(

−µa−

∫ a

0

α(r)dr

)

.
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For a > t, setting (t0, a0) = (0, a− t) and h = t, we get

i(t, a) = i(0, a− t) exp

(

−µt−

∫ a

a−t

α(r)dr

)

.

Hence, we obtained the following solution for the second equation of system (3.6) along

characteristic lines,

i(t, a) =















i(0, a− t) exp (−µt−

∫ a

a−t

α(r)dr), 0 < t < a,

i(t− a, 0) exp (−µa−

∫ a

0

α(r)dr), t > a > 0.
(3.8)

We denote π(a) = exp (−µa−
∫ a

0
α(r)dr), which gives the survival probability of infected

individuals up to a units of time after infection before progressing to the AIDS class. For

simplicity of notation, let B(t) := i(t, 0), and φ(a) := i(0, a). Hence, (3.8) can be rewritten

as:

i(t, a) =







φ(a− t)
π(a)

π(a− t)
, 0 6 t 6 a,

B(t− a)π(a), t > a > 0.
(3.9)

3.3 The Model with Particular Cases

In this section, we discuss the model (3.6) with some restricted assumptions. Under differ-

ent assumptions, the model could be written as the basic model (2.1), staged progression

model (2.21) with a discrete delay and also as a system of differential equations with a

distributed delay.

3.3.1 When Infected Class is Homogeneous

The objective of this subsection is to derive the basic model presented (2.1) from the age

of infection structured model (3.6) under the assumptions: β(a) = β (infected individuals

have a constant infecting) and α(a) = α (uniform progression to AIDS).

Proposition 3.3.1. If the probability of infecting β(a) and the rate of progression α(a)
are constants, then the model presented (3.6) can be written as the basic model (2.1).
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Proof. Using the above assumptions, the third equation can be written as

i(t, 0) =
cS(t)

N(t)

∫

∞

0

βi(t, a)da

=
cβS(t)

N(t)
I(t).

Hence, the first equation of (3.6) becomes

dS(t)

dt
= Λ−

cβS(t)

N(t)
I(t)− µS(t). (3.10)

Differentiating (3.1) and substituting the second equation of (3.6) and equation (3.5) into
equation (3.1) gives

dI(t)

dt
=

d

dt

∫

∞

0

i(t, a)da =

∫

∞

0

∂

∂t
i(t, a)da

= −

∫

∞

0

(

∂

∂a
+ µ+ α

)

i(t, a)da

= i(t, 0)−

∫

∞

0

(α + µ)i(t, a)da

=
cβS(t)I(t)

N(t)
− (µ+ α)I(t). (3.11)

To get the expression for the variation of the number of individuals in the AIDS class, we
consider the fourth equation of (3.6),

dA(t)

dt
=

∫

∞

0

α(a)i(t, a)da− (µ+ ν)A(t) = αI(t)− (µ+ ν)A(t). (3.12)

From the expressions (3.10), (3.11) and (3.12), we get the system of ordinary differential
equations given in (2.1).

3.3.2 Model with Three Stages of Infection

In this subsection, we suppose that the class of infected individuals is further divided

into three classes I1, I2 and I3, corresponding to the three stages of infection, see [55].

Individuals in each class have corresponding probabilities of infecting and progression rates

to AIDS class. The assumptions of this subsection are summarised in Table (3.1).
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Class Age of infection infection Progression rate to AIDS
I1 between 0 and a1 β1 α1

I2 between a1 and a2 β2 α2

I3 between a2 and a+ β3 α3

Table 3.1. Assumptions of a three-staged model

Using assumptions of Table (3.1), the total number of infected individuals at time t in each

infectious class is:

I1(t) =

∫ a1

0

i(t, a)da, I2(t) =

∫ a2

a1

i(t, a)da, I3(t) =

∫

∞

a2

i(t, a)da. (3.13)

The force of infection given in equation (3.4) can be rewritten as

λ(t) =
c

N(t)

∫

∞

0

β(a)i(t, a)da

=
c

N(t)

(
∫ a1

0

β(a)i(t, a)da+

∫ a2

a1

β(a)i(t, a)da+

∫

∞

a2

β(a)i(t, a)da

)

=
c

N(t)

(

β1

∫ a1

0

i(t, a)da+ β2

∫ a2

a1

i(t, a)da + β3

∫

∞

a2

i(t, a)da

)

=
c

N(t)
(β1I1(t) + β2I2(t) + β3I3(t)) .

Hence, the first equation of (3.6) becomes

dS(t)

dt
= Λ− λ(t)S(t)− µS(t). (3.14)

From equation (3.13) and the second equation of (3.6), we have

dI1(t)

dt
=

d

dt

∫ a1

0

i(t, a)da =

∫ a1

0

∂

∂t
i(t, a)da

= −

∫ a1

0

( ∂

∂a
+ µ+ α(a)

)

i(t, a)da

= −

∫ a1

0

∂

∂a
i(t, a)da−

∫ a1

0

(µ+ α(a))i(t, a)da

= i(t, 0)− i(t, a1)− (µ+ α1)I1(t).

Using solutions along characteristic lines for large values of t (t > a), one can get

dI1(t)

dt
= λ(t)S(t)− λ(t− a1)S(t− a1)π1 − (µ+ α1)I1(t), (3.15)
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where π1 = exp− (µ+ α1) a1 is the survival probability of infected individuals up to a1

units of time in class I1(t) before progressing to AIDS.

Similarly,

dI2(t)

dt
= =

d

dt

∫ a2

a1

i(t, a)da =

∫ a2

a1

∂

∂t
i(t, a)da

= −

∫ a2

a1

( ∂

∂a
+ µ+ α(a)

)

i(t, a)da

= −

∫ a2

a1

∂

∂a
i(t, a)da−

∫ a2

a1

(

µ+ α(a)
)

i(t, a)da

= i(t, a1)− i(t, a2)− (µ+ α2)I2(t).

From the solutions along characteristic lines for large t (t > a2), we have

dI2(t)

dt
= λ(t− a1)S(t− a1)π1 − λ(t− a2)S(t− a2)π1π2 − (µ+ α2)I2(t), (3.16)

where π2 = exp−(µ+ α2)(a2 − a1) is the survival probability of infected individuals up to

age of infection a2 after progressing to I2(t) having age of infection a1. A similar procedure

gives us

dI3(t)

dt
= λ(t− a2)S(t− a2)π1π2 − (µ+ α3)I3(t). (3.17)

Furthermore, applying assumptions of Table 3.1 for the fourth equation of (3.6) gives

dA(t)

dt
=

∫

∞

0

α(a)i(t, a)da− (µ+ ν)A(t),

=

∫ a1

0

α(a)i(t, a)da+

∫ a2

a1

α(a)i(t, a)da+

∫

∞

a2

α(a)i(t, a)da− (µ+ ν)A(t),

= α1I1(t) + α2I2(t) + α3I(3)− (µ+ ν)A(t). (3.18)

From equations (3.14 - 3.18), the following result holds.

Proposition 3.3.2. Under the assumption in Table 3.1 the model (2.21) is equivalent to
the following staged progression model with fast-AIDS progression:


















































dS(t)

dt
= Λ− λ(t)S(t)− µS(t),

dI1(t)

dt
= λ(t)S(t)− λ(t− a1)S(t− a1)π1 − (µ+ α1)I1(t),

dI2(t)

dt
= λ(t− a1)S(t− a1)π1 − λ(t− a2)S(t− a2)π1π2 − (µ+ α2)I2(t),

dI3(t)

dt
= λ(t− a2)S(t− a2)π1π2 − (µ+ α3)I3(t),

dA(t)

dt
= α1I1(t) + α2I2(t) + α3I(3)− (µ+ ν)A(t).

(3.19)
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The expression λ(t−a1)S(t−a1)π1 represents the number of infected individuals who were

infected before a1 units of time and survived with a survival probability π1 = e−(µ+α1)a1 who

withstood the natural death and progression to AIDS. Since they stayed up to a maximum

time in the first stage, a1, they progressed to the second compartment I2. Whereas λ(t−

a2)S(t− a2)π1π2 represents the number of infected individuals who were infected a2 units

of time ago, in the first class for a1 units of time with probability π1 and survived a2 − a1

units of time within the second class with probability π2, before progressing to the third

stage (since a2 is the infection age at which infected individuals spend before progressing

to the third stage). The model presented (2.21) is different from the model given (3.19) in

that the model given in (2.21) assumes infected individuals pass through all the infection

stages before progression to AIDS, but in (3.19), infected individuals may progress to AIDS

from all of the stages (fast progression). If we take α1 = α2 = 0 we will get the staged

progression model (2.21) with discrete delays. In reality, an infected individual may die

of HIV infection quickly after infection, at any time a after infection not necessarily after

passing through all the stages of infection. The model presented (3.6) considers this fact

by taking the rate of progression to AIDS, α(a), as a function of age of infection a .

3.3.3 Uniform infection with Fast Progression

Here we assume that the infecting of infected individuals to be β irrespective of their age

of infection. However, they are expected to progress to the AIDS class with varying rate at

different ages of infection, α(a). Using this assumption, the first equation of system (3.6)

can be written as,

dS(t)

dt
=

cβS(t)I(t)

N(t)
− µS(t). (3.20)
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Using solutions along characteristic lines (3.8), we have

I(t) =

∫

∞

0

i(t, a)da

=

∫ t

0

i(t, a)da+

∫

∞

t

i(t, a)da

=

∫ t

0

i(t− a, 0) exp

(

−µa−

∫ a

0

α(r)dr

)

da+

∫

∞

t

i(0, a− t) exp

(

−µt−

∫ a

a−t

α(r)dr

)

da

=

∫ t

0

i(t− a, 0) exp

(

−µa−

∫ a

0

α(r)dr

)

da+ exp−µt

∫

∞

t

φ(a− t) exp

(

−

∫ t

a−t

α(r)dr

)

da.

(3.21)

From the third equation of (3.6), we have

i(t, 0) =
βcS(t)

N(t)

∫

∞

0

i(t, a)da =
βcS(t)

N(t)
I(t),

from which follows

i(t− a, 0) =
βcS(t− a)

N(t− a)
I(t− a). (3.22)

Therefore, substituting (3.22) into (3.21) gives

I(t) = βc

∫ t

0

S(t− a)

N(t− a)
I(t− a) exp−

(

µa+

∫ a

0

α(r)dr

)

da

+exp (−µt)

∫

∞

t

φ(a− t) exp−

(
∫ a

a−t

α(r)dr

)

da.

Using the change of variable t− a = σ, we have

I(t) = βc

∫ t

0

S(σ)

N(σ)
I(σ) exp−

(

µ(t− σ) +

∫ t−σ

0

α(r)dr

)

da

+exp (−µt)

∫ 0

−∞

φ(−σ) exp−

(
∫ t−σ

σ

α(r)dr

)

dσ.

We observe that, the second term on the right hand side goes to zero exponentially and

therefore it can be neglected for large values of t, where the term
∫ 0

−∞
φ(−σ) exp−

(

∫ t−σ

σ
α(r)dr

)

dσ

represents infected individuals who were infected at t = −σ and survived up to t = 0. That

means all individuals who were initially infected will die as time passes. Therefore, for large

value of t we have

I(t) = βc

∫ t

0

S(σ)

N(σ)
I(σ) exp

(

−µ(t− σ)−

∫ t−σ

0

α(r)dr

)

da. (3.23)
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By differentiating (3.23) and substituting back σ = t− a, we have

dI(t)

dt
=

cβS(t)I(t)

N(t)
− cβ

∫ t

0

α(a)S(t− a)

N(t− a)
I(t− a)π(a)da− µI(t). (3.24)

Following the same procedure for the fourth equation of (3.6) yields

dA(t)

dt
= cβ

∫ t

0

α(a)S(t− a)

N(t− a)
I(t− a)π(a)da− (µ+ ν)A(t). (3.25)

Hence, from equations (3.20), (3.24) and (3.25) we arrive at the following proposition.

Proposition 3.3.3. The mathematical model (3.6) for constant infecting β can be written
as a system of differential equations with distributed delay































dS(t)

dt
= Λ−

cβS(t)I(t)

N(t
− µS(t),

dI(t)

dt
=

cβS(t)I(t)

N(t)
− cβ

∫ t

0

α(a)S(t− a)

N(t− a)
I(t− a)π(a)da− µI(t),

dA(t)

dt
= cβ

∫ t

0

α(a)S(t− a)

N(t− a)
I(t− a)π(a)da− (µ+ ν)A(t).

The expression
α(a)S(t− a)

N(t− a)
I(t− a)π(a) represents the number of infected individuals who

were infected at time t = t − a and survived with probability π(a) and progress to the

AIDS class at time t.

We have seen that the model (3.6) generalizes the models given by (2.1), (2.21) and also

(??). In the rest of this chapter, we focus on the analysis of the general model (3.6).

3.4 Positivity of Solutions

The mathematical model structured by age of infection (3.6) represents human population.

As a result, we need to show that all the solutions are non-negative at any time t for a given

positive initial value. Existence and boundedness of solutions are adopted from [64, 63, 67].

Proposition 3.4.1. All solutions of the system (3.6) are positive for all time t > 0 provided
that the initial conditions are positive.

Proof. Claim that if S(0) > 0, i(0, a) > 0 and A(0) > 0, then for all t > 0, we need to show
that S(t) > 0, i(t, a) > 0 and A(t) > 0.
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Define : T0 = sup{t > 0|∀ r < t, S(r) > 0, i(r, a) > 0for a > 0, A(r) > 0}. (3.26)

If T0 = +∞, then the claim holds. On the contradiction, suppose that 0 < T0 < +∞.
From the definition of (3.26), it follows that,

S(T0) = 0 or i(T0, a0) = 0 for some a0 > 0, or A(T0) = 0. (3.27)

In the case where

S(T0) = 0,

dS(T0)

dt
= lim

t→T0
−

S(T0)− S(t)

T0 − t
6 0. (3.28)

However, from the first equation of (3.6), we have

dS(T0)

dt
= Λ > 0, (3.29)

which contradicts (3.28). This implies that S(T0) could not be zero.

Consider the case

i(T0, a0) = 0 for some a0 > 0, (3.30)

from (3.9) we have

i(T0, a0) =







φ(a0 − T0)
π(a0)

π(a0 − T0)
, T0 < a0,

i(T0 − a0, 0)π(a0), T0 > a0.

If T0 < a0, then φ(a0 − T0) > 0 since it is a value of the initial condition. Hence,

i(T0, a0) > 0for T0 6 a0. (3.31)

When T0 > a0, from the boundary condition of system (3.6) one gets

i(T0 − a0, 0) =
cS(T0 − a0)

N(T0 − a0)

∫

∞

0

β(a)i(T0 − a0, a)da.

The term i(T0 − a0, a) > 0 for a > 0 (from the definition of T0, since T0 − a < T0). This
gives that

i(T0, a) > 0 for all a0 6 T0. (3.32)

Therefore, from equations (3.31) and (3.32) i(T0, a) 6= 0 for all a > 0 which contradicts
(3.30). Then, A(T0) has to be zero. However, from the fourth equation of system (3.6), we
have

A(T0) = A0 exp (−(µ+ ν)T0) +

∫ T0

0

α(a)i(t, a) exp (−(µ + ν)(T0 − t))dt > 0, (3.33)

which is a contradiction. Consequently, T0 = +∞. This ends the proof.
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3.5 Equilibria and Basic Reproduction Number

For the mathematical analysis we consider the model given in system (3.6). To derive

the basic reproduction number, we consider a condition for which the endemic equilibrium

exists and is biologically meaningful. At the equilibrium, we denote time independent

solutions of system (3.6) by

S(t) = S∗, i(t, a) = i∗(a), and A(t) = A∗.

Then, the model presented by system (3.6) can be written as











































0 = Λ−
cS∗

N∗

∫

∞

0

β(a)i∗(a)da− µS∗,

d

da
i∗(a) = −

(

µ+ α(a)
)

i∗(a),

B∗ =
cS∗

N∗

∫

∞

0

β(a)i∗(a)da,

0 =

∫

∞

0

α(a)i∗(a)da− (µ+ ν)A∗,

(3.34)

and

I∗ =

∫

∞

0

i∗(a)da,N∗ = S∗ + I∗. (3.35)

From the first and third equation of (3.34) we have,

Λ− µS∗ =
cS∗

N∗

∫

∞

0

β(a)i∗(a)da = B∗,

S∗ =
Λ− B∗

µ
. (3.36)

Integrating the second equation of system (3.34) gives

i∗(a) = B∗ exp (−µa−

∫ a

0

α(r)dr)

= B∗π(a), (3.37)

where B∗ is the new infections at the equilibrium. Substituting N∗ = S∗+I∗ and equation

(3.37) into the third equation of system (3.34) results in

B∗ =
cS∗B∗

S∗ + I∗

∫

∞

0

β(a)π(a)da.



Chapter 3. Model of HIV/AIDS Transmission Structured by Age of Infection 46

Hence,

B∗ = 0 or
cS∗

S∗ + I∗

∫

∞

0

β(a)π(a)da = 1. (3.38)

By substituting B∗ = 0 into system (3.34), we get a disease-free equilibrium given by

E0 = (S0, i0(a), A0) =
(Λ

µ
, 0, 0

)

. (3.39)

When B∗ 6= 0, from equation (3.38) it follows that

cS∗

∫

∞

0

β(a)π(a)da = S∗ + I∗.

Then,

I∗ = S∗

(

c

∫

∞

0

β(a)π(a)da− 1
)

. (3.40)

For the endemic equilibrium to be biologically meaningful, the number of infected individ-

uals should be non-negative. Then we have the condition that

c

∫

∞

0

β(a)π(a)da > 1

is needed for the endemic equilibrium (if it exists) to be biologically meaningful. Then we

suggest the basic reproduction number, R0, to be

R0 = c

∫

∞

0

β(a)π(a)da. (3.41)

While a newly infected individual is surviving in the compartment I with probability π(a),

s/he infects susceptible individuals with rate cβ(a), which depends on the age of infection

too. Then, R0 is the number of secondary cases which is the sum among all possible

infections that occur during his/her stay in I class of infected individuals given by (3.41).

Hence, we conclude that the term

R0 = c

∫

∞

0

β(a)π(a)da

is the basic reproduction number of model (3.6). Then, using the above notation, equation

(3.40) can be written as

I∗ = S∗(R0 − 1) and S∗ =
I∗

R0 − 1
. (3.42)
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Substituting equation (3.37) into equation (3.35) gives

I∗ = B∗

∫

∞

0

π(a)da. (3.43)

Substituting equation (3.43) into equation (3.42) gives

S∗ =
B∗
∫

∞

0
π(a)da)

R0 − 1
. (3.44)

Equating equations (3.36) and (3.44) gives

B∗
∫

∞

0
π(a)da

R0 − 1
=

Λ−B∗

µ
.

Then we solve for B∗, the new infections with age of infection equal to zero at the endemic

equilibrium as

B∗ =
Λ(R0 − 1)

µ
∫

∞

0
π(a)da+ (R0 − 1)

. (3.45)

From the fourth equation of system (3.34), we have

A∗ =
B∗
∫

∞

0
α(a)π(a)da

µ+ ν
.

Hence the following theorem gives us the equilibria of the system (3.6).

Theorem 3.5.1. i) If R0 < 1, the model (3.6) has a unique biologically feasible equilibrium

E0 = (S0, i0(a), A0) =
(Λ

µ
, 0, 0

)

, which is a disease-free equilibrium.

ii) If R0 > 1, in addition to a disease-free equilibrium the model given by system (3.6) has
a unique endemic equilibrium given by

E∗ = (S∗, i∗(a), A∗) =

(

Λ−B∗

µ
,B∗π(a),

B∗
∫

∞

0
α(a)π(a)da

µ+ ν

)

,

where B∗ represents the number of new infections at the endemic equilibrium given in
(3.45).

3.6 Stability Analysis of Equilibria

By using the results in [64], we analyse the stability of the disease-free equilibrium.
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Theorem 3.6.1. Suppose that R0 < 1. Then, the disease-free equilibrium is globally
attractive:

lim
t→∞

I(t) = 0 and lim
t→∞

S(t) =
Λ

µ
.

Proof. Using the expression (3.1),

I(t) =

∫

∞

0

i(t, a)da =

∫ t

0

i(t, a)da+

∫

∞

t

i(t, a)da

=

∫ t

0

i(t− a, 0) exp

(

−µa−

∫ a

0

α(r)dr

)

da+

∫

∞

t

i(0, a− t) exp

(

−µt−

∫ a

a−t

α(r)dr

)

da

=

∫ t

0

B(t− a)π(a)da+

∫

∞

t

i(0, a− t) exp

(

−µt−

∫ a

a−t

α(r)dr

)

da.

Considering the second term on the right-hand side, we have

lim sup
t→∞

∫

∞

t

i(0, a− t) exp

(

−µt−

∫ a

a−t

α(r)dr

)

da = 0, (3.46)

since α(a) is a positive and increasing function which is the rate of progression to the AIDS
class. Hence

lim sup
t→∞

I(t) = lim sup
t→∞

∫ t

0

B(t− a)π(a)da. (3.47)

We extend the function B on R by

B̃(t) =

{

0, t < 0,
B(t), t > 0.

(3.48)

Hence, (3.47) can be written as,

lim sup
t→∞

I(t) = lim sup
t→∞

∫

∞

0

B̃(t− a)π(a)da. (3.49)

Applying Reverse Fatou′s Lemma to (3.49) results in

lim sup
t→∞

I(t) 6

∫

∞

0

lim sup
t→∞

B̃(t− a)π(a)da =

∫

∞

0

lim sup
t→∞

B(t)π(a)da

6 lim sup
t→∞

B(t)

∫

∞

0

π(a)da. (3.50)
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From the boundary condition, we have

B(t) =
cS(t)

N(t)

∫

∞

0

β(a)i(t, a)da

6 c

∫

∞

0

β(a)i(t, a)da

6 c

∫ t

0

β(a)i(t, a)da+ c

∫

∞

t

β(a)i(t, a)da

6 c

∫ t

0

β(a)B(t− a)π(a)da+ c

∫

∞

t

β(a)i(0, a− t) exp

(

−µt−

∫ a

a−t

α(r)dr

)

da.

The second term on the right hand-side goes to zero. In fact

c

∫

∞

t

β(a)i(0, a− t) exp

(

−µt−

∫ a

a−t

α(r)dr

)

da

6 cβ̂ exp (−µt)

∫

∞

t

i(0, a− t)da = cβ̂I(0) exp (−µt), (3.51)

where β̂ is as defined in (3.2). Hence

lim sup
t→∞

B(t) 6 lim sup
t→∞

c

∫ t

0

β(a)B(t− a)π(a)da. (3.52)

Using equation (3.48), equation (3.52) becomes

lim sup
t→∞

B(t) 6 lim sup
t→∞

c

∫

∞

0

β(a)B̃(t− a)π(a)da. (3.53)

Applying Reverse Fatou′s lemma to equation (3.53) gives us

lim sup
t→∞

B(t) 6 lim sup
t→∞

B̃(t)c

∫

∞

0

β(a)π(a)da = lim sup
t→∞

B(t)c

∫

∞

0

β(a)π(a)da

6 R0 lim sup
t→∞

B(t).

Since R0 < 1, we necessarily have lim sup
t→∞

B(t) = 0.

From equation (3.50), it follows that lim sup
t→∞

I(t) = 0. Since we have shown that all solutions

I(t) are positive, lim
t→∞

I(t) = 0.

From the first equation of system (3.6), we get

S(t) = S(0) exp (−µt) +
Λ

µ
−

∫ t

0

B(s) exp (−µ(t− s))ds.
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Since

lim sup
t→∞

∫ t

0

B(s) exp (−µ(t− s))ds 6 lim sup
t→∞

∫

∞

0

B̃(t− s) exp (−µs)ds

6 lim sup B̃(t)

∫

∞

0

exp (−µs)ds = 0,

which follows that

lim
t→∞

S(t) =
Λ

µ
.

Therefore, for R0 < 1, the disease-free equilibrium of the model (3.6) is globally stable.

Next, we investigate the linear stability of the endemic equilibrium of the model (3.6) which

is given by Theorem 3.5.1.

In [64, 67], the authors developed some techniques to approach the linear stability of an

infinite dimension abstract model for infectious diseases structured by age of infection.

Individuals in the AIDS class are supposed to develop AIDS related symptoms and do not

involve in sexual activities. As a result, they do not contribute to the transmission of the

disease. Asymptotic behaviour of A(t) can be deduced from the asymptotic behaviours of

S(t) and i(t, a). Hence, we consider the class of susceptible and infected individuals only

for the stability analysis. Consider a small perturbations s(t) and u(t, a) from the endemic

equilibrium of system (3.6), and let

s(t) = S(t)− S∗, u(t, a) = i(t, a)− i∗(a).

As a result, N(t) = N∗ + (s(t) + v(t)) and I(t) = I∗ + v(t), where v(t) =
∫

∞

0
u(t, a)da.

By using Tylor expansion and ignoring the higher-order terms, the linearised system of

(3.6) around the endemic equilibrium gives:























ds(t)

dt
= −u(t, 0)− µs(t),

( ∂

∂t
+

∂

∂a

)

u(t, a) = −(α(a) + µ)u(t, a),

u(t, 0) =
c

N∗
W ∗s(t)−

c

N∗2
(s(t) + v(t))S∗W ∗ +

c

N∗
S∗w(t),

(3.54)

where W ∗ =
∫

∞

0
β(a)i∗(a)da, w(t) =

∫

∞

0

β(a)u(t, a)da.
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To find eigenvalues of the resulting linear system (3.54), consider the exponential solutions

as follows,

s(t) = s̃ exp (zt), u(t, a) = ũ(a) exp (zt), (3.55)

where z is a complex number and (s̃, ũ) 6= (0, 0).

The endemic equilibrium will be locally asymptotically stable if all solutions of the form

(3.55) of system (3.54) have z non-positive real parts, but it will be unstable if there is a

solution with z having positive real part.

Substituting the expressions (3.55) of s(t) and u(t, a) into (3.54) gives



















(µ+ z)s̃ = −ũ(0),

zũ(a) +
dũ(a)

da
= −(α(a) + µ)ũ(a),

ũ(0) =
c

N∗
s̃W ∗ −

c

N∗2
(s̃+ ṽ)S∗W ∗ +

c

N∗
S∗w̃,

(3.56)

where

ṽ =

∫

∞

0

ũ(a)da, w̃ =

∫

∞

0

β(a)ũ(a)da. (3.57)

From the first equation of system (3.56),

s̃ = −
ũ(0)

µ+ z
. (3.58)

The second equation of system (3.56) is solved as

ũ(a) = ũ(0) exp

(

−

∫ a

0

(α(s) + µ+ z)ds

)

= ũ(0)π(a) exp−za. (3.59)

Substituting equation (3.59) into equation (3.57), we get

ṽ = ũ(0)π̂(z), (3.60)

w̃ = ũ(0)Q̂(z), (3.61)

where π̂(z) and Q̂(z) represent the Laplace transforms of π(a) and Q(a), respectively,

given by

π̂(z) =

∫

∞

0

π(a) exp (−za)da, Q̂(z) =

∫

∞

0

Q(a) exp (−za)da (3.62)
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and

Q(a) = β(a)π(a).

Substituting equations (3.58), (3.60) and (3.61) into the third equation of system (3.56)

and dividing by ũ(0) 6= 0, we end with the characteristic equation,

−
W ∗

µ+ z

( c

N∗
− S∗

c

N∗2

)

+ S∗
c

N∗2
π̂(z)W ∗ + S∗

c

N∗
Q̂(z) = 1. (3.63)

Hence, we arrive at the relation between the asymptotic stability of the endemic equilibrium

and the roots of the characteristic equation in (3.63).

Proposition 3.6.2. [64] The endemic equilibrium of system (3.6) is linearly stable if all
the roots z of the characteristic equation (3.63) have strictly negative real part.

This thesis does not contain proof of Proposition 3.6.2. Instead, we analyse the character-

istic equation (3.63) by applying the techniques used in [64]. Analysing the characteristic

equation given (3.63) is not obvious. As in [64], we normalise the system for mathematical

simplicity. Let

ξ =
I∗

N∗
, then

S∗

N∗
= (1− ξ). (3.64)

Hence, 0 < ξ < 1 since N(t) = S(t) + I(t).

From the third equation of (3.34) and (3.64), we have

c

N∗
W ∗ =

B∗

S∗
=

I∗

S∗

1

π̂(0)
=

I∗

N∗

N∗

S∗

1

π̂(0)
=

ξ

1− ξ

1

π̂(0)
.

S∗W ∗ =
N∗

c
B∗ =

N∗

c

I∗

π̂(0)
=

N∗2

c

I

N∗

1

π̂(0)
=

N∗2

c

ξ

π̂(0)
.

cS∗

N∗
=

1

Q̂(0)
.

Hence, the characteristic equation (3.63) can be written as

−
1

µ+ z

ξ

π̂(0)

( 1

1− ξ
− 1
)

− ξ
π̂(z)

π̂(0)
+

Q̂(z)

Q̂(0)
= 1. (3.65)
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Define

p(s) =
π(s)

π̂(0)
, q(s) =

Q(s)

Q̂(0)
, (3.66)

where

π(a) = exp

(

−µa−

∫ a

0

α(r)dr

)

.

Thus

p(0) =
π(0)

π̂(0)
=

1

π̂(0)
. (3.67)

Hence, the expression (3.65) can be simplified as

−
p(0)ξ

µ+ z

(

1

1− ξ
− 1

)

− ξp̂(z) + q̂(z) = 1. (3.68)

Recall that 0 < ξ < 1, the fraction of infected individuals over the sexually active popula-

tion. In order to analyse the sign of the eigenvalues, we substitute z = x+ iy,

−
p(0)ξ

µ+ (x+ iy)

( 1

1− ξ
− 1
)

− ξ

(
∫

∞

0

p(s)e−(x+iy)sds

)

+

∫

∞

0

q(s)e−(x+iy)sds = 1.

Using Euler′s Formula and then separating the real and complex part results in

1−

∫

∞

0

e−(xs) cos(sy)q(s)ds = −
(µ+ x)p(0)ξ

(µ+ x)2 + y2

(

1

1− ξ
− 1

)

− ξ

∫

∞

0

e−xs cos(sy)p(s)ds

(3.69)
∫

∞

0

e−(xs) sin(sy)q(s)ds =
yp(0)ξ

(µ+ x)2 + y2

(

1

1− ξ
− 1

)

+ ξ

∫

∞

0

e−xs sin(sy)p(s)ds. (3.70)

Multiplying (3.69) by y and (3.70) by µ+x, adding the two equations and solving for ξ as,

ξ =
y
(

1−
∫

∞

0
e−(xs) cos(sy)q(s)ds

)

+ (µ+ x)
∫

∞

0
e−(xs) sin(sy)q(s)ds

(

(µ+ x)
∫

∞

0
e−xs sin(sy)p(s)ds− y

∫

∞

0
e−xs cos(sy)p(s)ds

) . (3.71)

For 0 < ξ < 1 and x = 0, y > 0, (3.69) and (3.70) become,

∫

∞

0

cos(sy)q(s)ds−
µp(0)ξ

µ2 + y2

(

1

1− ξ
− 1

)

− ξ

∫

∞

0

cos(sy)p(s)ds = 1. (3.72)

yp(0)ξ

µ2 + y2

( 1

1− ξ
− 1
)

+ ξ

∫

∞

0

sin(sy)p(s)ds−

∫

∞

0

sin(sy)q(s)ds = 0. (3.73)
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Using (3.72) and (3.73), we obtain

ξ =
y
(

1−
∫

∞

0
cos(sy)q(s)ds

)

+ µ
∫

∞

0
sin(sy)q(s)ds

(

µ
∫

∞

0
sin(sy)p(s)ds− y

∫

∞

0
cos(sy)p(s)ds

) .

We arrive at the following proposition, which gives conditions for the eigenvalues to have

negative real parts, which is proven by H. R. Thieme and C. Castillo-Chavez [64].

Theorem 3.6.3. [64] Let R0 > 1, then there are no roots of (3.69) and (3.70) with x > 0
if one of the following holds:

i) ξ is sufficiently close to 0 or 1;

ii) p(0) is sufficiently large;

iii) There is no y > 0 satisfying the following simultaneously:
∫

∞

0

cos(sy)q(s)ds > 0,

∫

∞

0

sin(sy)q(s)ds > 0,

∫

∞

0

cos(sy)p(s)ds < 0,

0 < y

(

1−

∫

∞

0

cos(sy)q(s)ds

)

+

∫

∞

0

sin(sy)q(s)ds

< γ

(
∫

∞

0

sin(sy)p(s)ds− y

∫

∞

0

cos(sy)p(s)ds

)

.

In the first condition, from equation (3.64), ξ close to one or zero means the proportion of

infected individuals at the endemic equilibrium is very large or very small. ξ close to zero

is equivalent to saying that R0 is greater than one but is very close to one, whereas ξ close

to one means that R0 is large enough. As a condition, there is a switch of stability for

the disease-free equilibrium from stable to unstable when R0 crosses one from the left to

the right. The endemic equilibrium exists when R0 > 1, and is linearly stable for R0 close

to one or large enough. Theorem 3.6.3 does not conclude about the stability of endemic

equilibrium for all R0 > 1.

From equations (3.62) and (3.67), the second condition in Theorem 3.6.3 states that en-

demic equilibrium will be stable if R0 > 1 with p(0) is sufficiently large or equivalently,

π̂(0) is small. This means infected individuals survive for short time in the infectious class

and the basic reproduction number slightly bigger than one and we conclude from the

previous discussion when ξ is close to zero.
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3.7 Numerical Simulation

3.7.1 Numerical Scheme

For the numerical simulation, we use finite difference approximation. To approximate the

integral, we use the Trapezium method. The time steps are, dt = h and da = k. If we

divide the interval [0, amax] into D points, kD = M . Define a grid in the (t, a) plane,

given by the points (tn, am) = (nh,mk) for arbitrary integers n and m while mk < amax

and nh > 0. The notations inm represents the value of i at the grid point (tn, am), which

is i(tn, am). Similarly, Sn, In and An represent the functional values of S, I and A at the

point tn = nh.

Using the Trapezium method, we have

In ≃

∫ M

0

i(t, a)da =
k

2

(

in0 + 2

D−1
∑

m=1

inm + inD

)

and

∫ M

0

β(a)i(t, a)da ≃
k

2

(

β0i
n
0 + 2

D−1
∑

m=1

βmi
n
m + βDi

n
D

)

.

To approximate S(t), we use the forward time scheme as given by J. C. Strikwerda [62].

Thus,

Sn+1 − Sn

h
≃ Λ−

cSn

Nn

k

2

(

β0i
n
0 + 2

D−1
∑

m=1

βmi
n
m + βDi

n
D

)

− µSn.

By collecting the like terms and some arrangements, we get the following formula:

Sn+1 ≃ Λh− Sn

(

ch

Nn

k

2

(

β0i
n
0 + 2

D−1
∑

m=1

βmi
n
m + βDi

n
D

)

+ hµ− 1

)

.

By using the backward-time backward-age of infection scheme, the second equation of

system (3.6) becomes,

inm − in−1
m

h
+

inm − inm−1

k
≃ −(µ+ αm)i

n
m,

inm ≃
hinm−1 + in−1

m

h

k
(µ+ αm) + h+ k

.
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Parameter Description Value Reference
Λ Recruitment rate 801403 Estimated [52]
µ Natural death rate 1/34 [65]
c Contact rate 0.3, 2.5 Fitted

β(a) Probability of infecting per contact Function Estimated [24, 32, 55]
α(a) Rate of progression Function Estimated [32]
ν Disease induced death rate 0.115 [36]

Table 3.2. Parameters used for the simulations

The boundary condition is approximated as follows:

in0 ≃
Snc

Nn

k

2

(

β(0)in−1
0 + 2

D−1
∑

m=1

βmi
n−1
m + β(D)in−1

D

)

.

Before writing the finite difference approximation for class A(t), we first need to use the

Trapezium method for the integral inside.

∫ M

0

α(a)i(t, a)da ≃
k

2

(

α0i
n
0 + 2

D−1
∑

m=1

αmi
n
m + αDi

n
D

)

.

Hence, the forward time scheme gives us

An+1 ≃
hk

2

(

α0i
n
0 + 2

D−1
∑

m=1

αmi
n
m + αDi

n
D

)

+ An (1− h(µ+ ν)) .

Initial conditions are S0 = S(0), i0m = φ(m) and A0 = A(0).

3.7.2 Implementation

The probability of infecting β(a) and the rate of progression to AIDS α(a) are approximated

from [24, 32, 55]. The initial conditions are S0 = 20651120 individuals, I0 = 144557

individuals and A0 = 0 individual. Parameter values used for the simulation are given

in Table (3.2). We implement the numerical scheme in Python and get the following

simulation results:
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Figure 3.2. The dynamics of the disease when R0 < 1

Figure 3.2 shows the dynamics of the disease when c = 0.3 and the basic reproduction

number R0 = 0.3. The contour plot shows the distribution profile of infected individuals.

The number of infected individuals i(t, a) eventually decreases vertically and horizontally

(with time and age of infection) respectively. Finally, the whole area is covered by the

dark blue, which shows the non-existence of infected individuals and the eradication of the

disease.
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Figure 3.3. The dynamics of the disease when R0 > 1

Figure 3.3 shows the dynamics of the disease with c = 2.5 and R0 = 2.9. The dark

blue indicates the low density of infected individuals at the start of the disease. We

observe an increase of the infectious population (shown by the other colours) before it

settles to a uniform distribution of infected individuals with respect to time. We say that

the solution reaches an equilibrium which is endemic as shown in Theorem 3.5.1. The

horizontal decrease of the concentration of infected individuals is due to the removal of

infected individuals by natural death and progression to AIDS.

3.8 Summary

In this chapter, we formulated and analysed an age of infection-structured HIV/AIDS

model by considering varying infecting with respect to age of infection. We have shown

that model (3.6) generalises some of the mathematical models used to model HIV trans-

mission including (2.1) and (2.21) given in Chapter (2). The basic reproduction number

R0 is given for the model (3.6) and equilibria are found in terms of R0. We checked the

global stability of the disease-free equilibrium and we verified the linear stability of the
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endemic equilibrium. Numerical simulations are generated and confirm the theoretical

results obtained earlier.



Chapter 4

Model of HIV/AIDS Transmission
Under Treatment Structured by Age
of Infection

This model introduces antiretroviral treatment (ART) for individuals in the infected class

to the model discussed in Chapter 3. Infected individuals are assumed either to progress

directly to AIDS with rate of progression α(a) or start ART and progress to the compart-

ment of infected individuals under treatment T with rate ρ(a). Infected individuals who

are under treatment also progress to AIDS with a lower rate ᾱ. They are able to transmit

the HIV to susceptible individuals, but biological evidence showed that their infectious-

ness is very small compared to the infectiousness of infected individuals who are not under

treatment [48]. The reason for this is the reduction of viral load in the blood stream for

patients under treatment [27, 60]. Taking ART will reduce viral load up to an undetectable

level after a few months [58], typical numbers being from 106 to 10 if there is full drug

adherence [48, 55].

For an HIV positive individual to receive ART, s/he first needs to be tested and identified as

HIV positive and also as being within the eligible group for treatment. Without compulsion,

HIV infected individuals only go for HIV testing when they have symptoms of AIDS. This

is typically the case in resource-limited countries. First the symptoms may be seen already

in 2-3 years (approximately 10% of patients) but it may take up to 8 - 10 years since

infection for symptoms to appear [55, 54]. AIDS-related symptoms occur due to a reduced

60
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number (less than 200 per µl) CD4+ cells and thus the immune system is too weak to fight

the opportunistic diseases [51]. From the above arguments, it is expected that about 10%

of HIV infected individuals will have a CD4+ count of less than 200 within 2 or 3 years of

infection while for the rest it occurs later. However, there is no fix relation between CD4+

count and time after HIV infection. As Reuben et al. shows, even HIV negative persons

might have a CD4+ count less than 100, Figure (1a) [55] where the authors showed the

distribution of CD4+ cells in HIV negative men in South Africa. Hence, using a CD4+

count to estimate the age of infection is not straight forward and definite. But, it can

provide some insight into the study.

4.1 Model Formulation

For an HIV infected individual, the probability of being tested δ(a) is very small up to 2

or 3 years and starts increasing slightly as a result of symptoms [55, 54]. It is likely that

at the late stage of infection (between 8 − 10 years of infection), the probability of being

tested HIV positive is close to one due to accumulated AIDS-related symptoms. Therefore,

the Hill function can be a good approximation for the probability of being tested due to

the plateau-like structure at a late stage of infection.

Hence, the probability of being tested can be given by,

δ(a) =
an

an + a∗n
,

where a∗ is the age of infection of an infected individual at which the probability of being

tested increases quickly and is the inflection point of the Hill function and n is a Hill

coefficient which determines the slope of the function δ(a). For large value of n, the age of

infection a∗ becomes the frequency at which people go for testing.
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Figure 4.1. Probabilities of being tested

Figure (4.1) depicts the probability of being tested δ(a) versus age of infection a for n = 12.

We use this graph for our numerical simulations below. The rate of treatment coverage

per year, ρ0(a) can differ in different countries. In developed countries infected individuals

who are HIV positive are considered to be under treatment without restriction and almost

100% of those eligible infected individuals are getting treatment. In this case since every

infected individual is eligible for the treatment, ρ0(a) is one. In developing countries, South

Africa for instance, not all HIV positive individuals are eligible for treatment. HIV positive

children (irrespective of their CD4+), HIV positive individuals who are co-infected with

TB, and pregnant women are eligible for treatment if the CD4+ count is less than 350 per

µl. For others, a CD4+ count less than 200 per µl is the criteria for HIV infected individuals

to be recruited under treatment. Here, the main aim of the treatment is to reduce mortality

and mother-to-child transmission. Among those who are eligible for treatment, currently

around 70% are under treatment, and by June 2011, 80% of them are expected to be under

treatment [3]. The rate of being under treatment, ρ(a), is determined by the probability

of being tested δ(a) and treatment coverage per year if one has tested HIV positive, ρ0(a).

Then the rate at which infected individuals with age of infection a recruited to the class
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Figure 4.2. Diagrammatic representation of age of infection HIV model with treatment

of treatment is given by:

ρ(a) = ρ0(a)δ(a).

A susceptible individual can get an infection due to contact with infected individuals in

class I or with infected individuals who are under treatment in class T . Let β̄ be the

probability of infecting of infected individuals under treatment. Hence

λ1(t) =
c

N(t)

∫

∞

0

β(a)i(t, a)da and λ2(t) =
cβ̄T (t)

N(t)

represents the force of infections resulting due to the interaction of susceptible individuals

with infected individuals in class I and with individuals under treatment respectively. Then

the total force of infection is given by:

λ(t) = λ1(t) + λ2(t).

Figure (4.2) depicts diagrammatic representation of the dynamics of HIV/AIDS infection

with treatment.

The total number of infected individuals who are recruited into treatment at time t is given

by
∫

∞

0
ρ(a)i(t, a)da. Let ᾱ be the rate of progression of treated individuals to AIDS. The

change of the number of treated individuals at a given time t is given by,

dT (t)

dt
=

∫

∞

0

ρ(a)i(t, a)da− (µ+ ᾱ)T (t).
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In addition to natural mortality and progression to AIDS, there is an outflow of infected

individuals from class I(t) due to treatment with a recruitment rate ρ(a) where a is age of

infection. Hence we have,

(

∂

∂t
+

∂

∂a

)

i(t, a) = − (µ+ α(a) + ρ(a)) i(t, a).

The resulting model equations are,































































dS(t)

dt
= Λ−

(

c

N(t)

∫

∞

0

β(a)i(t, a)da+
cβ̄T (t)

N(t)

)

S(t)− µS(t),
(

∂

∂t
+

∂

∂a

)

i(t, a) = −(µ+ α(a) + ρ(a))i(t, a),

B(t) =

(

c

N(t)

∫

∞

0

β(a)i(t, a)da+
cβ̄T (t)

N(t)

)

S(t),

dT (t)

dt
=

∫

∞

0

ρ(a)i(t, a)da− (µ+ ᾱ)T (t),

dA(t)

dt
=

∫

∞

0

α(a)i(t, a)da + ᾱT (t)− (µ+ ν)A(t),

(4.1)

where the total number of infected individuals at time t is given by

I(t) =

∫

∞

0

i(t, a)da (4.2)

and N(t) the sexually active proportion of the population is given by,

N(t) = S(t) + I(t) + T (t).

Parameters description is summarised in the following Table:

Parameter Description
Λ Recruitment rate
µ Natural death rate
c Contact rate

β(a) Probability of infecting per contact
α(a) Rate of progression
β̄ Probability of infecting under treatment
ᾱ Rate of progression under treatment
ν Disease induced death rate

Table 4.1. Description of parameters used in the model
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4.2 Equilibria and Reproduction Number

In this section we investigate the time-independent solutions (equilibrium points) of the

model with treatment given (4.1).

At the steady state, system (4.1) can be written as:






















































0 = Λ− B∗ − µS∗,
di∗(a)

da
= − (µ+ α(a) + ρ(a)) i∗(a),

B∗ =

(

c

N∗

∫

∞

0

β(a)i∗(t)da+
cβ̄T ∗

N∗

)

S∗,

0 =

∫

∞

0

ρ(a)i∗(a)da− (µ+ ᾱ)T ∗,

0 =

∫

∞

0

α(a)i(t, a)da+ ᾱT (t)− (µ+ ν)A(t),

(4.3)

and

I∗ =

∫

∞

0

i∗(a)da. (4.4)

The first equation of (4.3) gives us:

S∗ =
Λ− B∗

µ
. (4.5)

The second equation of (4.3) implies that

i∗(a) = B∗ exp

(

−µa−

∫ a

0

(α(s) + ρ(s))ds

)

. (4.6)

To simplify the notation let

Π(a) = exp

(

−µa−

∫ a

0

(α(s) + ρ(s))ds

)

, (4.7)

which is the probability of surviving up to a unit of time being HIV infected in class I(t).

Hence,

i∗(a) = B∗Π(a). (4.8)

The fourth equation of (4.3) and (4.8) give us

T ∗ =
B∗
∫

∞

0
ρ(a)Π(a)da

µ+ ᾱ
. (4.9)
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The third equation of (4.3) results in

B∗ =
cS∗

N∗

(
∫

∞

0

β(a)i∗(a)da+ β̄T ∗

)

. (4.10)

Substituting equations (4.8) and (4.9) into (4.10) gives us

B∗ = 0, or (4.11)

cS∗

N∗

(

∫

∞

0

β(a)Π(a)da+
β̄

µ+ ᾱ

∫

∞

0

ρ(a)Π(a)da
)

− 1 = 0. (4.12)

By substituting N∗ = S∗ + I∗ + T ∗ into (4.12) we get

I∗ + T ∗ = (Re − 1)S∗, (4.13)

where

Re = c

∫

∞

0

β(a)Π(a)da+
cβ̄

µ+ ᾱ

∫

∞

0

ρ(a)Π(a)da. (4.14)

Here Re should be greater than unity for I∗ + T ∗ to be biologically meaningful. The

expression Re meets the threshold criteria for the existence of endemic equilibrium. We

show that the threshold parameter is indeed the reproduction number of the model given

(4.1). In fact from its expression, the first term represents new infections due to the inter-

action of an infected individual in class I with susceptible individuals, and the second term

represents new infections as a result of interaction between the infected individual under

treatment and susceptible individuals. The term
∫

∞

0
ρ(a)Π(a)da represents the probability

of being recruited for treatment and survived in class T . If the person did not start treat-

ment, the second term becomes zero and we get exactly the same expression for the basic

reproduction number we find in Chapter (3). The reproduction number that we deduce is

an effective reproduction number Re, not basic since the model incorporates treatment as

an intervention to control the hazards due to the disease. As a result, we arrived at the

following proposition.

Proposition 4.2.1. The expression Re is an effective reproduction number of the model
with treatment given (4.1).

Next, we make use of the effective reproduction number in order to discuss the equilibria.

Furthermore, substituting equation (4.5) into equation (4.13) gives

I∗ + T ∗ =
Λ−B∗

µ
(Re − 1). (4.15)
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From equation (4.2) and equation (4.8), we get

I∗ = B∗

∫

∞

0

Π(a)da. (4.16)

Substituting equations (4.9) and (4.16) into (4.15) yields,

B∗ =
Λ(Re − 1)(µ+ ᾱ)

(µ+ ᾱ)
(

µ
∫

∞

0
Π(a)da+Re − 1

)

+ µ
∫

∞

0
ρ(a)Π(a)da

, (4.17)

which represents the new cases at the endemic equilibrium. Whereas, from the fifth equa-

tion of (4.3) and (4.17) one can get

A∗ =
B∗
∫

∞

0
α(a)Π(a)da+ ᾱT ∗

µ+ ν
. (4.18)

Hence, we conclude the following result which connects reproduction number and equilibria.

Theorem 4.2.2.

If Re < 1, the model given (4.1) has a disease free-equilibrium only given as

E0 = (S0, i0(a), T0, A0) =

(

Λ

µ
, 0, 0, 0

)

.

If Re > 1, the model has a unique endemic equilibrium given by

E∗ = (S∗, i∗(a), T ∗, A∗),

S∗ =
Λ−B∗

µ
, i∗(a) = B∗Π(a), T ∗ =

B∗
∫

∞

0
ρ(a)Π(a)da

µ+ ᾱ
, A∗ =

B∗
∫

∞

0
α(a)Π(a)da+ ᾱT ∗

µ+ ν

and B∗ is as given in equation (4.17).
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4.3 Numerical Scheme

Using the same techniques we used in Chapter (3), we get the following algorithm for our

numerical simulations:

Sn+1 = Λh− Sn

(

ch

Nn

k

2

(

β0i
n
0 + 2

D−1
∑

m=1

βmi
n
m + βDi

n
D

)

+ hµ+
β̄hcT n

Nn
− 1

)

,

inm =
hinm−1 + in−1

m

h

k
(µ+ αm + ρm) + h+ k

,

in0 =
Snc

Nn

k

2

(

β(0)in−1
0 + 2

D−1
∑

m=1

βmi
n−1
m + β(D)in−1

D

)

+
β̄cT n

Nn
,

In =
k

2

(

in0 + 2
D−1
∑

m=1

inm + inD

)

,

T n+1 =
k

2

(

ρ0i
n
0 + 2

D−1
∑

m=1

αmi
n
m + αDi

n
D

)

+ T n (1− h(µ+ ᾱ)) ,

An+1 =
hk

2

(

α0i
n
0 + 2

D−1
∑

m=1

αmi
n
m + αDi

n
D

)

+ An (1− h(µ+ ν)) + hᾱT n.

Initial conditions are given by S0 = S(0), i0m = φ(m), T 0 = T (0) and A0 = A(0).

4.4 Simulation Results and Discussions

The numerical simulation is done to assess the effect of treatment on the transmission of

the disease in the population with different treatment strategies.

4.4.1 Self-Motivated HIV Testing Scenario

Here, infected individuals are assumed to go for testing as a response of AIDS-related

symptoms. This is more realistic in resource-limited areas especially. Around 80% of

adults who are HIV infected are unaware of their HIV status and more than 90% adults in

sub-Saharan Africa do not know whether their partners are infected with HIV or not [29].



Chapter 4. Model of HIV/AIDS Transmission Under Treatment 69

Parameter Value Reference
Λ 801403 Estimated from [52]
µ 1/34 [65]
c 2.5 Fitted

β(a) Function Estimated [24, 32, 55]
α(a) Function Estimated [32]
β̄ 12×10−4 Estimated from [48, 65, 55, 51]
ᾱ 0.055 Estimated from [8]
ν 0.115 [36]

Table 4.2. Parameter values used for the simulation

It can also be called ”disease motivated HIV testing scenario” since they go for testing due

to the disease. Since they wait until they see AIDS-related symptoms, the number of CD4+

cells is more likely to be less than 200 per µ l of blood. As a result, all the known HIV

positive individuals will be eligible for the treatment. That means, ρ0(a) = 100% according

to this assumption. Figure (4.3) gives us the numerical simulation for the dynamics of the

disease with the above assumption.

To determine the values of β̄, we use the fact that treatment reduces the viral load to the

order of six [48]. The viral load is directly proportional to the probability of transmission,

Figures (1.1) and (1.2). As a result, the Probability of infecting while an infected individual

is under treatment decreases up to 1% compared to the infectiousness without treatment

[55]. Hence, we take β̄ = 1
100

β1 = 12 × 10−4. To estimate ᾱ, we take the average survival

time under treatment to be 18 years [8]. Hence ᾱ = 1
18

= 0.055y−1. The initial conditions

are S0 = 20651120, I0 = 144557, T0 = 0 and A0 = 0.
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Figure 4.3. The dynamics of the disease with late-started treatment

Figure 4.3 shows the dynamics of the disease with c = 2.5, a∗ = 8, n = 12 and R0 = 1.6.

The contour plot shows that, infected individuals stay longer before they start treatment.

The number of susceptible individuals decreases extremely and the prevalence continues

increasing. The disease still remains endemic in the population at a high prevalence since

infected individuals are starting treatment late, after they infect more than one susceptible.

4.4.2 Campaign Aided HIV Testing Strategy

In this section, we consider the universal voluntary test and immediate treatment with

ART as suggested by Reuben et al. for the eradication of the disease from the population.

According to them, eradication is defined as less than one case per thousand population

[55]. It could be achieved through the help of campaigns in creating awareness among

the population about the disease. International organizations like USAID and WHO and

local governments are trying to increase the understanding of people about HIV/AIDS,

providing ART and training how to use as well.



Chapter 4. Model of HIV/AIDS Transmission Under Treatment 71

Figure 4.4. The dynamics of the disease with early-started treatment

Figure 4.4 represents the dynamics of the disease with parameters c = 2.5, a∗ = 3, n = 12

and R = 0.87.

Figure 4.5. The dynamics of the disease with early-started treatment
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Figure 4.5 represents the dynamics of the disease when c = 2.5, a∗ = 1, n = 12 and

R0 = 0.6. Here, the number of infected and treated individuals reaches to zero by testing

and treating every infected individual every year. Since the early stage of infection is related

to high infectiousness, including this stage in the treatment gives a better reduction of new

infections. Indeed, early-started treatment highly reduces the infectiousness of infected

individuals compared to those who are not under treatment. Interventions considering

treatment at early stage of infection will inhibit new infections, as a result will reduce the

effective reproduction number bellow one, which leads the disease to extinction. On the

other hand, early-started treatment may cause drug resistance and resistant strains of HIV

as a result. However, there is no concluding result about drug resistance for early-started

treatment compared to late-started treatment. It needs further research in the future.

Comparing Figures 4.4 and 4.5, in both cases the disease dies out. But, in the first case,

it takes longer time compared to the second.

4.4.3 Dependence of Re on a∗

In this subsection, we discuss the effect of the average age of infection at which infected

individuals go for testing and start treatment a∗ on the effective reproduction number Re.
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Figure 4.6. The dependence of Re on a∗

Figure 4.6 shows Re as a function of a∗ for c = 2.5 and n = 12. The graph has a rapid

increase for small values of a∗. It correspond to the acute stage of infection which is related

to high infectiousness. The slight increase is as a contribution of the asymptomatic stage

of infection. Finally, it increases quickly again, as a result of increased infectiousness in

the symptomatic stage of infection.

When a∗ = 4, Re is less than one but close to one. Hence, the dynamics takes longer to

reach an equilibrium, as shown by Figure Figure 4.4. When a∗ decreases, the corresponding

value of Re also decreases which makes the eradication of the disease earlier, as shown by

Figure 4.5. From Figure 4.6, if treatment is not initiated up to age of infection 12 then a

single infected individual will infect around 3 susceptible individuals.

The doubling time for HIV -AIDS epidemic in South Africa is 1.25 years [55]. Whereas,

another study shows that the doubling time is 1.5 years [44] in 1990. In a total infectious

period of 10 years , an infected individual can infect around 7 susceptible individuals, which

we consider as the reproduction number without any intervention (without treatment,

behaviour change, ...). In the context of our model 3.6, this corresponds to the effective

reproduction number when a∗ = 12.
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Figure 4.7. The dependence of Re on a∗

Figure 4.7 shows the dependence of the effective reproduction number Re on the age

of infection at which treatment initiated with c = 6 and n = 12. We chooses these

values in such a way that an infected individual infects 7 susceptible individuals in average

throughout his or her infectious period. From the figure, early stage contributes around

10% of the total infection caused by a single individual. It is lower compared to the

result given by [24], which is mention between 15% to 20%. The value of the effective

reproduction number,Re decreases when a∗ decreases, but to get the value of Re less than

one, a∗ should also be less than one. Which implies that, to eradicate the disease from

the population, all the HIV positive individuals should be treated within one year after

infection or earlier. This result is in agreement with the result given by Figure (3) [55].

As we observe from Figure 4.7, the value of the effective reproduction number is already

near to one at the very early age of the infection. It is very difficult to reduce the value

less than one, since HIV test takes around three months to be detected. To eradicate the

disease, other aspects of intervention also need to be considered. For instance, behaviour

change which brings reduction of the contact number will help to achieve the eradication

of the disease easily (as we have seen in Figures 4.4 and 4.5 ).
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4.5 Summary

In this chapter, we have seen different treatment scenarios for HIV infected individuals.

In the first case we considered that infected individuals go for the test only when there

are AIDS-related diseases. This assumption is reliable in resource-limited countries where

health care facilities are inadequate and an understanding about HIV/AIDS is limited.

As a result of campaigns support, infected individuals go for the test and know their HIV

status before they develop AIDS-related sicknesses which helps them to take action in

advance to protect themselves and others also. In this case, we considered a campaign-

aided scenario in which infected individuals go for testing earlier, before progressing to

AIDS.

Reuben et.al. [55] suggest that a universal volunteer test and treat strategy will lead to an

eradication of the disease if all infected individuals would know their HIV status at least

once every year; see Figure 3 of [55]. Our numerical simulations also support that, such

strategies are needed to eradicate the disease from the population.



Chapter 5

Conclusions and Recommendations

5.1 Conclusions and Remarks

In this thesis we formulate a mathematical model which is structured according to the age of

infection. To understand the dynamics of the disease, we first discuss and analyse a simple

model in which the age of infection is not considered, but progression of the HIV/AIDS

transmission is taken into consideration by introducing three stages of infection.

Analysis of these models tells us that the disease can be eradicated from the population only

if, on average, one infected individual infects less than one person in his or her infectious

period, otherwise the disease will persist. To investigate the reduction of the number of

infections caused by a single infectious individual to less than one, we introduce different

treatment strategies for a model which depends on the age of infection, and we analyse it

numerically.

In the first strategy, infected individuals go for testing as a response to AIDS-related

diseases. Up to that time, they mix homogeneously with susceptible individuals and as

a result they are capable of infecting more than one susceptible individual, which makes

the reproduction number more than one and keeps the disease at an endemic level. This

strategy only helps infected individuals at the late stage of infection to live longer, but not

to eradicate the disease from the population.

Instead of waiting for disease-related symptoms, creating awareness in the population

76
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through campaigns (campaign aided testing strategy) about the disease is necessary for

individuals to get tested early and know their HIV status. Depending on how much effort

is invested and how the population responds to the information, campaigns help early test-

ing. Once knowing their HIV status, the starting time of the treatment is decided by the

countries policy on treatment. In our theoretical strategy, every HIV positive individual is

eligible for treatment irrespective of the age of infection, in other words irrespective of the

CD4+ count.

Introducing treatment at different ages of infection before developing AIDS-related diseases

affects the dynamics to reduce the effective reproduction number even though it is greater

than one and the disease remains endemic in the population. To eradicate the disease,

testing every individual and treating all the known HIV positive individuals as early as

possible is necessary. For contact rate c = 2.5, numerical results shows that testing every

individual once in four years and treating all the known HIV positive individuals can lead

to the eradication of the disease after a long time. But, if every individual gets tested and

all those who are identified as positive enter the life-long treatment programme within one

year after infection, disease eradication can be attained after 60 years of implementation of

the strategy. The newly infected individuals who are in the acute stage (referred to as high

infectiousness) get a chance to be under treatment before infecting others. As a result,

eradication of the disease could be achieved more quickly. However, for c = 6 Figure (4.7)

shows that testing everyone every year and immediate treatment for all HIV positive cases

is needed to control the disease.

Among the difficulties of the mathematical model of HIV/AIDS under treatment structured

by age of infection, is estimating age of infection-dependent parameters. Literature says

infectiousness is high in the acute stage, low during the asymptomatic stage and again

increases during the symptomatic stage [55, 24]. However, there is no tangible value for the

infectiousness corresponding to the age of infection besides the comparison of the stages.

To alleviate this, we take data points and interpolate the probability of infectiousness

as a function of age of infection. Further study is necessary to get realistic parameter

values. Having those challenges in mind, this thesis recommends early treatment for all

HIV infected individuals for the eradication of the disease.
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5.2 Limitations and Future Work

In this thesis work, there are some aspects of HIV/AIDS dynamics which we do not consider

when formulating our mathematical models. The reason was to reduce the complexities

which would otherwise arise in the mathematical analysis and in estimation of parameters

for the numerical simulations. Modification and extension of the models can address the

following points:

• TB is one of the most common opportunistic diseases for HIV positive individuals.

Especially high TB prevalence areas such as South Africa, considering the co-infection

of HIV and TB will help us to better understand the disease transmission, to suggest

treatment strategies and make other decisions related to the prevention of the disease.

• To consider more accurate HIV/AIDS models, the age of the infected individual

at the time of infection should be considered. This is due to the difference of the

response in the immune system for different age groups.

• From the previous studies we reviewed, around 8% of infected individuals who are

under treatment stop taking the treatment soon after starting treatment due to drug

resistance and other reasons [55]. Including this fact in the modelling will provide us

a better insight and good estimate for the projection of the disease dynamics.

• Behavioural change is mostly related to the prevalence of the disease. Hence, includ-

ing behaviour change is an important factor to validate the model with data. This

will give us more realistic values for the parameters in the models.



Bibliography

[1] AEGIS. http://www.aegis.com/pubs/step/1993/step5110.html.

[2] aidsmap (2009). Getting people onto treatment, not earlier treatment, must be priority

conference warned.

[3] AVERT. http://www.avert.org/aidssouthafrica.htm.

[4] AVERT. http://www.avert.org/can-you-get-hiv-aids.htm.

[5] Avert. http://www.avert.org/history-aids-south-africa.htm.

[6] AVERT. http://www.avert.org/stages-HIV-AIDS.htm.

[7] M. Bachar and A. Dorfmayr. HIV treatment models with time delay. Biological

Modelling, 327:983–994, 2004.

[8] J. D. Barbour, F. M. Hecht, T. Wrin, M. R. Segal, C.A. Ramstead, T. J. Liegler, M. P.

Busch, C.J. Petropoulos, N. S. Hellmann, J. O. Kahn, and R.M. Grant. Higher CD4+

t cell counts associated with low viral pool replication capacity among treatment-naive

adults in early HIV-1 infection. Journal of Infectious Diseases, 190:251–256, 2004.

[9] F. Baryarama and J. Y. T. Mugisha. Comparison of single-stage and staged progres-

sion models for HIV/AIDS progression. International Journal of Mathematics and

Mathematical Sciences, 2007:1–11, 2007.

[10] B. T. Bekele. Modelling Tuberculosis Transmission Dynamics in Children and Adults

in the Presence of Vaccination. Masters thesis, University of Stelenbosch, 2009.

[11] F. Brauer. Age of infection in epidemiology models. Differential Equations, conference

12:29–37, 2005.

79



Chapter 5. Conclusions 80

[12] F. Brauer, V. D. D. Pauline, and W. Jianhong. Mathematical Epidemiology, volume

1945. Springer-Verlag Berlin Heidelberg, Canada, 2008.

[13] O. Diekmann, J. A. P. Heesterbeek, and Metz J. A. J. On the definition and compu-

tation of the basic reproduction ratio R0 in models for infectious diseases in hetero-

geneous populations. Mathematical Biology, 28:365–382, 1990.

[14] O. Diekmann, P. Heesterbeek, and M. Roberts. The construction of next-generation

matrices for compartmental epidemic models. Journal of Royal Society Interface,

7(47):873–885, 2010.

[15] P. V. D. Driessche and J. Watmough. Reproduction number and sub-threshold en-

demic equilibria for compartmental models of disease transmission. Mathematical

Biosciences, 180:29–48, 2002.

[16] G. Fragnelli and L. Tonetto. A population equation with diffusion. Mathematical

Analysis and Application, 289(1):90–99, 2004.

[17] GATEWAY. http://www.capegateway.gov.za/eng/.

[18] J. Griffiths, D. Lowrie, and J Williams. An age-structured model for the AIDS epi-

demics. European Journal of Operational Research, 124:1–14, 2000.

[19] W. H. Hamer. Epidemic disease in England. The Lancet, 1:733–739, 1906.

[20] K. Hee-Dea. Optimal treatment strategies derived from a HIV model with drug-

resistant mutants. Journal of Applied Mathematics and Computation, 188:1193–1204,

2007.

[21] L. Helong, Y. Jingyuan, and Z. Guangtian. Global behaviour of an age-infection-

structured HIV model with impulsive drug-treatment strategy. Theoretical Biology,

253:749–754, 2008.

[22] L. Helong and L. Liabing. A class age-structured HIV/AIDS model with impulsive

drug-treatment strategy. Discrete Dynamics in Nature and Society, 2010:1–12, 2010.

[23] I. Hisashi and S. Hisashi. Mathematical model for chagas disease with infection-age-

dependent infectivity. Mathematical Biosciences, 190:39–69, 2004.



Chapter 5. Conclusions 81

[24] T. Hollingsworth, M. Anderson, and Christophe F. HIV-1 transmission, by stage of

infection. Infectious Diseases, 93:687–693, 2008.

[25] http://www.aids ed.org/aidsetc? Hiv classification: CDC and WHO staging systems.

[26] http://www.aids.org.za/hiv.htm. History of HIV and AIDS in South Africa.

[27] http://www.cdc.gov/hiv/topics/treatment/resources/qa/art.htm. CDC’s clinical

studies of pre-exposure prophylaxis for HIV prevention.

[28] http://www.healthhype.com/cd4-count-dropping-viral-load-stable-in-hiv-infection

graph.html. CD4 count dropping, viral load stable in HIV infection (graph).

[29] http://www.who.int/hiv/pub/2008progressreport/en/index.html. Towards universal

access: scaling up priority HIV/AIDS interventions in the health sector.

[30] C. Huang, L. C. Kenneth, and C. Castillo-Chavez. Stability and bifurcation for a

multiple-group model for the dynamics of HIV/AIDS transmission. SIAM Journal of

Applied Mathematics, 52(3):835–854, 2004.

[31] M. Iannelle, R. Loro, F. Milner, A. Pugliese, and G. Rabbiolo. An AIDS model with

distributed incubation and variable infectiousness. European Journal of Epidemiology,

8(4):585–593, 1992.

[32] M. Iannelli, R. Loro, F. Milner, A. Pugliese, and G. Rabbiolo. Numerical analysis of a

model for the spread of HIV/AIDS. SIAM Journal of Numerical Analysis, 33(3):864–

882, 1996.

[33] M. H. Jams and L. Jia. The reproduction number for an HIV model with differential

infectivity and staged progression. Linear Algebra and Its Application, 389(3):101–116,

2005.

[34] W. Jianhong and R. Gergely. SEIR epidemiological model with varying infectivity

and infinite delay. Mathematical Biosciences and Engineering, 5(2):389–402, 2008.

[35] J. Kamgang and S. Gauthier. Computation of the threshold conditions for epidemio-

logical models and global stability of the disease-free equilibrium (DFE). Mathematical

Bioscience, 213:1–12, 2008.



Chapter 5. Conclusions 82

[36] S. Kassa and A. Ouhinou. Epidemiological models with prevalence dependent endoge-

nous self-protective measure. Preprint accepted to Mathematical Biology, 2010.

[37] V. Kolmanovskii and A. Myshkis. Applied theory of Functional differential equations,

volume 85. Kluwer Academic Publisher, Moscow, 1992.

[38] O. Krakovska and M. Wahl. Optimal drug treatment regimens for HIV depend on

adherence. Journal of Theoretical Biology, 246:499–509, 2007.

[39] V. Lakshmikantham, S. Leela, and A. A. Martynyuk. Stability Analysis of Nonlinear

Systems. Marcel Dekker Inc., New York, 1989.

[40] R. Lpez-Cruz. Structured SI epidemic models with application to HIV Epidemic. Dis-

sertation for doctor of philosophy, Arizona state university, 2006.

[41] A. M. Lutambi. Basic Properties of Models for the Spread of HIV/AIDS. Masters

thesis, University of Stelenbosch, 2007.

[42] W. Ma, Y. Takeuchi, T. Hara, and E. Beretta. Permanence of an SIR epidemic model

with distributed time delays. Tohoku Mathematical Journal, 54:581–591, 2002.

[43] P. Magal, C. McCluskey, and G .F. Webb. Lyapunov functional and asymptotic

stability for an infection-age model. Journal of Applicable Analysis, 1:1–32, 2010.

[44] Colvin Mark, Cathy Connolly, and Eleanor Gouws. HIV prevalence and projections of

HIV prevalence and incidence in daimlerchrysler employee: results of an HIV surveil-

lance study.

[45] C. McCluskey. Global stability for an SEIR epidemiological model with varying in-

fectivity and infinite delay. Mathematical Biosciences and Engineering, 6:603–610,

2009.

[46] C. McCluskey and C. Connell. Global stability for an SIR epidemic model with delay

and nonlinear incidence. Nonlinear Analysis: Real World Applications, 11(4):3106–

3109, 2009.

[47] C. McCluskey and C. Connell. Complete global stability for an SIR epidemic model

with delay-distributed or discrete. Nonlinear Analysis: Real World Applications,

11(1):55–59, 2010.



Chapter 5. Conclusions 83

[48] J. Michael, H. Y. Lee, H. J. Darren, B. R. Anju, B. Patterson, S. S. Michael, M. S.

George, P. A. Edward, A. J. Victoria, S. P. Alan, and A. G. Paul. Treatment response

in acute/early infection versus advanced AIDS: equivalent first and second phases of

HIV RNA decline. AIDS, 22:957–962, 2008.

[49] A. Milner, F, A. Pugliese, and M. Gonzo. The HIV/AIDS epidemics among drug

injectors: A study of contact structure through a mathematical model. Mathematical

Biosciences, 139(1):25–58, 1997.

[50] J. Y. T. Mugisha. Balancing treatment and prevention: the case of HIV/AIDS.

American Journal Applied Sciences, 2(10):1380–1388, 2005.

[51] J.D. Murray. Mathematical Biology, volume 17. Springer-Verlag New York Berlin

Heidelberg, Seattle, WA 98195-2420 USA, 2001.

[52] United Nations. http://www.un.org/esa/population/publications/countryprofile/profile.html.

[53] P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman, and A. S. Perelson. An

age-structured model of HIV infection that allows for variations in the production

rate of viral particles and the death rate of productively infected cells. Mathematical

Biosciences and Engineering, 1(2):267–288, 2004.

[54] University of North Carolina School of Medicine.

http://pathmicro.med.sc.edu/lecture/hiv3.htm.

[55] G. Reuben, F. Charles, D. Christopher, M. Kevin, and G. Brian Williams. Universal

voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimi-

nation of HIV transmission: a mathematical model. Infectious Diseases, 373:48–57,

2009.

[56] W. S. Ronald and H. James. Mathematical Biology: An Introduction with Maple and

Matlab. Springer Dordrecht Heidelberg, Boston, 1996.

[57] B. Samuel and J. T. Jean. Mathematical analysis of a tuberculosis model with differ-

ential infectivity. Communications in Nonlinear Science and Numerical Simulation,

14(11):4010–4021, 2009.



Chapter 5. Conclusions 84

[58] L. Shen and F. R. Decand. Viral reservoirs,residual viremia, and the potential of

highly active antiretroviral therapy to eradicate HIV infection. The Journal of Allergy

and Clinical Immunology, 122(1):22–28, 2008.

[59] P. Simon and J. John. Reproduction numbers and stability of equilibria of SI models

for heterogeneous populations. SIAM Journal of Applied Mathematics, 52(2):541–576,

1992.

[60] J. A. Solomon and D. R. Hogan. Evaluating the impact of antiretroviral therapy on

HIV transmission. AIDS, 22(suppl 1):S149–S159, 2008.

[61] B. Staverose, K. Cooke, and H. R. Thieme. Demographic change and persistence of

HIV/AIDS in a heterogeneous population. SIAM Journal of Applied Mathematics,

51(4):1030–1052, 2008.

[62] J. C. Strikwerda. Finite Difference schemes and partial differential equations, vol-

ume 2. SIAM Journal of Numerical Analysis, USA, 2004.

[63] H. R. Thieme. Semiflows generated by Lipschitz perturbations of non-densely defined

operators. Differential Integral Equations, 3:1035–1066, 1990.

[64] H. R. Thieme and C. Castillo-Chavez. How may infection-age-dependent infectivity

affect the dynamics of HIV/AIDS? SIAM Journal of Applied Mathematics, 53:1447–

1479, 1993.

[65] R. Vardavas and S. Blower. The emergence of HIV transmitted resistance in Botswana

”when will the WHO detection threshold exceeded?”. PLoS ONE 2(1): e152.

doi:10.1371/journal.pone.0000152, 2007.

[66] H. W. Hethcote. The mathematics of infectious diseases. SIAM Journal of Applied

Mathematics, 42(4):599–653, 2000.

[67] G. F. Webb. Theory of Nonlinear Age-dependent Population Dynamics. Marcel, New

York, 1985.


