
Evaluation of Microcontroller Based Packet Radio Modem

Phillip Sello Seabe

Thesis presented in partial fulfilment of the requirements for the degree of Master of Science

in Engineering Sciences at the University of Stellenbosch

SUPERVISOR: Prof. S Mostert

March 2007

Declaration

I, the undersigned, hereby declare that the work contained in this thesis is my own original work

and that I have not previously in its entirety or in part submitted it at any university for a degree.

Signature: .. Date:

Abstract

The use of emerging microprocessors has become increasingly popular in packet radio commu-

nication equipment. This is mainly because of the improved performance and hardware sim-

plicity they offer. The new generation field programmable gate arrays (FPGAs) and microcon-

trollers are now widely used in the development of terminal node controller (TNC) components.

The aim of this thesis is to evaluate the use of these new generation FPGAs and microcon-

trollers in a TNC design, in order to utilise the software flexibility and hardware simplicity. The

design process began with the selection of the available simple microcontroller-based modem

that was just designed. Prior to its usage in a TNC, the software of the modem was modelled,

in order to understand its signal processing functionality.

Opsomming

Kleiner mikroverwerkers word meer en meer gebruik in pakket radio kommunikasie toerusting,

meerendeels te danke aan hul hoë werkverrigting en hardeware eenvoud. Nuwe generasie

FPGAs en mikroverwerkers word wyd gebruik in die ontwikkeling van kommunikasie terminaal

beheerders (TNC).

Die doel van die verslag is om die aanwending van hierdie nuwe generasie FPGAs en mikrover-

werkers in ’n TNC te evalueer. Die ontwerpsproses het afgeskop met die keuse van ’n beskik-

bare en eenvoudige mikroverwerker gebasseerde modem. Om die modem se sein verwerking

te verstaan, is die modem se sagteware eers gemodelleer. Daarna is ’n UART, HDLC beheerder

en kommunikasie beheer verwerker in ’n FPGA ontwerp en getoets. Ten slotte is die oplossing

van die projek vergelyk met soortgelyke kommunikasie terminaal beheerders.

Contents

1 Introduction 1
1.1 The History of Packet Radio . 1

1.2 Previous Solutions . 2

1.3 What is the Solution . 2

1.4 Why the Solution is Better . 2

1.5 Document Outline . 3

2 Preliminary Studies 4
2.1 Introduction . 4

2.2 TNC Components . 5

2.2.1 PC Communication Interface . 5

2.2.2 Memory Interface Controllers . 7

2.2.3 FIFO Memory . 7

2.2.4 HDLC Controller . 8

2.2.5 Packet Radio Modem . 9

2.3 Summary . 12

3 The 9600 Baud Packet Radio Modem 13
3.1 Introduction . 13

3.2 Transmitter . 13

3.2.1 Randomiser . 13

3.2.2 Finite Impulse Response Filter (FIR) 14

3.3 Receiver . 14

3.3.1 Clock Recovery . 14

3.3.2 Data Carrier Detect . 15

3.3.3 Unscrambler . 15

3.4 Summary . 16

i

4 The G4XYW Modem 17
4.1 Introduction . 17

4.2 G4XYW Modem Analysis . 18

4.2.1 G4XYW TX Mode . 18

4.2.2 G4XYW RX Mode . 21

4.3 G4XYW Execution Times . 25

4.3.1 TX Timer Interrupt Routine . 26

4.3.2 Scrambling Time . 26

4.3.3 Clock Recovery Time . 26

4.3.4 Comparator Interrupt Time . 27

4.3.5 Descrambler Execution Time . 28

4.3.6 Total Execution Time . 28

4.4 Microcontroller Program Memory Usage . 29

4.5 The G4XYW Modem Characteristics . 30

4.6 Summary . 30

5 G4XYW Modem Simulation 32
5.1 Introduction . 32

5.2 Modulation . 32

5.3 Demodulation . 35

5.4 Conclusion . 36

6 HDLC Controller Design 37
6.1 Introduction . 37

6.2 PC Interface (UART) . 38

6.3 HDLC Controller . 39

6.4 Memory Interface Controller . 41

6.5 Simulation Results . 43

6.6 VHDL Compilation Report . 44

6.7 Conclusion . 44

7 Results and Conclusion 45
7.1 Introduction . 45

7.2 Implemented System . 45

7.3 Functional Results of the Whole System . 46

7.3.1 Frame Check Sequence Field . 48

ii

7.3.2 Bit Stuffing . 49

7.4 Performance . 50

7.4.1 FPGA Performance . 50

7.4.2 SRAM Performance . 51

7.5 Modem Comparisons . 51

7.6 Conclusion . 55

7.7 Recommendations . 56

A HDLC VHDL Code 57

B The G4XYW MATLAB Simulation Code 126

C G4XYW Modem Source Code 133

D G4XYW Modem Circuit 167

E The G3RUH Schematic Diagram 169

F Tools used for the Project 172
F.1 Hardware . 172

F.2 Software . 173

iii

List of Figures

2.1 TNC Functional Block Diagram . 4

2.2 RS232 Character Format . 6

2.3 Effect of Timing Error . 6

2.4 HDLC Frame Format . 8

2.5 The G3RUH Circuit Board [14] . 10

2.6 The YAM Modem Circuit Board [9] . 11

3.1 The Shift Register Scrambler Implementation 14

3.2 Shift Register Unscrambler Implementation 15

4.1 The G4XYW Circuit Board . 17

4.2 Block Diagram of G4XYW Modem . 18

4.3 G4XYW TX Main Loop Flow Diagram . 20

4.4 G4XYW Digital Phase Lock Loop . 22

4.5 TX Timer Interrupt Execution Time . 26

4.6 Scrambler Execution Time . 27

4.7 Analog Comparator Interrupt Routine Execution Time 28

4.8 Unscrambler Execution Time . 28

5.1 TX Input Data (TXD) . 33

5.2 Scrambled Data . 33

5.3 Scrambler Output Calculation . 34

5.4 FIR output . 34

5.5 Comparator Output . 35

5.6 Demodulator Output . 35

6.1 FPGA block diagram . 38

6.2 Transmit Module Block Diagram . 39

6.3 CRC Architecture to Implement Polynomial X16 + X15 + X2 + 1 40

iv

6.4 Receive Module Block Diagram . 41

6.5 The HDLC Timing Diagram . 43

6.6 FPGA Simulation . 43

6.7 The VHDL Compilation Report Summary . 44

7.1 TNC Components Block Diagram . 46

7.2 Transmission and Reception of Two Characters “UN” 47

7.3 Transmitted Bitstreams . 48

7.4 FCS Shift Register During Characters “UN” Transmission 48

7.5 Bit Stuffing . 49

7.6 Measured Bit Stuffing Effect . 50

7.7 FPGA performance . 51

7.8 Modem Board Areas in cm2 . 52

7.9 Number of Components Per Modem . 53

7.10 Power Consumption For Each Modem (Watts) 54

D.1 G4XYW circuit-Part1 . 167

D.2 G4XYW circuit-Part2 . 168

E.1 The G3RUH Schematic Diagram - Part1 [8] 170

E.2 The G3RUH Schematic Diagram - Part2 [8] 171

v

List of Tables

2.1 Characteristics of RS232, RS422, RS423 and RS485 [7] 5

4.1 Four RX Loop Phases . 23

4.2 G4XYW execution time requirements . 29

4.3 Microprocessor Memory Use Summary[Bytes] 30

F.1 FPGA device resources . 172

vi

List Of Abbreviations and Acronyms

ADC Analog to Digital Converter

AFSK Audio Frequency Shift Keying

ALU Arithmetic Logic Unit

AMSAT Amateur Satellite Corporation

ASCII American Standard Code For Information Interchange

bps Bits per Second

CMOS Complementary Metal Oxide Semiconductor

CRC Cyclic Redundancy Check

DAC Digital to Analog Converter

DC Direct Current

DCD Data Carrier Detect

DPLL Digital Phase Lock Loop

DSP Digital Signal Processing

EEPROM Electrically Erasable Programmable Read-only Memory

FCS Frame Check Sequence

FIFO First In First Out

FIR Finite Impulse Response Filter

FPGA Field Programmable Gate Arrays

FSK Frequency Shift Keying

GND Ground

HDL Hardware Descriptive Language

HDLC High-Level Data Link Control

I/O Input-Output

IC Integrated Circuit

IF Intermediate Frequency

LED Light Emitting Diode

MHz Mega Hertz

MIPS Million Instructions per Second

NBFM Narrow Band Frequency Modulation

PC Personal Computer

PCB Printed Circuit Board

PTT Push-To-Talk

RAM Random Access Memory

RF Radio Frequency

vii

RX Receiver

SRAM Static Random Access Memory

TAPR Tucson Amateur Packet Radio

TNC Terminal Node Controller

TX Transmitter

UART Universal Asynchronous Receiver and Transmitter

UHF Ultra High Frequency

USB Universal Serial Bus

VHF Very High Frequency

viii

Chapter 1

Introduction

1.1 The History of Packet Radio

Packet radio communications has been used for many years so far. Amateur packet radio began

in Montreal, Canada in 1978, the first transmission occurring on May 31st [17]. This was

followed by Vancouver Amateur Digital communication Group (VADCG) development of a

Terminal Node Controller (TNC) in 1980 [17]. This practice is exercised by many as a hobby

for communicating with other radio amateurs. Since packet radio is not commercial, most of the

enthusiasts have relied on do it yourself principle when coming to communicating equipment.

Since not all people interested in packet radio communications are experienced engineers who

can do things themselves, some organisations started developing packet radio communicating

devices for business. Use of packet communication devices for satellites and ground stations is

for low volumes and very cost sensitive utilisation. Some of the problems about these devices

are:

1. Costs: most of these organisations are based in Europe and America. Though the costs of

the equipment might not be high, the shipping costs are always a worrying factor.

2. Availability: because the developers were not making profit on sales, they often got re-

luctant to manufacture bulks of equipment [5].

3. Obsolete components: though most of the traditional components are still functional,

most of the components that were built with are no longer available. This was verified by

enquiring about some of the components used in G3RUH modem.

4. Complexity: the designs and the usage of the equipment were difficult to follow due to

the number of components that were used to build the circuits.

1

CHAPTER 1. INTRODUCTION 2

5. Power consumption: the components that were used in the old TNC circuits consume

more power than the current ones.

1.2 Previous Solutions

The implementation of the newer packet radio modems was done by replacing the the older ob-

solete components by equally functional available components. The complexity of the modem

designs has been relatively the same over years. To a certain extent, these new components

also reduced the power consumption problem. Though the usage of software has been increas-

ing some developers still could not utilise the simplicity the software, microcontrollers and the

FPGAs offers.

1.3 What is the Solution

The usage of software and evolving low cost FPGAs and microprocessors was utilised to im-

prove the solution. As a starting point a microprocessor based modem that was also to be

evaluated was considered for the project. In addition to the modem employed, the use of a

simple commercial FPGA evaluation board was also investigated and ultimately used. The list

of the tools that were used for this project can be found in Appendix F.

1.4 Why the Solution is Better

The following factors make the solution found in this project to be an improvement over the

previous solutions.

1. Simplicity: the functionality of the system designed in this project are around two pieces

of devices, an FPGA and a relatively small microcontroller.

2. Flexibility: with most of the functional blocks of the system implemented in software, in

some instances the modification of the system properties is as easy as changing the values

of the software code variables.

3. Availability and latency: none of the components and the software were difficult to obtain.

The latency period was short because all of the components were supplied by the local

distributors.

CHAPTER 1. INTRODUCTION 3

4. Power consumption: most of the components manufactured today consume low power

compared to their equally functional old counterparts.

1.5 Document Outline

• Chapter 2 gives some background studies on the TNC functions and its components. A

typical physical diagram of a simple TNC is also illustrated.

• Chapter 3 introduces the fundamentals of the structure and the functionality of the mo-

dem.

• Chapter 4 analyse the G4XYW modem. The modem was chosen because it simple and

affordable. The modem is said to offer the same functionality as the tried and tested

G3RUH modem. However the G4XYW is based on software as compared to the hardware

based G3RUH modem.

• After the analyses of the modem was done in chapter 4, the MATLAB simulation pro-

cedure is presented. The outcome of Chapter 5 was the first achievement in finding the

solution for this project problem. Firstly, the microcontroller or FPGA based modems

had to be evaluated before they could be used.

• Chapter 6 discusses how the whole system was designed. This chapter gives an overview

of how the project problem statement was solved.

• Chapter 7 gives the functional results, summary and the conclusion of the project.

Chapter 2

Preliminary Studies

2.1 Introduction

Terminal Node Controllers (TNC) are used to interface a digital data source, typically a personal

computer (PC) with radio transmitters in the VHF or UHF bands. A TNC is comprised of two

functional parts: a transmitter and a receiver of a data packets. Figure 2.1 depicts a block

diagram of a typical TNC. As a transmitter, a TNC accepts data from a digital source and

PROCESSOR

TX

SRAM

TX

UART controller

RX
 RX

HDLC Controller

Tx

Rx

TxD

RxD

Analog signal

RxData

TxData

Control Signals

Data[0..7]

Data[0..7]

Control

Signals

Control signals

Data[0..7]

Control

Signal

Data[0..7]

Control signals

Data[0..7]

Packet radio

modem

Figure 2.1: TNC Functional Block Diagram

processes it. Before the processing starts, the data is first stored in a memory. The processing of

data involves inserting start and end of file flags, the address of the receiver, bit stuffing and an

error check field on the packet to be transmitted. After the processing is done, a digital bit stream

is then converted into an analog signal. Finally, this analog signal is sent to an RF transmitter.

The receiver of the TNC accepts an analog signal from the RF receiver and transmits a digital

data to a PC. The receiver starts by extracting a clock from the received signal and converting

the signal into a digital bit stream. The receiver synchronises with the incoming data by first

4

CHAPTER 2. PRELIMINARY STUDIES 5

detecting a unique flag pattern. The receiver will then perform error checking on the received

data before sending it to the PC.

2.2 TNC Components

As discussed in section 2.1, a TNC is used to interface a PC and an RF transceiver. This section

discusses the components of the TNC.

2.2.1 PC Communication Interface

There are various communication methods that can be used between two devices. Some are

serial and others are parallel. Parallel communication methods are usually faster than serial

ones. The choice of the communication method for this project was based on the following:

1. The availability of the interface hardware

2. The ability to communicate over an estimated distance between the PC and the TNC

3. The ability to communicate at an required baud rate

4. The ability to communicate in a full duplex mode.

Table 2.1: Characteristics of RS232, RS422, RS423 and RS485 [7]
RS232 RS422 RS423 RS485

Differential no yes no yes

Modes of operation full duplex half duplex half duplex half duplex

Network topology point-to-point multi drop multi drop multi point

Maximum distance 15 m 1200 m 1200 m 1200 m

Using Table 2.1 and the factors mentioned above, RS232 was the serial communication method

chosen for the project. Firstly, most PCs have an RS232 interface. A baud rate of up to 20 K

bits per second can be attained with a serial cable of approximately 15 m or less [7].

RS232 Specifications RS232 is an asynchronous serial communication method. The com-

munication is established by sending or receiving data in characters. Each character has at least

a start bit, 5 to 8 data bits, and a stop bit. The length of the stop bit is usually 1, 1.5, or 2 times

the duration of an ordinary bit. In addition to that, an optional parity bit can be added between

the data and stop bits. Figure 2.2 illustrates the character format.

CHAPTER 2. PRELIMINARY STUDIES 6

7
5
 6
 8
3
 4
1
 2

Start

bit

Stop

bit

1

0

data bits

Idle state

of line

Remaining idle

or next start bit

Figure 2.2: RS232 Character Format

RS232 Timing Procedure The scheme avoids synchronisation problems by avoiding long,

uninterrupted bit streams. The transmitter establishes timing or synchronisation within each

character so that the receiver can resynchronise at the beginning of each new character. As

shown in Figure 2.2, each character has a start bit that can be used by the receiver to synchronise.

When no data is being transmitted, the line between the transmitter and the receiver is in an idle

state. The idle state is a condition whereby a transmission line stays at a logic level different

from that of a start bit.

Error Detection As an option data bits are appended with a parity bit. This bit is used by the

receiver for error detection.

RS232 Disadvantages Even with the start bit synchronisation technique, timing problems

can be experienced if the receiver clock is slower or faster than that of the transmitter. Fig-

ure 2.3 illustrates a timing error resulting from a speed difference between the receiver and the

transmitter. From the figure, the bit period of the transmitter is 100 µs while that of the receiver

is 6 percent faster (94 µs according to transmitter’s clock). As shown in Figure 2.3, the last bit

is not sampled correctly by the receiver. This timing error can also result in a condition called

framing error. The framing error is a condition where the character bit count is out of alignment.

7
5
 6
 8
3
 4
1
 2

Start

bit

Stop

bit

100
 200
 300
 400
 500
 600
 700
 800
 900
 Transmitter timing

Receiver timing
97
 191
 285
 379
 473
 567
 661
 755
 849

Figure 2.3: Effect of Timing Error

Referring to Figure 2.3, if bit 7 is a 1 and bit 8 is a 0, bit 8 could be mistaken for a start bit. The

general formula for calculating the allowed timing difference between the transmitter and the

receiver is as follows:

n × T f aster > (n − 0.5) × Tslower (2.1)

CHAPTER 2. PRELIMINARY STUDIES 7

where n is the number of bits (5 to 8) per character, T f aster and Tslower are periods of faster and

slower clocks, respectively.

As compared to other serial communication interfaces such as RS485, the RS232 is not immune

to noise. Noise interference can cause problems such as framing error. The other disadvantage

with the asynchronous transmission is the overhead of two to three bits per character. For

example, for an 8-bit character with no parity bit, using a 1-bit-long stop bit, two out of every

ten bits carry no information but are there only for synchronisation purposes. This makes an

overhead of 20 percent.

RS232 Advantages The RS232 standard defines low-cost serial communication in a robust

way where bits are sent sequentially on a conducting line [18]. The other advantage of the

RS232 is that it is a full duplex.

2.2.2 Memory Interface Controllers

The memory interface controller is used to control the writing and reading of data to and from

the memory. This is necessary to avoid memory bus contention. The memory is accessed by

four the TNC components as follows:

• TX UART transmitter unit supplies the memory interface controller with data received

from the PC. This data has to be stored in the memory before the processing can com-

mence.

• After the last character has been written into the memory, the TX HDLC controller fetches

the data from the memory, one character at a time.

• During data reception the RX HDLC controller needs to store the received data into the

memory before the data can be transmitted to the PC. This is performed to control the

data transmission rate which may be different from the reception rate.

• Finally, the RX UART controller fetches data from the memory one character at a time

and transmits it to the PC one bit per time.

2.2.3 FIFO Memory

Before data is transmitted or received, it has to be processed. To avoid data overrun or underrun

from the data source, the TNC buffers bits stream into a FIFO memory before processing begins.

The memory width was chosen to be the same size as the character bit length. The size of the

CHAPTER 2. PRELIMINARY STUDIES 8

memory was chosen to be sufficient to store the intended HDLC frame size. For this project an

8-bit 256KB SRAM device on the development board was used.

2.2.4 HDLC Controller

All TNC transmissions are in the form of HDLC frames. HDLC is a standard protocol in packet

radio. HDLC is a synchronous transmission protocol which overcomes synchronous transmis-

sion problems. An HDLC frame is comprised of a number of fields. The flag, address, and

control fields that precede the information field are known as a header [1]. The last two fields

are the Frame Check Sequence (FCS), and the flag, they are reffered to as a trailer. Figure 2.4

depicts the structure of the HDLC frame.

Control
 Flag
FCS
Information

8 or 16

bits
 Variable
 16 or 32 bits

8

bits

Address

8

extendable

Flag

8

bits

Header
 Trailer

Figure 2.4: HDLC Frame Format

Flag Fields Flag fields delimit the frame at both ends with the unique pattern 01111110. The

receiver synchronises on the start of the frame by continuously searching for the flag pattern.

While receiving the a frame, a TNC continues to hunt for the pattern to determine the end of the

frame. Since there is no restriction on the data source, the transmitter makes sure that no data

containing the bit sequence of the flag is transmitted. The procedure used to accomplish this is

called bit stuffing. Between the transmission of the starting and the ending flags, the transmitter

will always insert an extra 0 bit after each occurrence of five 1s in the frame. From the receiver

side, after detecting the start flag, the bit stream is monitored. When a pattern of five 1s appears,

the sixth bit is examined. If this bit is a 0, it is deleted. If the sixth bit is a 1 and the seventh is

a 0, the combination is considered to be a flag. If the sixth and the seventh bits are both 1, the

sender is indicating an abort condition [1].

Address Field The address field identifies the secondary station that transmitted or is to re-

ceive the frame. This field is not needed for point-to-point links. Hence for this project this field

is not included.

CHAPTER 2. PRELIMINARY STUDIES 9

Control Field There are three types of frames that are defined in the HDLC protocol. Each

of the three frame types has a different control field format. The three frames are information

frames, supervisory frames and unnumbered frames. Information frames carry the data to be

transmitted. In addition to that, the frame has flow and error control data. For this project the

control field was also excluded.

Information Field The information field can contain any sequence of bits but must consist

of an integral number of bytes. The length of the field is variable up to some system-defined

maximum, that is the size of the memory.

Cyclic Redundancy Check (CRC) CRC is one of the common error-detecting codes [1]. It

can be described as follows, given a X-bit block of transmitted bits, the transmitter generates

an Y-bit sequence, known as an FCS. This will result in a frame consisting of X + Y bits which

are divisible by some predetermined number. The receiver divides the incoming frame by that

number. If there is no remainder, receiver assume there was no error.

Frame Check Sequence The frame check sequence (FCS) is an error-detecting code calcu-

lated from the remaining fields except the flag field. The length of the field is normally 16 or

32 bits long. The FCS is generated by CRC. CRC generate an FCS according to a specified

polynomial. The two CRC polynomial that are popular for 8-bit characters, are [1]:

CRC-16 = X16 + X15 + X2 + 1

CRC-CCITT = X16 + X12 + X5 + 1

The two polynomials generate a 16-bit FCS.

2.2.5 Packet Radio Modem

The last TNC component is a packet modem. Briefly, a packet modem is used to convert a

digital data into an analog signal. The conversion is performed for RF modulation purposes. It

is only after modulation is done that VHF transmission can be performed. The following are

some of the well known packet radio modems:

The Bell-202 AFSK modem: When AX.25 protocol amateur packet radio communications

first began in the early 1980s, early experimenters used Bell-202 type Audio Frequency Shift

Keying (AFSK) telephone modems to pass binary packet data over the air using voice-grade

Very High Frequency (VHF) narrowband Frequency Modulation (FM) transceivers [2]. The

CHAPTER 2. PRELIMINARY STUDIES 10

baud rate of the Bell-202 modems was 1200 bits per second. They functioned satisfactorily for

half duplex radio communications. The first terminal controllers to make an appearance on the

commercial market, included the Bell-202 modem [2].

The G3RUH modem: G3RUH, which was designed in 1988, is a full duplex 9600 baud

Frequency Shift Keying (FSK) packet radio modem. The modem was designed for terres-

trial packet and satellite packet applications with typical Narrow Band Frequency Modula-

tion (NBFM) radios [6]. Although most TNCs had 1200 baud modems, all of them could

generate much higher data rates, and FM radios had higher frequency bandwidth, hence a 9600

baud modem was designed. Figure 2.5 shows the G3RUH modem circuit board picture. As

Figure 2.5: The G3RUH Circuit Board [14]

shown in figure 2.5 the modem had a lot of integrated circuits (ICs) occupying a lot of board

space. The modem was developed using 19 ICs on a 100 ×160 mm board. The modem operated

from 12 V DC at 170 mA [2].

The KD2BD 9600 Pacsat modem: The KD2BD modem developed by Amateur Satellite

Corporation (AMSAT) is a high performance 9600 FSK modem designed to interface between

a TNC and an FM voice transceiver. The following are some of the design goals of the modem.

• First, the modem was designed to use commonly available components and not rely on

special EPROMS for transmit waveform synthesis or bit clock detection. Hence it was an

inexpensive modem compared to its predecessors [2].

CHAPTER 2. PRELIMINARY STUDIES 11

• The modem was also designed to improve the problem of DC coupling that was possible

even after data was randomised [2].

• Lastly, the modem was designed to be as simple as possible [2].

The PCB area was 115 ×115 mm and 16 integrated circuits were used [2].

Yet Another Modem: The Yet Another Modem abbreviated YAM, was developed in 1997.

The YAM is compatible with the 9600 baud G3RUH modem [9]. It was a multi-standard modem

capable of AFSK 1200 baud and 2400 baud. The YAM modem integrated all the functions of a

packet radio modem and those of a TNC (UART controller and HDLC encoder) using only three

integrated circuits and interfaced directly to a PC serial port from which it was also powered.

YAM was based on a Xilinx Xc5202 FPGA. Figure 2.6 shows the YAM modem.

Figure 2.6: The YAM Modem Circuit Board [9]

SunSpace Modem: This modem was developed in 2002 by SunSpace & Information Systems

for use in their satellite ground station. The modem was compatible with the G3RUH and also

able to operate at 1200 baud. This full-duplex modem was built on a 120 × 120 mm board and

can operate from 11 V DC at 148 mA. The modem design was very close to that of G3RUH

hence the number of components used was relatively high (31 integrated circuits).

CHAPTER 2. PRELIMINARY STUDIES 12

2.3 Summary

This chapter started by introducing the functional block diagram of a TNC. Further more, an

overview of each of the TNC component functions were discussed. Lastly, section 2.2.5 dis-

cussed few known packet radio modems. The area of interest in these modems is board area,

power consumption and complexity. The study of these modems was done so that an evaluation

of the microcontroller to be used in this project could be performed.

Chapter 3

The 9600 Baud Packet Radio Modem

3.1 Introduction

In this chapter the basic packet radio modem components and functionality are discussed. The

aim of the chapter is to introduce the packet radio modem structure and how it functions. The

structure is divided into two parts, the transmitter (TX or modulator) and the receiver (RX or

demodulator). Sections 3.2 and 3.3 discuss the modems TX and RX components respectively.

3.2 Transmitter

The following are the modulator components that are found in both the G3RUH and the G4XYW

modems. The subsequent sections discuss the functional components of the two modems.

3.2.1 Randomiser

Data to be transmitted is first passed through the scrambler. The scrambler randomises the data

according to a specified formula or polynomial to ensure that there are no long (8 bits or more)

runs of “1”s or “0”s. The DC coupled transmit data is not desired because the receiver clock

recovery needs the transitions on the input signal for synchronisation. The two modems have

17 bit shift registers and two XOR gates that implements the scrambling polynomial:

Y(X) = X(0) ⊕ X(12) ⊕ X(17). (3.1)

From Equation 3.1 it follows that for every input bit, the output of the scrambler is calculated

as the XOR of the input bit and the two bits that were transmitted 12 and 17 bit periods ago.

After the calculation is done the input bit is then shifted into the scrambler shift register that

is illustrated by Figure 3.1. The polynomial is the standard for 9600 bits per second digital

13

CHAPTER 3. THE 9600 BAUD PACKET RADIO MODEM 14

1
 16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
 17

Input data

Transmitted data

Shift Direction

Figure 3.1: The Shift Register Scrambler Implementation

communications, and it is authorised by the Federal Communications Commission for amateur

use.[2]

3.2.2 Finite Impulse Response Filter (FIR)

The digital bit stream has to be converted to analog signal before modulation takes place. This is

done to reduce the bandwidth that is required to transmit data. A FIR is comprised of transmit

waveshapes and a shift register is used to convert digital data to an analog signal. The shift

register that contains the most recently transmitted bits is used to index the waveshapes that are

stored in the lookup table. Four samples of waveshapes are done per transmitted bit. The output

value from the lookup table is converted to voltage by the DAC before it is filtered by a low

pass filter that removes the harmonics of the clock.

3.3 Receiver

Audio from the FM receiver is passed to the low pass filter to remove noise, particularly from the

Intermediate Frequency (IF) residue. The signal is then sampled at a regular rate at the correct

instant. In this section the components that recover the clock from the signal are discussed. The

unscrambler that unscrambles data in accordance with the polynomial in 3.1 is also discussed.

3.3.1 Clock Recovery

The receiver has a Digital Phase Lock Loop (DPLL) that monitors the rate at which data is

received by the modem. It extracts the clock from the input signal transitions. If the rate and

time instances of the transitions follow an expected pattern, the DPLL locks else the DPLL is

unlocked or it said to be completely out of synchronisation with the incoming data. The DPLL

CHAPTER 3. THE 9600 BAUD PACKET RADIO MODEM 15

adjusts the receiver’s internal clock in accordance with the recovered clock. This is done so that

the receiver samples the subsequent bits at the right time instances.

3.3.2 Data Carrier Detect

The DCD line indicates when the receiver DPLL is locked or synchronised with the incoming

data. Both the modems have LED connected to the DCD line to emit light when the DPLL is

locked.

3.3.3 Unscrambler

The detected data, that is still randomised, is passed through a descrambler to recover the orig-

inal information. Like a scrambler, unscrambler is comprised of a shift register and two XOR

gates. The unscrambler is designed such that the input data shown in Figure 3.1 is equal to the

output data shown in Figure 3.2 that illustrates unscrambler implementation. From figure 3.1,

1
 16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
 17

Received

data

Shift Direction

Figure 3.2: Shift Register Unscrambler Implementation

transmitted data is calculated as follows:

transmitted data = input data ⊕ X(12) ⊕ X(17) (3.2)

from Figure 3.2 it follows that the output data is

Output data = received data ⊕ X(12) ⊕ X(17). (3.3)

Now, since transmitted data is equivalent to received data, Equation 3.2 can be substituted in

Equation 3.3. Then Equation 3.3 becomes

Output data = {input data ⊕ X(12) ⊕ X(17)} ⊕ X(12) ⊕ X(17)

= input data (3.4)

CHAPTER 3. THE 9600 BAUD PACKET RADIO MODEM 16

3.4 Summary

In this Chapter the general structure of the packet radio modem was discussed. This structure

can be used as a point of reference for any packet radio modem design. Chapter 4 will discuss

the structure and the functioning of the G4XYW modem in relation to the information obtained

in this chapter.

Chapter 4

The G4XYW Modem

4.1 Introduction

Chapter 3 introduced and discussed 9600 baud packet radio modems. Furthermore the func-

tional blocks of the modem were also discussed. In this chapter the design of the G4XYW

modem is discussed. The G4XYW modem has a similar functional block diagram to that of the

G3RUH modem. It is based on a 20-pin, 8-bit, 1KB programmable flash AVR® microcontroller.

Figure 4.1 shows the G4XYW modem circuit board. The emphasis of the discussion will be on

Figure 4.1: The G4XYW Circuit Board

17

CHAPTER 4. THE G4XYW MODEM 18

the software part of the modem. The study and analysis of the modem was done to investigate

the possibility of a higher baud rate modem design on a bigger microcontroller.

4.2 G4XYW Modem Analysis

The G4XYW is a half-duplex modem capable of modulating 9600 bits per second. Most of the

modem functionality is implemented by a microprocessor. The software code for the modem

is divided into two parts: a transmitter and a receiver. However, some processor resources like

timers, and output pins are shared by both the transmitter and the receiver. The functional block

diagram of the G4XYW modem is depicted in Figure 4.2.

TX Clock

recovery

Scrambler
 FIR

Internal clock

source

Transmitted

digital data

DAC

Audio Output

Signal

RX Clock

recovery

ADC
 Descrambler

Received

analog signal

Received

Digital Data

Recoverd R/TX

clock

Figure 4.2: Block Diagram of G4XYW Modem

Upon powering the modem, software code runs initial routines to check the user selected mode:

TX or RX. The TX and RX modes are described in section 4.2.1 and section 4.2.2 respectively.

4.2.1 G4XYW TX Mode

In the TX mode the software code is divided into two parts: the TX main loop and the timer

interrupt routine. The modules implemented in this mode of transmission are a scrambler, a

transversal or Finite Impulse Response filter (FIR), and a TX data clock extraction system. The

timer counter of the transmitter is set to overflow at a rate of four times that of bit rate. The FIR

filter and the TX house-keeping procedures are performed by the interrupt routine. Once the

timer overflow occurs the TX house keeping is done. The detailed pseudocode for TX house

keeping is illustrated by Algorithm 4.2.1.

CHAPTER 4. THE G4XYW MODEM 19

Algorithm 4.2.1: TX -(reload, phase)

comment: Adjust the clock signal

t counter← t counter − reload
reload← 32

comment: Enter a new oversampling phase

phase← phase + 1

comment: Now Evaluate phase and perform relevant task

if (phase = 0)

TXclock← 0

SAMPLE← 1

sample T X input line

else if (phase = 1)

START BIT← 1

else if (phase = 2)

TXclock← 1

else
exit

After house keeping is done the calculated FIR filter output is sent to the digital-to-analog

converter (DAC) through 6 output pins. The FIR filter output that will be sent at the next timer

overflow would then be calculated. A simplified pseudocode for FIR filter implementation is

illustrated by Algorithm 4.2.2

Algorithm 4.2.2: FIR(value)

comment: Put the previously calculated FIR output to DAC

DAC ← (value ÷ 4) − 192

comment: Get a new FIR lookup table index and use its coefficient

value← indexed lookup coefficient

The timer interrupts divide the bit period into four phases by incrementing a two bit counter.

For a 9600 bps baud rate each of the four phases is approximately 26µs. The four phases are

represented by binary values “002” to “112”.The interrupts also set the clock signal, sample the

input data line and set the rate for the main loop tasks execution. The Finite Impulse Response

CHAPTER 4. THE G4XYW MODEM 20

filter is also implemented in the timer interrupt routines. The rate of the TX main loop task

execution is controlled by the SAMPLE and START_BIT bit is that are set by the timer interrupt

routine. The SAMPLE bit is a periodic flag set by the timer interrupt to set the bit rate. The

START_BIT is the flag set whenever a 0-to-1 transition is detected on the incoming data input

line.

The major modem functional blocks implemented by the TX main loop are, a scrambler and

clock recovery system. The TX main loop flow chart is illustrated by Figure 4.3.

SAMPLE = 1
 START_BIT = 1

Data changed from

"0" to "1"

NO

YES

YES

SAMPLE = 0

YES

START_BIT = 0

NO

NO

Scrambling

process

Clock Recovery

Figure 4.3: G4XYW TX Main Loop Flow Diagram

The two main modem components that are implemented in the TX main loop are described as

follows:

1. The G4XYW scrambler is implemented with three 8-bit registers concatenated together.

The XOR gates used in traditional modems are replaced by XOR logic operators.

2. The Clock recovery process synchronises the microprocessor internal timer counter with

the incoming data. The pseudocode for this process is illustrated by Algorithm 4.2.3.

The pseudocode function takes the processor Timer_Counter value and the last saved

reload value as its arguments. Firstly, the time at which the rising edge of the signal is

detected is evaluated. If the edge occurred in the expected Timer_Counter range (phase

CHAPTER 4. THE G4XYW MODEM 21

= 2), the counter adjustment value, (reload) is adjusted by half of the error. Otherwise

the timer counter is considered to be completely out of synchronisation with the data. In

this case the counter is re-synchronised by assigning it a value 144. This value is the

centre of the phase (phase = 2) in which data transitions are expected.

Algorithm 4.2.3: ClockRecovery(Timer Counter, reload)

if (phase = 2)

comment: Adjust the Timer Counter adjustment value

temp← (Timer Counter − 144) ÷ 2

reload ← reload − temp

else

comment: Now force re-synchronisation

phase ← 2

Timer Counter ← 144

Data from the scrambler is passed to the transversal or Finite Impulse Filter (FIR). It is used to

minimise the transmit signal bandwidth by shaping the output signal to a raised cosine shape.

The output of the FIR filter is the suppressed 8-bit coefficient that was read from a lookup table

that has 16 entries. The coefficients are suppressed from eight bits to six bits so that they can be

sent to the available six output pins which are connected to external digital-to-analog converter

(see Figure D.1 in Appendix D). The lookup table address is indexed by the combination of the

three adjacent bits in the scrambler shift register and the current two over-sampling phase bits.

The 8-bit coefficients are suppressed by dividing them by four. This is done to ensure that every

decimal value transmitted to the DAC, is less than 64.

4.2.2 G4XYW RX Mode

Referring to figure 4.2, the modem’s major components for RX mode are a unscrambler and a

clock recovery system. The received data clock recovery system is implemented by a Digital

Phase Lock Loop (DPLL). The function of the DPLL is to extract the clock from the received

analog data. The DPLL also synchronises the microprocessor internal clock counter with the

received data. Synchronisation is achieved by comparing analog comparator interrupt time in-

stance with the expected transition count. Initially the counter is set so that data transitions

happen half way through its counting range. The DPLL flow diagram that is driven by analog

comparator interrupts is depicted by Figure 4.4. For a 9600 bps baud design, an 8-bit up-counter

CHAPTER 4. THE G4XYW MODEM 22

Start

error = | t_counter - 192 |

lock_counter < 40

reload = reload - adjust/4

Yes
 error > 16
No

IF
 t_counter < 192

reload ++

ELSE

reload--

Yes

Return

error > 24

IF
 lock_counter > 0

lock_counter--

ELSE

LOCKED = 0

Yes

IF
 lock_counter < 50

lock_counter++

ELSE

LOCKED = 1

No

No

edge_counter = 255

Figure 4.4: G4XYW Digital Phase Lock Loop

t_counter is designed to overflow after 128 counts in 104 µs. When the analog interrupt hap-

pens the routine depicted by Figure 4.4 executes as follows:

1. The timer counter value at which the interrupt occurred is compared with the expected

transition time (192) which is the value half way between the initial (128) and the final

(255) values. The difference between the two is called an error.

2. The DPLL lock status is then checked. This is done by evaluating a lock_counter value

which should be less than ten counts from a target lock state value (50).

3. If lock_counter is less than 40 the timer counter adjustment value (reload) is cor-

rected by a quarter of the error. If error is greater than 24, the lock_counter is

CHAPTER 4. THE G4XYW MODEM 23

decremented towards an unlock state, otherwise the lock_counter is incremented to

a lock state. Once the lock_counter reaches 50 the DPLL is said to be locked. If the

lock_counter reaches zero, the DPLL is unlocked.

4. If the lock_counter is greater than 40, the error value is evaluated. If the error is

less than 16, the reload value is not adjusted. This is done to compensate for a noise in

a data signal. If the error is greater than 16, the reload value is adjusted by a factor of

one, to get the clock counter towards the transition time (192).

5. Finally the edge_counter that signifies that the receiver is not receiving a Direct Current

(DC) coupled signal, is asserted.

In RX mode, the modem loop is divided into four phases by a timer counter. Each phase has

a range of 32 timer counts that last approximately 26.04 µs. Table 4.1 illustrates the phase

names and their associated timer ranges. Modem tasks are executed in accordance with the

phase in which the modem is running. The pseudocode for the RX main loop is outlined by

Table 4.1: Four RX Loop Phases

Phase Name Description Timer Counter Range
CPHASE Clock toggle 128→ 159

SPHASE Sample phase 160→ 191

DPHASE Data out 192→ 223

TPHASE Transition phase 224→ 255

Algorithm 4.2.4. The functions performed in the loop are explained as follows:

1. Firstly, the DPLL lock status is examined by checking the value of LOCKED. If the DPLL

is locked, LOCKED equal to 1, an LED connected to the DCD pin is switched on.

2. The t counter value is evaluated. If the counter falls within the sampling window, the

analog comparator is sampled. This process takes place while the timer counter is in the

SPHASE region.

3. Once the timer counter enters the DPHASE range, data is descrambled as illustrated in fig-

ure 3.2. The clock output line will then be asserted. The data input line is checked for DC

coupled signal reception. This is performed by decrementing the edge counter which

is assigned a value of 255 each time a data transition is detected. If the edge counter

reaches zero, a DPLL is unlocked by clearing a LOCKED output line. After the lock status

CHAPTER 4. THE G4XYW MODEM 24

is adjusted the routine runs to the top of the loop. The procedure above continues until

the timer counter runs out of the DPHASE.

4. After the DPHASE, the timer counter enters the TPHASE. The PHASE is used solely as a

waiting time for a bit period to complete.

5. The next phase after the TPHASE is the CPHASE. In the CPHASE the clock output line,

RXClock is cleared. The routine will then loop until the timer counter runs out of the

CPHASE.

CHAPTER 4. THE G4XYW MODEM 25

Algorithm 4.2.4: RX  ()

comment: Assert DCD with the DPLL lock status

if (LOCKED = 1)

DCD← 0

else
DCD← 1

comment: Check if sampling window is open

if ((t counter ≥ 152) AND (t counter ≤ 216))

sample the analog comparator output

comment: Now check if bit period has elapsed

if (phase = TPHASE)

return to the beginning o f the loop

comment: check what is the new phase and execute relevant process

if (phase = CPHASE)

then


RXClock← 0

return to the beginning o f the loop

if (phase = DPHASE)

then



descramble data

send descrambler output to the RxOut pin

RXClock← 1

if (edge counter > 0)

edge counter← edge counter − 1

else
comment: The modem is receiving a DC coupled signal, unlock DPLL

LOCKED← 0

return to the beginning o f the loop

else
return to the beginning o f the loop

4.3 G4XYW Execution Times

After the functionality of the modem was tested and verified, the performance was investigated

in order to investigate the possibility of increasing the bit rate. This was done by measuring the

CHAPTER 4. THE G4XYW MODEM 26

execution times of various parts of the modem. These measurements would show how much

time was spent on processing and how much idle time was available for each bit of data.

4.3.1 TX Timer Interrupt Routine

The execution time for the TX timer interrupt routine was measured and found to be approxi-

mately 4.4µs (see Figure 4.5). The Agilent 100 MHz mixed signal oscilloscope was used for the

measurements. Figure 4.5 shows two signals, the TxClock and the TX interrupt measured time.

Figure 4.5: TX Timer Interrupt Execution Time

The figure shows that the clock signal has a period of 1⁄9600 s. As discussed in section 4.2.1,

the figure also shows that the timer overflow occurs at a rate four times that of the bit period.

4.3.2 Scrambling Time

From figure 4.3 it can be seen that the scrambling process is one of the major processes per-

formed in the main loop. The processing time of the scrambler was measured as shown in

figure 4.6 and the execution time is only 1.6µs.

4.3.3 Clock Recovery Time

The last major TX process performed by the main loop is the clock recovery system. The total

time measured when a positive edge has been detected is 2.4 µs. The time was calculated by

adding two measured times from two separate code ranges.

CHAPTER 4. THE G4XYW MODEM 27

Figure 4.6: Scrambler Execution Time

After all the components of the TX modem execution times were measured, attention was

then given to the RX modem. The RX main components were identified and their execution

times were then measured. Sections 4.3.4 and 4.3.5 discuss process times measured while sec-

tion 4.3.6 summarises the total execution time of the modem.

4.3.4 Comparator Interrupt Time

When the analog comparator interrupt occurs a series of action occurs as illustrated in figure 4.4.

The measurement was performed and the results were obtained as illustrated by figure 4.7. As

seen in the figure, the time measured was 4 µs. The three signals shown in the figure are from

top to bottom, the comparator routine execution time, the comparator input signal and the clock

signal. It is also evident that the interrupt routine that implements the DPLL occurs only when

there is 0 to 1 transition in the input data signal.

CHAPTER 4. THE G4XYW MODEM 28

Figure 4.7: Analog Comparator Interrupt Routine Execution Time

4.3.5 Descrambler Execution Time

The longest process performed in the main loop is the unscrambler. The duration of the process

execution is shown by figure 4.8. The time measured is 4 µs.

Figure 4.8: Unscrambler Execution Time

4.3.6 Total Execution Time

From the measurements performed, the execution time required per bit period were tabulated

and the total times in each of the two transmit modes were calculated. Table 4.2 shows the

CHAPTER 4. THE G4XYW MODEM 29

calculations that were performed.

Table 4.2: G4XYW execution time requirements

Process Duration
Tx Timer interrupt service routine 4 × 4.4 µs

Scrambling 4 µs

Synchronisation 2.4 µs

TX total 24 µs

Rx analog comparator interrupt service routine 4 µs

Rx main loop 4 × 4 µs

Rx timer interrupt service routine 1 µs

Rx total 21 µs

From table 4.2 the worst case execution times for TX and RX operation modes are 24 µs and

21 µs respectively. At 9600 baud, the minimum processor idling time percentage is found to be

100 −
(

24
104.16

)
100 % = 77.06 %

Conclusion Based on the calculated microcontroller idling time percentage, the maximum

baud rate of the modem can be calculated. The maximum integral multiple speed of this modem

can be found by calculating the minimum required bit period as follows
(
104.16

4

)
µs = 26.04µs

This period is greater than the worst case execution time (24 µs), it follows that the modem can

operate at a baud rate four times the current one.

4.4 Microcontroller Program Memory Usage

Section 4.3 discussed the timing requirements of the modem. The other limiting resource in

embedded programming is the programmable memory of the microchip. The memory usage

for the G4XYW modem software is illustrated in Table 4.3. The memory usage results were

extracted from the compiler output. With over 90% of the memory code segment used, it is

evident that there is very little that can be added to the microprocessor.

CHAPTER 4. THE G4XYW MODEM 30

Table 4.3: Microprocessor Memory Use Summary[Bytes]

Segment Begin End Code Data Used Size Use%

[.cseg] 0x000000 0x0003a0 928 0 928 1024 90.6%

[.dseg] 0x000000 0x000060 0 0 0 0 −
[.eseg] 0x000000 0x000000 0 0 0 64 0%

4.5 The G4XYW Modem Characteristics

In addition to the information given in Section 4.1 concerning the G4XYW modem, the follow-

ing are some of its characteristics:

• The modem is built on a 80 mm × 110 mm PCB.

• The two boards, RX and TX modems connected together can operate from 11 V DC at

60 mA. Thus a power of approximately

11x30 = 330 mW

per board.

• The modem circuit has got only 7 ICs.

4.6 Summary

In this chapter, the functional structure of the G4XYW modem was discussed. The signal pro-

cessing of this modem is similar to that of the traditional hardware based modems discussed in

Chapter 3. The functionality of the modem is tested in Chapter 7 by sending and receiving an

HDLC data frame. From the microcontroller side, the maximum baud rate limit is set by the

required processing time per bit period. The amount of modem functions that can be imple-

mented in software is limited by the microcontroller user programmable memory. While there

is sufficient processing time available on this modem, the memory usage was found to be very

limited. Hence the addition of software implemented functions would require a microcontroller

with bigger memory. As for the baud rate improvement, with the same microcontroller clock

speed and throughput a baud rate of 38400 bits per second can be achieved. For a full duplex

modem on one board, a G4XYW circuit can be easily modified by adding a second identical

microcontroller. This can be done without increasing the current PCB size. The simulation of

CHAPTER 4. THE G4XYW MODEM 31

the G4XYW modem software is discussed in Chapter 5 where some of the functionality such

as data scrambling and finite impulse response filter are illustrated.

Chapter 5

G4XYW Modem Simulation

5.1 Introduction

Before the project was commenced, the G4XYW modem was chosen to be the starting point.

The decision to study and use the modem was taken because of the simplicity over its prede-

cessors. The possibility of the modem baud rate being improved was also anticipated. In order

to understand and prove its signal processing functionality, the modem was then modelled with

MATLAB. The modelling was performed in accordance with the analysis done in Chapter 4.

The modelling started with the modulator part from which the output was the input to a demod-

ulator. Sections 5.2 and 5.3 discuss the modulation and demodulation processes respectively.

5.2 Modulation

Firstly the major components of the modem transmitter part were identified. As shown in

Figure 4.2, the two components are a scrambler and a finite impulse response filter. As a starting

point, a bit stream was created as a modulator input data. The following array was initialised

and used as an input:

TXD = 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 . . . (5.1)

Figure 5.1 shows the input data as defined in Equation 5.1.

32

CHAPTER 5. G4XYW MODEM SIMULATION 33

Figure 5.1: TX Input Data (TXD)

After the input data was created it was then passed through a scrambler that is illustrated in

Figure 3.1. From Figure 3.1, the sequence of the first twelve scrambler output bits is expected to

be the same as that of the input data. This happens because the scrambler register was initialised

to all zeros. Comparing the bit stream patterns of Figure 5.1 and the output column in 5.2 it is

Figure 5.2: Scrambled Data

evident that the required scrambling polynomial was performed correctly. The correctness of

the scrambler output data in Figure 5.2 was verified by the calculated results that are shown in

Figure 5.3. The figure shows the input data, contents of the shift register and the output data at

each processing step.

CHAPTER 5. G4XYW MODEM SIMULATION 34

Figure 5.3: Scrambler Output Calculation

From the scrambler, the data was then passed through the FIR to shape the output waveform to

a raised cosine to minimise the bandwidth. At this time, the effect of the algorithm that is used

to multiply FIR coefficients to the input data was to be tested. Also the impulse response of the

filter was to be observed. Figure 5.4 shows the 6-bit FIR output weights that are passed through

a DAC. For every quarter of a bit period, a weight is calculated from the past four bits in the

scrambler. After the DAC, the data was then passed through a low pass filter. Both the DAC

and the low pass filter were not implemented by software.

Figure 5.4: FIR output

CHAPTER 5. G4XYW MODEM SIMULATION 35

5.3 Demodulation

The output of the modulator’s low-pass filter was used as an input of the demodulator. The

signal was super-sampled and passed through a comparator. Figure 5.5 shows data as sampled

from the analog comparator. Considering that every bit in Figure 5.5 is represented by four sam-

ples, it is visible that the first four bits are zeros. This is due to the FIR calculations as discussed

in Section 5.2. Figure 5.6 shows the output of the descrambler. The signal is the demodulator

Figure 5.5: Comparator Output

output. After the modelling of the modem, the modulator input signal was compared with the

demodulator output signal. As it can be seen from Figures 5.1 and 5.6, it is evident that, with

the exception of the four leading zeros in Figure 5.6, the two signal are identical. The four

leading zeros were introduced by the FIR calculations that came as a result of the scrambler

initial values. The 17 bits of the scrambler were initialised to zeros.

Figure 5.6: Demodulator Output

CHAPTER 5. G4XYW MODEM SIMULATION 36

5.4 Conclusion

The modem simulation was the first exercise performed in this project. The outcome of the

exercise helped on deciding whether to continue using the modem or start looking for the other

one. The most important characteristics that were found from the modem simulation looked

similar to those of the previously used modems. This characteristics include scrambling, im-

pulse response filtering and an unscrambling. From the results found in Sections 5.2 and 5.3 it

was convincing that the modem would function as expected. This was the first milestone and

the second was to practically test the modem.

Chapter 6

HDLC Controller Design

6.1 Introduction

With the modem well understood, the remaining task was to design the rest of the TNC com-

ponets. As discussed in chapter 2 the components that were to be added to the project are:

1. PC interface (UART),

2. HDLC controller,

3. Memory and

4. Memory interface controller.

With the rest of the components and the system block diagram drawn, the problem left was find

the right tools to be used. The decision on what tools to use was based on a number of factors.

The guidelines for choosing the tools were that the system should be simple and flexible. As

the aim of this project is to evaluate the use of low cost FPGAs and microprocessors, the choice

of the tools was limited as such. Based on the advantages of the FPGAs over microprocessors,

concentration was then put on the FPGAs. The FPGA advantages over those of microprocessor

are as follows:

1. Most of the microprocessors have limited number of timer/counters to implement multi-

clock systems

2. Unlike microprocessors, FPGAs support parallel processing.

As the intention was not to design new hardware, the possibility of using a simple FPGA eval-

uation board was investigated. After all the requirements were identified a suitable evaluation

37

CHAPTER 6. HDLC CONTROLLER DESIGN 38

board was chosen. Based on the TNC components listed above, the following were the required

features that the appropriate development board should have:

1. FPGA

2. RS232 interface hardware

3. SRAM

4. User I/O pins

With the evaluation board that met the above requirements, the project was then designed as

illustrated in figure 6.1. As illustrated in figure 6.1, apart from the modem, all the TNC compo-

TX

UART Controller

RX

UART Controller

TX

HDLC

RX

HDLC

Memory Interface

Controller

Memory

Data to PC
Data from PC
 Data to the modem
 Data from the modem

FPGA

8-bit bus

Wire

Figure 6.1: FPGA block diagram

nents were implemented in the FPGA. Sections 6.2 through 6.4 discuss the relation and inter-

action of each of the FPGA components.

6.2 PC Interface (UART)

As discussed in section 2.2.1, data transmission from the computer is asynchronous. The PC

serial communication software (UART) that is responsible for communication timings and char-

acter assembling is divided in two parts, the transmitter and the receiver.

CHAPTER 6. HDLC CONTROLLER DESIGN 39

UART controller TX mode The expected RS232 data rate is 9600 bits per second, thus a

104.167 µs period. TX UART controller samples the serial port input line at a rate 16 times that

of the baud rate. In order to minimise asynchronous timing errors discussed in Section 2.2.1,

the FPGA clock frequency was calculated to meet equation 2.1 requirements. Once a character

is detected (see figure 2.2), it is put on an 8-bit bus. The memory interface is then triggered

to write the data on the bus into the memory. The procedure repeats until the memory is full

or there is no more data being received. The memory processor would then trigger the HDLC

controller that is discussed in section 6.3.

UART Controller RX Mode This unit reads data from a memory one character at a time. The

unit will then send the data to its output line one bit at a time. The character bits are transmitted

from the least significant bit to the most significant bit at a required baud rate. Every character

transmission is delimited by the start and the stop bits (See figure 2.2).

6.3 HDLC Controller

Similar to the UART controller, the HDLC controller is also divided into two independent com-

ponents, the transmit module and the receive module.

Transmit Module The TX HDLC controller implements transmission functions such as start

and end flag insertion, bit stuffing and FCS generation for the CRC checksum. The block

diagram of the transmit module is shown in figure 6.2. The CRC process is implemented as a

TX_CONTROL

0
 7

8

TX_SHIFT

CRC_GENERATOR

BIT_STUFFING

01111110

FLAG

INSERTION

TxD

TxInputData

TxRead

TxStart

TxStop

To all

internal

flip-flops

CLK

RESET

Figure 6.2: Transmit Module Block Diagram

circuit consisting of exclusive-or operators and a shift register. The CRC polynomial used in

CHAPTER 6. HDLC CONTROLLER DESIGN 40

this project is

CRC-16 = X16 + X15 + X2 + 1. (6.1)

Figure 6.3 illustrates the implementation of CRC-16 polynomial. At any given instance, the

C
15
 C
14

. . .
 C
2
 C
1
 C
0

Input

bits

Figure 6.3: CRC Architecture to Implement Polynomial X16 + X15 + X2 + 1

output of the polynomial is the 16-bit register value calculated from the input bit and the rest

of the register contents. While the transmit module is not reading data from the memory, the

FLAG INSERTION sub-module will continue asserting flags. Once the TxStart is asserted, the

transmit module will start reading the first octet from the memory. The data on the bus is latched

into a shift register TX SHIFT. The data in the shift register will then be shifted out bit-by-bit on

the CLK rising edges. The following procedure occurs:

• While data is being shifted, the CRC GENERATOR calculates the FCS and the BIT STUFFING

sub-module performs bit stuffing process.

• During the shifting of the last octet bit, the TX CONTROL checks for the TxStop signal. If

the TxStop is not asserted, the TxRead is asserted and the TxInputData is latched into

a shift register. The process will repeat until TxStop is asserted.

• Once TxStop is asserted, a multiplexer switches to the CRC GENERATOR input line. The

currently calculated FCS is then shifted out to the TxD line.

Receive Module The receive module implements the required HDLC functions including flag

detection, zero unstuffing and CRC checking. The module is illustrated in figure 6.4. The data

reception process is performed as follows, firstly the character reception synchronisation has to

be established. This is performed by the FLAG DETECT sub-module.

• Once the FLAG DETECT sub-module detect a flag, the receiver bit count is reset. While

flags are being received the receive module stays in an idle mode.

• Once an input data pattern is different from the flag pattern the ZERO UNSTUFF and the

CRC CHK sub-modules are activated.

CHAPTER 6. HDLC CONTROLLER DESIGN 41

7
 0

RX_SHIFT

7
 0

RX_BUFFER

RX_CONTROL

RxDataWrite

RxOutputData

FLAG_DETECT

ZERO

UNSTUFF

BIT_CNT

CRC_CHK

RX STATUS

RxD

8

CLK

RESET

To all

internal

flip-flops

RESEND

Figure 6.4: Receive Module Block Diagram

• While the data reception is occurring, the CRC CHK calculates the FCS using the same

polynomial as the transmitter.

• The ZERO UNSTUFF monitors the input data in the RX BUFFER register. Once a zero that

was inserted by bit stuffing process is detected the shift register and the bit count processes

are halted for one clock cycle. This is how a bit stuffing zero is deleted from the incoming

data.

• After the eighth bit of every non-flag character that is received, the RxDataWrite is

asserted. The one clock cycle RxDataWrite pulse is used by the memory interface pro-

cessor to write the data on the bus into the memory.

• The procedure above continues until a flag is detected. Once detected the calculated 16-

bit FCS is compared with the last two octets that were received. If the two are different

the RESEND signal is asserted.

6.4 Memory Interface Controller

The purpose of the memory interface controller is to ensure that there is no memory bus con-

tention among the four components that need memory access (see figure 6.1). It uses the control

signals from the four components to operate on the data to be written or read from the memory.

Figure 6.5 illustrates the sequence of the four modules. Referring to this figure, the memory

interface controller allocates memory access to the four modules as follows:

• Between time instances t0 and ta none of the modules are active. The HDLC controller is

idling, waiting for data reception.

• At time ta, the first character start-bit is detected and the memory interface controller gives

the service to the TX UART controller. The memory access is reserved to this module

CHAPTER 6. HDLC CONTROLLER DESIGN 42

until the end of data reception. After the last bit is received at time tb, the memory

interface controller waits for few bit periods (between tb and tc) to make sure that there

is no more data coming. Between ta and tc no other module will be allowed access to

the memory. This is done to make sure that both the transmitter and the receiver are not

writing data to the memory simultaneously.

• At tc the memory interface controller triggers (by sending a TxStart signal) the TX

HDLC module and start allocating the memory access whenever the module needs to

fetch a character. Once at tc, even if more data can arrive from the PC, the TX UART will

be denied memory access.

• In order to allow full-duplex operation, from tc onwards the memory interface controller

can allow both the TX HDLC and the RX HDLC memory access simultaneously. Be-

tween the two modules, the priority is given to the TX HDLC.

• As the TX HDLC request data from the memory (by sending TxRead signal), the memory

interface controller increment the FIFO address for each read cycle towards the final

address recorded during the TX UART cycle. Once the final address is reached, the

interface sends a pulse signal (TxStop in figure 6.2) to stop the TX HDLC.

• The RX HDLC starts at time td when a first non flag character is received. At this time, the

RX HDLC sends the first RxDataWrite pulse to the memory interface controller. If the

TX HDLC is still active and the memory reading cycle is not complete, the character to

be written into the memory is buffered, otherwise the RxOutputData is written directly

into the memory. Once the reading cycle is complete the buffered character is written to

the memory.

• The procedure above repeats until a flag is detected (at te).

• At t f , the memory interface controller starts reading and transferring data from the FIFO

memory to the RX UART. The process continues until the last character is read from the

memory at tg.

CHAPTER 6. HDLC CONTROLLER DESIGN 43

TX UART
 TX HDLC

RX HDLC
 RX UART
 time

a
 b
 c
 d
0
 e
 f
 g

Figure 6.5: The HDLC Timing Diagram

6.5 Simulation Results

Figure 6.6 shows the simulated HDLC controller time series. The waveforms in the figure

illustrate some of the signals explained in section 6.3. The bottom signal in the figure illustrates

the HDLC frame that is transmitted by the TX HDLC to the RX HDLC controller. Also shown

in the figure are the TxInputData, TxStart, TxStop and the RxDataWrite signals. The

Figure 6.6: FPGA Simulation

RxOutputData in figure 6.4 is illustrated by the signal tx sram0 d (the sixth signal from the

top) shown in figure 6.6. Lastly, the RS232 signal that is transmitted by the TNC to the PC is

shown by the top signal in figure 6.6.

CHAPTER 6. HDLC CONTROLLER DESIGN 44

6.6 VHDL Compilation Report

The simulation performed in section 6.5 gives only the logical results of the VHDL design.

Figure 6.7 shows a compiler summary report. As shown in the figure, only 561 of the 12060

Figure 6.7: The VHDL Compilation Report Summary

FPGA total logic elements have been used. With the number of unused logic elements, one can

implement parts of a modem. The combination of an HDLC controller and a modem in the

FPGA can reduce the system complexity and power consumption.

6.7 Conclusion

This chapter discussed not only how the HDLC controller was designed, but also showed the

system end-to-end results. In order to test the functionality of the modem, the HDLC data frame

sent by the TX HDLC module through the modem should be the same as the one received by

the RX HDLC module. The results illustrated in figure 6.6 were obtained by connecting the TX

HDLC output signal directly to the RX HDLC input signal. The terminal was used to transmit

a few characters. These characters were measured with a logic analyser. The 16-bit FCS was

also measured, and compared with the calculated FCS of the transmitted characters.

Chapter 7

Results and Conclusion

7.1 Introduction

In this chapter, the results from the project are discussed. The results are divided into two parts,

the functional results of the system and the results in terms of the project goals. Section 7.2

discusses the implementation of the TNC system. Section 7.3 discusses the functional results

while the project summary is given in section 7.5.

7.2 Implemented System

Figure 7.1 shows the components used for the TNC system. The UART controller, HDLC con-

troller and the processor were implemented in the FPGA. The modem was implemented on a

microcontroller. For data storage, an SRAM with 512K × 8 memory was used. The functional-

ity of these three elements was shown by measuring the end-to-end results of the system.

45

CHAPTER 7. RESULTS AND CONCLUSION 46

PROCESSOR

TX

SRAM

TX

UART controller

RX
 RX

HDLC Controller

Tx

Rx

TxD

RxD

Analog signal

RxData

TxData

Control Signals

Data[0..7]

Data[0..7]

Control Signals

Control signals

Data[0..7]

Control Signal
 Data[0..7]

Control signals

Data[0..7]

Packet radio

modem

FPGA
 Microcontroller

Figure 7.1: TNC Components Block Diagram

7.3 Functional Results of the Whole System

In order to measure the end to end functionality, a system has to be tested and the output com-

pared to the specifications. As a measure of functionality, the system that was built should

be able transmit and receive a HDLC frame at 9600 bits per second. The functionality of the

system was tested by transmitting text files from a terminal with the following settings:

1. baud rate: 9600

2. Data bits: 8

3. Stop bits: 1

4. Parity bits: 0.

From the terminal settings above, it follows that the number of bits per character including a

start bit, is ten. Figure 7.2 illustrates the transmission and reception of two characters “UN”.

The binary ASCII codes for character U is “01010101” while that of N is “01001110”.

CHAPTER 7. RESULTS AND CONCLUSION 47

Figure 7.2: Transmission and Reception of Two Characters “UN”

Figure 7.2 shows five signals; from bottom to the top, the signals are:

Channel D0 is a waveform of the output of the TX HDLC module to the TX modem. See the

TxD signal in figure 2.1 in chapter 2. The signal shows the transmission of characters

U, N and a 16 bit FCS. The characters are transmitted serially, starting with the least

significant bit. The waveform also illustrates HDLC flag pattern “01111110” delimiting

the frame at both ends.

Channel D2 signal is extracted from channel D0 to illustrate the transmitted data without the

flag fields.

Channel 2 is an analog output of the TX modem to the RX modem. The signal shown is

scrambled by the TX modem.

Channel D1 shows the unscrambled NRZ-L data transmitted from the RX modem to the RX

HDLC controller. See the RxD signal in figure 2.1.

Channel D3 is an RS232 signal transmitted to the PC. Additional to the data being transmitted

are the start and stop bits. The signal represents the RxData signal shown in figure 2.1.

The bitstream patterns of channels D2 and D3 are illustrated in figure 7.3. The start bit (zeros)

and stop bit (ones) are indicated in Channel D3 by bold letters. With the help of start and stop

bits in figure 7.3, the four transmitted characters can be identified as follows:

• The ASCII binary value “01010101” corresponds to a character “U”. This is the first

transmitted character.

CHAPTER 7. RESULTS AND CONCLUSION 48

Channel D
2
:

1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1

Channel D
3
:

0
 1 0 1 0 1 0 1 0
1 0
 0 1 1 1 0 0 1 0
1 0
 1 0 1 1 1 1 0 0
1

0
 1 0 1 0 1 0 1 1
1

Figure 7.3: Transmitted Bitstreams

• The second character is “N” with ASCII binary value “01001110”.

• The third character “=” which is the first FCS byte has a binary value “00111101”.

• The last character has an ASCII binary value of “11010101”.

The first two characters represent the data field of the HDLC frame while the last two represent

the FCS field. The creation of the FCS field characters is shown in section 7.3.1.

7.3.1 Frame Check Sequence Field

In this section, the functionality and the results of the FCS generator will be discussed. The

results are discussed in relation with the transmitted data in section 7.3 (see figure 7.3 Channel

D2). Figure 7.4 shows the FCS shift register calculations during the transmission of the charac-

Figure 7.4: FCS Shift Register During Characters “UN” Transmission

ters “UN”. The figure is a table that shows the step-by-step operation of the CRC-16 polynomial

that was discussed in section 6.3. The process begins with the shift register set to all ones, see

columns (C15) through (C0) in row Initial. Each row of the table shows the values of the shift

CHAPTER 7. RESULTS AND CONCLUSION 49

register after one bit period. After the last bit of the data that is being transmitted is shifted in,

the contents of the shift register starting with (C0), is then transmitted as an FCS (shown by last

row in the table).

7.3.2 Bit Stuffing

This section illustrates that the system also performs the bit stuffing that is explained in sec-

tion 2.2.4. To test bit stuffing two characters that have ASCII binary codes of more than five

consecutive ones were transmitted. The two transmitted characters “}˜ ” have binary values

“01111101” and “01111110” respectively. Figure 7.5 shows the original bit transmission pat-

tern and the expected bit pattern after bit stuffing is applied. The patterns represent the trans-

mission of the characters “}˜ ”. The transmission begins with the least significant bit of the first

character. It ends with the most significant bit of the last character. Figure 7.6 shows measured

Original pattern:

1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0

After bit stuffing:

1 0 1 1 1 1
1
0
0 0 1 1 1 1 1
0
 1 0

Figure 7.5: Bit Stuffing

signals for the transmission of characters “}˜ ”. The five channels in figure 7.6 are defined as

those in figure 7.2. The similarity between channel D2 in figure 7.6 and the after bit stuffing pat-

tern in figure 7.5 gives the evidence that transmitter performs bit stuffing as expected. However

the comparison is made only on the data field bits. The FCS field was discussed in section 7.3.1.

The HDLC controller bit unstuffing can evaluated by comparing channel D3 in figure 7.6 with

the original pattern in figure 7.5. With the exception of the added start and stop bits in channel

D3, the signal represents the original pattern in figure 7.5. Sections 7.3 through 7.3.2 gave re-

sults on the functionality of the system. Section 7.5 compares the modem used in this project

with other modems.

CHAPTER 7. RESULTS AND CONCLUSION 50

Figure 7.6: Measured Bit Stuffing Effect

7.4 Performance

This section discusses the maximum clock speed for this solution with the FPGA and SRAM.

The performance measurement of the modem was discussed in section 4.3.

7.4.1 FPGA Performance

The performance of the FPGA was measured by analysing the project’s compilation report. The

timing analyser of the report gives the maximum clock frequency table. Figure 7.7 shows an

extract from the compiler timing analyser report.

CHAPTER 7. RESULTS AND CONCLUSION 51

Figure 7.7: FPGA performance

According to this figure, the maximum frequency for the project is 148.96 MHz.

7.4.2 SRAM Performance

The SRAM performance was evaluated by its writing and reading cycle times. According to

the datasheet of this SRAM, the maximum read and write cycle times are 10 ns [19]. Therefore

the maximum frequency for reading or writing to the SRAM is 100 MHz. The SRAM speed

constraints the maximum rate for the implementation.

7.5 Modem Comparisons

In chapter 2, characteristics of few known packet radio modems were presented. Though the

old modems functioned satisfactorily, new modem designs are still emerging. The reason for

developing newer packet radio modems is not only to improve the performance, but also to

reduce the complexity, power and improve the flexibility of the TNCs. The other reason was

to counteract the older modems component obsolescence problem. In this section, the modem

used for this project is evaluated against the few modems that were discussed in chapter 2.

Complexity The complexity of the circuit can be measured in various ways. In many cases,

the number of components used in a design can be used as a measure for the system complexity.

Assuming that the same components packages and the equal board layers are used, the number

of components is proportional to the board area. Figure 7.8 shows the board areas of the five

CHAPTER 7. RESULTS AND CONCLUSION 52

Figure 7.8: Modem Board Areas in cm2

modems that were investigated. Figure 7.9 shows the number of integrated circuits that were

used in each of the modems which were investigated.

CHAPTER 7. RESULTS AND CONCLUSION 53

Figure 7.9: Number of Components Per Modem

Power Consumption One of the most important engineering factors in any system design is

power. In many cases, systems are designed with a limited power budget. Also for the sys-

tems that are powered by batteries, the higher the power consumption means the more battery

replacements in a given time. Hence the lower the power of the system, the better the design.

Some of the power values shown in figure 7.10 were given by their modem developers while

others were measured. The conclusion on power consumption can not be drawn from the infor-

mation available. This is because some of the modems power consumption were not given. The

power consumption for the YAM modem which is powered by a connected PC was not given.

The power consumption of the KD2BD was also not given.

Flexibility Flexibility of the system can be measured by the ability to change the operating

characteristics without extensively changing their hardware. For this project the area of interest

was an increase in the baud rate. The following is the analysis of each of the five modems

flexibility:

• The G3RUH processing is only on hardware. The modem is capable of speeds up to

64000 baud [8]. The maximum data rate limit is set by the DAC maximum conversion

CHAPTER 7. RESULTS AND CONCLUSION 54

Figure 7.10: Power Consumption For Each Modem (Watts)

rate. Higher speeds can be implemented by increasing the input clock signal rate and also

changing the anti-alias filter capacitor and resistor values. The numbers of the capacitors

and the resistors that needs to be changed are nine and seven respectively. Every baud

rate needs its specific filter capacitors and resistors.

• The G4XYW modem is based on a microcontroller. However some of the modem func-

tionality such as the anti-alias filter are implemented by hardware. The modem data

rate can be increased by increasing (by software) the microcontroller timer interrupt rate

which acts as a modem clock. The limit of the baud rate is set by the processor execution

time required per bit period. These execution times were discussed in section 4.3. As per

table 4.2, the maximum baud rate of the modem is approximately 38400 bits per second.

The bit rate was calculated by finding a reciprocal of the worst execution time (24 µs)

of the modem. The anti-alias filters of the G4XYW modem are similar to those of the

G3RUH. Hence the filter capacitor and resistors are to be considered when increasing the

baud rate.

• From the modems that were discussed, the YAM modem is special in various ways. First,

CHAPTER 7. RESULTS AND CONCLUSION 55

it is implemented together with the HDLC controller in a FPGA. It does not require the

external power supply; it is powered by the PC which is the transmitter and the receiver

of the data to the HDLC controller. The modem is a G3RUH 9600 baud compatible,

and capable of AFSK 1200 and Manchester-FSK 2400 bauds [9]. The maximum baud

rate of the modem is not given. However the modem flip-flop clock is derived from a

2.4576 MHz crystal oscillator and with the FPGA parallel processing capability, the baud

rate can be higher than that of the G3RUH.

• Both the Sunspace ground station modem and the KD2BD modem are hardware based

and very similar to the G3RUH.

7.6 Conclusion

There are many ways to implement a TNC. Traditional modems that are still functioning satis-

factorily are based entirely on hardware while the recent modems are based on microcontrollers

and FPGAs. The main problem with the traditional modems is the obsolescence of components

and the complexity of their designs. They also consume more power than the microcontroller

and FPGA based modems. This was proved by comparing the consumption of both the G3RUH

and Sunspace modems with that of the G4XYW modem.

The function and performance of the TNC in this project has been verified. The UART,

HDLC controller, and the memory interface controller performed as expected. The G4XYW

modem also performed well and can be upgraded to operate at a speed of 38400 bps.

Power Consumption of the Modem In section 1.1 one of the parameters to improve is the

power consumption. As shown in figure 7.10, compared to the G3RUH and the SunSpace

modems, the power consumption of the G4XYW modem is by far the lowest.

Complexity of the Modem The complexity of the circuit is defined the number of compo-

nents that is used. Referring to figure 7.9 we see that YAM modem which is implemented on a

FPGA is the least complex implementation. After the YAM modem, the second least complex

modem is the G4XYW. The YAM is implemented in hardware descriptive language (HDL)

while the G4XYW modem is implemented in low-level programming language, Assembly. As

compared to the HDLs, the Assembly language programs are difficult to follow. However, the

AVR microcontrollers can be programmed in high-level languages such as C which are simpler

than Assembly. In terms of circuit debugging the circuit with less number of components can

CHAPTER 7. RESULTS AND CONCLUSION 56

be easy to debug. With the exception of Sunspace modem, the number of components per board

is proportional to the board area. The Sunspace modem board area is smaller than that of the

G3RUH modem. This is because the Sunspace used the smaller surface mount components

while the G3RUH used through-hole package components (see figure 2.5).

Flexibility The characteristics of the modem anti-alias filter depends on the baud rate to be

used. All the modems discussed in this project use similar hardware based filters. These filter

circuits are implemented on operational amplifiers connected to resistors and capacitors of spe-

cific magnitudes. Hence there is a need to replace a number of components from the modem

before the current baud rate can be changed. However for the microcontroller and FPGA based

modems, the problem can be solved by implementing software based filters. The possibility of

the software filters can be realised through the high capabilities of the DSP which is also used

in software defined radio (SDR).

7.7 Recommendations

In the recent years, most designers combines HDLC controller and packet radio modem func-

tionalities on one PCB and call the combination as a modem [11, 9]. Most of these modems

are implemented on FPGAs [10, 11, 13]. Based on individuals specifications, the following are

packet radio implementation recommendations:

• The microcontroller based G4XYW modem which was recommended by my study leader

in 2003 was evaluated and can be used for baud rates of up to 38400 bits per second.

• For higher baud rates, where an external modem is required, the FPGA modems can be

used. The parallel processing capabilities of the FPGA can result in high data rates (up to

1 Mbits/s [13]).

• A different approach for packet modem implementation is the one that utilises the flex-

ibility of software and the PC hardware. With this approach a PC sound-card is used

together with a software for packet radio implementation. This implementation is ideal

for applications that do not require external modem.

However for FPGA and microcontroller modems, some work need to be done to solve their

speed dependent analog circuitry problem. Because of the speed dependent analog circuitry,

the performance of the slower AFSK demodulators implemented on the modems designed for

FSK is unsatisfactory [11].

Appendix A

HDLC VHDL Code

% Author: Sello Seabe

% Student number: 14011018-2002

% Function: All the modules that implements HDLC controller

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY project IS

PORT(

clk : IN STD_LOGIC;

reset : IN STD_LOGIC;

RxClock : IN STD_LOGIC;

TX_RS232 : IN STD_LOGIC;

Rx : OUT STD_LOGIC;

rxd : IN STD_LOGIC;

TxD : OUT STD_LOGIC;

Tx : OUT STD_LOGIC;

RX_RS232 : OUT STD_LOGIC;

SRAM0_D : INOUT STD_LOGIC_VECTOR(7 DOWNTO 0);

SRAM0_A : OUT STD_LOGIC_VECTOR(17 DOWNTO 0);

SRAM0_OE : OUT STD_LOGIC;

SRAM0_WE : OUT STD_LOGIC;

SRAM0_UB : OUT STD_LOGIC;

SRAM0_LB : OUT STD_LOGIC;

57

APPENDIX A. HDLC VHDL CODE 58

SRAM0_E : OUT STD_LOGIC

);

END project;

ARCHITECTURE a OF project IS

SIGNAL t_level_reset : STD_LOGIC;

SIGNAL t_level_ireset : STD_LOGIC;

SIGNAL t_level_TX_RS232 : STD_LOGIC;

SIGNAL t_level_RX_RS232 : STD_LOGIC;

SIGNAL t_level_clk : STD_LOGIC;

SIGNAL t_level_uart_rx_data : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL t_level_tx_data_valid : STD_LOGIC;

SIGNAL t_level_uart_tx_data : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL t_level_TxInputData : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL t_level_fcst: STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL t_level_crc_input : STD_LOGIC;

SIGNAL t_level_fcs_reset : STD_LOGIC;

SIGNAL t_level_tx_start : STD_LOGIC;

SIGNAL t_level_tx_stop : STD_LOGIC;

SIGNAL t_level_tx_read : STD_LOGIC;

SIGNAL t_level_rx_busy : STD_LOGIC;

SIGNAL t_level_tx_busy : STD_LOGIC;

SIGNAL t_level_proc_enable: STD_LOGIC;

SIGNAL t_level_rxd : STD_LOGIC;

SIGNAL t_level_RxOutputData : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL t_level_RxDataWrite : STD_LOGIC;

SIGNAL t_level_tx_SRAM0_D : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL t_level_tx_SRAM0_A : STD_LOGIC_VECTOR(17 DOWNTO 0);

SIGNAL t_level_tx_SRAM0_WE : STD_LOGIC;

SIGNAL t_level_tx_SRAM0_OE : STD_LOGIC;

APPENDIX A. HDLC VHDL CODE 59

SIGNAL t_level_tx_SRAM0_E : STD_LOGIC;

SIGNAL t_level_start_uart_rx : STD_LOGIC;

SIGNAL t_level_RxDataRead : STD_LOGIC;

SIGNAL t_level_stop_uart_rx : STD_LOGIC;

SIGNAL t_level_Uart_clk : STD_LOGIC;

SIGNAL t_level_rxclk : STD_LOGIC;

SIGNAL t_level_RxClock :STD_LOGIC;

SIGNAL t_level_RxClock_in :STD_LOGIC;

SIGNAL t_level_rx_sclk : STD_LOGIC;

SIGNAL t_level_tx_clk : STD_LOGIC;

SIGNAL t_level_crc_reset : STD_LOGIC;

SIGNAL t_level_crc_byte : STD_LOGIC;

SIGNAL t_level_resend : STD_LOGIC;

SIGNAL t_level_r_buffer : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL t_level_fcs : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL t_level_SRAM0_OE : STD_LOGIC;

SIGNAL t_level_SRAM0_WE : STD_LOGIC;

SIGNAL t_level_SRAM0_UB : STD_LOGIC;

SIGNAL t_level_SRAM0_LB : STD_LOGIC;

SIGNAL t_level_SRAM0_E : STD_LOGIC;

SIGNAL t_level_SRAM0_A : STD_LOGIC_VECTOR(17 DOWNTO 0);

SIGNAL t_level_SRAM0_D : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL t_level_SRAM0_D1 : STD_LOGIC_VECTOR(7 DOWNTO 0);

COMPONENT tx_uart

PORT (

clk : IN STD_LOGIC;

ireset : IN STD_LOGIC;

TX_RS232 : IN STD_LOGIC;

uart_tx_data : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

tx_data_valid : OUT STD_LOGIC;

proc_enable : OUT STD_LOGIC;

oUart_clk : OUT STD_LOGIC

APPENDIX A. HDLC VHDL CODE 60

);

END COMPONENT;

COMPONENT rx_uart

PORT(

ireset : IN STD_LOGIC;

tx_sclk : IN STD_LOGIC;

tx_clk : IN STD_LOGIC;

start_uart_rx : IN STD_LOGIC;

stop_uart_rx : IN STD_LOGIC;

uart_rx_data : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

RxDataRead : OUT STD_LOGIC;

Rx : OUT STD_LOGIC;

RX_RS232 : OUT STD_LOGIC

);

END COMPONENT;

COMPONENT hdlc_rx

PORT

(

rx_sclk : IN STD_LOGIC;

ireset : IN STD_LOGIC;

RxClock : IN STD_LOGIC;

rxd : IN STD_LOGIC;

fcs : IN STD_loGIC_VECTOR(15 DOWNTO 0);

RxOutputData : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

tx_clk : OUT STD_LOGIC;

crc_reset : OUT STD_LOGIC;

crc_byte : OUT STD_LOGIC;

resend : OUT STD_LOGIC;

r_buffer_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

RxDataWrite : OUT STD_LOGIC

);

END COMPONENT;

APPENDIX A. HDLC VHDL CODE 61

COMPONENT crc_rx

PORT(

x8_sclk : IN STD_LOGIC;

rxclk : IN STD_LOGIC;

ireset : IN STD_LOGIC;

crc_reset : IN STD_LOGIC;

crc_byte : IN STD_LOGIC;

r_buffer : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

fcs_2 : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END COMPONENT;

COMPONENT crc

PORT(

uart_clk : IN STD_LOGIC;

bit_clk : IN STD_LOGIC;

crc_input : IN STD_LOGIC;

fcs_reset : IN STD_LOGIC;

fcs : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END COMPONENT;

COMPONENT clk_src

PORT(

clk : IN STD_LOGIC;

reset : IN STD_LOGIC;

RxClock : IN STD_LOGIC;

ireset : OUT STD_LOGIC;

rx_sclk : OUT STD_LOGIC

);

END COMPONENT;

COMPONENT proc

PORT(

uart_clk : IN STD_LOGIC;

APPENDIX A. HDLC VHDL CODE 62

ireset : IN STD_LOGIC;

proc_enable : IN STD_LOGIC;

tx_data_valid : IN STD_LOGIC;

tx_busy : IN STD_LOGIC;

uart_rx_data : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

TxInputData : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

tx_start : OUT STD_LOGIC;

tx_stop : OUT STD_LOGIC;

hdlc_read : IN STD_LOGIC;

rx_busy : OUT STD_LOGIC;

uart_tx_data : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

start_uart_rx : IN STD_LOGIC;

RxDataRead : IN STD_LOGIC;

tx_SRAM0_D : IN STD_LOGIC_VECTOR(7 DOWNTO 0);--INOUT

tx_SRAM0_WE : IN STD_LOGIC;

tx_SRAM0_OE : IN STD_LOGIC;

tx_SRAM0_E : IN STD_LOGIC;

tx_SRAM0_A : IN STD_LOGIC_VECTOR(17 DOWNTO 0);

SRAM0_D1 : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

SRAM0_D : INOUT STD_LOGIC_VECTOR(7 DOWNTO 0);

SRAM0_OE : OUT STD_LOGIC;

SRAM0_WE : OUT STD_LOGIC;

SRAM0_UB : OUT STD_LOGIC;

SRAM0_LB : OUT STD_LOGIC;

SRAM0_E : OUT STD_LOGIC;

SRAM0_A : OUT STD_LOGIC_VECTOR(17 DOWNTO 0)

);

END COMPONENT;

COMPONENT proc_rx

PORT(

tx_sclk : IN STD_LOGIC;

tx_clk : IN STD_LOGIC;

ireset : IN STD_LOGIC;

APPENDIX A. HDLC VHDL CODE 63

RxDataWrite : IN STD_LOGIC;

RxDataRead : IN STD_LOGIC;

rx_busy : IN STD_LOGIC;

RxOutputData : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

tx_busy : OUT STD_LOGIC;

start_uart_rx : OUT STD_LOGIC;

stop_uart_tx : OUT STD_LOGIC;

tx_SRAM0_D : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);--INOUT

tx_SRAM0_OE : OUT STD_LOGIC;

tx_SRAM0_WE : OUT STD_LOGIC;

tx_SRAM0_E : OUT STD_LOGIC;

tx_SRAM0_A : OUT STD_LOGIC_VECTOR(17 DOWNTO 0)

);

END COMPONENT;

COMPONENT hdlc_tx

PORT(

ireset : IN STD_LOGIC;

clk : IN STD_LOGIC;

uart_clk : IN STD_LOGIC;

bit_clk : IN STD_LOGIC;

tx_start : IN STD_LOGIC;

tx_stop : IN STD_LOGIC;

TxInputData : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

fcs : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

RxClock_in : OUT STD_LOGIC;

crc_input : OUT STD_LOGIC;

fcs_reset : OUT STD_LOGIC;

tx_read : OUT STD_LOGIC;

Tx : OUT STD_LOGIC;

HDLC_TX : OUT STD_LOGIC

);

END COMPONENT;

BEGIN

APPENDIX A. HDLC VHDL CODE 64

U8 : proc

PORT MAP(

uart_clk => t_level_Uart_clk,

ireset => t_level_ireset,

proc_enable => t_level_proc_enable,

tx_data_valid => t_level_tx_data_valid,

uart_rx_data => t_level_uart_tx_data,

tx_start => t_level_tx_start,

tx_stop => t_level_tx_stop,

rx_busy => t_level_rx_busy,

tx_busy => t_level_tx_busy,

TxInputData => t_level_TxInputData,

hdlc_read => t_level_tx_read,

uart_tx_data => t_level_uart_tx_data,

start_uart_rx => t_level_start_uart_rx,

RxDataRead => t_level_RxDataRead,

tx_SRAM0_D => t_level_tx_SRAM0_D,

tx_SRAM0_WE => t_level_tx_SRAM0_WE,

tx_SRAM0_OE => t_level_tx_SRAM0_OE,

tx_SRAM0_E => t_level_tx_SRAM0_E,

tx_SRAM0_A => t_level_tx_SRAM0_A,

SRAM0_OE => t_level_SRAM0_OE,

SRAM0_WE => t_level_SRAM0_WE,

SRAM0_UB => t_level_SRAM0_UB,

SRAM0_LB => t_level_SRAM0_LB,

SRAM0_E => t_level_SRAM0_E,

SRAM0_A => t_level_SRAM0_A,

SRAM0_D1 => t_level_SRAM0_D1,

SRAM0_D => t_level_SRAM0_D

);

U11 : proc_rx

PORT MAP(

APPENDIX A. HDLC VHDL CODE 65

tx_sclk => t_level_rx_sclk,

tx_clk => t_level_tx_clk,

ireset => t_level_ireset,

RxDataWrite => t_level_RxDataWrite,

RxDataRead => t_level_RxDataRead,

rx_busy => t_level_rx_busy,

tx_busy => t_level_tx_busy,

RxOutputData => t_level_RxOutputData,

start_uart_rx => t_level_start_uart_rx,

stop_uart_tx => t_level_stop_uart_rx,

tx_SRAM0_D => t_level_tx_SRAM0_D,

tx_SRAM0_WE => t_level_tx_SRAM0_WE,

tx_SRAM0_OE => t_level_tx_SRAM0_OE,

tx_SRAM0_E => t_level_tx_SRAM0_E,

tx_SRAM0_A => t_level_tx_SRAM0_A

);

U4 : hdlc_tx

PORT MAP(

ireset => t_level_ireset,

clk => t_level_clk,

uart_clk => t_level_Uart_clk,

bit_clk => t_level_proc_enable,

tx_start => t_level_tx_start,

tx_stop => t_level_tx_stop,

TxInputData => t_level_TxInputData,

fcs => t_level_fcst,

crc_input => t_level_crc_input,

RxClock_in => t_level_RxClock_in,

fcs_reset => t_level_fcs_reset,

tx_read => t_level_tx_read,

HDLC_TX => TxD,

Tx => Tx

);

APPENDIX A. HDLC VHDL CODE 66

U1 : clk_src

clk => t_level_clk,

RxClock => t_level_RxClock,

reset => t_level_reset,

ireset => t_level_ireset,

rx_sclk => t_level_rx_sclk

);

U2 : tx_uart

PORT MAP (

ireset => t_level_ireset,

TX_RS232 => t_level_TX_RS232,

clk => t_level_clk,

oUart_clk => t_level_Uart_clk,

proc_enable => t_level_proc_enable,

uart_tx_data => t_level_uart_tx_data,

tx_data_valid => t_level_tx_data_valid

);

U3: rx_uart

PORT MAP(

ireset => t_level_ireset,

tx_sclk => t_level_rx_sclk,

tx_clk => t_level_tx_clk,

start_uart_rx => t_level_start_uart_rx,

RxDataRead => t_level_RxDataRead,

stop_uart_rx => t_level_stop_uart_rx,

uart_rx_data => t_level_uart_rx_data,

Rx => Rx,

RX_RS232 => t_level_RX_RS232

);

U6 : hdlc_rx

PORT MAP(

rx_sclk => t_level_rx_sclk,

APPENDIX A. HDLC VHDL CODE 67

ireset => t_level_ireset,

RxClock => t_level_RxClock,

rxd => t_level_rxd,

RxOutputData => t_level_RxOutputData,

tx_clk => t_level_tx_clk,

RxDataWrite => t_level_RxDataWrite,

fcs => t_level_fcs,

resend => t_level_resend,

crc_reset => t_level_crc_reset,

crc_byte => t_level_crc_byte,

r_buffer_out => t_level_r_buffer

);

U7: crc_rx

PORT MAP (

x8_sclk => t_level_rx_sclk,

rxclk => t_level_tx_clk,

ireset => t_level_ireset,

crc_reset => t_level_crc_reset,

fcs_2 => t_level_fcs,

crc_byte => t_level_crc_byte,

r_buffer => t_level_r_buffer

);

U5: crc

PORT MAP (

uart_clk => t_level_Uart_clk,

bit_clk => t_level_proc_enable,

crc_input => t_level_crc_input,

fcs_reset => t_level_fcs_reset,

fcs => t_level_fcst

);

t_level_reset <= reset;

t_level_clk <= clk;

APPENDIX A. HDLC VHDL CODE 68

t_level_TX_RS232 <= TX_RS232;

SRAM0_OE <= t_level_SRAM0_OE;

SRAM0_WE <= t_level_SRAM0_WE;

SRAM0_UB <= t_level_SRAM0_UB;

SRAM0_LB <= t_level_SRAM0_LB;

SRAM0_E <= t_level_SRAM0_E;

SRAM0_A <= t_level_SRAM0_A;

SRAM0_D <= t_level_SRAM0_D;

RX_RS232 <= t_level_RX_RS232;

t_level_SRAM0_D1 <= SRAM0_D;

t_level_RxClock <= t_level_RxClock_in;

END a;

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

--USE IEEE. STD_LOGIC_ARITH.ALL;

--USE IEEE.NUMERIC_STD.ALL;

ENTITY clk_src IS

PORT

(

clk : IN STD_LOGIC;

reset : IN STD_LOGIC;

RxClock : IN STD_LOGIC;

ireset : OUT STD_LOGIC;

rx_sclk : OUT STD_LOGIC

);

END clk_src;

ARCHITECTURE a OF clk_src IS

SIGNAL iireset : STD_LOGIC;

SIGNAL x8_cnt : STD_LOGIC_VECTOR(7 DOWNTO 0);

APPENDIX A. HDLC VHDL CODE 69

SIGNAL x8_sclk : STD_LOGIC;

SIGNAL iiRxClock : STD_LOGIC;

SIGNAL iRxClock : STD_LOGIC;

BEGIN

sync_reset:

PROCESS (reset,clk)

VARIABLE ireset_reg : STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN

IF reset = ’0’ THEN

ireset_reg := (OTHERS => ’0’);

iireset <= ’0’;

ELSIF clk’event AND clk = ’1’ THEN

iireset <= ireset_reg(0);

ireset_reg := ’1’ & ireset_reg(2) & ireset_reg(1);

END IF;

END PROCESS sync_reset;

PROCESS(clk, RxClock, iireset)

BEGIN

IF iireset = ’0’ THEN

iRxClock <= ’1’;

iiRxClock <= ’1’;

ELSIF clk’event AND clk = ’1’ THEN

iiRxClock <= RxClock;

iRxClock <= iiRxClock;

END IF;

END PROCESS;

PROCESS(clk,iireset,RxClock)

BEGIN

IF iireset = ’0’ THEN

x8_cnt <= (OTHERS => ’0’);

x8_sclk <= ’1’;

APPENDIX A. HDLC VHDL CODE 70

ELSIF clk’event AND clk = ’1’ THEN

IF x8_cnt = 16#A1# THEN -- 20ns x 162 = 3.24us [1/(2x16x9600)]

x8_sclk <= NOT(x8_sclk);

x8_cnt <= (OTHERS => ’0’); --------

ELSIF RxClock = ’1’ AND iRxClock = ’0’ THEN -- 0 to 1 transition detected

x8_sclk <= ’1’;

x8_cnt <= "00000010";

ELSE

x8_cnt <= x8_cnt + 1;

END IF;

END IF;

END PROCESS;

ireset <= iireset;

rx_sclk <= x8_sclk;

END a;

--

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY tx_uart IS

PORT

(

clk : IN STD_LOGIC;

ireset : IN STD_LOGIC;

TX_RS232 : IN STD_LOGIC;

uart_tx_data : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

tx_data_valid : OUT STD_LOGIC;

proc_enable : OUT STD_LOGIC;

oUart_clk : OUT STD_LOGIC

);

APPENDIX A. HDLC VHDL CODE 71

END tx_uart;

ARCHITECTURE a OF tx_uart IS

TYPE uart_tx_state is (next_start_bit,tx_start_bit,char_bit_samples,stop_bit_samples);

SIGNAL uart_state: uart_tx_state;

SIGNAL uart_clk_cnt : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL tx_shift_reg : STD_LOGIC_VECTOR(9 DOWNTO 0);

SIGNAL bit_samples_cnt : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL bit_samples : STD_LOGIC_VECTOR(1 DOWNTO 0);

SIGNAL tx_bit_cnt : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL uart_clk : STD_LOGIC;

SIGNAL sync_cnt : STD_LOGIC_VECTOR(1 DOWNTO 0);

SIGNAL baud_cnt : STD_LOGIC_VECTOR(11 DOWNTO 0);

SIGNAL pclk : STD_LOGIC;

SIGNAL TX_RS232_t : STD_LOGIC;

SIGNAL TX_RS232_holder : STD_LOGIC;

SIGNAL start_bit_detect : STD_LOGIC;

BEGIN

catch_TX_RS232:

PROCESS(ireset,clk)

BEGIN

IF ireset = ’0’ THEN

TX_RS232_t <= ’1’;

TX_RS232_holder <= ’1’;

ELSIF clk’event AND clk = ’1’ THEN

TX_RS232_holder <= TX_RS232;

TX_RS232_t <= TX_RS232_holder;

END IF;

END PROCESS catch_TX_RS232;

clocks_pr:

PROCESS(ireset,clk)

APPENDIX A. HDLC VHDL CODE 72

BEGIN

IF ireset = ’0’ THEN

uart_clk_cnt <= (OTHERS => ’0’);

uart_clk <= ’1’;

ELSIF clk’event AND clk = ’1’ THEN

----------- Clock generation --------------------------

IF uart_clk_cnt = 16#A1# THEN

-- 20ns x 162 = 3.24us [1/(2x16x9600)]

uart_clk <= NOT(uart_clk);

uart_clk_cnt <= (OTHERS => ’0’);

ELSIF TX_RS232 = ’0’ AND sync_cnt = 2 THEN

uart_clk_cnt <= "00000011";

ELSE

uart_clk_cnt <= uart_clk_cnt + 1;

END IF;

END IF;

END PROCESS clocks_pr;

uart_resync_pr:

PROCESS(clk,ireset)

BEGIN

IF ireset = ’0’ THEN

sync_cnt <= (OTHERS => ’0’);

ELSIF clk’event AND clk = ’1’ THEN

----------- Synchronisation ---------------------

IF TX_RS232_t = ’1’ AND TX_RS232 = ’0’ THEN

sync_cnt <= sync_cnt + 1; -----

ELSIF TX_RS232 = ’1’ AND sync_cnt = 1 THEN

sync_cnt <= (OTHERS => ’0’);

ELSIF TX_RS232 = ’0’ AND sync_cnt = 1 THEN

sync_cnt <= sync_cnt + 1;

ELSIF TX_RS232 = ’1’ AND sync_cnt = 2 THEN

sync_cnt <= (OTHERS => ’0’);

ELSIF TX_RS232 = ’0’ AND sync_cnt = 2 THEN

sync_cnt <= (OTHERS => ’0’);

APPENDIX A. HDLC VHDL CODE 73

END IF;

END IF;

END PROCESS uart_resync_pr;

start_bit_detect_pr: -- For testing UART only

PROCESS(uart_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

start_bit_detect <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

IF uart_state = stop_bit_samples THEN

start_bit_detect <= ’1’;

ELSIF TX_RS232 = ’0’ THEN -- 0 to 1 transition detected

start_bit_detect <= ’0’;

END IF;

END IF;

END PROCESS start_bit_detect_pr;

bit_rate_clk:

PROCESS(clk,ireset)

BEGIN

IF ireset = ’0’ THEN

pclk <= ’1’;

baud_cnt <= (OTHERS => ’0’);

ELSIF clk’event AND clk = ’1’ THEN

IF baud_cnt = 16#A2B# THEN -- 20ns x 2604 = 52.06us [1/(2x9600)]

pclk <= NOT(pclk);

baud_cnt <= (OTHERS => ’0’);

ELSE

baud_cnt <= baud_cnt + 1;

END IF;

END IF;

END PROCESS bit_rate_clk;

PROCESS (clk,uart_clk,ireset)

APPENDIX A. HDLC VHDL CODE 74

BEGIN

IF ireset = ’0’ THEN

tx_shift_reg <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

CASE bit_samples_cnt IS

WHEN "1011" => -- 11

IF bit_samples < 2 THEN

tx_shift_reg <= ’0’ & tx_shift_reg(9 downto 1);

ELSE

tx_shift_reg <= ’1’ & tx_shift_reg(9 downto 1);

END IF;

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

PROCESS (clk,uart_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

tx_bit_cnt <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

CASE bit_samples_cnt IS

WHEN "1011" => -- 11

IF uart_state = tx_start_bit OR uart_state = stop_bit_samples THEN

tx_bit_cnt <= "0000";

ELSE

tx_bit_cnt <= tx_bit_cnt + 1;

END IF;

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

APPENDIX A. HDLC VHDL CODE 75

PROCESS (clk,uart_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

uart_tx_data <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

IF uart_state = stop_bit_samples AND bit_samples_cnt = 15 THEN

uart_tx_data <= tx_shift_reg(8 downto 1);

ELSE

null;

END IF;

END IF;

END PROCESS;

PROCESS (clk,uart_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

bit_samples <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

CASE bit_samples_cnt IS

WHEN "1000"|"1001"|"1010" => --8 to 10 (sampling)

IF TX_RS232 = ’1’ THEN

bit_samples <= bit_samples + 1;

ELSIF TX_RS232 = ’0’ THEN

bit_samples <= bit_samples;

END IF;

WHEN "1111" => -- 15

bit_samples <= (OTHERS => ’0’);

WHEN OTHERS =>

bit_samples <= bit_samples;

END CASE;

END IF;

END PROCESS;

PROCESS (clk,uart_clk,ireset)

BEGIN

APPENDIX A. HDLC VHDL CODE 76

IF ireset = ’0’ THEN

bit_samples_cnt <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

CASE uart_state IS

WHEN next_start_bit =>

IF TX_RS232 = ’0’ THEN

bit_samples_cnt <= "0001";

ELSE

bit_samples_cnt <= bit_samples_cnt + 1;

END IF;

WHEN OTHERS =>

bit_samples_cnt <= bit_samples_cnt + 1;

END CASE;

END IF;

END PROCESS;

PROCESS (clk,uart_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

tx_data_valid <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

IF uart_state /= stop_bit_samples THEN

tx_data_valid <= ’1’;

ELSIF bit_samples_cnt = 15 AND uart_state = stop_bit_samples THEN

IF bit_samples >= 2 THEN

tx_data_valid <= ’0’;

ELSE

tx_data_valid <= ’1’;

END IF;

END IF;

END IF;

END PROCESS;

PROCESS (clk,uart_clk,ireset)

BEGIN

APPENDIX A. HDLC VHDL CODE 77

IF ireset = ’0’ THEN

uart_state <= next_start_bit;

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

CASE uart_state IS

WHEN next_start_bit =>

IF TX_RS232 = ’0’ THEN

uart_state <= tx_start_bit;

ELSE

uart_state <= next_start_bit;

END IF;

WHEN tx_start_bit =>

CASE bit_samples_cnt IS

WHEN "1011" => -- 11

IF bit_samples > 1 THEN

uart_state <= next_start_bit;

ELSIF bit_samples < 2 THEN

uart_state <= tx_start_bit;

END IF;

WHEN "1111" => -- 15

uart_state <= char_bit_samples;

WHEN OTHERS =>

uart_state <= tx_start_bit;

END CASE;

WHEN char_bit_samples =>

CASE bit_samples_cnt IS

WHEN "1111" => -- 15

IF tx_bit_cnt = 8 THEN

uart_state <= stop_bit_samples;

ELSE

uart_state <= char_bit_samples;

END IF;

WHEN OTHERS =>

uart_state <= char_bit_samples;

END CASE;

WHEN stop_bit_samples =>

APPENDIX A. HDLC VHDL CODE 78

CASE bit_samples_cnt IS

WHEN "1111" => -- 15

uart_state <= next_start_bit;

WHEN OTHERS =>

uart_state <= stop_bit_samples;

END CASE;

END CASE;

END IF;

END PROCESS;

PROCESS(clk,uart_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

proc_enable <= ’0’;

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

IF bit_samples_cnt = 15 THEN

proc_enable <= ’1’;

ELSE

proc_enable <= ’0’;

END IF;

END IF;

END PROCESS;

oUart_clk <= uart_clk;

END a;

--

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY rx_uart IS

PORT

APPENDIX A. HDLC VHDL CODE 79

(

ireset : IN STD_LOGIC;

tx_sclk : IN STD_LOGIC;

tx_clk : IN STD_LOGIC;

start_uart_rx : IN STD_LOGIC;

stop_uart_rx : IN STD_LOGIC;

uart_rx_data : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

RxDataRead : OUT STD_LOGIC;

Rx : OUT STD_LOGIC;

RX_RS232 : OUT STD_LOGIC

);

END rx_uart;

ARCHITECTURE a OF rx_uart IS

TYPE uart_rx_state is (rx_uart_idle,rx_uart_info,rx_uart_last);

SIGNAL uart_state: uart_rx_state;

SIGNAL rx_shift_reg : STD_LOGIC_VECTOR(9 DOWNTO 0);

SIGNAL rx_shift_cnt : STD_LOGIC_VECTOR(3 DOWNTO 0);

BEGIN

PROCESS(tx_sclk,ireset,tx_clk)

BEGIN

IF ireset = ’0’ THEN

rx_shift_reg <= (OTHERS => ’1’);

ELSIF tx_sclk’event AND tx_sclk = ’1’ AND tx_clk = ’1’ THEN

CASE uart_state IS

WHEN rx_uart_idle =>

IF start_uart_rx = ’0’ THEN

rx_shift_reg <= ’1’ & uart_rx_data & ’0’;

ELSE

rx_shift_reg <= (OTHERS => ’1’);

END IF;

WHEN rx_uart_last =>

rx_shift_reg <= ’1’ & rx_shift_reg(9 DOWNTO 1);

WHEN OTHERS =>

APPENDIX A. HDLC VHDL CODE 80

IF rx_shift_cnt = 9 THEN --AND info_finished = ’1’ THEN

rx_shift_reg <= ’1’ & uart_rx_data & ’0’;

ELSIF rx_shift_cnt < 9 THEN

rx_shift_reg <= ’1’ & rx_shift_reg(9 DOWNTO 1);

END IF;

END CASE;

END IF;

END PROCESS;

PROCESS(tx_sclk,ireset,tx_clk)

BEGIN

IF ireset = ’0’ THEN

rx_shift_cnt <= (OTHERS => ’0’);

ELSIF tx_sclk’event AND tx_sclk = ’1’ AND tx_clk = ’1’ THEN

CASE uart_state IS

WHEN rx_uart_info =>

IF rx_shift_cnt = 9 THEN--AND info_finished = ’1’ THEN

rx_shift_cnt <= (OTHERS => ’0’);

ELSE

rx_shift_cnt <= rx_shift_cnt + 1;

END IF;

WHEN rx_uart_last =>

IF rx_shift_cnt = 9 THEN

rx_shift_cnt <= (OTHERS => ’0’);

ELSE

rx_shift_cnt <= rx_shift_cnt + 1;

END IF;

WHEN OTHERS =>

rx_shift_cnt <= (OTHERS => ’0’);

END CASE;

END IF;

END PROCESS;

UART_DATA_TRANSMISSION:

PROCESS(tx_sclk,ireset,tx_clk)

APPENDIX A. HDLC VHDL CODE 81

BEGIN

IF ireset = ’0’ THEN

uart_state <= rx_uart_idle;

ELSIF tx_sclk’event AND tx_sclk = ’1’ AND tx_clk = ’1’ THEN

CASE uart_state IS

WHEN rx_uart_idle =>

IF start_uart_rx = ’0’ THEN

uart_state <= rx_uart_info;

ELSE

uart_state <= rx_uart_idle;

END IF;

WHEN rx_uart_info =>

IF stop_uart_rx = ’0’ THEN

uart_state <= rx_uart_last;

ELSE

uart_state <= rx_uart_info;

END IF;

WHEN rx_uart_last =>

IF rx_shift_cnt = 9 THEN

uart_state <= rx_uart_idle;

ELSE

uart_state <= rx_uart_last;

END IF;

WHEN OTHERS =>

uart_state <= rx_uart_idle;

END CASE;

END IF;

END PROCESS UART_DATA_TRANSMISSION;

PROCESS(tx_sclk,ireset,tx_clk)

BEGIN

IF ireset = ’0’ THEN

RxDataRead <= ’1’;

ELSIF tx_sclk’event AND tx_sclk = ’1’ AND tx_clk = ’1’ THEN

CASE uart_state IS

APPENDIX A. HDLC VHDL CODE 82

WHEN rx_uart_info =>

IF rx_shift_cnt = 8 THEN

RxDataRead <= ’0’;

ELSE

RxDataRead <= ’1’;

END IF;

WHEN OTHERS =>

RxDataRead <= ’1’;

END CASE;

END IF;

END PROCESS;

RX_RS232 <= rx_shift_reg(0);

Rx <= rx_shift_reg(0);

END a;

--

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY hdlc_tx IS

PORT(

clk : IN STD_LOGIC;

ireset : IN STD_LOGIC;

uart_clk : IN STD_LOGIC;

bit_clk : IN STD_LOGIC;

tx_start : IN STD_LOGIC;

tx_stop : IN STD_LOGIC;

TxInputData : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

fcs : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

crc_input : OUT STD_LOGIC;

fcs_reset : OUT STD_LOGIC;

APPENDIX A. HDLC VHDL CODE 83

RxClock_in : OUT STD_LOGIC;

tx_read : OUT STD_LOGIC;

Tx : OUT STD_LOGIC;

HDLC_TX : OUT STD_LOGIC);

END hdlc_tx;

ARCHITECTURE a OF hdlc_tx IS

TYPE hdlc_tx_state is (tx_flag,tx_information,tx_last_octed,tx_fcs);

SIGNAL tx_hdlc: hdlc_tx_state;

SIGNAL tx_shift_reg : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL shift_cnt : STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL ones_cnt : STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL shift : STD_LOGIC;

SIGNAL flag : STD_LOGIC_VECTOR(7 downto 0);

SIGNAL flag_cnt : STD_LOGIC_VECTOR(2 downto 0);

SIGNAL tx_finished : std_logic;

SIGNAL TxIn : std_logic;

SIGNAL iRxClock : std_logic;

SIGNAL tx_fcs_shift_reg :std_logic_vector(15 downto 0);

signal fcs_cnt : std_logic_vector(3 downto 0);

signal cnt : std_logic_vector(2 downto 0);

BEGIN

PROCESS(uart_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

cnt <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

cnt <= cnt + 1;

END IF;

END PROCESS;

APPENDIX A. HDLC VHDL CODE 84

PROCESS(uart_clk,ireset,cnt)

BEGIN

IF ireset = ’0’ THEN

iRxClock <= ’0’;

ELSIF uart_clk’event AND uart_clk = ’1’ AND cnt = 7 THEN

iRxClock <= NOT(iRxClock);

END IF;

END PROCESS;

RxClock_in <= iRxClock;

tx_start_pr:

PROCESS(uart_clk,bit_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

TxIn <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

IF tx_start = ’0’ THEN

TxIn <= ’0’;

ELSIF tx_hdlc = tx_information OR tx_hdlc = tx_last_octed THEN

TxIn <= ’1’;

END IF;

END IF;

END PROCESS tx_start_pr;

PROCESS(uart_clk,bit_clk,ireset,tx_stop,shift_cnt,ones_cnt)

BEGIN

IF ireset = ’0’ THEN

tx_finished <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

IF tx_stop = ’0’ THEN

tx_finished <= ’0’;

ELSIF tx_hdlc = tx_last_octed THEN

tx_finished <= ’1’;

END IF;

END IF;

APPENDIX A. HDLC VHDL CODE 85

END PROCESS;

tx_state:

PROCESS(uart_clk,bit_clk,ireset,ones_cnt,tx_finished,shift_cnt,fcs_cnt)

BEGIN

IF ireset = ’0’ THEN

tx_hdlc <= tx_flag;

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

WHEN tx_flag =>

IF TxIn = ’0’ AND tx_finished = ’1’ AND flag_cnt = 7 THEN

tx_hdlc <= tx_information;

ELSIF tx_finished = ’0’ AND flag_cnt = 7 THEN

tx_hdlc <= tx_last_octed;

ELSE

tx_hdlc <= tx_flag;

END IF;

WHEN tx_information =>

IF shift_cnt = 7 AND ones_cnt < 5 AND tx_finished = ’0’ THEN

tx_hdlc <= tx_last_octed;

ELSE

tx_hdlc <= tx_information;

END IF;

WHEN tx_last_octed =>

IF shift_cnt = 7 AND ones_cnt < 5 THEN

tx_hdlc <= tx_fcs;

ELSE

tx_hdlc <= tx_last_octed;

END IF;

WHEN tx_fcs =>

IF fcs_cnt = 15 AND ones_cnt < 5 THEN

tx_hdlc <= tx_flag;

ELSE

tx_hdlc <= tx_fcs;

END IF;

APPENDIX A. HDLC VHDL CODE 86

WHEN OTHERS =>

tx_hdlc <= tx_flag;

END CASE;

END IF;

END PROCESS tx_state;

PROCESS(uart_clk,bit_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

tx_read <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

WHEN tx_flag =>

IF TxIn = ’0’ AND tx_finished = ’1’ AND flag_cnt = 7 THEN

tx_read <= ’0’;

ELSE

tx_read <= ’1’;

END IF;

WHEN tx_information =>

IF shift_cnt = 7 AND ones_cnt < 5 AND tx_finished = ’1’ THEN

tx_read <= ’0’;

ELSE

tx_read <= ’1’;

END IF;

WHEN OTHERS =>

tx_read <= ’1’;

END CASE;

END IF;

END PROCESS;

flag_state_pr:

PROCESS(uart_clk,bit_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

flag <= "11111100";

APPENDIX A. HDLC VHDL CODE 87

flag_cnt <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

WHEN tx_flag =>

flag <= flag(6 DOWNTO 0) & flag(7);

flag_cnt <= flag_cnt + 1;

WHEN tx_fcs =>

IF fcs_cnt = 15 AND ones_cnt < 5 THEN

flag_cnt <= (OTHERS => ’0’);

END IF;

WHEN OTHERS =>

flag_cnt <= flag_cnt;

flag <= flag;

END CASE;

END IF;

END PROCESS flag_state_pr;

info_state_pr:

PROCESS(uart_clk,bit_clk,ireset,ones_cnt,shift_cnt)

BEGIN

IF ireset = ’0’ THEN

tx_shift_reg <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

WHEN tx_flag =>

IF TxIn = ’0’ AND flag_cnt = 7 THEN

tx_shift_reg <= TxInputData;

ELSE

tx_shift_reg <= (OTHERS => ’0’);

END IF;

WHEN tx_information =>

IF ones_cnt < 5 AND shift_cnt < 7 THEN

tx_shift_reg <= ’0’ & tx_shift_reg(7 DOWNTO 1);

ELSIF shift_cnt = 7 AND ones_cnt < 5 THEN

tx_shift_reg <= TxInputData;

APPENDIX A. HDLC VHDL CODE 88

ELSE

tx_shift_reg <= tx_shift_reg;

END IF;

WHEN tx_last_octed =>

IF ones_cnt < 5 THEN

tx_shift_reg <= ’0’ & tx_shift_reg(7 DOWNTO 1);

ELSE

tx_shift_reg <= tx_shift_reg;

END IF;

WHEN OTHERS =>

tx_shift_reg <= (OTHERS => ’0’);

END CASE;

END IF;

END PROCESS info_state_pr;

PROCESS(uart_clk,bit_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

shift_cnt <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

WHEN tx_flag | tx_fcs =>

shift_cnt <= (OTHERS => ’0’);

WHEN tx_information |tx_last_octed =>

IF ones_cnt < 5 THEN

shift_cnt <= shift_cnt + 1;

ELSE

shift_cnt <= shift_cnt;

END IF;

WHEN OTHERS =>

shift_cnt <= (OTHERS => ’0’);

END CASE;

END IF;

END PROCESS;

APPENDIX A. HDLC VHDL CODE 89

fcs_state_pr:

PROCESS(uart_clk,bit_clk,ireset,TxIn,shift_cnt,ones_cnt)

BEGIN

IF ireset = ’0’ THEN

fcs_reset <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

WHEN tx_flag =>

IF TxIn = ’0’ AND flag_cnt = 7 THEN

fcs_reset <= ’0’;

ELSE

fcs_reset <= ’1’;

END IF;

WHEN tx_information =>

fcs_reset <= ’0’;

WHEN tx_last_octed =>

IF shift_cnt = 7 AND ones_cnt < 5 THEN

fcs_reset <= ’1’;

ELSE

fcs_reset <= ’0’;

END IF;

WHEN tx_fcs =>

fcs_reset <= ’1’;

WHEN OTHERS =>

fcs_reset <= ’1’;

END CASE;

END IF;

END PROCESS fcs_state_pr;

PROCESS(uart_clk,bit_clk,ireset,ones_cnt)

BEGIN

IF ireset = ’0’ THEN

fcs_cnt <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

APPENDIX A. HDLC VHDL CODE 90

WHEN tx_flag | tx_last_octed |tx_information =>

fcs_cnt <= (OTHERS => ’0’);

WHEN tx_fcs =>

IF ones_cnt < 5 THEN

fcs_cnt <= fcs_cnt + 1;

ELSIF ones_cnt = 5 THEN

fcs_cnt <= fcs_cnt;

END IF;

WHEN OTHERS =>

fcs_cnt <= (OTHERS => ’0’);

END CASE;

END IF;

END PROCESS;

PROCESS(uart_clk,bit_clk,ireset,shift_cnt,ones_cnt)

BEGIN

IF ireset = ’0’ THEN

tx_fcs_shift_reg <= (OTHERS => ’1’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

WHEN tx_flag | tx_information =>

tx_fcs_shift_reg <= (OTHERS => ’1’);

WHEN tx_last_octed =>

IF shift_cnt = 7 AND ones_cnt < 5 THEN

tx_fcs_shift_reg <= fcs;

ELSE

tx_fcs_shift_reg <= (OTHERS => ’1’);

END IF;

WHEN tx_fcs =>

IF ones_cnt < 5 THEN

tx_fcs_shift_reg <= ’0’ & tx_fcs_shift_reg(15 DOWNTO 1);

ELSIF ones_cnt = 5 THEN

tx_fcs_shift_reg <= tx_fcs_shift_reg;

END IF;

WHEN OTHERS =>

APPENDIX A. HDLC VHDL CODE 91

tx_fcs_shift_reg <= (OTHERS => ’1’);

END CASE;

END IF;

END PROCESS;

output_mux:

PROCESS(ireset,bit_clk,uart_clk)

BEGIN

IF ireset = ’0’ THEN

HDLC_TX <= ’0’;

Tx <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

WHEN tx_flag =>

HDLC_TX <= flag(0);

Tx <= ’1’;

WHEN tx_information|tx_last_octed =>

IF ones_cnt = 5 THEN

HDLC_TX <= ’0’;

Tx <= ’0’;

ELSE

HDLC_TX <= tx_shift_reg(0);

Tx <= tx_shift_reg(0);

END IF;

WHEN tx_fcs =>

HDLC_TX <= tx_fcs_shift_reg(0);

Tx <= tx_fcs_shift_reg(0);

WHEN OTHERS =>

HDLC_TX <= ’0’;

Tx <= ’1’;

END CASE;

END IF;

END PROCESS output_mux;

bit_stuffing:

APPENDIX A. HDLC VHDL CODE 92

PROCESS(uart_clk,bit_clk,ireset)

BEGIN

IF ireset = ’0’ THEN

ones_cnt <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

CASE tx_hdlc IS

WHEN tx_information|tx_last_octed|tx_fcs =>

IF tx_shift_reg(0) = ’1’ AND ones_cnt < 5 THEN

ones_cnt <= ones_cnt + 1;

ELSE

ones_cnt <= (OTHERS => ’0’);

END IF;

WHEN OTHERS =>

ones_cnt <= (OTHERS => ’0’);

END CASE;

END IF;

END PROCESS bit_stuffing;

PROCESS(uart_clk,bit_clk,ireset,ones_cnt)

BEGIN

IF ireset = ’0’ THEN

shift <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

IF ones_cnt = 5 THEN

shift <= ’0’;

ELSE

shift <= ’1’;

END IF;

END IF;

END PROCESS;

crc_input <= tx_shift_reg(0);

END a;

--

APPENDIX A. HDLC VHDL CODE 93

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY hdlc_rx IS

PORT

(

rx_sclk : IN STD_LOGIC;

RxClock : IN STD_LOGIC;

ireset : IN STD_LOGIC;

rxd : IN STD_LOGIC;

fcs : IN STD_loGIC_VECTOR(15 DOWNTO 0);

RxOutputData : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

tx_clk : OUT STD_LOGIC;

crc_reset : OUT STD_LOGIC;

crc_byte : OUT STD_LOGIC;

resend : OUT STD_LOGIC;

r_buffer_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

RxDataWrite : OUT STD_LOGIC

);

END hdlc_rx;

ARCHITECTURE a OF hdlc_rx IS

TYPE rx_state is (rx_start,rx_idle,rx_info,rx_calculate_fcs);

SIGNAL hdlc_rx: rx_state;

SIGNAL r_buffer : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL r_shift : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL r_buffer_cnt : STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL r_shift_cnt : STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL rxd_samples : STD_LOGIC_VECTOR(1 DOWNTO 0);

SIGNAL sample_cnt : STD_LOGIC_VECTOR(3 DOWNTO 0);

APPENDIX A. HDLC VHDL CODE 94

SIGNAL fcs_tx : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL shift : STD_LOGIC;

SIGNAL rxd_input : STD_LOGIC;

SIGNAL RxSync : STD_LOGIC;

SIGNAL iiRxClock : STD_LOGIC;

SIGNAL uart_clk : STD_LOGIC;

BEGIN

PROCESS(rx_sclk, RxClock, ireset)

BEGIN

IF ireset = ’0’ THEN

iiRxClock <= ’0’;

ELSIF rx_sclk’event AND rx_sclk = ’1’ THEN

iiRxClock <= RxClock;

END IF;

END PROCESS;

PROCESS(rx_sclk, RxClock, ireset)

BEGIN

IF ireset = ’0’ THEN

sample_cnt <= (OTHERS => ’0’);

ELSIF rx_sclk’event AND rx_sclk = ’1’ THEN

IF uart_clk = ’1’ THEN -- 0 to 1 transition detected

sample_cnt <= "0001";

ELSE

sample_cnt <= sample_cnt + 1;

END IF;

END IF;

END PROCESS;

PROCESS(rx_sclk, RxClock, ireset)

BEGIN

IF ireset = ’0’ THEN

APPENDIX A. HDLC VHDL CODE 95

uart_clk <= ’1’;

ELSIF rx_sclk’event AND rx_sclk = ’1’ THEN

IF RxClock = ’1’ AND iiRxClock = ’0’ THEN -- 0 to 1 transition detected

uart_clk <= ’1’;

ELSE

uart_clk <= ’0’;

END IF;

END IF;

END PROCESS;

tx_clk <= uart_clk;

bit_sampling:

PROCESS(rx_sclk,ireset,sample_cnt)

BEGIN

IF ireset = ’0’ THEN

rxd_input <= ’0’;

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND sample_cnt = 11 THEN

IF rxd_samples > 1 THEN

rxd_input <= ’1’;

ELSE

rxd_input <= ’0’;

END IF;

END IF;

END PROCESS bit_sampling;

PROCESS(rx_sclk,RxClock,ireset)

BEGIN

IF ireset = ’0’ THEN

rxd_samples <= (OTHERS => ’0’);

ELSIF rx_sclk’event AND rx_sclk = ’1’ THEN

CASE sample_cnt IS

WHEN "1000"|"1001"|"1010"=>

IF rxd = ’1’ THEN

rxd_samples <= rxd_samples + 1;

APPENDIX A. HDLC VHDL CODE 96

ELSE

rxd_samples <= rxd_samples;

END IF;

WHEN OTHERS =>

rxd_samples <= (OTHERS => ’0’);

END CASE;

END IF;

END PROCESS;

F_DETECT:

PROCESS(rx_sclk, ireset,uart_clk)

BEGIN

IF ireset = ’0’ THEN

r_buffer <= (OTHERS => ’1’);

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

r_buffer <= rxd_input & r_buffer(7 DOWNTO 1);

END IF;

END PROCESS F_DETECT;

PROCESS(rx_sclk, ireset,uart_clk)

BEGIN

IF ireset = ’0’ THEN

shift <= ’1’;

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

IF r_buffer(7 DOWNTO 2) = "111110" AND rxd_input = ’0’ THEN

shift <= ’0’;

ELSE

shift <= ’1’;

END IF;

END IF;

END PROCESS;

-- Bit unstuffing

r_buffer_out <= r_buffer;

VALID_CHAR_DETECT:

APPENDIX A. HDLC VHDL CODE 97

PROCESS(rx_sclk, ireset, uart_clk)

BEGIN

IF ireset = ’0’ THEN

r_buffer_cnt <= (OTHERS => ’0’);

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

IF r_buffer(7 DOWNTO 2) = "111110" AND rxd_input = ’0’ THEN

r_buffer_cnt <= r_buffer_cnt;

ELSIF r_buffer = "01111110" THEN

r_buffer_cnt <= "000"; -- synchronise

ELSE

r_buffer_cnt <= r_buffer_cnt + 1;

END IF;

END IF;

END PROCESS VALID_CHAR_DETECT;

crc_store_pr:

PROCESS(rx_sclk, uart_clk , ireset)

BEGIN

IF ireset = ’0’ THEN

crc_byte <= ’0’;

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

IF r_buffer_cnt = 7 AND hdlc_rx = rx_info AND r_buffer /= 2#01111110# THEN

crc_byte <= ’1’;

ELSE

crc_byte <= ’0’;

END IF;

END IF;

END PROCESS crc_store_pr;

shift_reg_pr:

PROCESS(rx_sclk, ireset,uart_clk)

BEGIN

IF ireset = ’0’ THEN

r_shift <= "10101010";

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

APPENDIX A. HDLC VHDL CODE 98

IF shift = ’1’ THEN

r_shift <= r_buffer(7) & r_shift(7 DOWNTO 1);

END IF;

END IF;

END PROCESS shift_reg_pr;

PROCESS(rx_sclk, ireset,uart_clk)

BEGIN

IF ireset = ’0’ THEN

r_shift_cnt <= (OTHERS => ’0’);

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

r_shift_cnt <= r_buffer_cnt;

END IF;

END PROCESS;

flag_detect_sync_pr:

PROCESS(rx_sclk, ireset,uart_clk)

BEGIN

IF ireset = ’0’ THEN

RxSync <= ’1’;

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

IF r_buffer = "01111110" THEN

RxSync <= ’0’;

END IF;

END IF;

END PROCESS flag_detect_sync_pr;

rx_state_pr:

PROCESS(rx_sclk, ireset, uart_clk)

BEGIN

IF ireset = ’0’ THEN

hdlc_rx <= rx_start;

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

CASE hdlc_rx IS

WHEN rx_start =>

APPENDIX A. HDLC VHDL CODE 99

IF RxSync = ’1’ THEN

hdlc_rx <= rx_start;

ELSE

hdlc_rx <= rx_idle;

END IF;

WHEN rx_idle =>

IF r_shift(7) = ’0’ AND r_shift_cnt > 0 AND r_shift_cnt < 7 THEN

hdlc_rx <= rx_info;

ELSIF r_shift(7) = ’1’ AND (r_shift_cnt = 0 OR r_shift_cnt = 7) THEN

hdlc_rx <= rx_info;

ELSE

hdlc_rx <= rx_idle;

END IF;

WHEN rx_info =>

IF r_buffer = "01111110" THEN

hdlc_rx <= rx_calculate_fcs;

ELSE

hdlc_rx <= rx_info;

END IF;

WHEN rx_calculate_fcs =>

hdlc_rx <= rx_idle;

WHEN OTHERS =>

hdlc_rx <= rx_start;

END CASE;

END IF;

END PROCESS rx_state_pr;

RxOutput_pr:

--PROCESS(rxclk,ireset,)

PROCESS(rx_sclk, ireset,uart_clk)

BEGIN

IF ireset = ’0’ THEN

RxOutputData <= (OTHERS => ’0’);

RxDataWrite <= ’1’;

fcs_tx <= (OTHERS => ’1’);

APPENDIX A. HDLC VHDL CODE 100

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

CASE hdlc_rx IS

WHEN rx_info =>

IF r_shift_cnt = 7 AND shift = ’1’ THEN-- AND = ’1’ THEN

RxOutputData <= r_shift;

RxDataWrite <= ’0’;

fcs_tx <= (r_shift & fcs_tx(15 DOWNTO 8));

ELSE

RxDataWrite <= ’1’;

END IF;

WHEN OTHERS =>

RxDataWrite <= ’1’;

END CASE;

END IF;

END PROCESS RxOutput_pr;

crc_error_pr:

PROCESS(rx_sclk, ireset, uart_clk)

VARIABLE crc_error :STD_LOGIC_VECTOR(15 DOWNTO 0);

BEGIN

IF ireset = ’0’ THEN

crc_error := (OTHERS => ’0’);

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

IF hdlc_rx = rx_calculate_fcs THEN

loop_1:

FOR i IN 0 TO 15 LOOP

IF fcs(i) /= fcs_tx(i) THEN

crc_error := crc_error + 1;

ELSE

crc_error := crc_error;

END IF;

END LOOP loop_1;

ELSE

crc_error := crc_error;

END IF;

APPENDIX A. HDLC VHDL CODE 101

END IF;

END PROCESS crc_error_pr;

resend <= ’0’;

crc_reset_pr:

PROCESS(rx_sclk, ireset, uart_clk)

BEGIN

IF ireset = ’0’ THEN

crc_reset <= ’0’;

ELSIF rx_sclk’event AND rx_sclk = ’1’ AND uart_clk = ’1’ THEN

IF r_buffer(7 DOWNTO 1) = "1111110" AND rxd_input = ’0’ THEN

crc_reset <= ’1’;

ELSE

crc_reset <= ’0’;

END IF;

END IF;

END PROCESS crc_reset_pr;

--debug_rx_start <= rxd;

END a;

-- Memory Interface

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY proc IS

PORT(

uart_clk : IN STD_LOGIC;

ireset : IN STD_LOGIC;

proc_enable : IN STD_LOGIC;

tx_data_valid : IN STD_LOGIC;

tx_busy : IN STD_LOGIC;

uart_rx_data : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

APPENDIX A. HDLC VHDL CODE 102

TxInputData : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

tx_start : OUT STD_LOGIC;

tx_stop : OUT STD_LOGIC;

hdlc_read : IN STD_LOGIC;

rx_busy : OUT STD_LOGIC;

uart_tx_data : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

start_uart_rx : IN STD_LOGIC;

RxDataRead : IN STD_LOGIC;

tx_SRAM0_D : IN STD_LOGIC_VECTOR(7 DOWNTO 0);--INOUT

tx_SRAM0_WE : IN STD_LOGIC;

tx_SRAM0_OE : IN STD_LOGIC;

tx_SRAM0_E : IN STD_LOGIC;

tx_SRAM0_A : IN STD_LOGIC_VECTOR(17 DOWNTO 0);

SRAM0_D1 : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

SRAM0_D : INOUT STD_LOGIC_VECTOR(7 DOWNTO 0);

SRAM0_OE : OUT STD_LOGIC;

SRAM0_WE : OUT STD_LOGIC;

SRAM0_UB : OUT STD_LOGIC;

SRAM0_LB : OUT STD_LOGIC;

SRAM0_E : OUT STD_LOGIC;

SRAM0_A : OUT STD_LOGIC_VECTOR(17 DOWNTO 0)

);

END proc;

ARCHITECTURE a OF proc IS

TYPE rx_sram_state is (rx_idling,load_sram,end_loading,read_sram);

SIGNAL uart_to_hdlc: rx_sram_state;

SIGNAL uart_we : STD_LOGIC;

SIGNAL idata_valid : STD_LOGIC;

SIGNAL uart_E : STD_LOGIC;

SIGNAL uart_wr : STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL hdlc_E : STD_LOGIC;

APPENDIX A. HDLC VHDL CODE 103

SIGNAL ihdlc_read : STD_LOGIC;

SIGNAL hdlc_oe : STD_LOGIC;

SIGNAL hdlc_oeCnt : STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL uart_cnt : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL byte_cnt : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL mUart_add : STD_LOGIC_VECTOR(17 DOWNTO 0);

SIGNAL uart_add : STD_LOGIC_VECTOR(17 DOWNTO 0);

SIGNAL addr_w0 : STD_LOGIC;

-- SIGNAL SRAM11_A : STD_LOGIC_VECTOR(17 DOWNTO 0);

BEGIN

PROCESS(ireset,uart_clk,proc_enable,tx_data_valid,hdlc_read)

BEGIN

IF ireset = ’0’ THEN

uart_cnt <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND proc_enable = ’1’ THEN

CASE uart_to_hdlc IS

WHEN rx_idling =>

IF tx_data_valid = ’0’ OR uart_cnt = 7 THEN

uart_cnt <= (OTHERS => ’0’);

ELSE

uart_cnt <= uart_cnt + 1;

END IF;

WHEN load_sram =>

IF tx_data_valid = ’0’ OR uart_cnt = 10 THEN

uart_cnt <= (OTHERS => ’0’);

ELSE

uart_cnt <= uart_cnt + 1;

END IF;

WHEN end_loading =>

uart_cnt <= (OTHERS => ’0’);

APPENDIX A. HDLC VHDL CODE 104

WHEN read_sram =>

IF uart_cnt = 9 OR hdlc_read = ’0’ THEN

uart_cnt <= (OTHERS => ’0’);

ELSE

uart_cnt <= uart_cnt + 1;

END IF;

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk, tx_data_valid,hdlc_read)

BEGIN

IF ireset = ’0’ THEN

rx_busy <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

CASE uart_to_hdlc IS

WHEN rx_idling =>

rx_busy <= ’1’;

WHEN load_sram =>

rx_busy <= ’0’;

WHEN end_loading =>

rx_busy <= ’0’;

WHEN read_sram =>

IF uart_cnt > 1 AND uart_cnt < 5 THEN

rx_busy <= ’1’;

ELSE

rx_busy <= ’0’;

END IF;

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

APPENDIX A. HDLC VHDL CODE 105

PROCESS(ireset,uart_clk,proc_enable,tx_data_valid)

BEGIN

IF ireset = ’0’ THEN

byte_cnt <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND proc_enable = ’1’ THEN

IF tx_data_valid = ’0’ THEN

byte_cnt <= (OTHERS => ’0’);

ELSIF uart_cnt = 9 AND uart_to_hdlc = load_sram THEN

byte_cnt <= byte_cnt + 1;

END IF;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk)

BEGIN

IF ireset = ’0’ THEN

idata_valid <= ’1’;

ihdlc_read <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

idata_valid <= tx_data_valid;

ihdlc_read <= hdlc_read;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk,tx_data_valid,uart_wr)

BEGIN

IF ireset = ’0’ THEN

uart_wr <= "111";

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

IF tx_data_valid = ’0’ THEN

uart_wr <= (OTHERS => ’0’);

ELSIF uart_wr < 7 THEN

uart_wr <= uart_wr + 1;

APPENDIX A. HDLC VHDL CODE 106

END IF;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk,uart_wr)

BEGIN

IF ireset = ’0’ THEN

uart_we <= ’1’;

uart_E <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

CASE uart_wr IS

WHEN "001" =>

uart_E <= ’0’;

WHEN "010" =>

uart_we <= ’0’;

WHEN "100" =>

uart_we <= ’1’;

WHEN "110" =>

uart_E <= ’1’;

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

SRAM0_D <= uart_rx_data WHEN uart_we = ’0’ ELSE

tx_SRAM0_D WHEN tx_SRAM0_WE = ’0’ ELSE

(OTHERS => ’Z’);

SRAM0_A <= uart_add WHEN uart_E = ’0’ OR hdlc_E = ’0’ ELSE

tx_SRAM0_A WHEN tx_SRAM0_E = ’0’ ELSE

(OTHERS => ’0’);

SRAM0_WE <= uart_we AND tx_SRAM0_WE;

SRAM0_OE <= hdlc_oe AND tx_SRAM0_OE;

APPENDIX A. HDLC VHDL CODE 107

SRAM0_LB <= ’0’;--’1’ WHEN uart_to_hdlc = rx_idling ELSE ’0’;

SRAM0_E <= uart_E AND hdlc_E AND tx_SRAM0_E;

SRAM0_UB <= ’1’;

PROCESS(ireset,uart_clk,ihdlc_read,proc_enable, hdlc_oeCnt)

BEGIN

IF ireset = ’0’ THEN

hdlc_oeCnt <= "000";

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

IF (hdlc_read = ’0’ OR uart_to_hdlc = end_loading) AND hdlc_oeCnt < 7 THEN

hdlc_oeCnt <= hdlc_oeCnt + 1;

ELSIF hdlc_read = ’1’ AND uart_to_hdlc /= end_loading THEN

hdlc_oeCnt <= (OTHERS => ’0’);

END IF;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk,hdlc_read,uart_to_hdlc,proc_enable)

BEGIN

IF ireset = ’0’ THEN

hdlc_oe <= ’1’;

hdlc_E <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

IF hdlc_read = ’0’ OR uart_to_hdlc = end_loading THEN

CASE hdlc_oeCnt IS

WHEN "001" =>

hdlc_E <= ’0’;

WHEN "011" =>

hdlc_oe <= ’0’;

WHEN "110" =>

hdlc_oe <= ’1’;

WHEN "111" =>

hdlc_E <= ’1’;

WHEN OTHERS =>

null;

APPENDIX A. HDLC VHDL CODE 108

END CASE;

ELSE

null;

END IF;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk,proc_enable, tx_data_valid, idata_valid)

BEGIN

IF ireset = ’0’ THEN

uart_add <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

CASE uart_to_hdlc IS

WHEN rx_idling =>

uart_add <= (OTHERS => ’0’);

WHEN load_sram =>

IF uart_wr = 0 AND addr_w0 = ’0’ THEN

uart_add <= uart_add + 1;

ELSE

null;

END IF;

WHEN end_loading =>

IF hdlc_oeCnt = 1 THEN

uart_add <= (OTHERS => ’0’);

ELSE

null;

END IF;

WHEN read_sram =>

IF hdlc_oeCnt = 0 AND hdlc_read = ’0’ THEN

uart_add <= uart_add + 1;

ELSE

null;

END IF;

APPENDIX A. HDLC VHDL CODE 109

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk,tx_data_valid)

BEGIN

IF ireset = ’0’ THEN

addr_w0 <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

IF uart_wr = 6 THEN

addr_w0 <= ’0’;

ELSIF uart_to_hdlc = end_loading THEN

addr_w0 <= ’1’;

END IF;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk,hdlc_oeCnt)

BEGIN

IF ireset = ’0’ THEN

mUart_add <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ THEN

CASE uart_to_hdlc IS

WHEN rx_idling =>

mUart_add <= (OTHERS => ’0’);

WHEN end_loading =>

IF hdlc_oeCnt = 0 THEN

mUart_add <= uart_add;

ELSE

null;

END IF;

WHEN OTHERS =>

null;

APPENDIX A. HDLC VHDL CODE 110

END CASE;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk,tx_SRAM0_OE)

BEGIN

IF ireset = ’0’ THEN

uart_tx_data <= (OTHERS => ’1’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND tx_SRAM0_OE = ’0’ THEN

uart_tx_data <= SRAM0_D1;

END IF;

END PROCESS;

PROCESS(ireset,uart_clk, hdlc_oe)

BEGIN

IF ireset = ’0’ THEN

TxInputData <= (OTHERS => ’0’);

ELSIF uart_clk’event AND uart_clk = ’1’ AND hdlc_oe = ’0’ THEN

TxInputData <= SRAM0_D1; --sdata;

END IF;

END PROCESS;

PROCESS(uart_clk,ireset,proc_enable)

BEGIN

IF ireset = ’0’ THEN

tx_start <= ’1’;

tx_stop <= ’1’;

ELSIF uart_clk’event AND uart_clk = ’1’ AND proc_enable = ’1’ THEN

CASE uart_to_hdlc IS

WHEN rx_idling =>

tx_start <= ’1’;

tx_stop <= ’1’;

WHEN end_loading =>

APPENDIX A. HDLC VHDL CODE 111

tx_start <= ’0’;

WHEN read_sram =>

tx_start <= ’1’;

IF uart_add = mUart_add AND uart_cnt = 0 THEN

tx_stop <= ’0’;

ELSE

tx_stop <= ’1’;

END IF;

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

rx_write_read:

PROCESS(uart_clk,ireset,tx_data_valid,tx_busy,proc_enable)

BEGIN

IF ireset = ’0’ THEN

uart_to_hdlc <= rx_idling;

ELSIF uart_clk’event AND uart_clk = ’1’ AND proc_enable = ’1’ THEN

CASE uart_to_hdlc IS

WHEN rx_idling =>

IF tx_data_valid = ’0’ AND tx_busy = ’1’ THEN

uart_to_hdlc <= load_sram;

ELSE

uart_to_hdlc <= rx_idling;

END IF;

WHEN load_sram =>

IF (byte_cnt = 1 AND uart_cnt = 2) OR uart_add = 16#3FFFE# THEN

uart_to_hdlc <= end_loading;

ELSE

uart_to_hdlc <= load_sram;

END IF;

WHEN end_loading =>

uart_to_hdlc <= read_sram;

APPENDIX A. HDLC VHDL CODE 112

WHEN read_sram =>

IF uart_add = mUart_add AND uart_cnt = 9 THEN

uart_to_hdlc <= rx_idling;

ELSE

uart_to_hdlc <= read_sram;

END IF;

WHEN OTHERS =>

uart_to_hdlc <= rx_idling;

END CASE;

END IF;

END PROCESS rx_write_read;

END a;

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY proc_rx IS

PORT(

tx_sclk : IN STD_LOGIC;

tx_clk : IN STD_LOGIC;

ireset : IN STD_LOGIC;

RxDataWrite : IN STD_LOGIC;

RxDataRead : IN STD_LOGIC;

rx_busy : IN STD_LOGIC;

RxOutputData : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

tx_busy : OUT STD_LOGIC;

start_uart_rx : OUT STD_LOGIC;

stop_uart_rx : OUT STD_LOGIC;

tx_SRAM0_D : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

tx_SRAM0_OE : OUT STD_LOGIC;

tx_SRAM0_WE : OUT STD_LOGIC;

tx_SRAM0_E : OUT STD_LOGIC;

APPENDIX A. HDLC VHDL CODE 113

tx_SRAM0_A : OUT STD_LOGIC_VECTOR(17 DOWNTO 0)

);

END proc_rx;

ARCHITECTURE a OF proc_rx IS

TYPE tx_sram_state is (tx_sram_idle,tx_sram_write,tx_sram_hold,tx_sram_read);

SIGNAL tx_sram: tx_sram_state;

SIGNAL counter_w : STD_LOGIC_VECTOR(3 DOWNTO 0);

SIGNAL addr_w : STD_LOGIC_VECTOR(17 DOWNTO 0);

SIGNAL addr_r : STD_LOGIC_VECTOR(17 DOWNTO 0);

SIGNAL m_addr : STD_LOGIC_VECTOR(17 DOWNTO 0);

SIGNAL iStart_Uart : STD_LOGIC;

SIGNAL iRxDataRead : STD_LOGIC;

SIGNAL iRxDataWrite : STD_LOGIC;

SIGNAL hdlc_weCnt : STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL uart_oeCnt : STD_LOGIC_VECTOR(2 DOWNTO 0);

SIGNAL busy_cnt : STD_LOGIC_VECTOR(1 DOWNTO 0);

BEGIN

tx_SRAM0_D <= RxOutputData;

PROCESS(ireset,tx_sclk,tx_clk,RxDataWrite)

BEGIN

IF ireset = ’0’ THEN

counter_w <= (OTHERS => ’0’);

ELSIF tx_sclk’event AND tx_sclk = ’1’ AND tx_clk = ’1’ THEN

IF RxDataWrite = ’0’ OR tx_sram = tx_sram_idle THEN

counter_w <= (OTHERS => ’0’);

ELSIF counter_w < 12 THEN

counter_w <= counter_w + 1;

END IF;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk,hdlc_weCnt,RxDataWrite)

APPENDIX A. HDLC VHDL CODE 114

BEGIN

IF ireset = ’0’ THEN

addr_w <= (OTHERS => ’0’);

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

CASE tx_sram IS

WHEN tx_sram_write =>

IF RxDataWrite = ’0’ AND iRxDataWrite = ’1’ THEN

addr_w <= addr_w + 1;

END IF;

WHEN tx_sram_idle =>

addr_w <= (OTHERS => ’0’);

WHEN OTHERS =>

END CASE;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk)

BEGIN

IF ireset = ’0’ THEN

m_addr <= (OTHERS => ’0’);

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

CASE tx_sram IS

WHEN tx_sram_idle =>

m_addr <= (OTHERS => ’0’);

WHEN tx_sram_hold =>

IF uart_oeCnt = 0 THEN

m_addr <= addr_w;

END IF;

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk,tx_clk,RxDataRead)

APPENDIX A. HDLC VHDL CODE 115

BEGIN

IF ireset = ’0’ THEN

iRxDataWrite <= ’1’;

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

iRxDataWrite <= RxDataWrite;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk,tx_clk,RxDataRead)

BEGIN

IF ireset = ’0’ THEN

addr_r <= (OTHERS => ’0’);

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

IF iStart_Uart = ’0’ THEN

addr_r <= (OTHERS => ’0’);

ELSIF iRxDataRead = ’1’ AND RxDataRead = ’0’ THEN

addr_r <= addr_r + 1;

END IF;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk,tx_clk,RxDataRead)

BEGIN

IF ireset = ’0’ THEN

iRxDataRead <= ’1’;

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

iRxDataRead <= RxDataRead;

END IF;

END PROCESS;

PROCESS(tx_sclk,ireset,tx_clk,RxDataRead)

BEGIN

IF ireset = ’0’ THEN

start_uart_rx <= ’1’;

stop_uart_rx <= ’1’;

APPENDIX A. HDLC VHDL CODE 116

iStart_Uart <= ’1’;

ELSIF tx_sclk’event AND tx_sclk = ’1’ AND tx_clk = ’1’ THEN

start_uart_rx <= iStart_Uart;

CASE tx_sram IS

WHEN tx_sram_idle =>

start_uart_rx <= ’1’;

stop_uart_rx <= ’1’;

WHEN tx_sram_hold =>

iStart_Uart <= ’0’;

WHEN tx_sram_read =>

iStart_Uart <= ’1’;

IF addr_r = m_addr THEN

stop_uart_rx <= ’0’;

ELSE

stop_uart_rx <= ’1’;

END IF;

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

PROCESS(tx_sclk,ireset,rx_busy)

BEGIN

IF ireset = ’0’ THEN

tx_busy <= ’1’;

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

CASE tx_sram IS

WHEN tx_sram_idle =>

IF RxDataWrite = ’0’ THEN

tx_busy <= ’0’;

ELSE

tx_busy <= ’1’;

END IF;

WHEN OTHERS =>

APPENDIX A. HDLC VHDL CODE 117

tx_busy <= ’0’;

END CASE;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk,RxDataWrite)

BEGIN

IF ireset = ’0’ THEN

hdlc_weCnt <= "000";

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

IF RxDataWrite = ’0’ AND rx_busy = ’1’ AND hdlc_weCnt < 7 THEN

hdlc_weCnt <= hdlc_weCnt + 1;

ELSIF busy_cnt = 2 AND hdlc_weCnt < 7 THEN

hdlc_weCnt <= hdlc_weCnt + 1;

ELSIF RxDataWrite = ’1’ AND busy_cnt /= 2 THEN

hdlc_weCnt <= "000";

END IF;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk)

BEGIN

IF ireset = ’0’ THEN

uart_oeCnt <= "000";

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

CASE tx_sram IS

WHEN tx_sram_read =>

IF RxDataRead = ’0’ AND uart_oeCnt < 7 THEN

uart_oeCnt <= uart_oeCnt + 1;

ELSIF iStart_Uart = ’0’ AND uart_oeCnt < 7 THEN

uart_oeCnt <= uart_oeCnt + 1;

ELSIF RxDataRead = ’1’ AND iStart_Uart = ’1’ THEN

uart_oeCnt <= "000";

END IF;

WHEN OTHERS =>

APPENDIX A. HDLC VHDL CODE 118

uart_oeCnt <= "000";

END CASE;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk,tx_clk,rx_busy,RxDataWrite)

BEGIN

IF ireset = ’0’ THEN

busy_cnt <= "11";

ELSIF tx_sclk’event AND tx_sclk = ’1’ AND tx_clk = ’1’ THEN

IF rx_busy = ’0’ AND RxDataWrite = ’0’ THEN

busy_cnt <= (OTHERS => ’0’);

ELSIF busy_cnt < 3 THEN

busy_cnt <= busy_cnt + 1;

END IF;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk,hdlc_weCnt,uart_oeCnt)

BEGIN

IF ireset = ’0’ THEN

tx_SRAM0_WE <= ’1’;

tx_SRAM0_E <= ’1’;

tx_SRAM0_A <= (OTHERS => ’0’);

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

CASE hdlc_weCnt IS

WHEN "001" =>

tx_SRAM0_E <= ’0’;

tx_SRAM0_A <= addr_w;

WHEN "011" =>

tx_SRAM0_WE <= ’0’;

WHEN "101" =>

tx_SRAM0_WE <= ’1’;

WHEN "110" =>

tx_SRAM0_E <= ’1’;

APPENDIX A. HDLC VHDL CODE 119

WHEN OTHERS =>

END CASE;

CASE uart_oeCnt IS

WHEN "001" =>

tx_SRAM0_E <= ’0’;

tx_SRAM0_A <= addr_r;

WHEN "110" =>

tx_SRAM0_E <= ’1’;

WHEN OTHERS =>

END CASE;

END IF;

END PROCESS;

PROCESS(ireset,tx_sclk,uart_oeCnt)

BEGIN

IF ireset = ’0’ THEN

tx_SRAM0_OE <= ’1’;

ELSIF tx_sclk’event AND tx_sclk = ’1’ THEN

CASE uart_oeCnt IS

WHEN "011" =>

tx_SRAM0_OE <= ’0’;

WHEN "101" =>

tx_SRAM0_OE <= ’1’;

WHEN OTHERS =>

null;

END CASE;

END IF;

END PROCESS;

PROCESS(tx_sclk,ireset,tx_clk,rx_busy)

BEGIN

IF ireset = ’0’ THEN

tx_sram <= tx_sram_idle;

ELSIF tx_sclk’event AND tx_sclk = ’1’ AND tx_clk = ’1’ THEN

CASE tx_sram IS

APPENDIX A. HDLC VHDL CODE 120

WHEN tx_sram_idle =>

IF RxDataWrite = ’0’ AND rx_busy = ’1’ THEN

tx_sram <= tx_sram_write;

ELSE

tx_sram <= tx_sram_idle;

END IF;

WHEN tx_sram_write =>

IF counter_w = 10 THEN

tx_sram <= tx_sram_hold;

ELSE

tx_sram <= tx_sram_write;

END IF;

WHEN tx_sram_hold =>

tx_sram <= tx_sram_read;

WHEN tx_sram_read =>

IF addr_w = addr_r THEN

tx_sram <= tx_sram_idle;

ELSE

tx_sram <= tx_sram_read;

END IF;

WHEN OTHERS =>

tx_sram <= tx_sram_idle;

END CASE;

END IF;

END PROCESS;

END a;

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY crc IS

APPENDIX A. HDLC VHDL CODE 121

PORT

(

uart_clk : IN STD_LOGIC;

bit_clk : IN STD_LOGIC;

crc_input : IN STD_LOGIC;

fcs_reset : IN STD_LOGIC;

fcs : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END crc;

ARCHITECTURE a OF crc IS

SIGNAL fcs_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL fcs_in : STD_LOGIC;

BEGIN

fcs_in <= fcs_temp(15) XOR crc_input;

fcs_generator:

PROCESS(uart_clk,bit_clk,fcs_reset)

BEGIN

IF uart_clk’event AND uart_clk = ’1’ AND bit_clk = ’1’ THEN

IF fcs_reset = ’1’ THEN

fcs_temp <= (OTHERS => ’1’);

ELSE

fcs_temp(0) <= fcs_in;

fcs_temp(1) <= fcs_temp(0);

fcs_temp(2) <= fcs_temp(1) XOR fcs_temp(15);

fcs_temp(3) <= fcs_temp(2);

fcs_temp(4) <= fcs_temp(3);

fcs_temp(5) <= fcs_temp(4);

fcs_temp(6) <= fcs_temp(5);

fcs_temp(7) <= fcs_temp(6);

fcs_temp(8) <= fcs_temp(7);

fcs_temp(9) <= fcs_temp(8);

fcs_temp(10) <= fcs_temp(9);

fcs_temp(11) <= fcs_temp(10);

APPENDIX A. HDLC VHDL CODE 122

fcs_temp(12) <= fcs_temp(11);

fcs_temp(13) <= fcs_temp(12);

fcs_temp(14) <= fcs_temp(13);

fcs_temp(15) <= fcs_temp(14) XOR fcs_temp(15);

END IF;

END IF;

END PROCESS fcs_generator;

fcs <= fcs_temp;

END a;

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY crc_rx IS

PORT

(

x8_sclk : IN STD_LOGIC;

rxclk : IN STD_LOGIC;

ireset : IN STD_LOGIC;

crc_reset : IN STD_LOGIC;

crc_byte : IN STD_LOGIC;

r_buffer : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

fcs_2 : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);

END crc_rx;

ARCHITECTURE a OF crc_rx IS

SIGNAL crc_temp : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL fcs : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL fcs_1 : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL idata : STD_LOGIC_VECTOR(7 DOWNTO 0);

APPENDIX A. HDLC VHDL CODE 123

SIGNAL crc_in : STD_LOGIC;

SIGNAL crc_reset_delay : STD_LOGIC;

SIGNAL reset_delay : STD_LOGIC;

BEGIN

fcs_pr:

PROCESS(ireset, rxclk, x8_sclk, crc_byte)

BEGIN

IF ireset = ’0’ THEN

fcs <= (OTHERS => ’1’);

fcs_1 <= (OTHERS => ’1’);

fcs_2 <= (OTHERS => ’1’);

ELSIF x8_sclk’event AND x8_sclk = ’1’ THEN

IF crc_byte = ’1’ AND rxclk = ’1’ THEN

fcs <= crc_temp;

fcs_1 <= fcs;

fcs_2 <= fcs_1;

ELSE

fcs <= fcs;

END IF;

END IF;

END PROCESS fcs_pr;

delay_pr:

PROCESS(ireset, x8_sclk, rxclk)

BEGIN

IF ireset = ’0’ THEN

crc_reset_delay <= ’0’;

reset_delay <= ’0’;

ELSIF x8_sclk’event AND x8_sclk = ’1’ THEN

IF rxclk = ’1’ THEN

crc_reset_delay <= crc_reset;

reset_delay <= crc_reset_delay;

ELSE

reset_delay <= reset_delay;

crc_reset_delay <= crc_reset_delay;

APPENDIX A. HDLC VHDL CODE 124

END IF;

END IF;

END PROCESS delay_pr;

PROCESS(ireset, x8_sclk, rxclk)

BEGIN

IF ireset = ’0’ THEN

idata <= (OTHERS => ’0’);

ELSIF x8_sclk’event AND x8_sclk = ’1’ THEN

IF rxclk = ’1’ THEN

idata <= r_buffer;

ELSE

idata <= idata;

END IF;

END IF;

END PROCESS;

crc_in <= crc_temp(15) XOR idata(7);

crc_pr:

PROCESS(ireset,x8_sclk, rxclk)

BEGIN

IF x8_sclk’event AND x8_sclk = ’1’ THEN

IF rxclk = ’1’ AND crc_reset_delay = ’1’ THEN

crc_temp <= (OTHERS => ’1’);

ELSIF rxclk = ’1’ AND crc_reset_delay = ’0’ THEN

crc_temp(0) <= crc_in;

crc_temp(1) <= crc_temp(0);

crc_temp(2) <= crc_temp(1) XOR crc_temp(15);

crc_temp(3) <= crc_temp(2);

crc_temp(4) <= crc_temp(3);

crc_temp(5) <= crc_temp(4);

crc_temp(6) <= crc_temp(5);

crc_temp(7) <= crc_temp(6);

crc_temp(8) <= crc_temp(7);

crc_temp(9) <= crc_temp(8);

APPENDIX A. HDLC VHDL CODE 125

crc_temp(10) <= crc_temp(9);

crc_temp(11) <= crc_temp(10);

crc_temp(12) <= crc_temp(11);

crc_temp(13) <= crc_temp(12);

crc_temp(14) <= crc_temp(13);

crc_temp(15) <= crc_temp(14) XOR crc_temp(15);

END IF;

END IF;

END PROCESS crc_pr;

END a;

Appendix B

The G4XYW MATLAB Simulation Code

% Author: Sello Seabe

% Student number: 14011018-2002

%Function: Models the G4XYW modem

clear all;

data = [1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 1 1];

load fir_table; % loading fir coefficients stored in an EEPROM

high_scr = bin2dec(’0000000000’);

low_scr = bin2dec(’00000000’);

cwid = bin2dec(’00000000’); % a storage of the last 8 sampled bits.

freq = 9600;

T = 1/freq;

tone_send = 0;

tone_select = 0;

count = 1;

count2 = 1;

out_value = [];

filtered = [];

t2 = (0:T:(length(data))*T);

t1 = (0:T:(length(data)-1)*T);

t = (0:T/4:(length(data))*(T));

126

APPENDIX B. THE G4XYW MATLAB SIMULATION CODE 127

for counter = 1:length(data)

temp = low_scr;

temp = dec2bin(temp,8);

low_msb = bin2dec(temp(1));

cwid = bitshift(cwid,1,8);

if data(counter) == 1

cwid = cwid + 1;

end

% == checking cwid request, if the last 8 bits sampled are same, a high

% or low tone signal is prodused. =====================================

if cwid == 0

if tone_select == 1 | tone_send == 0

temp = ’11110000’;

end

low_msb = bin2dec(temp(1));

low_scr = bitshift(bin2dec(temp),1,8) + low_msb;

tone_select = 0;

tone_send = 1;

elseif cwid == 255

if tone_send == 0 | tone_select == 0

temp = ’11001100’;

end

low_msb = bin2dec(temp(1));

low_scr = bitshift(bin2dec(temp),1,8) + low_msb;

tone_select = 1;

tone_send = 1;

elseif cwid ˜=255 && cwid ˜= 0

tone_send = 0;

end

% ===== data passing through the scrambler =============================

high_scr = bitshift(high_scr,1,10) + low_msb;

high_scr = dec2bin(high_scr,10);

low_scr = bitshift(low_scr,1,8);

APPENDIX B. THE G4XYW MATLAB SIMULATION CODE 128

x0 = data(counter);

x12 = bin2dec(high_scr(6));

x17 = bin2dec(high_scr(1));

scr_out = xor(x0,(xor(x12,x17)));

low_scr = low_scr + scr_out; %output is being fed back to the scrambler.

low_scr = dec2bin(low_scr,8);

high_scr = bin2dec(high_scr);

low_scr = bin2dec(low_scr);

for phase = 1:4

out_value(count) = fir27MAR(low_scr,phase,table0);

if counter < length(data)

count = count + 1;

end

end

end

[a,b] = butter(4,0.5); % 4th order butterworth low pass filter.

TX_out = filter(a,b,out_value);

figure(1);

clf;

subplot(2,1,1),plot(t(1:length(out_value)),out_value,’r-’)

title(’FIR output’)

subplot(2,1,2),plot(t(1:length(TX_out)),TX_out)

title(’TX lowpass filter output’)

randn(’state’,0); % normally distributed white noise

TX_out_noise = TX_out + 5*randn(size(t(1:length(TX_out))));

%% ========================= demodulation ===========================

count2 = 1;

rx_scrambler = bin2dec(’000000000000000000’);

APPENDIX B. THE G4XYW MATLAB SIMULATION CODE 129

oness = bin2dec(’00000000’);

rx_phase = 0;

RX_in = filter(a,b,TX_out_noise); % low pass filter of the receiver

figure(2);

clf;

subplot(2,1,1),plot(t(1:length(TX_out_noise)),TX_out_noise)

title(’Noisy TXout’)

subplot(2,1,2),plot(t(1:length(RX_in)),RX_in,’r’)

title(’RXin filtered’)

figure

comp_in = interp(RX_in,8); % interpolating data for a higher resolution

tt = (0:T/8:length(RX_in));

for v = 1:length(comp_in) % inverting comparator just after low pass filter

if comp_in(v) >= 0.5*(max(comp_in) - min(comp_in))

comp_in(v) = 0;

else

comp_in(v) = 5;

end

end

RXout = []; % an array of demodulator’s output data.

comp_out = []; % comparator output data.

RXdata = [];

resampled = resample(comp_in,1,8);

for k = 1:length(resampled)

if resampled(k) >= 0.5*(max(resampled) - min(resampled))

comp_out(k) = 1;

else

comp_out(k) = 0;

end

APPENDIX B. THE G4XYW MATLAB SIMULATION CODE 130

end

% modem is assumed to always in the sampling window.

for counter2 = 1:length(comp_out)

rx_phase = rx_phase + 1;

if rx_phase == 5

rx_phase = 1; % a bit period is divided into four equal phases.

end

if comp_out(counter2) == 1

% oness is an eight bit binary number.

oness = bitand(bin2dec(’00011111111’),oness);

oness = dec2bin((oness + 1),8);

oness = bin2dec(oness);

else

oness= 255 + oness;

oness = bitand(bin2dec(’000011111111’),oness);

oness = dec2bin(oness,8);

oness = bin2dec(oness);

end

if rx_phase == 3 % phase = 3 corresponts to data phase.

rx_scrambler = dec2bin(bitshift(rx_scrambler,1,18),18);

rx_scrambler = bin2dec(rx_scrambler);

if oness >= 128 & oness <= 255

rx_scrambler = rx_scrambler + 1;

else

rx_scrambler = rx_scrambler;

end

rx_scrambler = dec2bin(rx_scrambler,18);

rx0 = bin2dec(rx_scrambler(18 - 0));

rx12 = bin2dec(rx_scrambler(18 - 12));

rx17 = bin2dec(rx_scrambler(18 - 17));

RXout(count2) = xor(rx0,(xor(rx12,rx17)));

oness = bin2dec(’00000000’); % preparing for the next sample.

rx_scrambler = bin2dec(rx_scrambler);

APPENDIX B. THE G4XYW MATLAB SIMULATION CODE 131

count2 = count2 + 1;

end

end

figure(3);

clf;

subplot(2,1,1),plot(t2(1:length(data)),data,’-o’)

title(’TXdata’)

subplot(2,1,2),plot(t2(1:length(RXout)),RXout,’-*’)

title(’RXdata’)

figure(4);

clf;

subplot(2,1,1),plot(t(1:length(resampled)),resampled,’r’)

title(’analog comparator input’)

subplot(2,1,2),plot(t(1:length(comp_out)),comp_out,’-o’)

title(’analog comparator output’)

% Author: Sello Seabe

% Student number: 14011018-2002

%Function: FIR function

function [value] = fir27MAR(fir_in,phase,table0)

% determing the address of the value to be referenced from EEPROM

table_index = fir_in;

temp = table_index;

temp = bitand(temp,16); % Checking if bit4 of scrambler is set;

if temp ˜= 0

table_index = dec2bin(bitxor(table_index,255),8); % Inverting all the bits

table_index = bin2dec(table_index);

table_index = bitand(table_index,12); %concerned with bit2 and bit3

else

table_index = bitand(table_index,12);

end

%index = table_index + phase

if temp ˜= 0

APPENDIX B. THE G4XYW MATLAB SIMULATION CODE 132

value = 255 - table0(table_index + phase);

else

value = table0(table_index + phase);

end

value = value/4; %the value is suppressed to 6 bits,

%value = bitand(table_index,12);

% Author: Sello Seabe

% Student number: 14011018-2002

%Function: Performs data scrambling

function[low_scr,high_scr,scr_out,x0,x12,x17] =

scrambler(high_scr, low_scr,low_msb, counter, data)

high_scr = bitshift(high_scr,1,10) + low_msb;

high_scr = dec2bin(high_scr,10);

low_scr = bitshift(low_scr,1,8);

x0 = data(counter);

x12 = bin2dec(high_scr(6));

x17 = bin2Dec(high_scr(1));

scr_out = xor(x0,(xor(x12,x17)));

low_scr = low_scr + scr_out; %output is fed back to the scrambler

low_scr = dec2bin(low_scr,8);

high_scr = bin2dec(high_scr);

low_scr = bin2dec(low_scr);

Appendix C

G4XYW Modem Source Code

; Andy Pevy AT90S1200 AVR 9k6 G4XYW modem code

; Copyright (C) 1999-2001 Andy Pevy

; ASY & FIR code Copyright (C) 1999-2001 Robin Gilks

;

; This program is free software; you can redistribute it and/or modify

; it under the terms of the GNU General Public License as published by

; the Free Software Foundation; either version 2 of the License, or

; (at your option) any later version.

;

; This program is distributed in the hope that it will be useful,

; but WITHOUT ANY WARRANTY; without even the implied warranty of

; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

; GNU General Public License for more details.

;

; You should have received a copy of the GNU General Public License

; along with this program; if not, write to the Free Software

; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

;

; V4.06 25-June-2002

;

; andy@g4xyw.demon.co.uk

; g4xyw@g4xyw.ampr.org

; g8ecj@abmdata.demon.co.uk

; g8ecj@gb7ipd.ampr.org

133

APPENDIX C. G4XYW MODEM SOURCE CODE 134

;

; build uses several defines "avra --define <value> fsk<version>.asm"

; 9k6 = compile in 9k6 code

; 2k4 = compile in 2k4 code

; 2313 = compile explicitly for a at90s2313 (default is a at90s1200)

; default build is both on a at90s2313 (too big for a at90s1200)

;

; History

; 2.11 - add GMSK TX table

; CWID option polarity corrected

; 2.12 - implemented RX clock invert option

; save SREG & ’temp’ in Analogue interrupt s/r

; suppress RXout if not locked

; correct DPLL algorithm when locked

; 2.13 - sample input over a window

; if locked and error > max then allow clock to free-run

; replace ’magic’ numbers with defines

; 2.14 - get DEBUG symbol the right way up!!

; fix indexing into wavetable lookup in eeprom

; Implement an asy interface running at 38k4 of

; 1 start, 1 data & 2 stop bits. Concatenated so

; each data word contains 2 data bits in 1 start, 6 data

; and 1 stop bit.

; 2.20 - RX done..

; 2.30 - Simple TX implemented - don’t work..

; 2.40 - Improved sample data bit positioning on TX

; 2.50 - phase lock the TX DPLL to the incoming start bits

; 2.51 - lock the EEPROM address pointer to TX PLL by setting

; tx_counter when sample bit is set

; 2.52 - adjust reload value on RX timer so we maintain

; adjustments for each bit and not just when there

; is a bit transition

; 2.53 - Clean up the RXpll logic a bit

; 2.54 - only apply RX reload adjustments if over threshold

; Move ramp test to RX code to avoid ptt when testing

APPENDIX C. G4XYW MODEM SOURCE CODE 135

; 2.55 - Rethink RX reload adjustments. Introduce dead-zone

; required due to group delay sample scatter

; 2.56 - make a smoothed adjustment when in dead zone

; Also avoid first eeprom location as it can get corrupted

; at power up/down

; 2.57 - looks like the invert RX clock option got inverted

; 2.58 - basics of a second (test mode) set of options if DCD

; lines tied at power-up

; 2.59 - waggle DCD LED at startup to provide delayed start

; 2.60 - write EEPROM from code space to get round corruption

; problems

; 2.61 - 2.56 fix forgot the CWID waveform lookup - reverted

; 2.62 - Moved Rx -> Tx switch point to tone generator

; 2.70 - Clear hardware timer on TX PLL sync, only sync on rising edge

; 2.71 - Even more diagnostics in test mode, increased WINDOW

; 3.00 - Released under GPL version 2

; 3.01 - tidy code using Macro for EEPROM loading + no EEPROM file

; 3.02 - use FIR for TX

; 3.03 - experimental RX DPLL

; 3.04 - 3.02 changes messed up TX DPLL + FIR table finalised

; 3.05 - debugged async mode

; 3.06 - o/p NRZ data on RXclock line in ASY mode

; 3.07 - optimise code to get some slack back

; 3.08 - don’t really need smoothed-adjust algorithm + scrambler disable

; test option

; 3.09 - DC offset correction using D/A output

; 3.10 - tidy up register usage - I keep getting lost!!

; 3.11 - fix total misunderstanding of how to implement a FIR

; 3.12 - get FIR tables from include files

; 3.13 - remove 3.06 NRZ outputs & 3.08 disable scrambler - too large

; an overhead for final code

; 3.14 - Turn on watchdog.

; 3.15 - Use spare option to o/p data even if no DCD

; 4.00 - update to 2313, add 2400bps afsk mode, only flash LED in test mode

; use conditional assembly (implies use of avra assembler)

APPENDIX C. G4XYW MODEM SOURCE CODE 136

; 4.01 - fine tune conditionals & macros for minimal 9k6 changes

; 4.02 - sample input over window in 2k4

; 4.03 - direct FIR lookup, averaging error in RX DPLL, new LED flash

; 4.04 - major problem in TX DPLL in non-async mode, new macros for 2k4

; 4.05 - final cleanup of 2k4 RX, total rewrite of TX DPLL

; 4.06 - notxpll option got lost somewhere, needed for TNC code :-))

;

;==

; This code performs the function of the G3RUH 9600

; bps FSK modem and 2400 bps AFSK modem.

; It uses the Atmel AT90S1200 CPU clocked at 9.8304Mhz

; The incoming data is externally filtered and presented

; to the analog comparator input pin (PB0). This data

; is internally fed into a PLL. The data extraction is done

; by sampling the comparator output halfway through the received

; data bit. This data is then de-scrambled and output on pin PB3.

;

; The Transmit data is presented at pin PB2. It is then

; analyzed to extract a clock from it and then scrambled.

; The data from the scrambler is passed through a raised cosine

; function and then presented to an external DAC. From here

; it is filtered and then sent to the outside world.

;

; RXclock is a bit clock that is synchronous to the rx data.

;

; CW ident is also available. When the modem is in TX mode

; (PTTin = 0v) if the hdlc TXin pin is held at ’0’ for more

; than 8 bit periods a low tone will be made and if held at

; ’1’ then a high tone will be made.

;

; To operate the modem at other than 9600bps the xtal can be changed.

; The operating frequency is (xtalfreq/1024). Noting that the maximum

; operating frequency of the Atmel device is 12Mhz.

;

;--

APPENDIX C. G4XYW MODEM SOURCE CODE 137

;

; The 2400bps operation uses two tones - 1200Hz and 2400Hz. These give

; either one or two zero crossings per bit. Tone changes are synchronous

; to the bit transitions to ease clock, data and DCD recovery and use

; a raised cosine synthesis to minimise audio bandwidth.

; The bit period is split into two to simplify the locking of the DPLL

; onto a 2400Hz tone and the data is oversampled across the half bit

; period so that two consequative of ’00’ or ’11’ signify a 1200Hz tone

; and alternating samples indicate a 2400Hz tone.

; Startup is common to both speeds and minimal branches are made to allow

; for the very different fsk/afsk algorithms used.

;

;==

; Pin definition:-

;

; Pin 1 ˜RESET (pulled up internally)

; 2 PD0 DAC-0 + OPTION_0

; 3 PD1 DAC-1 + OPTION_1

; 4 XTAL2 (out)

; 5 XTAL1 (in) 9.8304Mhz

; 6 PD2 DAC-2 + OPTION_2

; 7 PD3 DAC-3 + OPTION_3

; 8 PD4/T0 DAC-4 + OPTION_4

; 9 PD5 DAC-5 + OPTION_5

; 10 0v

; 11 PD6 ˜Read_options

; 12 PB0 (Analog +) RXin (after filtering)

; 13 PB1 (Analog -) RXref (+2.5v)

; 14 PB2 TXin (HDLC in NRZI form)

; 15 PB3 RXout (HDLC in NRZI from)

; 16 PB4 /DCD (0=carrier detect)

; 17 PB5 (MOSI) DCD (1=carrier detect)

; 18 PB6 (MISO) RXclock (recovered RX clock)

; 19 PB7 (SCK) PTTin (0=TX, 1=RX)

; 20 Vcc

APPENDIX C. G4XYW MODEM SOURCE CODE 138

;===

;

.message "Assembling for 9k6 operation only on a at90s1200"

.NOLIST

.INCLUDE "1200def.inc"

.LIST

;

.equ MAJOR = 2

.equ MINOR = 1

.equ BIT0 = 0

.equ BIT1 = 1

.equ BIT2 = 2

.equ BIT3 = 3

.equ BIT4 = 4

.equ BIT5 = 5

.equ BIT6 = 6

.equ BIT7 = 7

set_ee was never used, hence write_ee.

.macro set_ee

ldi temp,@0

rcall write_ee

.endmacro

; set_2k4 immediate instruction, destination, value, indirect instruction

.macro set_2k4

@0 @1,@2

.endmacro

;===

; The following have to a large extent been determined by trial and

; error on a mixture of clean and noisy links against a variety

; of TNCs and other modems. The test modes allow most of these values

; to be examined via the TX D/A converter and a ’scope.

;

APPENDIX C. G4XYW MODEM SOURCE CODE 139

; Max time error allowable between actual RXin transition

; and TCNT0.

.equ LOCK_ERROR=24

;

; When aquiring lock, LOCK_COUNT samples with acceptable

; phase error are required before DCD is asserted.

;

; When loosing lock, LOCK_COUNT samples with > acceptable

; phase error are required before DCD is unasserted.

.equ LOCK_COUNT=50;

; When looking at whether locked or not, decide how close we are

; Greater than this we reckon is near enough locked

.equ LOOSE_LOCK=40

; When locked, errors less than this cause no adjustments as we

; assume they are due to group delay variance and not ’real’

; errors

.equ DEAD_ZONE=16

; WINDOW is the number of clocks over which we do over sampling

; RX_RELOAD is the value to reload into the timer when it expires

; TRANSIT is the count at which we expect a transition on the data input

; W_OPEN and W_CLOSE define when we open and close the sampling window

.equ WINDOW=64

.equ RX_RELOAD=128

.equ TRANSIT=-(RX_RELOAD/2)

.equ W_OPEN=216 ; WINDOW/2

.equ W_CLOSE=152 ; RX_RELOAD-WINDOW/2

; Transmit timer reload value and at what value we will look for a start bit

.equ TX_RELOAD=32

.equ START_VAL=-16

APPENDIX C. G4XYW MODEM SOURCE CODE 140

;

; addresses in EEPROM

.equ FIR0_ADDR=0

.equ FIR1_ADDR=16

.equ SINE_ADDR=48

;==

;; register allocations

;==

;

;; common to both TX and RX, indirect registers (0 to 15)

.def low_sr = r0 ; scrambler

.def mid_sr = r1 ; shift

.def high_sr = r2 ; register

.def irq_temp = r3 ; saved temp

.def irq_sreg = r4 ; saved SREG

.def options = r5 ; option pins

; option bits

;

.equ NOCWID = BIT0 ; cwid disabled

.equ NOTXPLL = BIT1 ; generate TX clock on RX clock line

.equ INVRXC = BIT2 ; invert RX clock

.equ BAUD2K4 = BIT3 ; Use this bit to decide what code runs

.equ TABLE = BIT4 ; cosine lookup table select

.equ ASYIF = BIT5 ; asy style interface

.equ TEST_MODE = BIT6 ; set if both DCD lines tied together

;

.def mode = r6 ; 0=RX, ˜0=TX

.def test_options= r7 ; reset after each ptt

; test option bits

; default with no option bits set is to o/p a ramp in test mode

;

.equ DIS_ERROR = BIT0 ; o/p ERROR from RX loop to DAC

.equ DIS_LOCK = BIT1 ; o/p LOCK_COUNTER to DAC

APPENDIX C. G4XYW MODEM SOURCE CODE 141

.equ DIS_ONES = BIT2 ; o/p ’ones’ sampling counter byte

.equ DIS_SAMPLE = BIT3 ; toggle DAC MSB when we sample analogue input

.def fir_table = r8

;; specific to TX and so can be re-used for RX, indirect registers (0 to 15)

.def txdat = r10 ; incoming tx data bit

.def pblast = r11 ;

;

;; specific to RX and so can be re-used for TX, indirect registers (0 to 15)

.def edge_counter= r10

.def ones = r11 ; counter for the number of 1’s & 0’s

; common to both TX and RX, direct registers (16 to 31) or persistant

; over TX & RX (eg. setup etc)

.def temp = r16 ; scratch location.

.def action = r17 ; action required

;; action bits

.equ SAMPLE = BIT0 ; sample data now

.equ LOCKED = BIT1 ; PLL is locked

.equ TONE_SEND = BIT2 ; tone generator on

.equ TONE_SELECT = BIT3 ; HI or !LO tone

.equ START_BIT = BIT4 ; asy TX is looking for a start bit

.def phase = r18 ; what to do next in ASY mode

.def reload = r19 ; adjusted TCNT0 reload value

;; specific to RX and so can be re-used for TX, direct registers (16 to 31)

.def lock_counter= r25 ;

.def tx_ramp = r26 ; Used in test mode

.def adjust = r27 ; RX pll adjustment value

.def error = r28 ; RX pll phase error

.def average = r29 ; average DPLL error

; specific to TX and so can be re-used for RX, direct registers (16 to 31)

APPENDIX C. G4XYW MODEM SOURCE CODE 142

.def pbnow = r25 ; used to detect TXin changing.

.def cwid = r26 ; used to detect cwid request

.def count = r27 ; used in FIR o/p

.def eaddr = r28

.def value = r29

; phases - these values are derived from bits 5 & 6 of the counter/timer

; as it counts up from the reload value to zero

;

.equ PHASE1 = RX_RELOAD/4

.equ SPHASE = PHASE1*1 ; sample

.equ DPHASE = PHASE1*2 ; data out

.equ TPHASE = PHASE1*3 ; transition

.equ CPHASE = PHASE1*0 ; clock toggle

; PortB pin definitions.

.equ TXin = PB2 ; bit 2 on PORTB

.equ RXout = PB3 ; bit 3 on PORTB

.equ DCDnot = PB4 ; bit 4 on PORTB

.equ DCD = PB5 ; bit 5 on PORTB

.equ RXclock = PB6 ; bit 6 on PORTB

.equ TXptt = PB7 ; bit 7 on PORTB

;

.CSEG

.ORG 0

;

; Vectors live here..

;

rjmp reset ; reset

rjmp reset ; INT0

rjmp TIMER_int ; Timer 0 Overflow

rjmp ANALOG_int ; Analogue Comparitor

;

APPENDIX C. G4XYW MODEM SOURCE CODE 143

reset:

;

; Called at power on/master reset.

; write the EEPROM contents - use as a lookup table

ldi temp,FIR0_ADDR

out EEAR,temp ; set up eeprom address

; load 1st FIR

.INCLUDE "table0.fir"

ldi temp,FIR1_ADDR

out EEAR,temp ; set up next eeprom address

; load 2nd FIR

.INCLUDE "table1.fir"

; DCDnot has the LED on it!!

ldi temp,0b00010000 ; DCDnot as output

out DDRB,temp ; set up port B DDR.

;

; TXptt,RXclock,DCD,DCDnot,RXout,TXin on Port B in bits 7-2

ldi temp,0b01011000 ; RXclock,DCDnot,RXout as outputs

out DDRB,temp ; set up port B DDR.

;

ldi temp,0b01000000 ; 0x40

out DDRD,temp ; and port D DDR.

;

ldi temp,0b00111111 ; Set PORTD6 = 0 and

out PORTD,temp ; enable pullups on port D

;

rcall sdelay

;

in temp,PIND ; read port D

com temp ; invert it.

andi temp,0b00111111 ; 6 bits only

mov options,temp ; and save it.

APPENDIX C. G4XYW MODEM SOURCE CODE 144

;

; preload a variable with the offset into the FIR coefficient table

ldi temp,FIR0_ADDR

sbrc options,TABLE ; select the correct lookup table

ldi temp,FIR1_ADDR

mov fir_table,temp

ldi temp,0b00100000

out PORTB,temp ; set DCDnot low, DCD pullup

;

rcall sdelay

;

sbic PINB,DCD ; skip if 2nd DCD pin = 0.

rjmp not_testing

ldi temp,(1<<TEST_MODE)

or options,temp ; set msb to indicate test mode

rjmp test_mode_set

not_testing:

clr test_options

ldi temp,0b01111000 ; RXclock,DCD,DCDnot,RXout as outputs

out DDRB,temp ; set up port B DDR.

test_mode_set:

ldi temp,0b01100000 ; make PORTD6 = 1.

out PORTD,temp ; and DAC = 2.5v

;

ldi temp,0b01111111 ; 0x7F

out DDRD,temp ; and port D DDR.

;

clr temp

out ACSR,temp ; set up analog comparator.

out WDTCR,temp ; watchdog off

out GIMSK,temp ; int0 off

APPENDIX C. G4XYW MODEM SOURCE CODE 145

ldi count,MAJOR ; re-use a variable during init

; flashes of the LED - reveals version number!!!

flash1:

cbi PORTB,DCDnot ; light LED

rcall delay_5s

sbi PORTB,DCDnot ; LED off

rcall delay_5s

dec count

brne flash1

rcall delay_5s

rcall delay_5s

ldi count,MINOR ; re-use a variable during init

; flashes of the LED - reveals version number!!!

flash2:

cbi PORTB,DCDnot ; light LED

rcall delay_5s

sbi PORTB,DCDnot ; LED off

rcall delay_5s

dec count

brne flash2

main:

cli ; master ints off

;

ldi temp,0x02 ; Set clock mode = /8

out TCCR0,temp ;

;

ldi temp,WDE

out WDTCR,temp ; enable watchdog at 15mS

;

sbrs options,TEST_MODE ; skip if in test mode

rjmp main_cont

APPENDIX C. G4XYW MODEM SOURCE CODE 146

; in test mode so read secondary options from links

; we do this each time the PTT line changes state

;

ldi temp,0b01000000 ; 0x40

out DDRD,temp ; and port D DDR.

;

ldi temp,0b00111111 ; Set PORTD6 = 0 and

out PORTD,temp ; enable pullups on port D

rcall sdelay

;

in temp,PIND ; read port D

com temp ; invert it.

andi temp,0b00111111 ; 6 bits only

mov test_options,temp ; and save it.

ldi temp,0b01111111 ; 0x7F - all outputs again

out DDRD,temp ; and port D DDR.

main_cont:

clr low_sr ; clear the scrambler

clr mid_sr

clr high_sr

clr mode ; mode = RX

clr action

clr phase

clr average

cbi PORTB,DCD ; unassert DCD lines.

sbi PORTB,DCDnot ;

ldi temp,(1<<TOIE0)

out TIMSK,temp ; timer ints on.

;

sbic PINB,TXptt ; skip if TXptt = 0.

rjmp setup_rx ; here so goto RX code.

APPENDIX C. G4XYW MODEM SOURCE CODE 147

;

; Here so in TX mode.

;

setup_tx:

;

clr temp

out ACSR,temp ; analog comparator ints off

com mode ; mode = 0xff

ldi reload,TX_RELOAD

;

sei ; main ints ON.

;

; Loops here when sending data.

;

tx_loop:

;

sbic PINB,TXptt ; skip if TX

rjmp main ; if RX restart

;

wdr ; kick the ’dog

;

sbrs action,SAMPLE ; if sample bit set skip

rjmp tx_extract_tx_clock ; else go here

; TX data from the interface is in TXDAT (set in interrupt code)

cbr action,(1<<SAMPLE) ; reset action bit

;==

;

; Detect the presence of 8 all 1’s or all 0’s as this

; is used to signify cwid to be sent

;

;==

;

sbrc options,NOCWID ; if CWID enabled skip

APPENDIX C. G4XYW MODEM SOURCE CODE 148

rjmp tx_sample ; else do real data now.

mov temp,low_sr ; current data shift register

lsl cwid ; shift 0 into cwid bit 0

;

sbrc txdat,TXin ; if incoming data = 0 skip

inc cwid ; else set bit 0 of cwid

;

tst cwid ; refresh Z bit.

brne tx_20 ; if all bits are 0’s

;

; Here so all bits are 0’s. See if already doing CWID

;

sbrs action,TONE_SEND ; if TONE_SEND already set then skip

ldi temp,0b11110000 ; LO tone

sbrc action,TONE_SELECT ; if tone already LO then skip

ldi temp,0b11110000 ; LO tone

cbr action,(1<<TONE_SELECT) ; Note that we are o/p zero

rjmp tx_30

tx_20:

cpi cwid,0xFF ; is it full of 1’s

brne tx_40 ; no br

;

; Here so all bits are 1’s.

;

sbrs action,TONE_SEND ; if TONE_SEND already set then skip

ldi temp,0b11001100 ; initiate HI tone

sbrs action,TONE_SELECT ; if tone already HI then skip

ldi temp,0b11001100 ; HI tone

APPENDIX C. G4XYW MODEM SOURCE CODE 149

sbr action,(1<<TONE_SELECT) ; Note that we are o/p ones

tx_30:

mov low_sr,temp

lsl low_sr ; rotate left

brcc tx_35

inc low_sr ; make an 8 bit rotate

tx_35:

sbr action,(1<<TONE_SEND) ; make a tone not FSK data

;

rjmp tx_loop ; loop while in TX mode

;

tx_40:

cbr action,(1<<TONE_SEND) ; neither all 0’s or 1’s so cwid off

; fall thru into scrambler

;

; Sample hdlc input pin and scramble data.

;

; | |

; +-----+-----------------------+-----------------------+

; |17| | | | |12| | | | | | | | | | | |00|

; +-----+-----------------------+-----------------------+

; high| mid | low

;

; Data is shifted from right to left so 12 was the bit transmitted

; 12 bits ago and 17 was transmitted 17 bits ago...

;

; Bit 00 is incoming data exor’d with bit 12 exor’d with bit 17.

;

; Bit 00 is then fed to the raised cosine generator.

;

;==

;

APPENDIX C. G4XYW MODEM SOURCE CODE 150

tx_sample:

lsl low_sr ; shift 0 into ls bit

rol mid_sr ; shift with carry

rol high_sr ; ditto

;

mov temp,mid_sr ; get txmid and swap nibbles

swap temp ; to make bit 0x10 -> bit 0x01

lsl temp ; shift bit 0x01 to bit 0x02

eor temp,high_sr ; xor bit 12 with bit 17

eor temp,txdat ; xor with incoming bit

lsr temp ; shift bit 0x02 to bit 0x01

andi temp,0x01 ; 1 bit only

or low_sr,temp ; place in txlow bit 0

rjmp tx_loop

;

;==

;

; Check for HDLC input changing. We need this because we have to

; extract a clock from the Tx data as well as the Rx data.

; This is done with a 2 bit counter, when this code detects

; the Tx data input has changed the counter is reset to 0

; when the fast tx interrupt increments the counter from

; 03 to 04 the state of the tx input is sampled and the data

; is then fed to the scrambler (back in the main loop).

;

;==;

;

tx_extract_tx_clock:

sbrc options,NOTXPLL ; see if free running the TX clock

rjmp tx_90 ; yup - out of here

sbrs action,START_BIT ; see if looking for start bit

rjmp tx_90 ; - or falling data edge

APPENDIX C. G4XYW MODEM SOURCE CODE 151

; look for start bit in async data, rising edge in normal data

; phase counts are 2+ = start; 3+ = data; 0,1 = stop

; where + means half way thru!!

;

in pbnow,PINB ; read port B inputs

mov temp,pbnow ; save it

eor pbnow,pblast ; has TXin changed

andi pbnow,(1<<TXin) ; 1 bit only

breq tx_90 ; no branch

;

mov pblast,temp ; yes, so set last=now

andi temp,(1<<TXin) ; look for new TX being a 1

breq tx_90 ; skip adjust if 1 > 0 transition

; TCNT0 & phase get changed in interrupt code so protect

cli

; I expect the start bit to begin half way thru phase 2

cpi phase,2

breq tx_60

; I’m totally out of sync twixt phase & the start bit

tx_50:

ldi phase,2

ldi temp,START_VAL

out TCNT0,temp ; force a resync

rjmp tx_80

; in the correct phase - now see if in correct place within it

tx_60:

in temp,TCNT0 ; current value

subi temp,START_VAL ; where we expect the edge

neg temp ; invert sign

APPENDIX C. G4XYW MODEM SOURCE CODE 152

asr temp ; only apply half the error as correction

sub reload,temp ; correct next timer reload

tx_80:

cbr action,(1<<START_BIT) ; no longer looking for start bit

sei

tx_90:

rjmp tx_loop

;===

; RX section.

;===

;

setup_rx:

set_2k4 ldi,reload,RX_RELOAD

clr lock_counter ; lock_counter = 0;

clr edge_counter ;

;

ldi temp,(1<<ACIE)+(1<<ACIS1)+(1<<ACIS0)

out ACSR,temp ; analog ints on, int on rising edges.

;

sei ; master ints ON.

;

; Loop here when in RX mode.

;

rx_loop:

;

sbis PINB,TXptt ; skip if still RX

rjmp main ; but if TX restart.

;

wdr ; kick the ’dog

;

sbrc action,LOCKED ; if un-locked skip

rjmp rx_05 ; if locked goto rx_2

;

APPENDIX C. G4XYW MODEM SOURCE CODE 153

; Here so no data detected.

;

cbi PORTB,DCD ; unassert DCD lines.

sbi PORTB,DCDnot ;

rjmp rx_10 ;

;

; Here so data detected.

;

rx_05:

sbi PORTB,DCD ; assert DCD lines.

cbi PORTB,DCDnot ;

;

rx_10:

;

; Here so take a sample of input if within WINDOW

in temp,TCNT0 ; read TCNT0

; neg temp ; counter moves up thru -ve values

set_2k4 cpi,temp,W_OPEN ; see if in sampling window

brcc rx_15 ; J. yes - sample

set_2k4 cpi,temp,W_CLOSE

brcc rx_25

;

rx_15:

ldi temp,1

sbis ACSR,ACO ; look at analog comparator state

neg temp ; if 1 then leave else negate

add ones,temp ; add or sub 1

;

sbrs test_options,DIS_SAMPLE; if toggle DAC MSB when sampling

rjmp rx_25

;

sbic PORTD,BIT5 ; skip if DAC MSB data latch = 0.

rjmp rx_20

;

sbi PORTD,BIT5 ; assert DAC MSB line

APPENDIX C. G4XYW MODEM SOURCE CODE 154

rjmp rx_25

rx_20:

cbi PORTD,BIT5 ; clear DAC MSB line

;

rx_25:

in temp,TCNT0 ; read TCNT0

andi temp,0b01100000

cp phase,temp

breq rx_loop

; just seen a change in phase - see what the new state is..

mov phase,temp

cpi phase,DPHASE

breq rx_32

rjmp rx_60

;

;===

; phase = data = descramble RX data, RX out pin = data, set clock pin

;

; | |

; +-----+-----------------------+-----------------------+

; |17| | | | |12| | | | | | | | | | | |00|

; +-----+-----------------------+-----------------------+

; high| mid | low

;

; Rxdata is bit 00 exor bit 12 exor bit 17, where bit 00 is

; the input from the Analog comparator.

;

;===

;

rx_32:

lsl low_sr ; shift 0 into rxlow bit 0

rol mid_sr ; shift with carry

rol high_sr ; ditto

;

APPENDIX C. G4XYW MODEM SOURCE CODE 155

sbrc ones,BIT7 ; if MSB set (-ve) then more 0s than 1s

inc low_sr ; if 1 then set rxlow bit 0 to 1.

;

mov temp,mid_sr ; get mid octet in temp

swap temp ; swap 0x10 bit to 0x01 bit

eor temp,low_sr ; xor with bit 1

lsl temp ; make bit 0x10 -> bit 0x20

eor temp,high_sr ; xor with bit 17

;

sbrs action,LOCKED ; if locked skip

rjmp rx_40 ; if un-locked, don’t waggle RXout

;

sbrc temp,BIT1 ; skip if temp bit 1 clear

sbi PORTB,RXout ; temp bit 1 set so SET port

sbrs temp,BIT1 ; skip if temp bit 1 set

cbi PORTB,RXout ; temp bit 1 clear so CLEAR port

;

rx_40:

;

; check for test mode - output other things to the DAC

;

rcall rx_tst

clr ones ; ready for new sampling

;

rx_cont:

ldi temp,0x60 ; DAC = 01100000 = mid rail [AP]

sbrs options,TEST_MODE ; skip if in test mode

out PORTD,temp ; output data

;

;

; Make sure we are still connected to some rx data.

;

tst edge_counter ; If edge_counter == 0

breq rx_50 ; branch.

;

APPENDIX C. G4XYW MODEM SOURCE CODE 156

dec edge_counter ; != 0 so edge_counter--;

brne rx_50 ; if still !=0 branch

;

cbr action,(1<<LOCKED) ; == 0 so, clear locked flag.

;

rx_50:

sbrs options,INVRXC ; if RX clocks to be inverted

rjmp rx_55

cbi PORTB,RXclock ; so CLEAR RXclock

rjmp rx_loop ;

;

rx_55:

sbi PORTB,RXclock ; so SET RXclock

rjmp rx_loop ;

;

rx_60:

cpi phase,TPHASE ; looking for input transition?

brne rx_70

;==

; phase = transit = if in ASY mode then set RXdata line = stop bit

sbrs options,ASYIF ; if ASY mode

rjmp rx_loop ;

cbi PORTB,RXout ; so SET port

rjmp rx_loop ;

rx_70:

cpi phase,CPHASE

brne rx_80

;==

; phase = clock = set clock pin back again

;==

sbrs options,INVRXC ; if RX clocks to be inverted

rjmp rx_75

APPENDIX C. G4XYW MODEM SOURCE CODE 157

sbi PORTB,RXclock ; bit 1 set so CLEAR RXclock

rjmp rx_loop ;

;

rx_75:

cbi PORTB,RXclock ; bit 1 set so SET RXclock

rjmp rx_loop ;

rx_80:

;==

; phase = sample = if ASY interface mode set RX out = start bit

;==

sbrs options,ASYIF ; if ASY mode

rjmp rx_loop ;

sbrs action,LOCKED ; if locked skip

rjmp rx_loop ; if un-locked, no start bit

sbi PORTB,RXout ; so SET port

rx_90:

rjmp rx_loop ;

;==

; test mode selected with DCD lines tied - messes with temp

;==

rx_tst:

sbrs options,TEST_MODE ; skip if in test mode

ret

inc tx_ramp ; inc tx_counter

mov temp,tx_ramp ; default to ramp output to DAC

tst test_options

breq tst_50 ; J. no options selected

APPENDIX C. G4XYW MODEM SOURCE CODE 158

mov temp,error ;

sbrc test_options,DIS_ERROR ; if error output to DAC

rjmp tst_50

mov temp,lock_counter ;

sbrc test_options,DIS_LOCK ; if lock_counter output to DAC

rjmp tst_50

mov temp,ones ;

sbrc test_options,DIS_ONES ; if ’ones’ counter output to DAC

rjmp tst_50

; fall out if none of the above - other options handled elsewhere

tst_40:

rjmp tst_90 ; default do nowt

tst_50:

sbr temp,(1<<BIT6) ; option o/p select bit always set

out PORTD,temp ; output data

tst_90:

ret

;==

; delay .5 second - interrupts off - screws up timer setup

;==

delay_5s:

clr temp

out TCNT0,temp ; count = 256

out TIMSK,temp ; timer ints off.

ldi temp,0x05 ; Set clock mode = /1024

out TCCR0,temp ;

ldi error,17 ; I can use this as ints are off!!

APPENDIX C. G4XYW MODEM SOURCE CODE 159

del_30:

in temp,TIFR

andi temp,(1<<TOV0)

breq del_30

ldi temp,(1<<TOV0)

out TIFR,temp ; clear the overflow bit

dec error ; actually 37.5 per sec

brne del_30

ret

;==

; delay for a short period to allow I/O lines to settle

;==

sdelay:

clr temp

sdly:

dec temp ; to allow the hardware

brne sdly ; to settle

ret

;==

; write value in temp to EEPROM, increment address

;==

write_ee:

out EEDR,temp ; set eeprom data

sbi EECR,EEWE ; write eeprom.

ee_30:

sbic EECR,EEWE ; poll write bit, skip when done

rjmp ee_30

APPENDIX C. G4XYW MODEM SOURCE CODE 160

in temp,EEAR ; get eeprom address

inc temp

out EEAR,temp ; set up next eeprom address

ret

;==

; Called by Vector.

;==

;

ANALOG_int:

;

; Called when Analog input changes in RX mode.

;

; The operation of the RXpll is as follows:-

;

; The 8 bit timer counter is clocked at 128*bit rate and

; counts from 0x80 -> 0xFF.

; This will create an interrupt at the bit rate (when it overflows

; from 255 to 0) the timer interrupt routine sets the timer

; back 128 thus we get an interrupt every 104.16u Seconds.

;

; When the Analog comparator detects a transition on the incoming

; RX data pin, the time difference between now and the required

; target time (192) is calculated.

;

; If this difference is => LOCK_ERROR the loop is adjusted by the

; factor error/4. If the difference is < LOCK_ERROR the loop is

; adjusted linearly in steps on +-1.

;

; However, if the pll is locked and a ’rogue’ edge is detected

; the loop is corrected +-1 only.

;

; This should give a lock in 40 bits on clean data.

;

APPENDIX C. G4XYW MODEM SOURCE CODE 161

;===

;

in irq_sreg,SREG ; save SREG

mov irq_temp,temp ; and temp

in adjust,TCNT0 ; read and save TCNT0.

set_2k4 subi,adjust,TRANSIT ; load temp according to 2k4 option

mov error,adjust ; save it for later.

neg adjust ; invert adjust

;

add average,adjust

asr average ; average = (error + average) / 2

mov average,adjust ; save it for later.

sbrc error,BIT7 ; if error is -ve

neg error ; make it +ve

;

cpi lock_counter,LOOSE_LOCK

brge anl_30 ; consider to be in lock

; always make fast lock adjust unless well towards being locked

asr adjust

asr adjust ; adjust becomes /4

rjmp anl_50

anl_30:

set_2k4 cpi,error,DEAD_ZONE ; load temp according to 2k4 option

brlt anl_dcd ; no adjustment if so

;

; whatever the error, we are as good as locked so small adjustment

;

mov temp,adjust ; copy adjust

ldi adjust,0x01 ; adjust = +1

APPENDIX C. G4XYW MODEM SOURCE CODE 162

sbrc temp,BIT7 ; if temp is -ve

neg adjust ; then adjust = -1

;

anl_50:

sub reload,adjust ; next reload of timer is +/- n

;

;==

; sort out DCD

;==

;

anl_dcd:

;

set_2k4 cpi,error,LOCK_ERROR ; load temp according to 2k4 option

brge anl_70 ; if error > allowable branch.

;

; Here so error < allowable.

;

inc lock_counter ;

cpi lock_counter,LOCK_COUNT ; if < LOCK_COUNT

brlo anl_60 ; branch.

ldi lock_counter,LOCK_COUNT ; else set=LOCK_COUNT

;

; Here we are locked to the incoming data.

;

sbr action,(1<<LOCKED) ; so, set locked flag

;

anl_60:

rjmp anl_90

;

;===

;

; Here so error > allowable.

;

anl_70:

APPENDIX C. G4XYW MODEM SOURCE CODE 163

tst lock_counter ; is it == 0

breq anl_80 ; yes branch

;

dec lock_counter ; no so dec it.

brne anl_90 ; if != 0 br

;

; Here so now out of lock.

;

anl_80:

cbr action,(1<<LOCKED) ; clear locked flag.

;

;===

;

; We must maintain edge_counter > 0 when edges

; are being detected by the input comparator.

; This is to ensure that the DCD goes inactive

; when no signal is applied.

;

; NOTE. (this should never happen when the modem is connected

; to a real radio).

;

anl_90:

ldi temp,255 ; tell main loop RXdata active

mov edge_counter,temp ;

;

mov temp,irq_temp ; restore temp

out SREG,irq_sreg ; and SREG

reti ;

;==

; Timer overflow interrupt. Called by Vector.

;==

;

TIMER_int:

;

APPENDIX C. G4XYW MODEM SOURCE CODE 164

in irq_sreg,SREG ; save SREG

mov irq_temp,temp ; and temp

;

tst mode ; what mode am I in ?

brne tx_timer ; if TX skip

;===

; Called by TCNT0 overflow interrupt when in RX mode. (104.16us@9600Bd)

;==

;

rx_timer:

;

in temp,TCNT0 ; read TCNT0

sub temp,reload ; this may be adjusted by the DPLL

; ; - when the loop is locked

out TCNT0,temp ; replace it

;

set_2k4 ldi,reload,RX_RELOAD ; assume no errors - adjust later

sbr action,(1<<SAMPLE) ; sample HDLC input in main loop

;

rjmp tt_out ;

;

;==

; Called by TCNT0 overflow interrupt when in TX mode. (26.04us@9600Bd)

;==

;

tx_timer:

;

in temp,TCNT0 ; read TCNT0

sub temp,reload ; this may be adjusted by the DPLL

; - during ASY start bit search

out TCNT0,temp ; replace it

ldi reload,TX_RELOAD ; remaining clocks stay as is

; output value calculated during the last interrupt

APPENDIX C. G4XYW MODEM SOURCE CODE 165

lsr value

lsr value ; compress down to 6 bits

subi value,-64 ; add bit 6 (always set)

out PORTD,value

;========================= variable length FIR ==========================

; use a lookup table containing a 9 bit FIR.

; Hard coded to operate only on 3 adjacent data bits

; (i.e. bits = ((FIR length - 1) / oversampling) + 1

ldi temp,0xff ; preload = 255 (and all 1’s!!)

mov eaddr,low_sr

sbrc low_sr,BIT4 ; MSB of 3 adjacent bits

eor eaddr,temp ; if set, invert next bits used for table lookup

andi eaddr,0x0c ; adjacent 2 bits for 9 bit FIR

add eaddr,phase ; bottom 2 bits come from phase

add eaddr,fir_table ; base address of table

out EEAR,eaddr ; set up eeprom read address

sbi EECR,EERE ; read eeprom command

in value,EEDR ; read eeprom data

sbrs low_sr,BIT4 ; next bit along

rjmp txint_30

sub temp,value

mov value,temp ; subtract the value from 255

txint_30:

; Extract a clock from TX HDLC data.

; In external TX clock mode, the rising edge clocks out TX data to us

; We therefore generate that and then drop the clock and sample the data

; 2 interrupts later (half way through the bit).

inc phase ; phase++

andi phase,0x03 ; 2 bits only

brne txint_60 ; == 0 ? no br

cbi PORTB,RXclock ; TX data stable so CLEAR T(R)Xclock

APPENDIX C. G4XYW MODEM SOURCE CODE 166

; next interrupt we will use this new data bit (after scramblers etc)

sbr action,(1<<SAMPLE) ; sample HDLC input in main loop

clr txdat ; txdat initially=0

sbic PINB,TXin ; skip if TXin in =0

com txdat ; else txdat=0xFF

rjmp txint_90

txint_60:

cpi phase,1 ; ready for start bit (asy mode)

brne txint_70 ; no branch

sbr action,(1<<START_BIT) ; look for a start bit if in asy mode

rjmp txint_90

;

txint_70:

cpi phase,2 ; ’halfway through bit’ == 2 ?

brne txint_90 ; no branch

sbi PORTB,RXclock ; Time for new TX data so set T(R)Xclock

txint_90:

; phase = 3 does nothing!!

tt_out:

mov temp,irq_temp ; recover temp

out SREG,irq_sreg ; recover sreg.

reti ; return

Appendix D

G4XYW Modem Circuit

Figure D.1: G4XYW circuit-Part1

167

APPENDIX D. G4XYW MODEM CIRCUIT 168

Figure D.2: G4XYW circuit-Part2

Appendix E

The G3RUH Schematic Diagram

169

APPENDIX E. THE G3RUH SCHEMATIC DIAGRAM 170

Figure E.1: The G3RUH Schematic Diagram - Part1 [8]

APPENDIX E. THE G3RUH SCHEMATIC DIAGRAM 171

Figure E.2: The G3RUH Schematic Diagram - Part2 [8]

Appendix F

Tools used for the Project

F.1 Hardware

1. Personal computer - A PC with a serial interface running a serial communication terminal

software was used as a data source.

2. Altium Live Design Evaluation Board - The on-board components used are as follows:

(a) FPGA device

(b) 256 K bytes × 16 bit static RAM

(c) Fixed 50 MHz clock

(d) User-defined RESET button

(e) RS232 serial port

Table F.1 shows the resources that the FPGA have as well as the ones used for the project.

Table F.1: FPGA device resources

Feature Quantity Used

Logic elements (LEs) 12060 561

I/O pins 249 49

3. G4XYW modem - The modem uses a 1K byte programmable flash microcontroller. The

microcontroller has the following features:

172

APPENDIX F. TOOLS USED FOR THE PROJECT 173

(a) Throughput - Up to 12 MIPS throughput at 12 MHz.

(b) Peripheral features - One 8-bit Timer/Counter with separate prescaler, on-chip ana-

log comparator, and programmable watchdog timer.

(c) I/O and package - 15 programmable I/O lines, 20-pin PDIP package.

(d) Power consumption at 4 MHz, 3V, 25°C

i. Active mode: 2.8 mA

ii. Idle mode: 0.8 mA

iii. Power-down mode: < 1µA

(e) Data and Non-volatile memory

i. 1K bytes programmable flash

ii. 64 bytes programmable EEPROM

The details of the total memory used can be found in Table 4.3.

F.2 Software

1. MATLAB® - The software was used to model the signal processing functionality of the

modem.

2. Altera® Quartus - Quartus was used for the following purposes:

(a) VHDL editor

(b) timing analysis

(c) Logic synthesis

(d) Device programming and verification

3. Modelsim Actel® - Simulation makes VHDL design much easier through modelsim

waveform analysis.

APPENDIX F. TOOLS USED FOR THE PROJECT 174

—-

Bibliography

[1] Stallings, William: Data Computer Communications, Sixth Edition, ISBN 0-13-086388-2

[2] John A. Magliacane, KD2BD, The KD2BD 9600 Baud Modem

http://www.amsat.org/amsat/articles/kd2bd/9k6modem/

[3] John A. Magliacane, KD2BD, The KD2BD 9600 Baud Modem

http://www.amsat.org/amsat/articles/kd2bd/9k6modem/figures.html

[4] http://www.amsat.org/amsat-new/index.php

[5] James Miller, G3RUH, 9600 Baud Packet Radio Modem Design, Papers of ARRL 7th

Computer Networking Conference (US) October 1988. pps 135-140

http://www.amsat.org/amsat/articles/g3ruh/109.html , Email:james@jrmiller.demon.co.uk

[6] http://www.jrmiller.demon.co.uk/products/mod96.html

[7] RS485 serial information http://www.lammertbies.nl/comm/info/RS-485.html

[8] James Miller, G3RUH, 9600 Baud Packet Radio Modem PCB,

http://www.jrmiller.demon.co.uk/products/figs/man9k6.pdf

[9] Nico Parlemo, IV3NWV, Yet Another Modem, http://www.nordlink.org/yam/

[10] Andy Pevy, G4XYW, G4XYW modem, http://www.tvipug.org/

Email: andy@g4xyw.demon.co.uk

[11] Thomas Sailer, HB9JNX/AE4WA, and Johannes Kneip, DG3RBU, An Inexpensive High

Speed Modem for the Universal Serial Bus (USB), August 3, 1999

[12] http://www.xilinx.com

[13] Thomas Sailer, The BayCom EPPFLEX modem

http://www.baycom.org/bayweb/tech/eppjnx/eppjnx.htm

175

http://www.amsat.org/amsat/articles/kd2bd/9k6modem/�
http://www.amsat.org/amsat/articles/kd2bd/9k6modem/figures.html�
http://www.amsat.org/amsat-new/index.php�
http://www.amsat.org/amsat/articles/g3ruh/109.html�
mailto:james@jrmiller.demon.co.uk�
http://www.jrmiller.demon.co.uk/products/mod96.html�
http://www.lammertbies.nl/comm/info/RS-485.html�
http://www.jrmiller.demon.co.uk/products/figs/man9k6.pdf�
http://www.nordlink.org/yam/�
http://www.tvipug.org/�
mailto:andy@g4xyw.demon.co.uk�
http://www.xilinx.com�
http://www.baycom.org/bayweb/tech/eppjnx/eppjnx.htm�

BIBLIOGRAPHY 176

[14] http://www.jrmiller.demon.co.uk/products/figs/9600.jpg

[15] http://www.atmel.com/

[16] Scan Data Remote Monitoring & Control, MDM-202B Bell 202 Modem Technical De-

scription (MDM-1046), www.scan-data.com

[17] Greg Jones, WD51VD, Packet Radio: What? Why? How?/ Articles and Information on

General Radio Topics, TAPR, Publication # 95-1. 1995. 130 pages. http://www.tapr.org

[18] http://www.lammertbies.nl/comm/info/RS-232.html

[19] Samsung K6R4016V1D datasheet.

http://www.jrmiller.demon.co.uk/products/figs/9600.jpg�
http://www.atmel.com/�
file:www.scan-data.com�
http://www.tapr.org/�
http://www.lammertbies.nl/comm/info/RS-232.html�

	Declaration
	Abstract
	Opsomming
	Contents
	List of Figures
	List of Tables
	List Of Abbreviations and Acronyms
	Introduction
	Preliminary Studies
	The 9600 Baud Packet Radio Modem
	The G4XYW Modem
	G4XYW Modem Simulation
	HDLC Controller Design
	Results and Conclusion
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Bibliography

