
A Relation-based Approach to Engineering Management Systems

by

Jacobus Alexander van Breda Strasheim

Dissertation presented for the degree of Doctor of Philosophy at the
University of Stellenbosch

Department of Civil Engineering
University of Stellenbosch

Private Bag X1, Matieland 7602, South Africa

Promoter: Dr G. C. van Rooyen
Department of Civil Engineering
University of Stellenbosch

March 2007

Declaration

I, the undersigned, hereby declare that the work contained in this dissertation is my own original work
and that I have not previously, in its entirety or in part, submitted it at any university for a degree.

Signature: .
J. A. v. B. Strasheim

Date: .

i

Abstract

A Relation-based Approach to Engineering Management Systems

J. A. v. B. Strasheim
Department of Civil Engineering

University of Stellenbosch
Private Bag X1, Matieland 7602, South Africa

Dissertation: PhD (Eng)
March 2007

The primary goal of this thesis is to indicate how systems theory and engineering process modelling can
be applied to provide models for consulting engineering service business enterprises. The typical man-
agement systems used for these businesses are investigated to determine the application of systems and
process models.

The motivation for this study is based on the fact that integrated management systems for consulting
engineering practices are presently based on selective business analysis and process modelling that has
evolved over time, as reported in a survey and study by Smit [110]. Furthermore, current engineering
management systems are simply computer implementations of management procedures based on tech-
niques that were developed to solve problems in the absence of the computational capabilities of the
modern computer. To rectify this, a fundamental approach to analyse the business and management
functions using systems theory and engineering process modelling techniques is required, which has not
been attempted to date. This study develops and demonstrates the application of fundamental analysis
in consulting engineering enterprise management and reviews advantages that can be obtained from using
this approach.

It is shown that the mathematical Algebra of Relations and associated Graph Theory provide the math-
ematical basis on which management problems can be treated systematically. Since these fields of math-
ematics are well developed and very broad, the essential parts of the theories are identified. Thereupon,
the application of the very abstract mathematical concepts to two important and typical engineering
management problems are developed, which represents the core contribution of the dissertation.

The study is developed and presented in two parts and an addendum:

1. The first part provides an overview of the necessary mathematical theory required to support
development of business models.

2. Management systems theory and relation- and graph theory-based engineering process modelling
techniques are applied in this part to build generic enterprise models and data processing mod-
els. These models provide inputs for the management processes of professional service business
enterprises. The outcome of the modelling and analysis is a set of database models with reporting
functionality, to be used in the management process. A demonstration of technology available for
development of the models and techniques, described in the previous part, is undertaken in this part.
Generic implementations of database models and reporting techniques for systems which deal with
management data in a consulting engineering business are developed, described and demonstrated.

3. In the addendum to the study, typical models and system functionality needed to support the man-
agement functions of the consulting engineering service business are identified. These management
functions include:

• Business strategy and long term planning

• Marketing and promotion
ii

ABSTRACT iii

• Finance, including bookkeeping and auditing

• Personnel

• Facilities management and document management

• Logistics, i.e., management of resources required for the business to operate

• Knowledge management

• Production management, i.e., management of the execution of project work

• Administration

• Risk management

Production management can use the engineering process model approach, modelling the management
of tasks, persons, datasets and tools as these are applied to the consulting engineering business.

Sample subsystems to support selected management functions are identified and analysed. The in-
tegration of these systems with commercially available systems to support accounting and management
reporting can follow from this analysis.

The study contributes to the body of knowledge in the field of engineering management by providing
insights into the application of a specific branch of mathematics to provide fundamental solutions to
engineering management problems. It also shows how these solutions are mapped to the computer,
and describes available information techniques and technology to support the mapping. The outcome
is a document setting out the theory required to develop robust enterprise management systems, the
development and demonstration of technology required to do this and, as an addendum, a high level
specification of business and management system functionality required for the professional engineering
service business.

Uittreksel

’n Relasie-baseerde Benadering tot Ingenieurs-bestuurstelsels

J. A. v. B. Strasheim
Departement Siviele Ingenieurswese

Universiteit van Stellenbosch
Privaatsak X1, Matieland 7602, Suid-Afrika

Proefskrif: PhD (Ing)
Maart 2007

Die hoofdoel van hierdie tesis is om aan te toon hoe stelselteorie en ingenieursprosesmodellering toegepas
kan word om modelle van raadgewende ingenieurs diens-besighede te lewer. Die tipiese bestuurstelsels
van hierdie besighede word ondersoek om die toepassing van die stelsels en prosesmodelle te bepaal.

Die motivering vir die studie is baseer op die feit dat geïntegreerde bestuurstelsels vir raadgewende
ingenieurspraktyke gebaseer is op selektiewe besigheidsanalise en prosesmodelle, wat oor tyd ontwikkel
het soos gerapporteer in ’n studie en opname deur Smit [110]. Die ingenieursbestuurstelsels wat tans
in gebruik is, is slegs rekenaar implementerings van bestuursprosedures wat op tegnieke baseer is wat
ontwikkel is in die afwesigheid van die berekeningsvermoë van die moderne rekenaar. Om hierdie probleem
aan te spreek word ’n fundamentele benadering tot analise van die besigheids – en bestuursfunksies waarin
stelselteorie en ingenieursproses modellering tegnieke gebruik word benodig. So ’n benadering is tot datum
nie aangepak nie. Hierdie studie ontwikkel en demonstreer die toepassing van fundamentele analise vir
ondernemingsbestuur van raadgewende ingenieursbesighede en verskaf ’n oorsig van die voordele wat uit
hierdie benadering behaal kan word.

Dit word aangetoon dat die wiskundige Algebra van Relasies en geassosieerde Grafiekteorie die wiskundige
basis verskaf waarop Bestuursprobleme sistematies aangepak kan word. Aangesien hierdie afdelings van
die wiskunde goed ontwikkel is en ’n wye veld dek word die essensiële dele van die teorie identifiseer.
Daarna word die abstrakte konsepte toegepas op twee belangrike tipiese ingenieursbestuur probleme as
die kern bydrae van die verhandeling.

Die studie word in twee dele en ’n addendum ontwikkel en aangebied:

1. Die eerste deel verskaf ’n oorsig van die nodige wiskundige teorie wat benodig word om die ontwikkeling
van die besigheidsmodelle te ondersteun.

2. Basiese bestuurstelselteorie en relasie–baseerde ingenieursproses modellering tegnieke word in hierdie
deel toegepas om generiese besigheidsmodelle en data-verwerkingsmodelle te ontwikkel vir professionele
diensondernemings. Hierdie modelle kan insette lewer aan die bestuursprossese van die onderneming.
Die uitkoms van die modelle en analise is ’n stel van databasis modelle met verslag funksionaliteit
wat in die bestuursproses gebruik kan word. ’n Demonstrasie van die tegnologie wat beskikbaar
is vir die ontwikkeling van modelle en tegnieke wat in die vorige afdeling beskryf is, word in
hierdie deel aangebied. Generiese implementering van databasismodelle en verslagtegnieke vir
stelsels wat bestuursdata in ’n raadgewende ingenieursbesigheid verwerk, word ontwikkel, beskryf
en gedemonstreer.

3. In die addendum tot die studie word tipiese modelle en stelselfunksionaliteit identifiseer wat die
bestuursfunksies van die raadgewende ingenieursbesigheid kan ondersteun. Hierdie bestuursfunksies
sluit in:

• Besigheidstrategie, beleid en langtermyn beplanning
iv

UITTREKSEL v

• Bemarking en promosie

• Finansies, met rekeningkunde en oudit

• Personeel

• Fasiliteitsbestuur en dokumentbestuur

• Logistiek - dit is die bestuur van hulpbronne benodig vir die bedryf van die besigheid

• Bestuur van kennis en kundigheid

• Produksie bestuur - dit is die bestuur en uitvoer van projekwerk

• Administrasie

• Risiko bestuur

Produksie bestuur kan die ingenieursprosesmodel benadering direk gebruik om die generiese konsep
van take, persone, data stelle en gereedskap, soos toegepas op ’n raadgewende ingenieursonderneming, te
benut.

Tipiese substelsels van geselekteerde bestuursfunksies word geïdentifiseer en ge-analiseer. Die integrasie
van hierdie substelsels met kommersieel beskikbare stelsel kan benut word om rekeningkundige en
bestuursverslagdoening te ondersteun.

Die studie dra by tot die beskikbare kennis in die veld van ingenieursbestuur deur die toepassing van ’n
spesifieke afdeling van wiskunde om insigte te verskaf in die fundamentele oplossings vir ingenieursbestuur
probleme. Dit toon ook aan hoe hierdie oplossings op die rekenaar afgebeeld word en beskryf beskikbare
informasie verwerkings tegnieke en tegnologie om die afbeelding te ondersteun. Die uitkoms is ’n dokument
wat die teorie benodig om deurgronde besigheidsbestuurstelsels te ontwikkel uiteensit, die tegnologie
om dit te implementeer ontwikkel en demonstreer en, as ’n addendum, ’n hoë vlak spesifikasie van die
besigheidstelsel funksionaliteit wat deur die professionele ingenieursdiensbesigheid benodig word, bevat.

Acknowledgements

The contribution of my study leader Dr. Gert van Rooyen, is appreciated. He has been instrumental
in developing the field of study of Engineering Information Systems (German Bauinformatik) at the
University of Stellenbosch.

This document was prepared using the MikTEX LATEX document preparation system. References
were made to works by inter alia Kopka and Daly [69], Lamport [70], Goossens et al. [46] as well as the
various extended World Wide Web references on the software.

I would like to express my sincere gratitude to the following people and organisations:

• The MikTEX software was downloaded from Schenk [109].

• The work of Danie Els of the Department of Mechanical Engineering in developing and publishing
LATEX templates for University of Stellenbosch thesis documents - this is greatly appreciated.

• The reference database manager supplied by JabRef [65] . The underlying format of the data is in
BiBTEXformat.

• Google, [44], for providing very valuable search facilities for internet world wide web resources.

• Wikipedia, [126], the open online encyclopaedia, for making available well organised and researched
information on selected topics dealt with in this document.

vi

Dedications

I would like to dedicate this document to my educators.

• Kindergarten and Grade 1 and 2 - Mrs. Schwemmer.

• Menlopark Primary School - Mr. Venter (principal), Mrs. van Rooyen, Mrs. Terreblanche, Mr.
Breedt, Mr. de Villiers.

• Menlopark High School - Mr. van Zijl (principal), Mrs Vorster (Afrikaans), Mr Schroeder(English),
Ms Du Toit(Mrs Puddo)(Science), Mr. Goris (Latin), Mr. Visser (Mathematics and Mechanics),
Mr. van der Nest(History), Mr. Booysen (Geography), Mr. Cillers and Mr. Deneyschen(Physical
Training).

• University of South Africa - Sciences - Prof. Rund.

• University of Pretoria - Civil Engineering - Prof. De Vos, Prof. Rooseboom, Prof. von Willigh, Dr.
Hopkins, Mr. Wolmarans.

• University of Stellenbosch - Civil Engineering - Prof. du Preez, Prof. Louw, Mr. Vos, Mr. Sippel,
Prof. Hugo, Prof. Pahl.

• University of Stellenbosch - Graduate School of Business - Prof. Gevers, Mr. Erasmus, Prof. Archer,
Prof. Hamman.

• Geustyn, Forsyth & Joubert Inc., Consulting Engineers - Mr. Geustyn, Mr. du Toit, Mr. Krige
and Mr. Kapp.

My father, Albertus Strasheim, mother Ina Strasheim as well as my wife, Helene and children Albert,
Ingrid and Marike as well as my parents in law Gerrit and Lucille de Wet also indirectly contributed to
my education.

Note: The names above were recalled from memory and do not constitute a complete list. Apologies
to any person who feels that he or she needs to be on this list!

vii

Contents

Declaration i

Abstract ii

Uittreksel iv

Acknowledgements vi

Dedications vii

Contents viii

List of Figures xix

List of Tables xxiii

Nomenclature xxv

1 Introduction 1

I Management systems theory and engineering process modelling techniques 2

2 Overview of Part I 3

3 Set Theory 4
3.1 Introduction . 4
3.2 Sets, Elements of Sets and Subsets . 4

3.2.1 Definition of a set . 4
3.2.2 Defining elements of sets . 4
3.2.3 Defining families of elements . 5
3.2.4 Universal and existential quantifiers . 5
3.2.5 Equality of sets . 5
3.2.6 Subsets of a set . 5
3.2.7 Comparable sets . 5
3.2.8 Sets of sets . 5
3.2.9 Power set . 5
3.2.10 Universal set . 6
3.2.11 Disjoint sets . 6
3.2.12 Partition of a set . 6

3.3 Set Operations . 6
3.3.1 Union of sets . 6
3.3.2 Intersection of sets . 6
3.3.3 Set difference . 6
3.3.4 Complement of a set . 6

3.4 Sets of Numbers . 7
3.4.1 Integer numbers . 7
3.4.2 Natural numbers . 7
3.4.3 Rational and irrational numbers . 7

viii

CONTENTS ix

3.4.4 Real numbers . 7
3.4.5 Number inequalities . 7
3.4.6 Absolute value . 8
3.4.7 Intervals on sets of numbers . 8
3.4.8 Bounded and unbounded sets of numbers . 8

3.5 MATLAB implementation of Set Operations . 9

4 Relations and Mappings 10
4.1 Introduction . 10
4.2 Ordered pair . 10
4.3 Cartesian product . 10
4.4 Unary relations . 10
4.5 Binary relations . 11
4.6 Heterogeneous binary relation . 11
4.7 Homogeneous binary relation . 11
4.8 Properties of relations . 11
4.9 Totality of a relation on A and B . 11
4.10 Uniqueness of a relation on A and B . 12
4.11 Relational diagram . 12
4.12 Types of relations . 13

4.12.1 Identity relation . 13
4.12.2 Inverse relation . 13
4.12.3 Composition . 13
4.12.4 Equivalence relation . 13
4.12.5 Equivalence class . 13
4.12.6 Partitioning by equivalence . 13
4.12.7 Quotient set . 14

4.13 Mappings . 14
4.13.1 Mapping notation . 14
4.13.2 Image of an element . 14
4.13.3 Arrow diagram . 14
4.13.4 Types of mappings . 15

4.14 Order relations and ordered sets . 16
4.15 Countability and cardinality . 16

4.15.1 Cardinal numbers and finite and infinite sets . 16
4.15.2 Operations on cardinal numbers . 17
4.15.3 Countable sets and properties of countable sets . 17
4.15.4 Comparison of and ordering of cardinal numbers 17
4.15.5 Cardinality of the set of real numbers . 18
4.15.6 Cardinality of Cartesian products of the set of real numbers 18

4.16 Closure of a homogeneous binary relation . 18
4.16.1 Reflexive closure . 18
4.16.2 Symmetric closure . 18
4.16.3 Powers of a relation . 18
4.16.4 Stability index . 18
4.16.5 Transitive closure . 19
4.16.6 Reflexive transitive closure . 19
4.16.7 Reflexive symmetric transitive closure . 19

4.17 Algebra of homogeneous binary relations . 19
4.17.1 Graphical representation . 19
4.17.2 Special relations . 20
4.17.3 Equality and inclusion . 20
4.17.4 Binary operations . 20

4.18 MATLAB implementation of Relation Operations . 21

CONTENTS x

5 Graph Theory 22
5.1 Introduction . 22
5.2 Graphs and Directed graphs . 22
5.3 Graphs . 22
5.4 Graph isomorphism . 22
5.5 Subgraphs . 22
5.6 Directed graphs . 23

5.6.1 Definition of a directed graph . 23
5.6.2 Properties . 23

5.7 Degrees, indegrees and outdegrees . 23
5.7.1 Equality and inclusion . 24
5.7.2 Adjacency matrix graph representation . 24

5.8 Graph representation and manipulation . 25
5.8.1 Adjacency matrices . 25
5.8.2 Incidence matrices . 25

5.9 Structure of graphs . 27
5.9.1 Paths and cycles in directed graphs . 27
5.9.2 Connectedness of directed graphs . 30
5.9.3 Acyclic graphs . 34
5.9.4 Simple acyclic graphs and trees . 36

5.10 Rooted graphs and rooted trees . 37
5.10.1 Root . 37
5.10.2 Rooted graphs . 37
5.10.3 Acyclic rooted graphs . 37
5.10.4 Rooted trees . 37
5.10.5 Forest of rooted trees . 37
5.10.6 Search tree . 37

5.11 Depth-first search . 38
5.11.1 Depth-first search for trees and forests . 38
5.11.2 Pre-order and post-order numbering . 38
5.11.3 Classification of edges . 38
5.11.4 Depth-first search algorithm . 38
5.11.5 Depth-first search example . 39

5.12 MATLAB implementation of basic graph functionality . 41

6 Systems Theory 42
6.1 Introduction . 42
6.2 Systems concepts and terminology . 42

6.2.1 System structure . 42
6.2.2 System function and behaviour . 43
6.2.3 Control of systems . 45
6.2.4 System performance measurement . 46
6.2.5 Types of systems . 46
6.2.6 Classification of systems . 47

6.3 System laws . 47
6.4 Formal specification of systems . 47

6.4.1 Formal system structure definition . 47
6.4.2 Formal system function definition . 50
6.4.3 Basic example of formal system structure and function modelling 51

6.5 MATLAB implementation of basic system function example 52
6.6 System analysis . 52
6.7 System design . 53
6.8 Business enterprises and business enterprise systems . 54

6.8.1 Business systems - structural models . 54
6.8.2 The production process . 56
6.8.3 Business systems supporting business operations 56
6.8.4 Business management systems - structural models 56

6.9 Formulation of required business model structure and functionality 58

CONTENTS xi

6.9.1 Typical business object classification structures . 58
6.9.2 Conceptual model of system functionality to process business objects 58

7 Relational Database Theory 61
7.1 Introduction . 61
7.2 Database System Concepts and Architecture . 61

7.2.1 Data Models, Schemas and Instances . 61
7.2.2 DBMS Architecture . 62
7.2.3 Data Modelling Techniques . 63

7.3 Relational Data Model, Constraints and Relational Algebra 65
7.3.1 Relational Model Concepts . 65
7.3.2 Tabular representation of a relation . 66
7.3.3 Set theoretic Formulation of a Relational Database 66
7.3.4 The structural properties and characteristics of a relation 67

7.4 Candidate keys and Primary key of a Relation . 67
7.5 Prime Attributes . 68
7.6 Foreign Keys . 68

7.6.1 Properties and characteristics of keys of relations 68
7.7 Key constraints . 69
7.8 Functional Dependencies in Relations of Relational Databases 69

7.8.1 Full Functional Dependencies . 70
7.8.2 Partial Functional Dependencies . 70
7.8.3 Transitive Functional Dependencies . 70

7.9 Database normalisation and Design . 70
7.10 The data model . 70
7.11 Insertion, Deletion and Update Operations on Relations 70

7.11.1 Inserting a Tuple into a Relation table . 70
7.11.2 Deleting a Tuple from a Relation table . 71
7.11.3 Updating a Tuple of a Relation Table . 71

7.12 Specification of Attribute Domains . 71
7.13 Relational Algebra, Calculus and Relational Operations 71

7.13.1 The Selection Operation . 72
7.13.2 The Projection Operation . 72
7.13.3 Tuple Concatenation Operation . 72

7.14 Set Operations on Relations . 73
7.14.1 Set Union Operation . 73
7.14.2 Set Difference Operation . 73
7.14.3 Set Intersection Operation . 73
7.14.4 Set Cartesian Product Formation Operation . 73
7.14.5 The Join Operation . 74
7.14.6 Relation and Attribute Rename Operation . 76
7.14.7 Grouping and Aggregation Operations . 76

7.15 Relational Calculus . 77
7.15.1 Tuple Relational Calculus . 77
7.15.2 Domain Relational Calculus . 78
7.15.3 Relational Algebra and Relational Calculus . 79

7.16 Structured Query Language (SQL) . 79
7.17 The database normalisation process . 79

7.17.1 The First Normal Form . 80
7.17.2 The Second Normal Form . 81
7.17.3 The Third Normal Form . 81
7.17.4 The Boyce-Codd Normal Form . 82
7.17.5 The Fourth Normal Form . 82

7.18 Database Transaction Processing . 82
7.19 Additional reference material . 82

CONTENTS xii

II Management models and techniques - development technology demonstra-
tion 84

8 Overview of Part II 85

9 Relational Algebra MATLAB Tools 86
9.1 MATLAB boolean matrix relational algebra package (toolbox) 86
9.2 MATLAB Relational Algebra Tools Code . 86

10 Literal String Processing MATLAB Functionality 89

11 Engineering Process Model 90
11.1 Introduction . 90
11.2 Engineering process model, components and relations . 90

11.2.1 Components of the model . 90
11.2.2 Relations in the set of Tasks . 92
11.2.3 Step schedule of tasks . 92
11.2.4 Relations in the sets of Persons, Tools and Datasets 92
11.2.5 Order relation in the set of Tasks . 92

11.3 Specification of the process model . 94
11.3.1 Task-Dataset relationships . 94
11.3.2 Task-Person relationships . 95
11.3.3 Dataset-Tool relationships . 95

11.4 Example A: Consulting engineering business process model 96
11.5 Relations computed from specified process model relations 97

11.5.1 Relations deduced by transposing the specified relations 97
11.5.2 Relations deduced by forming the union of all three Dataset-task relations 97
11.5.3 Relations computed between persons and datasets 100
11.5.4 Relations deduced by forming the union of the person - data and data - person

relations . 100
11.5.5 Relations computed using relations specified between persons and tools used by

persons . 100
11.5.6 Relations computed using relations specified between tasks and tools used to execute

tasks . 100
11.5.7 Relations deduced from dataset requires tool relation 101
11.5.8 Computing the logical sequence of tasks . 101
11.5.9 Computing person loading . 101
11.5.10Computing tool loading . 101
11.5.11Computing dataset history . 102

11.6 Process task specification reporting for the process model 102
11.7 Example B: Data evolution status value processing for process model 103

11.7.1 Process model set specification . 103
11.7.2 Person- Task relation specification . 104
11.7.3 Task - Data specification . 104
11.7.4 Computed basic relations . 104
11.7.5 Computing task sequence . 104
11.7.6 MATLAB implementation of process model with status settings 105
11.7.7 MATLAB code for Engineering Process Model Example 105

11.8 Data file formats . 105
11.9 Engineering Process Model - Figures . 106

12 Representing and Processing management structure using graph applications 127
12.1 Introduction . 127
12.2 Typical Management Reporting Tree Structure . 127
12.3 Testing of the logic and integrity of the management structure 128
12.4 Converting from adjacency matrix format to adjacency list format 129
12.5 Depth first search and tree structure for a given graph . 129
12.6 Inserting sub management structures into larger structures 130
12.7 Extracting subgraphs of vertices linked to a selected vertex 130

CONTENTS xiii

12.8 Management/ reporting structure - tree analysis examples 130
12.8.1 Basic example . 130
12.8.2 Larger more realistic example . 132

12.9 Determining connectivity of vertices in graphs to determine tree vertex links for roll up of
reports . 133

12.10Report data roll up using adjacency matrices . 133

13 Engineering Process Model: Database development, processing and report genera-
tion 139
13.1 Introduction . 139
13.2 Database demonstration system overview . 139

13.2.1 Client-server configuration . 139
13.2.2 Network configuration . 139

13.3 Defining the database structure . 140
13.3.1 Azzurri Clay XML DTD Specification file . 141
13.3.2 Database setup SQL statements . 141
13.3.3 PostgreSQL Database Reference . 141
13.3.4 Populating the database with data . 142
13.3.5 Server database verification . 142

13.4 Microsoft Access Database Reference . 142
13.4.1 Access data import process . 142
13.4.2 Database schema definition file . 142
13.4.3 Database program to import data from database server 142

13.5 Reporting using Microsoft Access . 144
13.6 Reporting using Microsoft Excel . 144
13.7 PLEP application program for Engineering Process Model 146
13.8 Importing database data using the Java JDBC-ODBC bridge 146
13.9 SQL Programming for reports and SQL functionality used 146

13.9.1 PostgreSQL conversion functions . 146
13.9.2 Microsoft Access data conversion . 149
13.9.3 SQL Query Processing tips . 149
13.9.4 SQL Queries for S-Curve presentation . 152

13.10Using Microsoft Data Access Pages . 153
13.11Conclusion and recommendations . 153

III Conclusion 155

14 Conclusions and Recommendations 156
14.1 Conclusions . 156
14.2 Recommendations . 156

IV Addendum: Identification of system functionality to provide support for
management functions 157

15 Overview of Part IV 158

16 Business strategy, long term planning and general management 161
16.1 Business Strategy Concepts and Strategy development . 161

16.1.1 Elements of a business which reflect strategy . 161
16.1.2 Physical indicators of the direction and ‘look’ of an enterprise 161
16.1.3 Strategic areas comprising an organisation . 162
16.1.4 Maintaining a strong and healthy strategy . 162
16.1.5 Articulating the business concept of the enterprise 163
16.1.6 Operational objectives . 163
16.1.7 Developing strategic business models . 163

16.2 General Management . 164
16.2.1 Mechanical aspects of general management . 164

CONTENTS xiv

16.2.2 Dynamic aspects of management - activities and processes 165
16.2.3 Communication . 167

16.3 Conclusion and recommendation . 167

17 Marketing, promotion and public relations management 168
17.1 Introduction to professional services marketing management 168
17.2 Differences between consumer product marketing and professional services marketing . . . 168
17.3 The nature of professional services marketing . 169

17.3.1 Business models for marketing management . 170
17.3.2 Business objects relating to marketing management 170
17.3.3 Business processes relating to marketing management 171

17.4 Marketing investigation, environmental scanning and forecasting 171
17.4.1 Corporate/enterprise requirements . 172
17.4.2 Environmental scanning and forecasting . 172
17.4.3 Marketing research and market research . 172
17.4.4 Market segmentation . 172

17.5 Strategic planning for marketing . 172
17.6 Marketing activity planning and budgeting . 173
17.7 Project phases . 173
17.8 Organising for marketing . 173
17.9 Marketing leading . 174
17.10Coordinating of marketing activities . 174
17.11Controlling marketing activities . 174

17.11.1Outcomes and products of the marketing process 174
17.12Professional Services Enterprise Public Relations and Management 174

17.12.1 Investigation and forecasting for public relations 175
17.12.2Planning, estimating and budgeting for enterprise public relations 175
17.12.3Organising for public relations . 175
17.12.4Activities and processes . 175
17.12.5Leading, coordinating, controlling and communicating public relations activities

and processes . 175
17.13Conclusion and recommendations . 176

18 Finance, Bookkeeping and Auditing 177
18.1 Introduction to professional service business accounting 177
18.2 Registration and recording processes . 177

18.2.1 Project registration . 177
18.2.2 Debtor registration . 177
18.2.3 Creditor registration . 177
18.2.4 Time keeping and recording . 177
18.2.5 Disbursement recording and costing rates . 179

18.3 Work in process . 180
18.3.1 Professional time Work in Process . 180
18.3.2 Disbursement Work in Process . 180
18.3.3 Work in process management . 180

18.4 Professional Services Invoices . 181
18.4.1 Definition of an invoice . 181
18.4.2 Management of the invoicing cycle . 181
18.4.3 Responsibility for issuing of invoices . 181

18.5 Professional Service Invoice Specification . 181
18.5.1 Value Added Tax (VAT) . 182
18.5.2 Accounting records and reporting on invoicing . 183
18.5.3 The debtor cycle . 183
18.5.4 Credit notes and cancelling of invoices . 183
18.5.5 Internal invoicing to personnel . 183

18.6 Personnel remuneration and payroll processing . 184
18.7 Bookkeeping . 184

18.7.1 Accounting general ledger structuring and format 184
18.7.2 The role and use of the general ledger in accounting 184

CONTENTS xv

18.7.3 Accounting system model . 187
18.7.4 Accounting software implementation . 187

18.8 Processing orders for materials, goods and services . 187
18.9 Professional practice finance . 188
18.10Auditing . 189
18.11Conclusion and recommendations . 189

19 Personnel Management 191
19.1 Business objects for personnel management . 191

19.1.1 High level logical personnel management objects 191
19.1.2 Personnel management objects . 191

19.2 Personnel management processes . 192
19.3 Payroll management systems . 192
19.4 Personnel Debtors . 192
19.5 Personnel Creditors . 193
19.6 Conclusions and recommendations . 193

20 Production 194
20.1 Introduction . 194
20.2 Projects and project management . 194
20.3 Project management terminology . 194
20.4 Production management business objects . 194
20.5 Project management processes . 196
20.6 Functionality required of a project management system for professional services 196
20.7 Software implementation . 197
20.8 Time Management . 197
20.9 Projects for administration management . 197
20.10Conclusions and recommendations . 197

21 Facilities and Document Management 200
21.1 Introduction to Facilities Management for the Engineering Services Business 200
21.2 Models for facility management . 200
21.3 Business objects for facility management . 200

21.3.1 Definition of business artefacts and business objects 200
21.4 Management disciplines which relate to business object facility management 201
21.5 Management aspects and business artefacts . 201
21.6 Aspects of facilities management activities and processes 201

21.6.1 Operations for office spaces in buildings . 201
21.6.2 Monitoring and managing building subsystems . 203
21.6.3 Maintenance . 203
21.6.4 Risks and exceptional events . 203
21.6.5 Health and safety . 203
21.6.6 Feedback from the operational environment to the planning and design environment 203

21.7 Software Implementation . 203
21.7.1 Asset register . 204

21.8 Document management . 204
21.8.1 Business objects for document management . 204
21.8.2 Document management business processes . 204

21.9 Conclusions and recommendations . 206

22 Knowledge and Information Management 207
22.1 Introduction to knowledge management . 207
22.2 Models for business knowledge management . 207

22.2.1 Business objects for knowledge management . 207
22.3 Knowledge and information for project execution . 208
22.4 Protecting business artefacts against misuse . 208
22.5 Conclusions and recommendations . 208

CONTENTS xvi

23 Logistics 210
23.1 Introduction to logistics for the professional service business enterprise 210
23.2 Models for logistics management . 210
23.3 Business objects for logistics management . 210
23.4 Professional Service Business Logistics Activities and Process 210

23.4.1 Inbound logistics . 211
23.4.2 Outbound logistics . 212

23.5 Client Project Logistics . 212
23.5.1 Supplier management . 212
23.5.2 Materials control . 212

23.6 Conclusions and recommendations . 212

24 Administration 213
24.1 Introduction to the administrative function . 213
24.2 Models for administrative management . 213
24.3 Business Objects and Business Administration . 213
24.4 Interaction between the administrative processes and other business functions 214

24.4.1 Business Strategy and Policy . 214
24.4.2 Marketing Administration . 214
24.4.3 Financial Administration . 214
24.4.4 Personnel Administration . 214
24.4.5 Facilities Administration . 214
24.4.6 Logistics Administration Function . 215
24.4.7 Project Administration Function . 215

24.5 Systems support for administrative management . 215
24.6 Administrative Function Reporting Requirements . 215
24.7 Conclusions and recommendations . 215

25 Risk Management 217
25.1 Introduction to risk management for the professional service business enterprise 217
25.2 Models for risk management . 217
25.3 Business objects and risk management . 217
25.4 Risk management activities and processes . 217

25.4.1 Risk identification . 217
25.4.2 Risk analysis and quantification, Risk allocation and control 218
25.4.3 Business function risk analysis, quantification, allocation and control 219
25.4.4 Business infrastructure risk quantification, allocation and control 219
25.4.5 Risk control . 219
25.4.6 Risk avoidance and risk reduction . 219
25.4.7 Risk financing, retention, transfer and insurance 219

25.5 Financial risk management processes . 220
25.5.1 Identification of financial risks . 220
25.5.2 Financial risk analysis, quantification, allocation and control 220

25.6 Project Risk Management Processes . 221
25.6.1 Project risk identification . 222
25.6.2 Project risk analysis and quantification . 222
25.6.3 Evolution of Risk Through Project Life Cycle . 222
25.6.4 Project Risk Allocation and Insurance . 223

25.7 Disaster Recovery Planning . 223
25.8 Risk management manual and standard report contents 223
25.9 Conclusions and recommendations . 223

26 Practice Management Systems 224
26.1 ProMan by Akron Software . 224
26.2 Systems by Deltek Inc. 224
26.3 SAP . 225
26.4 Dynamics / Business Solutions / Great Plains by Microsoft 225
26.5 PeopleSoft and JD Edwards by Oracle . 226
26.6 Miscellaneous Other Systems . 226

CONTENTS xvii

27 Conclusions on Addendum 227

V Appendices, Bibliography and References 229

Appendices 230

A MATLAB implementation of set operations 231

B MATLAB implementation of set functions 234

C MATLAB implementation of relation operations 242
C.1 Relation operations programmed in MATLAB . 242

D MATLAB implementation of graph operations 244

E MATLAB System Function Example 255

F MATLAB Literal String Processing Functionality 261

G Engineering Process Model 263
G.1 Engineering Process Model Example - MATLAB Code . 263
G.2 MATLAB Relational Algebra Functionality . 288
G.3 Process model database output MATLAB function . 288
G.4 Graph data formats used by the yEd program . 294
G.5 Database file transfer format . 299
G.6 MATLAB implementation of process model with status settings 300

H Process Model: Person-Task and Person-Data Graphs 314
H.1 Engineering Process Model Graphical Output Example - MATLAB Code 314
H.2 Process model graphical data output MATLAB function 316

I Process Model: Task sequence using data status 318
I.1 Engineering Process Model Example with data status - MATLAB Code 318

J Engineering Process Model Database 348
J.1 Eclipse Development software reference . 348
J.2 Eclipse Azzurri Clay Eclipse Plugin for Database Modelling 348
J.3 Azzurri Clay XML DTD Specification file . 348
J.4 Database setup SQL statements . 350
J.5 PostgreSQL Database Reference . 357
J.6 Engineering Process Model - Sample PostgresSQL Database Data Listing 357
J.7 Microsoft Access Database Reference . 360
J.8 Access data import process . 360

J.8.1 Database schema definition file . 360
J.8.2 Access VBA code for data import . 363
J.8.3 Database program to import data from database server 365

J.9 PostgreSQL - Importing data into database . 366
J.10 Importing database data using the Java JDBC-ODBC bridge 373
J.11 Database application SQL functionality availability and usage 374

J.11.1 SQL Queries for S-Curve presentation . 376
J.12 Using Microsoft Data Access Pages . 384

K Organisation management and reporting structures using graph applications 394
K.1 Typical Management Reporting Tree Structure . 394
K.2 Converting from adjacency matrix format to adjacency list format 397
K.3 Depth first search and tree structure for a given graph . 399
K.4 Depth First Search applied to reporting graph structures 402
K.5 Inserting sub management structures into larger structures 409
K.6 Extracting sub graphs linked to selected nodes . 413

CONTENTS xviii

K.6.1 Graph adjacency matrix to list conversion . 417
K.6.2 Graph adjacency list sub graph extraction . 418

K.7 Management/ reporting structure - tree analysis examples 419
K.7.1 Basic example . 419
K.7.2 Larger more realistic example . 426

K.8 Determining connectivity of vertices in graphs e.g. to determine tree vertex links for roll
up of reports . 440

K.9 Report data roll up using adjacency matrices . 441
K.9.1 Theoretical Example using topological sorting and sub matrix extraction 441
K.9.2 Theoretical Example - Using graph adjacency list processing 444
K.9.3 Larger example with numerical values . 448
K.9.4 Larger example with string literal values concatenated in accumulation process . . 461

K.10 Graph sub tree connectivity extraction . 479
K.11 Multiple sub tree connectivity extraction . 482
K.12 Sub-tree extraction MATLAB functions . 484
K.13 File format for yEd graph display program (.tgf) . 486

L Marketing Management - Sample Documents 487
L.1 Marketing activity planning and status reporting . 487
L.2 Marketing budgeting and income budget planning . 487
L.3 Marketing budget according to project status . 487

Bibliography and References 492

List of Figures

4.1 Uniqueness of R . 12
(a) general . 12
(b) left-unique . 12
(c) right-unique . 12
(d) bi-unique . 12

4.2 Quotient set . 14
4.3 Canonical mapping . 16
4.4 Homogeneous binary relations graph example . 20

5.1 Directed graph properties . 24
(a) antireflexive . 24
(b) symmetric . 24
(c) antisymmetric . 24
(d) asymmetric . 24

5.2 Graph example . 25
5.3 Directed graph example . 26
5.4 Simple graph example . 26
5.5 Strongly connected components graph . 33
5.6 Reduced graph . 34
5.7 Strongly connected components . 34
5.8 Edge classifications . 39
5.9 Graph example . 39
5.10 Depth-first-search-forest-example-1 . 40
5.11 Depth-first-search-forest-example-2 . 41

6.1 A system with a closed-loop control system . 45
6.2 Graphical representation of a formal system structure definition (Pahl [91]) 49
6.3 System Function Example . 51

7.1 Simplified database system environment logic . 62
7.2 Three level schema database architecture . 63
7.3 Entity Relationship Diagram Notation . 64
7.4 UML Conceptual Schema . 64

11.1 Engineering process model relations . 91
11.2 Overview of engineering process model binary relations . 91
11.3 Overview of engineering process homogeneous binary relations 92
11.4 Rule 1: Order relation in the set of tasks . 93
11.5 Rule 2: Order relation in the set of tasks . 93
11.6 Rule 3: Order relation in the set of tasks . 94
11.7 Task-Dataset relationships: Read, modify, create . 95
11.8 Task executed by Person . 106
11.9 Task creates dataset . 106
11.10 Task reads dataset . 106
11.11 Task modifies dataset . 106
11.12 Dataset requires tool . 107
11.13 Task uses tool . 107
11.14 Person executes task . 107

xix

LIST OF FIGURES xx

11.15 Dataset created by Task . 108
11.16 Dataset read by Task . 108
11.17 Dataset modified by Task . 108
11.18 Tool operates on dataset . 108
11.19 Tool operates on dataset . 108
11.20 Person operates on dataset . 109
11.21 Data operated on by person . 109
11.22 Data operated on by person transposed relation from person operates on dataset 109
11.23 Person uses tool . 110
11.24 Tool used by person . 110
11.25 Data operated on by person . 111
11.26 Person operates on dataset via tool . 111
11.27 Data operated on by task via tool . 112
11.28 Task operates on dataset via tool . 112
11.29 Data read modify via task union . 112
11.30 Sequence of tasks . 113
11.31 Person creates dataset . 113
11.32 Data read modify via person union . 113
11.33 Person Loading . 114
11.34 Tool Loading - tools required with other tools . 114
11.35 Dataset history with dataset determined via persons - read only 115
11.36 Person data read and modify via data union . 115
11.37 Dataset history with dataset determined via persons - read and modify 116
11.38 Dataset history with dataset determined via tasks - read only 117
11.39 Task reads and modify via data union . 117
11.40 Dataset history with dataset determined via tasks - read and modify 118
11.41 Tasks and data for client . 119
11.42 Tasks and data for architect . 119
11.43 Tasks and data for structural engineer . 119
11.44 Tasks and data for technologist . 119
11.45 Tasks and data for checking engineer . 119
11.46 Person executes task relation . 120
11.47 Tasks creates data relation . 120
11.48 Tasks reads data relation . 121
11.49 Tasks modifies data relation . 121
11.50 Data requires tool relation . 122
11.51 Person requires tool relation . 122
11.52 Person reads data relation . 123
11.53 Tasks requires tool relation . 123
11.54 Task sequence - Rule 1 . 124
11.55 Task sequence - Rule 2 . 124
11.56 Task sequence - Rules 1 & 2 . 125
11.57 Task sequence - Rules 1, 2 & 3 . 125
11.58 Step schedule of Tasks . 126

12.1 Reporting structure graph representation - level 1 - from adjacency matrix 127
12.2 Reporting structure graph representation - level 2 - from adjacency matrix 128
12.3 Reporting structure graph representation - all levels - from adjacency matrix 129
12.4 Reporting structure adjacency matrix . 130
12.5 Reporting structure adjacency matrix . 131
12.6 Reporting structure adjacency matrix . 131
12.7 Reporting structure adjacency matrix - Level 1 to Level 0 132
12.8 Reporting structure adjacency matrix - Level2 to Level 1 . 132
12.9 Task step schedule adjacency matrix . 132
12.10 Topological sorting of the task step schedule . 135
12.11 Sub-adjacency matrix for logical step 1 . 136
12.12 Sub-adjacency matrix for logical step 2 . 136
12.13 Sub-adjacency matrix for logical step 3 . 137

LIST OF FIGURES xxi

12.14 Sub-adjacency matrix for logical step 4 . 138
12.15 Sub-adjacency matrix for logical step 5 . 138

13.1 Database demonstration UMLDeploymentDiagram . 140
13.2 Engineering Process Model - Clay program screen . 141
13.3 Process model database - DBVisualizer summary display . 143
13.4 Process model database table print - DBVisualizer . 144
13.5 DBVisualizer extended display of process model database . 145
13.6 Access database structure report . 146
13.7 Microsoft Windows Datalink tabbed panes . 147

(a) Connection . 147
(b) Provider . 147
(c) Advanced . 147
(d) All . 147

13.8 Access DLL library reference display . 147
13.9 Engineering Process Example - Access Report . 148
13.10 Engineering Process Example - Excel tabular report . 149
13.11 Engineering Process Example - Excel chart . 150
13.12 PLEP Java Application Object Structure gif . 150
13.13 Microsoft Access Output Field Specification . 151

(a) General field properties . 151
(b) Query definition pane . 151

13.14 Access database tabular reporting . 152
13.15 Database tabular reporting with browser data access pages 153
13.16 Database reporting with browser data access pages . 154

15.1 Systems Theory Based Professional Engineering Services Enterprise Management Information
Systems . 160

16.1 General Management Aspects according to De Villiers . 164

17.1 The nature and roles of service marketing according to Leonard Berry 170

18.1 Basic time sheet example . 180
18.2 Tax Invoice Sample Screen . 182
18.3 Engineering Services Enterprise Systems . 190

20.1 Salford Process Protocol - Part A . 198
20.2 Salford Process Protocol - Part B . 199

25.1 Project risk management model . 221
25.2 Project risk management model . 222

26.1 PLEP Engineering Process Software . 226

J.1 EngineeringProcessModelClay . 392
J.2 Altova XMLSPy splash display . 393

K.1 Reporting or management structure - graph representation - from adjacency matrix: (a) Re-
porting structure graph representation - level 1; (b) Reporting structure graph representation
- level 2; (c) Reporting structure graph representation - all levels; 398

(a) Graph - level 1 . 398
(b) Graph - level 2 . 398
(c) Graph - all levels . 398

K.2 Reporting or management structure - DFS tree representation: (a) Reporting structure DFS
tree representation - level 1; (b) Reporting structure DFS tree representation - level 2; (c)
Reporting structure DFS tree representation - all levels; . 410

(a) DFS tree - level 1 . 410
(b) DFS tree - level 2 . 410
(c) DFS tree - all levels . 410

LIST OF FIGURES xxii

K.3 Extracting sub-trees linked to vertices management structure - only non-null entries shown
(a) Reporting structure tree representation (b) Sub-tree representation - vertex 1 - M0; (c)
Sub-tree representation - vertex 2 - MA; (d) Sub-tree representation - vertex 3 - MB ; 417

(a) Reporting structure tree representation . 417
(b) Sub-tree - vertex 1 - M0 . 417
(c) Sub-tree - vertex 2 - MA . 417
(d) Sub-tree - vertex 3 - MB . 417

K.4 Reporting structure adjacency matrix . 420
K.5 Reporting structure adjacency matrix . 425
K.6 Reporting structure adjacency matrix - Level 1 to Level 0 426
K.7 Reporting structure adjacency matrix - Level2 to Level 1 . 426
K.8 Reporting structure adjacency matrix . 440
K.9 Sub-tree connectivity extraction per vertex as listed: (a) Example tree graph; (b) Vertex a -

empty graph; (c) Vertex b; (d) Vertex c; (e) Vertex d; (f) Vertex e; (g) Vertex f; (h) Vertex g; 483
(a) Example tree graph . 483
(b) Vertex a - empty graph . 483
(c) Vertex b . 483
(d) Vertex c . 483
(e) Vertex d . 483
(f) Vertex e . 483
(g) Vertex f . 483
(h) Vertex g . 483

K.10 Sub-tree extraction . 484
(a) Example tree graph . 484
(b) Multiple sub-trees extracted for vertices a,e and g . 484
(c) Multiple sub-trees extracted for vertices b and g . 484

L.1 GFJ Inc - Marketing activity planning sheet . 488
L.2 GFJ Inc. - Sample marketing management action status report 489
L.3 GFJ Inc. - Sample marketing management budget derived from control report 490
L.4 Puttergill -Sample corporate budget showing FEE income as per project marketing classification491

List of Tables

4.1 Properties of relations . 12

5.1 Properties of directed graphs . 23
5.2 Strongly connected components . 34
5.3 Pre-order and post-order numbers for example 1 . 40
5.4 Pre-order and post-order numbers of example 2 . 40

6.1 System classification according to Kenneth Boulding [19] 47
6.2 Systems classified according to mode of operation and the physical nature of their components

and couplings; Jones and Edited by Singleton, W.T. et al. [66] 48
6.3 System set theoretic concept . 49
6.4 Set theoretic system definition . 50
6.5 System function formal specification . 51
6.6 System function example . 52
6.7 Classification hierarchies used in business organisation . 59

7.1 General format of a relation represented as a table . 66
7.2 Some standard SQL data types . 72
7.3 Operations of Database Relational Algebra . 76
7.4 Comparison of Relational Algebra and Calculi . 79
7.5 The PROJECT Table with duplicate entries . 80
7.6 The PROJECT Table . 80
7.7 The PROJECT-EMPLOYEE Table . 81

9.1 MATLAB standard logical operations and functions on boolean (logical) variables used . . . 87
9.2 MATLAB - Basic Relational Algebra Operations using Boolean matrix representation of

relations . 88
9.3 Zero, One and Identity boolean matrices . 88

11.1 Engineering process model concept . 98
11.2 Relations specified for model example in consulting engineering process 98
11.3 Boolean adjacency matrix representation of relation Persons executes Task RPerson−Task . 98
11.4 Boolean adjacency matrix representation of relation Task creates Dataset RTask−DataCreate 98
11.5 Boolean adjacency matrix representation of relation Task reads Dataset RTask−DataRead . . 99
11.6 Boolean adjacency matrix representation of relation Task modifies Dataset RTask−DataModify 99
11.7 Boolean adjacency matrix representation of relation Dataset operated on by Tool RData−Tool 99
11.8 Boolean adjacency matrix representation of relation Task uses Tool RTask−Tool 99
11.9 Data status values . 103

12.1 Management reporting relation . 127
12.2 Hihger level management reporting relation . 128
12.3 Complete multi level management reporting relation . 128
12.4 Management reporting graph levels . 131
12.5 Tasks for graph structure analysis . 133

16.1 Maintaining a strong and healthy strategy - Robert [102] . 162

17.1 Differences between services and product marketing . 169

xxiii

LIST OF TABLES xxiv

18.1 Finance, accounting and bookkeeping processes and objects 178
18.2 Finance, accounting and bookkeeping processes and objects (continued) 179
18.3 Professional service invoice specification . 182
18.4 Information hierarchies which link to invoice specification and generation 182
18.5 General Ledger Basic Sales Accounts . 183
18.6 General Ledger VAT Accounts . 183
18.7 Personnel and payroll general ledger accounts . 184
18.8 General ledger matrix model . 185
18.9 Debit and credit transaction logic: effect on account balances 185
18.10 Overview of the typical structure of a general ledger - Assets and Liabilities 187
18.11 Overview of the typical structure of a general ledger - Income / Expenses 188

20.1 Project management concepts and terms . 195

21.1 Facility Management Functions . 202
21.2 Relation between business objects and management disciplines 202
21.3 Engineers and Facility- and Practice Infrastructure Management 202
21.4 Management activities relating to business artefact classification 205
21.5 Document media formats . 205

22.1 Business knowledge management objects . 207

23.1 Business objects requiring logistics management . 210
23.2 Project document classification . 211

24.1 Disposal and Retention of Business Documents . 216
24.2 South African Business Legal Forms . 216

K.1 Management reporting graph levels . 425
K.2 Data file for tasks : PEPExTsequenceT.tgf . 437

Nomenclature

Sets
∈ Element of, or contained in
/∈ Not an element of, not contained in
⇔ If and only if
∧ Logical or
∨ Logical and
6 Logical negation
U Universal set or universe of discourse∧

Universal qualifier - for every
∀ Universal qualifier - for every∨

Existential qualifier - there exists or is
∃ Existential qualifier - there exists or is
φ Empty set
⊂ Proper subset
⊆ Subset
∪ Union of sets
∩ Intersection of sets
− Set difference
A Complement of set A

Z Integer numbers
N Natural numbers
Q Rational numbers
< Real numbers

Relations
(a, b) Ordered pair
A×B Cartesian product of sets A and B

R Relation
IA Identity relation
R−1 Inverse or dual relation
R ◦ S Composition of relations R and S

Φ : A→ Z Mapping from A to Z

card (A) = |A| Cardinality
φ Null relation
I Identity relation
E All relation

Graph Theory
G = (V ;E) Graph

xxv

NOMENCLATURE xxvi

G Graph
V Vertex set of graph
E,R Edge set of graph
u, v, x, y, x1, y1 Graph vertices
e = {u, v} Graph edge
R, A Graph adjacency matrix
B Graph incidence matrix
(x, y) Graph vertex pair
r(x) Rank of a graph vertex
Φ Vertex set mapping
GK Reduced graph
VK Reduced vertex set
RK Reduced edge set

System Theory
C Set of internal system elements
B Set of system boundary elements
E Set of system environment elements
Is Set of system inputs
Os Set of system outputs or readouts
Ss Set of system states
Ns System next state mapping
T System time or progress counters
f System trajectory

Database Theory
R Relational schema
H Relation header
B Relation body
K Key of a relation
r () Relation state
dom(Ai) Attribute domain
|D| Domain cardinality
Ai Attribute
∀ Universal qualifier - for every
∃ Existential qualifier - there exists or is
σ Selection operation
π Projection operation
u
st Tuple concatenation for tuples s and t

∪ Set union operation
− Set difference operation
∩ Set intersection operation
⊗ Set Cartesian product operation
./ General join operation
← Natural join operation
A./ Left outer join
./@ Right outer join
A./@ Full outer join

Chapter 1

Introduction

The primary goal of this thesis is to indicate how systems theory and engineering process modelling
can be applied to provide models for consulting engineering service business enterprises. The typical
management systems used for these businesses are investigated to determine the application of systems
and process models.

The motivation for this study is based on the fact that integrated management systems for consulting
engineering practices are presently based on selective business analysis and process modelling that has
evolved over time, as reported in a survey and study by Smit [110]. Furthermore, current engineering
management systems are simply computer implementations of management procedures based on tech-
niques that were developed to solve problems in the absence of the computational capabilities of the
modern computer. To rectify this, a fundamental approach to analyse the business and management
functions using systems theory and engineering process modelling techniques is required, which has not
been attempted to date. This study develops and demonstrates the application of fundamental analysis
in consulting engineering enterprise management and reviews advantages that can be obtained from using
this approach.

It is shown that the mathematical Algebra of Relations and associated Graph Theory provide the
mathematical basis on which management problems can be treated systematically. Since these fields
of mathematics are well developed and very broad, the essential parts of the theories are identified.
Thereupon, the application of the very abstract mathematical concepts to two important and typical en-
gineering management problems are developed, which represents the core contribution of the dissertation.

The study is developed in two parts and an addendum:

1. This part provides an overview of the necessary mathematical theory required to support develop-
ment of business models.

2. Management systems theory and relation based engineering process modelling techniques are applied
in this part to build generic enterprise models and data processing models. These models provide
inputs for the management processes of professional service business enterprises. The outcome of
the modelling and analysis is a set of database models with reporting functionality, to be used in
the management process. A demonstration of technology available for development of the models
and techniques, described in the previous part, is undertaken in this part. Generic implementations
of database models and reporting techniques for systems which deal with management data in a
consulting engineering business are described and demonstrated.

3. In the addendum techniques and technology developed in the previous parts are used to identify typ-
ical models and system functionality needed to support the management functions of the consulting
engineering service business.

To limit the scope of the study it was decided to focus on the use of an engineering process model
approach for project production planning and management. Relational models for the engineering process
are developed and a database implementation is done for the process model.

Techniques to process management reports referring to business organisational structures are devel-
oped and demonstrated. These techniques are based on a graph theoretical approach.

The appendices which contain the computer program implementations of the various examples dis-
cussed in the document are available on the CD disk included with the document.

1

Part I

Management systems theory and engineering
process modelling techniques

2

Chapter 2

Overview of Part I

This part deals with management systems theory and engineering process modelling techniques. Man-
agement systems theory and engineering process modelling techniques are applied to build enterprise
models and data processing models which provide inputs for the management processes of the business
enterprise. The theoretical models are based on a mathematical approach using set theory, graph theory
and relational algebra. The outcome of the modelling and analysis are a set of database models with
reporting functionality, to be used in the management process.

The primary goal is to study systems theory and engineering process modelling techniques which can
be applied to models of consulting engineering service business enterprises and the typical management
systems used for these businesses.

In this part the basic mathematical theory and system theory required to discuss, analyse and design
management system models are described.

The applicable mathematical and systems theory dealt with is:

• Basic set theory

• Relations and mappings based on set theory

• Graph theory

• General systems theory based on set theory

• Database theory

Set theory, theory of relations and graph theory are not treated in current engineering curricula.
Therefore a review of these theories which form the basis of discrete mathematics are included in this
document.

Examples pertaining to management of consulting business enterprises are described and MATLAB
code developed to support the demonstration of the theoretical concepts involved is included in appendices
to the document.

Conclusion, recommendations and suggestions for further work

The theory set out in this part is applied in part II to develop technology which can be used in engineering
service enterprise management systems.

Chapters 3, 4, 5, 6 and 7 will be of value to students and researchers working in the field of discrete
mathematics applied to engineering.

The MATLAB functionality developed for this study to implement the theory described in chapters
3, 4, 5 and 6 can be of value in the teaching of concepts in this field of study.

3

Chapter 3

Set Theory

3.1 Introduction

The basic concepts and terminology of set theory which may be applied to business systems modelling are
reviewed in this chapter. The development follows directly from that by Pahl and Damrath [92], Cronje
[26] and Lipschutz [73, 74]. Selected paragraphs taken from these references are used as such.

3.2 Sets, Elements of Sets and Subsets

This section gives a basic definition of a set. The specification of elements of a set as well as families of
elements of sets using subscripts and the use of quantifiers for set elements is defined. The concepts of
equality of sets, subsets, sets of sets, power set and set comparability are then dealt with.

3.2.1 Definition of a set

A collection of elements with similar well-defined properties is called a set. The adjective well-defined
is used to emphasise the basic requirement that one must always be able to specify a set that, given
any object whatsoever one must be able to determine if the object belongs to the set in question or not.
Objects which are separable and can be uniquely identified are called elements. Each property of an
element of a set is described either by its value or by rules for determining its value. The elements of a
set are uniquely identified using a property of the elements which takes different values for all elements
of the set. This property is called the name (label, identifier) of the element.

3.2.2 Defining elements of sets

A set M is specified either by enumerating the designations of the elements or by describing the properties
of the elements. The order of enumeration of the elements is irrelevant. If two elements in the enumeration
bear the same designation, they represent the same element. Each element is contained in the set only
once. The set without elements is called the empty set and is designated by φ.

M = {a, b, c} set M consists of the elements a, b, c
M = {x | E (x)} set M contains every element for which the logical expression E (x) is true
φ := {x | x 6= x} empty set

(3.2.1)

The membership of an element a in a set M is represented using the symbols ∈ and /∈:

a ∈M a is an element of M
a /∈M a is not an element of M

Sets can be finite or infinite. A set is finite if the counting process of its elements comes to an end.
Otherwise the set is infinite. Refer to the section on cardinality 4.15.1 where the concept of finite and
infinite sets are defined without reference to the natural numbers.

4

CHAPTER 3. SET THEORY 5

3.2.3 Defining families of elements

Designating the elements of a set by different names is inconvenient for sets with a large number of ele-
ments. Therefore the elements of a set X are often designated by x1, x2, x3, The common designation
by the lowercase letter x symbolises membership in the set X, while the index i ∈ {1, 2, 3, . . .} identifies
the element. The elements xi are called a family of elements. The family of elements is designated by
{xi}.

X = {xi | i ∈ I = {1, 2, 3, . . .}} (3.2.2)

3.2.4 Universal and existential quantifiers

There are statements which are true for certain elements of a set M and false for other elements of M .
Using the universal quantifier

∧
and the existential quantifier

∨
one has:∧

x∈M

a (x) for every x in the set M , a (x) holds∨
x∈M

a (x) there is an x in the set M for which a (x) holds
(3.2.3)

3.2.5 Equality of sets

Two sets A and B are said to be equal if they contain the same elements. If the sets A and B are equal,
they contain the same elements. The statement A = B (A equals B) can either be true or false.

(A = B) :⇔
∧
x

(x ∈ A⇔ x ∈ B) (3.2.4)

A = B sets A and B are equal
A 6= B sets A and B are not equal

3.2.6 Subsets of a set

Set A is called a subset of a set B if every element of A is also an element of B. If the set B contains at
least one element not contained in A, then A is called a proper subset of B.

(A ⊆ B) :⇔
∧
x

(x ∈ A⇒ x ∈ B)

(A ⊂ B) :⇔ (A ⊆ B) ∧ ¬ (A = B)
(3.2.5)

In addition to the symbols ⊆ (contained in) and ⊂ (properly contained in), the symbols ⊇ (includes)
and ⊃ (properly includes) are also used.

B ⊇ A set B includes set A
B ⊃ A set B properly includes set A

A ⊆ B A is a subset of B
A ⊂ B A is a proper subset of B

3.2.7 Comparable sets

Sets A and B are said to be comparable if A ⊂ B or B ⊂ A. One of the sets is a subset of the other.
Sets are not comparable if A 6⊂ B and B 6⊂ A. For equal sets A and B A ⊂ B and B ⊂ A holds at the
same time.

3.2.8 Sets of sets

The elements of a set can be sets themselves. The terms a ‘family of sets’ or ‘class of sets’ can be used
to denote a ‘set of sets’.

3.2.9 Power set

The power set is an example of a set of sets. From a given set M of n elements, 2n subsets can be formed,
including φ and M . The set of all subsets of M , including φ and M , is called the power set of M and is
designated by P (M). The set M is called the reference set of the power set P (M).

CHAPTER 3. SET THEORY 6

M = {a, b, c} n = 3, 23 = 8
P (M) = {φ, {a} , {b} , {c} , {a, b} , {a, c} , {b, c} , {a, b, c}} (3.2.6)

3.2.10 Universal set

In a given set theoretic application all the sets under investigation will typically be subsets of a given
fixed set. This set is called the universal set U . U is also known as the universe of discourse for the set
application at hand.

3.2.11 Disjoint sets

If sets A and B have no elements in common i.e. no element of A is contained in B and no element of B
is contained in A the sets A and B are disjoint.

A and B disjoint ⇒ A ∩B = φ (3.2.7)

3.2.12 Partition of a set

If S is a non-empty set, a partition of S is a subdivision of S into non-overlapping non-empty sets. A
partition of a set S in a collection of sets (set of sets) {Ai} where:

∀i Ai 6= φ
∀ a ∈ S ∃i 3 a ∈ Ai every a ∈ S belongs to one of the Ai

Ai 6= Aj ⇒ Ai ∩Aj = φ the sets in {Ai} are mutually disjoint
(3.2.8)

3.3 Set Operations

In this section the binary set operations, i.e. set union, set intersection and set difference and the unary
operation, set complement are defined.

3.3.1 Union of sets

The union A ∪ B of set A and set B is the set of all elements belonging to set A or set B or set A and
set B.

A ∪B := {x | x ∈ A ∨ x ∈ B}
A ∪B = B ∪A

(3.3.1)

3.3.2 Intersection of sets

The intersection A ∪B of set A and set B is the set elements which are common to both sets A and B,
i.e. belonging to both set A and set B.

A ∩B := {x | x ∈ A ∧ x ∈ B}
A ∩B = B ∩A

(3.3.2)

3.3.3 Set difference

The difference of set A and set B, A−B is the set of elements belonging to set A but not to set B. This
is read as A difference B or as A minus B.

A−B := {x | x ∈ A ∧ x /∈ B}
A−B ⊂ A

(3.3.3)

3.3.4 Complement of a set

If a set A is the subset of a set M then the difference of A with respect to M is defined as M −A and is
designated as A.

CHAPTER 3. SET THEORY 7

A := M −A
A ∪A = M
A ∩A = φ

(3.3.4)

3.4 Sets of Numbers

Basic sets of numbers and intervals on these sets of numbers which are used in business systems and
systems models are introduced in this section.

3.4.1 Integer numbers

The set of integer numbers Z (or integers) contains the positive and negative whole numbers including
zero.

Z := {. . . ,−2,−1, 0, 1, 2, 3, . . .} (3.4.1)

3.4.2 Natural numbers

The set of natural numbers N contains all the positive integers.

N := {1, 2, 3, . . .} (3.4.2)

3.4.3 Rational and irrational numbers

The set of rational numbers Q contains numbers which can be expressed as the ratio of two integers.

Q :=
{

x | x = p
q , p ∈ Z and q ∈ Z

}
(3.4.3)

The set of irrational numbers Q′ are those numbers which cannot be expressed as the ratio of two
integers. Examples of irrational numbers are

√
2,
√

3, π and e.

3.4.4 Real numbers

The set of real numbers < can be defined as the union of the sets of rational (Q′) and irrational (Q′)
numbers. The set of real numbers and its properties are called the real number system. One of the most
important properties of the real numbers is that they can be represented by the points on a straight line
– the real line. Every real number can be represented in nonterminating decimal format. The rational
numbers correspond to those decimals where the block of digits (zero included) is continually repeated,
while the irrational numbers correspond to the other nonterminating decimals. The symbol < is used for
the real numbers to distinguish the set of real numbers from the symbol R used for a relation later.

3/8 = .375
3/8 = .375000000 . . .
3/8 = .374999999 . . .

2/11 = .1818181 . . .

π = 3.1417 . . .

(3.4.4)

3.4.5 Number inequalities

The ordering of the real numbers < is achieved by defining the less than relation <.

a < b : b− a a positive number
b < a : a− b a positive number (3.4.5)

CHAPTER 3. SET THEORY 8

The following properties of the relation < can be proved.

Either a < b, a = b or b < a
If a < b and b < c then a < c
If a < b then a + c < b + c
If a < b and c is positive then ac < bc
If a < b and c is negative then bc < ac

(3.4.6)

If a < b then the point on the real line representing a lies to the left of the point representing b.

3.4.6 Absolute value

The absolute value of a real number x is denoted by |x| is defined as:

|x| =
{

x if x ≥ 0
−x if x < 0 (3.4.7)

3.4.7 Intervals on sets of numbers

Finite and infinite intervals on ordered sets such as sets of numbers can be defined. In the case of the
real numbers the order relation is < applied to form the intervals.

Finite intervals which are defined on ordered sets can be defined for the set of real numbers in one of
the following ways:

[a, b] := {x ∈ < | a ≤ x ≤ b} a closed interval
(a, b) := {x ∈ < | a ≤ x ≤ b} an open interval
[a, b) := {x ∈ < | a ≤ x ≤ b} a left closed right open interval
(a, b] := {x ∈ < | a ≤ x ≤ b} a left open right closed interval

(3.4.8)

Defining I to be the family of all intervals on the real line containing intervals A and B, the following
properties of intervals can be stated:

• The intersection of two intervals is an interval.

A ∈ I, B ∈ I ⇒ A ∩B ∈ I. (3.4.9)

• The union of two non-disjoint intervals is an interval.

A ∈ I, B ∈ I, A ∩B 6= φ⇒ A ∪B ∈ I. (3.4.10)

• The difference of two non-comparable intervals is an interval.

A ∈ I, B ∈ I, A 6⊂ B,B 6⊂ A⇒ A−B ∈ I. (3.4.11)

Infinite intervals can be formed as:

[a,∞) := {x ∈ R | x ≥ a} a left closed infinite interval
(−∞,∞) := {x ∈ R} an open interval – all the real numbers
(−∞, b] := {x ∈ R | x ≤ b} a left infinite right closed interval

(3.4.12)

3.4.8 Bounded and unbounded sets of numbers

If A is a set of numbers then A is a bounded set if A is the subset of a finite interval.
Set A is bounded if:

∃M > 0 such that |x| ≤M ∀x ∈ A (3.4.13)

A set is unbounded if it is not bounded. If a set is finite it is necessarily bounded. If a set is infinite
it can be bounded or unbounded.

CHAPTER 3. SET THEORY 9

3.5 MATLAB implementation of Set Operations

Example MATLAB function implementations of selected set concepts, definitions and operations are in-
cluded in Appendix A and Appendix B. These functions are used later in part II for business system
examples.

Chapter 4

Relations and Mappings

4.1 Introduction

The basic concepts and terminology of relations based on set theory which may be applied to business
systems modelling are reviewed in this chapter. The development follows directly from that by Pahl and
Damrath [92], Cronje [26], Lipschutz [73, 74] and Open University Mathematics Foundation Course Team
[89]. Selected paragraphs taken from these references are used as such.

4.2 Ordered pair

In a set, the order of elements is irrelevant, so that {a, b} = {b, a}. Two elements a and b whose order
is relevant are called an ordered pair. An ordered pair is enclosed in parentheses. The elements a and b
may be contained in different sets.

Two ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d.

ordered pair (a, b) := {{a} , {a, b}}
a first component of the ordered pair (a, b)
b second component of the ordered pair (a, b)

(4.2.1)

4.3 Cartesian product

Given sets A and B, the set of all ordered pairs (a, b) that can be formed using elements a ∈ A and b ∈ B
is called the Cartesian product (direct product) of the sets A and B. The Cartesian product is designated
by A×B. The Cartesian product of a set by itself can also be formed and is written as A2

A×B := {(a, b) | a ∈ A ∧ b ∈ B}
A×A := {(a, b) | a ∈ A ∧ b ∈ A} (4.3.1)

Multiple Cartesian products can also be formed as shown below.

A×B × C := {((a, b) , c) | a ∈ A ∧ b ∈ B ∧ c ∈ C}
A×A×A := {((a, b) , c) | a ∈ A ∧ b ∈ A ∧ c ∈ A} (4.3.2)

The order of the formation of a multiple Cartesian product is important seeing that the Cartesian
product is not distributive over itself.

4.4 Unary relations

A unary relation forms a subset of a set. Let a non-empty set M of elements and a unary operation on
these elements be given. The value of the unary operation Ra for an element a is true or false.

u := {a ∈M | Ra} ⊆M
[u ⊆M] (4.4.1)

10

CHAPTER 4. RELATIONS AND MAPPINGS 11

4.5 Binary relations

A relation on two sets is called a binary relation. A binary relation is a set of ordered pairs of elements. It
is a subset of a Cartesian product of two sets. A relation on two sets, or a heterogeneous binary relation,
is a subset of the Cartesian product of two different sets.

A relation in a set A, or a homogeneous binary relation, is a subset of the Cartesian product A2 =
A×A, i.e. where the two factors of the product coincide.

4.6 Heterogeneous binary relation

Given two non-empty sets A and B, with a binary operation for a relation R on the elements a ∈ A and
b ∈ B whose value is a logical constant. The value of the operation for the ordered pair (a, b) in the
product A×B is designated by aRb (a is related to b) and is either true or false.

This implies that if A and B are sets, a binary relation R assigns to each ordered pair (a, b) contained
in A×B exactly one of the statements given in equation 4.6.1.

‘a is related to b’, written as aRb
‘a is not related to b’, written as a¬Rb (4.6.1)

The subset R of pairs (a, b) for which aRb is true is called a relation on A and B, or a heterogeneous
binary relation. Thus the relation is a set containing the ordered pairs of elements for which the relation-
ship specified by the operation holds. The order of the elements a and b in the operation is relevant to
the result of the operation. The relation R is a subset of the heterogeneous Cartesian product A×B.

R := {(a, b) ∈ A×B | aRb} ⊆ A×B (4.6.2)

4.7 Homogeneous binary relation

Consider a non-empty set M , with a binary operation for a relation R on the elements a ∈M and b ∈M
whose value is a logical constant. The value of the operation for the ordered pair (a, b) in the product
A×A is designated by aRb and is either true or false.

The subset R of pairs (a, b) for which aRb is true is called a relation in M , or a homogeneous binary
relation. Thus the relation is a set containing pairs of elements for which the relationship specified by the
operation holds. The corresponding homogeneous relation is the set of all ordered pairs (a, b) for which
the binary operation aRb is true. It is a subset of the homogeneous Cartesian product M ×M .

R := {(a, b) ∈M ×M | aRb} ⊆M ×M (4.7.1)

4.8 Properties of relations

The subset R ⊆ M ×M of the Cartesian product of a set with itself for which aRb is true is called a
relation in M . The relationships between the statement values aRb and bRa of the pairs (a, b) and (b, a)
determine the properties of the relation. These properties are defined in Table 4.1 for a, b, c ∈M .

4.9 Totality of a relation on A and B

The subset R ⊆ A×B for which aRb is true is a relation on the sets A and B. The subset of A for which
there exists b ∈ B such that aRb is true is called the domain of R. The subset of B for which there exists
a ∈ A such that aRb is true is called the codomain of R. The relation is said to be left-total if its domain
is A. The relation is said to be right-total if its range is B. A relation which is left- and right-total is
said to be bitotal.

R is left-total :⇔
∧
a

∨
b

(aRb)

R is right-total :⇔
∧
b

∨
a

(aRb)

R is bitotal :⇔ R is left-total ∧R is right-total

(4.9.1)

CHAPTER 4. RELATIONS AND MAPPINGS 12

R is reflexive :⇔
∧
a

(aRa)

R is antireflexive :⇔
∧

a (¬aRa)
R is symmetric :⇔

∧
a

∧
b

(aRb⇒ bRa)

R is asymmetric :⇔
∧
a

∧
b

(aRb⇒ ¬bRa)

R is antisymmetric :⇔
∧
a

∧
b

(aRb ∧ bRa⇒ a = b)

R is linear :⇔
∧
a

∧
b

(aRb ∨ bRa)

R is connex :⇔
∧
a

∧
b

(a 6= b⇒ aRb ∨ bRa)

R is transitive :⇔
∧
a

∧
b

∧
c

(aRb ∧ bRc⇒ aRc)

Table 4.1: Properties of relations

4.10 Uniqueness of a relation on A and B

A relation on A and B is said to be left-unique if the statements aRb and cRb are true only for a = c.
The relation is said to be right-unique if the statements aRb and aRc are true only for b = c. A relation
which is left-unique and right-unique is said to be bi-unique.

R is left-unique :⇔
∧
a

∧
b

∧
c

(aRb ∧ cRb⇒ a = c)

R is right-unique :⇔
∧
a

∧
b

∧
c

(aRb ∧ aRc⇒ b = c)

R is bi-unique :⇔ R is left-unique ∧R is right-unique

(4.10.1)

4.11 Relational diagram

A relational diagram shows three sets: the sets A and B as well as the relation R. The elements of A
and B are represented by different symbols, for instance empty and filled circles. The elements of R are
represented by line segments. For R ⊆ A × B the elements a ∈ A and b ∈ B for which aRb is true are
joined by line segments. The following relational diagrams illustrate the uniqueness of R.

R general R left-unique R right-unique R bi-unique
m : n relationship 1 : n relationship m : 1 relationship 1 : 1 relationship

(a) general (b) left-unique (c) right-unique (d) bi-unique

Figure 4.1: Uniqueness of R

CHAPTER 4. RELATIONS AND MAPPINGS 13

4.12 Types of relations

Every relation is a subset of a direct product of sets. Relations often have additional properties. Relations
with common properties belong to a type of relations. Some types of relations are defined in the following.

4.12.1 Identity relation

The set of all ordered pairs (a, a) in the product A×A is called the identity relation IA in the set A.

IA := {(a, a) | a ∈ A} (4.12.1)

4.12.2 Inverse relation

The set R−1 is called the inverse (dual) relation of the relation R if the order of the elements in the
ordered pairs (a, b) of R is exchanged in R−1.

R−1 := {(b, a) | (a, b) ∈ R} (4.12.2)

4.12.3 Composition

Let a relation R on the sets A and B and a relation S on the sets B and C be given. The set of ordered
pairs (a, c) ∈ A×C for which there is a common element in B is called the composition of R and S. The
order of R and S is relevant, as b is the second element of R and the first element of S. The composition
is designated by R ◦ S.

R ◦ S :=

{
(a, c) ∈ A× C |

∨
b∈B

(aRb ∧ bSc)

}
(4.12.3)

4.12.4 Equivalence relation

A relation E ⊆ M ×M is called an equivalence relation in the set M if it is reflexive, symmetric and
transitive. The elements x and y of the set M are said to be equivalent if the set E contains the pair
(x, y); this relationship is designated by x ∼ y or xEy.

E is reflexive x ∼ x
E is symmetric x ∼ y ⇒ y ∼ x
E is transitive x ∼ y ∧ y ∼ z ⇒ x ∼ z

(4.12.4)

4.12.5 Equivalence class

A subset of a set M is called an equivalence class in M if the elements of the subset are pairwise equivalent.
An equivalence class is designated by choosing an arbitrary element a of the class and enclosing it in square
brackets [a]. The selected element a is called a representative of its class.

[a] := {x ∈M | (a, x) ∈ E} (4.12.5)

4.12.6 Partitioning by equivalence

The equivalence classes in a set M for a given equivalence relation E form a partition of M :

1. Every element x of the set M is contained in at least one equivalence class, since (x, x) is an element
of the reflexive relation E.

2. None of the equivalence classes [x] is empty, since (x, x) ∈ E and hence at least x itself is an element
of [x].

3. Every element z of the set M is contained in exactly one equivalence class. In fact, if z is an element
of the classes [x] and [y], then since E is symmetric and transitive z ∼ x and z ∼ y imply that
x ∼ z and x ∼ y; hence [x] = [y].

CHAPTER 4. RELATIONS AND MAPPINGS 14

4.12.7 Quotient set

The set of equivalence classes of a set M for an equivalence relation E is called a quotient set and is
designated by M/E (M modulo E). A subset R ⊆M is called a system of representatives of the quotient
set M/E if it contains exactly one representative from each class of M/E.

M/E := {[x] | x ∈M} (4.12.6)

Figure 4.2: Quotient set

4.13 Mappings

It may be convenient to assign to each element of a set A exactly one element of a set Z. The same
element of Z may be assigned to different elements of A. Relations of this type are called mappings.
Each vertex can be mapped in this way to a vertex in its strongly connected component.

4.13.1 Mapping notation

A relation Φ ⊆ A× Z is called a mapping if it is left-total and right-unique. The terminology used is:

Φ : A→ Z Φ is a mapping from A of Z
A domain of Φ
Z target of Φ

(4.13.1)

4.13.2 Image of an element

If the mapping Φ assigns the element z ∈ Z to the element a ∈ A, then z is called the image of a under
the mapping Φ. The element a is called a inverse image (pre-image) of z. The following notation is used:

Φ : a→ z or Φ (a) = z (4.13.2)

4.13.3 Arrow diagram

Mappings are depicted using arrow diagrams. Every element of the domain is the starting point of an
arrow. The arrow points to the image in the target.

CHAPTER 4. RELATIONS AND MAPPINGS 15

domain A:

target Z:

a b c d

Φ (a) Φ (b) Φ (c) = Φ (d)

mapping Φ : A→ Z

4.13.4 Types of mappings

All mappings are left-total and right-unique relations. Mappings often have additional properties. Map-
pings with common additional properties are classified as follows.

4.13.4.1 Injective mapping

A mapping Φ : A → Z is said to be injective (an injection) if two different elements a 6= b of the set A
always possess two different images Φ (a) 6= Φ (b). An injection is a left-total, bi-unique relation. From
Φ (a) = Φ (b) it follows that a = b.

injection

A

↓ Φ

Z

not an injection

A

↓ Φ

Z

4.13.4.2 Surjective mapping

A mapping Φ : A→ Z is said to be surjective (a surjection) if each element of the target Z is the image
of at least one element of A. A surjection is a bitotal, right-unique relation. An element z ∈ Z may be
the image of more than one element in A.

surjection

A

↓ Φ

Z

not a surjection

A

↓ Φ

Z

4.13.4.3 Bijective mapping

A mapping Φ : A → Z is said to be bijective (a bijection) if every element of Z is the image of exactly
one element of A. A bijection if a bitotal, bi-unique relation. The number of elements in A and Z is the
same.

bijection

A

↓ Φ

Z

not a bijection

A

↓ Φ

Z

4.13.4.4 Canonical mapping

The surjection from a set M to its quotient set M/E for a given equivalence relation E is called a canonical
mapping of M . The image of the element a ∈M is the equivalence class [a].

k : M →M/E with k (a) = [a] (4.13.3)

CHAPTER 4. RELATIONS AND MAPPINGS 16

Example

The graph example in section 4.17 will be used to show the canonical mapping between the graph M and
its quotient set M/E.

Figure 4.3: Canonical mapping

4.14 Order relations and ordered sets

To order a set an order relation is defined. The definition of an order relation does not require that the
elements of a set be comparable. The set can be partially ordered. For the special case of a total ordering
of a set all elements of the set need to be comparable. Order relations (e.g. ≤ in N), the set of natural
numbers) as well as strict order relations (e.g. < in N) may be used to order a set either partially or
totally.

Order relation

For a given set M a relation in M is defined as an order relation if it is reflexive, antisymmetric and
transitive. Order relations are represented by symbols such as ≤ or ⊆. An order relation ≤ in M is a
subset of the Cartesian product M ×M with the properties listed below for elements a, b, c ∈M .

≤ is reflexive : a ∈M ⇒ a ≤ a
≤ is antisymmetric : a ≤ b ∧ b ≤ a ⇒ a = b
≤ is transitive : a ≤ b ∧ b ≤ c ⇒ a ≤ c

(4.14.1)

4.15 Countability and cardinality

4.15.1 Cardinal numbers and finite and infinite sets

The number of elements in a finite set is the cardinal number of the set.
The concept which corresponds to the number of elements of a finite set for general sets (which can

be finite or infinite) is also termed the cardinal number or cardinality of the set.
For a given collection of sets M = {A,B, } the quotient set with respect to the equivalence relation ∼

is formed. An element of the quotient set M/ ∼ is called the cardinal number or cardinality of the given
collection of sets. The canonical mapping card : M → M/ ∼ assigns a cardinality card (A) = [A] = |A|
to each set A ∈M .

CHAPTER 4. RELATIONS AND MAPPINGS 17

4.15.2 Operations on cardinal numbers

Operations on cardinal numbers of a given set of sets can be defined as follows.

• The sum of the cardinal numbers of disjoint sets A and B is the cardinal number of the union of A
and B:
A ∩B = φ⇒ card(A) + card(B) = card(A ∪B)

• The product of the cardinal numbers of sets A and B is the cardinal number of the Cartesian
product of A and B:
card(A) · card(B) = card(A×B)

• The cardinal numbers card(A) to the power card(B) is the cardinal number of the set of all map-
pings from B to A:
card(A)card(B) = card(AB)AB = {f | f : B → A}

4.15.3 Countable sets and properties of countable sets

A set is defined as countable if an injection f : M → N exists. N is the set of natural numbers
N = {1, 2, 3, 4, 5 . . .}

M is countable :⇔
∨
f

(f : M → N is injective) (4.15.1)

Countable sets have the following properties:

• The Cartesian product N ×N of the set of natural numbers N = {1, 2, 3, 4, 5 . . .} is countable.

• For every injection f : A → B with A 6= φ there is a surjection g : B → A with g ◦ f = 1A the
identity mapping.

• If a set A is countable and a mapping f : A → B is surjective then it follows that the set B is
countable.

• Every subset of a countable set is countable.

• If the sets A and B are countable then the Cartesian product of A and B, A×B is countable.

• The union of countable sets is countable.

4.15.4 Comparison of and ordering of cardinal numbers

To compare the cardinal numbers of sets the order relation less than or equal to is used.
Define S = {A,B,C . . .} be a collection of sets. The set S is partitioned into classes of equipotent

sets using the equivalence relation ∼. The quotient set S/ ∼ is the set of cardinal numbers for S. The
cardinal number of A is said to be less than or equal to the cardinal number of B if A is equipotent with
a subset of C ⊆ B in S.

card(A) ≤ card(B) :⇔
∨

C∈S

(C ⊆ B ∧A ∼ C) (4.15.2)

It follows that the cardinal numbers of the sets in S are partially ordered by the less than or equal to
relation (≤) since ≤ possesses the properties of an order relation, i.e.:

• The relation ≤ is reflexive since for A ∼ A :
card(A) ∈ S/ ∼ ⇒ card(A) ≤ card(A)

• The relation ≤ is antisymmetric:
card(A) ≤ card(B) ∧ card(B) ≤ card(A) ⇒ card(A) = card(B)

• The relation ≤ is transitive:
card(A) ≤ card(B) ∧ card(B) ≤ card(C) ⇒ card(A) = card(C)

CHAPTER 4. RELATIONS AND MAPPINGS 18

4.15.5 Cardinality of the set of real numbers

It can be proved that no bijective mapping exists between the set of real numbers R and the set of natural
numbers N . It follows that card(N) ≤ card(R)

4.15.6 Cardinality of Cartesian products of the set of real numbers

Define the open interval I = (0, 1). It can be shown that card(I) = card(R) and thus card(I2) = card(R2)
and thus:

card
(
R2

)
= card (R)⇔ card

(
I2

)
= card (I) . (4.15.3)

By use of induction it can then be shown that card (Rn) = card (R).

4.16 Closure of a homogeneous binary relation

An extension of a homogeneous binary relation R ⊆ M ×M is called a closure and is designated by
< R > if the following conditions are satisfied:

inclusion : R v< R >
isotonicity : R v S ⇒< R >v< S >
idempotency : << R >>=< R >

(4.16.1)

The extension is performed such that the closure has special properties which the relation itself does
not necessarily possess. Reflexive, symmetric and transitive closures are defined in the following sections.
Closures may also have several of these properties.

4.16.1 Reflexive closure

The reflexive closure < R >r of a relation R ⊆M ×M is formed by adding the elements (x, x) ∈M ×M
to R. The closure < R >r satisfies the condition for reflexive relations.

< R >r := {(x, y) | (x, y) ∈ R ∨ x = y ∈M}
< R >r = R t I

I v < R >r⇒< R >r is reflexive
(4.16.2)

4.16.2 Symmetric closure

The symmetric closure < R >s of a relation R ⊆ M ×M is the union of R with its transpose RT . If
< R >s contains the element (x, y), then (y, x) is also an element of < R >s. The closure < R >s satisfies
the condition for symmetric relations.

< R >s := {(x, y) | (x, y) ∈ R ∨ (y, x) ∈ R}
< R >s = R tRT

< R >s = < R >T
s⇒< R >s is symmetric

(4.16.3)

4.16.3 Powers of a relation

In the algebra of relations, connections are represented by products of the relation R with itself. For
example, if R contains the elements (a, b) and (b, c), then by definition the product R ◦ R contains the
element (a, c). The element (a, c) is a connection of length 2 in R. Each of the elements of R ◦ R is a
connection of length 2 in R. The power Rm = R ◦ . . . ◦ R (m-fold) contains all connections of length m
between two elements of M . To determine all connections of length m ≤ q in M by R, the union of the
relations R tR2 t . . . tRq is formed.

4.16.4 Stability index

The least exponent s for which the union R t R2 t . . . t Rs is not changed by adding terms Rm with
m > s is called the stability index of the relation R. The union RtR2 t . . .tRs contains all connections
by R in M .

The stability index s of a relation R may be interpreted as follows: If there are several connections
between two elements of M , then there is a shortest connection of length q which is contained in Rq.

CHAPTER 4. RELATIONS AND MAPPINGS 19

Among all the shortest connections between pairs of elements, there is a shortest connection of maximal
length s, which is contained in the power Rs. Hence the union RtR2 t . . .tRs contains all connections
in M by R. For a set M with n elements, the stability index s of the relation R ⊆ M ×M is less than
n, since the maximal length of all shortest connections in M by R cannot be greater than n− 1.

4.16.5 Transitive closure

The transitive closure < R >t of a relation R ⊆M ×M contains all elements (x, y) ∈M ×M which are
connected in M by R. The closure < R >t satisfies the condition for transitive closures.

< R >t:= {(x, y) ∈M ×M | x and y are connected in M by R}
< R >t:= R t . . . tRs

< R >t ◦ < R >tv< R >t⇒< R >t is transitive
s stability index of R with < R >t tRs+1 =< R >t

(4.16.4)

4.16.6 Reflexive transitive closure

The reflexive transitive closure < R >rt of a relation R ⊆ M ×M may alternatively be regarded as the
transitive closure << R >r>t of the reflexive closure < R >r or as the reflexive closure << R >t>r of the
transitive closure < R >t. The two viewpoints lead to identical relations. The closure < R >rt=< R >
satisfies the condition for transitive relations in the special form of an equation.

< R >rt := << R >r>t < R >tr:=<< R >t>r

< R >rt = < R >tr

< R >rt ◦ < R >rt = < R >rt ⇒ < R >rt is transitive
(4.16.5)

4.16.7 Reflexive symmetric transitive closure

The reflexive symmetric transitive closure < R >rst of a relation R ⊆M ×M is the transitive closure of
the symmetric closure of the transitive closure of R . It coincides with the reflexive symmetric transitive
closure < R >srt. The closure < R >rst is of special importance, as it is an equivalence relation and
therefore yields a classification of the set M .

< R >rst := <<< R >r>s>t=<< R >s>rt=< R tRT >rt

< R >rst = < R t I tRT >t
(4.16.6)

4.17 Algebra of homogeneous binary relations

Directed graphs will be considered in chapter 5.
Since the edge set of a directed graph is a homogeneous binary relation on the vertex set, the properties

of homogeneous binary relations and their rules of calculation may be directly transferred to directed
graphs. To support the graph theory development which follows the algebra of homogeneous binary
relations will now be explained in more detail.

Since every relation is a set, the rules of the algebra of sets also hold for homogeneous binary relations.
Additional properties and rules result from the duality and composition of relations.

4.17.1 Graphical representation

A homogeneous binary relation R in a set M can be visually represented in a graph diagram. The graph
diagram consists of a point set which represents the set M of elements with their designations. If an
element x is related to an element y, an arrow is drawn from the point x to the point y. The homogeneous
relation R corresponds to the resulting set of arrows. The graph diagram shows the elements of the set
M and the relationships in a network-like structure. It is the representation used in graph theory. The
points used to represent the elements are called vertices, the arrows are called directed edges.

The directed edges of the graph can be labelled rij with i and j indicating the start and end vertex
for the graph edge rij .

CHAPTER 4. RELATIONS AND MAPPINGS 20

Example

M = {a, b, c, d, e}
R = {(a, b) , (a, d) , (b, a) , (c, a) , (c, d) , (d, c) , (d, e) , (e, e)}

A graphical representation of the given homogeneous binary relation R in the set M is shown in figure
4.4.

Figure 4.4: Homogeneous binary relations graph example

4.17.2 Special relations

The null relation (empty relation) φ, the identity relation I and the all relation (universal relation) E are
special homogeneous binary relations in the set M .

null relation φ = {}
identity relation I = {(a, a) | a ∈M}
all relation E = M ×M

(4.17.1)

4.17.3 Equality and inclusion

The equality R = S and inclusion R v S operations on homogeneous relations R and S are equivalent.
If R v S is true, then R is contained in S.

The equality and inclusion operations transfer to directed graphs R and S as shown. rij and sij

represent the edges of the directed graphs R and S respectively.

equality R = S :⇔
∧
a

∧
b

((a, b) ∈ R⇔ (a, b) ∈ S)

inclusion R v S :⇔
∧
a

∧
b

((a, b) ∈ R⇒ (a, b) ∈ S)

equality R = S :⇔
∧
i

∧
j

(rij ⇔ sij)

inclusion R v S :⇔
∧
i

∧
j

(rij ⇒ sij)

(4.17.2)

4.17.4 Binary operations

The intersection RuS, the union RtS and the product R◦S are binary operations on the homogeneous
relations R and S. The intersection and the union are defined as in set theory. The product corresponds
to the composition of two relations; the operation of forming products is called multiplication. In the
algebra of relations it is convenient to define the composition R ◦ S of the relations in the order ‘first R,
then S’. This definition allows direct transfer to boolean matrix algebra.

CHAPTER 4. RELATIONS AND MAPPINGS 21

intersection R u S := {(x, y)| (x, y) ∈ R ∧ (x, y) ∈ S}
union R t S := {(x, y)| (x, y) ∈ R ∨ (x, y) ∈ S}
product R ◦ S := {(x, y)|

∨
z

((x, z) ∈ R ∧ (z, y) ∈ S)}
(4.17.3)

The intersection, union and product operations transfer to directed graphs R and S as shown below.
rij and sij represent the edges of the directed graphs R and S respectively.

intersection R u S := [rij ∧ sij]
union R t S := [rij ∨ sij]

product R ◦ S :=

[∨
k

rik ∧ skj

] (4.17.4)

4.18 MATLAB implementation of Relation Operations

Refer to Appendix C for the MATLAB implementation of basic relation operations with examples.

Chapter 5

Graph Theory

5.1 Introduction

The basic concepts and terminology of graph theory which may be applied to business systems modelling
are reviewed in this chapter. The development follows from works by Pahl and Damrath [92], Chartrand
and Oellerman [23], Balakrishnan [11], Gross and Yellen [51], Gross and Yellen [52], Lipschutz [74] and
Cronje [26]. Selected paragraphs taken from these references are used as such.

5.2 Graphs and Directed graphs

A variety of models of real-world situations can be represented by means of a diagram consisting of a set
of points and a set of lines or curves linking some or all of these points.

Graph theory is the mathematical abstraction dealing such structures of points and lines.
The lines linking points may be directed, which gives rise to the concept of a directed graph or digraph.

5.3 Graphs

A graph G consists of a set V of vertices and a collection E (not necessarily a set) of unordered pairs of
vertices called edges. A graph is symbolically represented as G = (V ;E).

Typically V and E are finite unless defined otherwise. The order of a graph is the number of vertices
and the size is the number of edges. If u and v are two vertices of a graph and if the edge e = {u, v} is
defined, then e is said to join u and v or is the edge between u and v. u and v is said to be incident on e
and e is incident on both u and v. An edge which is incident on the same vertex is called a loop. Note
that {u, v} is an unordered pair of u and v.

A graph with undirected edges joining any given two vertices and not having any loops is called a
simple graph.

5.4 Graph isomorphism

Identical graphs

Two graphs G = (V ;E) and G′ = (V ′;E′) are identical if V = V ′ and E = E′. This rigid approach
is typically too restrictive and the structural equivalence between two non-equivalent graphs lead to the
concept of isomorphic graphs.

Isomorphic graphs

Two graphs G = (V ;E) and G′ = (V ′;E′) are isomorphic if a bijective map or isomorphism f exists from
V to V ′ such that an edge exists between f(u) and f(v) in G if and only if there is an edge between u
and v in G. Equivalent graphs are isomorphic.

5.5 Subgraphs

The graph H = (W ;F) is a subgraph of graph G = (V ;E) if W is a subset of V (W ⊆ V and F is a
subset of E (F ⊆ E.

22

CHAPTER 5. GRAPH THEORY 23

5.6 Directed graphs

A directed graph (digraph) is a structured set. It consists of the vertex set V and a homogeneous binary
vertex relation R which corresponds to a set of directed edges. The vertex set V is equipped with structure
by the vertex relation R. The structural properties of a directed graph are entirely determined by the
properties of the relation R.

The relationships between the vertices are called edges of the graph and are identified by an ordered
vertex pair. Therefore, the edge set is a homogeneous binary relation on the vertex set. The properties of
homogeneous binary relations and their rules of calculation (see section 4.7) may be directly transferred
to directed graphs.

5.6.1 Definition of a directed graph

A domain G := (V ;R) is called a directed graph if V is the vertex set and R ⊆ V × V is the edge set
of the graph. An edge from the vertex x ∈ V to the vertex y ∈ V is designated by the ordered pair
(x, y) ∈ R. The edge, also known as an arc, (x, y) is said to be directed from x to y. The vertex x is
called the start vertex of the edge. The vertex y is called the end vertex of the edge.

G := (V ;R) R ⊆ V × V
V set of vertices
R set of ordered vertex pairs (edge set)

(5.6.1)

The graph G is called a null graph if the vertex set is empty. It is called an empty graph if the edge
set is empty. It is called a complete graph if the edge set R is the all relation E = V × V .

5.6.2 Properties

The properties of a directed graph (V ;R) are determined by the properties of the homogeneous binary
relation R. The properties of homogeneous relations described in Table 4.1 are therefore transferred
to directed graphs in Table 5.1. Antireflexive, symmetric, antisymmetric and asymmetric graphs are
important in applications:

Table 5.1: Properties of directed graphs

G is antireflexive :⇔ I v R̄
G is symmetric :⇔ R = RT

G is antisymmetric :⇔ R uRT v I
G is asymmetric :⇔ R uRT = ∅

For an antireflexive graph, the edge set does not contain vertex pairs of the form (x, x), and the graph
diagram is free of loops (see section 5.9.1.6). Between two different vertices in the graph diagram, a
symmetric graph contains either no edge or a pair of edges with opposite directions, which are combined
into an undirected edge. An antisymmetric graph contains either no edges or only one directed edge
between two vertices in the graph diagram. Symmetric and antisymmetric graphs may contain loops.
An asymmetric graph is antisymmetric and antireflexive, and hence free of loops. The graphs we will be
considering are asymmetric.

5.7 Degrees, indegrees and outdegrees

If a graph vertex v has p loops incident to it as well as q other edges incident to it the degree of v is
2p + q. In a graph with no loops, the degree of a vertex is the number of edges adjacent to that vertex.
In a graph without loops an isolated vertex has degree 0 and an end-vertex has degree 1. The sum of
the degrees in a graph is twice the number of edges of the graph. The maximum degree of a graph G is
denoted by ∆(G) and the minimum degree δ(G). A vertex in a graph is and odd vertex if its degree is
odd or an even vertex when its degree is even. Every graph has an even number of odd vertices.

In a directed graph the sum of the outdegrees of all the vertices is equal to the number of arcs which
is also equal to the sum of all the indegrees of the vertices.

CHAPTER 5. GRAPH THEORY 24

(a) antireflexive

(b) symmetric

(c) antisymmetric (d) asymmetric

Figure 5.1: Directed graph properties

5.7.1 Equality and inclusion

Let two directed graphs G1 and G2 be given. Using the algebra of relations, equality and inclusion are
defined as follows for these graphs:

equality G1 = G2 :⇔ V1 = V2 ∧ R1 = R2

partial graph G1 v G2 :⇔ V1 = V2 ∧ R1 v R2

subgraph G1 ⊆ G2 :⇔ V1 ⊆ V2 ∧ R1 v R2 u (V1 × V1)
(5.7.1)

A partial graph or spanning subgraph G1 is generated from a graph G2 by removing edges from G2.
A subgraph G1 is generated from a graph G2 by first removing vertices together with the incident edges
and then removing further edges form G2.

5.7.2 Adjacency matrix graph representation

Graphs can be represented using different data structures, one of which is the adjacency matrix.
Let V be a set with n elements. The elements of V are indexed by a mapping Φ : N → V with

Φ (i) = xi and 1 ≤ i ≤ n, so that V = {x1, . . . , xn}. A homogeneous binary relation R ⊆ V × V is a
subset of V × V . The elements of V × V which belong to the relation are specified by a boolean matrix
R of dimension n× n. Every element (xi, xj) ∈ V × V is bijectively associated with an element rij ∈ R.
If the relation R contains the element (xi, xj), then rij has the value true(1); otherwise rij has the value
false (0).

A boolean matrix R of a homogeneous relation R is an n2-tuple of the truth values W = {0, 1},
and hence an element of the n2-fold Cartesian product Wn·n. The elements of a matrix R are usually
arranged in a row and column scheme by regarding the indices i, j of the element rij as row and column
indices, respectively. In formulations of general properties and rules, a matrix R is represented by a
general element rij in square brackets.

R = [rij] =

r11 · · · r1j · · · r1n

...
...

...
ri1 · · · rij · · · rin

...
...

...
rn1 · · · rnj · · · rnn

W = {0, 1}
R ∈Wn·n (5.7.2)

CHAPTER 5. GRAPH THEORY 25

5.8 Graph representation and manipulation

For computational and visualisation processing purposes graphs can be represented using adjacency ma-
trices or incidence matrices.

5.8.1 Adjacency matrices

The adjacency matrix of a graph G = (V ;E) where V = {1, 2, 3, 4, . . . , n} is the n× n symmetric matrix
A = [aij] where the non-diagonal entries of A, aij are the number of edges joining vertex i and vertex j
and the diagonal entries aii are twice the number of loops at vertex i. The adjacency matrix of a simple
graph is a boolean matrix with zero entries along the diagonal.

For the adjacency matrix of a graph the sum of the entries in a row or column corresponding to a
vertex is equal to the degree of the vertex. The sum of all the entries in the matrix is twice the number
of edges in the graph.

The adjacency matrix of a digraph G = (V ;E) where V = {1, 2, 3, 4, . . . , n} is the n × n boolean
matrix A = [aij] where the non-diagonal entry of A, aij = 1 if and only there is an arc from vertex i to
vertex j. The diagonal entry aii is zero for all i.

For the adjacency matrix of a digraph the sum of the entries in a row corresponding to a vertex is
equal to the outdegree of the vertex and the sum of the entries in a column corresponding to a vertex is
equal to the indegree of the vertex. The sum of all the entries in the matrix is equal to the number of
arcs in the digraph.

Adjacency matrices – examples

The adjacency matrix of the graph in figure 5.2 is given by:

0 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 1
0 1 0 0 0 1 1
0 0 0 0 1 1 0
0 0 0 1 1 0 0

.

Figure 5.2: Graph example

The adjacency matrix of the digraph in figure 5.3 is given by:

0 1 1 0
0 0 0 1
0 1 0 1
1 0 0 0

.

5.8.2 Incidence matrices

If G = (V,E) is a simple graph with V = {1, 2, 3, 4, . . . n} and E = {e1, e2, e3, e4, . . . em} the incidence
matrix B = [bij] (n×m) of G is defined as follows. Row i of B corresponds to vertex i for each i . Column
k corresponds to edge ek for each k. If edge ek is incident on vertex i and j the entries bik = bjk = 1 and
all other entries in column k are zero.

CHAPTER 5. GRAPH THEORY 26

Figure 5.3: Directed graph example

If G is a digraph and ek is the arc from vertex i to vertex j the entries of incidence matrix B = [bij]
are defined as bik = −1 (from vertex) and bjk = 1 (to vertex) in column k. All other entries in column k
are zero.

For the incidence matrix of a simple graph the sum of the entries in a row corresponding to a vertex
is equal to the degree of the vertex. The sum of all the entries in the matrix is twice the number of edges
in the graph.

For the incidence matrix of a digraph the sum of the entries in a row corresponding to a vertex is equal
to the outdegree minus the indegree of the vertex. The sum of all the entries in the incidence matrix is
equal to zero.

Incidence matrices – examples

The incidence matrix of the digraph in figure 5.3 is given by:

−1 −1 0 0 0 1
1 0 −1 1 0 0
0 1 0 −1 −1 0
0 0 1 0 1 −1

.

Figure 5.4: Simple graph example

The incidence matrix of the simple graph in figure 5.4 is given by:

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

.

CHAPTER 5. GRAPH THEORY 27

5.9 Structure of graphs

The structure of a graph is uniquely determined by the relations of the domain. The structure of the
directed graph G = (V ;R) is determined by the edge relation R. A review of paths and cycles in graphs
and graph connectedness follows.

5.9.1 Paths and cycles in directed graphs

Paths and cycles in directed graphs are examples of subgraphs. The definition of paths and cycles in a
directed graph forms the basis of the structural analysis of graphs. The existence of paths and cycles
between two vertices leads to the formation of the transitive closure R+ of the relation R. The properties
of the transitive closure allow a classification into acyclic, anticyclic and cyclic graphs.

5.9.1.1 Predecessor and successor

A vertex x is called a predecessor of a vertex y if there is an edge from x to y in the graph, so that the
ordered vertex pair (x, y) is contained in the relation R. If x is a predecessor of y, then y is called a
successor of x.

x predecessor of y ⇔ (x, y) ∈ R ⇔
y successor of x ⇔ (x, y) ∈ RT (5.9.1)

A vertex x in a vertex set V may be regarded as a unary point relation in V . In the following,
this unary point relation is also designated by x. The predecessorship and the successorship of vertices
x, y ∈ V are formulated as an inclusion using such unary relations:

x predecessor of y ⇔ xyT v R ⇔
y successor of x ⇔ yxT v RT

The set of all predecessors of a vertex x ∈ V is designated by tp (x) and the set of all successors of
x by ts (x). The sets tp (x) and ts (x) are unary relations in V and are determined as follows using the
edge relation R:

predecessors of x : tp (x) = Rx
successors of x : ts (x) = RT x

5.9.1.2 Indegree and outdegree for vertices in paths

The number of predecessors of a vertex x is called the indegree of x and is designated by gp (x). The
indegree of gp (x) corresponds to the number of elements in the set tp (x), and hence to the number of
directed edges which end at the vertex x. The number of successors of a vertex x is called the outdegree
of x and is designated by gs (x). The outdegree gs (x) corresponds to the number of elements in the set
ts (x), and hence to the number of directed edges which emanated from the vertex x.

indegree gp (x) = |tp (x)| = |Rx|
outdegree gs (x) = |ts (x)| =

∣∣RT x
∣∣ (5.9.2)

The sum of the indegrees of all vertices x ∈ V is equal to the number of directed edges of the directed
graph, and hence coincides with the number of elements of the relation R. The same is true for the
outdegrees. ∑

x∈V

gp (x) =
∑

x∈V

gs (x) = |R|

5.9.1.3 Edge sequence

A chain of edges is called an edge sequence if the end vertex of each edge except for the last edge is the
start vertex of the following edge.

< (x0, x1) , (x1, x2) , . . . , (xn−1, xn) >
n∧

j=1

((xj−1, xj) ∈ R) (5.9.3)

CHAPTER 5. GRAPH THEORY 28

The start vertex x0 of the first edge and the end vertex xn of the last edge are called the start vertex
and the end vertex of the edge sequence, respectively. The vertices x1 to xn−1 are called intermediate
vertices of the edge sequence. The number n of edges is called the length of the edge sequence. An edge
may occur more than once in an edge sequence.

5.9.1.4 Ancestors and descendants

A vertex x is called an nth ancestor of a vertex y if there is an edge sequence of length n from x to y
in the graph. If x is an nth ancestor of y, then y is called an nth descendant of x. A 1st ancestor or
1st descendant of x is a predecessor or successor of x, respectively. The nth ancestors and descendants
of x are determined recursively from the relationships for predecessors and successors according to the
following rule:

nth ancestors of x:

t
(k)
p (x) = Rt

(k−1)
p (x) for k = 1, . . . , n with t

(0)
p (x) = x

t
(n)
p (x) = Rnx for n > 0

(5.9.4)

nth descendants of x:

t
(k)
s (x) = RT t

(k−1)
s (x) for k = 1, . . . , n with t

(0)
s (x) = x

t
(n)
s (x) = (Rn)T

x for n > 0
(5.9.5)

The set of all ancestors of a vertex x is designated by t+p (x); it is determined as the union of the sets
of nth ancestors of x. The set t+s (x) of all descendants of x is determined analogously. The transitive
closure R+ of a relation R with stability index s, may be used to determine these sets:

ancestors of x:

t+p (x) = t(1)p (x) t . . . t t(s)p (x) = Rx t . . . tRsx = R+x

descendants of x:

t+s (x) = t(1)s (x) t . . . t t(s)s (x) = Rx t . . . tRsT x = R+T x

5.9.1.5 Path

A path from a start vertex x via intermediate vertices to an end vertex y is an edge sequence. In a
directed graph, a path may be uniquely represented as a vertex sequence < x, . . . , y >. A path < x >
with the same start and end vertex x contains no edges and is called an empty path. The length of an
empty path is 0. There is an empty path for every vertex of a directed graph. The existence of non-empty
paths in a directed graph is established as follows:

there is a path of length n from x to y ⇔ xyT v Rn

there is a non-empty path from x to y ⇔ xyT v R+ (5.9.6)

5.9.1.6 Cycle

A non-empty path whose start vertex and end vertex coincide is called a cycle. A loop at a vertex is a
cycle of length 1. A cycle which contains no loops is called a proper cycle. It there is a non-empty path
from x to y and a non-empty path from y to x, then the concatenation of the two paths yields a cycle
through x and y. The existence of cycles in a directed graph is established as follows:

there is a cycle of length n > 0 through x ⇔ xxT v Rn

there is a cycle through x ⇔ xxT v R+

there is a cycle through x and y ⇔ xyT v R+ uR+T
(5.9.7)

5.9.1.7 Acyclic graph

A directed graph G = (V ;R) is said to be acyclic if it does not contain any cycles. The transitive
closure R+ of an acyclic graph is asymmetric. If there is a non-empty path from x to y, then there is no
non-empty path from y to x, since otherwise the concatenation of the two paths would yield a cycle.

CHAPTER 5. GRAPH THEORY 29

R+ uR+T = 0 (5.9.8)

The acyclicity of a graph leads to special structural properties of the graph. Directed acyclic graphs
possess an order structure. The vertex set is an ordered set. The directed edges describe the order relation
in the vertex set. Due to the order structure, the vertices can be sorted topologically.

5.9.1.8 Anticyclic graph

A directed graph G = (V ;R) is said to be anticyclic if it does not contain any proper cycles. In contrast
to acyclic graphs, an anticylic graph may contain loops at the vertices. The transitive closure R+ of an
anticyclic graph is antisymmetric.

R+ uR+T v I (5.9.9)

5.9.1.9 Cyclic graph

A directed graph G = (V ;R) is said to be cyclic if every non-empty path in G belongs to a cycle. The
transitive closure R+ of a cyclic graph is symmetric. If there is a non-empty path from x to y, then there
is also a non-empty path from y to x, so that the concatenation of the two paths yields a cycle.

R+ = R+T (5.9.10)

5.9.1.10 Properties

The following relationships hold between the properties of a relation R and of its transitive closure
R+. If the transitive closure R+ is asymmetric or antisymmetric, then the relation R is asymmetric or
antisymmetric, respectively. If the relation R is symmetric, then the transitive closure R+ is asymmetric
or antisymmetric, then the relation R is asymmetric or antisymmetric, respectively. If the relation R
is symmetric, then the transitive closure R+ is symmetric. These relationships lead to the following
implications:

acyclic graph ⇒ asymmetric graph
anticyclic graph ⇒ antisymmetric graph
cyclic graph ⇐ symmetric graph

5.9.1.11 Simple path

A non-empty path is said to be simple if it does not contain any edge more than once. The vertices and
the edges of a simple path form a subgraph of the directed graph. If the start vertex and end edge of
a simple path are different, the following relationships hold between the indegrees and the outdegrees of
the vertices of the corresponding subgraph.

For a subgraph for a simple path < x, . . . , z, . . . , y > with x 6= y:

start vertex gs (x) = gp (x) + 1
intermediated vertex gs (z)
end vertex gp (y)− 1

(5.9.11)

5.9.1.12 Simple cycle

A simple path whose start vertex and end vertex coincide is called a simple cycle. In the subgraph for a
simple cycle, the indegree and the outdegree of each vertex are equal.

For a subgraph for a simple cycle with vertex z:

vertex gs (z) = gp (z) (5.9.12)

5.9.1.13 Elementary path

A non-empty path is said to be elementary if it does not contain any vertex more than once. The
vertices and the edges of an elementary path form a subgraph. If the start vertex and the end vertex

CHAPTER 5. GRAPH THEORY 30

of an elementary path are different, then the vertices of the corresponding subgraph have the following
indegrees and outdegrees.

For subgraph for an elementary path < x, . . . , z, . . . , y > with x 6= y:

start vertex gs (x) = 1 gp (x) = 0
intermediated vertex gs (z) = 1 gp (z) = 1
end vertex gp (y) = 0 gp (y) = 1

(5.9.13)

5.9.1.14 Elementary cycle

An elementary path whose start vertex and end vertex coincide is called an elementary cycle. In the
subgraph of an elementary cycle, the indegree and the outdegree of every vertex are equal to 1. Note
that the identical start and end vertex is counted once, not twice.

For a subgraph for an elementary cycle with vertex z:

vertex gs (z) = gp (z) = 1 (5.9.14)

5.9.2 Connectedness of directed graphs

In a directed graph, a vertex may or may not be reachable from another vertex along the directed edges.
The concept of reachability forms the basis for a definition of the connectedness of vertices. Different kinds
of connectedness may be defined, such as strong and weak connectedness. Directed graphs which are not
strongly or weakly connected may be decomposed uniquely into strongly or weakly connected subgraphs.
These subgraphs are called strongly or weakly connected components, respectively. The decomposition
of a graph into its strongly connected components (see section 5.9.2.8) leads to an acyclic reduced graph.

5.9.2.1 Reachability

In a directed graph G = (V ;R), a vertex y ∈ V is said to be reachable from a vertex x ∈ V if there is
an empty or non-empty path from x to y. Vertex y is reachable from vertex x if and only if the product
xyT of the associated point relations x and y is contained in the reflexive transitive closure R∗.

y is reachable from x :⇔ xyT v R∗ R∗ = I tR+ (5.9.15)

5.9.2.2 Strong connectedness

Two vertices x and y of a directed graph are said to be strongly connected if x is reachable from y and y
is reachable from x. A directed graph is said to be strongly connected if all vertices are pairwise strongly
connected.

x and y are strongly connected :⇔ xyT v R∗ tR∗T

the graph is strongly connected :⇔ R∗ uR∗T = E ⇔ R∗ = E
(5.9.16)

5.9.2.3 Unilateral Connectedness

Two vertices x and y of a directed graph are said to be unilaterally connected if x is reachable from y
or y is reachable from x. A directed graph is said to be unilaterally connected if all vertices are pairwise
unilaterally connected.

x and y are unilaterally connected :⇔ xyT v R∗ tR∗T

the graph is unilaterally connected :⇔ R∗ uR∗T = E
(5.9.17)

5.9.2.4 Weak connectedness

Two vertices x and y of a directed graph (V ;R) are said to be weakly connected if they are strongly
connected in the symmetric graph G =

(
V ;R tRT

)
. A directed graph is said to be weakly connected

if all vertices are pairwise weakly connected. Since the transitive closure of a symmetric relation is
symmetric, this definition may be expressed as follows:

x and y are weakly connected :⇔ xyT v
(
R tRT

)∗
the graph is weakly connected :⇔

(
R tRT

)∗ = E
(5.9.18)

CHAPTER 5. GRAPH THEORY 31

5.9.2.5 Connectedness relations

The relation R of a directed graph G = (V ;R) generally contains strong, unilateral and weak connections.
A relation which contains only connections of the same type is called a connectedness relation. The
connectedness relations for a directed graph G are derived from the relation R and its reflexive transitive
closure R∗:

strong connectedness relation S = R∗ uR∗T

unilateral connectedness relation P = R∗ tR∗T

weak connectedness relation C =
(
R tRT

)∗ (5.9.19)

A strongly connected vertex pair is also unilaterally connected; a unilaterally connected vertex pair
is also weakly connected. Hence a strongly connected graph is also unilaterally connected, and a uni-
laterally connected graph is also weakly connected. For a symmetric graph, the three different kinds of
connectedness coincide.

inclusion : R∗ uR∗T v R∗ tR∗T v
(
R tRT

)∗
connectedness : strong ⇒ unilateral ⇒ weak

Two different vertices which are strongly connected lie on a cycle. A strongly connected graph is
therefore cyclic. The converse is not true in the general case.

strongly connected graph ⇒ cyclic graph

5.9.2.6 Properties of the connectedness relations

The strong connectedness relation S is reflexive, symmetric and transitive. Reflexivity and symmetry
follow directly from the definition. Transitivity follows from the following consideration. If (x, y) and
(y, z) are strongly connected vertex pairs, then z is reachable from x via y and x is reachable from z via
y. Hence (x, z) is also a strongly connected vertex pair.

The unilateral connectedness relation P is reflexive and symmetric, but generally not transitive. This
follows from the following consideration. If (x, y) and (y, z) are unilaterally connected vertex pairs, then
it is possible that x is only reachable from y and z is only reachable from y. In this case, neither is x
reachable from z, nor is z reachable from x. Thus (x, z) is not a unilaterally connected vertex pair.

The weak connectedness relation C is by definition the strong connectedness relation of an associated
symmetric graph. This is reflexive, symmetric and transitive.

A reflexive, symmetric and transitive relation is an equivalence relation. Hence the strong and weak
connectedness relations are equivalence relations. The unilateral connectedness relation is generally not
an equivalence relation.

5.9.2.7 Decomposition into connected components

A graph may be decomposed into subgraphs which have simple structural characteristics and yield insight
into the essential structural properties of the graph.

The strong connectedness relations S =
(
R tRT

)∗of a directed graph G = (V ;R) are equivalence
relations. Let Z stand for either of these equivalence relations. The graph (V ;R) is connected if the
equivalence relation Z is the all relation E. If the graph (V ;R) is disconnected, then it may be uniquely
decomposed into connected subgraphs. The subgraphs are called the connected components of the graph.
The decomposition is carried out in the following steps, independent of the kind of connectedness being
considered:

1. Connectedness class: The vertex set V of the graph is partitioned into connected classes, using the
relation Z. A connected class [x] with the vertex x as a representative contains all vertices of V
which are connected with x. The class [x] is a unary relation and is determined as follows:

[x] = Zx (5.9.20)

2. Mapping: The set K of all connected classes is the quotient set V/Z. Each vertex x ∈ V is mapped
to exactly one connected class, yielding a canonical mapping Φ:

Φ : V → K with K = V/Z (5.9.21)

CHAPTER 5. GRAPH THEORY 32

3. Reduced graph: The mapping Φ from the vertex set V of the directed graph G = (V ;R) to the set
K of connected classes induces the reduced graph GK = (K;RK).

GK = (K;RK) with RK = ΦT RΦ (5.9.22)

4. Connected component: A connected component is a connected subgraph Gk := (Vk, Rk) of a
directed graph G = (V ;R). The vertex set Vk contains all vertices of a connected class K of the
graph (V ;R). The edge set Rk = Ru (Vk × Vk) contains the edges from R whose vertices belong to
Vk. The union of all connected components Gk is generally a partial graph of G, since the union of
all vertex sets Vk is the vertex set V and the union of all edge sets Rk is only a subset of the edge
set R. ⊔

k∈K

Gk v G (5.9.23)

5.9.2.8 Decomposition into strongly connected components

The vertex set V of a directed graph G = (V ;R) may be decomposed into strongly connected classes
using its strong connectedness relation Z = S = R∗ u R∗T . Two different classes cannot be strongly
connected in the reduced graph GK = (K;RK), since strongly connected vertices belong to the same
class. Each connected component Gk = (Vk;Rk) has a symmetric transitive closure R+

k and is therefore
a cyclic graph. The reduced graph GK = (K;RK) has an antisymmetric transitive closure R+

K and is
therefore an anticyclic graph.

5.9.2.9 Decomposition into weakly connected components

The vertex set V of a directed graph G = (V ;R) may be decomposed into weakly connected classes using
its weak connectedness relation Z = C =

(
R tRT

)∗. Two different classes cannot be weakly connected
in the reduced graph GK = (K;RK), since weakly connected vertices belong to the same class and the
two vertices of an edge are at least weakly connected. Hence every directed graph is the union of its
weakly connected components.

G =
⊔

k∈K

Gk (5.9.24)

5.9.2.10 Strongly connected components example

Graph

The directed graph in Figure 5.5 will be used to demonstrate the decomposition of a directed graph into
its strongly connected components.

Strongly connectedness classes

[x] = Sx
[1] = {1}
[2] = {2, 3, 4, 5}
[6] = {6, 7, 8}
[9] = {9}

[10] = {10}
[11] = {11, 12, 13}

CHAPTER 5. GRAPH THEORY 33

Figure 5.5: Strongly connected components graph

Mapping

Φ : V → V/S
1 → {1}
2 → {2, 3, 4, 5}
3 → {2, 3, 4, 5}
4 → {2, 3, 4, 5}
5 → {2, 3, 4, 5}
6 → {6, 7, 8}
7 → {6, 7, 8}
8 → {6, 7, 8}
9 → {9}

10 → {10}
11 → {11, 12, 13}
12 → {11, 12, 13}
13 → {11, 12, 13}

CHAPTER 5. GRAPH THEORY 34

Reduced graph

GK = (K;RK)

Vertex set (K) {[1] , [2] , [6] , [9] , [10] , [11]}
Edge set (RK) {([1] , [2]) , ([2] , [6]) , ([2] , [11]) , ([6] , [9]) , ([9] , [10])}

Figure 5.6: Reduced graph

Strongly connected components ⊔
k∈K

Gk v G

Table 5.2: Strongly connected components

Strongly connected component Vertex set Edge set
[1] {1} -
[2] {2, 3, 4, 5} {(2, 3) , (2, 4) , (3, 4) , (4, 5) , (5, 2)}
[6] {6, 7, 8} {(6, 7) , (7, 8) , (8, 6)}
[9] {9} -
[10] {10} -
[11] {11, 12, 13} {(11, 12) , (12, 13) , (13, 11)}

Figure 5.7: Strongly connected components

5.9.3 Acyclic graphs

5.9.3.1 Directed acyclic graph

A directed acyclic graph G = (V ;R) is asymmetric and does not contain cycles. Every path from a vertex
x to a vertex y is elementary. The closure R+ is asymmetric and transitive. Hence it is a strict order
relation. The theoretical foundations of strict order relations may therefore be applied to directed acyclic
graphs.

CHAPTER 5. GRAPH THEORY 35

5.9.3.2 Rank

Every vertex x of a directed acyclic graph G = (V ;R) is assigned a rank r (x), which is a natural number
with the following properties:

1. A vertex x has the rank r (x) = 0 if it does not have any ancestors.

2. A vertex x has the rank r (x) = k > 0 if it has a kth ancestor and no (k + 1)th ancestors.

It is only possible to assign ranks if the directed graph G is acyclic. If there is a cycle through the vertex
x, then for every kth ancestor of x in the cycle there is a predecessor in the cycle, and hence also a
(k + 1)th ancestor of x. The directed graph must therefore be free of cycles.

If the rank r (x) of a vertex x is k, then by definition the vertex x has a kth ancestor but no (k + 1)th

ancestor. Thus there must be a path of length k but no path of length k + 1 from a vertex without
predecessor in G to x. Hence the rank r (x) is the length k of a longest path from a vertex without
predecessor in G to x.

5.9.3.3 Topological Sorting

The determination of the ranks of the vertices of a directed graph G = (V ;R) is called topological sorting.
The vertex set V = V0 is topologically sorted by iteratively reducing it to the empty vertex set ∅. In
step k, the vertex set Vk is determined whose vertices x ∈ Vk have a kth ancestor in G and are therefore
of rank r (x) ≥ k. The vertex set Vk contains all predecessors of the vertices in the vertex set Vk−1. This
iterative reduction is formulated as follows using unary relations:

initial values : v0 = e all relation
reduction : vk = RT vk−1 k = 1, ..., n
termination : vn = ∅ null relation

(5.9.25)

A vertex x of the vertex set Vk is of degree r (x) = k if it does not belong to the vertex set Vk+1.
The set Wk of all vertices of rank k is therefore of rank k is therefore the difference Vk − Vk+1, which is
calculated as the intersection of Vk and the complement of Vk+1. It is called the kth vertex class and is
determined as a unary relation as follows:

wk = vk u vk+1 k = 0, ..., n− 1 (5.9.26)

5.9.3.4 Order structure

Topologically sorting a directed acyclic graph G = (V ;R) yields a partition of the vertex set into disjoint
vertex classes Wk with k = 0, ..., n− 1. The partition has the following ordinal properties:

• The vertex class W0 contains all vertices of the lowest rank 0. These vertices have no ancestors
in G, and hence no predecessors. They are therefore minimal. Since there are no other vertices
without predecessors, W0 contains all minimal vertices.

• The vertex class Wn−1 contains all vertices of the highest rank n − 1. These vertices have no
descendants in G, and hence no successors. They are therefore maximal. Since there may generally
also be other vertices without successor, Wn−1 generally does not contain all maximal vertices.

• Every vertex x in the vertex class Wk with k > 0 has at least one predecessor y in the vertex class
Wk−1. If x ∈ Wk did not have a predecessor y ∈ Wk−1, then x would not have any kth ancestors,
and would therefore not belong to Wk.

• A vertex has neither a predecessor nor a successor in its own vertex class. If y were a predecessor
of x and hence x a successor of y, then the rank of y would have to be less than the rank of x and
x, y could not belong to the same vertex class.

5.9.3.5 Basic edges and chords

A directed acyclic graph G = (V ;R) has basic edges and chords. An edge (x, y)in the directed graph G
is called a basic edge if y is reachable from x only via this edge. If the basic edge is removed, then y is
no longer reachable from x.

CHAPTER 5. GRAPH THEORY 36

An edge (x, y) in the directed graph G is called a chord if the vertex y is also reachable from the
vertex x via other edges. The chord (x, y) is the shortest path from x to y.

Since a directed acyclic graph does not contain cycles, an edge from x to y is a chord if and only if
there is a path of length n > 1 from x to y.

path from x to y with n > 1 ⇔ xyT v
⊔

n>1
Rn = R

⊔
n>0

Rn = RR+

chord (x, y) ⇔ xyT v R uRR+

basic arc (x, y) ⇔ xyT v R uRR+

(5.9.27)

5.9.3.6 Basic path

A directed acyclic graph G = (V ;R) does not contain cycles. If there are one or more paths from x to
y, then there is at least one path of maximal length. A path of maximal length is called a basic path. A
basic path contains only basic edges.

5.9.3.7 Basic graph

The graph B = (V ;Q) is a basic graph of a directed acyclic graph G = (V ;R) if Q contains only the
basic edges in R. The basic graph B is constructed by removing all chords from R. The basic graph B
is unique. The transitive closures R+and Q+ coincide.

B = (V ;Q) with Q = R uRR+ (5.9.28)

5.9.3.8 Order diagram

In the topological sorting of a directed acyclic graph G = (V ;R), the rank r (x) of a vertex x ∈ V is
equal to the length of a longest path from a vertex without predecessor to x. This path is a basic path
consisting only of basic edges. Hence removing chords from R does not change the rank r (x) of a vertex
x, so that topologically sorting the graph G = (V ;R) and its basic graph B = (V ;Q) leads to the same
result. The representation of the order structure of the basic graph with its vertex classes is an order
diagram.

5.9.4 Simple acyclic graphs and trees

A simple acyclic graph G = (V ; Γ) is a simple graph which does not contain any cycles. All the undirected
edges of the graph G are bridges. If a bridge is removed to form a simply connected graph, the graph is
divided into two simply connected components and is not connected any more.

5.9.4.1 Trees

A simple acyclic graph which is simply connected is a called a tree.
A tree with n vertices has exactly n− 1 undirected edges.

number of vertices n
number of edges k
for a tree n-k=1

For a tree the path between two different vertices x and y is unique. If different paths between x and y
existed, cycles would exist in the graph, which by definition can then not be a tree.

5.9.4.2 Forests

A simple acyclic graph with several simply connected components is called a forest. Every simply con-
nected component of the forest is a tree. Each component of a forest is a tree and any tree is a connected
forest.
A forest with n vertices and k undirected edges contains exactly n− k trees.

number of vertices n
number of edges k
number of components for a forest c
thus for a forest n-k=c

CHAPTER 5. GRAPH THEORY 37

5.10 Rooted graphs and rooted trees

A vertex of a graph from which all remaining vertices are reachable is called a root of the graph. All
hierarchical structures can be regarded as rooted trees. Searching for all vertices of a graph which are
reachable from a given vertex leads to a search tree which corresponds to a rooted tree and forms a
skeleton of the graph.

5.10.1 Root

A vertex w is called a root (root vertex) of a directed graph G = (V ;R) if all vertices of the graph are
reachable from the vertex w. If a directed graph is not weakly connected, then it has no root. If it is
strongly connected, then every vertex of the graph is a root.

w is a root :⇔ weT v R∗ (5.10.1)

R∗ is the closure of R.

5.10.2 Rooted graphs

A directed graph G = (V ;R) is called a rooted graph if it contains at least one root. In a rooted graph,
there is a special form of connectedness between pairs of vertices, called quasi-strong connectedness. Two
vertices x and y are quasi-strongly connected if there is a vertex z from which the vertices x and y are
both reachable. In this case, there is a path from x to z in the dual graph GT and a path from z to y
in the graph G, so that (x, z) ∈ R∗T and (z, y) ∈ R∗, and hence (x, y) ∈ R∗T R∗. In a rooted graph, all
vertices are pairwise quasi-strongly connected via a root, so that R∗T R = E holds.

x and y are quasi-strongly connected :⇔ xyT v R∗T R∗

G = (V ;R) is a rooted graph :⇔ R∗T R∗ = E
(5.10.2)

5.10.3 Acyclic rooted graphs

A directed graph G = (V ;R) is acyclic if R+ uR+T = φ holds. It is a rooted graph if R∗T R∗ = E holds.
An acyclic rooted graph has exactly one root. The existence of several roots would contradict the absence
of cycles.

G = (V ;R) is an acyclic rooted graph ⇔ R+ uR+T = φ ∧R∗T R∗ = E (5.10.3)

5.10.4 Rooted trees

An acyclic rooted graph G = (V ;R) is called a rooted tree if R is left-unique, so that RRT v I holds.

G = (V ;R) is a rooted tree :⇔ RRT v I ∧R+ uR+T = φ ∧R∗T R∗ = E (5.10.4)

A rooted tree with the root w has the following properties:

• The root w has no predecessor.

• Every vertex x 6= w has exactly one predecessor.

• Every vertex x 6= w is reachable along exactly one path from w to x.

• A rooted tree with n vertices has exactly n− 1 edges.

5.10.5 Forest of rooted trees

A directed graph is called a forest of rooted trees if every weakly connected component is a rooted tree.

5.10.6 Search tree

Let a vertex a in a directed graph G be given. A rooted tree with root a which contains all descendants of
a in G is called a search tree at the vertex a. A search tree is constructed by an iterative search, starting
from the vertex a. Breadth-first search and depth-first search are distinguished.

CHAPTER 5. GRAPH THEORY 38

5.11 Depth-first search

5.11.1 Depth-first search for trees and forests

The vertices and some of the edges of a directed graph form a depth-first search tree during the depth-first
search. The depth-first search tree is a representation of the order in which the vertices had been visited.
Only edges pointing to previously unvisited vertices are part of a depth-first search tree. Therefore, each
depth-first search tree is a directed acyclic subgraph of the directed graph. Depth-first search trees for
directed graphs are rooted trees. The number of depth-first search trees formed during a depth-first
search depends on the order in which the vertices are visited, as well as the structure of the graph. If
more than one depth-first search tree is formed, we have a depth-first search forest. Different depth-first
searches, with different depth-first search forests can be done on the same graph, depending on the order
in which vertices are visited.

5.11.2 Pre-order and post-order numbering

During the depth-first search, pre- and post-order numbers are assigned to each vertex. The pre-order
numbers indicate the order in which the vertices are first visited, while the post-order numbers indicate
the order in which vertices are finished with in the depth-first search.

5.11.3 Classification of edges

The edges of a directed graph can be classified into four groups during a depth-first search. The classifi-
cation of an edge is a property of both the structure of the graph and the dynamics of the search. Since
there is more than one depth-first search forest for each graph, different classifications may be given to
an edge of a graph for different depth-first searches. The pre- and post-order numbers are used to classify
the edges.

Tree edges correspond to a recursive call in the depth-first search, i.e. the start vertex has been visited,
but the end vertex has not been visited before. Tree edges are the edges of the depth-first search
trees. The other types of edges are not part of the depth-first search tree. (Start vertex pre-order
number = −1.)

Back edges indicate that the directed graph contains at least one cycle. The number of back edges does
not necessarily correspond to the number of cycles in the directed graph. The start vertex of a back
edge has been visited previously. The end vertex has also been visited previously, and is also an
ancestor of the start vertex in the depth-first search tree. The removal of all the back edges results
in a directed acyclic graph. (End vertex pre-order number = −1.)

Down edges The start vertex of a down edge points to a previously visited end vertex, which is a
descendant of the start vertex in the depth-first search tree. Down edges are also known as chords
(see section 5.9.3.5) in the directed graph. (Start vertex pre-order number > end vertex pre-order
number.)

Cross edges The start vertex of a cross edge, points to a previously visited end vertex, which is neither
an ancestor nor a descendant of the start vertex in the depth-first search tree. Cross edges connect
vertices in different depth-first search trees (If it is not a tree, back or down edge.)

Example

The edge classifications can be seen visually in Figure 5.8. The back edge (3, 1) is an indication of a cycle
in the graph, in this case cycle (1, 2) , (2, 3) , (3, 1). A down edge is an indication of a chord in the graph,
in this case, if the chord (2, 5) is cut, vertex 5 will still be reachable from vertex 2, via vertex 4. A cross
edge points from a vertex in one depth-first search tree, vertex 7, to a vertex in another depth-first search
tree, vertex 6.

5.11.4 Depth-first search algorithm

In a depth-first search, a vertex sequence F is maintained. As long as the vertex sequence F is not empty,
the following steps are carried out in a loop:

CHAPTER 5. GRAPH THEORY 39

Figure 5.8: Edge classifications

• If the vertex at the end of F has a successor which has not been visited yet, such a successor is
appended to the end of the sequence F .

• If the vertex at the end of F has no successor which has not been visited yet, it is removed from
the sequence F .

The vertices visited and the edges used in the course of the depth-first search form the depth-first search
tree. An unvisited vertex is chosen as the start vertex. If all the vertices have not been visited at the
end of the process, a remaining unvisited vertex is chosen and a new vertex sequence is maintained. The
process is repeated until all the vertices have been visited. A depth-first search tree is formed for each
sequence. The depth-first search trees forms a depth-first search forest.

5.11.5 Depth-first search example

The graph in Figure 5.9 will be used to demonstrate a depth-first search.

Figure 5.9: Graph example

The directed graph consists of ten vertices, labelled 1, . . . , 10 and 14 edges, labelled (1, 2) , (1, 5) , (2, 3) ,
Vertex 7 is chosen as the first unvisited vertex, giving it a pre-order number of 1. Vertex 7 has only

one successor, vertex 8. Vertex 8 is still unvisited and is chosen as the next unvisited vertex. It is given a

CHAPTER 5. GRAPH THEORY 40

pre-order number of 2 and the edge (7, 8) is classified as a tree edge. Vertex 8 has two successors, vertices
6 and 9. Vertex 6 is randomly chosen as the next unvisited vertex and given a pre-order number of 3 and
edge (8, 6) classified as a tree edge. Vertex 9 will be considered at a later stadium. The successors of vertex
6 will be considered first. Vertex 6 has only one successor, vertex 7, which has been visited previously.
Vertex 7 still has no post-order number, which indicates it as an ancestor of vertex 6. Therefore, edge
(6, 7) is classified as a back edge. The presence of a back edge is an indication of a cycle. Therefore, the
directed graph under consideration is not a directed acyclic graph. Since vertex 6 has no other successors,
we leave it, giving it a post-order number of 1. Vertex 9, the remaining successor of vertex 8, is considered
next.

After vertex 7 and all its ancestors had been processed, a new random unvisited vertex, vertex 2, is
chosen. Vertex 2 is the root of the second tree in the depth-first search forest. After the depth-first search
has been completed, the pre-order and post-order numbers shown in Table 5.3 were given to the vertices.

Table 5.3: Pre-order and post-order numbers for example 1

1 2 3 4 5 6 7 8 9 10
pre-order no. 10 6 7 8 9 3 1 2 4 5
post-order no. 10 9 8 7 6 1 5 4 3 2

The depth-first search forest, edge classifications, as well as the search path, can be seen in Figure
5.10.

Figure 5.10: Depth-first-search-forest-example-1

The black vertices and edges indicate the depth-first trees. The vertices and edges in broken lines are
not a part of the depth-first search trees and are only indicated to display the detection of back, down
and cross edges. The first tree consists of vertices 6, 7, 8, 9 and 10. The second tree consists of vertices
2, 3, 4 and 5, while the third tree consists only of one vertex, vertex 1.

One of the many other depth-first search forests for the graph and its search path is shown in Figure
5.11. The pre-order and post-order numbers for this search shown in Table 5.4.

Table 5.4: Pre-order and post-order numbers of example 2

1 2 3 4 5 6 7 8 9 10
pre-order no. 6 7 8 9 10 3 1 2 4 5
post-order no. 10 9 8 7 6 1 5 4 3 2

CHAPTER 5. GRAPH THEORY 41

Figure 5.11: Depth-first-search-forest-example-2

The first tree consists of vertices 6, 7, 8, 9 and 10, the second tree consists of vertices 1, 2, 3, 4 and 5.

5.12 MATLAB implementation of basic graph functionality

Refer to Appendix D for the MATLAB code listing of basic graph functions with examples.

Chapter 6

Systems Theory

6.1 Introduction

This chapter provides a short overview of systems concepts and terminology and then defines system
structure, function and behaviour suited to business system and business management system modelling.

Typical types of systems with some associated systems classification schemes are discussed.
For practical purposes the term system and model as well as systems model can be regarded as

synonyms in the description given here.
A formal mathematical system structure definition and a sample mathematical model for system

function and behaviour is provided. A short example of the application of this approach is given.
Activities in and around systems such as system analysis and design are explained.
Structural and functional aspects of business enterprise systems and business management systems

are discussed. The measurement of business systems performance, leading to the control of the systems
deployed in a business environment, is an important part of business management.

6.2 Systems concepts and terminology

The study of systems is referred to as systems thinking as well as ‘the systems approach’.
Cybernetics is a term used to encompass the science of systems. According to Wikipedia [126] it

is an earlier but still-used generic term for many of the subject matter that are increasingly subject to
specialisation under the headings of adaptive systems, artificial intelligence, complex systems, complex-
ity theory, control systems, decision support systems, dynamical systems, information theory, learning
organisations, mathematical systems theory, operations research, simulation, and systems engineering.

A more philosophical definition, suggested in 1956 by Frenchman Louis Couffignal (1902-1966), one
of the pioneers of cybernetics, characterises cybernetics as ‘the art of ensuring the efficiency of action’.

Systems engineering and systems analysis are specialist disciplines devoted to the study of and devel-
opment of systems.

6.2.1 System structure

A system may be defined as a set of elements in interrelation among themselves and with the environment.
Von Bertalanffy [124].

Beishon and Technology Foundation Course Team [14], defines a system as a collection of parts or
entities joined together in some organised way. The parts (known as components) are joined together in
a logical organised way or in a random unorganised way.

The system can thus be seen as a set of interconnected elements / parts / components isolated for
consideration by a human being.

A system displays structure as relationships exist among the components.

6.2.1.1 The system and its boundary

The system boundary indicates which elements are included in the system and which elements are excluded
from the system. Boundaries are typically defined at discontinuities between groups of system components
and processes (the definition of a process follows later) i.e. time, space, technology. System interfaces are
found at the system boundary.

42

CHAPTER 6. SYSTEMS THEORY 43

6.2.1.2 System components and system component attributes

System components or system component objects are the constituents or building blocks of systems.
System components can also be referred to as system elements or parts. The term component is

however generally used.
Components can be grouped as system internal components or system boundary components.
Component classes are groupings of components into selected types. In specific systems components

can belong to specified classes. An example of component classes used is classes such as monitor, com-
parator and reactor identified in instrumentation systems.

Components can have attributes which describe selected aspects of the component structure or be-
haviour. These attributes are used to capture the system status or state.

System component attributes can also be termed component attributes or component variables. The
term attribute will be used here.

Component models are representations of system components using a specific modelling language
with the associated syntax and semantics of the modelling language e.g. the unified modelling language
(UML). See e.g. Booch et al. [18] or Alhir [3].

Does a null system i.e. a system with no components / parts exist? When using systems which adapt
i.e. which gain or loose components it could be useful to define a null system i.e. a system without any
components.

6.2.1.3 System component links

Links define the connections between system components as well as between systems. These links can be
defined as relations between systems and system components. These links can be thought of as providing
the forces between system components and systems.

6.2.1.4 System hierarchies

A hierarchy of systems can be used to identify subsystems and their behaviour. Recursion is possible
where a system can consist of a number of components being systems themselves to the required level of
complexity.

6.2.1.5 System attributes and properties

System properties can also be termed system attributes or system variables. These attributes are assigned
to the system as a whole and can be used to store e.g. system state or performance data for the system.
These attributes can also be seen as being special types of system components.

6.2.1.6 System component attributes and properties

Fixed component attributes are used to describe properties of the system attribute which do not change
over time. Variable component attributes change over time. The variation can be of the discrete variable
type or the continuous variable type. Limits and/or acceptable attribute values can be defined to ensure
correct system operation.

6.2.1.7 Modifying the structure of a system

The system is changed when any of the parts are removed or a new part is added. The parts can also be
modified when they are added to, or removed from the system. The term system structural configuration
can be used to describe the structure of a system at a given time.

6.2.2 System function and behaviour

A typical system is doing something. As a model of a system evolves or operates component attributes
are changed by the prescribed interactions among system components. The operational rules by which
the components interact determine the system function.

CHAPTER 6. SYSTEMS THEORY 44

6.2.2.1 System state

The system state represents the set of values for the system or system component variables one is concerned
with at a particular moment in time. The system state can be defined as the status of the set of system
components and system attributes at a given point in time for a given system structural configuration.

6.2.2.2 Capturing and modelling system behaviour

System behaviour constitutes the behaviour of the total system and can be identified in the movement
or change of a system from one state to another. The behaviour is determined by a set of rules, typically
defined in mathematical format, describing the interaction of selected system component attributes.

The set of initial component and system attributes are known as the initial or starting condition of
the system.

The set of system and component attributes which evolve over time as the system operates constitute
a record of the system trajectory.

A system can proceed along a system trajectory to reach a steady state - a process known as home-
ostasis. At a steady state the component attributes of the system remain at constant values.

As far as system behaviour and system processes are concerned it is possible to focus on behaviour of
the total system or the working of a specific component or components of the system.

System growth is possible where components are added to the system as it operates - this is however
reflected in the structural configuration information for a system.

6.2.2.3 System transformation and behaviour

With reference to system state a number of concepts can be defined.
System transformation is the specification of the changes of state occurring.
A system can have a single valued transformation i.e. going only to one state.
A closed transformation implies that no new states exist in the transformed system i.e. the system is

reverting to a previous state.
The system trajectory can be formulated as a mathematical function on state variables. Refer to the

basic example in section 6.4.3.

6.2.2.4 Classification of system functions

System functions can be classified according to a number of schemes.
A scheme described by Van Wyk [123] refers to technological elements in the form of matter, energy

and information with a

• Storage function

• Manufacturing and processing function

• Transport and transfer function

for each of these technological elements.
A function which can be added here is a messaging function for information transfer.

6.2.2.5 Modifying the operation and function of a system

Properties of a system can emerge as the system is being studied or modelled. ‘The whole is greater than
the sum of its parts’ - the concept that new properties emerge from a system arises from the ignorance
of the analyst of the basic properties of the components of the system in the first place. According to a
theorem stated by Ross Ashby [7], ‘The whole made by joining the parts is richer in ways of behaving
than the system obtained by leaving the parts isolated.’

To modify the operation of a system the operational rules and or component attributes need to be
modified. If the structure of a system is modified, modification of its operation can follow implicitly.

The parts not joined can exist separately in just as many total states as the joined system. The parts
not joined cannot influence the changes from state to state of other parts while the joined parts can.

CHAPTER 6. SYSTEMS THEORY 45

6.2.3 Control of systems

System control forms part of its behaviour but is treated separately here. The control of a system implies
the implementation of system behaviour and special components and inputs based on the concepts listed
below:

• Concept of goal setting and deciding on future states of a system

• Concept of goal setting and deciding on future required system performance measures to be attained.

• Concept of self regulation - a system controlling itself

It follows that the requirements for system control are:

• A goal state

• A system capable of achieving a goal state

• A means of influencing the behaviour of a system

To achieve system control a special subset of the system inputs (boundary components) need to
be identified as control input. The system behaviour must be structured so as to make control of the
behaviour possible via these control inputs. Monitoring of system outputs by humans or other systems
providing control input feedback according to control rules is also required.

Three types of system controls can be identified:

• Open loop control:
This type of control depends on inputs remaining invariant or reasonably constant and on the
relationship between control input setting and output value. An open-loop control system doesn’t
have or doesn’t use feedback.

• Feedback control:
The current value of the output of the system is sensed by someone or something and the information
obtained is used to make appropriate adjustments to the system inputs.

• Closed loop control:
The connection or link running between the input and output of the system forms a complete circuit
linking the input and output of the system. Systems that utilise feedback are called closed-loop
control systems. The feedback is used to make decisions about changes to the control signal that
drives the plant. Refer to figure 6.1 taken from Barr [13].

Figure 6.1: A system with a closed-loop control system

An important parameter which is of importance for controlling a system is system lag - the time delay
between the moment of operation of the control and the effect appearing at the output of the system.
Typical types of lags are transport lags, distance-velocity lags and exponential lags.

Self controlling systems, self organising systems, adaptive systems and artificial intelligence all repre-
sent systems where control is implemented as part of the system.

The messaging format used to control a system needs to be specified.

CHAPTER 6. SYSTEMS THEORY 46

6.2.4 System performance measurement

System performance measurement requires the identification of relevant system component attributes to
be monitored. These attributes can apply to internal or input and output system components.

The attribute values are then compared with goal attribute values, which allows system control to
make adjustments to achieve performance as required.

System throughput and resource utilisation are typical system performance measures used.
Measuring system input and output to evaluate non-functional aspects of systems might also be

required.

6.2.5 Types of systems

Systems can be typified according to their structure and function.

6.2.5.1 Systems typified according to component description

Pahl [91] identifies two general types of systems.

Models: A system whose elements are components is called a model.

Processes: A process is a system whose elements, called activities cause changes in the state of a product
/ artefact. Activities encapsulate changes in the state of artefacts or products which typically belong
to a system distinct from the process the activities themselves belong to.

6.2.5.2 Systems typified according to structure

One can distinguish between open and closed systems according to the structure of systems.

Open systems have boundary components which interact with other systems or the system environment

Closed systems do not have boundary components.

6.2.5.3 Systems typified according to function

Systems can be typified as discrete or continuous, deterministic or probabilistic and as open or closed
systems according to function.

Discrete systems - A discrete system is a system which can exist in one, and only one, of a certain
number of clearly defined separate states at a time.

Continuous systems - A continuous system is a system which changes state in a continuous manner.
By increasing the (time) intervals of state measurement or determination a continuous system can
assume discrete changes of state / states.

Deterministic systems - A deterministic system is a system where the sequence of system states in the
trajectory is predetermined.

Probabilistic systems - A probabilistic or stochastic system is a system where the exact sequence of
system states cannot be predetermined. The behaviour of a system with probabilistic choice is a
stochastic process.

Open systems - according to function - In an open system the end state can be reached via a number of
different routes and from a number of different starting conditions. It can start of with one set of
values and run to a final state and be started with another set of values and run to the same state.

Closed systems - according to function - In a closed system the end / final or equilibrium state can
only be reached from one path. From a given set of initial conditions the system must follow one
trajectory to the end state.

The black box is a special kind of system. For the black box only inputs and outputs are defined,
control is possible and behaviour can be studied but no knowledge of the system components is available.

CHAPTER 6. SYSTEMS THEORY 47

Table 6.1: System classification according to Kenneth Boulding [19]

Level Name Description of level
1 Static structure Frameworks
2 Simple dynamic systems with predeter-

mined necessary motions
Clockworks

3 Control mechanism or cybernetic system Thermostat - self regulating in maintaining equilib-
rium

4 Open system or self maintaining structure Level of the cell - life and non-life can be differenti-
ated

5 Genetic societal Plant - used in the empirical world of botany
6 Animal system Animals have increased mobility, teleological be-

haviour and self-awareness
7 Human level or the human being as a sys-

tem
The human system has self awareness and the ability
to utilise language and symbolism

8 Social system or systems of human organ-
isation

Considering:
Content and meaning of messages
Nature and dimensions of value systems
Transcription of images into historical record
Subtle symbolisations of art, music and poetry
Complex complete set (gamut) of human emotions

9 Transcendental systems Ultimates, absolutes, inescapable unknowables which
exhibit structure and relationship

6.2.6 Classification of systems

Two examples of system classifications are given in tables 6.1 and 6.2.

6.3 System laws

Two System Laws have been formulated. These are the Law of requisite system variety and the Principle
of equifinality.

Law of requisite system variety - To cope with the behaviour of a system one needs as least as much
variety available as the system has. Refer to Ashby [7].

Principle of equifinality - There is not one best and only way to run an organisation to achieve a
certain set of goals - many different routes can be taken to arrive at the same end state. This
has implications for social systems and techno-social systems such as businesses as far as operation
management is concerned. Refer to Ludwig von Bertalanffy [124].

6.4 Formal specification of systems

To provide a formal general system specification a mathematical approach is used here. Both the struc-
tural and functional aspects of a system need to be described in mathematical terms.

6.4.1 Formal system structure definition

This section provides a description of the basic general system suitable for business modelling. Equivalent
terms used for system structure include system architecture and system anatomy.

The basic definitions proposed by Pahl [91] are used in the description below. A system has an
environment and boundary and is defined as a domain containing seven sets i.e.

1. The set of system elements

2. The set of environment elements

3. The set of system boundary elements

CHAPTER 6. SYSTEMS THEORY 48

Table 6.2: Systems classified according to mode of operation and the physical nature of their components and
couplings; Jones and Edited by Singleton, W.T. et al. [66]

Kind of system and
its mode of opera-
tion

Component Couplings between
components

Examples

1 Manual system
Operator directed,
flexible

hand tools or aids one human operator cook plus utensils,
craftsman plus tools,
singer plus amplifying
equipment

2 Mechanised system
System directed, rigid

powered mechanical
subsystems

on-line human opera-
tors, tracks, conduits,
etc.

railway system, as-
sembly line

3 Automatic system
Pre-set, programmed
or adaptive

powered mechanical
subsystems

cables, pipes, con-
duits, levers, etc.,
forming a control
circuit

clock, process plant,
telephone exchange,
digital computer

4 Collaborative man-
machine system
Exploratory and
flexible

one or more human
operators, one or more
complete automatic
systems

complex displays and
controls

multiple-access com-
puters

5 Mechanical subsystem
Operator controlled
and inflexible

highly interdependent
physical parts form-
ing indistinguishable
components and cou-
plings

engine, automobile,
machine tool

6 Administrative sys-
tem
Goal directed and
hierarchical

human operatives
with tools or aids

rules, messages, hu-
man administrators
and informal contacts

army of foot soldiers,
a business, a school

7 Voluntary system
Self-rewarding and
collaborative

any number of persons
each of whom is also a
biological system and
some of whom also act
as administrative sub-
systems

affection, shared
aims, laws, customs,
managers, physical
presence, mutual aid,
common language,
ancestry, etc.

family, religious order,
club, society, (univer-
sity?)

8 Environmental system
Permissive of a range
of human activities
and contacts: pro-
hibitive of others

inhabitants and facil-
ities within an envi-
ronment, the outside
world

spaces and the bar-
riers between and
around the compo-
nents

occupied building,
city or region

9 Biological system
Homeostatic, adap-
tive, evolutionary,
growing, differen-
tiating and self-
reproducing

cells, organs, subsys-
tems, all of which are
also physical systems

nerves, glands, chro-
mosomes, etc., past
experience and envi-
ronment

cells, plants, animals,
human operators

10 Physical system
Dynamically sta-
ble but subject to
eventual decay

elementary particles,
planets, seas, land,
etc.

gravitation, electrical
forces, radiation,
physical motions and
forces

solar system,
molecule, crystal,
cloud, strut, tie,
beam, shell

11 Symbol system
Semantic, analogous,
ambiguous or precise

words, signs, symbols,
numbers etc.

syntactical rules languages, mathemat-
ics, codes, etc.

4. The property mapping of the elements to a set of literals

5. A relation or relations defined on the elements

6. An influence relation or relations defined on and linking the environment and system elements

7. An action relation or relations defined on and linking the system and environment elements

8. A model is defined as a system whose elements describe the state of a product (which can be an
enterprise). A process is defined as a system whose elements describe changes in the state of a
product. It is postulated that hierarchies of systems containing models and/or processes can be
defined

Figure 6.2 contains a graphical representation of the formal system structure definition based on set
concepts.

CHAPTER 6. SYSTEMS THEORY 49

A system component element is an identified part of the universe of discourse. It is also referred to
as a system component or system element in the discussion below.

A property or attribute is a mapping of a system element to a set of literals. Literals include integer
values, real and complex values, characters and strings of characters as well as sets made up from the
basic literals.

In set theoretic mathematical terms a system is a superset (or domain) consisting of seven sets. A
domain is defined as a partially ordered set of sets which are consistent. The components of the system
are elements which belong to sets as described in table 6.3. More detailed information on the definition
is given in table 6.4.

Table 6.3: System set theoretic concept

System
component
element

Description

ci System internal elements belonging to set
C

bj System boundary elements belonging to
set B

ek System environment elements which inter-
act with the system belonging to set E

Figure 6.2: Graphical representation of a formal system structure definition (Pahl [91])

It is assumed that all interactions of the system with the environment occurs via the boundary elements
of the system.

The system state is the collection of all the properties of the system at a given point in time.
System components which are literals can be defined and used to define the system state and other

parameters which can be used to indicate system performance parameters.
The system boundary elements are defined to identify and specify the interaction between the system

and its environment.

CHAPTER 6. SYSTEMS THEORY 50

Table 6.4: Set theoretic system definition

Item Symbol Description
Internal components Set C = {ci} Set of system internal component elements
Boundary compo-
nents

Set B = {bi} Set of system boundary component elements

Environment Set E = {ei} Set of component elements belonging to the sys-
tem environment

Component Prop-
erty mapping UC

UC : C → PC A mapping of an element to a set of literals PC

the properties of the elements in set C
Boundary com-
ponent Property
mapping UB

UB : C → PB A mapping of an element to a set of literals PB

the properties of the elements in set B

Internal Links RC ⊆ C × C A relation RC defining links between system
internal component elements in the form of or-
dered pairs of elements of the system which sat-
isfies a specified condition

Internal-Boundary
links

RB ⊆ B × C A relation R defining links between system
boundary and internal component elements in
the form of ordered pairs of elements of the sys-
tem which satisfies a specified condition

Other links B×B and C×B and C×E Special links can also be defined
Influence F ⊆ E ×B A relation F defining links between the environ-

ment components and system boundary compo-
nents in the form of ordered pairs of elements
(environment, system boundary)

Other influences B × E and B ×B Special influences can also be defined
Action A ⊆ B × E A relation A defining links between system

boundary components and the environment
components in the form of ordered pairs of ele-
ments (system, environment)

System S = {C,E,B,U,R, F,A} A superset (domain) containing seven sets U =
UC and UB

The set of system
components

CS = C ∪B All system components

For the sake of completeness a null system, i.e. a system without any components, and a universal
system containing all the components included in a given environment viewed as a system can also be
defined.

System modification can be defined as the process of adding or removing components with the as-
sociated links, actions and influences to or from a system. A requirement that the system as a domain
remains consistent must be added here. In principle one can start with a null system and add components
with the associated relations and build upon a system in this way.

A system hierarchy consisting of sub- and super systems can be defined.

6.4.2 Formal system function definition

In describing system behaviour and system processes one can focus on the behaviour of the total system
or on the working of each component of the system.

To account for system functionality a number of requirements need to be met. Aspects which need to
be defined and dealt with are:

• System state

• Internal system component links and interactions

• System – environment links and interactions

• System control

CHAPTER 6. SYSTEMS THEORY 51

• Interfaces between boundary components and system environment components

• Initial or starting conditions

• The system trajectory

The formal functional system definition given here is taken from Chapman, Bahill and Wymore [22].
The system function is described by three sets and the next state mapping as shown in table 6.5.

Table 6.5: System function formal specification

Symbol Description
Is Set of system inputs
Os Set of system outputs or readouts
Ss Set of system states
Rs ⊆ Ss ×Os System operational functional specification providing

a relation between Ss and Os

Rci The system structural relation linking components
i = 1, 2, 3, 4 . . .

Ns ⊆ {(Ss×Is)×Ss} The next state mapping describing the logic of the
sequence of states of the system

U The set of system properties

T
System time/progress counters
e.g. T = {0, 1, 2, 3, 4, 5, 6, 7, . . .}

f = T × Is The system trajectory - mapping a discrete set of
counters (time points) to Is

6.4.3 Basic example of formal system structure and function modelling

Consider a system consisting of a light switch which controls a light and is operated by an operator
interacting with the switch by setting it on or off and reading out the status of the light as on or off as
shown in figure 6.3.

Figure 6.3: System Function Example

The sets used to describe the system shown in the figure are listed in table 6.6.
All these relations can also be manipulated using boolean representations of the relations.

CHAPTER 6. SYSTEMS THEORY 52

Table 6.6: System function example

Set Description
Is = {setOn,setOff} Set of system inputs - Operator can set the switch to On

or Off
Os = {lightOn,lightOff} Set of system outputs or readouts
Ss = {on,off} Set of system states - The positions of the switch
Rs ⊆ Ss ×Os

Rs = {(on,lightOn), (off,lightOff)}
System operational functional specification providing a re-
lation between Ss and Os

Rci

Rcontrol = {Bswitch} × {Blight}
Rcontrol = {(Bswitch, Blight)}
and:
Roperate = {(Eoperator, Bswitch)}
and:
Rsense = {(Blight, Eoperator)}

The system structural relation linking components
Boundary system components Bswitch and Blight are log-
ically linked to define system operation. The influence re-
lation Roperate defines the logical link between the system
environment component Eoperator and the system bound-
ary component Bswitch. The action relation Rsense defines
the logical link between the system boundary component
Blight and the component system environment component
Eoperator

Ns{(Ss × Is)× Ss}
Ns{(on,setOn), (off,setOff),
(on,setOff), (off,setOff)}
×{on,off}
Ns = {((on,setOn), on),
((off,setOff), off),
((on,setOff), off),
((off,setOn), on)}

The next state mapping describing the logic of the se-
quence of states of the system

U1 : Bswitch → {on,off} = Ss

U2 : Blight → {lightOn,lightOff} =
Os

U3 : Bswitch → {setOn,setOff} = Is

The set of system properties U = U1∪U2∪U3 The com-
ponents of the system are mapped to their applicable sets
of properties or attributes

T = 0, 1, 2, 3, 4, 5, 6, 7 System time/progress counters e.g. T =
0, 1, 2, 3, 4, 5, 6, 7, . . . the counter 0 corresponds to
the system initial state

f ⊆ T × Is

f = {(1, setOn),
(2, setOff),
(3, setOn),
(4, setOn),
(5, setOff),
(6, setOff),
(7, setOn)}

The system trajectory - mapping a discrete set of counters
(time points) to Is

Ns ◦Rs

f ◦ (Is ×Os)
Compositions - The composition Ns◦Rs supplies the result
readout contained in Os for the next state mapping;
f ◦ (Is×Os) provides the output trajectory of the system

6.5 MATLAB implementation of basic system function example

Refer to Appendix E for the MATLAB implementation of the basic system function example.

6.6 System analysis

A short summary of system analysis based on Beishon and Technology Foundation Course Team [14] is
set out below. A more comprehensive treatment can be found in the book on Systems Engineering by
Erik Aslaksen and Rod Belcher [8].

Systems analysis is the process that leads to a system specification. It supplies the engineering basis
for system design.

According to Beishon [14] one needs to:

CHAPTER 6. SYSTEMS THEORY 53

• Identify system, subsystems, boundaries and interrelations.

• Proceed inwards to lower levels of systems or outwards to the environment

• Postulate system functions.

• Identify feedback loops outside the system.

• Describe system behaviour – scientific analysis of phenomena needs to be done or be available.

• Formulate a quantitative connection among variables of a system.

When the behaviour can be predicted the system analysis should at a suitable level of detail.
Aslaksen lists the following structure for systems analysis, [8].

• Information gathering

• High level modelling

– Input and output identification

– Types of models

– Specifications as models

• System specification

6.7 System design

System design is the engineering activity for systems. The specification of a system which needs to be
developed or built is planned and designed to the required levels of detail.

Typical activities of system design include:

• Set objectives, goals and aims of the system design exercise

• Develop a preliminary specification of primary purpose and objectives of the system

• Define the tentative boundary of the system

• Define subsystems and interrelationships

• Model the interaction among the subsystems

• Analyse subsystems to identify sub-subsystems if necessary

• Outline a functional model

• Define / recognise functional activities (primary and secondary)

• Define subsystem boundaries

• Construct or realise the system

• Test the system

With the aid of electronic computation devices (e.g. stored program digital computers) which enhance
the mental ability of humans, it has become possible to study and develop increasingly complex systems.

CHAPTER 6. SYSTEMS THEORY 54

6.8 Business enterprises and business enterprise systems

Emery and Trist [36] state that enterprises are better understood as open socio-technical systems which
exhibit equifinality i.e. can reach their goals by many different routes. The system approach applied
to a business enterprise reveals the hierarchical nature of the subsystems within subsystems, and draws
attention to the need to provide control within the subsystems and between systems.

With open business systems there is also a need to control the relation of flow of goods, materials,
money, information (MEI trilogy - Van Wyk [123]) five M’s (men, materials, machines, money and
management) across the interface between the system (the business) and the relevant environment.

The introduction of a systems model of a business can ensure effective and efficient business structure
and processes as well as effective and efficient management structures and processes for a business. The
term effective here indicates that the ‘right’ - appropriate things are being done and efficient indicates
that processes are being done in the ‘right’ way.

The management of a business system is modelled as a separate system linked to the business system.
The management system provides the necessary monitoring and control functionality to form the business
as whole.

Figure 15.1 shows the interaction of business and management systems.

6.8.1 Business systems - structural models

The service business is a collection of persons, supporting infrastructure, knowledge and management
organised to engage clients and to deliver services to selected clients.

The components of a business can be seen as artefacts i.e. products or objects made by humans.
The artefacts can be physical or logical / conceptual in nature. Logical artefacts include activities and
processes.

The business can be viewed as made up of physical and logical components which can be grouped
into a number of subsystems. A given component can be contained in a subsystem of a system with a
given logic and can also be contained in a subsystem of another system serving a complementary logic.
A component should not be included in more than once in a system with a specific logic.

Huhnt [59] defines projects, processes, business processes, management processes, activities and func-
tions as follows:

A project can be defined as a structured set of time consuming activities to be performed with a well
defined start and well defined end.

A system whose elements are activities is called a process. Activities encapsulate and imply changes
in the state of physical and logical artefacts and products. A process is a system whose elements
describe changes in the state of a physical or logical product or artefact.

A process in the context of this development is a business process. A business process can be defined as
a collection of related structured activities.

The term management process is used here as the collection of processes used to monitor and control
business processes to achieve well defined goals.

A function can be defined as a task or activity which supports one or more corporate goals.

An activity can be defined as any task, job or operation which needs to be performed to complete
a work package or project, Burke [21]. In the project management environment an activity needs to be
completed in a specified time and uses a set of definable resources.

Business system attributes need to be defined on component, subsystem and system level to meet
requirements set out for management monitoring and decision making.

Business system and subsystem boundaries are defined to delineate discontinuities in time and space
as well as structural logic of interacting systems.

Business system boundaries for a service business are found where system components interact with
the business environment for the exchange of goods and services and information as well as management.
Interaction can be on the physical level such as interactions between persons in offices, machines passing
information as well as management interaction. On the logical level boundaries can be defined between
e.g. business functions controlled by the business and functions outsourced from other businesses.

A business has boundaries with and can form part of other systems such as inter business joint
ventures, the regional economy, the national economy and so on.

CHAPTER 6. SYSTEMS THEORY 55

A system whose elements are components is called a model. Business objects can be identified to
serve as the components of business system models.

Three possible approaches to model business system components or objects are discussed below. Any
physical or logical business component / entity can be grouped into a selected specified subsystem logic
described below.

6.8.1.1 Physical business system components and subsystems

Physical business components include personnel, offices and laboratories with the associated energy sup-
ply, telecommunication links, environmental control, office and other technical equipment as well as
physical documents, document storage systems and digital electronic information processing and storage
systems. Transport provided for personnel can also form part of the physical business infrastructure.
Cleaning and maintenance supplies and equipment can also be seen as part of physical business compo-
nents. The MEI trilogy described by van Wyk [123] can be used to provide a classification here.

6.8.1.2 Logical and organisational business system subsystems and components

Logical groupings of physical business components are made to enhance the business processes and aid
the organisation of the management of the business. Organisational groupings such as offices grouped per
region, province and country, technical departments within offices or across office boundaries, technical
groups of persons, ad hoc and longer term project groupings of persons can be identified.

According to Robertson [104] a three dimensional view of an organisation along the project, office and
department axes is suitable for modelling engineering service type businesses. Departments are linked to
technical disciplines and can span multiple physical offices.

6.8.1.3 Functional business subsystems and system components

Businesses can be viewed along functional lines for management or other purposes.
A typical functional grouping of subsystems which is useful in the service business environment includes

functions such as:

• strategy, policy and long term planning

• marketing, promotion and public relations management

• finance, bookkeeping and auditing

• personnel

• facilities

• knowledge

• logistics

• production

• risk

• administration

Any physical or logical business component defined can be linked to the functional subsystems listed
above.

Identification of management system functionality providing support for management are dealt with
in part IV of this document.

CHAPTER 6. SYSTEMS THEORY 56

6.8.2 The production process

The production processes in an engineering planning and design office provides a professional service to
clients which is typically organised along project lines.

The project work needs to be supported by a number of information systems which can be integrated
to various degrees. Information systems need to generate, communicate and store information in the
required formats to be accessible for project work.

Chapter 11 contains a detail development of the Engineering process model which can be applied to
the systems modelling and management of the production process in the professional engineering services
enterprise.

6.8.3 Business systems supporting business operations

Systems supporting a business office facility includes logistical support, maintenance and upgrading /
adaptation for inter alia:

• structural components of the building

• space division and utilisation partitions

• office furniture

• desktop equipment

• water supply waste water removal, irrigation and storm water drainage networks

• air supply and environmental control, air conditioning and ventilation ducts, heating and cooling
systems

• lighting

• physical security and alarm systems

• energy supply

• office stationery supplies

• waste disposal and recycling

• transport units, transport hubs and terminal access

• telephony and information transfer, telecommunication cabling and equipment

The facilities management approach, which deals with these aspects in more detail, is treated further
in chapter 21.

6.8.4 Business management systems - structural models

A techno-social system is a system formed by the combination of technological systems with human
management systems. In the case of the services enterprise the typical system deployed involves a coupling
of information and communication technology (ICT) systems and human management systems.

An engineering planning and design office provides a professional service to clients. The management
processes in such an office is typically supported by a number of information systems which can be
integrated to various degrees. Figure 18.3 shows an overview in system diagram format of an engineering
office management system.

The management information systems used in engineering offices can be broadly classified as having
either a project focus or a business enterprise focus.

CHAPTER 6. SYSTEMS THEORY 57

Management information systems with a project focus

Systems which focus on engineering project work management include functionality to:

• structure projects in work packages, (work breakdown structure)

• define rates and unit costs

• budget project work

• record personnel time

• record disbursements

• manage project related creditors

• manage project related invoicing and debtors

Manpower skill and knowledge data bases can also be linked to these systems.
Reporting functionality includes time, expense and cost, work in progress, cash flow, project task

progress, earned value, project invoicing and reporting of creditor and debtor information.
Engineering office production management information systems reflect the flow of production units of

work and information in the organisation.

Management information systems with a business enterprise focus

To provide management support for ongoing business activities which are not directly project related
information systems which focus on business enterprise management need to be in place. Systems which
focus on business enterprise management and provide management support are:

• scenario modelling system for long term planning - e.g. morphological modelling

• strategy and policy formulation support

• company organisation modelling

• marketing and business contact management

• personnel management

• personnel remuneration, salaries and time rates

• production project and work in process management

• logistics management system for office supplies

• financial budgeting, business cash flow, and accounting systems

• financial management

• office facility management

• asset registers

• knowledge management

• archiving, document and library management

• risk management

• communication monitoring and control

• general administration

CHAPTER 6. SYSTEMS THEORY 58

To be useful, management systems need to support formalisation of business goals, identify and
quantify inputs, outputs and specify business system control links.

Engineering office business management information systems reflect the structure of the underlying
datasets used to model the organisation and its resources.

When modifications are made to any of these structures, system reference data (meta data) needs to
be updated to maintain the required system functionality.

This updating operation presently not well supported in commercially available software. Function-
ality to accommodate changes to business and workflow models, on which systems base data processing
and management reports and to apply these in a controllable way to these systems is required. These
changes can impact on the format and validity of historic and live data. Maintaining system integrity
requires robust system structures and functionality which need to be researched and studied.

6.9 Formulation of required business model structure and functionality

In this section an outline of the application of systems theory to the modelling of a professional service
business, like the professional engineering practice is supplied. Businesses are modelled using business
objects and business processes which are controlled by management processes, which in turn can refer to
management objects.

Models of business objects used in information processing typically relate to a number of logical classi-
fication structures which are used to view the business and associated organisation when communicating
information about the business. In this section typical business object classification structures are re-
viewed which are used to organise data about business objects. The functionality required in the use of
these hierarchies is set out and an abstract concept which can lead to a software implementation with
the required form and function, is described.

6.9.1 Typical business object classification structures

A business is viewed as a collection of business objects which can be grouped into artefacts, personnel,
activities and information (monetary aspects are included under information).

This is similar to Huhnt [61], which uses a collection of persons, tasks, tools and data in the grouping
of artefacts which is modelled to support project planning.

In the process of structuring the business to make it functional and allow for its management, classi-
fication hierarchies are defined and developed to link business objects to. These hierarchies may relate to
physical or abstract attributes/aspects of the business objects. All relationships between business objects
are defined in terms of these hierarchies.

Examples of classification hierarchies are set out in table 6.7.
To be able to report on attributes of selected business activities one needs to be able to select objects

based on typical classification hierarchies defined in table 6.7 and generate applicable datasets for review
using the functionality described below.

6.9.2 Conceptual model of system functionality to process business objects

Each business object will need to be connected to zero or more nodes in a hierarchy. The functionality
to couple/uncouple an object to a hierarchy node will be required.

Generation of attribute data of business objects based on selections made using said hierarchies and
combination of hierarchies is typically needed to achieve management and other reporting output required
for day to day running of the business.

New hierarchies may be added from time to time and complete hierarchies removed. The terms used
in a hierarchy might also need to be changed from time to time. New elements or groups of elements may
need to be added to existing hierarchies and elements may need to be removed from existing hierarchies.
This implies a versioning requirement for hierarchies.

Attributes of objects may need to be subtotalled or grouped as hierarchies are traversed in the reporting
and data generation process.

Software functionality for reporting resembling the ‘Pivot table’ found in spreadsheet applications
might apply here.

To achieve the desired structure and functionality in a model of business objects it is
postulated that the object hierarchies need to be defined as structured sets from which

CHAPTER 6. SYSTEMS THEORY 59

Table 6.7: Classification hierarchies used in business organisation

Classification Typical Class Instances
Technological (Van Wyk [123]) Matter, energy, information
Business artefacts/objects Persons, tasks, tools, datasets
Physical / geographical Offices grouped into divisions/ regions / provinces / countries,

geographical co-ordinates latitude and longitude
Functional departments Strategic planning, Marketing, production; project manage-

ment, financial, purchasing and logistics, administration, per-
sonnel, after sales service, public relations (Du Plessis [32] and
Du Plessis [33])

Legal company structure Holding company with subsidiary companies
Major business goals Marketing, production, quality control, after sales service
Business activities Operating and services / head office divisions
Types of artefacts owned by the
business

Furniture, vehicles, computers, office machines, telephones and
telecommunication equipment typically used in asset manage-
ment systems

Management activities Investigating, estimating, forecasting, scanning the environ-
ment, planning, organising, controlling, co-ordinating and com-
manding De Villiers [28]

Accounting Assets, liabilities, current assets, current liabilities, owners eq-
uity, income accounts, expense accounts

Personnel Owners, directors, associate shareholders, other shareholders
Personnel education Matriculants, Technicon Diplomates, University graduates
Personnel cultural qualities Nationalities, race groups
Management structure Executive director, office manager, department manager, finan-

cial manager
Tax and government levies Income tax, regional service levies, value added tax, municipal

property tax, municipal service tax, government training levies
. . .

Marketing and public relations Government clients, private sector clients, corporate clients,
mining houses . . .

Time Calendar dates
Time periods Years, months, days, hours, accounting periods
Technical discipline and sub-
discipline hierarchies

Structural engineering
Municipal engineering
Coastal engineering
Marine engineering
Water supply engineering
Water treatment
Software engineering

CHAPTER 6. SYSTEMS THEORY 60

subsets can be derived using a tree like graph structure and as subsets contained in each
other.

It might be required to also define weights for vertices in graph tree structures which are used to
derive datasets when trees are traversed to generate information as required.

This approach is demonstrated in section 12.2.

Chapter 7

Relational Database Theory

7.1 Introduction

History of relational database theory

According to Wikipedia [126] the relational database model was invented by E. F. (Ted) Codd [24] as
a general model of data, and subsequently maintained and developed by Chris Date and Hugh Darwen
among others. In The Third Manifesto (first published in 1995) Date and Darwen show how the relational
model can accommodate certain desired object-oriented features without compromising its fundamental
principles. The foundation for the relational model was laid by important works published by Georg
Cantor (1874) and D.L. Childs (1968). Cantor was a 19th century German mathematician was the
principal creator of set theory. Childs is an American mathematician whose ‘Description of a Set Theoretic
Data Structure’ was cited by Codd in his seminal 1970 paper ‘A Relational Model of Data for Large
Shared Data Banks’. Childs used set theory as the basis for querying data using set operations such as
union, intersection, domain, range, restriction, cardinality and Cartesian product. The use of sets and
set operations provided independence from physical data structures, a pioneering database concept at the
time.

7.2 Database System Concepts and Architecture

A Database Management System (DBMS) is a collection of programs that enables users to create and
maintain a database.

The architecture of Database Management Systems (DBMS) has evolved from the monolithic inte-
grated system hosted on a mainframe computer to the client-server architecture. For the client-server
architecture the client (user or developer) can use local area network (LAN) or wide are network (WAN)
and internet access to the database hosted on a server machine. The client module typically runs on a
user workstation which supports a Graphical User Interface (GUI) environment. A server module handles
the data loading, access and manipulation functionality for the database. Refer to figure 7.1 which shows
a typical logical system component overview.

In this section the concepts relating to the categories of data models, schemas, instances of a database,
database architecture logic and modelling techniques such as the entity-relationship, object techniques
and Unified Modelling (UML) are discussed.

7.2.1 Data Models, Schemas and Instances

The outcome of the logical design of a database is called a database schema which describes the database.
Data modelling techniques have conventions for displaying schemas in diagram format.

Each object contained in the schema is referred to as a schema construct.
The data in a database changes as it is used. The data status at a specific moment is called the

database state, the current set of occurrences or instances in the database.
When a database is defined the schema is specified using the appropriate DBMS functionality. At

this point the database is not populated with data. The initial state of the database is reached when the
data is loaded for the first time. When any updates or additions to the data in the database are made,
the database moves to a new state. The DBMS should ensure that every state reached is a valid system
state for the database and that the database integrity is maintained as it moves from state to state. This

61

CHAPTER 7. RELATIONAL DATABASE THEORY 62

Figure 7.1: Simplified database system environment logic

can be achieved through a transaction mechanism. Refer to section 6.4.2 where analogous concepts are
discussed in general systems terms.

The DBMS stores the schema definition in a database catalogue which can be seen as meta data i.e.
data describing the structure and format of data. If the structure of the database needs to be modified a
schema evolution needs to take place. The sophistication of DBMS software, and the detailed nature of
the schema update required, determines to what extent schema updates can be done while a database is
operational.

7.2.2 DBMS Architecture

Three important characteristics of the database approach are:

• insulation of programs from data,

• support of multiple users and multiple user views on the data,

• catalogue usage to store the database schema.

Three-Schema Architecture

In the three level schema or three-schema database architecture separation of the user applications from
the physical database with stored data is achieved by defining and using schemas on three levels:

1. The internal level has an internal schema which defines the physical storage structure of the
database using a physical data model.

2. The conceptual level has a conceptual schema which is a high level data model and describes the
structure of the database to its users and programmers. The schema hides the details of physical
storage structures and describes entities, data types, relations, user operations and constraints.

3. The external or view level is a high level data model and includes external schemas or user views.
It describes the part of the database that a group of users are interested in and hides the rest of
the database.

Refer to figure 7.2 which shows these concepts in diagrammatic form.

CHAPTER 7. RELATIONAL DATABASE THEORY 63

Figure 7.2: Three level schema database architecture

Data Independence

Data independence is defined as the capacity to change a database schema at one level without having
to change the schema at a higher level. Two types of data dependence can be identified:

1. Logical data independence is the capacity to change the conceptual schema without having to change
the external schema or database application programs.

2. Physical data independence is the capacity to change the internal schema without having to change
the conceptual or external schemas.

7.2.3 Data Modelling Techniques

Various techniques have been developed to aid the database design process.
There are a number of database design diagramming techniques in use which aid the visual representa-

tion of the relational model. The Entity-relationship Diagram (ERD), and the related IDEF diagram used
in the IDEF1X method conceived by the U.S. Air Force, based on the ERD, were originally developed.

The tree structure of data may enforce hierarchical model organisation, with a parent-child relationship
table.

With the advent of object modelling Enhanced Entity Relationship (EER), Unified Modelling UML
and Object Modelling Techniques (OMT) were added to the suite of techniques available to database
designers.

The Entity-Relationship Model

The entity relationship (ER) notation is summarised in figure 7.3. (Google Images [45]). The ER model
describes data using entities, relationships and attributes (entity properties) where:

• entities are real word objects or things

• relationships are attributes of one entity type referring to that of another entity type

• attributes are entity properties.

Further material on this technique can be found in Elmasri and Navathe [35] and Fertuck [39].

CHAPTER 7. RELATIONAL DATABASE THEORY 64

Figure 7.3: Entity Relationship Diagram Notation

Enhanced Entity Relationship Technique

The Enhanced Entity Relationship (EER) model includes all modelling functionality of the ER approach
with the addition of object concepts such as class and superclass and also specialisation and generalisation.
The mechanism of attribute inheritance and relationship inheritance is also added to the ER technique.

Specialisation is the process of defining a set of subclasses of an entity type while generalisation is the
reverse process i.e. defining the superclasses which entity types belong to.

Object Modelling and the Unified Modelling Approach

The use of object modelling methodology such as the Unified Modelling Language (UML) and Object
Modelling Techniques (OMT) is becoming more common.

UML class diagrams contain the object class displayed as a rectangle. Inside the rectangle sections
that show the class name, attributes for the class or objects of the class and the methods (operations)
which can be applied to the class or objects of the class are shown.

Figure 7.4 shows an example of a UML class diagram taken from Elmasri and Navathe [35].

Figure 7.4: UML Conceptual Schema

More detail on the UML approach is contained in references such as Alhir [3], Gomaa [43] and Booch
et al. [18].

CHAPTER 7. RELATIONAL DATABASE THEORY 65

7.3 Relational Data Model, Constraints and Relational Algebra

In the relational model a database schema is said to consist of a set of relation names, the headers that
are associated with these names and the constraints that should hold for every instance of the database
schema. The material described in this section refers to Elmasri and Navathe [35] and material contained
in Wikipedia [126].

7.3.1 Relational Model Concepts

The relational model represents a database as a collection of relations. Each equivalence relation can be
represented by a table of values where each row represents an ordered collection of data values. The table
identifier (relation name) and column identifiers (attribute names) are used to interpret the meaning
(semantics) of the data in the table. All values in a column have the same data type.

In the formal relational model definition a row in a table is termed a tuple, a column header an
attribute and the table a relation. The domain of an attribute describes the logical description and data
type of each column of the relation.

The formal definition of the concepts noted above follows.

Domains and Domain Constraints

A domain D is a set of atomic values. Atomic indicates that that each value in the domain is indivisible
as far as the relational model is concerned. A domain needs a logical definition and a data type with a
format to be specified for it.

Examples of domains are:

• Employee_Number: A set of four digit integer numbers

• Employee_Surname: A set of alphabetic character strings making up acceptable surnames

• Hourly_Rate: A set of floating point values specified to two decimals to form monetary values

• Customer_Code: A set of 10 character alphanumeric identifiers for customers

• Customer_Name: A set of alphanumeric character strings making up acceptable customer names

When a domain is logically specified and a data type has been chosen for the domain it is then
constrained.

Refer to section 7.12 for computer implementation aspects relating to domains and constraints on
domains.

Relation schema

A relation schema R is denoted by R (A1, A2, A3, . . . , An) and consists of a relation name R and a list of
attributes A1, A2, A3, . . . , An.

For a given number of attributes A1, A2, A3 . . . An the set formed by all the attributes R = {A1, A2, A3 . . . An}
is defined as a relational schema.

A relation schema describes a relation where R is the name of the relation.
A relation schema (H, C) consists of a header H and a predicate C(R) that is defined for all relations

R with header H. A relation satisfies the relation schema (H, C) if it has header H and satisfies C.
In predicate logic, a relational schema is also referred to as a relational intension.

Attributes

Each attribute Ai refers to the role played by some domain D in the relation schema R. The domain of
Ai is denoted by dom(Ai)

Tuples

An n-tuple or tuple is a ordered list of n values t = (v1, v2, v3, . . . , vn). Each value vi with 1 ≤ i ≤ n is
an element of dom(Ai) or a special null value indicating that it is not specified. The ith value in tuple t
which corresponds to attribute Ai is referred to as t (Ai).

A tuple is a partial function from attribute names to atomic values. A header is defined as a finite set of
attribute names. The projection of a tuple t on a finite set of attributes A is t[A] = (a, v) : (a, v) ∈ t, a ∈ A.

CHAPTER 7. RELATIONAL DATABASE THEORY 66

Table or relation name

A1 A2 A3 . . . An

a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

. . .
an1 an2 an3 . . . ann

← Attribute or
column names
← Row or
tuple values

Table 7.1: General format of a relation represented as a table

Relations or Relation states

The following definition of a relation formalises the contents of a table defined in the relational model:
A relation is a tuple (H,B) with H, the header, and B, the body, a set of tuples that all have the

domain H. Such a relation closely corresponds to what is usually called the extension of a predicate in
first-order logic except that here we identify the places in the predicate with attribute names.

A relation or relational state of the relational schema R (A1, A2, A3, . . . , An) is denoted by r (R) is a
set of n-tuples r = {t1, t2, t3, . . . , tn}. Refer to table 7.5 for an example of a relation.

The relational state is also referred to as a relational extension.

Degree, Cardinality and Cardinality Ratio of a Relation

The degree of a relation is the number of attributes in its relation schema n.
The cardinality of a domain D is the number of values in the domain and is denoted by |D|.
The cardinality or cardinality ratio of a binary relation specifies the number of relationship instances

an entity can participate is. The possible cardinality ratios for a binary relationship are 1 : 1, 1 : N , N : 1
and M : N .

7.3.2 Tabular representation of a relation

A relation is represented in a relational database as a two-dimensional table where the table name is the
relation name each column an attribute An or column name associated with the domain Xn and each
row formed by the associated tuple values making up the relation. Refer to table 7.1

A specific instance of a relation is then the table described above with specific tuple vales supplied.

7.3.3 Set theoretic Formulation of a Relational Database

The term relation (database relation) used in this chapter is based on the mathematical concept of a
relation dealt with in Chapter 4, but is to be seen as a distinct specialisation based on the mathematical
concept of a relation. The term relation used in this chapter refers to this specialisation, unless stated
otherwise.

A relation is defined as a subset of the Cartesian product of the domains of the attributes of the
relation. The relation and domain are the basic object types of the relational data model described by
Elmasri and Navathe [35] and Greeff [48].

A relation r (R) is defined on sets X1, X2, X3 . . . Xn, where X1 = dom(A1), X2 = dom(A2), X3 =
dom(A3), . . . , Xn = dom(An) the domains of the attributes of the relation.

r (R) = {(x1, x2, x3 . . . xn) | x1 ∈ X1, x2 ∈ X2, x2 ∈ X2, . . . xn ∈ Xn} (7.3.1)

The sets X1, X2, X3 . . . Xn are the domains and (x1, x2, x3 . . . xn) is a tuple which is an ordering of
the variables x1, x2, x3 . . . xn i.e. a generalisation of the ordered pair concept to n variables.

The relation r (R) is a subset of the Cartesian product of all the domains as shown in equation 7.3.2.

r (R) ⊆ {X1 ×X2 ×X2 ×X3 . . .×Xn}
r (R) ⊆ (dom (A1)× dom (A2)× dom (A3)× . . .× dom (An)) (7.3.2)

The Cartesian product specifies all the combinations of values from the underlying domains.
If all the domains are finite the total number of tuples in the Cartesian product is given by equation

7.3.3

CHAPTER 7. RELATIONAL DATABASE THEORY 67

|dom (A1)| ∗ |dom (A2)| ∗ |dom (A3)| ∗ . . . ∗ |dom (A1)| (7.3.3)

As an alternative a relation r(R) can be defined as a finite set of mappings r = {t1, t2, t3, ldots, tn}
from the relational schema R = {A1, A2, A3, . . . , An} to the union of the domains of all the attribute
domains D = dom (A1) ∪ dom (A2) ∪ dom (A3) ∪ . . . ∪ dom (An)}. Each tuple ti is a mapping from R to
D and t (Ai) ⊂ dom (Ai) for 1 ≤ i ≤ n.

7.3.4 The structural properties and characteristics of a relation

The structural properties of a relation are summarised in Dutka and Hanson [34, Figure 2.1, page 13]
and Greeff [48].

1. Columns represent database fields. Each column has an unique name. Columns are also referred
to as attributes.

2. Each column is homogeneous. The entries in a column are all of the same data type and format.

3. Each column entry is contained in the domain of the column i.e. the set of possible vales that the
entry can contain.

4. Rows (tuples) represent records. If a relation as n columns, each row is an n-tuple.

5. The order of the rows (tuples) is not important.

6. The order of the columns is not important. Logically a column entry must however correspond to
the attribute contained in that column.

7. All attribute values are atomic.

8. No duplicate rows are allowed.

9. Repeating attributes or groups of attributes i.e. collections of logically related attributes which
occur more than once in a record occurrence are not allowed.

10. A relational schema is a set of attributes, dependencies and other constraints that characterises a
relation. Various types of dependencies and constraints can be defined.

11. An instance of a relation is a set of rows that populate the relation. Updates to the database data
can change the instance of a relation. An instance is valid if all the dependencies and constrains
specified in the relational schema are satisfied.

7.4 Candidate keys and Primary key of a Relation

A key provides the basic mechanism for retrieving tuples within any table of a relational database.
A candidate key of a relation R with attributes A1, A2, A3 . . . An is defined as any subset K of the set

{A1, A2, A3 . . . An}.

K ⊂ {A1, A2, A3 . . . An} (7.4.1)

K must satisfy both the following conditions:

1. Uniqueness property of a key: For any two distinct tuples t1 and t2 of relation R there exists an
attribute Aj of K such that t1 (Aj) 6= t2 (Aj).

2. Minimality property of a key: K ′ ⊂ K does not satisfy the uniqueness property. No element of K
can be discarded without destroying the uniqueness property. The number of attributes that make
up the key is a minimum.

A relation can have a number of candidate keys and one of the candidate keys is selected as the
primary key of the relation. A relational database system only allows one primary key per table. Single
primary keys are composed using one attribute while composite primary keys are made up using more
than one attribute. The remaining candidate keys are referred to as alternate keys.

CHAPTER 7. RELATIONAL DATABASE THEORY 68

Since a primary key is used to uniquely define the tuples or rows of a relation the integrity constraint
requires that none of its attributes may have a null instance. A null value represents missing data in a
relation.

A superkey K of a relation is any a key formed such that K ⊂ K ′. This is a set of attributes that
contains the key.

The entity integrity constraint states that no primary key can assume a null value. If null keys were
allowed it would not be possible to identify some tuples in a relation.

7.5 Prime Attributes

An attribute of an relation schema R is called a prime attribute if it is a member of some candidate key
of R. An attribute is nonprime if it is not a prime attribute and is thus not a member of a candidate key.
Attributes which are part of any key are called prime attributes.

7.6 Foreign Keys

The referential integrity constraint is specified between relations and states that a tuple in one relation
referring to another relation must refer to an existing tuple in that relation. To formally define a referential
integrity constraint the concept of a foreign key is required.

A foreign key is defined as follows:
If two relations R and S are defined on the same relational database the set of attributes F of relation

R is said to be a foreign key of relation S with respect to S if both conditions below are satisfied.

• the attributes used to form F have the same underlying domain as a set of attributes of relation S
that have been defined as the primary key of S.

• the values of F in any tuple belonging to R are either null or must appear in the primary key values
of relation S.

This implies that tuples of relation R must refer to tuples of relation S that already exist. This is the
referential integrity condition imposed on foreign keys.

7.6.1 Properties and characteristics of keys of relations

The properties of keys of relations are summarised in Dutka and Hanson [34, Figure 2.1, page 13] and
Greeff [48].

1. A candidate key is an attribute, subset of the attributes or a function of and attribute or subset of
the attributes that uniquely defines a row. A candidate key must have the following properties:

• Unique identification: For every row, the value of the key must uniquely identify that row.

• Non-redundancy: No attribute in the key can be discarded without destroying the property of
unique identification.

2. A primary key is a candidate key selected as the unique identifier. Every relation must contain a
primary key. The primary key is usually the key selected to identify a row when the database is
physically implemented.

3. A superkey is any set of attributes that uniquely identifies a row. A superkey does not require the
redundancy property. A superkey is written as a finite set of attribute names.

4. A foreign key is an attribute that appears as an non-key attribute in one relation and as a primary
key attribute (or part of a primary key) in another relation.

5. A composite key is a key derived from more than one attribute.

6. All non-key attributes are functionally dependent on the key attributes. A set A of the attributes
of a given relation Ri is functionally dependent on another set B of the attributes of R, if and only
if each value of B has associated with it one value of A in Ri at any given time.

CHAPTER 7. RELATIONAL DATABASE THEORY 69

7.7 Key constraints

One of the most important types of relation constraints is the key constraint. It tells us that in every
instance of a certain relational schema the tuples can be identified by their values for certain attributes.
A relation is defined as a set of tuples. Seeing that all elements of a set are distinct all tuples in a relation
are distinct and no two tuples can have the same combination of values for all attributes. No rows are
repeated in the tabular form of the relation.

A superkey (SK) is defined as a subset of the attributes of a relation. Thus for any two distinct tuples
t1 and t2 in a relation state r of R the key constraint reads:

t1 (SK) 6= t2 (SK) (7.7.1)

A superkey SK holds in a relation (H,B) if SK ⊆ H and there are no two distinct tuples t1 and t2
in B such that t1 (K) = t2 (K).

A superkey SK holds in a relation universe U over a header H if it holds in all relations in U . A
superkey K holds as a candidate key for a relation universe U over H if it holds as a superkey for U and
there is no proper subset of SK that also holds as a superkey for U .

A key is determined from the meaning of the attributes. Its value is based on the properties of the
attributes. A key needs to be time invariant and must hold when new tuples are inserted into a relation.

7.8 Functional Dependencies in Relations of Relational Databases

A functional dependency (FD) is written as X → Y with X and Y finite sets of attribute names.
A functional dependency X → Y holds in a relation (H,B) if X and Y are subsets of H and for all

tuples t1 and t2 in B it holds that if t1 (X) = t2 (X) then t1 (Y) = t2 (Y).
A functional dependency X → Y holds in a relation universe U over a header H if it holds in all

relations in U .
A functional dependency is trivial under a header H if it holds in all relation universes over H. It can

be proved that a FD X → Y is trivial under a header H if and only if Y ⊆ X ⊆ H.
It can also be proved that a superkey SK holds in a relation universe U over H if and only if K ⊆ H

and K → H holds in U .
Let S be a set of functional dependencies. The closure of S under a header H, written as S+, is the

smallest superset of S such that:

• (reflexivity) if Y ⊆ X ⊆ H then X → Y in S+

• (transitivity) if X → Y in S+ and Y → Z in S+ then X → Z in S+

• (augmentation) if X → Y in S+ and Z ⊆ H then X ∪ Z → Y ∪ Z in S+

These statements are referred to as Armstrong’s rules [6].
It can be proved that Armstrong’s rules are sound and complete, i.e., given a header H and a set S of

FD’s that only contain subsets of H, then the FD X → Y is in S+ if and only if it holds in all relation
universes over H in which all FD’s in S hold.

If X is a finite set of attributes and S a finite set of FD’s then the completion of X under S, written
as X+, is the smallest superset of X such that if Y → Z in S and Y ⊆ X+ then Z ⊆ X+

The completion of an attribute set can be used to compute if a certain dependency is in the closure
of a set of FD’s.

It can be proved that for a given header H and a set S of FD’s that only contain subsets of H it holds
that X → Y is in S+ if and only if Y ⊆ X+.

Given a header H and a set of FD’s S that only contain subsets of H an irreducible cover of S is a
set T of FD’s such that:

1. S+ = T+

2. there is no proper subset U of T such that S+ = U+,

3. if X → Y in T then Y is a singleton set and

4. if X → Y in T and Z a proper subset of X then Z → Y is not in S+.

CHAPTER 7. RELATIONAL DATABASE THEORY 70

7.8.1 Full Functional Dependencies

A functional dependency X → Y is a full functional dependency if the removal of any attribute A from
X implies that the functional dependency no longer holds. That is:

if X → Y ∃A ∈ X 3 (X − {A}) 6→ Y

7.8.2 Partial Functional Dependencies

A functional dependency X → Y is a partial functional dependency if some attribute A from X can be
removed while the functional dependency still holds. That is:

if X → Y ∃A ∈ X 3 (X − {A})→ Y

The identification of partial dependencies is used in the process of database normalisation outlined in
section 7.17.

7.8.3 Transitive Functional Dependencies

A functional dependency X → Y in a relation is a transitive dependency if there is a set of attributes
Z that is neither a candidate key nor a subset of any key of R while both X → Z and Z → Y hold.
Attribute Y is transitively dependent on attribute X.

7.9 Database normalisation and Design

Database normalisation is usually performed when designing a relational database, to improve the logical
consistency of the database design and the transactional performance.

7.10 The data model

A data model consists of tools and languages for describing:

1. Conceptual and external schemas

2. Constraints

3. Operations on data

4. An optional storage definition language which allows the database designer to interact with the
physical data storage schema.

Refer to Lewis et al. [72, page 57].

7.11 Insertion, Deletion and Update Operations on Relations

The contents of the relations in a database typically vary over time and are created, changed and deleted
via standard operations i.e. the insertion, deletion and update operations.

7.11.1 Inserting a Tuple into a Relation table

For a relation with schema R = {A1, A2, A3, . . . , An} the format for the insert operation is:

INSERT INTO relation name (A1 = v1, A2 = v2, A3 = v3 . . . , An = vn)

The values v1, v2, v3 . . . , vn must belong to the domain of the attributes A1, A2, A3, . . . , An. The
operation adds a new tuple t to the relation with t (Ai) = vi

This operation is not guaranteed to succeed because problems with values outside domains, incomplete
tuples, duplicate primary keys, unique defined attribute columns and an undefined relation name, may
arise.

CHAPTER 7. RELATIONAL DATABASE THEORY 71

7.11.2 Deleting a Tuple from a Relation table

The DELETE operation which removes a tuple from a relation has the format:

DELETE FROM relation name WHERE search condition

The search-condition can specify the values of the key attributes of other attributes of the tuple(s)
which needs to be deleted from the relation.

This operation is also not guaranteed to succeed because problems with tuples not in a relation, foreign
key referencing and an undefined relation name, may occur.

7.11.3 Updating a Tuple of a Relation Table

The update operation for a tuple in a relation changes a value of one or more of its attributes. The tuple
which must be changed needs to be identified via one of its keys or attributes.

The format of this operation reads:

UPDATE relation name SET column name = new-value WHERE search condition

Updating can also be performed using a combination of the delete and insert operations and can fail
due to the same reason that these operations can fail.

7.12 Specification of Attribute Domains

The domain of an attribute defines the characteristics of the values that a table column may contain.
In database implementations the domain is typically implemented using a specified data type. Stan-
dardisation specifications by organisation such as American National Standards Institute (ANSI) and the
International Standards Organisation (ISO) exist, but implementations differ and vary from vendor to
vendor.

Some typical standard data types are listed in table 7.2.
Extensive documentation can be found in database program manuals such as e.g. The PostgreSQL

Global Development Group [121].

7.13 Relational Algebra, Calculus and Relational Operations

Relational operations are a set of operations which are used to manipulate relations which are represented
as tables in a database. Basic operations and set operations are defined. The basic operations include
the selection, projection and equijoin operations treated here and then the set based relational operations
discussed later. The relational operations form part of the relational algebra which is important for the
logical understanding of the inner workings of a Relational Database Management System (RDBMS) and
the Structured Query Language (SQL) used to define data input and queries for these databases.

The operands of the operations are relations. The operations include unary operations such as:

• selection

• projection

and binary (set) operations such as:

• union

• set difference

• Cartesian product

• intersection

These operations have no effect on the originating relation(s). Five of these operations are fundamental
i.e. selection, projection, Cartesian product, union and set difference. All other operations can be defined
in terms of these operations.

Table 7.3 from Elmasri and Navathe [35], summarises the development in this section.

CHAPTER 7. RELATIONAL DATABASE THEORY 72

bit fixed-length bit string
bit varying variable-length bit string
boolean logical Boolean (true/false)
char single character
character varying (n) variable-length character string up to n

characters
character(n) fixed-length character string of n charac-

ters
varchar(n) character string with varying number of

characters up to n characters
date date value
double precision double precision floating-point number

value as implemented by system
integer signed four-byte fixed point integer numer-

ical value as implemented by system
interval(p) time span
numeric [(p, s)] exact numeric with selectable precision
decimal [(p, s)] see numeric
real single precision floating-point numerical

value as implemented by system
smallint signed two-byte fixed point integer numer-

ical value as implemented by system
time
[(p)] [with or with out time zone]

time of day optionally including time zone

timestamp
[(p)] [with time zone]

date and time, including time zone

Table 7.2: Some standard SQL data types

7.13.1 The Selection Operation

Mathematically the unary selection operation σA=a (R) i.e. the selection of R on A is defined as:

σA=a (R) = {t ∈ R | t(A) = a} (7.13.1)

The selection operation produces a new relation (table) where the rows (tuples) are a subset of the
rows of the original relation which have a particular specified value for an attribute.

The schema of the new relation σA=a (R) is the same as that of the old relation R and it has the
same attributes.

7.13.2 The Projection Operation

The projection operation πX (R) of a relation R onto a set X of its attributes is defined as:

given: X = {A1, A2, A3, . . . , Ak} ⊂ A; k < n
πX (R) = {t (X) | t ∈ R} (7.13.2)

The entries for tuple j of πX (R) are formed by selecting the entries tj(A1), tj(A2), tj(A3), . . . , tj(Ak).
The projection operation produces a new relation (table) where the columns (attributes) are a subset

of the columns of the original relation.

7.13.3 Tuple Concatenation Operation

Given two tuples s = (s1, s2, s3 . . . , sn) and t = (t1, t2, t3 . . . , tm) the concatenation of s and t is the
(m + n) tuple defined as:

u
st= (s1, s2, s3 . . . , sn, t1, t2, t3 . . . , tm) (7.13.3)

CHAPTER 7. RELATIONAL DATABASE THEORY 73

7.14 Set Operations on Relations

The set based database relational operations are constituted in parallel to the relational algebra operations
defined in chapter 4, section 4.17.4. The operations involves two relations (sets), which can be nested
and the result of each set operation is a new relation.

7.14.1 Set Union Operation

Given two relations R and S with union compatible schemas (the degrees of the relations must match),
the union of these two relations is denoted by R ∪ S and is the set of tuples that are present in R or S
or in both relations.

R ∪ S = {t | (t ∈ R) ∨ (t ∈ S)} (7.14.1)

The union of relations is strictly not a commutative operation. The schema of the union is the set of
attributes of the schema of relation R, which implies that the schema of R ∪ S can differ from that of
S ∪ R. (R ∪ S 6= S ∪ R). As required for a relation no duplicate entries are found in the union of two
relations.

If R and S have iR and iS tuples, respectively, the union will have a maximum of iR + iS tuples.

7.14.2 Set Difference Operation

Given two relations R and S with union compatible schemas, the difference of these two relations is
denoted by R− S and is the set of tuples that are present R but not in S.

R− S = {t | (t ∈ R) ∧ (t /∈ S)} (7.14.2)

The order in which the relations for the difference are named is important because the operation is
not commutative and R− S 6= S −R.

If R and S have iR and iS tuples, respectively, the difference will have a maximum of iR − iS tuples.

7.14.3 Set Intersection Operation

Given two relations R and S with union compatible schemas, the intersection of these two relations is
denoted by R ∩ S and is the set of tuples that are present in both relations.

R ∩ S = {t | (t ∈ R) ∧ (t ∈ S)} (7.14.3)

The intersection of two relations can produce an empty relation.
The intersection of relations is a commutative operation because R ∩ S = S ∩R.
The intersection can be derived from the set difference S − (R− S).

7.14.4 Set Cartesian Product Formation Operation

The Cartesian product of two non-empty relations R and S is denoted by R ⊗ S and is defined as the
relation formed by concatenating the every tuple of relation R with every tuple of relation S.

In mathematical form this reads:

R⊗ S = { upq| (p ∈ R) ∨ (q ∈ S)} (7.14.4)

The logical description of the relation produced by a Cartesian product operation may not necessarily
make sense. The operation is sometimes useful when followed by a selection operation that matches
values of attributes coming from the component relations.

The degree of the Cartesian product of two relations is the sum of the degrees of the two original
relations (the operands) and the cardinality is the product of the cardinality of the original relations.

If R has iR tuples and mR attributes and S has iS tuples and mS attributes, the resulting relation
has iR ∗ iS tuples and mR + mS attributes.

CHAPTER 7. RELATIONAL DATABASE THEORY 74

7.14.5 The Join Operation

The join operation which is denoted by ./ combines attributes of two relations into one. Tuples in R are
combined with related tuples in S.

It is different from a Cartesian Product (R× S) as it involves a selection predicate i.e. a Select on a
Cartesian Product.

It is useful for relational algebra, but memory-intensive in the practical world, so vendors try to
optimise for these using ‘query optimisation’.

Given two relations R (A1, A2 . . . An) and S (B1, B2 . . . Bm) the general form of a join operation is:

R ./<join condition> S

The result of a join operation is a relation Q with n+m attributes Q (A1, A2 . . . An, B1, B2 . . . Bm) in
the given order. Q has one tuple for each combination of tuples, one from R and one from S, whenever
the join condition is satisfied by the combination of tuples. The join condition is specified on attributes
from both relations R and S and is evaluated for each combination of tuples. When the join condition
evaluates as true the combined tuple is included in the resulting relation Q.

The Theta Join Operation

The theta join condition is of the form:

< condition > AND < condition > AND . . . AND < condition >

Each condition is of the form AiθBj where Ai is an attribute of R and Bj an attribute of S having
the same domain. θ is taken from the set of comparison operators. θ ∈ {=, <,≤, >,≥, 6=}

The resulting relation from the theta join operations contains the sum of the degrees of the two
operand relations.

The Equijoin Operation

The equijoin operation is a theta join operation with equality used as the comparison operator.
The equijoin operation combines two relations on all their common attributes. The join consists of all

the tuples formed when the tuples of the first relation are concatenated to those of the second relation for
a given common set of attributes X. Common attributes are defined as attributes which have the same
domain and meaning.

Given a relation r(R) with a set of attributes R and a relation s with a set of attributes S and a set
X of the common attributes of R and S i.e. X = R ∩ S. For every tuple of the relation rJoins one must
have:

• ∃tr of rJoins so that t(R) = tr

• ∃ts of rJoins so that t(S) = ts

• tr(X) = ts(X)

For relations R and S the join operation is defined mathematically as:

RJoinS = { urs| s ∈ R and r (R ∩ S) = s (R ∩ S)} (7.14.5)

The tuple concatenation operator u defined in section 7.13.3 is used in equation 7.14.5. The resulting
relation from the equijoin operations contains the sum of the degrees of the two operand relations.

The Natural Join Operation

The natural join is denoted by ∗ and can be defined as:

Q← R ∗(<list1>)(<list2>) S

For a natural join the relations being joined need to have one attribute (domain) name in common
and the common attribute is the one being compared to see if a new tuple will be inserted in the resulting
relation. It might be necessary to rename an attribute to have a common attribute name. The resulting
relation from the natural join contains the sum of the degrees of the two relations minus the duplicate
attributes after the first attribute.

CHAPTER 7. RELATIONAL DATABASE THEORY 75

The Outer Join Operation

The outer join was developed to form the union of tuples from two relations if the relations are not union
compatible i.e. the relations are partially compatible. The list of compatible attributes needs to include a
key for each relation of the join. Tuples from the operand relations of the join with the same key appear
only once in the join result, while attributes which are not union compatible are kept in the result but
tuples that have no values for attributes are filled with null entries.

Three types of outer joins i.e. left outer join, right outer join and full outer join are defined.
The left outer join operation keeps every tuple in the first or left relation R in R ./ S. If no matching

tuple is found in S then the attributes of S in the join result is filled with null entries. The left outer join
is denoted by the A./ symbol.

The right outer join operation keeps every tuple in the second or right relation S in R ./ S. If no
matching tuple is found in R then the attributes of R in the join result is filled with null entries. The
right outer join is denoted by the ./@ symbol.

The full outer join keeps every tuple in both relations R and S where no matching tuples are found
filling in null entries as needed. The full outer join is denoted by the A./@ symbol.

The Semijoin Operation

The semijoin operation was added to help manage distributed database transactions deployed over net-
worked environments. If local relation R needs to be joined to remote relation S, the approach is to send
the joining column of relation R only to the site where relation S is located. Only the transferred column
is then joined to S at the remote site. The join attributes and the attributes of S required in the result
are projected out of the relation S and then transferred back to the site hosting R. This approach can
minimise data transfer when a small fraction of the tuples of S are involved in the join.

The semijoin is denoted by the . symbol. The semijoin shown below is equivalent to the database
relational algebra expression shown.

R .A=B S ∼ πR (R ./A=B S)

Join Operation Example

Given the relations R, S and T with R(a, b), S(b, c), T (c, d) with attributes a, b, c, d as indicated.
Using e.g. the notation R.a to indicate attribute a of relation R the join operations yield:

• Natural Join: M(a,R.b, c)← R ./ S

• Theta Equijoin: N(b, S.c, T.c, d)← S ./S.c=T.c T

• Theta Less than Join : O(b, S.c, T.c, d)← S ./S.c<T.c T

• Left Outer Join: N(b, S.c, T.c, d)← S A./S.c=T.c T

• Right Outer Join: N(b, S.c, T.c, d)← S ./@S.c=T.c T

• Full Outer Join: N(b, S.c, T.c, d)← S A./@S.c=T.c T

• Semi Join: P (b, S.c)← S .S.c<T.c T

Note that expression simplification is an important strategy used in relational algebra operation
implementations. Database query optimisation techniques are used and can affect the running time of
queries by an order of magnitude or more. Early ‘selection’ reduces the number of tuples while early
‘projection’ reduces the number of domains to be processed.

The Division Operation

The division operation is applied to two relations R (Z) ÷ S (X) where for the attribute sets X and Y
X ⊆ Y holds. Taking Y = Z − X i.e. Z = X ∪ Y the result of the division is a relation T (Y) which
includes a tuple tR if it appears in R and with tR (Y) = t and with tr (X) = ts for every tuple tS in S.
This implies that for a tuple t to appear in the result of a division T , the values of t must appear in R in
combination with every tuple in S.

An example where the division operation is used, is the query ‘Retrieve the names of the employees
who work on all projects which employee E works on’.

CHAPTER 7. RELATIONAL DATABASE THEORY 76

Operation Purpose Notation
SELECT Selects all tuples that satisfy the selection con-

dition from a relation R.
σ<selection condition> (R)

PROJECT Produces a new relation with selected attributes
of relation R and removes all duplicate tuples.

π<attribute list (R)

THETA JOIN Produces all tuples from relation R1 and R2

which satisfy the join condition.
R1 ./<join condition> R2

EUIJOIN Produces all tuples from relation R1 and R2

which satisfy the join condition with only equal-
ity comparisons.

R1 ./<join condition> R2 or
R1 ./(<join attributes1>),

(<join attributes2>)R2

NATURAL
JOIN

Same as the EQUIJOIN except that the at-
tributes of R2 are not included in the resulting
join. If join attributes have the same name they
need not be specified at all.

R1 ∗<join condition> R2 or
R1∗(<join attributes1>),

(<join attributes2>)R2 newline or
R1 ∗R2

UNION Produces a relation that includes all tuples in
R1 and R2 or both R1 and R2. R1 and R2 must
be union compatible.

R1 ∪R2

INTERSECTION Produces a relation that includes all tuples both
in R1 and R2. R1 and R2 must be union com-
patible.

R1 ∩R2

DIFFERENCE Produces a relation that includes all tuples in
R1 that are not in R2. R1 and R2 must be
union compatible.

R1 −R2

CARTESIAN
PRODUCT

Produces a relation that has the attributes of
R1 and R2. All possible combinations of tuples
from R1 and R2 are included.

R1 ×R2

DIVISION Produces a relation R (X) that includes all tu-
ples t (X) in R1 (Z) that appear in R1 in com-
bination with every tuple from R2 (Y) where
Z = X ∪ Y

R1 (Z)÷R2 (Y)

Table 7.3: Operations of Database Relational Algebra

The division operation can be expressed as a sequence of the basic operations π,× and − as follows:

T1 ← πY (R)
T2 ← πY ((S × T1)−R)
T ← T1 − T2

7.14.6 Relation and Attribute Rename Operation

A rename operation can be defined to rename relations and attributes of relations. This is useful when
intermediate results of relational algebra operations are processed and identifiers need to match up.

The rename operation is denoted by ρ. The format of a rename applied to a relation of degree n is
shown below.

ρS(B1,B2,B3,...,Bn) (R)
or ρS(R)

or ρ(B1,B2,B3,...,Bn) (R)

7.14.7 Grouping and Aggregation Operations

Database reports typically require grouping of report lines and sub-totalling and totalling of selected
columns of report lines.

The specification of mathematical aggregate functions on collections of values from a relation or
database, does not form part of the relational algebra. Common functions applied to collections of
numeric values include SUM, AVERAGE, MAXIMUM and MINIMUM. The COUNT function is used to
count sets of tuples or values.

CHAPTER 7. RELATIONAL DATABASE THEORY 77

The grouping of tuples on a given criterion to which aggregate functions are applied is also required.
The format of this operation is given below. Grouping is denoted by F .

<grouping attributes>F<function list> (R)

The processing of null tuple values as operands in mathematical operations needs special care and
must be specified to make logical sense and prevent erroneous processing or system error messages.

7.15 Relational Calculus

Relational calculus is a high-level, declarative and non-procedural formal database query language. It
developed from a branch of symbolic logic known as predicate calculus. A predicate is a truth-valued
function with arguments. Predicate arguments are replaced with values to obtain a proposition. A
proposition is either true or false.

Relational calculus is identical in its expressive power with relational algebra. It declares what is to
be retrieved, not how to retrieve it and requires a well-formed formula.

Relational calculus forms the basis for relationally complete languages such as IBM Query-ByExample.
A language is relationally complete if any query expressed by the relational calculus can also be expressed
by the language.

Relational calculus formulations of operations defined in relational algebra have been formulated. Two
typical formats are in use i.e. the Tuple Relational Calculus (TRC) developed by Codd and the Domain
Relational Calculus (DRC).

DRC has become the basis of visual query languages such as IBM Query-ByExample and is also used
in products such as Microsoft Access (Microsoft Corporation [82]) and Corel WordPerfect Office X3 -
Professional Edition Paradox (Corel Corporation [25])(previously known as Borland Paradox).

DRC is similar to TRC but uses domain variables.

7.15.1 Tuple Relational Calculus

The general format of an expression in tuple relational calculus is of the form:

{T | F (T)} or
{t1.A1, t2.A2, . . . , tn.An, | COND (t1, t2, . . . , tn, tn+1, . . . , tn+m)}

This is interpreted as: Find the set of all tuples T such that the condition or formula F or COND is
true.

A formula is made up of predicate calculus atoms which can be:

1. An atom of the form R (ti) where R is a relation name and ti is a tuple variable.

2. An atom of the form ti.A operand tj .B, where operand ∈ {=, >,≥, <,≤, 6=} and ti and tj are
tuple variables. A is a relation on which ti ranges and B is a relation on which tj ranges.

3. An atom of the form ti.A operand c, or c operand tj .B where operand ∈ {=, >,≥, <,≤, 6=}. A
is a relation on which ti ranges and B is a relation on which tj ranges and c is a constant value.

Atoms are connected via the logical operators AND (∧), OR (∨) and NOT(∼) or (¬) and the universal

qualifier (∀ - for all) and existential (∃ - their exists) of predicate logic is also used. The symbols
∨
x

and∧
x

are alternatives for the existential qualifier and universal qualifier respectively.

1. If F is a formula then (∃t) (F) is also a formula. It evaluates to true, if for some tuple t assigned
to a free occurrence of t in F , F evaluates to true. Otherwise (∃t) (F) evaluates to false.

2. If F is a formula then (∀t) (F) is also a formula. It evaluates to true, if for every tuple t assigned
to a free occurrence of t in F , F evaluates to true. Otherwise (∀t) (F) evaluates to false.

The standard transformations of the universal and existential qualifiers to form equivalent expressions
apply to the tuple relational calculus.

CHAPTER 7. RELATIONAL DATABASE THEORY 78

(∀x) (P (x)) ≡ ¬ (∃x) (¬P (x))
(∃x) (P (x)) ≡ ¬ (∀x) (¬P (x))
(∀x) (P (x) ∧Q (x)) ≡ ¬ (∃x) (¬P (x) ∨ ¬Q (x))
(∀x) (P (x) ∨Q (x)) ≡ ¬ (∀x) (¬P (x) ∧ ¬Q (x))
(∃x) (P (x) ∨Q (x)) ≡ ¬ (∃x) (¬P (x) ∧ ¬Q (x))
(∃x) (P (x) ∧Q (x)) ≡ ¬ (∀x) (¬P (x) ∨ ¬Q (x))
and

(∀x) (P (x))⇒ (∃x) (P (x))
¬ (∃x) (P (x))⇒ ¬ (∀x) (P (x))

(7.15.1)

Tuple relational calculus examples

Two basic examples using the tuple relational calculus formulation are listed below.

Single relation: List the names of all managers who earn more than 25,000 -
{S.Name | Staff(S) ∧ S.position =′ manager′ ∧ Salary > 25000}

Multiple relations: List names of staff who manage properties for rent in Glasgow -
{S.Name | Staff(S)∧∃(P)(PropertyForRent(P)∧(P.staffno = S.staffno)∧P.city =′ Glasgow′)}

7.15.2 Domain Relational Calculus

For the domain relational calculus or domain calculus variables range over single values from domains of
attributes.

The general format of an expression in domain relational calculus is:

{d1, d2, . . . , dn | F (d1, d2, . . . , dn)} or
{d1, d2, . . . , dn | COND (d1, d2, . . . , dn, dn+1, . . . , dn+m)}

This is interpreted as: Find the domain variables d1, d2, . . . , dn such that the condition or formula F
or COND is true. The predicate requires finding a tuple containing a value in each domain that satisfies
the proposition.

A formula is made up of predicate calculus atoms which can be:

1. An atom of the form R (d1, d2, . . . , dn) where R is a relation name of degree j for each di, 1 ≤ i ≤ j
is a domain variable.

2. An atom of the form di operand dj , where operand ∈ {=, >,≥, <,≤, 6=} and di and dj are domain
variables.

3. An atom of the form di operand c, or c operand dj where operand ∈ {=, >,≥, <,≤, 6=}. di and
dj are domain variables and c is a constant value.

To make domain relational calculus more precise the comma separators in the lists of variables are
dropped to write:

{d1, d2, . . . , xn | R (x1x2x3)and . . .}

As for the tuple relational calculus atoms evaluate to truth values and qualifiers are used as outlined
in section 7.15.1.

Domain relational calculus examples

Two basic examples using the domain relational calculus formulation are listed below.

Find the names of managers who earn more than 25000 -
{N | (∃N, pos, sal)(Staff(N, pos, sal) ∧ pos =′ manager′ ∧ sal > 25000}

List all cities where there is either a branch office or a property for rent:
{city | (Branch(bN, st, city, pc) ∨ (PropertyForRent(pN, st1, city, pc1, rms))}

CHAPTER 7. RELATIONAL DATABASE THEORY 79

Operation Algebra Tuple Relational Calculus
(TRC)

Domain Relational Calcu-
lus (DRC)

Selection σCondition (R) {T | R (T) ∧ Condition1} {X1, . . . , Xn | R (X1, . . . , Xn) ∧
Condition2 }

Projection πA,B,C (R) {T.A, T.B, T.C | R (T)}
Assume R has five attributes
with A,B,C the first three

{X, Y, Z |
∃V ∃W (R (X, Y, Z, V, W))}

Cartesian
product

R× S {T.A, T.B, T.C, V.D, V.E |
R (T) ∨ S (V)}
Assume R has attributes
A,B,C and S attributes D,E

{X, Y, Z, V, W | R (X, Y, Z) ∧
S (V,W)}

Union R ∪ S {T | R (T)∨ | S (T)} {X1, . . . , Xn | R (X1, . . . , Xn) ∨
S (X1, . . . , Xn)}

Set differ-
ence

R− S {T | R (T) ∨ (¬S (T))} {X1, . . . , Xn | R (X1, . . . , Xn) ∨
¬S (X1, . . . , Xn)}

Division R/S where R
has attributes
A,B and S only
has attributes
B

{T.A | R (T) ∧ ∀X ∈ S ∃Y ∈
R (Y.B = X.B ∧ Y.A = T.A)}

{X, Y, Z | R (X1, . . . , Xn) ∧
S (X1, . . . , Xn)∃Y ∈
R (Yl, Ym, Yn) =
R (Xl, Xm, Xn) ∧ (X, Y, Z) =
(Xl, Xm, Xn)}

Table 7.4: Comparison of Relational Algebra and Calculi

7.15.3 Relational Algebra and Relational Calculus

The relational algebra and relational calculus have equivalent outcomes for selected specifications.
Table 7.4 outlines the formats of the three approaches for equivalent operations.

7.16 Structured Query Language (SQL)

The operations defined in sections 7.11 to 7.14.2 are defined in the Structured Query Language (SQL)
which is used to describe and manipulate data sets in database systems. The details of the syntax,
semantics and other implementation aspects of the SQL language as used in chapter 13 and appendix
J, is not discussed here, but can be found in references such as Houlette [56], Forta [40] and Plew and
Stephens [95].

7.17 The database normalisation process

To eliminate data redundancy and potential data update anomalies several normal forms for database
schemas are defined in database theory. If a schema is in one of the normal forms it has certain predictable
properties. Codd Codd [24] proposed three normal forms where each normal form eliminates more
anomalies than the previous one.

Normalisation procedures provide database designers with a formal framework for analysing relational
schemas based on their keys and functional dependencies among their attributes and a series of tests which
can be carried out on schemas so that a relational database can be normalised to any selected degree.

The first normal form (1NF), introduced by Codd, is equivalent to the definition of the relational
data model.

The second normal form (2NF) was an attempt to eliminate some potential anomalies. This normal
form is of no practical use.

The third normal form (3NF) was originally thought to be the ultimate normal form but Boyce
and Codd realised that it still contained undesirable combinations of functional independencies and this
lead to the introduction of the Boyce-Codd normal form (BCNF). Although BCNF is more desirable
it is not always achievable without paying a price somewhere else. Algorithms are available to convert
schemas which harbour various undesirable properties into 3NF and BCNF. There are however trade-offs
associated with the conversion process.

The fourth normal form (4NF) deals with the problem of other dependencies which are not functional
dependencies and extends BCNF.

CHAPTER 7. RELATIONAL DATABASE THEORY 80

The process of normalisation should also confirm other properties which relational schemas should
possess. Two of these properties are:

• The lossless join property ensures that the problem of spurious tuple generation does not exist.
Spurious tuples contain incorrect information when a natural join of a poorly decomposed relation
is made.

• The dependency preservation property which ensures that each functional dependency is still repre-
sented in relations after decomposition

7.17.1 The First Normal Form

A relation r(R) is said to be in first normal form (1NF) if and only if every entry in the relation (the
intersection of a tuple and an attribute column) has at most a single value i.e. all its attributes are based
on a simple domain and the domain can only includes atomic (simple, indivisible) values. If all relations
of a database are in 1NF the database is said to be in 1NF. To normalise a table all repeating groups
of attributes need to be removed. Typically the table needs to be flattened (all repeating groups are
removed by filling in the missing entries) and a suitable primary composite key needs to be defined for
the table to make it a relational table again.

As an alternative the table can be subdivided (decomposed) into two tables replacing the original table.
The one table contains the table identifier of the original table and all the non-repeating attributes. The
other table contains a copy of the table identifier and all the repeating attributes. The second approach
can be preferred due to efficiency with less data redundancy.

Refer to the example below taken from Mata-Toledo and Cushman [80]. Table 7.5 is decomposed into
tables 7.6 and 7.7.

Proj-ID Proj-
Name

Proj-
mgr-ID

Emp-ID Emp-
Name

Emp-Dept Emp-
HrlyRate

Total-
Hrs

100 E-commerce 789487453 123423479 Heydary MIS 65 10
980808980 Jones TechSupport 45 6
123423479 Alexander TechSupport 35 6
123423479 Johnson TechDoc 30 12

110 Distance-Ed 820972445 432329700 Mantle MIS 50 5
689231199 Richardson TechSupport 35 12
712093093 Alexander TechDoc 30 8

120 Cyber 980212343 834920043 Lopez Engineering 80 4
380802233 Harrison TechSupport 35 11
553208932 Oliver TechDoc 30 12
123423479 Heydary MIS 65 07

130 Nitts 550227043 340783453 Shaw MIS 65 7

Table 7.5: The PROJECT Table with duplicate entries

Proj-ID Proj-
Name

Proj-
mgr-ID

100 E-commerce 789487453
110 Distance-Ed 820972445
120 Cyber 980212343
130 Nitts 550227043

Table 7.6: The PROJECT Table

CHAPTER 7. RELATIONAL DATABASE THEORY 81

Proj-ID Emp-ID Emp-
Name

Emp-Dept Emp-
HrlyRate

Total-
Hrs

100 123423479 Heydary MIS 65 10
100 980808980 Jones TechSupport 45 6
100 123423479 Alexander TechSupport 35 6
100 123423479 Johnson TechDoc 30 12
110 432329700 Mantle MIS 50 5
110 689231199 Richardson TechSupport 35 12
110 712093093 Alexander TechDoc 30 8
120 834920043 Lopez Engineering 80 4
120 380802233 Harrison TechSupport 35 11
120 553208932 Oliver TechDoc 30 12
120 123423479 Heydary MIS 65 07
130 340783453 Shaw MIS 65 7

Table 7.7: The PROJECT-EMPLOYEE Table

Data anomalies in 1NF relations

Data anomalies refer to undesirable effects on data due to some relational operations. Insertion/deletion
and update anomalies are identified.

Insertion deletion anomalies occur where functional dependencies occur in data tuples and e.g. the
employee and his/her department needs to be inserted in a project record. It is also difficult to insert a
department which has no employees yet.

A deletion anomaly occurs when the (employee, department) tuple is deleted for the last employee of
a department and the information on the department is lost from the database.

Update anomalies occur when functional dependencies between attributes imply updates for a number
of tuples when the data is carried is duplicated. E.g. the employee department needs to be changed in
each project record if the employee and his/her department is contained in each project record.

7.17.2 The Second Normal Form

A relation r(R) is in Second Normal Form (2NF) if and only if:

1. r(R) is in 1NF

2. No nonprime attribute of the relation is partially dependent on any key, i.e. each nonprime attribute
in R is fully functional dependent upon every key (including candidate keys).

Refer to section 7.8 for a definition of functional dependency of attributes.
The test for 2NF involves finding functional dependencies whose left-hand side attributes are part of

the primary key of the relation. For keys consisting of single attributes this test is not required.
If a relation is not in 2NF it can be 2NF normalised into a number of 2NF relations where the non-

prime attributes are associated only with part of the primary key on which they are fully functional
dependent.

7.17.2.1 Data anomalies in 2NF relations

Relations in 2NF are still subject to data anomalies. Insertion/deletion and update anomalies can still
be identified for the applicable relational operations as for the 1NF form.

7.17.3 The Third Normal Form

A relation r(R) is in Third Normal Form (3NF) if and only if:

1. r(R) is in 2NF

2. No nonprime attribute is transitively dependent on the key of the relation.

A relation schema R is in third normal form (3NF) if whenever a nontrivial functional dependency
X → A holds in R, then

CHAPTER 7. RELATIONAL DATABASE THEORY 82

1. X is a superkey of R or

2. A is a prime attribute of R, i.e. it is part of any key of R

A relation schema R violates 3NF if a functional dependency X → A holds in R and violates the two
requirements above as shown below.

1. X is not a superset of a key of R

2. A is a nonprime attribute of R

An alternative definition of 3NF can be stated. A relation schema R is in 3NF if every nonprime
attribute of R is fully functionally dependent on every key of R and it is nontransitively dependent on
every key of R.

Data anomalies in 3NF relations

Relations in 3NF are still susceptible to data anomalies when the relations have two overlapping candidate
keys or when a nonprime attribute functionally determines a prime attribute.

7.17.4 The Boyce-Codd Normal Form

The Boyce-Codd Normal Form (BCNF) was proposed as a simpler form of 3NF to eliminate the stated
anomalies for 3NF.

A relation schema R with associated relation r(R) is in Boyce-Codd Normal Form (BCNF) if and
only if the following conditions hold:

1. The relation is 1NF

2. For every functional dependency of the form X ← A either X is a superkey of r or A ⊂ X

The following holds for a relation in BCNF:

• All nonprime attributes are fully dependent on every key

• All prime attributes are fully dependent on all keys of which they are not part

The set of 3NF relations form a proper subset of the BCNF relations. All BCNF relations are 3NF
but not all 3NF relations are BCNF which is more restrictive than 3NF.

7.17.5 The Fourth Normal Form

The fourth normal form will not be discussed here. The reader is referred to Elmasri and Navathe [35]
and Lewis et al. [72] for details of this normal form.

7.18 Database Transaction Processing

The theory, modelling and technology implementation of database transactions form an important part
of typical business system database functionality. It is not discussed here as it falls outside the scope of
this study.

7.19 Additional reference material

This chapter only dealt with the basic background on database theory to support the material developed
in chapter 13.

Further material can be found in references such as:

• Lewis et al. [72]

• Date [27]

• Mata-Toledo and Cushman [80]

CHAPTER 7. RELATIONAL DATABASE THEORY 83

• Paredaens et al. [93]

• Pratt [97]

• Rennhackkamp [101]

• Green [49]

• Dittrich et al. [30]

• Kim and Lochovsky [68]

• Elmasri and Navathe [35]

• Stanczyk [115]

• Maier [79]

• Patrick [94]

• Abiteboul et al. [1]

• Helman [54]

• Atzeni and De Antonellis [9]

• Dutka and Hanson [34]

Part II

Management models and techniques -
development technology demonstration

84

Chapter 8

Overview of Part II

In this part the application of the basic theory set out in part I is outlined.
Basic tools which apply the theory of part I are developed to demonstrate typical approaches to

management related models relevant to consulting engineering service enterprises.
The following tools and techniques for management models are developed in this part.

• Tools for relational algebra applications, using boolean matrix representation of relations, pro-
grammed in MATLAB.

• String literal processing functionality programmed in MATLAB.

• An Engineering process model for computation of task schedules and related data, using the rela-
tional algebra and related graph theory approach, programmed in MATLAB

• Application of trees, defined in graph theory terms, to represent management hierarchies and define
structures for management reporting functionality.

• A client-server or client-only database development of the engineering process model to facilitate
reporting using commercially available database software such as Microsoft Access and spreadsheet
software such as Microsoft Excel.

Extended details of e.g. MATLAB code developed are contained in the appendices.

Conclusion, recommendations and suggestions for further work

It will be shown in the addendum in part IV, that the basic technology demonstrated in this part is
suitable as the basis of basic enterprise systems as well as management reporting and decision support
systems for engineering services enterprises.

A full implementation of an enterprise management system falls outside the scope of this dissertation,
but can be based on the concepts developed here.

The development of a user interface for the management reporting structures, generating SQL code
linking to a database could also be attempted in future.

It should be possible to apply the path algebra theory set out in 5.9 to develop the reporting structures
set up here using graph adjacency matrix manipulation.

The PLEP Engineering process model program (Eygelaar [38]) can be extended to link to the database
environment for reporting functionality.

85

Chapter 9

Relational Algebra MATLAB Tools

9.1 MATLAB boolean matrix relational algebra package (toolbox)

MATLAB does not support the computation of products of matrices with boolean entries.
For the purpose of demonstrating Relational Algebra operations in boolean matrix format the basic

operations listed were programmed as MATLAB inline functions. This definition file can be accessed
from every MATLAB program (.m) file to make the operations available in MATLAB function form.
Alternatively .m files can set up in a library with each of the operations programmed separately.

The functions programmed are listed in table 9.2.
The implementation uses the normal MATLAB logical data representation and default logical data

type operations. Refer to table 9.1. This is a purist approach where all entities dealt with are of
datatype logical. MATLAB does not provide MOD1 overloads of its matrix multiplication and some
other operations which are required for boolean matrix operations.

It will be possible to invoke the MATLAB sparse matrix functionality if required for large problems.
The boolean variable values, i.e. the terms true and one (1) and false and zero (0) are used on an

interchangeable basis below.
The available basic boolean matrix operations are listed in table 9.3

9.2 MATLAB Relational Algebra Tools Code

Refer to Appendix C for the MATLAB code for the relational algebra functionality. An example of the
use of the tools is also shown.

86

CHAPTER 9. RELATIONAL ALGEBRA MATLAB TOOLS 87

Table 9.1: MATLAB standard logical operations and functions on boolean (logical) variables used

Routine Usage Parameters

not(A) or ˜A

˜ Logical NOT A is a matrix whose elements are 1’s
where A has zero elements, and 0’s where A has non-zero
elements. B = NOT(A) is called for the syntax ’˜A’ when
A is an object

A: logical variable or
matrix

and(A, B) or &

& Logical AND. A & B is a matrix whose elements are
1’s where both A and B have non-zero elements, and 0’s
where either has a zero element. A and B must have the
same dimensions unless one is a scalar. C = AND(A,B) is
called for the syntax ’A & B’ when A or B is an object

A, B: logical vari-
ables or matrices

or(A,B) or ‖

Logical OR. A‖B is a matrix whose elements are 1’s where
either A or B has a non-zero element, and 0’s where both
have zero elements. A and B must have the same dimen-
sions unless one is a scalar. C = OR(A,B) is called for the
syntax ′A‖B′ when A or B is an object

A, B: logical vari-
ables or matrices

xor(S,T)

XOR Logical EXCLUSIVE OR. XOR(S,T) is the logical
symmetric difference of elements S and T. The result is
one where either S or T, but not both, is nonzero. The
result is zero where S and T are both zero or nonzero. S
and T must have the same dimensions (or one can be a
scalar)

S, T: logical variables
or matrices

any(V)

ANY True if any element of a vector is a nonzero num-
ber or is logical TRUE (1). ANY ignores entries that are
NaN (Not a Number). For vectors, ANY(V) returns log-
ical TRUE (1) if any of the elements of the vector is a
nonzero number or is logical TRUE. Otherwise it returns
logical FALSE (0). For matrices, ANY(X) operates on the
columns of X, returning a row vector of 1’s and 0’s. For
multi-dimensional arrays, ANY(X) operates on the first
non-singleton dimension. ANY(X,DIM) works down the
dimension DIM. For example, ANY(X,1) works down the
first dimension (the rows) of X

A: logical variable or
matrix

all(A)

ALL True if all elements of a vector are nonzero. For
vectors, ALL(V) returns 1 if none of the elements of the
vector are zero. Otherwise it returns 0. For matrices,
ALL(X) operates on the columns of X, returning a row
vector of 1’s and 0’s. For N-D arrays, ALL(X) operates
on the first non-singleton dimension. ALL(X,DIM) works
down the dimension DIM. For example, ALL(X,1) works
down the first dimension (the rows) of X.

A: logical vari-
able or matrix

CHAPTER 9. RELATIONAL ALGEBRA MATLAB TOOLS 88

Table 9.2: MATLAB - Basic Relational Algebra Operations using Boolean matrix representation of relations

Routine Usage Parameters

productR(A,B)

productR returns the relational
product of two relations A and
B in logical (boolean) matrix
format

A, B: logical matrices which can
represent relations

unionR(A,B)
unionR returns the union of two
relations A and B in logical
(boolean) matrix format

A, B: logical matrices which can
represent relations

intersectionR(A,B)

intersectionR returns the inter-
section of two matrices A and B
in logical (boolean) matrix for-
mat

A, B:logical matrices which can
represent relations

differenceR(A)

differenceR returns the differ-
ence of two matrices A and B
in logical (boolean) matrix for-
mat

A, B: logical matrices which can
represent relations

complementR(A)

complementR returns the logi-
cal complement of a matrix A
in logical (boolean) matrix for-
mat

A: logical matrix

transposeR(A)
transposeR returns the trans-
pose of matrix A in logical
(boolean) matrix format

A:logical matrix

Table 9.3: Zero, One and Identity boolean matrices

Routine Usage Parameters
zeroB generate rectangular boolean matrix

with all entries = 0 or false
n, m: Number of rows and columns
in zero matrix

oneB generate rectangular boolean matrix
with all entries = 1 or true

n, m: Number of rows and columns
in one matrix

identityB generate square boolean identity ma-
trix with entries on diagonal = 1 or
true and rest of entries = 0

n: Number of rows and columns in
zero matrix

Chapter 10

Literal String Processing MATLAB
Functionality

MATLAB (The Mathworks Inc. [120] and Hanselman and Littlefield [53]) uses a cell array data structure
to store and manipulate arrays and matrices containing data representing character strings.

MATLAB function to support literal string processing required for programs described in chapter 12
were developed.

Functions to multiply strings with boolean data as well arrays of strings stored in MATLAB cell arrays
were developed.

Refer to Appendix F showing the MATLAB code with an example.

89

Chapter 11

Engineering Process Model

11.1 Introduction

The use of process models in the analysis, optimisation and simulation of processes has proven to be
extremely beneficial in the instances where they could be applied appropriately. However, the Architec-
ture/Engineering/Construction (AEC) industries present unique challenges that complicate the modelling
of their processes.

A simple Engineering process model, based on the specification of Tasks, Datasets, Persons and Tools,
and certain relations between them, has been developed, and its advantages over conventional techniques
have been illustrated by Huhnt [60]. This model is based on the premise that the engineering process
concerns itself with the stage-wise development of Datasets. These Datasets may be e.g. drawings,
reports, specifications, analysis and design sheets. Persons specifically execute Tasks for the purpose of
developing the Datasets. The stages in the evolution of Datasets are given status values, e.g. preliminary,
engineered, checked, final. Tools are used to operate on Datasets. The relations between the sets of
Tasks, Persons, Datasets and Tools needed to execute the project and structure the model can be used
to provide management information. Certain relations need to be defined and the remaining ones are
computed using relational algebra operations. The main advantage of this approach is that the complex
relations are computed, while only three simple relations are specified.

By mapping Tasks, Datasets, Persons and Tools to vertices, and the relationships between them to
edges, directed graphs can be formed. Of special importance is the ‘has to be executed before’ graph
in the set of Tasks. If the project schedule adheres to the sequence of Tasks in this graph, consistent
evolution of the Datasets is guaranteed. An optimal step schedule is obtained by topologically sorting
the graph.

Eygelaar and Van Rooyen [37] addresses the fact that the optimal step schedule solution is complicated
by the fact that engineering projects are often executed with limited resources. As a result, resources may
be over-utilised in any step of the optimal schedule, and determining the impact of resource restrictions
on the step schedule becomes important. Task-shifting strategies are required to find a near-optimal
sequence of Tasks that guarantees consistent Dataset evolution while resolving resource restrictions.

In this chapter the basic theory of the Engineering process model is described.
Two examples applicable to the consulting engineering environment are developed in this chapter. In

the first example the task step schedule is computed without reference to the dataset development while
in the second example the effect of the evolution of datasets on the step schedule is demonstrated.

The material covered in this chapter refers to developments documented by Huhnt et al. [62],[58],[57],[59]
and [61] as well as Eygelaar [38], Eygelaar and Van Rooyen [37] and Lawrence [71].

11.2 Engineering process model, components and relations

The process of executing an engineering project is modelled using a relational model. In this section the
components of the model, relations and order relations in the set of Tasks and the specification of the
process model is dealt with.

11.2.1 Components of the model

Four sets of components have been identified as building blocks for the process model, namely the set
of Tasks, the set of Datasets, the set of Persons and the set of Tools. Tasks represent operations on

90

CHAPTER 11. ENGINEERING PROCESS MODEL 91

Datasets, raising the status value of the Dataset in the process. Tasks are executed by Persons and
Datasets are operated upon using Tools. There are 16 possible binary relations between the components,
of which only 3 are user specified while the remaining 13 relations can be derived mathematically. The
three user-specified heterogeneous binary relations are the relation between the set of Tasks and the set
of Datasets (Task-Dataset relation), the relation between the set of Tasks and the set of Persons (Task-
Person relation), and the relation between the set of Datasets and the set of Tools (Dataset-Tool relation).
Refer to figure 11.1 as well as figure 11.2 for an overview of the binary relations and their semantics.

Figure 11.1: Engineering process model relations

Figure 11.2: Overview of engineering process model binary relations

CHAPTER 11. ENGINEERING PROCESS MODEL 92

11.2.2 Relations in the set of Tasks

On the diagonal in figure 11.2 there are four homogeneous binary relations. Of these, the relation in the
set of Tasks shown in equation 11.2.1 is the most important.

Relation in the set of Tasks (T) :=
{(taskx, tasky) ∈ T × T |taskx 6= tasky ∧ taskx ‘has to be executed before’ tasky}

(11.2.1)

The Task-Dataset relation and three predefined rules described in section 11.2.5 are used to determine
the relation in equation 11.2.1 in the set of Tasks. This relation is called the Unconstrained Consistent
Sequence of Tasks (uCST) since no account is taken of resource limitations during its creation. When
regarded as a graph, it is called the uCST graph (Eygelaar [38]). Every edge in the uCST graph repre-
sents a relationship between its incident Tasks that must be honoured in order to guarantee consistent
development of Datasets.

11.2.3 Step schedule of tasks

The uCST graph is sorted topologically, the result of which is a step schedule. Each step contains
the Tasks that have to be executed before the Tasks in the following steps can be executed. The step
schedule of the uCST is considered an optimal solution since the least number of steps is used and Tasks
are assigned to the earliest possible step.

11.2.4 Relations in the sets of Persons, Tools and Datasets

Figure 11.3: Overview of engineering process homogeneous binary relations

The remaining 3 homogeneous binary relations, shown in figure 11.3, can be derived using the uCST
solution together with the other heterogeneous binary relations. For example, the relation in the set of
Persons can be derived using the uCST graph and the user specified Task-Person relation.

11.2.5 Order relation in the set of Tasks

Three rules were identified which govern the ‘has to be executed before’ ordering of Tasks in an engineering
project. The resulting uCST order relation in the set of Tasks is neither strict nor total. Since the relation
is not total, the uCST graph may contain cycles. However, these are simply interpreted as tasks that
have to be executed in parallel, and can be represented in the graph by super tasks, thereby obtaining
an acyclic graph. Each rule is defined and described below.

Rule 1: A Dataset has to be created before it can be read or modified

It is a basic rule that Datasets have to be created before they can be utilised. For example, if Dataset D
is created by Taskx, and the same Dataset D is either read or modified by Tasky, the relationship Taskx

CHAPTER 11. ENGINEERING PROCESS MODEL 93

‘has to be executed before’ Tasky is true, i.e. the pair (Taskx, Tasky) is an element of the ‘has to be
executed before’ relation. Since a Task can read, create or modify more than one Dataset, the example
described above has to be extended to fit generic cases. The rule is set out in equation 11.2.2.

Given:
{datacreate

x } = Set of Datasets created by Taskx

{dataread
y } = Set of Datasets read by Tasky

{datamodify
y } = Set of Datasets modified by Tasky

The mathematical representation of Rule 1 is:
If:
{datacreate

x } ∩ {dataread
y } ∪ {datamodify

y } 6= φ
Then:
(Taskx) R (Tasky) = true

(11.2.2)

Figure 11.4: Rule 1: Order relation in the set of tasks

Rule 2: The status of data has to increase during modification

Different Tasks can modify the same Dataset and at the conclusion of each Task the Dataset has a certain
status, e.g. ‘preliminary’ or‘engineered’. For example, Taskx modifies Dataset D and increases its status
rank to r(D)x. Tasky modifies the same Dataset D and increases its status rank to r(D)y. If r(D)x is
smaller than r(D)y, then the relationship Taskx ‘has to be executed before’ Tasky is true, i.e. the pair
(Taskx, Tasky) is an element of the ‘has to be executed before’ relation. Since a Task can modify more
than one Dataset, the example described above has to be extended in general. The rule is set out in
equation 11.2.3.

Given:
{datamodify

x } = Set of Datasets modified by Taskx

{datamodify
y } = Set of Datasets modified by Tasky

The mathematical representation of Rule 2 is:
If:
p ∈ {datamodify

x } ∩ {datamodify
y } ∧ r (p)x < r (p)y

Then:
(Taskx) R (Tasky) = true

(11.2.3)

Figure 11.5: Rule 2: Order relation in the set of tasks

CHAPTER 11. ENGINEERING PROCESS MODEL 94

Rule 3: For any Task, the highest status rank of its output data cannot be higher
than the lowest status rank of its input data

Rule 3 focuses on a Task delivering a set of Datasets which another Task requires as a set of input
Datasets. The latter Task generates a disjoint set of output Datasets. The statuses of the set of input
Datasets must be at a sufficient level in order to produce the disjoint set of output Datasets at specific
status levels. For example, the following status ranking is available: assumed (1) > engineered (2) > final
(3) (low to high). Taskx modifies Dataset D1 to status level engineered. Tasky reads Dataset D1, and
creates a different Dataset D2 at a status level of assumed and modify another different Dataset D3 to a
status level of final. Thus, Taskx ‘has to be executed before’ Tasky to ensure that the minimum status
level of input Datasets has already been brought up to an equal status level compared to the maximum
status level of output Datasets. Rule 3 is set out in equation 11.2.4.

Given:
{datamodify

x } = Set of Datasets modified by Taskx

{datacreate
y } = Set of Datasets created by Tasky

{dataread
y } = Set of Datasets read by Tasky

{datamodify
y } = Set of Datasets modified by Tasky

The mathematical representation of Rule 3 is:
If:
INPUT = {Datasets} = {datamodify

y } ∩ {dataread
y

OUTPUT = {Datasets} = {datacreate
y } ∪ {datamodify

y

r (min)INPUT = Minimum status rank in INPUT
r (max)OUTPUT = Minimum status rank in OUTPUT
And if:
r (min)INPUT < r (max)OUTPUT Then: (Taskx) R (Tasky) = true

(11.2.4)

Figure 11.6: Rule 3: Order relation in the set of tasks

11.3 Specification of the process model

The three binary relations that have to be specified by the user are shown in figure 11.2. In order to
perform these relationship specifications, it is clear that the complete sets of Tasks, Persons, Datasets
and Tools have to be specified beforehand, as well as the list of status values through which Datasets
evolve. Depending on the outputs and functionality required from the model, other input data may be
required. For example, if the user wants to be able to sort and search the set of Tasks according to certain
attributes of the Tasks, the attributes have to be specified and assigned to Tasks as applicable. The user
specification of relationships between Tasks, Datasets, Persons and Tools is discussed below.

11.3.1 Task-Dataset relationships

Datasets are produced or operated upon during the execution of Tasks. Three different types of hetero-
geneous binary relationships can be identified between a Task and a Dataset: a Dataset can be read by a
Task, a Dataset can be modified by a Task or a Dataset can be created by a Task. A Task cannot delete a
Dataset since records must always be available for future reference. Multiple Task-Dataset relationships
can be assigned to a Task or to a Dataset object, but the same Task cannot operate on the same Dataset
more than once.

CHAPTER 11. ENGINEERING PROCESS MODEL 95

The relationships described below are shown in diagrammatic form in figure 11.7

Figure 11.7: Task-Dataset relationships: Read, modify, create

Create

A ‘create’ heterogeneous binary relationship between a Task and a Dataset indicates that during execution
the Task is creating the Dataset. Not all Datasets need to be created by Tasks in the same process model
as Datasets may already be in existence. Not all Tasks have to create Datasets. Dataset are created at
a specific status level.

Read

A ‘read ’ relationship between a Task and a Dataset indicates that during its execution the Task is reading
the Dataset. It is not compulsory that each Task must read a Dataset or that each Dataset must be read
by a Task.

Modify

A ‘modify ’ relationship between a Task and a Dataset indicates that during its execution the Task is
modifying the Dataset. During modification a Task actually reads and overwrites the same Dataset, but
it is considered a single relationship. The status level of the Dataset is increased by the modification.

11.3.2 Task-Person relationships

The responsibility of a Person to execute a Task is assigned by this relationship. Even if the Task is
automated, the responsibility must still be assigned. Thus, a Task must always be assigned at least one
Person with the possibility that multiple Persons might be assigned to the same Task, however it is not
allowed to assign the same Person to the same Task more than once. It is important to note that only
the responsibility of Task execution is assigned by a Task-Person relationship and that assigning more
Persons to a Task will not reduce the execution duration of the Task.

11.3.3 Dataset-Tool relationships

Datasets are read, modified or created using a Tool. A Tool can take on many different forms ranging
from CAD software to a drawing board. The relationship should be read as a Dataset ‘is edited by’
a Tool. When this relationship is specified a Tool operates on a Dataset. At least one Dataset-Tool
relationship should be specified for each Dataset. Multiple Tools can be assigned to a Dataset; however
it is not allowed to assign the same Tool to the same Dataset more than once. It is important to note

CHAPTER 11. ENGINEERING PROCESS MODEL 96

that the Dataset-Tool relationship only assigns which Tools operate on a Dataset and that assigning more
Tools to a Dataset will not reduce the execution duration of the Tasks operating on the Dataset.

In tabular form the conceptual model can be viewed as shown in table 11.1.
A directed graph (see section 5.6) is suitable for describing relationships between the elements of a

set such as the ‘has to be executed before’ relation in the set of tasks. The task elements of the set are
called vertices of the graph and are identified by their labels.

The model is set up as binary and unary relations using boolean adjacency matrices.
Not all relations need to be specified seeing that basic operations on the relations can be performed

to generate the other relations.
The relations which need to be specified as input for determining other relations are:

• which tasks are executed by which persons

• which tasks create which units of data

• which tasks read which units of data

• which tasks modify which units of data

• which units of data are edited by which tools

11.4 Example A: Consulting engineering business process model

A complete example drawn from the consulting engineering service business environment is given below.
A typical building project is modelled at a high level.

The example was programmed in MATLAB [53] and the graphical output processed using the yEd
[130] visualisation software for directed graphs.

The relations which are specified are listed in table 11.2.
The example engineering process model uses the following objects:

Persons defined:

Client or owner

Architect

Engineer

Quantity surveyor

Constructor, Contractor or Builder

Tasks identified:

Conceptualise project

Planning

Engineering design

Specification and documentation

Quantity take-off

Construction and building

Tools used (software):

Text processor or word processor

Computer Aided Design (CAD) software

Engineering design software

Quantities take-off and processing software

Construction process planning software

Datasets selected:

Concept drawings

CHAPTER 11. ENGINEERING PROCESS MODEL 97

Architects drawings
Design calculations
Engineering drawings
Specifications
Bill of quantities
Construction programmes and schedules
As-built drawings

Boolean adjacency matrices are used to specify the relations between the sets above. The data is
listed in tables 11.3, 11.4, 11.5, 11.6, 11.7 and 11.8

• The relation specified between persons and tasks i.e. person executes task is shown in table 11.3.

• The relation specified between tasks and datasets created by tasks is shown in table 11.4

• The relation specified between tasks and datasets read by tasks is shown in table 11.5.

• The relation specified between tasks and datasets modified by tasks is given in table 11.6.

• The relation specified between datasets and tools required to create / read / modify datasets is
shown in table 11.7.

• The relation specified between tasks and tools used to execute tasks is given in 11.8.

An overview of the relations specified is given below in a set of diagrams in directed bipartite graph
format. Refer to figures 11.8, 11.9, 11.10, 11.11 and 11.12.

Figure 11.13 shows the relation ‘task uses tool’ which is specified here but can be computed later.

11.5 Relations computed from specified process model relations

Derived relations describing logical links between the elements of the sets of persons, tasks, tools and
datasets can now be computed using relational algebra operations. The relational operations performed
on the process model (boolean relations) are set out below.

11.5.1 Relations deduced by transposing the specified relations

Relations which are computed by transposing the relations specified in tables 11.3, 11.4, 11.5, 11.6, 11.7
and 11.8 are shown in equation 11.5.1.

RPerson−Task = RT
Task−Person

and
RDataCreate−Task = RT

Task−DataCreate

RDataRead−Task = RT
Task−DataRead

RDataModify−Task = RT
Task−DataModify

and
RTool−Dataset = RT

Dataset−Tool

(11.5.1)

Bipartite directed graph format diagrams of the relations computed as specified are shown in figures
11.14, 11.15, 11.16 and 11.17.

11.5.2 Relations deduced by forming the union of all three Dataset-task relations

Further task-data relations deduced by forming the union of all three Dataset-task relations - create /
read / modify. The task operates on dataset relation can then be formed by transposing the combined
data operated on by task relation. Refer to equation 11.5.2.

RData−Task = RDataCreate−Task ∪RDataRead−Task ∪RDataModify−Task

RTask−Data = RTask−DataCreate ∪RTask−DataRead ∪RTask−DataModify

RTask−Data = RT
Data−Task

(11.5.2)

Bipartite directed graph format diagrams of the relations computed as specified are shown in figures
11.18 and 11.19.

CHAPTER 11. ENGINEERING PROCESS MODEL 98

Table 11.1: Engineering process model concept

Persons Tasks Datasets Tools
Persons resource loading execute create, modify

read
use

Tasks are executed by sequence create modify read require
Datasets are created modi-

fied read by
are created modi-
fied read by

history are modified by
(created / read)

Tools are used by are required for modify (create /
read)

tool loading

Table 11.2: Relations specified for model example in consulting engineering process

Relation from set Relation to set Description
Persons / Groups Tasks Person executes task
Tasks Dataset Task creates dataset
Tasks Dataset Task reads dataset
Tasks Dataset Task modifies dataset
Task Tools Task uses tool

Table 11.3: Boolean adjacency matrix representation of relation Persons executes Task RPerson−Task

Task: Conceptualise Planning Engineering Specify and
document

Quantity
take-off

Construction
and building

Person:
Client /
Owner

1

Architect 1 1
Engineer 1 1
Quantity Sur-
veyor

1 1

Constructor /
Contractor /
Builder

1

Table 11.4: Boolean adjacency matrix representation of relation Task creates Dataset RTask−DataCreate

Datasets: Concept
drawings

Architects
drawings

Engineering
design cal-
culations

Engineering
drawings

Specifications Bill of
quantities

Construction
Pro-
grammes
Schedules

As-built
drawings

Task:
Conceptualise 1
Planning 1
Engineering 1 1
Specify and
document

1

Quantity
take-off

1

Construction
and build-
ing

1 1

CHAPTER 11. ENGINEERING PROCESS MODEL 99

Table 11.5: Boolean adjacency matrix representation of relation Task reads Dataset RTask−DataRead

Datasets: Concept
drawings

Architects
drawings

Engineering
design cal-
culations

Engineering
drawings

Specifications Bill of
quantities

Construction
Pro-
grammes
Schedules

As-built
drawings

Task:
Conceptualise
Planning 1 1
Engineering 1 1
Specify and
document

1 1

Quantity
take-off

1 1 1

Construction
and build-
ing

1 1 1 1 1

Table 11.6: Boolean adjacency matrix representation of relation Task modifies Dataset RTask−DataModify

Datasets: Concept
drawings

Architects
drawings

Engineering
design cal-
culations

Engineering
drawings

Specifications Bill of
quantities

Construction
Pro-
grammes
Schedules

As-built
drawings

Task:
Conceptualise 1 1
Planning 1
Engineering 1 1
Specify and
document

1

Quantity
take-off

1

Construction
and build-
ing

1 1

Table 11.7: Boolean adjacency matrix representation of relation Dataset operated on by Tool RData−Tool

Tools: Text processor CAD software Engineering de-
sign software

Quantities soft-
ware

Construction
planning software

Datasets:
Concept drawings 1 1
Architects drawings 1
Design calculations 1
Engineering draw-
ings

1 .

Specifications 1 . .
Bill of quantities . . 1
Construction
programmes &
schedules

. . 1

As-built drawings 1 .

Table 11.8: Boolean adjacency matrix representation of relation Task uses Tool RTask−Tool

Tools: Text processor CAD software Engineering de-
sign software

Quantities soft-
ware

Construction
planning software

Task:
Conceptualise 1
Planning 1 1
Engineering 1 1 1
Specify and docu-
ment

1

Quantity take-off 1
Construction and
building

. 1

CHAPTER 11. ENGINEERING PROCESS MODEL 100

11.5.3 Relations computed between persons and datasets

Deduced relations between persons and datasets can also be computed.

Relations computed by forming relational products of specified / determined relations

Relations which can be computed from the given and deduced relations linking persons and datasets are
given in equation 11.5.3.

RPerson−DataCreate = RT
Task−Person •RT

DataCreate−Person

or
RPerson−DataCreate = RPerson−Task •RTask−DataCreate

and
RPerson−DataRead = RT

Task−Person •RT
DataRead−Person

or
RPerson−DataRead = RPerson−Task •RTask−DataRead

and
RPerson−DataModify = RT

Task−Person •RT
DataModify−Person

or
RPerson−DataModify = RPerson−Task •RTask−DataModify

(11.5.3)

The outcome of these operations in directed graph format diagrams are shown in figures 11.20, 11.21
and 11.22.

Relations computed by transposing the computed person-data relations

The person-dataset relations computed above can be transposed as shown in equation 11.5.4.

RDataCreate−Person = RT
Person−DataCreate

and
RDataRead−Person = RT

Person−DataRead

and
RDataRead−Person = RT

Person−DataModify

(11.5.4)

11.5.4 Relations deduced by forming the union of the person - data and data -
person relations

Relations deduced by forming the union of the person-data(create/read/modify) and data(create/read/modify)-
person relations are shown in equation 11.5.5 For demonstration purposes the transpose of the first union
is also shown which leads to the same results. Figure 11.21 shows a graph format view of the result.

RPerson−Data = RPerson−DataCreate ∪RPerson−DataRead ∪RPerson−DataModify

RData−Person = RDataCreate−Person ∪RDataRead−Person ∪RDataModify−Person

RData−Person = RT
Person−Data

(11.5.5)

11.5.5 Relations computed using relations specified between persons and tools
used by persons

Equation 11.5.6 shows the person-tool and tool-person relations which can be computed.

RPerson−Tool = (RPerson−DataCreate ∪RPerson−DataRead = ∪RPerson−DataModify) •RData−tool

RTool−Person = RT
Person−Tool

(11.5.6)
Figures 11.23 and 11.24 depict the resulting relations in directed graph format.

11.5.6 Relations computed using relations specified between tasks and tools used
to execute tasks

Relations computed using relations specified between tasks and tools used to execute tasks are shown in
equation 11.5.7.

CHAPTER 11. ENGINEERING PROCESS MODEL 101

RTask−Tool = (RTask−DataCreate ∪RTask−DataRead = ∪RTask−DataModify) •RData−tool

RTool−Task = RT
Task−Tool

(11.5.7)

RTool−Task = RT
Task−Tool

RPerson−Tool = RPerson−Task •RTask−Tool

and
RTool−Person = RT

Person−Tool

RTool−DataCreate&Read&Modify = RT
DataCreate&Read&Modify−Tool

(11.5.8)

RDataCreate−Tool = RDataCreate−Task •RTask−Tool

RDataRead−Tool = RDataRead−Task •RTask−Tool

RDataModify−Tool = RDataModify−Task •RTask−Tool

RData−Tool = RDataCreate−Tool ∪RDataRead−Tool ∪RDataModify−Tool

RTask−Tool = (RTask−DataCreate ∪RTask−DataRead ∪RTask−DataModify) •RData−Tool

(11.5.9)

Graph format representations of the relations computed are given in figure 11.13.

11.5.7 Relations deduced from dataset requires tool relation

Typical relation products to deduce other relations via tools are not useful as such because tools have
multiple relations with datasets are shown in equation 11.5.10.

RPerson−Dataset = RPerson−Tool •RTool−Dataset

RDataset−Task = RDataset−Tool •RTool−Task

RTask−Dataset = RTask−Tool •RTool−Dataset

(11.5.10)

The graph format diagrams of the computed relations are shown in figures 11.26, 11.27 and 11.28.

11.5.8 Computing the logical sequence of tasks

Equation 11.5.11 was used to compute the logical sequence of tasks based on dataset creation, read and
modification. The intermediate result as well as the logical sequence of tasks computed are shown in
figures 11.29 and 11.30.

It is interesting to note that each task carries a logical link to itself in the computed relation.

RTask−Task = RDataCreate−Task • (RDataRead−Task ∪ (RDataModify−Task) (11.5.11)

11.5.9 Computing person loading

Person loading i.e. the sequence in which persons are required, is computed using the data create/read
and modify relationship shown in equation 11.5.12.

RPerson−Person = RDataCreate−Person • (RDataRead−Person ∪ (RDataModify−Person) (11.5.12)

11.5.10 Computing tool loading

The tool loading computes tools or tools which need to available with another tool. Refer to equation
11.5.13.

RTool−DataCreate = RTool−Data

RDataRead−Tool = RDataModify−Tool = RTool−Data

RTool−Tool = RTool−DataCreate • (RDataRead−Tool ∪RDataModify−Tool)
(11.5.13)

Figure 11.34 shows the tool loading relation in graph format.

CHAPTER 11. ENGINEERING PROCESS MODEL 102

11.5.11 Computing dataset history

The dataset history relation can be computed from the dataset-persons as well as the dataset-tasks
relations.

Dataset history via persons - read only

Refer to figure 11.35 for a graphical representation of the logic computed using equation 11.5.14.

RData−Data = (RDataCreate−Person •RDataRead−Person)T (11.5.14)

Dataset history via persons - read and modify

Refer to figures 11.36 and 11.37 for a graphical representation of the logic computed using equation
11.5.15.

RPerson−DataRead&Modify = (RPerson−DataRead ∪RPerson−DataModify)
RData−Data = (RDataCreate−Person • (RPerson−DataRead ∪RPerson−DataModify))T (11.5.15)

Dataset history via tasks - read only

Two alternatives are considered here. For the first alternative the data-data history is determined via the
data create-task and data read-task logic as shown in equation 11.5.16 and 11.38.

RData−Data = (RDataCreate−Task •RDataRead−Task)T (11.5.16)

For the second alternative read and modify task-data relationships are combined.
Refer to figure 11.39 and 11.40 for a graphical representation of the logic computed using equation

11.5.17.

RTask−DataRead&Modify = (RTask−DataRead ∪RTask−DataModify)
RData−Data = (RDataCreate−Task • (RTask−DataRead ∪RTask−DataModify))T

(11.5.17)

11.6 Process task specification reporting for the process model

An algorithm was developed to extract the task specification for each person or group of persons from
the process model specification.

An empty square adjacency matrix representing the process-task specification graph is set up consist-
ing of persons and tasks as well as datasets as vertices.

The person executes task Boolean adjacency matrix is processed row wise person by person.
For each person-task relation an edge is added to the process task specification graph which has all

the persons/tasks/datasets as vertices.
For each row each task is selected and the dataset rows from the task-data adjacency matrices processed

for the create/read and modify logic.
The active datasets are identified and edges added as shown in the MATLAB code in Appendix G.
For each task-data create logical link a single edge is added to the task specification graph.

{PersonTaskDataMatrix(iRow,iCol)=dataCreate(iData);

For each task-data read logical link a single edge is added in the transposed position to the task
specification graph.

{PersonTaskDataMatrix(iCol,iRow)=dataRead(iData);

For each task-data modify logical link two edges are added to the task specification graph.

PersonTaskDataMatrix(iCol,iRow)=dataModify(iData);

PersonTaskDataMatrix(iRow,iCol)=dataModify(iData);

CHAPTER 11. ENGINEERING PROCESS MODEL 103

Vertex labels are added where entries are made and the final processing to generate the yEd graph
output (.tgf) file only uses vertices which have labels assigned.

The graph format results of the processing is shown in figures 11.41, 11.42, 11.43, 11.44 and 11.45.
The MATLAB code for the generation of the person-task and person-data relations is contained in

Appendix H.

11.7 Example B: Data evolution status value processing for process model

The example contained in this section demonstrates the inclusion use of data status values in the en-
gineering process model. Project progress measurement is based on the status (quality level) of data
described by a status attribute.

Each dataset contains a ordered list of statuses through which it progresses as the project progresses.
A number of the status lists can be maintained and linked to datasets as required.

An example of a data status list is shown in table 11.9.

Table 11.9: Data status values

Data status value Description
Assumed Data values based on assumptions
Preliminary Input from other role players included
Engineered Data used in design reports - the final concept has

been designed
Checked Approved by client and/or public authority

The data status list are also referred to as data evolution profiles.
To determine the logical sequence of tasks, additional rules are defined which are included in the

algorithm which determines the logical sequence of tasks. This is an implementation of the theory
developed in section 11.2.5.

The rules are:

Rule 1: Data can only be read or modified after it has been created

Rule 2: If a task modifies data its status in the data status hierarchy must be increased

Rule 3: The status level (quality) of data output (created) by a task cannot exceed that of the data
which has been input for a task. In the case of data only being modified by a task, apply Rule 2.

.
The example set out in the sections below demonstrates this additional functionality of the model.

Only the graphical output is shown. The MATLAB code in listed in Appendix I.

11.7.1 Process model set specification

Tasks

t1: Architectural Layout Concept

t2: Architectural Design Detail

t3: Architectural Design Check

t4: Structural Layout Concept

t5: Structural Design Detail

t6: Structural Design Check

t7: Concrete Layout Concept

t8: Concrete Design Detail

t9: Concrete Design Check

CHAPTER 11. ENGINEERING PROCESS MODEL 104

Persons

p1: Architect

p2: Client

p3: Structural Engineer

p4: Technologist

p5: Checking Engineer

Datasets

d1: Concept Plan

d2: Architectural Drawings

d3: Structural Drawings

d4: Concrete Drawings

Tools

g1: CAD

g2: Engineering Calculations

g3: Spreadsheet

g4: Word Processor

Dataset status values

s1: Preliminary/Concept

s2: Designed/Engineered

s3: Finalised

s4: Checked

11.7.2 Person- Task relation specification

The person-task relation is shown in figure 11.46.

11.7.3 Task - Data specification

The task-data create relation is shown in figure 11.47.
The task-data relations for reading and modification of data is shown in figure 11.47.

11.7.4 Computed basic relations

The basic computed relations linking data and tools and persons with tools is shown in figures 11.50 and
11.51 respectively.

The computed relation linking persons and data is shown in figure 11.52 and the relation linking tasks
and tools is shown in figure 11.53

11.7.5 Computing task sequence

The task logical sequences are computed according to rules 1, 2 and 3.
The resulting task sequence computed is combined with the previous sequence computed.

Applying Rule 1

The task sequence with rule 1 applied is shown in figure 11.54.

CHAPTER 11. ENGINEERING PROCESS MODEL 105

Apply rule 2 & generating union with rule 1

The task sequence with rule 2 applied is shown in figure 11.55. When rule 1 and rule 2 are applied the
sequence takes the form shown in figure 11.56

Apply rule 3 & generating union with rule 1 & 2

Figure 11.57 shows the final logical sequence of tasks which in this case does not differ from the previous
one.

Step schedule

The sequence of tasks (figure 11.57 can be displayed in a logical step referenced format computed as
shown in figure 11.58.

11.7.6 MATLAB implementation of process model with status settings

The complete MATLAB code used to do the relational computations and generate the graphical output
is contained in Appendix G.6.

11.7.7 MATLAB code for Engineering Process Model Example

The MATLAB code developed to generate the relations and output in graphical format set out in the
previous sections is listed in Appendix G section G.1. The MATLAB code and output is generated using
the publish to LATEX facility available in the MATLAB 2006 [120] version.

Use is made of the MATLAB subprograms developed previously listed in Appendices B, C and dis-
cussed in chapter 9.

11.8 Data file formats

The data file formats used for yEd [130] graphical data as well as the comma separated data format used
to transfer data to the database is shown in Appendix G section G.4.

CHAPTER 11. ENGINEERING PROCESS MODEL 106

11.9 Engineering Process Model - Figures

Figure 11.8: Task executed by Person

Figure 11.9: Task creates dataset

Figure 11.10: Task reads dataset

Figure 11.11: Task modifies dataset

CHAPTER 11. ENGINEERING PROCESS MODEL 107

Figure 11.12: Dataset requires tool

Figure 11.13: Task uses tool

Figure 11.14: Person executes task

CHAPTER 11. ENGINEERING PROCESS MODEL 108

Figure 11.15: Dataset created by Task

Figure 11.16: Dataset read by Task

Figure 11.17: Dataset modified by Task

Figure 11.18: Tool operates on dataset

Figure 11.19: Tool operates on dataset

CHAPTER 11. ENGINEERING PROCESS MODEL 109

Figure 11.20: Person operates on dataset

Figure 11.21: Data operated on by person

Figure 11.22: Data operated on by person transposed relation from person operates on dataset

CHAPTER 11. ENGINEERING PROCESS MODEL 110

Figure 11.23: Person uses tool

Figure 11.24: Tool used by person

CHAPTER 11. ENGINEERING PROCESS MODEL 111

Figure 11.25: Data operated on by person

Figure 11.26: Person operates on dataset via tool

CHAPTER 11. ENGINEERING PROCESS MODEL 112

Figure 11.27: Data operated on by task via tool

Figure 11.28: Task operates on dataset via tool

Figure 11.29: Data read modify via task union

CHAPTER 11. ENGINEERING PROCESS MODEL 113

Figure 11.30: Sequence of tasks

Figure 11.31: Person creates dataset

Figure 11.32: Data read modify via person union

CHAPTER 11. ENGINEERING PROCESS MODEL 114

Figure 11.33: Person loading

Figure 11.34: Tool loading - tools required with other tools

CHAPTER 11. ENGINEERING PROCESS MODEL 115

Figure 11.35: Dataset history with dataset determined via persons - read only

Figure 11.36: Person data read and modify via data union

CHAPTER 11. ENGINEERING PROCESS MODEL 116

Figure 11.37: Dataset history with dataset determined via persons - read and modify

CHAPTER 11. ENGINEERING PROCESS MODEL 117

Figure 11.38: Dataset history with dataset determined via tasks - read only

Figure 11.39: Task reads and modify via data union

CHAPTER 11. ENGINEERING PROCESS MODEL 118

Figure 11.40: Dataset history with dataset determined via tasks - read and modify

CHAPTER 11. ENGINEERING PROCESS MODEL 119

Figure 11.41: Tasks and data for client - no tasks and data

Figure 11.42: Tasks and data for architect Figure 11.43: Tasks and data for structural engineer

Figure 11.44: Tasks and data for technologist Figure 11.45: Tasks and data for checking engineer

CHAPTER 11. ENGINEERING PROCESS MODEL 120

Figure 11.46: Person executes task relation Figure 11.47: Tasks creates data relation

CHAPTER 11. ENGINEERING PROCESS MODEL 121

Figure 11.48: Tasks reads data relation Figure 11.49: Tasks modifies data relation

CHAPTER 11. ENGINEERING PROCESS MODEL 122

Figure 11.50: Data requires tool relation Figure 11.51: Person requires tool relation

CHAPTER 11. ENGINEERING PROCESS MODEL 123

Figure 11.52: Person reads data relation Figure 11.53: Tasks requires tool relation

CHAPTER 11. ENGINEERING PROCESS MODEL 124

Figure 11.54: Task sequence - Rule 1

Figure 11.55: Task sequence - Rule 2

CHAPTER 11. ENGINEERING PROCESS MODEL 125

Figure 11.56: Task sequence - Rules 1 & 2

Figure 11.57: Task sequence - Rules 1, 2 & 3

CHAPTER 11. ENGINEERING PROCESS MODEL 126

Figure 11.58: Step schedule of Tasks

Chapter 12

Representing and Processing management
structure using graph applications

12.1 Introduction

The purpose of this section is to investigate the modelling of typical organisational management struc-
tures using a graph theory approach. The logical models of the structures can then be used to process
management reporting data linked to the models.

Management and reporting structures and relations can be modelled using graphs. Once these graphs
have been defined, business entities can be linked to the graphs and selected attributes of the entities in
logical (boolean), numerical (e.g. monetary values) and literal (e.g. character string) data format can be
collected and/or accumulated over the graph structure and a suitably defined report produced.

The graphs used are planar graphs and the forest is selected as the most general graph representing
a structure in the analysis reported here. It should be possible to extend the approach to more gen-
eral graphs and also make use of the path algebra approach to compute structured management report
datasets. Refer to sections 5.6, 5.7, 5.7.2, 5.9.1, 5.9.4.2 and 5.10 for the definition of the graph theoretic
concepts which apply here.

12.2 Typical Management Reporting Tree Structure

Consider the relation ‘personx reports to persony’ in matrix format. On each level of management a
relation can be defined describing the management hierarchy in tree format visualised as a plane graph.

Table 12.1 displays the boolean form of the relation of M1, M2, M3, M4 reporting to MA or MB as
indicated.

This adjacency matrix can be output in graphical format as shown in figure 12.1.

ReportsTo MA MB

M1 1
M2 1
M3 1
M3 1

Table 12.1: Management reporting relation

Figure 12.1: Reporting structure graph representation - level 1 - from adjacency matrix

127

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 128

ReportsTo M0

MA 1
MB 1

Table 12.2: Hihger level management reporting relation

On a next level a further relation can be defined between MA and MB reporting to M0 as shown in
table 12.2.

This adjacency matrix can be output in graphical format as shown in figure 12.2.

Figure 12.2: Reporting structure graph representation - level 2 - from adjacency matrix

The boolean representation in adjacency matrix format for the whole management structure is shown
in table 12.3

This adjacency matrix can be output in graphical for as shown in figure 12.3.

12.3 Testing of the logic and integrity of the management structure

Testing of the logic and integrity of the management structure can be done by applying basic graph
analysis. The list of items below contains an overview of a selection of operations which can be performed
on the management structure graph representation to derive information on the underlying graph.

(a) Number of managers active – Report the number of vertices in the graph – size of adjacency matrix

(b) Number of relations between managers – Count the number of edges in the graph

(c) Number of persons reporting to a manager and reported to per manager – refer to vertex indegrees

(d) Lengths of paths in management structure adjacency matrix

(e) Persons reporting to no manager at all (Top manager typically) – contained in a vertex outdegree
analysis.

(f) Testing if a relation between persons in the managerial tree exists – tracing paths

Given an adjacency matrix, one can check whether a given edge exists. To discover whether there
is an edge, for each possible intermediate vertex v we can check whether (u, v) and (v, w) exist.

Table 12.3: Complete multi level management reporting relation

M0 MA MB M1 M2 M3 M4

M0

MA 1
MB 1
M1 1
M2 1
M3 1
M4 1

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 129

Figure 12.3: Reporting structure graph representation - all levels - from adjacency matrix

(g) Test if the graph is a directed graph

(h) Graph acyclicity can be checked

(i) Checking for an isomorphism

(j) Testing if the graph is a rooted tree or a forest

(k) Lengths of paths in management structure adjacency matrix can be computed and reported

12.4 Converting from adjacency matrix format to adjacency list format

To represent a relation for computational purposes the boolean adjacency matrix representation, which
is more appropriate for dense graphs, or the incidence list representation, which is more appropriate for
sparse graphs, can be used.

The MATLAB code for the conversion from adjacency matrix format to adjacency list format is listed
in appendix K, section K.6.1.

The MATLAB code for converting from adjacency list format to adjacency matrix format is also listed
in appendix K, section K.6.2.

12.5 Depth first search and tree structure for a given graph

The depth first search algorithm (DFS) can be used to determine the spanning tree for a given graph given
in adjacency matrix format. Once the spanning tree has been determined, subgraphs of the structure can
be extracted to visualise the management reporting structure per level of management.

The spanning tree is also output in adjacency matrix format.
To determine the DFS tree the transpose of the adjacency matrix is input. DFS does not produce

results on untransposed adjacency matrix.
The depth first search algorithm used is contained in the MATLAB shown in appendix section K.3.
Global variables are required due to the recursive nature of the algorithm. A double while loop is

required in the code to ensure that unconnected graphs can be processed as well. All vertices need to be
investigated before the search terminates.

The MATLAB function DepthFirstSearch.m uses the search function to find the next vertex linked
to a given vertex and returns 0 if no vertex can be found.

The resulting trees have adjacency matrices which are the transpose of the original structure adjacency
matrices as shown in figure 12.4.

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 130

Figure 12.4: Reporting structure adjacency matrix

12.6 Inserting sub management structures into larger structures

Adjacency matrices containing representations of management structures can be combined by a submatrix
insertion process to yield higher level complete representations in adjacency matrix format. Vertex
labelling of input graphs referred to vertex labels of combined graphs are used.

The MATLAB code listed in appendix section K.5 builds up the vertex label sets and the total graph
representation.

12.7 Extracting subgraphs of vertices linked to a selected vertex

Algorithms were developed to extract subgraphs with the vertices linked to a selected vertex of a given
graph.

The MATLAB algorithm shown in appendix section K.6 traverses the adjacency list and enters the
edges linked to a selected vertex into a adjacency matrix which has the size of the original graph.

As vertices on active edges are encountered they are marked as being active in the subgraph in a list of
vertices to be retained as used by the subgraph. In the final step of the algorithm only adjacency matrix
rows and columns of active vertices are collected in the adjacency matrix of the subgraph extracted.

12.8 Management/ reporting structure - tree analysis examples

12.8.1 Basic example

The three level reporting structure used previously serves as the starting point for this example. Refer
to figure 12.5.

The adjacency matrix in this case is shown in equation 12.8.1.

Tin =

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

(12.8.1)

Applying the topological sorting to the transpose of the adjacency matrix yields the assignment of
vertices to the structural levels of the hierarchy shown in matrix adjacency format in equation 12.8.2.

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 131

Figure 12.5: Reporting structure adjacency matrix

Tout =

1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1

(12.8.2)

The plot of the graph in this case with vertices L0, L1 and L2 assigned to the column vertex references
is shown in figure 12.6. L0, L1 and L2 represent the levels which each vertex in the graph is assigned to
as shown in table 12.4.

Figure 12.6: Reporting structure adjacency matrix

Applying the algorithm leads to the two submatrices displayed graphical format in figure 12.7.
The graphical representation of these adjacency matrices are shown in figure 12.8.
The matrices computed above can be used to process the attributes assigned to lower levels in a ‘roll

up’ process for management reporting at a higher level.

Table 12.4: Management reporting graph levels

Level Vertices in level of tree graph
L0 M0

L1 MA,MB

L2 M1,M2,M3,M4

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 132

Figure 12.7: Reporting structure adjacency matrix - Level 1 to Level 0

Figure 12.8: Reporting structure adjacency matrix - Level2 to Level 1

12.8.2 Larger more realistic example

A computed task step schedule shown in figure 12.9 is used to demonstrate the extraction of the subgraphs
to determine the tasks which follow on any given task. Note that a header vertex is added to level L0 of
each graph in this case to be used for identifying the diagram. Table 12.5 lists the tasks contained in the
schedule.

The topological sorting of the tasks in graph format is shown in figure 12.10.
Figures 12.11, 12.12, 12.13, 12.14 and 12.15 show the sub-adjacency graphs for the tasks of each logical

step.

Figure 12.9: Task step schedule adjacency matrix

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 133

Table 12.5: Tasks for graph structure analysis

1 Create architectural design t01
2 Review architectural design t02
3 Preliminary structural design t03
4 Create foundation drawings t04
5 Create concrete layout drawings t05
6 Create reinforcement drawings t06
7 Preliminary electrical design t07
8 Create electrical drawings t08
9 Finalise architectural drawings t09
10 Finalise foundation drawings t10
11 Finalise concrete layout drawings t11
12 Finalise reinforcement drawings t12
13 Finalise electrical drawings t13
14 Finalise electrical design t14
15 Finalise structural design t15
16 Check structural design t16
17 Check architectural drawings t17
18 Check foundation drawings t18
19 Check concrete layout drawings t19
20 Check reinforcement drawings t20
21 Check electrical drawings t21
22 Check electrical design t22

Refer to appendix section K.7.2 for a MATLAB listing of the sub-adjacency graphs with abbreviated
adjacency matrices for this example.

12.9 Determining connectivity of vertices in graphs to determine tree
vertex links for roll up of reports

An extension of the logic described in section 12.7 is used to extract the sub tree of a graph linked to any
given vertex. This data is required to drive the data roll up process described in section 12.10 below.

The logic for extracting the connectivity of a given vertex in a graph is given in the MATLAB code.
Edges from vertices leading into a given vertex is determined and the subgraph extracted.

Refer to appendix section K.11 for an example application. The MATLAB functions developed are
listed in appendix section K.8.

12.10 Report data roll up using adjacency matrices

Two alternative approaches to report data roll is outlined in this section.
The approaches use:

• topological sorting of the graph with subgraph extraction

• adjacency list processing

Examples with numerical values linked to graph vertices as well as text strings linked to graph vertices
are given. The reader is referred to appendix K.

The progression of the data summing - or string concatenation process, driven by the graph structure,
can be seen in the listings of the MATLAB programs.

Theoretical Example using topological sorting and subgraph extraction

Refer to section K.9.1 for an example application.

Theoretical Example - Using adjacency list processing.

Refer to section K.9.2 for an example application.

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 134

Larger example with numerical values

Refer to section K.9.3 for an example application.

Larger example with string literal values concatenated in accumulation process

Refer to section K.9.4 for an example application.

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 135

Figure 12.10: Topological sorting of the task step schedule

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 136

Figure 12.11: Sub-adjacency matrix for logical step 1

Figure 12.12: Sub-adjacency matrix for logical step 2

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 137

Figure 12.13: Sub-adjacency matrix for logical step 3

CHAPTER 12. REPRESENTING AND PROCESSING MANAGEMENT STRUCTURE USING
GRAPH APPLICATIONS 138

Figure 12.14: Sub-adjacency matrix for logical step 4

Figure 12.15: Sub-adjacency matrix for logical step 5

Chapter 13

Engineering Process Model: Database
development, processing and report generation

13.1 Introduction

This chapter deals with the development of a database version of the Engineering Process Model. The
motivation is to demonstrate the application of the techniques of the model using typical commercial and
open source:

• hardware

• operating systems

• database applications

• database development tools

Detail data examples, source code samples and typical system and program output are contained in
appendix J.

13.2 Database demonstration system overview

A basic Unified Modelling Language (UML) deployment diagram of the database development and demon-
stration environment is shown in figure 13.1. The deployment is chosen to represent a typical one which
can be used in the services business enterprise. It makes use of proprietary and open source operating
systems and application programs.

Information on the Unified Modelling Language applied to systems can be found in Booch et al. [18],
Naiburg and Maksimchuk [85], Alhir [3], Bennett et al. [15] and Gomaa [43].

13.2.1 Client-server configuration

The user (client) uses a desktop or notebook computer which uses the Microsoft Access Database ap-
plication program and the Microsoft Windows XP operating system to access the sever. The Microsoft
Windows XP operating system is implemented on Intel processor based hardware.

The client-server environment server application, is set up on an Intel processor based hardware using
the Red Hat Distribution Linux operating system (Red Hat Inc. [100]) server with the PostgreSQL (The
PostgreSQL Global Development Group [121]) database management software loaded.

Interaction with the server for database maintenance and programming is done via the SSH Secure
Shell Client terminal (SSH Communications Security [114]) to the Linux Bash shell as well as the PSQL
database terminal program for the PostgreSQL database management software.

13.2.2 Network configuration

The network link between the client and server systems was based on the Microsoft ODBC database
connectivity functionality over a TCP/IP link using port 5432. The physical layer of the network was
over an Ethernet/SDSL/Ethernet link to a remote location.

139

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 140

Figure 13.1: Database demonstration UML Deployment Diagram

13.3 Defining the database structure

The Azzurri (Azzurri Limited [10]) Clay Eclipse plug-in database modelling program was used to develop
the database schema for the Engineering Process Model. Refer to The Eclipse Foundation [119] for more
information on the Eclipse development environment.

According to the Azzurri web site:

‘Clay is a database design tool that runs as a plug-in in the Eclipse development environment.
Clay has an intuitive user interface for graphically designing database models. Clay can also
create a database model by reverse engineering an existing database. Furthermore, Clay
generates the SQL (DDL) code appropriate for your database.’

The tables were named using the ‘tb’ prefix naming convention. A first normal form structure was
used for the database. Refer to section 7.17.

The process of defining the database using Clay includes the following:

• define table names

• define fields with field types

• select primary and other keys

• link fields to table keys as required

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 141

Figure 13.2: Engineering Process Model - Clay program screen

Figure 13.2 contains an overview of the database tables designed. Figure J.1 contains a more detailed
overview of the database tables designed.

More information on the software used is given in:

• Appendix J.1 – Eclipse software – The Eclipse Foundation [119]

• Appendix J.2 – Azzurri Clay software – Azzurri Limited [10]

13.3.1 Azzurri Clay XML DTD Specification file

The Clay program stores the data describing the database design in a .clay file. This file is in XML
format.

The structure of the .clay XML file is described in the XML Data Type Definition (DTD) specification
given in appendix section J.2.

The well formedness of a .clay data file can be checked by a program such as XMLSpy by Altova
(Altova, Inc. [4] and the file validated using the XML file DTD specification listed in appendix section
J.3.

13.3.2 Database setup SQL statements

Once the database design has been done the SQL data definition statements needed to build the database
are generated by the Clay program and saved in a .sql file. A selection of SQL standards are available. The
SQL statements were generated using the ANSI-92 Standard. The database definition file was transferred
to the Linux server. The contents of a typical file is listed in Appendix J.4.

13.3.3 PostgreSQL Database Reference

The database definition file which was transferred to the Linux server was used to set up the database
on the server. The functionality of the PostgreSQL server terminal, i.e. PSQL, was used to set up the
database. Refer to The PostgreSQL Global Development Group [121], PostgreSQL Global Development
Group [96].

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 142

13.3.4 Populating the database with data

The database was populated with data by transferring the data files output from the MATLAB process
model implementation, described in chapter 11, to the server and importing the data using the PSQL
program.

The PSQL command COPY FROM is used to import data.
Refer to the PostgreSQL Global Development Group, PSQL Documentation in The PostgreSQL

Global Development Group [121] which advises:

‘Use COPY FROM STDIN to load all the rows in one command, instead of using a series of
INSERT commands. This reduces parsing, planning, etc. overhead a great deal. If you do
this then it is not necessary to turn off auto commit, since it is only one command anyway.’

This command is only available to super users. An alternative for normal users is to use the \copy
command available for PSQL. All the operations are stored in a .psql file which is executed by entering
\i LoadData.psql.

Special entries for blank attributes and status values were added to cater for vertices or edges without
attributes or status values.

The output generated by running .psql file is shown in appendix section J.9
A listing of the contents of the PostgreSQL database is given in appendix section J.6.

13.3.5 Server database verification

A trial version of the DBVisualizer database display program was used to view the database structure
and contents as loaded on the desktop or server PostgreSQL application. Refer to Minq Software AB [84]
for more information on DBVisualizer program.

Figure 13.5 shows the DBVisualizer summary display of the database tables.
The sample PostgreSQL database listing DBVisualizer print preview screen for the tbperson table of

the Engineering Process Model database is shown in figure 13.4.
Appendix J.5 contains more details of the database structure.
The data on the server was made available in the Microsoft Access environment by defining linked

tables in Access.

13.4 Microsoft Access Database Reference

As an alternative to referring to the database on the server the database was also set up using the
Microsoft Access Database package. This provides the Engineering Process model database functionality
in the desktop computer application environment on the Microsoft Windows XP operating system directly
without any reference to data stored on a server. Refer to the software reference in Appendix J.7.

Access programming techniques were drawn from Litwin et al. [75, 76, 77].

13.4.1 Access data import process

The process model data is directly input into the Access database via Access Table links using a VBA
program generating SQL queries for the DAO subsystem of Access. Refer to appendix section J.8 for
more details.

The structure of the database reported by Access is shown in figure 13.6.

13.4.2 Database schema definition file

The external schema.ini file defines the record contents of the .csv data files imported into Access. An
entry in the file for each table used in the database is required. Refer to appendix J.8.1 for a listing of
the schema.ini file used.

13.4.3 Database program to import data from database server

Database Processing using Microsoft Access 1997/2002/2003

Data Definition Language (DDL) statements are a subset of the Structured Query Language (SQL)
statements which include the SQL statements:

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 143

Figure 13.3: Process model database - DBVisualizer summary display

CREATE TABLE
ALTER TABLE
CREATE INDEX
CREATE INDEX
DROP TABLE
DROP INDEX

Access can accept DDL type queries in its query SQL view but can only execute one SQL statement
at a time. This is a major drawback to importing DDL data from database design tools such as Azzurri
Clay.

As an alternative, Visual Basic for Applications (VBA) programming using the Microsoft ActiveX
Data Object (ADO) library and class/object model can be used as described in Litwin et al. [76, Chapter
5].

Refer to appendix section J.8.2 for a listing of the Access VBA program used to import data into the
Access database directly.

Microsoft Windows Data Links

Microsoft Windows has a data link definition facility which can be used to set up a specification for a
data link (data source) for use in Windows applications.

A blank text file is created using e.g. Windows Explorer, it is renamed to have a .udl extension and
when the file is then opened it has the UDL functionality shown in figure 13.7.

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 144

Figure 13.4: Process model database table print - DBVisualizer

The data content of the .udl file is shown in J.8.3.
The link can then be used in VBA programs to access data without specifying the link parameters in

the program code.
Sample Microsoft Access VBA Code is given in appendix section J.8.3.
Refer to Litwin, Getz & Gunderloy - Access Developers Handbook Chapter 6, Litwin et al. [76].
Note that the Microsoft ADOX database access functionality will not work for all remote database

servers. The Catalog/Table/Record structure need not be supported by all other databases e.g. Post-
greSQL on Linux. Refer to the comment on PostgreSQL Web Site [96]:

‘Microsoft ActiveX Data Objects Extensions for Data Definition Language and Security
(ADOX) is designed for use with the Microsoft Jet Database Engine. So, using ADOX with
OLE DB providers other than the Microsoft Jet OLE DB Provider may cause unexpected be-
haviour or incorrect results. The exact behaviour is dependent on the nature of the database
for which the provider is written. If a provider is accesses a database system whose model is
totally different from that of Jet, the behaviour of ADOX could be unpredictable (for example,
Jet does not support the concepts of CATALOG or SCHEMA) . . .’

If errors are reported and the data link does not work, linked tables can be used.
It is important to note that Access DLL Library references set up in the software must be compatible

as one moves from one Microsoft Windows installation to the next. Refer to figure 13.8 which shows the
Access DLL reference display.

13.5 Reporting using Microsoft Access

Figure 13.9 shows a basic report generated using the reporting definition, display and printing function-
ality of Microsoft Access.

13.6 Reporting using Microsoft Excel

Figure 13.10 shows a typical Microsoft Excel tabular summary of the data processed by Access and
imported into Excel, while figure 13.11 shows a chart defined in Excel referencing the Access data.

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 145

Figure 13.5: DBVisualizer extended display of process model database

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 146

Figure 13.6: Access database structure report

13.7 PLEP application program for Engineering Process Model

The PLEP program is an implementation of the Engineering Process Model providing a user interface
for data input as well as process optimisation. It was developed by Eygelaar [38].

The program was developed using the Java application programming language. Figure 13.12 provides
an overview of the object data structure used in the program.

Functionality using e.g. the Java database connectivity (JDBC) to the Microsoft ODBC database
access component (JDBC/ODBC bridge) can be used to export the data from PLEP to a database
environment to supply database reporting functionality described in this document.

13.8 Importing database data using the Java JDBC-ODBC bridge

Java JDBC-ODBC bridge can be used for data loading. This is an alternative approach to populating
database using files exported from the engineering process modelling application written in Java or the
demonstration version done in MATLAB.

Refer to appendix section J.10 for the Java code of a sample implementation.

13.9 SQL Programming for reports and SQL functionality used

Although SQL standards like the ANSI-92 standard version has been defined, specific implementations of
SQL all contain special versions with extensions or modifications of the standard. SQL contains conversion
functions to convert data entries. Special care needs to be taken with null entries which can result from
query operations due to null entries in database fields.

13.9.1 PostgreSQL conversion functions

SQL conversion functions are described in e.g. Mata-Toledo and Cushman [80, page 151].
Conversions available include:

• null entries to string or numeric values - NVL(m,n) - Returns n if m is null else returns m

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 147

(a) Connection (b) Provider

(c) Advanced (d) All

Figure 13.7: Microsoft Windows Datalink tabbed panes

Figure 13.8: Access DLL library reference display

• numeric values into strings - TO_CHAR(m[,fmt]) - numeric m converted from a number to a character
string in designated format fmt

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 148

Figure 13.9: Engineering Process Example - Access Report

• string values to numeric equivalent - TO_Number(st[,fmt]) - string st converted to a number
according to designated format fmt

• rounding values to specific number of decimals - ROUND(m,)

The PSQL conversion options are very extensive - refer to the PSQL user documentation. The

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 149

Figure 13.10: Engineering Process Example - Excel tabular report

PostgreSQL Global Development Group [121, Chapter 9].

13.9.2 Microsoft Access data conversion

Access does not react to the rounding specification but has a format option in the properties of each
column selected for a query as shown in figure 13.13.

Note that Action Queries (including SQL UNION queries) cannot be used as a row source i.e. saved
as a table in Access. Refer to appendix section J.11.

The Create Table queries Access SQL uses INTO tbName and not INTO TABLE tbName.

13.9.3 SQL Query Processing tips

A copy of Access SQL queries are best kept outside the Access program in a text processing file format.
The SQL data can then be copied and pasted to the SQL Query window as it is modified. Access reformats
the SQL removing any indentation and blank lines as soon as the query is saved in Access.

Access SQL Query window does also not support the standard ‘- -’ SQL comment line indication.
When setting up SQL statements e.g. SELECT entries, place the commas at the beginning of a

subsequent line. This makes the cut and paste operation as queries are edited much less prone to syntax
errors. Refer to the example below – (in PSQL format).

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 150

Figure 13.11: Engineering Process Example - Excel chart

Figure 13.12: PLEP Java Application Object Structure gif

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 151

(a) General field properties

(b) Query definition pane

Figure 13.13: Microsoft Access Output Field Specification

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 152

SELECT tb."LogicalStep"
,tb."PIDDataset"
,tb."DatasetName"

-- Data create values and percentages
,tb."WeightCreate"
,tb."CompletionCreate"
,tb."CompletionCreateWeight"

Note that in PSQL

DELETE FROM "tbSCurveStep2" WHERE "PIDDataset" = NULL; does not work

use: DELETE FROM "tbSCurveStep2" WHERE "PIDDataset" ISNULL;

13.9.4 SQL Queries for S-Curve presentation

The development was done in four environments:

1. Desktop standalone database application with data file imports

2. Linux application environment

3. Desktop client with Linux server environment with linked tables

4. Java JDBC-ODBC bridge environment to import data into the database environment and deliver
the reporting or graphs to the Java application user interface

The following listings are given in J.11.1:

• the intermediate first step query for S-Curve recordset generation for the Access desktop client with
PostgreSQL server

• the second step Access / PostgreSQL - SCurveStep2All.sql

• the file output in .csv format

The summary table output from Access is shown in figure 13.14.

Figure 13.14: Access database tabular reporting

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 153

13.10 Using Microsoft Data Access Pages

Data Access Pages can only be created using Access 2000 (or later) and can only be viewed by users of
Microsoft Internet Explorer 5.0 (or later).

Any Access 2000 (and later) table, query and report can be saved as a data access page which is
accessible as a form via the HTTP protocol.

The .htm file generated by Access for a data access page contains VBScript code.
There a number of security issues with domains of users and file permissions which need to be set up

carefully for remote users to pick up the data access pages which are in the form of scripts contained in
.htm files.

The connection string in these files must contain the full name of the host reference for web browser
(Microsoft Internet Explorer Version 5 or later) on a remote Windows PC, to display the data referred
to in the access page.

Example: \\sivjavbs edited in place of C:\ provided by default data access page.
It seems as if the display in the browser does sometimes not work if the file is opened with the browser

directly. When one double clicks on the file icon in the Windows Explorer display using the mouse, it
opens in the browser and the display is shown.

A basic step progress report view in the browser environment is shown in figure 13.15 and figure 13.16

Figure 13.15: Database tabular reporting with browser data access pages

The contents of the Data Access Page .htm file is listed in appendix J.12.

13.11 Conclusion and recommendations

Relational database technology in a client-server environment is a well developed and mature technology.
The design of a database driven management reporting system needs to focus on the data structure and
planned deployment to achieve the required level of system functionality. Interaction between desktop
application software and database systems enhance the ease with which users can view and report data.

CHAPTER 13. ENGINEERING PROCESS MODEL: DATABASE DEVELOPMENT, PROCESSING
AND REPORT GENERATION 154

Figure 13.16: Database reporting with browser data access pages

Part III

Conclusion

155

Chapter 14

Conclusions and Recommendations

The contents of this chapter aggregates and summarises the conclusions and recommendations of this
dissertation. A summary of the conclusions of the system identification study contained in the addendum
is included in chapter 27.

14.1 Conclusions

1. The theory set out in part I was applied in part II to develop technology which can be used in the
development of engineering service enterprise management systems.

2. Techniques developed in part II can be applied to model business functions and management systems
for the business functions identified in the addendum part IV of this study.

3. The review of the professional service business from a functional viewpoint reported in part IV
of this study indicates that the basic technology demonstrated in part II is suitable as the basis
of basic enterprise systems, management reporting and decision support systems for engineering
services enterprises.

4. The Engineering process model (Chapter 11) with the graph tree based reporting structure (Chapter
12) can be adapted and applied to provide functionality for professional service business manage-
ment.

14.2 Recommendations

1. Set theory, theory of relations and graph theory are not treated in current engineering curricula.
Therefore a review of these theories was included in this document. The material covered in chap-
ters 3, 4, 5, 6 and 7 will be of value to students and researchers working in the field of discrete
mathematics applied to engineering.

2. The MATLAB functionality developed for this dissertation to implement the theory described in
chapters 3, 4, 5 and 6 can be of value in the teaching of concepts in this field of study.

3. The present implementation of the Engineering process model which uses a step schedule needs to
be extended to make time based, calendar linked, scheduling of tasks possible.

4. It should also be possible to apply the path algebra theory set out in chapter 5 to develop the
reporting structures set up using graph adjacency matrix manipulation.

5. The development of a user interface for the graph theory based management reporting structures
which can be used to generate SQL code and link to a database can be attempted in future.

6. A full implementation of an enterprise management (ERP) system fell outside the scope of this
dissertation, but can be based on the concepts developed here. The implementation of an ERP
system for a typical professional practice, based on the information contained in this study, can be
considered.

156

Part IV

Addendum: Identification of system
functionality to provide support for

management functions

157

Chapter 15

Overview of Part IV

This part forms and addendum to the thesis document.
The basic business functions applicable to the professional service business are used to identify aspects

which impact on business systems and business management system functionality.
Reference is made to the techniques and technology developed in the previous parts.
Business models which are defined in this part contain business objects and business processes. Se-

lected attributes of models and processes can be identified for database processing and management
reporting hierarchies. Techniques and technology developed in the previous parts can be used to process
information on the business object and process logic identified.

An indirect outcome of the analysis is the provision of a high level specification or road map for
the development of a flexible Enterprise Resource Planning (ERP) system for the professional service
business.

According to Wikipedia [126], ERP systems integrate (or attempt to integrate) all data and processes
of an organisation into a unified system. A typical ERP system will use multiple components of computer
software and hardware to achieve the integration. A key ingredient of most ERP systems is the use of a
unified database to store data for the various system modules. ERP systems typically attempt to cover
all basic functions of an organisation, regardless of the business or charter of the organisation.

The professional service business functions reviewed include:

• Business strategy and long term planning and general management

• Marketing, promotion and public relations management

• Finance including bookkeeping and auditing

• Personnel and personnel management

• Production management, i.e. the management of the execution of project work

• Facilities management and document management

• Knowledge and information management

• Logistics, i.e. the management of resource required for the business to operate including knowledge
management

• Administration

• Risk management

An overview of the typical professional practice with its associated management systems is shown in
figure 15.1.

A brief overview of commercially available software packages which can be implemented for consulting
engineering enterprise management is also given.

158

CHAPTER 15. OVERVIEW OF PART IV 159

Conclusion, recommendations and suggestions for further work

The review of the professional service business from a functional viewpoint reported in this part of the
study indicates that techniques developed in the previous parts can be applied to model business functions
and management for the functions identified here.

The engineering process model (Chapter 11) with the graph tree based reporting structure (Chapter
12) can be adapted and applied to provide functionality for professional service business management.

The implementation of an ERP system for a typical professional practice, based on the information
contained in this study, can be considered. However, this falls outside the scope of this study.

CHAPTER 15. OVERVIEW OF PART IV 160

F
ig

u
re

15
.1

:
Sy

st
em

s
T

he
or

y
B
as

ed
P
ro

fe
ss

io
na

l
E
ng

in
ee

ri
ng

Se
rv

ic
es

E
nt

er
pr

is
e

M
an

ag
em

en
t
In

fo
rm

at
io

n
Sy

st
em

s

Chapter 16

Business strategy, long term planning and
general management

A review of business strategy, long term planning and general management concepts are described in this
chapter.

Reference to books and documents by Michel Robert on business strategy [102], Decision Process
International manuals [31], Wim de Villiers on management in general [28] and Kenneth Barlow on Pro-
fessional Management for Consulting Engineers and Architects [12] was made in the process of compiling
this chapter.

16.1 Business Strategy Concepts and Strategy development

This section reviews thinking on business strategy and related concepts developed by Michel Robert. It
provides a concise introduction to this field of knowledge and expertise.

16.1.1 Elements of a business which reflect strategy

Michel Robert identifies the major elements which impact on business strategy and long term planning
as:

• Nature of products

• Nature of customers and groups of customers

• Nature of market segments

• Nature of geographic markets

These four elements are a key part of the future strategic profile or vision of a business. Strategic
statements dealing with the elements need to be stated in both positive and negative terms i.e. focus on
or not focus on. Defensive and offensive strategic objectives, with associated strategies, can be devised.

16.1.2 Physical indicators of the direction and ‘look’ of an enterprise

The present direction and organisation is following can be deduced by studying:

• The product catalogue both present and future

• People and skills which management are trying to draw into the organisation

• Markets served

• Competitors

• Customers

• Suppliers

• Market segments

• Research and Development budget

• Facilities
161

CHAPTER 16. BUSINESS STRATEGY, LONG TERM PLANNING AND GENERAL
MANAGEMENT 162

16.1.3 Strategic areas comprising an organisation

The strategic areas comprising an organisation are identified as:

• Product/service concept

• User/customer class

• Market type/category

• Production capacity/capability

• Technology/know-how

• Sales/marketing method

• Distribution method

• Natural resources

• Size/growth

• Return/profit

A strategic selection of an area which is the driving force of the enterprise needs to be made. Areas
of excellence need to be cultivated and describable skill competence or capability in these areas need to
be cultivated.

16.1.4 Maintaining a strong and healthy strategy

Table 16.1 outlines the focus of excellence development for the listed strategy concepts.

Table 16.1: Maintaining a strong and healthy strategy - Robert [102]

Strategy concept Focus of excellence development
Product/service Product or service quality

Product and process development
Excellence in product development and service

User/customer class Market and user research
User loyalty

Market type/category Market and user research
User loyalty

Production capacity/ca-
pability

Optimising manufacturing or plant efficiency
Marketing to Substitute other products

Technology/know-how Research
Marketing to find applications of new products

Sales/marketing method Recruitment of sales personnel
Improving effectiveness of selling methods

Distribution method Distribution method and effectiveness
Optimise and improve distribution effectiveness

Natural resources Exploring to find new resources and sources of resources
Size/growth Financial management and portfolio management

Information systems
Return/profit Financial management and portfolio management

Information systems

A direct summary of strategic focus is outlined in the Johnson & Johnson Credo which reads:

First responsibility is to our customers
Second responsibility is to our employees
Third responsibility is to our community
The last responsibility is to our shareholders

CHAPTER 16. BUSINESS STRATEGY, LONG TERM PLANNING AND GENERAL
MANAGEMENT 163

16.1.5 Articulating the business concept of the enterprise

To articulate and communicate the business concept of the enterprise, the vision or strategic profile
(synonyms) as well as the strategy, business concept, mission, mandate, charter (all synonymous) need
to be formulated.

The business driving force and strategic heartbeat needs to be articulated in concise terms.
Strategic statements dealing with the:

• scope of products

• scope of customers and markets

• organisation structure

• technologies required

• type of production facilities

• distribution channels

• marketing and selling techniques

• type of personnel employed

need to be formulated.
People do not implement what they do not properly understand and do not implement what they are

not committed to.
Corporate competition dictates that successful companies need to leverage their unique set of capa-

bilities i.e. driving force and areas of excellence across the largest number of products and markets.

16.1.6 Operational objectives

As part of the strategy formulation exercise, formulation of goals, projections and budgets for the major
business functions are required. These functions include:

• Sales

• Marketing

• Manufacturing

• Accounting

• Human resources

• Research

• Customer service

16.1.7 Developing strategic business models

An analysis of the concepts outlined above indicates that strategic business objects can be
identified and a hierarchy linked to business activities and processes can be defined. This
structure can form the basis of database queries where selected attributes can be included
in management reports, as shown in chapters 13 and 12.

The logic embodied in table 16.1 can be used as input for goal based reporting structures which align
business functions with strategic and lower level goals. Refer to Scheer [108, pp 3 and 23].

CHAPTER 16. BUSINESS STRATEGY, LONG TERM PLANNING AND GENERAL
MANAGEMENT 164

Figure 16.1: General Management Aspects according to De Villiers [28]

16.2 General Management

This section contains a review of an approach to general management concepts developed by Wim de
Villiers for the Gencor organisation. [28]

Aspects (processes/activities) of general management grouped into ‘mechanical’ aspects and ‘dynamic’
aspects.

Figure 16.1 contains an adapted version of the general management concept developed by De Villiers.
Investigation and estimating, planning and organising are classified as ‘mechanical’ aspects seeing that

they provide form to the management structure and processes.
Leading, coordinating and controlling are classified as ‘dynamic’ aspects of management because of

the functional nature of the processes and activities. These processes are applied on a day to day, ongoing
basis in management.

Communication is a process which links management to parties including the organisation itself as
well as its environment for the transfer of information as required.

16.2.1 Mechanical aspects of general management

The mechanical aspects of general management are set out in this section.

Investigation and forecasting

To fulfil its investigating and forecasting role management needs to:

• Formulate issues and problems and set goals.

• Collect and collate information internal and external to the organisation and do Strengths, Weak-
nesses, Opportunities and Threats (SWOT) type investigations.

• Analyse the information in a two step process focusing on the past and present and then on the
future doing the necessary forecasts and estimates.

• Decide on a solution – What is to be done? Develop and evaluate alternatives and select a suitable
course of action.

CHAPTER 16. BUSINESS STRATEGY, LONG TERM PLANNING AND GENERAL
MANAGEMENT 165

Planning, estimating and budgeting

The business policy (vision, mission) provides the framework for the enterprise. Management planning,
estimating and budgeting activities need to interpret the framework and set up the:

• High level strategy and policies - in detail

• Strategic plan and planning framework

• Five year down to one year, financial plans and quarterly and short term planning estimates and
budgets

Management then needs to:

• Decide on actions and the approach required leading from the investigation i.e., how is it going to
be done?

• Do a detail investigation and develop detail plans which define actions to be taken.

• Formulate and communicate plans using programming, scheduling and budgeting techniques.

• Develop controls for global and detail plans consisting of standards to be applied, measurement and
corrective action.

• Develop contingency plans based on risk analysis and risk management principles.

Organising

The organisation reference framework is made up of the:

• Organisation structure

• Manpower planning, supply and management succession plan

• Remuneration and personnel care

• Education and training

• Industrial and personnel relations

• Processes in the organisational development

Typical steps required for organising are:

• Analyse the tasks at hand and determine manpower and other resources required to achieve goals.
Logically group and structure tasks and activities.

• Delegate authority to personnel in appropriate posts by determining the type of work to be done,
the scope of the authority to be delegated and coordinating and controlling activities required for
each post or job.

• Set up the relations between posts in a logical hierarchy and define interaction between personnel
for each post or job.

• Determine the human characteristics required per post and staff posts by personnel search and
selection. Educate and train personnel for progress to higher level posts or jobs.

16.2.2 Dynamic aspects of management - activities and processes

The procedural framework defines processes, activities and procedures which need to be dealt with under
the dynamic aspects of management i.e. leading, coordinating and controlling. These are:

• Production

• Procurement

• Stock inventory and material control

CHAPTER 16. BUSINESS STRATEGY, LONG TERM PLANNING AND GENERAL
MANAGEMENT 166

• Personnel

• Training

• Safety

• Security and risks

• Other

The dynamic aspects of general management are set out below.

Leading activities and processes

Leading, in the management sense of the word, covers activities which management are involved in to
communicate with, educate and train personnel and to delegate tasks to suitably motivated persons in
the organisation.

Leading also includes feedback on work done, the handling of problems and grievances, dealing with
unacceptable behaviour and substandard work and the taking of corrective measures.

Coordinating activities and processes

The coordinating aspect of management deals with the day to day interaction between personnel and
management to ensure that the work at hand gets done in an efficient manner. Efficient communication
and office, department and project meetings as required should solve most coordination issues. The
process of dealing with ad-hoc events which influence the business can also be seen as a coordinating
activity.

Coordinating activities and processes focus on both mechanical as well as dynamic aspects of man-
agement.

Coordinating to ensure application, effectiveness and efficiency of ‘mechanical’ aspects of management
requires:

• Clear goals based on policy guidelines

• Clear and concise plans, programmes, organisation diagrams and budgets

• Ensure that personnel grasp the organisational structure and procedures

Coordinating to ensure application, effectiveness and efficiency of ‘dynamic’ aspects of management
requires:

• Participation in decision making

• Regular adjustment in plans, programmes and budgets, as required

• Effective communication in the organisation

Controlling activities and processes

The framework for control contains processes for control and information dissemination on production
control and costing control.

Dynamic management aspects of control include setting goals with personnel and reviewing perfor-
mance with personnel.

Steps for setting goals with personnel are:

• Explain the why and how of the task

• Agree on measurable goals: what, when and how much

• Ask for input for proposals to achieve goals and expand ideas

• If required, agree on additional goals and improved standards

• Offer help and confirm trust in personnel member

• Agree on follow-up as far as actions and dates are concerned

CHAPTER 16. BUSINESS STRATEGY, LONG TERM PLANNING AND GENERAL
MANAGEMENT 167

Steps for controlling performance with personnel are:

• Confirm goals agreed to

• Call for a progress report and note success achieved

• Ask for steps for improvement and supplement ideas

• If required, agree on additional goals and improved standards

• Offer help and confirm trust in personnel member

• Agree on follow-up as far as actions and dates are concerned

16.2.3 Communication

Communication is shown as a wrapper of the other processes shown in figure 16.1. This indicates the
importance of management communicating the form (objects) and function (processes or activities) of
management objectives and actions to all parties and stakeholders, including the members of the organi-
sation itself, as well as its environment.

Management needs to communicate aspects of the ‘mechanical’ as well as ‘dynamical’ aspects of
management to role players inside and outside the organisation as required. This will ensure smooth
operation of the business enterprise.

The basic principles of good communication and well honed listening skills need to be applied here.

16.3 Conclusion and recommendation

The author was involved in a long term project to implement the strategic, functional and management
aspects of a Water Plan for a local authority. Application of techniques developed with reference to
the material covered in this chapter proved to be well received by management and staff at all levels of
the local authority involved in the project. Refer to Strasheim et al. [118] for more information on the
approach adopted for this project.

Strategic business planning and reporting structures can be developed and metrics needed to supply
high level feedback on the‘health’ of a business as whole can be planned in a system format suitable for
implementation, using the theory covered in part I and II of this thesis.

Chapter 17

Marketing, promotion and public relations
management

17.1 Introduction to professional services marketing management

This chapter deals with the management of the marketing function of the engineering professional services
enterprise.

The aim is to provide the background information and system analysis, synthesis and system building
insights to lead into the business objects and processes needed for modelling enterprise marketing activities
and the management thereof.

The business objects and processes to define models for marketing management in this context are
identified.

The differences between product and services marketing are highlighted and the nature of professional
services marketing defined.

Aspects of promotion and public relations which link to marketing management are discussed.
The book by Young [129] covers marketing of the professional services firm and includes a section on

tools for marketing services.

17.2 Differences between consumer product marketing and professional
services marketing

This section deals with the nature of marketing as well as the mechanical and dynamic aspects of mar-
keting management. Mechanical aspects of marketing are:

• marketing investigation

• environmental scanning

• forecasting

• marketing planning

• marketing budgeting

• organising for marketing.

The dynamic aspects of management of marketing are:

• marketing leading

• coordinating of marketing activities

• and controlling of marketing activities.

It is important to highlight the major differences between consumer product marketing and profes-
sional services marketing. Professional service marketing needs to be viewed and approached in most of
its aspects, discipline, body of knowledge and best practice much more like industrial marketing than con-
sumer goods marketing. Wittreich [127] summarises major differences between the marketing of services
and products. The differences are shown in table 17.1.

168

CHAPTER 17. MARKETING, PROMOTION AND PUBLIC RELATIONS MANAGEMENT 169

Table 17.1: Differences between services and product marketing

Aspect Product Service
Evaluation for purchase Typically a physical sample is

available for evaluation
Persons and groups of suppli-
ers supplies proposals describ-
ing service to be sold

Customer notion of risk and
uncertainty and confidence in
what is being bought

Low risk and high confidence by
referring to specifications and
available usage data

Buyer in hands of seller

Alternatives Limited range of well defined al-
ternative products

Service on offer can be modified
/ expanded based on informa-
tion supplied by customer

17.3 The nature of professional services marketing

Marketing is a contact based activity. According to Warner [125] personal contact must be regarded as
the single most important professional services marketing function.

According to Wittreich [127], three concepts are fundamental to marketing of professional services.

• The goal of the professional service organisation is to identify aspects of uncertainty in the business
of the client, where the service is to be provided and bring about an increased degree of certainty
where uncertainty is felt.

• When management considers the purchase of a professional service it should insist that the repre-
sentatives of the service providers be able to address the substantive problem of the client directly.

• Management should insist on dealing directly with individuals of true professional competence who
must be capable of rendering the service.

Typical types of uncertainty on the client (procurer) side which need to be addressed by the service
bidder or provider are:

• Who should supply the service? The supplier needs to show that an unique, quality service is being
offered.

• Is value for money being offered? The sale is basically being closed as the promised service is being
delivered by the supplier.

• Are the substantive requirements of the client being defined in meaningful terms? The professional
service provider needs to be able to listen and analyse and integrate the problem and requirements
of the client into a logical whole. Real issues need to be identified and if the client does not have a
real problem, the seller needs to indicate this. Professional ethics and integrity on the side of the
seller needs to apply at all times.

Buying a service is analogous to hiring a key employee in scope and impact on the business of the
client. However the attributes of key personnel of the service provider are not necessary and complete
requirements to a successful outcome for the rendering of the service. Selling by focusing on success
stories through analogy should have more impact on the decision making of the client.

When professionals are identified to render a service, demonstrable knowledge and skill in areas of
applicable competence need to be shown and recognition of limits of knowledge and skills on the side of
the supplier needs to be conveyed where applicable.

A statement by Robert [102] on strategy comes to mind here: ‘Developing a describable skill compe-
tence or capability in a company to a level of proficiency better than anything else it does and particularly
better than any competitor does’.

Young [129, page 25, Table 1.2] identifies a number of unique qualities of services which need to be
taken account of in the marketing of these services.

• Intangibility : Services are intangible and consist of an action or deed

• Inseparability : The buyer of a service finds it difficult to distinguish between the service provider
and the service.

CHAPTER 17. MARKETING, PROMOTION AND PUBLIC RELATIONS MANAGEMENT 170

• Simultaneous consumption and perishability : Service are consumed as they are produced and cannot
be stored, saved, returned or easily changed

• Variability : Services are very difficult to standardise

• Ownership: The work and outputs of the work of the service supplier are bought but not the supplier
and his resources

• Process: Services dictate a process through which clients must pass

Young [129] reproduces a figure from Leonard Berry showing the nature and roles of service marketing,
shown here in figure 17.1.

Figure 17.1: The nature and roles of service marketing according to Leonard Berry

17.3.1 Business models for marketing management

Business models for professional service marketing management can be constructed by referring to business
objects for marketing management and business processes relating to marketing management.

17.3.2 Business objects relating to marketing management

The listings below contain a selection of typical objects and object classifications for professional services
marketing management.

Basic marketing model logical objects:

• Marketing person, group or office and department

• Client person, group or business

• Project proposal document

• Pro-forma client brief and contract

• Calendar recording marketing periods, events and history

• Marketing events such as:

CHAPTER 17. MARKETING, PROMOTION AND PUBLIC RELATIONS MANAGEMENT 171

– Personal contact sessions or meetings

– Conferences

– Sporting and entertainment events

• Marketing material such as:

– Promotional letters and brochures

– Personnel curriculum vitae documentation

– Pricing and fee schedules

– Company newsletters

– Press releases

– Media programmes in voice or video format

Marketing management documents:

• Environmental scan and competitor analysis reports

• Strategic marketing plan

• Marketing planning sheet

• Public sector client consultant panel and preferred service supplier databases

• Marketing status report sheet

• Client database

• Project database

• Marketing budget with projected project cash flow

(Refer to appendix L for typical sample documents.)

17.3.3 Business processes relating to marketing management

The listing below contains a selection of processes for professional business marketing management.

• Market research and market analysis

• Competitor analysis

• Marketing planning

• Budgeting for marketing

• Customer relationship building

• Advertising and promotion

• Business alliance formation

• Client follow-up and project wrap-up meetings

• Control of marketing activities

Some of these aspects are now discussed in more detail.

17.4 Marketing investigation, environmental scanning and forecasting

This section describes activities and processes leading into and supporting the formation of marketing
strategies and marketing planning.

CHAPTER 17. MARKETING, PROMOTION AND PUBLIC RELATIONS MANAGEMENT 172

17.4.1 Corporate/enterprise requirements

An important part of marketing is to ensure that what is to be done ties in with the strategy, vision
and mission of the enterprise. Higher level objectives of the organisation and it units also need to be
considered. Basic budgetary process requirements and constraints need to be taken into account when
the aspects of marketing dealt with below are considered.

17.4.2 Environmental scanning and forecasting

Environmental scanning and forecasting is a wide ranging and specialised activity. Professional support
can be considered if an enterprise needs to undertake this kind of activity. Well organised and controlled
in house reference to published literature and media content should meet most of the requirements in this
field for a typical services enterprise.

Enterprise/employer organisations such as the South African Association of Consulting Engineers
(SAACE) and South African Federation of Civil Engineering Contractors (SAFCEC) typically provide
the outcome of cooperative systematic and ongoing marketing research to member enterprises belonging
to these organisations.

It might be necessary to embark on activities in this ambit where specialised requirements need to be
met and employ specialist consultants as required.

Business intelligence encompasses the concept of obtaining and analysing information on existing
clients as well as possible future clients. An example of the type of analysis which can be undertaken
is that of the development of a process model of the processes of a government department division.
Strasheim [116] reports on a review and model of the business process (development project work flow) of
the Community Water and Sanitation Services (CWSS) programme division of the Department of Water
Affairs and Forestry (DWAF).

17.4.3 Marketing research and market research

Elements of marketing research identified by Du Plessis [32] are:

• research into services to be offered

• research into markets. Size, share, regional breakdown, market forecasts, client policies, attitudes
and preferences

• marketing intelligence and research into competitor, supplier, client activity (industrial espionage)

• research into marketing methods and practice

• methodology for marketing research: problem statement, research design, sample selection, data
collection and analysis and research reporting with presentation.

Note that market research is seen as being a element of marketing research.
The note in paragraph 17.4.2 on the SAACE and SAFCEC activity in this field also applies here.

17.4.4 Market segmentation

To focus marketing activities it is important to do some form of market segmentation before embarking
on marketing activity planning and budgeting.

As an example, the market can be divided into government institutions, private developers, private
persons as well as indirect exposure via other professionals e.g. architects, civil engineering consultants,
mechanical engineering consultants and quantity surveyors.

17.5 Strategic planning for marketing

A market sector analysis should indicate market sectors with activities and sectors where capital expen-
diture on projects is more likely in the medium term.

An existing and potential client hierarchy can be developed.
Linking up with other professionals e.g. architects, town and regional planners, electrical and me-

chanical engineers, quantity surveyors and landscape architects to exchange marketing information and
form groupings in approaching clients can be valuable.

CHAPTER 17. MARKETING, PROMOTION AND PUBLIC RELATIONS MANAGEMENT 173

The present government procurement requirements in South Africa dictate shareholding requirements
for professional organisations which do government work on all three tiers of government. It might be
required that an enterprise restructure its ownership or form new ventures to meet the requirements set
by government.

Cross marketing, i.e. referring projects to other entities of the enterprise or related group companies
for follow up can be considered. As an example, infrastructure and facilities management projects and
activities can be used to identify potential new upgrade or refurbishment projects.

17.6 Marketing activity planning and budgeting

An example of a hierarchy used for marketing activity planning is shown in appendix L, figure L.1. Note
that the activities listed here exclude that of project marketing which goes with the development of
project proposals and the activities which lead up to a brief being issued by a client.

Puttergill [99] divides business development (marketing) into the areas of corporate development,
general marketing and project related marketing.

Detailed marketing planning leads to data gathering and analysis for reports such as the one shown
in appendix L, figure L.3.

17.7 Project phases

This author is of the opinion that the administrative procedure of registering a project as soon as a
contact for a possible project has been made and defining the status of the project as ‘Proposal’ to be
changed later as required and closing the project if the proposal is not successful, is the preferred approach
to marketing planning and administration. This approach is also advocated by Robertson [103] and is
implemented in the ProMan professional practice management software package Greyling [50].

Puttergill [99] classifies projects as being in hand, in view or to be obtained.
After project closure contact with existing clients should be maintained.

17.8 Organising for marketing

With reference to the GFJ Inc. document on a marketing strategy by Warner [125] as well as appendix
L, typical activities which are organised for professional services marketing are:

• Visit an existing client or a potential client

• Development and maintenance of contact and client databases

• Organising of special corporate events

• Organising of symposia which can be sponsored events

• Presentation of client and corporate entertainment events

• Preparation of technical brochures

• Development and maintenance of technical personnel curriculum vitae data sets

• Organising and participation in institutional activities e.g. SA Institution of Civil Engineer, SA
Association of Consulting Engineers, SA Institution of Municipal Engineers

• Write an article for a trade magazine or rework an existing article for publication in another mag-
azine

• Write a conference contribution or article for publication in a professional technical magazine with
peer review

• Develop and publish a company newsletter on a regular basis

• Develop and maintain information and data required to be on record

• Prepare and publish press releases and other media exposure.

CHAPTER 17. MARKETING, PROMOTION AND PUBLIC RELATIONS MANAGEMENT 174

17.9 Marketing leading

Enterprise owners, shareholders, executives and managers need to be seen taking a leading role in all
marketing activities and ensure that junior personnel are informed of activities as required.

17.10 Coordinating of marketing activities

It is necessary to coordinate activities across regions, offices and disciplines as well as activities undertaken
with other professionals which might be represented in other areas and form other groupings in other
regions.

17.11 Controlling marketing activities

The control of marketing activities can be divided into the control of general activities (corporate devel-
opment and general marketing) and the control of project marketing.

General marketing activities can be controlled by using forms structured as shown in appendix L
developed by GFJ Inc.. An English translation of the activities listed are given in section 17.8.

The main purpose of the control of project marketing activities is to ascertain that project proposals
with associated data are up to date. Project marketing data includes the project capital and fee budget,
the chance of success of being accepted as a project and applicable calendar dates. This data forms a first
level input into the enterprise longer term project budget. The corporate budget example of consulting
engineers BKS Property Limited supplied by Puttergill [99] shown in appendix L, figure L.4 refers as an
example.

Professional services marketing control should require:

• a session on marketing feedback in the regular office management meetings

• managers/partners/shareholders to review feedback from persons doing marketing on regular, say
monthly, basis.

17.11.1 Outcomes and products of the marketing process

The hierarchy of outcomes of the marketing process is outlined in the table below. All the entries represent
business artefacts which need to be recorded and managed as required.

Phases Zero, One, Two and Three of the Salford Process Protocol refer to typical outcomes of the
marketing process i.e. demonstration of the need, conception of the need, feasibility outline and feasibility
study for a typical engineering project. The Salford process protocol is displayed in figures 20.1 and 20.2
and was developed at Salford University in the UK. Refer to Kagioglou et al. [67].

Professional services marketing products and outcomes include:

• Letter proposals

• Proposal reports

• Preliminary design outlines

• Development project master plans

• Briefs from the client

• Project status reports before feasibility and preliminary design phases are entered.

17.12 Professional Services Enterprise Public Relations and Management

Typical questions on public relation management for the professional services enterprise include:

• What is public relations and public relations management?

• Does a professional service enterprise need to look into public relations?

• How do marketing processes and activities tie in with public relations processes and management?

• What are the implications of public relations processes and activities for the form and functional
requirements of a kernel business model?

CHAPTER 17. MARKETING, PROMOTION AND PUBLIC RELATIONS MANAGEMENT 175

17.12.1 Investigation and forecasting for public relations

Investigation and forecasting activities for public relations include:

• Formulation of issues and problems and setting of goals

• Collect and collate information internal and external to the organisation and do SWOT (Strengths,
Weaknesses, Opportunities and Threats) type investigations

• Analyse the information in a two step process focusing on the past and present and then on the
future doing the necessary forecasts and estimates

• Decide on a solution: What is to be done? Develop and evaluate alternatives and select a suitable
one.

17.12.2 Planning, estimating and budgeting for enterprise public relations

The business policy (vision, mission) provides the strategic and planning framework for the enterprise
which is set out in the:

• High level strategy and policies

• Strategic plan and planning framework

• Five year, one year financial plan and quarterly and short term planning estimates and budgets.

Planning, estimating and budgeting activities for public relations include:

• Deciding on actions and approach leading from the investigation (How is it going to be done?)

• Doing a detail investigation and develop detail plans which define actions to be taken.

• Formulating and communicating plans using programming, scheduling and budgeting techniques

• Developing controls for global and detail plans consisting of standards to be applied, measurement
and corrective action.

• Developing contingency plans based on risk analysis and risk management principles.

17.12.3 Organising for public relations

The organisation framework for public relations follows the same outline set out in section 16.2.1. It is
applied to public relations requirements in this case.

17.12.4 Activities and processes

The procedural framework defines processes, activities and procedures which need to be dealt with un-
der the dynamic aspects of management. These aspects of management i.e. leading, coordinating and
controlling are described in section 16.2.2 and need to be applied to public relations management as well.

17.12.5 Leading, coordinating, controlling and communicating public relations
activities and processes

Leading, coordinating, controlling and communicating public relations activities and processes follows
the approach given in sections 16.2.2 and 16.2.3 applied to public relations management.

CHAPTER 17. MARKETING, PROMOTION AND PUBLIC RELATIONS MANAGEMENT 176

17.13 Conclusion and recommendations

With reference to

• the marketing related business objects and processes for a professional services business identified
in this chapter

• the type of management reports shown in appendix L

• as the theory and techniques available to construct management systems discussed in chapters 11,
12 and 13

the marketing management function can be well served with effective and efficient marketing systems
and marketing management systems.

Chapter 18

Finance, Bookkeeping and Auditing

18.1 Introduction to professional service business accounting

Figure 18.3 contains an overview of the finance, bookkeeping and auditing functions in the professional
engineering services enterprise.

An analysis of the data structures, information content and reporting requirements of a typical general
ledger accounting system for professional practice management is set out.

Tables 18.1 and 18.2 contain a classified business financial process and object list. The objects and
processes identified can be used to build models of the bookkeeping and financial systems of the business.

18.2 Registration and recording processes

The project costing process for a professional services project is based on costed professional time spent on
the project as well as business in-house disbursements of goods, materials and resources. Project expenses
also arise from goods and services ordered and paid for in cash or via the normal creditor system which
are allocated to the project.

Company management and administration activities can also be recorded to administrative projects
registered in the project system. As an alternative, special time and expense categories can be defined with
the associated reporting functionality included in the time and expense subsystems to manage overheads.

All the registration and recording processes outlined below require suitable database reporting to
supply feedback to managers, project leaders and personnel as required.

18.2.1 Project registration

As soon as a project has been identified and its pursuit approved by management it is registered in the
project database and all related information on the project recorded. The key to the efficient execution
of a project is the commitment required from the project leader which is assigned to the project. Project
rate tables for personnel time as well as disbursements which meet the clients specification needs to be
set up per project.

18.2.2 Debtor registration

A production project should be allocated to a debtor, which needs to be registered, if it is not active on
the database yet. The debtor database should contain a link to the client database or vice versa.

In-house administration projects do not require a debtor.

18.2.3 Creditor registration

Creditors linked to projects as well as other creditors need to be registered in the database with all
relevant information as required.

18.2.4 Time keeping and recording

Time keeping is typically done on time sheets. The time sheet forms can be paper based or input via
computer programs using suitable system user interface or web page based forms.

177

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 178

Table 18.1: Finance, accounting and bookkeeping processes and objects

Process Activity Related accounting ob-
jects

Notes

Financial calen-
dar setup

Set up financial calendar
with dates and periods to be
used for financial year

Calendar More than one financial year
might be open at a time

Time recording Time sheet entry
Time sheet processing and
control

Time sheets
Time reports

In-house Dis-
bursement
recording

Telecommunications
Courier and postage
Document copying and
binding
Travel expenses
Accommodation
Subsistence
Entertainment
Laboratory
Computing
Consumables
Specialised services

Project service requests
In-house Disbursement re-
ports

Goods and services sourced
in house on a cost basis
to support production
projects.
Expenses/costs recorded to
be accounted for in project
expenses.
Can be recovered from
projects and invoiced.

Project ordering
and creditors

Professional services bought
Telecommunications
Courier and postage
Document copying and
binding
Project travel expenses
Project accommodation
Project subsistence
Project entertainment
Laboratory services
Computing
Specialised services

Project expense orders
Project disbursement re-
ports

Goods and services ordered
to support production
projects.
Expenses/costs recorded to
be accounted for in project
expenses.
Can be recovered from
projects and invoiced.

Business order-
ing and creditors

Professional services bought
Consumables
Telecommunications
Courier and postage
Document copying and
binding
Travel
Accommodation
Subsistence
Entertainment
Computing
Specialised services

Orders
Creditor reports

Goods and services ordered
to support business pro-
cesses. Recorded as over-
heads.

Professional time
costing

Personnel register
Rate tables

Produce classified time rate
tables.

Project registra-
tion

Project register
Project list

Client registra-
tion

Client register
Client list

Link to debtor implied.

Personnel credi-
tor registration

Personnel register
Personnel creditor list

Can be used to administer
contract labour expenses.

Personnel debtor
registration

Personnel register
Personnel debtor list

Petty cash ad-
ministration

Administer cash
Record expenses

Expenses can be project or
business (overhead) related.

Project budget-
ing

Project time budgeting
Project income budgeting
Project expense budgeting

Project budgets

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 179

Table 18.2: Finance, accounting and bookkeeping processes and objects (continued)

Process Activity Related accounting ob-
jects

Notes

Invoicing Project invoices and tax
(VAT) invoices
Project credit notes and tax
(VAT) credit notes
Personnel invoices
Personnel credit notes
Other invoices
Write up expenses to quoted
prices
Write off expenses exceeding
quoted prices

Invoicing budget
Invoices

Asset recording Record new assets
Write off old assets
Depreciation accounting

Asset register
Asset report

Remuneration Salary determination
Salary adjustments
Periodic payment processing

Salary scales
Salary payment report

Financial report-
ing

Creditors reporting
Debtors reporting
Invoicing and sales reporting
Income / expense account-
ing transactions

Creditors journal
Debtors journal
Sales journal
Cash journal

Project report-
ing

Project status and expense
reporting as required

Various project reports

General ledger
processing

General ledger account
structure design
General ledger account
maintenance
General ledger journals

General ledger
General ledger journal

Banking Bank account reconciliation Bank statement
Bank reconciliation report

Auditing Payroll and personnel cycle
audit
Acquisition and payment cy-
cle audit
Consumables inventory and
storage cycle audit
Capital acquisition and re-
payment cycle audit
Cash balance auditing

Audit plan and programme
Audit working papers
Audit report

Audit only required by law
for companies.

The selection of daily, weekly or monthly cycles for time sheets is typically dictated by the time
management cycle as well as the invoicing cycle of the business. With the widespread use of computer
workstations and communication networks in businesses, the completion of a daily time sheet should not
be a problem for the disciplined worker. This can also interact with the diary recording requirement of
a typical professional.

An example of a basic time sheet is shown in figure 18.1.

18.2.5 Disbursement recording and costing rates

To record in-house disbursements such as travel, subsistence, copying, document production, postage and
courier, contract labour, laboratory expenses and other costs, rate tables are required. Some rate tables
are prescribed by clients and other are computed by in-house costing clerks and managers.

Project and overhead disbursements are recorded as they are made. A suitable recording facility which
ensures disciplined data capture linked to the project reference or overhead cost code is required.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 180

Figure 18.1: Basic time sheet example

18.3 Work in process

Work in process (WIP) is a very important key asset of a professional services organisation. It is the
equivalent of the finished goods inventory of a manufacturing business and needs to be managed with
care. WIP forms the basis of invoice generation for both time and expense base invoices (refer to section
18.5) as well as fee based (fixed price) invoices.

18.3.1 Professional time Work in Process

Professional time work in process represents all the project time expended on a project which has not
been catered for in an invoice.

18.3.2 Disbursement Work in Process

Disbursement work in process represents all the project related disbursements i.e. in-house as well as
project creditor related which have not been taken up in an invoice.

18.3.3 Work in process management

A number of possible actions can be applied to a work in process entry.

• It can be included in a time and expense invoice as such

• It can be allocated to an invoice item in a fee based (fixed price) invoice

• It can be written off and not included in an invoice

• It can be written up to correspond to an invoice item in a fee based (fixed price) invoice

Whether formal accounting of WIP is required is an open issue which is discussed in section 18.7.2.12.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 181

18.4 Professional Services Invoices

The professional services invoice is a key document in the administration of the monetary income stream
of a professional services organisation. This section defines an invoice and describes the format of the
document as well as the procedure for generating and invoice as well as the links to related datasets
feeding data into the invoicing process as well as the datasets receiving the invoice data.

Refer to table 18.3 for a specification of a professional services invoice.

18.4.1 Definition of an invoice

An invoice is a legal document issued by a business enterprise to a client/customer to indicate the extent
of money owed for services and goods rendered to the client. It is a ‘bill written by a seller of goods or
services and submitted to the purchaser’.

18.4.2 Management of the invoicing cycle

The invoicing process per project is typically triggered by an entry in the project or office cash flow
budget. The budgets are reviewed on a monthly basis to decide which projects are at a stage at which
the client can be invoiced.

Some organisations use pro-forma invoicing to issue draft invoices which are reviewed by clients before
the final invoice is edited and issued to the client.

Reference to the enterprise document management system to supply copies of invoices of goods and
services bought as part of project disbursements might be required. These documents typically need to
be added as supporting documentation to invoices.

18.4.3 Responsibility for issuing of invoices

The project leader or engineer or any personnel member higher up in the enterprise hierarchy can be
responsible for issuing project invoices and can delegate the activity to suitable administration personnel
available.

A typical professional services invoice contains data reflecting the information set out in table 18.3
and can be structured as shown in figure 18.2.

It is important to ensure that any requirements/specifications of a client for invoices issued to the
client are adhered to. This should prevent time absorbing interaction with the client where modification
of invoices and issuing of credit notes are required. The level of detail of an invoice as well as supporting
documentation required by a client needs to be determined at project startup to ensure efficient invoicing,
processing by the client of the invoice and prompt payment by the client.

18.5 Professional Service Invoice Specification

In general an invoice can contain fixed price line items as well as computed quantity/unit price line items.
The Work in process (WIP) professional time and labour as well as expenses/disbursement entries on
record per project needs to be reconciled with each invoice entry to allow control of the WIP.

The source data referred to for computed line items will always be reflected in the WIP labour or
disbursement record. If computed line items are added to an invoice where WIP is not referenced, WIP
write up entries for the project need to be generated.

A fixed price line item can contain a calculation indicating how the amount is derived from a set fee
calculation, based on a client requirement or client brief document reference.

Fixed price line items placed in an invoice need to be linked to the applicable labour and disbursement
WIP entries which apply to the specific item to ensure integrity of the WIP record for the project.

Table 18.4 lists the information hierarchies which the invoicing specification and generation process
links to.

A sample tax invoice display screen is shown in figure 18.2.
The invoicing data is transferred to the accounting dataset when the invoice is generated. It is also

then reflected in the debtor database.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 182

Table 18.3: Professional service invoice specification

Invoice date
Data of the enterprise issuing the invoice
Data of the client to which the invoice is addressed
A heading with data on the project/activity to which the invoice relates
Fixed price specified invoice line items
Computed quantity/ unit price invoice line items
Value added tax (VAT) percentage and amount
Currency in which monetary amounts are stated
Special terms and conditions which apply to the invoice
and or services and goods referred to on the invoice

Table 18.4: Information hierarchies which link to invoice specification and generation

Client dataset
Cash flow budget dataset
Fee calculation dataset

Professional labour rates dataset
Work in process

Accounting general ledger
Value added tax tables

Debtors

Figure 18.2: Tax invoice Example Screen

18.5.1 Value Added Tax (VAT)

South African tax legislation requires that business enterprises registered as tax vendors need to issue ‘tax
invoices’ which comply with the requirements of the South African Revenue Service (SARS). Publications
such as Huxam and Haupt [63] provide information on business VAT registration requirements and the
business VAT process.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 183

18.5.2 Accounting records and reporting on invoicing

As soon as an invoice is generated it is reflected in the applicable general ledger accounts.
The Sales Journal report, which is drawn from the general ledger accounts, supplies management

information on the invoicing activity for a selected period.
The detail general ledger income accounts required for the sales activities are listed in table 18.5.

Table 18.5: General Ledger Basic Sales Accounts

PROFESSIONAL FEES
ACCRUED PROFESSIONAL FEES
DISBURSEMENTS RECOVERED
ACCRUED DISBURSEMENTS RECOVERED
OTHER INCOME

The detail ledger liability accounts required for VAT accounting are listed in table 18.6.

Table 18.6: General Ledger VAT Accounts

VAT Account SARS form VAT
201A line item
No.

VAT OUT Supplies Goods/Service standard rate 1
VAT OUT Supplies Accommodation 9
VAT OUT Adjustments Change in use 11
VAT OUT Adjustment Other 12
VAT IN Goods/Services 14
VAT IN Capital Goods/Services 15
VAT IN Adjustments Change in use 16
VAT IN Adjustments Bad Debts 17
VAT IN Adjustments Other 18
VAT Return Clearing
Accrued VAT

18.5.3 The debtor cycle

As soon as an invoice has been issued and delivered the client becomes a debtor of the business and is
liable for payment of the invoice. Debtor control follows from monthly debtor listings with debtor ageing
information which can be followed up by administrators and management. Up-front agreements with
clients on payment terms should ensure prompt settlement of invoice payments due.

18.5.4 Credit notes and cancelling of invoices

If an invoice needs to be withdrawn or amended it is good practice to issue a credit note for the whole
invoice. A new invoice is then generated as required and the previous invoice is marked as deleted. The
WIP reversal, debtor system update, VAT reversal requirements imply that a consistent and complete
invoice reversal process which is the inverse of the invoice generation process is available as part of the
functionality of an enterprise financial management system.

18.5.5 Internal invoicing to personnel

A formal invoicing system of recovering expenses such as purchases made on behalf of personnel by the
enterprise or supply of goods and or services by the enterprise directly to personnel, can be administered
as part of the normal project invoicing operation or as a distinct invoicing operation. This indicates the
possible requirement of an invoicing operation information hierarchy for the enterprise.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 184

Table 18.7: Personnel and payroll general ledger accounts

Salary
Overtime paid
Leave paid out
Entertainment allowance
Car Allowance
Travel Reimbursed
Home and Office Rental
Computer Allowance
Annual Bonus Payments
Share and Loan Account Insurance
Spouse Insurance
Pension Contribution
Medical Aid Contribution
Unemployment Insurance Fund (UIF) Company Contribution
Workman’s Compensation Contribution
Income Insurance
Other Company Contributions
Provision for leave payment
Provision for bonuses

18.6 Personnel remuneration and payroll processing

Personnel payroll processing is discussed in section 19.3. As far as bookkeeping is concerned a set of
general ledger accounts are set up which link with the payroll processing system to record the financial
transactions involved. Sections for shareholders, technical personnel as well as administrative personnel
need to be maintained to support typical reporting requirements.

Table 18.7 lists general ledger accounts associated with payroll and personnel financial transactions.

18.7 Bookkeeping

Bookkeeping refers to the accounting processes taking place around the general ledger of accounts, cash
books, creditors and debtors. Asset register processing can also be classified under bookkeeping.

18.7.1 Accounting general ledger structuring and format

The general ledger contains all the accounts accessed in an accounting system as well as a series of control
accounts which are used as links to any subsystems linked to the general ledger.

18.7.2 The role and use of the general ledger in accounting

As a rule the general ledger is underutilised in accounting. The level of detail recorded in the general
ledger account structure dictates the level of detail to which reporting can be done for bookkeeping and
accounting.

With the advent of computer bookkeeping applications the number of accounts in the general ledger
does not impact on the workload of an accountant or auditor.

18.7.2.1 Structuring of the general ledger

Table 18.10 and table 18.11 shows an overview of an approach which can be adopted to structure a general
ledger for a professional services enterprise. This general ledger structure is based on development work
by Robertson [103] which describes an integrated practice management and accounting system.

Ill conceived general ledger structures like the alphabetical list of accounts provided by the audit pro-
fession with a view to income tax requirements should be avoided. The ‘Standardised Accounting System’
(South African Association of Consulting Engineers [113]) defined by the South African Association for
Consulting Engineers (SAACE) is an example of a poorly devised general ledger structure which should
not be used. If accounting data conforming to this ill conceived logic is required accounting reports can
be set up to supply data in this format.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 185

Table 18.8: General ledger matrix model

Account
Identifier

Balance
period 1

. . . Balance
period n

Budget
period 1

. . . Budget
period n

identifier .
identifier .
Subtotal 1: Subtotal 1 bal-

ance
period 1

. . . Subtotal 1 bal-
ance
period n

Subtotal 1 budget
period 1

. . . Subtotal 1 budget
period n

identifier .
identifier .
Subtotal 2: Subtotal 2 bal-

ance
period 1

. . . Subtotal 2 bal-
ance
period n

Subtotal 2 budget
period 1

. . . Subtotal 2 budget
period n

Total: Total balance
period 1 = 0

. . . Total balance
period n = 0

Total budget
period 1 = 0

. . . Total budget
period n = 0

Table 18.9: Debit and credit transaction logic: effect on account balances

Balance sheet accounts Debit Credit
Assets Increase (+) Decrease (−)
Liabilities Decrease (−) Increase (+)
Owner’s equity Decrease (−) Increase (+)
Income statement accounts Debit Credit
Income Decrease (−) Increase (+)
Expense Increase (+) Decrease (−)

18.7.2.2 Abstract mathematical model of an accounting system

An abstract mathematical model of general ledger based accounting systems is given in [86]. The general
ledger can be mathematically represented as a matrix. The matrix model consists of identified rows
(accounts) with a selected number of columns containing structured account balances for i.e. budget and
actual vales per period. Transactions modify any matrix entry and column totals need to remain zero if
a sign convention of debit (+) and credit (−) is adopted. This concept is depicted in table 18.8.

18.7.2.3 General ledger editing and updating

The implementation of general ledger data structure in commercial accounting packages is typically that
of a linked list. Accounts can be added and deleted. Accounts which contain transaction history typically
need to be retained until the end of a financial period after which they can be deleted without any future
referencing required.

18.7.2.4 Debit and credit

Double entry accounting transactions follow the logic outlined in table 18.9.

18.7.2.5 Cash books

Cash books record cash, cheque or electronic payment transactions at any point in the business where
these take place. Cash books systems are in the form of subsystems which link to the accounting system
via cash control and bank accounts. Bank reconciliation is required to ensure that the transactions
recorded in the bank account by the bank are in synchronisation with the transactions recorded in the
business.

18.7.2.6 Creditor system

The creditor (accounts payable) system is a subsystem of the accounting system dealing with creditor
transactions. Creditor transactions originate when goods or services are ordered from and supplied by
suppliers on credit to the business.

All detail information or creditors and transactions with creditors are maintained here.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 186

Special control accounts can be linked to the creditor subsystem which contain detail information
about all creditor transactions and can produce required journal listings as well as analysis and creditor
payment, discount and ageing reports.

A separate personnel creditor system can be set up to administer payments to be made to personnel
for goods and services supplied to the business.

18.7.2.7 Debtor system

The debtor (accounts receivable) system is a subsystem of the accounting system which records the status
of invoices issued to clients. When payments are made for invoices issued balancing debt reduction and
cash balance increasing transactions are recorded.

Special control accounts are linked to the debtor subsystem which contain detail information about all
debtor transactions and can produce the required journal listings as well as analysis and ageing reports.

A separate personnel debtor system can be set up to administer payments to be received from personnel
for goods supplied and services rendered by the business to the personnel.

18.7.2.8 The trial balance

The trial balance is a standard report listing all accounts in logical sequence with associated balances at
a given point in time to check that the system is in balance.

18.7.2.9 General ledger journal transactions

General ledger journal transactions are used to adjust and account balance as required. The transaction
must be defined to keep the accounting system in balance.

A general ledger journal transaction is defined and then posted to the general ledger in the accounting
database.

18.7.2.10 General ledger based accounting reporting

The general ledger structure should be able to supply the base data for a number of reporting functions
such as the balance sheet report and income statement reporting in various formats. Tree structured
reports to meet any management, tax or auditing requirement can be defined as long as the granularity of
the underlying account structure is good enough to accommodate the report data reference requirements.
Refer to chapter 12 for the techniques for defining such reports.

18.7.2.11 Financial period end processing

Accounting systems have financial period end processing functionality which has the purpose of transfer-
ring income/expense totals to accrued balance sheet entries at financial year end.

Calendar settings for monthly or yearly control of transaction entry are also set during these operations.
These operations are not strictly required in a system and can be done using general ledger journals.

The finite number of columns available for structuring general ledger transaction per accounting period
typically dictates the availability of this kind of functionality.

18.7.2.12 Accounting for WIP and costing data in the general ledger

It is possible to carry WIP and costing data in the general ledger. The costing or WIP accounts (or
control accounts used as a link to any costing or WIP system) should however be grouped logically so
that the balances of these accounts can be identified easily for inclusion of exclusion from structured
financial reports.

Reporting structures, based on the reconciliation of costing and accounting data, can be used to
determine cost rates e.g. the popular hourly technical personnel cost rate per 100 units of salary package
(20c/R100, 15c/R100, . . .) on an historical basis. The level of overhead costs can e.g. be determined in
this way and managed accordingly.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 187

18.7.2.13 Activity-Based Costing and Management

Glad and Becker [42] provides an overview of activity-based costing and management. The shortcomings
of the traditional model of cost management are described. The use of a properly structured project
system linked to a general ledger which contains a suitable level of detail can support any requirement of
this costing model.

18.7.3 Accounting system model

A data model for an accounting system as a database can be based on the structure shown in tables 18.10
and 18.11.

Database transactions to process accounting activities outlined above are required.

18.7.4 Accounting software implementation

Standard commercial accounting system software can be used to implement the general ledger account
structure shown here. Financial and costing accounting transactions can be generated by project, debtor,
creditor, personnel salary, asset and facility management, laboratory and other subsystems as required
and imported into the accounting system on a regular basis. Geographically decentralised systems with
suitable network or other data links can also be set up, as required.

Table 18.10: Overview of the typical structure of a general ledger - Assets and Liabilities

Level Description:
Level 1

Description:
Level 2

Description:
Level 3

Description:
Level 4

A Balance sheet ac-
counts

1. Assets
1.1 Enterprise assets

1.1.1 Fixed assets
1.1.2 Current assets
1.2 Office assets
1.2.1 Fixed assets
1.2.2.1 Instalment sale assets
1.2.2.2 Leased assets
1.2.2.3 Rental assets

1.2.2.4 Accumulated depreci-
ation

1.2.3 Current assets

1.3 Departmental/Divisional
assets

2 Owners Equity

2.1 Capital

2.2 Loan accounts
2.3 Retained earnings

3. Liabilities
3.1 Long term liabilities

3.2 Current liabilities

4 Balancing/Clearing
accounts

18.8 Processing orders for materials, goods and services

Orders for material, goods and services for project work which are not supplied and stocked in-house in
the business can be obtained on a controlled order basis and paid for in cash or via the creditor system.
The approved project budget will typically indicate requirements of this nature.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 188

Table 18.11: Overview of the typical structure of a general ledger - Income / Expenses

B Income/ Expense ac-
counts

5. Income
5.1 Enterprise Income

5.2 Departmental/ Divi-
sional Income

5.2.1 Recoverable expenses

5.3 Office Income
6. Expenses

6.1 Enterprise Expenses

6.1.1
Cost of sales - enter-
prise

6.1.2 Administration

6.1.3 Personnel recruitment
and benefits

6.1.4 Donations
6.1.5 Interest paid

6.1.6 Professional liability
insurance

6.1.7 Discount received
6.1.8 Dividends paid

6.2
Departmental/Divisional
Expenses

6.2.1 Cost of sales - depart-
ment

6.2.2
Project production
expenses

6.2.3 Promotional expenses

6.2.4 Personnel develop-
ment

6.2.5
Administrative ex-
penses

6.3 Office Expenses

6.3.1 Cost of sales - office
6.3.1.1 Salaries
6.3.2 Administration
6.3.3 Depreciation

6.3.4 Repair and mainte-
nance

6.3.5 Rental of equipment

6.3.6 Insurance
6.3.7 Losses and write offs

6.3.8 Consumables and sun-
dries

6.3.9 Rates and rentals

6.3.10 Profit sharing and
bonuses

18.9 Professional practice finance

Finance for service providing professional practices is typically obtained from the proprietor, partners or
company directors as shareholder loans.

Short term finance can also be obtained in bank overdraft form as required.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 189

18.10 Auditing

Auditing processes are required by law for companies according to the Companies Act. The main purpose
of auditing is to ensure the quality of financial reporting in the business. Accounting data is audited to
ensure that the recorded and reported information accurately reflects the economic events that occurred
during the accounting period.

An audit plan and programme is drawn up and the auditors draw up audit working papers as docu-
ments and systems are checked.

Audits of the following business cycles and balances are done:

• Payroll and personnel

• Acquisition and payment

• Consumables inventory and storage

• Capital acquisition and repayment

• Cash balances

Texts such as Arens and Loebbecke [5] and Heymans [55] provide and overview of the auditing process
and requirements as well as detail information on procedures to be followed during a business financial
audit.

18.11 Conclusion and recommendations

The review of the record keeping for costing and finance, bookkeeping and auditing functions of the
professional services enterprise in this chapter indicates that the systems can be modelled and structured
using basic mathematical constructs and database concepts such as those discussed in chapters 4 and 7.

Commercial accounting software systems can be linked to other business systems to provide generalised
management reporting functionality structured as described in chapter 12. These business systems can
be database driven.

CHAPTER 18. FINANCE, BOOKKEEPING AND AUDITING 190

F
ig

u
re

18
.3

:
E
ng

in
ee

ri
ng

Se
rv

ic
es

E
nt

er
pr

is
e

Sy
st

em
s

Chapter 19

Personnel Management

Personnel management is also termed human resources management.
Models for personnel management consist of business objects and activities and processes for personnel

management for a professional services business.

19.1 Business objects for personnel management

A listing and classification of personnel related business objects is given below.

19.1.1 High level logical personnel management objects

High level logical personnel management objects are listed below. The approach given here is being
adopted in the OnePurdue initiative to develop new Enterprise Resource Systems for Purdue University
by integrating mission-critical enterprise data, information and business processes. Refer to Purdue
University - OnePurdue Project [98].

• Persons: Objects that hold positions within an organisational structure

• Jobs: General classifications of groupings for sets of tasks of functions an employee is required to
perform

• Positions: These are instances of jobs and can be one-one for single employee filled positions or
grouped for multiple employee filled positions

• Organisational Units: Business units which provide the structure to which positions are linked

• Cost centres are maintained in financial accounting and typically default to Organisational Units

19.1.2 Personnel management objects

Other objects which play a role in personnel management are listed below.

• Calendar with working days

• Person or personnel member

• Jobs or posts with job descriptions and staffing plans

• Organisational Units – as defined above - these can be logical entities such as offices, technical
departments and administrative service departments

• Organisational structure – a graph defining logical links between jobs and organisational units

• Salary and remuneration scales

• Costing rates and tables typically linked to salary scales

• Personnel records and forms

• Training and course material
191

CHAPTER 19. PERSONNEL MANAGEMENT 192

• Office infrastructure (refer to Facility management in chapter 21

• Personnel tax schedules

• Personnel deduction schedules for e.g. pension, insurance etc.

• External compliance documentation e.g. labour law documentation

• Internal compliance documentation e.g. company strategy and policy documents

• Labour unions and personnel organisations

19.2 Personnel management processes

Personnel management processes identified by Gerber et al. [41] include:

• Human resources strategy development and planning

• Structuring of organisation

• Job description development

• Recruiting for personnel

• Selecting personnel

• Placing and induction

• Day to day planning, organising and controlling of job related work

• Career guidance and management

• Intrinsic personal motivation

• Performance appraisal

• Remuneration

• Fringe benefit goods and services allocation

• Quality of work life assessment and management

• Health and safety management

• Leadership development

• Group formation and organisational development

• Labour relations management

• Training

• Management development

• Management of the technology-human interface.

19.3 Payroll management systems

Payroll management systems are typically customised for the requirements of a specific country.
Systems which are available in South Africa include Pastel Payroll Software Softline Systems [111]

and VIP Payroll Software Softline VIP [112].

19.4 Personnel Debtors

A personnel debtors system is used to record goods or services provided by a business to its personnel
and manage the payment for the goods or services. Typical applications are company funded housing,
transport and other benefits.

CHAPTER 19. PERSONNEL MANAGEMENT 193

19.5 Personnel Creditors

A personnel creditor system is used to record goods or services supplied to a business by its personnel.
Contract hourly paid labour can be managed in this way.

19.6 Conclusions and recommendations

The review of the personnel function of the professional services enterprise in this chapter indicates
that personnel systems can be modelled and structured using basic mathematical and database concepts
discussed in chapters 4 and 7.

Reported case studies of academic institutions, where the personnel function is supported by sophis-
ticated workflow and management support and reporting systems, can be used as input for to develop
systems for the professional services business.

Commercial personnel payroll software systems can be linked to other business systems to provide
generalised management reporting functionality structured as described in chapter 12. These business
systems can be database driven.

Chapter 20

Production

20.1 Introduction

The production process in the professional service business such as consulting engineering and architecture
revolves around the project. The project is viewed as the basic unit of work. In this chapter aspects of
project and project management including terminology used, project objects as well as project processes
which can be identified are discussed.

See Pieter Smit [110] for more detail.

20.2 Projects and project management

The project is the basic unit of work in a professional service organisation. The project has a given start
time and end time, is linked to a specific engineering or other product, infrastructure element or service
to be manufactured, constructed or developed for the benefit of the owner or project client as well as
other stakeholders in the project.

On large projects clients can also brief professional practices to manage the procurement cycle for
equipment to be built into constructed facilities as part of a project.

The complexity of project management in the professional practice increases with the advent of net-
work linked distributed environments in which work is executed.

20.3 Project management terminology

The discipline of project management abounds with terms which can be defined as required and related
to object hierarchies. Terms like programme, project, activity and work package relate to different units
in which project activities and groups of projects are grouped. A process can also be viewed as a special
type of project. Table 20.1 lists a number of these terms. Some of the definitions were sourced from
Burke [21].

20.4 Production management business objects

Production management business objects can be referenced to the theoretical approach outlined in Chap-
ter 11.

The basic production management business objects are:

• persons or groups of persons

• tasks

• tools used to perform tasks

• units of data operated on by persons, tasks and tools

Tasks (activities) can take the form of planning, design, specification and documentation activities
grouped together to form a logical project.

Other related objects which are typical instances of data or units of data (datasets) include project
related:

194

CHAPTER 20. PRODUCTION 195

Table 20.1: Project management concepts and terms

Project Management Concept Description
Project A basic unit of work that has a given start time and end time.
Activity A task, job or operation to be performed to complete a work package or

project
Process A series of activities which are performed to achieve a business goal
Work package A group of project activities which can be performed in a given location

by a given set of project resources and which can be estimated, planned
and assigned to a responsible person or department for completion

Work breakdown structure A work breakdown structure (WBS) subdivides the scope of work into
manageable work packages

Resource allocation The linking of a resource (manpower, tool, materials, goods or services) to
an activity or work package

Earned value analysis The estimating, recording and reporting of a parameter or set of parame-
ters based on the earned value structure of the project to monitor project
progress

Configuration control The scope of work of the project is stated and updated as required
Project life cycle Phases that a project passes through. Typical life cycle phases identified

are concept and initialisation, design and development, implementation
and construction and commissioning and handover.

Gantt chart Display of project activity logic on a time scale
Critical path method (CPM) The identification of the project activities on the critical path i.e. activities

whose execution timing controls the total project time
Program Evaluation and Review
Technique (PERT)

PERT is a logical network based method to analyse the tasks involved in
completing a given project and to compute the minimum time needed to
complete the total project.

Project management:
Project Scope -

Project Time -

Project Cost -

Project Quality -

Project Human resources and teams
-

Project Communications -

Project Risk -

Project Procurement and Logistics
-

Project Scope - The process required to ensure that a project contains
all the work required to complete it successfully

Project Time - Select project calendar and identify time periods form
project

Project Cost - Total of all costs expended on project

Project Quality - The process to ensure that the project will satisfy the
needs for which it was undertaken

Project Human resources and teams - Staffing and management of project
personnel

Project Communications - The process required to ensure timely handling
of project information

Project Risk - Evaluation and management of uncertainties associated
with a project

Project Procurement and Logistics - Supply of resources and storage of
material for project

Project organisation structures Any structure linking tasks, persons, and tools for management purposes
Project costing and estimating
Resource planning: scheduling and
levelling

Resources required to execute project activities are allocated and activities
and or resources adjusted to solve undersupply and oversupply situations

Project accounting, payment certifi-
cation

Reviewing project payment claims by contractors and suppliers and certi-
fying invoices for payment by the client

• project calendar

• plans

• budgets

• communication objects such as letters, proposals, internal reports and external reports

• bills of quantities

• specification documents

• tender documents

• contract award documents

• contract administration documents

CHAPTER 20. PRODUCTION 196

• photographs, videos and other image and voice recordings

• construction payment claims, certificates and invoices

• completion reports

• professional fee invoices

The project and its component activities can be modelled as a business object linked to a series of
defined hierarchies for business reporting purposes.

20.5 Project management processes

Typical project processes which can be identified are:

• Project identification and conceptualisation

• Coordinating activities with client and other parties

• Proposal development

• Planning and budgeting

• Design

• Specification and documentation

• Tender administration

• Contract administration

Project management processes which are designed to steer and control the project processes are:

• Project team staffing and organising

• Production budgeting and time scheduling

• Project scoping to determine output required

• Identification and sourcing of project tools and resources required

• Production planning

• Production scheduling and control

• Record keeping of activities

• Client invoicing

Figures 20.1 and 20.2 show the concept and structure of a process protocol model, developed at
Salford University in the UK and funded by Physical Sciences Research Council (EPSRC), referred to in
Kagioglou et al. [67]. This model provides a general design and construction process protocol.

20.6 Functionality required of a project management system for
professional services

A project management system which is suitable for the professional practice environment needs to support
the following functionality.

• project status setting i.e. proposal, time and expense, fee basis, administrative, completed and
other as required

• link to client database

• project logic structure model i.e. activities and sub projects

CHAPTER 20. PRODUCTION 197

• project budgeting per activity linked to personnel rate and disbursement datasets

• project professional time and disbursement recording

• project creditor management

• currency conversion for foreign projects

• link to time and expense basis as well as fixed price invoicing

• work in process reporting and management

20.7 Software implementation

Commercial software systems which contain implementations of project management for professional
service businesses are discussed in chapter 26.

20.8 Time Management

Time management plays a vital role in the execution of projects. Priorities are typically assigned to project
tasks and time estimates made to ensure that programs drawn up can be completed on time. Resource
scheduling based on job shop principles is required to ensure productive use of project resources.

Barlow [12, Section 11 - Time utilisation] contains guidelines on time management for the professional
engineer.

20.9 Projects for administration management

Non-terminating projects can be used to manage and carry management information for corporate ‘over-
head’ enterprise activities. Typical projects which can be defined include strategic planning, regional
management, office management, marketing management and other.

20.10 Conclusions and recommendations

The review of the production function of the professional services enterprise in this chapter indicates that
production systems can be modelled and structured using basic concepts discussed in chapters 4 and 7.

The production function is one where the Engineering process model approach described in chapter 13
can be adopted with great success. Additional attributes can be added to the tasks, person, datasets and
tool objects to model functionality required for production management. Links to other data contained
in business databases, such as the personnel and project register databases, can be defined to support
system functionality required.

The present implementation of the Engineering process model which uses a step schedule needs to be
extended to make time-based, calendar-linked scheduling of tasks possible.

Commercial project management software systems can be linked to other database driven business
systems to provide generalised management reporting functionality structured as described in chapter 12.

CHAPTER 20. PRODUCTION 198

F
ig

u
re

20
.1

:
Sa

lfo
rd

P
ro

ce
ss

P
ro

to
co

l
-

P
ar

t
A

CHAPTER 20. PRODUCTION 199

F
ig

u
re

20
.2

:
Sa

lfo
rd

P
ro

ce
ss

P
ro

to
co

l
-

P
ar

t
B

Chapter 21

Facilities and Document Management

21.1 Introduction to Facilities Management for the Engineering Services
Business

Facilities management in the engineering services business environment focuses on the management of
physical artefacts required for business processes and activities.

The service business can be the owners or occupiers of building facilities and other infrastructure and
should place emphasis on the medium term and long term aspects and processes involved in the optimal
utilisation of these assets.

Private sector property owners require market related return on the capital invested in the property
that they own and typically manage the property with this goal in mind. In the public sector the
management of requirements (benefits) and containing of costs relating to facilities in use, is the approach
adopted.

To support the better utilisation of infrastructure Facilities Management (FM) as a management
discipline implementing knowledge and procedures from a number of professions has been developing.

The management of artefacts which are data and information related are discussed under Knowledge
Management in chapter 22.

This chapter uses material developed in articles by Strasheim et al. [118] and Strasheim [117] as well
as an undergraduate project by Rooseboom [105].

21.2 Models for facility management

Models for logistics management consist of business objects and activities and processes for logistics
management for a professional services business.

21.3 Business objects for facility management

Selected business objects required for facility management processes are discussed below.

21.3.1 Definition of business artefacts and business objects

Business artefacts are defined as all inanimate physical and abstract entities/objects which are used or
referenced in the ongoing business processes of any given enterprise.

Artefacts can be logically classified as physical infrastructure, energy and water supply, waste removal,
physical consumable stock items, portable business equipment, tools and computer systems, procedure
manuals, books, documents, computer software and intellectual property. Refer to the Matter Energy
Information (MEI) technology classification hierarchy developed by Rias van Wyk [123].

Facilities typically contain a number of subsystems which need engineering expertise in the develop-
mental, operational, service and refurbishment phases of the service life of a facility. The office building
and internal objects and subsystems listed below have differing service and refurbishment cycles ranging
from days to 30 to 50 years.

1. Furniture and desktop equipment

2. Telecommunication cabling and equipment

200

CHAPTER 21. FACILITIES AND DOCUMENT MANAGEMENT 201

3. Security and alarm systems

4. Lighting

5. Space division and utilisation partitions

6. Solid waste removal and recycling

7. Air conditioning and ventilation ducts, heating and cooling systems

8. Water supply, waste water removal, irrigation and storm water pipe networks

9. Structural components of the building

21.4 Management disciplines which relate to business object facility
management

The International Facility Management Association (IFMA) IFMA [64] lists the functions of facility
management shown in table 21.1.

Table 21.2 contains a classification of the business objects and the applicable management discipline
which typically deals with the business objects listed.

Table 21.3 displays an overview of the goals of facility management on the strategic (long term),
functional (technical or developmental) and day to day management levels.

21.5 Management aspects and business artefacts

Table 21.4 indicates typical business management activities relating to business artefacts.

21.6 Aspects of facilities management activities and processes

21.6.1 Operations for office spaces in buildings

The operational activities which form part of the general management of buildings include space man-
agement, budgeting and financial control, asset management as well as servicing management discussed
below.

Management of spaces

To manage spaces an inventory of spaces with functional characteristics is required. The development of
a unit cost reference data base relating to spaces and their use in a building is needed to support this
activity.

Contracting and renting

The procedures involved in the contracting process between landlords and tenants typically require legal
input.

Budgeting and financial control

Building owners and landlords evaluate typical cost elements such as building capital cost, municipal
services, energy, climate control and air conditioning, property taxes, cleaning services, maintenance
(short and long term), security and access control and insurance and manage these costs by allocating
costs to activities, drawing up budgets with guideline deviations to be monitored and call on reporting
on values and tendencies. The processes involved in invoicing rents and tenant debt management can be
classified under this heading.

Asset management

Asset management deals with asset registers used for valuing, risk management and insurance and de-
preciation purposes and the general control of assets. Scheduling of maintenance and service requires
reference to the asset register.

CHAPTER 21. FACILITIES AND DOCUMENT MANAGEMENT 202

Table 21.1: Facility Management Functions

Function Related disciplines/ Activities
Strategic and tactical planning Property management and economics
Financial forecasting and budgeting Financial, auditing, quantity surveying
Real estate procurement, leasing and disposal Real estate, legal, property valuation
Procurement of furnishings, equipment and
outside facility services

Interior decorating, facility planning

Construction, renovation and relocation Architecture, Engineering and Economics
Health, safety and security and code compliance Health, legal
Environmental issues Environmental Engineering
Development of corporate facility policies and
procedures

Strategic management

Building operations and maintenance Engineering and facilities management, soft-
ware engineering

Quality management, benchmarking and best
practices

Management with engineering input

Architecture and engineering planning and de-
sign

Architecture and engineering

Space planning and management Facility management
Management of support services e.g. trans-
portation and catering

Facility management

Telecommunication Engineering, utility management

Table 21.2: Relation between business objects and management disciplines

Object Class Applicable management discipline
Physical infrastructure, energy and water sup-
ply, waste removal (Matter and Energy)

Facilities management

Portable business equipment (Matter) Facilities management
Consumable stock supply (Matter) Logistics and procurement management

Refer to chapter 23
Procedure manuals, books, documents,
computer software and intellectual prop-
erty.(Information)

Document management
Refer to section 21.8

Table 21.3: Engineers and Facility- and Practice Infrastructure Management

Level Strategic Functional Management
Facet
Goals Optimal deployment of

capital with an optimal re-
turn

Optimal development and
upgrading of facilities

Optimal cost-efficient op-
eration of facilities

Activities Planning Tasks Engineering Tasks Management Tasks
Selection of possible in-
dustrial, residential of
business projects; Procure
finance and know-how in
general

Setting of design stan-
dards; Planning and detail
design; Tenders and con-
struction; System devel-
opment and deployment

Operations; Maintenance;
Risk Management; Finan-
cial Management; Infor-
mation processing and re-
porting

Outcomes Long term plan: Finance
and development

Successful development
projects

Management plan and
procedures; Operational
budget

CHAPTER 21. FACILITIES AND DOCUMENT MANAGEMENT 203

Servicing and operational management

Aspects of the operation of buildings which need to be managed are classified under this heading i.e.
security and access control, personnel facilities such as cafeterias and toilets, cleaning and solid waste
disposal, energy and water supply, waste water removal, telecommunication, lighting, climate control and
maintenance of indoor plants and gardens.

21.6.2 Monitoring and managing building subsystems

Some building subsystems such as climate control and energy supply need real time control activities
with suitable reporting and feedback of data.

21.6.3 Maintenance

Planned maintenance as well as response maintenance are activities typically dictated by features designed
and built into buildings.

Decisions on resources to be deployed for maintenance i.e. use of in-house personnel with suitable
tools and equipment and support from outside service contractors need to be based on accurate quality
of service and costing data.

Schedules for routine maintenance, planned maintenance and refurbishment need to be available from
the onset of the service life of a facility to ensure that the expenses required are planned for.

21.6.4 Risks and exceptional events

Unforeseen events can have an impact the day to day activities in a building as well as the profitability
of its operation. Typical events which can occur and will need immediate management attention include
malfunction of system components within the expected service life, vandalism and poor quality mainte-
nance. To deal with damage to facilities due to fire, natural disasters such as floods, earthquakes as well
as political uprising suitable crisis planning is required.

The product of thinking under this heading will be a general risk management plan which includes
an insurance portfolio plan and crisis management procedures.

Chapter 25 deals with risk management in general.

21.6.5 Health and safety

The facility manager needs to be conversant with the legal requirements and must ensure that buildings
which the public have access to as well as buildings occupied by personnel comply with the applicable
legislation and regulations.

21.6.6 Feedback from the operational environment to the planning and design
environment

The importance of structured feedback from the operational environment to the planning and design
environment to establish best practice principles regarding typical layouts, finishes and equipment con-
figurations which perform satisfactory should be encouraged.

21.7 Software Implementation

Computerised information systems play an important supporting role in facilities management practice.
The collection of reference and performance data as well as the processing and presentation of information
for operating and management decision making is required.

Typical uses of information systems in facilities management are:

1. Maintenance of ‘as built’ and ‘as is’ drawings and data sheets

2. Management of space utilisation in facilities

3. Indexing and cross referencing of the facility component inventory for asset management and valu-
ation purposes

4. Maintenance management i.e. planning, scheduling controlling and costing

CHAPTER 21. FACILITIES AND DOCUMENT MANAGEMENT 204

5. Computerised financial systems which include costing, accounting, modelling and reporting func-
tions.

The software technology which can be directly applied or adapted for use in facility management
applications are listed below.

• General commercial systems i.e. spreadsheet, word processing and database systems.

• CAD - Computer Aided Drafting

• GIS - Geographic Information Systems

• MMS - Maintenance Management Systems

• Purpose made facility management software

21.7.1 Asset register

The asset register which typically forms part of a bookkeeping system provides the logical link from the
facilities management to the bookkeeping system. Commercial software asset register implementations
carry data on the capital value, depreciation, maintenance expenditure and write-offs which are linked to
the general ledger for financial reporting.

21.8 Document management

Models for business document management consist of business objects and activities and processes for
document management for a professional services business.

Burgers [20] defines document management systems as computerised software systems that will man-
age the creation, retrieval and indexing process of documents to secure and centralised repositories.

The articles by Burgers [20] and Albertyn and Fourie [2] contain further material on this topic.

21.8.1 Business objects for document management

The document objects which are dealt with in this section refer to completed internal documents developed
for projects as well as documents brought into the business from external sources.

Documents can be broadly classified as relating to a specific project or to the business aspect of the
organisation.

Table 21.5 lists the document media formats which are in use. Management decision making as to
the format to be used for long term storage of information is required. Conversion of all material which
needs to be archived to a standard format which will be maintainable and readable in the future needs
to be considered.

References such as National Institute of Standards and Technology, [88], contain detail information
on media formats and the applicable advantages and disadvantages of their use.

21.8.2 Document management business processes

Typical document management related activities and business processes for the professional services
business include:

• Document procurement

• Document storage and security management

• Document indexing

• Library service support for obtaining documents located internally and externally to the business

• Document media format conversion

• Document archival at secure off-site storage facilities

• Document destruction

CHAPTER 21. FACILITIES AND DOCUMENT MANAGEMENT 205

Table 21.4: Management activities relating to business artefact classification

Artefact
Class

Investigation,
environ-
mental
scanning
and fore-
casting

Planning
and budget-
ing

Organising Leading Co-
ordinating

Controlling

Physical in-
frastructure,
energy and
water supply,
waste removal
(Matter and
Energy))

Estimating
requirements

Office plan-
ning and
budgeting

Office facility
organising

Leading office
administra-
tion personnel

Interaction
with land-
lords, local
government
and utility
companies

Quality
control of
physical office
environment

Portable
business
equipment
(Matter)

Estimating
requirements,
costs and
technology
scan

Equipment
planning and
budgeting

Business
equipment
roll out and
operation

Leading
equipment
operations
and main-
tenance
personnel

Business
equipment
operations
and mainte-
nance

Checking
and machine
performance
monitoring

Consumable
stock supply
(Matter)

Estimating
requirements
and costs and
product scan

Consumable
stock plan-
ning and
budgeting

Stock order-
ing, storage,
requisitioning
and distribu-
tion

Leading stock
administra-
tion personnel
and activities

Stock replen-
ishment and
ordering

Stock control
costing and
accounting

Procedure
manuals,
books, doc-
uments,
computer
software and
intellectual
property.
(Information)

Development
requirement
scan, product
scan, cost
estimates

Development
and supply
planning and
budgeting

Organising
development
and supply,
storage, req-
uisitioning
and distribu-
tion

Leading de-
velopment
and admin-
istration
activities

Coordinating
distribution,
storage and
access control

Checking
distribution,
storage and
access control

Table 21.5: Document media formats

Document media for-
mat

Encoding Document type exam-
ple

Text and images Printed
on paper

Visible text and graphics Letters, Articles, Draw-
ings, Magazines, Books in
bound paper format

Images printed on photo-
graphic paper

Visible images Printed photographs

Magnetic data disks Digital electronic Computer data
Magnetic audio disks Digital electronic Audio (voice and music)

on disk
Magnetic video disks Digital electronic Video on disk
Compact Laser Disks Digital electronic CD’s and DVD’s for data,

audio and video material
Flash semiconductor
memory devices

Digital electronic Computer flash disks

Video tapes Analogue electronic Video cassettes
Audio tapes Analogue electronic Audio (voice and mu-

sic)cassettes
Photographic microfilm Micro images on film Microfilm images
Photographic film and
slides

Positive or negative im-
ages on film

Film negatives and 35 mm
slides and cinema film for-
mats

CHAPTER 21. FACILITIES AND DOCUMENT MANAGEMENT 206

• Document copyright protection

The extent to which document collections belonging to personnel of a business need to be integrated
into the document management system of the business is an issue which needs to be negotiated. Personnel
can be supported to index personal satellite libraries which can then be linked to the central system and
uncoupled again from the system as required.

21.9 Conclusions and recommendations

The review of the facilities and document management function of the professional services enterprise
in this chapter indicates that facilities and document management systems for the enterprise can be
modelled and structured using basic concepts discussed in chapters 4 and 7.

The implementation of expensive commercial facilities and document management software systems is
seen as an ‘overkill’ for the typical professional service provider. Facilities management does not constitute
the main goal of the business.

A facilities management outsourcing service as a parallel product offered by an engineering consulting
group of course requires the deployment of software to support the service offered. An example of such
a business is described at WSP Group [128].

Basic database driven facility and document systems can be developed to provide the required business
process and management reporting functionality.

Chapter 22

Knowledge and Information Management

22.1 Introduction to knowledge management

Knowledge Management (KM) refers to a range of practices used by organisations to identify, create,
represent, and distribute knowledge for reuse, awareness and learning across the organisation. Knowledge
Management programs attempt to manage the process of creation or identification, accumulation, and
application of knowledge or intellectual capital across an organisation. Wikipedia [126].

Knowledge management focuses on the management of artefacts which are data and information
related.

In a professional service business a large proportion of the knowledge is seated in the highly trained
technical personnel employed by the organisation. It is a challenge for the management of such organisa-
tions to implement strategies to extract, distill and store parts of the intellectual capital outside selected
individuals. This will reduce the risk of concentration of knowledge and the effect on the knowledge
available when personnel leave the organisation.

22.2 Models for business knowledge management

Models for business knowledge management consist of business objects and activities and processes for
knowledge management for a professional services business environment are discussed here.

22.2.1 Business objects for knowledge management

A listing of selected business objects for knowledge management is given in table 22.1. A classification of
technical disciplines with which a business interacts needs to be drawn up and standard keywords defined
which can be used on project records and library catalogues to support retrieval of required information.

Table 22.1: Business knowledge management objects

Knowledge management object Linked management activity or processes
Intellectual capital Identification and storage
Structured technical discipline
database with keywords

Project registration

Library classification e.g. Dewey sys-
tem

Book and media sourcing and purchase

Project information source reference Project diary or web site
Practice manual / Project manual All project production related work and processes
Business procedure manual All business functions and processes
Candidate technique listing Environmental scanning for technology and business

techniques
Trademarks, registered designs and
trade secrets

Trademark and design identification and registration
as required

Copyright and patents Patent identification and registration as required

207

CHAPTER 22. KNOWLEDGE AND INFORMATION MANAGEMENT 208

The Practice or Project Manual

A professional service business should adopt the approach of a learning organisation and make a long
term investment in the development of a practice or project manual.

The practice manual should also contain standard procedures as well as formats of forms and other
documents for project, contract and construction administration.

The business procedure manual

A business procedure manual can be developed in parallel with a practice manual.
It should contain all standard procedures applicable to the business. The manual can be organised

by business function or any other logical structure relating to the business. Standard formats of business
forms and documents should be contained in the document. The manual contents can be made available
on a business intranet for easy access.

The manual should be an invaluable resource to support the induction and training of new personnel.

22.2.1.1 Software systems

Software systems and the datasets associated with them can be useful sources of project and business
information. To make this source available ‘Search engine’ type software which can search company
datasets can be useful.

22.3 Knowledge and information for project execution

Wikipedia [126] states that individuals undertaking a new project for an organisation might access infor-
mation resources to learn best practices and lessons learned for similar projects undertaken previously,
access relevant information again during the project implementation to seek advice on issues encountered,
and access relevant information afterwards for advice on after-project actions and review activities.

Knowledge may be captured and recorded before the project implementation, for example as the
project team learns information and lessons during the initial project analysis. Similarly, lessons learned
during the project operation may be recorded, and after-action reviews may lead to further insights and
lessons being recorded for future access.

The key to accessing this information is a well structured keyword driven system linked to project
records. Formal use of project diaries which can be placed on project web sites will ensure that rele-
vant information is recorded. Knowledge management systems, repositories, and corporate processes to
encourage and formalise these activities are required.

22.4 Protecting business artefacts against misuse

Protecting business artefacts which include knowledge can be achieved using trade marks, registered
designs, trade secrets, copyrights and patents as required.

Business logo’s and trade marks can be registered to ensure that unauthorised use by other parties
does not occur. Unique designs can also be registered if required.

A business should guard against copyright infringements. Using copyrighted material can lead to legal
actions. On the contrary action against parties misusing copyrighted business material can be considered.
In-house developed software products are also subject to copyright.

When innovative designs or products are developed patenting is a way of ensuring that other parties
do not provide similar products for a set period of time.

Employment and share holder contracts should contain clauses which state the way a person linked to
the business is allowed access to copyrighted or other protected material while in employ of the business.
It should also cater for procedures to be followed when the person leaves the company.

22.5 Conclusions and recommendations

The review of the knowledge management function of the professional services enterprise in this chapter
indicates that knowledge management systems for the enterprise can be modelled and structured using
basic concepts discussed in chapters 4 and 7.

A high level business goal to develop, document and protect business production (project) knowledge
as well as business procedure knowledge is required.

CHAPTER 22. KNOWLEDGE AND INFORMATION MANAGEMENT 209

Basic database driven knowledge systems can be developed to provide the required business process
and management reporting functionality.

Chapter 23

Logistics

23.1 Introduction to logistics for the professional service business enterprise

Mazda [81] states that logistics is the total concept encompassing the flow of goods from the supplier
through the manufacturing plant to the customer. It covers aspects in the manufacturing environment
such as procurement, goods receiving, work in progress, stock control, finished goods stores and distribu-
tion to the customer. Techniques such as just in time (JIT) and materials requirement planning (MRP)
are applicable in this environment. An indirect link from logistics to quality management e.g. total
quality management (TQM) techniques exists.

A dictionary definition of logistics reads: ‘The time related positioning of resources’ (Wikipedia [126]).
The professional service business is an information processing and document manufacturing business

and production logistical considerations revolve around this.
In parallel to the document manufacturing taking place, office supplies, consumables and stationery

needs to be sourced and made available to personnel when required.

23.2 Models for logistics management

Models for logistics management consist of business objects and activities and processes for logistics
management for a professional services business.

23.3 Business objects for logistics management

Certain business objects require logistics management processes.
Business objects which could benefit from a logistics approach to management are listed in table 23.1.

23.4 Professional Service Business Logistics Activities and Process

A professional service business deals with inbound logistics as well as with outbound logistics for selected
business objects. The terms inbound logistics and outbound logistics are used as primary business value
adding activities in the Porter value chain model shown in Glad and Becker [42, Figure 2.1].

Table 23.1: Business objects requiring logistics management

Business object Logistics management process required
Office stationery Typical material supply and stock holding manage-

ment
Copier, printer and facsimile machine con-
sumables

Typical material supply and stock holding manage-
ment

Project documents Requirements scheduling with internal project plan-
ning Input information and material
Internal content quality control

210

CHAPTER 23. LOGISTICS 211

Table 23.2: Project document classification

Project document type Description
Letter report Short report on technical query
Feasibility study Project evaluation before detail planning
Project planning report
Project design report Report defining design parameters and design execu-

tion
Bill of quantities List of items to be priced for budgeting or tender

purposes
Project specification Document describing project component require-

ments
Contract tender document Document containing conditions of contract, project

specifications, bill of quantities and tender drawings
Tender evaluation report Detailed evaluation of tenders received with recom-

mendation to client on appointment of construction
agent

Construction progress report Monthly report to client on project progress and cash
flow

Project completion report Report summarising actions and events through
project life cycle

23.4.1 Inbound logistics

Inbound logistics management processes for project document production as well as for office supplies
and consumables are required.

General activities relating to inbound logistics are:

• Checking of goods received to ensure complying with order quality, quantity and type.

• Returning defective goods for replacement or credit.

• Storage of stock in storage spaces where deterioration, safety and risk issues such as theft and fire
need to be dealt with. Refer to section 25.4.1.

• Distribution of material to satellite offices or personnel in remote locations.

Logistics management links to the financial systems via the order processing logic. Refer to section
18.8.

Project Document Production Logistics

The purpose of production logistics is to ensure that each personnel member and workstation has access
to and can receive suitable, quality and correct information at the right point in time.

Production logistics techniques can be applied to project document processing. Production logistics
provides a means to achieve labour input efficiency in the production of project documents.

Typical types of project documents are listed in table 23.2.
Project document requirements e.g. special covers, paper, binding, printing, media and requirements

for electronic digital storage space can be deduced from the type and size of the documents required and
planned for a project.

Timing requirements to be input into the logistical process can be derived from the project activity
schedule.

The process of compiling a project document can be done in an optimal way and should be streamlined
if inputs into the compilation process are managed well.

Office consumables and stationery

The costing of office consumables and record keeping on stock levels and item and product usage can
form the basis of management reports. Identification of trends which cannot be readily explained should
lead to management intervention and action to reduce office overhead costs.

The extent to which consumables used can be recovered as project costs needs to be investigated to
reduce administrative overheads.

CHAPTER 23. LOGISTICS 212

23.4.2 Outbound logistics

Goods and services which are outbound in the professional service environment include basic communi-
cation objects such as e-mail messages, letters, letter reports, project reports, contract documents and
other. Refer to table 23.2 for a classification of project documents.

Outbound logistics relating to project document manufacture is required. To ensure quality control of
such documents the development of standard formats should be considered and an office registry system
linked to the document management system is required to track and trace the flow of these documents.
Reliability and timing of delivery is important and ensured.

Specialised e-mail logging and reporting software solutions are available on the market to support the
document register requirement in the digital electronic communication environment.

The development and maintenance of project web sites as part of the brief for a project can be useful
in planning, controlling and tracking the flow of documentation for a project.

23.5 Client Project Logistics

Consulting engineering professional service procuring clients can require the project consultant to pro-
vide a service extending beyond the traditional project planning, design, specification documentation,
tendering and construction monitoring scope.

The successful construction and commissioning of large scale industrial and mining projects require
tight integration of the planning, design construction and plant and sub-assembly procurement processes.
To achieve this, the procurement aspect of a project can also be outsourced to a professional service
provider such as a consulting engineer.

In the scenario outlined above the consultant needs to become involved in logistical planning, schedul-
ing, procurement and installation linked to the construction process.

The deployment of specialised knowledge and logistical techniques in this case falls outside the scope
of the study documented here.

23.5.1 Supplier management

Supplier management in the logistical context refers to the process of shopping for suitable quantities,
quality at an acceptable price. Special discounts can be negotiated with preferred suppliers.

23.5.2 Materials control

The level of business finance locked into the material required for office stationery and consumables as
well as project document production requirements should not warrant specialised stock control measures.
If large volumes of material needs to be handled this can however be considered.

23.6 Conclusions and recommendations

The review of the logistics management function of the professional services enterprise in this chapter
indicates that logistics management systems for the enterprise can be modelled and structured using basic
concepts discussed in chapters 4 and 7. Basic database driven systems can be developed to provide the
required business logistics process and management reporting functionality.

Service businesses which provide specialised laboratory services need to pay special attention to the
logistics function of that part of the business.

Chapter 24

Administration

24.1 Introduction to the administrative function

According to Du Plessis [32] and Du Plessis [33] the administrative management function in business in-
volves the creation of systems, procedures and techniques by which information can be acquired, classified
processed, stored and then disseminated rapidly and timeously to the parties involved so that decision-
making and planning are enhanced. It is specifically designed to provide services to other departments
of a business enterprise.

The administrative function can be organised as a separate entity in a business or can be grouped with
the applicable other business management functions as required. In smaller enterprises all administrative
functions will typically be performed by one grouping of persons or one department.

The publication by Macleod [78] contains information on the administrative requirements of starting
a business in South Africa.

24.2 Models for administrative management

Models for administrative management consist of business objects and activities and processes for logistics
management for a professional services business.

24.3 Business Objects and Business Administration

Business objects which are involved in the administrative process include a wide variety of documents.
As an example a list of selected business documents with the period for which they legally are required

to be retained in a business is listed in table 24.1. A complete list can be found in Van der Merwe et al.
[122, Appendix H].

A set of prescribed recurring actions and procedures are also required from the administrative function.
If the process complexity warrants detailed control of these functions, they can be modelled using the
engineering process model described in chapter 11. Other suitable process models described by Huhnt
et al. [62] and Huhnt [59] can also be used.

Du Plessis [32] confirms that the effective and reliable processing, storage and dissemination of ad-
ministrative data can be crucial in the making of important decisions that affect the future of a business.
Administrative and reporting needs need to be identified accurately so that the administrative function
can be organised accordingly.

Business administration requirements depend on the form of the business. Publications such as Van der
Merwe et al. [122] describe the legal administrative requirements for corporate business administration.
The publications are regularly updated to reflect changes in the legal and regulatory environment. Van der
Merwe et al. [122, Appendix E] contains a table of duties imposed by the South African Companies Act
on directors of companies and Van der Merwe et al. [122, Appendix F] lists penalties for contraventions
of the Companies Act, 1973 as amended.

The basic legal forms that a business entity can take in South Africa are listed in table 24.2. All the
business forms listed can be used for the professional service enterprise. Legal requirements set by clients
as well as legislation such as the Engineering Professions Act 46 of 2000 [47] need to be taken into account
when deciding on the legal form a business must take.

213

CHAPTER 24. ADMINISTRATION 214

24.4 Interaction between the administrative processes and other business
functions

The administrative requirement relating to each basic business management function is set out below per
business management function.

24.4.1 Business Strategy and Policy

The administrative input to this function is that of record storage, recovery and dissemination as required.
Business strategy documentation, practice manuals and related documentation needs to be stored for
retrieval and modification as required.

24.4.2 Marketing Administration

Aspects of marketing administration are discussed in chapter 17.
Administrative functions related to marketing include:

• Maintenance of client and customer data bases which are typically linked to the project database
as well as the debtor database.

• Records of marketing actions such as visits to clients and customers, attendance of symposia and
meetings.

• Organising of special events.

The project system should be used to log all project proposals made or participated in and the project
status can be changed from proposal to fee or time based project when a proposal progress to be a full
scale project.

24.4.3 Financial Administration

Financial administration is an ongoing process linked to the regular monthly cycle of customer project
invoicing, creditor payments, stock taking and debtor administration.

Some organisations elect to maintain personnel debtor and creditor systems to control the flow of
payments and disbursements between the business and the personnel for e.g. travel, accommodation and
entertainment. Company credit cards issued to selected personnel can be involved in administering this
exchange of payments.

Interaction with bookkeepers and auditors to supply information for and receive e.g. annual financial
statements is required.

24.4.4 Personnel Administration

All aspects of personnel administration are dealt with in chapter 19. The basic requirements on informa-
tion to be retained in this process is summarised in table 24.1.

24.4.5 Facilities Administration

Facilities administration includes document as well as library administration.
Facility documentation, e.g. purchase and leasing documents as well as warranty and guarantee

information of equipment in use needs to be kept up to date. Scheduling of maintenance can be done as
part of the administrative aspects of facility management.

Service business enterprises need to maintain a technical library which can include book type docu-
ments as well as digitally stored documents which need to be referenced during the normal day to day
production and other activities of the personnel. The administrative procedures in and around a library
needs to be attended to.

Document administration linked to the document management system will ensure that project and
other correspondence, reports, tender and contract documents as well as drawings and media items such
as photographs and videos are stored and archived as required by project agreements or other legal
requirements.

Modern information system technology supports the development of a business intranet. A typical
intranet system provides logically ordered access to business documents using a web-browser interface at

CHAPTER 24. ADMINISTRATION 215

the personal computer workstation. Personnel can then access documents which they are permitted to
use as required.

The information technology infrastructure administration function also needs to be attended to.
Off site storage of key documents as well as backup copies of critical digital datasets needs to be

arranged and administered.
Fax machines, office copying machines, digital printers, plan printers and other machines need to be

supplied with consumables as required and records of production and service performance need to be
kept.

24.4.6 Logistics Administration Function

The stock taking administrative activity links logistics administration with financial administration. Fi-
nancial administration requirements are summarised in section 24.4.3.

24.4.7 Project Administration Function

The project administration function needs to ensure that the following activities in a around projects are
completed:

• Project registration and take on data completion and approval

• Project take on feedback to client

• Project budgeting completion and approval

• Project activity planning and resource scheduling

• Project invoice scheduling and generation as required

• Regular project progress reporting and dissemination of report sheets

• Project procurement process i.e. tender advertisement, tender document production and distribu-
tion, tender closure administration and contract award administration as required by the client.

• Project progress certificate processing and approval of contractor and suppliers invoices for payment
by the client

• Project closure reporting and document archiving

24.5 Systems support for administrative management

Database functionality outlined in chapters 7 and 13 provides adequate support for the administrative
function. Some triggering / alarm mechanism can be supplied to trigger certain routine administrative
tasks.

24.6 Administrative Function Reporting Requirements

An administrative management reporting model with suitable structures based on the concepts defined
in chapter 12 can be defined. Reports drawing data from enterprise databases can be defined as required.

24.7 Conclusions and recommendations

The review of the administration management function of the professional services enterprise in this
chapter indicates that the Engineering process model is suited to support the project administration
requirement for the core production process of the business.

Basic database driven systems can be developed to provide the required administrative process and
management reporting functionality not already available in other business systems or sub systems.

CHAPTER 24. ADMINISTRATION 216

Table 24.1: Disposal and Retention of Business Documents

Document type Required retention period
Close corporation founding statements and minutes Indefinite
Close corporation annual accounting records 15 years
Company founding documents and minutes Indefinite
Register of directors and members 15 years
Share registration documents 3 to 15 years
Company annual financial statements 15 years
Invoices and periodic accounting reports 4 years
Contracts and agreements 5 years after expiry
Banking records 4 to 6 years
Employee records 3 to 4 years
Unsuccessful applications for employment 1 year
Payrolls, salary registers, tax returns 3 to 5 years
Donations granted 4 years
Insurance accident reports and claims correspondence 3 years after settlement
Pension records - actuarial valuation reports 10 years
Property records such as agreements and leases 4 to 5 years
Property title deeds Indefinite
Shipping documents 2 years after shipment completion
Taxation VAT records, tax returns and assessments 5 years
Technical and research records Depends on conditions
Microfilm records Indefinite
Electronic archival and imaging systems records 15 years
Patent and trade mark records Indefinite

Table 24.2: South African Business Legal Forms

Business legal form Notes
Sole proprietorship Business owner conducts business in his personal capacity
Partnership Format defined in partnership agreement
Close corporation 1 to 10 members
Incorporated company Directors exposed to unlimited liability
Private Company Up to fifty members
Public Company Seven of more shareholders with company shares listed for trading

on the stock exchange
Trading trust Format defined in trust document and controlled by trust legislation

Chapter 25

Risk Management

25.1 Introduction to risk management for the professional service business
enterprise

Risk management deals with the planning, organising and controlling of events, activities and resources
in order to minimise the impact of uncertain events.

In this chapter aspects of risk management relating to professional services businesses are discussed.
Risk management in this environment focuses on two aspects i.e.

• The risks of project execution which are projected onto the service business

• The business enterprise risks

Risk management for financial risks are discussed as well.
Further material on risk management for enterprises and projects can be found in i.e. references such

as Burke [21], Nicholas [87], Scarborough and Zimmerer [107] and Bester and Koch [16].

25.2 Models for risk management

Models for risk management consist of business objects and activities and processes for risk management
for a professional services business.

25.3 Business objects and risk management

The business objects involved in risk management include the project being executed by the business as
well as the business functions/processes and infrastructure required to execute the projects.

25.4 Risk management activities and processes

The process of risk management can be divided into:

• Risk identification and evaluation

• Risk analysis and quantification

• Risk allocation and control

25.4.1 Risk identification

Risk identification focuses on business function risk identification and business infrastructure risk identi-
fication.

217

CHAPTER 25. RISK MANAGEMENT 218

Business function risk identification

Business function risk identification can be done function by function and structured reports for periodic
review can be drawn up.

Typical business functions, with typical risks which can be identified for a function, are listed below.

1. Marketing function risk identification. Apart from the effect of incorrect marketing intelligence or
other erroneous information input into the marketing management process the marketing manage-
ment approach discussed in chapter 17 is designed to deal with the inherent uncertainties in the
marketing of professional services.

2. Finance, bookkeeping and auditing risk identification. Financial risks are discussed in section 25.5.

3. Personnel function risks. Typical risks which can be identified here include over and under staffing,
dependence on key persons, possible fraudulent activities of personnel, misrepresentation of quali-
fications and experience and in service injury, long term illness and incapacity to perform duties.

4. Facilities management risk identification. Risk management relating to business facilities is dis-
cussed in sections 25.4.1 and 25.4.4.

5. Knowledge management risk identification. Risks relating to knowledge management which can
be identified include unavailability of knowledge and technology to deal with projects at hand,
outdated knowledge in place and exposure to knowledge taken over by competitors due to problems
with registering of copyright, intellectual property and patents.

6. Logistics risk identification. Logistic risks in the professional service business should not represent
a major problem. Material required to perform tasks should be readily available for purchase or
rent. Where offices are located in remote areas and personnel need to work on inaccessible sites
special attention may be required here.

7. Production risk identification. Production risks are project risks which are discussed in section 25.6.

8. Administration risk identification. Administration risks originate from legal and regulatory require-
ments applied to business entities.

Business infrastructure and stock risk identification and evaluation

Structured reports linked to asset and infrastructure management systems as well as document manage-
ment systems can be used for risk identification.

A high level classification of the business risks refer to:

1. Office accommodation and office infrastructure.

2. Goods in storage for use in the production and administration processes.

3. Company owned vehicles for transport.

4. Specialised laboratories and on-site testing equipment

An evaluation of business infrastructure risks such as those listed below are required. The impact of
events on the day to day activities of the business and a possible interruption of such is also required.

1. Loss and theft

2. Accidents

3. Fire

4. Liability to third parties

25.4.2 Risk analysis and quantification, Risk allocation and control

Risk quantification, allocation and control focuses on business function risk quantification, allocation and
control and business infrastructure risk quantification, allocation and control.

CHAPTER 25. RISK MANAGEMENT 219

25.4.3 Business function risk analysis, quantification, allocation and control

1. Marketing risk quantification and control. The quantification and control of marketing risks are
discussed in chapter 17.

2. Finance, bookkeeping and auditing risk quantification and control. Financial risks are discussed in
section 25.5

3. Personnel function risks quantification and control. These risks can be listed in formal reports
drawn from the personnel register and relying on supervisors to report any perceived or actual
problems arising. Key person reliance can be evaluated and key person insurance bought as required.
Statutory required insurance such as unemployment insurance (UIF) and Workman’s Compensation
Act (WCA) levies apply here as well.

4. Facilities management risk quantification and control. Risk management relating to business facil-
ities is discussed in sections 25.4.1 and 25.4.4.

5. Knowledge management risk quantification and control. Risks relating to knowledge management
can be quantified by studying the scope of envisaged projects. The unavailability of knowledge and
technology to deal with projects at hand can be solved by relying on specialist sub consultants and
service providers. The protection of knowledge from access and use by competitors can be dealt
with via registering of copyright, intellectual property and patents as required.

6. Logistics risk quantification and control. The logistics risks identified should be dealt with by
ensuring proper operations of supply processes as well as stock level control for basic office requisites
and stationery.

7. Production risk quantification and control. Production risks are discussed in section 25.6.

8. Administration risk quantification and control. A formal review of applicable documentation with
the aid of specialist consultants such as the company auditors should identify the requirements
and risks relating to non-adherence to these requirements. Where business entities are situated in
different countries special attention needs to be paid to these requirements.

25.4.4 Business infrastructure risk quantification, allocation and control

Business infrastructure risks can be dealt with in a number of ways. Risks can be avoided, reduced or
controlled in a number of ways.

25.4.5 Risk control

Once risks have been identified they can be systematically reviewed and measures to control them be
decided on. Typical measures include drawing up of and reviewing and checking of personnel training,
equipment operation manuals, office procedure manuals . Once these options have been evaluated a plan
of action can be drawn up, approved and implemented.

25.4.6 Risk avoidance and risk reduction

Risk reduction implies reducing the level of risk associated with an activity of reducing the number of
activities with associated risks to be executed in house.

Legal documentation allocating responsibility for activities can also be reviewed to make sure that
risks are properly allocated.

Risk reduction can be achieved by allocating risky activities to other better qualified and equipped
service providers outside an organisation. E.g. quality control of ground fill compaction using radio active
isotope based methods can be sub-contracted to service providers.

25.4.7 Risk financing, retention, transfer and insurance

Risk control and loss reduction measures imply risk financing through risk retention or transfer and
insurance.

CHAPTER 25. RISK MANAGEMENT 220

Risks can be transferred by transferring the activity which contains the risk or by transferring the
financial loss of a risk occurrence via e.g. contract conditions. The party contracting to provide the
activity will then price the risk element into its price.

Risk costs can be financed by charging losses to operating costs and expenses, making up front
provision for losses through contingency funds or insurance arranging loans to spread the cost of the
loss over a period of time. The evaluation of the typical quantum and possibility of recurrence of a loss
associated with a risk will point to the best approach of risk financing to be adopted.

Insurance provides a mechanism for handling risks with a low probability of suffering a large financial
loss which an organisation cannot afford to retain itself.

25.5 Financial risk management processes

This section deals with the identification of service business enterprise financial risks as well as the
analysis, quantification, allocation and control of these risks.

25.5.1 Identification of financial risks

A well designed auditing process should identify and quantify the financial risks to which a business is
exposed. The major risks in the financial category which need to be identified are listed below.

1. Solvability risks. The total, long term as well as working capital asset / liability balance for the
business needs to be actively managed to ensure that solvability ratios (ratios of total as well as
selected classes of assets and liabilities) are met. These ratios are usually defined according to the
policy set by the owners, partners, shareholders or board of directors of the business.

2. Capital structure risks. Capital structure risks are typically inherent in the service type business.
These businesses are funded by loans supplied by share holders. The capital is typically limited
and only matches the creditor and personnel payment requirements for a period of a few months.
It could be that high value assets such as property are held in the business.

3. Cash flow risks. The business needs to be in a position to make payments as required.

4. Short term loan and bank overdraft risks. Disciplined cash flow management should alleviate these
risks.

5. Work in process and invoicing risks. Invoicing is the process of drawing up a document to serve as
a claim for payment to be made by a client. In the professional service business this requires the
balancing of project work in process entries (project costs) with the pricing formula for the project
set out per invoice. Write ups and write offs can be required in this process.

6. Personnel productive time allocation risks. The allocation of personnel time to activities such as
management, marketing and administration versus productive project time needs to be identified.

25.5.2 Financial risk analysis, quantification, allocation and control

To analyse and control financial risk in general financial reports and documents need to be monitored on
a regular basis and management intervention needs to take place where targets are not met.

Analysis and control of some risks which need special attention.

1. Solvability risk analysis and control. Asset / liability ratios are usually defined according to policy
documents need to be monitored on a regular basis and management intervention needs to take
place where targets are not met.

2. Capital structure risk analysis and control. Close attention to cash flow management should alleviate
the pressure on the capital structure of the business. If the cash flow experience changes over time
adjustments will have to be made in the capital structure of the business. High value assets held
in the business such as property should preferably be held in separate business entities to prevent
problems of financing shareholder loan redemption when shareholders resign or retire.

CHAPTER 25. RISK MANAGEMENT 221

3. Cash flow risk analysis and control. Cash outflow to creditors, personnel remuneration and share-
holder payments need to be balanced with cash inflow from debtor payments, loans and other
sources of cash income. The cash flow budget is the key document required to control this process.
Formal payment timing agreements with clients should be in place. Debtor statements should be
produced on a regular basis and non-payment followed up as required.

4. Short term loan and bank overdraft risk analysis and control. The risk of defaulting on loan interest
and instalment payments as well as bank overdraft requirements is closely linked to the cash flow
of the business.

5. Work in process and invoicing risk analysis and control. Disciplined control of the invoicing process
will ensure that work in process entries are timeously converted to invoice items. The key document
which supports this process is the project invoicing budget. This is linked to the cash flow budget.
The process of write ups and write downs/offs of work in process items needs to be carefully
controlled by project managers as well as departmental and office managers assigned to this task.
Work in process items such as personnel time booked on a project and project disbursements are
volatile and are typically lost when written off. Transfer of time booked to a project, which cannot
be invoiced to another project, is typically not possible.

6. Personnel productive time allocation risk analysis and control. The allocation of personnel time
to activities such as management, marketing and administration should be managed carefully to
ensure that personnel resources which are required for project work are available.

25.6 Project Risk Management Processes

Projects form the production units of a professional service business enterprise and are as such a major
source of risk for the enterprise. A project failure can have serious and even detrimental consequences
for the professional service enterprise. Project risks need to be identified with the client and construction
contracting parties and steps taken to analyse these risks.

Figure 25.1: Project risk management model

Figure 25.1 shows a project risk management model given by Burke [21].
Once again the activities defined are:

• Define objectives: the context of the project and success requirements are defined.

• Identify risk: the areas of risk and uncertainty are identified which may limit or prevent the achieve-
ment of objectives.

• Quantify risk: the levels of risk and uncertainty are evaluated and prioritised according to impact
and possible frequency of occurrence.

• Develop response: the response to the risks are defined i.e. eliminate, mitigate, transfer or accept.

• Document: a risk management plan documents the proposed way in which the risk on a project
will be managed.

• Risk control: This function implements the risk management plan.

CHAPTER 25. RISK MANAGEMENT 222

25.6.1 Project risk identification

A well written internal project manual which leads a professional in the project design, specification and
documentation as well as the construction activity monitoring and quality control phases is essential.

25.6.2 Project risk analysis and quantification

Project risk is typically dictated by the level of experience with the specific type of project of the pro-
fessionals taking part in the project. This also applies to role players and personnel from the client,
consultant, constructor and material and related service delivery organisations involved in the project.

Design and build as well as ‘fast track’ design while build approaches to project execution have a
major impact on project risk profiles which need to be analysed and quantified in detail.

Public-private partnership projects as well as private concession based supply of public infrastructure
impacts on the financial risk of projects which needs to be quantified.

The way in which risks identified are to be dealt with need to be documented formally to ensure that
risks are allocated as planned.

Client-consultant and client-service provider contracts should be reviewed to ensure that risks are
allocated as intended.

Risk management responsibility also needs to be allocated formally and documented as such.

25.6.3 Evolution of Risk Through Project Life Cycle

Figure 25.2 adapted from Burke [21] shows the evolution of project risk through the project life cycle.

Figure 25.2: Project risk management model

Risk and opportunity are high at the inception of the project, and the greatest degree of uncertainty
about the project outcome and future exists. As the project progresses the uncertainty decreases as
decisions are made and project parameters and fixed and designs completed. This risk eventually reaches
zero when the project is completed. The monetary amount at stake on the other hand starts out low and
increases along the familiar S-curve as the project develops through its stages. The highest vulnerability
to risk occurs in phases 3 and 4 as shown when the impact of adverse conditions will be the most.

CHAPTER 25. RISK MANAGEMENT 223

The level of risk and financial exposure associated with a project when viewed from the perspective of
the professional service provider can be deduced from figure 25.2 by determining the level of involvement
and exposure to each phase of the project.

25.6.4 Project Risk Allocation and Insurance

The requirement by clients and especially public sector clients that professional firms need to provide
adequate professional indemnity insurance to cover the project design in perpetuity and specification risk
in total is partly being replaced by specific project related risk cover.

The pricing of professional indemnity insurance which has increased over the recent past due to claim
experiences by insurers, has been the main reason for this trend.

25.7 Disaster Recovery Planning

Burke [21] defines a disaster as a sudden, unplanned catastrophe that prevents a company from providing
its critical business functions for a period of time resulting in significant damages and losses. The time
factor will determine if a problem of service interruption is an inconvenience or a disaster. Losing the
electrical power supply for an hour may be inconvenient but to be without power for a month could lead
to financial disaster.

The objective of disaster recovery management as a contingency response from the risk management
plan is to reduce the consequences of a disaster to an acceptable level. A disaster recovery plan should
be in place so that in the event of a disaster a team can control the plan and implement it quickly and
effectively. Elements of the military approach to operations are needed here.

Elements of a disaster recovery plan are:

1. Disaster recovery team setup and muster procedure

2. Informing protection and rescue agencies, insurance brokers, clients, suppliers, media and other
affected parties

3. Arrangements for office relocation if required

4. Arrangements for emergence sources of power, water and other services

5. Information system recovery

25.8 Risk management manual and standard report contents

A professional service business should invest in the development of a dedicated risk management manual
or add a risk management section to its practice manual. This should then be reviewed with existing
and new personnel to ensure that the way in which the business handles risks according to the defined
policies and procedures are well understood.

A formal incident reporting procedure should be in place. The incident log should be reviewed and
analysed on a regular basis.

Insurance claims made logged and documented for future reference.
The risk classification outlined in the sections above implicitly define a logical set of risk management

reports which can be designed. These reports can be structured with links to the accounting, document
management as well as facilities management systems as required.

The structures of the reports referring to management, office or departmental as well as project logical
hierarchies can be done using graph processing techniques described in chapter 12.

25.9 Conclusions and recommendations

Risk management with suitable systems deployed is an important business function for the professional
service business.

Chapter 26

Practice Management Systems

This chapter provides a short review of major management software systems available on the market.
A review of the monetary impact of software systems on businesses was given by Beucke [17]. Ac-

cordingly engineering enterprise expenditure on software products can be classified as follows:

Type of computer application or system - pricing units

Desktop computer operating systems - 1 000 (103)

Structural analysis technical software - 10 000 (104)

Computer aided drafting (CAD) systems 100 000 (105)

Business management systems - 10 000 000 (107)

It is clear that management software is currently extremely expensive, consequently great care is
required in the acquisition and implementation of such software.

Some commercially available business management and professional practice management systems are
listed in this chapter for reference purposes.

26.1 ProMan by Akron Software

ProMan developed by Akron Software, Greyling [50], was originally developed for Steffen, Robertson and
Kirsten Inc. Consulting Engineers from 1985-1987. The product was commercialised and has 35-40%
market share in South Africa and a presence in Hong Kong and Australia.

According to the Akron Software web site:

‘ProMan is a completely integrated project costing and financial management system de-
signed for the optimised management of practices in the professional services industry. It was
developed specifically to improve efficiency and profitability in multi-disciplinary professional
service companies by allowing comprehensive business unit based accounting.

The system is currently in use in South Africa, Hong Kong, Malaysia, Thailand, Zimbabwe
and Botswana. In South Africa ProMan was particularly successful. The latest MIS survey
of the South African Association of Consulting Engineers (SAACE) shows that 38.9% of the
Consulting Engineers registered with SAACE use ProMan. In Australia ProMan is marketed
under the trade name ‘PinPoint’ ’.

26.2 Systems by Deltek Inc.

The Deltek, Deltek Systems Inc. [29], practise management product was implemented by Stewart Scott
South Africa in 2003 in a migration process from the ProMan system.

According to the Deltek web site:

‘Deltek provides software solutions specifically designed to meet the needs of project-driven
businesses. Today our software applications and solutions help more than 11,000 organisations
achieve success worldwide.’

224

CHAPTER 26. PRACTICE MANAGEMENT SYSTEMS 225

26.3 SAP

SAP is a well known Enterprise Resource Planning (ERP) system used in the manufacturing and local
government sector in South Africa. The co many operates on a worldwide basis.

According to the SAP web site:

‘Founded in 1972 as Systems Applications and Products in Data Processing, SAP is the
recognised leader in providing collaborative business solutions for all types of industries and
for every major market.’

’mySAP Business Suite applications are based on the SAP NetWeaver platform, an inte-
gration and application platform. This reduces total cost of ownership across the entire IT
landscape and supports the evolution of mySAP Business Suite to a services-based architec-
ture.’

The mySAP suite consists of:

• mySAP Customer Relationship Management

• mySAP ERP

• mySAP Product Lifecycle Management

• mySAP Supply Chain Management

• mySAP Supplier Relationship Management

Refer to SAP Aktiengesellschaft [106] for more detail information on SAP and related systems.

26.4 Dynamics / Business Solutions / Great Plains by Microsoft

Microsoft offers a suite of business and management software solutions now named Dynamics. Previous
versions were named Business Solutions and Great Plains.

The system components are built on the Microsoft Windows Server and SQL Server platforms.
According to the Microsoft Dynamics web site:

‘Microsoft Dynamics solutions include a number of product families. The applications
within these product families address the following business needs:

• Business Intelligence and Reporting - Manage budgets, create and consolidate reports,
forecast more accurately, and look for trends and relationships in any part of your busi-
ness.

• Collaborative Workspaces - Strengthen employee productivity, as well as relationships
with partners and customers, by providing secure, Web-based access to appropriate data
through portals and e-commerce functionality.

• Customer Relationship Management - Manage customer groups, create and launch mar-
keting campaigns, track customer activity, and organise sales and after-sales. Help field
staff serve customers more efficiently.

• Financial Management - Control general ledger, payables, receivables, inventory, sales
process, purchasing, fixed assets, and cash flow. Perform reconciliation and collections.

• HR Management - Manage human resources from mapping, recruitment, and employee
registration, to skills development and processing of payroll and benefits.

• Manufacturing - Coordinate your entire manufacturing process from product configura-
tion and supply and capacity requirements planning, to scheduling and shop floor.

• Project Management - Manage resources, forecast costs and budgets, track time and
expenses, and organise contracts and billing.

• Retail Point of Sale - Run retail operations from point-of-sale to delivery. Increase
customer flow, speed up lines and tasks, control inventory, and automate purchasing.

• Supply Chain Management - Organise single or multiple site warehouses; handle order
promising, demand planning, and online collaboration with suppliers. Track distribu-
tion; inventory, order, and purchasing management; sales forecasting; and warehouse
management.’

Refer to Microsoft Corporation [83] for more information.

CHAPTER 26. PRACTICE MANAGEMENT SYSTEMS 226

26.5 PeopleSoft and JD Edwards by Oracle

PeopleSoft and JD Edwards Products are now marketed and supported by Oracle Corporation
The PeopleSoft and JD Edwards product lines are listed below.

• PeopleSoft Enterprise

• JD Edwards EnterpriseOne

• JD Edwards World

Refer to Oracle Corporation [90] for more information.

26.6 Miscellaneous Other Systems

An implementation of the engineering process model described in chapter 11 was developed by Anton
Eygelaar [38] as part of his M.Sc. Eng. studies. The program is named PLEP. Refer to figure 26.1 for a
screen shot of the user interface data entry screen.

Figure 26.1: PLEP Engineering Process Software

Chapter 27

Conclusions on Addendum

The contents of this chapter summarises the conclusions contained in the Addendum.

Conclusions

1. Techniques developed in part II can be applied to model business functions and management systems
for the business functions identified in part IV of this study.

2. The review of the professional service business from a functional viewpoint reported in part IV
of this study indicates that the basic technology demonstrated in part II is suitable as the basis
of basic enterprise systems, management reporting and decision support systems for engineering
services enterprises.

3. The marketing related business objects and processes for a professional services business identified
in chapter 17, the type of management reports shown in appendix L, as well as the theory and
techniques available to construct management systems discussed in chapters 11, 12 and 13 can
serve the marketing management function well with effective and efficient marketing systems and
marketing management systems.

4. The review of the record keeping for costing and finance, bookkeeping and auditing functions of
the professional services enterprise in chapter 18 indicates that the systems can be modelled and
structured using basic mathematical constructs and database concepts such as those discussed in
chapters 4 and 7.

5. Commercial accounting software systems can be linked to other business systems to provide gen-
eralised management reporting functionality structured as described in chapter 12. These business
systems can be database driven.

6. The review of the personnel function of the professional services enterprise in chapter 19 indicates
that personnel systems can be modelled and structured using basic mathematical and database
concepts discussed in chapters 4 and 7.

7. Reported case studies of academic institutions, where the personnel function is supported by so-
phisticated workflow and management support and reporting systems, can be used as input for to
develop systems for the professional services business.

8. Commercial personnel payroll software systems can be linked to other business systems to pro-
vide generalised management reporting functionality structured as described in chapter 12. These
business systems can also be database driven.

9. The review of the production function of the professional services enterprise in chapter 20 indicates
that production systems can be modelled and structured using basic concepts discussed in chapters
4 and 7.

10. The production function is one where the Engineering process model approach described in chapter
13 can be adopted with great success. Additional attributes can be added to the tasks, person,
datasets and tool objects to model functionality required for production management. Links to
other data contained in business databases, such as the personnel and project register databases,
can be defined to support system functionality required.

227

CHAPTER 27. CONCLUSIONS ON ADDENDUM 228

11. Commercial project management software systems can be linked to other database driven busi-
ness systems to provide generalised management reporting functionality structured as described in
chapter 12.

12. The review of the facilities and document management function of the professional services enterprise
in chapter 21 indicates that facilities and document management systems for the enterprise can be
modelled and structured using basic concepts discussed in chapters 4 and 7.

13. The implementation of expensive commercial facilities and document management software systems
is seen as an ‘overkill’ for the typical professional service provider. Facilities management does not
constitute the main goal of the business.

14. A facilities management outsourcing service as a parallel product offered by an engineering consult-
ing group of course requires the deployment of software to support the service offered.

15. Basic database driven facility and document systems can be developed to provide the required
business process and management reporting functionality.

16. The review of the knowledge management function of the professional services enterprise in chapter
22 indicates that knowledge management systems for the enterprise can be modelled and structured
using basic concepts discussed in chapters 4 and 7.

17. Basic database driven knowledge systems can be developed to provide the required business process
and management reporting functionality.

18. The review of the logistics management function of the professional services enterprise in chapter 23
shows that logistics management systems for the enterprise can be modelled and structured using
basic concepts discussed in chapters 4 and 7. Basic database driven systems can be developed to
provide the required business logistics process and management reporting functionality.

19. Service businesses which provide specialised laboratory services need to pay special attention to the
logistics function of that part of the business.

20. Basic database driven systems can be developed to provide the required administrative process and
management reporting functionality not already available in other business systems or sub systems
for professional services enterprises.

21. The review of the administration management function of the professional services enterprise in
chapter 24 indicates that the Engineering process model is suited to support the project adminis-
tration requirement for the core production process of the business.

22. As shown in chapter 25 risk management, with suitable systems deployed, is an important business
function for the professional service business.

23. The PLEP Engineering process model program (Eygelaar [38]) can be extended to link to the
database environment for reporting functionality.

24. A high level business goal to develop, document and protect business production (project) knowledge
as well as business procedure knowledge is required.

Part V

Appendices, Bibliography and References

229

Appendices

230

Appendix A

MATLAB implementation of set operations

The MATLAB code demonstrating set operations computed is set out below.

Contents

• set union , difference and intersection
• element contined in set, exclusive or set equality
• Relations and ordered pairs

%..
% MATLAB Set Operations Example
%..
clc
clear all
format compact

set union , difference and intersection

set union , difference and intersection

Set_Offices={’Pta_Office’,’Cpt_Office’}
cellSetDisp(Set_Offices)
Set_Departments={’Structures’,’Water Supply’,’Water Treatment’};
cellSetDisp(Set_Departments)
Set_New_Office={’Dbn_Office’}
Set_All_Offices=union(Set_Offices,Set_New_Office)
Set_New_Office_Diff=setdiff(Set_All_Offices,Set_New_Office)
Set_Null={}
DiffTest=setdiff(Set_Null,Set_Offices)
Set_New_Department={’Offshore’}
Set_All_Departments=union(Set_Departments,Set_New_Department)
Set_Intersect=intersect(Set_All_Departments,Set_New_Department)

Set_Offices =
’Pta_Office’ ’Cpt_Office’

Set_Offices =
{Pta_Office,Cpt_Office}
Set_Departments =
{Structures,Water Supply,Water Treatment}
Set_New_Office =

’Dbn_Office’
Set_All_Offices =

’Cpt_Office’ ’Dbn_Office’ ’Pta_Office’

231

APPENDIX A. MATLAB IMPLEMENTATION OF SET OPERATIONS 232

Set_New_Office_Diff =
’Cpt_Office’ ’Pta_Office’

Set_Null =
{}

DiffTest =
{}

Set_New_Department =
’Offshore’

Set_All_Departments =
Columns 1 through 3

’Offshore’ ’Structures’ ’Water Supply’
Column 4

’Water Treatment’
Set_Intersect =

’Offshore’

element contined in set, exclusive or set equality

test member of set

Set1=Set_Offices
Element=’Pta_Office’
disp([’Element in Set1 (1=true,0=false): ’])
disp([ismember(Element,Set_Offices)])
% exclusive or
Set3=setxor(Set_All_Offices,Set_New_Office)
% test set equality
Set1=Set_Offices;
cellSetDisp(Set1)
Set2=Set_Offices;
cellSetDisp(Set2)
disp([’Set1=Set2 (1=true,0=false): ’])
disp([(isequal(Set1,Set2))])
Set1=Set_Offices
Set2=Set_Departments
disp([’Set1=Set2 (1=true,0=false): ’])
disp([(isequal(Set1,Set2))])
% powerset - not implemented

Set1 =
’Pta_Office’ ’Cpt_Office’

Element =
Pta_Office
Element in Set1 (1=true,0=false):

1
Set3 =

’Cpt_Office’ ’Pta_Office’
Set1 =
{Pta_Office,Cpt_Office}
Set2 =
{Pta_Office,Cpt_Office}
Set1=Set2 (1=true,0=false):

1
Set1 =

’Pta_Office’ ’Cpt_Office’
Set2 =

APPENDIX A. MATLAB IMPLEMENTATION OF SET OPERATIONS 233

’Structures’ ’Water Supply’ ’Water Treatment’
Set1=Set2 (1=true,0=false):

0

Relations and ordered pairs

Relations and ordered pairs

Office_Department=setCartesianProduct(Set_Offices,Set_Departments)
cellSetDisp(Office_Department)
All_Office_Department=setCartesianProduct(Set_All_Offices,Set_All_Departments);
cellSetDisp(All_Office_Department)
% set operations on ordered pairs not implemented
% DiffOrderedPairs=setdiff(Office_Department,All_Office_Department)
% find ordered pair in cartesian product
OrderPair1=All_Office_Department{4}
% disp([cellFind(All_Office_Department,0,OrderPair1)])
PairSet1=All_Office_Department;
PairSet2=All_Office_Department;
% equality of sets of ordered pairs and ordered pairs
disp([’PairSet1=PairSet2 (1=true,0=false): ’])
disp([(cellCompare(PairSet1,PairSet2))])
disp([(cellCompare(PairSet1{6},PairSet2{6}))])
disp(PairSet1{5})
disp(PairSet1{6})
disp([(cellCompare(PairSet1{5},PairSet2{6}))])

Office_Department =
{1x2 cell} {1x2 cell} {1x2 cell}
{1x2 cell} {1x2 cell} {1x2 cell}

Office_Department =
{(Pta_Office,Structures),(Cpt_Office,Structures),(Pta_Office,Water Supply)
,(Cpt_Office,Water Supply),(Pta_Office,Water Treatment)
,(Cpt_Office,Water Treatment)}
All_Office_Department =
{(Cpt_Office,Offshore),(Dbn_Office,Offshore),(Pta_Office,Offshore)
,(Cpt_Office,Structures),(Dbn_Office,Structures),(Pta_Office,Structures)
,(Cpt_Office,Water Supply),(Dbn_Office,Water Supply)
,(Pta_Office,Water Supply),(Cpt_Office,Water Treatment)
,(Dbn_Office,Water Treatment),(Pta_Office,Water Treatment)}
OrderPair1 =

’Cpt_Office’ ’Structures’
PairSet1=PairSet2 (1=true,0=false):

1
1

’Dbn_Office’ ’Structures’
’Pta_Office’ ’Structures’
0

Appendix B

MATLAB implementation of set functions

The MATLAB code listing for set functions with an example for the Cartesian product computation is given
below.

Adding elements to sets

function [Aout] = addElementToSet(elem,A)
%..
% Add element to set
%..
% no additions to start with
Aout=A;
% Check if element is already in set
isInSet=0;
for i=1:size(A,2)

if iscellstr(A)
elemC= char(elem);
AC= char(A(i));
if size(elemC)== size(AC)
if elemC == AC

isInSet=1;
end
end
else
if elem == A(i)

isInSet=1;
end
end

end
if isInSet==0

Aout=[A,elem];
end

MATLAB Cell datastructure functionality for Sets

function [isequal]=cellCompare(cell1,cell2)
%..
% compare MATLAB cell entries for equality
% isequal = 1 if
%..
isequal=0;
%cell1
%cell2
nelem1=numel(cell1);
nelem2=numel(cell2);
if nelem1==nelem2

234

APPENDIX B. MATLAB IMPLEMENTATION OF SET FUNCTIONS 235

% compare entry by entry
isequal=1;

for ielem=1:nelem1
% compare only non cells - otherwise recurse
% iscell(cell1)
% iscell(cell2)

if (iscell(cell1) & iscell(cell2))
[isequalX]=cellCompare(cell1{ielem},cell2{ielem});

% disp([’isequal after recurse = ’,num2str(isequalX)])
% disp([’is cell:’,cell1])
% disp([’is cell:’,cell2])

isequal=isequalX;
if(isequal==0) ; break; end
end
if ~((iscell(cell1) & iscell(cell2)))

% disp([’not cell:’,cell1])
% disp([’not cell:’,cell2])

if ~(cell1(ielem)==cell2(ielem))
isequal=0;
break

end
end

end
end
%disp([’isequal on exit = ’,num2str(isequal)])

Locating strings in MATLAB cell datatype

function [ipos]=cellFind(cellArray,ipos,search_item)
%..
% locate object in cell array
% ipos - position in cell array entry
%..
ifind=0;
% search_item
%if iscell(search_item);
% cellSetDisp(search_item,’search_item’)
%end
% numel(cellArray)
% numel(search_item)
% loop over entries in cell array
search_itemX=search_item;
for icell=1:numel(cellArray)

entry=cellArray{icell};
if(ipos>0 & numel(cellArray{icell}) >0) ;

entry=cellArray{icell}{ipos};
if iscell(search_item)
search_itemX=search_item{ipos};
end

end
% entry
% search_itemX

[isequal]=cellCompare(entry,search_itemX);
if [isequal]==1
ifind=1;
break
end

end
ipos=[icell];
if(ifind==0); ipos=[]; end

APPENDIX B. MATLAB IMPLEMENTATION OF SET FUNCTIONS 236

MATLAB Cell content output in Set format including ordered pairs

function [] = cellSetDisp(c,s)
%...
% Display Set stored as cell in set format
% c - cell array
% s - string to be used as name for cell
% Set output display of elements and ordered pairs
%...
% check input arguments
error(nargchk(1,2,nargin));
% process only cell arrays
if ~iscell(c),

error(’MATLAB:celldisp:notCellArray’, ’Must be a cell array.’);
end
% isloose = strcmp(get(0,’formatspacing’),’loose’);
lenline=50;
% set up Set name
if nargin==1, s = inputname(1); end
if isempty(s), s = ’ans’; end
% set name
disp([s ’ = ’])
% output Set elements buliding up output string
sizein=0;
strout=’{’;
[xs,sizeout]=size(strout);
for i=1:numel(c)
% output line if line length limit reached

if sizeout > lenline; strout=soutput(strout); end
% add seperator , for entries after last

if ~(i==1);
strout=strcat(strout,’,’);

[xs,sizeout]=size(strout);
end

% process element as string, integer or real
if ~iscell(c{i})

[xs,sizein]=size(strout);
strout=strcat(strout,convertCell(c{i}));
[xs,sizeout]=size(strout);

end
% process ordered pair or cell (higher level ordered pairs)

if iscell(c{i})
[xs,sizein]=size(strout);
strout=cellOut(c{i},strout);
[xs,sizeout]=size(strout);

end
% remove seperator ,

if (sizeout==sizein);
strout=strout(1:sizeout-1);
end

end
strout=strcat(strout,’}’);
strout=soutput(strout);
%...
function strout=cellOut(cellVal,strout)
% Output cell content as oredered pair strings

nelement=numel(cellVal);
if (nelement >0)
strout=strcat(strout,’(’);
for ic=1:nelement

strout=strcat(strout,convertCell(cellVal{ic}));

APPENDIX B. MATLAB IMPLEMENTATION OF SET FUNCTIONS 237

if ic < nelement ; strout=strcat(strout,’,’); end
end
strout=strcat(strout,’)’);
end

%...
function sOut= convertCell(cellVal)
% convert cell contents to string
% class(cellVal)

sOut=’’;
if iscell(cellVal)

sOut=cellOut(cellVal,’’);
end
if ischar(cellVal)

sOut=char(cellVal);
end
if isfloat(cellVal)

sOut=num2str(cellVal);
end
if isinteger(cellVal)

sOut=int2str(cellVal);
end

%...
function strout=soutput(strout)
% output part of string

[xs,sizein]=size(strout);
if sizein > 0
disp(strout)
strout=’’;
end

Output MATLAB Cell content to comma seperated file

function [] = CellWrite(csvFile,cellArray)
%..
% Output cell format array to file row by row
% comma delimted format
%..%
% loop over entries and output data
% list vertices
fid=fopen(csvFile,’w’);
display (horzcat(’File ’,csvFile,’ opened’))
nRow=size(cellArray,1);
nCol=size(cellArray,2);
for i=1:nRow
% build up row for output

rowout=[];
for j=1:nCol

rowout=[rowout,char(cellArray(i,j))];
if j<nCol

rowout=[rowout,’,’];
end

end
fprintf(fid,’%s \n’,rowout);

end
% close output file
fstatus=fclose(fid);
display (horzcat(’File ’,csvFile,’ closed’))

Set cartesian product in cell array format

APPENDIX B. MATLAB IMPLEMENTATION OF SET FUNCTIONS 238

function [C] = setCartesianProduct(A,B)
%..
% Set up set set Cartesian product in cell array format
%..
C={};
%disp(strcat(’numel(A)= ’, num2str(numel(A))))
%disp(strcat(’numel(B)= ’, num2str(numel(B))))
for i=1:numel(A)

for j=1:numel(B)
C{i,j}=[A(i),B(j)];
end

end
end

Set up a relation in ordered pair format by selecting entries from set cartesian product using boolean matrix
relation format as input

function [R] = setSubSetCartesianProduct(A,B,R_AB)
%..
% Set up subset R of Cartesian product of matrices A and B
% R_AB is a boolean matrix which selects the elements of
% A x B which needs to be included in R
%..
R={};
%disp(strcat(’numel(A)= ’, num2str(numel(A))))
%disp(strcat(’numel(B)= ’, num2str(numel(B))))
%numel(B)
for i=1:numel(A)

for j=1:numel(B)
R{i,j}=[];
if(R_AB(i,j))

R{i,j}=[A(i),B(j)];
end
end

end
end

%...
% Test Set Cartesian prod - up to level 2
%...
format compact
clear all
clc
% Single entry matrices - Cartesian product
A={’1’}
B={’a’}
S_Union=union(A,B)
prod=setCartesianProduct(A,B)
class(prod)
celldisp(prod)
cellSetDisp(prod,’prod’)
% Mutiple entry matrices - Cartesian product
A={’1’,’2’,’3’}
B={’a’,’b’}

S_Union=union(A,B)
prod=setCartesianProduct(A,B)

APPENDIX B. MATLAB IMPLEMENTATION OF SET FUNCTIONS 239

class(prod)
celldisp(prod)
cellSetDisp(prod,’prod’)
% Multiple Cartesian product
C={’x’,’y’}
% C={’x’,’y’,’z’}
prod2=setCartesianProduct(prod,C)
celldisp(prod2)
cellSetDisp(prod2,’prod2’)

A =
’1’

B =
’a’

S_Union =
’1’ ’a’

prod =
{1x2 cell}

ans =
cell
prod{1}{1} =
1
prod{1}{2} =
a
prod =
{(1,a)}
A =

’1’ ’2’ ’3’
B =

’a’ ’b’
S_Union =

’1’ ’2’ ’3’ ’a’ ’b’
prod =

{1x2 cell} {1x2 cell}
{1x2 cell} {1x2 cell}
{1x2 cell} {1x2 cell}

ans =
cell
prod{1,1}{1} =
1
prod{1,1}{2} =
a
prod{2,1}{1} =
2
prod{2,1}{2} =
a
prod{3,1}{1} =
3
prod{3,1}{2} =
a
prod{1,2}{1} =
1
prod{1,2}{2} =
b
prod{2,2}{1} =
2
prod{2,2}{2} =
b
prod{3,2}{1} =

APPENDIX B. MATLAB IMPLEMENTATION OF SET FUNCTIONS 240

3
prod{3,2}{2} =
b
prod =
{(1,a),(2,a),(3,a),(1,b),(2,b),(3,b)}
C =

’x’ ’y’
prod2 =

{1x2 cell} {1x2 cell}
{1x2 cell} {1x2 cell}
{1x2 cell} {1x2 cell}
{1x2 cell} {1x2 cell}
{1x2 cell} {1x2 cell}
{1x2 cell} {1x2 cell}

prod2{1,1}{1}{1} =
1
prod2{1,1}{1}{2} =
a
prod2{1,1}{2} =
x
prod2{2,1}{1}{1} =
2
prod2{2,1}{1}{2} =
a
prod2{2,1}{2} =
x
prod2{3,1}{1}{1} =
3
prod2{3,1}{1}{2} =
a
prod2{3,1}{2} =
x
prod2{4,1}{1}{1} =
1
prod2{4,1}{1}{2} =
b
prod2{4,1}{2} =
x
prod2{5,1}{1}{1} =
2
prod2{5,1}{1}{2} =
b
prod2{5,1}{2} =
x
prod2{6,1}{1}{1} =
3
prod2{6,1}{1}{2} =
b
prod2{6,1}{2} =
x
prod2{1,2}{1}{1} =
1
prod2{1,2}{1}{2} =
a
prod2{1,2}{2} =
y
prod2{2,2}{1}{1} =
2
prod2{2,2}{1}{2} =
a
prod2{2,2}{2} =

APPENDIX B. MATLAB IMPLEMENTATION OF SET FUNCTIONS 241

y
prod2{3,2}{1}{1} =
3
prod2{3,2}{1}{2} =
a
prod2{3,2}{2} =
y
prod2{4,2}{1}{1} =
1
prod2{4,2}{1}{2} =
b
prod2{4,2}{2} =
y
prod2{5,2}{1}{1} =
2
prod2{5,2}{1}{2} =
b
prod2{5,2}{2} =
y
prod2{6,2}{1}{1} =
3
prod2{6,2}{1}{2} =
b
prod2{6,2}{2} =
y
prod2 =
{((1,a),x),((2,a),x),((3,a),x),((1,b),x),((2,b),x),((3,b),x)
,((1,a),y),((2,a),y),((3,a),y),((1,b),y),((2,b),y),((3,b),y)}

Appendix C

MATLAB implementation of relation
operations

C.1 Relation operations programmed in MATLAB

The MATLAB code with functions required for relation operations computed is set out below.
MATLAB functionality for relational algebra using boolean mtrix representation of relations

%..
%
% Relational Algebra - Boolean matrix representation
% MATLAB Matrix operations
%...
display(strcat(’MATLAB implementation of relational algebra’, ...

’ boolean matrix operations in inline functions’))
%...
% zero, one and identity
zeroB=inline(’logical(zeros(n,m))’,’n’,’m’); % e.g. Z4=zeroB(4,4)
oneB=inline(’logical(ones(n,m))’,’n’,’m’); % e.g. Z4=zeroB(4,4)
identityB=inline(’logical(eye(n))’,’n’); % e.g I3=identityB(3)
%...
% Basic relational operations
productR= ...
inline(’logical(mod(ones(size(fix(x)*fix(y))),(fix(x)*fix(y))+1))’,’x’,’y’);
% Note: MATLAB standard set union is a=union([1,1],[1,1])
unionR= ...
inline(’logical(mod(ones(size(x)),(x+y)+1))’,’x’,’y’) ;

intersectionR= ...
inline(’logical(mod(ones(size(x)),(x.*y)+1))’,’x’,’y’);

differenceR=inline(...
’logical(mod(ones(size(x)),(x-mod(ones(size(x)),(x.*y)+1))+1))’,’x’,’y’);

complementR=inline(’logical(zeros(size(x))+not(logical(x)))’,’x’);
transposeR=inline(’transpose(x)’,’x’);
%...

Testing relations in Boolean format for equality

function isEqual = isRelEqual(R,S)
%..
% Test relations R and S in boolean matrix form for equality
%..
isEqual=0;
nRowsR=size(R,1);
nColumnsR=size(R,2);

242

APPENDIX C. MATLAB IMPLEMENTATION OF RELATION OPERATIONS 243

nRowsS=size(S,1);
nColumnsS=size(S,2);
if (nRowsR == nRowsS) & (nColumnsR == nColumnsS)
% isEqual=1;
% i=1;
% while (i<=nRowsR) & (isEqual==1)
% j=1;
% while (j<=nColumnsR) & (isEqual==1)
% if R(i,j)~=S(i,j) isEqual=0;
% end
% j=j+1;
% end
% i=i+1;
% end
isEqual=all(all((R==S)==1)==1);
end

Boolean product of boolean entry and string yielding string for logical entry = 1 or blank string for logical
entry = 0

function [cellOut]=productboolString(cellIn,bool)
%...
% string multiply boolean
% bool = 1 cell Array output
% bool = 0 blank output
%...
cellOut={’’};
if(bool==1)

cellOut=cellIn;
end

function [cellOut]=stringMultBool(cellIn,boolean)
%...
% string multiply boolean
% boolean element = 1 concatenate
% boolean element = 0 blank output
%...
nRBool=size(boolean,1);
nCBool=size(boolean,2);
nRCell=size(cellIn,1);
nCCell=size(cellIn,2);
if (nCCell==nRBool)

for ir=1:nRCell
for ic=1:nCBool

cellOut(ir,ic)={’’};
end

end
for ir=1:nRCell

for ic=1:nCBool
for ik=1:nCCell

cellOut(ir,ic)=strcat(cellOut(ir,ic), ...
productboolString(cellIn{ir,ik}, ...
boolean(ik,ic)));

end
end

end
else

disp(’Error CellIn and boolean columns / rows incomapatible’)
end

Appendix D

MATLAB implementation of graph operations

The MATLAB code demonstrating graph operations computed is set out below.
Generate graph adjacency list given graph adjacency matrix

function [AdjList,nrowL,ncolL] = AdjacencyList(AdjMatrix)
%...
% Generate adjacency list given adjacency matrix
% Adjacency list in matrix format - ignore 0 entries
%...
AdjList=[;];
nrowA=size(AdjMatrix,1);
ncolA=size(AdjMatrix,2);
for ir=1:nrowA

irowL=ir;
AdjList(irowL,1)=ir;
icolL=1;

for ic=1:ncolA
if(AdjMatrix(ir,ic)==1)

icolL=icolL+1;
AdjList(irowL,icolL)=ic;

end
end

end
nrowL=size(AdjList,1);
ncolL=size(AdjList,2);

Extract all graph edges linked to a vertex and return the subgraph in adjacency matrix format

function [adjMatrix,vactive] = adjListExtract(adjList,nvertex)
%..
% Extract all edges linked to a vertex and return
% adjMatrix - subgraph in adjacency matrix format
% vactive - Boolean list of active vertices
% can be converted to list format if required
% nvertex - vertex number to process
%..
% initialise output
adjMatrix=[;];
nVertices=max(size(adjList,1),max(max(adjList)));
if not((nvertex>nVertices))
% set up blank adjcency matrix
adjMatrixInterim=zeros(nVertices);
vactive=zeros(1,nVertices);
% set limits to active vertex numbers
for nv=1:size(adjList,1)

244

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 245

nEdgesRow=size(adjList(nv,:),2);
for ne=2:nEdgesRow

% end vertex of edge
mv=adjList(nv,ne);

% skip zero entries as well as entries not linke d to selectd vertex
if not(mv==0)&& (mv==nvertex)
adjMatrixInterim(nv,mv)=1;

% keep track of active vertex entries
vactive(nv)=1;
vactive(mv)=1;
end

end
end
% disp([’vactive: ’,num2str(vactive)])
% adjMatrixInterim
% Add active columns to output matrix

adjCols=[;];
for iv=1:nVertices

if (vactive(iv)==1)
adjCols=[adjCols,adjMatrixInterim(:,iv)];
end

end
% Add active rows to output matrix
% adjCols
for iv=1:nVertices

if (vactive(iv)==1)
adjMatrix=[adjMatrix;adjCols(iv,:)];
end

end
end

Convert graph data representation form adjacency List to adjacency Matrix format

function [adjMatrix]=adjMatrixFromList(adjList)
%..
% Convert graph representation form adjacency List to adjacency Matrix
%..
% maximum entry in adjacency list is largest vertex number
nVertices=max(size(adjList,1),max(max(adjList)));
% set up blank adjcency matrix
adjMatrix=zeros(nVertices);
% adjMatrix=[;];
% Loop over vertices and make entries in adjacency matrix
for nv=1:size(adjList,1)

nEdgesRow=size(adjList(nv,:),2);
for ne=2:nEdgesRow

% end vertex of edge
mv=adjList(nv,ne);

% skip zero entries
if not(mv==0)
adjMatrix(nv,mv)=1;
end

end
end

Generate adjacency list of all outgoing edges of a given graph vertex

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 246

function [Edges,nedge] = ALOutgoingEdges(AdjList,vertex)
%...
% Generate list of edges
% Adjacency list in matrix format - ignore 0 entries
%...
Edges=[;];
nrowA=size(AdjList,1);
ncolA=size(AdjList,2);
nedge=0;
% vertex not in graph
if(vertex>0) & (vertex<=nrowA)
for icol=2:ncolA

if(AdjList(vertex,icol)>0)
nedge=nedge+1;

Edges=[Edges,[vertex,AdjList(vertex,icol)]];
end

end
end

Generate list of graph vertices with no incoming edges given adjacency list

function [Vertices,nvert] = ALVertWithNoIncEdges(AdjList)
%...
% Generate list of vertices with no incoming edges
% given adjacency list
%...
Vertices=[];
nvert=0;
nrowL=size(AdjList,1);
ncolL=size(AdjList,2);
for irow=1:nrowL
[r,c]=find(AdjList(:,2:ncolL)==irow)
iverts=size(r,1)

if(iverts==0)
Vertices=[Vertices,irow]
nvert=nvert+1

end
end

Apply depth first search [DFS] algorithm to graph given in adjacency matrix format

function [tree,dfsArray] = DepthFirstSearch(R)
global List mark ipos dfsArray

%...
% DFS of graph
% Input: R - graph in Adjacency matrix format
% Output dfsArray - traversal of indices in DFS order
% tree - Graph spanning tree in adjacency matrix format
%...
RelationalAlgebraBoolean
nVertex=size(R,1);
[adjList,nrowL,ncolL] = AdjacencyListM(R)
dfsArray=[];
% tree=[;];
tree=zeros(size(R));
List={};
ipos=0;

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 247

% celldisp(List)
for v=1:nVertex

mark(v)=0;
end
while (any(mark==0)==1)
x=min(find(mark==0));
% disp([’into search x mark: ’,num2str(mark)])
% [List,mark]=search(x,adjList,nrowL,ncolL,mark,List)
search(x,adjList,nrowL,ncolL);

% disp([’outof search x mark: ’,num2str(mark)])
while (size(List,2)>0)

% display([’Size of list = ’,num2str(size(List))])
L=List{end};
v=L(1);
w=L(2);
List=List(1:end-1);
if(mark(w)==0);
tree(v,w)=1;

% disp([’into search v mark: ’,num2str(mark)])
% [List,mark]=search(v,adjList,nrowL,ncolL,mark,List)

search(w,adjList,nrowL,ncolL);
% disp([’outof search v mark: ’,num2str(mark)])
% disp([’outof search size List: ’,num2str(size(List,2))])

end
end

end

function []=search(v,adjList,nrowL,ncolL)
%..
% Updates List to include next edge in graph
% Mark the vertex as processed
% Update the processing sequence array dfsArray
% by adding the vertex processed to it
%..
global List mark ipos dfsArray
dfsArray=[dfsArray,v];
mark(v)=1;
for iv=2:ncolL

iw=adjList(v,iv);;
if(iw>0)

List=[List,[v,iw]];
% disp ([num2str(v),’ ’,num2str(iw),’ Added to List’])
% celldisp(List);

end
end

Determine indegrees of graph vertices with graph given in adjacency matrix format

function [InDegree] = inDegreeG(V)
%..
% Determine indegrees of graph vertices - graph given in
% adjacency matrix format - column entry sums in vector form
%..
RelationalAlgebraBoolean;
C1=ones(size(V,2),1);
InDegree=V*C1;

Determine outdegrees of graph vertices with graph given in adjacency matrix format

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 248

function [OutDegree] = outDegreeG(V)
%..
% Determine outdegrees of graph vertices - graph given in
% adjacency matrix format - row entry sums in vector form
%..
RelationalAlgebraBoolean;
R1=ones(1,size(V,2));
OutDegree=R1*V;

Extract set sub adjacency matrices form topological sort matrix given topol sort adjacency matrix as well as
orginal tree structure adjacency matrix

function [subAdj,subVactiveCol,subVactiveRow] ...
= SubAdjMatricesExTopolSort(TreeAdj,TOut)

%...
% Extract set sub adjacency matrices form topological sort matrix
% given topol sort adjacency matrix as well as orginal tree
% structure adjacency matrix
% Input:
% TreeAdj - Tree adjacency matrix
% TOut - Topological sorting graph adjcency matrix
% Output:
% subAdj - Cell array of sub adjacency matrices
% subVactiveCol - Cell array of Boolean vectors of active vertices
% included in subAdj - columns
% subVactiveRow - Cell array of Boolean vectors of active vertices
% included in subAdj - rows
%...
isubMat=0;
% size of topological sort adjacency matrix
% rows - vertices
% columns - sort levels / classes
nRow=size(TOut,1)
nCol=size(TOut,2)
% Loop over columns in topological sort graph adjacency matrix
for j=1:nCol
% list of vertices column list stores for extractions
collist=[];
% boolean array of active vertices in position - columns
vactiveCol=[];
% Loop over rows in topological sort adjcacency matrix

for i=1:nRow
if(TOut(i,j)~= 0)

% add vertex to column list
collist=[collist,i];
vactiveCol(i)=1;

end
end

% Obtain set of active vertices for level op topological sort
collist=unique(collist);

% Extract columns listed (if any)
subMat=[];
kCol=size(collist,2);
if kCol > 0
for k=1:kCol
subMat=[subMat,TreeAdj(:,collist(k))] ;

end
end

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 249

% subMat
% number of rows in submatrix

lRow=size(subMat,1);
% mark all vertices active for rows

vactiveRow=ones(lRow,1);
for lr=1:lRow

if sum(subMat(lr,:))==0;
vactiveRow(lr)=0;

end
end
% remove zero-rows from matrix subMat

lr=1;
while lr<=lRow
if sum(subMat(lr,:))==0

subMat(lr,:)=[];
lRow=lRow-1;
lr=0;

end
lr=lr+1;
end % while

if sum(subMat)==0
subMat=[];

end
% Store derived adjacency matrix in cell array
% subMat
% vactiveRow
% subAdj={} % - not correct
if(sum(size(subMat)))>0

isubMat=isubMat+1;
subAdj{isubMat}=subMat;
subVactiveCol{isubMat}=vactiveCol;
subVactiveRow{isubMat}=vactiveRow;
end
% next column
end % loop over topological sort adj matrix columns

Read graph data from .tgf format filefor use with yEd graph display

function [vertexLabels,edgeLabels,R] = TgfRead(tgfFile)
%...
% tgfFile: File for input of data
% vertexLabels: cell array with vertex label strings
% edgeLabels: cell array with edge label strings
% R adjacency matrix
%...
% Input / Read .tgf file for relation for plotting with yEd
% Sample file
% 1 O
% 2 1
% 3 2
% 4 A
% 5 B
% 6 C
% 7 D
% 8 E
% #
% 2 1 Edge1O
% 3 1 Edge2O
% 4 2 EdgeA1
% 5 2 EdgeB1

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 250

% 6 2 EdgeC1
% 7 3 EdgeD2
% 8 3 EdgeE2
%...
% open file
fid=fopen(tgfFile,’r’);
display (horzcat(’File ’,tgfFile,’ opened’))
lineInputV=’ ’;
% vertices
vertexLabels={};
numVertices=0;
while not(lineInputV(1,1)==’#’)

lineInputV=fgetL(fid);
if lineInputV(1,1)==’#’
break
end
numVertices=numVertices+1;
V=textscan(lineInputV,’%d %s’,’delimiter’, ’\n’);

% celldisp(V)
vertexLabels(numVertices)={’ ’};
if(size(V{2},1) > 0)

vertexLabels(numVertices)=V{2};
end

end
% edges labels & adjacency matrix
edgeLabelsIn={};
% R=logical([;]);
% adjacency matrix to be square
R=logical(zeros(numVertices));
lineInputE=’ ’;
Rrows=0;
Rcols=0;
while not(lineInputE==-1)

lineInputE=fgetL(fid);
if lineInputE==-1
break
end
E=textscan(lineInputE,’%d %d %s’,’delimiter’, ’\n’);
vertex1=double(E{1});
if(vertex1>Rrows) Rrows=vertex1;end
vertex2=double(E{2});
if(vertex2>Rcols) Rcols=vertex2;end
R(vertex1,vertex2)=1;
edgeLabelsIn(vertex1,vertex2)={’ ’};
if(size(E{3},1) > 0)
edgeLabelsIn(vertex1,vertex2)=E{3};
end

end
%Rrows
%Rcols
%sum(sum(R))
% store edgelabels in sequence of edges define in R
% row by row
edgeLabels={};
numEdges=0;
for ir=1:Rrows

for ic=1:Rcols
if(R(ir,ic)==1)

numEdges=numEdges+1;
edgeLabels(numEdges)=edgeLabelsIn(ir,ic);

end

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 251

end
end
%size(R)
%size(edgeLabels)
% close output file
fstatus=fclose(fid);
display (horzcat(’File ’,tgfFile,’ closed’))

Write graph data to .tgf format file for use with yEd graph display

function [] = TgfWrite(tgfFile,R,isHomog,vertexLabels,edgeLabels)
%..
% Output relation data file in directed graph data .tgf file format for use in
% yEd/yFiles software
% tgfFile: file name / Character string
% isHomog(eneous): = 1 or 0 relation between one or two sets / bipartite graph
% R: Adjacency / boolean relation matrix / double array
% vertexLabels: vertex labels for plot / String cell array - required
% edgeLabels: edge labels for plot / String cell array - optional
%..
% sample filename:
% tgfFile=’TestFileA.tgf’
% Output .tgf file for relation for plotting with yEd
% Sample file contents:
% 1 O
% 2 1
% 3 2
% 4 A
% 5 B
% 6 C
% 7 D
% 8 E
% #
% 2 1 Edge1O
% 3 1 Edge2O
% 4 2 EdgeA1
% 5 2 EdgeB1
% 6 2 EdgeC1
% 7 3 EdgeD2
% 8 3 EdgeE2
% Sample vertexLabels:
% vertexLabels={’O’,’1’,’2’,’A’,’B’,’C’,’D’,’E’}
% Sample edgelabels:
% edgeLabels={’Edge1O’, ...
% ’Edge2O’, ...
% ’EdgeA1’, ...
% ’EdgeB1’, ...
% ’EdgeC1’, ...
% ’EdgeD2’, ...
% ’EdgeE2’}
% Sample relation boolean matrix / adjacency matrix for directed graph:
% R=logical([0 1 1 0 0 0 0 0; ...
% 0 0 0 1 1 1 0 0; ...
% 0 0 0 0 0 0 1 1; ...
% 0 0 0 0 1 1 0 0; ...
% 0 0 1 1 0 0 0 0; ...
% 1 1 0 0 0 0 0 0; ...
% 1 0 0 0 1 1 1 1])
%..%
% loop over entries and output data

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 252

% list vertices
fid=fopen(tgfFile,’w’);
display (horzcat(’File ’,tgfFile,’ opened’))
for i=1:size(vertexLabels,2)

% output only non-zero length labels with
if size(vertexLabels{i},2)>0

fprintf(fid,’%u %s \n’,i,vertexLabels{i});
end
end
fprintf(fid,’%s \n’,’#’);
% homogeneous relation
% loop over relation boolean matrix to output edges
iedge=0;
nRows=size(R,1)
nCols=size(R,2)
for j=1:nRows

for k=1:nCols
if(R(j,k) == true)

iedge=iedge+1;
label=’ ’;
if(iedge <= size(edgeLabels,2));

label=edgeLabels{iedge};
end
jpos=j;
kpos=k;
if(not(isHomog==1))

kpos=k+nRows;
end
fprintf(fid,’%u %u %s \n’,jpos,kpos,label);

end
end

end
% close output file
fstatus=fclose(fid);
display (horzcat(’File ’,tgfFile,’ closed’))

Graph topological sort algoritm for Directed Acyclic Graph (DAG)

function [TaskSchedule] = TopolSort(T)
%...
% Determine task schedule from task successor / predecessor matrix
% Using topological sort algoritm on DAG
% DAG - Directed Acyclic Graph
%...
RelationalAlgebraBoolean
T
nVertex=size(T,1)
v{1}=logical(ones(nVertex,1));
for i=1:nVertex
% Transpose incidence relation in matrix form

v{i+1}=productR(T’,v{i});
if(sum(v{i+1})==0)

ncol=i+1;
break;

end
end
TaskSchedule=[];
for i=1:ncol-1

TaskSchedule=[TaskSchedule, ...
intersectionR(logical(v{i}),not(logical(v{i+1})))];

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 253

end

Graph topological breadth first search

function [TaskSchedule] = TopolSortBFSTasks(T)
%...
% Determine task schedule from task successor / predecessor matrix
%...
T
A=[];
B=[];
idim=size(T,1);
for i=1:idim

C(i)=i;
end
% prepare task schedule blank column to add on
TaskSchedule=[];
level=1;
for j=1:idim

TaskColumn(j)=0;
end
TaskColumn=TaskColumn’;
% Find vertex without predecessor
for i=1:idim

tstart=0;
if sum(T(i:i)) == 0 tstart=i;

break
end

end
if tstart==0

disp ’** Error ** No task without predecessor found’
exit

end
% disp ([’tstart = ’,num2str(tstart)]);
A=[A,tstart];
% while size(A,2) > 0
CHasElements=1;
while (CHasElements == 1)

disp ’********************* while loop begin *************’;
A;
B;
C;

% if A is empty break
if size(A,2)==0

CHasElements = 1
break

end
% Add all successors of elements in A to B
for j=1:size(A,2)
for i=1:idim

if (T(A(j),i)) ~= 0
[B] = addElementToSet(i,B);

end
end
end
disp ’After successor determination’;
A;
B;
C;

APPENDIX D. MATLAB IMPLEMENTATION OF GRAPH OPERATIONS 254

isizeA=size(A,2);
isizeB=size(B,2);
% Remove all elements from A which are in B
for i=1:isizeB
for j=1:isizeA

if j > size(A,2)
break

end
if (A(j)==B(i))

A(j)=[];
end

end
isizeA=size(A,2);
end
disp ’After removals from A and B ++++++++++++++++++’;
A;
B;
% Remove all elements from C which are in A
isizeA=size(A,2);
isizeC=size(C,2);
for i=1:isizeA
for j=1:isizeC

if j > size(C,2)
break

end
if (A(i)==C(j))

C(j)=[];
end

isizeC=size(C,2);
end
end
disp ’After removals from A and C *******************’;
A;
B;
C;
TaskSchedule=[TaskSchedule,TaskColumn];
for i=1:size(A,2)
TaskSchedule(A(i),level)=1;

end
TaskSchedule
level=level+1
% Swop A and B
A=B;
% clear B
B=[];
if size(C,2)==0

CHasElements=0
end
% for testing
% pause
end

Appendix E

MATLAB System Function Example

The MATLAB code demonstrating the system function example is set out below.

Contents

• MATLAB Relational algebra functionality
• System inputs and outputs
• System state variables and discrete time steps
• Input and output relation domains
• Define input trajectory f as boolean format relation
• Relation to link system states to system output
• Next state mapping for system
• Time step display
• System initialisation
• System operations looping over time steps
• System output trajectory

%...
% System function example
%...
clc
clear all
format compact

MATLAB Relational algebra functionality

Set up inline function availability

RelationalAlgebraBoolean

MATLAB implementation of relational algebra boolean matrix operations in inline functions

System inputs and outputs

System inputs

I_s={’setOn’,’setOff’};
cellSetDisp(I_s,’I_s’)
% celldisp(I_s,’I_s’)
% System Outputs
O_s={’lightOn’,’lightOff’};
cellSetDisp(O_s,’O_s’)

255

APPENDIX E. MATLAB SYSTEM FUNCTION EXAMPLE 256

I_s =
{setOn,setOff}
O_s =
{lightOn,lightOff}

System state variables and discrete time steps

System state variables - switch status

S_s={’on’,’off’};
cellSetDisp(S_s,’S_s’)
% system counter / timer set
T={0,1,2,3,4,5,6};
cellSetDisp(T,’T’)

S_s =
{on,off}
T =
{0,1,2,3,4,5,6}

Input and output relation domains

input relation domain

R_in_domain=setCartesianProduct(I_s,S_s);
cellSetDisp(R_in_domain,’R_in_domain’)
% cellDisp(R_in_domain)
% output relation domain
R_out_domain=setCartesianProduct(S_s,O_s);
cellSetDisp(R_out_domain,’R_out_domain’)
% cellDisp(R_out_domain)

R_in_domain =
{(setOn,on),(setOff,on),(setOn,off),(setOff,off)}
R_out_domain =
{(on,lightOn),(off,lightOn),(on,lightOff),(off,lightOff)}

Define input trajectory f as boolean format relation

input trajectory relation on T x I_s

R_TI_s=logical([1 0 ; ...
0 1 ; ...
1 0 ; ...
1 0 ; ...
0 1 ; ...

APPENDIX E. MATLAB SYSTEM FUNCTION EXAMPLE 257

0 1 ; ...
1 0])

f=setSubsetCartesianProduct(T,I_s,R_TI_s);
% cellDisp(f)
cellSetDisp(f,’f’)

R_TI_s =
1 0
0 1
1 0
1 0
0 1
0 1
1 0

f =
{(0,setOn),(2,setOn),(3,setOn),(6,setOn),(1,setOff)
,(4,setOff),(5,setOff)}

Relation to link system states to system output

R_s_bool=logical([1 0 ; ...
0 1])

R_s=setSubsetCartesianProduct(S_s,O_s,R_s_bool)
R_Ss_Is_Ss=logical([1 0 ; ...

0 1 ; ...
1 0 ; ...
0 1])

X_s=productR(R_Ss_Is_Ss,R_s_bool)

R_s_bool =
1 0
0 1

R_s =
{1x2 cell} []

[] {1x2 cell}
R_Ss_Is_Ss =

1 0
0 1
1 0
0 1

X_s =
1 0
0 1
1 0
0 1

Next state mapping for system

nextstate mapping domain

APPENDIX E. MATLAB SYSTEM FUNCTION EXAMPLE 258

N_s_domain=setCartesianProduct(R_in_domain,S_s);
cellSetDisp(N_s_domain,’N_s_domain’)
% select elements of nextstate mapping
N_s_Select=logical([1 0 ; ...

0 1 ; ...
1 0 ; ...
0 1])

N_s=setSubsetCartesianProduct(R_in_domain,S_s,N_s_Select);
cellSetDisp(N_s,’N_s’)

N_s_domain =
{((setOn,on),on),((setOff,on),on),((setOn,off),on),((setOff,off),on)
,((setOn,on),off),((setOff,on),off),((setOn,off),off)
,((setOff,off),off)}
N_s_Select =

1 0
0 1
1 0
0 1

N_s =
{((setOn,on),on),((setOn,off),on),((setOff,on),off)
,((setOff,off),off)}

Time step display

timestep loop display

for it=1:size(T,2)
[ipos]=cellFind(f,1,T{it});
icol=ipos(1);
disp ([num2str(it),’ ’,num2str(T{it}),’ ’,f{icol}{2}])

end

1 0 setOn
2 1 setOff
3 2 setOn
4 3 setOn
5 4 setOff
6 5 setOff
7 6 setOn

System initialisation

system start start

S_start=’on’
A{1}=S_start;
cellSetDisp(A)

APPENDIX E. MATLAB SYSTEM FUNCTION EXAMPLE 259

S_start =
on
A =
{on}

System operations looping over time steps

loop over time steps extract input influence / action extract next state and determine output

for it=1:size(T,2)
% for it=1:2

disp([’************** it=’,num2str(it)])
[ipos]=cellFind(f,1,T{it});
icol=ipos(1);
disp ([num2str(it),’ ’,num2str(T{it}),’ ’,f{icol}{2}])

% build ordered pair with active state and input
B{1}=f{icol}{2};
select= setCartesianProduct(B,A);

% select{1}
cellSetDisp(select,’select’)

% find next state in next state set
[jpos]=cellFind(N_s,1,select);

% next state
next_state=N_s{jpos}{2};
A{1}=next_state;
cellSetDisp(A);

% find output attribute setting
output=cellFind(R_s,1,next_state);

% build output trajectory
t_out{it}=R_s{output}{2};

end

************** it=1
1 0 setOn
select =
{(setOn,on)}
A =
{on}
************** it=2
2 1 setOff
select =
{(setOff,on)}
A =
{off}
************** it=3
3 2 setOn
select =
{(setOn,off)}
A =
{on}
************** it=4
4 3 setOn
select =
{(setOn,on)}
A =

APPENDIX E. MATLAB SYSTEM FUNCTION EXAMPLE 260

{on}
************** it=5
5 4 setOff
select =
{(setOff,on)}
A =
{off}
************** it=6
6 5 setOff
select =
{(setOff,off)}
A =
{off}
************** it=7
7 6 setOn
select =
{(setOn,off)}
A =
{on}

System output trajectory

disp(’System output trajectory:’)
cellSetDisp(t_out)

System output trajectory:
t_out =
{lightOn,lightOff,lightOn,lightOn,lightOff,lightOff
,lightOn}

Appendix F

MATLAB Literal String Processing
Functionality

Literal String Processing MATLAB Functionality.

function [cellOut]=stringMultBool(cellIn,boolean)
%...
% string multiply boolean
% boolean element = 1 concatenate
% boolean element = 0 blank output
%...
nRBool=size(boolean,1);
nCBool=size(boolean,2);
nRCell=size(cellIn,1);
nCCell=size(cellIn,2);
if (nCCell==nRBool)

for ir=1:nRCell
for ic=1:nCBool

cellOut(ir,ic)={’’};
end

end
for ir=1:nRCell

for ic=1:nCBool
for ik=1:nCCell

cellOut(ir,ic)=strcat(cellOut(ir,ic), ...
productboolString(cellIn{ir,ik}, ...
boolean(ik,ic)));

end
end

end
else

disp(’Error CellIn and boolean columns / rows incompatable’)
end

function [cellOut]=productboolString(cellIn,bool)
%...
% string multiply boolean
% bool = 1 cell Array output
% bool = 0 blank output
%...
cellOut={’’};
if(bool==1)

cellOut=cellIn;
end

261

APPENDIX F. MATLAB LITERAL STRING PROCESSING FUNCTIONALITY 262

%...
% String concatenation test
%...
clc
clear all
format compact
A={’a11’ ,’a12r’; ...

’a21’ ,’a22e’}
B={’b11’ ,’b12r’; ...

’b21’ ,’b22e’}
x=strcat(A)
y=strcat(A,B)
b1=logical([1 1 ; 1 1])
d=logical([1; 1])
c=stringMultBool(A,b1)
b2=logical([1 0 ; 1 0])
c2=stringMultBool(A,b2)

A =
’a11’ ’a12r’
’a21’ ’a22e’

B =
’b11’ ’b12r’
’b21’ ’b22e’

x =
’a11’ ’a12r’
’a21’ ’a22e’

y =
’a11b11’ ’a12rb12r’
’a21b21’ ’a22eb22e’

b1 =
1 1
1 1

d =
1
1

c =
’a11a12r’ ’a11a12r’
’a21a22e’ ’a21a22e’

b2 =
1 0
1 0

c2 =
’a11a12r’ ’’
’a21a22e’ ’’

>>

Appendix G

Engineering Process Model

G.1 Engineering Process Model Example - MATLAB Code

Contents
• Relation algebra MATLAB functionality
• Person executes task data and graph data output
• Compute transpose for task executed by person and graph data output
• Data set creates / modifies / reads data and graph output data
• Person - Data logical deductions
• Data - Tool(G) relations
• Union operations
• Transpose for tools used by tasks
• Union of data and person logic
• Person tool deduced logic
• Alternative data operated on by task
• Deduce links data - task via tool to determine data sequence
• Deduce links data - task via tool to determine data sequence

%..
% ProjecModelBuildingUpd.m
% Project Model for typical Building Project
%..
clc
clear all
format compact

Relation algebra MATLAB functionality

RelationalAlgebraBoolean

MATLAB implementation of relational algebra boolean matrix operations in inline functions

Person executes task data and graph data output
Define persons executes tasks PT Tasks: Conceptualise / Plan / Design / Specify & Document / Take off Quantities /
Build & Construct

PexecutesT=([1 0 0 0 0 0 ; ... % Client Owner
1 1 0 0 0 0 ; ... % Architect
0 0 1 1 0 0 ; ... % Engineer
0 0 0 1 1 0 ; ... % Quantity Surveyor
0 0 0 0 0 1]) % Constructor/Contractor

% TgfWrite(tgfFile,R,vertexLabels,edgeLabels)
personLabels={’Client Owner’,’Architect’,’Engineer’, ...

’Quantity Surveyor’,’Constructor/Contractor/Builder’}
taskLabels={’Conceptualise’,’Plan’,’Eng Design’, ...

263

APPENDIX G. ENGINEERING PROCESS MODEL 264

’Specify & Document’, ...
’Take off Quantities’,’Build & Construct’}

% add comment & heading strings at end of labels
vertexLabels=horzcat(personLabels,taskLabels,{’Person executes Task’})
isHomog=0
tgfWrite(’YPexecutesT.tgf’,PexecutesT,isHomog,vertexLabels,{})

PexecutesT =
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1

personLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Column 5

[1x30 char]
taskLabels =

Columns 1 through 4
’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’

Columns 5 through 6
’Take off Quantities’ ’Build & Construct’

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 8

[1x30 char] ’Conceptualise’ ’Plan’ ’Eng Design’
Columns 9 through 11

’Specify & Document’ ’Take off Quantities’ ’Build & Construct’
Column 12

[1x20 char]
isHomog =

0
File YPexecutesT.tgf opened
nRows =

5
nCols =

6
File YPexecutesT.tgf closed

Compute transpose for task executed by person and graph data output
Compute tasks - persons TP

vertexLabels=horzcat(taskLabels,personLabels,{’Task executed by Person’})
TexecutedByP=transposeR(PexecutesT)
isHomog=0
tgfWrite(’YTexecutedByP.tgf’,TexecutedByP,isHomog,vertexLabels,{})

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 7

’Take off Quantities’ ’Build & Construct’ ’Client Owner’
Columns 8 through 11

’Architect’ ’Engineer’ ’Quantity Surveyor’ [1x30 char]
Column 12

[1x23 char]
TexecutedByP =

1 1 0 0 0

APPENDIX G. ENGINEERING PROCESS MODEL 265

0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

isHomog =
0

File YTexecutedByP.tgf opened
nRows =

6
nCols =

5
File YTexecutedByP.tgf closed

Data set creates / modifies / reads data and graph output data
Task creates / modifies / reads data Concept plan = dwgs +document / Architects dwgs / Design calcs / Eng Plans /
Specifications / Bill of Quantities / Construction pgms/sched / As built plans

dataLabels={’Concept plan’,’Architects dwgs’,’Design calculations’, ...
’Engineering dwgs’,’Specifications’,’Bill of Quantities’, ...
’Construction pgms/sched’,’As built dwgs’}

TcreatesD=([1 0 0 0 0 0 0 0 ; ... % Conceptualise
0 1 0 0 0 0 0 0; ... % Plan
0 0 1 1 0 0 0 0; ... % Engineering design
0 0 0 0 1 0 0 0; ... % Specify and document
0 0 0 0 0 1 0 0; ... % Take off quantities
0 0 0 0 0 0 1 1]) % Construct

isHomog=0
vertexLabels=horzcat(taskLabels,dataLabels,{’Task creates Dataset’})
tgfWrite(’YTcreatesD.tgf’,TcreatesD,isHomog,vertexLabels,{})
% Compute transpose for data create - data created by task
DcreatedByT=transposeR(TcreatesD)
isHomog=0
vertexLabels=horzcat(dataLabels,taskLabels,{’Dataset created by Task’})
tgfWrite(’YDcreatedByT.tgf’,DcreatedByT,isHomog,vertexLabels,{})
TreadsD= ([0 0 0 0 0 0 0 0 ; ... % Conceptualise

1 0 0 0 0 0 0 0; ... % Plan
1 1 0 0 0 0 0 0; ... % Engineering design
0 1 1 0 0 0 0 0; ... % Specify and document
0 1 0 1 1 0 0 0; ... % Take off quantities
0 1 0 1 1 1 1 0]) % Construct

isHomog=0
vertexLabels=horzcat(taskLabels,dataLabels,{’Task reads Dataset’})
tgfWrite(’YTreadsD.tgf’,TreadsD,isHomog,vertexLabels,{})
% Compute transpose for data read - data read by task
DreadByT=transposeR(TreadsD)
isHomog=0
vertexLabels=horzcat(dataLabels,taskLabels,{’Dataset read by Task’})
tgfWrite(’YDreadByT.tgf’,DreadByT,isHomog,vertexLabels,{})
% Concept plan / Architects plan / Design calcs / Eng Plans / Specifications
% / Bill of Quantities / As built plans
TmodifiesD= ([1 1 0 0 0 0 0 0; ... % Conceptualise

0 1 0 0 0 0 0 0; ... % Plan
0 0 1 1 0 0 0 0; ... % Engineering design
0 0 0 0 1 0 0 0; ... % Specify and document
0 0 0 0 0 1 0 0; ... % Take off quantities
0 0 0 0 0 0 1 1]) % Construct

isHomog=0
vertexLabels=horzcat(taskLabels,dataLabels,{’Task modifies Dataset’})
tgfWrite(’YTmodifiesD.tgf’,TmodifiesD,isHomog,vertexLabels,{})
% Compute transpose for data modify - data modified by task
DmodifiedByT=transposeR(TmodifiesD)
isHomog=0
vertexLabels=horzcat(dataLabels,taskLabels,{’Dataset modified by Task’})
tgfWrite(’YDmodifiedByT.tgf’,DmodifiedByT,isHomog,vertexLabels,{})

APPENDIX G. ENGINEERING PROCESS MODEL 266

dataLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 8

[1x23 char] ’As built dwgs’
TcreatesD =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 7

’Take off Quantities’ ’Build & Construct’ ’Concept plan’
Columns 8 through 10

’Architects dwgs’ ’Design calculations’ ’Engineering dwgs’
Columns 11 through 13

’Specifications’ ’Bill of Quantities’ [1x23 char]
Columns 14 through 15

’As built dwgs’ [1x20 char]
File YTcreatesD.tgf opened
nRows =

6
nCols =

8
File YTcreatesD.tgf closed
DcreatedByT =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Conceptualise’ ’Plan’
Columns 11 through 13

’Eng Design’ ’Specify & Document’ ’Take off Quantities’
Columns 14 through 15

’Build & Construct’ [1x23 char]
File YDcreatedByT.tgf opened
nRows =

8
nCols =

6
File YDcreatedByT.tgf closed
TreadsD =

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0
0 1 0 1 1 1 1 0

isHomog =
0

APPENDIX G. ENGINEERING PROCESS MODEL 267

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 7

’Take off Quantities’ ’Build & Construct’ ’Concept plan’
Columns 8 through 10

’Architects dwgs’ ’Design calculations’ ’Engineering dwgs’
Columns 11 through 13

’Specifications’ ’Bill of Quantities’ [1x23 char]
Columns 14 through 15

’As built dwgs’ ’Task reads Dataset’
File YTreadsD.tgf opened
nRows =

6
nCols =

8
File YTreadsD.tgf closed
DreadByT =

0 1 1 0 0 0
0 0 1 1 1 1
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Conceptualise’ ’Plan’
Columns 11 through 13

’Eng Design’ ’Specify & Document’ ’Take off Quantities’
Columns 14 through 15

’Build & Construct’ [1x20 char]
File YDreadByT.tgf opened
nRows =

8
nCols =

6
File YDreadByT.tgf closed
TmodifiesD =

1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 7

’Take off Quantities’ ’Build & Construct’ ’Concept plan’
Columns 8 through 10

’Architects dwgs’ ’Design calculations’ ’Engineering dwgs’
Columns 11 through 13

’Specifications’ ’Bill of Quantities’ [1x23 char]
Columns 14 through 15

’As built dwgs’ [1x21 char]
File YTmodifiesD.tgf opened
nRows =

6
nCols =

8
File YTmodifiesD.tgf closed

APPENDIX G. ENGINEERING PROCESS MODEL 268

DmodifiedByT =
1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Conceptualise’ ’Plan’
Columns 11 through 13

’Eng Design’ ’Specify & Document’ ’Take off Quantities’
Columns 14 through 15

’Build & Construct’ [1x24 char]
File YDmodifiedByT.tgf opened
nRows =

8
nCols =

6
File YDmodifiedByT.tgf closed

Person - Data logical deductions
Person creates data

PcreatesD=productR(PexecutesT,TcreatesD)
isHomog=0
vertexLabels=horzcat(personLabels,dataLabels,{’Person creates Dataset’})
tgfWrite(’YPcreatesD.tgf’,PcreatesD,isHomog,vertexLabels,{})
% Data created by person
DcreatedByP=transposeR(PcreatesD)
isHomog=0
vertexLabels=horzcat(dataLabels,personLabels,{’Dataset created by Person’})
tgfWrite(’YDcreatedByP.tgf’,DcreatedByP,isHomog,vertexLabels,{})
% Person reading data
PreadsD=productR(PexecutesT,TreadsD)
isHomog=0
vertexLabels=horzcat(personLabels,dataLabels,{’Person reads Dataset’})
tgfWrite(’YPreadsD.tgf’,PreadsD,isHomog,vertexLabels,{})
% Data read by person
DreadByP=transposeR(PreadsD)
isHomog=0
vertexLabels=horzcat(dataLabels,personLabels,{’Dataset read by Person’})
tgfWrite(’YDreadByP.tgf’,DreadByP,isHomog,vertexLabels,{})
% Person modifies data
PmodifiesD=productR(PexecutesT,TmodifiesD)
isHomog=0
vertexLabels=horzcat(personLabels,dataLabels,{’Person modifies Dataset’})
tgfWrite(’YPmodifiesD.tgf’,PmodifiesD,isHomog,vertexLabels,{})
% Data modified by person
DmodifiedByP=transposeR(PmodifiesD)
isHomog=0
vertexLabels=horzcat(dataLabels,personLabels,{’Dataset modified by Person’})
tgfWrite(’YDmodifiedByP.tgf’,DmodifiedByP,isHomog,vertexLabels,{})

APPENDIX G. ENGINEERING PROCESS MODEL 269

PcreatesD =
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 7

[1x30 char] ’Concept plan’ ’Architects dwgs’
Columns 8 through 10

’Design calculations’ ’Engineering dwgs’ ’Specifications’
Columns 11 through 14

’Bill of Quantities’ [1x23 char] ’As built dwgs’ [1x22 char]
File YPcreatesD.tgf opened
nRows =

5
nCols =

8
File YPcreatesD.tgf closed
DcreatedByP =

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Client Owner’ ’Architect’
Columns 11 through 14

’Engineer’ ’Quantity Surveyor’ [1x30 char] [1x25 char]
File YDcreatedByP.tgf opened
nRows =

8
nCols =

5
File YDcreatedByP.tgf closed
PreadsD =

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 1 0 0 0
0 1 0 1 1 1 1 0

isHomog =
0

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 7

[1x30 char] ’Concept plan’ ’Architects dwgs’
Columns 8 through 10

’Design calculations’ ’Engineering dwgs’ ’Specifications’
Columns 11 through 14

’Bill of Quantities’ [1x23 char] ’As built dwgs’ [1x20 char]
File YPreadsD.tgf opened
nRows =

5
nCols =

8
File YPreadsD.tgf closed
DreadByP =

APPENDIX G. ENGINEERING PROCESS MODEL 270

0 1 1 0 0
0 0 1 1 1
0 0 1 1 0
0 0 0 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Client Owner’ ’Architect’
Columns 11 through 14

’Engineer’ ’Quantity Surveyor’ [1x30 char] [1x22 char]
File YDreadByP.tgf opened
nRows =

8
nCols =

5
File YDreadByP.tgf closed
PmodifiesD =

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 7

[1x30 char] ’Concept plan’ ’Architects dwgs’
Columns 8 through 10

’Design calculations’ ’Engineering dwgs’ ’Specifications’
Columns 11 through 14

’Bill of Quantities’ [1x23 char] ’As built dwgs’ [1x23 char]
File YPmodifiesD.tgf opened
nRows =

5
nCols =

8
File YPmodifiesD.tgf closed
DmodifiedByP =

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Client Owner’ ’Architect’
Columns 11 through 14

’Engineer’ ’Quantity Surveyor’ [1x30 char] [1x26 char]
File YDmodifiedByP.tgf opened
nRows =

8

APPENDIX G. ENGINEERING PROCESS MODEL 271

nCols =
5

File YDmodifiedByP.tgf closed

Data - Tool(G) relations
Tools: Text processor / CAD / Eng Design SW / Quantities SW / Construction Planning SW

toolLabels={’Text processor’,’CAD’,’Eng Design SW’, ...
’Quantities SW’,’Construction Planning SW’}

% Data requires tool
DrequiresG=([1 1 0 0 0 ; ... % Conceptual plan requirestxt processor & CAD

0 1 0 0 0 ; ... % Arch plan rquires CAD processor
0 0 1 0 0 ; ... % Design calcs require Eng Design SW
0 1 0 0 0 ; ... % Engineering plans require CAD
1 0 0 0 0 ; ... % Specifications require txt processor
0 0 0 1 0 ; ... % Bill of Quantities requires off Quant software
0 0 0 0 1 ; ... % Construction plans & schedules Constr SW
0 1 0 0 0]) % As built plans require CAD

isHomog=0
vertexLabels=horzcat(dataLabels,toolLabels,{’Dataset requires Tool’})
tgfWrite(’YDrequiresG.tgf’,DrequiresG,isHomog,vertexLabels,{})
% Tool used on data - transpose Data requires tool
GoperatesOnD=transposeR(DrequiresG)
isHomog=0
vertexLabels=horzcat(toolLabels,dataLabels,{’Tool operates on Dataset’})
tgfWrite(’YGoperatesOnD.tgf’,GoperatesOnD,isHomog,vertexLabels,{})

toolLabels =
Columns 1 through 4

’Text processor’ ’CAD’ ’Eng Design SW’ ’Quantities SW’
Column 5

[1x24 char]
DrequiresG =

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Text processor’ ’CAD’
Columns 11 through 14

’Eng Design SW’ ’Quantities SW’ [1x24 char] [1x21 char]
File YDrequiresG.tgf opened
nRows =

8
nCols =

5
File YDrequiresG.tgf closed
GoperatesOnD =

1 0 0 0 1 0 0 0
1 1 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

APPENDIX G. ENGINEERING PROCESS MODEL 272

0 0 0 0 0 0 1 0
isHomog =

0
vertexLabels =

Columns 1 through 4
’Text processor’ ’CAD’ ’Eng Design SW’ ’Quantities SW’

Columns 5 through 7
[1x24 char] ’Concept plan’ ’Architects dwgs’

Columns 8 through 10
’Design calculations’ ’Engineering dwgs’ ’Specifications’

Columns 11 through 14
’Bill of Quantities’ [1x23 char] ’As built dwgs’ [1x24 char]

File YGoperatesOnD.tgf opened
nRows =

5
nCols =

8
File YGoperatesOnD.tgf closed

Union operations
Union of task - data (create & read & modify)

ToperatesOnD=unionR(unionR(TreadsD,TcreatesD),TmodifiesD)
isHomog=0
vertexLabels=horzcat(taskLabels,dataLabels,{’Task operates on Dataset’})
tgfWrite(’YToperatesOnD.tgf’,ToperatesOnD,isHomog,vertexLabels,{})
% Union of data (create & read & modify)- task
DoperatedOnByT=unionR(unionR(DreadByT,DcreatedByT),DmodifiedByT)
isHomog=0
vertexLabels=horzcat(dataLabels,taskLabels,{’Data operated on by Task’})
tgfWrite(’YDoperatedOnByT.tgf’,DoperatedOnByT,isHomog,vertexLabels,{})
% Task uses / requires tool deduced from Task - dataset & Dataset-Tool union
TusesG=productR(ToperatesOnD,DrequiresG)
isHomog=0
vertexLabels=horzcat(taskLabels,toolLabels,{’Task uses/requires Tool’})
tgfWrite(’YTusesG.tgf’,TusesG,isHomog,vertexLabels,{})

ToperatesOnD =
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0
0 1 0 1 1 1 0 0
0 1 0 1 1 1 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 7

’Take off Quantities’ ’Build & Construct’ ’Concept plan’
Columns 8 through 10

’Architects dwgs’ ’Design calculations’ ’Engineering dwgs’
Columns 11 through 13

’Specifications’ ’Bill of Quantities’ [1x23 char]
Columns 14 through 15

’As built dwgs’ [1x24 char]
File YToperatesOnD.tgf opened
nRows =

6
nCols =

8
File YToperatesOnD.tgf closed

APPENDIX G. ENGINEERING PROCESS MODEL 273

DoperatedOnByT =
1 1 1 0 0 0
1 1 1 1 1 1
0 0 1 1 0 0
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Conceptualise’ ’Plan’
Columns 11 through 13

’Eng Design’ ’Specify & Document’ ’Take off Quantities’
Columns 14 through 15

’Build & Construct’ [1x24 char]
File YDoperatedOnByT.tgf opened
nRows =

8
nCols =

6
File YDoperatedOnByT.tgf closed
TusesG =

1 1 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 0 0
1 1 0 1 0
1 1 0 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 8

’Take off Quantities’ ’Build & Construct’ ’Text processor’ ’CAD’
Columns 9 through 12

’Eng Design SW’ ’Quantities SW’ [1x24 char] [1x23 char]
File YTusesG.tgf opened
nRows =

6
nCols =

5
File YTusesG.tgf closed

Transpose for tools used by tasks

GusedByT=transposeR(TusesG)
isHomog=0
vertexLabels=horzcat(toolLabels,taskLabels,{’Tool used by Task’})
tgfWrite(’YGusedByT.tgf’,GusedByT,isHomog,vertexLabels,{})

GusedByT =
1 1 1 1 1 1
1 1 1 1 1 1
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

isHomog =

APPENDIX G. ENGINEERING PROCESS MODEL 274

0
vertexLabels =

Columns 1 through 4
’Text processor’ ’CAD’ ’Eng Design SW’ ’Quantities SW’

Columns 5 through 8
[1x24 char] ’Conceptualise’ ’Plan’ ’Eng Design’

Columns 9 through 11
’Specify & Document’ ’Take off Quantities’ ’Build & Construct’

Column 12
’Tool used by Task’

File YGusedByT.tgf opened
nRows =

5
nCols =

6
File YGusedByT.tgf closed

Union of data and person logic
Union of data (create & read & modify)- person

PoperatesOnD=unionR(unionR(PreadsD,PcreatesD),PmodifiesD)
isHomog=0
vertexLabels=horzcat(personLabels,dataLabels,{’Person operates on Dataset’})
tgfWrite(’YPoperatesOnD.tgf’,PoperatesOnD,isHomog,vertexLabels,{})
% Union of data (create & read & modify) - person - Data operated on by
% person
DoperatedOnByP=unionR(unionR(DreadByP,DcreatedByP),DmodifiedByP)
isHomog=0
vertexLabels=horzcat(dataLabels,personLabels,{’Data operated on by Person’})
tgfWrite(’YDoperatedOnByP.tgf’,DoperatedOnByP,isHomog,vertexLabels,{})

PoperatesOnD =
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 1 0 1 1 1 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 7

[1x30 char] ’Concept plan’ ’Architects dwgs’
Columns 8 through 10

’Design calculations’ ’Engineering dwgs’ ’Specifications’
Columns 11 through 14

’Bill of Quantities’ [1x23 char] ’As built dwgs’ [1x26 char]
File YPoperatesOnD.tgf opened
nRows =

5
nCols =

8
File YPoperatesOnD.tgf closed
DoperatedOnByP =

1 1 1 0 0
1 1 1 1 1
0 0 1 1 0
0 0 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1

APPENDIX G. ENGINEERING PROCESS MODEL 275

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Client Owner’ ’Architect’
Columns 11 through 14

’Engineer’ ’Quantity Surveyor’ [1x30 char] [1x26 char]
File YDoperatedOnByP.tgf opened
nRows =

8
nCols =

5
File YDoperatedOnByP.tgf closed

Person tool deduced logic
Person uses / requires tool deduced from Person - dataset & Dataset-Tool union

PusesG=productR(PoperatesOnD,DrequiresG)
isHomog=0
vertexLabels=horzcat(personLabels,toolLabels,{’Person uses/requires Tool’})
tgfWrite(’YPusesG.tgf’,PusesG,isHomog,vertexLabels,{})
% Tools used by persons
GusedByP=transposeR(PusesG)
isHomog=0
vertexLabels=horzcat(toolLabels,personLabels,{’Tool used by Person’})
tgfWrite(’YGusedByP.tgf’,GusedByP,isHomog,vertexLabels,{})

PusesG =
1 1 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 0 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 8

[1x30 char] ’Text processor’ ’CAD’ ’Eng Design SW’
Columns 9 through 11

’Quantities SW’ [1x24 char] [1x25 char]
File YPusesG.tgf opened
nRows =

5
nCols =

5
File YPusesG.tgf closed
GusedByP =

1 1 1 1 1
1 1 1 1 1
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Text processor’ ’CAD’ ’Eng Design SW’ ’Quantities SW’

APPENDIX G. ENGINEERING PROCESS MODEL 276

Columns 5 through 8
[1x24 char] ’Client Owner’ ’Architect’ ’Engineer’

Columns 9 through 11
’Quantity Surveyor’ [1x30 char] ’Tool used by Person’

File YGusedByP.tgf opened
nRows =

5
nCols =

5
File YGusedByP.tgf closed

Alternative data operated on by task
Alternative to data operated on by task - transpose

DoperatedOnByPAlt=transposeR(PoperatesOnD)
isHomog=0
vertexLabels=horzcat(dataLabels,personLabels,{’Data operated on by Person (T)’})
tgfWrite(’YDoperatedOnByPAlt.tgf’,DoperatedOnByPAlt,isHomog,vertexLabels,{})

DoperatedOnByPAlt =
1 1 1 0 0
1 1 1 1 1
0 0 1 1 0
0 0 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Client Owner’ ’Architect’
Columns 11 through 14

’Engineer’ ’Quantity Surveyor’ [1x30 char] [1x30 char]
File YDoperatedOnByPAlt.tgf opened
nRows =

8
nCols =

5
File YDoperatedOnByPAlt.tgf closed

Deduce links data - task via tool to determine data sequence
Dataset - Task link deduced via tool

DoperatedOnByTViaTool=productR(DrequiresG,GusedByT)
isHomog=0
vertexLabels=horzcat(dataLabels,taskLabels,{’Data operated on by Task via Tool’})
tgfWrite(’YDoperatedOnByTViaTool.tgf’,DoperatedOnByTViaTool,isHomog,vertexLabels,{})
%
% Dataset sequence history - via person - read only
DhistoryDReadPerson=productR(DcreatedByP,PreadsD)
% Transpose
DhistoryDReadPerson=transposeR(DhistoryDReadPerson)

APPENDIX G. ENGINEERING PROCESS MODEL 277

isHomog=1
vertexLabels=horzcat(dataLabels, ...
{’Dataset history with Dataset via Persons - Read only’})
tgfWrite(’YDhistoryDviaReadPerson.tgf’,DhistoryDReadPerson,isHomog,vertexLabels,{})

DoperatedOnByTViaTool =
1 1 1 1 1 1
1 1 1 1 1 1
0 0 1 1 0 0
1 1 1 1 1 1
1 1 1 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
1 1 1 1 1 1

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Conceptualise’ ’Plan’
Columns 11 through 13

’Eng Design’ ’Specify & Document’ ’Take off Quantities’
Columns 14 through 15

’Build & Construct’ [1x33 char]
File YDoperatedOnByTViaTool.tgf opened
nRows =

8
nCols =

6
File YDoperatedOnByTViaTool.tgf closed
DhistoryDReadPerson =

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0
0 1 0 1 1 1 1 0
0 1 0 1 1 1 1 0

DhistoryDReadPerson =
1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

isHomog =
1

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 9

[1x23 char] ’As built dwgs’ [1x52 char]
File YDhistoryDviaReadPerson.tgf opened
nRows =

8
nCols =

8
File YDhistoryDviaReadPerson.tgf closed

APPENDIX G. ENGINEERING PROCESS MODEL 278

Deduce links data - task via tool to determine data sequence
Dataset sequence history - via person - read & modify

PreadsUnionmodifiesD=transposeR(unionR(DreadByP,DmodifiedByP))
% PreadsUnionmodifiesD=transposeR(DreadByP)
isHomog=0
vertexLabels=horzcat(personLabels,dataLabels,{’Person reads/modifies data union’})
tgfWrite(’YPreadsUnionModifiesD.tgf’,PreadsUnionmodifiesD,isHomog,vertexLabels,{})
DhistoryDPerson=productR(DcreatedByP,PreadsUnionmodifiesD)
% Transpose
DhistoryDPerson=transposeR(DhistoryDPerson)
isHomog=1
vertexLabels=horzcat(dataLabels,{’Dataset history with Dataset via Persons’})
tgfWrite(’YDhistoryDviaPerson.tgf’,DhistoryDPerson,isHomog,vertexLabels,{})
%
% Dataset sequence history - via task - read only
DhistoryDReadTask=productR(DcreatedByT,TreadsD)
% Transpose
DhistoryDReadTask=transposeR(DhistoryDReadTask)
isHomog=1
vertexLabels=horzcat(dataLabels, ...
{’Dataset history with Dataset via Tasks - Read only’})
tgfWrite(’YDhistoryDviaReadTask.tgf’,DhistoryDReadTask,isHomog,vertexLabels,{})
% Dataset sequence history - via task - read & modify
TreadsUnionmodifiesD=transposeR(unionR(DreadByT,DmodifiedByT))
isHomog=0
vertexLabels=horzcat(taskLabels,dataLabels,{’Task reads/modifies data union’})
tgfWrite(’YTreadsUnionModifiesD.tgf’,TreadsUnionmodifiesD,isHomog,vertexLabels,{})
DhistoryDTask=productR(DcreatedByT,TreadsUnionmodifiesD)
isHomog=1
vertexLabels=horzcat(dataLabels,{’Dataset history with Dataset via Task’})
tgfWrite(’YDhistoryDviaTask.tgf’,DhistoryDTask,isHomog,vertexLabels,{})
% Person loading
DreadByUnionmodifiedByP=unionR(DreadByP,DmodifiedByP)
isHomog=0
vertexLabels=horzcat(dataLabels,personLabels,{’Data read/modify by Persons union’})
tgfWrite(’YDreadbyUnionModifyByP.tgf’,DreadByUnionmodifiedByP,isHomog,vertexLabels,{})
PloadingP=productR(PcreatesD,unionR(DreadByP,DmodifiedByP))
isHomog=1
vertexLabels=horzcat(personLabels,{’Persons loading with Persons’})
tgfWrite(’YPloadingP.tgf’,PloadingP,isHomog,vertexLabels,{})
% Tool loading - read & modify implied by Dataset requires Tool
DreadByG=DrequiresG
DmodifiedByG=DrequiresG
GcreatesD=productR(GusedByP,PcreatesD)
GcreatesD=transposeR(DrequiresG)
DreadByUnionmodifiedByG=unionR(DreadByG,DmodifiedByG)
isHomog=0
vertexLabels=horzcat(dataLabels,toolLabels,{’Data read/modify by Tools union’})
tgfWrite(’YDreadbyUnionModifyByG.tgf’,DreadByUnionmodifiedByG,isHomog,vertexLabels,{})
GloadingG=productR(GcreatesD,unionR(DreadByG,DmodifiedByG))
isHomog=1
vertexLabels=horzcat(toolLabels,{’Tool loading with Tool’})
tgfWrite(’YGloadingG.tgf’,GloadingG,isHomog,vertexLabels,{})
%...
% Empty relation
% Test person intersections - resource loading
PavailableWithP=intersectionR(intersectionR(intersectionR(intersectionR(...

productR(PusesG,GusedByP), ...
productR(PexecutesT,TexecutedByP)), ...
productR(PcreatesD,DcreatedByP)), ...
productR(PmodifiesD,DmodifiedByP)), ...
productR(PreadsD,DreadByP))

isHomog=1
vertexLabels=horzcat(personLabels,{’Persons available with Persons’})
tgfWrite(’YPavailableWithP.tgf’,PavailableWithP,isHomog,vertexLabels,{})
% Test person union - resource loading
PtestunionP=unionR(unionR(unionR(unionR(...

productR(PusesG,GusedByP), ...
productR(PexecutesT,TexecutedByP)), ...

APPENDIX G. ENGINEERING PROCESS MODEL 279

productR(PcreatesD,DcreatedByP)), ...
productR(PmodifiesD,DmodifiedByP)), ...
productR(PreadsD,DreadByP))

isHomog=1
vertexLabels=horzcat(personLabels,{’Persons test union with Persons’})
tgfWrite(’YPtestunionP.tgf’,PtestunionP,isHomog,vertexLabels,{})
% Test task intersections - task sequence
TavailableWithT=intersectionR(intersectionR(intersectionR(intersectionR(...

productR(TusesG,GusedByT), ...
productR(TexecutedByP,PexecutesT)), ...
productR(TcreatesD,DcreatedByT)), ...
productR(TmodifiesD,DmodifiedByT)), ...
productR(TreadsD,DreadByT))

isHomog=1
vertexLabels=horzcat(taskLabels,{’Tasks available with Tasks’})
tgfWrite(’YTavailableWithT.tgf’,TavailableWithT,isHomog,vertexLabels,{})
% Test task union - task sequence
TtestunionT=unionR(unionR(unionR(unionR(...

productR(TusesG,GusedByT), ...
productR(TexecutedByP,PexecutesT)), ...
productR(TcreatesD,DcreatedByT)), ...
productR(TmodifiesD,DmodifiedByT)), ...
productR(TreadsD,DreadByT))

DreadByUnionmodifiedByT=unionR(DreadByT,DmodifiedByT)
isHomog=0
vertexLabels=horzcat(dataLabels,taskLabels,{’Data read/modify by Task union’})
tgfWrite(’YDreadbyUnionModifyByT.tgf’,DreadByUnionmodifiedByT,isHomog,vertexLabels,{})
isHomog=1
vertexLabels=horzcat(taskLabels,{’Tasks test union with Tasks’})
tgfWrite(’YTtestunionT.tgf’,TtestunionT,isHomog,vertexLabels,{})
TsequenceT=productR(TcreatesD,unionR(DreadByT,DmodifiedByT))
isHomog=1
vertexLabels=horzcat(taskLabels,{’Tasks sequence with Tasks’})
tgfWrite(’YTsequenceT.tgf’,TsequenceT,isHomog,vertexLabels,{})
% Product to level 10
T=TsequenceT
% T=difference(T,identity(size(T)))
[Tn,Tplus]=RelationProduct(TsequenceT,10)
Tcycl=intersectionR(Tplus,transpose(Tplus))
TR=unionR(T,identityB(size(T)))
TS=unionR(T,transposeR(T))
[TSn,TSplus]=Relationproduct(TS,10)
% Only upper triangular applies
TX=differenceR(T,identityB(size(T)))
[Taskschedule]=TopolSortBFS(triu(TX))
% Other tested relations
% Empty relation
% Test person intersections - resource loading
PavailableWithP=intersectionR(intersectionR(intersectionR(intersectionR(...

productR(PusesG,GusedByP), ...
productR(PexecutesT,TexecutedByP)), ...
productR(PcreatesD,DcreatedByP)), ...
productR(PmodifiesD,DmodifiedByP)), ...
productR(PreadsD,DreadByP))

isHomog=1
vertexLabels=horzcat(personLabels,{’Persons available with Persons’})
tgfWrite(’YPavailableWithP.tgf’,PavailableWithP,isHomog,vertexLabels,{})
% Test person union - resource loading
PtestunionP=unionR(unionR(unionR(unionR(...

productR(PusesG,GusedByP), ...
productR(PexecutesT,TexecutedByP)), ...
productR(PcreatesD,DcreatedByP)), ...
productR(PmodifiesD,DmodifiedByP)), ...
productR(PreadsD,DreadByP))

isHomog=1
vertexLabels=horzcat(personLabels,{’Persons test union with Persons’})
tgfWrite(’YPtestunionP.tgf’,PtestunionP,isHomog,vertexLabels,{})
% Test task intersections - task sequence
TavailableWithT=intersectionR(intersectionR(intersectionR(intersectionR(...

productR(TusesG,GusedByT), ...
productR(TexecutedByP,PexecutesT)), ...

APPENDIX G. ENGINEERING PROCESS MODEL 280

productR(TcreatesD,DcreatedByT)), ...
productR(TmodifiesD,DmodifiedByT)), ...
productR(TreadsD,DreadByT))

isHomog=1
vertexLabels=horzcat(taskLabels,{’Tasks available with Tasks’})
tgfWrite(’YTavailableWithT.tgf’,TavailableWithT,isHomog,vertexLabels,{})
% Test task union - task sequence
TtestunionT=unionR(unionR(unionR(unionR(...

productR(TusesG,GusedByT), ...
productR(TexecutedByP,PexecutesT)), ...
productR(TcreatesD,DcreatedByT)), ...
productR(TmodifiesD,DmodifiedByT)), ...
productR(TreadsD,DreadByT))

PreadsUnionmodifiesD =
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 1 0 1 1 1 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 7

[1x30 char] ’Concept plan’ ’Architects dwgs’
Columns 8 through 10

’Design calculations’ ’Engineering dwgs’ ’Specifications’
Columns 11 through 14

’Bill of Quantities’ [1x23 char] ’As built dwgs’ [1x32 char]
File YPreadsUnionModifiesD.tgf opened
nRows =

5
nCols =

8
File YPreadsUnionModifiesD.tgf closed
DhistoryDPerson =

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0
0 1 1 1 1 1 0 0
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

DhistoryDPerson =
1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

isHomog =
1

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 9

[1x23 char] ’As built dwgs’ [1x40 char]
File YDhistoryDviaPerson.tgf opened
nRows =

8
nCols =

APPENDIX G. ENGINEERING PROCESS MODEL 281

8
File YDhistoryDviaPerson.tgf closed
DhistoryDReadTask =

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0
0 1 0 1 1 1 1 0
0 1 0 1 1 1 1 0

DhistoryDReadTask =
0 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

isHomog =
1

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 9

[1x23 char] ’As built dwgs’ [1x50 char]
File YDhistoryDviaReadTask.tgf opened
nRows =

8
nCols =

8
File YDhistoryDviaReadTask.tgf closed
TreadsUnionmodifiesD =

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0
0 1 0 1 1 1 0 0
0 1 0 1 1 1 1 1

isHomog =
0

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 7

’Take off Quantities’ ’Build & Construct’ ’Concept plan’
Columns 8 through 10

’Architects dwgs’ ’Design calculations’ ’Engineering dwgs’
Columns 11 through 13

’Specifications’ ’Bill of Quantities’ [1x23 char]
Columns 14 through 15

’As built dwgs’ [1x30 char]
File YTreadsUnionModifiesD.tgf opened
nRows =

6
nCols =

8
File YTreadsUnionModifiesD.tgf closed
DhistoryDTask =

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0
0 1 0 1 1 1 0 0
0 1 0 1 1 1 1 1
0 1 0 1 1 1 1 1

isHomog =

APPENDIX G. ENGINEERING PROCESS MODEL 282

1
vertexLabels =

Columns 1 through 3
’Concept plan’ ’Architects dwgs’ ’Design calculations’

Columns 4 through 6
’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’

Columns 7 through 9
[1x23 char] ’As built dwgs’ [1x37 char]

File YDhistoryDviaTask.tgf opened
nRows =

8
nCols =

8
File YDhistoryDviaTask.tgf closed
DreadByUnionmodifiedByP =

1 1 1 0 0
1 1 1 1 1
0 0 1 1 0
0 0 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Client Owner’ ’Architect’
Columns 11 through 14

’Engineer’ ’Quantity Surveyor’ [1x30 char] [1x33 char]
File YDreadbyUnionModifyByP.tgf opened
nRows =

8
nCols =

5
File YDreadbyUnionModifyByP.tgf closed
PloadingP =

1 1 1 0 0
1 1 1 1 1
0 0 1 1 1
0 0 1 1 1
0 0 0 0 1

isHomog =
1

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 6

[1x30 char] [1x28 char]
File YPloadingP.tgf opened
nRows =

5
nCols =

5
File YPloadingP.tgf closed
DreadByG =

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

DmodifiedByG =
1 1 0 0 0
0 1 0 0 0

APPENDIX G. ENGINEERING PROCESS MODEL 283

0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

GcreatesD =
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1

GcreatesD =
1 0 0 0 1 0 0 0
1 1 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

DreadByUnionmodifiedByG =
1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’
Columns 4 through 6

’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’
Columns 7 through 10

[1x23 char] ’As built dwgs’ ’Text processor’ ’CAD’
Columns 11 through 14

’Eng Design SW’ ’Quantities SW’ [1x24 char] [1x31 char]
File YDreadbyUnionModifyByG.tgf opened
nRows =

8
nCols =

5
File YDreadbyUnionModifyByG.tgf closed
GloadingG =

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

isHomog =
1

vertexLabels =
Columns 1 through 4

’Text processor’ ’CAD’ ’Eng Design SW’ ’Quantities SW’
Columns 5 through 6

[1x24 char] [1x22 char]
File YGloadingG.tgf opened
nRows =

5
nCols =

5
File YGloadingG.tgf closed
PavailableWithP =

0 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

isHomog =
1

APPENDIX G. ENGINEERING PROCESS MODEL 284

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 6

[1x30 char] [1x30 char]
File YPavailableWithP.tgf opened
nRows =

5
nCols =

5
File YPavailableWithP.tgf closed
PtestunionP =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

isHomog =
1

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 6

[1x30 char] [1x31 char]
File YPtestunionP.tgf opened
nRows =

5
nCols =

5
File YPtestunionP.tgf closed
TavailableWithT =

0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

isHomog =
1

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 7

’Take off Quantities’ ’Build & Construct’ [1x26 char]
File YTavailableWithT.tgf opened
nRows =

6
nCols =

6
File YTavailableWithT.tgf closed
TtestunionT =

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

DreadByUnionmodifiedByT =
1 1 1 0 0 0
1 1 1 1 1 1
0 0 1 1 0 0
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1

isHomog =
0

vertexLabels =
Columns 1 through 3

’Concept plan’ ’Architects dwgs’ ’Design calculations’

APPENDIX G. ENGINEERING PROCESS MODEL 285

Columns 4 through 6
’Engineering dwgs’ ’Specifications’ ’Bill of Quantities’

Columns 7 through 10
[1x23 char] ’As built dwgs’ ’Conceptualise’ ’Plan’

Columns 11 through 13
’Eng Design’ ’Specify & Document’ ’Take off Quantities’

Columns 14 through 15
’Build & Construct’ [1x30 char]

File YDreadbyUnionModifyByT.tgf opened
nRows =

8
nCols =

6
File YDreadbyUnionModifyByT.tgf closed
isHomog =

1
vertexLabels =

Columns 1 through 4
’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’

Columns 5 through 7
’Take off Quantities’ ’Build & Construct’ [1x27 char]

File YTtestunionT.tgf opened
nRows =

6
nCols =

6
File YTtestunionT.tgf closed
TsequenceT =

1 1 1 0 0 0
1 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

isHomog =
1

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 7

’Take off Quantities’ ’Build & Construct’ [1x25 char]
File YTsequenceT.tgf opened
nRows =

6
nCols =

6
File YTsequenceT.tgf closed
T =

1 1 1 0 0 0
1 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

MATLAB implementation of relational algebra boolean matrix operations in inline functions
Tn =

1 1 1 1 1 1
1 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

Tplus =
1 1 1 1 1 1
1 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

Tcycl =
1 1 0 0 0 0

APPENDIX G. ENGINEERING PROCESS MODEL 286

1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

TR =
1 1 1 0 0 0
1 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

TS =
1 1 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1

MATLAB implementation of relational algebra boolean matrix operations in inline functions
TSn =

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

TSplus =
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

TX =
0 1 1 0 0 0
1 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

T =
0 1 1 0 0 0
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0

Topological Sort: Successor determination completed
level =

2
Topological Sort: Successor determination completed
level =

3
Topological Sort: Successor determination completed
level =

4
Topological Sort: Successor determination completed
level =

5
Topological Sort: Successor determination completed
level =

6
Topological Sort: Successor determination completed
level =

7
Topological Sort: Logical taskschedule computed
TaskSchedule =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

APPENDIX G. ENGINEERING PROCESS MODEL 287

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Taskschedule =
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

PavailableWithP =
0 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

isHomog =
1

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 6

[1x30 char] [1x30 char]
File YPavailableWithP.tgf opened
nRows =

5
nCols =

5
File YPavailableWithP.tgf closed
PtestunionP =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

isHomog =
1

vertexLabels =
Columns 1 through 4

’Client Owner’ ’Architect’ ’Engineer’ ’Quantity Surveyor’
Columns 5 through 6

[1x30 char] [1x31 char]
File YPtestunionP.tgf opened
nRows =

5
nCols =

5
File YPtestunionP.tgf closed
TavailableWithT =

0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

isHomog =
1

vertexLabels =
Columns 1 through 4

’Conceptualise’ ’Plan’ ’Eng Design’ ’Specify & Document’
Columns 5 through 7

’Take off Quantities’ ’Build & Construct’ [1x26 char]
File YTavailableWithT.tgf opened
nRows =

6
nCols =

6
File YTavailableWithT.tgf closed
TtestunionT =

1 1 1 1 1 1
1 1 1 1 1 1

APPENDIX G. ENGINEERING PROCESS MODEL 288

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

G.2 MATLAB Relational Algebra Functionality

The MATLAB code for the basic relational algebra functionality is listed below.

%%
% .

%
% Re l a t i ona l Algebra − Boolean matrix r ep r e s en t a t i on
% MATLAB Matrix ope ra t i on s
% .

%%
d i sp l ay (s t r c a t (’MATLAB implementation o f r e l a t i o n a l a lgebra ’ , . . .

’ boolean matrix ope ra t i on s in i n l i n e funct i ons ’))
% .

%%
% zero , one and i d e n t i t y
zeroB=i n l i n e (’ l o g i c a l (z e r o s (n ,m)) ’ , ’ n ’ , ’m’) ; % e . g . Z4=zeroB (4 , 4)
oneB=i n l i n e (’ l o g i c a l (ones (n ,m)) ’ , ’ n ’ , ’m’) ; % e . g . Z4=zeroB (4 , 4)
ident i tyB=i n l i n e (’ l o g i c a l (eye (n)) ’ , ’ n ’) ; % e . g I3=ident i tyB (3)
%%
% .

% Basic r e l a t i o n a l ope ra t i on s
productR= . . .
i n l i n e (’ l o g i c a l (mod(ones (s i z e (f i x (x)∗ f i x (y))) , (f i x (x)∗ f i x (y))+1)) ’ , ’ x ’ , ’ y ’) ;
% Note : MATLAB standard s e t union i s a=union ([1 , 1] , [1 , 1])
unionR= . . .

i n l i n e (’ l o g i c a l (mod(ones (s i z e (x)) , (x+y)+1)) ’ , ’ x ’ , ’ y ’) ;
i n t e r s e c t i onR= . . .

i n l i n e (’ l o g i c a l (mod(ones (s i z e (x)) , (x .∗ y)+1)) ’ , ’ x ’ , ’ y ’) ;
d i f f e r en c eR=i n l i n e (. . .

’ l o g i c a l (mod(ones (s i z e (x)) , (x−mod(ones (s i z e (x)) , (x .∗ y)+1))+1)) ’ , ’ x ’ , ’ y ’) ;
complementR=i n l i n e (’ l o g i c a l (z e r o s (s i z e (x))+not (l o g i c a l (x))) ’ , ’ x ’) ;
transposeR=i n l i n e (’ t ranspose (x) ’ , ’ x ’) ;
% .

%%

G.3 Process model database output MATLAB function

The MATLAB code to output the process model data to .csv file for importing into the engineering
process model database is listed below.

f unc t i on []= databaseDataWrite (. . .
taskLabe ls , personLabels , datasetLabe l s , too lLabe l s , . . .
s tatusElementLabels , s tepLabe l s , . . .
a t t r i bu t eLabe l s , a t t r i b u t eD i s c i p l i n e , . . .
a t t r ibuteFunct ion , attr ibuteType , . . .
edgeTaskPerson , edgeTaskTool , . . .
edgeDatasetTool , . . .
edgeTaskDatasetCreate , . . .
s tatusTaskDatasetCreate , . . .
edgeTaskDatasetRead , . . .
edgeTaskDatasetModify , . . .
statusTaskDatasetModify , . . .
weightDataset , . . .
statusComplet ion , . . .
statusTaskDataset , . . .

APPENDIX G. ENGINEERING PROCESS MODEL 289

edgeTaskTask , taskStep , f i l eP r eF i x)
% .

% databaseDataWrite .m
% Output database data in . csv f i l e s
% Database des ign f o r t ab l e s p e c i f i c a t i o n s
% .

%
% Output person tab l e
nPerson=s i z e (personLabels , 2)
tbPerson ={;} ;
f o r iPerson =1:nPerson

tbPerson{ iPerson ,1}= s t r c a t (’P’ , num2str (iPerson , ’%04d ’)) ;
tbPerson{ iPerson ,2}= personLabe l s { iPerson } ;

end
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbPerson . csv ’) , tbPerson)
%
% Output task tab l e
nTask=s i z e (taskLabe ls , 2)
tbTask ={;} ;
f o r iTask=1:nTask

tbTask{ iTask ,1}= s t r c a t (’T’ , num2str (iTask , ’%04d ’)) ;
tbTask{ iTask ,2}= taskLabe l s { iTask } ;

% use Stepname supp l i ed
tbTask{ iTask ,3}= s t r c a t (s t epLabe l s { . . .

f i nd (taskStep (iTask , :)) }) ;
% tbTask{ iTask ,3}= s t r c a t (’ Step ’ , . . .
% num2str (f i nd (taskStep (iTask , :)) , ’%04d ’)) ;
end
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbTask . csv ’) , tbTask)
%
% Output t o o l t ab l e
nTool=s i z e (too lLabe l s , 2)
tbTool ={;} ;
f o r iToo l =1:nTool

tbTool { iTool ,1}= s t r c a t (’G’ , num2str (iTool , ’%04d ’)) ;
tbTool { iTool ,2}= too lLabe l s { iToo l } ;

end
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbTool . csv ’) , tbTool)
%
% Output datase t t ab l e
nDataset=s i z e (datasetLabe l s , 2)
tbDataset ={;} ;
f o r iDatase t =1: nDataset

tbDataset { iDataset ,1}= s t r c a t (’D’ , num2str (iDataset , ’%04d ’)) ;
tbDataset { iDataset ,2}= datase tLabe l s { iDatase t } ;
% Attr ibute & Status nu l l
tbDataset { iDataset , 3}= ’ ’ ;
tbDataset { iDataset , 4}= ’ ’ ;
tbDataset { iDataset ,5}=num2str (weightDataset (iDatase t) , ’%3.2 f ’) ;

end
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbDataset . csv ’) , tbDataset)
%
% Output statusElement tab l e
nStatusElement=s i z e (statusElementLabels , 2)
tbStatusElement ={;} ;
f o r iStatusElement =1: nStatusElement

tbStatusElement { iStatusElement ,1}= . . .
s t r c a t (’ S ’ , num2str (iStatusElement , ’%04d ’)) ;

tbStatusElement { iStatusElement ,2}= . . .
s tatusElementLabe l s { iStatusElement } ;

tbStatusElement { iStatusElement ,3}= . . .
num2str (statusComplet ion (iStatusElement) , ’%3.2 f ’) ;

end
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbStatusElement . csv ’) , tbStatusElement)
%
% Output a t t r i b u t e t ab l e
nAttr ibute=s i z e (a t t r i bu t eLabe l s , 2)
tbAtt r ibute ={;} ;
f o r iA t t r i bu t e =1: nAttr ibute

tbAtt r ibute { iAt t r ibute ,1}= . . .
s t r c a t (’A’ , num2str (iAt t r ibute , ’%04d ’)) ;

APPENDIX G. ENGINEERING PROCESS MODEL 290

tbAtt r ibute { iAt t r ibute ,2}= . . .
a t t r i bu t eLabe l s { iA t t r i bu t e } ;

tbAtt r ibute { iAt t r ibute ,3}= . . .
a t t r i b u t eD i s c i p l i n e { iA t t r i bu t e } ;

tbAtt r ibute { iAt t r ibute ,4}= . . .
a t t r ibuteFunct i on { iAt t r i bu t e } ;

tbAtt r ibute { iAt t r ibute ,5}= . . .
at t r ibuteType { iA t t r i bu t e } ;

end
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbAtt r ibute . csv ’) , tbAtt r ibute)
%
% Output edgeTaskPerson tab l e
nTaskE=s i z e (edgeTaskPerson , 1)
nPersonE=s i z e (edgeTaskPerson , 2)
i f (nTaskE ~= nTask)

d i sp ([’ Task l a b e l / edge count i n c o n s i s t e n t nTaskE , nTask : ’ , . . .
num2str (nTaskE) , ’ ’ , num2str (nTask)])

end
i f (nPersonE ~= nPerson)

d i sp ([’ Person l a b e l / edge count i n c o n s i s t e n t nPersonE , nPerson : ’ , . . .
num2str (nPersonE) , ’ ’ , num2str (nPerson)])

end
tbEdgeTaskPerson ={;} ;
iEdge=0;
f o r iTask=1:nTask

f o r iPerson =1:nPerson
i f not (edgeTaskPerson (iTask , iPerson) == 0)
iEdge=iEdge+1;
tbEdgeTaskPerson{ iEdge ,1}= . . .

s t r c a t (’T’ , num2str (iTask , ’%04d ’) , . . .
’P’ , num2str (iPerson , ’%04d ’)) ;

tbEdgeTaskPerson{ iEdge ,2}= . . .
s t r c a t (char (ta skLabe l s { iTask }) , ’− ’ , . . .

char (personLabe l s { iPerson })) ;
tbEdgeTaskPerson{ iEdge ,3}= . . .

s t r c a t (’T’ , num2str (iTask , ’%04d ’)) ;
tbEdgeTaskPerson{ iEdge ,4}= . . .

s t r c a t (’P’ , num2str (iPerson , ’%04d ’)) ;
% no a t t r i b u t e and sta tuse l ement s to r ed at pre sent ! ! ! ! ! ! ! ! ! ! ! ! ! !

tbEdgeTaskPerson{ iEdge ,5}= ’ ’ ;
tbEdgeTaskPerson{ iEdge ,6}= ’ ’ ;
end

end
end
di sp ([’ Edges Processed = ’ , num2str (iEdge)])
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbEdgeTaskPerson . csv ’) , tbEdgeTaskPerson)
%
% Output edgeTaskTool t ab l e
nTaskE=s i z e (edgeTaskTool , 1)
nToolE=s i z e (edgeTaskTool , 2)
i f (nTaskE ~= nTask)

d i sp ([’ Task l a b e l / edge count i n c o n s i s t e n t nTaskE , nTask : ’ , . . .
num2str (nTaskE) , ’ ’ , num2str (nTask)])

end
i f (nToolE ~= nTool)

d i sp ([’ Tool l a b e l / edge count i n c o n s i s t e n t nToolE , nTool : ’ , . . .
num2str (nToolE) , ’ ’ , num2str (nTool)])

end
tbEdgeTaskTool ={;} ;
iEdge=0;
f o r iTask=1:nTask

f o r iToo l =1:nTool
i f not (edgeTaskTool (iTask , iToo l) == 0)
iEdge=iEdge+1;
tbEdgeTaskTool{ iEdge ,1}= . . .

s t r c a t (’T’ , num2str (iTask , ’%04d ’) , . . .
’G’ , num2str (iTool , ’%04d ’)) ;

tbEdgeTaskTool{ iEdge ,2}= . . .
s t r c a t (char (ta skLabe l s { iTask }) , ’− ’ , . . .

char (t oo lLabe l s { iToo l })) ;
tbEdgeTaskTool{ iEdge ,3}= . . .

APPENDIX G. ENGINEERING PROCESS MODEL 291

s t r c a t (’T’ , num2str (iTask , ’%04d ’)) ;
tbEdgeTaskTool{ iEdge ,4}= . . .

s t r c a t (’G’ , num2str (iTool , ’%04d ’)) ;
% no a t t r i b u t e and s ta tuse l ement s to r ed at pre sent ! ! ! ! ! ! ! ! ! ! ! ! ! !

tbEdgeTaskTool{ iEdge ,5}= ’ ’ ;
tbEdgeTaskTool{ iEdge ,6}= ’ ’ ;
end

end
end
di sp ([’ Edges Processed = ’ , num2str (iEdge)])
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbEdgeTaskTool . csv ’) , tbEdgeTaskTool)
%
% Output edgeDatasetTool t ab l e
nDatasetE=s i z e (edgeDatasetTool , 1)
nToolE=s i z e (edgeDatasetTool , 2)
i f (nDatasetE ~= nDataset)

d i sp ([’ Dataset l a b e l / edge count i n c o n s i s t e n t nDatasetE , nDataset : ’ , . . .
num2str (nDatasetE) , ’ ’ , num2str (nDataset)])

end
i f (nToolE ~= nTool)

d i sp ([’ Tool l a b e l / edge count i n c o n s i s t e n t nToolE , nTool : ’ , . . .
num2str (nToolE) , ’ ’ , num2str (nTool)])

end
tbEdgeDatasetTool ={;} ;
iEdge=0;
f o r iDatase t =1: nDataset

f o r iToo l =1:nTool
i f not (edgeDatasetTool (iDataset , iToo l) == 0)
iEdge=iEdge+1;
tbEdgeDatasetTool { iEdge ,1}= . . .

s t r c a t (’D’ , num2str (iDataset , ’%04d ’) , . . .
’G’ , num2str (iTool , ’%04d ’)) ;

tbEdgeDatasetTool { iEdge ,2}= . . .
s t r c a t (char (data se tLabe l s { iDatase t }) , ’− ’ , . . .

char (t oo lLabe l s { iToo l })) ;
tbEdgeDatasetTool { iEdge ,3}= . . .

s t r c a t (’D’ , num2str (iDataset , ’%04d ’)) ;
tbEdgeDatasetTool { iEdge ,4}= . . .

s t r c a t (’G’ , num2str (iTool , ’%04d ’)) ;
% no a t t r i b u t e and s ta tuse l ement s to r ed at pre sent ! ! ! ! ! ! ! ! ! ! ! ! ! !

tbEdgeDatasetTool { iEdge ,5}= ’ ’ ;
tbEdgeDatasetTool { iEdge ,6}= ’ ’ ;
end

end
end
di sp ([’ Edges Processed = ’ , num2str (iEdge)])
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbEdgeDatasetTool . csv ’) , tbEdgeDatasetTool)
%
% Output edgeTaskDatasetCreate t ab l e without s t a tu s va lue s
nTaskE=s i z e (edgeTaskDatasetCreate , 1)
nDatasetE=s i z e (edgeTaskDatasetCreate , 2)
nDatasetStatusElement=s i z e (statusElementLabels , 2)
i f (nTaskE ~= nTask)

d i sp ([’ Task l a b e l / edge count i n c o n s i s t e n t nTaskE , nTask : ’ , . . .
num2str (nTaskE) , ’ ’ , num2str (nTask)])

end
i f (nDatasetE ~= nDataset)

d i sp ([’ Dataset l a b e l / edge count i n c o n s i s t e n t nDatasetE , nDataset : ’ , . . .
num2str (nDatasetE) , ’ ’ , num2str (nDataset)])

end
tbEdgeTaskDatasetCreate ={;} ;
iEdge=0;
f o r iTask=1:nTaskE

f o r iDatase t =1: nDataset
i f not (edgeTaskDatasetCreate (iTask , iDatase t) == 0)
iEdge=iEdge+1;
tbEdgeTaskDatasetCreate { iEdge ,1}= . . .

s t r c a t (’T’ , num2str (iTask , ’%04d ’) , . . .
’D’ , num2str (iDataset , ’%04d ’)) ;

tbEdgeTaskDatasetCreate { iEdge ,2}= . . .

APPENDIX G. ENGINEERING PROCESS MODEL 292

s t r c a t (char (ta skLabe l s { iTask }) , ’− ’ , . . .
char (data se tLabe l s { iDatase t })) ;

tbEdgeTaskDatasetCreate { iEdge ,3}= . . .
s t r c a t (’T’ , num2str (iTask , ’%04d ’)) ;

tbEdgeTaskDatasetCreate { iEdge ,4}= . . .
s t r c a t (’D’ , num2str (iDataset , ’%04d ’)) ;

% no a t t r i b u t e s to r ed at pre sent ! ! ! ! ! ! ! ! ! ! ! ! ! !
tbEdgeTaskDatasetCreate { iEdge ,5}= ’ ’ ;

% s t o r e c r e a t e s t a tu s element f o r task − data edge
PIDStatusElement = ’ ’ ;
i f (nDatasetStatusElement >0)
iStatusElement=statusTaskDatasetCreate (iTask , iDatase t) ;

i f iStatusElement >0
PIDStatusElement=s t r c a t (’ S ’ , num2str (iStatusElement , ’%04d ’)) ;

end
end
tbEdgeTaskDatasetCreate { iEdge ,6}=PIDStatusElement ;
end

end
end
di sp ([’ Edges Processed = ’ , num2str (iEdge)])
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbEdgeTaskDatasetCreate . csv ’) , . . .

tbEdgeTaskDatasetCreate)

%
% Output edgeTaskDatasetRead tab l e without s t a tu s va lue s
nTaskE=s i z e (edgeTaskDatasetRead , 1)
nDatasetE=s i z e (edgeTaskDatasetRead , 2)
i f (nTaskE ~= nTask)

d i sp ([’ Task l a b e l / edge count i n c o n s i s t e n t nTaskE , nTask : ’ , . . .
num2str (nTaskE) , ’ ’ , num2str (nTask)])

end
i f (nDatasetE ~= nDataset)

d i sp ([’ Dataset l a b e l / edge count i n c o n s i s t e n t nDatasetE , nDataset : ’ , . . .
num2str (nDatasetE) , ’ ’ , num2str (nDataset)])

end
tbEdgeTaskDatasetRead ={;};
iEdge=0;
f o r iTask=1:nTaskE

f o r iDatase t =1: nDataset
i f not (edgeTaskDatasetRead (iTask , iDatase t) == 0)
iEdge=iEdge+1;
tbEdgeTaskDatasetRead{ iEdge ,1}= . . .

s t r c a t (’T’ , num2str (iTask , ’%04d ’) , . . .
’D’ , num2str (iDataset , ’%04d ’)) ;

tbEdgeTaskDatasetRead{ iEdge ,2}= . . .
s t r c a t (char (ta skLabe l s { iTask }) , ’− ’ , . . .

char (data se tLabe l s { iDatase t })) ;
tbEdgeTaskDatasetRead{ iEdge ,3}= . . .

s t r c a t (’T’ , num2str (iTask , ’%04d ’)) ;
tbEdgeTaskDatasetRead{ iEdge ,4}= . . .

s t r c a t (’D’ , num2str (iDataset , ’%04d ’)) ;
% no a t t r i b u t e s to r ed at pre sent ! ! ! ! ! ! ! ! ! ! ! ! ! !

tbEdgeTaskDatasetRead{ iEdge ,5}= ’ ’ ;
tbEdgeTaskDatasetRead{ iEdge ,6}= ’ ’ ;
end

end
end
di sp ([’ Edges Processed = ’ , num2str (iEdge)])
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbEdgeTaskDatasetRead . csv ’) , . . .

tbEdgeTaskDatasetRead)
%
% Output edgeTaskDatasetModify t ab l e with s t a tu s va lue s
nTaskE=s i z e (edgeTaskDatasetModify , 1)
nDatasetE=s i z e (edgeTaskDatasetModify , 2)
nDatasetStatus=s i z e (statusTaskDataset , 2)
nDatasetStatusElement=s i z e (statusElementLabels , 2)
i f (nTaskE ~= nTask)

d i sp ([’ Task l a b e l / edge count i n c o n s i s t e n t nTaskE , nTask : ’ , . . .
num2str (nTaskE) , ’ ’ , num2str (nTask)])

APPENDIX G. ENGINEERING PROCESS MODEL 293

end
i f (nDatasetE ~= nDataset)

d i sp ([’ Dataset l a b e l / edge count i n c o n s i s t e n t nDatasetE , nDataset : ’ , . . .
num2str (nDatasetE) , ’ ’ , num2str (nDataset)])

end
i f (nDatasetStatus >=0)
i f (nDatasetE ~= nDatasetStatus)

d i sp ([’ Dataset l a b e l / s t a tu s array count i n c o n s i s t e n t nDatasetE , ’ , . . .
’ nDatasetStatus : ’ , . . .
num2str (nDatasetE) , ’ ’ , num2str (nDatasetStatus)])

end
end
tbEdgeTaskDatasetModify ={;} ;
iEdge=0;
f o r iTask=1:nTaskE

f o r iDatase t =1: nDataset
i f not (edgeTaskDatasetModify (iTask , iDatase t) == 0)
iEdge=iEdge+1;
tbEdgeTaskDatasetModify{ iEdge ,1}= . . .

s t r c a t (’T’ , num2str (iTask , ’%04d ’) , . . .
’D’ , num2str (iDataset , ’%04d ’)) ;

tbEdgeTaskDatasetModify{ iEdge ,2}= . . .
s t r c a t (char (ta skLabe l s { iTask }) , ’− ’ , . . .

char (data se tLabe l s { iDatase t })) ;
tbEdgeTaskDatasetModify{ iEdge ,3}= . . .

s t r c a t (’T’ , num2str (iTask , ’%04d ’)) ;
tbEdgeTaskDatasetModify{ iEdge ,4}= . . .

s t r c a t (’D’ , num2str (iDataset , ’%04d ’)) ;
% no Attr ibute s to r ed at pre sent ! ! ! ! ! ! ! ! ! ! ! ! ! !

tbEdgeTaskDatasetModify{ iEdge ,5}= ’ ’ ;
% s t o r e modify s t a tu s element f o r e task − data edge

PIDStatusElement = ’ ’ ;
i f (nDatasetStatusElement >0)
iStatusElement=statusTaskDatasetModify (iTask , iDatase t) ;

i f iStatusElement >0
PIDStatusElement=s t r c a t (’ S ’ , num2str (iStatusElement , ’%04d ’)) ;

end
end
tbEdgeTaskDatasetModify{ iEdge ,6}= PIDStatusElement ;
end

end
end
di sp ([’ Edges Processed = ’ , num2str (iEdge)])
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbEdgeTaskDatasetModify . csv ’) , . . .

tbEdgeTaskDatasetModify)
%
% Output edgeTaskTask tab l e
nTaskERow=s i z e (edgeTaskTask , 1)
nTaskECol=s i z e (edgeTaskTask , 2)
i f (nTaskERow ~= nTask)

d i sp ([’ Task l a b e l / edge count i n c o n s i s t e n t nTaskERow , nTask : ’ , . . .
num2str (nTaskERow) , ’ ’ , num2str (nTask)])

end
i f (nTaskECol ~= nTask)

d i sp ([’ Task l a b e l / edge count i n c o n s i s t e n t nTaskECol , nTask : ’ , . . .
num2str (nTaskECol) , ’ ’ , num2str (nTask)])

end
tbEdgeTaskTask ={;} ;
iEdge=0;
f o r iTaskRow=1:nTaskERow

f o r iTaskCol=1:nTaskECol
i f not (edgeTaskTask (iTaskRow , iTaskCol) == 0)
iEdge=iEdge+1;
tbEdgeTaskTask{ iEdge ,1}= . . .

s t r c a t (’T’ , num2str (iTaskRow , ’%04d ’) , . . .
’T’ , num2str (iTaskCol , ’%04d ’)) ;

tbEdgeTaskTask{ iEdge ,2}= . . .
s t r c a t (char (ta skLabe l s {iTaskRow}) , ’− ’ , . . .

char (ta skLabe l s { iTaskCol })) ;

APPENDIX G. ENGINEERING PROCESS MODEL 294

tbEdgeTaskTask{ iEdge ,3}= . . .
s t r c a t (’T’ , num2str (iTaskRow , ’%04d ’)) ;

tbEdgeTaskTask{ iEdge ,4}= . . .
s t r c a t (’T’ , num2str (iTaskCol , ’%04d ’)) ;

% no a t t r i b u t e and s ta tuse l ement s to r ed at pre sent ! ! ! ! ! ! ! ! ! ! ! ! ! !
tbEdgeTaskTask{ iEdge ,5}= ’ ’ ;
tbEdgeTaskTask{ iEdge ,6}= ’ ’ ;
tbEdgeTaskTask{ iEdge ,7}= . . .

s t r c a t (’T’ , num2str (iTaskRow , ’%04d ’)) ;
end

end
end
di sp ([’ Edges Processed = ’ , num2str (iEdge)])
Cel lWrite (s t r c a t (f i l eP r eF i x , ’ tbEdgeTaskTask . csv ’) , tbEdgeTaskTask)

G.4 Graph data formats used by the yEd program

Examples of the .tgf and .xgml data file formats used by the yEd program are listed below.

YPexecutesT.tgf

1 Cl i en t Owner
2 Arch i t e c t
3 Engineer
4 Quantity Surveyor
5 Constructor /Contractor / Bui lder
6 Conceptua l i s e
7 Plan
8 Eng Design
9 Spec i f y & Document
10 Take o f f Quant i t i e s
11 Build & Construct
12 Person execute s Task
#
1 6
2 6
2 7
3 8
3 9
4 9
4 10
5 11

YPexecutesT.xgml

<se c t i o n name="xgml">
<a t t r i bu t e key="Creator " type="St r ing">yFi l e s </at t r i bu t e >
<a t t r i bu t e key="Vers ion " type="St r ing ">2.3.1</ at t r i bu t e >
<s e c t i o n name="graph">
<a t t r i bu t e key="h i e r a r c h i c " type="in t">1</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing"></at t r i bu t e >
<a t t r i bu t e key="d i r e c t ed " type="in t">1</at t r i bu t e >
<s e c t i o n name="node">
<a t t r i bu t e key="id " type="in t">0</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Cl i en t Owner</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double">−190.0</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">12.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">88.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC99</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Cl i en t Owner</at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >

APPENDIX G. ENGINEERING PROCESS MODEL 295

</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t">1</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Architect </at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double">−93.0</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">12.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">66.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC99</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Architect </at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t">2</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Conceptual i se </at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double">−166.0</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">96.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC00</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Conceptual i se </at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t">3</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Plan</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double">−76.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">40.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC00</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Plan</at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t">4</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Person execute s Task</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double">−160.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double">−45.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">144.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#99CC00</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Person execute s Task</at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t">5</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Build & ; Construct </at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double ">437.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">80.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">116.0</ at t r i bu t e >

APPENDIX G. ENGINEERING PROCESS MODEL 296

<at t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC00</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Build & ; Construct </at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t">6</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Take o f f Quant i t i e s </at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double ">23.0</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">122.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC00</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Take o f f Quant i t i e s </at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t">7</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Spec i f y & ; Document</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double ">170.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">133.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC00</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Spec i f y & ; Document</at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t">8</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Eng Design</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double ">297.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">81.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC00</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Eng Design</at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t">9</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Constructor /Contractor /Bui lder </at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double ">437.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">10.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">189.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC99</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Constructor /Contractor /Bui lder </at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >

APPENDIX G. ENGINEERING PROCESS MODEL 297

<at t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t ">10</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Quantity Surveyor</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double ">80.125</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">12.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">117.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC99</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Quantity Surveyor</at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="node">
<a t t r i bu t e key="id " type="in t ">11</at t r i bu t e >
<a t t r i bu t e key=" l a b e l " type="St r ing">Engineer</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key="x" type="double ">250.625</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">12.0</ at t r i bu t e >
<a t t r i bu t e key="w" type="double ">65.0</ at t r i bu t e >
<a t t r i bu t e key="h" type="double ">30.0</ at t r i bu t e >
<a t t r i bu t e key="type" type="St r ing">rec tang l e </at t r i bu t e >
<a t t r i bu t e key=" f i l l " type="St r ing">#FFCC99</at t r i bu t e >
<a t t r i bu t e key="ou t l i n e " type="St r ing ">#000000</at t r i bu t e >
</sec t i on >
<se c t i o n name="LabelGraphics">
<a t t r i bu t e key="text " type="St r ing">Engineer</at t r i bu t e >
<a t t r i bu t e key="f on tS i z e " type="in t ">13</at t r i bu t e >
<a t t r i bu t e key="fontName" type="St r ing">Dialog </at t r i bu t e >
<a t t r i bu t e key="anchor " type="St r ing">c</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="edge">
<a t t r i bu t e key="source " type="in t">0</at t r i bu t e >
<a t t r i bu t e key="ta rg e t " type="in t">2</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key=" f i l l " type="St r ing ">#000000</at t r i bu t e >
<a t t r i bu t e key="targetArrow" type="St r ing">standard</at t r i bu t e >
</sec t i on >
<se c t i o n name="edgeAnchor">
<a t t r i bu t e key="ySource " type="double">1.0</ at t r i bu t e >
<a t t r i bu t e key="xTarget " type="double">−0.5</at t r i bu t e >
<a t t r i bu t e key="yTarget " type="double">−1.0</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="edge">
<a t t r i bu t e key="source " type="in t">1</at t r i bu t e >
<a t t r i bu t e key="ta rg e t " type="in t">2</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key=" f i l l " type="St r ing ">#000000</at t r i bu t e >
<a t t r i bu t e key="targetArrow" type="St r ing">standard</at t r i bu t e >
<s e c t i o n name="Line">
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double">−93.0</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">12.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double">−109.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double">−142.0</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double">−166.0</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
</sec t i on >
</sec t i on >
</sec t i on >
<se c t i o n name="edgeAnchor">
<a t t r i bu t e key="xSource " type="double">−0.5</at t r i bu t e >
<a t t r i bu t e key="ySource " type="double">1.0</ at t r i bu t e >
<a t t r i bu t e key="xTarget " type="double">0.5</ at t r i bu t e >
<a t t r i bu t e key="yTarget " type="double">−1.0</at t r i bu t e >
</sec t i on >

APPENDIX G. ENGINEERING PROCESS MODEL 298

</sec t i on >
<se c t i o n name="edge">
<a t t r i bu t e key="source " type="in t">1</at t r i bu t e >
<a t t r i bu t e key="ta rg e t " type="in t">3</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key=" f i l l " type="St r ing ">#000000</at t r i bu t e >
<a t t r i bu t e key="targetArrow" type="St r ing">standard</at t r i bu t e >
</sec t i on >
<se c t i o n name="edgeAnchor">
<a t t r i bu t e key="xSource " type="double">0.5</ at t r i bu t e >
<a t t r i bu t e key="ySource " type="double">1.0</ at t r i bu t e >
<a t t r i bu t e key="yTarget " type="double">−1.0</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="edge">
<a t t r i bu t e key="source " type="in t ">11</at t r i bu t e >
<a t t r i bu t e key="ta rg e t " type="in t">8</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key=" f i l l " type="St r ing ">#000000</at t r i bu t e >
<a t t r i bu t e key="targetArrow" type="St r ing">standard</at t r i bu t e >
<s e c t i o n name="Line">
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">250.625</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">12.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">266.875</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">297.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">297.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
</sec t i on >
</sec t i on >
</sec t i on >
<se c t i o n name="edgeAnchor">
<a t t r i bu t e key="xSource " type="double">0.5</ at t r i bu t e >
<a t t r i bu t e key="ySource " type="double">1.0</ at t r i bu t e >
<a t t r i bu t e key="yTarget " type="double">−1.0</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="edge">
<a t t r i bu t e key="source " type="in t ">11</at t r i bu t e >
<a t t r i bu t e key="ta rg e t " type="in t">7</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key=" f i l l " type="St r ing ">#000000</at t r i bu t e >
<a t t r i bu t e key="targetArrow" type="St r ing">standard</at t r i bu t e >
<s e c t i o n name="Line">
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">250.625</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">12.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">234.375</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">203.75</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">170.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
</sec t i on >
</sec t i on >
</sec t i on >
<se c t i o n name="edgeAnchor">
<a t t r i bu t e key="xSource " type="double">−0.5</at t r i bu t e >
<a t t r i bu t e key="ySource " type="double">1.0</ at t r i bu t e >
<a t t r i bu t e key="xTarget " type="double">0.5</ at t r i bu t e >
<a t t r i bu t e key="yTarget " type="double">−1.0</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="edge">
<a t t r i bu t e key="source " type="in t ">10</at t r i bu t e >
<a t t r i bu t e key="ta rg e t " type="in t">7</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key=" f i l l " type="St r ing ">#000000</at t r i bu t e >
<a t t r i bu t e key="targetArrow" type="St r ing">standard</at t r i bu t e >
<s e c t i o n name="Line">
<se c t i o n name="point">

APPENDIX G. ENGINEERING PROCESS MODEL 299

<at t r i bu t e key="x" type="double ">80.125</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">12.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">109.375</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">137.25</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">170.5</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
</sec t i on >
</sec t i on >
</sec t i on >
<se c t i o n name="edgeAnchor">
<a t t r i bu t e key="xSource " type="double">0.5</ at t r i bu t e >
<a t t r i bu t e key="ySource " type="double">1.0</ at t r i bu t e >
<a t t r i bu t e key="xTarget " type="double">−0.5</at t r i bu t e >
<a t t r i bu t e key="yTarget " type="double">−1.0</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="edge">
<a t t r i bu t e key="source " type="in t ">10</at t r i bu t e >
<a t t r i bu t e key="ta rg e t " type="in t">6</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key=" f i l l " type="St r ing ">#000000</at t r i bu t e >
<a t t r i bu t e key="targetArrow" type="St r ing">standard</at t r i bu t e >
<s e c t i o n name="Line">
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">80.125</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">12.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">50.875</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">23.0</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">47.0</ at t r i bu t e >
</sec t i on >
<se c t i o n name="point">
<a t t r i bu t e key="x" type="double ">23.0</ at t r i bu t e >
<a t t r i bu t e key="y" type="double ">82.0</ at t r i bu t e >
</sec t i on >
</sec t i on >
</sec t i on >
<se c t i o n name="edgeAnchor">
<a t t r i bu t e key="xSource " type="double">−0.5</at t r i bu t e >
<a t t r i bu t e key="ySource " type="double">1.0</ at t r i bu t e >
<a t t r i bu t e key="yTarget " type="double">−1.0</at t r i bu t e >
</sec t i on >
</sec t i on >
<se c t i o n name="edge">
<a t t r i bu t e key="source " type="in t">9</at t r i bu t e >
<a t t r i bu t e key="ta rg e t " type="in t">5</at t r i bu t e >
<s e c t i o n name="graph i c s">
<a t t r i bu t e key=" f i l l " type="St r ing ">#000000</at t r i bu t e >
<a t t r i bu t e key="targetArrow" type="St r ing">standard</at t r i bu t e >
</sec t i on >
<se c t i o n name="edgeAnchor">
<a t t r i bu t e key="ySource " type="double">1.0</ at t r i bu t e >
<a t t r i bu t e key="yTarget " type="double">−1.0</at t r i bu t e >
</sec t i on >
</sec t i on >
</sec t i on >
</sec t i on >

G.5 Database file transfer format

The process model data in .csv file format is used for importing data into the engineering process model
database.

The contents of two typical .csv files are listed below.

APPENDIX G. ENGINEERING PROCESS MODEL 300

YEx1tbPerson.csv

P0001 , C l i en t Owner , A0003 , S0005
P0002 , Arch i tect , A0003 , S0005
P0003 , Engineer , A0003 , S0005
P0004 , Quantity Surveyor , A0003 , S0005
P0005 , Constructor /Contractor /Bui lder , A0003 , S0005

YEx1tbEdgeTaskPerson.csv

T0001P0001 , Conceptual i se−Cl i en t Owner , T0001 , P0001 , A0003 , S0005
T0001P0002 , Conceptual i se−Archi tect , T0001 , P0002 , A0003 , S0005
T0002P0002 , Plan−Archi tect , T0002 , P0002 , A0003 , S0005
T0003P0003 , Eng Design−Engineer , T0003 , P0003 , A0003 , S0005
T0004P0003 , Spec i f y & Document−Engineer , T0004 , P0003 , A0003 , S0005
T0004P0004 , Spec i f y & Document−Quantity Surveyor , T0004 , P0004 , A0003 , S0005
T0005P0004 , Take o f f Quant i t i e s−Quantity Surveyor , T0005 , P0004 , A0003 , S0005
T0006P0005 , Bui ld & Construct−Constructor /Contractor /Bui lder , T0006 , P0005 , A0003 , S0005

G.6 MATLAB implementation of process model with status settings

Contents
• Initialise relation algebra tools
• Set up labels for task and person data
• Process Person-task relations and output graph data
• Set up data and process dataset relations
• Compute tasks - data create relation
• Compute tasks - data read relation
• Compute tasks - data read relation
• Set up tool data and relations
• Person / Task / Data graph output
• Set up status information
• Solution
• Output task sequence graphs
• Combine task sequences and output task - step relation

%..
% Process Model for typical Design Project - Example from Tutorial
% With status settings
% 2006/04/16
%..
clc
clear all
format compact

Initialise relation algebra tools

RelationalAlgebraBoolean

MATLAB implementation of relational algebra boolean matrix operations in inline functions

Set up labels for task and person data

APPENDIX G. ENGINEERING PROCESS MODEL 301

tgfFilePre=’YS’
% Define persons executes tasks PT
% Tasks: ArchitecturalLayoutConcept / t1
% ArchitecturalDesignDetail / t2
% ArchitecturalDesignCheck / t3
% StructuralLayoutConcept / t4
% StructuralDesignDetail / t5
% StructuralDesignCheck / t6
% ConcreteLayoutConcept / t7
% ConcreteDesignDetail / t8
% ConcreteDesignCheck / t9
taskLabels= {’ArchitecturalLayoutConcept’, ...

’ArchitecturalDesignDetail ’, ...
’ArchitecturalDesignCheck’, ...
’StructuralLayoutConcept’, ...
’StructuralDesignDetail’, ...
’StructuralDesignCheck’, ...
’ConcreteLayoutConcept’, ...
’ConcreteDesignDetail’, ...
’ConcreteDesignCheck’}

personLabels={’Architect’,’Client’,’StructuralEngineer’, ...
’Technologist’,’CheckingEngineer’}

tgfFilePre =
YS
taskLabels =

Columns 1 through 5
[1x26 char] [1x26 char] [1x24 char] [1x23 char] [1x22 char]

Columns 6 through 9
[1x21 char] [1x21 char] [1x20 char] ’ConcreteDesignCheck’

personLabels =
Columns 1 through 4

’Architect’ ’Client’ ’StructuralEngineer’ ’Technologist’
Column 5

’CheckingEngineer’

Process Person-task relations and output graph data

PexecutesT=([1 1 0 0 0 0 0 0 0 ; ... % Architect / p1
0 0 0 0 0 0 0 0 0 ; ... % Client / p2
0 0 0 1 1 0 0 1 0 ; ... % StructuralEngineer /p3
0 0 0 0 0 0 1 1 0 ; ... % Technologist /p4
0 0 1 0 0 1 0 0 1]) % CheckingEngineer /p5

% add comment & heading strings at end of labels
vertexLabels=horzcat(personLabels,taskLabels,{’Person executes Task’});
isHomog=0
filePT=horzcat(tgfFilePre,’PexecutesT’,’.tgf’)
tgfWrite(filePT,PexecutesT,isHomog,vertexLabels,{});
% Compute tasks - persons TP
vertexLabels=horzcat(taskLabels,personLabels,{’Task executed by Person’});
TexecutedByP=transposeR(PexecutesT)
isHomog=0
fileTP=horzcat(tgfFilePre,’TexecutedByP’,’.tgf’)
tgfWrite(fileTP,TexecutedByP,isHomog,vertexLabels,{});

PexecutesT =
1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 1 0
0 0 1 0 0 1 0 0 1

isHomog =
0

APPENDIX G. ENGINEERING PROCESS MODEL 302

filePT =
YSPexecutesT.tgf
File YSPexecutesT.tgf opened
nRows =

5
nCols =

9
File YSPexecutesT.tgf closed
TexecutedByP =

1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 1 0
0 0 0 0 1

isHomog =
0

fileTP =
YSTexecutedByP.tgf
File YSTexecutedByP.tgf opened
nRows =

9
nCols =

5
File YSTexecutedByP.tgf closed

Set up data and process dataset relations
Datasets ConceptPlan/ d1 ArchitecturalDrawings/ d2 StructuralDrawings/ d3 ConcreteDrawings /d4

dataLabels={’ConceptPlan’, ...
’ArchitecturalDrawings’, ...
’StructuralDrawings’, ...
’ConcreteDrawings’, ...
’Debugger’}

% Data is created by Task
DcreatedByT=([0 0 0 0 0 0 0 0 0; ... % ConceptPlan

1 0 0 0 0 0 0 0 0; ... % ArchitecturalDrawings
0 0 0 1 0 0 0 0 0; ... % StructuralDrawings
0 0 0 0 0 0 1 0 0; ... % ConcreteDrawings
0 0 0 0 0 0 0 0 0]) % Debugger

% Output graph data
vertexLabels=horzcat(dataLabels,taskLabels,{’Data created by Task’});
isHomog=0
fileDcT=horzcat(tgfFilePre,’DcreatedByT’,’.tgf’)
tgfWrite(fileDcT,DcreatedByT,isHomog,vertexLabels,{});

dataLabels =
Columns 1 through 3

’ConceptPlan’ [1x21 char] ’StructuralDrawings’
Columns 4 through 5

’ConcreteDrawings’ ’Debugger’
DcreatedByT =

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

isHomog =
0

fileDcT =

APPENDIX G. ENGINEERING PROCESS MODEL 303

YSDcreatedByT.tgf
File YSDcreatedByT.tgf opened
nRows =

5
nCols =

9
File YSDcreatedByT.tgf closed

Compute tasks - data create relation

vertexLabels=horzcat(taskLabels,dataLabels,{’Task creates Data’});
TcreatesD=transposeR(DcreatedByT)
isHomog=0
fileTcD=horzcat(tgfFilePre,’TcreatesD’,’.tgf’)
tgfWrite(fileTcD,TcreatesD,isHomog,vertexLabels,{});
% Data is read by Task
DreadByT= ([1 0 0 0 0 0 0 0 0; ... % ConceptPlan

0 1 1 1 0 0 1 0 0; ... % ArchitecturalDrawings
0 0 0 0 1 1 1 0 0; ... % StructuralDrawings
0 0 0 0 0 0 0 1 1; ... % ConcreteDrawings
0 0 0 0 0 0 0 0 0]) % Debugger

% Output graph data
vertexLabels=horzcat(dataLabels,taskLabels,{’Data read by Task’});
isHomog=0
fileDrT=horzcat(tgfFilePre,’DreadByT’,’.tgf’)
tgfWrite(fileDrT,DreadByT,isHomog,vertexLabels,{});

TcreatesD =
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

isHomog =
0

fileTcD =
YSTcreatesD.tgf
File YSTcreatesD.tgf opened
nRows =

9
nCols =

5
File YSTcreatesD.tgf closed
DreadByT =

1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0

isHomog =
0

fileDrT =
YSDreadByT.tgf
File YSDreadByT.tgf opened
nRows =

5
nCols =

9
File YSDreadByT.tgf closed

APPENDIX G. ENGINEERING PROCESS MODEL 304

Compute tasks - data read relation

vertexLabels=horzcat(taskLabels,dataLabels,{’Task reads Data’});
TreadsD=transposeR(DreadByT)
isHomog=0
fileTrD=horzcat(tgfFilePre,’TreadsD’,’.tgf’)
tgfWrite(fileTrD,TreadsD,isHomog,vertexLabels,{});
% Data is modified by Task
DmodifiedByT= ([0 0 0 0 0 0 0 0 0; ... % ConceptPlan

0 1 1 0 0 0 0 0 0; ... % ArchitecturalDrawings
0 0 0 0 1 1 0 0 0; ... % StructuralDrawings
0 0 0 0 0 0 0 1 1; ... % ConcreteDrawings
0 0 0 0 0 0 0 0 0]) % Debugger

% Output graph data
vertexLabels=horzcat(dataLabels,taskLabels,{’Data modified by Task’});
isHomog=0
fileDmT=horzcat(tgfFilePre,’DmodifiedByT’,’.tgf’)
tgfWrite(fileDmT,DmodifiedByT,isHomog,vertexLabels,{});

TreadsD =
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 1 0

isHomog =
0

fileTrD =
YSTreadsD.tgf
File YSTreadsD.tgf opened
nRows =

9
nCols =

5
File YSTreadsD.tgf closed
DmodifiedByT =

0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0

isHomog =
0

fileDmT =
YSDmodifiedByT.tgf
File YSDmodifiedByT.tgf opened
nRows =

5
nCols =

9
File YSDmodifiedByT.tgf closed

Compute tasks - data read relation

vertexLabels=horzcat(taskLabels,dataLabels,{’Task modifies Data’});
TmodifiesD=transposeR(DmodifiedByT)
isHomog=0
fileTmD=horzcat(tgfFilePre,’TmodifiesD’,’.tgf’)
% Output graph data
tgfWrite(fileTmD,TreadsD,isHomog,vertexLabels,{});

APPENDIX G. ENGINEERING PROCESS MODEL 305

TmodifiesD =
0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 1 0

isHomog =
0

fileTmD =
YSTmodifiesD.tgf
File YSTmodifiesD.tgf opened
nRows =

9
nCols =

5
File YSTmodifiesD.tgf closed

Set up tool data and relations
Tools: CAD / g1 EngCalculations / g2 Spreadsheet / g3 WordProcessing / g4 Data - Tool(G) relations

toolLabels={’CAD’,’EngCalculations’, ...
’Spreadsheet’,’WordProcessing’}

% Data requires tool
% CAD / EngCalculations / Spreadsheet / WordProcessing
% Toolbugger

DrequiresG=([0 0 0 1 0 ; ... % ConceptPlan
1 0 0 0 0; ... % ArchitecturalDrawings
0 1 1 1 0; ... % StructuralDrawings
1 0 0 0 0; ... % ConcreteDrawings
0 0 0 0 0]) % Debugger

vertexLabels=horzcat(dataLabels,toolLabels,{’Data requires Tool’});
isHomog=0
fileDG=horzcat(tgfFilePre,’DrequiresG’,’.tgf’)
tgfWrite(fileDG,DrequiresG,isHomog,vertexLabels,{});

toolLabels =
’CAD’ ’EngCalculations’ ’Spreadsheet’ ’WordProcessing’

DrequiresG =
0 0 0 1 0
1 0 0 0 0
0 1 1 1 0
1 0 0 0 0
0 0 0 0 0

isHomog =
0

fileDG =
YSDrequiresG.tgf
File YSDrequiresG.tgf opened
nRows =

5
nCols =

5
File YSDrequiresG.tgf closed

Person / Task / Data graph output
Output Person / Task / Data graphs - Data read only

APPENDIX G. ENGINEERING PROCESS MODEL 306

makePersonTaskDataGraphs(tgfFilePre,personLabels,taskLabels,dataLabels, ...
PexecutesT,TcreatesD,TreadsD,TmodifiesD,DrequiresG)

MATLAB implementation of relational algebra boolean matrix operations in inline functions
nPerson =

5
nTask =

9
nDataC =

5
nDataR =

5
nDataM =

5
nDataset =

5
nVertex =

19
graphvertexLabels =

Columns 1 through 7
’Architect’ {} {} {} {} [1x26 char] [1x26 char]

Columns 8 through 15
{} {} {} {} {} {} {} ’ConceptPlan’

Columns 16 through 21
[1x21 char] {} {} {} ’Tasks & Data for’ ’Architect’

filename =
YSArchitect.tgf
File YSArchitect.tgf opened
nRows =

19
nCols =

19
File YSArchitect.tgf closed
graphvertexLabels =

Columns 1 through 11
{} {} {} {} {} {} {} {} {} {} {}

Columns 12 through 19
{} {} {} {} {} {} {} {}

Columns 20 through 21
’Tasks & Data for’ ’Client’

filename =
YSClient.tgf
File YSClient.tgf opened
nRows =

19
nCols =

19
File YSClient.tgf closed
graphvertexLabels =

Columns 1 through 8
{} {} ’StructuralEngineer’ {} {} {} {} {}

Columns 9 through 15
[1x23 char] [1x22 char] {} {} [1x20 char] {} {}

Columns 16 through 19
[1x21 char] ’StructuralDrawings’ ’ConcreteDrawings’ {}

Columns 20 through 21
’Tasks & Data for’ ’StructuralEngineer’

filename =
YSStructuralEngineer.tgf
File YSStructuralEngineer.tgf opened
nRows =

19
nCols =

19
File YSStructuralEngineer.tgf closed
graphvertexLabels =

Columns 1 through 9
{} {} {} ’Technologist’ {} {} {} {} {}

APPENDIX G. ENGINEERING PROCESS MODEL 307

Columns 10 through 16
{} {} [1x21 char] [1x20 char] {} {} [1x21 char]

Columns 17 through 20
’StructuralDrawings’ ’ConcreteDrawings’ {} ’Tasks & Data for’

Column 21
’Technologist’

filename =
YSTechnologist.tgf
File YSTechnologist.tgf opened
nRows =

19
nCols =

19
File YSTechnologist.tgf closed
graphvertexLabels =

Columns 1 through 7
{} {} {} {} ’CheckingEngineer’ {} {}

Columns 8 through 13
[1x24 char] {} {} [1x21 char] {} {}

Columns 14 through 17
’ConcreteDesignCheck’ {} [1x21 char] ’StructuralDrawings’

Columns 18 through 21
’ConcreteDrawings’ {} ’Tasks & Data for’ ’CheckingEngineer’

filename =
YSCheckingEngineer.tgf
File YSCheckingEngineer.tgf opened
nRows =

19
nCols =

19
File YSCheckingEngineer.tgf closed

Set up status information
Status values: PreliminaryConcept / s1 DesignedEngineered / s2 Finalised / s3 Checked / s4

statusLabels={’PreliminaryConcept’,’DesignedEngineered’, ...
’Finalised’,’Checked’}

nStatus=size(statusLabels,2)
% 9 tasks by 4 status values for
% 5 dataSets for debug
TwritesDS{1}=[0 1 0 0 ; ...

0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 1 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 1 ; ...
0 0 0 0 ; ...
0 0 0 0]

TwritesDS{2}=[0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 1 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0]

TwritesDS{3}=[0 0 0 0 ; ...
0 1 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 1 ; ...

APPENDIX G. ENGINEERING PROCESS MODEL 308

0 0 0 0]
TwritesDS{4}=[0 0 0 0 ; ...

0 0 0 0 ; ...
0 1 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 1 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 1]

TwritesDS{5}=[0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0]

statusLabels =
’PreliminaryConcept’ ’DesignedEngineered’ ’Finalised’ ’Checked’

nStatus =
4

TwritesDS =
[9x4 double]

TwritesDS =
[9x4 double] [9x4 double]

TwritesDS =
[9x4 double] [9x4 double] [9x4 double]

TwritesDS =
[9x4 double] [9x4 double] [9x4 double] [9x4 double]

TwritesDS =
Columns 1 through 4

[9x4 double] [9x4 double] [9x4 double] [9x4 double]
Column 5

[9x4 double]

Solution
Solution parameters

nPerson=size(PexecutesT,1)
nTask=size(PexecutesT,2)
nDataC=size(TcreatesD,2)
nDataR=size(TreadsD,2)
nDataM=size(TmodifiesD,2)
nDataset=max([nDataC,nDataR,nDataM])
%
PreadsD=productR(PexecutesT,TreadsD)
vertexLabels=horzcat(personLabels,dataLabels,{’Person reads Data with Status’});
isHomog=0
filePD=horzcat(tgfFilePre,’PreadsD’,’.tgf’)
tgfWrite(filePD,PreadsD,isHomog,vertexLabels,{});
%
TrequiresG=productR(TreadsD,DrequiresG)
vertexLabels=horzcat(taskLabels,toolLabels,{’Task requires Tool with Status’});
isHomog=0
fileTG=horzcat(tgfFilePre,’TrequiresG’,’.tgf’)
tgfWrite(fileTG,TrequiresG,isHomog,vertexLabels,{});
%
PrequiresG=productR(PreadsD,DrequiresG)
vertexLabels=horzcat(personLabels,toolLabels,{’Person requires Tool with Status’});
isHomog=0

APPENDIX G. ENGINEERING PROCESS MODEL 309

filePG=horzcat(tgfFilePre,’PrequiresG’,’.tgf’)
tgfWrite(filePG,PrequiresG,isHomog,vertexLabels,{});
% Set up basic Task-Task relation
TsequenceRule1T=productR(TcreatesD,unionR(DreadByT,DmodifiedByT))
vertexLabels=horzcat(taskLabels,{’Tasks sequence with Tasks - Rule 1’});
isHomog=1
fileTR1T=horzcat(tgfFilePre,’TsequenceRule1T’,’.tgf’)
tgfWrite(fileTR1T,TsequenceRule1T,isHomog,vertexLabels,{});
% Testing
% TModStatus1T=productR(TwritesDS{1},DmodifiedByT)
% TModStatus2T=productR(TwritesDS{2},DmodifiedByT)
% TModStatus3T=productR(TwritesDS{3},DmodifiedByT)
% DModStatus1D=productR(transposeR(TwritesDS{1}),transposeR(DmodifiedByT))
% Rule 2 for task sequence
TsequenceRule2T=zeroB(nTask,nTask);
% Determine data modified by task x task y combinations
for tx=1:nTask-1

for ty=tx+1:nTask
% extract modification datasets for tasks and combine with ’and’
DmodifyTx=DmodifiedByT(:,tx);
DmodifyTy=DmodifiedByT(:,ty);
DmodifyTxAndTy=intersectionR(DmodifyTx,DmodifyTy);
% display ’tx,ty,DmodTxAndTy’,tx,ty,DmodifyTxAndTy
% check status increase
for id=1:nDataM

if(DmodifyTxAndTy(id) == 1)
rPx=0;
rPy=0;
for is=1:nStatus

if(TwritesDS{id}(tx,is))==1
rPx=is;

end
if(TwritesDS{id}(ty,is))==1

rPy=is;
end

% display ’id,is,tx,ty,rPx,rPy’,id,is,tx,ty,rPx,rPy
end

if(rPx<rPy) TsequenceRule2T(tx,ty)=1; end
end

end
end

end

nPerson =
5

nTask =
9

nDataC =
5

nDataR =
5

nDataM =
5

nDataset =
5

PreadsD =
1 1 0 0 0
0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 1 1 1 0

isHomog =
0

filePD =
YSPreadsD.tgf
File YSPreadsD.tgf opened
nRows =

5

APPENDIX G. ENGINEERING PROCESS MODEL 310

nCols =
5

File YSPreadsD.tgf closed
TrequiresG =

0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 1 1 0
0 1 1 1 0
1 1 1 1 0
1 0 0 0 0
1 0 0 0 0

isHomog =
0

fileTG =
YSTrequiresG.tgf
File YSTrequiresG.tgf opened
nRows =

9
nCols =

5
File YSTrequiresG.tgf closed
PrequiresG =

1 0 0 1 0
0 0 0 0 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0

isHomog =
0

filePG =
YSPrequiresG.tgf
File YSPrequiresG.tgf opened
nRows =

5
nCols =

5
File YSPrequiresG.tgf closed
TsequenceRule1T =

0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

isHomog =
1

fileTR1T =
YSTsequenceRule1T.tgf
File YSTsequenceRule1T.tgf opened
nRows =

9
nCols =

9
File YSTsequenceRule1T.tgf closed

Output task sequence graphs
Rule 2 for task sequence

TsequenceRule2T
vertexLabels=horzcat(taskLabels,{’Tasks sequence with Tasks - Rule 2’});
isHomog=1

APPENDIX G. ENGINEERING PROCESS MODEL 311

fileTR2T=horzcat(tgfFilePre,’TsequenceRule2T’,’.tgf’)
tgfWrite(fileTR2T,TsequenceRule2T,isHomog,vertexLabels,{});
TsequenceRule1Plus2T=unionR(TsequenceRule1T,TsequenceRule2T)
vertexLabels=horzcat(taskLabels,{’Tasks sequence with Tasks - Rule 1&2’});
isHomog=1
fileTR12T=horzcat(tgfFilePre,’TsequenceRule1Plus2T’,’.tgf’)
tgfWrite(fileTR12T,TsequenceRule1Plus2T,isHomog,vertexLabels,{});
% Rule 3 for task sequence
TsequenceRule3T=zeroB(nTask,nTask);
% Determine data modified by task x task y combinations
for tx=1:nTask-1

for ty=tx+1:nTask
% extract modification datasets for tasks and combine with ’and’
DmodifyTx=DmodifiedByT(:,tx);
DcreateTy=DcreatedByT(:,ty);
DreadTy=DreadByT(:,ty);
DmodifyTy=DmodifiedByT(:,ty);
DmodifyTxAndReadTy=intersectionR(DmodifyTx,DreadTy);
X=DmodifyTxAndReadTy;
DcreateTyOrModifyTy=unionR(DcreateTy,DmodifyTy);
Y=DcreateTyOrModifyTy;
% display ’tx,ty,X,Y’,tx,ty,X,Y
% check status ranks
for id=1:nDataM

if(X (id) == 1)
rminX=nStatus;

for is=1:nStatus
if(TwritesDS{id}(tx,is))==1

if(is<rminX) rminX=is ; end
end

end
if(Y (id) == 1)

rmaxY=0;
for is=1:nStatus

if(TwritesDS{id}(ty,is))==1
if(is>rmaxY) rmaxY=is ; end

end
end

if(rminX<=rmaxY) TsequenceRule2T(tx,ty)=1; end
end

end
end

end % loop over ty
end % loop over tx
TsequenceRule3T

TsequenceRule2T =
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

isHomog =
1

fileTR2T =
YSTsequenceRule2T.tgf
File YSTsequenceRule2T.tgf opened
nRows =

9
nCols =

9
File YSTsequenceRule2T.tgf closed
TsequenceRule1Plus2T =

0 1 1 1 0 0 1 0 0

APPENDIX G. ENGINEERING PROCESS MODEL 312

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

isHomog =
1

fileTR12T =
YSTsequenceRule1Plus2T.tgf
File YSTsequenceRule1Plus2T.tgf opened
nRows =

9
nCols =

9
File YSTsequenceRule1Plus2T.tgf closed
TsequenceRule3T =

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Combine task sequences and output task - step relation

TsequenceT=unionR(unionR(TsequenceRule1T,TsequenceRule2T),TsequenceRule3T)
vertexLabels=horzcat(taskLabels,{’Tasks sequence with Tasks - Rule 1&2&3’});
isHomog=1
fileTT=horzcat(tgfFilePre,’TsequenceT’,’.tgf’)
tgfWrite(fileTT,TsequenceT,isHomog,vertexLabels,{})
[Taskschedule]=TopolSortBFS(TsequenceT)
nSteps=size(Taskschedule,2)
stepLabel=’Step’;
for istep=1:nSteps
stepLabels{istep}=strcat(stepLabel,num2str(istep));
end
vertexLabels=horzcat(taskLabels,stepLabels,{’Tasks - Logical Steps’});
isHomog=0
fileTSchedule=horzcat(tgfFilePre,’Taskschedule’,’.tgf’)
tgfWrite(fileTSchedule,Taskschedule,isHomog,vertexLabels,{})

TsequenceT =
0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

isHomog =
1

fileTT =
YSTsequenceT.tgf
File YSTsequenceT.tgf opened
nRows =

9
nCols =

APPENDIX G. ENGINEERING PROCESS MODEL 313

9
File YSTsequenceT.tgf closed
T =

0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

Topological Sort: Successor determination completed
level =

2
Topological Sort: Successor determination completed
level =

3
Topological Sort: Successor determination completed
level =

4
Topological Sort: Successor determination completed
level =

5
Topological Sort: Successor determination completed
level =

6
Topological Sort: Logical taskschedule computed
TaskSchedule =

1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Taskschedule =
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

nSteps =
5

isHomog =
0

fileTSchedule =
YSTaskschedule.tgf
File YSTaskschedule.tgf opened
nRows =

9
nCols =

5
File YSTaskschedule.tgf closed

Appendix H

Process Model: Person-Task and Person-Data
Graphs

H.1 Engineering Process Model Graphical Output Example - MATLAB
Code

Contents
• Relation algebra MATLAB functionality
• Person-task relation and labels
• Task-persons relation
• Task-data relation
• Data - Tool(G) relations
• Process data to determine task and data per person

%..
% Project Model for typical Building Project
% Person / task / data graphs
%..
clc
clear all
format compact

Relation algebra MATLAB functionality

RelationalAlgebraBoolean
tgfFilePre=’YProcessPTD’

Error using ==> evalin
Undefined function or variable ’RelationalAlgebraBoolean’.

Person-task relation and labels
Define persons executes tasks PT Tasks: Conceptualise / Plan / Design / Specify & Document / Take off Quantities /
Build & Construct

PexecutesT=([1 0 0 0 0 0 ; ... % Client Owner
1 1 0 0 0 0 ; ... % Architect
0 0 1 1 0 0 ; ... % Engineer
0 0 0 1 1 0 ; ... % Quantity Surveyor
0 0 0 0 0 1]) % Constructor/Contractor

% TgfWrite(tgfFile,R,vertexLabels,edgeLabels)
personLabels={’ClientOwner’,’Architect’,’Engineer’, ...

’QuantitySurveyor’,’ContractorBuilder’}

314

APPENDIX H. PROCESS MODEL: PERSON-TASK AND PERSON-DATA GRAPHS 315

taskLabels={’Conceptualise’,’Plan’,’Eng Design’, ...
’Specify & Document’, ...
’Take off Quantities’,’Build & Construct’}

% add comment & heading strings at end of labels
vertexLabels=horzcat(personLabels,taskLabels,{’Person executes Task’})
isHomog=0
filePT=horzcat(tgfFilePre,’PexecutesT’,’.tgf’)
tgfWrite(filePT,PexecutesT,isHomog,vertexLabels,{})

Task-persons relation
Compute tasks - persons TP

vertexLabels=horzcat(taskLabels,personLabels,{’Task executed by Person’})
TexecutedByP=transposeR(PexecutesT)
isHomog=0
fileTP=horzcat(tgfFilePre,’TexecutedByP’,’.tgf’)
tgfWrite(fileTP,TexecutedByP,isHomog,vertexLabels,{})

Task-data relation
Task creates / modifies / reads data Concept plan = dwgs +document / Architects dwgs / Design calcs / Eng Plans /
Specifications / Bill of Quantities / Construction pgms/sched / As built plans

dataLabels={’Concept plan’,’Architects dwgs’,’Design calculations’, ...
’Engineering dwgs’,’Specifications’,’Bill of Quantities’, ...
’Construction pgms/sched’,’As built dwgs’}

TcreatesD=([1 0 0 0 0 0 0 0 ; ... % Conceptualise
0 1 0 0 0 0 0 0; ... % Plan
0 0 1 1 0 0 0 0; ... % Engineering design
0 0 0 0 1 0 0 0; ... % Specify and document
0 0 0 0 0 1 0 0; ... % Take off quantities
0 0 0 0 0 0 1 1]) % Construct

vertexLabels=horzcat(taskLabels,dataLabels,{’Task creates Data’})
isHomog=0
fileTcD=horzcat(tgfFilePre,’TcreatesD’,’.tgf’)
tgfWrite(fileTcD,TcreatesD,isHomog,vertexLabels,{})
TreadsD= ([0 0 0 0 0 0 0 0 ; ... % Conceptualise

1 0 0 0 0 0 0 0; ... % Plan
1 1 0 0 0 0 0 0; ... % Engineering design
0 1 1 0 0 0 0 0; ... % Specify and document
0 1 0 1 1 0 0 0; ... % Take off quantities
0 1 0 1 1 1 1 0]) % Construct

vertexLabels=horzcat(taskLabels,dataLabels,{’Task reads Data’})
isHomog=0
fileTrD=horzcat(tgfFilePre,’TreadsD’,’.tgf’)
tgfWrite(fileTrD,TreadsD,isHomog,vertexLabels,{})
TmodifiesD= ([1 1 0 0 0 0 0 0; ... % Conceptualise

0 1 0 0 0 0 0 0; ... % Plan
0 0 1 1 0 0 0 0; ... % Engineering design
0 0 0 0 1 0 0 0; ... % Specify and document
0 0 0 0 0 1 0 0; ... % Take off quantities
0 0 0 0 0 0 1 1]) % Construct

vertexLabels=horzcat(taskLabels,dataLabels,{’Task modifies Data’})
isHomog=0
fileTmD=horzcat(tgfFilePre,’TmodifiesD’,’.tgf’)
tgfWrite(fileTmD,TmodifiesD,isHomog,vertexLabels,{})

Data - Tool(G) relations
Tools: Text processor / CAD / Eng Design SW / Quantities SW / Construction Planning SW

APPENDIX H. PROCESS MODEL: PERSON-TASK AND PERSON-DATA GRAPHS 316

toolLabels={’Text processor’,’CAD’,’Eng Design SW’, ...
’Quantities SW’,’Construction Planning SW’}

% Data requires tool
DrequiresG=([1 1 0 0 0 ; ... % Conceptual plan requirestxt processor & CAD

0 1 0 0 0 ; ... % Arch plan rquires CAD processor
0 0 1 0 0 ; ... % Design calcs require Eng Design SW
0 1 0 0 0 ; ... % Engineering plans require CAD
1 0 0 0 0 ; ... % Specifications require txt processor
0 0 0 1 0 ; ... % Bill of Quantities requires off Quant software
0 0 0 0 1 ; ... % Construction plans & schedules Constr SW
0 1 0 0 0]) % As built plans require CAD

vertexLabels=horzcat(dataLabels,toolLabels,{’Data requires Tool’})
isHomog=0
fileDG=horzcat(tgfFilePre,’DrequiresG’,’.tgf’)
tgfWrite(fileDG,DrequiresG,isHomog,vertexLabels,{})

Process data to determine task and data per person
Output Person / Task / Data graphs

makePersonTaskDataGraphs(tgfFilePre,personLabels,taskLabels,dataLabels, ...
PexecutesT,TcreatesD,TreadsD,TmodifiesD,DrequiresG)

H.2 Process model graphical data output MATLAB function

The MATLAB code for the function reference is listed below.

f unc t i on [] = makePersonTaskDataGraphs (t g fF i l ePr e , personLabels , taskLabe ls , dataLabels , . . .
PexecutesT , TcreatesD , TreadsD , TmodifiesD , DrequiresG)

% .
% subrout ine to make person task datagraphs
% tg fF i l eP r e − tg fFi l ename f i s t cha ra c t e r s − ID o f problem
% personLabels , taskLabe ls , dataLabels − Ce l l a r rays with l a b e l s
% PexecutesT − Def ine persons execute s ta sk s PT
% TcreatesD − Task c r e a t e s data r e l a t i o n
% TreadsD − Task reads data r e l a t i o n
% TmodifiesD − Task mod i f i e s data r e l a t i o n
% DrequiresG − Data − Tool (G) r e l a t i o n s
% .
Re lat iona lAlgebraBoo lean
% Generate Person − Task − Data graphs loop ing over persons
% number o f persons in boolean matrix
nPerson=s i z e (PexecutesT , 1)
nTask=s i z e (PexecutesT , 2)
nDataC=s i z e (TcreatesD , 2)
nDataR=s i z e (TreadsD , 2)
nDataM=s i z e (TmodifiesD , 2)
nDataset=max ([nDataC , nDataR , nDataM])
nVertex=nPerson+nTask+nDataset
% se t up boolean matrix − person & task & data v e r t i c e s

f o r iPerson =1:nPerson
PersonTaskDataMatrix=zeroB (nVertex , nVertex) ;

% prepare ver tex l a b e l s − only non blank e n t r i e s output
f o r iLabe l =1: nPerson+nTask+nDataset
ve r t exLabe l s { iLabe l }={};

end
% ext r a c t row to get ta sk s per person
ta sk s=PexecutesT (iPerson , :) ;
f o r iTask=1:nTask
% add person − task l i n k in to graph

iRow=iPerson ;
iCo l=nPerson+iTask ;

i f t a sk s (iTask)==1
PersonTaskDataMatrix (iCol , iRow)=task s (iTask) ;
ve r t exLabe l s {iRow}=personLabe l s { iPerson } ;
ve r t exLabe l s { iCo l}=taskLabe l s { iTask } ;

APPENDIX H. PROCESS MODEL: PERSON-TASK AND PERSON-DATA GRAPHS 317

% se t up task − data l i n k s
i f (nDataC > 0) dataCreate=TcreatesD (iTask , :) ; end
i f (nDataR > 0) dataRead=TreadsD (iTask , :) ; end
i f (nDataM > 0) dataModify=TmodifiesD (iTask , :) ; end

f o r iData=1: nDataset
% add data entry to graph

iRow=nPerson+iTask ;
iCo l=nPerson+nTask+iData ;
i f (nDataC > 0)
i f (dataCreate (iData)==1)
PersonTaskDataMatrix (iRow , iCo l)=dataCreate (iData) ;
ve r t exLabe l s { iCo l}=dataLabels { iData } ;
end ; end
i f (nDataR > 0)
i f (dataRead (iData)==1)
PersonTaskDataMatrix (iCol , iRow)=dataRead (iData) ;
ve r t exLabe l s { iCo l}=dataLabels { iData } ;
end ; end
i f (nDataM > 0)
i f (dataModify (iData)==1)
PersonTaskDataMatrix (iCol , iRow)=dataModify (iData) ;
PersonTaskDataMatrix (iRow , iCo l)=dataModify (iData) ;
ve r t exLabe l s { iCo l}=dataLabels { iData } ;
end ; end

end
end
end
graphvertexLabe l s=horzcat (vertexLabe l s , horzcat (c e l l s t r (’ Tasks & Data f o r . . .

’) , c e l l s t r (personLabe l s { iPerson })))
isHomog=1;
f i l ename=horzcat (t g fF i l ePr e , personLabe l s { iPerson } , ’ . tg f ’)
tg fWrite (f i l ename , PersonTaskDataMatrix , isHomog , graphvertexLabels , { })
end

Appendix I

Process Model: Task sequence using data
status

I.1 Engineering Process Model Example with data status - MATLAB Code

Contents
• Relational algebra MATLAB functionality
• Persons, Tasks and Person - task relations
• Datasets and Data-task relations
• Data-Tool relations
• Output data for graphical display by yEd
• Data status values and Task Data status relations
• Set up and compute solution
• Task-Task relation by Rule 1
• Task-Task relation by Rule 2
• Task-Task relation by Rule 3
• Combine Rules 1, 2 and 3 and determine task logical sequence

%..
% Process Model for typical Design Project - Example from Tutorial
% With status settings
% 2006/04/16
%..
clc
clear all
format compact

Relational algebra MATLAB functionality

RelationalAlgebraBoolean
tgfFilePre=’YS’

MATLAB implementation of relational algebra boolean matrix operations in inline functions
tgfFilePre =
YS

Persons, Tasks and Person - task relations

personLabels={’Architect’,’Client’,’StructuralEngineer’, ...
’Technologist’,’CheckingEngineer’}

taskLabels= {’ArchitecturalLayoutConcept’, ...
’ArchitecturalDesignDetail ’, ...
’ArchitecturalDesignCheck’, ...
’StructuralLayoutConcept’, ...
’StructuralDesignDetail’, ...

318

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 319

’StructuralDesignCheck’, ...
’ConcreteLayoutConcept’, ...
’ConcreteDesignDetail’, ...
’ConcreteDesignCheck’}

% Define persons executes tasks PT
% Tasks: ArchitecturalLayoutConcept / t1
% ArchitecturalDesignDetail / t2
% ArchitecturalDesignCheck / t3
% StructuralLayoutConcept / t4
% StructuralDesignDetail / t5
% StructuralDesignCheck / t6
% ConcreteLayoutConcept / t7
% ConcreteDesignDetail / t8
% ConcreteDesignCheck / t9
PexecutesT=([1 1 0 0 0 0 0 0 0 ; ... % Architect / p1

0 0 0 0 0 0 0 0 0 ; ... % Client / p2
0 0 0 1 1 0 0 1 0 ; ... % StructuralEngineer /p3
0 0 0 0 0 0 1 1 0 ; ... % Technologist /p4
0 0 1 0 0 1 0 0 1]) % CheckingEngineer /p5

% add comment & heading strings at end of labels
vertexLabels=horzcat(personLabels,taskLabels,{’Person executes Task’});
isHomog=0
filePT=horzcat(tgfFilePre,’PexecutesT’,’.tgf’)
tgfWrite(filePT,PexecutesT,isHomog,vertexLabels,{});
% Compute tasks - persons TP
vertexLabels=horzcat(taskLabels,personLabels,{’Task executed by Person’});
TexecutedByP=transposeR(PexecutesT)
isHomog=0
fileTP=horzcat(tgfFilePre,’TexecutedByP’,’.tgf’)
tgfWrite(fileTP,TexecutedByP,isHomog,vertexLabels,{});

personLabels =
Columns 1 through 3

’Architect’ ’Client’ ’StructuralEngineer’
Columns 4 through 5

’Technologist’ ’CheckingEngineer’
taskLabels =

Columns 1 through 4
[1x26 char] [1x26 char] [1x24 char] [1x23 char]

Columns 5 through 8
[1x22 char] [1x21 char] [1x21 char] [1x20 char]

Column 9
’ConcreteDesignCheck’

PexecutesT =
1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 1 0
0 0 1 0 0 1 0 0 1

isHomog =
0

filePT =
YSPexecutesT.tgf
File YSPexecutesT.tgf opened
nRows =

5
nCols =

9
File YSPexecutesT.tgf closed
TexecutedByP =

1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 1 0

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 320

0 0 0 0 1
isHomog =

0
fileTP =
YSTexecutedByP.tgf
File YSTexecutedByP.tgf opened
nRows =

9
nCols =

5
File YSTexecutedByP.tgf closed

Datasets and Data-task relations
Datasets ConceptPlan/ d1 ArchitecturalDrawings/ d2 StructuralDrawings/ d3 ConcreteDrawings /d4

dataLabels={’ConceptPlan’, ...
’ArchitecturalDrawings’, ...
’StructuralDrawings’, ...
’ConcreteDrawings’}

% Data is created by Task
DcreatedByT=([0 0 0 0 0 0 0 0 0; ... % ConceptPlan

1 0 0 0 0 0 0 0 0; ... % ArchitecturalDrawings
0 0 0 1 0 0 0 0 0; ... % StructuralDrawings
0 0 0 0 0 0 1 0 0]) % ConcreteDrawings

% output graph data
vertexLabels=horzcat(dataLabels,taskLabels,{’Data created by Task’});
isHomog=0
fileDcT=horzcat(tgfFilePre,’DcreatedByT’,’.tgf’)
tgfWrite(fileDcT,DcreatedByT,isHomog,vertexLabels,{});
% Compute tasks - data create relation
vertexLabels=horzcat(taskLabels,dataLabels,{’Task creates Data’});
TcreatesD=transposeR(DcreatedByT)
isHomog=0
fileTcD=horzcat(tgfFilePre,’TcreatesD’,’.tgf’)
tgfWrite(fileTcD,TcreatesD,isHomog,vertexLabels,{});
% Data is read by Task
DreadByT= ([1 0 0 0 0 0 0 0 0; ... % ConceptPlan

0 1 1 1 0 0 1 0 0; ... % ArchitecturalDrawings
0 0 0 0 1 1 1 0 0; ... % StructuralDrawings
0 0 0 0 0 0 0 1 1]) % ConcreteDrawings

% output graph data
vertexLabels=horzcat(dataLabels,taskLabels,{’Data read by Task’});
isHomog=0
fileDrT=horzcat(tgfFilePre,’DreadByT’,’.tgf’)
tgfWrite(fileDrT,DreadByT,isHomog,vertexLabels,{});
% Compute tasks - data read relation
vertexLabels=horzcat(taskLabels,dataLabels,{’Task reads Data’});
TreadsD=transposeR(DreadByT)
isHomog=0
fileTrD=horzcat(tgfFilePre,’TreadsD’,’.tgf’)
tgfWrite(fileTrD,TreadsD,isHomog,vertexLabels,{});
% Data is modified by Task
DmodifiedByT= ([0 0 0 0 0 0 0 0 0; ... % ConceptPlan

0 1 1 0 0 0 0 0 0; ... % ArchitecturalDrawings
0 0 0 0 1 1 0 0 0; ... % StructuralDrawings
0 0 0 0 0 0 0 1 1]) % ConcreteDrawings

% output graph data
vertexLabels=horzcat(dataLabels,taskLabels,{’Data modified by Task’});
isHomog=0
fileDmT=horzcat(tgfFilePre,’DmodifiedByT’,’.tgf’)
tgfWrite(fileDmT,DmodifiedByT,isHomog,vertexLabels,{});
% Compute tasks - data read relation
vertexLabels=horzcat(taskLabels,dataLabels,{’Task modifies Data’});
TmodifiesD=transposeR(DmodifiedByT)
isHomog=0
fileTmD=horzcat(tgfFilePre,’TmodifiesD’,’.tgf’)
tgfWrite(fileTmD,TreadsD,isHomog,vertexLabels,{});

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 321

dataLabels =
Columns 1 through 3

’ConceptPlan’ [1x21 char] ’StructuralDrawings’
Column 4

’ConcreteDrawings’
DcreatedByT =

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

isHomog =
0

fileDcT =
YSDcreatedByT.tgf
File YSDcreatedByT.tgf opened
nRows =

4
nCols =

9
File YSDcreatedByT.tgf closed
TcreatesD =

0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

isHomog =
0

fileTcD =
YSTcreatesD.tgf
File YSTcreatesD.tgf opened
nRows =

9
nCols =

4
File YSTcreatesD.tgf closed
DreadByT =

1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1

isHomog =
0

fileDrT =
YSDreadByT.tgf
File YSDreadByT.tgf opened
nRows =

4
nCols =

9
File YSDreadByT.tgf closed
TreadsD =

1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 1 1 0
0 0 0 1
0 0 0 1

isHomog =
0

fileTrD =
YSTreadsD.tgf
File YSTreadsD.tgf opened

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 322

nRows =
9

nCols =
4

File YSTreadsD.tgf closed
DmodifiedByT =

0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 1

isHomog =
0

fileDmT =
YSDmodifiedByT.tgf
File YSDmodifiedByT.tgf opened
nRows =

4
nCols =

9
File YSDmodifiedByT.tgf closed
TmodifiesD =

0 0 0 0
0 1 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 1

isHomog =
0

fileTmD =
YSTmodifiesD.tgf
File YSTmodifiesD.tgf opened
nRows =

9
nCols =

4
File YSTmodifiesD.tgf closed

Data-Tool relations
Tools: CAD / g1 EngCalculations / g2 Spreadsheet / g3 WordProcessing / g4 Data - Tool(G) relations

toolLabels={’CAD’,’EngCalculations’, ...
’Spreadsheet’,’WordProcessor’}

% Data requires tool
% CAD / EngCalculations / Spreadsheet / WordProcessing
% Toolbugger

DrequiresG=([0 0 0 1 0 ; ... % ConceptPlan
1 0 0 0 0; ... % ArchitecturalDrawings
0 1 1 1 0; ... % StructuralDrawings
1 0 0 0 0]) ... % ConcreteDrawings

% 0 0 0 0 0]) % Debugger
vertexLabels=horzcat(dataLabels,toolLabels,{’Data requires Tool’});
isHomog=0
fileDG=horzcat(tgfFilePre,’DrequiresG’,’.tgf’)
tgfWrite(fileDG,DrequiresG,isHomog,vertexLabels,{});

toolLabels =
Columns 1 through 3

’CAD’ ’EngCalculations’ ’Spreadsheet’
Column 4

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 323

’WordProcessor’
DrequiresG =

0 0 0 1 0
1 0 0 0 0
0 1 1 1 0
1 0 0 0 0

isHomog =
0

fileDG =
YSDrequiresG.tgf
File YSDrequiresG.tgf opened
nRows =

4
nCols =

5
File YSDrequiresG.tgf closed

Output data for graphical display by yEd
Output Person / Task / Data graphs - Data read only

makePersonTaskDataGraphs(tgfFilePre,personLabels,taskLabels,dataLabels, ...
PexecutesT,TcreatesD,TreadsD,TmodifiesD,DrequiresG)

%
% Set up status information

MATLAB implementation of relational algebra boolean matrix operations in inline functions
nPerson =

5
nTask =

9
nDataC =

4
nDataR =

4
nDataM =

4
nDataset =

4
nVertex =

18
graphvertexLabels =

Columns 1 through 6
’Architect’ {} {} {} {} [1x26 char]

Columns 7 through 13
[1x26 char] {} {} {} {} {} {}

Columns 14 through 18
{} ’ConceptPlan’ [1x21 char] {} {}

Columns 19 through 20
’Tasks & Data for’ ’Architect’

filename =
YSArchitect.tgf
File YSArchitect.tgf opened
nRows =

18
nCols =

18
File YSArchitect.tgf closed
graphvertexLabels =

Columns 1 through 8
{} {} {} {} {} {} {} {}

Columns 9 through 16
{} {} {} {} {} {} {} {}

Columns 17 through 20

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 324

{} {} ’Tasks & Data for’ ’Client’
filename =
YSClient.tgf
File YSClient.tgf opened
nRows =

18
nCols =

18
File YSClient.tgf closed
graphvertexLabels =

Columns 1 through 6
{} {} ’StructuralEngineer’ {} {} {}

Columns 7 through 12
{} {} [1x23 char] [1x22 char] {} {}

Columns 13 through 16
[1x20 char] {} {} [1x21 char]

Columns 17 through 18
’StructuralDrawings’ ’ConcreteDrawings’

Columns 19 through 20
’Tasks & Data for’ ’StructuralEngineer’

filename =
YSStructuralEngineer.tgf
File YSStructuralEngineer.tgf opened
nRows =

18
nCols =

18
File YSStructuralEngineer.tgf closed
graphvertexLabels =

Columns 1 through 7
{} {} {} ’Technologist’ {} {} {}

Columns 8 through 13
{} {} {} {} [1x21 char] [1x20 char]

Columns 14 through 17
{} {} [1x21 char] ’StructuralDrawings’

Columns 18 through 19
’ConcreteDrawings’ ’Tasks & Data for’

Column 20
’Technologist’

filename =
YSTechnologist.tgf
File YSTechnologist.tgf opened
nRows =

18
nCols =

18
File YSTechnologist.tgf closed
graphvertexLabels =

Columns 1 through 6
{} {} {} {} ’CheckingEngineer’ {}

Columns 7 through 12
{} [1x24 char] {} {} [1x21 char] {}

Columns 13 through 16
{} ’ConcreteDesignCheck’ {} [1x21 char]

Columns 17 through 18
’StructuralDrawings’ ’ConcreteDrawings’

Columns 19 through 20
’Tasks & Data for’ ’CheckingEngineer’

filename =
YSCheckingEngineer.tgf
File YSCheckingEngineer.tgf opened
nRows =

18
nCols =

18
File YSCheckingEngineer.tgf closed

Data status values and Task Data status relations
Status values: PreliminaryConcept / s1 DesignedEngineered / s2 Finalised / s3 Checked / s4

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 325

statusLabels={’Preliminary_Concept’,’DesignedEngineered’, ...
’Finalised’,’Checked’}

nStatus=size(statusLabels,2)
% 9 tasks by 4 status values for
% 5 dataSets for debug
TwritesDS{1}=[0 1 0 0 ; ...

0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 1 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 1 ; ...
0 0 0 0 ; ...
0 0 0 0]

TwritesDS{2}=[0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 1 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0]

TwritesDS{3}=[0 0 0 0 ; ...
0 1 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 1 ; ...
0 0 0 0]

TwritesDS{4}=[0 0 0 0 ; ...
0 0 0 0 ; ...
0 1 0 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 1 0 ; ...
0 0 0 0 ; ...
0 0 0 0 ; ...
0 0 0 1]

statusLabels =
Columns 1 through 2

’Preliminary_Concept’ ’DesignedEngineered’
Columns 3 through 4

’Finalised’ ’Checked’
nStatus =

4
TwritesDS =

[9x4 double]
TwritesDS =

[9x4 double] [9x4 double]
TwritesDS =

[9x4 double] [9x4 double] [9x4 double]
TwritesDS =

Columns 1 through 3
[9x4 double] [9x4 double] [9x4 double]

Column 4
[9x4 double]

Set up and compute solution
Solution parameters

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 326

nPerson=size(PexecutesT,1)
nTask=size(PexecutesT,2)
nDataC=size(TcreatesD,2)
nDataR=size(TreadsD,2)
nDataM=size(TmodifiesD,2)
nDataset=max([nDataC,nDataR,nDataM])
%
PreadsD=productR(PexecutesT,TreadsD)
vertexLabels=horzcat(personLabels,dataLabels,{’Person reads Data with Status’});
isHomog=0
filePD=horzcat(tgfFilePre,’PreadsD’,’.tgf’)
tgfWrite(filePD,PreadsD,isHomog,vertexLabels,{});
%
TrequiresG=productR(TreadsD,DrequiresG)
vertexLabels=horzcat(taskLabels,toolLabels,{’Task requires Tool with Status’});
isHomog=0
fileTG=horzcat(tgfFilePre,’TrequiresG’,’.tgf’)
tgfWrite(fileTG,TrequiresG,isHomog,vertexLabels,{});
%
PrequiresG=productR(PreadsD,DrequiresG)
vertexLabels=horzcat(personLabels,toolLabels,{’Person requires Tool with Status’});
isHomog=0
filePG=horzcat(tgfFilePre,’PrequiresG’,’.tgf’)
tgfWrite(filePG,PrequiresG,isHomog,vertexLabels,{});

nPerson =
5

nTask =
9

nDataC =
4

nDataR =
4

nDataM =
4

nDataset =
4

PreadsD =
1 1 0 0
0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

isHomog =
0

filePD =
YSPreadsD.tgf
File YSPreadsD.tgf opened
nRows =

5
nCols =

4
File YSPreadsD.tgf closed
TrequiresG =

0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 1 1 0
0 1 1 1 0
1 1 1 1 0
1 0 0 0 0
1 0 0 0 0

isHomog =
0

fileTG =
YSTrequiresG.tgf
File YSTrequiresG.tgf opened

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 327

nRows =
9

nCols =
5

File YSTrequiresG.tgf closed
PrequiresG =

1 0 0 1 0
0 0 0 0 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0

isHomog =
0

filePG =
YSPrequiresG.tgf
File YSPrequiresG.tgf opened
nRows =

5
nCols =

5
File YSPrequiresG.tgf closed

Task-Task relation by Rule 1
set up basic Task-Task relation - rule 1

TsequenceRule1T=productR(TcreatesD,unionR(DreadByT,DmodifiedByT))
vertexLabels=horzcat(taskLabels,{’Tasks sequence with Tasks - Rule 1’});
isHomog=1
fileTR1T=horzcat(tgfFilePre,’TsequenceRule1T’,’.tgf’)
tgfWrite(fileTR1T,TsequenceRule1T,isHomog,vertexLabels,{});

TsequenceRule1T =
0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

isHomog =
1

fileTR1T =
YSTsequenceRule1T.tgf
File YSTsequenceRule1T.tgf opened
nRows =

9
nCols =

9
File YSTsequenceRule1T.tgf closed

Task-Task relation by Rule 2
Rule 2 for task sequence

TsequenceRule2T=zeroB(nTask,nTask);
% Determine data modified by task x task y combinations
for tx=1:nTask-1

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 328

for ty=tx+1:nTask
% extract modification datasets for tasks and combine with ’and’
DmodifyTx=DmodifiedByT(:,tx);
DmodifyTy=DmodifiedByT(:,ty);
DmodifyTxAndTy=intersectionR(DmodifyTx,DmodifyTy);
display ’tx,ty,DmodTxAndTy’,tx,ty,DmodifyTxAndTy
% check status increase
for id=1:nDataM

%
if(DmodifyTxAndTy(id) == 1)

rPx=0;
rPy=0;
for is=1:nStatus

if(TwritesDS{id}(tx,is))==1
rPx=is;

end
if(TwritesDS{id}(ty,is))==1

rPy=is;
end
display ’id,is,tx,ty,rPx,rPy’,id,is,tx,ty,rPx,rPy

end
if(rPx<rPy) TsequenceRule2T(tx,ty)=1; end
end

end
end

end
TsequenceRule2T
vertexLabels=horzcat(taskLabels,{’Tasks sequence with Tasks - Rule 2’});
isHomog=1
fileTR2T=horzcat(tgfFilePre,’TsequenceRule2T’,’.tgf’)
tgfWrite(fileTR2T,TsequenceRule2T,isHomog,vertexLabels,{});
TsequenceRule1Plus2T=unionR(TsequenceRule1T,TsequenceRule2T)
vertexLabels=horzcat(taskLabels,{’Tasks sequence with Tasks - Rule 1&2’});
isHomog=1
fileTR12T=horzcat(tgfFilePre,’TsequenceRule1Plus2T’,’.tgf’)
tgfWrite(fileTR12T,TsequenceRule1Plus2T,isHomog,vertexLabels,{});

tx,ty,DmodTxAndTy
tx =

1
ty =

2
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

1
ty =

3
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

1
ty =

4
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 329

tx =
1

ty =
5

DmodifyTxAndTy =
0
0
0
0

tx,ty,DmodTxAndTy
tx =

1
ty =

6
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

1
ty =

7
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

1
ty =

8
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

1
ty =

9
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

2
ty =

3
DmodifyTxAndTy =

0
1
0
0

id,is,tx,ty,rPx,rPy
id =

2
is =

1
tx =

2
ty =

3
rPx =

0
rPy =

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 330

0
id,is,tx,ty,rPx,rPy
id =

2
is =

2
tx =

2
ty =

3
rPx =

0
rPy =

0
id,is,tx,ty,rPx,rPy
id =

2
is =

3
tx =

2
ty =

3
rPx =

0
rPy =

0
id,is,tx,ty,rPx,rPy
id =

2
is =

4
tx =

2
ty =

3
rPx =

0
rPy =

0
tx,ty,DmodTxAndTy
tx =

2
ty =

4
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

2
ty =

5
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

2
ty =

6
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 331

tx =
2

ty =
7

DmodifyTxAndTy =
0
0
0
0

tx,ty,DmodTxAndTy
tx =

2
ty =

8
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

2
ty =

9
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

3
ty =

4
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

3
ty =

5
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

3
ty =

6
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

3
ty =

7
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 332

3
ty =

8
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

3
ty =

9
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

4
ty =

5
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

4
ty =

6
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

4
ty =

7
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

4
ty =

8
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

4
ty =

9
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

5

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 333

ty =
6

DmodifyTxAndTy =
0
0
1
0

id,is,tx,ty,rPx,rPy
id =

3
is =

1
tx =

5
ty =

6
rPx =

0
rPy =

0
id,is,tx,ty,rPx,rPy
id =

3
is =

2
tx =

5
ty =

6
rPx =

0
rPy =

0
id,is,tx,ty,rPx,rPy
id =

3
is =

3
tx =

5
ty =

6
rPx =

0
rPy =

0
id,is,tx,ty,rPx,rPy
id =

3
is =

4
tx =

5
ty =

6
rPx =

0
rPy =

0
tx,ty,DmodTxAndTy
tx =

5
ty =

7
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 334

5
ty =

8
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

5
ty =

9
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

6
ty =

7
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

6
ty =

8
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

6
ty =

9
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

7
ty =

8
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

7
ty =

9
DmodifyTxAndTy =

0
0
0
0

tx,ty,DmodTxAndTy
tx =

8

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 335

ty =
9

DmodifyTxAndTy =
0
0
0
1

id,is,tx,ty,rPx,rPy
id =

4
is =

1
tx =

8
ty =

9
rPx =

0
rPy =

0
id,is,tx,ty,rPx,rPy
id =

4
is =

2
tx =

8
ty =

9
rPx =

0
rPy =

0
id,is,tx,ty,rPx,rPy
id =

4
is =

3
tx =

8
ty =

9
rPx =

0
rPy =

0
id,is,tx,ty,rPx,rPy
id =

4
is =

4
tx =

8
ty =

9
rPx =

0
rPy =

4
TsequenceRule2T =

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

isHomog =
1

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 336

fileTR2T =
YSTsequenceRule2T.tgf
File YSTsequenceRule2T.tgf opened
nRows =

9
nCols =

9
File YSTsequenceRule2T.tgf closed
TsequenceRule1Plus2T =

0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

isHomog =
1

fileTR12T =
YSTsequenceRule1Plus2T.tgf
File YSTsequenceRule1Plus2T.tgf opened
nRows =

9
nCols =

9
File YSTsequenceRule1Plus2T.tgf closed

Task-Task relation by Rule 3
Rule 3 for task sequence

TsequenceRule3T=zeroB(nTask,nTask);
% Determine data modified by task x task y combinations
for tx=1:nTask-1

for ty=tx+1:nTask
% extract modification datasets for tasks and combine with ’and’
DmodifyTx=DmodifiedByT(:,tx);
DcreateTy=DcreatedByT(:,ty);
DreadTy=DreadByT(:,ty);
DmodifyTy=DmodifiedByT(:,ty);
DmodifyTxAndReadTy=intersectionR(DmodifyTx,DreadTy);
X=DmodifyTxAndReadTy;
DcreateTyOrModifyTy=unionR(DcreateTy,DmodifyTy);
Y=DcreateTyOrModifyTy;
display ’tx,ty,X,Y’,tx,ty,X,Y
% check status ranks
for id=1:nDataM

if(X (id) == 1)
rminX=nStatus

for is=1:nStatus
if(TwritesDS{id}(tx,is))==1

if(is<rminX) rminX=is ; end
end

end
if(Y (id) == 1)

rmaxY=0
for is=1:nStatus

if(TwritesDS{id}(ty,is))==1
if(is>rmaxY) rmaxY=is ; end

end
end

if(rminX<=rmaxY) TsequenceRule2T(tx,ty)=1; end
end

end
end

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 337

end % loop over ty
end % loop over tx
TsequenceRule3T

tx,ty,X,Y
tx =

1
ty =

2
X =

0
0
0
0

Y =
0
1
0
0

tx,ty,X,Y
tx =

1
ty =

3
X =

0
0
0
0

Y =
0
1
0
0

tx,ty,X,Y
tx =

1
ty =

4
X =

0
0
0
0

Y =
0
0
1
0

tx,ty,X,Y
tx =

1
ty =

5
X =

0
0
0
0

Y =
0
0
1
0

tx,ty,X,Y
tx =

1
ty =

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 338

6
X =

0
0
0
0

Y =
0
0
1
0

tx,ty,X,Y
tx =

1
ty =

7
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

1
ty =

8
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

1
ty =

9
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

2
ty =

3
X =

0
1
0
0

Y =
0
1
0
0

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 339

rminX =
4

rmaxY =
0

tx,ty,X,Y
tx =

2
ty =

4
X =

0
1
0
0

Y =
0
0
1
0

rminX =
4

tx,ty,X,Y
tx =

2
ty =

5
X =

0
0
0
0

Y =
0
0
1
0

tx,ty,X,Y
tx =

2
ty =

6
X =

0
0
0
0

Y =
0
0
1
0

tx,ty,X,Y
tx =

2
ty =

7
X =

0
1
0
0

Y =
0
0
0
1

rminX =
4

tx,ty,X,Y
tx =

2

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 340

ty =
8

X =
0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

2
ty =

9
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

3
ty =

4
X =

0
1
0
0

Y =
0
0
1
0

rminX =
4

tx,ty,X,Y
tx =

3
ty =

5
X =

0
0
0
0

Y =
0
0
1
0

tx,ty,X,Y
tx =

3
ty =

6
X =

0
0
0
0

Y =
0

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 341

0
1
0

tx,ty,X,Y
tx =

3
ty =

7
X =

0
1
0
0

Y =
0
0
0
1

rminX =
4

tx,ty,X,Y
tx =

3
ty =

8
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

3
ty =

9
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

4
ty =

5
X =

0
0
0
0

Y =
0
0
1
0

tx,ty,X,Y
tx =

4
ty =

6
X =

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 342

0
0
0
0

Y =
0
0
1
0

tx,ty,X,Y
tx =

4
ty =

7
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

4
ty =

8
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

4
ty =

9
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

5
ty =

6
X =

0
0
1
0

Y =
0
0
1
0

rminX =
4

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 343

rmaxY =
0

tx,ty,X,Y
tx =

5
ty =

7
X =

0
0
1
0

Y =
0
0
0
1

rminX =
4

tx,ty,X,Y
tx =

5
ty =

8
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

5
ty =

9
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

6
ty =

7
X =

0
0
1
0

Y =
0
0
0
1

rminX =
4

tx,ty,X,Y
tx =

6
ty =

8

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 344

X =
0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

6
ty =

9
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

7
ty =

8
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

7
ty =

9
X =

0
0
0
0

Y =
0
0
0
1

tx,ty,X,Y
tx =

8
ty =

9
X =

0
0
0
1

Y =
0
0
0
1

rminX =

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 345

4
rmaxY =

0
TsequenceRule3T =

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Combine Rules 1, 2 and 3 and determine task logical sequence

TsequenceT=unionR(unionR(TsequenceRule1T,TsequenceRule2T),TsequenceRule3T)
vertexLabels=horzcat(taskLabels,{’Tasks sequence with Tasks - Rule 1&2&3’});
isHomog=1
fileTT=horzcat(tgfFilePre,’TsequenceT’,’.tgf’)
tgfWrite(fileTT,TsequenceT,isHomog,vertexLabels,{})
[Taskschedule]=TopolSortBFS(TsequenceT)
nSteps=size(Taskschedule,2)
stepLabel=’Step’;
for istep=1:nSteps
stepLabels{istep}=strcat(stepLabel,num2str(istep));
end
vertexLabels=horzcat(taskLabels,stepLabels,{’Tasks - Logical Steps’});
isHomog=0
fileTSchedule=horzcat(tgfFilePre,’Taskschedule’,’.tgf’)
tgfWrite(fileTSchedule,Taskschedule,isHomog,vertexLabels,{})

TsequenceT =
0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

isHomog =
1

fileTT =
YSTsequenceT.tgf
File YSTsequenceT.tgf opened
nRows =

9
nCols =

9
File YSTsequenceT.tgf closed
T =

0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

********************* while loop begin *************
After successor determination
After removals from A and B ++++++++++++++++++

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 346

After removals from A and C *******************
TaskSchedule =

1
0
0
0
0
0
0
0
0

level =
2

********************* while loop begin *************
After successor determination
After removals from A and B ++++++++++++++++++
After removals from A and C *******************
TaskSchedule =

1 0
0 1
0 1
0 1
0 0
0 0
0 0
0 0
0 0

level =
3

********************* while loop begin *************
After successor determination
After removals from A and B ++++++++++++++++++
After removals from A and C *******************
TaskSchedule =

1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 0
0 0 0

level =
4

********************* while loop begin *************
After successor determination
After removals from A and B ++++++++++++++++++
After removals from A and C *******************
TaskSchedule =

1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

level =
5

********************* while loop begin *************
After successor determination
After removals from A and B ++++++++++++++++++
After removals from A and C *******************
TaskSchedule =

1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0

APPENDIX I. PROCESS MODEL: TASK SEQUENCE USING DATA STATUS 347

0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

level =
6

CHasElements =
0

Taskschedule =
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

nSteps =
5

isHomog =
0

fileTSchedule =
YSTaskschedule.tgf
File YSTaskschedule.tgf opened
nRows =

9
nCols =

5
File YSTaskschedule.tgf closed

Appendix J

Engineering Process Model Database

J.1 Eclipse Development software reference

The Eclipse SDK implementation of the Clay Database Modelling program was used to develop the
database schema for the Engineering Process Model.

Reference to the software used is included here.

Eclipse SDK

Version: 3.1.2
Build id: M20060118-1600

(c) Copyright Eclipse contributors and others 2000, 2005. All rights reserved.
Visit http://www.eclipse.org/platform

This product includes software developed by the
Apache Software Foundation http://www.apache.org/ Clay Database Modelling UI

Version: 1.2.0

Refer to The Eclipse Foundation [119]

J.2 Eclipse Azzurri Clay Eclipse Plugin for Database Modelling

Figure J.1 contains a detailed overview of the database tables as designed.

(c) Copyright Azzurri Ltd. All rights reserved.
Visit http://www.azzurri.jp/
Clay Core features enabled.

Refer to Azzurri Limited [10]

J.3 Azzurri Clay XML DTD Specification file

The well formedness can be checked by a program such as XMLSpy (Altova, Inc. [4] and the file validated
using the DTD description below.

The structure of the .clay xml file is described in the DTD specification given below:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 3 U (http://www.xmlspy.com)

by Breda Strasheim (Department of Civil Engineering) -->
<!--DTD generated by XMLSPY v5 rel. 3 U (http://www.xmlspy.com)-->
<!ELEMENT clay-model (database-model)>

348

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 349

<!ATTLIST clay-model
clay-version CDATA #REQUIRED

>
<!ELEMENT column (column-description, data-type)>
<!ATTLIST column

alias CDATA #REQUIRED
auto-increment CDATA #REQUIRED
column-size CDATA #REQUIRED
decimal-digits CDATA #REQUIRED
default-value CDATA #REQUIRED
mandatory (false | true) #REQUIRED
name CDATA #REQUIRED
remarks CDATA #REQUIRED

>
<!ELEMENT column-description EMPTY>
<!ELEMENT column-list (column+)>
<!ELEMENT data-type (variant+)>
<!ATTLIST data-type

jdbc-type (1 | 12 | 2) #REQUIRED
literal-prefix CDATA #IMPLIED
literal-suffix CDATA #IMPLIED
name CDATA #REQUIRED
selected-variant-pattern CDATA #REQUIRED

>
<!ELEMENT database-model (database-model-description, schema-list)>
<!ATTLIST database-model

alias CDATA #REQUIRED
author CDATA #REQUIRED
begin-script CDATA #REQUIRED
end-script CDATA #REQUIRED
name CDATA #REQUIRED
remarks CDATA #REQUIRED
sql-dialect-id CDATA #REQUIRED
version CDATA #REQUIRED

>
<!ELEMENT database-model-description EMPTY>
<!ELEMENT domain-list EMPTY>
<!ELEMENT fk-fig-bendpoint-list EMPTY>
<!ELEMENT foreign-key (foreign-key-description,

foreign-key-figure, foreign-key-column)>
<!ATTLIST foreign-key

alias CDATA #REQUIRED
name CDATA #REQUIRED
on-delete CDATA #REQUIRED
on-update CDATA #REQUIRED
referenced-key CDATA #REQUIRED
referenced-table CDATA #REQUIRED
referenced-table-schema CDATA #REQUIRED
remarks CDATA #REQUIRED
source-entity-role CDATA #REQUIRED
source-multiplicity CDATA #REQUIRED
source-relationship-type CDATA #REQUIRED
target-entity-role CDATA #REQUIRED
target-multiplicity CDATA #REQUIRED
target-relationship-type CDATA #REQUIRED

>
<!ELEMENT foreign-key-column EMPTY>
<!ATTLIST foreign-key-column

column-name CDATA #REQUIRED
referenced-key-column-name CDATA #REQUIRED

>
<!ELEMENT foreign-key-description EMPTY>
<!ELEMENT foreign-key-figure (fk-fig-bendpoint-list)>
<!ELEMENT foreign-key-list (foreign-key*)>
<!ELEMENT index-list EMPTY>
<!ELEMENT primary-key (primary-key-description, primary-key-column)>
<!ATTLIST primary-key

alias CDATA #REQUIRED
name CDATA #REQUIRED
remarks CDATA #REQUIRED

>
<!ELEMENT primary-key-column EMPTY>
<!ATTLIST primary-key-column

name CDATA #REQUIRED
>
<!ELEMENT primary-key-description EMPTY>
<!ELEMENT schema (schema-description, domain-list, table-list)>
<!ATTLIST schema

alias CDATA #REQUIRED
name CDATA #REQUIRED
remarks CDATA #REQUIRED

>
<!ELEMENT schema-description EMPTY>
<!ELEMENT schema-list (schema)>
<!ELEMENT table (table-description, table-figure-bounds,

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 350

column-list, primary-key, unique-key-list,
foreign-key-list, index-list)>

<!ATTLIST table
alias CDATA #REQUIRED
name CDATA #REQUIRED
remarks CDATA #REQUIRED

>
<!ELEMENT table-description (#PCDATA)>
<!ELEMENT table-figure-bounds EMPTY>
<!ATTLIST table-figure-bounds

height CDATA #REQUIRED
width CDATA #REQUIRED
x CDATA #REQUIRED
y CDATA #REQUIRED

>
<!ELEMENT table-list (table+)>
<!ELEMENT unique-key-list EMPTY>
<!ELEMENT variant EMPTY>
<!ATTLIST variant

precision-max CDATA #IMPLIED
precision-min CDATA #IMPLIED
precision-variable CDATA #IMPLIED
type-name-pattern CDATA #REQUIRED
scale-max CDATA #IMPLIED
scale-min CDATA #IMPLIED
scale-variable CDATA #IMPLIED

>

J.4 Database setup SQL statements

SQL statements generated ANSI 92 Standard used.
ON DELETE CASCADE added in second display below here - canClay handle this ??

-- Engineering Process Model Schema
-- EngProcessANSI-92.sql
DROP TABLE "tbEdgeDatasetTool";
DROP TABLE "tbEdgeTaskTool";
DROP TABLE "tbEdgeTaskDatasetModify";
DROP TABLE "tbEdgeTaskDatasetRead";
DROP TABLE "tbEdgeTaskTask";
DROP TABLE "tbEdgeTaskPerson";
DROP TABLE "tbEdgeTaskDatasetCreate";
DROP TABLE "tbTool";
DROP TABLE "tbTask";
DROP TABLE "tbDataset";
DROP TABLE "tbStatusElement";
DROP TABLE "tbAttribute";
DROP TABLE "tbPerson";

CREATE TABLE "tbPerson" (
"PIDPerson" CHAR(10) NOT NULL

, "PersonName" VARCHAR(100)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDPerson")

);

CREATE TABLE "tbAttribute" (
"PIDAttribute" CHAR(10) NOT NULL

, "AttributeName" VARCHAR(100)
, "AttributeDiscipline" VARCHAR(100)
, "AttributeFunction" VARCHAR(100)
, "AttributeType" VARCHAR(100)
, PRIMARY KEY ("PIDAttribute")

);

CREATE TABLE "tbStatusElement" (
"PIDStatusElement" CHAR(10) NOT NULL

, "StatusElementName" VARCHAR(100)
, "Completion" NUMERIC(5,2)
, PRIMARY KEY ("PIDStatusElement")

);

CREATE TABLE "tbDataset" (
"PIDDataset" CHAR(10) NOT NULL

, "DatasetName" VARCHAR(100)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, "Weight" NUMERIC(10,2)
, PRIMARY KEY ("PIDDataset")

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 351

);

CREATE TABLE "tbTask" (
"PIDTask" CHAR(10) NOT NULL

, "TaskName" VARCHAR(100)
, "LogicalStep" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDTask")

);

CREATE TABLE "tbTool" (
"PIDTool" CHAR(10) NOT NULL

, "ToolName" VARCHAR(100)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDTool")

);

CREATE TABLE "tbEdgeTaskDatasetCreate" (
"PIDEdgeTaskDatasetCreate" CHAR(10) NOT NULL

, "EdgeTaskDatasetCreateName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDDataset" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskDatasetCreate")

);

CREATE TABLE "tbEdgeTaskPerson" (
"PIDEdgeTaskPerson" CHAR(10) NOT NULL

, "EdgeTaskPersonName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDPerson" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskPerson")

);

CREATE TABLE "tbEdgeTaskTask" (
"PIDEdgeTaskTask" CHAR(10) NOT NULL

, "EdgeTaskTaskName" VARCHAR(100)
, "PIDTaskIn" CHAR(10)
, "PIDTaskOut" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, "PIDTask" CHAR(10) NOT NULL
, PRIMARY KEY ("PIDEdgeTaskTask")

);

CREATE TABLE "tbEdgeTaskDatasetRead" (
"PIDEdgeTaskDatasetRead" CHAR(10) NOT NULL

, "EdgeTaskDatasetReadName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDDataset" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskDatasetRead")

);

CREATE TABLE "tbEdgeTaskDatasetModify" (
"PIDEdgeTaskDatasetModify" CHAR(10) NOT NULL

, "EdgeTaskDatasetModifyName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDDataset" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskDatasetModify")

);

CREATE TABLE "tbEdgeTaskTool" (
"PIDEdgeTaskTool" CHAR(10) NOT NULL

, "EdgeTaskToolName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDTool" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskTool")

);

CREATE TABLE "tbEdgeDatasetTool" (
"PIDEdgeDatasetTool" CHAR(10) NOT NULL

, "EdgeDatasetToolName" VARCHAR(100)
, "PIDDataset" CHAR(10)
, "PIDTool" CHAR(10)

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 352

, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeDatasetTool")

);

ALTER TABLE "tbTask"
ADD CONSTRAINT "fkTask_1"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute");

ALTER TABLE "tbTask"
ADD CONSTRAINT "fkTask_2"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement");

ALTER TABLE "tbTool"
ADD CONSTRAINT "FK_tbTool_1"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement");

ALTER TABLE "tbEdgeTaskDatasetCreate"
ADD CONSTRAINT "fkEdgeTaskDataset2"

FOREIGN KEY ("PIDDataset")
REFERENCES "tbDataset" ("PIDDataset");

ALTER TABLE "tbEdgeTaskDatasetCreate"
ADD CONSTRAINT "fkEdgeTaskDataset4"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute");

ALTER TABLE "tbEdgeTaskDatasetCreate"
ADD CONSTRAINT "fkEdgeTaskDataset6"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement");

ALTER TABLE "tbEdgeTaskDatasetCreate"
ADD CONSTRAINT "fkEdgeTaskDataset1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask");

ALTER TABLE "tbEdgeTaskPerson"
ADD CONSTRAINT "fkTaskPerson2"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask");

ALTER TABLE "tbEdgeTaskPerson"
ADD CONSTRAINT "fkTaskPerson5"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute");

ALTER TABLE "tbEdgeTaskPerson"
ADD CONSTRAINT "fkTaskPerson6"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement");

ALTER TABLE "tbEdgeTaskPerson"
ADD CONSTRAINT "fkTaskPerson3"

FOREIGN KEY ("PIDPerson")
REFERENCES "tbPerson" ("PIDPerson");

ALTER TABLE "tbEdgeTaskTask"
ADD CONSTRAINT "fkEdgeTaskTask1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask");

ALTER TABLE "tbEdgeTaskTask"
ADD CONSTRAINT "fkEdgeTaskTask2"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement");

ALTER TABLE "tbEdgeTaskTask"
ADD CONSTRAINT "fkEdgeTaskTask3"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute");

ALTER TABLE "tbEdgeTaskDatasetRead"
ADD CONSTRAINT "fkEdgeTaskDatasetRead1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask");

ALTER TABLE "tbEdgeTaskDatasetRead"
ADD CONSTRAINT "fkEdgeTaskDatasetRead2"

FOREIGN KEY ("PIDDataset")
REFERENCES "tbDataset" ("PIDDataset");

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 353

ALTER TABLE "tbEdgeTaskDatasetRead"
ADD CONSTRAINT "fkEdgeTaskDatasetRead3"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute");

ALTER TABLE "tbEdgeTaskDatasetModify"
ADD CONSTRAINT "fkEdgeTaskDatasetWrite1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask");

ALTER TABLE "tbEdgeTaskDatasetModify"
ADD CONSTRAINT "fkEdgeTaskDatasetWrite2"

FOREIGN KEY ("PIDDataset")
REFERENCES "tbDataset" ("PIDDataset");

ALTER TABLE "tbEdgeTaskDatasetModify"
ADD CONSTRAINT "fkEdgeTaskDatasetWrite3"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute");

ALTER TABLE "tbEdgeTaskTool"
ADD CONSTRAINT "fkEdgeTaskTool_4"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement");

ALTER TABLE "tbEdgeTaskTool"
ADD CONSTRAINT "fkEdgeTaskTool_1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask");

ALTER TABLE "tbEdgeTaskTool"
ADD CONSTRAINT "fkEdgeTaskTool_2"

FOREIGN KEY ("PIDTool")
REFERENCES "tbTool" ("PIDTool");

ALTER TABLE "tbEdgeTaskTool"
ADD CONSTRAINT "fkEdgeTaskTool_3"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute");

ALTER TABLE "tbEdgeDatasetTool"
ADD CONSTRAINT "fkEdgeDatasetTool4"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement");

ALTER TABLE "tbEdgeDatasetTool"
ADD CONSTRAINT "fkEdgeDatasetTool3"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute");

ALTER TABLE "tbEdgeDatasetTool"
ADD CONSTRAINT "fkEdgeDatasetTool1"

FOREIGN KEY ("PIDTool")
REFERENCES "tbTool" ("PIDTool");

ALTER TABLE "tbEdgeDatasetTool"
ADD CONSTRAINT "fkEdgeDatasetTool2"

FOREIGN KEY ("PIDDataset")
REFERENCES "tbDataset" ("PIDDataset");

-- Engineering Process Model Schema
-- EngProcessANSI-92.sql

DROP TABLE "tbEdgeDatasetTool";
DROP TABLE "tbEdgeTaskTool";
DROP TABLE "tbEdgeTaskDatasetModify";
DROP TABLE "tbEdgeTaskDatasetRead";
DROP TABLE "tbEdgeTaskTask";
DROP TABLE "tbEdgeTaskPerson";
DROP TABLE "tbEdgeTaskDatasetCreate";
DROP TABLE "tbTool";
DROP TABLE "tbTask";
DROP TABLE "tbDataset";
DROP TABLE "tbStatusElement";
DROP TABLE "tbAttribute";
DROP TABLE "tbPerson";

CREATE TABLE "tbPerson" (
"PIDPerson" CHAR(10) NOT NULL

, "PersonName" VARCHAR(100)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 354

, PRIMARY KEY ("PIDPerson")
);

CREATE TABLE "tbAttribute" (
"PIDAttribute" CHAR(10) NOT NULL

, "AttributeName" VARCHAR(100)
, "AttributeDiscipline" VARCHAR(100)
, "AttributeFunction" VARCHAR(100)
, "AttributeType" VARCHAR(100)
, PRIMARY KEY ("PIDAttribute")

);

CREATE TABLE "tbStatusElement" (
"PIDStatusElement" CHAR(10) NOT NULL

, "StatusElementName" VARCHAR(100)
, "Completion" NUMERIC(5,2)
, PRIMARY KEY ("PIDStatusElement")

);

CREATE TABLE "tbDataset" (
"PIDDataset" CHAR(10) NOT NULL

, "DatasetName" VARCHAR(100)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, "Weight" NUMERIC(10,2)
, PRIMARY KEY ("PIDDataset")

);

CREATE TABLE "tbTask" (
"PIDTask" CHAR(10) NOT NULL

, "TaskName" VARCHAR(100)
, "LogicalStep" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDTask")

);

CREATE TABLE "tbTool" (
"PIDTool" CHAR(10) NOT NULL

, "ToolName" VARCHAR(100)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDTool")

);

CREATE TABLE "tbEdgeTaskDatasetCreate" (
"PIDEdgeTaskDatasetCreate" CHAR(10) NOT NULL

, "EdgeTaskDatasetCreateName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDDataset" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskDatasetCreate")

);

CREATE TABLE "tbEdgeTaskPerson" (
"PIDEdgeTaskPerson" CHAR(10) NOT NULL

, "EdgeTaskPersonName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDPerson" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskPerson")

);

CREATE TABLE "tbEdgeTaskTask" (
"PIDEdgeTaskTask" CHAR(10) NOT NULL

, "EdgeTaskTaskName" VARCHAR(100)
, "PIDTaskIn" CHAR(10)
, "PIDTaskOut" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, "PIDTask" CHAR(10) NOT NULL
, PRIMARY KEY ("PIDEdgeTaskTask")

);

CREATE TABLE "tbEdgeTaskDatasetRead" (
"PIDEdgeTaskDatasetRead" CHAR(10) NOT NULL

, "EdgeTaskDatasetReadName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDDataset" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskDatasetRead")

);

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 355

CREATE TABLE "tbEdgeTaskDatasetModify" (
"PIDEdgeTaskDatasetModify" CHAR(10) NOT NULL

, "EdgeTaskDatasetModifyName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDDataset" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskDatasetModify")

);

CREATE TABLE "tbEdgeTaskTool" (
"PIDEdgeTaskTool" CHAR(10) NOT NULL

, "EdgeTaskToolName" VARCHAR(100)
, "PIDTask" CHAR(10)
, "PIDTool" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeTaskTool")

);

CREATE TABLE "tbEdgeDatasetTool" (
"PIDEdgeDatasetTool" CHAR(10) NOT NULL

, "EdgeDatasetToolName" VARCHAR(100)
, "PIDDataset" CHAR(10)
, "PIDTool" CHAR(10)
, "PIDAttribute" CHAR(10)
, "PIDStatusElement" CHAR(10)
, PRIMARY KEY ("PIDEdgeDatasetTool")

);

ALTER TABLE "tbTask"
ADD CONSTRAINT "fkTask_1"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute")
ON DELETE CASCADE;

ALTER TABLE "tbTask"
ADD CONSTRAINT "fkTask_2"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement")
ON DELETE CASCADE;

ALTER TABLE "tbTool"
ADD CONSTRAINT "FK_tbTool_1"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetCreate"
ADD CONSTRAINT "fkEdgeTaskDataset2"

FOREIGN KEY ("PIDDataset")
REFERENCES "tbDataset" ("PIDDataset")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetCreate"
ADD CONSTRAINT "fkEdgeTaskDataset4"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetCreate"
ADD CONSTRAINT "fkEdgeTaskDataset6"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetCreate"
ADD CONSTRAINT "fkEdgeTaskDataset1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskPerson"
ADD CONSTRAINT "fkTaskPerson2"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskPerson"
ADD CONSTRAINT "fkTaskPerson5"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute")
ON DELETE CASCADE;

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 356

ALTER TABLE "tbEdgeTaskPerson"
ADD CONSTRAINT "fkTaskPerson6"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskPerson"
ADD CONSTRAINT "fkTaskPerson3"

FOREIGN KEY ("PIDPerson")
REFERENCES "tbPerson" ("PIDPerson")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskTask"
ADD CONSTRAINT "fkEdgeTaskTask1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskTask"
ADD CONSTRAINT "fkEdgeTaskTask2"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskTask"
ADD CONSTRAINT "fkEdgeTaskTask3"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetRead"
ADD CONSTRAINT "fkEdgeTaskDatasetRead1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetRead"
ADD CONSTRAINT "fkEdgeTaskDatasetRead2"

FOREIGN KEY ("PIDDataset")
REFERENCES "tbDataset" ("PIDDataset")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetRead"
ADD CONSTRAINT "fkEdgeTaskDatasetRead3"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetModify"
ADD CONSTRAINT "fkEdgeTaskDatasetWrite1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetModify"
ADD CONSTRAINT "fkEdgeTaskDatasetWrite2"

FOREIGN KEY ("PIDDataset")
REFERENCES "tbDataset" ("PIDDataset")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskDatasetModify"
ADD CONSTRAINT "fkEdgeTaskDatasetWrite3"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskTool"
ADD CONSTRAINT "fkEdgeTaskTool_4"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskTool"
ADD CONSTRAINT "fkEdgeTaskTool_1"

FOREIGN KEY ("PIDTask")
REFERENCES "tbTask" ("PIDTask")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskTool"
ADD CONSTRAINT "fkEdgeTaskTool_2"

FOREIGN KEY ("PIDTool")
REFERENCES "tbTool" ("PIDTool")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeTaskTool"

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 357

ADD CONSTRAINT "fkEdgeTaskTool_3"
FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeDatasetTool"
ADD CONSTRAINT "fkEdgeDatasetTool4"

FOREIGN KEY ("PIDStatusElement")
REFERENCES "tbStatusElement" ("PIDStatusElement")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeDatasetTool"
ADD CONSTRAINT "fkEdgeDatasetTool3"

FOREIGN KEY ("PIDAttribute")
REFERENCES "tbAttribute" ("PIDAttribute")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeDatasetTool"
ADD CONSTRAINT "fkEdgeDatasetTool1"

FOREIGN KEY ("PIDTool")
REFERENCES "tbTool" ("PIDTool")
ON DELETE CASCADE;

ALTER TABLE "tbEdgeDatasetTool"
ADD CONSTRAINT "fkEdgeDatasetTool2"

FOREIGN KEY ("PIDDataset")
REFERENCES "tbDataset" ("PIDDataset")
ON DELETE CASCADE;

J.5 PostgreSQL Database Reference

PostgreSQL 7.4.2 Documentation
The PostgreSQL Global Development Group

Refer to The PostgreSQL Global Development Group [121]

J.6 Engineering Process Model - Sample PostgresSQL Database Data
Listing

The sample PostgresSQL database listing for the Eengineering Process Model is given below. (Some field
lengths need to be increased) ???

select * from public."tbPerson"

PIDPerson,PersonName

P0001,p01_Client
P0002,p02_Architect
P0003,p03_Structural Engineer
P0004,p04_Electrical Engineer
P0005,p05_Draftsman
P0006,p06_Checking Engineer

select * from public."tbTask"

PIDTask,TaskName,LogicalStep

T0001,t01_Create architectural design,Step0001
T0002,t02_Review architectural design,Step0002
T0003,t03_Preliminary structural design,Step0002
T0004,t04_Create foundation drawings,Step0003
T0005,t05_Create concrete layout drawings,Step0003
T0006,t06_Create reinforcement drawings,Step0004
T0007,t07_Preliminary electrical design,Step0002
T0008,t08_Create electrical drawings,Step0003

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 358

T0009,t09_Finalize architectural drawings,Step0003
T0010,t10_Finalize foundation drawings,Step0004
T0011,t11_Finalize concrete layout drawings,Step0004
T0012,t12_Finalize reinforcement drawings,Step0005
T0013,t13_Finalize electrical drawings,Step0004
T0014,t14_Finalize electrical design,Step0003
T0015,t15_Finalize structural design,Step0003
T0016,t16_Check structural design,Step0004
T0017,t17_Check architectural drawings,Step0004
T0018,t18_Check foundation drawings,Step0005
T0019,t19_Check concrete layout drawings,Step0005
T0020,t20_Check reinforcement drawings,Step0006
T0021,t21_Check electrical drawings,Step0005
T0022,t22_Check electrical design,Step0004

select * from public."tbTool"

PIDTool,ToolName

G0001,g01_CAD software
G0002,g02_Word processing software
G0003,g03_Spreadsheet software
G0004,g04_Hand calculations

select * from public."tbDataset"

PIDDataset,DatasetName,Weight,MilestoneClass

D0001,d01_Client requirements,(null),(null)
D0002,d02_Architectural drawings,(null),(null)
D0003,d03_Foundation drawings,(null),(null)
D0004,d04_Concrete layout drawings,(null),(null)
D0005,d05_Reinforcement drawings,(null),(null)
D0006,d06_Structural design report,(null),(null)
D0007,d07_Electrical drawings,(null),(null)
D0008,d08_Electrical design report,(null),(null)

select * from public."tbAttribute"

PIDAttribute,AttributeName,AttributeDiscipline,AttributeFunction,AttributeType

A0001,a01,Architectu,report,task
A0002,a02,Engineerin,time,person

select * from public."tbStatusElement"

PIDStatusElement,StatusElementName

S0001,assumed s01
S0002,preliminary s02
S0003,engineered s03
S0004,checked s04

select * from public."tbEdgeTaskPerson"

PIDEdgeTaskPerson,EdgeTaskPersonName,PIDTask,PIDPerson,PIDAttribute,PIDStatusElement

T0001P0002,t01_Create architectural design-p02_Arch,T0001,P0002,(null),(null)
T0002P0001,t02_Review architectural design-p01_Clie,T0002,P0001,(null),(null)

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 359

T0002P0002,t02_Review architectural design-p02_Arch,T0002,P0002,(null),(null)
T0003P0003,t03_Preliminary structural design-p03_St,T0003,P0003,(null),(null)
T0005P0005,t05_Create concrete layout drawings-p05_,T0005,P0005,(null),(null)
T0006P0005,t06_Create reinforcement drawings-p05_Dr,T0006,P0005,(null),(null)
T0007P0005,t07_Preliminary electrical design-p05_Dr,T0007,P0005,(null),(null)
T0008P0005,t08_Create electrical drawings-p05_Draft,T0008,P0005,(null),(null)
T0009P0002,t09_Finalize architectural drawings-p02_,T0009,P0002,(null),(null)
T0009P0005,t09_Finalize architectural drawings-p05_,T0009,P0005,(null),(null)
T0010P0003,t10_Finalize foundation drawings-p03_Str,T0010,P0003,(null),(null)
T0010P0005,t10_Finalize foundation drawings-p05_Dra,T0010,P0005,(null),(null)
T0011P0002,t11_Finalize concrete layout drawings-p0,T0011,P0002,(null),(null)
T0011P0003,t11_Finalize concrete layout drawings-p0,T0011,P0003,(null),(null)
T0011P0005,t11_Finalize concrete layout drawings-p0,T0011,P0005,(null),(null)
T0012P0003,t12_Finalize reinforcement drawings-p03_,T0012,P0003,(null),(null)
T0012P0005,t12_Finalize reinforcement drawings-p05_,T0012,P0005,(null),(null)
T0013P0004,t13_Finalize electrical drawings-p04_Ele,T0013,P0004,(null),(null)
T0013P0005,t13_Finalize electrical drawings-p05_Dra,T0013,P0005,(null),(null)
T0014P0004,t14_Finalize electrical design-p04_Elect,T0014,P0004,(null),(null)
T0015P0003,t15_Finalize structural design-p03_Struc,T0015,P0003,(null),(null)
T0016P0006,t16_Check structural design-p06_Checking,T0016,P0006,(null),(null)
T0017P0006,t17_Check architectural drawings-p06_Che,T0017,P0006,(null),(null)
T0018P0006,t18_Check foundation drawings-p06_Checki,T0018,P0006,(null),(null)
T0019P0006,t19_Check concrete layout drawings-p06_C,T0019,P0006,(null),(null)
T0020P0006,t20_Check reinforcement drawings-p06_Che,T0020,P0006,(null),(null)
T0021P0006,t21_Check electrical drawings-p06_Checki,T0021,P0006,(null),(null)
T0022P0006,t22_Check electrical design-p06_Checking,T0022,P0006,(null),(null)

select * from public."tbEdgeTaskDataset"

PIDEdgeTaskDataset,EdgeTaskDatasetName,PIDTask,PIDDataset,PIDAttribute,PIDStatusElement

T0001D0002,t01_Create architectural design-d02_Arch,T0001,D0002,(null),S0001
T0003D0006,t03_Preliminary structural design-d06_St,T0003,D0006,(null),S0001
T0004D0003,t04_Create foundation drawings-d03_Found,T0004,D0003,(null),S0001
T0005D0004,t05_Create concrete layout drawings-d04_,T0005,D0004,(null),S0001
T0006D0005,t06_Create reinforcement drawings-d05_Re,T0006,D0005,(null),S0001
T0007D0008,t07_Preliminary electrical design-d08_El,T0007,D0008,(null),(null)
T0008D0007,t08_Create electrical drawings-d07_Elect,T0008,D0007,(null),S0001

select * from public."tbEdgeTaskTask"

PIDEdgeTaskTask,EdgeTaskTaskName,PIDTaskIn,PIDTaskOut,PIDAttribute,PIDStatusElement,PIDTask

T0001T0002,t01_Create architectural design-t02_Revi,T0001,T0002,(null),(null),T0001
T0001T0003,t01_Create architectural design-t03_Prel,T0001,T0003,(null),(null),T0001
T0001T0004,t01_Create architectural design-t04_Crea,T0001,T0004,(null),(null),T0001
T0001T0005,t01_Create architectural design-t05_Crea,T0001,T0005,(null),(null),T0001
T0001T0007,t01_Create architectural design-t07_Prel,T0001,T0007,(null),(null),T0001
T0001T0008,t01_Create architectural design-t08_Crea,T0001,T0008,(null),(null),T0001
T0001T0009,t01_Create architectural design-t09_Fina,T0001,T0009,(null),(null),T0001
T0001T0017,t01_Create architectural design-t17_Chec,T0001,T0017,(null),(null),T0001
T0002T0009,t02_Review architectural design-t09_Fina,T0002,T0009,(null),(null),T0002
T0002T0017,t02_Review architectural design-t17_Chec,T0002,T0017,(null),(null),T0002
T0003T0004,t03_Preliminary structural design-t04_Cr,T0003,T0004,(null),(null),T0003
T0003T0005,t03_Preliminary structural design-t05_Cr,T0003,T0005,(null),(null),T0003
T0003T0006,t03_Preliminary structural design-t06_Cr,T0003,T0006,(null),(null),T0003
T0003T0015,t03_Preliminary structural design-t15_Fi,T0003,T0015,(null),(null),T0003
T0003T0016,t03_Preliminary structural design-t16_Ch,T0003,T0016,(null),(null),T0003
T0004T0010,t04_Create foundation drawings-t10_Final,T0004,T0010,(null),(null),T0004
T0004T0018,t04_Create foundation drawings-t18_Check,T0004,T0018,(null),(null),T0004
T0005T0006,t05_Create concrete layout drawings-t06_,T0005,T0006,(null),(null),T0005
T0005T0011,t05_Create concrete layout drawings-t11_,T0005,T0011,(null),(null),T0005
T0005T0012,t05_Create concrete layout drawings-t12_,T0005,T0012,(null),(null),T0005
T0005T0019,t05_Create concrete layout drawings-t19_,T0005,T0019,(null),(null),T0005
T0006T0012,t06_Create reinforcement drawings-t12_Fi,T0006,T0012,(null),(null),T0006
T0006T0020,t06_Create reinforcement drawings-t20_Ch,T0006,T0020,(null),(null),T0006
T0007T0008,t07_Preliminary electrical design-t08_Cr,T0007,T0008,(null),(null),T0007

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 360

T0007T0014,t07_Preliminary electrical design-t14_Fi,T0007,T0014,(null),(null),T0007
T0007T0022,t07_Preliminary electrical design-t22_Ch,T0007,T0022,(null),(null),T0007
T0008T0013,t08_Create electrical drawings-t13_Final,T0008,T0013,(null),(null),T0008
T0008T0021,t08_Create electrical drawings-t21_Check,T0008,T0021,(null),(null),T0008
T0009T0017,t09_Finalize architectural drawings-t17_,T0009,T0017,(null),(null),T0009
T0010T0018,t10_Finalize foundation drawings-t18_Che,T0010,T0018,(null),(null),T0010
T0011T0019,t11_Finalize concrete layout drawings-t1,T0011,T0019,(null),(null),T0011
T0012T0020,t12_Finalize reinforcement drawings-t20_,T0012,T0020,(null),(null),T0012
T0013T0021,t13_Finalize electrical drawings-t21_Che,T0013,T0021,(null),(null),T0013
T0014T0022,t14_Finalize electrical design-t22_Check,T0014,T0022,(null),(null),T0014
T0015T0016,t15_Finalize structural design-t16_Check,T0015,T0016,(null),(null),T0015

select * from public."tbEdgeDatasetTool"

PIDEdgeDatasetTool,EdgeDatasetToolName,PIDDataset,PIDTool,PIDAttribute,PIDStatusElement

D0001G0002,d01_Client requirements-g02_Word process,D0001,G0002,(null),(null)
D0001G0003,d01_Client requirements-g03_Spreadsheet,D0001,G0003,(null),(null)
D0001G0004,d01_Client requirements-g04_Hand calcula,D0001,G0004,(null),(null)
D0002G0001,d02_Architectural drawings-g01_CAD softw,D0002,G0001,(null),(null)
D0003G0001,d03_Foundation drawings-g01_CAD software,D0003,G0001,(null),(null)
D0004G0001,d04_Concrete layout drawings-g01_CAD sof,D0004,G0001,(null),(null)
D0005G0001,d05_Reinforcement drawings-g01_CAD softw,D0005,G0001,(null),(null)
D0006G0002,d06_Structural design report-g02_Word pr,D0006,G0002,(null),(null)
D0006G0003,d06_Structural design report-g03_Spreads,D0006,G0003,(null),(null)
D0006G0004,d06_Structural design report-g04_Hand ca,D0006,G0004,(null),(null)
D0007G0001,d07_Electrical drawings-g01_CAD software,D0007,G0001,(null),(null)
D0008G0002,d08_Electrical design report-g02_Word pr,D0008,G0002,(null),(null)
D0008G0003,d08_Electrical design report-g03_Spreads,D0008,G0003,(null),(null)

J.7 Microsoft Access Database Reference

The Microsoft Access Database package was used demonstrate the Engineering Process model function-
ality in the desktop computer application environment on the Microsoft Windows XP operating system.
Refer to the software reference below.

Application name Microsoft Access
Version 10.0
Build 6771
Product ID 54185-640-0778382-17145
Application path C:\Program Files\Microsoft Office\Office10\
Language English (United States)
ADO version Not Available
VBA version 6.04

Access programming techniques were drawn from Litwin et al. [75], Litwin et al. [76] and Litwin et al.
[77].

J.8 Access data import process

The data is input via Access Table links using a VBA program genertaing SQL queries for the DAO
subsystem of Access

J.8.1 Database schema definition file

The schema.ini file defines the record contents of the .csv data files per database table.

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 361

[PEPEExtbAttribute.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDAttribute" Text
Col2="AttributeName" Text
Col3="AttributeDiscipline" Text
Col4="AttributeFunction" Text
Col5="AttributeType" Text

[PEPEExtbStatusElement.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDStatusElement" Text
Col2="StatusElementName" Text
Col3="Completion" Long

[PEPEExtbDataset.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDDataset" Text
Col2="DatasetName" Text
Col3="PIDAttribute" Text
Col4="PIDStatusElement" Text
Col5="Weight" Long

[PEPEExtbPerson.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDPerson" Text
Col2="Personname" Text
Col3="PIDAttribute" Text
Col4="PIDStatusElement" Text

[PEPEExtbTask.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDTask" Text
Col2="Taskname" Text
Col3="LogicalStep" Text
Col4="PIDAttribute" Text
Col5="PIDStatusElement" Text

[PEPEExtbTool.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDTool" Text
Col2="ToolName" Text
Col3="PIDAttribute" Text
Col4="PIDStatusElement" Text

[PEPEExtbEdgeTaskDatasetCreate.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDEdgeTaskDatasetCreate" Text
Col2="EdgeTaskDatasetCreateName" Text
Col3="PIDTask" Text

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 362

Col4="PIDDataset" Text
Col5="PIDAttribute" Text
Col6="PIDStatusElement" Text

[PEPEExtbEdgeTaskPerson.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDEdgeTaskPerson" Text
Col2="EdgeTaskPersonName" Text
Col3="PIDTask" Text
Col4="PIDPerson" Text
Col5="PIDAttribute" Text
Col6="PIDStatusElement" Text

[PEPEExtbEdgeTaskTask.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDEdgeTaskTask" Text
Col2="EdgeTaskTaskName" Text
Col3="PIDTaskIn" Text
Col4="PIDTaskOut" Text
Col5="PIDAttribute" Text
Col6="PIDStatusElement" Text
Col7="PIDTask" Text

[PEPEExtbEdgeTaskDatasetRead.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDEdgeTaskDatasetRead" Text
Col2="EdgeTaskDatasetReadName" Text
Col3="PIDTask" Text
Col4="PIDDataset" Text
Col5="PIDAttribute" Text
Col6="PIDStatusElement" Text

[PEPEExtbEdgeTaskDatasetModify.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDEdgeTaskDatasetModify" Text
Col2="EdgeTaskDatasetModifyName" Text
Col3="PIDTask" Text
Col4="PIDDataset" Text
Col5="PIDAttribute" Text
Col6="PIDStatusElement" Text

[PEPEExtbEdgeTaskTool.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM
Col1="PIDEdgeTaskTool" Text
Col2="EdgeTaskToolName" Text
Col3="PIDTask" Text
Col4="PIDTool" Text
Col5="PIDAttribute" Text
Col6="PIDStatusElement" Text

[PEPEExtbEdgeDatasetTool.csv]
ColNameHeader=False
Format=CSVDelimited
MaxScanRows=0
CharacterSet=OEM

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 363

Col1="PIDEdgeDatasetTool" Text
Col2="EdgeDatasetToolName" Text
Col3="PIDDataset" Text
Col4="PIDTool" Text
Col5="PIDAttribute" Text
Col6="PIDStatusElement" Text

J.8.2 Access VBA code for data import

The Access VBA code to import the data into the datatbase is given below:

Private Sub ImportData()
Dim objAccessApp As Access.Application
Set objAccessApp = GetObject(, "Access.Application")
Dim filePrefix As String
Dim tableName As String
Dim tablePrefix As String
filePrefix = "PEPEEx"
tablePrefix = "public_"

’
’ Delete entries edges first then vertices

tableName = "tbEdgeTaskPerson"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskTask"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskDatasetCreate"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskDatasetRead"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskDatasetModify"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskTool"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeDatasetTool"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbPerson"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbTask"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbAttribute"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbStatusElement"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbDataset"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbTool"
Call csvTableDataDelete(objAccessApp, filePrefix, tablePrefix, _

tableName)
’
’ Import information - vertices first

tableName = "tbPerson"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbTask"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 364

tableName = "tbAttribute"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbStatusElement"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbDataset"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbTool"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskPerson"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskTask"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskDatasetCreate"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskDatasetRead"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskDatasetModify"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeTaskTool"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)
tableName = "tbEdgeDatasetTool"
Call csvTableDataImport(objAccessApp, filePrefix, tablePrefix, _

tableName)

Set objAccessApp = Nothing
End Sub

Private Sub csvTableDataImport(objAccessApp As Application, _
filePrefix As String, _
tablePrefix As String, _
tableName As String)

Dim db As DAO.Database
Set db = CurrentDb()
Debug.Print objAccessApp.CurrentProject.Path
MsgBox "Importing " & filePrefix & tableName & ".csv " & _

Chr(13) & " into Table " & _
tablePrefix & tableName & " using Schema.ini"

db.Execute "DELETE FROM " & tablePrefix & tableName & ";"
db.Execute _
"INSERT INTO " & tablePrefix & tableName & _
" SELECT * " & _
" FROM [Text;FMT=Delimited;HDR=No;" & _
" DATABASE=" & objAccessApp.CurrentProject.Path & _
";].[" & filePrefix & tableName & "#csv];"
db.TableDefs.Refresh

End Sub

Private Sub csvTableDataDelete(objAccessApp As Application, _
filePrefix As String, _
tablePrefix As String, _
tableName As String)

Dim db As DAO.Database
Set db = CurrentDb()

’ Debug.Print objAccessApp.CurrentProject.Path
MsgBox "Deleting records for " & _

" Table " & _
tablePrefix & tableName, _
Buttons = vbInformation

db.Execute "DELETE FROM " & tablePrefix & tableName & ";"
db.TableDefs.Refresh

End Sub

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 365

J.8.3 Database program to import data from database server

Database Processing using Microsoft Access 1997/2002/2003
DDL queries are a subset of SQL queries which include:

CREATE TABLE
ALTER TABLE
CREATE INDEX
CREATE INDEX
DROP TABLE
DROP INDEX

Access can accept DDL type queries in its query SQL view but can only execute one SQL satement
at a time! This is a major drawback in importing DDL data form database design tools such as Azzurri
Clay.

As an alternative VBA programming using the ADO (ActiveX Data Object) library and class/object
model can be used.

Refer to Litwin, Getz & Gunderloy - Access Developers Handbook Chapter 5 Litwin et al. [76].
Microsoft Windows Data links.
Microsoft Windows has a data link definition facility which can be used to set up a specification for

a data link (data source) for use in Windows applications.
A blank text file is created using e.g. Windows Explorer, it is renamed to have a .udl extension and

when the file is then opened it has the UDL functionality shown below.
DataLinks used to be MSDASC.dll, but has changed to OLEDB32.DLL
The link can then be used in VBA programs to access data without specifying the link parameters in

the program code.
Access DLL Library references.

[oledb]
; Everything after this line is an OLE DB initstring
Provider=MSDASQL.1;
Persist Security Info=False;
User ID=javbs;
Data Source=PostgreSQLjavbs;
Initial Catalog=public

Sample Microsoft Access VBA Code.

Option Compare Database
Option Explicit

’ From Access 2002 Desktop Developer’s Handbook
’ by Litwin, Getz, and Gunderloy. (Sybex)
’ Copyright 2001. All rights reserved.

Public Sub TestDataLink()
’ To set things up, run the
’ ShowDataLink procedure before
’ running this one.
Dim cnn As ADODB.Connection
Set cnn = New ADODB.Connection
cnn.Open "File Name=" & _
CurrentProject.Path & "\PSQLEngProcess.udl"

Debug.Print cnn.ConnectionString
Set cnn = Nothing

End Sub

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 366

Option Compare Database
Option Explicit
Public Sub ShowDataLink2()

Dim cnn As ADODB.Connection
’DataLinks used to be MSDASC.dll, but has changed to OLEDB32.DLL

Dim dlk As MSDASC.DataLinks
Set cnn = New ADODB.Connection
Set dlk = New MSDASC.DataLinks
’ Set default properties for the connection
cnn.Provider = "Microsoft.Jet.OLEDB.4.0"
cnn.Properties("Data Source") = _
CurrentProject.Path & "\ODBCpSQLEngProcess.mdb"

’ Tell the Data Link Properties dialog which
’ window will be its parent
dlk.Hwnd = Application.hWndAccessApp
’ Prompt the user for information
If dlk.PromptEdit(cnn) Then

cnn.Open
End If
Set cnn = Nothing
Set dlk = Nothing

End Sub

Refer to Litwin, Getz & Gunderloy - Access Developers Handbook Chapter 6, Litwin et al. [76].
Note that the ADOX will not work for all remote database server.
The Catalog / Table / Record structure need not be supported by all other Databases e.g. PostgeSQL

on Linux.
Comment on PostgreSQL Web Site: http://archives.postgresql.org/pgsql-odbc/2002-09/msg00049.php
Microsoft ActiveX Data Objects Extensions for Data Definition Language and Security (ADOX) is

designed for use with the Microsoft Jet Database Engine. So, using ADOX with OLE DB providers other
than the Microsoft Jet OLE DB Provider may cause unexpected behavior or incorrect results. The exact
behavior is dependent on the nature of the database for which the provider is written. If a provider is
accesses a database system whose model is totally different from that of Jet, the behavior of ADOX could
be unpredictable (for example, Jet does not support the concepts of CATALOG or SCHEMA)....

http://support.microsoft.com/default.aspx?scid=kb;
Errors like the one below occur.
-2147352566
Use linked tables in this case.

J.9 PostgreSQL - Importing data into database

Using PSQL COPY FROM to import data.
Refer to The PostgreSQL Global Development Group, PSQL Documentation in The PostgreSQL

Global Development Group [121].
COPY FROM
Use COPY FROM Use COPY FROM STDIN to load all the rows in one command, instead of using

a series of INSERT commands.This reduces parsing, planning, etc. overhead a great deal. If you do this
then it is not necessary to turn off autocommit, since it is only one command anyway.

COPY
Name
COPY- copy data between a file and a table
Synopsis
COPY tablename [(column [, ...])]
FROM { ’filename’ | STDIN }
[[WITH]
[BINARY]
[OIDS]
[DELIMITER [AS] ’delimiter’]
[NULL [AS] ’null string’]]
COPY tablename [(column [, ...])]

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 367

TO { ’filename’ | STDOUT }
[[WITH]
[BINARY]
[OIDS]
[DELIMITER [AS] ’delimiter’]
[NULL [AS] ’null string’]]

DELETE FROM "tbDataset";
COPY "tbDataset" FROM ’PEPEExtbDataset.csv’ DELIMITER AS , ;

Only available to super users! The format below is an alternative for normal users Note that no colon
terminates the statement

Delete / load / display records sequence:

DELETE FROM "tbDataset";
\copy "tbDataset" FROM ’PEPEExtbDataset.csv’ DELIMITER AS ,
SELECT * FROM "tbDataset";

Special entries for bank attributes and status values were added to cater for vertices / edges without
attributes or status values.

-- LoadData.psql -- A mixture of SQL and PSQL statements --

DELETE FROM "tbAttribute"; \copy "tbAttribute" FROM ’PEPEExtbAttribute.csv’
DELIMITER AS , SELECT * FROM "tbAttribute";

DELETE FROM "tbStatusElement"; \copy "tbStatusElement" FROM
’PEPEExtbStatusElement.csv’ DELIMITER AS , SELECT * FROM "tbStatusElement";

DELETE FROM "tbDataset"; \copy "tbDataset" FROM ’PEPEExtbDataset.csv’
DELIMITER AS , SELECT * FROM "tbDataset";

DELETE FROM "tbPerson"; \copy "tbPerson" FROM ’PEPEExtbPerson.csv’ DELIMITER
AS , SELECT * FROM "tbPerson";

DELETE FROM "tbTask"; \copy "tbTask" FROM ’PEPEExtbTask.csv’ DELIMITER AS ,
SELECT * FROM "tbTask";

DELETE FROM "tbTool"; \copy "tbTool" FROM ’PEPEExtbTool.csv’ DELIMITER AS ,
SELECT * FROM "tbPerson";

DELETE FROM "tbEdgeDatasetTool"; \copy "tbEdgeDatasetTool" FROM
’PEPEExtbEdgeDatasetTool.csv’ DELIMITER AS , SELECT * FROM
"tbEdgeDatasetTool";

DELETE FROM "tbEdgeTaskDatasetCreate"; \copy "tbEdgeTaskDatasetCreate" FROM
’PEPEExtbEdgeTaskDatasetCreate.csv’ DELIMITER AS , SELECT * FROM
"tbEdgeTaskDatasetCreate";

DELETE FROM "tbEdgeTaskDatasetModify"; \copy "tbEdgeTaskDatasetModify" FROM
’PEPEExtbEdgeTaskDatasetModify.csv’ DELIMITER AS , SELECT * FROM
"tbEdgeTaskDatasetModify";

DELETE FROM "tbEdgeTaskDatasetRead"; \copy "tbEdgeTaskDatasetRead" FROM
’PEPEExtbEdgeTaskDatasetRead.csv’ DELIMITER AS , SELECT * FROM
"tbEdgeTaskDatasetRead";

DELETE FROM "tbEdgeTaskPerson"; \copy "tbEdgeTaskPerson" FROM
’PEPEExtbEdgeTaskPerson.csv’ DELIMITER AS , SELECT * FROM "tbEdgeTaskPerson";

DELETE FROM "tbEdgeTaskTask"; \copy "tbEdgeTaskTask" FROM
’PEPEExtbEdgeTaskTask.csv’ DELIMITER AS , SELECT * FROM "tbEdgeTaskTask";

DELETE FROM "tbEdgeTaskTool"; \copy "tbEdgeTaskTool" FROM
’PEPEExtbEdgeTaskTool.csv’ DELIMITER AS , SELECT * FROM "tbEdgeTaskTool";

Output generated by running .psql file i.e.: \i LoadData.psql

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 368

DELETE 3
PIDAttribute | AttributeName | AttributeDiscipline | AttributeFunction | AttributeType

---------------+-----------------+------------------------+---------------------+------------------
A0001 | a01 | Architecture | design | drawing
A0002 | a02 | Structural Engineering | drafting | report
A0003 | noAttributeName | noAttributeDiscipline | noAttributeFunction | noAttributeType

(3 rows)

DELETE 3
PIDAttribute | AttributeName | AttributeDiscipline | AttributeFunction | AttributeType
---------------+-----------------+------------------------+---------------------+------------------
A0001 | a01 | Architecture | design | drawing
A0002 | a02 | Structural Engineering | drafting | report
A0003 | noAttributeName | noAttributeDiscipline | noAttributeFunction | noAttributeType
(3 rows)

hrule

hrulefill

rule

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 369

DELETE 3
PIDAttribute | AttributeName | AttributeDiscipline | AttributeFunction | AttributeType
---------------+-----------------+------------------------+---------------------+------------------
A0001 | a01 | Architecture | design | drawing
A0002 | a02 | Structural Engineering | drafting | report
A0003 | noAttributeName | noAttributeDiscipline | noAttributeFunction | noAttributeType
(3 rows)

DELETE 3
PIDAttribute | AttributeName | AttributeDiscipline | AttributeFunction | AttributeType

---------------+-----------------+------------------------+---------------------+------------------
A0001 | a01 | Architecture | design | drawing
A0002 | a02 | Structural Engineering | drafting | report
A0003 | noAttributeName | noAttributeDiscipline | noAttributeFunction | noAttributeType

(3 rows)

hrule

hrulefill

rule

DELETE 3
PIDAttribute | AttributeName | AttributeDiscipline | AttributeFunction | AttributeType

---------------+-----------------+------------------------+---------------------+------------------
A0001 | a01 | Architecture | design | drawing
A0002 | a02 | Structural Engineering | drafting | report
A0003 | noAttributeName | noAttributeDiscipline | noAttributeFunction | noAttributeType

(3 rows)

DELETE 13
PIDStatusElement | StatusElementName | Completion

------------------+---+------------
S0001 | se01_Architectural Drawings - Assumed | 20.00
S0002 | se02_Architectural Drawings - Preliminary | 20.00
S0003 | se03_Architectural Drawings - Engineered | 50.00
S0004 | se04_Architectural Drawings - Checked | 10.00
S0005 | se05_Engineering Drawings - Assumed | 20.00
S0006 | se06_Engineering Drawings - Preliminary | 0.00
S0007 | se07_Engineering Drawings - Engineered | 75.00
S0008 | se08_Engineering Drawings - Checked | 5.00
S0009 | se09_Engineering Designs - Assumed | 20.00
S0010 | se10_Engineering Designs - Preliminary | 0.00
S0011 | se11_Engineering Designs - Engineered | 70.00
S0012 | se12_Engineering Designs - Checked | 10.00
S0013 | noStatusEmentName | 0.00

(13 rows)

DELETE 8
PIDDataset | DatasetName | PIDAttribute | PIDStatusElement | Weight

------------+------------------------------+--------------+------------------+--------
D0001 | d01_Client requirements | A0003 | S0013 | 0.00
D0002 | d02_Architectural drawings | A0003 | S0013 | 25.00
D0003 | d03_Foundation drawings | A0003 | S0013 | 10.00
D0004 | d04_Concrete layout drawings | A0003 | S0013 | 50.00
D0005 | d05_Reinforcement drawings | A0003 | S0013 | 12.00
D0006 | d06_Structural design report | A0003 | S0013 | 25.00
D0007 | d07_Electrical drawings | A0003 | S0013 | 7.00
D0008 | d08_Electrical design report | A0003 | S0013 | 15.00

(8 rows)

DELETE 6
PIDPerson | PersonName | PIDAttribute | PIDStatusElement

------------+-------------------------+--------------+------------------
P0001 | p01_Client | A0003 | S0013
P0002 | p02_Architect | A0003 | S0013
P0003 | p03_Structural Engineer | A0003 | S0013
P0004 | p04_Electrical Engineer | A0003 | S0013
P0005 | p05_Draftsman | A0003 | S0013
P0006 | p06_Checking Engineer | A0003 | S0013

(6 rows)

DELETE 0
PIDTask | TaskName | LogicalStep | PIDAttribute | PIDStatusElement

------------+---------------------------------------+-------------+--------------+------------------
T0001 | t01_Create architectural design | Step0001 | A0003 | S0013
T0002 | t02_Review architectural design | Step0002 | A0003 | S0013
T0003 | t03_Preliminary structural design | Step0002 | A0003 | S0013
T0004 | t04_Create foundation drawings | Step0003 | A0003 | S0013
T0005 | t05_Create concrete layout drawings | Step0003 | A0003 | S0013
T0006 | t06_Create reinforcement drawings | Step0004 | A0003 | S0013
T0007 | t07_Preliminary electrical design | Step0002 | A0003 | S0013
T0008 | t08_Create electrical drawings | Step0003 | A0003 | S0013
T0009 | t09_Finalize architectural drawings | Step0003 | A0003 | S0013
T0010 | t10_Finalize foundation drawings | Step0004 | A0003 | S0013
T0011 | t11_Finalize concrete layout drawings | Step0004 | A0003 | S0013
T0012 | t12_Finalize reinforcement drawings | Step0005 | A0003 | S0013
T0013 | t13_Finalize electrical drawings | Step0004 | A0003 | S0013
T0014 | t14_Finalize electrical design | Step0003 | A0003 | S0013
T0015 | t15_Finalize structural design | Step0003 | A0003 | S0013
T0016 | t16_Check structural design | Step0004 | A0003 | S0013
T0017 | t17_Check architectural drawings | Step0004 | A0003 | S0013

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 370

T0018 | t18_Check foundation drawings | Step0005 | A0003 | S0013
T0019 | t19_Check concrete layout drawings | Step0005 | A0003 | S0013
T0020 | t20_Check reinforcement drawings | Step0006 | A0003 | S0013
T0021 | t21_Check electrical drawings | Step0005 | A0003 | S0013
T0022 | t22_Check electrical design | Step0004 | A0003 | S0013

(22 rows)

DELETE 0
PIDPerson | PersonName | PIDAttribute | PIDStatusElement

------------+-------------------------+--------------+------------------
P0001 | p01_Client | A0003 | S0013
P0002 | p02_Architect | A0003 | S0013
P0003 | p03_Structural Engineer | A0003 | S0013
P0004 | p04_Electrical Engineer | A0003 | S0013
P0005 | p05_Draftsman | A0003 | S0013
P0006 | p06_Checking Engineer | A0003 | S0013

(6 rows)

DELETE 0
PIDEdgeDatasetTool | EdgeDatasetToolName | PIDDataset | PIDTool | PIDAttribute | PIDStatusElement

--------------------+---+------------+------------+--------------+------------------
D0001G0002 | d01_Client requirements-g02_Word processing software | D0001 | G0002 | A0003 | S0013
D0001G0003 | d01_Client requirements-g03_Spreadsheet software | D0001 | G0003 | A0003 | S0013
D0001G0004 | d01_Client requirements-g04_Hand calculations | D0001 | G0004 | A0003 | S0013
D0002G0001 | d02_Architectural drawings-g01_CAD software | D0002 | G0001 | A0003 | S0013
D0003G0001 | d03_Foundation drawings-g01_CAD software | D0003 | G0001 | A0003 | S0013
D0004G0001 | d04_Concrete layout drawings-g01_CAD software | D0004 | G0001 | A0003 | S0013
D0005G0001 | d05_Reinforcement drawings-g01_CAD software | D0005 | G0001 | A0003 | S0013
D0006G0002 | d06_Structural design report-g02_Word processing software | D0006 | G0002 | A0003 | S0013
D0006G0003 | d06_Structural design report-g03_Spreadsheet software | D0006 | G0003 | A0003 | S0013
D0006G0004 | d06_Structural design report-g04_Hand calculations | D0006 | G0004 | A0003 | S0013
D0007G0001 | d07_Electrical drawings-g01_CAD software | D0007 | G0001 | A0003 | S0013
D0008G0002 | d08_Electrical design report-g02_Word processing software | D0008 | G0002 | A0003 | S0013
D0008G0003 | d08_Electrical design report-g03_Spreadsheet software | D0008 | G0003 | A0003 | S0013

(13 rows)

DELETE 0
PIDEdgeTaskDatasetCreate | EdgeTaskDatasetCreateName | PIDTask | PIDDataset | PIDAttribute | PIDStatusElement

--------------------------+--+------------+------------+--------------+------------------
T0001D0002 | t01_Create architectural design-d02_Architectural drawings | T0001 | D0002 | A0003 | S0001
T0003D0006 | t03_Preliminary structural design-d06_Structural design report | T0003 | D0006 | A0003 | S0005
T0004D0003 | t04_Create foundation drawings-d03_Foundation drawings | T0004 | D0003 | A0003 | S0005
T0005D0004 | t05_Create concrete layout drawings-d04_Concrete layout drawings | T0005 | D0004 | A0003 | S0005
T0006D0005 | t06_Create reinforcement drawings-d05_Reinforcement drawings | T0006 | D0005 | A0003 | S0005
T0007D0008 | t07_Preliminary electrical design-d08_Electrical design report | T0007 | D0008 | A0003 | S0009
T0008D0007 | t08_Create electrical drawings-d07_Electrical drawings | T0008 | D0007 | A0003 | S0005

(7 rows)

DELETE 0
PIDEdgeTaskDatasetModify | EdgeTaskDatasetModifyName | PIDTask | PIDDataset | PIDAttribute | PIDStatusElement

--------------------------+--+------------+------------+--------------+------------------
T0002D0002 | t02_Review architectural design-d02_Architectural drawings | T0002 | D0002 | A0003 | S0002
T0009D0002 | t09_Finalize architectural drawings-d02_Architectural drawings | T0009 | D0002 | A0003 | S0003
T0010D0003 | t10_Finalize foundation drawings-d03_Foundation drawings | T0010 | D0003 | A0003 | S0007
T0011D0004 | t11_Finalize concrete layout drawings-d04_Concrete layout drawings | T0011 | D0004 | A0003 | S0007
T0012D0005 | t12_Finalize reinforcement drawings-d05_Reinforcement drawings | T0012 | D0005 | A0003 | S0007
T0013D0007 | t13_Finalize electrical drawings-d07_Electrical drawings | T0013 | D0007 | A0003 | S0007
T0014D0008 | t14_Finalize electrical design-d08_Electrical design report | T0014 | D0008 | A0003 | S0011
T0015D0006 | t15_Finalize structural design-d06_Structural design report | T0015 | D0006 | A0003 | S0011
T0016D0006 | t16_Check structural design-d06_Structural design report | T0016 | D0006 | A0003 | S0012
T0017D0002 | t17_Check architectural drawings-d02_Architectural drawings | T0017 | D0002 | A0003 | S0004
T0018D0003 | t18_Check foundation drawings-d03_Foundation drawings | T0018 | D0003 | A0003 | S0008
T0019D0004 | t19_Check concrete layout drawings-d04_Concrete layout drawings | T0019 | D0004 | A0003 | S0008
T0020D0005 | t20_Check reinforcement drawings-d05_Reinforcement drawings | T0020 | D0005 | A0003 | S0008
T0021D0007 | t21_Check electrical drawings-d07_Electrical drawings | T0021 | D0007 | A0003 | S0008
T0022D0008 | t22_Check electrical design-d08_Electrical design report | T0022 | D0008 | A0003 | S0012

(15 rows)

DELETE 0
PIDEdgeTaskDatasetRead | EdgeTaskDatasetReadName | PIDTask | PIDDataset | PIDAttribute | PIDStatusElement

------------------------+--+------------+------------+--------------+------------------
T0001D0001 | t01_Create architectural design-d01_Client requirements | T0001 | D0001 | A0003 | S0013
T0002D0002 | t02_Review architectural design-d02_Architectural drawings | T0002 | D0002 | A0003 | S0013
T0003D0002 | t03_Preliminary structural design-d02_Architectural drawings | T0003 | D0002 | A0003 | S0013
T0004D0002 | t04_Create foundation drawings-d02_Architectural drawings | T0004 | D0002 | A0003 | S0013
T0004D0006 | t04_Create foundation drawings-d06_Structural design report | T0004 | D0006 | A0003 | S0013
T0005D0002 | t05_Create concrete layout drawings-d02_Architectural drawings | T0005 | D0002 | A0003 | S0013
T0005D0006 | t05_Create concrete layout drawings-d06_Structural design report | T0005 | D0006 | A0003 | S0013
T0006D0004 | t06_Create reinforcement drawings-d04_Concrete layout drawings | T0006 | D0004 | A0003 | S0013
T0006D0006 | t06_Create reinforcement drawings-d06_Structural design report | T0006 | D0006 | A0003 | S0013
T0007D0002 | t07_Preliminary electrical design-d02_Architectural drawings | T0007 | D0002 | A0003 | S0013
T0008D0002 | t08_Create electrical drawings-d02_Architectural drawings | T0008 | D0002 | A0003 | S0013
T0008D0008 | t08_Create electrical drawings-d08_Electrical design report | T0008 | D0008 | A0003 | S0013
T0012D0004 | t12_Finalize reinforcement drawings-d04_Concrete layout drawings | T0012 | D0004 | A0003 | S0013

(13 rows)

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 371

DELETE 0
PIDEdgeTaskPerson | EdgeTaskPersonName | PIDTask | PIDPerson | PIDAttribute | PIDStatusElement

-------------------+---+------------+------------+--------------+------------------
T0001P0002 | t01_Create architectural design-p02_Architect | T0001 | P0002 | A0003 | S0013
T0002P0001 | t02_Review architectural design-p01_Client | T0002 | P0001 | A0003 | S0013
T0002P0002 | t02_Review architectural design-p02_Architect | T0002 | P0002 | A0003 | S0013
T0003P0003 | t03_Preliminary structural design-p03_Structural Engineer | T0003 | P0003 | A0003 | S0013
T0005P0005 | t05_Create concrete layout drawings-p05_Draftsman | T0005 | P0005 | A0003 | S0013
T0006P0005 | t06_Create reinforcement drawings-p05_Draftsman | T0006 | P0005 | A0003 | S0013
T0007P0005 | t07_Preliminary electrical design-p05_Draftsman | T0007 | P0005 | A0003 | S0013
T0008P0005 | t08_Create electrical drawings-p05_Draftsman | T0008 | P0005 | A0003 | S0013
T0009P0002 | t09_Finalize architectural drawings-p02_Architect | T0009 | P0002 | A0003 | S0013
T0009P0005 | t09_Finalize architectural drawings-p05_Draftsman | T0009 | P0005 | A0003 | S0013
T0010P0003 | t10_Finalize foundation drawings-p03_Structural Engineer | T0010 | P0003 | A0003 | S0013
T0010P0005 | t10_Finalize foundation drawings-p05_Draftsman | T0010 | P0005 | A0003 | S0013
T0011P0002 | t11_Finalize concrete layout drawings-p02_Architect | T0011 | P0002 | A0003 | S0013
T0011P0003 | t11_Finalize concrete layout drawings-p03_Structural Engineer | T0011 | P0003 | A0003 | S0013
T0011P0005 | t11_Finalize concrete layout drawings-p05_Draftsman | T0011 | P0005 | A0003 | S0013
T0012P0003 | t12_Finalize reinforcement drawings-p03_Structural Engineer | T0012 | P0003 | A0003 | S0013
T0012P0005 | t12_Finalize reinforcement drawings-p05_Draftsman | T0012 | P0005 | A0003 | S0013
T0013P0004 | t13_Finalize electrical drawings-p04_Electrical Engineer | T0013 | P0004 | A0003 | S0013
T0013P0005 | t13_Finalize electrical drawings-p05_Draftsman | T0013 | P0005 | A0003 | S0013
T0014P0004 | t14_Finalize electrical design-p04_Electrical Engineer | T0014 | P0004 | A0003 | S0013
T0015P0003 | t15_Finalize structural design-p03_Structural Engineer | T0015 | P0003 | A0003 | S0013
T0016P0006 | t16_Check structural design-p06_Checking Engineer | T0016 | P0006 | A0003 | S0013
T0017P0006 | t17_Check architectural drawings-p06_Checking Engineer | T0017 | P0006 | A0003 | S0013
T0018P0006 | t18_Check foundation drawings-p06_Checking Engineer | T0018 | P0006 | A0003 | S0013
T0019P0006 | t19_Check concrete layout drawings-p06_Checking Engineer | T0019 | P0006 | A0003 | S0013
T0020P0006 | t20_Check reinforcement drawings-p06_Checking Engineer | T0020 | P0006 | A0003 | S0013
T0021P0006 | t21_Check electrical drawings-p06_Checking Engineer | T0021 | P0006 | A0003 | S0013
T0022P0006 | t22_Check electrical design-p06_Checking Engineer | T0022 | P0006 | A0003 | S0013

(28 rows)

DELETE 0
PIDEdgeTaskTask | EdgeTaskTaskName | PIDTaskIn | PIDTaskOut | PIDAttribute | PIDStatusElement | PIDTask

-----------------+---+------------+------------+--------------+------------------+------------
T0001T0002 | t01_Create architectural design-t02_Review architectural design | T0001 | T0002 | A0003 | S0013 | T0001
T0001T0003 | t01_Create architectural design-t03_Preliminary structural design | T0001 | T0003 | A0003 | S0013 | T0001
T0001T0004 | t01_Create architectural design-t04_Create foundation drawings | T0001 | T0004 | A0003 | S0013 | T0001
T0001T0005 | t01_Create architectural design-t05_Create concrete layout drawings | T0001 | T0005 | A0003 | S0013 | T0001
T0001T0007 | t01_Create architectural design-t07_Preliminary electrical design | T0001 | T0007 | A0003 | S0013 | T0001
T0001T0008 | t01_Create architectural design-t08_Create electrical drawings | T0001 | T0008 | A0003 | S0013 | T0001
T0001T0009 | t01_Create architectural design-t09_Finalize architectural drawings | T0001 | T0009 | A0003 | S0013 | T0001
T0001T0017 | t01_Create architectural design-t17_Check architectural drawings | T0001 | T0017 | A0003 | S0013 | T0001
T0002T0009 | t02_Review architectural design-t09_Finalize architectural drawings | T0002 | T0009 | A0003 | S0013 | T0002
T0002T0017 | t02_Review architectural design-t17_Check architectural drawings | T0002 | T0017 | A0003 | S0013 | T0002
T0003T0004 | t03_Preliminary structural design-t04_Create foundation drawings | T0003 | T0004 | A0003 | S0013 | T0003
T0003T0005 | t03_Preliminary structural design-t05_Create concrete layout drawings | T0003 | T0005 | A0003 | S0013 | T0003
T0003T0006 | t03_Preliminary structural design-t06_Create reinforcement drawings | T0003 | T0006 | A0003 | S0013 | T0003
T0003T0015 | t03_Preliminary structural design-t15_Finalize structural design | T0003 | T0015 | A0003 | S0013 | T0003
T0003T0016 | t03_Preliminary structural design-t16_Check structural design | T0003 | T0016 | A0003 | S0013 | T0003
T0004T0010 | t04_Create foundation drawings-t10_Finalize foundation drawings | T0004 | T0010 | A0003 | S0013 | T0004
T0004T0018 | t04_Create foundation drawings-t18_Check foundation drawings | T0004 | T0018 | A0003 | S0013 | T0004
T0005T0006 | t05_Create concrete layout drawings-t06_Create reinforcement drawings | T0005 | T0006 | A0003 | S0013 | T0005
T0005T0011 | t05_Create concrete layout drawings-t11_Finalize concrete layout drawings | T0005 | T0011 | A0003 | S0013 | T0005
T0005T0012 | t05_Create concrete layout drawings-t12_Finalize reinforcement drawings | T0005 | T0012 | A0003 | S0013 | T0005
T0005T0019 | t05_Create concrete layout drawings-t19_Check concrete layout drawings | T0005 | T0019 | A0003 | S0013 | T0005
T0006T0012 | t06_Create reinforcement drawings-t12_Finalize reinforcement drawings | T0006 | T0012 | A0003 | S0013 | T0006
T0006T0020 | t06_Create reinforcement drawings-t20_Check reinforcement drawings | T0006 | T0020 | A0003 | S0013 | T0006
T0007T0008 | t07_Preliminary electrical design-t08_Create electrical drawings | T0007 | T0008 | A0003 | S0013 | T0007
T0007T0014 | t07_Preliminary electrical design-t14_Finalize electrical design | T0007 | T0014 | A0003 | S0013 | T0007
T0007T0022 | t07_Preliminary electrical design-t22_Check electrical design | T0007 | T0022 | A0003 | S0013 | T0007
T0008T0013 | t08_Create electrical drawings-t13_Finalize electrical drawings | T0008 | T0013 | A0003 | S0013 | T0008
T0008T0021 | t08_Create electrical drawings-t21_Check electrical drawings | T0008 | T0021 | A0003 | S0013 | T0008
T0009T0017 | t09_Finalize architectural drawings-t17_Check architectural drawings | T0009 | T0017 | A0003 | S0013 | T0009
T0010T0018 | t10_Finalize foundation drawings-t18_Check foundation drawings | T0010 | T0018 | A0003 | S0013 | T0010
T0011T0019 | t11_Finalize concrete layout drawings-t19_Check concrete layout drawings | T0011 | T0019 | A0003 | S0013 | T0011
T0012T0020 | t12_Finalize reinforcement drawings-t20_Check reinforcement drawings | T0012 | T0020 | A0003 | S0013 | T0012
T0013T0021 | t13_Finalize electrical drawings-t21_Check electrical drawings | T0013 | T0021 | A0003 | S0013 | T0013
T0014T0022 | t14_Finalize electrical design-t22_Check electrical design | T0014 | T0022 | A0003 | S0013 | T0014
T0015T0016 | t15_Finalize structural design-t16_Check structural design | T0015 | T0016 | A0003 | S0013 | T0015

(35 rows)

DELETE 0
PIDEdgeTaskTool | EdgeTaskToolName | PIDTask | PIDTool | PIDAttribute | PIDStatusElement

-----------------+--+------------+------------+--------------+------------------
T0001G0002 | t01_Create architectural design-g02_Word processing software | T0001 | G0002 | A0003 | S0013
T0001G0003 | t01_Create architectural design-g03_Spreadsheet software | T0001 | G0003 | A0003 | S0013
T0001G0004 | t01_Create architectural design-g04_Hand calculations | T0001 | G0004 | A0003 | S0013
T0002G0001 | t02_Review architectural design-g01_CAD software | T0002 | G0001 | A0003 | S0013
T0003G0001 | t03_Preliminary structural design-g01_CAD software | T0003 | G0001 | A0003 | S0013
T0004G0001 | t04_Create foundation drawings-g01_CAD software | T0004 | G0001 | A0003 | S0013
T0004G0002 | t04_Create foundation drawings-g02_Word processing software | T0004 | G0002 | A0003 | S0013
T0004G0003 | t04_Create foundation drawings-g03_Spreadsheet software | T0004 | G0003 | A0003 | S0013
T0004G0004 | t04_Create foundation drawings-g04_Hand calculations | T0004 | G0004 | A0003 | S0013
T0005G0001 | t05_Create concrete layout drawings-g01_CAD software | T0005 | G0001 | A0003 | S0013
T0005G0002 | t05_Create concrete layout drawings-g02_Word processing software | T0005 | G0002 | A0003 | S0013
T0005G0003 | t05_Create concrete layout drawings-g03_Spreadsheet software | T0005 | G0003 | A0003 | S0013
T0005G0004 | t05_Create concrete layout drawings-g04_Hand calculations | T0005 | G0004 | A0003 | S0013
T0006G0001 | t06_Create reinforcement drawings-g01_CAD software | T0006 | G0001 | A0003 | S0013
T0006G0002 | t06_Create reinforcement drawings-g02_Word processing software | T0006 | G0002 | A0003 | S0013
T0006G0003 | t06_Create reinforcement drawings-g03_Spreadsheet software | T0006 | G0003 | A0003 | S0013
T0006G0004 | t06_Create reinforcement drawings-g04_Hand calculations | T0006 | G0004 | A0003 | S0013

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 372

T0007G0001 | t07_Preliminary electrical design-g01_CAD software | T0007 | G0001 | A0003 | S0013
T0008G0001 | t08_Create electrical drawings-g01_CAD software | T0008 | G0001 | A0003 | S0013
T0008G0002 | t08_Create electrical drawings-g02_Word processing software | T0008 | G0002 | A0003 | S0013
T0008G0003 | t08_Create electrical drawings-g03_Spreadsheet software | T0008 | G0003 | A0003 | S0013
T0012G0001 | t12_Finalize reinforcement drawings-g01_CAD software | T0012 | G0001 | A0003 | S0013

(22 rows)

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 373

J.10 Importing database data using the Java JDBC-ODBC bridge

Java JDBC-ODBC bridge is used here for data loading. This is an alternative approach to populating
database directly from Engineering process modelling application

package JDBCODBCDatabase;
import java.io.*;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.*;
public class DatabaseDataInput {

static String [] Files;
static String [] Tables;
static final String DRIVER_NAME = "sun.jdbc.odbc.JdbcOdbcDriver";
// Database name hardcoded
static final String DATABASE_URL = "jdbc:odbc:PostgreSQLjavbs";
/**
* @param args
*/

public static void main(String[] args) throws IOException
{

// TODO Auto-generated method stub
// Set up input file and table references

Files=fileNames();
Tables=tableNames();
for (int ifiles=0;ifiles<Files.length;ifiles++)
{
System.out.println(ifiles);
// Check file existence
File csvFile= new File(Files[ifiles]);
if(csvFile.canRead())
{

System.out.println(Files [ifiles]+" can be read");
}
else
{

System.out.println(Files [ifiles]+" can not be read");
}
//Open file

FileReader iStream= new FileReader(Files[ifiles]);
// Reader iStream= new Reader(csvFile);

BufferedReader bRead= new BufferedReader(iStream);
//Read records and store in appropriate table

try{
String record;
while((record = bRead.readLine())!= null)
{
StringTokenizer stk= new StringTokenizer (record , ",");
String SQLData="";
while (stk.hasMoreTokens())

{
SQLData=SQLData+"’"+stk.nextToken()+"’,";
}

// remove last , from string
SQLData=SQLData.substring(0,SQLData.length()-1);
databaseDataPut(SQLData,Tables[ifiles]);
}

}
catch (IOException iox)
{

System.out.println(iox);
}
finally

{
bRead.close();

System.out.println(Files [ifiles]+" data inserted");
} // end of finally
} // end of for loop
} // end of method

public static int databaseDataPut(String Record, String Table)
{

int nrows=0;
try {

Class.forName(DRIVER_NAME);
Connection connection = null;
connection = DriverManager.getConnection(DATABASE_URL);
Statement statement=connection.createStatement();

// "INSERT INTO \"tbAttribute\" VALUES (’xx’);"
String SQLStatement="INSERT INTO "+Table
+" VALUES("+ Record+"); " ;

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 374

System.out.println(SQLStatement);

nrows=statement.executeUpdate(SQLStatement);
}

catch (ClassNotFoundException cnfe)
{

System.err.println("ClassNotFoundException Was Thrown");
cnfe.printStackTrace();

}
catch (SQLException sqle)

{
System.err.println("SQLException Was Thrown");
sqle.printStackTrace();

}
return nrows;

}

public static String [] fileNames()
{
// Sequence of file names must correspond to
// sequence of loading of tables is important for foreign key referencing

Files = new String [13];
Files[0]="PEPEExtbAttribute.csv";
Files[1]="PEPEExtbDataset.csv";

//
Files[2]="PEPEExtbPerson.csv";
Files[3]="PEPEExtbStatusElement.csv";
Files[4]="PEPEExtbTask.csv";
Files[5]="PEPEExtbTool.csv";

//
Files[6]="PEPEExtbEdgeDatasetTool.csv";

// Files[7]="PEPEExtbEdgeTaskDataset.csv"; // Not used see R C W
Files[7]="PEPEExtbEdgeTaskDatasetCreate.csv";
Files[8]="PEPEExtbEdgeTaskDatasetModify.csv";
Files[9]="PEPEExtbEdgeTaskDatasetRead.csv";
Files[10]="PEPEExtbEdgeTaskPerson.csv";
Files[11]="PEPEExtbEdgeTaskTask.csv";
Files[12]="PEPEExtbEdgeTaskTool.csv";
return Files;

}
public static String [] tableNames()
{
// Sequence of loading of tables is important for foreign key referencing

Tables = new String [13];
Tables[0]=" \"tbAttribute\" ";
Tables[1]=" \"tbDataset\" ";

//
Tables[2]=" \"tbPerson\" ";
Tables[3]=" \"tbStatusElement\" ";
Tables[4]=" \"tbTask\" ";
Tables[5]=" \"tbTool\" ";

//
Tables[6]=" \"tbEdgeDatasetTool\" ";

// Tables[7]=" \"tbEdgeTaskDataset\" "; // Not used see R C W
Tables[7]=" \"tbEdgeTaskDatasetCreate\" ";
Tables[8]=" \"tbEdgeTaskDatasetModify\" ";
Tables[9]=" \"tbEdgeTaskDatasetRead\" ";
Tables[10]=" \"tbEdgeTaskPerson\" ";
Tables[11]=" \"tbEdgeTaskTask\" ";
Tables[12]=" \"tbEdgeTaskTool\" ";
return Tables;

}
}

J.11 Database application SQL functionality availability and usage

Microsoft Access SQL union queries

Action queries, as well as SQL UNION queries, cannot be used as a row source i.e. saved as a table in
Access. One needs to first create a union query, and then use the results of that query in a Access make-
table query. Refer to http://support.microsoft.com/default.aspx?scid=kb;en-us;208819 quoted below.

Article ID : 208819 Last Review : July 13, 2004 Revision : 1.0 This article was previously
published under Q208819 Moderate: Requires basic macro, coding, and interoperability skills.

This article applies only to a Microsoft Access database (.mdb).

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 375

SUMMARY

Microsoft Access SQL does not allow you to use the INTO clause (a clause needed to create a
make-table query) within a union query. Therefore, you cannot directly create a make-table
query; you must first create a union query, and then use the results of that query in the
make-table query. This article demonstrates how to do this.

NOTE: You can see a demonstration of the technique that is used in this article in the sample
file Qrysmp00.exe. For information about how to obtain this sample file, please see the follow-
ing article in the Microsoft Knowledge Base: 207626 (http://support.microsoft.com/kb/207626/EN-
US/) ACC2000: Access 2000 Sample Queries Available in Download Center

MORE INFORMATION

To create a table from a union query, you must first define the union query, and then create
a make-table query based on the union query results. To do so, follow these steps:

CAUTION: If you follow the steps in this example, you modify the sample database North-
wind.mdb. You may want to back up the Northwind.mdb file and follow these steps on a copy
of the database.

1. Start Microsoft Access, and then open the sample database Northwind.mdb.

2. Create a new query. In the New Query dialog box, click Design View, and then click
OK.

3. Close the Show Table dialog box. On the Query menu, point to SQL Specific, and then
click Union.

4. Type the following lines into the SQL window:

SELECT CompanyName, City, "Customers" as [Relationship] FROM Customers
WHERE Country = "Brazil" UNION SELECT CompanyName, City, "Suppliers"

FROM Suppliers WHERE Country = "Brazil";

5. Save the query as qryMyUnion, and then close the SQL window.

6. Save the query as qryMyUnion, and then close the SQL window.

7. Create a new query based on qryMyUnion, and then close the Show Tables dialog box.

8. Double-click the qryMyUnion query’s asterisk (*) to add all the fields to the query’s out-
put. On the Query menu, click Make Table. In the Table Name box, type tblMyUnion,
and then click OK.

9. On the Query menu, click Run, and then click Yes on the dialog box that informs you
how many records will be copied into the new table.

10. Save the query as qryMyUnionMakeTable, and then close the query.

11. Open table tblMyUnion. Note that the query qryMyUnionMakeTable created 10 records
from the Customers and Suppliers tables whose Country field contained "Brazil."

REFERENCES

For more information about union queries, click Microsoft Access Help on the Help menu,
type what is an sql query and when would you use one in the Office Assistant or the Answer
Wizard, and then click Search to view the topic.

For more information about make-table queries, click Microsoft Access Help on the Help
menu, type create a new table from the results of a query with a make-table query in the
Office Assistant or the Answer Wizard, and then click Search to view the topic.

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 376

J.11.1 SQL Queries for S-Curve presentation

Desktop standalone database application with data file imports

First step query for S-Curve recordset generation. File: SCurveStep1Local.sql

SELECT

[tbTask].[LogicalStep]

, [tbEdgeTaskDatasetCreate].[EdgeTaskDatasetCreateName]
, [tbEdgeTaskDatasetCreate].[PIDDataset] AS [PIDDatasetCreate]
, [tbEdgeTaskDatasetCreate].[PIDStatusElement] AS [PIDStatusCreate]

, [tbEdgeTaskDatasetRead].[EdgeTaskDatasetReadName]
, [tbEdgeTaskDatasetRead].[PIDDataset] AS [PIDDatasetRead]
, [tbEdgeTaskDatasetRead].[PIDStatusElement] AS [PIDStatusRead]

, [tbEdgeTaskDatasetModify].[EdgeTaskDatasetModifyName]
, [tbEdgeTaskDatasetModify].[PIDDataset] AS [PIDDatasetModify]
, [tbEdgeTaskDatasetModify].[PIDStatusElement] AS [PIDStatusModify]

INTO [tbSCurveStep1]

FROM

[tbEdgeTaskDatasetRead]

RIGHT JOIN ([tbEdgeTaskDatasetModify]
RIGHT JOIN ([tbEdgeTaskDatasetCreate]
RIGHT JOIN [tbTask]
ON [tbEdgeTaskDatasetCreate].[PIDTask] = [tbTask].[PIDTask])

ON [tbEdgeTaskDatasetModify].[PIDTask] = [tbTask].[PIDTask])
ON [tbEdgeTaskDatasetRead].[PIDTask] = [tbTask].[PIDTask]

ORDER BY [tbTask].[LogicalStep]
;
\end{{boxedverbatim}
\normalsize

Second step query for S-Curve recordset generation.
File: \emph{ScurveStep2.sql}
\scriptsize
\begin{boxedverbatim}
SELECT DISTINCT

tbSCurveStep1.LogicalStep AS LogicalStep

, public_tbDataset.PIDDataset AS PIDDataset
, public_tbDataset.DatasetName AS DatasetName

, public_tbDataset.DatasetName AS DatasetCreateName
, public_tbDataset.Weight AS WeightCreate
, public_tbStatusElement.Completion AS CompletionCreate
, public_tbDataset.Weight*

public_tbStatusElement.Completion
/100 AS CompletionCreateWeight

, NULL AS DatasetReadName
, 0.0 AS WeightRead
, 0.0 AS CompletionRead
, 0.0 AS CompletionReadWeight

, NULL AS DatasetModifyName
, 0.0 AS WeightModify
, 0.0 AS CompletionModify
, 0.0 AS CompletionModifyWeight

FROM

(
(tbSCurveStep1
LEFT JOIN public_tbDataset

ON tbSCurveStep1.PIDDatasetCreate = public_tbDataset.PIDDataset)
LEFT JOIN public_tbStatusElement
ON tbSCurveStep1.PIDStatusCreate = public_tbStatusElement.PIDStatusElement
)

UNION

SELECT DISTINCT

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 377

tbSCurveStep1.LogicalStep AS LogicalStep

, public_tbDataset.PIDDataset AS PIDDataset
, public_tbDataset.DatasetName AS DatasetName

, NULL AS DatasetCreateName
, 0.0 AS WeightCreate
, 0.0 AS CompletionCreate
, 0.0 AS CompletionCreateWeight

, public_tbDataset.DatasetName AS DatasetReadName
, public_tbDataset.Weight AS WeightRead
, public_tbStatusElement.Completion AS CompletionRead
, public_tbDataset.Weight*

public_tbStatusElement.Completion
/100 AS CompletionReadWeight

, NULL AS DatasetModifyName
, 0.0 AS WeightModify
, 0.0 AS CompletionModify
, 0.0 AS CompletionModifyWeight

FROM

(
tbSCurveStep1
LEFT JOIN public_tbDataset

ON tbSCurveStep1.PIDDatasetRead = public_tbDataset.PIDDataset)
LEFT JOIN public_tbStatusElement
ON tbSCurveStep1.PIDStatusRead = public_tbStatusElement.PIDStatusElement

UNION

SELECT DISTINCT

tbSCurveStep1.LogicalStep AS LogicalStep

, public_tbDataset.PIDDataset AS PIDDataset
, public_tbDataset.DatasetName AS DatasetName

, NULL AS DatasetCreateName
, 0.0 AS WeightCreate
, 0.0 AS CompletionCreate
, 0.0 AS CompletionCreateWeight

, NULL AS DatasetReadName
, 0.0 AS WeightRead
, 0.0 AS CompletionRead
, 0.0 AS CompletionReadWeight

, public_tbDataset.DatasetName AS DatasetModifyName
, public_tbDataset.Weight AS WeightModify
, public_tbStatusElement.Completion AS CompletionModify
, public_tbDataset.Weight*

public_tbStatusElement.Completion
/100.0 AS CompletionModifyWeight

FROM
(
(tbSCurveStep1
LEFT JOIN public_tbDataset

ON tbSCurveStep1.PIDDatasetModify = public_tbDataset.PIDDataset)
LEFT JOIN public_tbStatusElement
ON tbSCurveStep1.PIDStatusModify = public_tbStatusElement.PIDStatusElement
)
ORDER BY LogicalStep
;

Third query for S-Curve Access table generation. File: qryTbSCurveStep2.sql

SELECT SCurveStep2All.* INTO tbSCurveStep2
FROM SCurveStep2All;

Fourth query for S-Curve percentage summary table generation. File: SCurveStepPctSummary.sql

SCurveStepPctSummary.sql

SELECT tb.LogicalStep
,(

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 378

SELECT
ROUND(
SUM(CompletionCreateWeight)

,2)
FROM tbSCurveStep2
WHERE
tbSCurveStep2.LogicalStep = tb.LogicalStep

)
AS [RunTotWghtCreate]

,ROUND(
100*(SELECT SUM(CompletionCreateWeight)
/

(SELECT(SUM(WeightCreate)) FROM tbSCurveStep2)
FROM tbSCurveStep2
WHERE

tbSCurveStep2.LogicalStep = tb.LogicalStep
)

,2)

AS [%RunTotWghtCreate]

,(
SELECT
ROUND(
SUM(CompletionModifyWeight)
,2)

FROM tbSCurveStep2
WHERE

tbSCurveStep2.LogicalStep = tb.LogicalStep
)

AS [RunTotWghtModify]

, ROUND(
100*(SELECT SUM(CompletionModifyWeight)
/

(SELECT(SUM(WeightCreate)) FROM tbSCurveStep2)
FROM tbSCurveStep2
WHERE

tbSCurveStep2.LogicalStep = tb.LogicalStep
)

,2)

AS [%RunTotWghtModify]

, ROUND(
100*(SELECT(

SUM(CompletionCreateWeight)
+ SUM(CompletionReadWeight)
+ SUM(CompletionModifyWeight)
)
/

(SELECT(SUM(WeightCreate)) FROM tbSCurveStep2)
FROM tbSCurveStep2
WHERE
tbSCurveStep2.LogicalStep = tb.LogicalStep

)
,2)

AS [%RunTotWght]

, ROUND(
100*(SELECT(

SUM(CompletionCreateWeight)
+ SUM(CompletionReadWeight)
+ SUM(CompletionModifyWeight)
)
/

(SELECT(SUM(WeightCreate)) FROM tbSCurveStep2)
FROM tbSCurveStep2
WHERE
tbSCurveStep2.LogicalStep <= tb.LogicalStep

)
,2)

AS [%TotWght]

INTO tbSCurveStepPctSummary

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 379

FROM tbSCurveStep2 AS tb

GROUP BY tb.LogicalStep
ORDER BY tb.LogicalStep ASC
;

Desktop client with database server application

First step query for S-Curve data recordset generation. File: SCurveStep1.sql

SCurveStep1.sql
SELECT

[public_tbTask].[LogicalStep]

, [public_tbEdgeTaskDatasetCreate].[EdgeTaskDatasetCreateName]
, [public_tbEdgeTaskDatasetCreate].[PIDDataset] AS [PIDDatasetCreate]
, [public_tbEdgeTaskDatasetCreate].[PIDStatusElement] AS [PIDStatusCreate]

, [public_tbEdgeTaskDatasetRead].[EdgeTaskDatasetReadName]
, [public_tbEdgeTaskDatasetRead].[PIDDataset] AS [PIDDatasetRead]
, [public_tbEdgeTaskDatasetRead].[PIDStatusElement] AS [PIDStatusRead]

, [public_tbEdgeTaskDatasetModify].[EdgeTaskDatasetModifyName]
, [public_tbEdgeTaskDatasetModify].[PIDDataset] AS [PIDDatasetModify]
, [public_tbEdgeTaskDatasetModify].[PIDStatusElement] AS [PIDStatusModify]

INTO [tbSCurveStep1]

FROM

[public_tbEdgeTaskDatasetRead]

RIGHT JOIN ([public_tbEdgeTaskDatasetModify]
RIGHT JOIN ([public_tbEdgeTaskDatasetCreate]
RIGHT JOIN [public_tbTask]
ON [public_tbEdgeTaskDatasetCreate].[PIDTask] = [public_tbTask].[PIDTask])

ON [public_tbEdgeTaskDatasetModify].[PIDTask] = [public_tbTask].[PIDTask])
ON [public_tbEdgeTaskDatasetRead].[PIDTask] = [public_tbTask].[PIDTask]

ORDER BY [public_tbTask].[LogicalStep]
;
\end{{boxedverbatim}
\normalsize

The second, third and fourth step are as previous.

\subsubsection {Access Table data output in .csv format}
\scriptsize
\begin{boxedverbatim}
tbSCurveStepPctSummary
LogicalStep RunTotWghtCreate
%RunTotWghtCreate RunTotWghtModify
%RunTotWghtModify %RunTotWght %TotWght

Step0001 5 3 0 0 3.47 3.47
Step0002 8 5 5 3.47 9.03 12.5
Step0003 13.4 9 40.5 28.12 37.43 49.93
Step0004 2.4 1 56.75 39.41 41.08 91.01
Step0005 0 0 12.35 8.58 8.58 99.58
Step0006 0 0 0.6 0.42 0.42 100

Direct database server application

First step query for S-Curve recordset generation. File: SCurveStep1.sql

DROP TABLE "tbSCurveStep1";

SELECT
"tbTask"."LogicalStep"
-- , *
, "tbEdgeTaskDatasetCreate"."EdgeTaskDatasetCreateName"
, "tbEdgeTaskDatasetCreate"."PIDDataset" AS "PIDDatasetCreate"
, "tbEdgeTaskDatasetCreate"."PIDStatusElement" AS "PIDStatusCreate"

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 380

, "tbEdgeTaskDatasetRead"."EdgeTaskDatasetReadName"
, "tbEdgeTaskDatasetRead"."PIDDataset" AS "PIDDatasetRead"
, "tbEdgeTaskDatasetRead"."PIDStatusElement" AS "PIDStatusRead"

, "tbEdgeTaskDatasetModify"."EdgeTaskDatasetModifyName"
, "tbEdgeTaskDatasetModify"."PIDDataset" AS "PIDDatasetModify"
, "tbEdgeTaskDatasetModify"."PIDStatusElement" AS "PIDStatusModify"

-- Access
-- INTO "tbSCurveStep1"
-- PSQL
INTO TABLE "tbSCurveStep1"

FROM

"tbEdgeTaskDatasetRead"
RIGHT JOIN ("tbEdgeTaskDatasetModify"
RIGHT JOIN ("tbEdgeTaskDatasetCreate"
RIGHT JOIN "tbTask"
ON "tbEdgeTaskDatasetCreate"."PIDTask" = "tbTask"."PIDTask")

ON "tbEdgeTaskDatasetModify"."PIDTask" = "tbTask"."PIDTask")
ON "tbEdgeTaskDatasetRead"."PIDTask" = "tbTask"."PIDTask"

ORDER BY "tbTask"."LogicalStep"
;

SELECT * FROM "tbSCurveStep1";
\end{{boxedverbatim}
\normalsize

Second step query for S-Curve data table generation.
File: \emph{SCurveStep1.sql}
\scriptsize
\begin{boxedverbatim}
DROP TABLE "tbSCurveStep2";

SELECT DISTINCT

"tbSCurveStep1"."LogicalStep" AS "LogicalStep"
, "tbDataset"."PIDDataset" AS "PIDDataset"
, "tbDataset"."DatasetName" AS "DatasetName"
-- Create Columns
, "tbDataset"."DatasetName" AS "DatasetCreateName"
, "tbDataset"."Weight" AS "WeightCreate"
, "tbStatusElement"."Completion" AS "CompletionCreate"
, ROUND(

"tbDataset"."Weight"*
"tbStatusElement"."Completion"
/100

,2)
AS "CompletionCreateWeight"

-- Read Columns
, NULL AS "DatasetReadName"
, 0.0 AS "WeightRead"
, 0.0 AS "CompletionRead"
, 0.0 AS "CompletionReadWeight"
-- Modify Columns
, NULL AS "DatasetModifyName"
, 0.0 AS "WeightModify"
, 0.0 AS "CompletionModify"
, 0.0 AS "CompletionModifyWeight"

-- Only on first select
INTO TABLE "tbSCurveStep2"

FROM
-- Create Tables
(
("tbSCurveStep1"
LEFT JOIN "tbDataset"

ON "tbSCurveStep1"."PIDDatasetCreate" = "tbDataset"."PIDDataset")
LEFT JOIN "tbStatusElement"
ON "tbSCurveStep1"."PIDStatusCreate" = "tbStatusElement"."PIDStatusElement"
)
-- ORDER BY "tbSCurveStep1"."LogicalStep"

UNION

SELECT DISTINCT

"tbSCurveStep1"."LogicalStep" AS "LogicalStep"
, "tbDataset"."PIDDataset" AS "PIDDataset"
, "tbDataset"."DatasetName" AS "DatasetName"
-- Create Columns
, NULL AS "DatasetCreateName"

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 381

, 0.0 AS "WeightCreate"
, 0.0 AS "CompletionCreate"
, 0.0 AS "CompletionCreateWeight"
-- Read Columns
, "tbDataset"."DatasetName" AS "DatasetReadName"
, "tbDataset"."Weight" AS "WeightRead"
, "tbStatusElement"."Completion" AS "CompletionRead"
, ROUND(

"tbDataset"."Weight"*
"tbStatusElement"."Completion"
/100

,2)
AS "CompletionReadWeight"

-- Modify Columns
, NULL AS "DatasetModifyName"
, 0.0 AS "WeightModify"
, 0.0 AS "CompletionModify"
, 0.0 AS "CompletionModifyWeight"

-- Only on first select
-- INTO TABLE "tbSCurveStep2"

FROM
-- Read tables
(
"tbSCurveStep1"
LEFT JOIN "tbDataset"

ON "tbSCurveStep1"."PIDDatasetRead" = "tbDataset"."PIDDataset")
LEFT JOIN "tbStatusElement"
ON "tbSCurveStep1"."PIDStatusRead" = "tbStatusElement"."PIDStatusElement"

UNION

SELECT DISTINCT

"tbSCurveStep1"."LogicalStep" AS "LogicalStep"
, "tbDataset"."PIDDataset" AS "PIDDataset"
, "tbDataset"."DatasetName" AS "DatasetName"
-- Create Columns
, NULL AS "DatasetCreateName"
, 0.0 AS "WeightCreate"
, 0.0 AS "CompletionCreate"
, 0.0 AS "CompletionCreateWeight"
-- Read Columns
, NULL AS "DatasetReadName"
, 0.0 AS "WeightRead"
, 0.0 AS "CompletionRead"
, 0.0 AS "CompletionReadWeight"
-- Modify Columns
, "tbDataset"."DatasetName" AS "DatasetModifyName"
, "tbDataset"."Weight" AS "WeightModify"
, "tbStatusElement"."Completion" AS "CompletionModify"
, ROUND(

"tbDataset"."Weight"*
"tbStatusElement"."Completion"
/100.0

,2)
AS "CompletionModifyWeight"

-- Only on first select
-- INTO TABLE "tbSCurveStep2"

FROM
-- Modify Tables
(
("tbSCurveStep1"
LEFT JOIN "tbDataset"

ON "tbSCurveStep1"."PIDDatasetModify" = "tbDataset"."PIDDataset")
LEFT JOIN "tbStatusElement"
ON "tbSCurveStep1"."PIDStatusModify" = "tbStatusElement"."PIDStatusElement"
)

ORDER BY "LogicalStep"
;

-- Remove null entries - Developed in Union process

DELETE FROM "tbSCurveStep2"
WHERE "PIDDataset" ISNULL;

SELECT * FROM "tbSCurveStep2";

-- PSQL COPY only for superusers use \copy
-- COPY "tbSCurveStep2" TO ’tbSCurveStep2.csv’ DELIMITER ’,’;
\!rm tbSCurveStep2.csv

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 382

\copy "tbSCurveStep2" TO ’tbSCurveStep2.csv’ DELIMITER ’,’

\end{{boxedverbatim}
\normalsize

Third step query for S-Curve percentage summary data table generation.
File: \emph{SCurveStepPctSummary.sql}
\scriptsize
\begin{boxedverbatim}
SCurveStepPctSummary.sql

SELECT version();
SELECT current_date;
DROP TABLE "tbSCurvePercentage";

-- Table "public.tbSCurveStep2"
-- Column | Type
--------------------------+------------------------
-- LogicalStep | character(10)
-- PIDDataset | character(10) |
-- DatasetName | character varying(100)
-- DatasetCreateName | character varying
-- WeightCreate | numeric
-- CompletionCreate | numeric
-- CompletionCreateWeight | numeric
-- DatasetReadName | text
-- WeightRead | numeric
-- CompletionRead | numeric
-- CompletionReadWeight | numeric
-- DatasetModifyName | text
-- WeightModify | numeric
-- CompletionModify | numeric
-- CompletionModifyWeight | numeric

SELECT tb."LogicalStep"
,tb."PIDDataset"
,tb."DatasetName"

-- Data create values and percentages

,tb."WeightCreate"
,ROUND(tb."CompletionCreate",2) AS "CompletionCreate"
,ROUND(tb."CompletionCreateWeight",2) AS "CompletionCreateWeight"

,(
SELECT
ROUND(
SUM("CompletionCreateWeight")
,2)

FROM "tbSCurveStep2"
WHERE "tbSCurveStep2"."PIDDataset" <= tb."PIDDataset")
AS "Running Total Weight Create"

,ROUND(
100*(SELECT SUM("CompletionCreateWeight")
/

(SELECT(SUM("WeightCreate")) FROM "tbSCurveStep2")
FROM "tbSCurveStep2"
WHERE "tbSCurveStep2"."PIDDataset" <= tb."PIDDataset"
AND
"tbSCurveStep2"."LogicalStep" = tb."LogicalStep"

)
,2)

AS "Percent Running Total Weight Create"

-- Data read values and percentages
-- WeightCreate is assumed to sum to the total weight

,tb."WeightRead"
,ROUND(tb."CompletionRead",2) AS "CompletionRead"
,ROUND(tb."CompletionReadWeight",2) AS "CompletionReadWeight"

,(
SELECT
ROUND(
SUM("CompletionReadWeight")

,2)
FROM "tbSCurveStep2"
WHERE "tbSCurveStep2"."PIDDataset" <= tb."PIDDataset")
AS "Running Total Weight Read"

,ROUND(
100*(SELECT SUM("CompletionReadWeight")
/

(SELECT(SUM("WeightCreate")) FROM "tbSCurveStep2")

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 383

FROM "tbSCurveStep2"
WHERE "tbSCurveStep2"."PIDDataset" <= tb."PIDDataset"
AND
"tbSCurveStep2"."LogicalStep" = tb."LogicalStep"

)
,2)

AS "Percent Running Total Weight Read"

-- Data Modify values and percentages
-- WeightCreate is assumed to sum to the total weight

,tb."WeightModify"
,ROUND(tb."CompletionModify",2) AS "CompletionModify"
,ROUND(tb."CompletionModifyWeight",2) AS "CompletionModifyWeight"

,(
SELECT
ROUND(
SUM("CompletionModifyWeight")
,2)

FROM "tbSCurveStep2"
WHERE "tbSCurveStep2"."PIDDataset" <= tb."PIDDataset")
AS "Running Total Weight Modify"

, ROUND(
100*(SELECT SUM("CompletionModifyWeight")
/

(SELECT(SUM("WeightCreate")) FROM "tbSCurveStep2")
FROM "tbSCurveStep2"
WHERE "tbSCurveStep2"."PIDDataset" <= tb."PIDDataset"
AND
"tbSCurveStep2"."LogicalStep" = tb."LogicalStep"

)
,2)

AS "Percent Running Total Weight Modify"

-- Total Create/Read/Modify Incremental Percentages

, ROUND(
100*(SELECT(

SUM("CompletionCreateWeight")
+ SUM("CompletionReadWeight")
+ SUM("CompletionModifyWeight")
)
/

(SELECT(SUM("WeightCreate")) FROM "tbSCurveStep2")
FROM "tbSCurveStep2"
WHERE "tbSCurveStep2"."PIDDataset" <= tb."PIDDataset"
AND
"tbSCurveStep2"."LogicalStep" = tb."LogicalStep"

)
,2)

AS "Percent Running Total Weight"

-- Total Create/Read/Modify Total Percentages per Step

, ROUND(
100*(SELECT(

SUM("CompletionCreateWeight")
+ SUM("CompletionReadWeight")
+ SUM("CompletionModifyWeight")
)
/

(SELECT(SUM("WeightCreate")) FROM "tbSCurveStep2")
FROM "tbSCurveStep2"
WHERE
"tbSCurveStep2"."LogicalStep" <= tb."LogicalStep"

)
,2)

AS "Percent Total Weight"

INTO TABLE "tbSCurvePercentage"

FROM "tbSCurveStep2" AS tb

-- ORDER BY tb."DatasetName" ASC
ORDER BY tb."LogicalStep" ASC
;

SELECT * FROM "tbSCurvePercentage";

-- PSQL COPY only for superusers use \copy

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 384

-- COPY "tbSCurvePercentage" TO ’tbSCurvePercentage.csv’ DELIMITER ’,’;
\!rm tbSCurvePercentage.csv
\copy "tbSCurvePercentage" TO ’tbSCurvePercentage.csv’ DELIMITER ’,’
\end{{boxedverbatim}
\normalsize

\subsubsection*{File on Linux system output in .csv format}
\scriptsize
\begin{boxedverbatim}
Step0001 ,5.00,3.47,0.00,0.00,3.47,3.47
Step0002 ,8.00,5.56,5.00,3.47,9.03,12.50
Step0003 ,13.40,9.31,40.50,28.13,37.43,49.93
Step0004 ,2.40,1.67,56.75,39.41,41.08,91.01
Step0005 ,0.00,0.00,12.35,8.58,8.58,99.58
Step0006 ,0.00,0.00,0.60,0.42,0.42,100.00

PSQL Screen output on Linux SSH Terminal

javbs=> \i SCurveStepPctSummary.sql
version

PostgreSQL 8.1.4 on i386-redhat-linux-gnu, compiled by GCC i386-redhat-linux-gcc (GCC) 4.1.0 20060304 (Red Hat 4.1.0-3)
(1 row)

date

2006-11-03
(1 row)

DROP TABLE
SELECT
LogicalStep | RunTotWghtCreate | %RunTotWghtCreate | RunTotWghtModify | %RunTotWghtModify | %RunTotWght | %TotWght
-------------+------------------+-------------------+------------------+-------------------+-------------+----------
Step0001 | 5.00 | 3.47 | 0.00 | 0.00 | 3.47 | 3.47
Step0002 | 8.00 | 5.56 | 5.00 | 3.47 | 9.03 | 12.50
Step0003 | 13.40 | 9.31 | 40.50 | 28.13 | 37.43 | 49.93
Step0004 | 2.40 | 1.67 | 56.75 | 39.41 | 41.08 | 91.01
Step0005 | 0.00 | 0.00 | 12.35 | 8.58 | 8.58 | 99.58
Step0006 | 0.00 | 0.00 | 0.60 | 0.42 | 0.42 | 100.00
(6 rows)

J.12 Using Microsoft Data Access Pages

Data Access Pages can only be created using Access 2000 (or later) and can only be viewed by users of
Microsoft Internet Explorer 5.0 (or later).

Any Access 2000 and later table, query and report can be saved as a data access page which is
accessable form via the HTTP protocol.

The .htm file generated contains VBScript code.
Refer to:

http://www.microsoft.com/downloads/details.aspx?amp;
displaylang=en&familyid=982B0359-0A86-4FB2-A7EE-5F3A499515DD&displaylang=en&&HelpLCID=1033

There a number of security issues with domains of users and file permissions which need to be set up
carefully for remote users to pick up the data access pages which are in the form of scripts contained in
.htm files.

The connection string in these files must contain the full name of the host reference for web browser
(Microsoft Internet Explorer Verision 5 or later) on a remote Windows PC to display the data referred
to in the access page.

Example: \\sivjavbs edited in place of C:\ provided by default data access page.
Iy seems as if the display in the browser does not work if the file is opened with the browser directly.

When one ’double clicks’ on the file in the Windows Explorer display it opens in the browser and the
display is shown.

<a:ConnectionString>Provider=Microsoft.Jet.OLEDB.4.0;
User ID=Admin;Data Source=\\sivjavbs\My Documents\Projekte\EngineeringProcessModel\ODBCpSQLEngProcess.mdb;
Mode=Share Deny None;

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 385

Extended Properties=&quot;&quot;;
Persist Security Info=False;
Jet OLEDB:System database=&quot;&quot;;
Jet OLEDB:Registry Path=&quot;&quot;;
Jet OLEDB:Database Password=&quot;&quot;;
Jet OLEDB:Engine Type=0;
Jet OLEDB:Database Locking Mode=1;
Jet OLEDB:Global Partial Bulk Ops=2;
Jet OLEDB:Global Bulk Transactions=1;
Jet OLEDB:New Database Password=&quot;&quot;;
Jet OLEDB:Create System Database=False;
Jet OLEDB:Encrypt Database=False;
Jet OLEDB:Don’t Copy Locale on Compact=False;
Jet OLEDB:Compact Without Replica Repair=False;
Jet OLEDB:SFP=False</a:ConnectionString>

A typical data access page .htm file content is listed below:
Contents of tbSCurveStepPctSummary.htm

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML xmlns="http://www.w3.org/TR/REC-html40" xmlns:o =
"urn:schemas-microsoft-com:office:office" xmlns:a =
"urn:schemas-microsoft-com:office:access" xmlns:x =
"urn:schemas-microsoft-com:office:excel" xmlns:dt =
"uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"><HEAD><TITLE>tbSCurveStepPctSummary</TITLE>
<META content="HTML 4.0" name=vs_targetSchema><LINK
href="tbSCurveStepPctSummary_files/filelist.xml" type=text/xml rel=File-List>
<META content=Access.Application name=ProgId>
<META name=VBSForEventHandlers value="true">
<META http-equiv=Content-Type content=text/html;charset=UTF-8>
<META content=10.00.2225 name=DesignerVersion>
<OBJECT id=MSODSC tabIndex=-1
classid=CLSID:0002E553-0000-0000-C000-000000000046>
<PARAM NAME="XMLData" VALUE="<xml xmlns:a="urn:schemas-microsoft-com:office:access">

 <a:DataSourceControl>

<a:OWCVersion>10.0.0.6619
</a:OWCVersion>

<a:ConnectionString>Provider=Microsoft.Jet.OLEDB.4.0;
User ID=Admin;
Data Source=\\sivjavbs\My Documents\Projekte\EngineeringProcessModel\ODBCpSQLEngProcess.mdb;
Mode=Share Deny None;Extended Properties=&
quot;&quot;;
Persist Security Info=False;
Jet OLEDB:System database=&quot;&quot;;
Jet OLEDB:Registry Path=&quot;&quot;;
Jet OLEDB:Database Password=&quot;&quot;;
Jet OLEDB:Engine Type=0;
Jet OLEDB:Database Locking Mode=1;
Jet OLEDB:Global Partial Bulk Ops=2;
Jet OLEDB:Global Bulk Transactions=1;
Jet OLEDB:New Database Password=&quot;&quot;;
Jet OLEDB:Create System Database=False;
Jet OLEDB:Encrypt Database=False;
Jet OLEDB:Don’t Copy Locale on Compact=False;
Jet OLEDB:Compact Without Replica Repair=False;
Jet OLEDB:SFP=False</a:ConnectionString>

<a:MaxRecords>10000</a:MaxRecords>

<a:GridX>24</a:GridX>

<a:GridY>24</a:GridY>

<a:OfflineType>2</a:OfflineType>

<a:XMLLocation>0</a:XMLLocation>

<a:XMLDataTarget></a:XMLDataTarget>

<a:ConnectionFile></a:ConnectionFile>

<a:ElementExtension>

<a:ElementID>LogicalStep</a:ElementID>

<a:ControlSource>LogicalStep</a:ControlSource>

<a:ChildLabel>LogicalStep_Label</a:ChildLabel>

</a:ElementExtension>

<a:ElementExtension>

<a:ElementID>RunTotWghtCreate</a:ElementID>

<a:ControlSource>RunTotWghtCreate</a:ControlSource>

<a:ChildLabel>RunTotWghtCreate_Label</a:ChildLabel>

</a:ElementExtension>

<a:ElementExtension>

<a:ElementID>%RunTotWghtCreate</a:ElementID>

<a:ControlSource>%RunTotWghtCreate</a:ControlSource>

<a:ChildLabel>%RunTotWghtCreate_Label</a:ChildLabel>

</a:ElementExtension>

<a:ElementExtension>

<a:ElementID>RunTotWghtModify</a:ElementID>

<a:ControlSource>RunTotWghtModify</a:ControlSource>

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 386

<a:ChildLabel>RunTotWghtModify_Label</a:ChildLabel>

</a:ElementExtension>
 <a:ElementExtension>

<a:ElementID>%RunTotWghtModify</a:ElementID>

<a:ControlSource>%RunTotWghtModify</a:ControlSource>

<a:ChildLabel>%RunTotWghtModify_Label</a:ChildLabel>

</a:ElementExtension>
 <a:ElementExtension>

<a:ElementID>%RunTotWght</a:ElementID>

<a:ControlSource>%RunTotWght</a:ControlSource>

<a:ChildLabel>%RunTotWght_Label</a:ChildLabel>

</a:ElementExtension>
 <a:ElementExtension>

<a:ElementID>%TotWght</a:ElementID>

<a:ControlSource>%TotWght</a:ControlSource>

<a:ChildLabel>%TotWght_Label</a:ChildLabel>

</a:ElementExtension>

<a:ElementExtension>

<a:ElementID>tbSCurveStepPctSummaryNavLabel</a:ElementID>

<a:RecordsetLabel>tbSCurveStepPctSummary |0 of |2;tbSCurveStepPctSummary |0-|1 of |2</a:RecordsetLabel>

</a:ElementExtension>

<a:GroupLevel>

<a:RecordSource>tbSCurveStepPctSummary</a:RecordSource>

<a:DefaultSort></a:DefaultSort>

<a:HeaderElementId>HeadertbSCurveStepPctSummary</a:HeaderElementId>

<a:FooterElementId></a:FooterElementId>

<a:CaptionElementId>CaptiontbSCurveStepPctSummary</a:CaptionElementId>

<a:RecordNavigationElementId>NavigationtbSCurveStepPctSummary</a:RecordNavigationElementId>

<a:DataPageSize>10</a:DataPageSize>

<a:GroupFilterControl></a:GroupFilterControl>

<a:RecordSelector/>
 </a:GroupLevel>

<a:Datamodel a:version="0816">

<a:SchemaRowsource a:id="tbSCurveStepPctSummary" a:type="dscTable">

<a:SchemaField a:id="LogicalStep" a:datatype="130" a:size="255"/>

<a:SchemaField a:id="RunTotWghtCreate" a:datatype="5" a:size="0"/>

<a:SchemaField a:id="%RunTotWghtCreate" a:datatype="5" a:size="0"/>

<a:SchemaField a:id="RunTotWghtModify" a:datatype="5" a:size="0"/>

<a:SchemaField a:id="%RunTotWghtModify" a:datatype="5" a:size="0"/>

<a:SchemaField a:id="%RunTotWght" a:datatype="5" a:size="0"/>

<a:SchemaField a:id="%TotWght" a:datatype="5" a:size="0"/>

</a:SchemaRowsource>
 <a:RecordsetDef a:id="tbSCurveStepPctSummary">

<a:PageField a:id="LogicalStep"/>

<a:PageField a:id="RunTotWghtCreate"/>

<a:PageField a:id="%RunTotWghtCreate"/>

<a:PageField a:id="RunTotWghtModify"/>

<a:PageField a:id="%RunTotWghtModify"/>

<a:PageField a:id="%RunTotWght"/>

<a:PageField a:id="%TotWght"/>

</a:RecordsetDef>

</a:Datamodel>

</a:DataSourceControl>
</xml>">
</OBJECT>

<STYLE id=MSODAPDEFAULTS type=text/css>.MSTheme-Label {
BORDER-RIGHT: 0px; PADDING-RIGHT: 3px; BORDER-TOP: 0px; PADDING-
LEFT: 3px; FONT-SIZE: 8pt; OVERFLOW: visible;
BORDER-LEFT: 0px; WIDTH: 1in; BORDER-BOTTOM: 0px; FONT-FAMILY:
Tahoma; HEIGHT: 0.156in; TEXT-ALIGN: left

}
.MsoTextbox {

PADDING-RIGHT: 3px; PADDING-LEFT: 3px; FONT-SIZE: 8pt; OVERFLOW:
hidden; WIDTH: 1in; FONT-FAMILY: Tahoma; HEIGHT:
0.197in

}
.MsoBoundSpan {

BORDER-RIGHT: 0px; PADDING-RIGHT: 3px; BORDER-TOP: 0px; PADDING-
LEFT: 3px; FONT-SIZE: 8pt; OVERFLOW: hidden;
BORDER-LEFT: 0px; BORDER-BOTTOM: 0px; FONT-FAMILY: Tahoma; TEXT-
ALIGN: left

}
.MsoHyperlinkDisplayText {

BORDER-RIGHT: 0px; PADDING-RIGHT: 3px; BORDER-TOP: 0px; PADDING-
LEFT: 3px; FONT-SIZE: 8pt; OVERFLOW: hidden;
BORDER-LEFT: 0px; CURSOR: hand; BORDER-BOTTOM: 0px; FONT-FAMILY:
Tahoma; TEXT-ALIGN: left

}
.Mso2dSection {

LEFT: 0px; BEHAVIOR: url(#DEFAULT#Mso2dSection); OVERFLOW: hidden;
POSITION: relative; TOP: 0px; BACKGROUND-COLOR:
transparent

}
.Mso2dSectionBanner {

PADDING-RIGHT: 4px; DISPLAY: none; PADDING-LEFT: 4px; FONT-WEIGHT:
normal; FONT-SIZE: 8pt; LEFT: 0px; BEHAVIOR:

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 387

url(#DEFAULT#Mso2dSectionBanner); PADDING-TOP: 2px; FONT-FAMILY:
Tahoma; TOP: 0px; HEIGHT: 0.2in; BACKGROUND-
COLOR: buttonface

}
.MsoRectangle {

BORDER-RIGHT: black 1px solid; BORDER-TOP: black 1px solid;
OVERFLOW: hidden; BORDER-LEFT: black 1px solid;
BORDER-BOTTOM: black 1px solid

}
.MsoTitle {

DISPLAY: none; FONT-WEIGHT: normal; COLOR: inactivecaptiontext
}
.MsoExpandCollapse {

CURSOR: hand
}
.MsoNavContainer {

BORDER-RIGHT: gainsboro 1px solid; BORDER-TOP: gainsboro 1px solid;
Z-INDEX: -1; BORDER-LEFT: gainsboro 1px solid;
CURSOR: hand; BORDER-BOTTOM: gainsboro 1px solid; POSITION:
absolute; HEIGHT: 25px; BACKGROUND-COLOR: gainsboro

}
.MsoNavButton {

BORDER-RIGHT: gainsboro 1px solid; BORDER-TOP: gainsboro 1px solid;
BORDER-LEFT: gainsboro 1px solid; CURSOR:
auto; BORDER-BOTTOM: gainsboro 1px solid; BACKGROUND-REPEAT: no-
repeat

}
.MsoNavButtonMouseOver {

BORDER-RIGHT: highlight 1px solid; BORDER-TOP: highlight 1px solid;
BORDER-LEFT: highlight 1px solid; BORDER-
BOTTOM: highlight 1px solid; BACKGROUND-COLOR: buttonhighlight

}
.MsoNavToggleButtonMouseOver {

BORDER-RIGHT: highlight 1px solid; BORDER-TOP: highlight 1px solid;
BORDER-LEFT: highlight 1px solid; BORDER-
BOTTOM: highlight 1px solid; BACKGROUND-REPEAT: no-repeat;
BACKGROUND-COLOR: buttonhighlight

}
.MsoNavButtonMouseDown {

BORDER-RIGHT: buttonshadow 1px solid; BORDER-TOP: buttonshadow 1px
solid; BORDER-LEFT: buttonshadow 1px solid;
CURSOR: hand; BORDER-BOTTOM: buttonshadow 1px solid; BACKGROUND-
COLOR: buttonshadow

}
.MsoNavRecordsetLabel {

BORDER-RIGHT: gainsboro 1px solid; BORDER-TOP: gainsboro 1px solid;
PADDING-LEFT: 0px; FONT-SIZE: 8pt; OVERFLOW:
hidden; BORDER-LEFT: gainsboro 1px solid; WIDTH: 100%; CURSOR:
default; PADDING-TOP: 0px; BORDER-BOTTOM: gainsboro
1px solid; FONT-FAMILY: Tahoma

}
.MsoRecordSelector {

BORDER-RIGHT: buttonshadow 1px solid; BORDER-TOP: buttonshadow 1px
solid; OVERFLOW: hidden; BORDER-LEFT:
buttonshadow 1px solid; WIDTH: 0.17in; BORDER-BOTTOM: buttonshadow
1px solid; HEIGHT: 100%; BACKGROUND-COLOR:
gainsboro

}
.MsoRecordSelectorCurrent {

BACKGROUND-POSITION: 1px 0px; BACKGROUND-IMAGE:
url(owc://GIF/#11240); BACKGROUND-REPEAT: no-repeat

}
.MsoRecordSelectorSelectedImage {

BACKGROUND-POSITION: 1px 0px; BACKGROUND-IMAGE:
url(owc://GIF/#11241); BACKGROUND-REPEAT: no-repeat

}
.MsoRecordSelectorSelected {

BORDER-RIGHT: buttonshadow 1px solid; BORDER-TOP: buttonshadow 1px
solid; LEFT: 0px; OVERFLOW: hidden; BORDER-
LEFT: buttonshadow 1px solid; WIDTH: 0.17in; BORDER-BOTTOM:
buttonshadow 1px solid; TOP: 0px; HEIGHT: 100%;
BACKGROUND-COLOR: buttonshadow; POSTION: relative

}
.MsoRecordSelectorDirty {

BACKGROUND-POSITION: -1px 0px; BACKGROUND-IMAGE:
url(owc://GIF/#11242); BACKGROUND-REPEAT: no-repeat

}
.MsoRecordSelectorTransparent {

LEFT: 0px; OVERFLOW: hidden; WIDTH: 0.17in; TOP: 0px; POSTION:
relative

}
HR {

COLOR: black
}
SELECT {

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 388

FONT-SIZE: 8pt; FONT-FAMILY: Tahoma
}
INPUT {

FONT-SIZE: 8pt; FONT-FAMILY: Tahoma
}
BODY {

FONT-SIZE: 10pt; FONT-FAMILY: Tahoma
}
MARQUEE {

FONT-SIZE: 8pt; FONT-FAMILY: Tahoma
}
LEGEND {

FONT-SIZE: 8pt; FONT-FAMILY: Tahoma
}
BUTTON {

FONT-SIZE: 8pt; FONT-FAMILY: Tahoma
}
TEXTAREA {

FONT-SIZE: 8pt; FONT-FAMILY: Tahoma
}
.MSODatasheetText {

FONT-WEIGHT: 300; FONT-SIZE: 10pt; COLOR: #000000; FONT-STYLE:
normal; FONT-FAMILY: Arial; TEXT-DECORATION: none

}
</STYLE>

<META content="MSHTML 6.00.2900.2873" name=GENERATOR>
<SCRIPT language=Javascript id=MSODSC_Validation>
validateBrowser();

function validateBrowser() {
strVers=navigator.appVersion
strName=navigator.appName
strPlat=navigator.platform
intIndex1=strVers.indexOf("MSIE");
intIndex1=intIndex1+5
intIndex2=strVers.lastIndexOf(";");
intVer=strVers.substring(intIndex1, intIndex2)
intVer=parseInt(intVer)
if (strName=="Microsoft Internet Explorer" && strPlat=="Win32" &&
intVer>="5") {
validateOWC();
}
else {

strMsgGetIE="<TABLE cellSpacing=0 cellPadding=0 width=’95%’
border=0 height=’8’><TR>"
strMsgGetIE+="<TD bgColor=’#336699’ height=25 width=15>
 </TD><TD bgColor=’#666666’ width=500px><FONT
face=Tahoma "
strMsgGetIE+="size=4 color=white> Data Access Page
Notification</TD></TR>"
strMsgGetIE+="<TR><TD bgColor=’#cccccc’ width=15>
 </TD><TD bgColor=’#cccccc’ width=500px>
"
strMsgGetIE+="<p>"
strMsgGetIE+="This page requires Windows IE 5.0 or
higher.</p>"
strMsgGetIE+="<a href=’

http://www.microsoft.com/isapi/redir.dll?Prd=Office&Sbp=
Access&Pver=10&Ar=DPdesigner&Sba=IEhome&Plcid=1033
’><p align=’center’>"
strMsgGetIE+="Click here to install the latest version of
Internet Explorer.</p>
</TD></TR>
</TABLE>"
document.write(strMsgGetIE)

}
}

function validateOWC() {
if (MSODSC.object==null) {

strMsgGetOWC="<TABLE width=’95%’ cellpadding=0 cellspacing=
0 border=0 height=’8’>"
strMsgGetOWC+="<TR><TD bgColor=’#336699’ height=25 width=
15> </TD><TD bgColor=’#666666’ width=500px>"
strMsgGetOWC+="
 "
strMsgGetOWC+="Data Access Page Notification
</TD></TR><TR><TD bgColor=’#cccccc’ width=15>
 </TD>"
strMsgGetOWC+="<TD bgColor=’#cccccc’ width=’500px’>
"
strMsgGetOWC+="<p>This page
requires the Microsoft Office Web

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 389

Components.</p>"
strMsgGetOWC+="<p>See
the <a HRef=’

http://office.microsoft.com/office/redirect/10/MSOWCPub.asp
?&HelpLCID=1033’>Microsoft Office Web
site for more information. "
strMsgGetOWC+="</p>
</TD></TR></TABLE>"
document.write(strMsgGetOWC)

}
}

</SCRIPT>
<!--[if gte mso 9]><xml>
<o:DocumentProperties>
<o:LastAuthor>JA vanB Strasheim</o:LastAuthor>
<o:Revision>3</o:Revision>
<o:TotalTime>16</o:TotalTime>
<o:LastSaved>2006-06-08T15:52:38Z</o:LastSaved>
<o:Version>10.6735</o:Version>

</o:DocumentProperties>
<o:OfficeDocumentSettings>
<o:DownloadComponents/>
<o:LocationOfComponents HRef="file:///\\"/>

</o:OfficeDocumentSettings>
</xml><![endif]-->
</HEAD>
<BODY style="MARGIN: 0px; OVERFLOW: auto" vLink=#800080 link=#0000ff>
<DIV class=Mso2dSectionBanner id=CaptiontbSCurveStepPctSummaryBanner
style="WIDTH: 20.946cm" tabIndex=-1>Caption:
tbSCurveStepPctSummary</DIV>
<DIV class=Mso2dSection id=CaptiontbSCurveStepPctSummary
style="WIDTH: 20.946cm; BORDER-BOTTOM: #c0c0c0 1px solid; HEIGHT: 17px">
<SPAN
class="MSTheme-Label MSODatasheetText" id=LogicalStep_Label
style="LEFT: 0cm; OVERFLOW: hidden; WIDTH: 2.38cm; POSITION: absolute;
HEIGHT: 1.3em; TEXT-ALIGN: center"
MsoTextAlign="General">LogicalStep
<SPAN
class="MSTheme-Label MSODatasheetText" id=RunTotWghtCreate_Label
style="LEFT: 2.38cm; OVERFLOW: hidden; WIDTH: 3.227cm; POSITION: absolute;
HEIGHT: 1.3em; TEXT-ALIGN: center"
MsoTextAlign="General">RunTotWghtCreate
<SPAN
class="MSTheme-Label MSODatasheetText" id=%RunTotWghtCreate_Label
style="LEFT: 5.606cm; OVERFLOW: hidden; WIDTH: 3.386cm; POSITION: absolute;
HEIGHT: 1.3em; TEXT-ALIGN: center"
MsoTextAlign="General">%RunTotWghtCreate
<SPAN
class="MSTheme-Label MSODatasheetText" id=RunTotWghtModify_Label
style="LEFT: 8.992cm; OVERFLOW: hidden; WIDTH: 3.65cm; POSITION: absolute;
HEIGHT: 1.3em; TEXT-ALIGN: center"
MsoTextAlign="General">RunTotWghtModify
<SPAN
class="MSTheme-Label MSODatasheetText" id=%RunTotWghtModify_Label
style="LEFT: 12.642cm; OVERFLOW: hidden; WIDTH: 3.544cm; POSITION:
absolute; HEIGHT: 1.3em; TEXT-ALIGN: center"
MsoTextAlign="General">%RunTotWghtModify
<SPAN
class="MSTheme-Label MSODatasheetText" id=%RunTotWght_Label
style="LEFT: 16.186cm; OVERFLOW: hidden; WIDTH: 2.38cm; POSITION: absolute;
HEIGHT: 1.3em; TEXT-ALIGN: center"
MsoTextAlign="General">%RunTotWght
<SPAN
class="MSTheme-Label MSODatasheetText" id=%TotWght_Label
style="LEFT: 18.566cm; OVERFLOW: hidden; WIDTH: 2.38cm; POSITION: absolute;
HEIGHT: 1.3em; TEXT-ALIGN: center"
MsoTextAlign="General">%TotWght
</DIV>
<DIV class=Mso2dSectionBanner id=HeadertbSCurveStepPctSummaryBanner
style="WIDTH: 20.946cm" tabIndex=-1>
Header:
tbSCurveStepPctSummary
</DIV>
<DIV class=Mso2dSection id=HeadertbSCurveStepPctSummary
style="WIDTH: 20.946cm; HEIGHT: 17px; BACKGROUND-COLOR: #ffffff">
<TEXTAREA class="MsoTextbox MSODatasheetText" id=
LogicalStep style="BORDER-RIGHT: #c0c0c0 1px solid; BORDER-TOP: 0px; LEFT:
0cm; OVERFLOW: hidden; BORDER-LEFT: 0px; WIDTH:
2.38cm; COLOR: #000000; BORDER-BOTTOM: #c0c0c0 1px solid; POSITION:

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 390

absolute; HEIGHT: 1.3em; BACKGROUND-COLOR: #ffffff"
MsoTextAlign="General"></TEXTAREA>
<TEXTAREA class="MsoTextbox MSODatasheetText" id=RunTotWghtCreate
style="BORDER-RIGHT: #c0c0c0 1px solid; BORDER-TOP: 0px;
LEFT: 2.38cm; OVERFLOW: hidden; BORDER-LEFT: 0px; WIDTH: 3.227cm; COLOR:
#000000; BORDER-BOTTOM: #c0c0c0 1px solid;
POSITION: absolute; HEIGHT: 1.3em; BACKGROUND-COLOR: #ffffff"
MsoTextAlign="General">
</TEXTAREA>
<TEXTAREA class="MsoTextbox MSODatasheetText" id=%RunTotWghtCreate
style="BORDER-RIGHT: #c0c0c0 1px solid; BORDER-TOP:
0px; LEFT: 5.606cm; OVERFLOW: hidden; BORDER-LEFT: 0px; WIDTH: 3.386cm;
COLOR: #000000; BORDER-BOTTOM: #c0c0c0 1px solid;
POSITION: absolute; HEIGHT: 1.3em; BACKGROUND-COLOR: #ffffff"
MsoTextAlign="General">
</TEXTAREA>
<TEXTAREA class="MsoTextbox MSODatasheetText" id=RunTotWghtModify
style="BORDER-RIGHT: #c0c0c0 1px solid; BORDER-TOP: 0px;
LEFT: 8.992cm; OVERFLOW: hidden; BORDER-LEFT: 0px; WIDTH: 3.65cm; COLOR:
#000000; BORDER-BOTTOM: #c0c0c0 1px solid;
POSITION: absolute; HEIGHT: 1.3em; BACKGROUND-COLOR: #ffffff"
MsoTextAlign="General">
</TEXTAREA>
<TEXTAREA class="MsoTextbox MSODatasheetText" id=%RunTotWghtModify
style="BORDER-RIGHT: #c0c0c0 1px solid; BORDER-TOP:
0px; LEFT: 12.642cm; OVERFLOW: hidden; BORDER-LEFT: 0px; WIDTH: 3.544cm;
COLOR: #000000; BORDER-BOTTOM: #c0c0c0 1px solid;
POSITION: absolute; HEIGHT: 1.3em; BACKGROUND-COLOR: #ffffff"
MsoTextAlign="General">
</TEXTAREA>
<TEXTAREA class="MsoTextbox MSODatasheetText" id=%RunTotWght style="BORDER-
RIGHT: #c0c0c0 1px solid; BORDER-TOP: 0px;
LEFT: 16.186cm; OVERFLOW: hidden; BORDER-LEFT: 0px; WIDTH: 2.38cm; COLOR:
#000000; BORDER-BOTTOM: #c0c0c0 1px solid;
POSITION: absolute; HEIGHT: 1.3em; BACKGROUND-COLOR: #ffffff"
MsoTextAlign="General">
</TEXTAREA>
<TEXTAREA class="MsoTextbox MSODatasheetText" id=%TotWght style="BORDER-
RIGHT: #c0c0c0 1px solid; BORDER-TOP: 0px; LEFT:
18.566cm; OVERFLOW: hidden; BORDER-LEFT: 0px; WIDTH: 2.38cm; COLOR:
#000000; BORDER-BOTTOM: #c0c0c0 1px solid; POSITION:
absolute; HEIGHT: 1.3em; BACKGROUND-COLOR: #ffffff" MsoTextAlign="General">
</TEXTAREA>
</DIV>
<DIV class=Mso2dSectionBanner id=NavigationtbSCurveStepPctSummaryBanner
style="WIDTH: 20.946cm" tabIndex=-1>Navigation:
tbSCurveStepPctSummary</DIV>
<DIV class=Mso2dSection id=NavigationtbSCurveStepPctSummary
style="VISIBILITY: hidden; WIDTH: 20.946cm; HEIGHT: 0.427in">
<TABLE class=MsoNavContainer id=tbSCurveStepPctSummaryNavigation
style="LEFT: 4px; WIDTH: 6in; POSITION: absolute; TOP: 4px" cellSpacing=0
cellPadding=0>

<TBODY>
<TR>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavFirst id=tbSCurveStepPctSummaryNavFirst tabIndex=1
height=20
src="owc://GIF/#11200" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavPrevious id=tbSCurveStepPctSummaryNavPrevious tabIndex=2
height=20 src="owc://GIF/#11202" width=20></TD>

<TD style="VERTICAL-ALIGN: middle; WIDTH: 100%; TEXT-ALIGN: center"
noWrap><SPAN class=MsoNavRecordsetLabel id=
tbSCurveStepPctSummaryNavLabel
style="VISIBILITY: hidden">tbSCurveStepPctSummary |0-|1 of |2
</TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavNext id=tbSCurveStepPctSummaryNavNext tabIndex=4 height=
20
src="owc://GIF/#11204" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavLast id=tbSCurveStepPctSummaryNavLast tabIndex=5 height=
20
src="owc://GIF/#11206" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavAddNew id=tbSCurveStepPctSummaryNavNew tabIndex=6 height=
20
src="owc://GIF/#11208" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavDelete id=tbSCurveStepPctSummaryNavDelete tabIndex=7
height=20
src="owc://GIF/#11210" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavSave id=tbSCurveStepPctSummaryNavSave tabIndex=8 height=

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 391

20
src="owc://GIF/#11214" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavUndo id=tbSCurveStepPctSummaryNavUndo tabIndex=9 height=
20
src="owc://GIF/#11212" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavSortAsc id=tbSCurveStepPctSummaryNavSortAscending
tabIndex=10
height=20 src="owc://GIF/#11216" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavSortDesc id=tbSCurveStepPctSummaryNavSortDescending
tabIndex=11 height=20 src="owc://GIF/#11218" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavFilter id=tbSCurveStepPctSummaryNavFilterBySelection
tabIndex=12 height=20 src="owc://GIF/#11220" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavToggleFilter id=tbSCurveStepPctSummaryNavFilterToggle
tabIndex=13 height=20 src="owc://GIF/#11222" width=20></TD>

<TD class=MsoNavButton style="WIDTH: 20px; HEIGHT: 20px"><IMG
class=MsoNavHelp id=tbSCurveStepPctSummaryNavHelp tabIndex=14 height=
20
src="owc://GIF/#11224" width=20></TD></TR>

</TBODY>
</TABLE>
</DIV>
</BODY>
</HTML>

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 392

F
ig

u
re

J.
1:

E
ng

in
ee

ri
ng

P
ro

ce
ss

M
od

el
C

la
y

APPENDIX J. ENGINEERING PROCESS MODEL DATABASE 393

Figure J.2: Altova XMLSPy splash display

Appendix K

Organisation management and reporting
structures using graph applications

K.1 Typical Management Reporting Tree Structure

Contents
• Apply graph tree functionality to management structures
• Set up relational algebra functionality
• Adjacency matrix of management structure graph with vertex labels
• Report number of active managers - size of adjacency matrix
• Number of relations between managers - graph edge count
• Test if this is a directed graph
• Number of persons reporting and reported to per manager
• Lengths of paths in management structure adjacency matrix

Apply graph tree functionality to management structures

%..
% TreesManagementStructures.m
% Apply graph tree functionality to management structures
%..
clc
clear all
format compact

Set up relational algebra functionality

%..
RelationalAlgebraBoolean
%..
% output file prefix
tgfFilePre=’YHMM’

MATLAB implementation of relational algebra boolean matrix operations in inline functions
tgfFilePre =
YHMM

Adjacency matrix of management structure graph with vertex labels
Example - seven managers in hierarchy

394

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 395

HMM= [0 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 0 1 0 0 0 0 ; ...
0 0 1 0 0 0 0]

vertexLabels= { ...
’M_0’,’M_A’,’M_B’,’M_1’,’M_2’,’M_3’,’M_4’ ...
}

% Output to yEd data file
isHomog=1
fileRS=horzcat(tgfFilePre,’ReportingStructure’,’.tgf’)
TgfWrite(fileRS,HMM,isHomog,vertexLabels,{});

HMM =
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

vertexLabels =
Columns 1 through 6

’M_0’ ’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’
Column 7

’M_4’
isHomog =

1
fileRS =
YHMMReportingStructure.tgf
File YHMMReportingStructure.tgf opened
nRows =

7
nCols =

7
File YHMMReportingStructure.tgf closed

Report number of active managers - size of adjacency matrix
Graph vertex count

[nRows,nCols]=size(HMM)

nRows =
7

nCols =
7

Number of relations between managers - graph edge count
Count number of edges - both directions - normal matrix operations

R1= ones(1,size(HMM,2))
C1= ones(size(HMM,2),1)
R_HMM= R1*HMM
R_HMM_C=R_HMM*C1

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 396

R1 =
1 1 1 1 1 1 1

C1 =
1
1
1
1
1
1
1

R_HMM =
2 2 2 0 0 0 0

R_HMM_C =
6

Test if this is a directed graph
not directed - Symmetry - element total = 0

T_symm= HMM-HMM’
Test=abs(R1*abs(T_symm*C1))
% Alternative
Test=sum(sum(T_symm))

T_symm =
0 -1 -1 0 0 0 0
1 0 0 -1 -1 0 0
1 0 0 0 0 -1 -1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

Test =
8

Test =
0

Number of persons reporting and reported to per manager
Number of persons reporting a manager report vertex inDegrees - row sums

InD_HMM= R1*HMM
% Number of persons reported to
% report vertex outdegrees - column sums
OutD_HMM=(HMM*C1)’

InD_HMM =
2 2 2 0 0 0 0

OutD_HMM =
0 1 1 1 1 1 1

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 397

Lengths of paths in management structure adjacency matrix
Paths in A2_3 - vertex degrees also on diagonal

A2=HMM*HMM
A3=HMM*A2
A4=HMM*A3
A2b=productR(HMM,HMM)
A3b=productR(A2b,HMM)

A2 =
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0

A3 =
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

A4 =
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

A2b =
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0

A3b =
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

K.2 Converting from adjacency matrix format to adjacency list format

To represent a relation for computational purposes the boolean adjacency-matrix representation, which
is more appropriate for dense graphs, or the incidence list representation, which is more appropriate for
sparse graphs, can be used.

The MATLAB code for the conversion from adjacency matrix format to adjacency list format is listed
below.

f unc t i on [AdjList , nrowL , ncolL] = AdjacencyList (AdjMatrix)
% .

% Generate adjacency l i s t g iven adjacency matrix

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 398

(a) Graph - level 1 (b) Graph - level 2

(c) Graph - all levels

Figure K.1: Reporting or management structure - graph representation - from adjacency matrix: (a) Reporting
structure graph representation - level 1; (b) Reporting structure graph representation - level 2; (c) Reporting
structure graph representation - all levels;

% Adjacency l i s t in matrix format − i gno r e 0 e n t r i e s
% .
AdjList = [;] ;
nrowA=s i z e (AdjMatrix , 1) ;
ncolA=s i z e (AdjMatrix , 2) ;
f o r i r =1:nrowA

irowL=i r ;
AdjList (irowL ,1)= i r ;
i c o lL =1;

f o r i c =1:ncolA
i f (AdjMatrix (i r , i c)==1)

i c o lL=i c o lL +1;
AdjList (irowL , i c o lL)= i c ;

end
end

end
nrowL=s i z e (AdjList , 1) ;
ncolL=s i z e (AdjList , 2) ;

The MATLAB code for converting from adjacency list format to adjacency matrix format is listed
below.

f unc t i on [adjMatrix]=adjMatrixFromList (ad jL i s t)
% .

% Convert graph data r ep r e s en t a t i on form adjacency L i s t
% to adjacency Matrix format
% .

% maximum entry in adjacency l i s t i s l a r g e s t ver tex number
nVer t i c e s=max(s i z e (ad jL i s t , 1) ,max(max(ad jL i s t))) ;
% s e t up blank adjcency matrix
adjMatrix=ze ro s (nVer t i c e s) ;
% adjMatrix = [;] ;
% Loop over v e r t i c e s and make e n t r i e s in adjacency matrix
f o r nv=1: s i z e (ad jL i s t , 1)

nEdgesRow=s i z e (ad jL i s t (nv , :) , 2) ;
f o r ne=2:nEdgesRow

% end ver tex o f edge
mv=ad jL i s t (nv , ne) ;

% sk ip zero e n t r i e s
i f not (mv==0)
adjMatrix (nv ,mv)=1;
end

end
end

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 399

K.3 Depth first search and tree structure for a given graph

The depth first search algorithm (DFS) can be used to determine the spanning tree for a given graph
given in adjacency matrix format. The spanning tree is also output in adjacency matrix format.

To determine the DFS tree the transpose of the adjacency matrix is input. DFS does not produce
results on a matrix which is not transposed.

The depth first search algorithm used is contained in the MATLAB code shown below.
Global variables are required due to the recursive nature of the algorithm. A double while loop is

required to ensure that unconnected graphs can be processed as well. All vertices need to be investigated
before the search terminates.

The search function finds the next vertex linked to a given vertex and returns 0 if no vertex can be
found.

f unc t i on [t ree , dfsArray] = DepthFirstSearch (R)
g l oba l L i s t mark ipo s dfsArray

% .
% DFS o f graph
% Input : R − graph in Adjacency matrix format
% Output dfsArray − t r a v e r a l o f i n d i c e s in DFS order
% t r e e − Graph spanning t r e e in adjacency matrix format
% .
Re lat iona lAlgebraBoo lean
nVertex=s i z e (R, 1) ;
[ad jL i s t , nrowL , ncolL] = AdjacencyListM (R)
dfsArray = [] ;
% t r e e = [;] ;
t r e e=ze ro s (s i z e (R)) ;
L i s t ={};
i po s =0;
% c e l l d i s p (L i s t)
f o r v=1: nVertex

mark (v)=0;
end
whi l e (any (mark==0)==1)
x=min (f i nd (mark==0));
% di sp ([’ i n to search x mark : ’ , num2str (mark)])
% [Lis t , mark]= search (x , ad jL i s t , nrowL , ncolL , mark , L i s t)

search (x , ad jL i s t , nrowL , ncolL) ;
% di sp ([’ outo f search x mark : ’ , num2str (mark)])

whi l e (s i z e (L i s t ,2) >0)
% d i sp l ay ([’ S i z e o f l i s t = ’ , num2str (s i z e (L i s t))])

L=L i s t {end } ;
v=L (1) ;
w=L (2) ;
L i s t=L i s t (1 : end−1);
i f (mark (w)==0);
t r e e (v ,w)=1;

% disp ([’ i n to search v mark : ’ , num2str (mark)])
% [Lis t , mark]= search (v , ad jL i s t , nrowL , ncolL , mark , L i s t)

search (w, ad jL i s t , nrowL , ncolL) ;
% di sp ([’ outo f search v mark : ’ , num2str (mark)])
% disp ([’ outo f search s i z e L i s t : ’ , num2str (s i z e (Li s t , 2))])

end
end

end

func t i on []= search (v , ad jL i s t , nrowL , ncolL)
% .

% Updates L i s t to in c lude next edge in graph
% Mark the ver tex as proce s sed
% Update the p ro c e s s i ng sequence array dfsArray
% by adding the ver tex proce s s ed to i t
% .
g l oba l L i s t mark ipo s dfsArray
dfsArray=[dfsArray , v] ;
mark (v)=1;
f o r i v =2: ncolL

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 400

iw=ad jL i s t (v , i v) ; ;
i f (iw>0)

L i s t =[Lis t , [v , iw]] ;
% di sp ([num2str (v) , ’ ’ , num2str (iw) , ’ Added to List ’])
% c e l l d i s p (L i s t) ;

end
end

Contents
• Testing of Depth First Search Algorithm
• Adjacency matrices of test graphs R
• DFS tested on transpose of adjacency matrices

Testing of Depth First Search Algorithm
global variables

global List mark ipos dfsArray
clc
clear all
format compact
%...
% TestDepthFirstSearch.m
% Depth First Seach Algorithm ex Chartrand & Oelerman
% R square relation matrix
%...

RelationalAlgebraBoolean

MATLAB implementation of relational algebra boolean matrix operations in inline functions

Adjacency matrices of test graphs R

HMM2= [0 0 0 ; ...
1 0 0 ; ...
1 0 0]

HMM1= [0 0 0 0 0 0 ; ...
0 0 0 0 0 0 ; ...
1 0 0 0 0 0 ; ...
1 0 0 0 0 0 ; ...
0 1 0 0 0 0 ; ...
0 1 0 0 0 0]

R=[0 1 0 0 0 0 ; ...
0 0 0 0 1 0 ; ...
1 1 0 1 0 0 ; ...
0 1 0 0 1 1 ; ...
0 0 1 0 0 1 ; ...
0 0 0 0 0 0]

R1=[0 1 1; ...
0 0 0; ...
0 0 0]

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 401

HMM2 =
0 0 0
1 0 0
1 0 0

HMM1 =
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

R =
0 1 0 0 0 0
0 0 0 0 1 0
1 1 0 1 0 0
0 1 0 0 1 1
0 0 1 0 0 1
0 0 0 0 0 0

R1 =
0 1 1
0 0 0
0 0 0

DFS tested on transpose of adjacency matrices

[tree1,dfsArray1]=DepthFirstSearch(HMM1’)
[tree2,dfsArray2]=DepthFirstSearch(HMM2’)
[treeR,dfsArrayR]=DepthFirstSearch(R’)
[treeR,dfsArrayR]=DepthFirstSearch(R’)

MATLAB implementation of relational algebra boolean matrix operations in inline functions
adjList =

1 3 4
2 5 6
3 0 0
4 0 0
5 0 0
6 0 0

nrowL =
6

ncolL =
3

tree1 =
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

dfsArray1 =
1 4 3 2 6 5

MATLAB implementation of relational algebra boolean matrix operations in inline functions
adjList =

1 2 3
2 0 0
3 0 0

nrowL =
3

ncolL =
3

tree2 =
0 1 1
0 0 0
0 0 0

dfsArray2 =
1 3 2

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 402

MATLAB implementation of relational algebra boolean matrix operations in inline functions
adjList =

1 3 0 0
2 1 3 4
3 5 0 0
4 3 0 0
5 2 4 0
6 4 5 0

nrowL =
6

ncolL =
4

treeR =
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 0 0

dfsArrayR =
1 3 5 4 2 6

MATLAB implementation of relational algebra boolean matrix operations in inline functions
adjList =

1 3 0 0
2 1 3 4
3 5 0 0
4 3 0 0
5 2 4 0
6 4 5 0

nrowL =
6

ncolL =
4

treeR =
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 0 0

dfsArrayR =
1 3 5 4 2 6

K.4 Depth First Search applied to reporting graph structures

Contents
• Graph operations on management reporting structures
• Set up relational algebra functionality
• Adjacency matrix of management structure graph with vertex labels
• Example - seven managers
• Adjacency lists of ’reports to’ Relation
• Spanning trees using Depth First Search

Graph operations on management reporting structures

%..
% TreesManStructuresUnionIntersect.m
% Forms that management reporting structures take when
% basic graph operations are performed on the trees
% Unions and intersections of graphs compute
%..
clc
clear all
format compact

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 403

Set up relational algebra functionality

%..
RelationalAlgebraBoolean
%..

MATLAB implementation of relational algebra boolean matrix operations in inline functions

output file prefix

tgfFilePre=’YHMMComb’

tgfFilePre =
YHMMComb

Adjacency matrix of management structure graph with vertex labels
Example - seven managers in hierarchy Both levels in one M0 MA MB M1 M2 M3 M4

HMM= [0 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 0 1 0 0 0 0 ; ...
0 0 1 0 0 0 0]

vertexLabels= { ...
’M_0’,’M_A’,’M_B’,’M_1’,’M_2’,’M_3’,’M_4’ ...
}

% Output to yEd data file
isHomog=1
fileRS=horzcat(tgfFilePre,’ReportingStructure’,’.tgf’)
tgfWrite(fileRS,HMM,isHomog,vertexLabels,{});
% Compute adjacency list from adjacency matrix
[AdjListHMM,nrowL,ncolL] = AdjacencyList(HMM)

HMM =
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

vertexLabels =
Columns 1 through 6

’M_0’ ’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’
Column 7

’M_4’
isHomog =

1
fileRS =
YHMMCombReportingStructure.tgf
File YHMMCombReportingStructure.tgf opened
nRows =

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 404

7
nCols =

7
File YHMMCombReportingStructure.tgf closed
AdjListHMM =

1 0
2 1
3 1
4 2
5 2
6 3
7 3

nrowL =
7

ncolL =
2

Example - seven managers
First level MA MB & M1 M2 M3 M4

HMM1= [0 0 0 0 0 0 ; ...
0 0 0 0 0 0 ; ...
1 0 0 0 0 0 ; ...
1 0 0 0 0 0 ; ...
0 1 0 0 0 0 ; ...
0 1 0 0 0 0]

vertexLabels1= { ...
’M_A’,’M_B’,’M_1’,’M_2’,’M_3’,’M_4’ ...
}

isHomog=1
fileHM1=horzcat(tgfFilePre,’ReportingStrucLevel1’,’.tgf’)
tgfWrite(fileHM1,HMM1,isHomog,vertexLabels1,{});
% Count number of edges - both directions - normal matrix operations
R1= ones(1,size(HMM1,2))
C1= ones(size(HMM1,2),1)
R_HMM1= R1*HMM1
R_HMM1_C=R_HMM1*C1
% report vertex outdegrees - row sums
InD_HMM1= R1*HMM1
% report vertex indegrees - column sums
OutD_HMM1=HMM1*C1
% not directed - Symmetry - element total = 0
T_symm= HMM1-HMM1’
Test=abs(R1*abs(T_symm*C1))
% Alternative
Test=sum(sum(T_symm))
% Paths in A2_3 - vertex degrees also on diagonal
A2=HMM1*HMM1
A3=HMM1*A2
A4=HMM1*A3
A2b=productR(HMM1,HMM1)
A3b=productR(A2b,HMM1)
% Second level MA & MB to M0
HMM2= [0 0 0 ; ...

1 0 0 ; ...
1 0 0]

vertexLabels2= { ...
’M_0’,’M_A’,’M_B’ ...
}

% Output yEd graph display data
isHomog=1
fileHM2=horzcat(tgfFilePre,’ReportingStrucLevel2’,’.tgf’)
tgfWrite(fileHM2,HMM2,isHomog,vertexLabels2,{});
% Count number of edges - both directions - normal matrix operations
R1= ones(1,size(HMM2,2))
C1= ones(size(HMM2,2),1)

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 405

R_HMM2= R1*HMM2
R_HMM2_C=R_HMM2*C1
% report vertex outdegrees - row sums
InD_HMM2= R1*HMM2
% report vertex indegrees - column sums
OutD_HMM2=HMM2*C1
% not directed - Symmetry - element total = 0
T_symm= HMM2-HMM2’
Test=abs(R1*abs(T_symm*C1))
% Alternative
Test=sum(sum(T_symm))
% Paths in A2_3 - vertex degrees also on diagonal
A2=HMM2*HMM2
A3=HMM2*A2
A4=HMM2*A3
A2b=productR(HMM2,HMM2)
A3b=productR(A2b,HMM2)

HMM1 =
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

vertexLabels1 =
’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’ ’M_4’

isHomog =
1

fileHM1 =
YHMMCombReportingStrucLevel1.tgf
File YHMMCombReportingStrucLevel1.tgf opened
nRows =

6
nCols =

6
File YHMMCombReportingStrucLevel1.tgf closed
R1 =

1 1 1 1 1 1
C1 =

1
1
1
1
1
1

R_HMM1 =
2 2 0 0 0 0

R_HMM1_C =
4

InD_HMM1 =
2 2 0 0 0 0

OutD_HMM1 =
0
0
1
1
1
1

T_symm =
0 0 -1 -1 0 0
0 0 0 0 -1 -1
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

Test =
8

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 406

Test =
0

A2 =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A3 =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A4 =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A2b =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

A3b =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

HMM2 =
0 0 0
1 0 0
1 0 0

vertexLabels2 =
’M_0’ ’M_A’ ’M_B’

isHomog =
1

fileHM2 =
YHMMCombReportingStrucLevel2.tgf
File YHMMCombReportingStrucLevel2.tgf opened
nRows =

3
nCols =

3
File YHMMCombReportingStrucLevel2.tgf closed
R1 =

1 1 1
C1 =

1
1
1

R_HMM2 =
2 0 0

R_HMM2_C =
2

InD_HMM2 =
2 0 0

OutD_HMM2 =
0
1
1

T_symm =
0 -1 -1

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 407

1 0 0
1 0 0

Test =
4

Test =
0

A2 =
0 0 0
0 0 0
0 0 0

A3 =
0 0 0
0 0 0
0 0 0

A4 =
0 0 0
0 0 0
0 0 0

A2b =
0 0 0
0 0 0
0 0 0

A3b =
0 0 0
0 0 0
0 0 0

Adjacency lists of ’reports to’ Relation

[AdjListHMM2,nrowL2,ncolL2] = AdjacencyList(HMM2)
[AdjListHMM1,nrowL1,ncolL1] = AdjacencyList(HMM1)
[AdjListHMM,nrowL0,ncolL0] = AdjacencyList(HMM)

AdjListHMM2 =
1 0
2 1
3 1

nrowL2 =
3

ncolL2 =
2

AdjListHMM1 =
1 0
2 0
3 1
4 1
5 2
6 2

nrowL1 =
6

ncolL1 =
2

AdjListHMM =
1 0
2 1
3 1
4 2
5 2
6 3
7 3

nrowL0 =
7

ncolL0 =
2

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 408

Spanning trees using Depth First Search
determine spanning trees with DFS of managment structures display adjacency lists and output to yEd data files

[treeHMM2,dfsArrayHMM2] = DepthFirstSearch(HMM2’)
HMM2TreeAdj=AdjacencyList(treeHMM2)
fileTree2=horzcat(tgfFilePre,’Tree2DFS’,’.tgf’)
tgfWrite(fileTree2,treeHMM2,isHomog,vertexLabels2,{});
[treeHMM1,dfsArrayHMM1] = DepthFirstSearch(HMM1’)
HMM1TreeAdj=AdjacencyList(treeHMM1)
fileTree1=horzcat(tgfFilePre,’Tree1DFS’,’.tgf’)
tgfWrite(fileTree1,treeHMM1,isHomog,vertexLabels1,{});
[treeHMM,dfsArrayHMM] = DepthFirstSearch(HMM’)
HMMTreeAdj=AdjacencyList(treeHMM)
fileTree=horzcat(tgfFilePre,’TreeDFS’,’.tgf’)
tgfWrite(fileTree,treeHMM,isHomog,vertexLabels,{});

MATLAB implementation of relational algebra boolean matrix operations in inline functions
adjList =

1 2 3
2 0 0
3 0 0

nrowL =
3

ncolL =
3

treeHMM2 =
0 1 1
0 0 0
0 0 0

dfsArrayHMM2 =
1 3 2

HMM2TreeAdj =
1 2 3
2 0 0
3 0 0

fileTree2 =
YHMMCombTree2DFS.tgf
File YHMMCombTree2DFS.tgf opened
nRows =

3
nCols =

3
File YHMMCombTree2DFS.tgf closed
MATLAB implementation of relational algebra boolean matrix operations in inline functions
adjList =

1 3 4
2 5 6
3 0 0
4 0 0
5 0 0
6 0 0

nrowL =
6

ncolL =
3

treeHMM1 =
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

dfsArrayHMM1 =
1 4 3 2 6 5

HMM1TreeAdj =
1 3 4
2 5 6

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 409

3 0 0
4 0 0
5 0 0
6 0 0

fileTree1 =
YHMMCombTree1DFS.tgf
File YHMMCombTree1DFS.tgf opened
nRows =

6
nCols =

6
File YHMMCombTree1DFS.tgf closed
MATLAB implementation of relational algebra boolean matrix operations in inline functions
adjList =

1 2 3
2 4 5
3 6 7
4 0 0
5 0 0
6 0 0
7 0 0

nrowL =
7

ncolL =
3

treeHMM =
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

dfsArrayHMM =
1 3 7 6 2 5 4

HMMTreeAdj =
1 2 3
2 4 5
3 6 7
4 0 0
5 0 0
6 0 0
7 0 0

fileTree =
YHMMCombTreeDFS.tgf
File YHMMCombTreeDFS.tgf opened
nRows =

7
nCols =

7
File YHMMCombTreeDFS.tgf closed

The resulting trees have adjacency matrices which are the transpose of the original structure adjacency
matrices as shown in figure K.4.

K.5 Inserting sub management structures into larger structures

Adjacency matrices containing representations of management structures can be combined by a sub
matrix insertion process to yield higher level complete representations in adjacency matrix format. Vertex
labelling of input graphs referred to vertex labels of combined graphs are used.

The MATLAB code for the function to build up the vertex label sets and the total graph representation
in incidence matrix format is listed below.

f unc t i on [Rout] = i n c i d e n c e I n s e r t (ve r t exLabe l sA l l , ver texLabe l s In , Rin)
% .

% Build up in c i d enc e matrix by union o f columns at c o r r e c t d iagona l

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 410

(a) DFS tree - level 1 (b) DFS tree - level
2

(c) DFS tree - all levels

Figure K.2: Reporting or management structure - DFS tree representation: (a) Reporting structure DFS tree
representation - level 1; (b) Reporting structure DFS tree representation - level 2; (c) Reporting structure DFS
tree representation - all levels;

% to f i n a l matrix
% ve r t exLabe l sA l l − s e t o f output ver tex l a b e l s − c e l l array
% ve r t e x l a b e l s I n − s e t o f l a b e l s o f i n s e r t e d in c i d enc e matrix
% Rin − i n c i d enc e matrix input
% Rout − i n c i d enc e array output
% .
% .
Re lat iona lAlgebraBoo lean
% .
nrowcol=s i z e (ve r t exLabe l sAl l , 2) ;
ivnum=s i z e (ver texLabe l s In , 2) ;
Rout=ze ro s (nrowcol , nrowcol) ;
f o r ivout =1: nrowcol
f o r i v =1:ivnum
% iv
% char (ve r t exLabe l s In (iv))
% ivout
% char (ve r t exLabe l sA l l (ivout))

i f (char (ve r t exLabe l s In (iv))==char (ve r t exLabe l sA l l (ivout)))
s2=s i z e (Rin , 2) ;
Rout (ivout : ivout+s2−iv , ivout) ;
Rin (iv : end , i v) ;
R inse r t=unionR (Rout (ivout : ivout+s2−iv , ivout) , Rin (iv : end , i v)) ;
Rout (ivout : ivout+s2−iv , ivout)=Rinse r t ;

end
end
end

Contents
• Graph operations on management reporting structures
• Set up relational algebra functionality
• Vertex labels and adjacency matrices of subgraphs
• Union of vertex label sets
• Use vertexLabels to build up incidence matrix

Graph operations on management reporting structures

%..
% TreesManStructuresUnionIntersectPartB.m
% Forms that management reporting structures take when
% basic graph operations are performed on the trees
% Unions and intersections of graphs compute
%..
clc
clear all
format compact

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 411

Set up relational algebra functionality

%..
RelationalAlgebraBoolean
%..

MATLAB implementation of relational algebra boolean matrix operations in inline functions

output file prefix

tgfFilePre=’YHMMComb’

tgfFilePre =
YHMMComb

Vertex labels and adjacency matrices of subgraphs
First level MA MB & M1 M2 M3 M4

vertexLabels1= { ...
’M_A’,’M_B’,’M_1’,’M_2’,’M_3’,’M_4’ ...
}

HMM1= [0 0 0 0 0 0 ; ...
0 0 0 0 0 0 ; ...
1 0 0 0 0 0 ; ...
1 0 0 0 0 0 ; ...
0 1 0 0 0 0 ; ...
0 1 0 0 0 0]

% Second level MA & MB to M0
vertexLabels2= { ...

’M_0’,’M_A’,’M_B’ ...
}

HMM2= [0 0 0 ; ...
1 0 0 ; ...
1 0 0]

vertexLabels1 =
’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’ ’M_4’

HMM1 =
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0

vertexLabels2 =
’M_0’ ’M_A’ ’M_B’

HMM2 =
0 0 0
1 0 0
1 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 412

Union of vertex label sets

vertexLabelsAll={};
ivnum2=size(vertexLabels2,2)
for iv2=1:ivnum2

vertexLabelsAll=addElementToSet(vertexLabels2(iv2),vertexLabelsAll);
end
ivnum1=size(vertexLabels1,2)
for iv1=1:ivnum1

vertexLabelsAll=addElementToSet(vertexLabels1(iv1),vertexLabelsAll);
end
vertexLabels2
vertexLabels1
vertexLabelsAll

ivnum2 =
3

ivnum1 =
6

vertexLabels2 =
’M_0’ ’M_A’ ’M_B’

vertexLabels1 =
’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’ ’M_4’

vertexLabelsAll =
Columns 1 through 6

’M_0’ ’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’
Column 7

’M_4’

Use vertexLabels to build up incidence matrix
Insert icidence matrix

[Rout2] = incidenceInsert(vertexLabelsAll,vertexLabels2,HMM2)
[Rout1] = incidenceInsert(vertexLabelsAll,vertexLabels1,HMM1)
Rout=unionR(Rout1,Rout2)

MATLAB implementation of relational algebra boolean matrix operations in inline functions
Rout2 =

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

MATLAB implementation of relational algebra boolean matrix operations in inline functions
Rout1 =

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

Rout =
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 413

K.6 Extracting sub graphs linked to selected nodes

The MATLAB algorithm below traverses the adjacency list and enters the edges linked to a selected into
an adjacency matrix which has the size of the original graph.

As vertices on active edges are encountered they are marked as being active in the sub graph in a list of
vertices to be retained as used by the sub graph. In the final step of the algorithm only adjacency matrix
rows and columns of active vertices are collected in the adjacency matrix of the sub graph extracted.

Vertices which do not belong to the original vertices or unconnected vertices lead to the generation of
an empty adjacency matrix.

MATLAB Test Example with output:

Contents
• Set up adjacency matrix and vertex labels
• Form adjacency list from adjacency matrix and output
• Extract subgraph adjacency matrices and output

%..
% testAdjMatrixExtractRef.m
% Test extract adjacency matrix from adjacency list
%..
clc
clear all
format compact
% Output filename prefix
tgfFilePre=’EADL’

tgfFilePre =
EADL

Set up adjacency matrix and vertex labels
Graph adjacency matrix and vertex labels

HMM= [0 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 0 1 0 0 0 0 ; ...
0 0 1 0 0 0 0]

vertexLabels= { ...
’M_0’,’M_A’,’M_B’,’M_1’,’M_2’,’M_3’,’M_4’ ...
}

HMM =
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

vertexLabels =
Columns 1 through 6

’M_0’ ’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’
Column 7

’M_4’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 414

Form adjacency list from adjacency matrix and output
Form adjacency list from adjacency matrix

[adjListHMM,nrowL0,ncolL0] = AdjacencyList(HMM)
% .tgf file output for yEd display input
isHomog=1
fileTC=horzcat(tgfFilePre,’ManStructure’,’.tgf’)
% Output adjacency matrix for yEd
tgfWrite(fileTC,HMM,isHomog,vertexLabels,{});

adjListHMM =
1 0
2 1
3 1
4 2
5 2
6 3
7 3

nrowL0 =
7

ncolL0 =
2

isHomog =
1

fileTC =
EADLManStructure.tgf
File EADLManStructure.tgf opened
nRows =

7
nCols =

7
File EADLManStructure.tgf closed

Extract subgraph adjacency matrices and output
loop over vertices and extract sub graphs

[nRows,nCols]=size(HMM)
for nvertex=1:nRows
[adjMatrix,vactive] = adjListExtract(adjListHMM,nvertex)
vertexLabelsSubCol=vertexLabels(find(vactive))
% [adjMatrix,vactive] = adjListMultExtract(adjListHMM,nvertex)
isHomog=1
fileTC=horzcat(tgfFilePre,’ManStructureVertex’,int2str(nvertex),’.tgf’)
% output adjacency matrix
tgfWrite(fileTC,adjMatrix,isHomog,vertexLabelsSubCol,{});
[adjsubListHMM,nrowL,ncolL] = AdjacencyList(adjMatrix)
% [adjMatrixTest]=adjMatrixFromList(adjsubListHMM)
end

nRows =
7

nCols =
7

adjMatrix =
0 0 0
1 0 0
1 0 0

vactive =

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 415

1 1 1 0 0 0 0
vertexLabelsSubCol =

’M_0’ ’M_A’ ’M_B’
isHomog =

1
fileTC =
EADLManStructureVertex1.tgf
File EADLManStructureVertex1.tgf opened
nRows =

3
nCols =

3
File EADLManStructureVertex1.tgf closed
adjsubListHMM =

1 0
2 1
3 1

nrowL =
3

ncolL =
2

adjMatrix =
0 0 0
1 0 0
1 0 0

vactive =
0 1 0 1 1 0 0

vertexLabelsSubCol =
’M_A’ ’M_1’ ’M_2’

isHomog =
1

fileTC =
EADLManStructureVertex2.tgf
File EADLManStructureVertex2.tgf opened
nRows =

3
nCols =

3
File EADLManStructureVertex2.tgf closed
adjsubListHMM =

1 0
2 1
3 1

nrowL =
3

ncolL =
2

adjMatrix =
0 0 0
1 0 0
1 0 0

vactive =
0 0 1 0 0 1 1

vertexLabelsSubCol =
’M_B’ ’M_3’ ’M_4’

isHomog =
1

fileTC =
EADLManStructureVertex3.tgf
File EADLManStructureVertex3.tgf opened
nRows =

3
nCols =

3
File EADLManStructureVertex3.tgf closed
adjsubListHMM =

1 0
2 1
3 1

nrowL =
3

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 416

ncolL =
2

adjMatrix =
[]

vactive =
0 0 0 0 0 0 0

vertexLabelsSubCol =
Empty cell array: 1-by-0

isHomog =
1

fileTC =
EADLManStructureVertex4.tgf
File EADLManStructureVertex4.tgf opened
nRows =

0
nCols =

0
File EADLManStructureVertex4.tgf closed
adjsubListHMM =

[]
nrowL =

0
ncolL =

0
adjMatrix =

[]
vactive =

0 0 0 0 0 0 0
vertexLabelsSubCol =

Empty cell array: 1-by-0
isHomog =

1
fileTC =
EADLManStructureVertex5.tgf
File EADLManStructureVertex5.tgf opened
nRows =

0
nCols =

0
File EADLManStructureVertex5.tgf closed
adjsubListHMM =

[]
nrowL =

0
ncolL =

0
adjMatrix =

[]
vactive =

0 0 0 0 0 0 0
vertexLabelsSubCol =

Empty cell array: 1-by-0
isHomog =

1
fileTC =
EADLManStructureVertex6.tgf
File EADLManStructureVertex6.tgf opened
nRows =

0
nCols =

0
File EADLManStructureVertex6.tgf closed
adjsubListHMM =

[]
nrowL =

0
ncolL =

0
adjMatrix =

[]
vactive =

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 417

0 0 0 0 0 0 0
vertexLabelsSubCol =

Empty cell array: 1-by-0
isHomog =

1
fileTC =
EADLManStructureVertex7.tgf
File EADLManStructureVertex7.tgf opened
nRows =

0
nCols =

0
File EADLManStructureVertex7.tgf closed
adjsubListHMM =

[]
nrowL =

0
ncolL =

0

(a) Reporting structure tree
representation

(b) Sub-tree -
vertex 1 - M0

(c) Sub-tree -
vertex 2 - MA

(d) Sub-tree -
vertex 3 - MB

Figure K.3: Extracting sub-trees linked to vertices management structure - only non-null entries shown (a)
Reporting structure tree representation (b) Sub-tree representation - vertex 1 - M0; (c) Sub-tree representation -
vertex 2 - MA; (d) Sub-tree representation - vertex 3 - MB ;

The multiple vertex extraction logic which consists of a loop over previous function logic is shown in
the MATLAB code below.

K.6.1 Graph adjacency matrix to list conversion

f unc t i on [AdjList , nrowL , ncolL] = AdjacencyList (AdjMatrix)
% .

% Generate adjacency l i s t g iven adjacency matrix
% Adjacency l i s t in matrix format − i gno r e 0 e n t r i e s
% .

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 418

AdjList = [;] ;
nrowA=s i z e (AdjMatrix , 1) ;
ncolA=s i z e (AdjMatrix , 2) ;
f o r i r =1:nrowA

irowL=i r ;
AdjList (irowL ,1)= i r ;
i c o lL =1;

f o r i c =1:ncolA
i f (AdjMatrix (i r , i c)==1)

i c o lL=i c o lL +1;
AdjList (irowL , i c o lL)= i c ;

end
end

end
nrowL=s i z e (AdjList , 1) ;
ncolL=s i z e (AdjList , 2) ;

K.6.2 Graph adjacency list sub graph extraction

f unc t i on [adjMatrix , vac t i v e] = adjL i s tMultExtract (ad jL i s t , nve r t exL i s t)
% .

% func t i on adjL i s tMultExtract .m
% Extract a l l edges l i nked to a ver tex and return
% adjMatrix − subgraph in adjacency matrix format
% vac t i v e − Boolean l i s t o f a c t i v e v e r t i c e s
% can be converted to l i s t format i f r equ i r ed
% nve r t exL i s t − array o f ver tex numbers to p roce s s
% .

% l im i t s
nVer t i c e s=max(s i z e (ad jL i s t , 1) ,max(max(ad jL i s t))) ;
% s e t up blank adjcency matrix
adjMatr ixInter im=ze ro s (nVer t i c e s) ;
vac t i v e=ze ro s (1 , nVer t i c e s) ;
f o r nvL=1: s i z e (nver texL i s t , 2)

nvertex=nve r t exL i s t (nvL) ;
i f not ((nvertex>nVer t i c e s))
% s e t l im i t s to a c t i v e ver tex numbers
f o r nv=1: s i z e (ad jL i s t , 1)

nEdgesRow=s i z e (ad jL i s t (nv , :) , 2) ;
f o r ne=2:nEdgesRow

% end ver tex o f edge
mv=ad jL i s t (nv , ne) ;

% sk ip zero e n t r i e s as we l l as e n t r i e s not l i n k e d to s e l e c t d ver tex
i f not (mv==0)&& (mv==nvertex)
adjMatr ixInter im (nv ,mv)=1;

% keep track o f a c t i v e ver tex e n t r i e s
vac t i v e (nv)=1;
vac t i v e (mv)=1;
end

end
end
end
% disp ([’ va c t i v e : ’ , num2str (vac t i v e)])
% adjMatr ixInter im
% Add ac t i v e columns to output matrix

adjCols = [;] ;
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjCols=[adjCols , adjMatr ixInter im (: , i v)] ;
end

end
% Add ac t i v e rows to output matrix
% adjCols

adjMatrix = [;] ;
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjMatrix=[adjMatrix ; adjCols (iv , :)] ;

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 419

end
end
end

func t i on [adjMatrix , vac t i v e] = ad jL i s tExt rac t (ad jL i s t , nvertex)
% .

% Extract a l l edges l i nked to a ver tex and return
% adjMatrix − subgraph in adjacency matrix format
% vac t i v e − Boolean l i s t o f a c t i v e v e r t i c e s
% can be converted to l i s t format i f r equ i r ed
% nvertex − ver tex number to proce s s
% .

% i n i t i a l i s e output
adjMatrix = [;] ;
nVer t i c e s=max(s i z e (ad jL i s t , 1) ,max(max(ad jL i s t))) ;
i f not ((nvertex>nVer t i c e s))
% s e t up blank adjacency matrix
adjMatr ixInter im=ze ro s (nVer t i c e s) ;
vac t i v e=ze ro s (1 , nVer t i c e s) ;
% s e t l im i t s to a c t i v e ver tex numbers
f o r nv=1: s i z e (ad jL i s t , 1)

nEdgesRow=s i z e (ad jL i s t (nv , :) , 2) ;
f o r ne=2:nEdgesRow

% end ver tex o f edge
mv=ad jL i s t (nv , ne) ;

% sk ip zero e n t r i e s as we l l as e n t r i e s not l i n k e d to s e l e c t d ver tex
i f not (mv==0)&& (mv==nvertex)
adjMatr ixInter im (nv ,mv)=1;

% keep track o f a c t i v e ver tex e n t r i e s
vac t i v e (nv)=1;
vac t i v e (mv)=1;
end

end
end
% disp ([’ va c t i v e : ’ , num2str (vac t i v e)])
% adjMatr ixInter im
% Add ac t i v e columns to output matrix

adjCols = [;] ;
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjCols=[adjCols , adjMatr ixInter im (: , i v)] ;
end

end
% Add ac t i v e rows to output matrix
% adjCols
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjMatrix=[adjMatrix ; adjCols (iv , :)] ;
end

end
end

K.7 Management/ reporting structure - tree analysis examples

K.7.1 Basic example

The three level reporting structure used previously serves as the starting point for this example. Refer
to figure K.4.

Contents
• Set up adjacency matrix and vertex labels
• Output data to file for yEd display
• Topological sorting and yEd data output
• Extract sub connectivity matrices
• Set up sub-matrix data and save to yEd display format

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 420

Figure K.4: Reporting structure adjacency matrix

%...
% TreeSubConnectivity.m
%...
% Tree sub connectivity using BFS on Adjacency matrix
% extract columns per topoloogical sort level sequence
% remove zero rows from level per level adjacency matrices
% Sub adjacency matrices to be used for report roll up logic
%...
clear all
clc
format compact

Set up adjacency matrix and vertex labels

tgfFilePre=’TSCEx1’
% Tree adjacency matrix
TreeAdj=[0 0 0 0 0 0 0 ;...

1 0 0 0 0 0 0 ;...
1 0 0 0 0 0 0 ;...
0 1 0 0 0 0 0 ;...
0 1 0 0 0 0 0 ;...
0 0 1 0 0 0 0 ;...
0 0 1 0 0 0 0]

vertexLabels= { ...
’M_0’,’M_A’,’M_B’,’M_1’,’M_2’,’M_3’,’M_4’ ...
}

tgfFilePre =
TSCEx1
TreeAdj =

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 421

0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

vertexLabels =
Columns 1 through 6

’M_0’ ’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’
Column 7

’M_4’

Output data to file for yEd display

isHomog=1
fileTC=horzcat(tgfFilePre,’TreeAdjConnectivity’,’.tgf’)
tgfWrite(fileTC,TreeAdj,isHomog,vertexLabels,{});

isHomog =
1

fileTC =
TSCEx1TreeAdjConnectivity.tgf
File TSCEx1TreeAdjConnectivity.tgf opened
nRows =

7
nCols =

7
File TSCEx1TreeAdjConnectivity.tgf closed

Topological sorting and yEd data output
Topoogical sorting of tree vertices

TOut=TopolSort(TreeAdj’)
levelLabels= { ...

’L0’,’L1’,’L2’ ...
}

% yEd display data for topological sort output
isHomog=0
fileTS=horzcat(tgfFilePre,’TreeAdjTopolSort’,’.tgf’)
topolLabels=horzcat(vertexLabels,levelLabels)
tgfWrite(fileTS,TOut,isHomog,topolLabels,{});

MATLAB implementation of relational algebra boolean matrix operations in inline functions
T =

0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

nVertex =
7

TOut =
1 0 0
0 1 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 422

0 1 0
0 0 1
0 0 1
0 0 1
0 0 1

levelLabels =
’L0’ ’L1’ ’L2’

isHomog =
0

fileTS =
TSCEx1TreeAdjTopolSort.tgf
topolLabels =

Columns 1 through 6
’M_0’ ’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’

Columns 7 through 10
’M_4’ ’L0’ ’L1’ ’L2’

File TSCEx1TreeAdjTopolSort.tgf opened
nRows =

7
nCols =

3
File TSCEx1TreeAdjTopolSort.tgf closed

Extract sub connectivity matrices
extract set of sub connectivity matrices from tree adjacency matrix according to topological sort matrix levels

[subAdj,subVactiveCol,subVactiveRow] ...
= SubAdjMatricesExTopolSort(TreeAdj,TOut)

% Display results
% size(subAdj)
celldisp(subAdj)
celldisp(subVactiveCol)
celldisp(subVactiveRow)
% list id’s of active vertices & submatrices & output for plot
nsub=size(subAdj,2)

nRow =
7

nCol =
3

subAdj =
[2x1 double] [4x2 double]

subVactiveCol =
[1] [1x3 double]

subVactiveRow =
[7x1 double] [7x1 double]

subAdj{1} =
1
1

subAdj{2} =
1 0
1 0
0 1
0 1

subVactiveCol{1} =
1

subVactiveCol{2} =
0 1 1

subVactiveRow{1} =
0
1
1
0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 423

0
0
0

subVactiveRow{2} =
0
0
0
1
1
1
1

nsub =
2

Set up sub-matrix data and save to yEd display format

for is=1:nsub
vactiveCol=subVactiveCol{is}
vactiveRow=subVactiveRow{is}
vertexLabelsSubCol=vertexLabels(find(vactiveCol))
vertexLabelsSubRow=vertexLabels(find(vactiveRow))
adjMatrixR=subAdj{is}
isHomog=0;
fileOut=horzcat(tgfFilePre,’TreeSubConnec’,num2str(is),’.tgf’)
tgfWrite(fileOut,adjMatrixR,isHomog, ...
horzcat(vertexLabelsSubRow,vertexLabelsSubCol),{});

end

vactiveCol =
1

vactiveRow =
0
1
1
0
0
0
0

vertexLabelsSubCol =
’M_0’

vertexLabelsSubRow =
’M_A’ ’M_B’

adjMatrixR =
1
1

fileOut =
TSCEx1TreeSubConnec1.tgf
File TSCEx1TreeSubConnec1.tgf opened
nRows =

2
nCols =

1
File TSCEx1TreeSubConnec1.tgf closed
vactiveCol =

0 1 1
vactiveRow =

0
0
0
1
1
1
1

vertexLabelsSubCol =
’M_A’ ’M_B’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 424

vertexLabelsSubRow =
’M_1’ ’M_2’ ’M_3’ ’M_4’

adjMatrixR =
1 0
1 0
0 1
0 1

fileOut =
TSCEx1TreeSubConnec2.tgf
File TSCEx1TreeSubConnec2.tgf opened
nRows =

4
nCols =

2
File TSCEx1TreeSubConnec2.tgf closed

Applying the algorithm shown in the MATLAB function code below with the example implementation
leads to the two sub matrices displayed.

MATLAB code for function SubAdjMatricesExTopolSort.

f unc t i on [subAdj , subVactiveCol , subVactiveRow] . . .
= SubAdjMatricesExTopolSort (TreeAdj ,TOut)

% .
% Extract s e t sub adjacency matr i ce s form t op o l o g i c a l s o r t matrix
% given topo l s o r t adjacency matrix as we l l as o r g i n a l t r e e
% s t ru c tu r e adjacency matrix
% Input :
% TreeAdj − Tree adjacency matrix
% TOut − Topo log i ca l s o r t i n g graph adjcency matrix
% Output :
% subAdj − Ce l l array o f sub adjacency matr i ce s
% subVactiveCol − Ce l l array o f Boolean ve c to r s o f a c t i v e v e r t i c e s
% inc luded in subAdj − columns
% subVactiveRow − Ce l l array o f Boolean ve c to r s o f a c t i v e v e r t i c e s
% inc luded in subAdj − rows
% .
isubMat=0;
% s i z e o f t o p o l o g i c a l s o r t adjacency matrix
% rows − v e r t i c e s
% columns − s o r t l e v e l s / c l a s s e s
nRow=s i z e (TOut , 1)
nCol=s i z e (TOut , 2)
% Loop over columns in t o p o l o g i c a l s o r t graph adjacency matrix
f o r j =1:nCol
% l i s t o f v e r t i c e s column l i s t s t o r e s f o r e x t r a c t i o n s
c o l l i s t = [] ;
% boolean array o f a c t i v e v e r t i c e s in po s i t i o n − columns
vact iveCo l = [] ;
% Loop over rows in t o p o l o g i c a l s o r t adjcacency matrix

f o r i =1:nRow
i f (TOut(i , j)~= 0)

% add ver tex to column l i s t
c o l l i s t =[c o l l i s t , i] ;
vac t iveCo l (i)=1;

end
end

% Obtain s e t o f a c t i v e v e r t i c e s f o r l e v e l op t o p o l o g i c a l s o r t
c o l l i s t=unique (c o l l i s t) ;

% Extract columns l i s t e d (i f any)
subMat = [] ;
kCol=s i z e (c o l l i s t , 2) ;
i f kCol > 0
f o r k=1:kCol
subMat=[subMat , TreeAdj (: , c o l l i s t (k))] ;

end
end

% subMat
% number o f rows in submatrix

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 425

lRow=s i z e (subMat , 1) ;
% mark a l l v e r t i c e s a c t i v e f o r rows

vactiveRow=ones (lRow , 1) ;
f o r l r =1:lRow

i f sum(subMat (l r , :))==0;
vactiveRow (l r)=0;

end
end
% remove zero−rows from matrix subMat

l r =1;
whi l e l r<=lRow
i f sum(subMat (l r , :))==0

subMat (l r , :) = [] ;
lRow=lRow−1;
l r =0;

end
l r=l r +1;
end % whi le

i f sum(subMat)==0
subMat = [] ;

end
% Store der ived adjacency matrix in c e l l array
% subMat
% vactiveRow
% subAdj={} % − not c o r r e c t
i f (sum(s i z e (subMat)))>0

isubMat=isubMat+1;
subAdj{ isubMat}=subMat ;
subVactiveCol { isubMat}=vact iveCo l ;
subVactiveRow{isubMat}=vactiveRow ;
end
% next column
end % loop over t o p o l o g i c a l s o r t adj matrix columns

The plot of the graph in this case with vertices L0, L1 and L2 assigned to the column vertex references
is shown in figure K.5. L0, L1 and L2 represent the levels which each vertex in the graph is assigned to
as shown in table K.1

Figure K.5: Reporting structure adjacency matrix

The graphical representation of these adjacency matrices are shown in figure K.6.
The graphical representation of these adjacency matrices are shown in figure K.7.
The matrices computed above can be used to process the attributes assigned to lower levels in a ’roll

up process for management reporting at a higher level.

Level Vertices in level of tree graph
L0 M0

L1 MA,MB

L2 M1,M2,M3,M4

Table K.1: Management reporting graph levels

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 426

Figure K.6: Reporting structure adjacency matrix - Level 1 to Level 0

Figure K.7: Reporting structure adjacency matrix - Level2 to Level 1

K.7.2 Larger more realistic example

Contents
• Read graph data from yEd file
• Sort tree vertices by levels and output for yEd display
• Extract sub connectivity matrices
• Set up sub-matrix data and save to yEd display format

%...
% TreeSubConnectivityExample2.m
% Larger Example from PEPE Example project
% Tree sub connectivity using BFS on Adjacency matrix
% Compute/extract sub adjacency matrices for each level of
% topological sort for use in report matrix data roll-up
%...
clear all
clc
format compact

Read graph data from yEd file

tgfFile=’PEPExTsequenceT.tgf’
[vertexLabels,edgeLabels,TreeAdj] = TgfRead(tgfFile)
tgfFilePre=’TSCEx2’
% Tree adjacency matrix
isHomog=1
fileTC=horzcat(tgfFilePre,’TreeAdjConnec’,’.tgf’)
tgfWrite(fileTC,TreeAdj’,isHomog,vertexLabels,{});

tgfFile =
PEPExTsequenceT.tgf
File PEPExTsequenceT.tgf opened

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 427

File PEPExTsequenceT.tgf closed
vertexLabels =

Columns 1 through 4
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 5 through 8
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 9 through 12
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 13 through 16
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 17 through 20
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 21 through 23
[1x38 char] [1x38 char] [1x39 char]

edgeLabels =
Columns 1 through 8

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 9 through 16

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 17 through 24

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 25 through 32

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 33 through 35

’ ’ ’ ’ ’ ’
TreeAdj =

Columns 1 through 10
0 1 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 11 through 20
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 428

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 21 through 23
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

tgfFilePre =
TSCEx2
isHomog =

1
fileTC =
TSCEx2TreeAdjConnec.tgf
File TSCEx2TreeAdjConnec.tgf opened
nRows =

23
nCols =

23
File TSCEx2TreeAdjConnec.tgf closed

Sort tree vertices by levels and output for yEd display
Topogical sorting of tree vertices

TOut=TopolSort(TreeAdj)
% Set up level labels
levelLabels= { ...

’L0’,’L01’,’L02’ ...
’L03’,’L04’,’L05’ ...
’L06’,’L07’,’L08’,’L09’...
’L10’,’L11’,’L12’ ...
}

% Plot data for toplogical sort
isHomog=0
fileTS=horzcat(tgfFilePre,’TreeAdjTopolSort’,’.tgf’)
topolLabels=horzcat(vertexLabels, ...

levelLabels(1:size(TOut,2)))
tgfWrite(fileTS,TOut,isHomog,topolLabels,{});

MATLAB implementation of relational algebra boolean matrix operations in inline functions
T =

Columns 1 through 10
0 1 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 429

0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 11 through 20
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 21 through 23
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

nVertex =
23

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 430

TOut =
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0

levelLabels =
Columns 1 through 6

’L0’ ’L01’ ’L02’ ’L03’ ’L04’ ’L05’
Columns 7 through 12

’L06’ ’L07’ ’L08’ ’L09’ ’L10’ ’L11’
Column 13

’L12’
isHomog =

0
fileTS =
TSCEx2TreeAdjTopolSort.tgf
topolLabels =

Columns 1 through 4
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 5 through 8
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 9 through 12
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 13 through 16
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 17 through 20
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 21 through 24
[1x38 char] [1x38 char] [1x39 char] ’L0’

Columns 25 through 29
’L01’ ’L02’ ’L03’ ’L04’ ’L05’

File TSCEx2TreeAdjTopolSort.tgf opened
nRows =

23
nCols =

6
File TSCEx2TreeAdjTopolSort.tgf closed

Extract sub connectivity matrices
extract set of sub connectivity matrices from topological sort adjacency matrix

[subAdj,subVactiveCol,subVactiveRow] = ...
SubAdjMatricesExTopolSort(TreeAdj,TOut);

% Display results
% size(subAdj)
celldisp(subAdj)
celldisp(subVactiveCol)

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 431

celldisp(subVactiveRow)
% Output graphs
nsub=size(subAdj,2)

nRow =
23

nCol =
6

subAdj{1} =
1 1 1

subAdj{2} =
1 1 1 1 0 0
0 0 0 1 0 0
1 1 0 0 0 1
0 0 1 0 1 0

subAdj{3} =
0 0 0 0 0 1 0
0 0 0 0 0 1 0
1 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

subAdj{4} =
0 1 0 0
1 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

subAdj{5} =
1
1

subVactiveCol{1} =
0 1 1 0 0 0 1

subVactiveCol{2} =
Columns 1 through 10

0 0 0 1 1 0 0 1 1 0
Columns 11 through 15

0 0 0 1 1
subVactiveCol{3} =

Columns 1 through 10
0 0 0 0 0 1 0 0 0 1

Columns 11 through 20
1 0 1 0 0 1 1 0 0 0

Columns 21 through 22
0 1

subVactiveCol{4} =
Columns 1 through 10

0 0 0 0 0 0 0 0 0 0
Columns 11 through 20

0 1 0 0 0 0 0 1 1 0
Column 21

1
subVactiveCol{5} =

Columns 1 through 10
0 0 0 0 0 0 0 0 0 0

Columns 11 through 20
0 0 0 0 0 0 0 0 0 1

subVactiveRow{1} =
1
0
0
0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 432

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

subVactiveRow{2} =
1
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

subVactiveRow{3} =
1
1
1
1
1
0
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0

subVactiveRow{4} =
0
0
0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 433

1
1
1
0
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0

subVactiveRow{5} =
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

nsub =
5

Set up sub-matrix data and save to yEd display format

for is=1:nsub
% for is=1:1
vactiveRow=subVactiveRow{is};
vertexLabelsSubRow=vertexLabels(find(vactiveRow))
celldisp(vertexLabelsSubRow)
vactiveCol=subVactiveCol{is};
vertexLabelsSubCol=vertexLabels(find(vactiveCol))
celldisp(vertexLabelsSubCol)
adjMatrixR=subAdj{is}
isHomog=0;
fileOut=horzcat(tgfFilePre,’TreeSubConnec’,num2str(is),’.tgf’)
tgfWrite(fileOut,adjMatrixR,isHomog, ...
horzcat(vertexLabelsSubRow,vertexLabelsSubCol),{});

end

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 434

vertexLabelsSubRow =
’t01_Create architectural design ’

vertexLabelsSubRow{1} =
t01_Create architectural design
vertexLabelsSubCol =

[1x38 char] [1x38 char] [1x38 char]
vertexLabelsSubCol{1} =
t02_Review architectural design
vertexLabelsSubCol{2} =
t03_Preliminary structural design
vertexLabelsSubCol{3} =
t07_Preliminary electrical design
adjMatrixR =

1 1 1
fileOut =
TSCEx2TreeSubConnec1.tgf
File TSCEx2TreeSubConnec1.tgf opened
nRows =

1
nCols =

3
File TSCEx2TreeSubConnec1.tgf closed
vertexLabelsSubRow =

[1x38 char] [1x38 char] [1x38 char] [1x38 char]
vertexLabelsSubRow{1} =
t01_Create architectural design
vertexLabelsSubRow{2} =
t02_Review architectural design
vertexLabelsSubRow{3} =
t03_Preliminary structural design
vertexLabelsSubRow{4} =
t07_Preliminary electrical design
vertexLabelsSubCol =

Columns 1 through 4
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 5 through 6
[1x38 char] [1x38 char]

vertexLabelsSubCol{1} =
t04_Create foundation drawings
vertexLabelsSubCol{2} =
t05_Create concrete layout drawings
vertexLabelsSubCol{3} =
t08_Create electrical drawings
vertexLabelsSubCol{4} =
t09_Finalize architectural drawings
vertexLabelsSubCol{5} =
t14_Finalize electrical design
vertexLabelsSubCol{6} =
t15_Finalize structural design
adjMatrixR =

1 1 1 1 0 0
0 0 0 1 0 0
1 1 0 0 0 1
0 0 1 0 1 0

fileOut =
TSCEx2TreeSubConnec2.tgf
File TSCEx2TreeSubConnec2.tgf opened
nRows =

4
nCols =

6
File TSCEx2TreeSubConnec2.tgf closed
vertexLabelsSubRow =

Columns 1 through 4
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 5 through 8
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 9 through 10
[1x38 char] [1x38 char]

vertexLabelsSubRow{1} =
t01_Create architectural design
vertexLabelsSubRow{2} =
t02_Review architectural design

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 435

vertexLabelsSubRow{3} =
t03_Preliminary structural design
vertexLabelsSubRow{4} =
t04_Create foundation drawings
vertexLabelsSubRow{5} =
t05_Create concrete layout drawings
vertexLabelsSubRow{6} =
t07_Preliminary electrical design
vertexLabelsSubRow{7} =
t08_Create electrical drawings
vertexLabelsSubRow{8} =
t09_Finalize architectural drawings
vertexLabelsSubRow{9} =
t14_Finalize electrical design
vertexLabelsSubRow{10} =
t15_Finalize structural design
vertexLabelsSubCol =

Columns 1 through 4
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 5 through 7
[1x38 char] [1x38 char] [1x38 char]

vertexLabelsSubCol{1} =
t06_Create reinforcement drawings
vertexLabelsSubCol{2} =
t10_Finalize foundation drawings
vertexLabelsSubCol{3} =
t11_Finalize concrete layout drawings
vertexLabelsSubCol{4} =
t13_Finalize electrical drawings
vertexLabelsSubCol{5} =
t16_Check structural design
vertexLabelsSubCol{6} =
t17_Check architectural drawings
vertexLabelsSubCol{7} =
t22_Check electrical design
adjMatrixR =

0 0 0 0 0 1 0
0 0 0 0 0 1 0
1 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

fileOut =
TSCEx2TreeSubConnec3.tgf
File TSCEx2TreeSubConnec3.tgf opened
nRows =

10
nCols =

7
File TSCEx2TreeSubConnec3.tgf closed
vertexLabelsSubRow =

Columns 1 through 4
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 5 through 7
[1x38 char] [1x38 char] [1x38 char]

vertexLabelsSubRow{1} =
t04_Create foundation drawings
vertexLabelsSubRow{2} =
t05_Create concrete layout drawings
vertexLabelsSubRow{3} =
t06_Create reinforcement drawings
vertexLabelsSubRow{4} =
t08_Create electrical drawings
vertexLabelsSubRow{5} =
t10_Finalize foundation drawings
vertexLabelsSubRow{6} =
t11_Finalize concrete layout drawings

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 436

vertexLabelsSubRow{7} =
t13_Finalize electrical drawings
vertexLabelsSubCol =

[1x38 char] [1x38 char] [1x38 char] [1x38 char]
vertexLabelsSubCol{1} =
t12_Finalize reinforcement drawings
vertexLabelsSubCol{2} =
t18_Check foundation drawings
vertexLabelsSubCol{3} =
t19_Check concrete layout drawings
vertexLabelsSubCol{4} =
t21_Check electrical drawings
adjMatrixR =

0 1 0 0
1 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

fileOut =
TSCEx2TreeSubConnec4.tgf
File TSCEx2TreeSubConnec4.tgf opened
nRows =

7
nCols =

4
File TSCEx2TreeSubConnec4.tgf closed
vertexLabelsSubRow =

[1x38 char] [1x38 char]
vertexLabelsSubRow{1} =
t06_Create reinforcement drawings
vertexLabelsSubRow{2} =
t12_Finalize reinforcement drawings
vertexLabelsSubCol =

’t20_Check reinforcement drawings ’
vertexLabelsSubCol{1} =
t20_Check reinforcement drawings
adjMatrixR =

1
1

fileOut =
TSCEx2TreeSubConnec5.tgf
File TSCEx2TreeSubConnec5.tgf opened
nRows =

2
nCols =

1
File TSCEx2TreeSubConnec5.tgf closed

f unc t i on [vertexLabe l s , edgeLabels ,R] = TgfRead (t g f F i l e)
% .

% t g f F i l e : F i l e f o r input o f data
% ver texLabe l s : c e l l array with ver tex l a b e l s t r i n g s
% edgeLabels : c e l l array with edge l a b e l s t r i n g s
% R adjacency matrix
% .

% Input / Read . t g f f i l e f o r r e l a t i o n f o r p l o t t i n g with yEd
% Sample f i l e
% 1 O
% 2 1
% 3 2
% 4 A
% 5 B
% 6 C
% 7 D
% 8 E
% #

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 437

Table K.2: Data file for tasks : PEPExTsequenceT.tgf

1 Create architectural design t01
2 Review architectural design t02
3 Preliminary structural design t03
4 Create foundation drawings t04
5 Create concrete layout drawings t05
6 Create reinforcement drawings t06
7 Preliminary electrical design t07
8 Create electrical drawings t08
9 Finalize architectural drawings t09
10 Finalize foundation drawings t10
11 Finalize concrete layout drawings t11
12 Finalize reinforcement drawings t12
13 Finalize electrical drawings t13
14 Finalize electrical design t14
15 Finalize structural design t15
16 Check structural design t16
17 Check architectural drawings t17
18 Check foundation drawings t18
19 Check concrete layout drawings t19
20 Check reinforcement drawings t20
21 Check electrical drawings t21
22 Check electrical design t22
23 Tasks sequence with Tasks - Rule 1&2&3
1 2
1 3
1 4
1 5
1 7
1 8
1 9
1 17
2 9
2 17
3 4
3 5
3 6
3 15
3 16
4 10
4 18
5 6
5 11
5 12
5 19
6 12
6 20
7 8
7 14
7 22
8 13
8 21
9 17
10 18
11 19
12 20
13 21
14 22
15 16

% 2 1 Edge1O
% 3 1 Edge2O
% 4 2 EdgeA1
% 5 2 EdgeB1
% 6 2 EdgeC1
% 7 3 EdgeD2
% 8 3 EdgeE2

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 438

% .
% open f i l e
f i d=fopen (t g fF i l e , ’ r ’) ;
d i sp l ay (horzcat (’ F i l e ’ , t g fF i l e , ’ opened ’))
l ineInputV=’ ’ ;
% v e r t i c e s
ve r t exLabe l s ={};
numVertices=0;
whi l e not (l ineInputV (1 ,1)== ’# ’)

l ineInputV=fgetL (f i d) ;
i f l ineInputV (1 ,1)==’# ’
break
end
numVertices=numVertices+1;
V=text scan (l ineInputV , ’%d %s ’ , ’ d e l im i t e r ’ , ’\n ’) ;

% c e l l d i s p (V)
ver t exLabe l s (numVertices)={ ’ ’ } ;
i f (s i z e (V{2} ,1) > 0)

ver t exLabe l s (numVertices)=V{2} ;
end

end
% edges l a b e l s & adjacency matrix
edgeLabe l s In ={};
% R=l o g i c a l ([;]) ;
% adjacency matrix to be square
R=l o g i c a l (z e r o s (numVertices)) ;
l ine InputE=’ ’ ;
Rrows=0;
Rcols =0;
whi l e not (l ine InputE==−1)

l ine InputE=fgetL (f i d) ;
i f l ine InputE==−1
break
end
E=text scan (l ineInputE , ’%d %d %s ’ , ’ d e l im i t e r ’ , ’\n ’) ;
ver tex1=double (E{1}) ;
i f (vertex1>Rrows) Rrows=vertex1 ; end
vertex2=double (E{2}) ;
i f (vertex2>Rcols) Rcols=vertex2 ; end
R(vertex1 , ver tex2)=1;
edgeLabe l s In (vertex1 , ver tex2)={ ’ ’ } ;
i f (s i z e (E{3} ,1) > 0)
edgeLabe l s In (vertex1 , ver tex2)=E{3} ;
end

end
%Rrows
%Rcols
%sum(sum(R))
% s t o r e edg e l ab e l s in sequence o f edges d e f i n e in R
% row by row
edgeLabels ={};
numEdges=0;
f o r i r =1:Rrows

f o r i c =1: Rcols
i f (R(i r , i c)==1)

numEdges=numEdges+1;
edgeLabels (numEdges)=edgeLabe l s In (i r , i c) ;

end
end

end
%s i z e (R)
%s i z e (edgeLabels)
% c l o s e output f i l e
f s t a t u s=f c l o s e (f i d) ;
d i sp l ay (horzcat (’ F i l e ’ , t g fF i l e , ’ c lo sed ’))

func t i on [] = TgfWrite (t g fF i l e ,R, isHomog , vertexLabe l s , edgeLabels)
% .

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 439

% Output r e l a t i o n data f i l e in d i r e c t ed graph data . t g f f i l e format f o r use in
% yEd/ yF i l e s so f tware
% t g f F i l e : f i l e name / Character s t r i n g
% isHomog (eneous) : = 1 or 0 r e l a t i o n between one or two s e t s / b i p a r t i t e graph
% R: Adjacency / boolean r e l a t i o n matrix / double array
% ver texLabe l s : ve r tex l a b e l s f o r p l o t / St r ing c e l l array − r equ i r ed
% edgeLabels : edge l a b e l s f o r p l o t / St r ing c e l l array − op t i ona l
% .

% sample f i l ename :
% t g f F i l e =’TestFi leA . tg f ’
% Output . t g f f i l e f o r r e l a t i o n f o r p l o t t i n g with yEd
% Sample f i l e content s :
% 1 O
% 2 1
% 3 2
% 4 A
% 5 B
% 6 C
% 7 D
% 8 E
% #
% 2 1 Edge1O
% 3 1 Edge2O
% 4 2 EdgeA1
% 5 2 EdgeB1
% 6 2 EdgeC1
% 7 3 EdgeD2
% 8 3 EdgeE2
% Sample ve r t exLabe l s :
% ver texLabe l s ={’O’ , ’ 1 ’ , ’ 2 ’ , ’A’ , ’B’ , ’C’ , ’D’ , ’E’ }
% Sample edg e l ab e l s :
% edgeLabels={’Edge1O ’ , . . .
% ’Edge2O ’ , . . .
% ’EdgeA1 ’ , . . .
% ’EdgeB1 ’ , . . .
% ’EdgeC1 ’ , . . .
% ’EdgeD2 ’ , . . .
% ’EdgeE2 ’ }
% Sample r e l a t i o n boolean matrix / adjacency matrix f o r d i r e c t ed graph :
% R=l o g i c a l ([0 1 1 0 0 0 0 0 ; . . .
% 0 0 0 1 1 1 0 0 ; . . .
% 0 0 0 0 0 0 1 1 ; . . .
% 0 0 0 0 1 1 0 0 ; . . .
% 0 0 1 1 0 0 0 0 ; . . .
% 1 1 0 0 0 0 0 0 ; . . .
% 1 0 0 0 1 1 1 1])
% . %

% loop over e n t r i e s and output data
% l i s t v e r t i c e s
f i d=fopen (t g fF i l e , ’w ’) ;
d i sp l ay (horzcat (’ F i l e ’ , t g fF i l e , ’ opened ’))
f o r i =1: s i z e (vertexLabe l s , 2)

% output only non−zero l ength l a b e l s with
i f s i z e (ve r t exLabe l s { i } ,2)>0

f p r i n t f (f i d , ’%u %s \n ’ , i , v e r t exLabe l s { i }) ;
end
end
f p r i n t f (f i d , ’% s \n ’ , ’# ’) ;
% homogeneous r e l a t i o n
% loop over r e l a t i o n boolean matrix to output edges
i edge =0;
nRows=s i z e (R, 1)
nCols=s i z e (R, 2)
f o r j =1:nRows

f o r k=1: nCols
i f (R(j , k) == true)

i edge=iedge +1;
l a b e l =’ ’ ;
i f (i edge <= s i z e (edgeLabels , 2)) ;

l a b e l=edgeLabels { i edge } ;
end

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 440

jpo s=j ;
kpos=k ;
i f (not (isHomog==1))

kpos=k+nRows ;
end
f p r i n t f (f i d , ’%u %u %s \n ’ , jpos , kpos , l a b e l) ;

end
end

end
% c l o s e output f i l e
f s t a t u s=f c l o s e (f i d) ;
d i sp l ay (horzcat (’ F i l e ’ , t g fF i l e , ’ c lo sed ’))

Topological sort sequence - note header vertex in graph added to level L0 in this case shown in figure
K.8.

Figure K.8: Reporting structure adjacency matrix

Sub adjacency graphs with abbreviated adjacency matrices in this case are listed in the MATLAB
output display.

K.8 Determining connectivity of vertices in graphs e.g. to determine tree
vertex links for roll up of reports

f unc t i on [adjMatrix , vac t i v e] = ad jL i s tExt rac t (ad jL i s t , nvertex)
% .

% Extract a l l edges l i nked to a ver tex and return
% adjMatrix − subgraph in adjacency matrix format
% vac t i v e − Boolean l i s t o f a c t i v e v e r t i c e s
% can be converted to l i s t format i f r equ i r ed
% nvertex − ver tex number to proce s s
% .

% i n i t i a l i s e output
adjMatrix = [;] ;
nVer t i c e s=max(s i z e (ad jL i s t , 1) ,max(max(ad jL i s t))) ;
i f not ((nvertex>nVer t i c e s))
% s e t up blank adjacency matrix
adjMatr ixInter im=ze ro s (nVer t i c e s) ;
vac t i v e=ze ro s (1 , nVer t i c e s) ;
% s e t l im i t s to a c t i v e ver tex numbers
f o r nv=1: s i z e (ad jL i s t , 1)

nEdgesRow=s i z e (ad jL i s t (nv , :) , 2) ;
f o r ne=2:nEdgesRow

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 441

% end ver tex o f edge
mv=ad jL i s t (nv , ne) ;

% sk ip zero e n t r i e s as we l l as e n t r i e s not l i n k e d to s e l e c t d ver tex
i f not (mv==0)&& (mv==nvertex)
adjMatr ixInter im (nv ,mv)=1;

% keep track o f a c t i v e ver tex e n t r i e s
vac t i v e (nv)=1;
vac t i v e (mv)=1;
end

end
end
% disp ([’ va c t i v e : ’ , num2str (vac t i v e)])
% adjMatr ixInter im
% Add ac t i v e columns to output matrix

adjCols = [;] ;
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjCols=[adjCols , adjMatr ixInter im (: , i v)] ;
end

end
% Add ac t i v e rows to output matrix
% adjCols
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjMatrix=[adjMatrix ; adjCols (iv , :)] ;
end

end
end

func t i on [AdjList , nrowL , ncolL] = AdjacencyList (AdjMatrix)
% .

% Generate adjacency l i s t g iven adjacency matrix
% Adjacency l i s t in matrix format − i gno r e 0 e n t r i e s
% .
AdjList = [;] ;
nrowA=s i z e (AdjMatrix , 1) ;
ncolA=s i z e (AdjMatrix , 2) ;
f o r i r =1:nrowA

irowL=i r ;
AdjList (irowL ,1)= i r ;
i c o lL =1;

f o r i c =1:ncolA
i f (AdjMatrix (i r , i c)==1)

i c o lL=i c o lL +1;
AdjList (irowL , i c o lL)= i c ;

end
end

end
nrowL=s i z e (AdjList , 1) ;
ncolL=s i z e (AdjList , 2) ;

The logic for extracting the connectivity of a given vertex in a graph is given in the MATLAB code below.
Edges from vertices leading into a given vertex is determined and the graph determined.

K.9 Report data roll up using adjacency matrices

K.9.1 Theoretical Example using topological sorting and sub matrix extraction

Contents
• Reported symbolic values
• Define reporting structure graph and vertex labels
• Topological sort to determine roll up levels
• Compute report roll up sets

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 442

%...
% ReportResultsRollUpTopol.m
% Report results roll up using topological sorting
%...
clear all
clc
format compact

Reported symbolic values
vectors of reported symbolic values

syms x1 x2 x3 x4 y1 y2 y3 y4 z1 z2 z3 z4 real
w1=[x1 x2 x3 x4]’
w2=[y1 y2 y3 y4]’
w3=[z1 z2 z3 z4]’
% matrix of vectors of reported values
w=[w1,w2,w3]

w1 =
x1
x2
x3
x4

w2 =
y1
y2
y3
y4

w3 =
z1
z2
z3
z4

w =
[x1, y1, z1]
[x2, y2, z2]
[x3, y3, z3]
[x4, y4, z4]

Define reporting structure graph and vertex labels
Adjaceny matrix of graph of reporting structure

HMM= [0 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 0 1 0 0 0 0 ; ...
0 0 1 0 0 0 0]

vertexLabels= { ...
’M_0’,’M_A’,’M_B’,’M_1’,’M_2’,’M_3’,’M_4’ ...
}

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 443

HMM =
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0

vertexLabels =
Columns 1 through 6

’M_0’ ’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’
Column 7

’M_4’

Topological sort to determine roll up levels
Topological Sort on Transpose of Adjacency Matrix

TOut=TopolSort(HMM’)
[subAdj,subVactiveCol,subVactiveRow] ...

= SubAdjMatricesExTopolSort(HMM,TOut)
% Display results
% size(subAdj)
celldisp(subAdj)
celldisp(subVactiveCol)
celldisp(subVactiveRow)
% list id’s of active vertices & submatrices & output for plot
nsub=size(subAdj,2)

MATLAB implementation of relational algebra boolean matrix operations in inline functions
T =

0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

nVertex =
7

TOut =
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1

nRow =
7

nCol =
3

subAdj =
[2x1 double] [4x2 double]

subVactiveCol =
[1] [1x3 double]

subVactiveRow =
[7x1 double] [7x1 double]

subAdj{1} =
1
1

subAdj{2} =
1 0
1 0
0 1

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 444

0 1
subVactiveCol{1} =

1
subVactiveCol{2} =

0 1 1
subVactiveRow{1} =

0
1
1
0
0
0
0

subVactiveRow{2} =
0
0
0
1
1
1
1

nsub =
2

Compute report roll up sets
Lowest Level rollup

subAdjUse=subAdj{nsub}
wL1=(w’*subAdjUse)’
% Second Level rollup
subAdjUse=subAdj{1}
wL2=(wL1’*subAdjUse)’

subAdjUse =
1 0
1 0
0 1
0 1

wL1 =
[x1+x2, y1+y2, z1+z2]
[x3+x4, y3+y4, z3+z4]
subAdjUse =

1
1

wL2 =
[x1+x2+x3+x4, y1+y2+y3+y4, z1+z2+z3+z4]

K.9.2 Theoretical Example - Using graph adjacency list processing

Contents
• Reported symbolic values
• Define reporting structure graph and vertex labels
• Convert to adjacency list format -
• Extract sub graphs from adjacency list and compute roll up
• Process top level

%...
% ReportResultsRollUp.m
% Report results roll up

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 445

%...
clear all
clc
format compact

Reported symbolic values
vectors of reported symbolic values

syms x1 x2 x3 x4 y1 y2 y3 y4 z1 z2 z3 z4 real
w1=[x1 x2 x3 x4]’
w2=[y1 y2 y3 y4]’
w3=[z1 z2 z3 z4]’
w=[w1,w2,w3]

w1 =
x1
x2
x3
x4

w2 =
y1
y2
y3
y4

w3 =
z1
z2
z3
z4

w =
[x1, y1, z1]
[x2, y2, z2]
[x3, y3, z3]
[x4, y4, z4]

Define reporting structure graph and vertex labels
Adjaceny matrix of graph of reporting structure

HMM= [0 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
1 0 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 1 0 0 0 0 0 ; ...
0 0 1 0 0 0 0 ; ...
0 0 1 0 0 0 0]

vertexLabels= { ...
’M_0’,’M_A’,’M_B’,’M_1’,’M_2’,’M_3’,’M_4’ ...
}

HMM =
0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 446

0 0 1 0 0 0 0
vertexLabels =

Columns 1 through 6
’M_0’ ’M_A’ ’M_B’ ’M_1’ ’M_2’ ’M_3’

Column 7
’M_4’

Convert to adjacency list format -
Adjacency list format

[adjList,nrowL,ncolL] = AdjacencyList(HMM)

adjList =
1 0
2 1
3 1
4 2
5 2
6 3
7 3

nrowL =
7

ncolL =
2

Extract sub graphs from adjacency list and compute roll up
Process second & third levels Second level

nvertex=2
[adjMatrix,vactive] = adjListExtract(adjList,nvertex)
%fileOut=horzcat(tgfFilePre,’TreeSubConnec’,num2str(nvertex),’.tgf’)
vertexLabelsOut=vertexLabels(find(vactive))
% tgfWrite(fileOut,adjMatrixR,isHomog,vertexLabelsOut,{});
% convert sub graph to adjacency list format
[adjsubList,nrowS,ncolS] = AdjacencyList(adjMatrix)
% compute roll up
wA=w(1:2,:)
wAOutA=wA’*adjMatrix(2:end,1:1)
% Third level
nvertex=3
[adjMatrix,vactive] = adjListExtract(adjList,nvertex)
%fileOut=horzcat(tgfFilePre,’TreeSubConnec’,num2str(nvertex),’.tgf’)
vertexLabelsOut=vertexLabels(find(vactive))
% tgfWrite(fileOut,adjMatrixR,isHomog,vertexLabelsOut,{});
% convert sub graph to adjacency list format
[adjsubList,nrowS,ncolS] = AdjacencyList(adjMatrix)
% compute roll up
wB=w(3:4,:)
wAOutB=wB’*adjMatrix(2:end,1:1)

nvertex =
2

adjMatrix =
0 0 0
1 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 447

1 0 0
vactive =

0 1 0 1 1 0 0
vertexLabelsOut =

’M_A’ ’M_1’ ’M_2’
adjsubList =

1 0
2 1
3 1

nrowS =
3

ncolS =
2

wA =
[x1, y1, z1]
[x2, y2, z2]
wAOutA =
x1+x2
y1+y2
z1+z2

nvertex =
3

adjMatrix =
0 0 0
1 0 0
1 0 0

vactive =
0 0 1 0 0 1 1

vertexLabelsOut =
’M_B’ ’M_3’ ’M_4’

adjsubList =
1 0
2 1
3 1

nrowS =
3

ncolS =
2

wB =
[x3, y3, z3]
[x4, y4, z4]
wAOutB =
x3+x4
y3+y4
z3+z4

Process top level

nvertex=1
[adjMatrix,vactive] = adjListExtract(adjList,nvertex)
%fileOut=horzcat(tgfFilePre,’TreeSubConnec’,num2str(nvertex),’.tgf’)
vertexLabelsOut=vertexLabels(find(vactive))
% tgfWrite(fileOut,adjMatrixR,isHomog,vertexLabelsOut,{});
% convert sub graph to adjacency list format
[adjsubList,nrowS,ncolS] = AdjacencyList(adjMatrix)
wO=[wAOutA,wAOutB]
% note transpose complete on previous level
wAOutO=(wO*adjMatrix(2:end,1:1))’

nvertex =
1

adjMatrix =
0 0 0
1 0 0
1 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 448

vactive =
1 1 1 0 0 0 0

vertexLabelsOut =
’M_0’ ’M_A’ ’M_B’

adjsubList =
1 0
2 1
3 1

nrowS =
3

ncolS =
2

wO =
[x1+x2, x3+x4]
[y1+y2, y3+y4]
[z1+z2, z3+z4]
wAOutO =
[x1+x2+x3+x4, y1+y2+y3+y4, z1+z2+z3+z4]

K.9.3 Larger example with numerical values

Contents
• Read in graph data from yEd .tgf file
• Topological sorting of graph and set up level labels
• Extract sub adjacency matrices and display
• Set up reporting weight and accumulation strings
• Roll up reporting string data

%...
% ReportResultsRollUpTopolEx2.m
% Report results roll up
%...
clear all
clc
format compact

Read in graph data from yEd .tgf file
graph of reporting structure - read ex data file

format compact
tgfFile=’PEPExTsequenceT.tgf’
[vertexLabels,edgeLabels,TreeAdj] = TgfRead(tgfFile)
% Output graph for yEd display - not used
%tgfFilePre=’TSCEx2’
% Tree adjacency matrix
%isHomog=1
%fileTC=horzcat(tgfFilePre,’TreeAdjConnec’,’.tgf’)
%tgfWrite(fileTC,TreeAdj,isHomog,vertexLabels,{});
% scratch last row & column of adjacency matrix
% contains header of graph - not necessary - no edge links vertex
% TreeAdj=TreeAdj(1:size(TreeAdj,1)-1,1:(size(TreeAdj,2)-1))
% Topogical sorting of tree vertices

tgfFile =
PEPExTsequenceT.tgf
File PEPExTsequenceT.tgf opened
File PEPExTsequenceT.tgf closed
vertexLabels =

Columns 1 through 4
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 449

Columns 5 through 8
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 9 through 12
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 13 through 16
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 17 through 20
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 21 through 23
[1x38 char] [1x38 char] [1x39 char]

edgeLabels =
Columns 1 through 8

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 9 through 16

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 17 through 24

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 25 through 32

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 33 through 35

’ ’ ’ ’ ’ ’
TreeAdj =

Columns 1 through 10
0 1 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 11 through 20
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 21 through 23

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 450

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

Topological sorting of graph and set up level labels

TOut=TopolSort(TreeAdj)
levelLabels= { ...

’L0’,’L01’,’L02’ ...
’L03’,’L04’,’L05’ ...
’L06’,’L07’,’L08’,’L09’...
’L10’,’L11’,’L12’ ...
}

MATLAB implementation of relational algebra boolean matrix operations in inline functions
T =

Columns 1 through 10
0 1 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 11 through 20
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 451

1 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 21 through 23
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

nVertex =
23

TOut =
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0

levelLabels =
Columns 1 through 6

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 452

’L0’ ’L01’ ’L02’ ’L03’ ’L04’ ’L05’
Columns 7 through 12

’L06’ ’L07’ ’L08’ ’L09’ ’L10’ ’L11’
Column 13

’L12’

Extract sub adjacency matrices and display

[subAdj,subVactiveCol,subVactiveRow] ...
= SubAdjMatricesExTopolSort(TreeAdj,TOut)

% Display results
% size(subAdj)
celldisp(subAdj)
celldisp(subVactiveCol)
celldisp(subVactiveRow)
% Production units type p01,p02,p03,p04
% Hours worked on tasks
% Persons:
% ’Client p01’, ...
% ’Architect p02’, ...
% ’Structural Engineer p03’, ...
% ’Electrical Engineer p04’, ...
% ’Draftsman p05’, ...
% ’Checking Engineer p06’,

nRow =
23

nCol =
6

subAdj =
Columns 1 through 3

[1x3 double] [4x6 double] [10x7 double]
Columns 4 through 5

[7x4 double] [2x1 double]
subVactiveCol =

Columns 1 through 3
[1x7 double] [1x15 double] [1x22 double]

Columns 4 through 5
[1x21 double] [1x20 double]

subVactiveRow =
Columns 1 through 3

[23x1 double] [23x1 double] [23x1 double]
Columns 4 through 5

[23x1 double] [23x1 double]
subAdj{1} =

1 1 1
subAdj{2} =

1 1 1 1 0 0
0 0 0 1 0 0
1 1 0 0 0 1
0 0 1 0 1 0

subAdj{3} =
0 0 0 0 0 1 0
0 0 0 0 0 1 0
1 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

subAdj{4} =
0 1 0 0
1 0 1 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 453

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

subAdj{5} =
1
1

subVactiveCol{1} =
0 1 1 0 0 0 1

subVactiveCol{2} =
Columns 1 through 10

0 0 0 1 1 0 0 1 1 0
Columns 11 through 15

0 0 0 1 1
subVactiveCol{3} =

Columns 1 through 10
0 0 0 0 0 1 0 0 0 1

Columns 11 through 20
1 0 1 0 0 1 1 0 0 0

Columns 21 through 22
0 1

subVactiveCol{4} =
Columns 1 through 10

0 0 0 0 0 0 0 0 0 0
Columns 11 through 20

0 1 0 0 0 0 0 1 1 0
Column 21

1
subVactiveCol{5} =

Columns 1 through 10
0 0 0 0 0 0 0 0 0 0

Columns 11 through 20
0 0 0 0 0 0 0 0 0 1

subVactiveRow{1} =
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

subVactiveRow{2} =
1
1
1
0
0
0
1
0
0
0
0
0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 454

0
0
0
0
0
0
0
0
0
0
0

subVactiveRow{3} =
1
1
1
1
1
0
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0

subVactiveRow{4} =
0
0
0
1
1
1
0
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0

subVactiveRow{5} =
0
0
0
0
0
1
0
0
0
0
0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 455

1
0
0
0
0
0
0
0
0
0
0
0

Set up reporting weight and accumulation strings

nW=6
w=[...
1 1 0 0 0 0; ...% ’Create architectural design t01’, ...
1 1 0 0 0 0; ...% ’Review architectural design t02’, ...
0 0 1 0 0 0; ...% ’Preliminary structural design t03’, ...
0 0 0 0 1 0; ...% ’Create foundation drawings t04’, ...
0 0 0 0 1 0; ...% ’Create concrete layout drawings t05’, ...
0 0 0 0 1 0; ...% ’Create reinforcement drawings t06’, ...
0 0 0 1 0 0; ...% ’Preliminary electrical design t07’, ...
0 0 0 0 1 0; ...% ’Create electrical drawings t08’, ...
0 1 0 0 0 0; ...% ’Finalize architectural drawings t09’, ...
0 0 0 0 1 0; ...% ’Finalize foundation drawings t10’, ...
0 0 0 0 1 0; ...% ’Finalize concrete layout drawingst11’, ...
0 0 0 0 1 0; ...% ’Finalize reinforcement drawings t12’, ...
0 0 0 0 1 0; ...% ’Finalize electrical drawings t13’, ...
0 0 0 1 0 0; ...% ’Finalize electrical design t14’, ...
0 0 1 0 0 0; ...% ’Finalize structural design t15’, ...
0 0 0 0 0 1; ...% ’Check structural design t16’, ...
0 0 0 0 0 1; ...% ’Check architectural drawings t17’, ...
0 0 0 0 0 1; ...% ’Check foundation drawings t18’, ...
0 0 0 0 0 1; ...% ’Check concrete layout drawings t19’, ...
0 0 0 0 0 1; ...% ’Check reinforcement drawings t20’, ...
0 0 0 0 0 1; ...% ’Check electrical drawings t21’, ...
0 0 0 0 0 1; ... % ’Check electrical design t22’ ...
]

wAccumulate=zeros((size(TreeAdj,1)-1),nW)
% number of submatrices
nsub=size(subAdj,2)

nW =
6

w =
1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 456

0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

wAccumulate =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

nsub =
5

Roll up reporting string data

for is=1:nsub
% Roll Up from Low to High
% adjacency matrix
subAdjUse=subAdj{is}
% active rows
vactiveRow=subVactiveRow{is};
% active columns
vactiveCol=subVactiveCol{is};
% extract report weight data rows
find(vactiveRow)
wUse=w(find(vactiveRow),:)
wRollUpStep1=(wUse’*subAdjUse)’
wRollUpStep=wRollUpStep1+w(find(vactiveCol),:)
w(find(vactiveCol),:)
wRollUp{is}=wRollUpStep
wAccumulate(find(vactiveCol),:)=wAccumulate(find(vactiveCol),:)+wRollUpStep
wAccStep{is}=wAccumulate;
end

subAdjUse =
1 1 1

ans =
1

wUse =
1 1 0 0 0 0

wRollUpStep1 =
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0

wRollUpStep =
2 2 0 0 0 0
1 1 1 0 0 0
1 1 0 1 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 457

ans =
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

wRollUp =
[3x6 double]

wAccumulate =
0 0 0 0 0 0
2 2 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

subAdjUse =
1 1 1 1 0 0
0 0 0 1 0 0
1 1 0 0 0 1
0 0 1 0 1 0

ans =
1
2
3
7

wUse =
1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

wRollUpStep1 =
1 1 1 0 0 0
1 1 1 0 0 0
1 1 0 1 0 0
2 2 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

wRollUpStep =
1 1 1 0 1 0
1 1 1 0 1 0
1 1 0 1 1 0
2 3 0 0 0 0
0 0 0 2 0 0
0 0 2 0 0 0

ans =
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

wRollUp =
[3x6 double] [6x6 double]

wAccumulate =
0 0 0 0 0 0
2 2 0 0 0 0
1 1 1 0 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 458

1 1 1 0 1 0
1 1 1 0 1 0
0 0 0 0 0 0
1 1 0 1 0 0
1 1 0 1 1 0
2 3 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 0 0
0 0 2 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

subAdjUse =
0 0 0 0 0 1 0
0 0 0 0 0 1 0
1 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

ans =
1
2
3
4
5
7
8
9

14
15

wUse =
1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

wRollUpStep1 =
0 0 1 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 2 0 0 0
2 3 0 0 0 0
0 0 0 2 0 0

wRollUpStep =
0 0 1 0 2 0
0 0 0 0 2 0
0 0 0 0 2 0
0 0 0 0 2 0
0 0 2 0 0 1
2 3 0 0 0 1
0 0 0 2 0 1

ans =
0 0 0 0 1 0
0 0 0 0 1 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 459

0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

wRollUp =
[3x6 double] [6x6 double] [7x6 double]

wAccumulate =
0 0 0 0 0 0
2 2 0 0 0 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 0 1 0
0 0 1 0 2 0
1 1 0 1 0 0
1 1 0 1 1 0
2 3 0 0 0 0
0 0 0 0 2 0
0 0 0 0 2 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 2 0 0
0 0 2 0 0 0
0 0 2 0 0 1
2 3 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 0 1

subAdjUse =
0 1 0 0
1 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

ans =
4
5
6
8

10
11
13

wUse =
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0

wRollUpStep1 =
0 0 0 0 2 0
0 0 0 0 2 0
0 0 0 0 2 0
0 0 0 0 2 0

wRollUpStep =
0 0 0 0 3 0
0 0 0 0 2 1
0 0 0 0 2 1
0 0 0 0 2 1

ans =
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

wRollUp =
Columns 1 through 3

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 460

[3x6 double] [6x6 double] [7x6 double]
Column 4

[4x6 double]
wAccumulate =

0 0 0 0 0 0
2 2 0 0 0 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 0 1 0
0 0 1 0 2 0
1 1 0 1 0 0
1 1 0 1 1 0
2 3 0 0 0 0
0 0 0 0 2 0
0 0 0 0 2 0
0 0 0 0 3 0
0 0 0 0 2 0
0 0 0 2 0 0
0 0 2 0 0 0
0 0 2 0 0 1
2 3 0 0 0 1
0 0 0 0 2 1
0 0 0 0 2 1
0 0 0 0 0 0
0 0 0 0 2 1
0 0 0 2 0 1

subAdjUse =
1
1

ans =
6

12
wUse =

0 0 0 0 1 0
0 0 0 0 1 0

wRollUpStep1 =
0 0 0 0 2 0

wRollUpStep =
0 0 0 0 2 1

ans =
0 0 0 0 0 1

wRollUp =
Columns 1 through 3

[3x6 double] [6x6 double] [7x6 double]
Columns 4 through 5

[4x6 double] [1x6 double]
wAccumulate =

0 0 0 0 0 0
2 2 0 0 0 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 0 1 0
0 0 1 0 2 0
1 1 0 1 0 0
1 1 0 1 1 0
2 3 0 0 0 0
0 0 0 0 2 0
0 0 0 0 2 0
0 0 0 0 3 0
0 0 0 0 2 0
0 0 0 2 0 0
0 0 2 0 0 0
0 0 2 0 0 1
2 3 0 0 0 1
0 0 0 0 2 1
0 0 0 0 2 1
0 0 0 0 2 1
0 0 0 0 2 1
0 0 0 2 0 1

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 461

K.9.4 Larger example with string literal values concatenated in accumulation
process

Contents
• Read in graph data from yEd .tgf file
• Topological sorting of graph and set up level labels
• Extract sub adjacency matrices and display
• Set up reporting weight and accumulation strings
• Roll up reporting string data

%...
% ReportResultsRollUpTopolStringEx3.m
% Report results roll up Strings Example
%...
clear all
clc
format compact

Read in graph data from yEd .tgf file
graph of reporting structure - read ex data file

format compact
tgfFile=’PEPExTsequenceT.tgf’
[vertexLabels,edgeLabels,TreeAdj] = TgfRead(tgfFile)
%tgfFilePre=’TSCEx3’
% Output graph for yEd display - not used
% Tree adjacency matrix
%isHomog=1
%fileTC=horzcat(tgfFilePre,’TreeAdjConnec’,’.tgf’)
%tgfWrite(fileTC,TreeAdj,isHomog,vertexLabels,{});
% scratch last row & column of adjacency matrix
% contains header of graph - not necessary - no edge links vertex
% TreeAdj=TreeAdj(1:size(TreeAdj,1)-1,1:(size(TreeAdj,2)-1))
% Topogical sorting of tree vertices

tgfFile =
PEPExTsequenceT.tgf
File PEPExTsequenceT.tgf opened
File PEPExTsequenceT.tgf closed
vertexLabels =

Columns 1 through 4
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 5 through 8
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 9 through 12
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 13 through 16
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 17 through 20
[1x38 char] [1x38 char] [1x38 char] [1x38 char]

Columns 21 through 23
[1x38 char] [1x38 char] [1x39 char]

edgeLabels =
Columns 1 through 8

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 9 through 16

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 17 through 24

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 25 through 32

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Columns 33 through 35

’ ’ ’ ’ ’ ’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 462

TreeAdj =
Columns 1 through 10

0 1 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 11 through 20
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 21 through 23
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 463

0 0 0
0 0 0

Topological sorting of graph and set up level labels

TOut=TopolSort(TreeAdj)
levelLabels= { ...

’L0’,’L01’,’L02’ ...
’L03’,’L04’,’L05’ ...
’L06’,’L07’,’L08’,’L09’...
’L10’,’L11’,’L12’ ...
}

MATLAB implementation of relational algebra boolean matrix operations in inline functions
T =

Columns 1 through 10
0 1 1 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 11 through 20
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Columns 21 through 23
0 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 464

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

nVertex =
23

TOut =
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0

levelLabels =
Columns 1 through 6

’L0’ ’L01’ ’L02’ ’L03’ ’L04’ ’L05’
Columns 7 through 12

’L06’ ’L07’ ’L08’ ’L09’ ’L10’ ’L11’
Column 13

’L12’

Extract sub adjacency matrices and display

[subAdj,subVactiveCol,subVactiveRow] ...
= SubAdjMatricesExTopolSort(TreeAdj,TOut)

% Display results
% size(subAdj)
celldisp(subAdj)
celldisp(subVactiveCol)
celldisp(subVactiveRow)
% Production units type p01,p02,p03,p04
% Hours worked on tasks
% Persons:

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 465

% ’Client p01’, ...
% ’Architect p02’, ...
% ’Structural Engineer p03’, ...
% ’Electrical Engineer p04’, ...
% ’Draftsman p05’, ...
% ’Checking Engineer p06’,

nRow =
23

nCol =
6

subAdj =
Columns 1 through 3

[1x3 double] [4x6 double] [10x7 double]
Columns 4 through 5

[7x4 double] [2x1 double]
subVactiveCol =

Columns 1 through 3
[1x7 double] [1x15 double] [1x22 double]

Columns 4 through 5
[1x21 double] [1x20 double]

subVactiveRow =
Columns 1 through 3

[23x1 double] [23x1 double] [23x1 double]
Columns 4 through 5

[23x1 double] [23x1 double]
subAdj{1} =

1 1 1
subAdj{2} =

1 1 1 1 0 0
0 0 0 1 0 0
1 1 0 0 0 1
0 0 1 0 1 0

subAdj{3} =
0 0 0 0 0 1 0
0 0 0 0 0 1 0
1 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

subAdj{4} =
0 1 0 0
1 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

subAdj{5} =
1
1

subVactiveCol{1} =
0 1 1 0 0 0 1

subVactiveCol{2} =
Columns 1 through 10

0 0 0 1 1 0 0 1 1 0
Columns 11 through 15

0 0 0 1 1
subVactiveCol{3} =

Columns 1 through 10
0 0 0 0 0 1 0 0 0 1

Columns 11 through 20
1 0 1 0 0 1 1 0 0 0

Columns 21 through 22

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 466

0 1
subVactiveCol{4} =

Columns 1 through 10
0 0 0 0 0 0 0 0 0 0

Columns 11 through 20
0 1 0 0 0 0 0 1 1 0

Column 21
1

subVactiveCol{5} =
Columns 1 through 10

0 0 0 0 0 0 0 0 0 0
Columns 11 through 20

0 0 0 0 0 0 0 0 0 1
subVactiveRow{1} =

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

subVactiveRow{2} =
1
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

subVactiveRow{3} =
1
1
1
1
1
0
1
1
1

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 467

0
0
0
0
1
1
0
0
0
0
0
0
0
0

subVactiveRow{4} =
0
0
0
1
1
1
0
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0

subVactiveRow{5} =
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0

Set up reporting weight and accumulation strings

nW=6
wString={
’ t01p1’ ’ t01p2’ ’ t01p3’ ’ t01p4’ ’ t01p5’ ’ t01p6’ ;

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 468

’ t02p1’ ’ t02p2’ ’ t02p3’ ’ t02p4’ ’ t02p5’ ’ t02p6’ ;
’ t03p1’ ’ t03p2’ ’ t03p3’ ’ t03p4’ ’ t03p5’ ’ t03p6’ ;
’ t04p1’ ’ t04p2’ ’ t04p3’ ’ t04p4’ ’ t04p5’ ’ t04p6’ ;
’ t05p1’ ’ t05p2’ ’ t05p3’ ’ t05p4’ ’ t05p5’ ’ t05p6’ ;
’ t06p1’ ’ t06p2’ ’ t06p3’ ’ t06p4’ ’ t06p5’ ’ t06p6’ ;
’ t07p1’ ’ t07p2’ ’ t07p3’ ’ t07p4’ ’ t07p5’ ’ t07p6’ ;
’ t08p1’ ’ t08p2’ ’ t08p3’ ’ t08p4’ ’ t08p5’ ’ t08p6’ ;
’ t09p1’ ’ t09p2’ ’ t09p3’ ’ t09p4’ ’ t09p5’ ’ t09p6’ ;
’ t10p1’ ’ t10p2’ ’ t10p3’ ’ t10p4’ ’ t10p5’ ’ t10p6’ ;
’ t11p1’ ’ t11p2’ ’ t11p3’ ’ t11p4’ ’ t11p5’ ’ t11p6’ ;
’ t12p1’ ’ t12p2’ ’ t12p3’ ’ t12p4’ ’ t12p5’ ’ t12p6’ ;
’ t13p1’ ’ t13p2’ ’ t13p3’ ’ t13p4’ ’ t13p5’ ’ t13p6’ ;
’ t14p1’ ’ t14p2’ ’ t14p3’ ’ t14p4’ ’ t14p5’ ’ t14p6’ ;
’ t15p1’ ’ t15p2’ ’ t15p3’ ’ t15p4’ ’ t15p5’ ’ t15p6’ ;
’ t16p1’ ’ t16p2’ ’ t16p3’ ’ t16p4’ ’ t16p5’ ’ t16p6’ ;
’ t17p1’ ’ t17p2’ ’ t17p3’ ’ t17p4’ ’ t17p5’ ’ t17p6’ ;
’ t18p1’ ’ t18p2’ ’ t18p3’ ’ t18p4’ ’ t18p5’ ’ t18p6’ ;
’ t19p1’ ’ t19p2’ ’ t19p3’ ’ t19p4’ ’ t19p5’ ’ t19p6’ ;
’ t20p1’ ’ t20p2’ ’ t20p3’ ’ t20p4’ ’ t20p5’ ’ t20p6’ ;
’ t21p1’ ’ t21p2’ ’ t21p3’ ’ t21p4’ ’ t21p5’ ’ t21p6’ ;
’ t22p1’ ’ t22p2’ ’ t22p3’ ’ t22p4’ ’ t22p5’ ’ t22p6’ ;
}
% set accumulation array to blank strings
for ir=1:(size(TreeAdj,1)-1)

for ic=1:nW
wAccumulate{ir,ic}=’’;

end
end
% number of submatrices - only use to limit output
nsub=size(subAdj,2)
nsubUse=nsub
%nsubUse=2

nW =
6

wString =
Columns 1 through 5

’ t01p1’ ’ t01p2’ ’ t01p3’ ’ t01p4’ ’ t01p5’
’ t02p1’ ’ t02p2’ ’ t02p3’ ’ t02p4’ ’ t02p5’
’ t03p1’ ’ t03p2’ ’ t03p3’ ’ t03p4’ ’ t03p5’
’ t04p1’ ’ t04p2’ ’ t04p3’ ’ t04p4’ ’ t04p5’
’ t05p1’ ’ t05p2’ ’ t05p3’ ’ t05p4’ ’ t05p5’
’ t06p1’ ’ t06p2’ ’ t06p3’ ’ t06p4’ ’ t06p5’
’ t07p1’ ’ t07p2’ ’ t07p3’ ’ t07p4’ ’ t07p5’
’ t08p1’ ’ t08p2’ ’ t08p3’ ’ t08p4’ ’ t08p5’
’ t09p1’ ’ t09p2’ ’ t09p3’ ’ t09p4’ ’ t09p5’
’ t10p1’ ’ t10p2’ ’ t10p3’ ’ t10p4’ ’ t10p5’
’ t11p1’ ’ t11p2’ ’ t11p3’ ’ t11p4’ ’ t11p5’
’ t12p1’ ’ t12p2’ ’ t12p3’ ’ t12p4’ ’ t12p5’
’ t13p1’ ’ t13p2’ ’ t13p3’ ’ t13p4’ ’ t13p5’
’ t14p1’ ’ t14p2’ ’ t14p3’ ’ t14p4’ ’ t14p5’
’ t15p1’ ’ t15p2’ ’ t15p3’ ’ t15p4’ ’ t15p5’
’ t16p1’ ’ t16p2’ ’ t16p3’ ’ t16p4’ ’ t16p5’
’ t17p1’ ’ t17p2’ ’ t17p3’ ’ t17p4’ ’ t17p5’
’ t18p1’ ’ t18p2’ ’ t18p3’ ’ t18p4’ ’ t18p5’
’ t19p1’ ’ t19p2’ ’ t19p3’ ’ t19p4’ ’ t19p5’
’ t20p1’ ’ t20p2’ ’ t20p3’ ’ t20p4’ ’ t20p5’
’ t21p1’ ’ t21p2’ ’ t21p3’ ’ t21p4’ ’ t21p5’
’ t22p1’ ’ t22p2’ ’ t22p3’ ’ t22p4’ ’ t22p5’

Column 6
’ t01p6’
’ t02p6’
’ t03p6’
’ t04p6’
’ t05p6’
’ t06p6’
’ t07p6’
’ t08p6’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 469

’ t09p6’
’ t10p6’
’ t11p6’
’ t12p6’
’ t13p6’
’ t14p6’
’ t15p6’
’ t16p6’
’ t17p6’
’ t18p6’
’ t19p6’
’ t20p6’
’ t21p6’
’ t22p6’

nsub =
5

nsubUse =
5

Roll up reporting string data

for is=1:nsubUse
% Roll Up from Low to High
% adjacency matrix
subAdjUse=subAdj{is}
% active rows
vactiveRow=subVactiveRow{is};
% active columns
vactiveCol=subVactiveCol{is};
% extract report weight data rows
fndVactiveRow=find(vactiveRow)
wUse=wString(find(vactiveRow),:)
% wRollUpStep1=(wUse’*subAdjUse)’
wRollUpStep1=stringMultBool(wUse’,subAdjUse)’
wRollUpIncrement=wString(find(vactiveCol),:)
wRollUpStep=strcat(wRollUpStep1,wRollUpIncrement)
wRollUp{is}=wRollUpStep
wAccumulate(find(vactiveCol),:)= ...

strcat(wAccumulate(find(vactiveCol),:),wRollUpStep)
wAccStep{is}=wAccumulate;
end

subAdjUse =
1 1 1

fndVactiveRow =
1

wUse =
Columns 1 through 5

’ t01p1’ ’ t01p2’ ’ t01p3’ ’ t01p4’ ’ t01p5’
Column 6

’ t01p6’
wRollUpStep1 =

Columns 1 through 5
’ t01p1’ ’ t01p2’ ’ t01p3’ ’ t01p4’ ’ t01p5’
’ t01p1’ ’ t01p2’ ’ t01p3’ ’ t01p4’ ’ t01p5’
’ t01p1’ ’ t01p2’ ’ t01p3’ ’ t01p4’ ’ t01p5’

Column 6
’ t01p6’
’ t01p6’
’ t01p6’

wRollUpIncrement =
Columns 1 through 5

’ t02p1’ ’ t02p2’ ’ t02p3’ ’ t02p4’ ’ t02p5’
’ t03p1’ ’ t03p2’ ’ t03p3’ ’ t03p4’ ’ t03p5’
’ t07p1’ ’ t07p2’ ’ t07p3’ ’ t07p4’ ’ t07p5’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 470

Column 6
’ t02p6’
’ t03p6’
’ t07p6’

wRollUpStep =
Columns 1 through 3

’ t01p1 t02p1’ ’ t01p2 t02p2’ ’ t01p3 t02p3’
’ t01p1 t03p1’ ’ t01p2 t03p2’ ’ t01p3 t03p3’
’ t01p1 t07p1’ ’ t01p2 t07p2’ ’ t01p3 t07p3’

Columns 4 through 6
’ t01p4 t02p4’ ’ t01p5 t02p5’ ’ t01p6 t02p6’
’ t01p4 t03p4’ ’ t01p5 t03p5’ ’ t01p6 t03p6’
’ t01p4 t07p4’ ’ t01p5 t07p5’ ’ t01p6 t07p6’

wRollUp =
{3x6 cell}

wAccumulate =
Columns 1 through 3

’’ ’’ ’’
’ t01p1 t02p1’ ’ t01p2 t02p2’ ’ t01p3 t02p3’
’ t01p1 t03p1’ ’ t01p2 t03p2’ ’ t01p3 t03p3’

’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’

’ t01p1 t07p1’ ’ t01p2 t07p2’ ’ t01p3 t07p3’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’

Columns 4 through 6
’’ ’’ ’’

’ t01p4 t02p4’ ’ t01p5 t02p5’ ’ t01p6 t02p6’
’ t01p4 t03p4’ ’ t01p5 t03p5’ ’ t01p6 t03p6’

’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’

’ t01p4 t07p4’ ’ t01p5 t07p5’ ’ t01p6 t07p6’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’
’’ ’’ ’’

subAdjUse =
1 1 1 1 0 0
0 0 0 1 0 0
1 1 0 0 0 1
0 0 1 0 1 0

fndVactiveRow =
1
2
3

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 471

7
wUse =

Columns 1 through 5
’ t01p1’ ’ t01p2’ ’ t01p3’ ’ t01p4’ ’ t01p5’
’ t02p1’ ’ t02p2’ ’ t02p3’ ’ t02p4’ ’ t02p5’
’ t03p1’ ’ t03p2’ ’ t03p3’ ’ t03p4’ ’ t03p5’
’ t07p1’ ’ t07p2’ ’ t07p3’ ’ t07p4’ ’ t07p5’

Column 6
’ t01p6’
’ t02p6’
’ t03p6’
’ t07p6’

wRollUpStep1 =
Columns 1 through 3

’ t01p1 t03p1’ ’ t01p2 t03p2’ ’ t01p3 t03p3’
’ t01p1 t03p1’ ’ t01p2 t03p2’ ’ t01p3 t03p3’
’ t01p1 t07p1’ ’ t01p2 t07p2’ ’ t01p3 t07p3’
’ t01p1 t02p1’ ’ t01p2 t02p2’ ’ t01p3 t02p3’
’ t07p1’ ’ t07p2’ ’ t07p3’
’ t03p1’ ’ t03p2’ ’ t03p3’

Columns 4 through 6
’ t01p4 t03p4’ ’ t01p5 t03p5’ ’ t01p6 t03p6’
’ t01p4 t03p4’ ’ t01p5 t03p5’ ’ t01p6 t03p6’
’ t01p4 t07p4’ ’ t01p5 t07p5’ ’ t01p6 t07p6’
’ t01p4 t02p4’ ’ t01p5 t02p5’ ’ t01p6 t02p6’
’ t07p4’ ’ t07p5’ ’ t07p6’
’ t03p4’ ’ t03p5’ ’ t03p6’

wRollUpIncrement =
Columns 1 through 5

’ t04p1’ ’ t04p2’ ’ t04p3’ ’ t04p4’ ’ t04p5’
’ t05p1’ ’ t05p2’ ’ t05p3’ ’ t05p4’ ’ t05p5’
’ t08p1’ ’ t08p2’ ’ t08p3’ ’ t08p4’ ’ t08p5’
’ t09p1’ ’ t09p2’ ’ t09p3’ ’ t09p4’ ’ t09p5’
’ t14p1’ ’ t14p2’ ’ t14p3’ ’ t14p4’ ’ t14p5’
’ t15p1’ ’ t15p2’ ’ t15p3’ ’ t15p4’ ’ t15p5’

Column 6
’ t04p6’
’ t05p6’
’ t08p6’
’ t09p6’
’ t14p6’
’ t15p6’

wRollUpStep =
Columns 1 through 2

’ t01p1 t03p1 t04p1’ ’ t01p2 t03p2 t04p2’
’ t01p1 t03p1 t05p1’ ’ t01p2 t03p2 t05p2’
’ t01p1 t07p1 t08p1’ ’ t01p2 t07p2 t08p2’
’ t01p1 t02p1 t09p1’ ’ t01p2 t02p2 t09p2’
’ t07p1 t14p1’ ’ t07p2 t14p2’
’ t03p1 t15p1’ ’ t03p2 t15p2’

Columns 3 through 4
’ t01p3 t03p3 t04p3’ ’ t01p4 t03p4 t04p4’
’ t01p3 t03p3 t05p3’ ’ t01p4 t03p4 t05p4’
’ t01p3 t07p3 t08p3’ ’ t01p4 t07p4 t08p4’
’ t01p3 t02p3 t09p3’ ’ t01p4 t02p4 t09p4’
’ t07p3 t14p3’ ’ t07p4 t14p4’
’ t03p3 t15p3’ ’ t03p4 t15p4’

Columns 5 through 6
’ t01p5 t03p5 t04p5’ ’ t01p6 t03p6 t04p6’
’ t01p5 t03p5 t05p5’ ’ t01p6 t03p6 t05p6’
’ t01p5 t07p5 t08p5’ ’ t01p6 t07p6 t08p6’
’ t01p5 t02p5 t09p5’ ’ t01p6 t02p6 t09p6’
’ t07p5 t14p5’ ’ t07p6 t14p6’
’ t03p5 t15p5’ ’ t03p6 t15p6’

wRollUp =
{3x6 cell} {6x6 cell}

wAccumulate =
Columns 1 through 2

’’ ’’
’ t01p1 t02p1’ ’ t01p2 t02p2’
’ t01p1 t03p1’ ’ t01p2 t03p2’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 472

’ t01p1 t03p1 t04p1’ ’ t01p2 t03p2 t04p2’
’ t01p1 t03p1 t05p1’ ’ t01p2 t03p2 t05p2’

’’ ’’
’ t01p1 t07p1’ ’ t01p2 t07p2’
’ t01p1 t07p1 t08p1’ ’ t01p2 t07p2 t08p2’
’ t01p1 t02p1 t09p1’ ’ t01p2 t02p2 t09p2’

’’ ’’
’’ ’’
’’ ’’
’’ ’’

’ t07p1 t14p1’ ’ t07p2 t14p2’
’ t03p1 t15p1’ ’ t03p2 t15p2’

’’ ’’
’’ ’’
’’ ’’
’’ ’’
’’ ’’
’’ ’’
’’ ’’

Columns 3 through 4
’’ ’’

’ t01p3 t02p3’ ’ t01p4 t02p4’
’ t01p3 t03p3’ ’ t01p4 t03p4’
’ t01p3 t03p3 t04p3’ ’ t01p4 t03p4 t04p4’
’ t01p3 t03p3 t05p3’ ’ t01p4 t03p4 t05p4’

’’ ’’
’ t01p3 t07p3’ ’ t01p4 t07p4’
’ t01p3 t07p3 t08p3’ ’ t01p4 t07p4 t08p4’
’ t01p3 t02p3 t09p3’ ’ t01p4 t02p4 t09p4’

’’ ’’
’’ ’’
’’ ’’
’’ ’’

’ t07p3 t14p3’ ’ t07p4 t14p4’
’ t03p3 t15p3’ ’ t03p4 t15p4’

’’ ’’
’’ ’’
’’ ’’
’’ ’’
’’ ’’
’’ ’’
’’ ’’

Columns 5 through 6
’’ ’’

’ t01p5 t02p5’ ’ t01p6 t02p6’
’ t01p5 t03p5’ ’ t01p6 t03p6’
’ t01p5 t03p5 t04p5’ ’ t01p6 t03p6 t04p6’
’ t01p5 t03p5 t05p5’ ’ t01p6 t03p6 t05p6’

’’ ’’
’ t01p5 t07p5’ ’ t01p6 t07p6’
’ t01p5 t07p5 t08p5’ ’ t01p6 t07p6 t08p6’
’ t01p5 t02p5 t09p5’ ’ t01p6 t02p6 t09p6’

’’ ’’
’’ ’’
’’ ’’
’’ ’’

’ t07p5 t14p5’ ’ t07p6 t14p6’
’ t03p5 t15p5’ ’ t03p6 t15p6’

’’ ’’
’’ ’’
’’ ’’
’’ ’’
’’ ’’
’’ ’’
’’ ’’

subAdjUse =
0 0 0 0 0 1 0
0 0 0 0 0 1 0
1 0 0 0 1 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 473

0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

fndVactiveRow =
1
2
3
4
5
7
8
9

14
15

wUse =
Columns 1 through 5

’ t01p1’ ’ t01p2’ ’ t01p3’ ’ t01p4’ ’ t01p5’
’ t02p1’ ’ t02p2’ ’ t02p3’ ’ t02p4’ ’ t02p5’
’ t03p1’ ’ t03p2’ ’ t03p3’ ’ t03p4’ ’ t03p5’
’ t04p1’ ’ t04p2’ ’ t04p3’ ’ t04p4’ ’ t04p5’
’ t05p1’ ’ t05p2’ ’ t05p3’ ’ t05p4’ ’ t05p5’
’ t07p1’ ’ t07p2’ ’ t07p3’ ’ t07p4’ ’ t07p5’
’ t08p1’ ’ t08p2’ ’ t08p3’ ’ t08p4’ ’ t08p5’
’ t09p1’ ’ t09p2’ ’ t09p3’ ’ t09p4’ ’ t09p5’
’ t14p1’ ’ t14p2’ ’ t14p3’ ’ t14p4’ ’ t14p5’
’ t15p1’ ’ t15p2’ ’ t15p3’ ’ t15p4’ ’ t15p5’

Column 6
’ t01p6’
’ t02p6’
’ t03p6’
’ t04p6’
’ t05p6’
’ t07p6’
’ t08p6’
’ t09p6’
’ t14p6’
’ t15p6’

wRollUpStep1 =
Columns 1 through 2

’ t03p1 t05p1’ ’ t03p2 t05p2’
’ t04p1’ ’ t04p2’
’ t05p1’ ’ t05p2’
’ t08p1’ ’ t08p2’
’ t03p1 t15p1’ ’ t03p2 t15p2’
’ t01p1 t02p1 t09p1’ ’ t01p2 t02p2 t09p2’
’ t07p1 t14p1’ ’ t07p2 t14p2’

Columns 3 through 4
’ t03p3 t05p3’ ’ t03p4 t05p4’
’ t04p3’ ’ t04p4’
’ t05p3’ ’ t05p4’
’ t08p3’ ’ t08p4’
’ t03p3 t15p3’ ’ t03p4 t15p4’
’ t01p3 t02p3 t09p3’ ’ t01p4 t02p4 t09p4’
’ t07p3 t14p3’ ’ t07p4 t14p4’

Columns 5 through 6
’ t03p5 t05p5’ ’ t03p6 t05p6’
’ t04p5’ ’ t04p6’
’ t05p5’ ’ t05p6’
’ t08p5’ ’ t08p6’
’ t03p5 t15p5’ ’ t03p6 t15p6’
’ t01p5 t02p5 t09p5’ ’ t01p6 t02p6 t09p6’
’ t07p5 t14p5’ ’ t07p6 t14p6’

wRollUpIncrement =
Columns 1 through 5

’ t06p1’ ’ t06p2’ ’ t06p3’ ’ t06p4’ ’ t06p5’
’ t10p1’ ’ t10p2’ ’ t10p3’ ’ t10p4’ ’ t10p5’
’ t11p1’ ’ t11p2’ ’ t11p3’ ’ t11p4’ ’ t11p5’
’ t13p1’ ’ t13p2’ ’ t13p3’ ’ t13p4’ ’ t13p5’
’ t16p1’ ’ t16p2’ ’ t16p3’ ’ t16p4’ ’ t16p5’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 474

’ t17p1’ ’ t17p2’ ’ t17p3’ ’ t17p4’ ’ t17p5’
’ t22p1’ ’ t22p2’ ’ t22p3’ ’ t22p4’ ’ t22p5’

Column 6
’ t06p6’
’ t10p6’
’ t11p6’
’ t13p6’
’ t16p6’
’ t17p6’
’ t22p6’

wRollUpStep =
Columns 1 through 2

’ t03p1 t05p1 t06p1’ ’ t03p2 t05p2 t06p2’
’ t04p1 t10p1’ ’ t04p2 t10p2’
’ t05p1 t11p1’ ’ t05p2 t11p2’
’ t08p1 t13p1’ ’ t08p2 t13p2’
’ t03p1 t15p1 t16p1’ ’ t03p2 t15p2 t16p2’

[1x24 char] [1x24 char]
’ t07p1 t14p1 t22p1’ ’ t07p2 t14p2 t22p2’

Columns 3 through 4
’ t03p3 t05p3 t06p3’ ’ t03p4 t05p4 t06p4’
’ t04p3 t10p3’ ’ t04p4 t10p4’
’ t05p3 t11p3’ ’ t05p4 t11p4’
’ t08p3 t13p3’ ’ t08p4 t13p4’
’ t03p3 t15p3 t16p3’ ’ t03p4 t15p4 t16p4’

[1x24 char] [1x24 char]
’ t07p3 t14p3 t22p3’ ’ t07p4 t14p4 t22p4’

Columns 5 through 6
’ t03p5 t05p5 t06p5’ ’ t03p6 t05p6 t06p6’
’ t04p5 t10p5’ ’ t04p6 t10p6’
’ t05p5 t11p5’ ’ t05p6 t11p6’
’ t08p5 t13p5’ ’ t08p6 t13p6’
’ t03p5 t15p5 t16p5’ ’ t03p6 t15p6 t16p6’

[1x24 char] [1x24 char]
’ t07p5 t14p5 t22p5’ ’ t07p6 t14p6 t22p6’

wRollUp =
{3x6 cell} {6x6 cell} {7x6 cell}

wAccumulate =
Columns 1 through 2

’’ ’’
’ t01p1 t02p1’ ’ t01p2 t02p2’
’ t01p1 t03p1’ ’ t01p2 t03p2’
’ t01p1 t03p1 t04p1’ ’ t01p2 t03p2 t04p2’
’ t01p1 t03p1 t05p1’ ’ t01p2 t03p2 t05p2’
’ t03p1 t05p1 t06p1’ ’ t03p2 t05p2 t06p2’
’ t01p1 t07p1’ ’ t01p2 t07p2’
’ t01p1 t07p1 t08p1’ ’ t01p2 t07p2 t08p2’
’ t01p1 t02p1 t09p1’ ’ t01p2 t02p2 t09p2’
’ t04p1 t10p1’ ’ t04p2 t10p2’
’ t05p1 t11p1’ ’ t05p2 t11p2’

’’ ’’
’ t08p1 t13p1’ ’ t08p2 t13p2’
’ t07p1 t14p1’ ’ t07p2 t14p2’
’ t03p1 t15p1’ ’ t03p2 t15p2’
’ t03p1 t15p1 t16p1’ ’ t03p2 t15p2 t16p2’

[1x24 char] [1x24 char]
’’ ’’
’’ ’’
’’ ’’
’’ ’’

’ t07p1 t14p1 t22p1’ ’ t07p2 t14p2 t22p2’
Columns 3 through 4

’’ ’’
’ t01p3 t02p3’ ’ t01p4 t02p4’
’ t01p3 t03p3’ ’ t01p4 t03p4’
’ t01p3 t03p3 t04p3’ ’ t01p4 t03p4 t04p4’
’ t01p3 t03p3 t05p3’ ’ t01p4 t03p4 t05p4’
’ t03p3 t05p3 t06p3’ ’ t03p4 t05p4 t06p4’
’ t01p3 t07p3’ ’ t01p4 t07p4’
’ t01p3 t07p3 t08p3’ ’ t01p4 t07p4 t08p4’
’ t01p3 t02p3 t09p3’ ’ t01p4 t02p4 t09p4’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 475

’ t04p3 t10p3’ ’ t04p4 t10p4’
’ t05p3 t11p3’ ’ t05p4 t11p4’

’’ ’’
’ t08p3 t13p3’ ’ t08p4 t13p4’
’ t07p3 t14p3’ ’ t07p4 t14p4’
’ t03p3 t15p3’ ’ t03p4 t15p4’
’ t03p3 t15p3 t16p3’ ’ t03p4 t15p4 t16p4’

[1x24 char] [1x24 char]
’’ ’’
’’ ’’
’’ ’’
’’ ’’

’ t07p3 t14p3 t22p3’ ’ t07p4 t14p4 t22p4’
Columns 5 through 6

’’ ’’
’ t01p5 t02p5’ ’ t01p6 t02p6’
’ t01p5 t03p5’ ’ t01p6 t03p6’
’ t01p5 t03p5 t04p5’ ’ t01p6 t03p6 t04p6’
’ t01p5 t03p5 t05p5’ ’ t01p6 t03p6 t05p6’
’ t03p5 t05p5 t06p5’ ’ t03p6 t05p6 t06p6’
’ t01p5 t07p5’ ’ t01p6 t07p6’
’ t01p5 t07p5 t08p5’ ’ t01p6 t07p6 t08p6’
’ t01p5 t02p5 t09p5’ ’ t01p6 t02p6 t09p6’
’ t04p5 t10p5’ ’ t04p6 t10p6’
’ t05p5 t11p5’ ’ t05p6 t11p6’

’’ ’’
’ t08p5 t13p5’ ’ t08p6 t13p6’
’ t07p5 t14p5’ ’ t07p6 t14p6’
’ t03p5 t15p5’ ’ t03p6 t15p6’
’ t03p5 t15p5 t16p5’ ’ t03p6 t15p6 t16p6’

[1x24 char] [1x24 char]
’’ ’’
’’ ’’
’’ ’’
’’ ’’

’ t07p5 t14p5 t22p5’ ’ t07p6 t14p6 t22p6’
subAdjUse =

0 1 0 0
1 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

fndVactiveRow =
4
5
6
8

10
11
13

wUse =
Columns 1 through 5

’ t04p1’ ’ t04p2’ ’ t04p3’ ’ t04p4’ ’ t04p5’
’ t05p1’ ’ t05p2’ ’ t05p3’ ’ t05p4’ ’ t05p5’
’ t06p1’ ’ t06p2’ ’ t06p3’ ’ t06p4’ ’ t06p5’
’ t08p1’ ’ t08p2’ ’ t08p3’ ’ t08p4’ ’ t08p5’
’ t10p1’ ’ t10p2’ ’ t10p3’ ’ t10p4’ ’ t10p5’
’ t11p1’ ’ t11p2’ ’ t11p3’ ’ t11p4’ ’ t11p5’
’ t13p1’ ’ t13p2’ ’ t13p3’ ’ t13p4’ ’ t13p5’

Column 6
’ t04p6’
’ t05p6’
’ t06p6’
’ t08p6’
’ t10p6’
’ t11p6’
’ t13p6’

wRollUpStep1 =
Columns 1 through 3

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 476

’ t05p1 t06p1’ ’ t05p2 t06p2’ ’ t05p3 t06p3’
’ t04p1 t10p1’ ’ t04p2 t10p2’ ’ t04p3 t10p3’
’ t05p1 t11p1’ ’ t05p2 t11p2’ ’ t05p3 t11p3’
’ t08p1 t13p1’ ’ t08p2 t13p2’ ’ t08p3 t13p3’

Columns 4 through 6
’ t05p4 t06p4’ ’ t05p5 t06p5’ ’ t05p6 t06p6’
’ t04p4 t10p4’ ’ t04p5 t10p5’ ’ t04p6 t10p6’
’ t05p4 t11p4’ ’ t05p5 t11p5’ ’ t05p6 t11p6’
’ t08p4 t13p4’ ’ t08p5 t13p5’ ’ t08p6 t13p6’

wRollUpIncrement =
Columns 1 through 5

’ t12p1’ ’ t12p2’ ’ t12p3’ ’ t12p4’ ’ t12p5’
’ t18p1’ ’ t18p2’ ’ t18p3’ ’ t18p4’ ’ t18p5’
’ t19p1’ ’ t19p2’ ’ t19p3’ ’ t19p4’ ’ t19p5’
’ t21p1’ ’ t21p2’ ’ t21p3’ ’ t21p4’ ’ t21p5’

Column 6
’ t12p6’
’ t18p6’
’ t19p6’
’ t21p6’

wRollUpStep =
Columns 1 through 2

’ t05p1 t06p1 t12p1’ ’ t05p2 t06p2 t12p2’
’ t04p1 t10p1 t18p1’ ’ t04p2 t10p2 t18p2’
’ t05p1 t11p1 t19p1’ ’ t05p2 t11p2 t19p2’
’ t08p1 t13p1 t21p1’ ’ t08p2 t13p2 t21p2’

Columns 3 through 4
’ t05p3 t06p3 t12p3’ ’ t05p4 t06p4 t12p4’
’ t04p3 t10p3 t18p3’ ’ t04p4 t10p4 t18p4’
’ t05p3 t11p3 t19p3’ ’ t05p4 t11p4 t19p4’
’ t08p3 t13p3 t21p3’ ’ t08p4 t13p4 t21p4’

Columns 5 through 6
’ t05p5 t06p5 t12p5’ ’ t05p6 t06p6 t12p6’
’ t04p5 t10p5 t18p5’ ’ t04p6 t10p6 t18p6’
’ t05p5 t11p5 t19p5’ ’ t05p6 t11p6 t19p6’
’ t08p5 t13p5 t21p5’ ’ t08p6 t13p6 t21p6’

wRollUp =
{3x6 cell} {6x6 cell} {7x6 cell} {4x6 cell}

wAccumulate =
Columns 1 through 2

’’ ’’
’ t01p1 t02p1’ ’ t01p2 t02p2’
’ t01p1 t03p1’ ’ t01p2 t03p2’
’ t01p1 t03p1 t04p1’ ’ t01p2 t03p2 t04p2’
’ t01p1 t03p1 t05p1’ ’ t01p2 t03p2 t05p2’
’ t03p1 t05p1 t06p1’ ’ t03p2 t05p2 t06p2’
’ t01p1 t07p1’ ’ t01p2 t07p2’
’ t01p1 t07p1 t08p1’ ’ t01p2 t07p2 t08p2’
’ t01p1 t02p1 t09p1’ ’ t01p2 t02p2 t09p2’
’ t04p1 t10p1’ ’ t04p2 t10p2’
’ t05p1 t11p1’ ’ t05p2 t11p2’
’ t05p1 t06p1 t12p1’ ’ t05p2 t06p2 t12p2’
’ t08p1 t13p1’ ’ t08p2 t13p2’
’ t07p1 t14p1’ ’ t07p2 t14p2’
’ t03p1 t15p1’ ’ t03p2 t15p2’
’ t03p1 t15p1 t16p1’ ’ t03p2 t15p2 t16p2’

[1x24 char] [1x24 char]
’ t04p1 t10p1 t18p1’ ’ t04p2 t10p2 t18p2’
’ t05p1 t11p1 t19p1’ ’ t05p2 t11p2 t19p2’

’’ ’’
’ t08p1 t13p1 t21p1’ ’ t08p2 t13p2 t21p2’
’ t07p1 t14p1 t22p1’ ’ t07p2 t14p2 t22p2’

Columns 3 through 4
’’ ’’

’ t01p3 t02p3’ ’ t01p4 t02p4’
’ t01p3 t03p3’ ’ t01p4 t03p4’
’ t01p3 t03p3 t04p3’ ’ t01p4 t03p4 t04p4’
’ t01p3 t03p3 t05p3’ ’ t01p4 t03p4 t05p4’
’ t03p3 t05p3 t06p3’ ’ t03p4 t05p4 t06p4’
’ t01p3 t07p3’ ’ t01p4 t07p4’
’ t01p3 t07p3 t08p3’ ’ t01p4 t07p4 t08p4’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 477

’ t01p3 t02p3 t09p3’ ’ t01p4 t02p4 t09p4’
’ t04p3 t10p3’ ’ t04p4 t10p4’
’ t05p3 t11p3’ ’ t05p4 t11p4’
’ t05p3 t06p3 t12p3’ ’ t05p4 t06p4 t12p4’
’ t08p3 t13p3’ ’ t08p4 t13p4’
’ t07p3 t14p3’ ’ t07p4 t14p4’
’ t03p3 t15p3’ ’ t03p4 t15p4’
’ t03p3 t15p3 t16p3’ ’ t03p4 t15p4 t16p4’

[1x24 char] [1x24 char]
’ t04p3 t10p3 t18p3’ ’ t04p4 t10p4 t18p4’
’ t05p3 t11p3 t19p3’ ’ t05p4 t11p4 t19p4’

’’ ’’
’ t08p3 t13p3 t21p3’ ’ t08p4 t13p4 t21p4’
’ t07p3 t14p3 t22p3’ ’ t07p4 t14p4 t22p4’

Columns 5 through 6
’’ ’’

’ t01p5 t02p5’ ’ t01p6 t02p6’
’ t01p5 t03p5’ ’ t01p6 t03p6’
’ t01p5 t03p5 t04p5’ ’ t01p6 t03p6 t04p6’
’ t01p5 t03p5 t05p5’ ’ t01p6 t03p6 t05p6’
’ t03p5 t05p5 t06p5’ ’ t03p6 t05p6 t06p6’
’ t01p5 t07p5’ ’ t01p6 t07p6’
’ t01p5 t07p5 t08p5’ ’ t01p6 t07p6 t08p6’
’ t01p5 t02p5 t09p5’ ’ t01p6 t02p6 t09p6’
’ t04p5 t10p5’ ’ t04p6 t10p6’
’ t05p5 t11p5’ ’ t05p6 t11p6’
’ t05p5 t06p5 t12p5’ ’ t05p6 t06p6 t12p6’
’ t08p5 t13p5’ ’ t08p6 t13p6’
’ t07p5 t14p5’ ’ t07p6 t14p6’
’ t03p5 t15p5’ ’ t03p6 t15p6’
’ t03p5 t15p5 t16p5’ ’ t03p6 t15p6 t16p6’

[1x24 char] [1x24 char]
’ t04p5 t10p5 t18p5’ ’ t04p6 t10p6 t18p6’
’ t05p5 t11p5 t19p5’ ’ t05p6 t11p6 t19p6’

’’ ’’
’ t08p5 t13p5 t21p5’ ’ t08p6 t13p6 t21p6’
’ t07p5 t14p5 t22p5’ ’ t07p6 t14p6 t22p6’

subAdjUse =
1
1

fndVactiveRow =
6

12
wUse =

Columns 1 through 5
’ t06p1’ ’ t06p2’ ’ t06p3’ ’ t06p4’ ’ t06p5’
’ t12p1’ ’ t12p2’ ’ t12p3’ ’ t12p4’ ’ t12p5’

Column 6
’ t06p6’
’ t12p6’

wRollUpStep1 =
Columns 1 through 3

’ t06p1 t12p1’ ’ t06p2 t12p2’ ’ t06p3 t12p3’
Columns 4 through 6

’ t06p4 t12p4’ ’ t06p5 t12p5’ ’ t06p6 t12p6’
wRollUpIncrement =

Columns 1 through 5
’ t20p1’ ’ t20p2’ ’ t20p3’ ’ t20p4’ ’ t20p5’

Column 6
’ t20p6’

wRollUpStep =
Columns 1 through 2

’ t06p1 t12p1 t20p1’ ’ t06p2 t12p2 t20p2’
Columns 3 through 4

’ t06p3 t12p3 t20p3’ ’ t06p4 t12p4 t20p4’
Columns 5 through 6

’ t06p5 t12p5 t20p5’ ’ t06p6 t12p6 t20p6’
wRollUp =

Columns 1 through 4
{3x6 cell} {6x6 cell} {7x6 cell} {4x6 cell}

Column 5

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 478

{1x6 cell}
wAccumulate =

Columns 1 through 2
’’ ’’

’ t01p1 t02p1’ ’ t01p2 t02p2’
’ t01p1 t03p1’ ’ t01p2 t03p2’
’ t01p1 t03p1 t04p1’ ’ t01p2 t03p2 t04p2’
’ t01p1 t03p1 t05p1’ ’ t01p2 t03p2 t05p2’
’ t03p1 t05p1 t06p1’ ’ t03p2 t05p2 t06p2’
’ t01p1 t07p1’ ’ t01p2 t07p2’
’ t01p1 t07p1 t08p1’ ’ t01p2 t07p2 t08p2’
’ t01p1 t02p1 t09p1’ ’ t01p2 t02p2 t09p2’
’ t04p1 t10p1’ ’ t04p2 t10p2’
’ t05p1 t11p1’ ’ t05p2 t11p2’
’ t05p1 t06p1 t12p1’ ’ t05p2 t06p2 t12p2’
’ t08p1 t13p1’ ’ t08p2 t13p2’
’ t07p1 t14p1’ ’ t07p2 t14p2’
’ t03p1 t15p1’ ’ t03p2 t15p2’
’ t03p1 t15p1 t16p1’ ’ t03p2 t15p2 t16p2’

[1x24 char] [1x24 char]
’ t04p1 t10p1 t18p1’ ’ t04p2 t10p2 t18p2’
’ t05p1 t11p1 t19p1’ ’ t05p2 t11p2 t19p2’
’ t06p1 t12p1 t20p1’ ’ t06p2 t12p2 t20p2’
’ t08p1 t13p1 t21p1’ ’ t08p2 t13p2 t21p2’
’ t07p1 t14p1 t22p1’ ’ t07p2 t14p2 t22p2’

Columns 3 through 4
’’ ’’

’ t01p3 t02p3’ ’ t01p4 t02p4’
’ t01p3 t03p3’ ’ t01p4 t03p4’
’ t01p3 t03p3 t04p3’ ’ t01p4 t03p4 t04p4’
’ t01p3 t03p3 t05p3’ ’ t01p4 t03p4 t05p4’
’ t03p3 t05p3 t06p3’ ’ t03p4 t05p4 t06p4’
’ t01p3 t07p3’ ’ t01p4 t07p4’
’ t01p3 t07p3 t08p3’ ’ t01p4 t07p4 t08p4’
’ t01p3 t02p3 t09p3’ ’ t01p4 t02p4 t09p4’
’ t04p3 t10p3’ ’ t04p4 t10p4’
’ t05p3 t11p3’ ’ t05p4 t11p4’
’ t05p3 t06p3 t12p3’ ’ t05p4 t06p4 t12p4’
’ t08p3 t13p3’ ’ t08p4 t13p4’
’ t07p3 t14p3’ ’ t07p4 t14p4’
’ t03p3 t15p3’ ’ t03p4 t15p4’
’ t03p3 t15p3 t16p3’ ’ t03p4 t15p4 t16p4’

[1x24 char] [1x24 char]
’ t04p3 t10p3 t18p3’ ’ t04p4 t10p4 t18p4’
’ t05p3 t11p3 t19p3’ ’ t05p4 t11p4 t19p4’
’ t06p3 t12p3 t20p3’ ’ t06p4 t12p4 t20p4’
’ t08p3 t13p3 t21p3’ ’ t08p4 t13p4 t21p4’
’ t07p3 t14p3 t22p3’ ’ t07p4 t14p4 t22p4’

Columns 5 through 6
’’ ’’

’ t01p5 t02p5’ ’ t01p6 t02p6’
’ t01p5 t03p5’ ’ t01p6 t03p6’
’ t01p5 t03p5 t04p5’ ’ t01p6 t03p6 t04p6’
’ t01p5 t03p5 t05p5’ ’ t01p6 t03p6 t05p6’
’ t03p5 t05p5 t06p5’ ’ t03p6 t05p6 t06p6’
’ t01p5 t07p5’ ’ t01p6 t07p6’
’ t01p5 t07p5 t08p5’ ’ t01p6 t07p6 t08p6’
’ t01p5 t02p5 t09p5’ ’ t01p6 t02p6 t09p6’
’ t04p5 t10p5’ ’ t04p6 t10p6’
’ t05p5 t11p5’ ’ t05p6 t11p6’
’ t05p5 t06p5 t12p5’ ’ t05p6 t06p6 t12p6’
’ t08p5 t13p5’ ’ t08p6 t13p6’
’ t07p5 t14p5’ ’ t07p6 t14p6’
’ t03p5 t15p5’ ’ t03p6 t15p6’
’ t03p5 t15p5 t16p5’ ’ t03p6 t15p6 t16p6’

[1x24 char] [1x24 char]
’ t04p5 t10p5 t18p5’ ’ t04p6 t10p6 t18p6’
’ t05p5 t11p5 t19p5’ ’ t05p6 t11p6 t19p6’
’ t06p5 t12p5 t20p5’ ’ t06p6 t12p6 t20p6’
’ t08p5 t13p5 t21p5’ ’ t08p6 t13p6 t21p6’
’ t07p5 t14p5 t22p5’ ’ t07p6 t14p6 t22p6’

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 479

K.10 Graph sub tree connectivity extraction

%..
% testAdjMatrixExtract.m
% Test extract sub adjacency matrix from adjacency list
%..
clc
clear all
format compact
% Output filenem prefix
tgfFilePre=’TSC’
% Pahl example - transposed
vertexLabels= { ...

’a’,’b’,’c’,’d’,’e’,’f’,’g’ ...
}

% Adjacency matrix
disp(’Adjacency matrix:’)
R= [0 0 0 0 0 0 0 ;...

1 0 0 0 0 0 0 ;...
1 0 0 1 0 0 0 ;...
1 0 0 0 0 0 0 ;...
0 1 0 1 0 0 0 ;...
0 0 1 0 0 0 0 ;...
0 0 0 1 1 1 0]’

% .tgf file output for yEd display input
isHomog=1
fileTC=horzcat(tgfFilePre,’TreeConnectivity’,’.tgf’)
% output adjacency matrix
tgfWrite(fileTC,R,isHomog,vertexLabels,{});
% form adjacency list
disp(’Adjacency list:’)
[adjListR,nrowLR,ncolLR] = AdjacencyList(R)
% extract sub adjacency matrices from adjacency lists
for nvertex=1:size(R,2)
[adjMatrixR,vactive] = adjListExtract(adjListR,nvertex)
fileOut=horzcat(tgfFilePre,’TreeSubConnec’,num2str(nvertex),’.tgf’)
% set up vertex labels for grpah data output file
vertexLabelsOut=vertexLabels(find(vactive))
tgfWrite(fileOut,adjMatrixR,isHomog,vertexLabelsOut,{});
[adjsubListR,nrowLR,ncolLR] = AdjacencyList(adjMatrixR)
end
vertexList=[3,4]
[adjMatrix,vactive] = adjListMultExtract(adjListR,vertexList)

tgfFilePre =
TSC
vertexLabels =

’a’ ’b’ ’c’ ’d’ ’e’ ’f’ ’g’
Adjacency matrix:
R =

0 1 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 1 0 1 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

isHomog =
1

fileTC =
TSCTreeConnectivity.tgf
File TSCTreeConnectivity.tgf opened
nRows =

7
nCols =

7
File TSCTreeConnectivity.tgf closed
Adjacency list:

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 480

adjListR =
1 2 3 4
2 5 0 0
3 6 0 0
4 3 5 7
5 7 0 0
6 7 0 0
7 0 0 0

nrowLR =
7

ncolLR =
4

adjMatrixR =
[]

vactive =
0 0 0 0 0 0 0

fileOut =
TSCTreeSubConnec1.tgf
vertexLabelsOut =

Empty cell array: 1-by-0
File TSCTreeSubConnec1.tgf opened
nRows =

0
nCols =

0
File TSCTreeSubConnec1.tgf closed
adjsubListR =

[]
nrowLR =

0
ncolLR =

0
adjMatrixR =

0 1
0 0

vactive =
1 1 0 0 0 0 0

fileOut =
TSCTreeSubConnec2.tgf
vertexLabelsOut =

’a’ ’b’
File TSCTreeSubConnec2.tgf opened
nRows =

2
nCols =

2
File TSCTreeSubConnec2.tgf closed
adjsubListR =

1 2
2 0

nrowLR =
2

ncolLR =
2

adjMatrixR =
0 1 0
0 0 0
0 1 0

vactive =
1 0 1 1 0 0 0

fileOut =
TSCTreeSubConnec3.tgf
vertexLabelsOut =

’a’ ’c’ ’d’
File TSCTreeSubConnec3.tgf opened
nRows =

3
nCols =

3
File TSCTreeSubConnec3.tgf closed
adjsubListR =

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 481

1 2
2 0
3 2

nrowLR =
3

ncolLR =
2

adjMatrixR =
0 1
0 0

vactive =
1 0 0 1 0 0 0

fileOut =
TSCTreeSubConnec4.tgf
vertexLabelsOut =

’a’ ’d’
File TSCTreeSubConnec4.tgf opened
nRows =

2
nCols =

2
File TSCTreeSubConnec4.tgf closed
adjsubListR =

1 2
2 0

nrowLR =
2

ncolLR =
2

adjMatrixR =
0 0 1
0 0 1
0 0 0

vactive =
0 1 0 1 1 0 0

fileOut =
TSCTreeSubConnec5.tgf
vertexLabelsOut =

’b’ ’d’ ’e’
File TSCTreeSubConnec5.tgf opened
nRows =

3
nCols =

3
File TSCTreeSubConnec5.tgf closed
adjsubListR =

1 3
2 3
3 0

nrowLR =
3

ncolLR =
2

adjMatrixR =
0 1
0 0

vactive =
0 0 1 0 0 1 0

fileOut =
TSCTreeSubConnec6.tgf
vertexLabelsOut =

’c’ ’f’
File TSCTreeSubConnec6.tgf opened
nRows =

2
nCols =

2
File TSCTreeSubConnec6.tgf closed
adjsubListR =

1 2
2 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 482

nrowLR =
2

ncolLR =
2

adjMatrixR =
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 0

vactive =
0 0 0 1 1 1 1

fileOut =
TSCTreeSubConnec7.tgf
vertexLabelsOut =

’d’ ’e’ ’f’ ’g’
File TSCTreeSubConnec7.tgf opened
nRows =

4
nCols =

4
File TSCTreeSubConnec7.tgf closed
adjsubListR =

1 4
2 4
3 4
4 0

nrowLR =
4

ncolLR =
2

vertexList =
3 4

adjMatrix =
0 1 1
0 0 0
0 1 0

vactive =
1 0 1 1 0 0 0

K.11 Multiple sub tree connectivity extraction

%..
% testAdjmatrixMultExtract.m
% Test extraction of adjacency matrix from adjacency list
% given multiple vertices
%..
clc
clear all
format compact
% Output filename prefix
tgfFilePre=’TSC’
% Pahl example - transposed
vertexLabels= { ...

’a’,’b’,’c’,’d’,’e’,’f’,’g’ ...
}

% Adjacency matrix
disp(’Adjacency matrix:’)
R= [0 0 0 0 0 0 0 ;...

1 0 0 0 0 0 0 ;...
1 0 0 1 0 0 0 ;...
1 0 0 0 0 0 0 ;...
0 1 0 1 0 0 0 ;...
0 0 1 0 0 0 0 ;...
0 0 0 1 1 1 0]’

% form adjacency list
disp(’Adjacency list:’)
[adjListR,nrowLR,ncolLR] = AdjacencyList(R)
% select vertices for extraction

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 483

(a) Example tree graph

(b) Vertex
a - empty
graph (c) Vertex

b

(d) Vertex c (e) Vertex
d (f) Vertex e

(g) Vertex
f (h) Vertex g

Figure K.9: Sub-tree connectivity extraction per vertex as listed: (a) Example tree graph; (b) Vertex a - empty
graph; (c) Vertex b; (d) Vertex c; (e) Vertex d; (f) Vertex e; (g) Vertex f; (h) Vertex g;

disp(’Vertices selected for extraction:’)
vertexList=[1,5,7]
disp(’Compute compound adjacency matrix with active vertices:’)
[adjMatrix,vactive] = adjListMultExtract(adjListR,vertexList)
% list active vertex labels
disp(’Active vertex labels :’)
vertexLabelsActive=vertexLabels(find(vactive))

tgfFilePre =
TSC
vertexLabels =

’a’ ’b’ ’c’ ’d’ ’e’ ’f’ ’g’
Adjacency matrix:
R =

0 1 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 1 0 1 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 484

Adjacency list:
adjListR =

1 2 3 4
2 5 0 0
3 6 0 0
4 3 5 7
5 7 0 0
6 7 0 0
7 0 0 0

nrowLR =
7

ncolLR =
4

Vertices selected for extraction:
vertexList =

1 5 7
Compute compound adjacency matrix with active vertices:
adjMatrix =

0 0 1 0 0
0 0 1 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

vactive =
0 1 0 1 1 1 1

Active vertex labels :
vertexLabelsActive =

’b’ ’d’ ’e’ ’f’ ’g’

(a) Example tree graph

(b) Multiple sub-
trees extracted for
vertices a,e and g

(c) Multiple sub-trees
extracted for vertices b
and g

Figure K.10: Sub-tree extraction

K.12 Sub-tree extraction MATLAB functions

The MATLAB functions are used in the examples shown in sections K.10 and K.11.

f unc t i on [AdjList , nrowL , ncolL] = AdjacencyList (AdjMatrix)
% .

% Generate adjacency l i s t g iven adjacency matrix
% Adjacency l i s t in matrix format − i gno r e 0 e n t r i e s
% .
AdjList = [;] ;
nrowA=s i z e (AdjMatrix , 1) ;

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 485

ncolA=s i z e (AdjMatrix , 2) ;
f o r i r =1:nrowA

irowL=i r ;
AdjList (irowL ,1)= i r ;
i c o lL =1;

f o r i c =1:ncolA
i f (AdjMatrix (i r , i c)==1)

i c o lL=i c o lL +1;
AdjList (irowL , i c o lL)= i c ;

end
end

end
nrowL=s i z e (AdjList , 1) ;
ncolL=s i z e (AdjList , 2) ;

f unc t i on [adjMatrix , vac t i v e] = adjL i s tMultExtract (ad jL i s t , nve r t exL i s t)
% .

% func t i on adjL i s tMultExtract .m
% Extract a l l edges l i nked to a ver tex and return
% adjMatrix − subgraph in adjacency matrix format
% vac t i v e − Boolean l i s t o f a c t i v e v e r t i c e s
% can be converted to l i s t format i f r equ i r ed
% nve r t exL i s t − array o f ver tex numbers to p roce s s
% .

% l im i t s
nVer t i c e s=max(s i z e (ad jL i s t , 1) ,max(max(ad jL i s t))) ;
% s e t up blank adjcency matrix
adjMatr ixInter im=ze ro s (nVer t i c e s) ;
vac t i v e=ze ro s (1 , nVer t i c e s) ;
f o r nvL=1: s i z e (nver texL i s t , 2)

nvertex=nve r t exL i s t (nvL) ;
i f not ((nvertex>nVer t i c e s))
% s e t l im i t s to a c t i v e ver tex numbers
f o r nv=1: s i z e (ad jL i s t , 1)

nEdgesRow=s i z e (ad jL i s t (nv , :) , 2) ;
f o r ne=2:nEdgesRow

% end ver tex o f edge
mv=ad jL i s t (nv , ne) ;

% sk ip zero e n t r i e s as we l l as e n t r i e s not l i n k e d to s e l e c t d ver tex
i f not (mv==0)&& (mv==nvertex)
adjMatr ixInter im (nv ,mv)=1;

% keep track o f a c t i v e ver tex e n t r i e s
vac t i v e (nv)=1;
vac t i v e (mv)=1;
end

end
end
end
% disp ([’ va c t i v e : ’ , num2str (vac t i v e)])
% adjMatr ixInter im
% Add ac t i v e columns to output matrix

adjCols = [;] ;
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjCols=[adjCols , adjMatr ixInter im (: , i v)] ;
end

end
% Add ac t i v e rows to output matrix
% adjCols

adjMatrix = [;] ;
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjMatrix=[adjMatrix ; adjCols (iv , :)] ;
end

end
end

APPENDIX K. ORGANISATION MANAGEMENT AND REPORTING STRUCTURES USING
GRAPH APPLICATIONS 486

f unc t i on [adjMatrix , vac t i v e] = ad jL i s tExt rac t (ad jL i s t , nvertex)
% .

% Extract a l l edges l i nked to a ver tex and return
% adjMatrix − subgraph in adjacency matrix format
% vac t i v e − Boolean l i s t o f a c t i v e v e r t i c e s
% can be converted to l i s t format i f r equ i r ed
% nvertex − ver tex number to proce s s
% .

% i n i t i a l i s e output
adjMatrix = [;] ;
nVer t i c e s=max(s i z e (ad jL i s t , 1) ,max(max(ad jL i s t))) ;
i f not ((nvertex>nVer t i c e s))
% s e t up blank adjacency matrix
adjMatr ixInter im=ze ro s (nVer t i c e s) ;
vac t i v e=ze ro s (1 , nVer t i c e s) ;
% s e t l im i t s to a c t i v e ver tex numbers
f o r nv=1: s i z e (ad jL i s t , 1)

nEdgesRow=s i z e (ad jL i s t (nv , :) , 2) ;
f o r ne=2:nEdgesRow

% end ver tex o f edge
mv=ad jL i s t (nv , ne) ;

% sk ip zero e n t r i e s as we l l as e n t r i e s not l i n k e d to s e l e c t d ver tex
i f not (mv==0)&& (mv==nvertex)
adjMatr ixInter im (nv ,mv)=1;

% keep track o f a c t i v e ver tex e n t r i e s
vac t i v e (nv)=1;
vac t i v e (mv)=1;
end

end
end
% disp ([’ va c t i v e : ’ , num2str (vac t i v e)])
% adjMatr ixInter im
% Add ac t i v e columns to output matrix

adjCols = [;] ;
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjCols=[adjCols , adjMatr ixInter im (: , i v)] ;
end

end
% Add ac t i v e rows to output matrix
% adjCols
f o r i v =1: nVer t i c e s

i f (vac t i v e (iv)==1)
adjMatrix=[adjMatrix ; adjCols (iv , :)] ;
end

end
end

K.13 File format for yEd graph display program (.tgf)

1 a
2 b
3 c
4 d
5 e
6 f
7 g
#
1 2
1 3
2 4
2 5
3 6
3 7

Appendix L

Marketing Management - Sample Documents

L.1 Marketing activity planning and status reporting

Figure L.1 shows a sample marketing activity planning sheet and figure L.2 shows the format of a mar-
keting action status report.

L.2 Marketing budgeting and income budget planning

Figure L.3 shows a sample marketing budget report which is used with probability estimates to forecast
business fee income.

L.3 Marketing budget according to project status

Figure L.4 taken from Puttergill [99] shows a typical project report indicating project marketing status.

487

APPENDIX L. MARKETING MANAGEMENT - SAMPLE DOCUMENTS 488

Figure L.1: GFJ Inc - Marketing activity planning sheet

APPENDIX L. MARKETING MANAGEMENT - SAMPLE DOCUMENTS 489

F
ig

u
re

L
.2

:
G

F
J

In
c.

-
Sa

m
pl

e
m

ar
ke

ti
ng

m
an

ag
em

en
t
ac

ti
on

st
at

us
re

po
rt

APPENDIX L. MARKETING MANAGEMENT - SAMPLE DOCUMENTS 490

F
ig

u
re

L
.3

:
G

F
J

In
c.

-
Sa

m
pl

e
m

ar
ke

ti
ng

m
an

ag
em

en
t
bu

dg
et

de
ri

ve
d

fr
om

co
nt

ro
l
re

po
rt

APPENDIX L. MARKETING MANAGEMENT - SAMPLE DOCUMENTS 491

F
ig

u
re

L
.4

:
P
ut

te
rg

il
l
-S

am
pl

e
co

rp
or

at
e

bu
dg

et
sh

ow
in

g
F
E
E

in
co

m
e

as
pe

r
pr

oj
ec

t
m

ar
ke

ti
ng

cl
as

si
fic

at
io

n

Bibliography and References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundation of Databases. Addison-Wesley Pub-
lishing Company, 1995. ISBN 0-201-53771-0.

[2] P. Albertyn and D. A. Fourie. Computerisation of plan office data: Directorate of National Roads.
In Annual Conference on Computers in Civil Engineering – Computers 86, Apr 1986. ISBN 0-7988-
3692-2.

[3] Sinan Si Alhir. UML in a nutshell - A Desktop Quick Reference. O’Reilly, 1998. ISBN 1-56592-448-7.

[4] Altova GmbH / Altova, Inc. XMLSpy - XML editor for modelling, editing, transforming, and de-
bugging XML technologies, 2006. URL http://www.altova.com/products/xmlspy/xml_editor.
html.

[5] Alvin A. Arens and James K. Loebbecke. Auditing: An Integrated Approach. Prentice-Hall Inc.,
Third edition, 1984. ISBN 0-13-051749-6.

[6] W. Armstrong. Dependency Structures of Database Relationships. In Proceedings of the IFIP
Congress, 1974.

[7] Ross Ashby. Introduction to Cybernetics. Chapman & Hall, 1964.

[8] Erik Aslaksen and Rod Belcher. Systems Engineering. Prentice Hall, 1991. ISBN 0-13-880402-8.

[9] Paolo Atzeni and Valeria De Antonellis. Relational Database Theory. The Benjamin/Cummings
Publishing Company, Inc., 1993. ISBN 0-8053-0249-2.

[10] Azzurri Limited. Database Modelling in Eclipse, 2006. URL http://www.azzurri.jp/en/
software/clay/.

[11] V. K. Balakrishnan. Schaum’s Outline of Theory and Problems of Graph Theory. Schaum’s Outline
Series McGraw–Hill, 1997. ISBN 0–07–005489–4.

[12] Kenneth J. Barlow. Professional Management for Consulting Engineers Volume I & II. Kenneth
J. Barlow Limited, Toronto, Ontario, 1972.

[13] Michael Barr. Introduction to closed-loop control, 2002. URL http://www.netrino.com/
Publications/Glossary/PID.html.

[14] John Beishon and Technology Foundation Course Team. Systems. The Open University Press,
1971. ISBN 335 02500 5.

[15] Simon Bennett, John Skelton, and Ken Lunn. Schaum’s Outline of UML. McGraw-Hill, 2001.
ISBN 0-07-709673-8.

[16] Ivan Bester and R.J. Koch. Risk Management (Risikobestuur). Course Notes, University of Stel-
lenbosch Business School, 1984.

[17] Prof. Carl Beucke. Computer Aided Drafting (CAD) Technology Course. Presented at the Depart-
ment of Civil Engineering at the University of Stellenbosch, July 2002.

[18] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modelling Language User Guide.
The Addison-Wesley Object Technology Series. Addison-Wesley, Rational Software Corporation,
1999. ISBN 0201571684.

492

http://www.altova.com/products/xmlspy/xml_editor.html
http://www.altova.com/products/xmlspy/xml_editor.html
http://www.azzurri.jp/en/software/clay/
http://www.azzurri.jp/en/software/clay/
http://www.netrino.com/Publications/Glossary/PID.html
http://www.netrino.com/Publications/Glossary/PID.html

BIBLIOGRAPHY AND REFERENCES 493

[19] Kenneth E. Boulding. General Systems Theory - The Skeleton of Science. Management Science, 2
(3):197–208, April 1956.

[20] Cobus Burgers. Supporting the Project Office through document management. In SAICE Division
of Information Technology Twenty-fifth Annual Symposium – Is IT Sustainable in Engineering?,
Sep 2003.

[21] Rory Burke. Project Management Planning & Control Techniques. Promatec International, Strat-
ford Upon Avon, Cape Town, third edition, 1999. ISBN 0–620–23414–8.

[22] William L. Chapman, A. Terry Bahill, and A.Wayne Wymore. Engineering Modelling and Design.
CRC Press, 1992. ISBN 0-8493-8011-1.

[23] Gary Chartrand and Ortrud R. Oellerman. Applied and Algorithmic Graph Theory. McGraw–Hill,
Inc., 1993.

[24] E. Codd. A Relational Model for Large Shared Databanks. In CACM, volume 37:6, June 1970.

[25] Corel Corporation. Corel WordPerfect Office X3 - Professional Edition - Paradox, 2006. URL
http://www.corel.com.

[26] Mercia Cronje. Engineering process model: Detection of cycles and solution of equations. Master’s
thesis, University of Stellenbosch, April 2006.

[27] C. J. Date. Introduction to Database Systems , Seventh Edition. Addison-Wesley, 2000. ISBN
0-201-38590-2.

[28] Dr. Wim De Villiers. Die Aspekte van Bestuur – Gencor Beperk Bestuurshandleidings. Gencor
Beperk, 1979.

[29] Deltek Systems Inc. Deltek software, 2006. URL http://www.deltek.com/.

[30] Klaus R. Dittrich, Umeshwar Dayal, and Alejandro P. Buchmann, editors. On Object-Oriented
Database Systems. Topics in Information Systems. Springer-Verlag, 1991. ISBN 3-540-53496-2.

[31] Decision Processes International (DPI). Decision Processes International - Leader in Critical Think-
ing, 2006. URL http://www.decisionprocesses.com.

[32] P. G. Du Plessis, editor. Applied Business Management. Kagiso Tertiary, 1996. ISBN 0–7986–3567–
3.

[33] P. G. Du Plessis, editor. Toegepaste Ondernemingsbestuur. Kagiso Tertiary, 1996. ISBN 0-7986-
3566-5.

[34] Alan F. Dutka and Howard H. Hanson. Fundamentals of Data Normalization. Addison-Wesley
Publishing Company, Boston, MA, USA, 1989. ISBN 0-201-06645-9.

[35] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems Third Edition.
Addison-Wesley, 2000. ISBN 0-201-54263-3.

[36] F.E. Emery and E.L. Trist. Socio-technical systems. Management Science, Models and Techniques,
2:83–97, 1960.

[37] A.B. Eygelaar and G.C. Van Rooyen. Optimal Scheduling Of Activities In An Engineering Project.
In SAISC Steel Conference, Johannesburg, 2006.

[38] Anton Burger Eygelaar. Modelling the Engineering Process. Technical Report I01/2004, University
of Stellenbosch, Department of Civil Engineering, November 2004.

[39] Len Fertuck. System Analysis and Design with Modern Methods. Business and Education Tech-
nologies, 1995. ISBN 0-697-16218-4.

[40] Ben Forta. SQL in 10 Minutes. SAMS Publishing, 2004. ISBN 0–672–32567–5.

[41] P. D. Gerber, P. S. Nel, and P. S. Van Dyk. Menslike Hulpbron Bestuur. International Thompson
Publishing (Southern Africa) (Pty) Ltd, 1998. ISBN 1 86864 071 X.

http://www.corel.com
http://www.deltek.com/
http://www.decisionprocesses.com

BIBLIOGRAPHY AND REFERENCES 494

[42] Ernest Glad and Hugh Becker. Activity–Based Costing and Management. Juta & Company Ltd.,
1994. ISBN 0 7021 2792 2.

[43] Hassan Gomaa. Designing Concurrent Distributed, and Real-Time Applications with UML. The
Addison-Wesley Object Technology Series. Addison-Wesley, 2000. ISBN 0-201-65793-7.

[44] Google Inc. Google and Google South Africa, 2006. URL http://www.google.com.

[45] Google Inc. Google Images, 2006. URL http://images.google.com.

[46] Michel Goossens, Frank Mittlebach, and Alexander Samarin. The LATEXCompanion. Addison–
Wesley Series on Tools and Techniques for Computer Typesetting. Addison–Wesley, 1994. ISBN
0–201–54199–8.

[47] South African Government. Engineering Professions Act, Act No. 46 of 2000. South African
Government, 2000.

[48] Jeanette Greeff. Derivation and Implementation of an Extended Entity-Relationship Data Model.
Master of science, University of Stellenbosch Department of Computer Science, December 1990.
Supervisor M H Rennhackkamp.

[49] Martin Green. Office tips from Martin Green. World Wide Web, 2006. URL http://www.
fontstuff.com/access.

[50] Arno Greyling. PROMAN Practice Management System, 2006. URL http://www.akron.co.za/.

[51] Johnathan Gross and Jay Yellen. Graph Theory and its Applications. CRC Press, 1999. ISBN
0–8493–3982–0.

[52] Johnathan Gross and Jay Yellen, editors. Handbook of Graph Theory. CRC Press, 2004. ISBN
1–58488–090–2.

[53] Duane Hanselman and Bruce Littlefield. The Student Edition of MATLAB. The MATLAB Cur-
riculum Series. Prentice Hall, 1997. ISBN 0–13–272550–9.

[54] Paul Helman. The Science of Database Management. Richard D. Irwin Inc., 1994. ISBN 0-256-
13438-3 ISBN 0-256-15881-9 (Intl. Ed.).

[55] Henk B. Heymans. The Business Approach to Auditing. Juta & Company Ltd., revision service 10,
2003 edition, 1983-2006. ISBN 0 7021 1428 6.

[56] Forrest Houlette. SQL A Beginner’s Guide. Osborne/ McGraw–Hill, 2001. ISBN 0–07–213096–2.

[57] W. Huhnt. Process Models as a Base for the Co-ordination of Construction Projects. In Interna-
tional Conference on Computing in Civil and Building Engineering, number 9th in International
Conference on Computing in Civil and Building Engineering, Taipei, Taiwan, April 2002.

[58] Wolfgang Huhnt. Consistent Models for Controlling Technical and Economic Processes. In Inter-
national Conference on Computing in Civil and Building Engineering, number 8th in International
Conference on Computing in Civil and Building Engineering, Stanford, USA, 2000.

[59] Wolfgang Huhnt. Process Modelling Basics. Technical Report Version 1.0 22.12.2004 11:55, Tech-
nical University of Berlin, 2004.

[60] Wolfgang Huhnt. Progress Measurement in Planning Processes on the Base of Process Models. In
Xth International Conference on Computing in Civil and Building Engineering,Weimar, Germany,
June 2004.

[61] Wolfgang Huhnt. Modelling Planning Processes. Technical Report Version 1.0,04.01.2005 14:05,
Technical University of Berlin, 2004.

[62] Wolfgang Huhnt, Michael Kluge, and Hans-Jürgen Laufer. Mapping Technical Processes into Stan-
dard Software for Business Support. In Construction Information Technology (CIT), Construction
Information Technology (CIT), Reikjavik, Iceland, 2000.

http://www.google.com
http://images.google.com
http://www.fontstuff.com/access
http://www.fontstuff.com/access
http://www.akron.co.za/

BIBLIOGRAPHY AND REFERENCES 495

[63] Keith Huxam and Phillip Haupt. South African VAT The Book. H&H Publications and Hedron
Tax Consulting and Publishing CC, 1991. ISBN 0-9583112-5-0.

[64] International Facilities Management Association IFMA. International facilities management, 2006.
URL http://www.ifma.org/.

[65] JabRef. JabRef open source Bibliography Reference Manager, 2006. URL http://jabref.
sourceforge.net/.

[66] J.C. Jones and Edited by Singleton, W.T. et al. The design of man-machine systems in The human
operator in complex systems. Taylor & Francis, 1967.

[67] Michail Kagioglou, Rachel Cooper, Ghassan Aouad, and Martin Sexton. Rethinking construction:
the Generic Design and Construction Process Protocol. Engineering Construction & Architectural
Management, 7 Issue 2:141, June 2000.

[68] Won Kim and Frederick H. Lochovsky, editors. Object-Oriented Concepts, Databases and Ap-
plications. ACM Press Frontier Series. ACM Press Addison-Wesley Publishing Company, 1989.
ISBN:0-201-14410-7.

[69] Helmut Kopka and Patrick W. Daly. Guide to LATEX. Addison–Wesley Series on Tools and Tech-
niques for Computer Typesetting. Addison–Wesley, fourth edition, 2003. ISBN 0–321–17385–6.

[70] Leslie Lamport. LATEXA Document Preparation System User’s Guide And Reference Manual.
Addison–Wesley Series on Tools and Techniques for Computer Typesetting. Addison – Wesley,
second edition, 1994. ISBN 0–201–52983–1.

[71] Jeff Lawrence. Computational management techniques for project management. In SAICE Division
of Information Technology Twenty-fifth Annual Symposium – Is IT Sustainable in Engineering?,
Sep 2003.

[72] Philip M. Lewis, Arthur Bernstein, and Michael Kifer. Databases and Transaction Processing.
Addison–Wesley, first edition, 2002. ISBN 0–201–70872–8.

[73] Seymour Lipschutz. Set Theory and Related Topics. Schaum’s Outline Series - McGraw-Hill Book
Company, 1964. ISBN 07-037986-6.

[74] Seymour Lipschutz. Schaum’s Outline of Essential Computer Mathematics. Schaum’s Outline Series
- McGraw-Hill Book Company, 1982. ISBN 0-07-037990-4.

[75] Paul Litwin, Ken Getz, and Mike Gilbert. Access 97 Developer’s Handbook. Sybex, third edition,
1997. ISBN 0–7821–1941–7.

[76] Paul Litwin, Ken Getz, and Mike Gilbert. Access 2002 Desktop Developer’s Handbook. Sybex, 2001.
ISBN 0–7821–4009–2.

[77] Paul Litwin, Ken Getz, and Mike Gunderloy. Access 2002 Enterprise Developer’s Handbook. Sybex,
2001. ISBN 0–7821–4010–6.

[78] Guy Macleod. Starting Your Own Business in South Africa. Oxford University Press, sixth edition,
1983. ISBN 0 19 570558 0.

[79] David Maier. The Theory of Relational Databases. Computer Science Press, 1983. ISBN 0-914894-
42-0.

[80] Ramon A. Mata-Toledo and Pauline K. Cushman. Schaum’s Outline of Fundamentals of SQL
Programming. Schaum’s Outline Series McGraw–Hill, 2000. ISBN 0–07–1359532–2.

[81] Fraidoon Mazda. Engineering Management. Addison–Wesley Longman Limited, Harlow, Essex,
England, first edition, 1998. ISBN 0–201–17798–6.

[82] Microsoft Corporation. Microsoft Access Database, 2006. URL http://office.microsoft.com/
en-gb/access/default.aspx.

[83] Microsoft Corporation. Microsoft Dynamics, 2006. URL http://www.microsoft.com/dynamics/
default.mspx.

http://www.ifma.org/
http://jabref.sourceforge.net/
http://jabref.sourceforge.net/
http://office.microsoft.com/en-gb/access/default.aspx
http://office.microsoft.com/en-gb/access/default.aspx
http://www.microsoft.com/dynamics/default.mspx
http://www.microsoft.com/dynamics/default.mspx

BIBLIOGRAPHY AND REFERENCES 496

[84] Minq Software AB. DbVisualizer, 2006. URL http://www.minq.se/products/dbvis/.

[85] Eric J. Naiburg and Robert A. Maksimchuk. UML for Database Design. The Component Software
Series. Addison–Wesley, 2001. ISBN 0–201–72163–5.

[86] Nehmer, Robert A. and Robinson, Derek. An algebraic model for the representation of accounting
systems. Annals of Operations Research, 71:179–198, 1997.

[87] John M. Nicholas. Project Management for Business and Engineering Principles and Practice.
Elsevier Butterworth Heinemann, 2004. ISBN 0-7506-7824-0.

[88] National Institute of Standards and Technology (NIST). Digital media formats, 2006. URL http:
//www.itl.nist.gov/div895/formats.html.

[89] Open University Mathematics Foundation Course Team. Relations, volume Correspondence text
Unit 19 of Mathematics Foundation Course. The Open University Press, 1971. ISBN 335 01018 0.

[90] Oracle Corporation. Oracle’s peoplesoft enterprise applications, 2006. URL http://www.oracle.
com/applications/peoplesoft-enterprise.html.

[91] P. J. Pahl. Information Technology for Civil Engineering. In Seminar on Engineering in Distributed
Environments, Stellenbosch. Department of Civil Engineering, University of Stellenbosch, October
2002.

[92] P. J. Pahl and R. Damrath. Mathematical Foundations of Computational Engineering. Springer,
2001. ISBN 3–540–67995–2.

[93] J. Paredaens, P. De Bra, M. Gyssens, and D. Van Gucht. The Structure of the Relational Database
Model. Springer-Verlag, 1989. ISBN 0-387-13714-9.

[94] O’Neill Patrick. Database Principles, Programming, Performance. Morgan Kaufmann Publishers,
1994. ISBN 1-55860-219-4.

[95] Ronald R. Plew and Ryan K. Stephens. SAMS Teach Yourself SQL in 24 Hours. SAMS Publishing,
third edition, 2003. ISBN 0–672–32442–3.

[96] PostgreSQL Global Development Group. PostgreSQL open source relational database system, 2006.
URL http://www.postgresql.org.

[97] Philip J. Pratt. A Guide to SQL. Thompson Information / Publishing Group, 1991. ISBN 0–
87835–669–X.

[98] Purdue University - OnePurdue Project. OnePurdue Initiative, 2006. URL http://www.purdue.
edu/onepurdue/.

[99] B. H. Puttergill. Computers as a Management Tool in a Consulting Engineering Practice. In Annual
Conference on Computers in Civil Engineering – Computers 86, April 1986. ISBN 0-7988-3692-2.
ISBN 0-7988-3692-2.

[100] Red Hat Inc. Red Hat Linux - The Fedora Project, 2006. URL http://www.redhat.com/.

[101] Martin H. Rennhackkamp. Database Application Development Analysts’ Manual. The Data Base
Approach Consultancy, The Database Consultancy cc. P. O. Box 5165, HELDERBERG 7135 Som-
erset West, 1990. ISBN 0-620-14913-2.

[102] Michel Robert. Strategy Pure & Simple. McGraw–Hill, first edition, 1993. ISBN 0–07–053131–5.

[103] James A. Robertson. An integrated, interactive professional practice management and accounting
information system. In 11th Annual Conference on Computers in Civil Engineering – Information
Systems in Civil Engineering, May 1989.

[104] James A. Robertson. A structural business model with the objective of improving profitability. The
Civil Engineer in South Africa, 32(10):393–397, Oct 1990. ISSN 0009-7845.

http://www.minq.se/products/dbvis/
http://www.itl.nist.gov/div895/formats.html
http://www.itl.nist.gov/div895/formats.html
http://www.oracle.com/applications/peoplesoft-enterprise.html
http://www.oracle.com/applications/peoplesoft-enterprise.html
http://www.postgresql.org
http://www.purdue.edu/onepurdue/
http://www.purdue.edu/onepurdue/
http://www.redhat.com/

BIBLIOGRAPHY AND REFERENCES 497

[105] Carla Rooseboom. The Management of Infrastructure and Buildings, focusing on the Management
of Office Buildings. Project report presented in partial fulfilment of the requirements for the de-
gree of Bachelors in Civil Engineering at the University of Stellenbosch S10/1997, University of
Stellenbosch, October 1997.

[106] Walldorf Germany SAP Aktiengesellschaft. SAP Business Software Systems, 2006. URL http:
//www.sap.com.

[107] Norman M. Scarborough and Thomas W. Zimmerer. Effective Small Business Management An
Entrepreneurial Approach. Prentice Hall, sixth edition, 2000. ISBN 0–13–080708–7.

[108] A.-W. Scheer. ARIS Business Process Modelling. Springer, third edition, 1999. ISBN 3–540–65835–
1.

[109] Christian Schenk. The MiKTeX project page, 2006. URL http://www.miktex.org/.

[110] Pieter Smit. Formal Business Model And Analysis Of Management System For Consulting Engineers
In Professional Practice. Project report presented in partial fulfilment of the requirements for the
degree of Bachelors in Civil Engineering at the University of Stellenbosch S9/2003, University of
Stellenbosch, December 2003.

[111] Softline Systems. Pastell payroll, 2006. URL http://www.pastel.co.za/payroll/index.asp.

[112] Softline VIP. VIP Payroll, 2006. URL http://www.vippayroll.co.za/.

[113] South African Association of Consulting Engineers. Standardised accounting system, 1993.

[114] SSH Communications Security. SSH Secure Shell, 2006. URL http://www.ssh.com/.

[115] S.K. Stanczyk. Theory and Practice of Relational Databases. Pitman, 1990. ISBN 0-273-03049-3.

[116] J A v B Strasheim. Department of Water Affairs and Forestry (DWAF) Community Water
Supply and Sanitation (CWSS) business process and workflow review. Technical Report AC-
TIONiT.10.20.50. Community water supply and sanitation process workflow report, Action IT
Innovation Fund Project, February 2003.

[117] J. A. v B. Strasheim. Facilities Management: A Civil Engineering Perspective. In Eighteenth
Annual Symposium on Information Technology in Civil Engineering – IT for Africa, Oct 1996.
ISBN 0-620-20657-8.

[118] J. A. v. B. Strasheim, J. D. Krige, and J. H. Greyling. Die Welkom Waterplan – ’n Hulpmiddel vir
Bestuur. In Transaksies van die Instituut van Munisipale Ingenieurs, 1990.

[119] The Eclipse Foundation. Eclipse - an open development platform, 2006. URL http://www.eclipse.
org/.

[120] The Mathworks Inc. MATLAB, 2006. URL http://www.mathworks.com/.

[121] The PostgreSQL Global Development Group. PostgreSQL 7.4.2 Documentation. The PostgreSQL
Global Development Group, 2004.

[122] J.G. Van der Merwe, R.B. Appleton, P.A. Delport, R.W. Furney, D.P. Mahoney, and M. Koen.
South African Corporate Business Administration. Juta & Co. Ltd., 1995-2006. ISBN 0 7021 3326
4.

[123] Rias J. Van Wyk. Panoramic Scanning and the Technological Environment. Technovation, 2:
101–120, 1984.

[124] Ludwig Von Bertalanffy. General Systems Theory, 1968. URL http://www.panarchy.org/
vonbertalanffy/systems.1968.html.

[125] A. P. C. Warner. Implementation of a marketing strategy for GFJ Inc. Technical report, GFJ Inc.,
April 1989.

[126] Wikipedia. Wikipedia, the free online encyclopedia, 2006. URL en.wikipedia.org.

http://www.sap.com
http://www.sap.com
http://www.miktex.org/
http://www.pastel.co.za/payroll/index.asp
http://www.vippayroll.co.za/
http://www.ssh.com/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.mathworks.com/
http://www.panarchy.org/vonbertalanffy/systems.1968.html
http://www.panarchy.org/vonbertalanffy/systems.1968.html
en.wikipedia.org

BIBLIOGRAPHY AND REFERENCES 498

[127] Warren J. Wittreich. How to Buy / Sell Professional Services. Harvard Business Review, March–
April 1966.

[128] WSP Group. WSP Consulting, Environmental, Facilities Management, Projects and Energy Man-
agement, 2006. URL http://www.wspgroup.co.za/.

[129] Laurie Young. Marketing the Professional Services Firm. John Wiley & Sons, Ltd, 2005. ISBN
0-470-01173-4.

[130] yWorks - The Diagramming Company. yed - JavaTM Graph Editor, 2006. URL http://www.
yworks.com.

http://www.wspgroup.co.za/
http://www.yworks.com
http://www.yworks.com

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Management systems theory and engineering process modelling techniques
	Overview of Part I
	Set Theory
	Introduction
	Sets, Elements of Sets and Subsets
	Definition of a set
	Defining elements of sets
	Defining families of elements
	Universal and existential quantifiers
	Equality of sets
	Subsets of a set
	Comparable sets
	Sets of sets
	Power set
	Universal set
	Disjoint sets
	Partition of a set

	Set Operations
	Union of sets
	Intersection of sets
	Set difference
	Complement of a set

	Sets of Numbers
	Integer numbers
	Natural numbers
	Rational and irrational numbers
	Real numbers
	Number inequalities
	Absolute value
	Intervals on sets of numbers
	Bounded and unbounded sets of numbers

	MATLAB implementation of Set Operations

	Relations and Mappings
	Introduction
	Ordered pair
	Cartesian product
	Unary relations
	Binary relations
	Heterogeneous binary relation
	Homogeneous binary relation
	Properties of relations
	Totality of a relation on A and B
	Uniqueness of a relation on A and B
	Relational diagram
	Types of relations
	Identity relation
	Inverse relation
	Composition
	Equivalence relation
	Equivalence class
	Partitioning by equivalence
	Quotient set

	Mappings
	Mapping notation
	Image of an element
	Arrow diagram
	Types of mappings

	Order relations and ordered sets
	Countability and cardinality
	Cardinal numbers and finite and infinite sets
	Operations on cardinal numbers
	Countable sets and properties of countable sets
	Comparison of and ordering of cardinal numbers
	Cardinality of the set of real numbers
	Cardinality of Cartesian products of the set of real numbers

	Closure of a homogeneous binary relation
	Reflexive closure
	Symmetric closure
	Powers of a relation
	Stability index
	Transitive closure
	Reflexive transitive closure
	Reflexive symmetric transitive closure

	Algebra of homogeneous binary relations
	Graphical representation
	Special relations
	Equality and inclusion
	Binary operations

	MATLAB implementation of Relation Operations

	Graph Theory
	Introduction
	Graphs and Directed graphs
	Graphs
	Graph isomorphism
	Subgraphs
	Directed graphs
	Definition of a directed graph
	Properties

	Degrees, indegrees and outdegrees
	Equality and inclusion
	Adjacency matrix graph representation

	Graph representation and manipulation
	Adjacency matrices
	Incidence matrices

	Structure of graphs
	Paths and cycles in directed graphs
	Connectedness of directed graphs
	Acyclic graphs
	Simple acyclic graphs and trees

	Rooted graphs and rooted trees
	Root
	Rooted graphs
	Acyclic rooted graphs
	Rooted trees
	Forest of rooted trees
	Search tree

	Depth-first search
	Depth-first search for trees and forests
	Pre-order and post-order numbering
	Classification of edges
	Depth-first search algorithm
	Depth-first search example

	MATLAB implementation of basic graph functionality

	Systems Theory
	Introduction
	Systems concepts and terminology
	System structure
	System function and behaviour
	Control of systems
	System performance measurement
	Types of systems
	Classification of systems

	System laws
	Formal specification of systems
	Formal system structure definition
	Formal system function definition
	Basic example of formal system structure and function modelling

	MATLAB implementation of basic system function example
	System analysis
	System design
	Business enterprises and business enterprise systems
	Business systems - structural models
	The production process
	Business systems supporting business operations
	Business management systems - structural models

	Formulation of required business model structure and functionality
	Typical business object classification structures
	Conceptual model of system functionality to process business objects

	Relational Database Theory
	Introduction
	Database System Concepts and Architecture
	Data Models, Schemas and Instances
	DBMS Architecture
	Data Modelling Techniques

	Relational Data Model, Constraints and Relational Algebra
	Relational Model Concepts
	Tabular representation of a relation
	Set theoretic Formulation of a Relational Database
	The structural properties and characteristics of a relation

	Candidate keys and Primary key of a Relation
	Prime Attributes
	Foreign Keys
	Properties and characteristics of keys of relations

	Key constraints
	Functional Dependencies in Relations of Relational Databases
	Full Functional Dependencies
	Partial Functional Dependencies
	Transitive Functional Dependencies

	Database normalisation and Design
	The data model
	Insertion, Deletion and Update Operations on Relations
	Inserting a Tuple into a Relation table
	Deleting a Tuple from a Relation table
	Updating a Tuple of a Relation Table

	Specification of Attribute Domains
	Relational Algebra, Calculus and Relational Operations
	The Selection Operation
	The Projection Operation
	Tuple Concatenation Operation

	Set Operations on Relations
	Set Union Operation
	Set Difference Operation
	Set Intersection Operation
	Set Cartesian Product Formation Operation
	The Join Operation
	Relation and Attribute Rename Operation
	Grouping and Aggregation Operations

	Relational Calculus
	Tuple Relational Calculus
	Domain Relational Calculus
	Relational Algebra and Relational Calculus

	Structured Query Language (SQL)
	The database normalisation process
	The First Normal Form
	The Second Normal Form
	The Third Normal Form
	The Boyce-Codd Normal Form
	The Fourth Normal Form

	Database Transaction Processing
	Additional reference material

	Management models and techniques - development technology demonstration
	Overview of Part II
	Relational Algebra MATLAB Tools
	MATLAB boolean matrix relational algebra package (toolbox)
	MATLAB Relational Algebra Tools Code

	Literal String Processing MATLAB Functionality
	Engineering Process Model
	Introduction
	Engineering process model, components and relations
	Components of the model
	Relations in the set of Tasks
	Step schedule of tasks
	Relations in the sets of Persons, Tools and Datasets
	Order relation in the set of Tasks

	Specification of the process model
	Task-Dataset relationships
	Task-Person relationships
	Dataset-Tool relationships

	Example A: Consulting engineering business process model
	Relations computed from specified process model relations
	Relations deduced by transposing the specified relations
	Relations deduced by forming the union of all three Dataset-task relations
	Relations computed between persons and datasets
	Relations deduced by forming the union of the person - data and data - person relations
	Relations computed using relations specified between persons and tools used by persons
	Relations computed using relations specified between tasks and tools used to execute tasks
	Relations deduced from dataset requires tool relation
	Computing the logical sequence of tasks
	Computing person loading
	Computing tool loading
	Computing dataset history

	Process task specification reporting for the process model
	Example B: Data evolution status value processing for process model
	Process model set specification
	Person- Task relation specification
	Task - Data specification
	Computed basic relations
	Computing task sequence
	MATLAB implementation of process model with status settings
	MATLAB code for Engineering Process Model Example

	Data file formats
	Engineering Process Model - Figures

	Representing and Processing management structure using graph applications
	Introduction
	Typical Management Reporting Tree Structure
	Testing of the logic and integrity of the management structure
	Converting from adjacency matrix format to adjacency list format
	Depth first search and tree structure for a given graph
	Inserting sub management structures into larger structures
	Extracting subgraphs of vertices linked to a selected vertex
	Management/ reporting structure - tree analysis examples
	Basic example
	Larger more realistic example

	Determining connectivity of vertices in graphs to determine tree vertex links for roll up of reports
	Report data roll up using adjacency matrices

	Engineering Process Model: Database development, processing and report generation
	Introduction
	Database demonstration system overview
	Client-server configuration
	Network configuration

	Defining the database structure
	Azzurri Clay XML DTD Specification file
	Database setup SQL statements
	PostgreSQL Database Reference
	Populating the database with data
	Server database verification

	Microsoft Access Database Reference
	Access data import process
	Database schema definition file
	Database program to import data from database server

	Reporting using Microsoft Access
	Reporting using Microsoft Excel
	PLEP application program for Engineering Process Model
	Importing database data using the Java JDBC-ODBC bridge
	SQL Programming for reports and SQL functionality used
	PostgreSQL conversion functions
	Microsoft Access data conversion
	SQL Query Processing tips
	SQL Queries for S-Curve presentation

	Using Microsoft Data Access Pages
	Conclusion and recommendations

	Conclusion
	Conclusions and Recommendations
	Conclusions
	Recommendations

	Addendum: Identification of system functionality to provide support for management functions
	Overview of Part IV
	Business strategy, long term planning and general management
	Business Strategy Concepts and Strategy development
	Elements of a business which reflect strategy
	Physical indicators of the direction and `look' of an enterprise
	Strategic areas comprising an organisation
	Maintaining a strong and healthy strategy
	Articulating the business concept of the enterprise
	Operational objectives
	Developing strategic business models

	General Management
	Mechanical aspects of general management
	Dynamic aspects of management - activities and processes
	Communication

	Conclusion and recommendation

	Marketing, promotion and public relations management
	Introduction to professional services marketing management
	Differences between consumer product marketing and professional services marketing
	The nature of professional services marketing
	Business models for marketing management
	Business objects relating to marketing management
	Business processes relating to marketing management

	Marketing investigation, environmental scanning and forecasting
	Corporate/enterprise requirements
	Environmental scanning and forecasting
	Marketing research and market research
	Market segmentation

	Strategic planning for marketing
	Marketing activity planning and budgeting
	Project phases
	Organising for marketing
	Marketing leading
	Coordinating of marketing activities
	Controlling marketing activities
	Outcomes and products of the marketing process

	Professional Services Enterprise Public Relations and Management
	Investigation and forecasting for public relations
	Planning, estimating and budgeting for enterprise public relations
	Organising for public relations
	Activities and processes
	Leading, coordinating, controlling and communicating public relations activities and processes

	Conclusion and recommendations

	Finance, Bookkeeping and Auditing
	Introduction to professional service business accounting
	Registration and recording processes
	Project registration
	Debtor registration
	Creditor registration
	Time keeping and recording
	Disbursement recording and costing rates

	Work in process
	Professional time Work in Process
	Disbursement Work in Process
	Work in process management

	Professional Services Invoices
	Definition of an invoice
	Management of the invoicing cycle
	Responsibility for issuing of invoices

	Professional Service Invoice Specification
	Value Added Tax (VAT)
	Accounting records and reporting on invoicing
	The debtor cycle
	Credit notes and cancelling of invoices
	Internal invoicing to personnel

	Personnel remuneration and payroll processing
	Bookkeeping
	Accounting general ledger structuring and format
	The role and use of the general ledger in accounting
	Accounting system model
	Accounting software implementation

	Processing orders for materials, goods and services
	Professional practice finance
	Auditing
	Conclusion and recommendations

	Personnel Management
	Business objects for personnel management
	High level logical personnel management objects
	Personnel management objects

	Personnel management processes
	Payroll management systems
	Personnel Debtors
	Personnel Creditors
	Conclusions and recommendations

	Production
	Introduction
	Projects and project management
	Project management terminology
	Production management business objects
	Project management processes
	Functionality required of a project management system for professional services
	Software implementation
	Time Management
	Projects for administration management
	Conclusions and recommendations

	Facilities and Document Management
	Introduction to Facilities Management for the Engineering Services Business
	Models for facility management
	Business objects for facility management
	Definition of business artefacts and business objects

	Management disciplines which relate to business object facility management
	Management aspects and business artefacts
	Aspects of facilities management activities and processes
	Operations for office spaces in buildings
	Monitoring and managing building subsystems
	Maintenance
	Risks and exceptional events
	Health and safety
	Feedback from the operational environment to the planning and design environment

	Software Implementation
	Asset register

	Document management
	Business objects for document management
	Document management business processes

	Conclusions and recommendations

	Knowledge and Information Management
	Introduction to knowledge management
	Models for business knowledge management
	Business objects for knowledge management

	Knowledge and information for project execution
	Protecting business artefacts against misuse
	Conclusions and recommendations

	Logistics
	Introduction to logistics for the professional service business enterprise
	Models for logistics management
	Business objects for logistics management
	Professional Service Business Logistics Activities and Process
	Inbound logistics
	Outbound logistics

	Client Project Logistics
	Supplier management
	Materials control

	Conclusions and recommendations

	Administration
	Introduction to the administrative function
	Models for administrative management
	Business Objects and Business Administration
	Interaction between the administrative processes and other business functions
	Business Strategy and Policy
	Marketing Administration
	Financial Administration
	Personnel Administration
	Facilities Administration
	Logistics Administration Function
	Project Administration Function

	Systems support for administrative management
	Administrative Function Reporting Requirements
	Conclusions and recommendations

	Risk Management
	Introduction to risk management for the professional service business enterprise
	Models for risk management
	Business objects and risk management
	Risk management activities and processes
	Risk identification
	Risk analysis and quantification, Risk allocation and control
	Business function risk analysis, quantification, allocation and control
	Business infrastructure risk quantification, allocation and control
	Risk control
	Risk avoidance and risk reduction
	Risk financing, retention, transfer and insurance

	Financial risk management processes
	Identification of financial risks
	Financial risk analysis, quantification, allocation and control

	Project Risk Management Processes
	Project risk identification
	Project risk analysis and quantification
	Evolution of Risk Through Project Life Cycle
	Project Risk Allocation and Insurance

	Disaster Recovery Planning
	Risk management manual and standard report contents
	Conclusions and recommendations

	Practice Management Systems
	ProMan by Akron Software
	Systems by Deltek Inc.
	SAP
	Dynamics / Business Solutions / Great Plains by Microsoft
	PeopleSoft and JD Edwards by Oracle
	Miscellaneous Other Systems

	Conclusions on Addendum

	Appendices, Bibliography and References
	Appendices
	MATLAB implementation of set operations
	MATLAB implementation of set functions
	MATLAB implementation of relation operations
	Relation operations programmed in MATLAB

	MATLAB implementation of graph operations
	MATLAB System Function Example
	MATLAB Literal String Processing Functionality
	Engineering Process Model
	Engineering Process Model Example - MATLAB Code
	MATLAB Relational Algebra Functionality
	Process model database output MATLAB function
	Graph data formats used by the yEd program
	Database file transfer format
	MATLAB implementation of process model with status settings

	Process Model: Person-Task and Person-Data Graphs
	Engineering Process Model Graphical Output Example - MATLAB Code
	Process model graphical data output MATLAB function

	Process Model: Task sequence using data status
	Engineering Process Model Example with data status - MATLAB Code

	Engineering Process Model Database
	Eclipse Development software reference
	Eclipse Azzurri Clay Eclipse Plugin for Database Modelling
	Azzurri Clay XML DTD Specification file
	Database setup SQL statements
	PostgreSQL Database Reference
	Engineering Process Model - Sample PostgresSQL Database Data Listing
	Microsoft Access Database Reference
	Access data import process
	Database schema definition file
	Access VBA code for data import
	Database program to import data from database server

	PostgreSQL - Importing data into database
	Importing database data using the Java JDBC-ODBC bridge
	Database application SQL functionality availability and usage
	SQL Queries for S-Curve presentation

	Using Microsoft Data Access Pages

	Organisation management and reporting structures using graph applications
	Typical Management Reporting Tree Structure
	Converting from adjacency matrix format to adjacency list format
	Depth first search and tree structure for a given graph
	Depth First Search applied to reporting graph structures
	Inserting sub management structures into larger structures
	Extracting sub graphs linked to selected nodes
	Graph adjacency matrix to list conversion
	Graph adjacency list sub graph extraction

	Management/ reporting structure - tree analysis examples
	Basic example
	Larger more realistic example

	Determining connectivity of vertices in graphs e.g. to determine tree vertex links for roll up of reports
	Report data roll up using adjacency matrices
	Theoretical Example using topological sorting and sub matrix extraction
	Theoretical Example - Using graph adjacency list processing
	Larger example with numerical values
	Larger example with string literal values concatenated in accumulation process

	Graph sub tree connectivity extraction
	Multiple sub tree connectivity extraction
	Sub-tree extraction MATLAB functions
	File format for yEd graph display program (.tgf)

	Marketing Management - Sample Documents
	Marketing activity planning and status reporting
	Marketing budgeting and income budget planning
	Marketing budget according to project status

	Bibliography and References

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	Appendix K

