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ABSTRACT 

The expected peak water demand in a water distribution system (WDS) is an 

important consideration for WDS design purposes. In South Africa the most 

common method of estimating peak demand is by multiplying the average 

demand by a dimensionless peak factor. A peak factor is the ratio between the 

maximum flow rate (which refers to the largest volume of flow to be received 

during a relatively short time period, say   , expressed as the average volume 

per unit time), and the average flow rate over an extended time period. 

The magnitude of the peak factor will vary, for a given daily water demand 

pattern, depending on the chosen value of   . The design guidelines available 

give no clear indication of the time intervals most appropriate for different peak 

factor applications. It is therefore important to gain a better understanding 

regarding the effect of    on the derived peak factor. 

A probability based end-use model was constructed as part of this study to 

derive diurnal residential indoor water demand patterns on a temporal scale of 

one second. These stochastically derived water demand patterns were 

subsequently used to calculate peak factors for different values of   , varying 

from one second to one hour. 

The end-use model derived the water demand patterns by aggregating the 

synthesised end-use events of six residential indoor end-uses of water in terms 

of the water volume required, duration and the time of occurrence of each 

event. The probability distributions describing the end-use model parameters 

were derived from actual end-use measurements that had previously been 

collected in a noteworthy North-American end-use project (Mayer et al., 1999). 

The original comprehensive database, which included water measurements 

from both indoor and outdoor end-uses, was purchased for use in this project. 

A single execution of the end-use model resulted in the synthesised diurnal 

water demand pattern for a single household. The estimated water demand 

pattern for simultaneous water demand by groups of households was obtained 
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by adding individual iterations of the end-use model, considering group sizes of 

between one and 2 000 households in the process. A total of 99 500 model 

executions were performed, which were statistically aggregated by applying the 

Monte Carlo method and forming 4 950 unique water demand scenarios 

representing 29 different household group sizes. For each of the 4 950 water 

demand scenarios, a set of peak factors was derived for eight selected    

values. 

The end-use model presented in this study yielded realistic indoor water 

demand estimations when compared to publications from literature. In 

agreement with existing knowledge, as expected, an inverse relationship was 

evident between the magnitude of the peak factors and   . The peak factors 

across all time intervals were also found to be inversely related to the number of 

households, which agreed with other publications from literature. As the number 

of households increased, the degree to which the peak factor was affected by 

the time intervals decreased. 

This study explicitly demonstrated the effect of time intervals on peak factors. 

The results of this study could act as the basis for the derivation of a practical 

design guideline for estimating peak indoor flows in a WDS, and the work could 

be extended in future to include outdoor water demand and sensitivity to WDS 

pressure.
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OPSOMMING 

Die verwagte water spitsaanvraag is ‘n belangrike oorweging in die ontwerp van 

‘n  waterverspreidingsnetwerk. Die mees algemene metode in Suid Afrika om 

spitsaanvraag te bereken is deur die gemiddelde wateraanvraag te 

vermeningvuldig met ‘n dimensielose spitsfaktor. ‘n Spitsfaktor is die verhouding 

tussen die maksimum watervloei tempo (wat verwys na die grootste volume 

water wat ontvang sal word tydens ‘n relatiewe kort tydsinterval,   , uitgedruk 

as die gemiddelde volume per tyd eenheid), en die gemiddelde watervloei 

tempo gedurende ‘n verlengde tydsinterval. Die grootte van die spitsfaktor sal 

varieer vir ‘n gegewe daaglikse vloeipatroon, afhangende van die verkose    

waarde. Die beskikbare ontwerpsriglyne is onduidelik oor watter tydsintervalle 

meer geskik is vir die verskillende spitsfaktor toepassings. Daarom is dit 

belangrik om ‘n beter begrip te verkry ten opsigte van die effek van    op die 

verkrygde spitsfaktor.  

‘n Waarskynliksheidsgebaseerde eindverbruik model is opgestel om  

deel te vorm van hierdie studie, om daaglikse residensiële binnenshuise 

wateraanvraag patrone af te lei op ‘n temporale skaal van een sekonde. Die 

stogasties afgeleide wateraanvraag patrone is daarna gebruik om die verskeie 

spitsfaktore te bereken vir verskillende waardes van   , wat varieer vanaf een 

sekonde tot een uur. 

Die eindverbruik model stel die daaglikse vloeipatroon van een huis saam deur 

die eindeverbruik gebeure van ses residensiële binnenshuise eindverbruike 

saam te voeg in terme van the vereiste water volume en die tyd van voorkoms 

van elke gebeurtenis. Die waarskynliksheids distribusie wat die eindverbruik 

model parameters omskryf is verkry van werklike gemete eindverbruik waardes, 

wat voorheen in ‘n beduidende Noord-Amerikaanse eindverbruik projek 

(Mayer et al. 1999) versamel is. Die oorspronklike en omvattende databasis, 

wat gemete waardes van binnenshuis en buite water verbruik ingesluit het, is 

aangekoop vir gebruik gedurende hierdie projek. 
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‘n Enkele uitvoering van die eindverbruik model stel gevolglik ‘n daaglikse 

wateraanvraag patroon saam vir ‘n elkele huishouding. Die wateraanvraag 

patroon vir gelyktydige water verbruik deur groepe huishoudings is verkry deur 

individuele iterasies van die eindverbruik model statisties bymekaar te tel met 

die Monte Carlo metode, terwyl groep groottes van tussen een en 2 000 

huishoudings in die proses oorweeg is. ‘n Totaal van 99 500 model uitvoerings 

is gedoen, wat saamgevoeg is om 4 950 unieke watervraag scenarios voor te 

stel, wat verteenwoordigend is van 29 verskillende huishouding groep groottes. 

Vir elkeen van die 4 950 watervraag senarios, is ‘n stel spitsfaktore afgelei vir 

agt verkose    waardes. 

Die eindverbruik model aangebied in hierdie studie lewer ‘n realistiese 

binnenshuise wateraanvraag skatting, wanneer dit vergelyk word met verslae in 

die literatuur. Ooreenkomstig met bestaande kennis is ‘n sterk inverse 

verhouding sigbaar tussen die grootte van die spitsfaktore en   . Dit is ook 

gevind dat die spitsfaktore oor al die tydsintervalle ‘n inverse verband toon tot 

die aantal huishoudings, wat ooreenstemmend is met ander publikasies in die 

literatuur. Soos die aantal huishoudings toeneem, het die mate waartoe die 

spitsfaktor geaffekteer is deur die tydsintervalle afgeneem.  

Hierdie studie toon duidelik die effek van tydsintervalle op spitsfaktore.  

Die resultaat van hierdie studie kan dien as basis om praktiese  

ontwerpsriglyne te verkry in die skatting van binnenshuise spitsvloei in ‘n 

waterverspreidingsnetwerk, gegewe dat die werk in die toekoms uitgebrei kan 

word om ook buitenshuise waterverbruik in te sluit, asook sensitiwiteit tot druk in 

die waterverspreidingsnetwerk. 
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1. INTRODUCTION 

1.1. Background 

The flow rate in a water distribution system (WDS) varies constantly, driven by 

fluctuating water demand. Water demand can be broken down into end-uses, 

where an end-use is a point where water is extracted from a WDS. In a 

residential setting, examples of end-use include taps, toilets, showers, baths, 

washing machines, dishwashers et cetera. Each time an end-use event occurs, 

it causes a flow rate in the WDS. When many end-uses occur simultaneously 

(representing peak demand), this results in a relatively large flow rate. Peak 

water demand is an important consideration in WDS design and analysis, since 

it is a factor, for example, when determining the capacity of pipelines and other 

infrastructure. 

Various peak water demand estimation methodologies are available from 

design guidelines and research reports. In South Africa the most commonly 

used method to estimate peak demand is by means of a dimensionless peak 

factor (PF). The PF method involves calculating peak demand by multiplying the 

average water demand by a PF. The ratio between the peak water flow rate 

(which refers to the largest volume of flow to be received during a relatively 

short time period, say   , expressed as the average volume per unit time), and 

the average water flow rate over an extended time period, is defined as the PF. 

The magnitude of a PF is dependent on the value of    that is used during the 

computation of the PF. Due to flow rate variations throughout the day, the 

average peak flow rate determined over a ten second time interval may be 

higher, when compared to the average peak flow rate determined over a five 

minute time interval, for example. Figure 1.1 illustrates a possible variation of 

instantaneous flow rate for a hypothetical residential area with an average 

demand of 432     . The highest five minute time interval within a 24 hour 

record period is depicted, together with the averaged flow rates during the peak 

ten second and five minute time intervals, as well as the average flow rate over 
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24 hours, represented by respective horizontal lines. From the figure, it is clear 

that the ten second peak factor (                ⁄     ) would be larger 

than the five minute peak factor (                 ⁄     ). If the    selected 

were too long, then the PF might not be representative of the peak water 

demand desired for the particular WDS analysis. 

 

Figure 1.1: Typical diurnal flow rate variation of the highest 5 minute time interval 

1.2. Terminology 

Some studies use different terms to describe similar concepts. The terms 

defined below are used with their stated meaning in this thesis. The definitions 

are not comprehensive, but ensure consistency and clarity.  

1.2.1. Water Demand 

Billings and Jones (2008) defines water demand as the “total volume of water 

necessary or needed to supply customers within a certain period of time”. The 

same definition is applied in this study. 
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1.2.2. Residential Water Demand 

Residential water demand describes the water required per time unit by 

residential consumers for indoor and outdoor use. The term “residential” in this 

study refers to single family households. Domestic is another term used in 

literature to describe residential. 

1.2.3. Residential Water Consumption 

Residential water demand is not always metered or billed, although metering 

and billing is common in South Africa. Water consumption is the water flow rate 

that is actually utilised by consumers per time unit. Water consumption is 

derived from measured values obtained from a water meter or municipal 

treasury system. Monthly consumer water meter data has been used as the 

basis for various research projects locally over the past two decades 

(Jacobs and Fair, 2012).  

1.2.4. Peak Factor 

A PF is the ratio between the maximum water flow rate during a relatively short 

time period, say   , and the average water flow rate during an extended 

observed period. The peak flow represents the period when maximum, or 

relatively high, flow rate occurs. In some cases the average annual daily 

demand (AADD) is used for the extended period; however, in this study, the 

extended period used as a basis for calculating the PF is taken as the average 

demand over one day. 

1.2.5. End-use 

An end-use of water is defined by Jacobs (2004) as a point (device, element,  

or fixture) where water is released from the pressurised water supply system  

to atmospheric pressure. This definition also applies to this study. The  

term micro-component is also used in literature to describe an end-use 

(Butler and Memon, 2006). 
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1.2.6. Diurnal Pattern 

The cycle that repeats over a 24 hour period is termed the diurnal pattern. 

1.3. Problem Statement 

A commonly used South African guideline, the “Red Book” (Council for 

Scientific and Industrial Research [CSIR], 2003) relates instantaneous PFs to 

equivalent erven (ee), where 1 ee has an AADD of       . The CSIR (2003) 

lacks a definition describing the time interval,   , that constitutes an 

instantaneous PF. Furthermore, the CSIR (2003) recommends applying an 

instantaneous PF regardless of the number of ee. This assumption is 

considered to be crude. 

The diurnal water demand from a small number of consumers tends to be highly 

variable. It is expected that a relatively short time interval would be required to 

indentify peak events in cases with highly variable flow rates. Conversely, the 

aggregated water demand of many consumers tends to have a more regular 

diurnal pattern with less variability. Therefore, the peak event for a large number 

of consumers may possibly be represented adequately by using a longer time 

interval than that used for a small number of consumers. 

A study by Booyens (2000) used measured water consumption data to 

investigate how the PFs changed, using different time intervals, for three 

residential areas consisting of 69, 444, and 794 stands, respectively. The study 

concluded that a time interval of 60 minutes could be used to determine the PF 

for residential areas that are greater than 100 ee, while a time interval of 

15 minutes would be applicable to residential areas smaller than 100 ee. 

Booyens (2000) confirmed that the number of ee, or size of the study area, 

notably affected the PF. 
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1.4. Motivation 

The concept of associating residential area sizes to PFs corresponding to 

particular time intervals, as Booyens (2000) suggested, would benefit by 

considering more than three residential area sizes. A greater number of 

different residential area sizes would enable a better understanding of the 

degree to which the PF changes with different time intervals and residential 

area sizes. 

Limited research has been done to investigate the effect that    have on PFs for 

different residential area sizes. A possible reason for this is that an empirical 

investigation would be very costly. Data loggers would need to record the water 

consumption of homogeneous residential areas of different sizes individually, 

with these smaller areas preferably nested within the larger areas. The logging 

frequency would also need to be very high to capture water flow rates over 

short time intervals of (say) one second. 

An alternative to an empirical investigation would be to derive theoretical PFs by 

generating daily residential water demand profiles for individual households on 

a high resolution temporal scale. End-use models are based on a “bottom-up” 

approach, and may be a useful tool to build water demand profiles for this 

purpose. 

The advantage of associating different time interval PFs with residential area 

sizes is that this may make it possible to design WDS infrastructure by choosing 

an applicable    for the PF corresponding to a residential area size, instead of 

using an instantaneous PF in all cases, as suggested by CSIR (2003). Such a 

method should result in more efficient WDS design. 
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1.5. Research Objectives 

The following research objectives were set for this study: 

 To conduct a comprehensive literature review of previous work done  

on end-uses of water, water demand modelling (in particular end-use  

and stochastic models), as well as peak water demand estimation 

methodologies, with a focus on peak factors. 

 To construct a computer based stochastic end-use model that estimates 

daily residential water demand for a single household on a temporal scale 

of one second. 

 To populate the model parameters in the form of probability distributions 

based on recorded water consumption data, and to establish which 

standard distributions fit these best. 

 To use stochastically generated diurnal water demand patterns from the 

end-use model to calculate PFs for differently sized areas by iteratively 

adding the water demand for individual households and using different time 

intervals in the PF calculation. 

1.6. Delineation and Limitations 

A typical urban water demand profile consists of water losses, industrial, 

commercial, institutional, and residential water demand. Residential water 

demand is therefore only one component of the total water demand that a WDS 

may need to cater for. This study focuses only on residential indoor water 

demand; the other components are beyond the scope of this study. 

Residential water demand can be separated into indoor and outdoor water 

demand; together with leakage, which may occur both indoors and outdoors. 

Leakage is known to be site specific (Roberts, 2005), and the most notable leak 

instances flow continuously. Leaks would thus contribute to the base flow by 

increasing the water demand (ordinates of the demand pattern) at all abscissa 

without impacting the actual pattern.  

Stellenbosch University http://scholar.sun.ac.za



 

7 

Outdoor water demand is typically driven by seasonal changes and is highly 

dependant on climatic and geographical characteristics (Heinrich, 2007). This 

study considers only indoor demand which is non-seasonal, and excludes 

outdoor water demand and leakage. This focus on indoor consumption requires 

justification. A similar approach was adopted by some of the leading 

researchers in the field of end-use modelling (Blokker et al., 2008; 

Buchberger et al., 2008). In some urban metropoles such as Brisbane in 

Australia, permanent water conservation measures restrict outdoor use severely 

(Queensland Water Commission, 2012). Various levels of restriction on outdoor 

use have also been in place in the City of Cape Town (Jacobs et al., 2007). In 

contrast to outdoor use, water used indoors could be considered a basic 

necessity. According to White et al. (2004) outdoor water demand presents a 

general limitation to end-use analysis since consumer behaviour dominates 

outdoor demand, in contrast with the technical efficiency of equipment, which 

determines indoor demand. 

Water flow rates in a WDS are dependant not only on the water demand, but 

also on the pressure in the system. If the WDS pressure were relatively low 

then a limited flow rate would be available, which might reduce the water 

consumption. There are benefits of describing peak flow rates as a function of 

pressure, but that is beyond the scope of this study. It is therefore assumed, for 

the residential end-use model developed in this study, that the pressure in the 

system is adequate to deliver the theoretically required peak water demand. 

The probability distributions used to describe the parameters of the residential 

end-use model in this study were obtained from North American water 

measurements conducted for the Residential end-uses of water study (REUWS) 

by Mayer et al. (1999). The REUWS included water consumption 

measurements of both indoor and outdoor end-uses. The accuracy of any 

results in this study is therefore limited by the accuracy of the REUWS data 

used as input to the model. In addition, the water consumption characteristics of 

end-uses such as washing machines and toilets in the REUWS may be different 

to equivalent South African end-uses. The results of this study may, therefore, 
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not be representative of all types of South African households, with particular 

limitations when comparing the results to local low income housing. To date, the 

REUWS is the largest database of end-uses available for this study and it has 

been used extensively since 1999 to conduct research into end-uses of water 

(Wilkes, 2005). 

Microsoft Excel was used as part of this research project, to construct the 

residential end-use model, due to its availability and user-friendly programming 

style. The overall size of the resulting Microsoft Excel workbook was large, 

which affected the computation speed for a single execution of the model. This 

proved to be a limitation in that water demand patterns resulting from only 1 000 

iterations could be analysed at a time, and time constraints restricted the 

number of executions of the end-use model that could be performed within a 

reasonable computing time. 

1.7. Brief Chapter Overviews 

This thesis comprises seven chapters and three appendices. Chapter 2 

constitutes a literature review of previous work done on end-uses of water, 

water demand and peak water demand estimation methodologies. Chapter 3 

provides an overview of relevant statistics and probability theory. The theory 

was applied in the study to describe discrete model input variables by known 

probability distribution functions. A background of the REUWS database is 

provided in Chapter 4.  

Chapter 5 describes the methodology followed to construct and apply the end-

use model; the PF calculation procedure is also provided. Chapter 6 presents a 

summary of the results of this study, including a comparison of how PFs for 

differently sized residential areas change with various time intervals. Chapter 7 

concludes the findings of the study and recommendations of future work are 

also made. 
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Appendix A summarises the results of goodness of fit tests that were performed 

on the end-use data samples. Appendix B contains a comprehensive list of the 

daily event frequency and the event cycle count probability distributions for the 

end-use model parameters. Appendix C contains figures and tables depicting 

the resulting PFs for all household group sizes, and time intervals. 
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2. LITERATURE REVIEW 

2.1. Overview of Water Distribution Systems 

2.1.1. Water Service Provision 

The fundamental purpose of a WDS is to provide customers with enough water 

to satisfy demand. This is achieved by means of three general processes. First, 

raw water is extracted from a source, such as a river or a dam, and transported 

to a treatment facility, which constitutes a bulk supply system. Secondly raw 

water is treated, and stored temporarily. The third process involves the water 

reticulation system, which transports the clean water to storage facilities. The 

water is then delivered to the customers. In this study the water reticulation 

system is referred to as the WDS. 

Both the bulk supply system and WDS involve moving water through a network 

of linked pipes. Air valves at high points allow air to enter and exit, while 

drainage at the low points is facilitated by scour valves. The water is pumped at 

pumping stations where necessary, and stored in reservoirs and water towers. 

One of the differences between a bulk supply system and a WDS is the water 

flow rate that the system has to facilitate. A bulk supply system consists of the 

main transmission lines without consumer connections. These pipes have 

relatively large capacities with fairly constant flow rates (Trifunović, 2006). A 

WDS, on the other hand, consists of smaller pipes, and directly serves the 

customers. The flows through these pipes are directly affected by the way 

customers use water over space and time. This leads to a much wider range of 

flow rates. The variation in flow rates should typically be incorporated in the 

design of a WDS. 
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2.1.2. Design Criteria 

The design objectives of a WDS are to supply adequate volumes of water and 

to maintain the water quality achieved after the water treatment process 

(Trifunović, 2006). The engineering aspects involved in achieving the design 

objectives are, for example, choosing the most appropriate materials, sizes and 

placement of the different WDS components. In hydraulic design, this means 

ensuring that acceptable pressures and velocities are achieved in the pipes. A 

brief explanation of some of the design aspects is given below.  

Flow rate is defined as the volume of fluid passing a point per second. This is 

expressed mathematically in (2.1). 

  
 

 
                                                                                                       (2.1) 

where: 

  = flow rate     ⁄   

  = volume      

  = time    . 

Considering the conservation of mass, or the continuity equation, the flow rate 

can also be expressed as the product of the velocity of the fluid and the area of 

the pipe, as shown in (2.2). 

                                                                                                      (2.2) 

where: 

  = flow rate     ⁄   

   = velocity    ⁄   

   = area     . 
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The Bernoulli equation represents the continuity of energy and can be written 

as: 

 
 

  
 

  

  
                                                                                        (2.3) 

where: 

   = pressure     ⁄   

   = density of liquid (kg/m3)      ⁄   

  = gravitational acceleration     ⁄   

  = velocity    ⁄   

   = height above datum    . 

From (2.3) it can be seen that as the velocity of the water increases, the 

pressure in the pipe decreases, and vice versa. Put another way, when the 

demand for water is at a maximum (peak flow rate), the pressure in the system 

is at a minimum. Relatively high and low pressures in a WDS have adverse 

repercussions on operation and maintenance. High pressures cause an 

increase in leakage and water losses, or pipe breaks. Negative pressures in a 

system can lead to pipe collapse, or may draw pollutants into the system. 

Customers also experience limited flow rates at low pressures, and some 

appliances fail to operate (Jacobs and Strijdom, 2009). 

It follows from (2.2) that, relative to a fixed flow rate, a pipe with a small 

diameter will result in the water having a high velocity, while a large diameter 

pipe will result in the water having a low velocity. Exceedingly low velocities in 

pipelines cause sediment deposition which, in turn, leads to water quality 

degradation. Exceedingly high velocities increase the pipe head losses and are 

related to problems with water hammer.  

To prevent such adverse effects and to ensure that a WDS operates 

satisfactorily, minimum and maximum pressures and velocities are prescribed 

for the design of a WDS. The pipe diameters are chosen such that the 

magnitude of the water velocity and subsequent pressure is within a prescribed 
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desired range most of the time, even with varying flow rates. Since pressure 

and velocity are affected by the flow rate, a WDS is typically assessed against 

limiting demand conditions. 

Limiting demand conditions can be described as the worst case water demand 

scenarios. These are used in design because of the assumption that if the 

system can operate at the limiting conditions, it will operate properly most of the 

time. Perelman and Osfeld (2006) investigated the hypotheses that if a system 

is operated at a load condition such as peak flow, then it will function properly at 

any other load condition. The authors concluded that for the purpose of 

designing pipes, steady state simulation runs for peak flow may be acceptable. 

Full extended period simulation is, however, important in order to check the 

behaviour of tanks, pumps and valves.   Examples of limiting conditions that are 

often used are the fire flow rate, the storage capacity replenishment rate, and 

peak flow rates such as instantaneous peak flow rate (Qinst)max, peak hour flow 

rate (Qh)max, and peak day flow rate (Qd)max. Burn et al. (2002) state that in cities 

with high living standards, the accepted norm for WDS design is based on peak 

flow. Hyun et al. (2006), as well as Johnson (1999), agree that peak day 

demands should be used to design bulk water supply pipelines. 

Peak flow rates are differentiated according to the time interval      over which 

the flow is measured. The American Water Works Association (AWWA) defines 

instantaneous peak flow rate as the rate of water measured at a particular 

moment in a day (AWWA, 1999). There is, however, no precise definition of 

which value of    would sufficiently describe the instantaneous peak flow rate. 

Some studies include flows that are measured within a 10 second interval as 

instantaneous peak flow rates, as is the case in Mayer et al. (1999). Peak hour 

flow rate is defined as the consecutive 60 minutes of a day during which 

demand is at the highest. Peak day flow rate is similarly defined as the 

consecutive 24 hour period in a year during which demand is at the highest 

(AWWA, 1999).  

Some water supply systems make provision for fire protection services. Fire 

fighting requires large volumes of water at very high flow rates. Since fire flow 
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rates are often much larger than normal water demand, this is often the most 

limiting demand condition in a system. 

Storage facilities designed for peak day flow rates are filled when the water 

demand is less than the average peak day demand, and emptied when water 

demand is greater than average peak day demand. The flows required to 

replenish the storage facility within a certain timeframe can sometimes be a 

limiting condition on pipelines (AWWA, 1989).  

The sizes of pipes are determined by the volume and rate of flow expected in 

the system. AWWA (1989) recommends that pipes be designed based on the 

highest flow rate resulting from peak day flow rate plus fire flow rate, maximum 

storage-replenishment rate, or peak hour flow rate. Thereafter, it must be 

ensured that limits such as maximum velocities and head losses are adhered 

to. Burn et al. (2002) compared the reticulation pipeline costs for a cluster of 

4 000 households, based on varying peak demand scenarios. The authors 

concluded that system cost savings of 25-45% could be achieved by lowering 

the peak demand for which the pipes were designed. 

Pumps are required to fill storage facilities, and ensure that pressure is 

maintained in the system to allow the movement of water. The choice of pump 

size is dependent on many factors, such as the source capacity, storage 

availability, and peak demand (AWWA, 1999). According to AWWA (1989) 

pumps should be sized based on the maximum flow resulting from peak day 

flow rate, peak day flow rate plus fire flow rate, or peak hour flow rate. 

Storage facilities enable pumps to operate at an average rate and not just 

during peak periods. Reservoirs and tanks are normally sized considering 

average, peak and fire flow rates, as well as emergency reserves in case of 

treatment plant or source failure (AWWA, 1999; CSIR, 2003). It is 

recommended that the limiting condition on system storage be the highest flow 

rate resulting from peak hour flow rate, or peak day flow rate plus fire flow rate 

(AWWA, 1989).  
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2.1.3. Intermittent Supply 

The design of a WDS, as discussed in section 2.1.2, is based on the 

assumption of continuous water supply; in other words, the pipes remain full of 

pressurised water. In many developing communities and water stressed 

countries, the supply of water is not continuous, but rather intermittent. 

Intermittent water supply entails physically cutting off the water supply to 

customers for various periods, due to a lack of system capacity. When limited 

water is available, an intermittent system is one method of controlling water 

demand, and is usually a matter of necessity.  

Intermittent systems have a number of serious problems such as low pressure, 

inequitable water distribution, water contamination and additional customer 

costs (Vairavamoorthy et al., 2007). 

The demand at the nodes of the network is not driven by diurnal fluctuations 

based on consumer patterns. Instead the demand is dependent on the 

maximum amount of water that can be collected during the time of supply. The 

quantity of water collected is thus dependent on the pressure available at their 

point of abstraction. Therefore, when analysing the network, a demand driven 

approach should not be used, but rather a head dependent approach 

(Vairavamoorthy et al., 2007). The method of deriving peak flows as done in this 

research would thus be inappropriate for analysis of intermittent WDSs. 

2.1.4. Demand Driven Analysis Versus Head Dependent Analysis 

The operation of a WDS is often simulated and analysed using a computer 

model representing the network hydraulics. Algorithms of such software are 

usually based on demand driven analysis (DDA). DDA means that the demands 

allocated at the nodes of a network are assumed to be fully satisfied and remain 

constant. The resulting pipe flow and nodal pressures are, therefore, consistent 

with the demands calculated, and it is assumed that there is sufficient pressure 

in the system to deliver all of the demand (Tanyimboh et al., 2003). The DDA 

calculation procedure deals with pipe flows against the hydraulic gradients, and 
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the pressure is calculated afterwards. Because the relation between pressure 

and demand is ignored, error is introduced in the model. Sufficient pressure is 

not always available in the system, and if the demand were to exceed the 

capacity of the system, then DDA would no longer be representative of the 

system performance.  

The procedure whereby a WDS is analysed when taking pressure-related 

demand into account is known as head dependent analysis (HDA). If hydraulic 

calculations are done with DDA, some nodes may depict negative pressures, 

which is impractical. The HDA approach aims to determine, for each node, an 

outflow which is compatible with the outflows at the rest of the nodes in relation 

to the available pressure in the system (Tanyimboh et al., 1999).  

Applying HDA causes a gradual reduction of the discharges at the nodes and 

the hydraulic gradient values. The typical relationship expressed by 

Chandapillai (1991) is given in (2.4): 

     
        

  
                                                                                    (2.4) 

where:  

    = demand at node   

    = head at node   when the demand of that node is    

    = flow resistance coefficient 

    = exponent 

  
     = nodal head below which the outflow at the node is unsatisfactory or 

zero. 

Gupta and Bhave (1996) described the main methods for solving networks by 

means of the HDA approach.  

HDA is advantageous because it can accurately determine the maximum 

amount of water that a system can provide for various minimum pressures. It 

can also identify the precise nodes with insufficient flow. According to 

Tanyimboh et al. (1999) this makes the results obtained from HDA superior to 

those of DDA.  
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Despite the benefits that HDA has portrayed, a comprehensive investigation of 

peak flow rate as a function of pressure is beyond the scope of this work.  

Engineers in practice remain proficient in the application of DDA and estimated 

peak flows based on PFs. This method is expeditious and the results obtained 

are considered acceptable in view of other uncertainties incorporated during 

WDS analysis. 

2.2. Basic Concepts of Water Demand 

2.2.1. Water Loss and Leaks 

Water losses in municipal WDSs are a worldwide problem. The International 

Water Association (IWA) formed a Water Loss Task Force in 1996, to develop 

international best practices in the field of water loss management. The IWA 

Task Force published a “best practice” standard water balance, given in  

Figure 2.1.  
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Figure 2.1: IWA standard water balance (McKenzie and Lambert, 2004)  

Performance measurement indicators and strategies to reduce water loss were 

also developed by the IWA Task Force. One such Performance Indicator for 
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real losses is the infrastructure leakage index (ILI). The ILI was described by 

McKenzie and Lambert (2004) as the ratio of the the current annual real losses 

to the unavoidable annual real losses (the theoretical minimum leakage that can 

be achieved). An ILI of one therefore suggests the ideal leakage situation, with 

increasingly poor performance corresponding to higher ILIs. 

McKenzie and Seago (2005) determined the ILI values for 30 water utilities in 

South Africa. The results for 27 of these utilities are presented in Figure 2.2. 

The average ILI for the South African utilities is about 6.3. This was compared 

with average ILI values for selected utilities in North America, Australia and 

England, which were 4.9, 2.9, and 2.6, respectively. McKenzie and 

Seago (2005) are of the opinion that ILI values below two would be unusual in 

South Africa, and that utilities that are in a reasonable condition would have an 

ILI value of around five. 

 

Figure 2.2: ILI results for South African WDS (McKenzie and Seago, 2005) 

According to the IWA standard water balance, on-site leakage (on consumer’s 

properties) is considered part of revenue water. In fact, where such losses are 

billed, municipalities may benefit from on-site leakage (Lugoma et al., 2012). 

However, in cases where consumers do not pay for their water, it is often in the 

municipality’s interest to repair on-site leakages itself.  

Median = 4.97 

Mean = 6.26 
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Lugoma et al. (2012) investigated on-site leakage in well-established 

Johannesburg suburbs. The study determined the on-site leakage by analysing 

the readings on relatively new municipal water meters. The average leakage of 

182 properties was found to be approximately 25% of the measured 

consumption.  

A number of studies investigated the leakage of individual households. 

Table 2.1 summarises the average leakage, as a percentage of total demand, 

that these studies observed. 

Table 2.1: Examples of on-site leakage as percentage of total demand 

Reference Study area 
Leakage (%) of total 

demand 

DeOreo et al. (1996) USA, 16 homes 2.3 

Mayer et al. (1999) USA/Canada, 1188 homes 5.5 

DeOreo et al. (2001) Pre-retrofit USA, 37 homes 10.3(1) 

DeOreo et al. (2001) Post-retrofit USA, 37 homes 5.5(1) 

Loh and Coghlan (2003) Australia, 120 homes 2.3 

Roberts (2005) Australia, 99 homes 5.7 

Heinrich (2007) New Zealand, 12 homes 3.7 

Willis et al. (2009) Australia, 151 homes 1.0 

Note: (1)Leakage as a percentage of indoor demand only 

Leakage is very varied, even within homogeneous areas. Observations by 

DeOreo et al. (1996) and Heinrich (2007) were that the majority of leakage 

volume in their study area was contributed by only a few of the houses, and that 

the leakage in homes often arises from toilets. Britton et al. (2008) identified 

different types of leaks that originated from irrigation, hot water systems, 

meters, toilets, taps and pipes. Of the different types of leaks, 46% was 

attributed to toilet leaks.  

Despite agreement in literature that toilets contribute notably to residential water 

leakage, it is difficult to estimate leakage, since it is site specific. Leakage 

therefore lends itself to being a component that can be added separately at the 
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end of a water demand estimation procedure. For this reason water losses are 

excluded in the water demand computations for this study. 

As previously illustrated by the IWA water balance, total water consumption 

consists of authorised consumption and water losses. Authorised consumption 

is divided into billed and unbilled consumption. An example of unbilled 

authorised consumption is the water required for fire fighting.  

2.2.2. Fire Flow Requirements 

Fire flow requirements are typically specified in design guidelines applicable to 

a specific region. In small networks fire flow is sometimes omitted due to budget 

constraints. It is computed separately from the metered water demand 

estimation, which is later applied as one of the limiting demand conditions. 

Myburgh (2012) conducted a detailed investigation into local fire flow 

requirements, but fire flow is not pertinent to the outcome of this study and 

therefore is not elaborated on further.  

2.2.3. Water Demand Categories 

Water demand characteristics are often used as a means to divide water 

customers into categories. Examples of categories often used are residential 

and non-residential water consumers. Non-residential water consumers can be 

further divided into industrial, commercial, and institutional (ICI) sectors. Typical 

ICI customers include shops, restaurants and offices that use water for toilets, 

cleaning and cooking, but also for production processes that may have 

relatively high volume water requirements. In addition, van Zyl et al. (2007) 

categorises farms, parks, educational, and sports users as non-residential water 

consumers. 

CSIR (2003) provided non-domestic water demand estimation guidelines  

for both developing and developed areas in South Africa. According to  

van Zyl et al. (2007), non-domestic use is very difficult to estimate, and 

recommends that field measurements are used for estimation purposes.  
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In a study by van Zyl et al. (2007) forty eight municipal treasury databases were 

used to obtain water consumption data for non-domestic consumers.  Climatic 

and socio-economic data was also linked to the consumption data. The non-

domestic users were grouped into seven categories, namely industrial; business 

commercial; government and institutional; farms; parks; education; and sports. 

Frequency distributions were plotted using the natural logarithm of the AADD for 

all categories. The frequency distributions were described well by Log-Normal 

probability distributions in all cases.  

Residential consumers may be single family households, or multiple family units 

such as apartments. This study focuses on single family households only. 

2.2.4. Residential End-Uses 

Residential water consumption emanates from water used by a consumer at 

various end-use points on a residential property. Typical end-uses found inside 

and outside the home are illustrated in Figure 2.3. 

 

Figure 2.3: Examples of typical indoor and outdoor end-uses 

A number of authors have reported field measurements of water used by the 

different end-uses. Different methods are available for measuring water 

consumption at the resolution of individual end-uses. A direct method was used 

by Edwards and Martin (1995) who measured the flow at each appliance 

separately by placing water meters at each end-use in the home. In that study 

Indoor end-uses: 

 Tap 

 Toilet 

 Shower 

 Washing machine 

 Dishwasher 

 Other 

Outdoor end-uses: 

 Tap 

 Garden watering 

 Swimming pool 
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an average of 14 water meters was placed in each of 100 sample households in 

the United Kingdom. Water volume was measured in 15 minute intervals over a 

one year period from October 1993 to September 1994. The publication by 

Edwards and Martin (1995) is relatively old, but remains impressive in terms of 

the scope and extent of the work. 

An alternative method, called flow trace analysis, was used by 

DeOreo et al. (1996), Mayer et al. (1999), DeOreo et al. (2001),  Loh and 

Coghlan (2003), Roberts (2005), Heinrich (2007), and Willis et al. (2009). Flow 

trace analysis is a process whereby a data logger is attached to a municipal 

water meter at a customer’s residence. The data logger records the volume of 

water passing the water meter in a specified time interval, such as every 10 

seconds.  Software is then used to analyse the flows recorded by the data 

logger, disaggregate the flow and assign it to specific end-uses. Trace Wizard is 

an example of software designed for this purpose, which is described in detail in 

section 2.3.2.  

The flow trace analysis concept is based on the premise that each end-use 

causes a unique flow pattern (or flow trace), which can be used to identify it by 

means of pattern recognition in a data time series. For example, when a tap is 

used the flow will be of short duration and relatively small flow rate. A toilet 

cistern filling after a flush will be within a particular volume range, and with a 

consistent flow rate. The flow trace corresponding to each end-use is initially 

defined in Trace Wizard. Thereafter Trace Wizard identifies flow traces within 

the flow data time series and assigns end-uses to every water consumption 

event. For each event, its statistics are calculated. These include the event’s 

start time, stop time, duration, volume, peak flow rate, mode flow rate, and 

mode frequency. 

A brief description of the most notable studies making use of flow trace analysis 

and other methods is given below: 

 DeOreo et al. (1996) used data loggers to measure the flow rates from 

residential water meters in 10 second intervals in Boulder, Colorado, USA. 
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Sixteen single family households were each logged for a total of three 

weeks in the summer between June and September 1994. Flow trace 

analysis was used to identify signatures corresponding to individual flow 

events. 

 Mayer et al. (1999) used flow trace analysis to obtain individual water 

consumption events from twelve study sites across the United States and 

Canada. Measurements were taken for two weeks in the summer and two 

weeks in the winter for about 1 200 single family households. In addition, 

6 000 participants completed surveys detailing household level information, 

and water billing records were obtained for 12 000 households. This study 

by Mayer et al. (1999) became widely known as the REUWS. 

 The flow trace analysis technique was used again by DeOreo et al. (2001) 

to disaggregate end-uses. The focus of the work was to determine the 

amount of water saved on each end-use after houses were retrofitted with 

high efficiency water-saving appliances. The investigation was carried out 

on 37 single family households in Seattle, USA. The pre- and post-retrofit 

measurements for the end-uses were compared to the REUWS by 

Mayer et al. (1999).  

 Mayer et al. (2003) conducted a water conservation study that investigated 

the effect of water saving appliances. Flow trace analysis was used to 

compare the end-use water consumption before and after retrofitting the 

appliances in 33 single family households in East Bay Municipal Water 

District, USA. The impact that indoor water conservation measures had on 

both individual and aggregate water consumption patterns was investigated.  

 Loh and Coghlan (2003) carried out a study in Perth, Australia, using low, 

middle and high income houses. A sample of 120 single family households 

was used to obtain water consumption measurements from November 1998 

to June 2000. Flow trace analysis was used to disaggregate individual flow 

events from separate appliances. Household information from an additional 

600 houses was obtained through questionnaires. 

 The Yarra Valley in Melbourne, Australia, was used as the site for a water 

measurement study by Roberts (2005). Data loggers were installed in 100 
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homes, and measurements were taken for two weeks in February and two 

weeks in August to represent summer and winter usage, respectively. Data 

was collected at five second intervals, which enabled flow trace analysis to 

be performed. 

 Willis et al. (2009) performed an end-use water consumption study on the 

Gold Coast near Queensland, Australia. A total of 151 households, 

consisting of both single reticulated (38) and dual reticulated (113) systems, 

was monitored for a two week period in the winter of 2008. Data loggers 

with a 10 second reading frequency enabled flow trace analysis to be 

performed. 

 End-use flow measurements were taken from 12 residential households on 

the Kapiti Coast near Wellington, in New Zealand, by Heinrich (2007). Flow 

trace analysis was performed based on measurements taken at ten second 

intervals over two seasonal monitoring periods. The winter period extended 

from mid-July to mid-October 2006, while the summer measurements took 

place from mid-November 2006 to the end of February 2007. 

2.2.5. Factors Affecting Water Demand 

A comprehensive list of factors influencing peak water demand is provided by 

Day and Howe (2003). This study is concerned with how end-use events act as 

building blocks to construct a demand pattern, implying that it is more important 

here to better understand these end-use events and the nature of their 

occurrence, than to address factors that influence water demand on a larger 

spatial scale. 

2.2.6. End-Use Frequency and Volume 

The research in this thesis addresses the theoretical derivation of peak flows 

from a stochastic description of end-use events. For this reason it is considered 

important to present a review of end-use information from earlier studies.   

Tables 2.2 to 2.4 provide summaries of the useful information that was compiled 

in this regard.  
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Table 2.2: Examples of reported end-use volumes per event 

Author 
Citation 

Average volume of water per end-use event (       ) 

Toilet Shower 
Washing 
Machine 

Tap 
Dish-

washer 
Bath 

DeOreo et al. (1996) 16.0 61.0 - - - - 

Mayer et al. (1999) 13.4 66.3 157.6 - - - 

DeOreo et al. (2001) 
Pre-retrofit 

13.7 - 155.0 - - - 

DeOreo et al. (2001) 
Post-retrofit 

5.2 - 92.0 - - - 

Loh and Coghlan 
(2003) 

10.0(1) 60.0(2) 
150.3 / 
57.8(3) 

- - - 

Mayer et al. (2003) 
Pre-retrofit 

15 71.0 156.9 - 34.3 109.8 

Mayer et al. (2003) 
Post-retrofit 

6.4 59.1 30.7 - - 105.2 

Roberts (2005) 7.6 67.5(4) 143.0 1.3 23.9 123.0 

Heinrich (2007) 6.2 82.0 
134.0 / 
50.0(3) 

1.6 - - 

Note: (1)Single flush toilet sample. 

 

(2)Normal flow rate shower sample. 

 

(3)Average volume for automatic top loader and front loader respectively.  

 

(4)Calculated as product of average duration and average flow rate.  

Table 2.3: Examples of reported end-use volumes per capita 

Author 

Citation 

Average volume of water per capita per day for 

selected end-uses (     ) 

Toilet Shower 
Washing 
Machine 

Tap 
Dish-

washer 
Bath 

Edwards and Martin 
(1995) 

47.9 5.8 30.5 36.3(1) 1.5 18.9 

DeOreo et al. (1996) 26.3 17.4 24.8 14.7 3.0 2.3 

Mayer et al. (1999) 71.3 44.7 57.8 42.0 3.9 4.6 

DeOreo et al. (2001) 
Pre-retrofit 

71.2 34.1 56.0 34.8 5.3 14.0 

DeOreo et al. (2001) 
Post-retrofit 

29.9 32.9 34.8 30.3 4.5 10.2 
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Author 

Citation 

Average volume of water per capita per day for 

selected end-uses (     ) 

Toilet Shower 
Washing 
Machine 

Tap 
Dish-

washer 
Bath 

Loh and Coghlan 
(2003) 

33.0 51.0(2) 42.0 24.0 - - 

Mayer et al. (2003) 
Pre-retrofit 

76.7 46.2 53.6 40.5 3.9 11.6 

Mayer et al. (2003) 
Post-retrofit 

37.8 41.2 33.9 40.5 3.4 10.8 

Roberts (2005) 30.0 49.0 40.0 27.0 3.0 3.0 

Heinrich (2007) 33.4 67.8 40.9 23.5 2.4 4.3 

Willis et al. (2009) 21.1 49.7 30.0 27.0 2.2 6.5 

Note: (1)Combination of kitchen taps and bathroom taps. 

 

(2)Combination of showers and baths. 

Table 2.4: Examples of reported end-use frequencies 

Author  

Citation 

Average end-use event frequency                 

Toilet Shower 
Washing 
Machine 

Bath 
Dish-

washer 

DeOreo et al. (1996) 3.8 0.7 0.3 - 0.2 

Mayer et al. (1999) 5.1 0.8(1) 0.4 - 0.1 

DeOreo et al. (2001) Pre-
retrofit 

5.2 - 0.4 - - 

DeOreo et al. (2001) Post-
retrofit 

5.5 - 0.4 - - 

Mayer et al. (2003) Pre-
retrofit 

5.1 0.7 0.4 0.1 0.1 

Mayer et al. (2003) Post-
retrofit 

5.7 0.7 0.6 0.1 - 

Roberts (2005) 4.2 0.8 - - - 

Heinrich (2007) 4.7 
 

0.3 
  

Note: (1)Combination of showers and baths. 
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2.2.7. Temporal Variation in Demand 

Variation in water demand can be attributed to spatial and temporal variations. 

Spatial variation is largely caused by differences in climatic variables. Temporal 

variation causes daily, weekly, and seasonal cyclic patterns, which are 

discussed in more detail below. 

Examples of domestic water activities are toilet flushing, showering, hand 

washing, teeth brushing, laundry, cooking, drinking, et cetera. When any one of 

these activities is executed, a corresponding flow of water through the pipes is 

expected. It is unlikely that all the activities will occur simultaneously in one 

household. However, a combination of activities such as showering, teeth 

brushing and toilet flushing may typically coincide. In such a case, the 

instantaneous flow equals the sum of the flows for the various activities. By 

assessing instantaneous demands, a demand pattern can be built up for each 

house and, ultimately, for an entire distribution area (Trifunović, 2006).  

For one home, or a small residential area, the exact time when water is used is 

unpredictable. However, people tend to have periodic activities which translate 

into their water using schedules. As the number of consumers increases, the 

demand pattern becomes more predictable, and clear daily water demand 

patterns emerge. For design purposes, Trifunović (2006) believes it is a valid 

assumption that a similar water demand cycle will be followed by residents over 

time.  

Water demand generally tends to be more frequent in the mornings when 

people wake up, when they return home from work or school in the afternoons, 

and before they go to sleep in the evenings, than for other times of the day. 

Strong diurnal and weekly patterns, according to Race and Burnell (2004), 

reflect residential lifestyles. An example of a typical residential diurnal water 

demand pattern is shown in Figure 2.4. Seasonal differences are also 

presented in the figure.  
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Figure 2.4: Typical diurnal water demand pattern adapted from Heinrich (2007) 

Bowen et al. (1993) investigated the water consumption patterns of residential 

homes in five cities in the United States. A well-defined and consistent 

residential water consumption pattern was observed across all regions. The 

author described diurnal water demand by identifying four periods:  

 The first period is night time from 23:00 to 05:00, and the lowest usage 

occurs during this period.  

 In the morning from 05:00 to 12:00 there is a sharp rise in usage, with daily 

peak hourly usage normally occurring between 07:00 and 08:00.  

 The usage then decreases, with continuous moderate usage from 12:00 to 

17:00, and local minima were observed around 15:00.  

 In the evening from 17:00 to 23:00 the usage increases again, a secondary 

peak is typically observed from 18:00 to 20:00.  

Diurnal water demand patterns vary spatially. No two towns will necessarily 

have the same pattern. Bowen et al. (1993) noted that slight differences 

occurred across geographic regions. For example, the timings of the cycles, or 

peak values may differ, but the basic characteristics of the four periods 

remained the same. Mayer et al. (1999), for example, found that the diurnal 
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pattern in their study exhibited the same four characteristics, but the moderate 

afternoon usage was defined from 11:00 to 18:00. 

The daily water consumption pattern of individual household appliances was 

investigated by Mayer et al. (1999). Toilet use was the largest component of 

indoor use, and displayed a peak between 07:00 and 10:00, with a secondary 

peak between 17:00 and 23:00. Washing machine use peaked between 09:00 

and 13:00, and remained moderately high until 21:00. Between 06:00 and 11:00 

shower usage was relatively high, and a lower peak was evident between 18:00 

and 23:00. Taps were used relatively consistently throughout the day, with a 

slight peak in the mornings and evenings.  

Weekly demand patterns are influenced by working and non-working days. 

Usually Mondays to Fridays are working days, with very distinct diurnal cycles, 

as discussed previously. Festive holidays and sporting events have their own 

unique patterns, and these impact weekly cycles. On non-working days, such 

as Saturdays and Sundays, water demand is spread more evenly throughout 

the day, since people are home for a longer period of time. Higher peaks are, 

therefore, normally experienced on working days.  

Loureiro et al. (2006) developed a water consumption characterisation program 

in Portugal and performed a demand analysis of the available data. Measured 

flow data was collected at ten to 15 minute time intervals for 20 metering 

districts which ranged in size between 2 000 and 12 000 connected properties. 

The water consumption data was compared with other variables such as socio-

demographic data to derive daily consumption patterns. The daily water 

consumption pattern for different days of the week in the summer, in an average 

socio-economic area, is shown in Figure 2.5. It is clear that the pattern of water 

demand during the weekends is very different from that during workdays.  

Stellenbosch University http://scholar.sun.ac.za



 

30 

 

Figure 2.5: Weekday water demand variation adapted from Loureiro et al. (2006) 

Variations in average water demand are also notable throughout the year. 

Higher temperatures in the summer months lead to increased outdoor usage, 

and cause distinct seasonal patterns. Indoor water demand is not affected as 

much by seasonal changes (Roberts, 2005). During hot seasons higher water 

consumption can also be observed in certain areas, due to a temporary 

increase in the number of consumers. This is typical of popular holiday 

destinations, which also exhibit unique peak demands.  

According to Mayer et al. (1999) both indoor and outdoor water demand follows 

a diurnal pattern, but these peak at different times. For instance, outdoor use 

increases sharply from 05:00, while indoor use only increased after 07:00. 

Roberts (2005) divided water demand into seasonal and non-seasonal 

categories, where seasonal use was equivalent to outdoor use, and included 

indoor seasonal appliances such as evaporative air conditioners. Non-seasonal 

use is, therefore, not affected by annual cycles in water demand.  

Roberts (2005) considers the seasonal use empirical measurements of little 

consequence, since drought restrictions affect typical garden irrigation habits. 

This study only considers the non-seasonal component of demand, since 

outdoor water demand is excluded, as mentioned in section 1.6.  
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2.3. Models Available for Water Demand Analysis 

2.3.1. Swift 

SWIFT is a commercial software product developed by GLS consulting 

engineers (GLS Software, 2012). The software can access municipal treasury 

databases, where demographic and water consumption data on a large number 

of users can be obtained. SWIFT contains the data of every stand in the 

respective municipal treasury database. Such information includes the owner, 

consumer, address, land-use, zoning, consumption, tax tariffs, the value of the 

stand and any improvements. The data it contains relating to the meters 

includes the meter readings, the meter serial numbers, and the date of 

installation.  

The user can view the information in a structured data table. Since SWIFT was 

designed with infrastructure managers as the users in mind, the data can be 

sorted, queried, and saved in reports. There are functions that enable the 

integrity of recent readings to be checked, by comparing them against historical 

meter records. Analyses can also be performed on any database by 

customising various settings. Jacobs and Fair (2012) presented a detailed 

account of Swift, and its impact on local research, for further reading. 

2.3.2. Trace Wizard 

Flow trace analysis is a means by which consistent flow patterns are isolated, 

identified and categorised. Software called Trace Wizard was specifically 

developed by Aquacraft Pty. (Ltd.) for this purpose. Trace Wizard was used by 

Mayer et al. (1999) who describes the process as follows: 

Raw flow data obtained from water meters and loggers are disaggregated by 

Trace Wizard into individual water consumption events. For each event, its 

statistics are calculated. These are start time, stop time, duration, volume, peak 

flow rate, mode flow rate, and mode frequency.  
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Each study residence is then given a set of parameters (such as the volume, 

duration and peak flow rate of each end-use). This allows Trace Wizard to 

categorise each event based on its flow pattern, and assign it to a specific 

household end-use. Signature flows for each appliance can also be recorded 

when data loggers are first installed. The program uses these signature pulses 

to distinguish flow traces into various events such as a toilet event, leak event, 

tap event, et cetera.  

Because of the unique parameters for each end-use, Trace Wizard can identify 

simultaneous events. A limitation of the measurement technology, however, is 

that there is no discrimination between taps such as bathroom tap, kitchen tap, 

or laundry tap. An example of the Trace Wizard output is shown in Figure 2.6. 

The separate end-uses are displayed in different colours.  

 

Figure 2.6: Example of Trace Wizard analysis result adapted from Roberts (2007) 

2.3.3. REUM 

Jacobs (2004) developed a first of its kind Residential End-Use Model (REUM).  

The model required the input information of 16 end-uses on a single residential 

stand. The end-uses included in the REUM are listed as: bath; bathroom basin; 
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dishwasher, kitchen sink; leaks; miscellaneous indoor; shower; washing 

machine; toilet flush (large); toilet flush (small); miscellaneous outdoor; pool 

filtering; pool evaporation; lawn; garden beds; and fruit trees or vegetables. The 

REUM estimated five different components of residential water demand and 

return flow. These were indoor water demand, outdoor water demand, hot water 

demand, wastewater flow volume and concentration of wastewater solutes. 

Each of the indoor end-uses was modelled by four parameters which described 

the presence, volume of use, frequency of use, and quantity of that end-use. 

Each of the outdoor end-uses is modelled by five parameters which are the 

garden irrigation factor, the vegetated surface area, crop factor, monthly rainfall, 

and pan evaporation. An additional three parameters per end-use, model the 

hot water demand. The modelling of the component for waste water flow, and 

wastewater total dissolved solids concentration, each require one parameter for 

each end-use. A total of 111 parameters are therefore required to populate the 

REUM and model one month. The values for the parameters could be 

estimated by physically measuring the the values, through contingency 

evaluation, and by subjective evaluation based, on knowledge of the end-use 

and experience. Detailed analysis could be performed, as a result of the large 

number of input parameters. 

The REUM was applied in a study by Jacobs et al. (2006). Questionnaires were 

completed by residents of 160 properties in Cape Town, and the responses 

were used as inputs to the REUM to estimate the demand. The modelled 

results were then compared to water meter information for the properties. 

Questionnaires that were distributed by hand received responses from 11 pilot 

study water consumers with a technical background and 117 low-income water 

consumers. The questionnaire was also available on the City of Cape Town’s 

website, which received 32 responses. The end-use results compared well with 

the measured data for one group, which indicated that some customers were 

able to provide a good estimate of their own water consumption.  
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2.3.4. Nonhomogeneous Poisson Rectangular Pulse Process 

A stochastic model to estimate residential indoor water demands in a water 

distribution system was presented by Buchberger and Wu (1995). The 

approach used in the model has its premise in queuing theory. Using that 

analogy, customers are replaced with home occupants, and servers are 

represented by water fixtures and appliances. The arrival of customers (or 

frequency of water consumption) is approximated as following a 

nonhomogeneous Poisson process with a time dependent rate parameter. 

When servers are busy, the water demands occur as rectangular pulses, with 

each pulse having a random intensity and random duration. A single home often 

has 10 or more servers; however, in this model, all the servers are joined in one 

group. The water intensities and durations are described by a common 

probability distribution. Although this may decrease the resolution of the model, 

it also reduces the number of parameters required in the modelling process. 

The three parameters used are the average demand at a busy server; the 

variance of the demand at the busy server, and the time dependent utilisation 

factor for a typical single family household. 

The validity of the nonhomogeneous Poisson rectangular pulse (PRP) process 

was tested by Buchberger and Wells (1996). Water flow was recorded at 

1-second intervals for one year in four single family households, although only 

two residences were used to present the findings. Flow signals were processed 

so that each event was converted to an equivalent discrete rectangular pulse, 

which proved to be a satisfactory representation of water demand. At both 

residences the variance of the observed daily pulse count was too high to be 

modelled by a Poisson process. The study concluded that, although the results 

do not invalidate the model, it does require further refinement and investigation.  

The PRP hypothesis was later verified by Buchberger and Schade (1997), using 

30 days of water recordings in 18 single family households with 1-second 

intervals. The probability distribution of busy servers given by the PRP model 

showed a good fit to the hourly variation of observed values.  
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As part of a broader study to investigate water quality in dead end zones, 

Buchberger et al. (2003) tested the hypotheses that residential water demand is 

a time dependent Poisson process. The analysis was based on recordings of 

21 homes in the city of Milford, Ohio, which were logged at 1-second frequency 

for 31 consecutive days from May 11 to June 10, 1997. Comparing the model 

predictions and observed values, the authors found good agreement to the 

number of busy homes on an hourly basis, server transitions, and busy server 

autocorrelation functions. Predicted mean flow rates in pipes also showed a 

good fit to observed values. Flow variances exhibited some discrepancies 

between predicted and observed values. Buchberger et al. (2003) further note 

that the PRP process should be applied separately to indoor demand and 

outdoor demand in order to estimate total demand. By taking the sum of 

coincident pulses during the peak time of the day, the maximum flow for that 

day may be obtained.  

2.3.5. SIMDEUM 

The PRP model, according to Blokker et al. (2010), is more of a descriptive 

model than a predictive one. Since the parameters of the model are derived 

from measurement results, and correlations to other data such as population 

size or installed appliances are not easily done, the PRP model does not lend 

itself to transferral to other networks. In an attempt to reduce the need for large 

logging projects, Blokker et al. (2010) developed a water demand model called 

Simulation of water Demand, an End-Use Model (SIMDEUM). The model is 

based on statistical information to simulate residential water demand patterns.   

Similarly to the PRP model, SIMDEUM assumes that water demand occurs as 

rectangular pulses. However, the arrival time of the pulses over the day, the 

intensity and duration, are described by probability distributions for each end-

use. The probability distribution parameters are obtained from surveys providing 

statistical information, not from measurements. The survey that was used to 

validate SIMDEUM was conducted in 2001 by Dutch water companies. About 
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3200 respondents answered questions on their household and fixtures, and 

filled in a diary for a week on their water consumption. 

Blokker et al. (2010) incorporated eight end-uses in SIMDEUM. These were the 

toilet, shower, washing machine, dishwasher, kitchen tap, bathroom tap, bath 

and outside tap. Each end-use was assigned a penetration rate (number of 

households owning a specific type of appliance). Various subtypes constituting 

an end-use were also defined.  

Household size, age, gender, and occupation were used to divide the users into 

groups. These groupings were related to the frequency of use, duration, and 

time of use (based on specific users’ diurnal pattern) for each end-use. The 

diurnal patterns were constructed by assuming water demand is strongly related 

to when people are at home, awake and available to use water. Information on 

the availability of people was obtained from a time-budget survey. 

Water demand was described by the following equations: 

  ∑ ∑ ∑  (          
              )

  
    

    

  

    

  

    

                                                (2.5) 

 (          
              )  {

                           
      

          
}              (2.6) 

where: 

   = all end-uses from 1 to    

    = all users from 1 to    

    = all busy times per end-use from 1 to       

    = frequency of use 

    = pulse duration 

  = pulse intensity 

   = time at which the tap is opened 

   = time parameter 

          = block function. 
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Once the statistical information was put into the model, a single simulation 

represented a possible outcome for a single household on one day. A Monte 

Carlo simulation provided results for repeated simulation. The results of the 

model showed good agreement with measured water consumption data. 

According to Blokker et al. (2010), if the required statistical information were 

available, then the model could be applied to water networks at different 

locations. 

2.4. Peak Water Demand Estimation Methodologies 

2.4.1. Fixture Value Approach 

The fixture value approach is a method used in North America to estimate peak 

flow. It is used in pipes, for sizing what is termed service lines. It entails 

calculating the potential peak demand by determining the probability that 

various water consuming fixtures are used simultaneously. The probability 

patterns of fixture use can be derived empirically as described by 

AWWA (2004). 

A “fixture unit” method for estimating peak demand was developed by Roy 

Hunter in 1940. He produced the Hunter curve, which relates peak flow to the 

number of fixtures. Since Hunter used his own judgement regarding the 

probability function of fixtures flowing, it is necessary to use engineering 

judgement when applying the method (AWWA, 2004). The Hunter curve is 

based on a high probability that many of the fixtures are used at the same time. 

This has led to an overestimation of peak demands when the Hunter curve 

approach is used (AWWA, 2004).  

In an attempt to refine the fixture unit method, Manual M22, published by the 

AWWA in 1975, incorporated demand curves derived from field measurements. 

A limitation of the new curves, according to AWWA, (2004), is that they were 

constructed on measurements from a small sample of customers in the United 

States and Canada. The 1975 M22 curves give much lower peak estimations 
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than the Hunter curve. However, when applied to two case studies, the 

1975 M22 curves provided a better representation of actual peak demand than 

the Hunter curves (AWWA, 2004).  

AWWA (2004) recommends that the peak demand used in the engineering 

design of service lines is calculated using a modified fixture value approach, 

which is based on the method given in Manual M22. A fixture value is an 

estimate of peak instantaneous flow of a single fixture at a particular pressure. 

These are used, together with measured data, to develop probability curves.  

The general procedure of the modified fixture value method entails first 

calculating the total fixture value. This is done by multiplying the fixture values 

of specific appliances by the number of appliances in use, and taking the sum 

thereof. The probable demand, corresponding to the combined fixture value, is 

determined from the probability curves. The fixture values were determined at a 

pressure of 413.7 kPa. Pressure adjustment factors are provided for appliances 

operating at alternative pressures. Probable demand is multiplied by the 

pressure adjustment factor to obtain total probable demand.  

The method determines peak flow for irrigation (outdoor) demand and 

residential (indoor) demand separately. In cases where irrigation and residential 

demands occur at different times, the larger of the two is selected and, when 

they occur simultaneously, the sum is used. Furthermore, the demand may 

need to be increased in cases where fixture usage is uncertain, and continuous 

demands should be added to peak residential use. 

2.4.2. Peak Demand Diversity Relation 

It is possible to size pipes using fixed peak per capita demands for each 

residential connection served by that pipe. Lingireddy et al. (1998) were of the 

opinion that it is not necessarily the best method, because overall flow 

requirements may be overestimated, while the requirements for individual 

branch lines with few connections may be underestimated. This is especially 

relevant to rural households. Lingireddy et al. (1998) cite a study by 
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Williams (1968), which suggests that the maximum flow requirement for each 

pipe should be calculated using the peak demand diversity (PDD) relation. The 

PPD relation is given in (2.7). 

      ̇ √ ̀ ̅   ̇ ̀ ̅   ̇                                                                           (2.7) 

where: 

      = maximum flow rate 

 ̀ ̅  = number of residential connections served by the pipe 

 ̇,  ̇, and  ̇ are constants obtained from field data. 

The PPD relation takes into account that pressure drops during the delivery of 

instantaneous peak flow are dependent on the number of connections served 

by the pipe section. The higher the number of connections, the lower the peak 

flow requirement per connection. This is because the probability of all the users 

on the pipe section requiring maximum capacity simultaneously decreases. The 

opposite is true for pipes with a low number of connections. It was concluded by 

Lingireddy et al. (1998) that pipes should be sized using the PPD flow 

requirements for systems that are designed without incorporating fire flow 

requirements. 

2.5. Peak Factors 

2.5.1. Overview 

One of the most common methods of determining peak water demand is by 

means of peak-to-average ratios, also known as peak factors, peak coefficients, 

or demand multipliers. The baseline, or average, demand is often represented 

by the AADD, and the baseline demand for PFs mentioned in the following 

sections is the AADD, unless stated otherwise. Once a baseline demand is 

obtained, peak flow is computed by multiplying the baseline demand by a PF, 

as shown by (2.8). 
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                                                                                              (2.8) 

where: 

      = maximum flow rate (    , or any other unit of flow rate) 

     = average flow rate (    , or the same unit of flow rate as for     ) 

   = peak factor (dimensionless). 

Hence, the PF is given by: 

           ⁄                                                                                      (2.9) 

2.5.2. Time Interval for Calculation of Peak Factor 

PFs are highly related to the duration of peak flow of a WDS (Diao et al., 2010). 

The peak factor increases as the time interval over which flow is measured 

decreases (Johnson, 1999). This is because the average flow rate over the time 

interval is taken. Therefore        would be larger than    , which is larger than 

   . These PFs are, in turn, based on      ,   , and   . 

2.5.3. Number of Consumers 

Diao et al. (2010) also state that the number of consumers has an impact on the 

PF. As the number of consumers increases, the magnitude of the peak factor 

decreases. This can be illustrated with the following example:  

If over 24 hours there is a short moment when 100 people cause a flow of 

                    , and an average flow of                      is 

observed for the day, then the                  ⁄   .  This implies that, at 

one moment, water demand was approximately eight times greater than the 

average.  

When more consumers are considered, say 10 000 people, water will not be 

used at exactly the same time by each of the consumers. The            may in 

such a case may be          , and the                     , resulting in 
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                 ⁄   . Due to this clear relationship between PF and 

number of consumers, population size is often used as the independent variable 

in PF computations. In some cases the AADD is used as a surrogate for 

population size (Vorster et al., 1995). The CSIR (2003) used ee, which is 

related directly to AADD, as surrogate for population size. 

According to Diao et al. (2010), service areas have a large effect on PFs. Since 

flow characteristics differ between locations, PFs are often determined from a 

field study of a particular area (Trifunović, 2006). Varying regions also have 

their own PF calculation methodologies, which include empirical equations in 

some cases. 

2.5.4. Internationally Derived Peak Factors 

Zhang (2005) referred to three examples of empirical PF and peak flow 

equations obtained from various US publications, namely the Central Iowa 

Committee (2004), Georgia minimum standards for public water 

systems (2000), and US bureau of reclamation design criteria (2002). The 

expressions from the above mentioned publications are listed in the same order 

by (2.10) to (2.12). 

    {
          
 

      
       

}                                                                             (2.10) 

where: 

  = population in thousands. 

                                                                                                    (2.11) 

where: 

      = instantaneous flow         

  = number of connections (for      ). 

                                                                                        (2.12) 

where: 

  = number of houses. 
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Diao et al. (2010) presented some German relations for peak factors that were 

derived by the German Technical and Scientific Association for Gas and Water 

(DVGW). These are presented by (2.13) to (2.16): 

DVGW - Worksheet W 400-1 (2004): 

ௗܨܲ ൌ െ0.1591 ∙ ܧ݈݊ ൅ 3.5488		. . . . . . . . . . . . . . . . . . . . . . . . . 	. 	. 	. 	. 	. 	. 	  (2.13)

PF௛ ൌ െ0.75 ∙ ܧ݈݊ ൅ 11.679		. 	. 	. . . . . . . . . . . . . . . . . . . . . . . . . 	. 	. 	. 	. 	. 	. 	  (2.14)

DVGW - Worksheet W410 (2007): 

ௗܨܲ ൌ 3.9 ∙ Eି଴.଴଻ହଶ		. 	. 	. 	. 	. 	. 	. 	. 	. . . . . . . . . . . . . . . . . . . . . . . . . 	. 	. 	. 	. 	. 	. 	.  (2.15)

௛ܨܲ ൌ 18.1 ∙ Eି଴.ଵ଺଼ଶ		. 	. 	. 	. 	. 	. 	. 	. . . . . . . . . . . . . . . . . . . . . . . . . 	. 	. 	. 	. 	. 	. 	. (2.16)

where:  

 ௗ = peak day factorܨܲ

PF௛  = peak hour factor 

 .population =  ܧ

Diao et al. (2010) further presented hourly PFs according to Australian design 

codes WCWA (1986) and WSAA (1999), as shown in Figure 2.7. 

 

Figure 2.7: Australian PFh estimation curve adapted from Diao et al. (2010) 
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Brière (2007) discussed two different PF methodologies. He stated that the 

Goodrich empirical formula is applicable to small residential municipalities to 

calculate the peak factor as a percentage.  

The Goodrich formula is written as: 

                                                                                                    (2.17) 

where: 

    = maximum percentage (%) 

   = period studied (days). 

The formula is only applicable for   between 12 hours and 365 days. As an 

example of how the Goodrich formula is applied, if     , then  

                   , resulting in         . 

Alternatively, Brière (2007) referred to PFs based on population size, as given 

by the Ontario Environment Ministry Guidelines for the Design of Water Storage 

Facilities, Water Distribution Systems, Sanitary Sewage Systems and Storm 

Sewers (May 1979), as presented Table 2.5. 

Table 2.5: Peak factor for total water-consumption flow rates (Brière, 2007) 

Population            

Under 500 3 4.5 

500 to 1 000 2.75 4.13 

1 001 to 2 000 2.5 3.75 

2 001 to 3 000 2.25 3.38 

3 001 to 10 000 2 3 

10 001 to 25 000 1.9 2.85 

25 001 to 50 000 1.8 2.7 

50 001 to 75 000 1.75 2.62 

75 001 to 150 000 1.65 2.48 

0ver 150 000 1.5 2.25 
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In Spain, Martinez-Solano et al. (2008) evaluated the PF by means of an 

expression that was obtained through statistical analysis of water consumption, 

as shown in (2.18): 

   
     

√ ̃
                                                                                       (2.18) 

where: 

 ̃  = number of consumers. 

The water consumption of a small town in Southern Italy was analysed by 

Tricarico et al. (2007). A statistical analysis was done on the sample, and the 

study showed that flow could stochastically be described by log-normal and 

Gumbel models. Using a deterministic approach, the authors developed a 

relationship to estimate maximum flow in relation to the number of users. The 

resultant equation was: 

      ̃                                                                                             (2.19) 

where: 

 ̃  = number of consumers. 

Tricarico et al. (2007) then studied the data using a probabilistic approach. This 

involved calculating PFs with confidence intervals of 90%, 95%, 98% and 99%. 

The PFs that were obtained, using both the deterministic and probabilistic 

approach, are given in Table 2.6.  

Table 2.6: Peak factors (Tricarico et al., 2007) 

Number of inhabitants 100 250 750 1000 1250 

PFs resulting from deterministic approach 4.4 3.7 2.9 2.8 2.6 

PFs resulting from 
probabilistic approach 

90% 3.8 2.9 2.3 2.1 2.0 

95% 3.9 3.0 2.3 2.1 2.0 

98% 4.1 3.1 2.3 2.2 2.1 

99% 4.2 3.1 2.3 2.2 2.1 
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Zhang et al. (2005) developed a reliability based estimate of the PF by 

combining the results of the NRP model by Buchberger and Wells (1996) with 

principles from extreme value analysis. The expression had the form given  

in (2.20). 

    |     (    ̀√
    

 

   ̈ ̈
)                                                             (2.20) 

Where: 

      ⁄   = dimensionless peak hourly demand factor 

    = mean arrival rate of water demands at a single family household 

    = arrival rate during the period of high water use 

  ̀  =  ̀th percentile of the Gumbel distribution 

 ̈    ̆  = daily average utilization factor for a single family household 

    = coefficient of variation of PRP indoor water demand pulse 

 ̈  = number of homes in the neighbourhood 

 ̀  = percentile. 

After calculating the PFs for a number of population sizes with a 99th percentile 

using (2.20), the expression proved to follow a similar trend to other empirical 

equations. Zhang et al. (2005) noted that most of the PFs calculated empirically 

by other authors are greater than the 99th percentile results using (2.20), which 

implies that the conventional methods of estimating PFs are conservative.  

Hyun et al. (2006) applied four different methods of determining peak factors 

and evaluated the effect the methods had on the design capacity of pipelines. A 

summary of the methods used, as well as the resultant effects, is presented in 

Figure 2.8. 
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Methods for design capacity of pipeline in water transmission system 

 

 

Method 1  Method 2  Method 3  Method 4 

 

Sum of regional 
average day 

demand 
 

Estimate of 
regional peak 

factors 
 

Estimate of 
regional peak 

factors 
 

Estimate of 
regional average 
daily demands 

 

Estimate of 
representative 

peak factor 
 

Estimate of 
regional peak day 

demands by 
regional peak 

factors 

 

Estimate of 
regional peak day 

demands by 
regional peak 

factors 

 
Estimate of peak 

factors on 
pipelines 

 

Estimate of 
regional peak day 

demands by 
representative 

peak factor 

 

Estimate of total 
peak day demand 
by sum of regional 

peak day 
demands 

 

Estimate of total 
peak day demand 
by sum of regional 
peak day demands 

 
Estimate of total 
design capacity 

 

Estimate of total 
peak day demand 

 
Distribution with 

regional peak day 
demands 

 
Distribution with 
regional average 

day demands 
 

Estimate of total 
design capacity 

 

Analysis of regional peak factors on a peak day basis 

 

Effect: 

Could result in 
underestimating 
design capacity 

 Effect: 

Could 
overestimate the 
upper part of the 
pipeline by 10 - 

30% 

 Effect: 

Design capacity 
could be 

underestimated in 
small areas and 
overestimated in 

large areas 

 Effect: 

Optimum peak 
factor results are 

obtained for 
estimating design 

capacity 

Figure 2.8: Pipeline design capacity calculation methods (Hyun et al., 2006)  

2.5.5. South African Peak Factors 

PFs are the preferred method of calculating peak flow in South Africa. In some 

cases consultants developed their own in-house PFs. Two consulting 

engineering firms compiled a master plan for an East Rand WDS in South 

Africa, and an overview was subsequently published (Vorster et al., 1995). The 

residential PFs used by the authors as part of the study are given in Table 2.7.  
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Table 2.7: Peak factors to be applied to AADD (Vorster et al., 1995) 

Predominant land use in 
area under consideration 

AADD for area 
(    ) 

        

Low density residential 

<1.0 
1.0-5.0 
5.0-20.0 
>20.0 

2.30 
2.20 
2.00 
1.80 

5.50 
4.50 
3.90 
3.30 

Medium density residential 

<1.0 
1.0-5.0 
5.0-20.0 
>20.0 

2.30 
2.00 
1.80 
1.70 

4.60 
4.00 
3.30 
2.90 

A design guideline with the PFs used by many engineering practitioners in 

South Africa was published by the CSIR in various formats between 1983 

(CSIR, 1983) and 2003 (CSIR, 2003). Figure 2.9 presents the PF diagram taken 

from the CSIR (2003), and is commonly used to determine the PFs for 

developed areas. To obtain the PF, the type of development has to be 

converted into ee (where 1 ee =       ). The instantaneous peak flow is then 

calculated by multiplying the PF by the AADD. No definition is given by the 

CSIR (2003) of the time interval that is used to represent instantaneous 

demand. It thus remains unclear wether this derived peak flow would be the 

maximum as averaged over a second, a minute, an hour and so on. 

 

Figure 2.9: Peak factor estimation curve for developed areas (CSIR, 2003) 
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The figure presented by the CSIR (2003) remains identical to that presented in 

the original version of the publication (CSIR, 1983). Booyens (2000) mentioned 

that the data used in Figure 2.9 was obtained from questionnaires completed by 

designers and consultants in order to gather PFs used in practice at the time of 

compiling the initial document (CSIR, 1983). 

Since 1983, several authors making use of water meters and electronic data 

loggers have contested the validity of Figure 2.9, stating that the PFs given by 

CSIR (2003) were too conservative. The findings of some of these studies are 

briefly discussed below. 

Hare (1989) isolated three different residential areas in Port Elizabeth, South 

Africa. A single meter and data logger monitored each of the respective areas. 

Flow was logged at 10 minute intervals during the summer of 1987 - 1988. 

Several problems were experienced, which the author lists as battery failure, 

blocked water meters, lack of accuracy in meters, and late delivery of 

equipment. The logging of only two of the areas resulted in decent results which 

could be plotted on the peak factor curve, as shown in Figure 2.10. Hare (1989) 

deemed the project incomplete and therefore inconclusive.   

Water consumption data for the city of Pretoria, South Africa, was analysed by 

van Vuuren and van Beek (1997). The measuring period ranged between 1982 

and 1994, for a total of 151 months. Residential water consumption data was 

isolated for analyses purposes. Problems included the fact that the data 

provided only an estimation of the actual water consumption per month, 

because the monthly readings did not correspond to calendar months, or 30 day 

periods. To determine peak consumption, hourly data was required, which could 

be obtained only from the Carinastraat reservoir. The hourly data was for the 

period between July 1995 and October 1995. A peak factor of approximately 

2.75 was observed. This is lower than the PF of 4.0 recommended by the 

CSIR (1983), as shown in Figure 2.10. 
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Turner et al. (1997) measured the water consumption in 15 minute intervals for 

14 areas in Gauteng over a 20 month period. A distinction was made between 

flow patterns on weekdays, Saturdays and Sundays. The average peak factor 

was used to plot probability intervals of +99%, +95%, -95%, and -99%. The 

probability intervals were determined by calculating the variance and standard 

deviation for each time interval. The 15 minute peak factor was plotted against 

the equivalent erven. The results for 13 areas are shown in Figure 2.10. Each of 

the measured peak factors was lower than the CSIR (1983) guideline. The 

authors, however, proposed that instead of following the suggested peak factors 

precisely, a range of peak factors should be considered. This would allow a 

utility to choose the acceptable reliability.    

Peak factors were calculated from measured results in South Africa by 

Booyens (2000). Three data loggers and two telemetry systems were used to 

record the flow for 5 zones in the Boksburg municipality. The zones contained 

approximately 3094 stands (4585 ee); 863 stands (1352 ee); 794 stands 

(828 ee); 444 stands (446 ee); and 69 stands (62 ee), respectively. The study 

area proved to have a homogeneous water demand pattern, and comprised of 

mainly residential properties. Booyens (2000) used the data to calculate PFs 

using different time intervals, and used a 15 minute time interval to calculate 

probabilistic peak factors, as well as different return periods. A comparison with 

the CSIR (2003) guideline is presented in Figure 2.10. 

Johnson (1999) noted that it is important to associate the PF with the time 

intervals at which peak flows are measured because, as the time interval 

duration increases, the PF decreases. In the case of all the abovementioned 

comparative studies, the PFs were calculated using longer time intervals than 

the instantaneous PF that the CSIR (2003) is claiming to depict. It is, therefore, 

reasonable to expect that the larger time interval PFs exhibit lower PF 

magnitudes. 
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   Hare, (1989) - PF10min 

   Turner et al., (1997) - PF15min 

   van Vuuren and van Beek (1997) - PF1h 

   Booyens (2000) - PF15min 

   CSIR (2003) - PFinst 

Figure 2.10: South African measured peak factors comparison 

When peak factors are high, then essentially it means that large pipeline 

capacities are maintained to be used only for short intervals of peak flow, 

lowering the degree of utilisation of the pipelines. Johnson (1999) defines the 

degree of utilisation as the reciprocal of the PF: 

                     
                       

 
   

                       
                                     (2.21) 

Johnson (1999) used probability theory to determine the recurrence interval of 

peak events and the related degree of utilisation. The maximum 15 minute flow 

and average daily flow from a reservoir over a period of 120 months was used 

to calculate 15 minute peak factors. The degree of utilisation probability graph 

derived by Johnson (1999) is shown in Figure 2.11. 
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Figure 2.11: Degree of utilisation - probability graph (Johnson, 1999) 

It was demonstrated by van Zyl (1996) how peak factors could be determined 

for supply areas that have different sizes, but similar characteristics, by 

analysing a typical demand pattern. According to van Zyl (1996) an average 

diurnal flow pattern should be based on water consumption records over a long 

time. The water consumption at a particular time of the day, divided by  

the average water consumption for the entire day, results in a flow pattern  

which is represented by peak factors. An assumed flow pattern is illustrated by 

van Zyl (1996) in Figure 2.12. 

It was pointed out by van Zyl (1996) that residential water consumption is not 

continuous, but is due to a combination of discrete water withdrawals from 

utilities (end-uses). A water demand pattern is, therefore, indicative of how 

many end-uses are active (open) at any given moment.   
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According to van Zyl (1996) a residential water demand pattern could be 

interpreted as a probability function relating the times that end-uses are active 

throughout the day. The probability distribution of active end-uses 

corresponding to the assumed flow pattern is illustrated in Figure 2.13, where 

the total area under the graph is equal to unity. 

 

Figure 2.12: Assumed diurnal flow pattern adapted from van Zyl (1996) 

 

Figure 2.13: Probability pattern of active end-uses adapted from van Zyl (1996) 
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A computer program was developed by van Zyl (1996) that simulated active 

end-uses throughout the day by making use of a probability pattern such as the 

one as shown in Figure 2.13. For each simulation, the computer program 

assigned a random number between zero and one for every minute of a day. At 

each minute, the random number was compared to the probability value of the 

probability pattern. If the random number was less than or equal to the 

probability value, then an end-use was considered active. If the random number 

was greater than the probability value, an end-use was considered inactive. It 

was assumed that a constant flow rate occurred each time an end-use was 

active. A single simulation represented the end-use activity resulting from a 

single user (consumer). Simultaneous simulations, therefore, denoted the end-

use activity due to more consumers. 

An example of a simulation by van Zyl (1996) for a single end-use is presented 

in Figure 2.14, where an active end-use is represented by a solid black line. At 

the the times of day when an end-use was active relatively frequently, a greater 

density of black lines was observed. Figure 2.15 shows the results of 

simultaneous simulations of 10, 100, 1 000, and 10 000 users, respectively. It is 

clear that as the number of consumers increases, the number of active end-

uses throughout the day tends to follow a similar pattern to the probability 

pattern in Figure 2.13.  

 

Figure 2.14: End-use activity results for 1 simulation adapted from van Zyl (1996) 
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Figure 2.15: Simulation results for many consumers adapted from van Zyl (1996) 

It was proposed by van Zyl (1996) that the simulations of active end-uses could 

be used to obtain peak factors by dividing the maximum number of active end-

uses by the average number of active end-uses for the day. According to  

van Zyl (1996), with further investigation and calibration, the proposed method 

could be used to determine design peak factors for residential areas of similar 

type, but different size. The approach by van Zyl (1996) has not yet led to 

design peak factors, however, similar concepts were applied in the end-use 

model developed in this thesis, such as using probability patterns to establish 

diurnal end-use activity, and the representation of area sizes by means of 

simultaneous simulations. 
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3. STATISTICS AND PROBABILITY THEORY 

3.1. Introduction 

The estimation of residential water demand and peak flows contains an element 

of uncertainty, which is present because there are many factors that affect 

water demand. One of the simplest ways in which to resolve uncertainty is by 

substituting each uncertain quantity by its average, median, or critical value. A 

deterministic approach can then be used. Loucks and van Beek (2005), 

however, warn that when important parameters are highly variable, then 

replacing those uncertain quantities by the average values can affect the 

outcome severely. Since the factors determining water demand varies greatly 

from one neighbourhood to another, and even from household to household, 

this approach of substituting average values is not ideal.  

The probability theory and stochastic processes that were used to incorporate 

the random factors in water demand are discussed in the following sections. 

Theoretical probability distribution functions were used in this study to 

statistically represent elements of the recorded end-use data. An overview of 

the theoretical probability distribution functions which best represented the 

respective end-use elements utilised in this study is also provided. It is 

important to note that although definitions of statistics used throughout the study 

are provided, this is not an exhaustive overview of the topic. 

3.2. Random Variables 

In statistics, a subset of a population is termed a sample. In a probabilistic 

experiment, the set of possible chance outcomes is called the sample space, 

denoted by  . A random variable is the function that associates a value with 

each outcome in in the sample space (Forbes et al., 2011). 
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Let   denote a random variable and   a possible value of the random 

variable  . A distinction can be made between discrete random variables and 

continuous random variables.  

A discrete random variable is defined by Devore (2004) as a random variable 

whose values makes up a finite set of values, or can be listed in an infinite 

sequence. For example, if   = the number of times that a coin toss will land 

heads up, then   is a discrete random variable. Possible values of   in that 

case are                  . It is not possible, for example, for a coin to fall 2.3 

times heads up. 

 A random variable is said to be continuous if its set of possible numbers can be 

an entire interval on the number line (Devore, 2004). For example, if   = the pH 

of a randomly selected compound, then   is a continuous random variable 

because the pH can be any possible value between 0 and 14.  

In this study, the following parameters were identified as being discrete random 

variables: 

 Household size, measured in units of people per household (PPH) 

 Frequency of event per day 

 Number of cycles per event 

 Starting hour of event. 

The following parameters were identified as being continuous random variables: 

 Flow rate of event 

 Volume of event. 

3.3. Measures of Central Tendency 

Central tendency is defined by Gravetter and Wallnau (2000) as a statistical 

measure that best represents the entire distribution by a single value. No 

method will produce a representative value for a distribution in every situation. 

Three methods that are often used are the mean, the median and the mode. 
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3.3.1. The Mean 

The mean is also known as the arithmetic average of the set. It is computed by 

taking the sum of the values in the distribution, and dividing it by the number of 

individual values. If  ̅ is the mean,    is the sum of all the values of   , and   is 

the number of   values, then the formula for calculating the mean is given as: 

 ̅  
  

 
                                                                                                              (3.1) 

A number of properties of the mean can be noted. Firstly, the mean will change 

if any single value changes. Its value is, consequently, very sensitive to outliers. 

Moreover, it minimises the sum of squared deviations around it. Advantages of 

the mean, as explained by Howell (2002), are that it can be manipulated 

algebraically, and an estimation of the population mean is generally better 

achieved by the sample mean than by either the median or mode.       

3.3.2. The Median 

The median is the value that divides the distribution exactly in half when the 

data is ranked in numerical order. It is also equal to the 50th percentile 

(Gravetter and Wallnau, 2000). The goal of the median is to identify the precise 

midpoint of a distribution. The method of computation depends on whether the 

sample has an even or odd number of observations. An advantage of the 

median is that it is unaffected by extreme outliers (Howell, 2002).  

According to Devore (2004), if   is odd, the median can be calculated from the 

formula: 

       (
   

 
)
  

                                                                                  (3.2) 

whereas if   is even, the median can be calculated from the formula: 

                  (
 

 
)
  

    (
 

 
  )

  

                                               (3.3) 
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3.3.3. The Mode 

The mode is the value in a distribution that occurs with the greatest frequency. 

Gravetter and Wallnau (2000) consider the mode useful because it can be used 

for any scale of measurement. Furthermore, it often provides the most sensible 

measure of central tendency, because it is the most typical case of the sample. 

It is also possible to have more than one mode. A distribution with two modes is 

called bimodal, and a distribution with more than two modes is called 

multimodal. 

3.4. Measures of Variability 

Measures of central tendency give only partial information about a distribution. 

There may be cases where two samples have the same mean and median, but 

the individual values of the one sample are spread further from one another 

than the other sample. It is therefore valuable to determine the variability within 

samples.  

3.4.1. The Range 

The range is a measure of distance. It is defined as the difference between the 

highest and the lowest values in a distribution (Devore, 2004). The range serves 

as an obvious way to describe the spread of the data. A disadvantage of the 

range as a means to describe variability is that takes into account only the two 

extreme values. 

3.4.2. Percentiles 

A percentile divides the distribution into hundredths, in terms of the number of 

samples. A percentile is the position in a distribution below which the specified 

percentage of   is situated. For example, if 90% of the observations lie below a 

certain value, then that value is the 90th percentile. The percentiles often 

employed include 25th, 50th and 75th. 

Stellenbosch University http://scholar.sun.ac.za



 

59 

3.4.3. The Variance 

Measures of variability involve the deviations from the mean (Devore, 2004). 

The deviations from the mean are found by subtracting the mean,  ̅, from each 

of the observations. When the observation is larger than the mean, the 

deviation will be positive, and when the observation is smaller than the mean, 

the deviation will be negative. Gravetter and Wallnau (2000) state that, in order 

to get rid of the positive and negative sign, each deviation is squared. 

If all of the deviations are small, then the observations are close to the mean 

and there is little variability. If, however, many of the deviations are large, then 

the observations are far from the mean and the variability is great. The variance 

can then be computed by calculating the mean of the squared deviations.  

According Devore (2004), the sample variance (  ) is given as: 

   
      ̅  

   
                                                                                                 (3.4) 

3.4.4. The Standard Deviation 

The square root of the variance is known as the standard deviation ( ) and is 

the positive square root of the variance, given as: 

  √                                                                                                               (3.5) 

According to Howell (2002), both the variance and the standard deviation are 

very sensitive to extreme values.  

3.5. Probability Distributions 

3.5.1. Frequency Distribution 

The frequency of a particular   value is the number of times that value occurs in 

a dataset. The relative frequency of a value is the fraction of the total number of 
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times that a particular value occurs. When the relative frequency is multiplied by 

100, a percentage is obtained. According to Ang and Tang (1984), the relative 

frequency could be used as a means of estimating the probability of events. 

Tabulating the frequencies or relative frequencies of each   value creates a 

frequency distribution, which can be graphically displayed by means of a 

histogram. In a histogram, the height of the bars usually represents the 

frequency, while the width of the bars is equal to the interval size chosen for the 

data (Gravetter and Wallnau, 2000). When relative frequencies are used to 

construct a histogram, then the sum of the areas of the rectangles equals one.  

For discrete random variables, the centre of the rectangle is positioned on the 

  value, and the width is taken as the distance between successive   values. 

Figure 3.1 shows a histogram of the daily starting hours for shower events using 

relative frequencies. 

 

Figure 3.1: Histogram of daily starting hours for shower events 

For continuous random variables, the measurement axis is divided into classes, 

so that each measurement is contained in only one class. As the classes are 

made smaller, the rectangles become narrower, until the histogram approaches 

a smooth curve, which is called a density curve. Figure 3.2 shows a histogram 

of the shower event volumes, with wide interval classes (a), and narrow 

intervals (b). 
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a) Large class intervals b) Small class intervals 

Figure 3.2: Histogram interval comparison of shower event volumes 

3.5.2. Probability Mass and Density Functions 

When a frequency distribution is plotted, it is characterised by a certain pattern 

of variation. The frequency distribution can be described by a continuous 

mathematical function  , which is assumed to be defined over the entire real 

line. 

The probability that a continuous random variable   takes on a value between 

the interval [   ] is given by the probability density function (PDF),     , as 

follows: 

         ∫     
 

 

                                                                                     (3.6) 

The graph of      is also referred to as the density curve. The probability that a 

value is between   and   is graphically represented by the area under the 

density curve, as shown in Figure 3.3.  
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Figure 3.3: Density curve for shower event volume 

Devore (2004) defines the probability mass function (PMF),     , of a discrete 

random variable as follows: 

For every number                                                                                (3.7) 

3.5.3. Cumulative Distribution Function 

The cumulative distribution function (CDF) for a continuous random variable is 

obtained by integrating the PDF between the limits -  and  , and gives the 

probability       . Devore (2004) defines the CDF as      by: 

              ∫                                                                                  
 

  

 (3.8) 

Figure 3.4 shows a PDF and the associated CDF. For any random variable  , 

the CDF      equals the probability that   is less than or equal to    

(Louckes and van Beek, 2005). 
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Figure 3.4: A PDF and associated CDF for a continuous random variable 

Figure 3.5 shows a PMF and the associated CDF for a discrete random 

variable. The CDF for a discrete random variable is the sum of the probabilities 

 , that are less than or equal to  . Devore (2004) defines the CDF      by: 

              ∑     

     

                                                                             (3.9) 

 

Figure 3.5: A PMF and associated CDF for discrete random variables 
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3.6. Parameters of Continuous Variables 

It is often difficult to describe a data set’s probability distribution function 

mathematically. There are several theoretical distributions however, for which 

the mathematical properties and parameters have been well studied and 

explained. If the frequency distribution of a dataset has a similar form to the 

known theoretical distribution, then the properties of the theoretical distribution 

can be applied to the data, allowing for a certain margin of error. Within a family 

of distributions, a large variety of forms is possible. The form is described by 

means of shape, location and scale parameters. Some distribution families do 

not contain all of the previously mentioned parameters. 

3.6.1. Shape Parameter 

Distributions that contain a shape parameter are very useful, because this 

allows a distribution the flexibility to take on a variety of different shapes. This in 

turn enables the distribution to model a variety of data sets. The shape depends 

on the value of the shape parameter,  . Figure 3.6 shows the Weibull 

distribution, with scale parameter   =1 and shape parameters   = 0.5, 1, and 3, 

respectively. 

 

Figure 3.6: Effect of a shape parameter on the Weibull distribution 
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3.6.2. Scale Parameter 

The scale parameter,  , has the effect of stretching or compressing the graph. 

The PDF will be stretched out along the x-axis if the scale parameter is greater 

than one. The stretching increases as the value increases. A scale parameter 

less than one has the effect of compressing the PDF. As the scale parameter 

approaches zero, the PDF makes a sharper spike. Scale parameters cannot 

have negative values. A location parameter of zero and scale parameters of 

              are used in Figure 3.7 to show the effect of a scale parameter 

on a standard Normal distribution, where   and   are the scale and location 

parameters, respectively, and are presented as      .  

 

Figure 3.7: Effect of a scale parameter on the standard Normal distribution 

3.6.3. Location Parameter 

The location parameter,  , has the effect of shifting the graph left or right on the 

horizontal axis relative to the standard distribution. If the standard Normal 

distribution were to be considered as an example, then a location parameter of 

three would translate the graph three units to the right. A location parameter of 

negative three would shift the graph 3 units to the left on the horizontal axis.  
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Figure 3.8 demonstrates the effect of a location parameter on the standard 

Normal distribution, where   and   are the scale and location parameters 

respectively and are presented as      . 

 

Figure 3.8: Effect of a location parameter on the standard Normal distribution 

3.7. Goodness of Fit Tests 

The degree to which a data set follows a given theoretical distribution is known 

as the goodness of fit (GOF). The compatibility between random data and a 

theoretical distribution can be measured with a GOF test. The 

Kolmogorov-Smirnov (K-S) test, the Anderson-Darling (A-D) test, and the 

Chi-Squared test are three examples of such tests. 

3.7.1. Kolmogorov-Smirnov Test 

In the Kolmogorov-Smirnov (K-S) test, the K-S statistic     is based on the 

largest vertical difference between the data’s cumulative distribution and that of 

a specified theoretical cumulative distribution. The critical value of   is found in 

tables, enabling one to ascertain whether the difference between the 

distributions is larger than what could be expected (Johnson, 1994).  
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The K-S statistic is given as: 

     [|           |]                                                                                  (3.10) 

where:  

  = total number of data points 

       = the fitted CDF 

        
  

 
 

   = the number of      less than  . 

The values of cumulative distributions vary from zero to one, which means that 

at the two extremes of a distribution, the K-S statistic will tend to be small. This 

has the implication that more weight is given to the centre of the distribution 

than the tails. The distribution must also be fully specified in terms of its 

location, scale, and shape parameters for the test to be valid. 

3.7.2. Anderson-Darling Test 

The A-D test is a modification of the K-S test. A weighting factor is multiplied to 

the difference between the two comparative distributions. When both       and 

          approach either 0 or 1, then the weighting factor is larger at the two 

tails. In this way, the A-D statistic gives more weight to the tails, when 

compared to the K-S test.  

The A-D statistic is given as: 

 ̇     
 

 
∑       [                          ]

 

   

                                (3.11) 

where:   

  = total number of data points 

       = value of the theoretical cumulative distribution at the largest observation     
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3.7.3. Chi-Squared Test 

The Chi-squared test requires the data to be divided into a number of bins. The 

bins can be in terms of either equal probability or equal width. The chi-squared 

statistic      is affected by the method of binning. The fitted parameters are 

then used to compare the number of data points in each bin with the number of 

data points expected in each bin. A limitation of the test is that it is not valid for 

small samples. Each bin requires at least five data points for the approximation 

to be applicable. 

The chi-squared statistics is given as: 

   ∑
       

 

  

 

   

                                                                                          (3.12) 

where: 

   = number of data points in bin   

   = expected number of data points in bin   

  = number of bins. 

3.8. Theoretical Probability Distributions 

This study made use of a number of different theoretical probability distributions 

to describe the continuous random variables applied in the end-use model. The 

Erlang, Gamma, Log-Logistic, Log Normal, Rayleigh, and Weibull distributions 

were applied in this study, and their mathematical descriptions are therefore 

briefly noted in the following sections. The equations given below were obtained 

from the @Risk user guide (Palisade Corporation, 2010). 
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3.8.1. Erlang Distribution 

Parameters 
  integral shape parameter     

   continuous scale parameter     

Domain        continuous 

PDF      
 

       
(
 

 
)
   

    ⁄                                                (3.13) 

CDF      
   ⁄    

    
       ⁄ ∑

   ⁄   

  

   

   

                                  (3.14) 

3.8.2. Gamma Distribution 

Parameters 
  continuous shape parameter     

   continuous scale parameter     

Domain        continuous 

PDF      
 

     
(
 

 
)
   

    ⁄                                                     (3.15) 

CDF 

     
   ⁄    

    
                                                                     

where: 

   = the Gamma Function 

   = the Incomplete Gamma Function 

(3.16) 

3.8.3. Log-Logistic Distribution 

Parameters 

  continuous location parameter 

   continuous scale parameter     

  continuous shape parameter     

Domain        continuous 

PDF      
     

        
                                                                (3.17) 
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CDF 

     
 

  (
 
 
)
                                                                     

where: 

  
   

 
 

(3.18) 

3.8.4. Log Normal Distribution 

Parameters 
   continuous alternative parameter     

   continuous scale parameter     

Domain        continuous 

PDF      
 

 √    
 

 
 
 
[
      

  ]
 

                                                    (3.19) 

CDF 

      (
      

  
)                                                              

where: 

     [
  

√     
] 

   √  [  (
 

 
)
 

] 

and      is also called the Laplace-Gauss Integral. 

(3.20) 

 

3.8.5. Rayleigh Distribution 

Parameters    continuous scale parameter     

Domain        continuous 

PDF      
 

 
 
 
 
 
[
 
 
]
 

                                                                    (3.21) 

CDF 
        

 
 
 
[
 
 
]
 

                                                                 (3.22) 
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3.8.6. Weibull Distribution 

Parameters 
  continuous shape parameter     

   continuous scale parameter     

Domain        continuous 

PDF      
     

  
     ⁄                                                               (3.23) 

CDF             ⁄                                                                  (3.24) 
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4. REUWS DATABASE BACKGROUND 

The parameters of the best-fit theoretical probability distribution functions used 

in the end-use model were obtained from measured indoor water consumption 

data. It was considered important to include a large sample of households in 

this analysis to ensure accurate results. Detailed large scale end-use 

measurement projects are usually very costly and time consuming. This study 

therefore made use of data collected by a previous project. At the time of 

conducting this research study, the REUWS by Mayer et al. (1999) was the 

largest known collection of recorded end-use data readily available. The 

REUWS contained indoor and outdoor end-use data and survey information 

previously collected by Aquacraft, Inc. of Boulder, Colorado, in the USA, and its 

subcontractors. The REUWS was funded by the American Water Works 

Association Research Foundation (AWWARF) and participating water utilities 

and was one of the largest end-use studies to date. A brief explanation of the 

data set follows in the sections below. For the full details relating to the 

methodology used to construct the REUWS database, see Mayer et al. (1999). 

4.1. Study Sites 

One of the purposes of the REUWS was to collect water consumption data from 

varied locations in North America. Twelve study sites in fourteen cities across 

the United States and Canada were therefore included in the project. At the 

request of the utilities, some cities combined to form one study site in order to 

share costs and include a wider range of water consumers. The study sites 

were representative of each of their locations, but not necessarily representative 

of all North American cities. The geographical locations of the study sites are 

shown in Figure 4.1. The utilities and supporting agencies which participated 

are listed in Table 4.1.  
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Figure 4.1: Sites used in the Residential end-uses of water study (Google Earth) 

4.2. Study Group Selection 

Mayer et al., (1999) explained that in each utility a representative sample of 

1 000 single family households was selected, to whom a questionnaire survey 

was mailed. The account number, service address, account status, date of 

account initiation, meter reading dates, meter readings and consumption data 

for a twelve month period was collected for each of the mail survey targets. The 

sample of 1 000 homes in each study site was referred to as the “Q1000” 

database.  

The Q1000 database went through various quality assurance and control tests, 

one of which was to test whether the sample was statistically representative of 

the population. Statistically significant differences occurred in only one site, 

namely Tempe, Arizona. Corrective action was later performed in that case 

during the study group selection process. 

The survey that was mailed to the Q1000 consumers database included 

questions relating to water-using appliances and fixtures, water using habits, 

household and landscape characteristics and demographic information. 
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To ensure customer anonymity, unique key-codes were used in subsequent 

databases to identify customer responses. Each key-code consisted of five 

numbers. The first two digits represented the study site, and the following three 

digits designated the residential customer. The key-code assignments that were 

used in the REUWS are presented in Table 4.1. 

Table 4.1: REUWS cities and key-code assignments (Mayer et al., 1999) 

Key-code City/Utility 

10000 - 10999 Boulder, Colorado 

11000 - 11999 Denver, Colorado 

12000 - 12999 Eugene, Oregon 

13000 - 13999 Seattle, Washington (includes 4 water purveyors in the Seattle area) 

14000 - 14999 San Diego, California 

15000 - 15999 Tampa, Florida 

16000 - 16999 Phoenix, Oregon 

17000 - 17999 Tempe and Scottsdale, Arizona 

18000 - 18999 
Regional Municipality of Waterloo, Ontario (includes the cities of 

Waterloo and Cambridge) 

19000 - 19999 
Walnut Valley Water District, California (part of the Metropolitan 

Water District (MWD)) 

20000 - 20999 
Las Virgenes Valley District, California (part of MWD, includes 

Calabasas and surrounding communities) 

21000 - 21999 Lompoc, California 

Statistical tests were performed as part of the work, to establish whether 

significant water consumption differences existed between survey respondents 

and survey non-respondents. Corrective action was taken where needed; an 

example of corrective action was the removal of outliers, where such removal 

was justified, by Mayer et al. (1999).  

A target of approximately 100 homes in each study site was chosen in which to 

install data-loggers. These households formed a sub-sample of the mail survey 

respondents. The households in the logging sample went through another test 

to ensure that statistically representative houses were selected before the group 

was approved. Consent letters were sent to the data logging sample explaining 

the project. In total approximately 40 households chose not to participate, and 
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those were replaced by other households. The total logging sample in the 

REUWS ultimately consisted of 1188 households. 

4.3. End-Use Data Collection 

The water consumption data was collected by means of a portable data logger 

attached to the water meter (which measured both the indoor and outdoor water 

consumption) at each of the 1188 selected houses. The data logger recorded 

the average volume of water passing through the water meter every ten 

seconds. In the REUWS a total of 100 loggers were used at any one time, with 

ten additional loggers available as backup. This meant that the loggers had to 

be rotated amongst the 100 homes in each of the 12 study sites. The target 

collection period was two weeks in the summer and two weeks in the winter for 

each house. The schedule of when data was collected is shown in Table 4.2. 

Table 4.2: Data collection schedule (Mayer et al., 1999) 

Site City 
Data collection period 

1 2 

1 Boulder, Colorado 21 May - 7 June, 1996 3 Sep - 19 Sep, 1996 

2 Denver, Colorado 5 June - 21 June, 1996 27 May - 13 June, 1997 

3 Eugene, Oregon 24 June - 11 July, 1996 1 Dec - 20 Dec, 1996 

4 Seattle, Washington 16 July - 2 Aug, 1996 7 Jan - 24 Jan, 1997 

5 San Diego, California 6 Aug - 26 Aug, 1996 3 Feb - 21 Feb, 1997 

6 Tampa, Florida 1 Oct - 18 Oct, 1996 3 Mar - 21 Mar, 1997 

7 Phoenix, Arizona 6 May - 23 May, 1997 4 Nov - 21 Nov, 1997 

8a, 8b 
Scottsdale and Tempe, 

Arizona 
29 Oct - 15 Nov, 1997 2 Dec - 19 Dec, 1997 

9a, 9b 
Waterloo and Cambridge, 

Ontario 
24 June - 11 July, 1997 7 Oct - 24 Oct, 1997 

10 Walnut Valley, California 22 July - 8 Aug, 1997 6 Jan - 23 Jan, 1998 

11 Las Virgenes, California 12 Aug - 29 Aug, 1997 27 Jan - 13 Feb, 1998 

12 Lompoc, California 9 Sep - 26 Sep, 1997 24 Feb - 13 Mar, 1998 
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4.4. End-Use Data Analysis 

The flow rates (or flow traces) recorded by the data loggers were analysed 

using Trace Wizard software. The recorded flow data was disaggregated into 

water consumption events, as explained earlier in this thesis. While determining 

the separate events, the start time, stop time, duration, volume, peak flow rate, 

mode flow rate, and mode frequency was calculated for each event. Thereafter 

water consumption events were categorized and assigned to a specific end-use 

in the household. Trace Wizard was employed by implementing user defined 

parameters for each household. The parameters consisted of ranges of 

possible values for volume, flow rate, and duration, which were unique to a 

particular end-use. An analyst on their team repeated the routine and fine-tuned 

the parameters to build a parameter file that correctly identified as many end-

uses as possible, based on expert-input (Mayer et al., 1999). 

A number of the end-use event data and characteristics obtained from the 

REUWS were used to derive probability distributions in the end-use model 

developed in this study. Section 5 provides the full details regarding the data 

that was extracted from the REUWS database and that was ultimately utilised in 

the end-use model. 
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5. PROBABILISTIC END-USE MODEL 

5.1. Overview 

One of the objectives of this study was to develop a computer based stochastic 

end-use model which would generate residential flow profiles on a high 

resolution temporal scale. The compilation of diurnal flow rate profiles was a 

prerequisite for achieving a further objective of the study, which was to calculate 

peak factors for differently sized areas, using different time intervals. 

The model which was constructed to reach the above mentioned objectives is 

discussed in this chapter. In the research design section the selected technique 

(statistical simulation model) is reviewed. The choice of software, as well as an 

explanation of the model concept and structure, is then provided. Within the 

methodology section, the data used as input to the model is fully described, and 

thereafter a detailed description of the characteristics of each parameter in the 

model is presented. 

5.2. Research Design 

A model was sought that could be applied as part of this research into peak 

flow. Ideally, this would consist of a mathematical model that could be used for 

repetitive calculations. A number of water demand estimation models were 

discussed in section 2.3.  The SIMDEUM was very successful in constructing 

diurnal water patterns by describing the the arrival time, the intensity and 

duration of rectangular water pulses, with probability distributions for each end-

use. A similar statistical simulation model was therefore selected as that to be 

developed in this study. The previously measured end-use data from REUWS 

was used to obtain the descriptive probability distributions. The entire REUWS 

database, including all the raw data compiled during that study, was purchased 

from the original authors as part of this research project. The REUWS data was 

considered the most appropriate data available for the purpose of this study. 
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5.3. Software 

5.3.1. End-Use Model Software Choice 

A number of software options that could be used to develop a statistical model 

were available. Microsoft Excel is one of the Microsoft Suite of Applications. It is 

a widely known and utilised software application with a spreadsheet interface. It 

has many tools and features that make it possible to analyse data and perform 

complex calculations. Other possible software applications require the use of 

programming languages such as C++, Delphi, Fortran or Matlab. Some 

advantages and disadvantages of the software options are presented in  

Table 5.1. 

Table 5.1: Comparison of software options to construct an end-use model  

Software Microsoft Excel C++ / Delphi / Fortran / Matlab 

Advantages 

Microsoft Excel is a readily 
available and commonly used 

package 

Computation speed of model can 
be enhanced 

The calculation equations within 
the model are visible, enabling 

easy understanding of the 
structure 

With well written code, the model 
can be compact and efficient, 

with a executable program 

Little knowledge of programming 
language is required 

Ideal for iterative calculations 

Future work or improvement of 
the model is not limited by 

knowledge of a specific 
programming language 

Changes in the model structure 
are easily incorporated with 

additional code 

Disadvantages 

The model could become clumsy, 
as a number of calculation steps 

may be required to perform single 
processes 

Software may have to be 
purchased 

Workbooks containing large 
volumes of data may limit the 

computation speed of the model 

Calculations are obscured by 
programming code 

It is not ideal for iterative 
calculations 

Comprehensive knowledge of a 
programming language is 

essential 

Small changes in the model 
structure may require a lot of  

rework 

Future work or improvement of 
the model is limited by knowledge 
of specific programming language 
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Microsoft Excel was chosen as the preferred software application in this study, 

mainly because it was readily available, suitable for the desired purpose and the 

disadvantages were not considered to be limiting in terms of this research 

project’s outcomes. 

A stochastic end-use model generating daily residential flow rate profiles has 

not previously been developed in South Africa. The priority of this study was 

therefore not to acquire knowledge of a particular programming language, but 

rather to establish whether the model structure presented in section 5.4 would 

be successful in achieving the objectives of this study. Since the model 

structure could be fully tested and constructed in Microsoft Excel, this was 

chosen as the preferred software application. Should the model prove 

successful, future work could include improving the model by converting it to a 

more efficient software application with the use of a programming language. 

The software packages that were used in this study are discussed in more 

detail below. 

5.3.2. Microsoft Access 

Microsoft Access is one of the Microsoft Office Suite of applications. It is an 

effective software application for the purpose of creating and managing large 

databases. User-friendly features enable information to be manipulated and 

viewed easily. Macros can be used to create or connect tables, queries, filters, 

forms, and reports. Microsoft Access was used in this research project to 

extract data from the REUWS database and to perform queries on the dataset. 

5.3.3. Microsoft Excel 

Microsoft Excel is also one of the Microsoft Suite of applications. It is a widely 

known and used software application with a spreadsheet interface. It has many 

powerful tools and features that makes it possible to analyse, share and 

manage data. Microsoft Excel was chosen to store the results for this project 

because most of the people who need it have access to the application, and the 
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management of the data is facilitated by the creation of a worksheet for each 

different suburb, while maintaining a minimum number of workbooks. Microsoft 

Excel was used in this research project to develop the end-use model.  

5.3.4. @Risk 

The @Risk software is a risk analysis and simulation Add-in for Microsoft Excel. 

It contains many functions which allow different distribution types to be specified 

for cell values. The @Risk software has simulation capabilities with supported 

techniques such as Monte Carlo and Latin Hypercube sampling. The software 

also performs GOF tests by making use of the K-S test, the A-D test, and the 

Chi-Squared test to compare the theoretical distributions with the given data. 

Each GOF test ranks the distributions based on the fit. The available 

distributions in @Risk are as follows: 

 Beta 

 Beta General 

 Beta-Subjective 

 Binomial 

 Chi-Square 

 Cumulative 

 Discrete 

 Discrete Uniform 

 Error Function 

 Erlang 

 Exponential 

 Extreme Value 

 Gamma 

 General 

 Geometric 

 Histogram 

 Hyper geometric 

 Inverse Gaussian 

 IntUniform 

 Logistic 

 Log-Logistic 

 Lognormal 

 Lognormal2 

 Negative Binomial 

 Normal 

 Pareto  

 Pareto2 

 Pearson V 

 Pearson VI 

 PERT 

 Poisson 

 Rayleigh 

 Student’s t 

 Triangular 

 Trigen 

 Uniform 

 Weibull 

The @Risk software was used in this research project to perform GOF tests on 

selected elements in the REUWS data in order to rank the distributions 

according to the best fit. Based on the results of the rankings, theoretical 

distributions were selected to describe some of the end-use model parameters.  
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5.4. Model Structure 

The end-use model developed in this study determined the flow rates caused by 

end-use water events at a resolution of one second. Instantaneous flow rates 

that occur within a single water consumption event generally vary in magnitude. 

In this study, however, it was assumed that a constant flow rate occurred for the 

entire duration of a single end-use event. The water events could therefore be 

equated to rectangular water pulses. Buchberger and Wells (1996) showed that 

rectangular water pulses described indoor residential water demand 

successfully in their PRP model.  

The concept of rectangular pulses is illustrated in Figure 5.1. The height and 

length of the rectangle represented the flow rate and the duration of the event, 

respectively. The area of the rectangle represented the volume of the event. 

When water events overlapped, the flow rate was calculated as the sum of the 

flow rates for the overlapping period. In summary, each time an end-use was 

activated, it caused a rectangular pulse, and when individual water demand 

events from different end-uses were added together, the total water demand 

profile for a single household was obtained.  

 

Figure 5.1: Rectangular water pulses 
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In the end-use model, the elements required for the rectangular pulses were 

obtained from end-use specific probability distribution functions for the flow 

rates and volumes. The time of the day that end-use events occurred was also 

determined from end-use specific probability distributions. 

Water demand is strongly related to the number of people residing in a home 

(household size), who are available to use water. The number of times that a 

specific end-use was activated during a single day (the frequency) was 

therefore related to household size. Six household size categories were 

included in the model, ranging from 1 PPH to 6 PPH. 

Once the model had selected a household size, a corresponding probability 

distribution was applied, to establish the number of events that occurred on the 

simulated day. Starting hours were assigned to every event, based on starting 

hour probability distributions. The individual event starting times were 

subsequently obtained using random minutes and seconds within each selected 

starting hour. 

End-use specific probability distributions were used to obtain event flow rates 

and volumes, which were assigned to every event starting time. The duration 

and ending times for the water events were then computed with the available 

information. In addition, end-uses with cyclic water demand patterns, such as 

dishwashers and washing machines, involved prescribing the number of cycles 

per event and the duration between cycles with probability distributions. The 

parameters of all the probability distributions were derived from water 

consumption measured data from the REUWS. 

With the above mentioned end-use event values in place, the flow rates 

occurring throughout the day from different end-uses were summed. The flow 

rate observed in one second intervals for a single house of particular household 

size was subsequently available. A Monte Carlo simulation method was applied 

in the model to generate many unique water demand scenarios. A Monte Carlo 

method entails the repeated calculation of the model, each time using randomly 

selected input parameters for the probability distributions.  
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Figure 5.2 shows a simplified schematic of the end-use model structure. The 

number of cycles per event, and duration between cycles parameters were only 

applicable to the dishwasher and washing machine end-uses, the dashed lines 

illustrates this in the figure.  

The mathematical description of the end-use model is very similar to the 

SIMDEUM developed by Blokker et al. (2010).  Key differences between the 

two models were that the end-use model in this study derived the input data 

from measured water consumption, while the SIMDEUM used statistical 

information on consumers and end-uses based on consumer surveys as input. 

The SIMDEUM determined the actual household size, and simulated the water 

demand for each occupant separately; these were then summed. The current 

end-use model simulated households as a whole, with a possible range of one 

to six PPH. The SIMDEUM also considered end-use sub-types such as single- 

and dual-flush toilets, while the end-use model in this study incorporated the 

effects of sub-types in the probability distributions derived from the previously 

measured data. 

 

Figure 5.2: Simplified schematic of end-use model structure 
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5.5. Data Preparation 

5.5.1. REUWS Database 

The comprehensive REUWS database was purchased as part of this research 

and was presented on a CD as a 230 Mega Byte (MB) Microsoft Access 2003 

database. Microsoft Access 2010 was available for this study, so the database 

was converted into the later format as part of this research project, for further 

manipulation. The database contained 20 tables of data which were linked with 

the key-code field, as presented in Table 4.1. A description of some of the 

tables within the REUWS database described by Mayer et al. (1999) is 

presented in Table 5.2. 

Table 5.2: Overview of the REUWS database (Mayer et al., 1999) 

Table name Description 

Daily use 
Summed water consumption volume by end-use for each logged 

day from each city 

Survey responses 
Each coded survey response from 12 cities. Also includes the 

key-code field to link water consumption and survey data 

Q1000 

There are twelve Q1000 tables in the database, one for each of 
the 12 participating cities. These tables contain historic billing 
records for a random sample of 1000 single family accounts in 
the service area. The fields in each table vary, but the units of 

water consumption are kgal (thousand gallons) 

Irrigated area data 
Measured irrigated area and irrigation application rate from 1130 

of the 1188 single family households in the study 

Weather data 
tables 

Weather stations and daily weather tables contain climate data 
from weather stations near each study home. These tables are 

related to each other by the station ID field 

Logging data 

Each individual water event recorded during the two-year study is 
included in this table, including toilets, showers, washing 

machines, taps, irrigation, etc. Logging data is related to survey 
responses via the key-code field 

Within the logging data table, various fields were available. A description of 

some of the fields is provided in Table 5.3. 
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Table 5.3: Description of the REUWS logging data table fields (Mayer et al., 1999) 

Field name Description 

Key code The unique identifier for each household in the study 

Use type 
The type or category of water consumption. For example, toilet, 

shower, washing machine, etc. 

Date 
The date the water consumption event occurred. For events that 
start at 11:59 p.m. and extend into the next day, the date is the 

start date 

Start The start time of the water consumption event 

Duration The duration (in seconds) of the water consumption event 

End The end time of the water consumption event 

Volume The volume (in gallons) of the water consumption event 

Peak 
The peak flow rate (averaged over 10 seconds, and presented as 

gallons per minute) observed during the course of the water 
consumption event 

Mode 
The mode flow rate (averaged over 10 seconds, and presented as 

gallons per minute) observed during the course of the water 
consumption event 

Mode No. 
The number of occurrences of the mode flow rate during the 

water consumption event 

In the Use type table field, the labels of end-uses identified by Trace Wizard 

were: 

 Bath 

 Clothes washer 

 Clotheswasher1 

 Cooler 

 Dishwasher 

 Dishwasher1 

 Faucet  

 Hot tub 

 Humidifier 

 Leak 

 Irrigation 

 Shower 

 Swimming pool 

 Toilet 

 Toilet@ 

 Treatment 

 Unknown 

The terms “faucet” and “clothes washer” were used in the REUWS; however the 

terms “tap” and “washing machine” are used to refer to the respective end-uses 

in this study.  

The tap use type did not discriminate between the taps used in a bathroom, and 

taps in the kitchen.  
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The dishwasher and washing machine events occurred as sequential cycles, 

with a time laps between cycles. The first cycle in each multi cycle event was 

named washing machine1, and dishwasher1, respectively. This enabled the 

number of multi-cycle events per day to be counted easily.  

The toilet@ label was given to toilet flush events which appeared to be partial or 

double flushes. Mayer et al. (1999) stated that the toilet@ use types did not 

reflect accurate flush volumes, but should be incorporated in daily count 

applications.  

To reduce the number of records, Mayer et al. (1999) summed the leakage 

events daily and gave the total as the leak value. Where flow trace analysis 

could not confidently identify events, such events were placed in the unknown 

category prior to the completion of the REUWS. 

5.5.2. Table Selection 

Only indoor water demand was considered in this study, which eliminated the 

need for some of the tables available in the REUWS database. The tables with 

weather data and properties' irrigated areas were thus omitted. Daily totals or 

historic billing records were not required for the development and application of 

the end-use model, therefore the daily use table and the Q1000 tables were 

also excluded. 

End-use data and customer characteristics were the essential information 

required to extract from the REUWS database. The logging data table and the 

survey responses table were subsequently used. The survey responses were 

considered more useful when linked to the customers’ logging data. However, 

the survey responses table contained all response data, including that of 

households that did not participate in the end-use logging portion of the study. A 

single table was therefore created, which included all the logging data as well 

as the corresponding survey responses. Such a merge was possible because of 

the common key-code field identifying the households. The additional survey 

responses were omitted. 
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The two tables were combined by creating a query in Microsoft Access. The 

logging data table and the survey responses table were selected, and all the 

columns contained in the tables were merged. The query was converted into a 

table named “Logging data and survey responses”. This table contained 

1 959 120 records, with 1187 unique key-codes (or households). The column 

titles in the logging data and survey responses table were as listed in Table 5.4. 

The column numbers are represented as they appeared, in order from left to 

right. Q1, for example, represents the answers to Question one of the survey. 

Column numbers 14 to 96 and 103 to 114 were not utilised, and are thus shown 

as condensed lines in Table 5.4. 

Table 5.4: Logging data and survey responses table columns 

Column Number Column Title 

1 Logging data key code 

2 Use type 

3 Date 

4 Start 

5 Duration     

6 End 

7 Peak           

8 Volume       

9 Mode           

10 Mode No. 

11 Survey responses key code 

12 Stat ID 

13 Stat ID 2 

14 - 96 Q1a - Q29 

97 Q30adults 

98 Q30teen 

99 Q30child 

100 Q31adults 

101 Q31teen 

102 Q31child 

103 - 114 Q32 - Comments 
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5.5.3. End-Use Selection 

The REUWS identified 14 different end-uses. However, not all of the end-uses 

were considered essential for inclusion in the end-use model developed here. In 

order to identify the relevant end-uses, the percentage of households in which 

the events occurred was investigated. Table 5.5 shows a summary of end-use 

occurrence in households. 

Table 5.5: End-use occurrence in households extracted from REUWS data 

Leakage and outdoor data were not included in this study, which meant the 

end-uses called leak, irrigation, and swimming pool were automatically 

excluded. The Unknown data would not be useful in this research, and was, 

subsequently, excluded. The cooler, hot tub, humidifier, and treatment were 

end-uses that were present in fewer than 20% of the study group households. 

They were therefore considered uncommon in both the majority of households 

from REUWS and local households, and were excluded in the current study. 

The six remaining end-uses which were utilized in the end-use model were the 

End-use type 
Number of 

records 
Number of 

households 
Proportion of 

households (%) 

Tap 1 150 872 1 187 99.9 

Toilet + Toilet@ 348 345 1 186 99.8 

Washing machine1 + 
Washing machine 

120 756 1 160 97.6 

Dishwasher1 + Dishwasher 33 832 906 76.3 

Shower 50 286 1 172 98.6 

Bath 4 105 556 46.8 

Irrigation 69 245 1 117 94.0 

Swimming pool 5 147 111 9.3 

Leak 27 587 1 184 99.7 

Unknown 27 881 1 020 85.6 

Cooler 102 063 64 5.4 

Hot tub 896 38 3.2 

Humidifier 3 861 11 0.9 

Treatment 14 244 180 15.1 
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tap, toilet, washing machine, dishwasher, shower and bath. A total of 12.1% of 

the records was excluded. 

In order to isolate the data for each of the six applicable end-uses, queries were 

created in Microsoft Access. In the query, the “Logging data and survey 

responses” table was selected with all its columns. However, only records with 

the applicable use-type names, for example the word “bath” in the “use type” 

column was included in the results. The query for “bath” was converted in a 

table named “Bath original”. The process was repeated for each end-use, until 

six tables had been created, containing relevant data for the six selected end-

uses. 

5.5.4. Unit Conversions 

The units of measurement for the volume and flow rate fields in REUWS were 

given in gallons, and gallons per minute respectively. For the end-use model the 

units were converted to litres for the volume and litres per second for the flow 

rate. To perform the conversions, three additional columns were created in each 

of the end-use tables. Table 5.6 summarises the properties allocated to the 

three new columns in Microsoft Access.  

Table 5.6: Unit conversion column properties 

Column name Data Type Expression 

Peak    ⁄   Calculated [            ⁄  ]                 

Volume     Calculated [            ]            

Mode    ⁄   Calculated [            ⁄  ]                 

5.5.5. Household Size Calculation 

Household size is one of the most notable parameters influencing water 

consumption. The number of times that a particular end-use was used during 

the day is a function of household size, described as the number of people in 

the household. For example, it makes sense that the toilet is flushed more 

frequently in a four-person household than in a two-person household.  
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The number of events occurring per day was thus related to household size in 

the model. The household size information was gathered from the survey 

responses data. The two relevant questions quoted from the questionnaires are 

as follows: 

Question 30: How many people reside full-time at this address during the winter 

months of the year (generally December - February)? (Enter the number of 

individuals in each age group.) 

Adults (18+)  b) Teenagers (13 - 17)  c) Children (under 13) 

Question 31: How many people reside full-time at this address during the 

summer months of the year (generally June - August)? (Enter the number of 

individuals in each age group.) 

Adults (18+)  b) Teenagers (13 - 17)  c) Children (under 13) 

The responses to the two questions were provided in the columns entitled 

Q30adults, Q30teen, Q30child, Q31adults, Q31teen, and Q31child. The first 

step was to insert columns entitled “Q30total” and “Q31total” in the table which 

gave the total number of people living in the house in the winter and summer 

months, respectively. This was done by taking the sum of adults, teenagers and 

children reported in the survey responses, since it was not considered 

necessary in this study to distinguish between different consumer age groups. 

The next step was to determine the month in which an event took place, so that 

each event was related to the corresponding winter or summer household size. 

A column entitled “Month” was added in each end-use table, which evaluated 

the “Date” column. Based on the event date, a number between 1 and 12 

representing the month of the year in which the event took place was computed 

in the “Month” column. Months 3, 4, 5, 6, 7, and 8 (March to August) were 

considered summer months, while months 9, 10, 11, 12, 1 and 2 (September to 

February) were considered winter months, due to the fact that the REUWS data 

originated from the northern hemisphere. 
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A column entitled “Household size” was added to each end-use table which 

evaluated the “Month” column. If the month was a value between 3 and 8, then 

the household size value in the “Q31total” column was used. If the month value 

was not between 3 and 8, then the household size value in “Q30total” was 

used. This ensured that each event was assigned the appropriate household 

size value.  

There were cases where the date of an event corresponded to a summer 

month, the Q31total column (summer month household size) contained no 

response, but the Q30total column (winter month household sizes) had a value. 

In such cases it was assumed that the same number of people residing in the 

winter months was present in the summer months, or visa versa. Therefore, in 

all instances where the household size column yielded values of 0, the 

appropriate value from either the Q30total or Q31total columns was manually 

copied.  Table 5.7 summarizes the properties allocated to the new columns 

discussed above. 

Table 5.7: Household size column properties 

Column name Data Type Expression 

Q30total Calculated [         ]    [       ]    [        ] 

Q31total Calculated [         ]    [       ]    [        ] 

Month Calculated       [    ]  

Household size Calculated    [     ]        [     ]    [        ]           

The range of household size from the REUWS data sample was 8 PPH, varying 

from 1 to 9. The proportion of the end-use events that occurred within each 

household size category was extracted and presented in Table 5.8. 
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Table 5.8: Household size category proportions 

Household size 

(PPH) 
1 2 3 4 5 6 7 8 9 Total 

P
ro

p
o
rt

io
n
 o

f 
e
v
e
n
ts

 (
%

) Bath 1.9 18.4 17.4 23.4 21.4 11.4 2.7 2.2 1.2 100.0 

Washing machine 1.9 20.0 19.3 26.5 17.5 9.0 3.1 2.0 0.8 100.0 

Dishwasher 1.7 23.9 18.4 28.2 18.0 6.1 2.3 0.8 0.5 100.0 

Tap 16.1 37.1 19.3 16.4 7.7 2.5 0.6 0.2 0.1 100.0 

Shower 6.2 31.8 21.1 22.7 12.0 4.1 1.0 0.9 0.2 100.0 

Toilet 7.5 34.9 19.9 21.4 10.8 3.6 1.2 0.5 0.2 100.0 

Total 12.9 35.2 19.5 18.4 9.2 3.2 0.9 0.4 0.2 100.0 

From Table 5.8 it is clear that the lowest proportion of events occurred in the 

6 PPH, 7 PPH, 8 PPH, and 9 PPH categories, which together were only 

responsible for 4.8% of the total number of events. It was therefore decided, for 

the purpose of the end-use model, to group the household size categories for 

6 PPH, 7 PPH, 8 PPH, and 9 PPH into a single category, represented for the 

purpose of simplicity by 6 PPH. All the events occurring within households of 

the above mentioned sizes therefore formed part of the 6 PPH category. 

Queries were created in Microsoft Access to disaggregate the data in each end-

use table, based on household size. In the query, each end-use table was 

selected in turn, including all the columns in the table. However only records 

that, for example, had values for         in the “Household size” column 

were included in the results for the 1 PPH query. The process was repeated so 

that 2 PPH, 3 PPH, 4 PPH, 5 PPH and 6 PPH queries resulted for each of the 

six end-use categories. The individual household size tables were necessary so 

that the daily frequency of events for each end-use could be determined based 

on household size. 

5.5.6. Export Microsoft Access Tables to Microsoft Excel  

A separate Microsoft Excel workbook was created for each of the tap, toilet, 

washing machine, dishwasher, shower and bath end-uses. The data in the 

modified “Bath” Microsoft Access table was exported to a sheet in the “Bath” 
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Microsoft Excel workbook. The “Bath” queries for 1 PPH, 2 PPH, 3 PPH, 4 PPH, 

5 PPH and 6 PPH were each exported to a separate worksheet in the Bath 

Microsoft Excel workbook. The export process was repeated for each end-use. 

Microsoft Excel allowed only 65 534 entries to be imported at a time. This 

meant that in cases such as the toilet end-use that consisted of 348 345 event 

entries, the data was copied in sections, with each section exported as a new 

worksheet. The data in the separate worksheets were later combined into a 

single worksheet. Due to the number of event entries present in the tap end-use 

data, the tap data had to be exported as 20 separate sections, hence 

20 worksheets were created. Furthermore, a single Microsoft Excel worksheet 

was limited to 1 048 576 rows. Since the number tap end-use event entries 

exceeded this number, the additional rows were positioned in an adjacent table 

on the same sheet. 

5.5.7. Duration Between Cycle Calculation 

As mentioned previously, the dishwasher and washing machine events 

consisted of a number of sequential cycles. Each cycle had a start time and 

duration, however the REUWS database did not explicitly provide the duration 

between cycles (in seconds).  Instead only the start times were provided. 

Additional columns were therefore created in the relevant end-use workbooks to 

calculate the duration between cycles. 

To improve clarity, each event was assigned a unique number, with each cycle 

in the event having the same number. A column was inserted where the start 

time of one cycle was subtracted from the end time of the previous cycle within 

one event. This served to calculate the time between cycles, given in hh:mm:ss 

format. Another column was inserted which served to convert the time into 

seconds, resulting in the “duration between cycles” variable. 
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5.5.8. Data Filtering in Microsoft Excel  

The data provided in the REUWS database had already gone through a 

rigorous filtering process, which had been checked and verified by 

Mayer et al. (1999), as discussed earlier in this text. The REUWS verification 

was considered to be sufficient and no additional filtering of the given values 

was done. However, there were cases where obvious errors required 

correction. Most of the adjustments occurred in the start time, end time, or 

duration fields. 

In the duration field, there were cases where the duration value was given as 

-86340, 0, or 82 seconds. Negative and zero durations are of no use, and since 

the logging measurements occurred at 10-second intervals, all event durations 

were expected to be factors of ten. Hence, the quoted duration of 82 seconds 

was suspicious. When the difference between the event start time and end time 

was calculated, the actual durations resulted in, for example, 60, 160 and 80 

seconds, respectively. The calculated durations were given preference when 

there were differences between the given and calculated durations. In cases 

where the event start time and end time were equal, and the duration was 

zero seconds, the entire record was removed, since there was no method of 

establishing the actual duration, or whether any event had actually occurred. 

Within the dishwasher and washing machine data sets there were events that 

appeared to have an improbably large number of cycles. When this was 

investigated it was usually because the first cycle of a new event was labelled 

“Dishwasher” instead of “Dishwasher1”. It was possible to identify such 

problems by means of inspection, by noting where new events should have 

started. This situated was typified by excessively long durations between 

cycles. There were also instances where the start time of a cycle in one event 

would occur before the previous cycle of the same event finished. Where there 

was an overlapping of cycles in a single event, one of the cycles was removed. 

Events with just one cycle, or duplicate cycles, were also removed. 
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5.6. Household Size Frequency Probability Distributions 

Section 5.5.5 describes how the household size (number of persons per 

household) categories were calculated. The same information was used to 

obtain the total number of events within each household size category. The 

household size was considered a discrete variable, so an estimation of the 

probability distribution was obtained by calculating the relative frequency, and 

thereafter the cumulative relative frequency, of the household size categories. 

The cumulative relative frequency was necessary, because it was the 

distribution applied in the end-use model for the household size selection 

process. The resulting probabilities used for the household size are given in 

Table 5.9. 

Table 5.9: Household size probability calculation 

Household size (PPH) Frequency 
Relative Frequency 

(Probability) 

Cumulative 
Relative 

Frequency 

1 214932 0.129 0.129 

2 586075 0.352 0.482 

3 323637 0.195 0.676 

4 305498 0.184 0.860 

5 153744 0.092 0.952 

6 79392 0.048 1.000 

Sum 1663278 1.000  

5.7. Daily Event Frequency Probability Distributions 

The daily frequency of events was related to the household size. Event 

frequencies were discrete variables, since it represented the precise number of 

events for a particular household. For example, it was not possible for 3.75 

shower events to occur in a day, so the frequency values did not comprise an 

entire interval on the number line, as would be the case with continuous 

variables. Probability distributions for discrete variables were therefore 

determined by calculating the relative frequencies and cumulative frequencies 
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of the data. The procedures followed to determine the probability distributions of 

daily event frequencies are described in section 5.7.1 and 5.7.2. 

5.7.1. Bath, Shower, Toilet, and Tap Probability Distribution 

Using the bath as an example, all the data in the previously disaggregated 

1 PPH category was considered. The key-codes were sorted in ascending 

order, and within that arrangement the event dates were sorted in ascending 

order. The “subtotal” function in Microsoft Excel was used in such a way that at 

every change in date, a subtotal was inserted which counted the number of 

events occurring on the same date. The subtotal values were used to construct 

a table containing the number of bath events that occurred on individual days in 

each household. The table was then sorted so that the “number of events per 

day” was arranged in ascending order. The subtotal function was used on the 

resulting table, this time inserting a subtotal at every change in the “daily event 

frequency” column, and counting the number of events in each category. The 

values of the subtotals were used to construct a table containing the number of 

days on which the event frequencies took place. For the 1 PPH category, the 

bath end-use resulted in daily event frequencies ranging between one and four 

events per day. The daily event frequencies of zero were assumed to occur on 

the logged days that had no recorded bath event. The resulting probabilities 

used for the bath data in the 1 PPH category are given in Table 5.10. 

Table 5.10: Bath probability calculation for household size of one person 

Daily Event Frequency 

(Number of baths per 
day) 

Frequency 
Relative Frequency 

(Probability) 

Cumulative 
Relative 

Frequency 

0 284 0.612 0.612 

1 123 0.265 0.877 

2 39 0.084 0.961 

3 14 0.030 0.991 

4 4 0.009 1.000 

Sum 464 1.000  

Stellenbosch University http://scholar.sun.ac.za



 

97 

The result suggests that in households with one person, the probability that no 

bath event takes place on any given day is 0.612. The probability that three 

bath events occur on one day is 0.030, et cetera. 

For the bath end-use the probability calculation procedure explained above was 

repeated for the 1 PPH, 2 PPH, 3 PPH, 4 PPH, 5 PPH, and 6 PPH categories. 

The entire process was also performed for the shower, toilet, and tap end-uses.  

The cumulative relative frequencies can also be represented graphically, as 

shown in Figure 5.3 for the 1 PPH bath end-use. Figure 5.3 also illustrates the 

Monte Carlo methodology of how the model selected the number of events per 

day. A random number (with a uniform probability distribution) between zero 

and one was generated by Microsoft Excel (applied to the y-axis), and the 

appropriate number of events was selected (on the x-axis). For example, if the 

random number was 0.75 then one bath event would have occurred, as shown 

by the dotted lines on Figure 5.3. The cumulative relative frequencies used in 

the model for the bath, shower, toilet, and tap end-uses for the different 

household size categories are summarised in Appendix B.  

 

Figure 5.3: Cumulative probability distribution for 1 PPH bath end-use frequency 
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5.7.2. Dishwasher and Washing Machine Probability Distribution 

The probability distributions for the daily frequency of dishwasher and washing 

machine events were determined, using the same method as discussed in 

section 5.7.1 for the other end-uses. The only difference was that within each 

dataset, only the first cycle in each event was considered. The first step 

therefore entailed sorting the data so that the use types entitled “Dishwasher1” 

or “Clotheswasher1” were grouped together, and the rest of the cycles were 

ignored. This ensured that the number of complete events per day was counted, 

regardless of the number of cycles per event. The number of cycles and the 

duration between cycles could be obtained from the signature patterns for these 

end-use events. 

Blokker et al. (2010) assigned constant and specific patterns to dishwashers 

and washing machines in the SIMDEUM. In the SIMDEUM, dishwasher events 

consisted of 4 cycles, with a volume of 14   and duration of 84  . Similarly, 

washing machine events consisted of 4 cycles, with a volume of 50   and 

duration of 5 minutes. During the inspection of the dishwasher and washing 

machine data used in this study, no clear pattern could be identified amongst 

the events. The number of cycles, duration of cycles, flow rates and volumes 

varied considerably, even within single households.  

Since the logging data revealed relatively unique events, the dishwasher and 

washing machine events were not assigned fixed characteristics (in terms of the 

number of cycles, duration, and flow rate) in the end-use model, but also 

generated unique events each time those end-uses were used. This meant that 

for each dishwasher and washing machine event the number of cycles, the flow 

rate and duration for each cycle, as well as the duration between cycles, were 

specified, with probability distributions, to thus mimic the actual variation in 

these parameters as per the recorded data.  
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5.8. Number of Cycles Probability Distribution 

For each household size category (1 PPH - 6 PPH) the number of cycles per 

dishwasher and washing machine event was counted. The events were sorted, 

based on their number of cycles, and then the subtotal command in Microsoft 

Excel was used. A subtotal was inserted each time a change in the “number of 

cycles” column changed, which then counted the number of occurrences within 

that category. The cumulative relative frequencies were then calculated to 

determine the corresponding PDFs (provided in Appendix B). 

Figures 5.4 and 5.5 present the cumulative probability distributions for the 

washing machine and dishwasher number of cycle variable graphically. The 

REUWS data contained some dishwasher and washing machine events with up 

to 12 and 20 cycles respectively. Upon visual inspection it was not always 

possible to refute the large number of cycles by identifying where a single event 

should have been labelled as separate events. The recorded extreme events 

consisting of many cycles were therefore included in the model, because there 

was no scientific reason to exclude them (one possible explanation would be 

the repetitive use of an appliance, with different settings for each event). 

 

Figure 5.4: Cumulative probability distribution for dishwasher number of cycles  
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Figure 5.5: Cumulative probability distribution for washing machine number of 

cycles 

5.9. Starting Hour Probability Distribution 

The event starting times were obtained by selecting an hour of the day during 

which an event would take place according to the REUWS data, and then 

assigning a random minute and second within that hour. Any time interval could 

have been chosen instead of the 1 hour intervals, such as a 15 minute or 

1 minute interval, to derive the probability distributions. Smaller time intervals 

would, however, have resulted in fewer data points being available in each 

category.  

Since a limited number of data points were available from the REUWS, it was 

possible that smaller time intervals would skew the probability distribution and 

not be representative of the peak times that water is used in households. The 

hour categories allowed a clear probability trend to become visible. The exact 

minute and second within a certain hour that an event occurred was assumed to 

be random. Starting hour probability distributions were needed for the end-use 

model and were therefore derived. 
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For each end-use, the starting times of all recorded events were considered. An 

additional column was inserted in the data called “hour”. In this column, the 

Microsoft Excel function with the expression “hour()” was used to evaluate the 

start time of each event and return the hour of the day as a number from 

0 to 24. Where 0 represents 24h00 and 24 represents 12h00. The hour values 

were sorted in ascending order, and the subtotal function was used to 

determine the frequency of occurrence of each hour value. The cumulative 

relative frequencies (probabilities) representing the starting hour that were 

determined for each end-use is provided in Appendix B. 

5.10. Goodness of Fit Tests 

In the end-use model developed in this study, the volume, flow rate, and 

duration between cycles had to be determined for the relevant end-uses at the 

occurrence of each event. As discussed earlier, the REUWS database 

contained thousands of measured values for the above mentioned parameters. 

One possibility was to use the actual sample data directly as input variables in 

the end-use model. Such an approach would, however, necessitate the 

assumption that the volume, flow rate and duration variables are discrete, and 

the results would have been limited to the values within the sample. 

Alternatively, mathematical functions such as best fit trend lines could be fitted 

to the data, or the sample data could be fitted to theoretical probability 

distributions. In both cases the above mentioned parameters would be applied 

as continuous variables, and the model input variables could be mathematically 

described. For the purpose of this study, theoretical distribution functions were 

used. The disadvantage of the latter approach is that an additional error would 

have been introduced, due to slight mismatches between theoretical and actual 

distributions.  

The input variables for an end-use model to estimate peak flows in a water 

distribution system have inherent uncertainties built into each parameter, with 

resulting error, which may even exceed the uncertainties, introduced by a slight 
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mismatch of the theoretical distribution. The theoretical distributions did not 

yield statistically significant fits to the data in all cases. The “best fit” 

distributions were, however, still applied in the end-use model, since the sample 

dataset itself was not necessarily representative of all end-use volumes and 

flow rates, but merely provided a guide to a possible distribution of those 

parameters. The purpose of the theoretical distributions were, therefore, to yield 

possible volume and flow rate values for specific end-uses within a reasonable 

range, and not to replicate the REUWS dataset exactly. It would be 

advantageous if future work investigated the effect on the results of the end-use 

model if the sample data was used directly in the model, instead of fitted 

distributions. 

For this research goodness of fit tests were used to determine which theoretical 

probability distributions provided the best fit to the sample data to the greatest 

degree. The @Risk software was used to apply the Chi-squared, A-D, and the 

K-S goodness of fit tests to seventeen different theoretical probability 

distributions and the data. For each of the three goodness of fit tests, @Risk 

ranked the seventeen distributions in ascending order, where a rank of 1 

represented the best fit distribution, and 17 represented the worst.  

Each goodness of fit test determined the best-fit distribution differently, and 

gave a larger weighting to different components of a distribution such as the tail 

or the centre range, as explained in section 3.7. Therefore, the resultant rank 

given by the three tests was not always the same, as could be expected. 

For example, Table 5.11 shows the probability distribution rankings resulting 

from the three goodness of fit tests based on the shower flow rate data. The last 

three distributions were not ranked because the distributions were not 

applicable to the data. 

Following the extensive literature review, no reference could be found to confirm 

that one test is preferred above the other. Milke et al. (2008) considered the 

results given by all three tests, and used a scoring system to determine the 
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best-fit distribution of their data. A similar scoring system was used for this 

study.  

Table 5.11: Goodness of test results for shower flow rate 

Rank Chi-squared Anderson-Darling Kolmogorov-Smirnov 

1 Log-Logistic Log-Logistic Log-Logistic 

2 Pearson6 Pearson6 Erlang 

3 Erlang Erlang Pearson6 

4 Gamma Gamma Gamma 

5 Log normal Log normal Log normal 

6 Lognorm2 Lognorm2 Lognorm2 

7 Weibull Weibull Weibull 

8 Rayleigh Rayleigh Rayleigh 

9 Inverse Gaussian Exponential Inverse Gaussian 

10 Exponential Triangle Pearson5 

11 Pearson5 Uniform Exponential 

12 Triangle Inverse Gaussian Chi-Squared 

13 Uniform Pearson5 Triangle 

14 Chi-Squared Chi-Squared Uniform 

- Beta General Beta General Beta General 

- Pareto Pareto Pareto 

- Pareto2 Pareto2 Pareto2 

The scoring system entailed using the ranking value as a proxy for score, and 

the sum of the three rankings then provided a total score per distribution. The 

total scores of all the distributions were then compared with each other, which 

allowed an overall placing to be determined, so as to select the “best” 

distribution in each case. By treating the results in this manner, it was ensured 

that all three tests were given equal emphasis.  

Rearranging the results contained in Table 5.11 produces Table 5.12, which 

illustrates the scoring system with the distributions sorted alphabetically by 

name. The shaded row indicates the one with the best fit based on the “weight 

of all three tests”. 
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Table 5.12: Goodness of test results for shower flow rate 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General - - - - - 

Chi Squared 14 14 12 40 13 

Erlang 3 3 2 8 3 

Exponential 10 9 11 30 9 

Gamma 4 4 4 12 4 

Inverse Gaussian 9 12 9 30 9 

Log Logistic 1 1 1 3 1 

Log Normal 5 5 5 15 5 

Log Normal2 6 6 6 18 6 

Pareto - - - - - 

Pareto2 - - - - - 

Pearson5 11 13 10 34 10 

Pearson6 2 2 3 7 2 

Rayleigh 8 8 8 24 8 

Triangle 12 10 13 35 11 

Uniform 13 11 14 38 12 

Weibull 7 7 7 21 7 

Since the Log-logistic distribution was ranked first in all three tests in this case, 

it had an overall score of 3 (1+1+1), which was the lowest score overall. The 

Log-Logistic distribution would therefore have been selected as the probability 

distribution for describing the shower volumes. 

Data was available for the peak flow rate, as well as the mode flow rate. The 

peak flow represented the maximum flow rate (averaged over a 10 second 

interval) measured during the event, and the mode flow rate represented the 

flow rate that was recorded most often for any particular type of event. When 

the volume was divided by the duration, the calculated flow rates were closer to 

the mode flow rates than to the recorded peak flow rate. The mode flow rate 

logged data was therefore used to determine best fit distributions for the event 

flow rates. This was not considered to have a notable impact on the ultimate 

results and the decision was non-critical in terms of the research findings. 

Stellenbosch University http://scholar.sun.ac.za



 

105 

The comprehensive set of goodness of fit ranking results for all of the end-use 

model parameters are provided in Appendix A.  The following sections describe 

the selection of the probability distribution functions for the end-use event 

volumes, flow rates and duration between cycles.  

5.10.1. Shower Volume Probability Distribution Function 

The Log-Logistic distribution was selected as the best fit distribution for shower 

volume since the Log-Logistic distribution ranked first in all three GOF tests, 

and ranked first overall.  A total of 50 286 shower volume data points were used 

in the GOF test. The CDF of the fitted Log-Logistic distribution is graphically 

presented in Figure 5.6 together with the shower volume data.  The graph 

shows that there is some variation between the lowest and highest values; 

however, in the centre region there is an excellent fit. 

 

Figure 5.6: CDF plot of Log-Logistic distribution and shower volume data 
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5.10.2. Shower Flow Rate Probability Distribution Function 

The Log-Logistic distribution was selected as the best fit distribution for shower 

flow rate since the Log-Logistic distribution ranked first overall based on the 

weight of all three GOF tests.  

A total of 50 286 shower flow rate data points were used in the GOF test. The 

shower flow rate data and the CDF of the fitted Log-Logistic distribution is 

graphically presented in Figure 5.7. The graph shows that there is a good fit for 

most of the data range. 

 

Figure 5.7: CDF plot of Log-Logistic distribution and shower flow rate data 

5.10.3. Bath Volume Probability Distribution Function 

The Rayleigh distribution was selected as the best fit distribution for bath 

volume since the Rayleigh distribution ranked first in all three GOF tests, and 

ranked first overall.  
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A total of 4 105 bath volume data points were used in the GOF test. The CDF of 

the fitted Rayleigh distribution is graphically presented in Figure 5.8 together 

with the bath volume data. The Rayleigh distribution does not fit the data for 

bath volume as well as the earlier graphs fit the corresponding data, but it is a 

better fit than all the other distributions. 

 

Figure 5.8: CDF plot of Rayleigh distribution and bath volume data 

5.10.4. Bath Flow Rate Probability Distribution Function 

The Weibull distribution was selected as the best fit distribution for bath flow 

rate since the Weibull distribution was ranked first overall based on the weight 

of all three GOF tests. 

A total of 4 105 bath flow rate data points were used in the goodness of fit test. 

The bath flow rate data and the CDF of the fitted Weibull distribution is 

presented is graphically presented in Figure 5.9. This graph shows that the 
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Weibull distribution is not a perfect fit; however, it is a better fit than any of the 

other distributions. 

 

Figure 5.9: CDF plot of Weibull distribution and bath flow rate data 

5.10.5. Toilet Volume Probability Distribution Function 

The Weibull distribution was selected as the best fit distribution for toilet volume 

since the Weibull distribution ranked first in all three GOF tests, and ranked first 

overall. 

A total of 289 477 toilet volume data points were used in the GOF test. The 

CDF of the fitted Weibull distribution is graphically presented in Figure 5.10 

together with the toilet volume data. This graph shows that there is some 

variation in the lower range of values; however, for the rest of the range there is 

a reasonably good fit. 
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Figure 5.10: CDF plot of Weibull distribution and toilet volume data 

5.10.6. Toilet Flow Rate Probability Distribution Function 

A total of 289 477 toilet flow rate data points were used in the GOF tests. The 

Gamma distribution was ranked first by the A-D test and third by the Chi-

squared and K-S tests, thus it achieved an overall top rank on scores. The 

Weibull distribution was ranked first by both the Chi-squared and K-S tests, but 

the A-D test ranked the Weibull distribution only twelfth, resulting in the Weibull 

distribution having a poor overall score of four. 

When inspecting the fitted CDF plots for the Gamma distribution, shown in 

Figure 5.11, and the Weibull distribution shown in Figure 5.12, however, the 

Weibull distribution appears to provide a better fit.  A subjective judgement was 

made in this case to use the Weibull distribution function as the best fit 

distribution for the toilet flow rate. 
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Figure 5.11: CDF plot of Gamma distribution and toilet flow rate data 

 
Figure 5.12: CDF plot of Weibull distribution and toilet flow rate data 
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5.10.7. Tap Volume Probability Distribution Function 

A total of 1 150 583 tap volume data points were used in the GOF tests. The 

Inverse Gaussian, Pearson5 and Pearson6 distributions were the top three 

overall ranked distributions, closely followed by the much more common Log 

Normal distribution. The CDF of the first three distributions were mathematically 

complex and could not be represented by a Microsoft Excel equation or 

function. The Log Normal distribution showed a good fit as well, being ranked 

fourth. The Log Normal distribution was therefore selected to describe the tap 

volume. The CDF of the Log Normal distribution is graphically presented in 

Figure 5.13 together with the tap volume data.  

 

Figure 5.13: CDF plot of Log Normal distribution and tap volume data 
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5.10.8. Tap Flow Rate Probability Distribution Function 

The Gamma distribution was selected as the best fit distribution for tap flow rate 

since the Gamma distribution was ranked first overall based on the weight of all 

three GOF tests. 

A total of 1 150 583 tap flow rate data points were used in the GOF tests. The 

the tap flow rate data and the CDF of the fitted Gamma distribution is 

graphically presented in Figure 5.14. The graph shows that the Gamma 

distribution fits the data very well. 

 

Figure 5.14: CDF plot of Gamma distribution and tap flow rate data 
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5.10.9. Dishwasher Cycle Volume Probability Distribution Function 

The Log-Logistic distribution was selected as the best fit distribution for 

dishwasher cycle volume since the Log-Logistic distribution ranked first in all 

three goodness of fit tests, and ranked first overall. 

A total of 33 652 dishwasher cycle volume data points were used in the GOF 

tests. The CDF of the fitted Log-Logistic distribution and the dishwasher cycle 

volume data is graphically presented in Figure 5.15.  

 

Figure 5.15: CDF plot of Log-Logistic distribution and dishwasher volume data 

5.10.10. Dishwasher Cycle Flow Rate Probability Distribution Function 

The Erlang distribution was selected as the best fit distribution for dishwasher 

cycle flow rate since the Erlang distribution was ranked first overall based on 

the weight of all three GOF tests. 
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A total of 33 652 dishwasher cycle flow rate data points were used in the GOF 

tests. The CDF of the fitted Erlang distribution and the dishwasher cycle flow 

rate data is graphically presented in Figure 5.15. The graph shows that there is 

some variation between the higher ranges of values; however, for the rest of the 

values there is a reasonably good fit. 

 

Figure 5.16: CDF plot of Erlang distribution and dishwasher flow rate data 

5.10.11. Dishwasher Duration Between Cycles Probability Distribution 
Function 

A total of 26 827 dishwasher duration between cycles data points were used in 

the GOF tests. The Pearson6 distribution ranked top overall, followed by the 

Log-Logistic distribution. The Log-Logistic distribution was selected in favour of 

the first, for the same reason given in section 5.10.7. The dishwasher duration 

between cycles data and the CDF of the fitted Log-Logistic distribution is 

graphically presented in Figure 5.17. The graph shows a relatively good fit. 

Stellenbosch University http://scholar.sun.ac.za



 

115 

 

Figure 5.17: CDF plot of Log-Logistic distribution and dishwasher duration 

between cycles data  

5.10.12. Washing Machine Cycle Volume Probability Distribution Function 

The Weibull distribution was selected as the best fit distribution for washing 

machine cycle volume since the Weibull distribution was ranked first overall 

based on the weight of all three GOF tests. 

A total of 114 887 washing machine cycle volume data points were used in the 

goodness of fit test. The CDF of the fitted Weibull distribution is graphically 

presented in Figure 5.18 together with the washing machine cycle volume data. 

The graph illustrates a peculiarity of the washing machine volume data, in the 

sense that it does not form a smooth curve. This may be ascribed in part to the 

fact that washing machines and the relevant manufacturer’s settings are linked 

to various pre-defined volumes. 
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Figure 5.18: CDF plot of Weibull distribution and washing machine volume data 

5.10.13. Washing Machine Cycle Flow Rate Probability Distribution 

Function 

The Weibull distribution was selected as the best fit distribution for washing 

machine cycle flow rate since the Weibull distribution was ranked first overall 

based on the weight of all three GOF tests. 

A total of 114 887 washing machine cycle flow rate data points were used in the 

GOF tests. The CDF of the fitted Weibull distribution and the washing machine 

cycle flow rate data is graphically presented in Figure 5.19. The graph shows 

that the Weibull distribution is a reasonably good fit. 
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Figure 5.19: CDF plot of Weibull distribution and washing machine cycle flow 

rate data  

5.10.14. Washing Machine Duration Between Cycles Probability 
Distribution Function 

The Beta General distribution was selected as the best fit distribution for 

washing machine duration between cycles since the Beta General distribution 

was ranked first overall based on the weight of all three GOF tests. 

A total of 86 785 washing machine duration between cycles data points were 

used in the GOF tests. The CDF of the fitted Beta General distribution and 

washing machine duration between cycles data is graphically presented in 

Figure 5.17. This graph shows that there is some variation between the values, 

but overall it is a reasonable fit. 
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Figure 5.20: CDF plot of Beta General distribution and washing machine duration 

between cycles data 

5.10.15. Distribution Parameters  

A summary of the selected distributions and the values of the distribution 

parameters applied in the end-use model is presented in Tables 5.26 to 5.28. 

Table 5.13: Event volume distributions 

End-use Distribution Parameter Parameter Value 

Shower Log-Logistic 

  0.000 

  55.197 

  2.828 

Bath Rayleigh   65.985 

Toilet Weibull 
  3.207 

  14.717 
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End-use Distribution Parameter Parameter Value 

Tap Log Normal 
  0.276 

  1.064 

Dishwasher Log-Logistic 

  0.000 

  7.101 

  4.319 

Washing machine Weibull 
  0.823 

  32.226 

Table 5.14: Event flow rate distributions 

End-use Distribution Parameter Parameter Value 

Shower Log-Logistic 

  0.000 

  0.127 

  4.158 

Bath Weibull 
  2.578 

  0.340 

Toilet Weibull 
  3.204 

  0.273 

Tap Gamma 
  3.262 

  0.023 

Dishwasher Erlang 
  11.000 

  0.009 

Washing machine Weibull 
  2.344 

  0.288 

Table 5.15: Event duration between cycles distributions 

End-use Distribution Parameter Parameter Value 

Dishwasher Log-Logistic 

  0.000 

  314.920 

  1.731 

Washing machine Beta general 

   0.540 

   7.762 

    0.000 

    5630.200 
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5.11. End-Use Model Construction 

The construction of an electronic version of the model in Microsoft Excel was 

part of this research work and elaboration on its construction was considered 

essential in order to ensure that the work is repeatable. A detailed step-by-step 

explanation is thus presented in this section of how the model was compiled. 

The various tables presented in section 5.11 present summaries of the 

equations applied in Microsoft Excel in order to achieve the results of the end-

use model. Reading section 5.11 is not crucial to those readers who would 

merely like to follow the research methodology and logic presented in order to 

derive the results.  

The end-use model was fully constructed by means of tables and equations in a 

single Microsoft Excel workbook consisting of eight worksheets. The 

worksheets were entitled Household size, Shower, Bath, Toilet, Tap, 

Dishwasher, Washing machine, and Flow per house. The six end-use 

worksheets had an identical layout, except for the additional cycle requirements 

for the dishwasher and washing machine. The following sections provide an 

explanation of the information contained in each of the worksheets. 

5.11.1. Household Size Worksheet 

The purpose of the household size worksheet was to select the number of 

persons in the household so that the appropriate number of events distribution 

was applied in subsequent steps. 

The cumulative relative frequency distribution table for household size was 

inserted in the household size worksheet range A1:C10. The relative frequency 

and cumulative relative frequency columns were shifted down one unit so that 

the equation in cell B11 referred to the appropriate values as shown in  

Table 5.16. The calculation procedure was as follows: After generating a 

random number in Microsoft Excel, the “lookup()” function was used to search 

for the random number (the lookup value) in the cumulative relative frequency 
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column (lookup vector) and return the value in the PPH column (lookup range). 

If the lookup function could not find the lookup value, the function matched the 

largest value in the lookup vector that was less than or equal to the lookup 

value. For example, if the random number was 0.5, then a household size of 3 

was selected and displayed in cell B11.   

Table 5.16: Household size worksheet calculation 

 
A B C 

1 Household size calculation 

2 
Household size (PPH) 

Relative Frequency 

(Probability) 
Cumulative Relative 

Frequency 3 

4 1 0.000 0.00 

5 2 0.129 0.129 

6 3 0.352 0.482 

7 4 0.195 0.676 

8 5 0.184 0.86 

9 6 0.092 0.952 

10 
 

0.048 1.00 

11 Selected PPH =LOOKUP(RAND(),C4:C10,A4:A10) 

5.11.2. End-Uses Worksheets 

Each end-use was represented by its own worksheet, which contained the 

relevant data corresponding to the end-use. The shower and dishwasher end-

uses are used for purposes of illustration, however the bath, toilet, and tap end-

uses followed a similar process as the shower, and the washing machine was 

similar to the dishwasher. 

The daily event frequency was firstly calculated using the cumulative relative 

frequencies as shown in Tables B1.1 to B1.6 in Appendix B. Each household 

size category had a cumulative frequency distribution in adjacent columns, with 

the leftmost column representing the possible number of events per day. An 

“if()” statement was used in combination with the “lookup()” function that was 

applied, similarly to the household size calculation procedure described in 

section 5.11.1. If, for example, the household size in the household size 
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worksheet was 3, then the 3 PPH cumulative relative frequency column was 

selected as the lookup vector. The household size value therefore determined 

which one of the six possible cumulative relative frequency columns the lookup 

function used to match a random number, and return a daily event frequency 

value. 

The daily starting hour cumulative relative frequency table unique to each end-

use was also available in the worksheets for reference purposes (see 

Table B2.1 in Appendix B). The next step in the model was to determine the 

starting time of each event, for which a new table was created, as shown in 

Table 5.17. In the event number column, a number was displayed only if the 

daily event frequency value (obtained in cell C23) was greater than one or 

greater than the previous event number. If an event number was present, then 

the lookup function matched a random number to the daily starting hour 

cumulative relative frequency table. The cumulative relative frequency (lookup 

vector) was situated in range R4:R28, while the possible 24 hours (result 

vector) was situated in range P4:P28. The resulting hour value was used as the 

starting hour, while a random number was generated to establish the minutes 

and seconds within that hour that the event would start. The event numbers did 

not dictate the order in which events occurred, as the starting times of events 

were sorted in ascending order at a later stage. The equations used in Microsoft 

Excel to achieve the above results are shown in Table 5.18.  

Table 5.17: Event starting time example 

 

T U V 

1 Event starting time 

2 Event number Hour Starting time 

3 

   4 1 6 06:20:31 AM 

5 2 11 11:14:17 AM 

6 3 7 07:11:55 AM 
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Table 5.18: Event starting time equations 

 
T U V 

1 Event starting time 

2 
Event number Hour Starting time 

3 

4 =IF($C$23>0,1,"") 
=IF(T4="","",LOOKUP(RAND(), 

$R$4:$R$28,$P$4:$P$28)) 
=IF(T4="","",(U4/24)+ 

(RAND()/60)) 

5 =IF($C$23>T4,T4+1,"") 
=IF(T5="","",LOOKUP(RAND(), 

$R$4:$R$28,$P$4:$P$28)) 
=IF(T5="","",(U5/24)+ 

(RAND()/60)) 

6 =IF($C$23>T4,T4+1,"") 
=IF(T5="","",LOOKUP(RAND(), 

$R$4:$R$28,$P$4:$P$28)) 
=IF(T5="","",(U5/24)+ 

(RAND()/60)) 

7 =IF($C$23>T4,T4+1,"") 
=IF(T5="","",LOOKUP(RAND(), 

$R$4:$R$28,$P$4:$P$28)) 
=IF(T5="","",(U5/24)+ 

(RAND()/60)) 

The dishwasher and washing machine made use of the same procedure as 

described above, except that an additional column entitled “number of cycles” 

was added to the event starting time table. The new column referred to the 

number of cycles cumulative relative frequency table as given in Table B2.2, in 

Appendix B. If an event number was present, then the lookup function was used 

to match a random number to the cumulative relative frequency, and return a 

number of cycles value. Due to new random numbers being generated for each 

event, it was possible for consecutive events to have different numbers of 

cycles. 

The flow rate and volume of each event was determined as part of a new table 

entitled “Event characteristics”, an example of which is displayed in Table 5.19. 

The event number was simply repeated from the event starting time table, and 

the event types were dependant on the worksheet in which the table occurred. If 

an event number was present, then the volume and flow rate was calculated 

based on the continuous distribution function parameters selected in  

section 5.10.5 and 5.10.6.  
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Table 5.19: Event characteristics example 

 
AD AE AF AG AH AI AJ 

1 Event Characteristics 

2 Event 
number 

Event 
Type 

Volume 

( ) 

Flow rate 

(   ) 
Starting time 

Duration 

( ) 
Ending time 

3 

4 1 Shower 185 0.164 06:20:31 AM 1130 06:39:20 AM 

5 2 Shower 79 0.140 07:11:55 AM 564 07:21:18 AM 

6 3 Shower 63 0.131 11:14:17 AM 482 11:22:19 AM 

In some cases the continuous distribution functions for the volume and flow rate 

were solved using the CDF typed into Microsoft Excel, and in other cases 

Microsoft Excel had built in functions which were used. If the shower volume 

Log-Logistic CDF is used as an example, the CDF is: 

     
 

  (
 

   
)
                                                                                 (5.1) 

where      is a value between zero and one, and   is the corresponding 

volume. 

The objective was, therefore, to solve the equation for    to obtain the volume, 

and a random number between zero and one was substituted in     . The 

parameters      and   have known values unique to the end-use as calculated 

with @Risk software. The resulting equation for the Log-Logistic distribution 

solving for   was therefore: 

  
 

(
 

    
  )

  ⁄
                                                                              (5.2) 

Table 5.20 summarises the equations used to determine the event volume for 

the different end-uses, while Table 5.21 similarly describes the event flow rate 

equations. 
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Table 5.20: Event volume calculation equations 

End-use Distribution 
Para-
meter 

Parameter 
cell 

reference 
Microsoft Excel Equation 

Shower Log-Logistic 

  Y4 
=$Y$5/(((1/RAND())-1)^(1/$Y$6)))+ 
$Y$4 

  Y5 

  Y6 

Bath Rayleigh   Y4 =$Y$4*(-2*LN(1-RAND()))^(1/2) 

Toilet Weibull 
  Y4 

=$Y$5*(-1*LN(1-RAND()))^(1/$Y$4) 
  Y5 

Tap Log Normal 
  Y4 =_xlfn.LOGNORM.INV(RAND(),$Y$4,

$Y$5)   Y5 

Dish-
washer 

Log-Logistic 

  AD4 
=($AD$5/(((1/RAND())-1)^(1/$AD$6))) 
+$AD$4 

  AD5 

  AD6 

Washing 
machine 

Weibull 
  AD4 =$AD$5*(-1*LN(1-RAND()))^(1/ 

$AD$4)   AD5 

Table 5.21: Event flow rate calculation equations 

End-use Distribution 
Para-
meter 

Parameter 
cell 

reference 
Microsoft Excel Equation 

Shower Log-Logistic 

  AB4 
=($AB$5/(((1/RAND())-1)^(1/$AB$6))) 
+$AB$4 

  AB5 

  AB6 

Bath Weibull 
  AB4 =$AB$5*(-1*LN(1-RAND()))^(1/ 

$AB$4)   AB5 

Toilet Weibull 
  AB4 =$AB$5*(-1*LN(1-RAND()))^(1/ 

$AB$4)   AB5 

Tap Gamma 
  AB4 =_xlfn.GAMMA.INV(RAND(),$AB$4, 

$AB$5)   AB5 

Dish-
washer 

Erlang 
  AJ4 =_xlfn.GAMMA.INV(RAND(),$AJ$4, 

$AJ$5)   AJ5 

Washing 
machine 

Weibull 
  AJ4 

=$AJ$5*(-1*LN(1-RAND()))^(1/$AJ$4) 
  AJ5 
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The starting times were listed in ascending order by making use of Microsoft 

Excel’s “small()” function. The “small()” function returns the kth smallest number 

in a dataset, where the event number corresponding to the starting time is 

substituted as k. The duration of each event is calculated by dividing the volume 

by the flow rate. The end time is subsequently obtained by converting the 

duration to a time using the “time()” function, and adding it to the starting time. 

The event characteristics table for the dishwasher and washing machine 

worksheets contained an additional column for the cycle number. For each 

event, the selected number of cycles received a cycle number and the volume 

and flow rates were only calculated if a cycle number was present. The event 

starting time table provided the starting times only for unique events, and not 

the starting times of individual cycles.  

The duration between cycles was calculated by using the continuous 

distribution function parameters selected in sections 5.10.11 and 5.10.14. The 

starting time of a new cycle was therefore calculated as the starting time of the 

previous cycle plus the duration between cycles. Due to new random numbers 

being generated for each duration between cycles, it was possible for 

consecutive cycles to have different durations between cycles. Table 5.22 

summarises the equations used to determine the duration between cycles for 

the different end-uses. 

Table 5.22: Event duration between cycle calculation equations 

End-use Distribution 
Para-
meter 

Parameter 
cell 

reference 
Microsoft Excel Equation 

Dish-
washer 

Log-Logistic 

  AG4 
=($AG$5/(((1/RAND())-1)^(1/$AG$6))) 
+$AG$4 

  AG5 

  AG6 

Washing 
machine 

Beta 
general 

   AG4 

=_xlfn.BETA.INV(RAND(),$AG$4, 
$AG$5,$AG$6,$AG$7) 

   AG5 

    AG6 

    AG7 
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The final step in the end-use worksheets was to represent the flow rates when 

end-use events occurred, on a per second basis throughout the day. This was 

done by creating a table listing the time for each second of the day in one 

column and the flow rate in an adjacent column.  

Table 5.23 shows extracts from the daily flow profile table. A very lengthy 

equation was used in the flow rate column to determine which value was 

displayed in each cell. The “if()” and “lookup()” function was used repeatedly 

such that if the time in column AL was greater than the starting time, but smaller 

than the ending time of any event in the event characteristics table, then the 

corresponding flow rate for that event was inserted in column AM. If the time did 

not overlap with any event, a value of zero was displayed. In this way each of 

the 86 400 time values in column AL was evaluated.  

Since the flow rates were given in litres per second for each second that the 

flow rate occurred, the values in column AM essentially provided the volume of 

water flowing per second. The sum of values between 06:20:31 AM and 

06:20:40 AM in Table 5.23, results in a volume of 1.64 litres (0.164 x 10). The 

sum of the entire AM column therefore provided the total volume of water 

attributed to the specific end-use. 

Table 5.23: Daily end-use flow profile calculation 

 
AL AM 

1 Daily Flow 

2 
Time Flow rate (   ) 

3 

4 12:00:00 AM 0 

5 12:00:01 AM 0 

6 12:00:02 AM 0 

7 12:00:03 AM 0 

8 12:00:04 AM 0 

9 12:00:05 AM 0 

395 06:20:31 AM 0.164 

396 06:20:32 AM 0.164 

397 06:20:33 AM 0.164 

398 06:20:34 AM 0.164 

399 06:20:35 AM 0.164 
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AL AM 

1 Daily Flow 

2 
Time Flow rate (   ) 

3 

400 06:20:36 AM 0.164 

401 06:20:37 AM 0.164 

402 06:20:38 AM 0.164 

403 06:20:39 AM 0.164 

404 06:20:40 AM 0.164 

86394 11:59:50 PM 0 

86395 11:59:51 PM 0 

86396 11:59:52 PM 0 

86397 11:59:53 PM 0 

86398 11:59:54 PM 0 

86399 11:59:55 PM 0 

86400 11:59:56 PM 0 

86401 11:59:57 PM 0 

86402 11:59:58 PM 0 

86403 11:59:59 PM 0 

5.11.3. Household Summary Worksheet 

The household summary worksheet contained the overall results from the end-

use model. Table 5.24 presents extracts from the household summary 

worksheet.  

Column A provided the row labels, which were constant. Column B represented 

the results for a single iteration of the model. Cell B2 simply repeated the 

household size value initially selected in the household size worksheet. Cell B4 

repeated the total volume of the shower end-use, as calculated in the shower 

worksheet, by adding the per second flow rates in the daily flow table. Cells B5 

to B9 similarly summarised the total volumes resulting from the respective end-

uses, while cell B10 summed the end-use volumes to provide the total volume 

of water used by the household in one day. Cells B12 to B86411 added the flow 

rates occurring simultaneously from each of the six end-uses to obtain a total 

flow rate for the household at the particular time step. The values provided in 

the household summary worksheet were later utilised in the peak factor 

calculation procedure.  
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Column B was the only column that contained active equations in the cells. 

Each time the end-use model workbook was re-calculated it represented 

another iteration of the model. New random numbers were subsequently 

generated in all of the worksheets, which resulted in another possible scenario 

of household water demand and that changed the values in column B. It was 

therefore necessary to capture the constantly changing values in column B and 

save each unique scenario. This was done by copying column B and using the 

special paste function to paste the text values in an adjacent column.  

Table 5.24: Household summary worksheet example  

 
A B C D ALM ALN 

1 Scenario 1 2 999 1000 

2 
No. of 

Persons 
2 4 2 3 2 

3 End-use Total Volume ( ) 
    

4 Shower 94.23 338.02 26.90 379.06 94.23 

5 Bath 95.15 36.63 74.79 118.81 95.15 

6 Toilet 112.10 193.91 250.33 217.80 112.10 

7 Tap 54.40 119.64 136.54 81.88 54.40 

8 Dishwasher 15.04 49.36 83.28 0.00 15.04 

9 
Washing 
machine 

31.13 336.19 384.28 291.10 31.13 

10 Total 402.05 1073.74 956.12 1088.65 402.05 

11 Time 
Total Flow rate 

(   )     

12 12:00:00 AM 0.00 0.00 0.00 0.00 0.00 

13 12:00:01 AM 0.00 0.00 0.00 0.00 0.00 

14 12:00:02 AM 0.00 0.00 0.23 0.00 0.00 

15 12:00:03 AM 0.00 0.00 0.23 0.00 0.00 

86410 11:59:57 PM 0.13 0.00 0.00 0.00 0.13 

86410 11:59:58 PM 0.13 0.00 0.00 0.00 0.13 

86411 11:59:59 PM 0.13 0.00 0.00 0.00 0.13 

Thousands of iterations were required, the scenario saving procedure was 

therefore automated and repeated in Excel by means of a loop sequence. The 

loop was programmed as a macro in Microsoft Visual Basic. The calculation 

steps of the macro were as follows: On the flow per house sheet cell C2 was 

selected. Copied Range B2:B86411. Selected cell B2 so that it was the active 
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cell. For w=1 (the first sequence in the loop) the active cell moved one column 

to the right and paste special values in that column. Once the values were 

pasted the workbook was re-calculated and new values were present in range 

B2:86411. For w=2, the second sequence in the loop, the active cell moved 

another column to the right and paste special new iteration values in that 

column. This was repeated for a set number of iterations, after which the 

workbook was saved. 

By executing the macro for several different numbers of iteration loops, it was 

found that a maximum of one thousand iterations in a single workbook was 

successful. When more than a thousand iterations were done, the workbook 

stopped responding and all the data was lost. Figure 5.21 presents the code 

used in the macro to perform the saving procedure. When the macro was 

executed once, the result was the end-use model workbook containing 1 000 

daily water demand scenarios in columns C to ALN. 

 

Figure 5.21: Macro code to save individual model iterations 

Sub PF() 

Sheets("Flow per house").Select 

Range("C2").Select 

Dim w As Integer 

Range("$B$2:$B$86411").Select 

Selection.Copy 

Range("B2").Select 

For w = 1 To 1000 

    ActiveCell.Offset(0, 1).Select 

    Selection.PasteSpecial  Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

        :=False, Transpose:=False 

  Next w 

ActiveWorkbook.Save 

End Sub 
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5.12. End-use Model Executions and Groupings 

5.12.1. End-Use Model Size 

The template of the Microsoft Excel end-use model workbook (before the macro 

was executed that saved the model iterations) had a size of about 265 MB. 

After the macro was executed, and data for 1 000 iterations had been saved in 

the workbook, it had an approximate size of between 393 MB and 397 MB. At 

the time of conducting this study, this was an exceptionally large file size.  

The calculation time of a single iteration varied, depending on the computer on 

which the model was run. However, on average a single iteration had a 

calculation time of approximately 10 seconds, possibly due to the large number 

of calculations performed in the end-use model. Executing the macro once, and 

obtaining 1 000 iterations, therefore took almost three hours to complete. The 

relatively long duration of calculation proved to be a limitation of the model. Due 

to time constraints, the total number of executions performed in this study was 

limited. The end-use model macro was executed 100 times, resulting in 100 

individual workbooks containing 1 000 iterations each. In total, therefore, 

100 000 unique iterations of daily residential indoor water demand were 

available to be used in this study.  

5.12.2. Household Groupings 

It is important to note that a single iteration of the end-use model represented 

the indoor water demand of a single household on any given day. The water 

demand profiles resulting from different iterations did not explicitly characterise 

water demand on any particular day of the week or time of the year. Such 

temporal differences were taken into account in the distribution functions 

applied in the model. Water demand events corresponding to a weekday, 

weekend day, summer day or winter day were all included as possibilities that 

could be selected by any one of the iterations. Due to the probabilities 

associated with household sizes, event frequencies, starting hours, volumes, 

flow rates and so forth, it was expected that most of the iterations would yield 
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average water demand results, while there would also be some extreme events. 

Not every iteration therefore represented the maximum water demand of that 

particular household. It was the intention to derive such typical “overall” water 

demand patterns, in order to assess the peak events in relation to the average 

demand over a given time period. The extreme cases were, however, the most 

relevant when dealing with PFs. 

The objectives of this study included investigating how the water demand 

profiles (and ultimately the PFs) differed in differently sized residential areas. 

The differently sized residential areas were modelled by grouping the individual 

households together and taking the sum of their water demand throughout the 

day. A number of unique scenarios were produced for each residential area size 

(or household group size), in order to establish the variability of water demand 

within constant household group sizes, and provide a number of different 

possibilities.  

It has been established that water demand is more variable within smaller 

household group sizes, and therefore it would be beneficial to have a greater 

number of different scenarios for the smaller groups. However, due to the limit 

of 100 000 unique iterations available, the number of scenarios per group was 

also limited. The original REUWS from which the raw data was obtained in this 

study consisted of 1 188 individual households. It was therefore decided that 

the total number of individual iterations used within each household group and 

scenario combination should not be less than 1 000, while the greatest number 

of scenarios is attributed the smallest household group sizes. 

According to CSIR (2003), the PF is constant for more than 2 000 equivalent 

erven. A household group size of 2 000 was therefore used as the upper limit in 

this study, in order to compare the findings to the common PF curves of 

CSIR (2003). It would be easy to increase the group size in a future study by 

speeding up the computing time of the end-use model, and obtaining a greater 

number of iterations, but for the purpose of this study, 2 000 households as an 

upper limit was considered sufficient.   
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The household group sizes (the number of iterations summed to obtain a single 

water demand profile) and the number of scenarios selected for each group size 

is summarised in Table 5.25. In order to obtain the daily water demand profile 

for each group size, the required number of iterations was obtained from the 

end-use model workbooks and summed for each second of the day. This was 

repeated until the chosen number of scenarios was available. The format of the 

daily water demand profile remained the same as that presented in Table 5.24. 

Table 5.25: Household group size summary 

Household group size Number of scenarios Number of model iterations 

1 1 000 1 000 

2 1 000 2 000 

3 1 000 3 000 

4 250 1 000 

5 200 1 000 

6 200 1 200 

7 200 1 400 

8 200 1 600 

9 200 1 800 

10 100 1 000 

20 100 2 000 

30 100 3 000 

40 50 2 000 

50 50 2 500 

60 50 3 000 

70 50 3 500 

80 50 4 000 

90 50 4 500 

100 10 1 000 

200 10 2 000 

300 10 3 000 

400 10 4 000 

500 10 5 000 

600 10 6 000 

700 10 7 000 

800 10 8 000 

900 10 9 000 

1 000 5 5 000 

2 000 5 10 000 

Total 4 950 99 500 
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5.13. Peak Factor Calculation 

Once a daily water demand profile was available for each scenario of household 

group size, the PFs were calculated for each profile. Peak factors were 

calculated as the ratio between the maximum flow rate (averaged over a 

selected short time period) and the average flow rate during a 24 hour period. 

   
        

         
                                                                                      (5.3) 

One of the objectives in this study involved investigating the effect on the 

magnitude of PFs of using different time intervals      in the calculation 

procedure. Eight different time intervals were therefore selected to calculate the 

PFs. The time intervals used in this study are summarised in Table 5.26. 

Table 5.26: Peak factor time intervals 

       (seconds) 

1 second 1 

10 seconds 10 

1 minute 60 

5 minutes 300 

10 minutes 600 

15 minutes 900 

30 minutes 1800 

60 minutes 3600 

The volume of water in litres, sampled in one second intervals throughout the 

day, for a household or group of households was available from the end-use 

model results. A Microsoft Excel spreadsheet was created which calculated the 

PFs as follows: 

1. Sum the volumes occurring between 12:00:00 AM and 11:59:59 PM (86400 

seconds) to determine total volume during the day. 

2. Divide the total daily volume ( ) by 86400 ( ) to determine          , the 

average daily flow rate (   ). 
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3. For         , sum the volumes for each of the 24 consecutive 3600 

second intervals. For example, between 12:00:00 AM - 12:59:59 AM, 

01:00:00 AM - 01:59:59 AM, etc. 

4. Identify the maximum volume of the twenty four 3600 second time intervals. 

5. Divide the maximum volume ( ) by 3600 to determine            , the 

maximum flow rate (   ) averaged over 3600 seconds. 

6. Calculate        , the 60 minute peak factor, by dividing             by 

         . 

7. Repeat steps 3 to 6 for         ,        ,        ,        , 

      ,       , and      . 

8. Repeat steps 1 to 7 for each of the 4950 scenarios. 

The 39 600 PFs calculated according to this   -step procedure were 

summarised in a spreadsheet and used to construct various graphs, as 

discussed in Chapter 6. 
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6.  RESULTS 

6.1. End-Use Model Water Demand 

The purpose of the end-use model developed in this research was not to 

simulate the average water demand of a particular geographical area, but rather 

to generate a myriad of different scenarios of water demand in order to 

determine the PFs from the diurnal water demand profiles. 

A total of 99 500 of the end-use model iterations were included in the results of 

this study. For each iteration the household size, and the water demand from 

each of the six end-uses, were recorded. The average household size and end-

use volumes for the 99 500 iterations could thus be obtained.  

The model was not calibrated, nor was it the intention to duplicate existing 

datasets. Some sort of “agreement” would, however, be expected when 

comparing model results for daily total volumes and the relative contribution by 

end-uses to daily totals, with other data and formerly publicised results. A 

comparison of the average volume per capita per day results for the end-use 

model and the data from the REUWS is given in Table 6.1.   

Table 6.1: Average volume per capita per day comparison 

End-use 
Volume per capita per day     Difference 

    
Difference 

    End-use model REUWS 

Toilet 60.2 71.3 -11.1 16.9 

Shower 56.0 44.7 +11.3 22.4 

Washing machine 112.4 57.8 +54.6 64.2 

Tap 30.4 42.0 -11.6 32.0 

Dishwasher 14.3 3.9 +10.4 114.3 

Bath 31.3 4.6 +26.7 148.7 

Total 304.6 224.3 +80.3 30.4 

It is evident that that the end-use model over-estimated the per capita indoor 

water demand, when compared with the measured results in the REUWS for 
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most end-uses. The average daily per capita water demand was over-estimated 

for the shower, washing machine, dishwasher, and bath, while for the toilet and 

tap it was underestimated. The most significant differences occurred with the 

washing machine, dishwasher and bath end-uses. A possible future 

improvement could be achieved by changing the methodology used in the end-

use model to estimate the dishwasher and washing machine volumes. 

The share that each end-use contributed to the overall indoor demand was also 

compared with other studies, as shown in Table 6.2. The percentages quoted 

for other studies in Table 6.2 are presented as a fraction of the water demand 

for the six relevant end-uses in this study. The shares of individual end-uses 

appear to be reasonably within the given ranges reported by others. 

Table 6.2: End-use share comparison 

End-use Toilet Shower 
Washing 
Machine 

Tap 
Dish-

washer 
Bath 

Total 
Indoor 

(Edwards and Martin, 
1995) 

34.0 4.1 21.6 25.8 1.0 13.4 100.0 

(DeOreo et al., 1996) 29.3 19.5 28.2 16.7 3.4 2.9 100.0 

(Mayer et al., 1999) 31.9 19.9 25.7 18.7 1.8 2.0 100.0 

(DeOreo et al., 2001) 
Pre-retrofit 

33.0 15.9 26.1 16.1 2.5 6.5 100.0 

(DeOreo et al., 2001) 
Post-retrofit 

21.0 23.0 24.4 21.2 3.2 7.1 100.0 

(Loh and Coghlan, 
2003) 

22.0 34.1 26.8 17.1 - - 100.0 

Mayer et al. (2003) 
Pre-retrofit 

33.0 19.9 23.0 17.4 1.7 5.0 100.0 

Mayer et al. (2003) 
Post-retrofit 

22.5 24.6 20.2 24.1 2.1 6.4 100.0 

(Roberts, 2005) 19.3 31.5 27.1 17.7 1.7 2.6 100.0 

Heinrich, 2007 19.5 39.4 23.7 13.6 1.3 2.5 100.0 

(Willis et al., 2009) 15.4 36.4 22.0 19.8 1.6 4.7 100.0 

This study 19.8 18.4 36.9 10.0 4.7 10.3 100.0 

The water demand profiles generated by the end-use model were deemed to be 

acceptable in terms of this basic verification. 
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6.2. Peak Factor Variance 

Subsequently, the PFs were calculated for 29 different group size combinations, 

with groups ranging from 1 household to 2 000 households. These group sizes 

could be equated to “water use zones”. For each group size eight different time 

intervals were used in the PF calculation. Since the PFs were calculated as the 

maximum water demand in a short period divided by the average water demand 

in that day, the baseline demand applicable to these PFs is the average daily 

demand. Figures C1.1 to C1.24 in Appendix C show the resulting peak factors 

that were plotted in ascending order for each of these scenarios. The magnitude 

of the PF is presented on the y-axis and the percentiles on the x-axis. These 

plots provided a graphical presentation of the range of PFs that were obtained 

for the household group sizes and time intervals for all of the iterations. The PF 

values represented by various percentiles of the results are provided in  

Tables C2.1 to C2.8 in Appendix C. The cells in the table were colour coded 

based on their values, where green denoted the lowest values and red denoted 

the highest values. This allowed the variance within household group sizes to 

be clearly evident. 

The actual variance values of the PFs for each scenario were also computed. 

For all of the different time intervals, the PFs within the group sizes between 

one and ten households showed the greatest variance, while the group sizes 

between 100 and 2 000 households varied very little. For example, the PF60min 

for the single household group had a variance of 5.057, while the same time 

interval PF for the 2 000 household group had a variance of 0.001. This 

reduction in variance with increased sample size is typical and as expected. 

Within all of the household group sizes, the PF resulting from small time 

intervals showed greater variability than the PF resulting from longer time 

intervals. For example, for the 500 household group size, the PF60min had a 

variance of 0.006, while the PF1s had a variance of 0.073. An overview of all the 

variances is provided in Table 6.3. 
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Table 6.3: Peak factor variance 

Variance 
PF time intervals 

60 min 30 min 15 min 10 min 5 min 1 min 10 sec 1 sec 

G
ro

u
p
 s

iz
e
 (

n
u
m

b
e
r 

o
f 
c
o
m

b
in

e
d
 h

o
u
s
e
h
o
ld

s
) 
 

1 5.057 13.321 44.365 72.224 160.397 484.735 754.526 798.739 

2 2.086 5.198 11.665 18.297 39.057 95.824 134.737 152.978 

3 1.180 2.796 5.587 9.588 16.241 40.594 53.090 55.964 

4 0.760 1.789 4.566 5.600 8.975 19.314 26.011 27.671 

5 0.453 1.350 2.921 3.789 8.067 12.638 15.099 16.835 

6 0.498 1.134 1.805 3.166 4.362 10.939 18.220 20.628 

7 0.417 0.842 1.509 2.311 3.581 8.015 9.938 10.184 

8 0.243 0.581 1.218 2.117 3.155 7.038 9.984 10.990 

9 0.359 0.644 1.309 1.804 2.708 4.256 6.712 7.118 

10 0.248 0.517 0.994 1.463 2.492 4.049 4.117 4.658 

20 0.104 0.192 0.369 0.445 0.775 1.573 1.906 1.965 

30 0.044 0.132 0.240 0.375 0.551 0.826 1.074 1.156 

40 0.039 0.089 0.189 0.230 0.407 0.470 0.459 0.495 

50 0.046 0.107 0.119 0.180 0.258 0.284 0.313 0.441 

60 0.025 0.061 0.083 0.194 0.182 0.536 0.650 0.704 

70 0.042 0.091 0.127 0.169 0.248 0.508 0.649 0.635 

80 0.030 0.050 0.130 0.183 0.308 0.388 0.457 0.476 

90 0.021 0.056 0.101 0.119 0.205 0.277 0.312 0.316 

100 0.018 0.051 0.090 0.044 0.127 0.172 0.268 0.267 

200 0.016 0.035 0.067 0.036 0.082 0.229 0.310 0.312 

300 0.007 0.019 0.020 0.035 0.041 0.049 0.057 0.054 

400 0.009 0.013 0.013 0.038 0.032 0.035 0.037 0.039 

500 0.006 0.015 0.022 0.029 0.038 0.065 0.073 0.073 

600 0.007 0.014 0.015 0.052 0.059 0.068 0.110 0.116 

700 0.002 0.003 0.013 0.027 0.031 0.042 0.052 0.053 

800 0.005 0.010 0.024 0.011 0.018 0.022 0.027 0.037 

900 0.003 0.005 0.016 0.017 0.027 0.019 0.017 0.019 

1000 0.003 0.011 0.009 0.011 0.006 0.024 0.014 0.013 

2000 0.001 0.008 0.019 0.013 0.024 0.020 0.011 0.012 

 

 

 

low                       variance                       high 

Legend: 
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6.3. Maximum Peak Factor Comparison 

The purpose of PFs is to represent a safety factor which denotes a limiting 

demand condition. Although many possible PFs were obtained in this study, the 

maximum PFs are of most concern. Some authors such as Booyens (2000) and 

Johnson (1999) have highlighted the benefits of assigning a return period to the 

PFs, which gives an indication of the risk of exceedance. In this study the 

limited number of scenarios in each household category did not allow for a 

reliable estimate of PF return periods. Future research may involve increasing 

the number of scenarios so that the return period can also be investigated. Only 

the maximum PFs resulting from the model were considered for further 

analysis. 

The maximum PFs obtained using each of the different time intervals in each 

household group size were extracted from the result sets and plotted, as 

presented in Figure 6.1. The number of households is given on the x-axis in 

logarithmic scale, and the logarithmic scale was also used for the PFs given on 

the y-axis. The time intervals were each plotted as separate series. 

From the results shown in Figure 6.1, it is clear that for all values of   , the PF is 

relatively large for a small number of houses, and decreases as the household 

group size increases. This is in agreement with other studies. This is because 

the variability of water demand decreases when the combined water demand of 

many houses is considered. The PFs are the highest when a small    is used in 

the calculation. As    increases, the PF decreases. When longer time intervals 

are used, the variation of flow tends to be averaged out, this decreases the ratio 

between the average and the peak flow.  

For a small number of houses there is a large difference between the PF 

calculated with different time intervals. In almost all cases the difference 

between PFs decreases as the number of houses increases. From the results in 

this study the difference between the PF1s and PF10s is almost negligible. This 

suggests that a 1 second logging frequency would not increase flow 

measurement results significantly, compared to a 10 second logging frequency.
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Figure 6.1: Comprehensive result set of all extracted maximum peak factors 

1

10

100

1 10 100 1000

P
e
a
k
 F

a
c
to

r 

Number of households 

1 sec PF

10 sec PF

1 min PF

5 min PF

10 min PF

15 min PF

30 min PF

60 min PF

PF1s 

PF10s 

PF1min 

PF5min 

PF10min 

PF15min 

PF30min 

PF60min 

Stellenbosch University http://scholar.sun.ac.za



 

142 

The maximum PFs were then compared to the PFs reported by CSIR (2003), as 

shown in Figure 6.2. It is important to note that the PF results presented 

account for indoor water demand only, while the CSIR (2003) PFs included 

outdoor water demand. The CSIR (2003) provided the PF curve plotted against 

ee, where 1 ee = 1000   AADD. For the purpose of the comparison, it was 

necessary to convert ee to the number of households. The average water 

demand per iteration per household in this study was calculated to be 794   . It 

was therefore approximated that the AADD needed for conversion was 794   , 

hence a conversion of 0.8 ee = 1 household was used to plot the CSIR (2003) 

curve in Figure 6.2. 

In the 2 000 household group size category, the PFs between the PF1s and 

PF30min categories range from 2.88 to 4.10. This means that the difference is 

only 1.23, which is relatively small. The PF60min is consistently lower, to a 

greater extent than the other time intervals, and this is especially evident for the 

2 000 household group size.  

If it were assumed that the instantaneous PFs given in CSIR (2003), are 

equivalent to    of one second, then the PF1s curve derived in this study yields 

lower PFs for groups of 20 households and more. For 2 000 households the 

CSIR (2003) PF and the PF1s from this study are approximately equal. The 

most significant difference between the curves occurs for household group 

sizes between one and 20. The magnitudes of the PFs from this study focusing 

on indoor use are notably larger than those reported for combined indoor and 

outdoor demand by the CSIR (2003). 
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Figure 6.2: Comparison of peak factor results with CSIR (2003) 
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The maximum PFs were also compared to the PFs reported by 

Booyens (2000), as shown in Figure 6.3. 

Booyens (2000) calculated the PF for different time intervals for residential 

areas. The residential areas consisted of 69, 444, and 794 erven. For the 

purpose of the comparison it was assumed that 1 erven = 1 household, to plot 

the points shown in Figure 6.3. The water consumption measured by Booyens 

included the total water consumption, including outdoor consumption. 

It is interesting to note that although the magnitudes of the Booyens (2000) PFs 

are not the same as the results obtained in this study, the general trend is 

similar. The range of PFs achieved by applying different time intervals is larger 

for the smaller household group sizes than the larger groups. The most 

noticeable difference between the two studies is the variance evident between 

PFs for different values of    for a given household group size. The PF results 

from Booyens (2000) imply that there is a difference of 0.3 between PF1min and 

PF60min for 794 households, while a difference of about 2.4 is observed in this 

study. The larger PF ranges achieved in this study may be attributed to the fact 

that water consumption characteristics of households throughout North America 

were applied in this study, while Booyens (2000) used local data. The water 

measured by Booyens (2000) represented homogeneous areas, which may 

have had similar water demand characteristics, resulting in less variation. 
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Figure 6.3: Comparison of peak factor results with Booyens (2000) 
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7. CONCLUSIONS AND RECOMMENDATIONS  

7.1. Summary of Findings 

The design of a water distribution system is often based on the most limiting 

demand conditions of the system. The estimated peak demand is one of the 

limiting demand conditions taken into consideration when determining the 

capacity of pipelines. 

The literature reviewed suggests that the most widespread method of 

estimating peak demand is by multiplying the average demand by a peak factor. 

Some studies have derived peak factors from locally measured water 

consumption data, or by providing empirical equations or figures where the PF 

is specified as a function of population. In addition, studies such as 

van Zyl (1996), Zhang et al. (2005), and Tricarico et al. (2007) have investigated 

the use of probability theory to derive peak factors, but no reports could be 

found where end-use modelling was used as a basis to derive demand profiles 

and subsequent peak factors.  

Various end-use models and tools were reviewed for the purpose of deriving 

probability based peak factors, including the flow trace method and models  

REUM and SIMDEUM. A similar approach to that used in SIMDEUM was 

eventually employed. 

As part of this research a computer based stochastic end-use model was 

developed to estimate the daily residential water demand for a single house in 

one second time steps. Water demand was assumed to occur in rectangular 

pulses, where the water pulses described an end-use specific volume and flow 

rate. The REUWS database, containing measured end-use consumption data, 

was utilised to derive probability distributions for each of the end-model 

parameters. A single iteration of the end-use model represented a possible 

water demand scenario for a single household. The end-use model was 

executed 100 times and a total of 99 500 iterations of the end-use model was 
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eventually used in the study. The water demand from individual iterations was 

summed to obtain the combined water demand from a group of households. 

The daily water demand was calculated for 29 different group sizes that ranged 

from one to 2 000 households. For each group size, a number of daily water 

demand scenarios were available for comparison. 

It was found that the average total indoor water demand per household 

estimated by the end-use model was within a reasonable range. The share of 

water demand from the different end-uses was, however, different from that of 

other studies. It was found that the end-use model overestimated the share of 

water used by baths, dishwashers and washing machines, but this was not 

considered problematic. 

The daily water demand results from the end-use model were then applied to 

determine the peak factors for each scenario and household group size. Eight 

different time intervals were used for the purpose of determining peak factors 

for each water demand scenario. The time intervals consisted of 1 second, 

10 seconds, 1 minute, 5 minutes, 10 minutes, 15 minutes, 30 minutes and 

1 hour. The maximum peak factor for all the time intervals was plotted against 

each household group size. Comparisons were made of the PF results to the 

PF presented by CSIR (2003) and Booyens (2000). 

In the literature, peak factors that are often recommended to be used in design 

are PFd, PFh, or PFinst, while empirical peak factors are often derived from 

10 minute or 15 minute logging frequencies (Booyens, 2000; Tricarico, 2007). 

Booyens (2000) concluded that for developments with an AADD of less than 

       a PF15min could be applied, while a PF1h  is acceptable for developments 

with an AADD greater than       . No recent additional evidence was found in 

the literature that presented the circumstances for which the application of 

different peak factor time intervals would be appropriate.  
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7.2. Conclusion 

The end-use model presented in this study yielded indoor water demand 

estimations that compare well with results from other studies. Several 

improvements can be made to the model, however it can be concluded that the 

probability based end-use model presented here is a useful method for deriving 

residential daily water demand profiles on a one second temporal scale.   

Within any one water demand scenario, varying peak factors can be obtained 

by changing the time interval over which the peak flow is calculated. It is 

therefore very important that the peak factor term should be not quoted in 

isolation. Any statement of a peak factor must be accompanied by information 

on the associated time interval. 

The peak factors across all time intervals were found to be inversely related to 

the number of households studied. As the number of households increased, the 

peak factors decreased. By visually inspecting the magnitudes of the peak 

factors, three distinct gradient changes were apparent, due to the rate of 

change of peak factor values.  For the category of one to ten households the 

magnitude of peak factors decreased relatively rapidly as the number of 

households increased. The gradient decreased for the category of ten to 100 

households. The flattest gradient resulted for the 100 to 2 000 household 

category, indicating that relative to the other categories the peak factor did not 

decrease as much with  increased number of households.  

A strong inverse relationship was evident between the magnitude of the peak 

factors and the peak factor time interval. As the time interval increased, the 

magnitude of the peak factor decreased. The degree to which the peak factor 

decreased with longer durations was affected by the number of households. For 

a small number of households the time interval had a significant effect on the 

peak factors, while the effect decreased as the number of households 

increased. This suggests that the peak factor time interval is not a pertinent 

consideration for more than 1 000 households. However, when smaller 
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household group sizes are involved, the peak factor time interval will impact 

peak factor results to a greater extent. 

The design of water distribution systems should incorporate different peak 

factor intervals when considering separate components of the system. For large 

pipelines distributing water to an area exceeding 1 000 households, a peak 

factor with a long time interval could be applied, since lower flow rate variability 

is likely to occur. A peak factor with a short time interval should be applied to 

pipelines directly servicing a street of ten households, for example.  

In the absence of site-specific knowledge the derived peak factors from this 

research could be applied to estimate the indoor residential component of peak 

flow rate in a WDS. 

7.3. Suggestions for Further Research 

Only indoor water demand was considered in this study. It would be beneficial 

to include outdoor water demand in peak factor calculations in a future study. 

This study focused on residential water demand, a typical urban water demand 

profile, however, includes water losses, industrial, commercial, and institutional 

water demand. Future work may consider including other components of the 

total water demand that a WDS may need to cater for. 

The share of average water demand resulting from the end-use model’s 

simulation of the bath, dishwasher and washing machine was overestimated. 

Those results may be improved if more stringent end-use model parameter 

limits are introduced. For example, the model could be assigned smaller ranges 

of volumes and flow rates for each end-use and the daily frequency or number 

of possible cycles per event could be decreased. The use of alternative 

theoretical distributions, or the direct incorporation of measured sample data 

could be investigated as a means to possibly improving the results. 
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Water flow rates in a WDS are dependant not only on the water demand, but 

also on the pressure in the system. If the pressure is extremely low, then a 

limited flow rate is available which may be less than the water demand. The 

large peak factors that were observed for the small number of households may 

have occurred because pressure was not taken into account. If the peak 

demand is limited by the pipe infrastructure, and especially the plumbing 

system, on the household property, then perhaps such large peaks will be less 

evident. Considerable scope remains to improve the end-use model by 

describing peak flow rate as a function of residual WDS pressure. 

In the absence of local data, the probability distributions used to describe the 

parameters of the residential end-use model in this study were obtained from 

North American water measurements. The probability distributions may yield 

more representative results for water demand of South African households if 

South African data is used, but such data is not yet available. 

The maximum peak factors were used in this study, however, the frequency 

with which peak flow rates occurred, was not taken into account. It may, for 

example, not be necessary to apply a design peak factor that only occurs 1% of 

the time. It may be beneficial to associate acceptable reliabilities with peak 

factors. 

Microsoft Excel was used to construct the residential end-use model. The total 

computing time necessary to produce the results of this study was 

approximately 275 hours to complete all 99 500 model runs. The computation 

speed of the end-use model could be improved significantly by restructuring the 

model in a more efficient manner.  
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7.4. Summary of Contributions 

An end-use model describing indoor residential water demand in a probabilistic 

manner has not been presented before in South Africa. Although the water 

demand characteristics described by the end-use model in this study may not 

be representative of all South African household types, it does provide a basis 

from which to conduct further research and improve the model. 

In this research the effect that time intervals have on the magnitude of peak 

factors across a wide range of household group sizes was investigated. This 

study presented a detailed investigation that explicitly demonstrated the notable 

effect that time intervals have on peak factors. This study therefore emphasised 

the need to further investigate the incorporation of different peak factor time 

intervals in design guidelines in order to achieve optimum water distribution 

system designs. 
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APPENDIX A 

A1. Goodness of Fit Tests Ranking Results 
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Table A1.7.1: Shower volume GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General - - - - - 

Chi Squared 14 14 12 40 13 

Erlang 3 3 2 8 3 

Exponential 10 9 11 30 9 

Gamma 4 4 4 12 4 

Inverse Gaussian 9 12 9 30 9 

Log Logistic 1 1 1 3 1 

Log Normal 5 5 5 15 5 

Log Normal2 6 6 6 18 6 

Pareto - - - - - 

Pareto2 - - - - - 

Pearson5 11 13 10 34 10 

Pearson6 2 2 3 7 2 

Rayleigh 8 8 8 24 8 

Triangle 12 10 13 35 11 

Uniform 13 11 14 38 12 

Weibull 7 7 7 21 7 

Table A1.7.2: Shower flow rate GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General - - - - - 

Chi Squared 15 14 14 43 12 

Erlang 4 5 6 15 5 

Exponential 12 11 11 34 9 

Gamma 2 6 5 13 4 

Inverse Gaussian 1 7 7 15 5 

Log Logistic 3 1 1 5 1 

Log Normal 6 3 3 12 3 

Log Normal2 7 4 4 15 5 

Pareto - - - - - 

Pareto2 13 12 12 37 10 

Pearson5 8 8 8 24 6 

Pearson6 5 2 2 9 2 

Rayleigh 10 10 10 30 8 

Triangle 11 13 13 37 11 

Uniform 14 15 15 44 13 

Weibull 9 9 9 27 7 
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Table A1.7.3: Bath volume GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General 3 3 4 10 3 

Chi Squared 15 15 13 43 14 

Erlang 5 4 5 14 4 

Exponential 9 9 9 27 9 

Gamma 4 5 6 15 5 

Inverse Gaussian 11 11 12 34 11 

Log Logistic 6 6 3 15 6 

Log Normal 7 7 7 21 7 

Log Normal2 8 8 8 24 8 

Pareto - - - - - 

Pareto2 10 10 10 30 10 

Pearson5 12 12 11 35 12 

Pearson6 - - - - - 

Rayleigh 1 1 1 3 1 

Triangle 14 14 15 43 15 

Uniform 13 13 14 40 13 

Weibull 2 2 2 6 2 

Table A1.7.4: Bath flow rate GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General 2 2 3 7 2 

Chi Squared 14 13 13 40 13 

Erlang 3 4 4 11 4 

Exponential 11 12 12 35 12 

Gamma 4 5 5 14 5 

Inverse Gaussian 9 9 9 27 9 

Log Logistic 5 3 1 9 3 

Log Normal 7 6 6 19 6 

Log Normal2 8 7 7 22 7 

Pareto - - - - - 

Pareto2 12 11 11 34 11 

Pearson5 10 10 10 30 10 

Pearson6 - - - - - 

Rayleigh 6 8 8 22 8 

Triangle 15 15 15 45 15 

Uniform 13 14 14 41 14 

Weibull 1 1 2 4 1 
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Table A1.7.5: Toilet volume GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General 2 2 2 6 2 

Chi Squared 5 6 8 19 6 

Erlang 3 4 4 11 3 

Exponential 12 12 12 36 12 

Gamma 4 3 5 12 4 

Inverse Gaussian 8 9 9 26 9 

Log Logistic 9 5 3 17 5 

Log Normal 6 7 6 19 7 

Log Normal2 7 8 7 22 8 

Pareto - - - - - 

Pareto2 13 13 13 39 13 

Pearson5 10 10 10 30 10 

Pearson6 - - - - - 

Rayleigh 11 11 11 33 11 

Triangle 15 15 15 45 15 

Uniform 14 14 14 42 14 

Weibull 1 1 1 3 1 

Table A1.7.6: Toilet flow rate GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General 2 13 2 17 6 

Chi Squared 13 10 12 35 12 

Erlang 4 2 4 10 2 

Exponential 10 9 11 30 11 

Gamma 3 1 3 7 1 

Inverse Gaussian 8 6 8 22 8 

Log Logistic - - - - - 

Log Normal 5 3 5 13 3 

Log Normal2 6 4 6 16 5 

Pareto - - - - - 

Pareto2 11 8 10 29 10 

Pearson5 9 7 9 25 9 

Pearson6 - - - - - 

Rayleigh 7 5 7 19 7 

Triangle 14 14 14 42 14 

Uniform 12 11 13 36 13 

Weibull 1 12 1 14 4 
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Table A1.7.7: Tap volume GOF ranking results 

Table A1.7.8: Tap flow rate GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General - - - - - 

Chi Squared 12 10 12 34 10 

Erlang 2 2 6 10 2 

Exponential 7 9 11 27 7 

Gamma 3 3 2 8 1 

Inverse Gaussian 6 7 7 20 5 

Log Logistic 11 6 5 22 6 

Log Normal 4 4 3 11 3 

Log Normal2 5 5 4 14 4 

Pareto - - - - - 

Pareto2 - - - - - 

Pearson5 10 8 10 28 8 

Pearson6 8 1 1 10 2 

Rayleigh 9 13 8 30 9 

Triangle 14 14 14 42 12 

Uniform 13 11 13 37 11 

Weibull 1 12 9 22 6 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General 9 10 8 27 8 

Chi Squared 11 12 7 30 9 

Erlang - - - - - 

Exponential 10 11 9 30 9 

Gamma - - - - - 

Inverse Gaussian 1 1 3 5 1 

Log Logistic 8 6 6 20 6 

Log Normal 3 4 4 11 4 

Log Normal2 4 5 5 14 5 

Pareto - - - - - 

Pareto2 2 7 11 20 6 

Pearson5 6 3 1 10 3 

Pearson6 5 2 2 9 2 

Rayleigh 12 13 12 37 11 

Triangle 14 14 14 42 12 

Uniform 13 8 13 34 10 

Weibull 7 9 10 26 7 
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Table A1.7.9: Dishwasher cycle volume GOF ranking results 

Table A1.7.10: Dishwasher cycle flow rate GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General - - - - - 

Chi Squared 14 13 14 41 13 

Erlang 1 1 2 4 1 

Exponential 11 9 10 30 10 

Gamma 3 2 3 8 2 

Inverse Gaussian 2 6 7 15 5 

Log Logistic 7 3 1 11 3 

Log Normal 5 4 4 13 4 

Log Normal2 6 5 5 16 6 

Pareto - - - - - 

Pareto2 12 10 11 33 11 

Pearson5 4 7 8 19 7 

Pearson6 - - - - - 

Rayleigh 9 8 9 26 8 

Triangle 10 11 12 33 11 

Uniform 13 12 13 38 12 

Weibull 8 14 6 28 9 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General 3 12 4 19 6 

Chi Squared 6 5 10 21 7 

Erlang 4 13 5 22 8 

Exponential 13 7 13 33 12 

Gamma 2 11 2 15 3 

Inverse Gaussian 10 4 9 23 9 

Log Logistic 1 1 1 3 1 

Log Normal 7 3 6 16 4 

Log Normal2 8 3 7 18 5 

Pareto - - - - - 

Pareto2 14 8 14 36 13 

Pearson5 12 6 12 30 10 

Pearson6 5 2 3 10 2 

Rayleigh 11 15 11 37 14 

Triangle 15 9 15 39 15 

Uniform 16 10 16 42 16 

Weibull 9 14 8 31 11 
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Table A1.7.11: Dishwasher duration between cycles GOF ranking results 

Table A1.7.12: Washing machine cycle volume GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General 1 9 1 11 2 

Chi Squared 12 12 10 34 9 

Erlang - - - - - 

Exponential 3 6 7 16 5 

Gamma - - - - - 

Inverse Gaussian 8 7 8 23 6 

Log Logistic 7 2 3 12 3 

Log Normal 5 3 4 12 3 

Log Normal2 6 4 5 15 4 

Pareto - - - - - 

Pareto2 4 5 6 15 4 

Pearson5 - - - - - 

Pearson6 - - - - - 

Rayleigh 10 10 9 29 8 

Triangle 11 11 12 34 9 

Uniform 9 8 11 28 7 

Weibull 2 1 2 5 1 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General - - - -  

Chi Squared 14 14 12 40 11 

Erlang 2 6 5 13 3 

Exponential 3 7 6 16 4 

Gamma 1 9 9 19 6 

Inverse Gaussian 10 10 10 30 7 

Log Logistic 9 1 1 11 2 

Log Normal 7 3 3 13 3 

Log Normal2 8 4 4 16 4 

Pareto - - - -  

Pareto2 5 5 8 18 5 

Pearson5 - - - -  

Pearson6 6 2 2 10 1 

Rayleigh 11 11 11 33 8 

Triangle 13 12 13 38 9 

Uniform 12 13 14 39 10 

Weibull 4 8 7 19 6 
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Table A1.7.13: Washing machine cycle flow rate GOF ranking results 

Table A1.7.14: Washing machine duration between cycle GOF ranking results 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General 3 1 1 5 1 

Chi Squared 13 13 11 37 13 

Erlang - - - -  

Exponential 1 9 8 18 7 

Gamma - - - -  

Inverse Gaussian 9 7 9 25 9 

Log Logistic 7 3 3 13 3 

Log Normal 5 4 4 13 4 

Log Normal2 6 5 5 16 5 

Pareto - - - -  

Pareto2 2 8 7 17 6 

Pearson5 - - - -  

Pearson6 8 6 6 20 8 

Rayleigh 11 12 10 33 11 

Triangle 12 11 13 36 12 

Uniform 10 10 12 32 10 

Weibull 4 2 2 8 2 

Distribution 
Chi-

squared 
Anderson-

Darling 
Kolmogorov-

Smirnov 
Sum of 
score 

Overall 
Ranking 

Beta General 1 15 2 18 5 

Chi Squared 15 12 13 40 12 

Erlang 5 3 5 13 3 

Exponential 11 10 11 32 10 

Gamma 4 2 4 10 2 

Inverse Gaussian 9 8 9 26 8 

Log Logistic 6 4 3 13 3 

Log Normal 7 6 7 20 6 

Log Normal2 8 7 8 23 7 

Pareto - - - - - 

Pareto2 12 11 12 35 11 

Pearson5 10 9 10 29 9 

Pearson6 - - - - - 

Rayleigh 3 5 6 14 4 

Triangle 13 13 14 40 12 

Uniform 14 14 15 43 13 

Weibull 2 1 1 4 1 
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APPENDIX B 

B1. Daily Event Frequency Probability Distributions 
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Table B1.7.1: Shower daily frequency cumulative relative frequency 

Event Frequency 1 PPH 2 PPH 3 PPH 4 PPH 5 PPH 6 PPH 

0 0.0433 0.0085 0.0164 0.0176 0.0424 0.1363 

1 0.6532 0.4249 0.3013 0.2550 0.2183 0.2911 

2 0.8826 0.7494 0.6082 0.5373 0.4264 0.4839 

3 0.9630 0.8974 0.8185 0.7447 0.6457 0.6349 

4 0.9836 0.9581 0.9184 0.8783 0.8067 0.7527 

5 0.9937 0.9847 0.9617 0.9432 0.8972 0.8462 

6 0.9976 0.9929 0.9815 0.9770 0.9504 0.9065 

7 0.9981 0.9971 0.9925 0.9904 0.9780 0.9562 

8 0.9986 0.9984 0.9961 0.9951 0.9888 0.9805 

9 0.9995 0.9987 0.9973 0.9977 0.9944 0.9893 

10 1.0000 0.9990 0.9982 0.9981 0.9954 0.9951 

11 
 

0.9991 0.9989 0.9991 0.9974 0.9990 

12 
 

0.9992 0.9991 0.9993 0.9990 1.0000 

13 
 

0.9994 0.9995 1.0000 0.9995 
 

14 
 

0.9996 0.9998 
 

1.0000 
 

15 
 

0.9997 1.0000 
   

16 
 

0.9999 
    

17 
 

1.0000 
    

Table B1.7.2: Bath daily frequency cumulative relative frequency 

Event Frequency 1 PPH 2 PPH 3 PPH 4 PPH 5 PPH 6 PPH 

0 0.6121 0.1282 0.2192 0.1995 0.3301 0.5304 

1 0.8772 0.7654 0.7861 0.7898 0.8010 0.8198 

2 0.9612 0.9297 0.9580 0.9558 0.9450 0.9393 

3 0.9914 0.9829 0.9895 0.9893 0.9871 0.9757 

4 1.0000 0.9924 0.9974 0.9933 0.9903 0.9899 

5 
 

1.0000 0.9987 0.9973 0.9951 0.9939 

6 
  

1.0000 0.9987 0.9984 1.0000 

7 
   

1.0000 1.0000 
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Table B1.7.3: Toilet daily frequency cumulative relative frequency 

Event Frequency 1 PPH 2 PPH 3 PPH 4 PPH 5 PPH 6 PPH 

0 0.0200 0.0063 0.0138 0.0151 0.0390 0.1206 

1 0.0644 0.0233 0.0241 0.0246 0.0452 0.1305 

2 0.1416 0.0450 0.0374 0.0355 0.0495 0.1332 

3 0.2377 0.0811 0.0580 0.0545 0.0590 0.1395 

4 0.3346 0.1256 0.0789 0.0751 0.0705 0.1467 

5 0.4338 0.1767 0.1116 0.1005 0.0814 0.1548 

6 0.5132 0.2319 0.1478 0.1329 0.0976 0.1728 

7 0.5932 0.2898 0.1873 0.1696 0.1195 0.1953 

8 0.6573 0.3590 0.2382 0.2156 0.1457 0.2178 

9 0.7209 0.4248 0.3013 0.2610 0.1771 0.2484 

10 0.7692 0.4888 0.3565 0.3122 0.2138 0.2736 

11 0.8164 0.5514 0.4196 0.3657 0.2619 0.3159 

12 0.8537 0.6079 0.4807 0.4144 0.3105 0.3573 

13 0.8825 0.6587 0.5323 0.4728 0.3581 0.3960 

14 0.9089 0.7022 0.5856 0.5219 0.4110 0.4338 

15 0.9234 0.7445 0.6413 0.5776 0.4605 0.4761 

16 0.9397 0.7873 0.6946 0.6234 0.5100 0.5185 

17 0.9522 0.8230 0.7318 0.6709 0.5748 0.5581 

18 0.9631 0.8523 0.7680 0.7115 0.6352 0.5959 

19 0.9697 0.8764 0.8042 0.7536 0.6829 0.6238 

20 0.9747 0.8983 0.8348 0.7839 0.7219 0.6526 

21 0.9792 0.9155 0.8617 0.8157 0.7571 0.6886 

22 0.9817 0.9288 0.8841 0.8399 0.7895 0.7237 

23 0.9836 0.9424 0.9011 0.8624 0.8157 0.7588 

24 0.9856 0.9517 0.9165 0.8840 0.8452 0.7876 

25 0.9867 0.9591 0.9302 0.9036 0.8695 0.8164 

26 0.9883 0.9669 0.9428 0.9187 0.8890 0.8308 

27 0.9900 0.9729 0.9531 0.9346 0.9033 0.8560 

28 0.9908 0.9777 0.9606 0.9435 0.9138 0.8704 

29 0.9931 0.9810 0.9685 0.9521 0.9290 0.8902 

30 0.9953 0.9844 0.9737 0.9573 0.9405 0.9082 

31 0.9958 0.9869 0.9786 0.9666 0.9471 0.9253 

32 0.9961 0.9891 0.9816 0.9730 0.9600 0.9316 

33 0.9964 0.9909 0.9846 0.9794 0.9686 0.9433 
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Event Frequency 1 PPH 2 PPH 3 PPH 4 PPH 5 PPH 6 PPH 

34 0.9969 0.9924 0.9867 0.9827 0.9743 0.9523 

35 0.9972 0.9932 0.9889 0.9856 0.9786 0.9568 

36 0.9975 0.9944 0.9907 0.9872 0.9829 0.9667 

37 0.9978 0.9955 0.9917 0.9882 0.9876 0.9721 

38 0.9983 0.9961 0.9933 0.9920 0.9900 0.9748 

39 0.9989 0.9964 0.9943 0.9928 0.9914 0.9829 

40 0.9992 0.9970 0.9955 0.9936 0.9929 0.9847 

41 0.9994 0.9973 0.9956 0.9944 0.9943 0.9865 

42 0.9997 0.9975 0.9964 0.9953 0.9957 0.9883 

43 1.0000 0.9977 0.9970 0.9961 0.9967 0.9892 

44 
 

0.9978 0.9974 0.9963 0.9971 0.9910 

45 
 

0.9984 0.9976 0.9971 0.9981 0.9928 

46 
 

0.9988 0.9978 0.9975 0.9986 0.9937 

47 
 

0.9990 0.9984 0.9977 0.9990 0.9946 

48 
 

0.9992 0.9986 0.9986 0.9995 0.9955 

49 
 

0.9992 0.9990 0.9988 1.0000 0.9964 

50 
 

0.9993 0.9994 0.9990 
 

0.9973 

51 
 

0.9994 0.9998 0.9992 
 

0.9982 

52 
 

0.9995 1.0000 0.9994 
 

0.9991 

53 
 

0.9996 
 

0.9996 
 

1.0000 

54 
 

0.9997 
 

0.9998 
  

55 
 

0.9998 
 

1.0000 
  

56 
 

0.9999 
    

57 
 

1.0000 
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Table B1.7.4: Tap daily frequency cumulative relative frequency 

Event Frequency 1 PPH 2 PPH 3 PPH 4 PPH 5 PPH 6 PPH 

0 0.0134 0.0063 0.0153 0.0189 0.0571 0.1976 

1 0.0239 0.0133 0.0220 0.0231 0.0641 0.2000 

2 0.0331 0.0205 0.0287 0.0280 0.0667 0.2012 

3 0.0445 0.0277 0.0325 0.0317 0.0712 0.2024 

4 0.0650 0.0349 0.0378 0.0338 0.0756 0.2036 

5 0.0819 0.0438 0.0451 0.0375 0.0763 0.2060 

6 0.1027 0.0549 0.0518 0.0425 0.0840 0.2096 

7 0.1225 0.0672 0.0598 0.0503 0.0846 0.2132 

8 0.1447 0.0803 0.0675 0.0556 0.0878 0.2180 

9 0.1710 0.0948 0.0791 0.0616 0.0910 0.2251 

10 0.1955 0.1091 0.0906 0.0687 0.0936 0.2311 

11 0.2223 0.1229 0.1013 0.0779 0.0955 0.2395 

12 0.2449 0.1368 0.1147 0.0875 0.1019 0.2455 

13 0.2704 0.1519 0.1277 0.0980 0.1083 0.2563 

14 0.2914 0.1700 0.1407 0.1109 0.1154 0.2575 

15 0.3122 0.1883 0.1563 0.1240 0.1237 0.2671 

16 0.3377 0.2057 0.1707 0.1363 0.1301 0.2790 

17 0.3620 0.2235 0.1837 0.1476 0.1436 0.2850 

18 0.3816 0.2418 0.2024 0.1651 0.1609 0.2922 

19 0.4034 0.2583 0.2229 0.1785 0.1660 0.2994 

20 0.4227 0.2788 0.2399 0.1948 0.1763 0.3090 

21 0.4454 0.3004 0.2609 0.2087 0.1872 0.3269 

22 0.4686 0.3184 0.2831 0.2252 0.1974 0.3353 

23 0.4900 0.3391 0.3005 0.2414 0.2096 0.3461 

24 0.5098 0.3594 0.3209 0.2585 0.2212 0.3557 

25 0.5314 0.3789 0.3393 0.2734 0.2346 0.3749 

26 0.5483 0.3979 0.3565 0.2891 0.2462 0.3844 

27 0.5666 0.4181 0.3750 0.3046 0.2583 0.4024 

28 0.5843 0.4368 0.3956 0.3269 0.2737 0.4180 

29 0.6003 0.4564 0.4119 0.3457 0.2929 0.4407 

30 0.6203 0.4752 0.4308 0.3633 0.3122 0.4575 

31 0.6372 0.4929 0.4516 0.3840 0.3256 0.4719 

32 0.6540 0.5075 0.4690 0.4034 0.3487 0.4850 

33 0.6639 0.5283 0.4878 0.4181 0.3744 0.4982 
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Event Frequency 1 PPH 2 PPH 3 PPH 4 PPH 5 PPH 6 PPH 

34 0.6757 0.5465 0.5057 0.4364 0.3910 0.5102 

35 0.6892 0.5633 0.5185 0.4509 0.4083 0.5210 

36 0.7034 0.5792 0.5325 0.4684 0.4212 0.5305 

37 0.7166 0.5962 0.5474 0.4841 0.4340 0.5473 

38 0.7250 0.6136 0.5638 0.5030 0.4506 0.5593 

39 0.7370 0.6302 0.5816 0.5208 0.4712 0.5665 

40 0.7446 0.6435 0.5927 0.5429 0.4853 0.5808 

41 0.7547 0.6576 0.6074 0.5578 0.5006 0.5880 

42 0.7644 0.6703 0.6231 0.5751 0.5186 0.5988 

43 0.7767 0.6837 0.6370 0.5887 0.5340 0.6084 

44 0.7858 0.6970 0.6479 0.6058 0.5532 0.6204 

45 0.7956 0.7076 0.6586 0.6202 0.5692 0.6323 

46 0.8065 0.7208 0.6722 0.6354 0.5853 0.6419 

47 0.8160 0.7316 0.6848 0.6511 0.5987 0.6551 

48 0.8236 0.7442 0.6959 0.6682 0.6179 0.6683 

49 0.8308 0.7540 0.7066 0.6815 0.6359 0.6778 

50 0.8380 0.7661 0.7171 0.6938 0.6545 0.6922 

51 0.8434 0.7774 0.7269 0.7106 0.6699 0.7042 

52 0.8514 0.7887 0.7362 0.7211 0.6891 0.7186 

53 0.8601 0.7974 0.7500 0.7358 0.7006 0.7257 

54 0.8662 0.8070 0.7588 0.7465 0.7103 0.7341 

55 0.8718 0.8151 0.7693 0.7586 0.7263 0.7461 

56 0.8767 0.8229 0.7792 0.7706 0.7449 0.7581 

57 0.8821 0.8321 0.7861 0.7822 0.7538 0.7665 

58 0.8885 0.8402 0.7932 0.7924 0.7635 0.7689 

59 0.8934 0.8461 0.8039 0.8039 0.7737 0.7808 

60 0.8987 0.8516 0.8125 0.8142 0.7872 0.7844 

61 0.9043 0.8599 0.8201 0.8244 0.7981 0.7916 

62 0.9092 0.8665 0.8284 0.8341 0.8103 0.8060 

63 0.9131 0.8721 0.8366 0.8417 0.8179 0.8144 

64 0.9187 0.8783 0.8429 0.8493 0.8327 0.8228 

65 0.9232 0.8840 0.8507 0.8582 0.8429 0.8335 

66 0.9280 0.8888 0.8572 0.8650 0.8500 0.8455 

67 0.9331 0.8936 0.8660 0.8718 0.8609 0.8515 

68 0.9376 0.8984 0.8719 0.8792 0.8667 0.8611 
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Event Frequency 1 PPH 2 PPH 3 PPH 4 PPH 5 PPH 6 PPH 

69 0.9405 0.9037 0.8792 0.8862 0.8718 0.8671 

70 0.9446 0.9093 0.8867 0.8925 0.8776 0.8743 

71 0.9467 0.9143 0.8935 0.8986 0.8859 0.8778 

72 0.9490 0.9196 0.8995 0.9041 0.8942 0.8874 

73 0.9516 0.9249 0.9056 0.9088 0.9026 0.8994 

74 0.9557 0.9294 0.9111 0.9117 0.9096 0.9030 

75 0.9578 0.9352 0.9153 0.9166 0.9179 0.9102 

76 0.9617 0.9389 0.9203 0.9219 0.9231 0.9126 

77 0.9636 0.9424 0.9262 0.9271 0.9269 0.9162 

78 0.9673 0.9457 0.9304 0.9308 0.9321 0.9222 

79 0.9695 0.9490 0.9327 0.9358 0.9372 0.9269 

80 0.9714 0.9531 0.9371 0.9389 0.9417 0.9341 

81 0.9735 0.9567 0.9409 0.9421 0.9455 0.9365 

82 0.9753 0.9605 0.9451 0.9463 0.9481 0.9389 

83 0.9763 0.9646 0.9480 0.9505 0.9526 0.9485 

84 0.9778 0.9668 0.9507 0.9549 0.9558 0.9545 

85 0.9788 0.9708 0.9547 0.9573 0.9590 0.9557 

86 0.9794 0.9730 0.9606 0.9620 0.9622 0.9581 

87 0.9805 0.9748 0.9637 0.9649 0.9654 0.9617 

88 0.9825 0.9772 0.9685 0.9670 0.9679 0.9629 

89 0.9858 0.9794 0.9711 0.9688 0.9712 0.9665 

90 0.9874 0.9820 0.9750 0.9730 0.9724 0.9725 

91 0.9891 0.9843 0.9773 0.9748 0.9744 0.9760 

92 0.9907 0.9862 0.9801 0.9782 0.9769 0.9820 

93 0.9932 0.9883 0.9826 0.9817 0.9795 0.9856 

94 0.9938 0.9902 0.9847 0.9861 0.9840 0.9868 

95 0.9951 0.9923 0.9872 0.9893 0.9853 0.9892 

96 0.9965 0.9938 0.9910 0.9927 0.9891 0.9904 

97 0.9977 0.9952 0.9933 0.9940 0.9923 0.9940 

98 0.9984 0.9970 0.9956 0.9963 0.9949 0.9964 

99 0.9992 0.9985 0.9977 0.9979 0.9974 0.9976 

100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table B1.7.5: Dishwasher daily frequency cumulative relative frequency 

Event Frequency 1 PPH 2 PPH 3 PPH 4 PPH 5 PPH 6 PPH 

0 0.3779 0.0324 0.0781 0.0628 0.1722 0.4654 

1 0.9666 0.9425 0.9437 0.9298 0.9004 0.9402 

2 0.9982 0.9947 0.9947 0.9939 0.9865 0.9944 

3 1.0000 1.0000 0.9985 1.0000 0.9975 1.0000 

4 
  

1.0000 
 

0.9988 
 

5 
    

1.0000 
 

Table B1.7.6: Washing machine daily frequency cumulative relative frequency 

Event Frequency 1 PPH 2 PPH 3 PPH 4 PPH 5 PPH 6 PPH 

0 0.1174 0.0166 0.0310 0.0298 0.0728 0.1868 

1 0.6385 0.5074 0.4466 0.4214 0.3949 0.4188 

2 0.8486 0.7505 0.6886 0.6884 0.6456 0.6265 

3 0.9422 0.8757 0.8319 0.8340 0.7943 0.7552 

4 0.9725 0.9453 0.9055 0.9106 0.8919 0.8654 

5 0.9890 0.9781 0.9516 0.9555 0.9467 0.9188 

6 0.9963 0.9900 0.9717 0.9759 0.9685 0.9524 

7 0.9991 0.9940 0.9899 0.9883 0.9857 0.9733 

8 1.0000 0.9978 0.9961 0.9959 0.9917 0.9884 

9 
 

0.9993 0.9977 0.9989 0.9977 0.9919 

10 
 

0.9998 0.9981 1.0000 0.9992 0.9942 

11 
 

1.0000 0.9988 
 

1.0000 0.9965 

12 
  

0.9996 
  

0.9988 

13 
  

1.0000 
  

1.0000 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



 

176 

B2. Starting Hour and Number of Cycles Probability Distributions 
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Table B2.1: Starting hour cumulative relative frequency 

Hour Bath Shower Toilet Tap Dishwasher 
Washing 
machine 

0 0.011 0.010 0.024 0.014 0.025 0.006 

1 0.016 0.014 0.039 0.022 0.035 0.010 

2 0.019 0.017 0.052 0.028 0.042 0.012 

3 0.023 0.022 0.064 0.034 0.045 0.013 

4 0.028 0.034 0.079 0.042 0.049 0.015 

5 0.046 0.084 0.106 0.060 0.057 0.021 

6 0.083 0.193 0.157 0.099 0.081 0.040 

7 0.133 0.305 0.222 0.158 0.122 0.088 

8 0.195 0.400 0.282 0.221 0.179 0.163 

9 0.251 0.475 0.336 0.280 0.233 0.254 

10 0.299 0.534 0.385 0.333 0.284 0.344 

11 0.330 0.580 0.428 0.384 0.328 0.426 

12 0.358 0.615 0.471 0.435 0.373 0.495 

13 0.379 0.644 0.513 0.482 0.418 0.559 

14 0.403 0.669 0.554 0.525 0.455 0.615 

15 0.426 0.695 0.597 0.569 0.485 0.671 

16 0.463 0.727 0.645 0.620 0.526 0.725 

17 0.511 0.767 0.696 0.687 0.579 0.778 

18 0.584 0.812 0.750 0.763 0.661 0.831 

19 0.699 0.857 0.801 0.829 0.752 0.884 

20 0.818 0.902 0.852 0.884 0.828 0.930 

21 0.902 0.945 0.907 0.934 0.901 0.966 

22 0.964 0.977 0.960 0.973 0.960 0.989 

23 1.000 1.000 1.000 1.000 1.000 1.000 
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Table B2.2: Number of cycles cumulative relative frequency 

Number of Cycles Washing machine Dishwasher 

1 0.0069 0.0000 

2 0.1045 0.0040 

3 0.4506 0.0527 

4 0.7253 0.3196 

5 0.8282 0.6033 

6 0.8721 0.8338 

7 0.9006 0.9528 

8 0.9209 0.9865 

9 0.9674 0.9951 

10 0.9896 0.9987 

11 0.9947 0.9996 

12 0.9960 1.0000 

13 0.9974 
 

14 0.9982 
 

15 0.9989 
 

16 0.9992 
 

17 0.9995 
 

18 0.9997 
 

19 0.9999 
 

20 1.0000 
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APPENDIX C 

C1. Peak Factor Plots for All Scenarios
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Figure C1.1: Result set for 60 minute peak factor and household group sizes ranging from 1 to 10 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0 10 20 30 40 50 60 70 80 90 100

P
e
a
k
 F

a
c
to

r 

Percentile 

1 House 2 Houses 3 Houses 4 Houses 5 Houses 6 Houses 7 Houses 8 Houses 9 Houses 10 Houses

Stellenbosch University http://scholar.sun.ac.za



 

181 

 

Figure C1.2: Result set for 60 minute peak factor and household group sizes ranging from 20 to 100 
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Figure C1.3: Result set for 60 minute peak factor and household group sizes ranging from 200 to 2000 
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Figure C1.4: Result set for 30 minute peak factor and household group sizes ranging from 1 to 10 
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Figure C1.5: Result set for 30 minute peak factor and household group sizes ranging from 20 to 100 
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Figure C1.6: Result set for 30 minute peak factor and household group sizes ranging from 200 to 2000 
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Figure C1.7: Result set for 15 minute peak factor and household group sizes ranging from 1 to 10 
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Figure C1.8: Result set for 15 minute peak factor and household group sizes ranging from 20 to 100 
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Figure C1.9: Result set for 15 minute peak factor and household group sizes ranging from 200 to 2000 
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Figure C1.10: Result set for 10 minute peak factor and household group sizes ranging from 1 to 10 
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Figure C1.11: Result set for 10 minute peak factor and household group sizes ranging from 20 to 100 
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Figure C1.12: Result set for 10 minute peak factor and household group sizes ranging from 200 to 2000 
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Figure C1.13: Result set for 5 minute peak factor and household group sizes ranging from 1 to 10 
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Figure C1.14: Result set for 5 minute peak factor and household group sizes ranging from 20 to 100 
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Figure C1.15: Result set for 5 minute peak factor and household group sizes ranging from 200 to 2000 
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Figure C1.16: Result set for 1 minute peak factor and household group sizes ranging from 1 to 10 
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Figure C1.17: Result set for 1 minute peak factor and household group sizes ranging from 20 to 100 
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Figure C1.18: Result set for 1 minute peak factor and household group sizes ranging from 200 to 2000 
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Figure C1.19: Result set for 10 second peak factor and household group sizes ranging from 1 to 10 
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Figure C1.20: Result set for 10 second peak factor and household group sizes ranging from 20 to 100 
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Figure C1.21: Result set for 10 second peak factor and household group sizes ranging from 200 to 2000 
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Figure C1.22: Result set for 1 second peak factor and household group sizes ranging from 1 to 10 
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Figure C1.23: Result set for 1 second peak factor and household group sizes ranging from 20 to 100 
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Figure C1.24: Result set for 1 second peak factor and household group sizes ranging from 200 to 2000 
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C2. Peak Factor Values for Selected Percentiles 

 

The following legend is applicable to Tables C2.1 to C2.8: 

low                   PF magnitude                  high 

Legend: 
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Table C2.7.1: 60 minute peak factor values for selected percentiles 

60 min peak factor 
Percentiles 

0 10 20 30 40 50 60 70 80 90 95 100 

G
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u
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h
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s
) 

 

1 2.23 4.39 5.01 5.53 5.94 6.37 6.94 7.65 8.52 9.85 10.81 17.87 

2 2.20 3.39 3.70 4.02 4.36 4.67 5.03 5.39 5.88 6.77 7.71 11.80 

3 2.23 3.01 3.33 3.52 3.74 3.98 4.26 4.55 4.94 5.66 6.32 8.97 

4 2.23 2.72 2.92 3.14 3.32 3.53 3.78 4.01 4.30 4.88 5.27 7.95 

5 2.16 2.64 2.89 3.06 3.18 3.34 3.50 3.65 3.92 4.32 4.70 6.04 

6 2.08 2.48 2.70 2.89 3.02 3.12 3.29 3.44 3.75 4.15 4.60 6.20 

7 1.91 2.36 2.54 2.64 2.74 2.87 2.99 3.13 3.37 3.81 4.48 6.15 

8 1.92 2.30 2.46 2.56 2.65 2.77 2.92 3.07 3.28 3.55 3.77 4.27 

9 1.85 2.22 2.44 2.54 2.64 2.82 2.96 3.12 3.32 3.68 4.04 5.32 

10 1.97 2.23 2.33 2.42 2.56 2.68 2.84 2.99 3.19 3.54 3.68 4.39 

20 1.72 1.95 2.05 2.12 2.21 2.29 2.37 2.45 2.55 2.77 2.93 3.30 

30 1.70 1.90 2.00 2.05 2.11 2.17 2.24 2.27 2.32 2.44 2.49 2.76 

40 1.59 1.82 1.89 1.91 1.96 2.03 2.06 2.11 2.18 2.30 2.32 2.65 

50 1.71 1.77 1.85 1.93 1.98 2.01 2.04 2.14 2.25 2.35 2.42 2.52 

60 1.62 1.75 1.79 1.83 1.86 1.89 1.94 1.97 2.03 2.15 2.21 2.35 

70 1.67 1.73 1.76 1.81 1.85 1.89 1.93 2.00 2.03 2.30 2.40 2.43 

80 1.63 1.76 1.80 1.84 1.87 1.90 1.95 2.02 2.03 2.15 2.22 2.46 

90 1.61 1.72 1.80 1.83 1.85 1.88 1.95 1.97 2.00 2.06 2.10 2.33 

100 1.58 1.78 1.81 1.81 1.83 1.87 1.91 1.91 1.93 1.99 2.05 2.10 

200 1.63 1.65 1.76 1.79 1.80 1.81 1.85 1.91 1.95 1.98 2.00 2.01 

300 1.66 1.67 1.70 1.72 1.72 1.74 1.77 1.81 1.87 1.88 1.88 1.89 

400 1.67 1.68 1.68 1.72 1.74 1.75 1.76 1.78 1.80 1.87 1.92 1.98 

500 1.63 1.71 1.76 1.77 1.78 1.79 1.81 1.85 1.85 1.87 1.88 1.90 

600 1.58 1.64 1.67 1.69 1.72 1.74 1.75 1.76 1.78 1.85 1.85 1.85 

700 1.70 1.72 1.75 1.76 1.77 1.78 1.78 1.79 1.80 1.81 1.82 1.83 

800 1.68 1.68 1.71 1.73 1.74 1.76 1.80 1.83 1.83 1.84 1.85 1.86 

900 1.60 1.64 1.68 1.71 1.72 1.72 1.73 1.75 1.75 1.76 1.77 1.78 

1000 1.68 1.69 1.69 1.71 1.74 1.76 1.77 1.77 1.78 1.80 1.81 1.82 

2000 1.66 1.66 1.67 1.67 1.69 1.70 1.71 1.72 1.73 1.74 1.74 1.75 
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Table C2.7.2: 30 minute peak factor values for selected percentiles 

30 min peak factor 
Percentiles 

0 10 20 30 40 50 60 70 80 90 95 100 
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1 4.42 7.18 8.15 8.84 9.63 10.45 11.24 12.24 13.27 15.57 17.48 31.12 

2 3.23 5.40 5.89 6.31 6.78 7.23 7.81 8.45 9.35 10.56 12.21 19.22 

3 2.95 4.63 5.08 5.46 5.77 6.17 6.59 7.05 7.75 8.66 9.43 14.33 

4 3.27 4.36 4.66 4.94 5.24 5.54 5.87 6.18 6.66 7.62 8.19 10.75 

5 3.14 3.89 4.26 4.50 4.79 5.09 5.45 5.76 6.18 6.99 7.24 9.09 

6 2.79 3.69 4.02 4.22 4.48 4.75 5.04 5.28 5.60 6.11 7.02 10.38 

7 3.03 3.64 3.85 4.00 4.20 4.41 4.64 4.90 5.18 5.72 6.13 8.45 

8 2.94 3.47 3.79 3.98 4.16 4.42 4.60 4.87 5.04 5.48 5.81 6.66 

9 2.92 3.38 3.69 3.92 4.12 4.39 4.51 4.71 4.97 5.20 5.71 7.62 

10 2.82 3.52 3.69 3.83 3.94 4.19 4.43 4.61 4.92 5.30 5.74 6.09 

20 2.54 3.21 3.32 3.43 3.53 3.58 3.64 3.83 4.02 4.23 4.40 4.99 

30 2.78 2.97 3.08 3.17 3.26 3.34 3.48 3.60 3.68 3.92 4.02 4.42 

40 2.45 2.92 2.99 3.05 3.14 3.20 3.27 3.35 3.51 3.70 3.74 3.86 

50 2.61 2.91 2.95 3.00 3.08 3.13 3.23 3.32 3.45 3.65 3.90 4.11 

60 2.73 2.78 2.83 2.84 2.96 3.03 3.08 3.19 3.28 3.33 3.48 3.74 

70 2.62 2.78 2.86 2.89 2.95 3.01 3.07 3.16 3.26 3.57 3.73 3.82 

80 2.73 2.83 2.90 2.97 2.99 3.03 3.07 3.13 3.24 3.32 3.47 3.81 

90 2.65 2.79 2.82 2.88 2.93 3.04 3.09 3.13 3.23 3.33 3.48 3.66 

100 2.66 2.83 2.91 2.94 2.94 3.00 3.08 3.15 3.23 3.28 3.36 3.43 

200 2.64 2.64 2.66 2.78 2.87 2.94 2.99 3.01 3.02 3.05 3.10 3.15 

300 2.59 2.65 2.73 2.78 2.84 2.89 2.91 2.94 2.96 2.97 2.97 2.98 

400 2.61 2.65 2.67 2.67 2.70 2.74 2.80 2.86 2.87 2.89 2.90 2.92 

500 2.59 2.73 2.81 2.84 2.86 2.87 2.89 2.92 2.94 2.99 3.00 3.01 

600 2.60 2.61 2.65 2.69 2.75 2.80 2.83 2.84 2.85 2.88 2.91 2.94 

700 2.70 2.75 2.77 2.78 2.78 2.79 2.81 2.83 2.84 2.86 2.86 2.87 

800 2.62 2.74 2.77 2.80 2.81 2.83 2.85 2.88 2.91 2.92 2.95 2.98 

900 2.65 2.68 2.70 2.72 2.72 2.72 2.74 2.79 2.83 2.84 2.86 2.88 

1000 2.66 2.68 2.71 2.74 2.79 2.84 2.85 2.86 2.87 2.90 2.91 2.92 

2000 2.63 2.67 2.71 2.74 2.76 2.77 2.79 2.80 2.82 2.84 2.86 2.87 
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Table C2.7.3: 15 minute peak factor values for selected percentiles 

15 min peak factor 
Percentiles 

0 10 20 30 40 50 60 70 80 90 95 100 
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1 6.18 10.58 12.05 13.42 14.81 16.17 17.57 19.44 21.82 25.11 28.92 62.24 

2 4.75 7.72 8.51 9.31 9.88 10.60 11.36 12.35 13.58 15.84 17.72 28.04 

3 4.61 6.50 7.13 7.64 8.14 8.66 9.31 9.94 10.91 12.38 13.63 19.78 

4 4.72 5.75 6.16 6.75 7.11 7.55 7.98 8.60 9.50 11.13 12.10 16.37 

5 4.04 5.23 5.70 6.00 6.37 6.75 7.15 7.55 8.26 9.55 10.28 13.87 

6 3.86 4.91 5.34 5.65 5.91 6.14 6.37 6.68 7.22 7.81 8.68 11.97 

7 3.80 4.47 4.86 5.08 5.31 5.57 5.87 6.39 6.79 7.56 8.18 9.85 

8 3.69 4.52 4.91 5.22 5.39 5.63 5.90 6.24 6.67 7.22 7.81 10.87 

9 3.77 4.42 4.79 5.03 5.27 5.50 5.74 6.02 6.46 7.13 7.76 10.97 

10 3.74 4.39 4.58 4.82 5.05 5.28 5.63 5.99 6.27 6.82 7.42 8.04 

20 2.93 3.76 3.94 4.09 4.21 4.30 4.48 4.62 4.77 5.23 5.70 6.04 

30 2.97 3.36 3.66 3.75 3.82 3.94 3.99 4.12 4.35 4.70 4.92 5.38 

40 2.84 3.37 3.44 3.55 3.70 3.74 3.79 3.87 4.01 4.41 4.72 5.07 

50 3.01 3.28 3.31 3.41 3.49 3.61 3.65 3.73 3.90 4.14 4.26 4.46 

60 2.87 3.11 3.17 3.24 3.31 3.37 3.46 3.57 3.70 3.78 3.88 4.18 

70 2.85 3.12 3.20 3.24 3.40 3.45 3.49 3.59 3.65 3.86 3.96 4.98 

80 2.95 3.13 3.18 3.27 3.35 3.40 3.44 3.49 3.64 4.06 4.19 4.55 

90 2.82 2.99 3.10 3.19 3.28 3.32 3.39 3.50 3.58 3.78 4.05 4.14 

100 2.72 3.08 3.18 3.34 3.42 3.47 3.53 3.56 3.60 3.66 3.67 3.69 

200 2.79 2.86 2.87 2.92 3.04 3.15 3.22 3.30 3.38 3.42 3.48 3.53 

300 2.74 2.90 2.93 2.96 3.02 3.06 3.06 3.07 3.10 3.16 3.21 3.25 

400 2.70 2.82 2.87 2.90 2.91 2.94 2.99 3.00 3.01 3.03 3.07 3.11 

500 2.78 2.92 2.94 2.95 2.96 3.06 3.15 3.16 3.17 3.19 3.21 3.23 

600 2.82 2.82 2.83 2.84 2.85 2.90 2.95 3.01 3.10 3.10 3.10 3.10 

700 2.80 2.86 2.96 2.98 2.98 3.02 3.05 3.06 3.07 3.14 3.15 3.16 

800 2.72 2.83 2.90 2.93 2.96 3.00 3.04 3.10 3.14 3.19 3.20 3.21 

900 2.75 2.82 2.87 2.87 2.89 2.92 2.94 2.97 3.02 3.11 3.15 3.18 

1000 2.78 2.80 2.83 2.86 2.89 2.93 2.95 2.97 2.99 2.99 2.99 2.99 

2000 2.72 2.75 2.78 2.83 2.89 2.96 2.98 3.00 3.01 3.02 3.02 3.03 
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Table C2.7.4: 10 minute peak factor values for selected percentiles 

10 min peak factor 
Percentiles 

0 10 20 30 40 50 60 70 80 90 95 100 
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1 6.76 13.46 15.53 17.21 18.78 20.43 22.16 24.36 27.65 32.09 36.93 79.22 

2 5.98 9.39 10.45 11.35 12.28 13.20 14.36 15.58 17.24 20.00 22.21 40.17 

3 5.75 7.81 8.68 9.32 9.94 10.56 11.35 12.30 13.38 15.29 16.92 34.14 

4 5.42 6.94 7.49 8.04 8.60 9.04 9.65 10.35 11.14 12.75 14.00 18.90 

5 4.88 6.26 6.96 7.44 7.81 8.18 8.59 9.29 9.91 11.10 12.07 15.99 

6 4.43 5.66 6.02 6.58 7.01 7.38 7.70 8.39 9.02 9.94 11.08 14.37 

7 4.53 5.53 5.83 6.11 6.39 6.65 6.85 7.37 7.85 8.79 9.97 13.11 

8 4.11 5.14 5.66 6.07 6.39 6.58 6.87 7.22 7.67 8.62 9.98 13.70 

9 3.89 5.06 5.40 5.68 6.01 6.33 6.69 6.98 7.44 8.28 9.26 11.48 

10 4.41 4.95 5.37 5.61 5.94 6.19 6.49 6.74 7.28 7.99 8.69 9.95 

20 3.65 4.27 4.46 4.57 4.80 5.00 5.18 5.32 5.60 5.92 6.19 6.75 

30 3.35 3.88 4.05 4.18 4.39 4.52 4.66 4.82 4.99 5.36 5.57 6.62 

40 3.49 3.78 3.87 3.95 4.04 4.29 4.36 4.46 4.64 4.94 5.14 5.72 

50 3.44 3.64 3.74 3.83 3.88 4.00 4.16 4.25 4.37 4.61 4.98 5.17 

60 3.25 3.49 3.53 3.66 3.75 3.90 3.99 4.13 4.38 4.46 4.61 5.41 

70 3.32 3.49 3.62 3.71 3.77 3.83 3.93 4.04 4.17 4.45 4.82 5.10 

80 3.25 3.49 3.60 3.68 3.79 3.94 4.04 4.11 4.24 4.56 4.79 5.23 

90 3.21 3.39 3.50 3.60 3.67 3.82 3.86 3.92 4.01 4.16 4.50 4.69 

100 3.34 3.57 3.60 3.68 3.75 3.80 3.86 3.92 3.96 3.97 3.99 4.00 

200 3.16 3.17 3.27 3.37 3.41 3.42 3.44 3.51 3.61 3.67 3.69 3.72 

300 3.22 3.24 3.32 3.35 3.37 3.41 3.51 3.60 3.62 3.65 3.72 3.78 

400 3.14 3.20 3.21 3.28 3.33 3.35 3.37 3.42 3.55 3.64 3.70 3.75 

500 3.13 3.31 3.37 3.39 3.43 3.47 3.54 3.63 3.64 3.64 3.64 3.64 

600 3.13 3.20 3.21 3.24 3.29 3.38 3.46 3.51 3.59 3.77 3.77 3.77 

700 3.19 3.26 3.34 3.35 3.36 3.38 3.42 3.49 3.61 3.65 3.67 3.68 

800 3.27 3.28 3.31 3.33 3.34 3.36 3.38 3.44 3.50 3.52 3.55 3.58 

900 3.12 3.16 3.18 3.21 3.25 3.29 3.34 3.41 3.44 3.45 3.46 3.47 

1000 3.30 3.31 3.32 3.34 3.35 3.37 3.42 3.48 3.51 3.52 3.53 3.53 

2000 3.20 3.21 3.22 3.25 3.30 3.36 3.38 3.40 3.42 3.44 3.45 3.46 
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Table C2.7.5: 5 minute peak factor values for selected percentiles 

5 min peak factor 
Percentiles 

0 10 20 30 40 50 60 70 80 90 95 100 
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1 8.83 18.53 21.63 24.48 26.67 28.68 31.17 34.74 39.79 48.08 56.04 109.48 

2 7.31 12.74 14.13 15.48 16.86 18.21 19.69 21.38 23.99 27.44 30.77 57.29 

3 6.94 10.69 11.86 12.69 13.57 14.55 15.42 16.42 17.76 20.15 22.52 40.98 

4 7.42 9.31 10.17 10.85 11.58 12.45 13.04 13.92 15.00 16.47 17.70 28.32 

5 6.63 7.95 8.79 9.32 10.00 10.77 11.62 12.22 13.10 14.88 16.16 25.32 

6 5.96 7.47 7.99 8.54 9.13 9.58 10.03 10.69 11.39 12.85 13.76 17.07 

7 5.99 6.99 7.52 8.09 8.56 8.94 9.44 10.00 10.91 11.58 12.25 16.01 

8 4.75 6.78 7.31 7.67 8.07 8.58 9.07 9.51 10.02 10.68 11.91 16.29 

9 5.19 6.61 7.08 7.47 7.75 8.03 8.33 8.81 9.62 10.51 11.05 14.80 

10 5.85 6.33 6.69 7.10 7.47 7.79 8.01 8.60 8.99 10.69 11.55 12.26 

20 4.68 5.24 5.45 5.69 5.94 6.26 6.55 6.83 7.02 7.21 7.66 9.52 

30 4.14 4.68 5.00 5.24 5.37 5.52 5.68 5.99 6.15 6.35 6.93 8.18 

40 4.28 4.47 4.63 4.82 4.93 5.12 5.21 5.33 5.48 5.98 6.59 6.89 

50 3.92 4.24 4.42 4.52 4.63 4.74 4.83 4.99 5.10 5.34 5.67 6.41 

60 3.63 3.98 4.09 4.27 4.38 4.45 4.52 4.75 4.87 4.99 5.08 5.64 

70 3.77 4.04 4.17 4.34 4.44 4.53 4.59 4.72 4.90 5.07 5.67 5.98 

80 3.65 4.08 4.15 4.22 4.36 4.45 4.50 4.66 4.89 5.17 5.53 6.56 

90 3.73 3.89 4.06 4.13 4.21 4.30 4.39 4.46 4.85 5.12 5.24 5.56 

100 4.03 4.05 4.09 4.27 4.36 4.38 4.39 4.53 4.84 4.89 4.96 5.03 

200 3.53 3.55 3.63 3.72 3.79 3.93 4.04 4.07 4.16 4.27 4.28 4.30 

300 3.41 3.62 3.64 3.66 3.68 3.74 3.81 3.86 3.91 3.94 4.04 4.15 

400 3.35 3.46 3.54 3.60 3.62 3.64 3.65 3.70 3.79 3.88 3.91 3.95 

500 3.52 3.62 3.64 3.69 3.72 3.74 3.77 3.82 3.94 4.09 4.10 4.12 

600 3.37 3.47 3.51 3.54 3.58 3.61 3.64 3.67 3.78 4.07 4.09 4.11 

700 3.47 3.51 3.52 3.54 3.61 3.70 3.75 3.76 3.80 3.92 3.95 3.98 

800 3.37 3.54 3.59 3.61 3.62 3.63 3.66 3.71 3.73 3.79 3.83 3.86 

900 3.32 3.50 3.53 3.56 3.58 3.59 3.62 3.69 3.77 3.80 3.86 3.92 

1000 3.44 3.48 3.52 3.56 3.58 3.60 3.60 3.61 3.61 3.63 3.63 3.64 

2000 3.32 3.38 3.44 3.47 3.47 3.47 3.52 3.56 3.61 3.67 3.71 3.74 
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Table C2.7.6: 1 minute peak factor values for selected percentiles 

1 min peak factor 
Percentiles 

0 10 20 30 40 50 60 70 80 90 95 100 

 G
ro

u
p

 s
iz

e
 (

N
u

m
b

e
r 

o
f 
c
o

m
b

in
e

d
 h

o
u

se
h
o

ld
s
) 

1 13.69 29.97 34.61 39.02 42.61 47.22 53.00 57.81 66.07 79.48 93.64 182.95 

2 11.39 19.86 22.39 24.31 26.37 28.97 31.12 33.67 37.08 42.42 49.81 81.04 

3 11.23 16.45 18.10 19.32 20.54 21.98 23.50 25.32 27.55 30.69 34.08 87.47 

4 11.58 14.55 15.67 16.55 17.90 18.65 19.83 21.25 22.76 25.13 27.04 39.36 

5 10.43 12.21 13.21 14.17 15.02 16.02 17.16 18.48 19.13 20.52 22.82 30.73 

6 8.74 11.14 12.22 12.81 13.54 14.46 15.41 16.47 17.56 20.01 21.46 24.78 

7 8.83 10.34 11.41 11.91 12.58 13.13 13.81 14.85 15.77 17.34 18.73 25.45 

8 7.73 10.06 10.88 11.49 12.20 12.82 13.46 14.16 15.17 16.07 18.24 22.93 

9 8.22 9.62 10.13 10.54 11.11 11.74 12.14 12.67 13.62 14.92 15.97 20.42 

10 7.93 9.17 9.64 10.03 10.37 11.01 11.44 12.32 13.35 14.10 15.07 16.24 

20 6.37 6.95 7.28 7.59 7.78 8.27 8.58 8.88 9.46 9.77 10.23 14.58 

30 5.46 6.11 6.56 6.79 6.94 7.09 7.22 7.47 7.87 8.40 8.90 10.11 

40 5.33 5.65 5.96 6.33 6.43 6.64 6.80 7.00 7.19 7.48 7.63 8.25 

50 5.02 5.40 5.54 5.65 5.79 6.01 6.16 6.31 6.42 6.58 6.75 7.86 

60 4.76 4.97 5.17 5.33 5.44 5.51 5.79 5.93 6.01 6.30 7.36 8.08 

70 4.66 5.01 5.22 5.34 5.52 5.73 5.84 6.01 6.23 6.77 6.92 8.37 

80 4.51 4.99 5.17 5.32 5.48 5.59 5.75 5.86 5.96 6.52 6.75 7.75 

90 4.42 4.77 4.94 5.10 5.17 5.34 5.42 5.61 5.75 5.94 6.40 6.84 

100 4.52 4.75 5.06 5.22 5.25 5.32 5.44 5.55 5.65 5.76 5.78 5.81 

200 3.83 4.15 4.29 4.36 4.43 4.51 4.67 4.85 4.93 5.05 5.28 5.51 

300 3.91 4.10 4.17 4.20 4.21 4.24 4.27 4.28 4.29 4.34 4.57 4.80 

400 3.71 3.92 4.04 4.11 4.13 4.14 4.17 4.22 4.26 4.33 4.34 4.34 

500 3.78 3.91 3.97 3.99 4.09 4.19 4.29 4.40 4.44 4.48 4.49 4.49 

600 3.72 3.74 3.80 3.81 3.86 3.93 4.02 4.13 4.20 4.38 4.41 4.45 

700 3.75 3.78 3.82 3.86 3.92 3.96 3.97 4.05 4.25 4.28 4.29 4.29 

800 3.74 3.81 3.87 3.89 3.91 3.92 3.93 3.95 3.99 4.06 4.18 4.29 

900 3.69 3.75 3.76 3.78 3.85 3.91 3.96 3.99 4.00 4.04 4.07 4.10 

1000 3.59 3.69 3.78 3.84 3.85 3.86 3.90 3.94 3.97 3.97 3.97 3.97 

2000 3.63 3.64 3.65 3.69 3.75 3.82 3.83 3.83 3.86 3.91 3.94 3.96 
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Table C2.7.7: 10 second peak factor values for selected percentiles 

10 s peak factor 
Percentiles 
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1 15.58 35.56 41.62 46.92 52.19 57.30 63.99 70.62 80.53 94.58 112.18 254.25 

2 14.58 24.14 27.24 29.63 31.88 34.24 37.19 40.30 44.15 51.77 58.29 112.59 

3 13.61 19.91 21.95 23.49 24.84 26.49 28.39 30.22 32.83 37.13 40.90 88.41 

4 14.01 17.37 18.86 20.04 21.52 22.61 24.00 25.52 27.27 30.14 32.24 45.75 

5 12.23 15.17 16.66 17.54 18.72 19.37 20.24 21.40 22.64 24.93 26.88 34.52 

6 10.79 13.61 14.71 16.01 16.72 17.37 18.12 19.24 21.22 23.13 25.08 51.02 

7 10.99 13.20 13.79 14.70 15.26 16.09 16.56 17.62 18.80 20.61 22.25 29.82 

8 10.32 12.03 13.15 13.90 14.79 15.32 16.27 17.42 18.24 19.61 21.71 28.95 

9 9.82 11.39 12.01 12.47 13.09 13.94 14.65 15.38 16.54 17.93 18.97 22.60 

10 9.96 10.92 11.44 12.08 12.59 13.31 13.83 14.37 15.27 15.89 16.49 19.68 

20 7.89 8.35 8.61 8.99 9.29 9.57 9.96 10.20 10.91 11.53 11.86 16.52 

30 6.26 7.24 7.48 7.78 7.91 8.15 8.43 8.77 9.10 9.47 9.71 11.94 

40 6.09 6.77 6.99 7.19 7.27 7.64 7.80 7.90 8.09 8.29 8.55 9.11 

50 5.95 6.25 6.33 6.54 6.63 6.77 7.01 7.24 7.41 7.52 7.76 8.40 

60 5.29 5.64 5.95 6.07 6.18 6.28 6.40 6.63 6.84 7.28 8.16 9.10 

70 5.06 5.57 5.78 6.01 6.15 6.31 6.50 6.71 7.01 7.65 7.88 8.78 

80 4.85 5.55 5.79 5.93 6.06 6.18 6.26 6.47 6.77 7.23 7.42 8.19 

90 4.77 5.35 5.55 5.65 5.75 5.90 5.98 6.21 6.43 6.73 7.05 7.24 

100 5.02 5.57 5.64 5.71 5.76 5.80 6.01 6.30 6.43 6.65 6.65 6.65 

200 4.16 4.37 4.64 4.73 4.85 4.94 4.99 5.07 5.24 5.63 5.86 6.09 

300 4.20 4.35 4.37 4.39 4.41 4.46 4.51 4.54 4.59 4.80 4.92 5.05 

400 3.94 4.19 4.31 4.34 4.39 4.44 4.45 4.47 4.51 4.54 4.58 4.62 

500 3.91 4.07 4.12 4.16 4.25 4.38 4.48 4.49 4.53 4.68 4.71 4.75 

600 3.89 3.94 4.02 4.04 4.07 4.20 4.33 4.36 4.41 4.62 4.80 4.97 

700 3.92 3.92 3.97 3.99 4.04 4.07 4.15 4.29 4.39 4.46 4.49 4.52 

800 3.87 3.97 4.04 4.08 4.10 4.14 4.18 4.19 4.22 4.31 4.39 4.46 

900 3.87 3.90 3.93 3.96 4.03 4.09 4.10 4.11 4.15 4.23 4.24 4.24 

1000 3.87 3.89 3.90 3.92 3.96 3.99 4.04 4.09 4.12 4.12 4.13 4.13 

2000 3.78 3.81 3.84 3.86 3.89 3.92 3.92 3.93 3.96 4.01 4.03 4.05 
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Table C2.7.8: 1 second peak factor values for selected percentiles 

1 s peak factor 
Percentiles 
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1 15.58 36.95 42.56 48.08 53.49 59.16 65.92 72.54 83.25 98.59 115.36 265.74 

2 14.75 25.33 28.09 30.36 33.01 35.53 38.42 41.79 46.12 54.88 60.80 112.59 

3 14.40 20.63 22.80 24.52 25.93 27.28 29.05 31.25 33.85 38.68 41.65 88.41 

4 15.07 17.75 19.62 20.83 21.92 22.99 24.46 26.42 28.29 30.73 33.68 45.75 

5 12.56 16.03 17.15 18.07 19.21 19.89 21.15 22.59 23.55 26.04 27.09 38.84 

6 10.79 14.41 15.80 16.81 17.54 18.39 19.07 20.03 21.69 24.30 25.58 57.66 

7 11.45 13.57 14.71 15.44 16.19 16.66 17.40 18.52 19.43 20.79 23.23 31.16 

8 10.61 12.87 13.86 14.43 15.03 16.32 17.17 18.36 19.23 20.61 22.18 35.26 

9 10.26 11.77 12.81 13.30 13.91 14.60 15.03 16.10 17.23 18.59 19.94 25.74 

10 10.29 11.23 12.07 12.40 13.20 13.72 14.44 15.00 15.70 16.66 17.13 20.05 

20 7.95 8.55 9.03 9.41 9.71 10.03 10.37 10.81 11.05 11.84 12.44 17.20 

30 6.73 7.64 7.81 8.14 8.38 8.51 8.84 9.30 9.62 10.08 10.60 12.03 

40 6.46 7.00 7.18 7.32 7.48 7.83 7.99 8.21 8.41 8.56 8.92 9.69 

50 6.03 6.55 6.66 6.74 6.86 7.21 7.41 7.50 7.72 8.01 8.43 8.87 

60 5.49 6.00 6.16 6.29 6.48 6.58 6.67 6.85 7.15 7.52 8.35 9.71 

70 5.24 5.90 6.11 6.28 6.55 6.74 6.87 7.00 7.26 7.94 8.17 9.13 

80 5.28 5.92 6.11 6.25 6.36 6.43 6.53 6.76 7.00 7.59 7.76 8.92 

90 4.96 5.65 5.84 5.94 6.07 6.18 6.27 6.44 6.68 7.15 7.30 7.60 

100 5.26 5.81 5.91 5.94 5.95 6.08 6.27 6.44 6.63 6.79 6.91 7.04 

200 4.30 4.61 4.80 4.93 4.99 5.07 5.19 5.28 5.40 5.80 6.04 6.28 

300 4.33 4.45 4.52 4.57 4.60 4.61 4.63 4.69 4.77 4.94 5.04 5.14 

400 4.03 4.35 4.40 4.46 4.49 4.53 4.57 4.61 4.68 4.68 4.69 4.69 

500 4.03 4.15 4.24 4.28 4.38 4.50 4.59 4.64 4.68 4.80 4.81 4.82 

600 4.02 4.03 4.12 4.14 4.15 4.28 4.42 4.50 4.60 4.79 4.92 5.04 

700 4.00 4.05 4.06 4.09 4.14 4.17 4.23 4.37 4.53 4.55 4.59 4.63 

800 3.94 4.10 4.12 4.16 4.21 4.23 4.25 4.29 4.34 4.39 4.53 4.67 

900 3.93 4.00 4.01 4.09 4.14 4.15 4.16 4.18 4.21 4.33 4.36 4.38 

1000 3.93 3.98 4.02 4.06 4.07 4.08 4.12 4.16 4.19 4.20 4.21 4.21 

2000 3.83 3.85 3.87 3.91 3.95 3.99 3.99 4.00 4.03 4.07 4.08 4.10 
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