
i 

An Independent Review and Summary of Geotechnical 

Information Pertaining to the Sidewall Stability of the 

Kimberley “Big Hole” Mine, with Specific Focus on the 

Weathering and Deterioration of the Kimberley shales. 

By 

Wilmar Maree 

Thesis presented in fulfilment of the requirements for the degree of Master of Engineering 

in the Faculty of Civil Engineering at Stellenbosch University 

Supervisor: Mrs. Nanine Fouche 

December 2017 



ii 

DECLARATION 

By submitting this thesis electronically, I declare that the entirety of the work contained 

therein is my own, original work, that I am the sole author thereof (save to the extent 

explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch 

University will not infringe any third party rights and that I have not previously in its entirety 

or in part submitted it for obtaining any qualification. 

December 2017 

Copyright © 2017 University of Stellenbosch 

All rights reserved 

Stellenbosch University  https://scholar.sun.ac.za



iii 
 

ABSTRACT 

The Kimberley “Big Hole” Mine in the center of Kimberley experiences frequent small scale 

toppling and landslide slope failure events, which causes the sidewalls of the pit to slowly migrate 

outward towards surrounding businesses and infrastructure. The reason for slope stability 

problems and slope failures can be ascribed to the vast susceptibility of the underlying Kimberley 

shales to weather and deteriorate when exposed to the atmosphere and natural weathering 

conditions. This sets into motion a process known locally as “mine pit break-back”, where 

regression of the underlying shale unit causes the overlying dolerite cap to break off into large 

dolerite blocks or boulders, which eventually topples over and into the open mine pit as single 

block toppling slope failure events. In order to help combat this problem of undermining at the 

Kimberley “Big Hole” Mine, five different dust and erosion control liquids were identified on the 

basis of forming a waterproof and weather resistant base around the surface it is applied to. In 

theory, all five dust and erosion control liquids should prevent water ingress through the surface of 

the rock and create a protective layer that will increase rock durability and weathering resistance of 

the Kimberley shales. These products were tested by using various durability and weathering test 

techniques including absorption tests, cyclic wetting and drying tests, comparative accelerated 

weathering tests and slake-durability index tests. The ultimate aim of this project was to identify 

one of these dust and erosion control liquids as a viable solution towards the defined slope stability 

problem at the Kimberley “Big Hole” Mine and in turn stop the process of mine pit break-back by 

applying this product to the sidewalls of the pit. 

In addition, many non-conventional techniques of measuring ground movement or displacement 

around large open pits, such as the Kimberley “Big Hole” Mine for example, were used to identify 

the entire extent of slope stability problems at the Big Hole Mine, as well as determine the 

migration pattern for the sidewalls over the past 46 years. These ground movement measuring 

techniques included a direct visual inspection of the slopes and sidewalls of the Kimberley “Big 

Hole” Mine as well as the remote sensing and pixel tracking of aerial photographs between the 

years 1968 and 2014.  

The abovementioned procedures delivered significant result towards combatting the defined slope 

stability problem at the Kimberley “Big Hole” Mine and conclusions and recommendations 

surrounding further work at the open pit mine is worth further investigation. The Sasbind DECL 

product prevailed as the most successful and effective DECL product with regards to increasing 

the rock durability and weathering resistance of the Kimberley shales after each durability and 

weathering test, which lead to the conclusion that application of this product to the sidewalls of the 

Kimberley “Big Hole” Mine could prove to be highly successful in addressing the slope instability 

problem at the Big Hole Mine. Further testing in this regard is justified and recommended.  
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CHAPTER 1: Introduction 

1.1 Background 

The small and historic mining town by the name of Kimberley, which is located in the dusty plains 

of the Northern Cape, owes its renowned existence to the commencement of diamond mining after 

the early discovery of the Kimberley Mine (also commonly referred to as the “Big Hole”). It is well 

documented throughout history that as soon as mining commenced at the Kimberley “Big Hole” 

Mine, which dates back as far as the year 1871, it resulted in a fast and ever growing mining camp 

with hundreds of primitive and permanent residences being raised daily around the pit. In fact, as 

mining operations flourished in the discovery of massive gem quality diamonds at the nearby 

Kimberley Mine, it did not take long for the town of Kimberley to be established around the 

Kimberley Mine as it still stands to this day. According to Preece et al. (2008), it only took about six 

years after the first discovery of diamonds in the area, before the town of Kimberley was 

proclaimed a municipality on the 27th of June 1877. 

Equally well documented throughout many of the South African history books, was the first 

amalgamation and existence of the world-famous diamond mining company known as De Beers 

Consolidated Mines Limited (“De Beers”) in the year 1888, whom in only one year had managed to 

acquire the majority of all the claims in the Kimberley Mine and become a world-leading diamond 

production company in the year 1889. De Beers then became known as a colossal financial empire 

by single-handedly controlling the monopoly of diamond exploration and production in South Africa. 

It can be said that the history and legacies of both the Kimberley Mine and the De Beers company, 

goes hand-in-hand with one owing its existence to the other. Their paths to success being so 

closely intertwined as the streets of Kimberley today borders the outer fringes of the Big Hole Mine. 

Kimberley Mine was operated by De Beers from its existence in 1889 until its closure in 1914 and 

is still owned by De Beers to this day. 

Considering the many years that have passed since the establishment of Kimberley as a town and 

the associated Kimberley “Big Hole” Mine, it comes as no surprise that many geotechnical and 

geological reports exists that pertain to the stability of the sidewalls of the Big Hole Mine. Seeing as 

the whole town was built narrowly surrounding the outer perimeters of the Big Hole, a single 

collapse of only one of the sidewalls of this deep open pit could lead to devastating consequences 

for the people and the town of Kimberley. Not only could such a failure lead to the loss of 

surrounding businesses and infrastructure, but it could also possibly lead to the loss of human 

lives. As a result, damages done by such an event could cost a fortune to rebuild or even just 

repair.  

This project will therefore follow an integrated approach to focus on both the geological parameters 

and characteristics of the Kimberley “Big Hole” Mine, with the aim of assessing and understanding 

the overall stability of the Big Hole as it stands today, as well as on the application of an 
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engineering method / technique which might prove valuable in combatting the existence of any 

slope instability problems which may have been found at the Kimberley “Big Hole” Mine. Up to 

date, no concerns around this matter have been raised and the only two available geotechnical 

engineering reports pertaining to the overall state and stability of the sidewalls of the Kimberley 

“Big Hole” Mine, were written to advise on the closure of Bultfontein Road rather than suggesting a 

viable engineering solution. Together, the integrated approach will ultimately be used to: 

1. Determine whether the Kimberley “Big Hole” Mine does in fact show any signs of slope 

instabilities, which might later on lead to a possible slope failure or collapse and if so, does 

it pose an immediate threat or a long term problem?  

2. Plan and propose an engineering solution that reflects the most economically viable and 

physically practical technique, which might help combat the identified slope stability 

problem at the Kimberley “Big Hole” Mine. The proposed engineering solution will include 

all engineering aspects including: viability, sustainability and limitations. 

 

1.2 Motivation for Research 

The Kimberley “Big Hole” Mine not only became world-famous in 1871 as one of the richest 

kimberlite pipes ever to be found on earth, but it is also still renowned for being one of the widest 

and deepest hand-excavated pits known to man.  Due to the fact that the Kimberley “Big Hole” 

Mine played such a pivotal role in the financial and economic success of South Africa’s history and 

it still being one of the Northern Cape’s most visited and iconic tourist attractions, it is not difficult to 

see why the preservation of such an iconic South African landmark is of utmost importance. This 

thesis will therefore investigate the stability and safety of the Kimberley “Big Hole” Mine with the 

aim of endorsing its preservation and legacy for many years to come. 

1.3 Aims and Objectives 

Considering the practical importance of such a project and the use of a two-phased approach to 

determine its feasibility, it comes as no surprise that this project will consist of many chronological 

aims and objectives: 

1. Phase One would be used to assess and determine the exact state and stability of the 

sidewalls of the Kimberley “Big Hole” Mine as it stands today in order to understand the extent 

of the problem.  

2. The second phase of the two-phased approach would focus more on confronting the problem 

as defined by the first phase of this project in order to find or suggest a viable solution. It will 

involve the use various geological and geotechnical research techniques with the aim of 

providing and assessing a feasible solution. In order to propose such an economically viable 

and practical resolution towards the defined slope instability problem at the Kimberley “Big 

Hole” Mine, this project will: 
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2.1. Focus on micro analyzing the collected rock samples in order to better understand and 

interpret their molecular and chemical characteristics. The purpose of doing this is to 

classify the rock and to use the information to further investigate and determine its 

specific mineralogical properties. 

2.2. Comprise an experimental phase in which a specific stabilizing technique will be tested 

and evaluated as to report on its viability at the Kimberley “Big Hole” Mine. The testing 

program will consist of a series of well-planned fieldwork and laboratory tests.  

3. In conclusion, the final objective for this project would be to consider all available as well as 

any newly gained information and make an informative recommendation concerning any 

future work at the Kimberley “Big Hole” Mine as well as its surrounding area. This part of the 

project will only act as an informative conclusion to the findings of the research. It will act to 

either recommend  the application of the proposed geotechnical solution in the light of it being 

viable to the encountered slope stability problem at the Big Hole Mine, or it would dismiss the 

significance thereof and encourage further research on the topic before such 

recommendations be made.  

 

1.4 Limitations of Research 

During the course of this project, a few problems arose which could not have been foreseen or 

dealt with. These unanticipated matters resulted in a change in the general data collecting process 

as well as in the overall analyses and interpretation of the obtained results.  

The most significant limitation to the original scope of this project was the refusal of any sampling 

by De Beers at the Kimberley “Big Hole” Mine, which called for an alternative plan to be set into 

place. Therefore, instead of collecting samples directly from the Kimberley “Big Hole” Mine, a very 

similar mine (in terms of origin, structure and geology) was identified and utilized. The Bultfontein 

Mine, located only about 5 km north of the Kimberley “Big Hole’ Mine and owned by Petra 

Diamonds, was therefore used as a proxy for the Kimberley “Big Hole” Mine and all rock samples 

were obtained from the site visits to the neighbouring Bultfontein Mine. This could only be done 

due to a strong correlation between the general slope, geometry, structure and especially the 

geology of the two open pit mines (i.e. Kimberley “Big Hole” Mine & Bultfontein Mine). 

Due to financial restrictions, only a limited amount of each dust and erosion control liquid (DECL) 

could be obtained and used for the necessary laboratory tests. A larger quantity of each product 

might have prompted a different scope of study as different test procedures would have been 

followed, especially with regards to the conducted laboratory tests.  

The study is furthermore limited to only those aspects deemed critical to the overall state and 

stability of the slopes of the Kimberley “Big Hole” Mine, and not all aspects and risks were taken 

into consideration. The research was limited to the stability and safety of the mine pit slopes, with 
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specific focus on the weathering of Kimberley shales and the methods of interpreting the 

degradation thereof under exposure to various elements and mechanical agitation.  

1.5 Report layout and structure 

This thesis consists of seven chapters, which include the introductory chapter, literature review, 

case study, a chapter defining the cause of instability at the mine, methodological procedures 

followed, and an evaluation of the results and interpretations followed by conclusions and 

recommendations. Each chapter will be described in short. 

Chapter 2 and Chapter 3 constitutes a full desk study of all available literature, including any and 

all geological and geotechnical reports that pertain to the state and stability of the sidewalls of the 

Kimberley “Big Hole” Mine. Chapter 2 is specifically concerned with reviewing literature pertaining 

to the Kimberley “Big Hole” Mine, including information on the historical background of the pit, its 

origin and geological parameters and characteristics, whereas Chapter 3 describes a specific case 

study of the nearby located Bultfontein Road.  

Chapter 4 concludes the first phase of this project and defines the slope stability problem at the 

Kimberley “Big Hole” Mine, including reasons therefore. 

Chapter 5 introduces the second phase of this project by describing the various methodological 

test procedures that were followed in testing various solutions towards the defined slope stability 

problem at the Kimberley “Big Hole” Mine. It includes a very comprehensive step-by-step overview 

of the exact test procedures that were followed.  

Chapter 6 discusses the results of the various test procedures. It analyzes and interprets the 

results of each durability and weathering tests, whilst Chapter 7 draws the whole project to a close 

with the necessary conclusions and recommendations towards the defined slope stability problem 

at the Kimberley “Big Hole” Mine. In the appendices, the extended calculations can be found as 

mentioned in the text.  
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Chapter 2: Literature Review 

2.1 Introduction 

As an introduction to the full scope of this project, which includes an in depth study on the state and 

stability of the sidewalls of the Kimberley “Big Hole” Mine, the following chapter will provide a brief 

overview of the most important aspects concerning the town of Kimberley, the Big Hole Mine and the 

related slope stability problem in the area. The chapter therefore starts with a brief discussion on the 

history of the Kimberley “Big Hole” Mine, including its discovery and exploitation by a company known 

as De Beers, which leads into an informative description of kimberlite pipes and their origin. The 

second part of the chapter deals more with the Kimberley “Big Hole” Mine itself, focusing mainly on its 

geological parameters, geotechnical aspects and associated safety implications. Finally, previous 

studies that have been conducted at the Kimberley “Big Hole” Mine and the significance thereof to the 

purpose of this project are briefly discussed.  

2.2 Historical background 

2.2.1 History of the “Big Hole” 

A young man called Esau Damoense accidentally discovered the kimberlite pipe, which gave rise to 

the existence of the Kimberley “Big Hole” Mine, in July 1871. This happened after Esau was instructed 

to dig away a small kopje (known then as the Colesberg Kopje) as part of a punishment; where he 

unexpectedly discovered a few small diamond pebbles (Herbert, 1972). News of this remarkable 

discovery quickly spread and within a very short period of time, a second great diamond rush began in 

the diamondiferous fields of the Northern Cape Province on July 16th and 17th 1871, which famously 

became known as the “De Beers New Rush” (Chilvers, 1938).  

At first, individual claims at the Kimberley “Big Hole” Mine were limited to squares of approximately 10 

meters, which tightly crisscrossed the “pipe” in all directions. As dozens of individual pits fell deeper 

and deeper into the center of the mine problems started to arise due to the fast developing 

honeycomb structure and overcrowding of the ever-growing “Big Hole” (Herbert, 1972). In order to 

reduce the number of mining fatalities and improve on the productiveness of the early mining 

operations at the Kimberley Mine, a newly found Digger’s Committee decided that 5-meter roadways 

had to be left right across the area every 15 meters as illustrated below in Figures 1 A and B.  

However, from as early as the beginning of 1872 the roadways began to be unsafe and the 

occurrence of landslides had become so frequent that a new change in the system of working was 

needed (Theodore, 1893). The Diggers Committee once again came together to discuss the problem 

and came to the conclusion that the only solution which would allow miners to excavate further down 
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this seemingly very rich diamondiferous “pipe” as well as ensure the safety of the workers, was to haul 

the unearthed material from the outer perimeters of the working area. This led to the erection of 

wooden platforms like scaffoldings on the outer edges of the “Big Hole” as illustrated in Figures 1 C 

and D (Herbert, 1972). These scaffoldings could be seen as the earliest foundations not only of a 

diamond fortune, but also of a South African empire (Theodore, 1893).  

Understandably, as time went on, the once very prominent Colesberg “Kopje” which originally seemed 

to have burst out of the surface of the earth was now slowly disappearing and being mined into an 

enormous hole. Today its relict, the famous Kimberley “Big Hole” Mine (see Figure 2), is known as one 

of the greatest and most famous pits excavated by man without any sophisticated machinery (Herbert, 

1972). It turned out that the Colesberg Kopje was merely one of several extinct diamond-bearing 

craters within the vicinity of the Kimberley area. These craters were described by Chilvers (1938) as 

immense pipes that rose from great depths with rims that exploded from the ground surface. 

“Kimberlite pipes”, as they are known today and named after the small mining town of Kimberley, were 

discovered to be filled with hard volcanic substances that contained an abundance of precious 

diamonds. The exact description, characterization and emplacement model for kimberlite pipes within 

the Kimberley area are discussed in Section 2.3. 
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Figures 1 A & B - An illustration of the 5 meter roadways that was used to increase safety and effectiveness of individual mining operations at the Kimberley "Big 
Hole" Mine back in 1871 (Chilvers, 1938).  

A B 

C D 

Figures 1 C & D - This was the preferred method of mining before implementation of wooden platforms / scaffoldings (also commonly referred to as "staggings") 
(Theodore, 1893) 
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2.2.2 History of De Beers 

The start of De Beers Consolidated (Ltd) as a world-leading diamond mining company was a 

systematic process which only began when individual mining operations at the four surrounding major 

diamond mines including Kimberley, De Beers, Bultfontein and Dutoitspan, became too dangerous 

and difficult. Due to economic pressure at the time, individual miners and claim-holders were forced to 

either sell their claims or amalgamate with a neighbour, subsequently prompting the original rules, that 

limited claims to only two square claims per digger, to collapse and from as early as 1874 the limit was 

extended to up to ten claims per person. This marked the start of a whole consolidation process and it 

was during this time that the world saw rise of Mister Cecil Rhodes (Herbert, 1972 & Theodore, 1893). 

When the consolidation process began, Rhodes saw a potential opportunity and wasted no time in 

ceasing it. He slowly started taking over claims all around him as neighbouring diggers crumbled 

under the economic pressure and individual claims started to amalgamate (Herbert, 1972). Rhodes 
knew that whoever owned and controlled all four Kimberley Mines at the time, controlled the 

Figure 2 – Present day state of the Kimberley “Big Hole” Mine (drone images from Stellenbosch University). 
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diamond monopoly of South Africa and had complete and utter control not only on diamond 

production from these four major mines, but also diamond marketing. In his book: “The Diamond 

Diggers”, Herbert (1972) claims that Rhodes’s life-long dream and immediate target was a 

combination of all four Kimberley Mines where he would hold full control over the diamond 

monopoly of Southern Africa, because a monopoly alone could control the balance between the 

price of diamonds and the supply (Theodore, 1893). Therefore, after many schemes, financial 

loans, deals and negotiations, Rhodes finally managed to work his way into the shares of all four 

Kimberley Mines. After gaining full control of the four major diamond mines within the Kimberley 

area, as was his original plan, Cecil Rhodes finally had total control over the diamond industry of 

Southern Africa and he made sure that production could always be equated with demand (Herbert, 

1972). Finally the new and historic company De Beers Consolidated Mines (Ltd) was formed as it 

remains to this day. 

Rhodes had won his monopoly and started the mighty and world-renowned company, De Beers 

Consolidated, on 10 July 1889. The newly found company was valued at 24 million pounds at the 

time and controlled approximately 90% of South Africa’s diamond output. It is stated by Herbert 

(1972) that during the first year of the company’s trading, it yielded a net profit of about 1 million 

pounds which is why it is not so hard to see that the De Beers Company was a colossal financial 

success, even back in the day.  

2.3 Kimberlite pipes 

2.3.1 Discovery of kimberlite pipes 

When diamonds were first discovered in areas other than alluvial deposits (such as the Vaal and 

Orange Rivers which had been the main prospecting ground for diamond diggers in South Africa at 

the time), diggers of the Kimberley area saw diamonds crop up everywhere without pattern or 

reason and it seemed that the new finds were all in “pans” or slight “depressions” as they are 

commonly referred to in South Africa (Herbert, 1972). It was only when they started digging deeper 

that the soil revealed diamonds in a layer of yellow clay of about 15 meters deep and the discovery 

of diamonds in a layer that was thicker than a few meters was revolutionary.  

As a result, diggers continued digging even deeper than the yellow clay and unexpectedly came 

across the then-so-called “blue ground” (which is now famous as the matrix rock of South African 

diamond deposits, although it was originally thought to be barren bedrock) (Herbert, 1972). This 

constituted a second major discovery, which was that the yellow clay merely represented a layer of 

reworked and decomposed “blue ground” and that diamonds were still being formed at depths 

greater than 15 meters. 

As the pits got deeper and wider, “blue ground” only seemed to appear as circular patches or 

“pipes” shooting up to the surface of the earth from great depths in vertical or near vertical shafts 
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(Herbert, 1972). Even though the first diamond mines in the Kimberley area were discovered by 

diamonds laying on the surface in the red sand of the Northern Cape, which subsequently caused 

a search that revealed numerous more in a very similar position, no diamonds were ever found in 

the surrounding country rocks immediately outside of the margins of the mines (Herbert, 1972). 

Evidence of a volcanic origin for the various Kimberley Mines was therefore regarded as complete 

and the “blue ground “ material is actually known today as being diatreme facies kimberlites, which 

was soon after recognized as the primary source of diamonds (Mitchell, 1986; Theodore, 1893). In 

conclusion, the “blue ground pipes” as described by Theodore (1893) and Herbert (1972) actually 

represented massive kimberlite pipes. 

2.3.2 Description of kimberlites and kimberlite pipes 

In general, a kimberlite (named after the small mining town of Kimberley in South Africa) 

constitutes a very rare and highly alkaline igneous rock type, largely known to serve as a carrier of 

diamonds to the surface of the earth from deep within the earth’s mantle (Le Roex et al., 2003). 

Today it is commonly accepted that kimberlites are derived from depths greater than any other 

igneous rock types on earth (at depths between 150 – 450 km) and that it forms from a unique and 

extreme set of magma compositions (Le Roex et al., 2003).   

Janse (1964) on the other hand, first characterized kimberlite pipes (scientifically) as steep-sided 

cylindrical columns, which represent volcanic conduits of eruptive tuff that transport diamonds from 

deep within the earth’s mantle to the surface via a series of volcanic actions. This characterization 

of kimberlite pipes follows the basic principle that the majority of kimberlites are usually found in 

vertical or near vertical pipe-like structures within the earth’s crust, forming a cone shaped 

appearance towards the surface of the earth as shown in Figure 3. These structures are thus 

referred to as “kimberlite pipes”, although it is worth mentioning that they could also sometimes 

appear as igneous dykes and sills, even though the latter is not as abundant. 

2.3.3 A South African model for kimberlite emplacement 

A paper written by Field and Smith (1999) suggests that kimberlite pipes in different areas have 

contrasting shapes and internal geological characteristics, with the three most common types of 

pipe geometries being: (1) deep and steep-sided pipes comprising three distinct zones (namely the 

crater, diatreme and root zones), (2) shallow pipes which comprise only one distinct zone (namely 

the crater), and (3) small but steep-sided pipes which comprise two distinct zones (namely the 

diatreme and root zones - see Figure 3). According to Field and Smith, the only reason for the 

formation of at least three different types of kimberlite pipes, must be a difference in the 

emplacement mechanisms of each individual pipe. The geological settings for the three different 

types of kimberlite pipes, as mentioned above, can respectively be described as follows: (1) 

country rocks, which are commonly very competent and contain some type of igneous rock, (2) 

poorly consolidated (loose) sediments, and (3) basement rocks, which are covered by a relatively 
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thin layer of poorly consolidated sediments. Seeing that there are clear evidence of a relationship 

between the type of pipe formation and the geological setting under which it formed, the correlation 

suggest that the near-surface geological features play a major role in determining the 

emplacement process of each individual kimberlite pipe (Field & Smith, 1999). 

However, when specifically focusing on the kimberlite pipe that constitutes the Kimberley “Big 

Hole” Mine, Clement and Reid (1989) was of the opinion that the most probable emplacement 

mechanism (taking into account the shape of the pipe as well as the geological setting in which it 

occurs) is that the pipe formed from an intrusive-extrusive magmatic eruption from a closed system 

in which the competent sub-surface country rock acted as a barrier for the build-up of juvenile 

volatiles in the magma, ultimately causing the eruption to explode and violently erupt from the 

surface of the earth. This is consistent with the findings of Field and Smith (1999), in that within the 

kimberlite pipe that constitutes the Kimberley “Big Hole” Mine (as with most of the kimberlite pipes 

within the Kimberley area), only the lower diatreme and root zone of the pipe is preserved with the 

upper portions having been removed through the process of erosion over the years.  

Therefore, today the only real evidence of an eruptive volcanic origin for the kimberlite pipe, which 

lead to the existence of the Kimberley “Big Hole” Mine, is the great shaft that reveals where the 

diamondiferous pipe strikes downward (Herbert, 1972). As a result of its sheer volume and natural 

riches, the Kimberley “Big Hole” Mine became world-famous during the late 1800’s and early 

1900’s and will subsequently also be the main focus area for the purpose of this project. 
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2.4 Kimberley “Big Hole” Mine 

2.4.1 Weather conditions 

The Northern Cape in general (and especially in the immediate vicinity of Kimberley) is 

characterized by a semi-arid climate with a mean annual precipitation (MAP) of approximately 280 

mm (Kimberley Climate History, 2016). Figures 4 A and B, shows the yearly weather trends for the 

closest available data source to Kimberley, with information on the monthly weather averages and 

extremes over the past few years (Kimberley Climate History, 2016). It can be said that the climate 

around Kimberley is essentially, a continental one where during the months of November to 

February, the weather provides hot wet summers and during the months of June to August, it 

provides cold dry winters. It is also worth mentioning that the infrequent summer rains tend to take 

the form of occasional severe thunderstorms rather than prolonged soft showers (The Kimberley 

Climate, 2016), whilst it is not unusual at all for winter night-time temperatures to drop below 

freezing point. 

Figure 3 - A model for the kimberlite pipe of the Kimberley "Big Hole" Mine after 
sketches by Hawthorne (1975). 
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Also evident from the charts, is that Kimberley experiences a wide range of temperature conditions 

and rainfall fluctuations during the time period of a year, which would subsequently not only cause 

an overall increase in the physical weathering of certain rock types (such as the Kimberley Shales 

for example), but it would also logically suggest an actively fluctuating water table. The undesired 

combination of weather conditions that are prone to encourage physical weathering of certain rock 

types and the effects of a continuously fluctuating water table, proves to be very significant in the 

overall state and stability of the slopes at the Kimberley “Big Hole” Mine. Therefore, it can be said 

that the weather conditions for the town of Kimberley plays a critical role in the scope of this 

project, both in defining the problem of slope instabilities at the Kimberley “Big Hole” Mine and in 

finding a proper solution. 

 

 

 

 

 

 

 

 

 

2.4.2 Regional geology 

In order to fully understand the local geology of Kimberley’s diamond fields and especially that of 

the Kimberley “Big Hole” Mine, it will be necessary to refer briefly to the order in which the same 

rocks occur in other parts of South Africa. Please keep in mind that this section will only provide a 

brief and general overview of the most prominent geological features running through Southern 

Africa, with specific focus on the main geological strata that can directly be related to the local 

geology of the Kimberley area. 

First, as a lower boundary, one will find the Table Mountain sandstone, which is a coarse grit 

sandstone of which Table Mountain and the various surrounding mountain ranges in the vicinity of 

Cape Town are formed. This relatively thick sandstone layer unconformably overlies a base of clay 

slates with intrusive granites, commonly known as the Malmesbury shales. This clay slate base 

can be traced all the way through to the Transvaal, where it reappears as the locally known, 

Lydenburg Beds. Above the Table Mountain Sandstone, lies a second series of interbedded slates 

and sandstones commonly known as the Bokkeveld group, which forms the base of the 

Witteberg, Zwarteberg and the Zuurberg mountain ranges. Conformably overlaying this is massive 

Figure 4 A - Average max and min temperatures for each month of 
the year, as well as the highest and lowest temperatures ever 
recorded (Kimberley Climate History, 2016).    
                    

Figure 4 B - Average monthly precipitation (Anonymous, 
2016). 
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white quartzites, believed to be carboniferous in nature. Resting unconformably on the above-

mentioned Quartzites, is a great belt of conglomerate known as the Dwyka conglomerate, 

running due east and west on the northern bases of the Zwarteberg and the Witteberg mountain 

ranges. Moving up north and inland is a thick deposit of sandy clay and quartzitic sandstones, 

commonly referred to as the Ecca beds. The Ecca Beds lie conformably with the underlying 

geological unit, being most prominently developed along its southern boundary, but gradually 

flattening out towards the north. Further north, one comes across the very important geological 

marker unit containing the diamond mines of Kimberley, known as the Kimberley shales. This 

very important geological marker unit occurs very prominently in all four of the major Kimberley 

diamond mines (i.e. De Beers, Bultfontein, Dutiotspan and Kimberley) and lie unconformably 

above the previously mentioned Ecca Beds. The above made summary on the regional geology of 

Southern Africa is represented graphically in Figure 5.  

It is worth mentioning that there exists much difference in opinion as to the exact geological age of 

the very important Kimberley shales. Several well-known geologists have voiced their opinions, 

estimating an approximate age of 300 million years old, however it seems that no consensus 

around the matter have yet been reached. Another fact worth mentioning is that the Kimberley 

shales share a boundary in the north against the crystalline basement rocks of the Transvaal, 

separated only by a thin band of conglomerate, locally known as the basement conglomerates of 

the Kimberley shales. 
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Figure 5 - Stratigraphic relationship between the regional geology of the Northern Cape Province and the local 
geology of the Kimberley "Big Hole" Mine. Images created with Inkscape software at Stellenbosch University. 
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Throughout the wide stretch of land that is covered by the Kimberley shales, a basaltic rock of 

more recent age is of constant occurrence and forms in a close relationship with the previously 

mentioned geological marker unit. Intrusive dolerite, as the basaltic rock is often referred to, 

generally appears in the form of massive dykes and intrusive sheets that cuts through and overlay 

the Kimberley shales (Theodore, 1893). 

Finally, the wide-open plains of the Northern Cape Province is often also associated with a very 

characteristic red ferruginous topsoil, which is more often than not, accompanied by rounded 

stones and boulders which cover the slopes of all the hills. These were formed during the 

weathering of the above-mentioned dolerite traps, as these rocks tend to be a bit more competent 

than most of the surrounding rock types. However, in many of the nearby districts this 

characteristic red soil horizon is absent and rather seems to be replaced or underlain by a deposit 

of lime, which is thought to have been formed during the deposition of the underlying rocks 

(Theodore, 1893). 

2.4.3 Local geology 

The small mining town of Kimberley, which is situated within the heart of the Northern Cape 

Province of South Africa (28°44’30.84’’ S; 24°46’18.84’’ E), constitutes one of the oldest and most 

famous mining towns in the world. It is located approximately 110 kilometers east of the 

convergence of the Vaal and Orange Rivers and possesses a relatively simple geological history 

compared to most other terranes in Southern Africa. When looking at the historic mining operations 

of the Kimberley “Big Hole” Mine, which have been exploited to a depth of approximately 1097 

meters, one starts to get a better sense of the local geology around the immediate area of the “Big 

Hole”. The shaft reveals the nature of the underlying strata and helps validate the succession of 

the rocks above.  

Beneath the red topsoil, which varies from 1 to 5 meters in depth at the Kimberley “Big Hole” 

Mine, is a very large sheet of decomposed basalt (or more often also referred to as intrusive 

dolerite). This doleritic sheet / sill, typically varies in thickness from 6 to 20 meters and exhibits a 

very pronounced columnar geological structure due to the development of a strong orthogonal joint 

set. Underlying the dolerite (or in some cases immediately below the red soil), is the iconic and 

ever so important black shales of the country (locally known as the Kimberley shales), which 

varies in approximate thickness from 60 to 90 meters. It was noticed at the time by Theodore 

(1893) that the Kimberley shale unit had not yet bottomed at the Bultfontein and Dutoitspan Mines, 

meaning that it must have a greater thickness there than at the more northern mines of Kimberley 

and De Beers. In other words, the shale layer is thinning / pinching out towards the north. Some 

geologists, such as Theodore (1893), therefore voiced his opinion that the Kimberley Mines were 

situated at the northern-most rim of the saucer-shaped basin, which was once seen as the great 

freshwater lake of the Karoo.  

Stellenbosch University  https://scholar.sun.ac.za



17 
 

The Kimberley shales are typically yellow, pink and brown for the first 9 to 15 meters, thereafter 

transitioning to black and almost perfectly horizontal beds (Theodore, 1893). Within the shale unit, 

one would occasionally find a combination of sheets and dykes of intrusive trap. Moving further 

down from the surface of the “Big Hole” Mine, the next geological unit beneath the Kimberley 

shales is a thin bed of conglomerate (also known as the Dwyka conglomerate) approximately 3 

meters thick, which is dominantly composed of rounded pebbles and stones that are firmly 

cemented together. This thin conglomerate probably forms part of the basement conglomerates of 

the Kimberley shales. Underlying the conglomerate however, is 120 meters of what the miners 

referred to as the “hard rock”, essentially almost the same as the bedrock. It generally consists of 

an amygdaloidal trap (or melaphyre). 

The thick melaphyre bed is made up of very hard compact rock, with numerous nodules of agate 

and quartz, which made it exceptionally difficult and expensive to mine. Underneath the hard rock 

melaphyre, is a greenish quartzite also of hard and tough texture. It shares a similar thickness to 

the overlying unit, being approximately 125 meters from top to bottom. In his book: “Diamonds and 

Gold in South Africa”, Theodore (1893) said that looking down the Kimberley Rock Shaft, at a 

depth of 350 meters from the surface of the “Big Hole”, the above mentioned quartzite started 

transitioning into metamorphic slates, interlaminated with thin layers of sandstone. The local 

geological succession of the Kimberley “Big Hole” Mine (as discussed above) is represented 

graphically in Figure 5, together with the relationship thereof to the most important geological 

marker units of the regional geology of Southern Africa. 

To conclude the local geology of the Kimberley “Big Hole” Mine, it is worth mentioning that shales 

(with specific reference to the Kimberley shales) will form a central theme in defining the overall 

state and stability of the sidewalls of the Kimberley “Big Hole” Mine, as such, the characteristics of 

shale, its weathering and swelling / shrinkage potential will be discussed in detail forthwith.  

2.4.4 Geological structure at the Kimberley “Big Hole” Mine 

According to Preece et al. (2008), a full structural review of the Kimberley “Big Hole” Mine was 

undertaken by De Beers early in the year of 2007, with the aim of more easily identifying the 

reasons for slope stability problems at the mine. As concluded and summarized in their report: “A 

summary of geotechnical information pertaining to the stability of the sidewalls of the Kimberley 

Mine", Preece et al. (2008) reviewed that De Beers identified the following during their structural 

investigation of the mine, as also illustrated in Figure 6: 

i. A single west-north-west (WNW), east-south-east (ESE) trending dyke. 

ii. Two individual shear zones on the south-western side of the pit. 

iii. Five different joint sets of which two appear to be of local nature and the other three 

matching regional trends.  
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The two joints sets, which appear to be of local nature, occur orthogonal to one another and are 

clearly seen only within the near surface doleritic sheet. It is exactly these two orthogonal joint sets 

within the overlying dolerite unit, which creates the columnar geological structure of the rock and 

weakens the layer along certain angels. Consequently, an observation made by Croukamp (2008) 

was that “stress relief” due to the open pit and “undermining” due to regression of the underlaying 

shale unit, resulted in these orthogonal joint sets opening up and causing blocks of the dolerite 

rocks to become unstable. This observation proved to be very significant in terms of the scope of 

this project and held a lot of insight, which will only be discussed in more detail in later chapters. 

Furthermore, De Beers found very little structure in the underlying shale horizon during their 

structural review of the mine, whilst the bottoming melaphyre (andesite) only exhibited prominent 

near-vertical and horizontal jointing, which usually results in columnar geological blocks. The 

structural review of the Kimberley Mine, by De Beers, concluded that this is usually a stable joint 

configuration with no immediate dangers and that it can only give rise to toppling of large 

geological blocks (Preece, et al., 2008). 

To conclude the structural review of the Kimberley “Big Hole” Mine, it is worth emphasizing the fact 

that the undermining property of the Kimberley shales (as desribed above) together with the 

toppling propensity of the overlying doleritic sheet, is deemed critical in understanding and defining 

Figure 6 - Structural geology of the Kimberley "Big Hole" Mine according to De Beers geotechnical personnel and 
reviewed by Preece et al. (2008). 
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the slope stability problem at the Kimberley “Big Hole” Mine and in constraining a proper solution. 

This will only be discussed in much more detail in later sections. 

2.4.5 Pit geometry 

According to Sjoberg (1996), the geometry of a pit significantly influences its own stability due to 

the associated stress conditions in the slopes. This is but only one of the many factors governing 

large scale slope stabilities of open pit mines (such as the Kimberley “Big Hole” Mine); including 

other factors such as: 

 The effects of groundwater. 

 The geological structure (in particular the presence of large scale features). 

 The overall rock mass strenght. 

 

As a result of the above mentioned factors, all modern day mine pits are the subject of exhaustive 

and detailed planning prior to the start of development and construction. Many modern day mines 

take years before they start operating as a response to many prefeasiblity studies and proper risk 

assessment analyses of the various risk factors involved and as mentioned above. The Kimberley 

Mine pit, however, was one of the first of its kind to be developed between the years 1871 and 

1884 (before its acquisition by De Beers) and as a result of the initial disjointed amalgamation of 

numerous individual excavated claims into an eventual underground mining operation, no such 

planning or design was ever undertaken by the early claim holders to ensure total and utter safety 

(Preece et al., 2008).   

In the same report written by Sjoberg (1996), he also mentions that in nature, the most stable 

(open) mine pit configuration is circular, due to the fact that a circular pit will always create the 

most stable regional stress regime around the outer perimeters of the mine. According to Preece et 

al. (2008) however, in the specific case of the Kimberley area, the principle regional stress regime 

is typically orientated north-north-east (NNE) to south-south-west (SSW), which generally explains 

the mishaped oval signature of the Kimberley Mine pit footprint as illustrated in Figure 7. This oval 

shaped structure that was adopted by the Kimberley “Big Hole” Mine, is not ideal for the most 

stable and safest mine slope configuration. In conclusion, it can be said that the overall geometry 

of the Kimberley Mine pit, is the reason for many of its slope stability problems due to the geometry 

of the mine creating a generally unstable regional stress regime around the outer perimeters of the 

“Big Hole”. The oval shaped geometry of the Big Hole Mine, together with its unstable regional 

stress regime, causes many of the surrounding slopes to fall under an inbalance of pressure and 

stresses and leads to an increase development of the slope’s natural angle of repose.  
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2.5 Shales 

2.5.1 Description and characteristics of shale 

According to Stead (2016), shales form part of approximately 58% of all sedimentary rock records 

around the world and play a major role in the stability of both natural and engineered slopes. They 

are of particular interest when it comes to slope stability assessments, due to the wide variation in 

their engineering properties and their ever changing behaviour with time as a result of certain 

weathering processes (Stead, 2016). Although various terminologies have been developed to refer 

to these materials namely: argillaceous rock, claystone, siltstones and mudrock for example, the 

exact definition of a shale can be described as follows (Shaw & Weaver, 1965; Venter, 1980): 

“A fine-grained sedimentary rock with compacted and hardened layers of either silt or mud and a 

clay content of usually more than 40%. They tend to have a well marked bedding plane fissility, 

primarily due to the orientation of the clay mineral particles that are present parallel to the bedding 

planes. Perpendicular to these bedding planes the rock usually breaks with an irregular, curving 

fracture. Finally, shales do not form a plastic mass when wet, although they may disintegrate when 

immersed in water (see Figure 8)”. 

 

Figure 7 - Geometry and plan of the Kimberley "Big Hole" Mine showing the misshaped oval signature of 
the mine pit footprint (Croukamp, 2008). 
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It is arguably the case however, that no universally accepted classification of shales exists today, 

and depending on the field of application, the terminology surrounding shales varies widely. 

Therefore, for the purpose of this project, a quick summary and classification of the different types 

of shales is given below in Table 1. 

 

 

 

 

 

 

In terms of the engineering properties of shales however, there seem to be a bit more consensus  

on the matter and includes (Farrokhrouz & Asef, 2013): 

 Very low compressive strength (< 100MPa). 

 High sensitivity to water. 

 Prone to swelling. 

 High thermal conductivity.  

 Very susceptible to weathering.  

 

Table 1 - Classification of the different types of shales according to Stead (2016) and modified after Yagiz 
(2001). 

Figure 8 - A classic field example of finely laminated shales with irregular weathered 
surfaces perpendicular to the bedding plane (Harvey & Tracy, 1996). 
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The propensity of shales to degrade and deteriorate with time due to certain weathering processes 

(both physical and chemical), has resulted in an ongoing attempt to try and classify shales 

according to their slaking, durability, swelling and softening properties (Stead, 2016). These 

properties are often highly variable and involves the use of many newly developed test methods, of 

which a few will be implemented throughout the course of this project.  

2.5.2 Weathering of shales 

It is in general agreement that the clay content of shales are responsible for much of their rock 

strength properties and more often than not: the higher the clay content, the poorer the engineering 

properties and the higher the susceptibility to certain weathering processes (Stead, 2016). 

According to Farrokhrouz and Asef (2013), the type of clay mineral present within the mineralogical 

structure of the rock, also plays a major role in its behaviour when exposed to various natural 

elements (such as water, wind or heat for example), with increasing problems being found in 

montmorillonite-rich shales. This is mainly because of the fact that some shales have limited 

cementation between individual grain boundaries, especially when it consists of highly compacted 

clays, whilst other shales may be well-cemented in nature with a stronger and more durable clay 

mineral, such as kaolinite for example (Stead, 2016).  

According to Venter (1980), there are generally two varieties of breakdown / weathering 

phenomenon observed in common shale-type rocks in South Africa, although a gradation between 

the two processes seem to be inevitable. These two processes (shown in Figure 9) can be 

described as follows: 

1.) The first breakdown process that ensues when a fresh shale sample is exposed to the 

atmosphere is “disintegration”. Disintegration involves the physical breakdown of the rock 

into smaller hard rock fragments (>2mm). It is a complex process that involves the 

formation of numerous microcracks on the surface of the rock, subsequently allowing for 

more water to infiltrate the material and in return, cause even further breakdown (Stead, 

2016). 

2.) The second weathering process, which usually follows after a certain degree of 

disintegration, is “slaking”. Slaking is considered to be a consequence result of 

disintegration breakdown and involves the weathering of shales into silt or clay sized 

particles (<0.06mm).  
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Together with the two different classification types for the breakdown / weathering of shales, 

Venter (1980) was also of the opinion that they should be measured by means of different 

analysing techniques, seeing as it involves two different sets of processes. As a result, Venter 

(1980) suggested that: (1) disintegration breakdown be measured via a qualitative evaluation, by 

means of performing a five-cycle wet-dry test using water, whereas (2) slaking on the other hand, 

should only be measured by means of a slake durability index (SDI) test. Furthermore, the 

meaning of some of the terms used to describe the weathering of these rocks, needs to be 

specified as well (Venter, 1980): 

 Fissile: Denotes the ability of shales to split approximately parrallel to their bedding planes 

(see Figure 10 A). 

 Flaggy: Denotes the ability of shales to split in such a fashion that the length and the width 

of the slabs are much greater than their actual thickness (see Figure 10 B). 

 Flaky: Denotes the tendency of shales to break into smaller chips, flakes, wedges or 

fragments (see Figure 10 C). 

A B 

Figure 9 - Perfect example of the two types of breakdown / weathering patterns observed in shale-type rocks from South Africa. 
A.) Disintegration of shale material into smaller rock fragments; B) Slaking of shale material into finer particles. Both examples 
come from rocks that were studied for the purpose of this project.  
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2.5.3 Swelling / shrinkage potential of shales 

When referring to any clay-rich rock mass (like shales for example), it is of critical importance to 

first try and quantify the swelling potential for that rock mass, as it may consequently have an 

adverse effect on the stability of tunnels, slopes and foundations if the swelling potential is 

mobilized (Pettersen, 2014; Bothma, 2015). However, in order to determine the swelling potential 

of a certain rock types, a study of the clay minerals is first and foremost required (Bothma, 2015).  

According to Knappett and Craig (2012), the basic structural unit of most clay minerals are a 

silicon-oxygen tetrahedron and an alumimum-hydroxyl octahedron, which combine together to form 

different molecular sheet structures as illustrated in Figure 11. These tetrahedral units interact with 

the sharing of oxygen ions to form a silica sheet, whilst the octahedral units combine by sharing 

hydroxyl ions to form gibbsite sheets. The way in which the different layers are then formed, is by 

the bonding of a single silica sheet with either one or two gibbsite sheets. As a result, different 

types of clay mineral particles are formed by different stacks of these layered structures, which 

have different forms of bonding between them (Knappett & Craig, 2012; Bothma, 2015). 

 

A B 

C 

Figure 10 - Field examples of (A) Fissile; (B) Flaggy; and (C) Flaky- type weathering of shales (Edger, 2009; Millie, 2012; 
Oleinik, 2016) 
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In general, clays that are rich in montmorillonite (or smectite), may expand drastically when in 

contact with water, which means that the organic material subsequently has a great swelling 

potential. The swelling characteristics of the clay and the degree of overall expansion is highly 

dependent on (Pettersen, 2014): 

 The material that is exposed to either an internal or external fluid source. 

 The presence of swelling minerals in the clay. 

 The amount of water accessible.  

 

Any rock mass that is exposed to either an internal or external fluid source, can be de- and 

resaturated, which in turn results in the swelling and shrinkage of the internal clay minerals and 

more often than not, fracturing of the rock mass (Zhang et al., 2010). It is worth mentioning that the 

most commonly found clay minerlas in nature include montmorillonite, vermiculite, illite or kaolinite 

with the main difference between these being their varying sensitivity towards water. 

Montmorillonite is known to be one of the most expansive clay minerals when in contact with water, 

whereas vermiculite is only moderately expansive and illite or kaolininte the least or non-expansive 

(Knappett & Craig, 2012).  

There are various ways of determining the exact chemical composition of clay minerals in a rock, 

which would subsequently also help to identify its internal structure (Zhang et al., 2010). The first 

and probably also the easiest method for determining the chemical composition of clay minerals, is 

by the study of thin sections, which is also known as a petrographic analysis. This entails both 

Figure 11 - Structures of the most common types of clay minerals in the world (Bothma, 2015; Lory, [S.A.]) 
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the description and classification of rocks, although this method of optical identification can 

sometimes be made extremely difficult when working with a very fine-grained rock mass (Bothma, 

2015). Therefore the better and more accurate method of identification would be by means of an X-

Ray examination. Generally there are two types of X-Ray examination techniques that can be 

used: the first is a X-Ray diffraction (XRD) technique, and the second is a X-Ray fluorescence 

(XRF) technique (Bothma, 2015).  

The X-Ray diffraction (XRD)-technique can be used to determine both the presence and amount of 

mineral species in a sample, as well as identify the different phases. The X-Ray fluorescence 

(XRF)-technique however, will only allow you to determine the details of the chemical composition 

of a sample, but it will not indicate the different phases that are present. As a result, both 

techniques are used in the industry today, only depending on the information a person would want 

to obtain seeing as both techniques have their advantages and disadvantages.  

In reference to the most common types of clay minerlas found on earth today (i.e. montmorillonite, 

vermiculite, illite and kaolinite), Table 2 below shows their unique corresponding and general 

chemical compositions (Bothma, 2015). 

 

 

 

 

 

 

 

 

 

 

 

2.5.4 Durability of shales 

In spite of their abundance in the rock record, shale type rocks have until recently received very 

little attention in terms of classifying them according to their durability and internal strength 

properties. However, recent studies have started to show a strong physical interdependence 

between the durability of shales and their rate of slaking. Therefore, researchers have started 

measuring the durability of shales with a variety and often interdependent set of slaking tests of 

Table 2 - Chemical compositions of the most common types of clay minerals, showing both 
elements and chemical compounds (Bothma, 2015 & Pettersen, 2014). 
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which three of the more popular slaking tests include (1) the jar slake test, (2) the slake index test 

and (3) the slake-durability test (Erguler & Ulusay, 2009). All three slake tests include a similar test 

procedure, but differ in their obtained results. According to many papers, the slake-durability index 

test is still the most widely used slaking test for the evaluation of physical changes and / or slaking 

behaviour of rocks as a result of wetting and drying processes. Franklin and Chandra (1972), ISRM 

(1981, 2007) and Gamble (1971) suggested using the second cycle slake-durability index (Id2) 

value as being the most effective way of assessing the slaking properties of a rock, which is why 

this testing program was included and followed within the scope of this project. In addition to the 

test methods as briefly mentioned above, some classification systems have also been developed 

and proposed to assess the durability of such rocks. One of these classification systems includes 

the durability–plasticity classification that was developed by Gamble (1971) and suggested 

by ISRM (1981). Gamble (1971) found some significant correlations between the properties of 

clay-bearing rocks such as water content, liquid limit, and dry density, which is why Gamble 

(1971) suggested that clay-bearing rocks are best classified on the basis of a relationship between 

the second cycle slake-durability index (Id2) and their plasticity index, dividing the durability of shale 

type rocks into six different classes (see Table 3). This was subsequently also the classification 

system used and followed to classify shale rock material from the Kimberley “Big Hole” Mine 

according to their second cycle slake-durability index before and after applying the proposed 

solution as discussed in Chapter 5.  

 

 

 

However, Gamble (1971) emphasized the importance of in-situ behaviour of clay-bearing rocks 

exposed to atmospheric processes, and concluded that more work is necessary to correlate 

laboratory test results with field behaviour to fully understand the slaking behaviour of such rock 

types. Taylor and Spears (1981) adopted Gamble's (1971) classification for less indurated types of 

clay-bearing rocks. For moderately strong to very strong clay-bearing rocks, Olivier (1979) 

developed a classification system that was based on the relationship between the swelling 

coefficient (free swelling from an oven-dry to saturated condition) and the uniaxial compressive 

strength (UCS) of similar materials. Franklin (1981) on the other hand, proposed a more 

quantitative shale rating system that includes both the second cycle slake-durability index (Id2), the 

plasticity index (PI), and the point load strength index (Is50) of the rock. The rating value (R) of the 

Franklin Shale Rating System can then be used to select certain safe slope angles for unsupported 

shale slopes by using two graphs as illustrated below in Figure 12 and Figure 13 respectively. 

 

Table 3 - Slake-durability index (SDI) classification table, Gamble (1971) 
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Figure 13 - Trends in safe shale slope angles as a function of shale rating 
(Franklin, 1983). 

Figure 12 – Franklin’s shale rating system (Franklin, 1983). 
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Using the Franklin shale rating system (as described above) Shakoor and Admassu (2016) 

determined the safe slope angles for weak rock units, which was based on the correlation between 

the second cycle slake-durability index (Id2) values of 24 shale rock samples and the safe slope 

angles as indicated by the shale rating system. Shakoor and Admassu (2016) generalized their 

results in order to propose the following safe slope angles for shale type rocks as seen in Table 4: 

 

 

 

 

 

 

Other authors used the same method of thinking to apply the second slake-durability index (Id2) 

values of shale type rocks, to develop and predict the most likely engineering properties that would 

be associated with their in-situ material. The following table therefore predicts the most likely 

engineering properties of shale type rocks, according to their second cycle slake-durability index 

values as obtained from numerous slake-durability index tests (see Table 5) (Singh, et al., 2005): 

 

 

 

 

 

 

 

 

 

 

Dick et al. (1994) discovered some problems with the current literature and with the suggested 

classification systems of shale type rocks as is. He indicated that most of the classification systems 

(as mentioned above) are of limited application and that the reasons therefore be attributed to one 

or more of the following: 

Table 4 - Safe slope angles of shale slopes according to the second slake-durability index (Id2)values of 24 shale 
rock samples (Shakoor & Admassu, 2016). 

 

Table 5 - Observed and predicted engineering properties of shale type rocks, according to their second cycle slake-
durability index values (Singh, et al., 2005). 
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 The classification systems were developed for specific applications of mudrocks. 

 The classifications were based on an insufficient number of samples and / or insufficient 

variety of mudrocks. 

 The classifications did not distinguish between different types of mudrocks. 

Nevertheless, the second-cycle slake durability index test is still widely used in evaluation and 

classification of shale-type rocks and the test as proposed by Franklin (1981) has been 

standardized and described in ASTM D-4644-87 (1992). 

In addition, several researchers have also proposed durability classification systems based on 

slope stability evaluations that require on a number of other laboratory tests, including jar slake, 

rate of slaking, Atterberg limits, free-swell and point load strength tests. In the discussion of 

embankment slope designs by Franklin (1981), a figure was included and introduced a means of 

determining the internal friction angle (Ø) and cohesion (c) of the soil  by using the shale rating of 

the rock mass in testing (see Figure 14).  

 

 

 

 

 

 

 

 

 

 

 

 

In other words, Figure 14 uses the shale rating, R that can only be obtained from Figure 12 to 

estimate a range of values for the cohesion and internal friction angle of the rock. However, in 

order to get a shale rating for the rock samples from the Kimberley “Big Hole” Mine, independent 

and additional plasticity index (PI) and point load strength index (Is50) tests were required. Due to 

limitations associated with the scope of this project (i.e. cost and time constraints), these additional 

laboratory tests as required for further classification could not be completed and slake-durability 

Figure 14 - General trends in the shear strength parameters of in-situ shales as a function of shale quality 
(modified from Strohm et al. 1978 and Franklin, 1981). 
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index tests along with various other durability and weathering tests (i.e. absorption, cyclic wetting 

and drying and comparative accelerated weathering tests) were instead conducted with the aim of 

assessing the slake durability and weathering resistance of Kimberley shales against each other, 

with additional evaluation on the durability and strengthening effects of the applied solution on 

each rock mass. 

According to Franklin and Chandra (1972), the slake-durability test describes an index test that is 

best used in comparing one rock sample with another. It will not predict in-situ rate of weathering 

and deterioration directly since factors other than the nature of the rock, for example the severity of 

climate, also influence weathering rate. A slake-durability test predicts deterioration due to climatic 

wetting and drying and the slaking-durability of a rock will therefore depend on the following 

(Franklin & Chandra, 1972): 

 Permeability and porosity since these control the entry and retention of pore fluids and their 

mobility once inside the rock. 

 The action of fluids once they have penetrated the rock must be considered. They may act 

by adsorption that results in surface energy changes, by solution of cement or disruption of 

bonds, or may set up disruptive forces by pore-pressure generation. 

 The capacity of the rock to resist disruptive forces will decide the extent to which 

weakening, swelling or complete disintegration of the rock material will occur. 

Hence a rock that is either impermeable, or non-reactive or has high intergranular strength will 

usually be more durable. According to Franklin and Chandra (1972), some indication of slake-

durability can usually be obtained by studying the clay mineralogy and the microstructure of a rock, 

but it is quicker and more reliable to use a test. This must provide a means of causing slake-

disruption, and a means of estimating its extent. Perhaps the most reliable means of causing 

disruption, if time is no object, is to leave a rock exposed to natural weathering, and much may be 

learned by examining naturally exposed surfaces at excavated rock slopes or quarry sites. Usually 

for convenience and greater control, an accelerated weathering process is employed that includes 

cyclic changes of environment such as drying and wetting. Franklin and Chandra (1972) states in 

one of their studies that there is a definite correlation between the rate of weathering of shales, the 

stable slope angle and the slake-durability index values obtained during testing, although such 

quantitative correlations have yet to be made. Gamble (1971) did however manage to produce a 

slake durability classification system that classifies the durability of shales according to “high”, 

“medium” or “low” durability as seen below in Figure 15. 
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With regards to Figure 15 above, the two categories of highest durability could be termed 'rock', 

and materials of lower durability 'soil'. A distinction between rock and soil is often required in 

engineering contracts, and the slake-durability index affords a possible quantitative method of 

discriminating between the two. 

Following the abovementioned suggestions made by Franklin and Chandra (1972) and Gamble 

(1971), whom studied the slake-durability of shale type rocks for many years, this project included 

a variety of durability and weathering tests in order to assess the slake durability of the Kimberley 

shales. The abovementioned literature was the reason for conducting a full microscopic and 

geochemical analysis on the shales from the Kimberley “Big Hole” Mine. The testing program also 

allowed for a long-term durability test in the form of a cyclic wetting and drying test under exposure 

to the atmosphere and natural weathering conditions, as well as an accelerated weathering test 

that employed cyclic changes of environments as suggested by Franklin and Chandra (1972). 

In conclusion, all authors are of the opinion that slake-durability index tests (in general), should 

only be used and interpreted in association with other rock index tests as an aid to rock 

classification, for selection and quality control of materials for rockfill, road and concrete aggregate, 

in predicting problems of excavation stability and rock support, and in selecting plant, equipment 

and techniques for rock excavation. 

 

 

 

Figure 15 - Gamble's geotechnical classification of shales (Gamble, 1971). 
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2.6 Slope stability 

Over the past few years, slope stability assessments (or analyses) have become a very popular 

topic of interest amongst geologists and geotechnical engineers, which seemed to have evolved 

closely with the increasing developmental research of soil and rock mechanics as a whole 

(Abramson, et al., 1995). The reason for the sudden interest into slope stability assessments can 

be attributed to the devastating socio-economic effects that a slope failure or slip can have on 

humans when the delicate balance of natural soil slopes are disrupted in any way (Abramson, et 

al., 1995). Even though slope instabilities at the Kimberley “Big Hole” Mine do not necessarily 

constitute a typical slope stability problem in the sense that it does not require a full slope stability 

assessment / evaluation, the Big Hole Mine still represents a massive open-pit with steeply dipping 

to near vertical sidewalls and it is therefore worth considering the different types of slope failure 

mechanisms that are most commonly associated with steeply-dipping sidewalls and open pit 

mines.  

According to Dr. Denis Kalumba (2016), a slope can be characterized as any inclined surface of 

which one end / side is at a higher elevation than the other. In other words, a rising or falling 

surface. Slopes such as defined above, can exist either through a set of natural processes or it can 

be engineered by humans to fulfil certain construction requirements (Abramson, et al., 1995). 

Slope instabilities as a topic of interest and for the purpose of this project, can thus be defined as 

the lack of potential of an inclined surface to withstand movement and resist failure without the aid 

of certain stabilisation techniques (Erasmus, 2016).  

In order to fully understand the fundamental principles of various slope failure mechanisms, it is of 

critical importance to first distinguish between the difference in a slope instability and a slope 

failure. According to Knappett & Craig (2012) the term slope instability can be defined as the 

tendency of a slope to move, whereas a slope failure represents an actual mass movement event 

or a landslide. A general term used to describe all types of slope failures and instabilities however, 

is often referred to as a “slope movement”.   

Slope movements, as defined above, are most commonly caused by three forces of instabilities  

namely (1) the geometry of a slope, (2) gravity and (3) seepage which, in most cases, act together 

to induce a natural angle of repose for each individual slope. A natural angle of repose was 

described by Knappett & Craig (2012) as a phenomenon where, within all slopes there exists an 

inherent tendency for the slope to degrade to a flatter and more stable angle and ultimately move 

towards the horizontal. So in essence it can be said that slope movements are a direct 

consequence of slopes continuously wanting to develop towards their natural angle of repose, 

which in the case of the migrating sidewalls of the Kimberley “Big Hole” Mine, is no different. 

More often than not, there is a direct correlation between a slope’s natural angle of repose and the 

durability characteristics of the rocks it is made up of. In the specific case of the Kimberley Big 
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Hole” Mine for example, this project is hoping to find a unique correlation between the durability 

and weathering characteristics of the Kimberley shales and the rate at which the slopes are moving 

towards their natural angle of repose. In other words, it aims to draw direct correlations between 

the slake-durability index values as obtained from the testing program of this project, to the general 

safe slope angle as defined by the project and literature.  

Due to the fact that the term “slope movement” is widely used as an all-inclusive term for almost all 

varieties of mass movement events including those that involve little or no true sliding, Varnes 

(1978) was the first person to classify the term and divide it into five different subcategories namely 

(1) falls, (2) topples, (3) slides, (4) spreads and (5) flows. The exact classification and processes of 

these subcategories are shown in Table 6 whilst Figure 16 illustrates them.  

 

 

 

 

 

 

Table 6 - Abbreviated classification of slope movements and processes based on Varnes (1978) as 
modified by U.S. Geological Survey (2004). 

Predimonantly Course Predominantly Fine

Rock fall Debris fall Earth fall

Rock topple Debris topple Earth topple

Rotational few units Rock slump Debris slump Earth slump

Transitional many units Rock slide Debris slide Earth slide

Rock spread Debris spread Earth spread

Rock flow (deep creep) Debris flow (soil creep) Earth flow (soil creep)

TYPE OF MATERIAL

Bedrock

Engineering Soils

Combination of two or more principal types of movements

Slides

Lateral Spreads

Flows

Complex

Falls

Topples

TYPE OF MOVEMENT

Stellenbosch University  https://scholar.sun.ac.za



35 
 

 

Figure 16 - Classification of slope movement processes (Bothma, 2015). 
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According to Tarbuck et al. (1998), there are numerous factors that could change the potential of 

any of the above illustrated mass wasting events. These factors include: 

 Any short or long term changes in a slope’s angle. 

 The weakening of rock material due to weathering (i.e. refers to the defined slope stability 

problem at the Kimberley “Big Hole” Mine). 

 A fluctuating water table / water content. 

 Any short or long term changes in vegetation cover. 

 Overloading of a slope.  

 

All of the abovementioned information was used to describe the most common types of slope 

movement events along with their unique characteristics. The only reason for this comprehensive 

review was to introduce the different types of failure mechanisms that are most commonly 

associated with shale slopes around the world. Before describing each shale slope failure 

mechanism in detail however, Hunt (2005) suggested looking at the following key aspects of a 

slope, as a way of identifying the ensuing failure mechanism: 

 The occurring history of slope failures in the area and the various factors that caused them. 

 The geometry of the slope. 

 The presence of any instability indicators near the surface of the slope (such as soil creep, 

tension cracks or landslides for example). 

 The surrounding weather conditions including rainfall and temperatures statistics. 

 

When considering a full slope stability assessment, mathematical formulas are normally used to 

calculate the most viable solution towards the defined slope stability problem however, these 

mathematical solutions can only be formulated once the shape of the slope’s failure path is defined 

in some way (Hoek & Bray, 1981). Because slope failures such as avalanches, earth flows and 

rockfalls do not possess any indication of a slope failure path, it is generally accepted that they 

cannot be solved mathematically. In other words, they can be identified and categorized, but a 

viable solution would have to be inspired without the aid of using mathematical equations, which 

was exactly what was done for the defined slope stability problem at the Kimberley “Big Hole” 

Mine. 

2.6.1 Failure mechanisms in shale slopes 

Within every shale slope (or sidewall) that is exposed to the atmosphere and natural weathering 

conditions, certain failure mechanism exist that increase the potential for local slope instabilities. In 

other words, different types of slope instabilities are activated or mobilized by different types of 

failure mechanisms and according to Stead (2016), the most common type of failure mechanisms 

in shale slopes recorded today are the following: 
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 Translational failures. 

 Earthflows. 

 Rock falls. 

 Toppling. 

Each of these failure mechanisms lead to a different set of slope instabilities and whilst most are 

not applicable towards the defined slope stability of the Kimberley “Big Hole” Mine, a brief 

description of each is still provided below: 

Translational failures are the most common type of shale slopes failures and can vary from 

simple planar failures along low shear strength weakness planes (usually found within engineered 

slopes) to extensive deep-seated multi-block landslides involving multiple and extensive shear 

zones (see Figure 17). 

 

 

 

 

 

 

 

 

According to Stead (2016), translational shale slope failures only tend to occur on sub-horizontal to 

slightly dipping shear zones. This is because rocks within a shear zone often exhibit very low shear 

strength parameters, which means that an active driving force, such as gravity for example, in 

combination with the lubricating effect of high pore water pressures is often enough to cause a 

massive slope slip or failure. Stead (2016) further goes on the suggest that there is a direct 

correlation between the behaviour and the rate of movement as a function of the depth of the clay 

shale shear surface, which in the case of the Kimberley “Big Hole” Mine, is inapplicable. There are 

only two recorded shear zones on the sidewalls of the Big Hole Mine, both of which have no 

correlation to the defined slope stability problem of the pit. Slope failures experienced by the 

sidewalls of the Kimberley “Big Hole” Mine exhibit no features or components of a planar or circular 

slip (as found with translational failures), but rather the regression and degrading of surface shale 

material as a result of extensive weathering.   

Figure 17 - An illustration of a typical translational shale slope failure (Stead, 
2016). 
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Earthflows on shale slopes most commonly occur due to the softening of shale debris material 

after a preceding landslide event. It involves a downslope viscous flow of fine-grained materials 

that have been saturated with water and mover under the pull of gravity (see Figure 18).  

 

 

 

 

 

 

 

 

 

 

According to Bovis (1985), in order for the earthflow of a shale slope to take place, a landslide or 

some form of a landslide event must have preceded to earthflow failure. The reason for this is that 

a preceding landslide event often results in the formation of weaker clay shale material on the 

surface of the slope, which upon further weathering and deterioration start to exhibit softening 

behaviour. This softening behaviour of shales is activated by the disruption of their original form 

and structure causing fissuring, dilation and the development of a negative pore water pressure 

within the internal structure of the rock. These types of failures however, are mostly found within 

tropical areas and require a large amount of rainfall usually within a very short period of time and 

was therefore discarded as a possible failure mechanism for the shale slopes of the Kimberley “Big 

Hole” Mine. Also, the few landslide events that have been on the slopes of the sidewalls of the 

Kimberley “Big Hole” Mine are the result of a block toppling slope failure event which causes 

degraded material to slide down the slope. In other words, the landslide event does not precede 

the defined slope failure mechanism at the Kimberley “Big Hole” Mine, but rather follows as a 

consequence thereof (Stead, 2016).  

Rockfall failures have become much more recognized over the past few years as the effects of 

weak rock masses, such as shale for example, that underlie more competent rock beds have 

become a critical geotechnical consideration in rock fall hazard rating systems due to the dangers 

thereof to surrounding infrastructure and human lives. Rockfalls occur when fragments or blocks of 

rock detach by sliding, toppling or falling along a vertical of sub-vertical cliff as seen in Figure 19 

(Marzorati, et al., 2002). Rockfalls in shale slopes are much more concerned with the weathering 

Figure 18 - A typical example of an earthflow event on a shale slope surface 
(USGS, 2004). 
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control on durability and degradation of the shale rock mass as opposed to the kinematic sliding 

factors along adverse planes such as described above for translational failures. Rockfalls in shale 

slope environments often occur due to support loss or undermining of a shale unit, which causes 

the overlaying and more competent rock mass to fail. In other words, these failures often occur 

along steep-sided slopes where one rock unit, usually lower down in the geological succession, 

weathers and deteriorates much faster than the rock mass above. Weathering-induced recession 

of weak shale rock masses at the toe of a slope could lead to a variety of different types and scales 

of rockfall failures including toppling failures, wedge failures and spreading failures (Stead, 2016). 

However, because the later defined slope stability problem at the Kimberley “Big Hole” Mine (as 

discussed in Chapter 4) can best be described through the process of toppling, the toppling slope 

failure mechanism as a type of rockfall failure is described and discussed below.  

 

 

 

 

 

 

 

 

 

 

 

 

Toppling slope instabilities in shale slopes form part of the rockfall slope failure mechanism and 

constitutes only one of the many slope failure mechanisms of shale that lead to slope instabilities. 

According to Goodman (2012), the growth of a toppling root zone is controlled by the presence of 

hard and weak rock strata with the presence of weak anisotropic shales within a sedimentary 

sequence being an important control on toppling instability. In other words, the location of the shale 

formations whether at the toe of the slope, mid slope or near the slope crest will influence the 

overall failure mechanism that occurs and is the subject of ongoing research. Toppling is one of the 

five major types of slope movement failures that occur commonly in nature and in all rock types, 

although recently much more associated with shale type rocks (Varnes, 1978). According to 

Figure 19 - An image depicting a rock fall slope failure event (Marzorati, et al., 
2002). 
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Duncan (1980), whom studied the case histories of three separate toppling slope failure events 

around the world, toppling can generally be subdivided into two subcategories namely (a) flexural 

toppling and (b) block toppling, both of which occur very commonly in nature but initiates due to 

different failure mechanisms. Schematic examples of flexural and block toppling are shown in 

Figures 20 A and B.  

 

 

 

 

 

 

 

 

 

 

According to Duncan (1980), block toppling occurs when the centre of gravity lies outside the 

outline of the block and topples over, due to the rock mass having a big overturning moment. 

Flexural toppling on the other hand, occurs when a layered rock mass outcrops against a steeply 

dipping slope and the principle stresses acting parallel to the slope triggers a slip between the 

layers and causes the intact rock to subsequently fracture and overturn (Adhikary et al., 1997; 

Bothma, 2015). The stability of toppling, as a slope movement failure, can be analysed both 

mathematically and via the use of physical models. However, it is also worth mentioning that these 

types of stability analyses can often be very time consuming with the necessary facilities required 

to do such an analysis not always being accessible (Duncan, 1980). When looking at the defined 

slope stability problem at the Kimberley “Big Hole” Mine (as discussed in Chapter 4) it becomes 

clear that block toppling as a slope failure mechanism explains the process of regression on the 

sidewalls of the pit best and is therefore considered the shale slope failure mechanism responsible 

for slope instabilities at the Big Hole Mine. As the underlying shale unit weathers and deteriorates, 

the overlying dolerite block shifts its centre of gravity to the outside of the outlined block and 

topples over and into the open mine pit as a single block toppling slope failure event. This 

subsequently also leads to small-scale landslides on the surface of the slopes, which causes 

further degradation and weathering.  

Figure 20 - Schematic examples of (A) Flexural Toppling and (B) Block / Direct Toppling (Adhikary et al., 
1997). 
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Looking the four most common types of shale slope failure mechanisms as discussed above (i.e. 

translational failures, earthflows, rockfalls and toppling), it can be argued that rockfalls, with 

specific reference to block toppling as a slope failure mechanism, is the main reason for slope 

instabilities at the Kimberley “Big Hole” Mine. Weathering-induced recession of weak shale rock 

masses at the crest of the slope is what leads to toppling rockfall failures at the Kimberley “Big 

Hole” Mine. Logically, it is also assumed that the more toppling slope failure events occur, the less 

durable the underlying shales become due to more of the surface area being exposed to the 

atmosphere and natural weathering conditions.  

2.7 Geotechnical considerations 

2.7.1 Natural angle of repose 

According to Carrigy (1970) and Van Burkalow (1945), all geological materials on earth have what 

is known as a “natural angle of repose”, which can be defined as the angle at which material in 

nature will form a stable slope. This fact was noted by Preece et al. (2008) in their report, as they 

seemingly understood that the same principle applied to the stability of the slopes at the Kimberley 

“Big Hole” Mine. As part of their studies conducted on the ground conditions of the mine and the 

geomechanical properties of the rocks, Preece et al. (2008) found that for the shale zone of the pit, 

the natural angle of repose would be between 20° and 30° as oppose to the current slope angle of 

38°. 

This means that there will come a day when mine pit break-back at the Kimberley “Big Hole” Mine 

will eventually start to slow down and reach natural equilibrium when a balance between the 

vertical sides of the inner pit and the slope of the outer rim is reached, rendering the Kimberley “Big 

Hole” Mine in its most natural and stable form. According to Preece et al. (2008), the continues 

effects of seasonal rainfall and time, will eventually reach a point where progressive erosion of the 

outer perimeters of the pit will decrease and establish a more stable profile. However, trying to 

equate a precise time limit for natural equilibrium to occur at the Kimberley “Big Hole” Mine, would 

prove near impossible as there are currently many human factors that are contributing to the 

frequency and occurrences of slope failures at the mine including: 

 Nearby construction sites (causing massive vibrations, which encourages loose material 

and cracks to become even more unstable and have the propensity to increase the risk of 

slope slips or failures). 

 Heavy traffic along main roads immediately next to the outer fringes of the mine (in some 

cases even as close as 22 meters from the outer edge of the eastern side of the pit, case in 

point: Bultfontein Road).  

 Nearby businesses and heavy infrastructure surrounding the “Big Hole”, which ultimately 

adds to the load and regional stress regime of the surrounding area.  
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2.7.2 Water table 

In addition to the calculation of the natural angle of repose at the Kimberley “Big Hole” Mine, it is 

also worth mentioning that the data collected during the study by Preece et al. (2008) indicated a 

generally shallow (close to the surface) groundwater table around the pit, which if allowed to 

infiltrate the shale zone, would cause the weathering process of the rocks to accelerate rapidly. 

However, according to Preece et al. (2008), De Beers had already been aware of this problem and 

had therefore already constructed a precuationary measure to effectively mitigate the negative 

effects of a shallow water table on the mine pit slope, by developing a massive dewatering tunnel  

(see Figure 21) some 60 meters below the surface and some 200 metres back from the outer edge 

of the pit. As a result of clever construction on behalf of De Beers, ground water in the vicinity of 

the Kimberley Mine is effectively drained into the strategically placed dewatering tunnels via a 

series of intersecting boreholes and as a successful result, since its development these tunnels 

have effectively kept the shale slope dry and away (for the most part) from an accelerated 

weathering process (except during times of heavy rainfall in the summer months of Novemeber to 

February) (Preece et al., 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 - Layout of the Kimberley "Big Hole" Mine water tunnel (Preece et al., 2008). 
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2.8 Safety at the Kimberley “Big Hole” Mine 

2.8.1 Seismic activity 

South Africa is generally not known for a frequency of large seismic events, even though some 

seismic activity has been recorded over the past few years. However, due to the fact that even the 

slightest seismic activity can cause a slope failure process (especially toppling for example) to 

activate (Kijko et al., 2003; Bothma, 2015), it is worth investigating the average seismic activity 

rates around the area of Kimberley and the Big Hole Mine. As illustrated by Figure 22, a seismic-

hazard map was created by Kijko et al. (2003) for the whole of South Africa. The seismic-hazard 

map indicates that the  town of Kimberley lies exactly wtihin the yellow to orange transition zone 

with an approxiamted peak ground acceleration (PGA) of 0.14 g. Fortunately, in terms of seismic 

activity and physical dangers of seismic events, this value is fairly low and poses no immediate 

threat. This is subsequenbtly also the value that is being used in calculations when slope stability 

problems are being investigated (Kijko et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.2 Monitoring and management 

Following on from the investigative studies done by Preece et al. (2008), the report included the 

fact that De Beers managed to implement a comprehensive monitoring strategy, which is still 

presently being adhered to. As at the date of publication of their report, Preece et al. (2008) made 

a summary of exactly what the monitoring strategy of De Beers entails: 

Figure 22 - Seismic-hazard map of South Africa (Kijko et al., 2003) 

Stellenbosch University  https://scholar.sun.ac.za



44 
 

1. Weekly visual inspections of the mine pit that are conducted by De Beer’s geotechnical 

personnel. At these inspections obvious visual changes are looked for, for example the 

opening of old cracks or the development of new cracks that are not shown on the current 

mine plans. 

2. The installation and maintenance of a remote / continuous geotechnical monitoring system 

that records discrete movements at defined points, which are in close proximity to the 

actual mine pit. Figure 23 shows the three types of movement monitoring equipment 

installed and used by De Beers for the Kimberley "Big Hole" Mine to track any ground 

displacement around the pit. 

3. Precise surveys that are conducted quarterly by the De Beers Kimberley Mine’s Survey 

Department. These surveys aim to monitor any and all movements that have occurred 

along the defined radiating survey lines that cover a wider zone around the entire mine pit 

perimeter.  

4. From time to time, aerial surveys of the mine pit are also conducted in order to accurately 

determine and update the entire mine pit profile for comparison with previous mine pit 

profiles. Up until the time of publication of the report written by Preece et al. (2008), data 

that had been collected by these infrequent aerial surveys indicated an ongoing movement 

pattern around the northern half of the mine pit, with the north-eastern area of the pit being 

the most active at the time.  

 

According to Preece et al. (2008) the entire monitoring system of the Kimberley Mine (as described 

above) is an on-going process which have been conducted by De Beers for many years. So in 

conclusion, Preece et al. (2008) was of the opinion that the slope stability problem at the Kimberley 

“Big Hole” Mine was being managed as far as is reasonably possible by the De Beers company, 

firstly by: (1) maintaining the dewatering tunnels around the shale zone of the slopes of the mine 

pit and secondly (2) by ensuring that the ground movement monitoring strategy (as referred to 

above) is in place, working and being reviewed. 
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A B 

C 

Figure 23 - A.) Continuous Type Extensometer, which constantly records movement; B.) Modern GPS automated 
levelling system, which automatically sends data to the main office at De Beers; C.) Manual Type Extensometer, which 
involves measurements being taken via manual inspection on a bi-weekly basis (Croukamp, 2008).  
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2.9 Previous studies 

In the past there have been numerous studies conducted at the Kimberley “Big Hole” Mine that 

pertain to the overall state and stability of the sidewalls of the open pit mine. These studies 

covered a whole range of topics and experiments including: slope stability analyses, site 

investigations, joint surveys, estimation of break-back patterns, precise level surveys and aerial 

surveys to only name a few. These studies were not only conducted by De Beers officials and 

geotechnical personal, but also included independent review reports from outside companies and 

institutions such as the Sol Plaatje Municipality and the Council for Geoscience. The relevant 

topics discussed, are all included within the reports that were reviewed for the purpose of this 

project, which includes: 

 “A summary of geotechnical information pertaining to the stability of the sidewalls of the Kimberley Mine 

(commonly referred to as the Big Hole) located in Kimberley, Northern Cape Province, Republic of South 

Africa and the relevance thereof to the adjacent Bultfontein Road”, complied by CA Preece, AD Wilson 

and Dr. AR Guest, 27 February 2008.  

 “Sidewall stability of Kimberley “Big Hole” Mine”, compiled by The Council for Geoscience, 30 June 2008.  

 

These studies also included a few case studies that relate to recent slope failure events at the 

Kimberley “Big Hole” Mine, further supporting evidence of an unstable and continuously weakening 

slope configuration. An example of such a case study is discussed in the following chapter.   

  
2.10 Conclusion 

After carefully reviewing all available literature on slope instabilities, shales and the geological and 

geotechnical components of the Kimberley “Big Hole” Mine, a brief summary of the most important 

aspects justifying further research in this project is highlighted below. 

Even though there are many durability and weathering tests that deal with the strength and slaking 

characteristics of shales, a standard shale classification system has yet to be developed as all 

available literature suggest limitations to each existing classification chart. Several authors are in 

agreement that the slake-durability index test is best utilized in comparing one rock or shale 

sample to another, which is why the testing program conducted within the scope of this project, 

follows the same argument. Furthermore, slope instabilities surrounding shale slopes are mobilized 

due to different failure mechanisms, although toppling as a rock fall shale slope failure is generally 

considered as the best described failure mechanism on the sidewalls at the Kimberley “Big Hole” 

Mine. This failure mechanism is mobilized due to weathering and durability problems with the 

Kimberley shales (as discussed in Chapter 4), which is why a viable solution includes the potential 

of decreasing the weathering and deterioration rate of the Kimberley shales, whilst testing the 

effects thereof by means of a variety of durability and weathering tests.  
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Chapter 3: Case study 

In order to prove the entire extent of slope stability problems at the Kimberley “Big Hole” Mine and 

the damaging effects thereof on the adjacent infrastructure of the town of Kimberley, a specific 

case study was undertaken by Preece et al. (2008) during conduction of their report that pertains to 

the sidewall stability of the Kimberley “Big Hole” Mine, which particularly focused on the rapid 

degeneration and cracking of the nearby Bultfontein Road. 

According to Preece et al. (2008), Bultfontein Road runs to the east of the Kimberley Mine pit in a 

general north-south direction. The main concern and reason for choosing Bultfontein Road as the 

focal point of their study, was that this road seems to fall exactly within the break-back zone of the 

Big Hole Mine (as referred to in Chapter 4) and showed the most potential for a possible slope slip 

/ failure. This is subsequently also why the eastern edge of the Kimberley Mine pit became the 

subject of continuous and focused monitoring by De Beers. To predict a slope failure for the 

eastern edge of the Kimberley Mine, or at best to determine the average rate of deterioration of the 

slope, Preece et al. (2008), in accordance with De Beers, used Figure 24 as a guideline for the 

predicted break-back perimeter of the eastern edge of the pit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 - Limits for potential mine pit break-back near Bultfontein Road (Preece et al., 2008) 

Break back line more than 100 years 

Break back line less than 100 years 

Stellenbosch University  https://scholar.sun.ac.za



48 
 

Preece et al. (2008) also used all obtainable information from remote monitoring equipment 

surrounding the Big Hole, as well as any information obtained from precise level surveys, to 

ultimately calculate the relevant lateral deformation of the slope. Figure 25 is therefore an 

indication of the tensional (horizontal) movement creeping towards the open mine pit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

By doing this, it was proved that on-going movement was still being registered by monitoring 

beacons west of Bultfontein Road and that they were becoming much more significant. With 

reference to Figure 25, Preece et al. (2008) was also of the opinion that the zone demarcating the 

area of relative movement, seemed to fall between the east and west beacons on either side of 

Bultfontein Road, causing the actual location of the failure plane(s) to be somewhat masked, 

although a pattern of cracks in the road can be considered to coincide with the columnar jointed 

nature of the dolerite capping. The zone of imminent failure on the outer perimeters of the mine pit 

edge, exhibited well-defined tension / toppling cracks that were up to a few meters wide in some 

places.  

Preece et al. (2008) further elaborated on the existence of many small-scale tension cracks in the 

tarred surfaces of Bultfontein Road, suggesting that (by their relative location and orientation) it has 

a close relationship with the loosening of the dolerite caps in the area. Relatively minor movement 

of these cracks (equating to <10mm since 1980) however, were registered by the precise level 

surveys in the area and seemed to be perfectly aligned with the degree of cracking seen in the tar 

of Bultfontein Road (Preece, et al., 2008). According to Croukamp (2008), even though these 

Figure 25 - The relative degree of tensional horizontal movement towards the 

Kimberley Mine pit (Preece, et al., 2008). 
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cracks strike such that they can be projected to almost coincide with some of the cracks along the 

eastern boundary of the mine pit, the risk of an instantaneous failure should be mitigated by virtue 

of the fact that: 

• Jointing in the overlying dolerite caps are sub-vertical. 

• There are no apparent low-angle wedge-forming features daylighting on the mine pit face. 

 

At the time of publication of their report, Preece et al., (2008) had concluded that during the 

conduction of their studies, there had been no real evidence that would suggest a fault-slip failure 

between any of the units on either side of the tar cracks, but that it simply had a tensional 

relationship. On review of the visual inspections that were undertaken by the De Beers’s 

Geotechnical Department in the underground storm water drains, running to the east of Bultfontein 

Road, Preece et al. (2008) also claimed that it did not reveal any form of surface failure or 

cracking, which further supports the above made statement.  

The exact same beacons located on the eastern side of the Big Hole Mine that were used to 

monitor movement by completing precise level surveys of the area thought to be most in danger, 

were also used to calculate the vertical displacement of the slope as illustrated in Figure 26. 

However, according to Preece et al. (2008), the beacons west of Bultfontein Road seemed to 

exhibit the most vertical movement. The combined effect of resultant vertical and horizontal 

movement was considered by Preece et al. to be a consequence of progressing deformation of the 

underlying shale and the fact that movement was still continuing, is thought to suggest a certain 

risk factor to the Bultfontein Road area that is only escalating. 

 

 

 

 

 

 

 

 

 

 

 Figure 26 - The relative degree of vertical (downward) movement west of Bultfontein 
Road (Preece et al., 2008) 
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Considering all of the above-mentioned information, with specific focus on the evidence for vertical 

and lateral displacements over the past few years at the eastern edge of the Kimberley “Big Hole” 

Mine, Croukamp (2008) made the following conclusions:  

• A slope failure is almost always preceded by visible cracking and significant opening / 

displacement in close proximity to where the failure usually occurs. In accordance with this 

statement, large failed areas usually also take a long time to fall, whereas smaller zones fall 

within a much shorter period.  

• Slope failure at the Kimberley “Big Hole” Mine, seems to be linked to areas where there is 

significant height of the vertical scarp dolerite / shale face and it is therefore very important 

to recognize the exact location of (especially) the <100 year old break-back zone of the 

outer perimeters of the pit and limit work to just outside / behind it. 

• The unstable zone adjacent to Bultfontein Road is an escalating risk, because there is no 

clear failure-point model to work to for the Kimberley Mine pit. In other words, it is not 

possible to predict when a slope failure will occur.  

In summary of the above-mentioned case study, Preece et al. (2008) felt the need to summarize 

the three most important points regarding slope stability problems at the Kimberly Mine: 

1. There is a significant risk that the east side of the Kimberley Mine pit could break-back or 

fail with segments of Bultfontein Road collapsing into the mine pit as a result; 

2. Although De Beers employed a remote monitoring system in order to monitor any and all 

movement of the sidewalls of the Kimberley Mine pit, not even De Beers can predict with a 

great amount of accuracy when any major sidewall slippage will occur; 

3. The sidewalls of the Kimberley Mine pit will inevitably fail someday, until a natural angle of 

repose is reached; i.e. slope failure is inevitable.  

 

3.1.1 Two examples of recent slope failures near Bultfontein road 

1. Slope failure – 5th April 2007 

On this day, a relatively large-scale slope failure occurred on the eastern side of the mine pit in the 

exact area as depicted in Figure 27 A. Preece et al. (2008) estimated that the size of the failure 

amounted to a wedge of dolerite approximately 10 meters long, 4 meters wide and 15 meters 

down. At the time of publication of their report, Preece et al. (2008) was of the opinion that the 

remainder of the wedge, as indicated in Figure 27 B was likely to fail shortly due to the existence of 

more cracks along the side of the slope, indicating an overall increase in slope instabilities. In their 

report, several other images depicting further cracks and possible future failures along the eastern 

boundary of the mine was shown as reviewed in Figures 27 C, D and E.  
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2. Possible new slope failure – 24th January 2008 

Preece et al. (2008) used their report to review and acknowledge the fact that during routine 

monitoring activities, De Beers Geotechnical personnel had identified the existence of a new 

tension crack on 24 January 2008 that had developed on the eastern side of the Kimberley Mine 

pit (see Figure 27 F). According to Preece et al. (2008) the identification of these cracks by 

competent De Beers personnel, only constituted a further indication that there are instabilities in 

the area closest to Bultfontein Road, which are likely to result in a block of ground slipping into the 

mine pit at some point in the near future. 

3.1.2 Conclusion 

In nature, there is a general tendency for the sides of any excavation in the earth to recede to a 

point where a natural angle of repose is achieved and many factors can contribute to the sidewall 

instability, which ultimately influences or dictates the entire extent and rate of recession.  

As a result of the case study that was undertaken by Preece et al. (2008), a valid conclusion was 

made about the overall state and stability of the Kimberley “Big Hole” Mine as it stood in the year 

2008. In the reviewed report of Preece et al. (2008), the opinion was that even though De Beers 

had managed to implement various monitoring systems around the Big Hole in order to track any 

ground movement activities, it was still not possible for anyone to accurately predict the exact time 

frames within which parts of the edge of the mine pit may collapse. 

As a worsening effect to the risk factors already involved in the overall stability of the sidewalls of 

the mine pit, sustained periods of rainfall (especially during the summer months of November to 

February) affects the level of the ground water table immensely. During the extensive studies of 

their report, Preece et al. proved that a rise in the immediate water table surrounding the Big Hole 

exerts an immense pressure on the sidewalls of the mine pit, which can easily influence and 

encourage slope slippages. 

For all the above-mentioned reasons and with a specific reference to the discussed case study, 

Preece et al. (2008) was of the opinion that the loss of the section of Bultfontein Road, adjacent to 

the eastern side of the mine pit, is inevitable.  
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Figure 27 - Images depicting a few local failures of the cracked dolerite capping at the Kimberley "Big Hole" Mine, as 
well as areas where more imminent failures are likely to occur (Croukamp, 2008 modified from Preece et al., 2008). 
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Chapter 4: Defining the problem 

After reviewing all available literature and reports that pertain to the overall state and stability of the 

sidewalls of the Kimberley “Big Hole” Mine over the past few years, an evaluation was made on the 

most likely cause of slope instability problems at the Kimberley “Big Hole” Mine and it seemed to go 

hand-in-hand with the local geology of the pit.  

4.1 Local Geology 

To summarize and simplify the local geology of the Big Hole Mine (as described and discussed in 

chapter 2 above), a brief review of the most important geological features with respect to the slope 

stability problem at the Big Hole Mine is given below (Croukamp, 2008): 

 Near surface strata dominantly consisting of 15 to 20 meters of well-jointed dolerite. It is worth 

highlighting the fact that this layer exhibits a very pronounced columnar geological structure 

due to a strong presence of orthogonal joint sets in the rock, making it very prone to toppling.  

 This is subsequently underlain by a 60 meter thick, near horizontally bedded black shale 

(commonly referred to as the Kimberley shale), which is considered to bear a large swelling 

and shrinkage potential, making it highly susceptible to weathering and accelerated 

deterioration under natural conditions. Understanding the regressive characteristics of this 

brittle geological marker unit is key in defining the slope stability problem at the Kimberley 

“Big Hole” Mine.  

 The shale is sitting on a 12 meter thick horizon of dwyka tillite, described as a thin 

conglomerate bed that forms the basement conglomerate of the Kimberley shales.  

 Finally, a 140 meter thick hard rock layer commonly known as melaphyre, which is 

significantly more competent than the surrounding host rocks and forms the vertical sided 

profile of the Big Hole Mine. 

 

Looking at the simplified geology of the mine pit itself, it is clear that there are two very specific 

problems that are contributing towards the overall slope stability problem at the Kimberley Big Hole 

Mine: The first and most important concern being owed to the susceptibility of the underlying shale 

horizon to weather and deteriorate when exposed to the atmosphere. In their specific reports, Preece 

et al. (2008) and Croukamp (2008) explained this overshadowing effect of slope stability problems 
at the Kimberly Big Hole Mine as follows: “The main culprit behind slope instabilities and failutres at 

the Kimberley “Big Hole” Mine, can be ascribed to the susceptibility of the shale horizon to weather 

and degrade as a result of surface exposure to various elements and extreme weather conditions”.  

This undesired effect of undermining due to regression of the underlying shale unit, is exactly what 

gives rise to the second succsessive slope stability problem at the Kimberley Big Hole Mine, namely 

the propensity of the overlying doleritic sheet to break off into large blocks and undergo mass toppling 
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failures. In other words, the strong columnar geological structure of the overlaying dolerite caps (due 

to an abundance of orthogonal joint sets in their structure)  tend to loosen when encountered with 

“support relief” from the underlying shale horizon. As a result, many of the orthogonal joint sets open 

up to such an extent that large blocks of dolerite become unstable and eventually topple over into 

the mine pit. 

However, the propensity of the Kimberley shales to rapidly weather and deteriorate under exposure 

to various natural elements and extreme weather conditions (especially during the hot, wet summer 

months of November to February), is still considered to be the main cause of in-pit slope instabilities 

at the Kimberley “Big Hole” Mine and the reason for the resulting gradual migration of the mine pit 

rim outwards. This gradual migration of the slopes of the Big Hole Mine outward, is commonly 
referred to as “break-back” and is concerned with the weathering process that is continuously 

resulting in an ongoing removal of shale material from the sidewalls of the mine.  

4.2 Mine pit break-back 

Mine pit break-back at the Kimberley “Big Hole” Mine can be described in very simple terms and the 

following will serve as a quick explanation of the process:  

 the underlaying shale horizon (with its variable clay content) weathers and decomposes 

rapidly during seasonal wetting and drying (mainly by means of disintegration);  

 as a result of rapid disintegration of the underlaying shale unit, slaking of the shales seem to 

further undermine the overlaying doleritic blocks, which due to the well developed joint sets, 

break off and topple into the mine pit. 

 the gradual removal of the overlaying doleritic blocks from the outer rims of the mine pit, in 

turn exposes more fresh shales to the process of seasonal wetting and drying and as a result, 

the cycle is constantly repeated.  

 

In terms of mine pit break-back at the Kimberley “Big Hole” Mine, it is considered to be a very fast 

and ongoing process that is repeated every few years. The effects of seasonal wetting and drying 

on shales at the mine, is also exacerbated by the heavy rainfall during the summer months of 

November to February, which is often accompanied by very hot and humid climatic conditions, which 

means that temperatures reach extremes on a daily basis. This, as a result, causes extreme 

fluctuations in the moisture content of the rocks, accelerating the process of mine pit break-back and 

the effects of slope instabilities and failures at the Kimberley “Big Hole” Mine. Because of constant 

weathering and deterioration of the shales, the mine pit perimeter has started to develop a very wide 

and flat angled break-back pattern as illustrated in Figure 28, which can ultiamately be attributed to 

the slope’s natural angle of repose. 
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After carefull consideration of (1) the local geology of the pit, (2) the natural angle of repose, (3) the 

level of the groundwater table and (4) the geometry of the pit with its resulting stress regime around 

the Kimberley Mine, it is safe to conclude that the biggest threat to the stability of the sidewalls of 

the Kimberley “Big Hole” Mine is not that of a true slope stability problem (in the sense that it requires 

a complete slope stability assessment, as would have been required when working with a translation 

slope slip failure for example), but that it is rather concerned with the break-back perimeter of the 

open-mine pit as a result of the extensive weathering and deterioration of the underlying shale, as 

well as the rate at which this process ensues. In other words, the identified slope failure mechanism 

at the Kimberley “Big Hole” Mine is not concerned with the development of a planar or circular slip 

failure plane, but rather a toppling (rockfall) slope failure mechanism that initiates due to undermining 

/ regression of the underlying Kimberley shales. This would subsequently prompt the investigation 

to move from a complete slope stability assessment to a weathering analysis, where the solution 

would have to address the vast susceptibility of the Kimberley shales to resist weather and 

deterioration when exposed to the atmosphere and natural weathering conditions. 

4.3 Summary 

This summary will emphasize the most important aspects of the slope stability problem at the 

Kimberley “Big Hole” Mine as well as conclude the first phase of this project, which was to “define 

the problem”.  

Figure 28 - Limits for potential mine pit break-back at the Kimberley "Big Hole" Mine according to 
Preece et al. (2008). 

Break back line more than 100 years 

Break back line less than 100 years 
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The problem statement encapsulating the slope stability problems at the Kimberley “Big Hole” Mine, 

thus reads as follows (see Figure 29): 

A fast and ongoing removal of shale material from the underlying geological marker unit, due to its 

intense susceptibility to rapid weathering and deterioration, which is generally exacerbated by 

extreme weather conditions such as heavy rainfall periods during the summer months of November 

to February every year. This regressive process in turn causes the overlying dolerite cap to weaken 

along its orthogonal joint sets and break off into sizeable blocks, which eventually topples over and 

into the open-mine pit, giving rise to a process which is locally known as mine pit break-back. Mine 

pit break-back can therefore be seen as the end result of a ongoing weathering process that is 

responsible for the sidewalls of the Kimberley “Big Hole” Mine to expand and slowly widen, causing 

many socio-economic issues for the town of Kimberley.   

 

 

 

 

 

 

 

 

 

 

 

 

 

As a contributing factor to assist in combatting the process of mine pit break-back at the Kimberley 

“Big Hole” Mine however, it is worth mentioning that up to date the single biggest contributing factor 

to the relatively stable state of open pit mine, was the dewatering of the shale slopes by the 

development and maintenance of water tunnels and associated drain holes as implemented by De 

Beers in 2000. As a result, the relatively stable water table surrounding the Big Hole does not seem 

to pose such a big threat to the stability of the sidewalls of the mine, as that of the high annual influx 

of water during the summer months over the town of Kimberley. Annual flooding of the subsurface 

shale horizon continuously exposes fresh shales to the surface of the slopes at the Big Hole Mine, 

Overlying dolerite cap 

Underlying Kimberley shale 

Figure 29 - Photograph depicting the two most important geological marker units concerning the slope stability problem 
at the Kimberley "Big Hole" Mine. 
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beckoning the start of a new weathering cycle and continues removal of more and more shale 

material. 

Thus, in order to find the most appropriate solution in terms of effectiveness and economic viability 

when discussing the slope stability problem at the Kimberley “Big Hole” Mine, the following questions 

might act as a useful guideline to finding and assessing a proposed solution: 

 What is the internal structure and chemical characteristics of the shale and can this 

be classified? 

By knowing the internal structure and chemical characteristics of the Kimberley shales, one 

can start to identify the most common types of clay minerals present within the chemical 

construct of the rock, which directly relates to its swelling and shrinkage potential. From 

literature it is known that some clays are much more expansive than others. Clays rich in 

montmorillonite for example, have a much greater swelling and shrinkage potential when in 

contact with water than does kaolinite-rich clays. If this swelling potential is mobilized through 

a constant ingress of water, it may consequently have an adverse effect on the stability of 

the slopes at the Kimberley “Big Hole” Mine. According to literature, the best way to determine 

the internal structure and exact chemical composition of clay minerals in a rock, would be by 

means of a petrographic analysis with the additional aid of a geochemical analysis (i.e. X-

Ray diffraction and X-Ray fluorescence analyses) to ensure accuracy.   

 To what extent does surface water infiltrate the shale (i.e. the permeability) and how 

can it be reduced? 

If clay rich rocks, such as shales for example, are exposed to either an internal or external 

fluid source, it drastically increases its potential to weather and deteriorate as water is one of 

the most dominant weathering agents of rocks and soils. Any rock mass that is accessible to 

the inflow of water, can be de- and resaturated, which in turn results in the swelling and 

shrinkage of the internal clay minerals and more often than not, fracturing of the rock mass. 

Thus, knowing the permeability of the Kimberley shales would automatically indicate (to a 

certain degree) its weathering potential. According to literature, one way of measuring the 

permeability of a rock is to test its absorption capacity. Various literature suggest that there 

is a direct correlation between the absorption rate of a rock mass and its permeability. An 

absorption test would therefore provide the necessary insight into the permeability 

characteristics of the Kimberley shales and a method or measure of reducing it. 

 What is the weathering rate for the shale and how can it be slowed down / decreased? 

According to literature, testing the weathering rate of shales against an international standard 

is very difficult as each test should ideally be conducted according to its own application. In 

fact, many of the existing durability and weathering tests on shale type rocks lack the 

application of a workable classification system for scale and measure. Literature suggests 

conducting more than one durability test on the same sample, as to collect as many variables 
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as possible before making an accurate durability classification. Literature also briefly 

describes the various durability and weathering tests that exists in practice today, along with 

the different durability classification systems and their associated limitations. Due to the 

various limitations associated with the durability classification of shales, literature suggests 

rather testing the durability of shale type rocks by means of using more than one weathering 

test and using the obtained results as a comparative measure against each other. 

Understandably, the significance of different durability aspects could also have an effect on 

the engineering properties.  

 Is the proposed solution effective and economically viable? 

Due to the different types of slope failure mechanisms in shale slopes, different slope 

instabilities exists with various mechanisms of initiation and mobilization. The key in finding 

a viable solution towards the defined slope stability problem at the Kimberley “Big Hole” Mine, 

is understanding the mechanics behind the slope failure and finding a workable solution that 

would directly address the source of instability. The best way to evaluate the effectiveness of 

a solution, is to test it. 

 Can the proposed solution be implemented at the Kimberley “Big Hole” Mine? 

Seeing as the Kimberley “Big Hole” Mine still represents one of South Africa’s most historic 

landmarks and tourist attractions, various criteria exists surrounding the implementation and 

application of a possible solution. The proposed solution still needs to be aesthetically 

pleasing, whilst not damaging the slopes any further upon implementation / application and 

not adding to the overburden of the slopes as is. All these factors need to be considered and 

brought into account when deciding and proposing a possible solution. 

 Can a safe slope angle or natural angle or repose for the sidewalls of the Kimberley 

“Big Hole” Mine be determined through testing? 

One of the main goals for this project is to use the ensuing slake-durability index test as a 

direct measure to try and determine a safe slope angle or natural angle of repose for the 

sidewalls of the Kimberley “Big Hole” Mine as it stands today. If a safe slope angle can be 

deduced from the second cycle slake-durability index value of an untreated Kimberley shale 

sample, then various predictions can be made with regards to the rate of weathering, amount 

of regression still needed to take place and the predicted safe horizontal ground distance 

from the current mine pit perimeter.  
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Chapter 5: Methodology 

This chapter will describe the exact methodological procedures that were followed during the 

collection of samples and undertaking of both the fieldwork and laboratory experiments in detail. It 

includes a meticulous discussion of the respective sample preperation and outputs for each 

individual test, as well as a detailed discussion on the exact procedures followed in order to ensure 

the successful outcome thereof. Fieldwork experiments and tests were mainly conducted with the 

focus being on assessing the state and stability of the Kimberley “Big Hole” Mine as it stands 

today. It not only includes a direct visual inspection of the evidence for slope stability indicators, but 

also a comprehensive desktop study in the form of aerial photography, drone modelling and 

satellite interferometry inspections. Laboratory work on the other hand, were more concentrated on 

the direct reason for slope stability problems at the Kimberley “Big Hole” Mine (i.e. the rapid 

weathering rate of the Kimberley shales) and includes a variety of different tests to classify and 

characterize the (shale) rock as well as to define the rock strenght parameters of the Kimberley 

shales. But first, a brief overview of the research plan is descirbed and discussed below. It 

provides the full process of the project including the step-by-step development, testing, analysing 

and after-calculating stages with an overview flowchart acting as visual aid (see Figure 30). 

5.1 Research plan 

The first stage of the research plan consisted of a developmental phase, where all available 

literature, including the incorporation of previously written geological and geotechnical reports  

pertaining to the sidewall stability of the Kimberley “Big Hole” Mine, were reviewed independently 

and utilised in the form of a full desk study. This was done to gain a comprehensive background of 

the Kimberley “Big Hole” Mine and gather sufficient evidence to synthesize a valid problem 

statement for the defined slope stability problem as it stands today.  

The second stage was concerned with defining the problem as identified by the first phase of this 

project. In order to find a viable solution towards the defined slope stability problem at the 

Kimberley “Big Hole” Mine, a comprehensive problem statement first needed conceptualizing. This 

still formed part of the developmental process and included the introduction of a case study, as 

well as various site visits (fieldwork) to the Kimberley “Big Hole” Mine. To define the exact extent of 

the problem, the second stage of the research plan also included a full desktop study in the form of 

aerial photography, drone modelling and pixel tracking using various software packages. The 

desktop study was performed with the purpose of assessing the rate of sidewall migration over the 

past few years and indicate whether the defined slope stability problem still issues an ongoing 

process.  

After conceptualizing and defining the slope stability problem at the Kimberley “Big Hole” Mine, the 

third stage of the project was introduced and included research into finding a viable solution. By 
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completing a whole literature review, case study and site visits to the Kimberley “Big Hole” Mine, 

the exact slope failure mechanism behind slope instabilities was modelled and familiarized. 

Knowing the exact mechanism behind the slope failure that causes slope instabilities on sidewalls 

of the Kimberley “Big Hole” Mine, the third stage of the project mainly focussed on proposing a 

viable solution that would effectively decrease slope instabilities or failures and that could easily be 

implemented.  

After deciding on a possible (or experimental) solution towards the defined slope stability problem 

at the Kimberley “Big Hole” Mine, the experimental / data collecting process of the research project 

comenced with the introduction of a full testing program. The testing program included enough time 

for both fieldwork and laboratory tests and aimed at producing data and results. The exact 

methodological procedures followed for laboratory testing / laboratory activities however (i.e. 

absorption tests, cyclic wetting and drying tests, accelerated weathering tests and the slake-

durability index test), is meticulously described below in Section 5.2.  

This lead to the fifth stage of the research plan, which included the data analysis and interpretation 

part of the results as obtained from the previous stage. This part of the research project demanded 

a lot of time and attention, as all of the obtained results needed to be reworked, calculated and 

discussed in detail, which probably formed the bulk of the work as set out by the researcher.  

Finally, the last stage of the research project was concerned with drawing a scientific and valuable 

conclusion towards the experimental findings. The aim of this stage was to satisfy the problem 

statement as set out by the researcher during the second stage of this project. This chapter also 

includes a justified recommendations section for any future research that might possibly be 

undertaken on the subject matter. The brief research plan overview, as discussed above, is 

graphically illustrate below in Figure 30.  

 

 

 

 

 

 

 

 

 

A full desk study: 

 Literature review 

 Planning 

Define the problem: 

 Case study 

 Site visits / fieldwork 

 Desktop study 

Propose solution: 

 Dust and erosion 

control liquids (DECL) 

Testing 

 Fieldwork tests 

 Laboratory tests 

Data analysis & 

Interpretation 

 Results 

Conclusion & 

Recommendations 

Stage 1 Stage 2 Stage 3 

Stage 4 Stage 5 Stage 6 

Figure 30 - A flow chart depicting an overview of the full research plan as conducted for the purpose of this project. 

Stellenbosch University  https://scholar.sun.ac.za



61 

 

5.2 Data collection (fieldwork) 

After defining the slope stability problem at the Kimberley “Big Hole” Mine (as described in Chapter 

4), site visits were undertaken on two separate occassions to both the Kimberley “Big Hole” Mine in 

October 2016 and the neighbouring Bultfontein Mine in February 2017, with the aim of: (1) 

assessing the state and stability of the Big Hole as it stands today, (2) creating a 3D-model of the 

open mine pit, and (3) collecting the necessary rock samples for the proposed fieldwork 

experiments and laboratory tests. These site visits were not only conducted with the aim of better 

understanding the defined slope stability problem, but also for producing a more suitable and 

effective solution. 

5.2.1 Current state and stability of the Kimberley “Big Hole” Mine 

In order to fully assess the current state and stability of the Kimberley “Big Hole” Mine as it stands 

today, visual inspections were undertaken, aerial photopgraphs were analysed and pixel tracking 

of remote sensed images were carried out.  

5.2.1.1 Visual inspection (slope stability indicators) 

The first site visit to the Big Hole Mine (11 – 14 October 2016) was conducted with the sole 

purpose of assessing the modern day state and stability of the sidewalls as it stands today and 

comparing it to that of previously written and reviewed geological and geotechnical reports. The 

aim was to visually determine whether slope stability problems at the Kimberley “Big Hole” Mine 

had worsened since conduction of the last written report from 2008 and if so, to what extent? 

Specific focus was therefore given to surface stability indicators such as: 

 Tension cracks on the surrounding tarred surfaces (with specific reference to Bultfontein 

Road). 

 Evidence of fresh landslides along slope surfaces of the sidewalls. 

 Occurrences of soil creep around the outer perimeters of the pit. 

 Development of toppling structures in the overlying dolerite caps.  

 

The on-site walkover was completed over a total period of three days spent at the Kimberley “Big 

Hole” Mine and consisted of daily manual evaluations and visual inspections in and around the pit. 

Tools used to document and assess the evidence of slope stability indicators included: 

 A DJI – Inspire 1 drone. 

 A digital (Canon) camera with a high lens zoom. 

 Measuring tape. 

 A notepad. 
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In essence, the drone as seen in Figure 31 was used to assess the current state and stability of the 

sidewalls of the Kimberley “Big Hole” Mine from an aerial view (or plan view), whilst tension cracks 

on surrounding tarred surfaces and fresh landslides on the slopes of the sidewalls were directly 

documented and photographed by means of using the digital (Canon) camera. A measuring tape 

was essentially used to measure the various lengths of tension cracks found in the surrounding 

tarred surfaces of Bultfontein Road for example and the notepad was used as an additional aid for 

sketches and notes. Figure 32 illustrates a typical walkover evaluation as conducted for one of the 

sidewalls of the Kimberley “Big Hole” Mine and depicts an actual visual inspection of one of the 

surface slope stability indicators in the form of an occurring tension crack.  

 

 

 

 

 

 

 

 

 

 

 

This specific site visit proved to be very fruitful in providing enough visual evidence of newly formed 

tension cracks and landslides in and around the sidewalls of the Kimberley “Big Hole” Mine as 

illustrated in Figure 33 for example. Figure 33 depicts evidence of an approximately 8 meter long 

and still propagating tension crack running through multiple pavement stones on the sidewalls of 

the Kimberley “Big Hole” Mine, with a propagation direction that is parallel to the sidewalls and 

developing toppling structures of the nearby pit. Most of the documented images showing the 

modern day state and stability of the sidewalls of the Kimberley “Big Hole” Mine however, will only 

be included within the results chapter (Chapter 6) of this project.  

 

 

 

 

 

 

 

 

Figure 32 - A walkover evaluation on the sidewalls of the 
Kimberley "Big Hole" Mine. 

Figure 31 - DJ1 – Inspire drone used for aerial 

assessments. 
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5.2.1.2 Aerial photography 

A sequence of aerial photographs over the Kimberley “Big Hole” Mine, ranging from as old as 1975 

to 2014, were obtained from the Department of Rural Development – National Geospatial 

Information (NGI) in Mowbray and used in cooperation with a geospatial software program called 

ArcMap10. This software was used to visually track and trace the migration of the outer perimeter 

of the sidewalls of the Kimberley “Big Hole” Mine over the past 39 years and the results proved to 

be very insightful. It helped in visualizing the migration pattern of the sidewalls of the pit as a 

function of time and gave a good representation of the ground movement events associated with 

the defined slope stability problem at different areas of the mine. 

In order to track and trace the migration of the outer boundaries of the Kimberley “Big Hole” Mine 

by means of using a sequence of aerial photographs however, the photographs first needed to be 

georeferenced against a master image as to ensure that they precisely overlay one another. In 

ArcMap10 software, a base map (or image) that have already been georeferenced (in other words 

already contained the correct spatial information with regards to its real-world location) was used 
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Figure 33 - A single tension crack on Bultfontein Road. 
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as the master image and all other aerials were subsequently georeferenced to the same image. In 

other words, each aerial photograph ranging from 1975 to 2014 was independently georeferenced 

as a raw / slave image towards the same master (base) image in ArcMap 10 software.  

The process of georeferencing included the following steps: 

 Each aerial was independently uploaded into ArcMap10 software and re-projected with the 

“define projection tool” as to ensure that both images (i.e. master and slave) have the same 

projection / datum (WGS 1984) to begin with.  

 Next ground control points (GCPS) were selected on both the master and slave image as to 

accurately warp and overlay the two images on top of one another. GCPS can be defined 

as definite points on both images that are known to be the same point or have the same 

location irrespective of the time difference between them. Classic examples of GCPS 

include physical structures such as the corner of a building, the intersection of a street or a 

trig beacon for example.  

 In order to ensure the most accurate outcome / results for the georeferencing procedure, 30 

GCPS were selected on each image pair and a second (2nd) polynomial algorithm was used 

to warp and overlay the two images.  

 If after the first georeferencing attempt (as described above) the two aerial photographs still 

did not overlay each other precisely, more GCPS were chosen and the process repeated 

until a satisfactory result was achieved. 

In theory, after each and every aerial photograph was independently and successfully 

georeferenced to the same master (base) image, they should also overlay one another precisely to 

pixel-scale accuracy.  A full record of the evolution and migration of the sidewalls of the Kimberley 

“Big Hole” Mine in the form of overlaying aerial photographs from the year 1975 to 2014 can now 

successively be viewed, tracked and traced in ArcMap10 software. This was used to digitize and 

map the boundaries of the Kimberley “Big Hole” Mine for each time frame / period since 1975 to 

2014 as to visually illustrate the migration and evolution of the sidewalls outward. The whole 

process of georeferencing and using aerial photography as a means of monitoring slope 

movements at the Kimberley “Big Hole” Mine over the past few years is graphically illustrated 

below in Figure 34. 
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To summarize the process, each individual aerial photograph (i.e. 1975, 1997, 2001, 2014) was 

georeferenced independently to an already georeferenced (i.e. containing real-world spatial 

information) master base image. These images were then stacked on top of one another in 

chronological order so that the boundaries of the sidewalls could be digitized and visually analyzed 

to track the migration of the sidewalls of the open pit mine over the past 39 years.  

5.2.1.3 Pixel tracking 

By means of using a different approach to the already implemented and manually monitored 

ground movement equipment at the Kimberley “Big Hole” Mine (as referred to in Chapter 2), a new 

and modern day technique was used to analyze ground movement events (such as landslides and 

toppling failures) at the Big Hole Mine. This technique has never been done before. It involved the 

combination of remote sensed aerial photographs together with image correlating and pixel 

tracking software named Cosi-Corr, to measure and track ground deformations around the open pit 

mine down to a pixel size width between the years 1968 and 2014. In order to produce a typical 

output displacement vector map in COSI-Corr software however, certain preparations was first 

required to ensure the most accurate ground movement measurement outcome and these can be 

categorized as two phases namely: (1) image pre-processing and (2) image processing. 

Slave image 

(e.g. aerial photograph 1975) 

Master image 

(e.g. spatially referenced  base map) 

Ground control points (GCPS) 

(minimum 30) 

Image warping / georeferencing 

(2nd Polynomial Algorithm) 

Georeferenced aerial photograph 

(Spatially referenced product) 

Figure 34 - Georeferencing process chain of aerial photographs. 
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For the first phase (image pre-processing) six aerial photographs of the Kimberley “Big Hole” Mine, 

covering a collective time span of 46 years, were collected from the Department of Urban 

Development – National Geospatial Information (NGI) in Mowbray and include the following dates: 

1968, 1975, 1997, 2001, 2008, and 2014. Pre-processing of these aerials involved: 

 Orthorectification: Each photograph was orthorectified individually to a Landsat 8 master 

image (which already contained a spatial reference - Datum: WGS84 Universal Transverse 

Mercator Zone 35S) and a digital elevation model (DEM) (which corrects for topographic 

elevations). The Landsat 8 image was obtained from Google Earth’s public domain, whilst the 

digital elevation model (DEM) came from The Centre for Geographical Analysis (CGA) at 

Stellenbosch University. Orthorectification was done on a software program called PCI 

Geomatica and it involved the collection of at least 30 ground control points (GCPS) as well as 

a root-mean-square (RMS) error of less than eight meters (< 8m) for each individual 

photograph.  

 Georeferencing: After orthorectification of all six aerials, each photograph was further 

georeferenced to its successive follow-up aerial. For example: 1968 was georeferenced against 

1975, 1975 was georeferenced against 1997 and 1997 was georeferenced against 2001 etc. 

This was done to minimize any distortions or discrepancies, which might have propagated 

through during the orthorectification process, and a 2nd Polynomial Algorithm was used to 

successfully execute the georeferencing process. 

 

After all six aerial photographs were orthorectified (in other words, now containing a real-world 

spatial reference and an elevation correction) and georeferenced (in other words, overlaying each 

other precisely up to a single pixel size scale), the second phase, which involves image 

processing, commenced in COSI-Corr software at CSIR’s offices in Stellenbosch and included: 

 Co-registration: Each pairing of successive georeferenced aerials were co-registered to map 

and match each individual pixel from the pre-deformation image to the same pixel in the post-

deformation image.  

 Correlation: The paired pre- and post-deformation images were correlated mathematically to 

produce a displacement field where the convention “eastward and northward positive” is used. 

The displacement field represents a horizontal ground displacement file, which uses an 

East/West and North/South band to subsequently construct a correlation file. 

 Displacement measurements: The correlation file uses displacement measurements of each 

individual pixel from the pre-deformation image to the post-deformation image to construct a 

displacement vector map. Individual displacement vector maps were also created for each 

successive pair of aerial photographs, as a means of tracking and monitoring ground movement 

patterns around the Kimberley “Big Hole” Mine in a timeline series. 
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As a result, after completion of image pre-processing and image processing, the final output 

product is a deformation vector map, with vectors (or arrows) indicating both the degree of 

deformation as well as the direction for each corresponding pixel from the pre-deformation image 

to the post-deformation image. 

5.2.2 Drone footage (3D model) 

Another modern day method was used during the execution of this project to map and visualize the 

real-world parameters of the Kimberley “Big Hole” Mine as it stands today and it involved the 

creation of a three dimensional (3D) model of the sidewalls of the Kimberley “Big Hole” Mine by 

means of a DJI-Inspire 1 Drone.   

Upon the first site visit to the Kimberley “Big Hole” Mine in October 2016, the drone was flown into 

and across the Big Hole Mine via a specific pre-programmable flight path as illustrated in Figure 

35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The flight plan captured every square meter of the Big Hole Mine and allowed for all of the 

captured images to be stitched together in a software program called DroneDeploy, which was 

subsequently also used to create the following maps and a 3D model of the Big Hole: 

 A high-resolution two dimensional (2D) map. 
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Figure 35 - Pre-programmable drone flight path. 
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 An elevation map - showing the different elevations in and around the slopes of the Big 

Hole Mine. 

 A contour map - showing the different contour lines in and around the Big Hole Mine and 

 A three dimensional (3D) model of the Big Hole.  

 High-resolution two dimensional (2D) image 

The 2D map of the Kimberley “Big Hole” Mine represents a high-resolution image that can be 

zoomed in to meter scale resolution. As a result of its high-resolution status, it was not only used 

as a base map for the successive elevation and contour maps, but it was also used to identify 

newly formed tension cracks and toppling structures in and around the sidewalls of the Kimberley 

“Big Hole” Mine as it stands today. 

 Elevation maps  

Outside and inside perimeter elevation maps were created for the Kimberley “Big Hole” Mine. The 

outer perimeter map was created by using the red band (or band 1) of the multispectral image in 

order to better identify tension cracks and examples of soil creep on the surrounding pit surfaces. It 

therefore focused more on elevation differences of the surrounding area than elevation parameters 

of the actual mine pit slopes. 

The inner perimeter map was created by using the blue band (or band 2) of the multispectral image 

in order to identify fresh landslides and toppling slope failure events on the inside slopes of the 

Kimberley “Big Hole” Mine as it stands today. It therefore focused more on the elevation 

parameters of the actual mine pit slopes, than the elevation values of the surrounding mine pit 

surfaces.  

A combined version of the outer and inner perimeter maps were created (in other words, band 1 – 

red & band 2 – blue) and underlain by a high-resolution 2D base map to illustrate the overall extent 

of elevation differences and values in and around the sidewalls of the Kimberley “Big Hole” Mine.  

 Contour map 

A contour map showing 1.5 meter contour lines in and around the slopes of the Kimberley “Big 

Hole” Mine was created to better understand and visualize the elevation profile of the sidewalls of 

the pit. The original contour map (black and white insert) was first created in DroneDeploy 

software, after which it was underlain by the same high-resolution 2D image as used for the 

elevation maps as discussed above.  

 Three dimensional (3D) model 

The main reason for flying the DJ1 – Inspire drone over the Big Hole Mine of Kimberley was to 

create and capture a 3D model of the open pit as it stands today, which could subsequently be 

used in DroneDeploy software to visualize and monitor the sidewall properties of the pit from all 
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different angles including volume, area and perimeter calculations. Not only did the 3D model aid in 

building a small-scale digital model of the Kimberley “Big Hole” Mine, but it also aided in finding a 

proper solution towards the defined slope stability problem. 

Unfortunately, due to license restrictions, DroneDeploy software does not allow the 3D model to be 

exported or viewed in any other accessible software programs at the University of Stellenbosch, as 

such only screenshots of the actual model, as produced and viewed in DroneDeploy, will be 

presented.  

5.2.3 Rock sampling 

Rock samples were collected during the second site visit to the neighbouring Bultfontein Mine on 

10 February 2017. Bultfontein Mine (28°45'46.66"S; 24°47'31.22"E) is located approximately 5 

kilometers southeast of the Kimberley “Big Hole” Mine and was chosen as a suitable site locality 

for sampling due to its similar geological structure to the Big Hole Mine and its easy access to fresh 

shale samples via a series of underground water tunnels.  

Fresh shale samples (i.e. Kimberley shales) were obtained from underground water tunnels, 

approximately 50 meters deep, via a simple process of manually collecting them, putting them in 

air tight plastic bags and tagging the bags with appropriate collars as illustrated in Figure 36.  

 

 

 

 

 

 

 

 

 

 

 

In total 45 shale samples ranging in weight from 3 to10 kg each and in size from 20 to 30cm were 

collected from the sidewalls of the underground tunnels and placed into air tight bags as to 

preserve their natural moisture content as much as possible.  These samples were then wrapped 

and sealed, only to be reopened on the day they were tested. The aim was to keep the samples as 

Figure 36 - Sample collection. 
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consistent as possible in terms of structure, size and shape and to keep them in their most natural 

state before testing.  

5.3 Testing program 

After completing the necessary fieldwork analyses that was set out for the purpose of this project 

and discussed in the previous section, the samples collected during the second site visit to the 

neighbouring Bultfontein Mine in February 2017, were analyzed and tested by means of both 

microscopic and macroscopic laboratory work. Shale samples underwent various tests to 

determine the presence and abundance of clay minerals within the rock as well as to quantify its: 

(1) permeability; (2) slake index / resistance; and (3) it’s internal strength parameters, all with the 

ultimate aim of increasing its durability against natural weathering conditions.  

5.3.1 Petrographic analysis 

For the purpose of better understanding the microscopic structure and chemical characteristics of 

the Kimberley Shales (as the problematic focal point for this project and the reason why slope 

stability problems occur at the Kimberley “Big Hole” Mine), two rock samples were cut into polished 

thin sections at the University of Cape Town (UCT) and investigated petrographically. Thin 

sections of both rock samples were obtained by cutting the rock into thin slices with a power saw 

and placing them on a small (2 x 5cm) glass cover. The cover is then capped with another polished 

glass piece to ensure the preservation of the sample as shown in Figure 37 A. The subsequent 

petrographic analysis involved the inspection of these thin sections under a normal laboratory 

microscope with a maximum zoom lens of 20 X/ 0.45 (see Figure 37 B). 

 

 

 

 

 

 

 

 

 

 

 

Figure 37 B - Laboratory microscope with 
two thin sections on its rotation stage. 

Figure 37 A - Two thin sections. 
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The thin sections were rotated on a stage with light transmitting through the glass cover and 

through the thinly sliced rock sample itself. Samples were investigated under cross polarized light 

(XPL) as well as plane polarized light (PPL) in order to more accurately identify the different 

minerals present within the rocks. Different minerals display different crystallographic 

characteristics under the microscope such as colour, cleavage, relief and extinction angles to only 

name a few. The fact that each mineral has its own unique set of mineralogical properties makes it 

possible to identify different mineral phases within a rock.   The petrographic analysis therefore 

served as a good guideline to characterize and classify the Kimberley shales according to Stead’s 

(2016) classification table of different types of shales (refer to Table 1): 

 

 

 

 

 

 

5.3.2 Geochemical analysis 

5.3.2.1 X-Ray Fluorescence (XRF) analysis 

In order to more accurately determine the most dominant clay mineral constituent present within 

the Kimberley shales, as well as to better understand the chemical composition of the rocks, a 

major element XRF analysis was done on two powders (or crushed rock samples) at the Central 

Analytical Facility (CAF) at the University of Stellenbosch.  

XRF (X-Ray Fluorescence) is a non-destructive analytical technique used to determine the 

elemental composition of materials, such as rock or soil samples for example. It determines the 

chemistry of a sample by measuring the fluorescent (or secondary) X-ray emitted when the sample 

is excited by a primary X-ray source (Kalnicky & Singhvi, 2001). Every single element on earth 

produces a certain set of characteristic fluorescent X-rays, almost like a “fingerprint”, that is unique 

for that specific element. According to ThermoFisher (2016), this is the reason why XRF is most 

suitable for a qualitative and quantitative chemical analysis of any material composition.  

In preperation for the XRF analysis at Stellenbosch University, both samples were first crushed into 

smaller rock fragments (< 2kg) by means of using a jaw crusher and then subsequently milled to a 

powder form with a swing mill. In order to ensure that the most representative sample of the bulk 

rock was used during the XRF analysis, each powdered sample was quartered. Finally, the major 

element XRF analysis was carried out on a 3kWatt, Rh Tube, XRF spectrometer by means of 

Table 1 - Classification of the different types of shales according to Stead (2016) and modified after Yagiz (2001). 
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using a wide range of international (NIST®) and national (SARM®) standards during the calibration 

procedure and quality controls (precision and accuracy) for major elements. The detection limit 

was set to 0.5 parts per million (ppm) and a loss on ignition (LOI) test was run at 1000°C in order 

to include the total volatile content of the rock.  

5.3.2.2 X-Ray Diffraction (XRD) analysis 

In correspondence with the abovementioned XRF analysis, which ultimately revealed the chemical 

composition of the Kimberley shales by completing a major element analysis on two crushed shale 

samples, an XRD analysis was also undertaken with the aim of determining the various mineral 

phases present within the same two samples. In other words, the XRF analysis (as discussed 

above) provided results giving the most dominant compositional elements of the Kimberley shales, 

whereas the following XRD analysis will aid in defining the different mineral phases to which these 

various elements belong to. 

In short, an XRD analysis is a primary, non-destructive tool for identifying and quantifying the 

mineralogy of crystalline compounds in rocks or soils (Kemp, 2017). It works in very much the 

same way as the abovementioned XRF anaylsis in terms of the fact that every mineral compound 

on earth has a “fingerprint profile” that can be matched against a database of over 250 000 other 

record phases. It is especially an essential technique for identifying and characterizing the nature 

of clay minerals in a rock and provides information which cannot be determined by means of any 

other analytical method.  

An XRD anaylsis was therefore undertaken at iThemba Labs in Cape Town, South Africa, where 

laboratory personnel used the same two crushed and milled shale samples from the XRF analysis 

(for consistency purposes), to complete a phase identification of the associated rocks. Sample 

preparation included the same procedure as described for the XRF analysis above and the actual 

analytical procedure was carried out by iThemba Labs personnel on a 2-Theta, 30kV, 1-

dimensional LYNXEYE, XRD spectrometer with a detection limit of one to fifty degrees (1 - 50°) 

and a step size of 3000 steps on a 0.5 second time interval. The analysis was run for 

approximately 20 minutes per sample. 

5.3.3 Absorption tests 

The rate at which mudrocks (and with no exception to the Kimberley shales) absorb water, is a 

critical parameter with regards to its permeability and a very important engineering property when 

considering the stability characteristics thereof. It is often said that there is a direct relationship 

between the permeability of a rock and its susceptibility to weather, meaning that the more 

permeable the sample, the faster it will deteriorate and disintegrate (Venter, 1980). Because the 

rate of weathering of a rock is more often than not a direct function of its permeability and 

absorption characteristics, a unique absorption test was conducted at the geotechnical rock 
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laboratory at the University of Stellenbosch following similar tests by Deo (1972) and Venter 

(1980), only with a few minor changes tailored to the purpose of this project.  

As part of trying to find a proper solution towards the defined slope stability problem at the 

Kimberley “Big Hole” Mine (which includes the vast susceptibility of the Kimberley shales to 

weather and deteriorate under natural conditions, especially during times of heavy rainfall), five 

different “dust and erosion control liquids (DECL)” were identified with the aim of: (1) decreasing 

rock permeability; (2) increasing rock slake index / resistance; and (3) strenghtening internal rock 

parameters, with the ultimate goal to slow down the weathering rate of the Kimberley shales and in 

turn enchance the stability thereof. All five liquids represent water repellent bases, which resists 

water infiltration through the surface. It is applied to and binds the soil and dust size particles on 

the surface of the rock together. In short, it forms a water resistant protective coat around the 

surface of the rock, ultimately acting as a soil modifier that not only enhances the physical 

properties of the rock, but also increases its resistance to deformation. In theory, all five DECL 

products should therefore decrease a rock’s permeability and the rate at which it absorps water.To 

test this theory, all five DECL products were integrated into the following absorption tests. The 

exact description as well as the unique chemical composition and characterisitcs of each individual 

liquid is attached in Appendix A and the following will only serve as a brief description of each: 

 NanoSil is a water-soluble, UV and heat stable, reactive soil modifier with the ability to 

retain strength of soil (or rock) particles and resist deformation. It is most commonly used in 

the industry as a breathable soil waterproofing product for road bases and slopes. 

 NanoBond is an acrylic co-polymer emulsion with the ability to bond to soil particles and 

resist soil erosion. It is most commonly used in the industry as a dust suppressant  

especially in side shoulders and slopes.  

 NANO is an even mixture bewteen NanoSil and NanoBond. It is usually mixed together in 

the industry for one step waterproofing and bonding of compacted soils. It combines the 

effects of both NanoSil and NanoBond products to get the most effective results. 

 Sasbind is a uniquely formulated water-based emulsion of modified acrylic polymers. It is 

suitable for the binding and stabilisation of various soil layers and types in the construction 

of roads and is also commonly used for application to the surfaces of already constructed 

roads that require dust palliation. 

 Sasbind (+Bit) constitues the exact same product as “Sasbind”, only with an added 

component of bitument to the mixture.  

Before absorption tests commenced, the samples were prepared and included the following steps: 

1. Five equidimensional rock lumps, weighing between 50 and 60g each, were collected for 

each test set as illustrated in Figure 38. In other words, five rock lumps made up a single 
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test batch. Six individual absorption tests were undetaken, that is, one for each DECL 

product and one for an untreated reference batch as illustrated in Table 7. 

 

 

 

 

 

 

 

 

 

 

2. Treated samples were all sprayed with two layers (or coats) of the respective DECL product 

on a 1:2 water to product ratio (i.e. 200ml of water mixed with 400ml of product to give a 

600ml mixture) (see Table 7). 

 

 

 

 

 

 

 

*Note: The DECL product “NANO” is a combination between DECL products NanoSil and 

NanoBond, which is why the dosage of the applied liquid to the rock surface in Test 4, differs from 

the rest of the indicated dosages (in other words 200ml of NanoSil was mixed with 200ml of 

NanoBond to give 400ml of product, but because the water to product ratio remains 1:2, 800ml of 

water was needed to complete the mixture). 

3. Between treatments (or coatings), samples were left to dry for 24 hours in order to make 

sure the surface was completely dry before submurging in water as seen in Figure 39. 

 

 

Figure 38 - Average sample size and shape for a single absorption tests. 

Table 7 - Sample preparation for each absorption test 
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After the necessary sample preparation had taken place, absorption tests commenced and 

included the following steps (tests were conducted in the Geotechnical Laboratory at the University 

of Stellenbosch): 

1. Samples were dried in the sun for 12 hours to get rid of any moisture still left in the rock. 

2. Subsequently, rock lumps were weighed together as a batch for each individual absorption 

test and the combined weight was documented in Table 8. 

3. Each batch was then completely immersed in water for 15 minutes after which it was taken 

out, surface-dried and weighed again (see Figure 40). 

 

 

 

 

 

 

 

 

 

4. After the first weighing-session, rocks were placed back in the water for another 15 minutes 

(submerged for a total of 30 minutes), taken out, surface dried and weighed.  

5. The submergence period was then increased systematically with periods 30 minutes, 1 

hour, 2 hours, 4 hours, 8 hours and 1 day with the process of surface drying and weighing 

consecutively being repeated.  

6. For the latter mass determinations the exact weighing times were not adhered to as strictly, 

as the readings were by then out of the high rate of absorption part of the curve. 

Figure 39 - Sample preparation (or treatment) with DECL liquids prior to commencement of the individual absorption tests. 

Figure 40 - Absorption tests 1 - 6, completely immersed in water for 7 days and weighed at regularly timed intervals. 
Each batch represents a different DECL product, whilst one contains an untreated reference sample. 

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 
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These tests were run for a total of 168 hours (or 7 days), to ensure that the maximium moisture 

content was recorded for each individual batch and that each sample reached its maximum 

saturation weight in order to represent the most accurate results. The following table  represents 

the weighed mass of each sample at regularly timed intervals in grams and gives a good idea of 

the raw data that was used to calculate the overall absorption rate / moisture intake for each 

individual absorption test as a function of time (see Table 8).  

 

 

 

 

 

 

 

The moisture content for each batch was further calculated for each time interval as a percentage 

of the total dry mass during regularly timed intervals. This was done by means of the following 

equation: % ݉𝑜𝑖ݏܾܽ ݁ݎݑݐݏ𝑜ݐ ݔ ݎ݁ݐ݂ܽ ܾ݀݁ݎ𝑖݉݁ = ሺ ௠𝑎௦௦ 𝑎௙௧௘௥ ௫ ௠𝑖௡௨௧௘௦ ሺ௚ሻ−௢௥𝑖௚𝑖௡𝑎௟ ௠𝑎௦௦ሺ௚ሻ୭୰igi୬a୪ ୫aୱୱ ሺgሻ  ) x 100% 

As a result, the calculated percentages of the total moisture intake (or absorption rate) for each 

individual sample as a function of time was tabulated and will be displayed graphically during the 

discussion of the results in Chapter 6.  

The reason for conducting these absoprtion tests were to: 

 Determine the general absoprtion characteristics of the Kimberley shales by means of 

assessing the absorption rate of untreated samples when immersed in water over a long 

period of time. 

 Determine whether any of the DECL products would have an effect on the absorption rate 

of the Kimberley shales and if so, to what extent. 

 To determine which one of the DECL products proved most effective in decreasing a rock’s 

permeability characteristics and showed the slowest absorption rate when immersed in 

water for a long period of time.  

 

 

 

Table 8 - Raw data representing the weighed mass of each sample (or absorption test) at regularly timed intervals for a 
total of 7 days. 
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5.3.4 Cyclic wetting and drying tests 

In general, clay-bearing rocks (such as the Kimberley shales) are highly sensitive to changes in 

their moisture / water content and the strength and deformability properties of such rocks seem to 

deteriorate rapidly when exposed to a continues process of wetting and drying (Erguler & Ulusay, 

2009). This nondurable behaviour of clay-bearing rocks is exactly the reason for numerous slope 

stability, engineering and underground excavation problems which seems to be no exception in the 

specific case of the Kimberley “Big Hole” Mine (Erguler & Ulusay, 2009). 

In order to specifically test the extent of this nondurable behaviour on the Kimberley shales, as well 

as to evaluate the effects of a continuesly changing water / moisture content on the stability and 

durability of these rocks, a long term weathering cycle was simulated in the form of weekly “cyclic 

wetting and drying” tests in combination with the application of the same DECL products as had 

previously been mentioned in Section 5.2.3. These tests were conducted at the University of 

Stellenbosch following a similar test by Venter (1980) and aided in determining the strength and 

deformability of the Kimberley shales (both treated and untreated) when exposed to a simmulation 

of extreme weather conditions. However, before the cyclic wetting and drying tests commenced, 

certain sample preparations were first required: 

1. Ten rocks ranging in size from 20 to 30cm in length and weight from 1 to 5 kg were chosen 

to represent the strongest and most durable shale samples. 

2. Five of these were left untreated, whilst the other five were respectively treated with the 

same DECL products as mentioned in Section 5.2.3 (see Figures 41 A & B). 

 

 

 

 

 

 

 

 

3. Each of the five treated shale samples were sprayed and coated in the same way and by 

using the same dosages as described in Section 5.2.3. 

 

Figure 41 A - Cyclic wetting and drying tests - five 
untreated samples. 

Figure 41 B - Cyclic wetting and drying tests - five DECL 
treated samples. 
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After leaving samples to dry for 24 hours following the second protective coat, the cyclic wetting 

and drying tests commenced on the 21st of February 2017 for  a total of 6 months and included the 

following procedure: 

1. First, all ten samples (both treated and untreated) were photographed and weighed with the 

purpose of assessing their structural characterisitcs throughout the course of the cyclic 

wetting and drying tests. 

2. All samples were then subsequently left outside in the sun (on a platform at the Civil 

Engineering faculty at Stellenbosch University) in order to test their response to natural 

weathering conditions such as heat, rain, wind and low temperatures. 

3. To help simulate the heavy rainfall periods between the summer months of November and 

February over the town of Kimberley, samples were also wetted on a weekly basis with 5 

litres of water per sample and left to dry. 

4. Changes in their physical appearance / structure (especially in terms of slaking and 

disintegration) were narrowly documented each week along with weekly weight 

measurements in order to assess and evaluate the extent of material loss during the 

accelerated weathering test. 

5. After six months and 24 cycles of weekly wetting and drying, samples were photogrpahed 

and weighed for the last time in order to compare their physical characteristics, as well as 

their overall mass difference as a percentage of their original weight since conduction of the 

first wetting and drying cycle to the last wetting and drying cycle. 

The overall results of the cyclic wetting and drying tests includes the overall mass (or material) loss 

as a percentage of the original mass for each rock and is summarized and tabulated in the results 

section of this thesis. In addition, the table also contains a brief description of each of the samples 

pre- and post- cyclic wetting and drying, to highlight any mentionable observations during the 

course of the test which might indicate a favourable DECL product for the defined slope stability 

problem. The results however, will only be discussed in Chapter 6, although it is worth mentioning 

that the DECL treated samples performed much better than their untreated counter parts, which 

already indicates a successful result in terms of preserving the shale’s strength, deformability and 

durability characteristics when exposed to natural weathering conditions.  

The reason for conducting these extended cyclic wetting and drying tests over a long period of time 

were to: 

 Test the strength and durability properties of the Kimberley shales (both treated and 

untreated) against a simmulation of natural weathering conditions and in turn determine 

their average deterioration rate against the sidewalls of the Kimberley “Big Hole” Mine when 

exposed to the atmosphere. 
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 Determine whether any of the DECL products would have an effect on the disintegration 

and slaking rate of the Kimberley shales and if so, to what extent. 

 Determine which one of the DECL products proved to be most affective in preserving the 

rocks strength and deformability characteristics and showed the best protection against its 

exposure to natural weathering agents.  

 

5.3.5 Comparative accelerated weathering tests (AWT) 

Understanding the rock mechanics and properties of a specific terrain from a geotechnical 

perspective is the first step towards developing successful solutions for specific engineering 

problems. Therefore, with specific reference to the Kimberley “Big Hole’ Mine, understanding the 

mechanical properties of the Kimberley shales from a geotechnical point of view  would be the first 

step towards developing a valuable solution to help combat its vast suceptibility to slake or 

disintegrate when exposed to natural weathering conditions. One way of testing the durability of 

these rocks, was to conduct a full scale accelerated weathering test (AWT), where the effects of 

five different DECL products on the stability and durability of these rocks could be tested directly 

against each other.   

The following AWT was therefore conducted at the University of Stellenbosch according to several 

South African National Standards (SANS) and it involved the durability determination of the 

Kimberley shales, which typically seem to slake or disintegrate into long angular fragments, when 

treated with five different DECL products. The general test procedure is very similar to the slake-

durability index (SDI) test as described in the following section (see Section 5.2.6), although 

differences occured during result interpretation and DECL products selection / testing. The AWT 

actually served as a prerequisite for the SDI test, where the AWT test was used to decide which 

one of the five DECL products showed the most potential in terms of strengthening the mechanical 

properties of the Kimberley shales and was subsequently also used as the comparative DECL 

product for the following SDI test. In other words, the DECL product with the best results after 

completion of the AWT tests was used as the representative DECL product to compare against an 

untreated shale sample from the Kimberley “Big Hole” Mine during the ISRM-standardized SDI 

test. 

Before commencement of the AWT however, the sample preperations included the following 

procedures: 

1. Six shale samples were each cut into seven smaller equidimensional rock lumps, so that 

each individual DECL product, along with one untreated reference batch contained a 

sample batch as illustrated in Figure 42 (in other words, seven rock lumps made up a single 

test batch). 
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2. Five test batches / samples were treated with five different DECL products in the same 

manner as mentioned in Section 5.2.3 and by means of using the same method and 

dosages as illustrated in Table 7. In other words, each rock set was treated with a different 

DECL product and one set left untreated (i.e. all seven pieces treated in the same manner 

and with the same product).  

3. Between treatments (or coatings), samples were left to dry for 24 hours in order to make 

sure the surface was completely dry before commencement of the AWT procedures. 

Following the sample preperation, the AWT aparatus needed to be set up. The test aparatus for 

the AWT consisted of the following components as seen in Figure 43: 

 Four bins, each with a width of 100 mm and a diameter of 250 mm. 

 The circumference of each bin consisted of Polyvinyl Chloride (PVC) pipes, with a matrix of 

20 mm diameter holes. 

 The pipes were closed on either sides with 13 mm diameter mesh. 

 Each bin was positioned on an axle and rotated at five rotations per minute (5 rpm) via a 

small motor. 

 

 

 

 

 

 

 

 

 

Figure 43 - Apparatus used for the accelerated weathering tests (AWT) of the Kimberley shales at the University of 
Stellenbosch. 

Motor 

Axis 

Figure 42 - Average sample size and shape for accelerated weathering tests (AWT). This specific batch represents the 
untreated reference sample.  
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After the necessary sample preparation and apparatus set up as described above, the AWT was 

conducted via the following procedure: 

1. Six individual AWT were run (i.e. one for each DECL product (x5) and one for an untreated 

reference batch (x1)). 

2. For each of the five DECL products and an untreated reference batch, seven rock lumps 

were placed in different bins. 

3. The assembly was rotated on an axle for three wet-and-dry cycles, where one cycle is wet 

for 6 hours during the day and dry for 6 hours during the night). 

4. During the wet period of a cycle, the bins were partially submerged in water so that when 

stationary, all lumps of rock were submerged. 

5. During the dry period of a cycle, the water was completely drained.  

 

This wet-and-dry process was repeated for a total of 36 hours per sample (18 hours wet / 18 hours 

dry) and the raw data documented as seen in Table 9.  

 

 

 

 

 

 

After completion of the abovementioned procedure and three wet-and-dry cycles on all 6 shale 

sample batches, the mass of the rock left in each respective bin was compared to that of their 

original mass and the data was then subsequently used to calculate the percentage of 

deterioration that each batch had undergone during testing by means of the following equation: % ݀݁݃݀݁݀ܽݎ 𝑜ݏ݁ݎ ݎ𝑖݀ݎ݁ݐܽ݉ ݈ܽݑ𝑖݈ܽ ݂ܽݐ ݎ݁ݐℎ݁ ݐℎ𝑖݈݁ܿݕܿ ݀ݎ = 

[ 
ሺௗ௘௚௥𝑎ௗ௘ௗ ௢௥ ௥௘௦𝑖ௗ௨𝑎௟ ௠𝑎௧௘௥𝑖𝑎௟ 𝑎௙௧௘௥ ௧ℎ௘ ௧ℎ𝑖௥ௗ ௖௬௖௟௘ሻ−ሺ௢௥𝑖௚𝑖௡𝑎௟ ௦𝑎௠௣௟௘ ௠𝑎௦௦ሻ௢௥𝑖௚𝑖௡𝑎௟ ௦𝑎௠௣௟௘ ௠𝑎௦௦  ] x 100 

A visual evaluation was also undertaken by means of comparing before-and-after photos to 

estimate which materials, or more accurately which DECL product, had undergone the least 

weathering and deteriotration during the AWT. 

Table 9 - Accelerated weathering test (AWT) raw data results for each individual sample and associated DECL product after every 
wet-and-dry cycle. 
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Unfortunately, because this is a home-based apparatus and test methods were developed by Mr. 

Leon Croukamp and Mr. Peter van Wyk at the University of Stellenbosch (US), there are certain 

assumptions and limitations associated with the results of this type of test namely: 

 The accelerated weathering apparatus, as built by Mr. Leon Croukamp and Mr. Peter van 

Wyk at the US, conforms to the American Society for Testing and Materials (ASTM D4644, 

1998) standard used to test the slake-durability of rocks via a rotating drum mechanism, 

which means that the apparatus can only be used to test the disintegration and slaking of 

rocks (especially mudrocks) into smaller particles (≤ 20 mm) and nothing else. 

 Because shale often breaks down into particles (or fragments) of many shapes and sizes, 

the AWT test and apparatus might sometimes cause these rocks to seem more durable 

when compared to other typically stronger rock types such as sandstone for example, 

which is why a test mentioned in Brink (1983) was adapted and an apparatus was built that 

would typically release ≤ 20 mm particle / lump sizes (Brink, 1983); 

 AWT tests by Brink (1983) only included a visual evaluation, which was done by comparing 

before-and-after photos to estimate which materials had undergone the most weathering 

and deterioration. No physical mass comparisons between before-and-after the apparatus 

were run, which means that actual tabular results which would have enabled comparison to 

a test similar to the one conducted (i.e. breakdown percentages of the slaking or 

disintegrating of rocks into different shapes and sizes) was not possible. 

 Brink’s (1983) AWT was also done by substituting water with saturated sodium sulphate 

and sodium hexamet – aphosphate known as Calgon (a dispersive agent), which could not 

be done for this specific AWT due to the lack of available mixtures (±30 L of each mixture) 

and cost implications. 

 

5.3.6 Slake-durability index (SDI) tests 

An abundant group of rock materials, especially those with a high clay content, are often prone to 

weakening either by slaking or disintegration when exposed to short term weathering processes 

of a wetting and drying nature. Special types of tests are therefore required to predict the exact 

extent of their mechanical performance and these tests are often referred to as “index tests”. It is 

worth mentioning that index tests are best used in classifying and comparing one rock sample with 

another, which is why for this particular test an untreated shale sample was tested against a DECL 

treated shale sample, in order to determine the effectiveness of the DECL product on the stability 

and durability of the Kimberley shales. The following slake-durability tests were conducted at 

Rocklab in Pretoria according to the ISRM’s specifications and was used to simulate a short term 

natural wetting and drying process for the Kimberley shales.  

Two samples were sent in for analyses, one treated with the Sasbind DECL product (chosen as 

the best result of the above mentioned AWT test) and the other left untreated. The durability of 
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both samples were classified according to their slake-durability index after the second (2nd) wetting 

and drying cycle using the classification table as recommended by ISRM and proposed by Gamble 

(1971) (see Table 10 below). 

 

 

 

Since the fabric of a rock has a very important effect on the properties being measured during the 

given SDI test, both samples were ensured to represent two undisturbed rock specimen as far as 

possible, having being treated or handeld as little as possible prior to commencement of these 

tests. The apparatus used to test the durability of these rocks essentially consisted of: 

 A test drum comprising a 2 mm standard mesh cylinder of unobstructed length (100 mm)  

and diameter (140 mm). 

 A horizontal trough axis to contain the test drum and allow free rotation. 

 A motor drive capable of rotating the drum at a speed of 20 rotations per minute (rpm). 

 An oven capable of maintaining a temperature of 105° to within 3°C for a period of at least 

12 hours. 

 A scale capable of weighing the drum plus sample to an accuracy of 0.5 grams.  

 

These components of the SDI test equipment are shown below in Figure 44: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44 - Critical dimensions of the slake-durability test equipment (Franklin & Chandra, 1972).  

Table 10 - Slake-durability index (SDI) classification system according to Gamble (1971). 
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The exact procedure as followed by the laboratory personnel at Rocklab, to run the SDI test for the 

purpose of this project, is summarized below:  

1. Two representative shale samples were selected and cut into ten equidimensional rock 

lumps, each with a mass of 40 – 60 grams, to give a total sample mass of 450 – 550 grams 

each. 

2. The first sample was left untreated whilst the second sample was treated in the exact same 

manner as discussed in Section 5.2.3 – Table 7 with the DECL product, Sasbind.  

3. After coating the treated rock sample with two protective layers of the Sasbind DECL 

product, both samples (treated and untreated) were dried to a constant mass at a 

temperature of 105°C. 

4. The mass (A) of the drum plus each individual sample was then recorded. 

5. The trough was filled with slaking fluid (in this case, tap water) and the drum was rotated for 

200 revolutions during a period of 10 minutes. 

6. Thereafter the drum plus the retained portion of the sample was dried again to a constant 

mass of 105°C. 

7. The mass (B) of the drum plus the retained portion of the sample was recorded for a second 

time. 

8. Steps (5) – (6)  were repeated again and the mass (C) of the drum plus the retained portion 

of the sample was recorded for a third time. 

9. Finally the drum was brushed clean and its empty mass (D) was also recorded.  

To accurately calculate the slake-durability index for both the treated and untreated shale samples, 

the second cycle of the SDI test was calculated as a percentage ratio of the final to initial dry 

sample mass as shown below: 

[ SDI (Idz) = 
஼−஽𝐴−஽ x 100% ] 

In order to fully understand the results and accurately interpret the state of the samples after 

completion of the test, which is directly related to a samples resistance towards weathering and a 

good visual indication of its durability, the following symbols were used to denote the end state and 

structure of both rock specimen (treated and untreated) after completion of the fourth cycle of the 

SDI test (see Tabel 11): 

1 - Specimens were still intact after 4 cycles of slake durability tests. 

2 - Some specimens were broken into a few big pieces after 4 cycles of tests. 

3 - Some specimens were broken into small pieces after 4 cycles of tests. 

4 - Specimens were broken into  a lot of small pieces after 4 cycles of tests. 
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The results will be presented and discussed in Chapter 6. The reason for conducting a short term 

SDI test on both a untreated and DECL - treated shale sample was to: 

 Predict the exact extent of the mechanical performance of the Kimberley shales, both 

treated and untreated, under exposure to a short term weathering process of a wetting and 

drying nature. 

 Classify and compare one rock sample with another (treated vs. untreated) as to determine 

the effectiveness of the DECL product on the stability and durability of the Kimberley shales 

and to document the differences in behviour during commencement of the test. 

 Determine the slake-durability index of the Kimberley shales in their natural state 

(untreated) by using international ISRM standards. This allowed the Kimberley shales to be 

classified and categorized against other shale samples from around the world that 

underwent the same test under the same standards. 

 Evaluate whether the DECL product (Sasbind) would have a strengthening effect on the 

disintegration and slaking rate of the Kimberley shales and if so, to what extent.  

 

5.3.7 Summary 

The methodological procedure as followed and described above produced very valuable and 

accurate results in terms of proposing a viable solution towards the defined slope stability problem 

at the Kimberley “Big Hole” Mine. The desktop study (i.e. aerial photography, drone modelling and 

pixel tracking) produced very informative maps and illustrations of sidewall boundary migration at 

the Big Hole Mine over the past few years and a lot of valuable conclusions could be drawn from 

this work, including the entire extent of slope stability problems and the rate at which they ensue. 

Furthermore, the petrographic analysis in combination with a full geochemical analysis proved 

extremely useful in identifying the different types of clay minerals present within the internal 

structure of the rock and provided enough mineral phase diagrams for identifying the different 

mineral phases in each rock sample. From this, the swelling and shrinkage potential of the 

Kimberley shales could be deduced, which gave a lot of insight into the suggested weathering rate 

of the rocks as a function of time and water content.  

Table 11 - Calculated results of the slake-durability index (SDI) tests as carried out by Rocklab in Pretoria on both an 

untreated shale sample as well as a DECL treated (Sasbind) sample. 
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In terms of the laboratory tests as conducted and described above, all four tests provided valuable 

results in terms of assessing the effectiveness of the different DECL products on the durability and 

weathering resistance of the Kimberley shales. A strong correlation between the results of the 

cyclic wetting and drying test, the comparative accelerated weathering test and the slake-durability 

index test could be drawn. As for the conducted absorption test, the results showed a slight 

deviation when compared to the rest of the test results, which could possibly be attributed to 

human and mechanical errors during measurement of each sample.  
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Chapter 6: Results and interpretations 

6.1 Visual inspections 

The following figures illustrate numerous examples of slope instability indicators in and around the 

sidewalls of the Kimberley “Big Hole” Mine including small- and large-scale tension cracks, 

landslides, toppling structures and toppling slope failure events.  Each figure is introduced by a 

brief description of the occurring event (see Figures 45 - 52):  

Visual evidence of multiple smaller-scale tension cracks (± 2.5 meters in length) propagating 

through nearby railway tracks on Bultfontein Road is shown in Figure 45. The propagation direction 

of these cracks run parallel to the sidewalls of the Kimberley “Big Hole” Mine, which seems to 

suggest some sort of mass movement event  towards the center of the pit (i.e. soil creep for 

example). 

 

 

 

 

 

 

 

 

 

 

 

A recent occurrence of a fresh landslide on the northeastern slope of the Kimberley “Big Hole” 

Mine is shown in Figure 46.This landslide was most likely caused by a single block toppling failure 

event of the overlying dolerite caps due to regression of the underlying Kimberley shales resulting 

in a loss of support. Evidence for the occurrence of a landslide is supported by loose dolerite 

boulders scattered across the slope of the sidewall as well as the difference in color and lack of 

vegetation within the loose soil material that have formed in the shape of an overturned funnel.  

 

 

Multiple tension cracks (±2.5 m) 

Figure 45 - Multiple small-scale tension cracks on Bultfontein Road. 
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Figure 47 shows multiple small-scale erosional landslides on the eastern slope of the 

Kimberley “Big Hole” Mine caused by rapid weathering and deterioration of the underlying 

Kimberley shales. Weathering of the shale unit creates plenty loose and unstable soil material that 

is eventually transported away by small-scale erosional landslides such as the ones illustrated in 

the figure below.  

 

 

 

 

 

 

 

 

 

 

 

Fresh landslide 

Figure 46 - Recent landslide on the northeastern slope of the Kimberley “Big Hole” Mine. 

Loose dolerite 

boulders 

Small-scale landslides 

Figure 47 - Small-scale erosional landslides on the eastern slope of the Kimberley "Big Hole" Mine. 
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Loose dolerite blocks that have toppled over and into the open mine pit as a result of support 

loss (or regression) from the underlying Kimberley shales can be seen in Figure 48. The image 

depicts a typical end result of a single block toppling slope failure event at the Kimberley “Big Hole” 

Mine.  

 

 

 

 

 

 

 

 

 

 

 

 

Drone footage depicting both the relative proximity of Bultfontein Road to the nearest edge of the 

Kimberley “Big Hole” Mine, which is only approximately 22 meters, as well as the development of 

large-scale tension cracks on the northeastern side of the pit, which results in the formation of 

large-scale toppling structures can be seen in Figure 49.  These large-scale block toppling 

structures eventually break off and topple over and into the open mine pit in the form of massive 

dolerite blocks or boulders as soon as regression of the underlying shale unit reaches a critical 

state and cannot support the weight of the overlying dolerite caps anymore (i.e. support loss). 

Block toppling slope failure events, such as the one depicted in the image below, cause multiple 

large- and small-scale landslides along the slopes of the sidewalls of the Kimberley “Big Hole” 

Mine, which only further widens and increases the mine pit parameters.  

 

 

 

 

 

Loose dolerite boulders 

Figure 48 - Block toppling (slope) failure of the overlying dolerite caps.  
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Along with sufficient evidence of slope instability indicators such as tension cracks and landslides 

on the eastern edge / slope of the Kimberley “Big Hole” Mine for example, Figure 50 also indicates 

evidence of soil creep (or mass movement) along the same pit boundary (see Figure 50). This 

very slow but continuous process of mass movement towards the center of the Big Hole Mine 

creates a slumping effect along the eastern edge of the pit, which will subsequently lead to the 

formation of tension cracks and the further development of large toppling structures before a block 

toppling slope failure event is inevitable.  

 

 

 

 

 

 

 

 

 

 

22m 

Toppling structures 

Figure 49 - Proximity of Bultfontein Road to the nearest edge of the Kimberley "Big Hole" Mine as well as large-scale 
toppling structures on the northeastern side of the pit. 

Bultfntein Road 

Soil creep 

Figure 50 - Soil creep along the eastern boundary of the Kimberley "Big Hole" Mine. 
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Large-scale toppling structures / blocks around the northern and northeastern side of the pit 

(closest to Bultfontein Road) depicting sizeable areas of possible slope failures or slips as seen in 

Figure 51. The indicated blocks also represent areas with the highest associated risk in terms of 

large-scale block toppling (slope) failure events as large-scale tension cracks have started to 

develop on the surface of the ground directly behind these unstable blocks.  

 

 

 

 

 

 

 

 

A typical example of a block toppling (slope) failure event at the Kimberley “Big Hole” Mine 

prior to failure is shown in Figure 52. Exposed dolerite blocks, such as the ones depicted in the 

image below, are usually the first indication or warning of a coming block toppling slope failure 

event.   

 

 

 

 

 

 

 

 

 

 

 

Loosening dolerite blocks 

Block toppling 

Figure 52 - Block toppling at the Kimberley “Big Hole” Mine prior to failure. 

Figure 51 - Large-scale toppling blocks around the northern and northeastern side of the Kimberley Mine (closest to 
Bultfontein Road). 

Bultfontein Road 
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The existence of tension cracks at the head of a slope is often a strong indication that instability is 

imminent. Tension cracks only tend to form when ground (or soil) is being deformed (or moved) in 

a specific direction over time, causing cracks to open up at the surface of the soil and propagate 

perpendicular to the direction of the mass movement event. Therefore, the mere presence of 

tension cracks running parallel to the slopes of the Kimberley “Big Hole” Mine, as seen in Figures 

45 and 49, is enough evidence to suggest that mass movement is still taking place in and around 

the sidewalls of the Big Hole Mine and that the pit is still progressing towards its natural angle of 

repose. In other words, the sidewalls of the pit are still actively migrating in an unstable manner 

towards natural equilibrium and toppling of the overlaying dolerite cap is inevitable. Block toppling 

at the Kimberley “Big Hole’ Mine is a slow but continuously occurring process that leads to the 

existence of large-scale block toppling structures as seen in Figures 48 and 51.  

Fresh landslides and soil creep occurrences are evident all around the slopes of the sidewalls at 

the Kimberley “Big Hole” Mine as seen in Figures 46, 47 and 48 and the relative freshness of these 

landslides can be deducted from the absence of any vegetation on the surface of the slope as well 

as a triangulated trail (in the form of an upside-down funnel) of fresh soil, which is usually not the 

same colour as the surrounding material. These landslides are thought to be the end result of 

multiple block toppling events in and around the sidewalls of the Kimberley “Big Hole” Mine where 

the underlying shale bench could not support the weight of the overlying dolerite caps anymore, 

causing the orthogonally jointed dolerite blocks to break off and topple over and into the open mine 

pit. 

To conclude this section, there is enough visual evidence in and around the mine pit slopes to 

suggest that regression of the underlying shale unit is still taking place and that toppling of the 

overlying dolerite cap is imminent as best seen in Figure 53. Unfortunately, due to site restrictions 

and limited access to the pit, no clear photographic evidence of shale regression showing the exact 

extent and severity of undermining of the Kimberley shales underneath the overlying dolerite cap 

could be documented and Figure 53 therefore represents the best obtainable example. Most of the 

evidence suggesting and supporting this regressive theory comes from other slope stability 

indicators, such as the existence of multiple tension cracks and large scale toppling structures in 

and around the sidewalls of the Kimberley “Big Hole” Mine, as well as conformation from previously 

written geological and geotechnical reports by Preece et al., (2008) and Croukamp (2008).  

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



93 

 

 

   

 

 

 

 

 

 

 

 

 

 

Furthermore, looking at the sheer scale and size of the toppling structures along the eastern and 

northeastern boundaries of the Kimberley “Big Hole” Mine, as well as the extent of propagating 

tension cracks along the paved surfaces of Bultfontein Road, the general consensus is that slope 

stability problems at the Big Hole Mine is still a very imminent threat and worth further 

investigation. Comparing the recent size, frequency and extent of slope instability indicators as 

presented above to those discussed during the last written geotechnical report from 2008, a fair 

conclusion would be that slope stability problems at the Kimberley “Big Hole” Mine have slightly 

worsened over the past few years and that a big slope failure, especially within the vicinity of 

Bultfontein Road, is inevitable.  

As part of the findings of this project and in conclusion to the preceding visual assessment of the 

slopes of the Kimberley “Big Hole” Mine, a conceptual image was brought forward as to illustrate 

the process of sidewall regression at the open pit mine. Figure 54 was developed to represents a 

cross sectional drawing of a typical regressive profile on the sidewalls of the Kimberley “Big Hole” 

Mine as a function of time and includes a basic illustration of the various processes that contribute 

to the undermining of the Kimberley shales and the subsequent toppling of the overlying dolerite 

caps. The conceptual illustration aims to show that slope failures at the Kimberley “Big Hole” Mine, 

as a result of the vast susceptibility of the Kimberley shales to weather and deteriorate under 

natural weathering conditions and as a function of time (i.e. undergo regression), is inevitable. As 

the underlying support of shale weathers away, no support is given to the overlying dolerite cap. 

Figure 53 - Photographic evidence of shale regression at the Kimberley “Big Hole” Mine.  

Overlying dolerite cap 

Undermining shale unit 
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This causes a tension force to develop at the top of the slope, subsequently leading to the 

formation of tension cracks after which toppling occurs.  

 

 

 

 

 

 

 

 

 

 

 

 

6.2 Aerial photography 

The following figure represents a sequence of spatially georeferenced aerial photographs from the 

years 1975 to 2014 over the Kimberley “Big Hole” Mine that was used to visually track and trace 

the outward migration and systematic evolution of the sidewalls of the Big Hole Mine over the past 

39 years. Figure 55 represents a non-conventional way of monitoring slope movement or mass 

movement events around an open pit mine, such as the Kimberley “Big Hole” Mine, by means of 

aerial photography as a measuring technique.  

 

 

 

 

 

 

Figure 54 - Conceptual cross sectional drawing of the sidewalls of the Kimberley “Big Hole” Mine.  

Tension force 

Stellenbosch University  https://scholar.sun.ac.za



95 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

As illustrated in Figure 55, most of the ground movement events (including landslides and toppling 

slope failures) seemed to have occurred on the northern and northeastern side of the pit during the 

past 39 years, with most of the sidewall deformation occurring between 1975 and 1997. Thereafter, 

ground deformation and sidewall migration have been less pronounced and occurred less 

frequently, although still evident. Due to the relative proximity of Bultfontein Road to the eastern 

edge of the mine, it provokes most attention and concern for the town of Kimberley. The relative 

proximity of Bultfontein Road to the eastern edge of the pit is only approximately 22 meters and 

poses an immediate threat to surrounding infrastructure and businesses. The map also seems to 

suggest that even though landslides and ground movement events decreased in volume and 

frequency over the past 17 years, movement was still recorded up until 2014. The corresponding 

table gives both the area and perimeter calculations for the outer boundary of the Big Hole Mine for 

the years 1975, 1997, 2001 and 2014, as well as the increase of each as a percentage for each 

successive year as shown (see Table 12). Both area and perimeter calculations exhibit an increase 

in overall shape and size from the year 1975 to 2014, acting as sufficient evidence for still-active 

migration of the outer perimeter / boundary of the sidewalls of the Big Hole Mine outward.  

 

Figure 55 - Digitized boundaries for the sidewalls of the Kimberley “Big Hole” Mine as per years, 1975, 1997, 2001, 
and 2014.  
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Two bar charts were put forward to illustrate the above-tabulated results, visually. The figures 

therefore represents the total area and mine pit perimeter increases of the Kimberley “Big Hole” 

Mine over the past few years and is illustrated below by Figure 56 and Figure 57 respectively. 

When considering only Figure 56, the visual representation seem to suggest that mine pit failures 

and slope migrations around the sidewalls of the Kimberley “Big Hole” Mine have started to 

decrease over the past few years, especially with regards to the last 13 years.  In other words, 

when looking only at the area increase as a measurement criterion, it might suggest that the 

stability issue surrounding the slopes of the Kimberley “Big Hole” Mine have started to regress. 

This however, is not the case when measuring it against the perimeter increase calculations. 

Figure 57 shows a clear increase in the perimeter values of the Kimberley “Big Hole” Mine, 

especially within the last 13 years, suggesting that these values should always be considered as a 

whole and not viewed separately. This conclusion agrees with the findings of Section 6.3 

(discussed below), which seem to suggest that slope failures and sidewall migration at the 

Kimberley “Big Hole” Mine occurred very frequently at first, whilst now still drastic but in more 

localized areas around the pit. 

 

 

 

 

 

 

 

6.3 Pixel tracking 

Figure 58 represents a final deformation vector map between the oldest (1968) and the youngest 

(2014) aerial photographs of the Kimberley “Big Hole” Mine, which gave the best representation of 

ground movement patterns / deformation around the Big Hole Mine as a function of time. 

Table 12 - Area and perimeter calculations for the Kimberley “Big Hole” Mine, including the overall increase of each 

as a function of time.  

Figure 56 - Graph illustrating the total area increase of 

the Kimberley “Big Hole” Mine over the past few years. 
Figure 57 - Graph illustrating the total perimeter 

increase of the Kimberley “Big Hole” Mine over the past 
few years. 
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Figure 58 - Final output image of a deformation vector map for the Kimberley "Big Hole" Mine between 1968 and 2014. The map was created at CSIR (Stellenbosch) with 
COSI-Corr software. 

Study area 

Inner boundary 

Outer perimeter 
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The first and probably most significant conclusion that could be drawn from the pixel tracking 

results and the final (raw) deformation vector map, as illustrated by the black and white insert map 

in Figure 58, is that ground movement activity was most significant and pronounced around the 

general area of the Kimberley “Big Hole” Mine (i.e. depicted by a square as the defined study area) 

and to a lesser extent everywhere else. In other words, when looking at the entirety of the final 

deformation vector map (i.e. the black and white insert), vector arrows seem to be fluctuating (or 

moving) in different directions and to different extents mostly around the immediate vicinity of the 

Kimberley “Big Hole” Mine, which falls squarely within the boundaries of the defined study area as 

shown in Figure 58. Vector arrows throughout the rest of the deformation vector map however (i.e. 

excluding the defined study area), seem to indicate less or no movement and appear as small lines 

or dots, which seem to suggest fewer ground movement activity and overall deformation over the 

years. The fact that pixel tracking produced a final deformation vector map that showed very little 

to no ground movement activity / deformation outside the perimeter of the study area (i.e. the 

Kimberley “Big Hole” Mine), is seen as sufficient evidence to suggest that ground movement / 

displacement around the pit is still taking place and that the sidewalls of the mine are still actively 

migrating outward in an unstable manner towards their natural angle of repose, hence vector 

arrows showing an increase in movement and activity around the general area of the pit.  

It is worth mentioning however that, because this is a very unique and modern day method of 

measuring ground movement / displacement around large open pits (such as the Kimberley “Big 

Hole” Mine for example) and the fact that results are arbitrarily defined by COSI-Corr software, 

there is much room left for interpretation and improvement as is also the case with the final 

deformation vector map that was created and presented within this project (i.e. Figure 58). For 

example, even though it is probably still safe to say that ground movement / displacement is taking 

place around the immediate vicinity of the Kimberley “Big Hole’ Mine (as a result and interpretation 

of the movement / activity of the vector arrows in the final deformation vector map as discussed 

above), it is less accurate to say why these movements occurred and what the exact reason for 

these ground displacements are. Pixel tracking only quantifies movement and not a reason 

therefore (unless it is completely obvious). As a result, the most likely reasons (or methods) for 

ground movement around the sidewalls of the Kimberley “Big Hole” Mine (i.e. soil creep, slumping 

or landslides for example) can only be assumed and suggested based on other slope stability 

indicators and supporting evidence, which is exactly what was done below.   

The main concept behind the final output of COSI-Corr software is that the longer the vector arrow 

in resulting vector maps, the bigger the actual ground displacement in real life. It should also be 

mentioned that the vector arrows do not quantify or define an exact scaled measurement, meaning 

that they are only measured relative towards one another and not towards real life movement, 

hence the results being arbitrarily defined. Furthermore, COSI-Corr software also generally defines 
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the direction of the arrow as the true direction of ground movement around the pit and horizontal 

ground movement / displacement in and around the sidewalls of the Kimberley “Big Hole” Mine 

from 1968 to 2014. From Figure 58 it can therefore be seen as quite significant.  

Within all of the successive displacement vector maps that were created for the purpose of this 

project, and especially within Figure 58, there seem to be two sets of vector arrows pointing both 

inward and outward from the inner drawn boundary and the outer mine pit perimeter respectively. 

The first set of vector arrows situated within the inner boundary of the Kimberley “Big Hole” Mine, 

as illustrated in Figure 58, point inward towards the center of the pit, suggesting some sort of 

ground / mass movement from the sidewalls inward. Considering the direction and overall extent of 

these vector arrows, along with other slope stability indicators found in and around the sidewalls of 

the Kimberley “Big Hole” Mine, these inward pointing vector arrows most likely represent some sort 

of landslide or slumping effect of the soil from the outer boundary of the pit, inward, as slope failure 

events occurred over time. In other words, pixel tracking was used to track a pixel from the outer 

boundary of the pit, inward, between the years 1968 and 2014. This means that within the same 

time frame, soil must have moved in the same direction in response to some sort of soil / mass 

movement event, which can only be assumed to suggest the occurrence of a landslide or slumping 

effect that occurred in response to a preceding toppling slope failure event.  

The second set of vector arrows on the other hand, extend outward from the inner drawn boundary 

towards the outer mine pit perimeter and in some cases even beyond the boundaries of the 

sidewalls (see Figure 58). These longer vector arrows are thought to represent the moving mine pit 

perimeter and is seen as very indicative of the occurring weathering processes associated with the 

Kimberley shales and the resultant toppling slope failures of the overlying dolerite caps. It supports 

the evidence for regression and undermining at the Kimberley “Big Hole” Mine and stands as 

additional evidence for slope movement / migration of the sidewalls of the pit outward (i.e. 

regression of the perimeter). The unique outward radiating flow pattern of the second set of vector 

arrows around the outer perimeter of the Kimberley “Big Hole” Mine, also implies that movement of 

the mine pit perimeter (i.e. the sidewalls) around the Kimberley “Big Hole” Mine is taking place from 

the inside, outward, which agrees with previously mentioned evidence of the Big Hole increasing in 

size and shape. The second set of vector arrows therefore represent net movement, meaning that 

even though mass movement of soil inward towards the center of the pit is also occurring, as 

evident by the presence of multiple tension cracks in and around the sidewalls of the Kimberley 

“Big Hole” Mine, the mine pit boundary is still largely moving outward and increasing in size.  

Although not indicated on Figure 58, but evident in all other successive vector maps created for the 

purpose of this project, the longest vector arrows are encountered within the boundaries of the Big 

Hole Mine’s perimeter, whilst the further away you move, the smaller the arrows tend to get. The 

reason for this is that ground movement activities linearly decrease as a function of distance. In 
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other words, the further you move from the center of the pit, the less ground movement / 

deformation will affect the slope and the smaller the vector arrows will be as it meets balance. It is 

also worth mentioning that vector arrows falling just outside the immediate vicinity of the Kimberley 

“Big Hole” Mine’s perimeter (i.e. overlaying infrastructure such as buildings and roads for example), 

were automatically discarded based on their tendency to take land cover changes as a sign of 

ground movement / displacement and was therefore seen as being ambiguous and inaccurate. In 

other words, it was not able to judge whether vector arrows outside of the Kimberley “Big Hole” 

Mine’s perimeter indicated true signs of ground movement / displacement, or whether they merely 

tracked the development of infrastructure, such as the resurrection of a new building or the 

appearance of a new road for example. For this very reason, they were automatically discarded 

from the results as being ambiguous and inaccurate. Vector arrows falling within the mine pit 

perimeter however, had no external interference with regards to movement measurements in 

COSI-Corr software, especially considering that the only changes that could have occurred within 

and around the sidewalls of the Kimberley “Big Hole” Mine over the past few years, could have 

been as a result of some type of ground movement or displacement in response to some sort of 

slope stability problem or slope failure event.  Therefore, these results were considered accurate 

and viable for interpretation.  

All of the abovementioned evidence seems to address the same theme that keeps reoccurring 

throughout this project: that regression of the underlying shale unit, due to its vast susceptibility to 

weathering and deteriorate, causes it to undercut the overlying dolerite caps and initiate an even 

bigger block toppling slope failure event. This, in effect, is what causes the sidewalls of the 

Kimberley “Big Hole” Mine to radially migrate outward (as proven by the outward radiating flow 

pattern of the obtained deformation vector maps) and what causes the surrounding land cover to 

experience a general subsidizing effect due to support loss from underlying soil horizons and the 

overbearing load from surrounding infrastructure (as proven by the abundance of surrounding 

tension cracks).  

6.4 Drone footage 

What follows is a comprehensive discussion and illustration of the respective drone footage maps 

as created and displayed in DroneDeploy software. The aim of this section was to assess and 

subsequently better understand the state and stability of the Kimberley “Big Hole” Mine as it stands 

today by means of utilizing a remote controlled drone.  

6.4.1 High-resolution two-dimensional (2D) image 

As previously indicated, the eastern and northeastern margins of the pit represents the areas of 

highest associated risk for an immediate toppling slope failure, seeing as it contains strong visual 

evidence for the development of tension cracks and toppling structures in the surrounding slope 
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surfaces. Subsequently, the eastern margin is also the closest edge of the pit to Bultfontein Road, 

which only increases its potential for a high-risk slope failure. In fact, the relative proximity of 

Bultfontein Road to the nearest edge of the Kimberley “Big Hole” Mine (as it stands today) was 

determined from the high-resolution 2D image as being only approximately 22 meters, raising 

major concerns in terms of surrounding infrastructure damages and public safety. However, when 

zoomed in to the high-resolution 2D image, tension cracks, toppling structures, soil creep and fresh 

landslides could be seen all around the mine pit slopes and was not exclusive to only the eastern 

and northeastern margins of the pit. Tension cracks in particular, seem to form radially parallel to 

the sidewalls of the Big Hole Mine, whereas toppling structures are most pronounced / developed 

along areas where the underlying shale unit has been weathered and eroded away largely (see 

Figure 59).  

 

 

 

 

 

 

 

 

 

 

 

6.4.2 Elevation maps  

As indicated on Figure 60 A, an abundance of tension cracks are seen on the eastern and 

northeastern boundaries of the Kimberley “Big Hole” Mine by means of visual elevation values that 

highlight the differences in elevation. In other words, tension cracks are mostly highlighted by 

green, orange and yellow lines depending on their elevation value, that run radially parallel to the 

outer boundary of the pit. They follow the same structural trend as the slope of the sidewalls, 

indicating a certain extent of instability and ground movement in the direction of the hole. Visual 

evidence of soil creep is also evident on the associated elevation map, although not as abundant 

or as prominent as the existing tension cracks. This could be because soil creep typically involves 

the movement of a large mass / area of soil (mass movement) to such an extent that the elevation 

Figure 59 - High-resolution two-dimensional (2D) image of the Kimberley "Big Hole" Mine as it stands today. 

Bultfontein Road 

High-risk area 
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of the area will not show an abrupt change in elevation values, rather it will follow a gradual 

decreasing or increasing trend. Tension cracks on the other hand, exist much more clearly on the 

associated elevation map due to the abrupt changes in elevation as a crack starts to form and 

open up.  

Figure 60 B showed higher elevation values on the eastern and southeastern margin of the pit 

compared to the western and northwestern side. The conclusion is that landslides and toppling 

slope failure events tend to occur more frequently on the eastern and southeastern edge of the pit, 

due to it being more unstable in terms of existing tension cracks and developing toppling structures 

and closer to Bultfontein Road, which is still frequently being used on a daily basis by local taxi 

drivers (i.e. vibrations and extra load). Subsequently, the frequent occurrence of landslides and 

toppling slope failure events on the eastern side of the pit causes rock lumps and soils to heap on 

these slopes, which not only adds to the overall overburden, but also creates higher elevation 

values compared to the western and northwestern side of the slopes as seen in Figure 60 B. Public 

interference in the form of mechanical vibrations, load-bearing infrastructure and transportation 

only seem to contribute to the overall stresses on the sidewalls of the Kimberley “Big Hole” Mine, 

which is why Figure 60 B suggests an increase in the occurrence and frequency of landslides and 

toppling slope failure events on the eastern and southeastern side of the Kimberley “Big Hole” 

Mine, hence showing higher elevation values on the associated elevation map.  

Figure 60 C was created to exemplify the features as illustrated and discussed for elevation maps 

60 A and B, with the only mentionable point of interest being the visual evidence of ground 

subsidence immediately outside the mine pit perimeter.  Around the pit there are numerous areas 

where the elevation is not the same as the surrounding cover, being slightly lower in elevation 

values than the mine pit slope itself. This is considered areas of ground subsidence, where 

regression of the underlying shale unit has caused the overlaying dolerite cap to move inward 

towards the hole and set in place a process of soil creep. Soil creep at the Kimberley “Big Hole” 

Mine is a slow and continuously occurring process that causes the surrounding groundmass to 

vertically subside, which correlates well with the obtained pixel-tracking results as described and 

discussed in above. Subsidence of the surrounding area / groundmass, as indicated in Figure 60 

C, means that a radius of ground instability exists around the Kimberley “Big Hole” Mine and 

should be considered as part of the natural angle of repose. In other words, areas were ground 

subsidence are taking place is considered to be still actively migrating and deforming towards the 

slope’s natural angle of repose and will eventually, with time, undergo some sort of slope failure or 

collapse.  

 

Stellenbosch University  https://scholar.sun.ac.za



103 

 

 

Figure 60 A - Outer perimeter elevation map of the 
Kimberley "Big Hole" Mine indicating the presence of soil 
creep and tension cracks around the pit. 

Figure 60 B - Inner perimeter elevation map of the 
Kimberley "Big Hole" Mine indicating areas of fresh 
landslides and toppling failures around the slope of the 
sidewalls. 

Figure 60 C - Combined elevation map of the Kimberley "Big Hole" Mine showing the entire extent of elevations in 
and around the open pit. This three dimensional (3D) elevation map also overlays a two-dimensional (2D) vector map 
as to better represent its relative position and elevation with regards to the sidewalls of the Kimberly “Big Hole” Mine. 

Tension cracks 

Soil creep 

Toppling structures 

Landslides 

Ground subsidence 

Stellenbosch University  https://scholar.sun.ac.za



104 

 

6.4.3 Contour map 

 

The ensuing contour map did not show any significant indications of slope stability problems or 

evidence of any slope stability indicators in and around the sidewalls of the Kimberley “Big Hole” 

Mine, especially when compared to the results obtained from the respective elevation maps and 

the 2D image. The reason for this being that DroneDeploy software only allows for 1.5 meter 

contour lines to be created, which means that they form a very tight and closely knit profile when 

viewed over the entire extent of the Kimberley “Big Hole’’ Mine. This causes difficulty in visualizing 

and interpreting the results, as many of the contour lines become ambiguous. Even though the 

resultant contour map as produced and viewed for the purpose of this project did not disclaim any 

significant results in terms of the defined slope stability problem at the Kimberley “Big Hole” Mine, it 

is still considered to be a very accurate manner of tracking and monitoring slope and ground 

movement patterns around big open pit mines, such as the Kimberley “Big Hole” Mine for example. 

Unfortunately, it is also worth mentioning that no previous such maps (i.e. elevation maps of the 

Kimberley area, especially around the Kimberley “Big Hole” Mine) could be found for comparison 

and thus, this was the only map left for interpretation and discussion (see Figure 61).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 61 - 1.5 meter contour map of the Kimberley "Big Hole" Mine. 
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6.4.4 Three-dimensional (3D) model 

 

The acquired 3D model, as created for the purpose of this project, aided in visualizing the entire 

extent of slope stability problems at the Kimberley “Big Hole” Mine and created an easy way of 

showcasing the exact parameters of the pit, without being on site. From the obtained 3D model, 

the following parameters concerning the sidewalls of the Kimberley “Big Hole” Mine could be 

determined and used as a future reference from here on out to evaluate whether the sidewalls of 

the pit is increasing in size and shape over the next few years.  

The Kimberley “Big Hole” Mine parameters, as it stands today (2017), include: 

Area of pit: 17.91 Ha 

Perimeter of pit: 1.697 Km 

Area increase from 2014 to current: 0.34% 

Perimeter increase from 2014 to current: 2.79% 

The total area and mine pit perimeter increase from the last obtainable measurement (which was 

recorded in 2014 as mentioned and discussed in Section 6.2) to its current state, is calculated as 

0.34% and 2.79% respectively. This means that ground movement and sidewall migration at the 

Kimberley “Big Hole” Mine is still actively taking place to this day and would explain the overall 

increase in both area in mine pit perimeter calculations for the year 2017.  

In conclusion, both the elevation and contour maps proved to be very insightful and aided in 

identifying and visualizing specific areas of slope stability problems within and around the sidewalls 

of the Kimberley “Big Hole” Mine as it stands today. It proved that slope stability indicators such as 

tension cracks and landslides are still very prominent and frequent around the slopes of the pit and 

that slope stability problems still pose an immediate as well as a long time threat, not only to the 

people of Kimberley, but also with regards to the surrounding infrastructure.  

Both the 2D image and 3D model on the other hand, helped visualize and describe the entire 

extent of slope stability problems at the Kimberley “Big Hole” Mine and made it easier to relate 

theoretical work done during the first phase of this project, to the real-world problem and finding a 

hands-on solution. Being able to visualize the exact perimeters of the Kimberley “Big Hole” Mine 

from a perspective that is not always accessible, made it easier to assess and provide a better and 

more suitable solution (see Figures 62 A - D).  
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A 

Figure 62 A - 3D model of the north facing sidewall of the Kimberley "Big Hole" Mine. 

B 

Figure 62 B - 3D model of the east facing sidewall of the Kimberley "Big Hole" Mine. 

C 

Figure 62 C - 3D model of the south facing sidewall of the Kimberley "Big Hole" Mine. 

D 

Figure 62 - 3D model of the west facing sidewall of the Kimberley "Big Hole" Mine. 
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6.5 Petrographic analysis 

The two samples of Kimberley shales studied under the microscope showed very little variations 

and can both be described as very fine-grained rhythmites, comprising alternating layers of fine-

grained quartz to interstitial finer grained clay material / organic matter (see Figure 63). The 

petrographic study revealed that the degree of sorting is generally very good, with grains that are 

typically similar in size and shape. Individual grains tend to be elongated parallel to the bedding 

plane of the rocks, with a preferred orientation in the same direction as the layering. The fact that 

grains are sub-rounded to rounded and very well sorted, probably suggests a long transportation 

distance of sediments from the source location to where it was deposited. Mineral composition in 

sediments varies considerably as a function of particle size.  

The quartz content of the studied rocks varies according to grain size distribution from 10% to 60% 

approximately and seems to form the most dominant detrital grain constituent. Quartz grains 

typically present uniform to undulose extinction under stage rotation and commonly exhibit quartz 

overgrowths at the margins and in the fractures of the rock, as shown in Figure 63. Undulose 

extinction is usually a result of strain or grain fracturing, which can be either inherited from the 

sediment source or resulting from mechanical compaction.  

Other major detrital grain components are biotite and feldspar, although feldspathic alterations are 

very difficult to examine under the petrographic microscope due to the fine-grained nature of the 

rocks. Also, due to the very fine-grained nature of the rocks, it was not possible to distinguish any 

known heavy minerals such as zircon and rutile.  

The matrix generally ranges from 60 to 90% in some layers and is completely dominated by detrital 

clay / organic matter. Mica (predominantly biotite) is a typical constituent and in some cases exhibit 

alteration to clay-rich mica or clay minerals such as illite and chlorite. Micas are aligned and exhibit 

a preferred orientation in the same direction as the cleavage planes of the rocks. These minerals 

occur as both sub-angular grains as well as aggregates. Opaque minerals (such as iron oxides) 

also form a significant portion of the matrix material. The description of each sample, as well as 

photos can be seen in Appendix B. 
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To conclude the above made petrographic analysis of the Kimberley shales, Stead’s (2016) 

classification table of the different types of shales, as shown in Table 13, was used to identify and 

classify these rocks as: “clayey shales or clay-bonded shales” containing more than 50% of 

clay-sized particles (<0.002mm) and being welded by the recrystallization of clay minerals in the 

matrix. The very fine-grained nature of these rocks, along with their exceptionally high clay (organic 

matter) content within the matrix material, supports this classification and leads to it being the most 

logic and common characterization of the Kimberley shales.   

 

 

 

 

 

 

A B 

C D 

Figure 63 - A & C represent Kimberley shales in plain polarized light (PPL), whilst B & D represents the same 
samples only in cross polarized light (XPL). All four images highlight the fine-grained nature of these rocks, as well as 
the characteristic rhythmic layering. Both thin sections generally represent well-sorted layering of detrital quarts in a 
fine-grained clay (mica) matrix.  

Rhythmic layering 

Interstitial quartz 

Clay-rich matrix 

Table 13 - Shale classification table according to Stead (2016) and modified after Yagiz (2001). 
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6.6 Geochemical analysis 

After completion of a full geochemical investigation on the chemical composition of the Kimberley 

shales, which constitutes the reason for slope stability problems at the Kimberley “Big Hole” Mine, 

certain conclusions surrounding the exact chemical construct of these rocks as well as the most 

dominant clay mineral within their crystal lattice could finally be drawn. This was done by 

undertaking two basic geochemical tests on the Kimberley shales, which included a complete X-

ray fluorescence (XRF) major element analysis as well as a complimentary X-ray diffraction (XRD) 

mineral phase analysis. 

6.6.1 X-Ray Fluorescence (XRF) analysis 

The bulk rock composition obtained from the XRF analysis for the two shale samples is shown in 

Table 14.  

 

 

 

 

Looking at the obtained  XRF results from Table 14, it is clear that there are very little variations 

between the chemical structures of the samples and that both represent the same bulk rock 

chemistry. Both contain an average amount of silica (SiO2) close to 52%, whilst being fairly 

enriched in aluminium (Al2O3), which can generally be ascribed to the high clay content of these 

rocks (seeing as clay minerals tend to have a lot more almunimium within their molecular structure 

than most other minerals). In terms of the most dominant clay mineral constituent within the 

chemical construct of the Kimberley shales, illite seems to fit the above mentioned compositional 

profile the best and would therefore be considered the most abundant (or most likely) clay mineral 

within the chemical structure of the Kimberley shales. In other words, when comparing the 

abovementioned XRF results, as an average of both shale samples, to the compositional profiles 

of the most common types of clay minerals as suggested by Pettersen (2014) and recreated by 

Botha (2015) (see Table 2), it shows that illite generally contains an average aluminium content of 

17.02 % and an average silica content of 54.01%, which seems to fit the average compositional 

profile of both samples very well. The rest of the most common types of clay minerals, including 

montmorillonite, vermiculite and kaolinite could be eliminated based on their chemical 

compositions. The process of elemental and compositional elimination entails the process of 

eliminating the possibility of a mineral being present within the chemical structure of a rock by the 

mere fact that one of the most important (or critical) chemical compositions / elements needed to 

create such a mineral, is missing or lacking in presence and is therefore impossible to be the most 

Table 14 - Whole rock (bulk) chemistry of two Kimberley shales by means of an XRF analysis. 
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dominant. The full XRF analysis as run by the Central Analytical Facility (CAF) of Stellenbosch 

University, along with the various standardizations is attached as Appendix C. 

The reason for the sum total of each analysis being slightly less than a hundred percent (<100%), 

is because of the presence of Sulfur (S) in both samples. Unfortunately, sulfur does not form part 

of the major element analysis at CAF (Stellenbosch), which means that it was not accounted for 

during the calibration and calculation of the sum total for each sample. It is worth mentioning 

however, that even though sulfur did not form part of the major element components for this 

analysis, the sum total for each rock is still sufficiently close to a 100%, which means that the sulfur 

content for each rock must have been very small and therefore acceptable to exclude. It has no 

negative effect on the end result of the analyses in any way. 

6.6.2 X-Ray Diffraction (XRD) analysis 

In terms of the undertaken XRD analysis, both Figures 64 and 65 represent a count profile of the 

most dominant mineral phases within each individual sample. Various national  (SARM, 2017) and 

international  (NIST, 2017) standards were used to find a profile that best fits the original test 

profile of each sample and for each individual mineral constituent. It is evident, without further 

analysing the results, that there are two mineral constituents which seem to dominate within the 

crystal lattice of both samples. Both rocks seem to contain a considerable amount of quartz (as 

illustrated by the large red spikes) and to a lesser extent, although still in considerable amounts, 

potassium feldspar in the form of muscovite (as illustrated by the large blue spikes). In other words, 

the XRD analysis of both rock samples definitely seem to suggest that quartz and muscovite form 

the two most dominant mineral phases within the Kimberley shales, being much more abundant 

than any other mineral. This agrees with the high traces of silica (52%) and pottasium (2.5%) 

detected during the major element analysis of the associated XRF analysis. This is because if a 

rock contains a  lot of quartz and pottasium felspar (such as muscovite for example), it will 

inevitably also contain a lot of potassium and silica within its chemical construct.  

However, from both graphs (see Figures 64 and 65) many, not so fimiliar, mineral phases also 

make a contribution to the unique chemical composition of the Kimberley shales including minerals 

such as jarosite, hematitie and clinochlore (although it is worth mentioning that they were not 

represented in large quantities and mostly formed part of the matrix mineral phases). A specific 

reason for running an XRD analysis on two shale samples (in correspondence with the preceding 

XRF analysis), was to more accurately identify the phase of the most dominant clay mineral within 

the crystal lattice of the Kimberley shales, which would subsequently reveal a lot about its 

weathering properties and characterisitcs.  

As a result, sample KBU1 showed a significant phase spike for the clay mineral illite, which 

seemed to fit the associated phase diagram best, whereas sample KB2 showed a phase spike that 
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fit both the compositional profile of illite and kaolinite. However, seeing as only one sample (KB2) 

contained a profile spike for kaolinite, but both samples showed a match for the clay mineral illite, it 

was automatically assumed that illite probably forms the most dominant clay mineral within the 

chemical structure of the Kimberley shales as had already been determined and concluded by the 

abovementioned XRF results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64 - XRD phase analysis for Kimberley shale sample - KBU1. 

Figure 65 - XRD phase analysis for Kimberley shale sample KB2. 
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Both quantitative tests revealed an expected elemental shale composition and mineral phase 

diagram with average silica (SiO2) contents of approximately 52% and slightly elevated aluminum 

(Al2O3) contents ranging between 16 – 17 % for the two tested shale samples respectively. This is 

slightly higher than what is normally expected for other types of rocks, such as sandstones or 

granites for example, which supports the evidence of the Kimberley shales being dominantly clay-

bearing rocks and agrees with the associated petrographic analysis, which concluded the 

Kimberley shales to be identified and classified as “clayey shales or clay-bonded shales”. Both 

geochemical analyses further suggests that the most dominant clay mineral within the crystal 

lattice of the Kimberley shales, which would account for the slightly enriched aluminum contents of 

these rocks, is best represented by the clay mineral Illite. 

Illite, in nature, is generally known as a non-expansive clay mineral that undergoes the least (if 

any) amount of swelling and shrinkage when in contact with water / moisture. This is because of its 

basic 2:1 structural unit comprising of silicon-oxygen tetrahedra and an aluminum-hydroxyl 

octahedron, which causes the spaces between individual clay crystal sheets to be occupied by 

poorly hydrated and tightly held potassium cations (K+), which in turn is generally responsible for 

the overall absence of swelling when in contact with a fluid or moisture.  

Compositionally, the presence of Illite within the chemical structure of the Kimberley shales 

accounts for the slight potassium enrichment as seen from the XRF analysis of both tested shale 

samples, more so than any of the other common types of clay minerals (such as montmorillonite or 

vermiculite for example) would have shown. Mineralogically, Illite is often compared to the 

potassium feldspar mineral known as muscovite, being only slightly more enriched in silica (Si), 

magnesium (Mg), iron (Fe) and water (H2O) and they are therefore more often than not found to 

form together in the same rock. Focusing specifically on the associated XRD results, this accounts 

for the large muscovite peak within the mineralogical phase diagram of both shale samples, which 

suggests that muscovite forms a prominent constituent within the chemical construct of the 

Kimberley shales, fostering a close relationship with the clay mineral, Illite, as they seem to grow 

from the same chemical elements. In other words, the strong presence of muscovite within the 

phase diagrams of both rock samples (as indicated by the phase analysis of the associated XRD 

analysis) is usually a good indication for the presence of Illite within the same rock mass, which 

further supports the concluded results from the preceding petrographic analysis and XRF results 

about the most dominant clay mineral of the Kimberley shales.  

In conclusion, other smaller and less significant elemental compositions as determined by the 

preceding XRF analysis, such as magnesium (Mg), calcium (Ca), iron (Fe), sodium (Na) and 

titanium (Ti) is thought to be divided and taken up unevenly between the other not-so-familiar 

mineral phases, such as jarosite [KFe3(SO4)2(OH)6], hematite [Fe2O3] and clinochlore [ (Mg, Fe, 

Al)6(Si, Al)4O10(OH)8 ]. These minerals and chemical composition occur within the Kimberley shales 
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to such a small extent that it does not have an immense effect on the stability and weathering 

properties of these rocks at all.  

As to visually showcase the results of both XRD analyses for samples KBU1 and KB2 respectively, 

the following graph was created as an illustration of the results together with the presence of the 

most dominant mineral phases (see Figure 66): 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

6.7 Absorption tests 

As a dual function to accurately test the permeability characteristics of the Kimberley shales, as 

well as to identify which dust and erosion control liquid (DECL) product proved most successful in 

preserving the physical (both internal and external) characterisitcs of the rocks, the conducted 

absoprtion tests proved very insightfull and revealed promising results. The respective absorption 

tests, in which the samples were submerged for a period of fifteen mintues and thereafter for 

longer time intervals, not only revealed the Kimberley shale’s water to body mass absorption ratio 

over a certain period of time if untreated, but it also identified a potential DECL product that can be 

used as a water repellent base to largely decrease the rock’s permeability. Table 15 represents the 

obtained results for each individual absorption test corresponding to each individual DECL product 

used: 

 

 

Quartz 

Muscovite 

Illite 

Jarosite 

Sample – KBU1 

Sample – KB2 

Figure 66 - Final XRD results for both analyzed Kimberley shale samples together with the presence of the 

most dominant mineral phases.  
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From the results obtained as tabulated above, the first significant conclusion that can be made with 

regards to the absorption properties and permeability characteristics of the Kimberley shales, if left 

untreated, is that they possess a great potential to absorb water / fluid over a very short period of 

time. In fact, they proved to be so permeable that the absorption test conducted for the untreated 

reference batch of the Kimberley shales, showed an increase in almost a quarter of its own body 

mass (56 grams equaling 23.33%) in only seven days, which suggest that these rocks are fairly 

permeable compared to other rock types and on average, absorp water at relatively high rates. 

This will subsequently have an effect on the internal strength parameters of the Kimberley shales 

and can be used to explain their high susceptibility to natural weathering processes including both 

physical and chemical weathering.  

Their relatively permeable rock structure (as proven by the absorption test of an untreated 

reference batch) and their propensity to absorb water if left undrained or immersed, is undoubtedly 

the reason why the Kimberley shales will continue to weather and regress at an alarming rate by 

means of slaking and deterioration processes. Slaking and deterioration as both physical and 

chemical weathering agents, tend to exponentially increase / activate in the presence of a fluid and 

in humid climatic conditions, which is the conditions experienced during the summer months of 

November to February in the town of Kimberley. It was therefore of critical importance to examine 

and test the effects of different DECL products on the absorption characteristics of the Kimberley 

shales and to test whether they assisted in decreasing the rock’s permeability and in turn delay the 

physical and chemical weathering process.  

On average, the untreated reference batch absorbed 4 grams of moisture per interval, which is 

1.67% of its original dry mass. This is 1.15% more than the highest average absorption rate per 

interval from any of the five DECL treated sample batches. The DECL products performed 

exceptionally well under the relevant absorption tests and showed very promising results in terms 

of decreasing the permeability properties of the Kimberley shales and in preserving the physical 

characteristics thereof, especially when comparing the results to the untreated reference batch.  

Four of the five DECL products, that is, NanoSil, NanoBond, NANO and Sasbind, showed very 

similar results in terms of their overall moisture intake, ranging on average between only 3.89% 

and 5.75%, whereas one DECL product, namely Sasbind (Bit), did not perform quite as well with 

Table 15 - Total moisture intake (or absorption rate) for each sample batch during regularly timed intervals. 
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an average moisture intake of 7.31%. This is slightly more than the rest, but still a great 

improvement compared to the untreated reference batch. The fact that all of the DECL treated 

sample batches showed a tremendous decrease in the average moisture intake when immersed in 

water for a certain period of time, is considered to be a successful outcome to this specific test and 

towards finding a proper solution for the defined slope stability problem at the Kimberley “Big Hole” 

Mine. It means that the DECL products were successful in their role to decrease the rock 

permeability characterisitcs of the Kimberley shales and to lower the absorption rate of these 

rocks. They are therefore also considered to be valuable products in delaying the weathering rate 

of the Kimberley shales when exposed to natural weathering conditions and in reducing the 

susceptibility of the shales to slake or disintegrate when immersed in water.  

However, in order to identify which of the five DECL products proved most sucessful in their role as 

a water repellent base for the Kimberley shales, the results as calculated in Table 15 was 

graphically illustrated below in Figure 67 and shows the performance of each individual DECL 

product as a function of time and against an untreated reference batch.  

 

 

 

 

 

 

 

 

 

 

 

 

From the graph it is clear that for each individual absorption test as conducted for the purpose of 

this project, there was a period between approximately 0 and 25 hours (or 1 day) where rock lumps 

from each sample batch experienced most of their moisture intake (or absoprtion) compared to 

their original dry body mass, increasing between approximately 1% - 6% for the different DECL 

treated shale samples and 13% - 23% for the untreated reference batch. In other words, for the 

Figure 67 - Absorption rate as a percentage of the original dry mass for each DECL product and an untreated reference batch 
as a function of time. HRA – High Rate of Absorption; LRA – Low Rate of Absorption.  

HRA LRA 
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first ± 24 hours most of the rock samples managed to fill their pores with fluid (or water) to gain 

maximum permeability and this is considered the “high rate of absorption (HRA)” part of the curve. 

After filling their voids with water to become fully saturated, samples reached a plateau where their 

moisture intake / absorption rate remained fairly constant (i.e. weight measurements remained the 

same) as seen by the “low rate of absorption (LRA)” part of the curve.  

The HRA part of the curve is therefore the section of interest for the purpose of this test, as it 

reveals most about the initial absoprtion resistance for each individual DECL product. According to 

the graph, all DECL products performed relatively well and managed to keep their initial rate of 

absoprtion to less than approximately 6% for the first 25 hours. However, the DECL product that 

proved to have the lowest initial absorption rate / moisture intake as well as kept the most constant 

profile (or weight) as time went on, was the DECL product named NANO.  

NANO constitutes a combined mixture of the DECL products named NanoBond and NanoSil, 

which might explain its success in the resultant absorption tests. For the NANO product, an 

average moisture intake of 3.89% for the whole immersion period was documented and it 

managed to keep a constant weight throughout, which concluded the best performance of all five 

DECL products. Based solely on the trail of this absorption test, the order in which the respective 

DECL products performed in terms of decreasing the Kimberley shale’s permeability and delaying 

water absoprtion through the surface of the rocks can be seen in Table 16. 

Table 16 - Overall performance of the DECL products after completion of the absorption tests. 

Rank: DECL product: 

1 NANO 

2 Sasbind 

3 NanoSil 

4 NanoBond 

5 Sasbind (+ Bit) 

6 Untreated 

 

These ranks were determined based on the average moisture intake (or absorption rate) for each 

indivudual DECL treated shale sample batch, as well as considering the results of the HRA part of 

each individual curve that indicated the respective DECL product’s resistance to absorption and 

moisture intake. For instance, even though the NanoSil product graphically shows better results 

than the Sasbind product in terms of the low rate of absorption part of the curve, the initial HRA is 

slightly higher, resulting in a larger average moisture intake compared to its original body mass 

than expected. Based on the average moisture intakes as calculated above as well as looking at 
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the HRA part of the curves, NANO still represent the most effective water repellent base and 

seems to decrease water absorption through the surface of the rock the best, hence also 

decreasing rock permeability most. 

The visual evaluation of the individual rock lumps as described in Table 15, supports the concluded 

results exceptionally well seeing as rock lumps sprayed with NANO liquid were the only ones that 

did not exhibit any cracks on the surface of the rocks, nor any material lost in suspenion by means 

of slaking or disintegration.  

6.8 Cyclic wetting and drying tests 

As part of the shale durability and weathering resistance tests that were conducted for the purpose 

of finding a viable solution (i.e. a viable DECL product) for the defined slope stability problem at the 

Kimberley “Big Hole” Mine, a full scale cyclic wetting and drying test was also completed with the 

hope of better idintifying a suitable DECL product that could assisit in increasing the rock strength 

parameters of the Kimberley shales. The conducted cyclic wetting and drying tests proved to be an 

accurate method of measuring slaking and disintegration in the Kimberley shales when exposed to 

natural weathering conditions and when exposed to frequent wetting and drying cycles. The test 

was purely based on the rock’s behaviour when exposed to natural elements (such as heat, water 

and low temperatures) and introduced no other external factors such as mechanical aggitation 

(that was factored in to the following AWT and SDI tests) for example. 

In other words, the respective cyclic wetting and drying tests for each DECL treated shale sample 

and an untreated reference sample, simulated the closest weathering conditions to that 

expereinced by surface rocks at the Kimberley “Big Hole” Mine and involved the longest test period 

out of all durability tests conducted for the purpose of this project, therefore also seen as probably 

the most accurate. The full scale weathering test, in the form of weekly wetting and drying cycles, 

was evaluated both quantitatively through weekly weight measurements in order to track mass / 

material loss and qualitatively through weekly visual inspections. 

Before evaluating the results of the cyclic wetting and drying tests however (as done below), it is 

improtant to first note the practical importance of these tests on the rocks at the Kimberley “Big 

Hole” Mine, with specific reference to the Kimberley shales and the rate at which they weather / 

deteriorate. Only when a comparison between the test conditions of the cyclic wetting and drying 

tests and the actual weathering conditions at the Kimberley “Big Hole” Mine is drawn, can a direct 

correlation and conclusion be made towards the weathering (or deterioration) rate of the Kimberley 

shales and the impact it has on the defined slope stability problem. When comparing test 

conditions to actual weathering conditions experienced by rocks at the Kimberley “Big Hole” Mine, 

it is first and foremost important to note that test conditions were much more intense in terms of: 1.) 

Exposure to natural weathering elements / agents (such as wind, water, heat and low temperatures 
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for example), being completely exposed to the atmosphere on a 24 hour basis and for a total of six 

months without any coverage. 2.) Exposure to a continuous cycle of wetting and drying, being wet 

once a week with 2 litres of water for a period of 6 months, equating to a total of 48 litres per 

sample. 3.) Smaller sample sizes of individual rock lumps, meaning that more of the surface area 

of each rock was exposed to the abovementioned conditions / elements, as oppose to an in-situ 

rock at the Kimberley “Big Hole” Mine that only has one surface exposed to the atmosphere and is 

protected from the sides and from below by a confining pressure.  

Besides the fact that individual cyclic wetting and drying tests were more intens and focussed in 

terms of the direct conditions under which they were tested, each individual test was also 

accelerated by weekly cycles of wetting and drying, representing a simmulation of accelerated 

weathering conditions. In fact, to put this into perspective and to better understand the accelerated 

rate at which these tests were conducted compared to actual weathering conditions experienced 

by rocks at the Kimberley “Big Hole” Mine (under normal circumstances), the following calculations 

and conlusions were made: 

Taking the average size and shape of all five DECL treated shale samples along with an untreated 

reference sample into account (which equates to an average surface area of apporxiamtely 572.98 

cm2 for each sample) and working back from the amount of water they were exposed to during the 

duration of the cyclic wetting and drying tests (i.e. 48 litres per sample), the average rainfall in 

milimeters (mm) experienced by the shale samples of the cyclic wetting and drying tests equates to 

an average of approximately 910 mm over a six month period. When considering the average 

precipitation values for the town of Kimberley, the average rainfall amount for the passing year 

(2016) adds up to approximately 602 mm per year or 301 mm for half a year (i.e. six months). 

Comparing this to the calculated amount of 909.92 mm for the test conditions of the cyclic wetting 

and drying tests, it becomes clear that the test was conducted at almost three times (x3)  the 

average rainfall rate that would have been expected over the town of Kimberley for the same 

period of time. The cyclic wetting and drying test conditions can therefore be seen as highly 

accelerated when compared to the actual weathering conditions experienced around the general 

area of Kimberley and with specific focus on the Kimberley “Big Hole” mine, as it would require an 

enormous amount of rainfall over a very short period of time to get the same results in real life. The 

test was accelrated to this extent due to time constraints and for the purpose of testing each DECL 

product to its maximum potential and within the shortest period of time. The end goal was not to 

precisely simmulate actual weathering conditions over the town of Kimberley, but to determine 

which of the five DECL products would perform best under an accelerated and long term process 

of continuous wetting and drying. In terms of temperature conditions however, the average 

minimum and maximum temperatures recorded over the six month period of the cyclic wetting and 

drying tests were 13°C and 27°C respectively, whereas average minimum and maximum 
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temperatures over the town of Kimberley during the first six months (from January to June) of this 

year was between 18°C and 33°C respectively. This means that the only factor that might have 

been slightly more intense in terms of the actual weathering condtions experienced by rocks at the 

Kimberley “Big Hole” Mine and test conditions experienced by rocks of the cyclic wetting and 

drying tests, would be the average temperature conditions that is slightly higher / warmer and more 

humid over the town of Kimberley, which would defintely spead up the process of slaking and 

disintegration and reciprocate weathering.  

It is also worth mentioning that all cyclic wetting and drying tests were conducted over a full period 

of six months, except where complete slaking or disintegration of a sample occured before this 

time, then the test was stopped. The following table illustrates weekly weight (or material) loss of 

each DECL treated shale sample and an untreated reference sample, together with a visual 

indication of each pre-and post cyclic wetting and drying test (see Table 17). 

Table 17 - Cyclic wetting and drying test evaluation. 

  

Untreated shale sample 

Original weight: 4084g End weight: Unmeasurable 

First visual assessment (Week 0): 

No visual evidence of cracks or fractures on 

the surface of the rock (i.e. completely 

intact), although some evidence of flaking 

around the edges. Laminations run parallel 

to the surface of the rock and red / orange 

colour due to iron staining. 

Last visual assessment (Week 4): 

Went through various stages of slaking and 

disintegration. First, during week 1, small 

cracks and fractures started to develop along 

the surface of the rock due to mobilization of 

its swelling and shrinkage potential, which 

initiated as a result of the wetting and drying 

cycle. During week 2, larger cracks and 

fractures started to form along the foliation 

planes of the rock. This initiated an even 
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larger swelling and shrinkage potential, 

because as the sample started to break along 

its planes of weakness, it allowed more water 

ingress through the surface of the rock and 

subsequently, more weathering. Finally, 

during week 3, the whole rock started to slake 

and disintegrate into smaller rock fragments. 

Slaking seemed to precede the disintegration 

process and the rock first started to slake into 

smaller rock fragments of approximately 

20mm. Thereafter, disintegration of the rock 

proceeded and chemically started breaking 

down the smaller rock fragments into even 

smaller fine particles of less than 20mm. The 

slaking and disintegration process however, 

seemed to occur hand-in-hand and left the 

rock completely broken down and deteriorated 

after only four weeks. In other words, in 4 

weeks’ time, the untreated shale sample had 

been entirely broken down (i.e. not intact 

anymore) and completely weathered into 

many smaller rock fragments of less than 

20mm in size. It retained nothing of its 

physical characteristics and lost all of its 

original strength parameters, which is why the 

test was stopped before the full duration of the 

cyclic wetting and drying test procedure (i.e. 

six months). In other words, the test for an 

untreated reference batch only lasted up to 

four weeks before being terminated.  
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Nanosil 

Original weight: 1608 g End weight: 1549 g 

First visual assessment (Month 0): 

No visual evidence of any crakcs or fractures 

on the surface of the rock. Laminations run 

parallel to the surface of the rock and the 

brown colour indicated in the image above is 

only due to application of the Nanosil 

product, causing the rock to darken in 

appearance.  

Last visual assessment (Month 6): 

During the first three months, no visual 

changes in the physical structure of the rock 

was observed (i.e. no cracks or fractures), 

which is a good indication that the Nansil 

product worked well against the wetting and 

drying cycle and offered enough weathering 

resistance for the rock to withstand natural 

weathering conditions. In other words, the 

Nanosil DECL product seemed to preserve 

the rock structure quite well for the first three 

months, before signs of weathering and 

deterioration started to show. During month 

4, small cracks and fractures started to 

develop on the surface of the rock and only 

worsened over time until the rock was 

completely cracked through by the end of 

month six. Slaking and disintegration did play 

a part in the weathering and deterioration 

process of the Nanosil treated shale sample, 

although not as intens as was observed with 

the untreated shale sample. During month 

five, (after reasonable size cracks had 

already started to form on the surface of the 
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rock and alongside the planes of weakness) 

the rock started to slake into smaller rocks 

fragments of approximately 20mm in size, 

which eventually broke off and weathered 

away. Disintegration was not really observed 

and if so, it was only noticed on a very small 

scale and to a lesser extent. After six months 

however, the Nanosil treated shale sample 

still largely remained intact and only 

exhibited large cracks and fractures through 

the body of the rock, cutting perpendicular to 

the lamination planes and leaving large size 

clasts of approximately 3 to 5cm behind. 

Total percentage material loss for the 

Nanosil treated shale sample, mostly due to 

slaking and to a lesser extent disintegration 

processes, equated to approximately 3.67%. 

This is not a lot compared to the untreated 

reference shale sample (above), but quite 

substanital when compared to the rest of the 

treated shale samples (below).  

 

  

NanoBond 

Original weight: 3613g End weight: 3501g 

First visual inspection (Month 0): Last visual inspection (Month 6): 
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No visual evidence of cracks or fractures on 

the surface of the rock. Laminations run 

parallel to the surface of the rock. The 

applied NanoBond product is transparent in 

colour and caused the rock to attain a slight 

glow. No signs of weakness or flaking along 

the surface of the rock was observed. 

 

During the first 5 months, no visual changes 

in the physical structure of the rock was 

observed. In other words, the rock remained 

completely intact and showed no signs of 

weathering or deterioration (i.e. no signs of 

cracks or fractures on the surface of the 

rock). Only during the last month of visual 

inspections (month 6), did the rock sample 

start to crack and fracture along one of its 

edges. Small cracks started to develop along 

the lamination planes of the rock, slowly 

growing into one large fracture as seen in the 

above illustrated image. The fracture 

developed and further propagated along the 

laminations of the rock, but did not propagate 

all the way through and at the end of month 

six, the rock was still intact. This is a very 

good representation of NanoBond’s abillity to 

provide weathering resistance against a 

continuous cycle of wetting and drying and 

proved to be very effective in preserving the 

physical structure of the rock, as well as in 

enhancing general rock durability. No signs 

of slaking or disintegration were observed 

throughout the six month monitoring period 

and it could therefore be concluded that the 

NanBond DECL product was successful in 

slowing down the weathering processes of 

slaking and disintegration. Total percentage 

material loss for the NanoBond treated shale 

sample after six months of wetting and 

drying equated to approximately 3.01%. This 

is slightly better in terms of what was 

calculated for the material loss of the 

abovementioned NanoSil treated shale 

sample, although still not as good / effective 

as the rest of the treated shale samples 

Stellenbosch University  https://scholar.sun.ac.za



124 

 

(discussed below). The reason for material 

loss in this specific case and which seems to 

contrast the reasons for material loss of the 

previously discussed NanoSil treated shale 

sample (i.e. slaking and disintegration), is 

that eventhough the NanoBond treated shale 

sample showed very little to no evidence of 

slaking or disintegration, the rock still 

fractured along one of its planes of 

weakness as a result of temperature 

fluctuations. It is thought that constant 

temperature changes (i.e. maximum and 

minimum temperatures) were responsible for 

the NanoBond treated shale sample to swell 

(or expand) and shrink on a regular basis, 

causing an already formed plane of 

weakness in the rock, such as a bedding 

plane for example, to slowly open up (or 

crack) and expand. This, in turn, allowed for 

more water ingress through the surface of 

the rock as time went on and eventually 

allowed to rock to successively fracture into 

smaller rock fragments. In other words, the 

reason for material loss in the NanoBond 

treated shale sample is not directly related to 

the ineffectiveness of the NanoBond DECL 

product to prevent water ingress / absorption 

through the surface of the rock, but more 

with the shale sample itself and its reaction 

towards constant climatic (or temperature) 

changes. The opinion is still that the 

NanoBond DECL product served its purpose 

in providing a waterproof coat around the 

treated shale sample and that fracturing, as 

a result of swelling and shrinkage in 

response to constant temperature changes, 

is what eventually caused the rock to 
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weather and deteriorate.  

 

  

NANO 

Original weight: 5363g End weight: 5321g 

First visual inspection (Month 0): 

No visual evidence of cracks or fractures on 

the surface of the rock with laminations 

running  parallel to the surface. The white 

speckled appearance, as seen in the above 

illustrated image, is only as a result of the 

applied NANO DECL product. No signs of 

weakness (i.e. cracks or fractures) nor 

flaking were observed along the surface or 

the edges of the rock and the sample 

remained completely intact prior to 

commencement of the test.  

 

Last visual inspection (Month 6): 

After 6 months of continuous wetting and 

drying and exposure to natural weathering 

conditions (such as heat, wind and low 

temperatures), no visual changes in the 

physical structure of the rock was observed. 

In other words, the physical rock structure 

remained completely unchanged and no 

signs of weakness (i.e. cracks or fractures) 

were observed on the surface of the rock. 

This lead to the conclusion that the NANO 

DECL product worked exceptionally well 

towards providing enough weathering 

resistance for the Kimberley shale sample to 

withstand the effects of cyclic wetting and 

drying and as a result, no physical evidence 

of slaking or disintegration were observed at 

all. The NANO DECL product enhanced rock 

durability to such an extent that the 

respective (shale) rock sample remained 

completely intact and showed no clear signs 
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of material loss or deterioration. It can 

therefore be concluded that the NANO DECL 

product effectively opposed the effects of 

slaking and disintegration of the Kimberley 

shales when exposed to natural weathering 

conditions and a continuous cycle of wetting 

and drying. According to this specific cyclic 

wetting and drying test, the NANO DECL 

product can be seen as representing a 

(possibly) viable DECL product to be used 

for the defined slope stability problem at the 

Kimberley “Big Hole” Mine and is worth 

further investigation. Eventhough no 

changes or signs of weakness were 

observed in the physical structure of the rock 

during the duration of the test, material loss 

still occurred and even if only to a small 

extent, it is still worth mentioning. Material 

loss for the NANO treated shale sample 

equated to approximately 0.78%, which is 

very small especially when compared to the 

material loss of the first three samples. This 

small amount of material loss can most likely 

be asribed to other weathering agents / 

elements such as erosion of the surface of 

the rock due to wind or the interaction of 

water with the surface of the rock causing 

small sand sized particles to break off and 

wash away. However, material loss for the 

NANO treated shale sample was so 

insignificantly small that the reasons 

therefore will not be discussed any further.  
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Sasbind 

Original weight: 2531g End weight: 2510g 

First visual inspection (Month 0): 

No visual evidence of cracks or fractures on 

the surface of the rock with laminations 

running  parallell to the surface. The white 

translucent appearance, as seen in the 

above illustrated image, is only as a result of 

the applied Sasbind DECL product. No signs 

of weakness (i.e. cracks or fractures) nor 

flaking were observed along the surface or 

the edges of the rock and the sample 

remained completely intact prior to 

commencement of the test.  

 

Last visual inspection (Month 6): 

After 6 months of continuous wetting and 

drying and exposure to natural weathering 

conditions (such as heat, wind and low 

temperatures), no visual changes in the 

physical structure of the rock was observed. 

In other words, the physical rock structure 

remained completely unchanged and no 

signs of weakness (i.e. cracks or fractures) 

were observed on the surface of the rock. 

This lead to the conclusion that the Sasbind 

DECL product worked exceptionally well 

towards providing enough weathering 

resistance for the Kimberley shale sample to 

withstand the effects of cyclic wetting and 

drying and as a result, no physical evidence 

of slaking or disintegration were observed at 

all. The Sasbind DECL product enhanced 

rock durability to such an extent that the 

respective (shale) rock sample remained 

completely intact and showed no clear signs 

of material loss or deterioration. It can 

therefore be concluded that the Sasbind 

DECL product effectively opposed the effects 
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of slaking and disintegration of the Kimberley 

shales when exposed to natural weathering 

conditions and a continuous cycle of wetting 

and drying. According to this specific cyclic 

wetting and drying test, the Sasbind DECL 

product can be seen as representing a 

(possibly) viable DECL product to be used 

for the defined slope stability problem at the 

Kimberley “Big Hole” Mine and is worth 

further investigation. Total percentage of 

material loss for the Sasbind treated shale 

sample equated to 0.83% and is considered 

to have occurred due to the same processes 

as explained for the previous sample. 

Material loss for both the NANO treated 

shale sample, as well as the Sasbind treated 

shale sample was so insignificantly small 

that the reasons therefore will not be 

discussed any further.  

 

  

Sasbind (+Bit) 

Original weight: 3753g End weight: 3727g 

First visual inspection (Month 0): 

No visual evidence of cracks or fractures on 

the surface of the rock with laminations 

Last visual inspection (Month 6): 

After 6 months of continuous wetting and 

drying and exposure to natural weathering 
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running  parallell to the surface. The dark 

brown colour of the rock, as seen in the 

above illustrated image, is only as a result of 

the applied Sasbind (+Bit) DECL product. No 

signs of weakness (i.e. cracks or fractures) 

nor flaking were observed along the surface 

or the edges of the rock and the sample 

remained completely intact prior to 

commencement of the test.  

 

conditions (such as heat, wind and low 

temperatures), no visual changes in the 

physical structure of the rock was observed. 

In other words, the physical rock structure 

remained completely unchanged and no 

signs of weakness (i.e. cracks or fractures) 

were observed on the surface of the rock. 

This lead to the conclusion that the Sasbind 

(+Bit) DECL product worked exceptionally 

well towards providing enough weathering 

resistance for the Kimberley shale sample to 

withstand the effects of cyclic wetting and 

drying and as a result, no physical evidence 

of slaking or disintegration were observed at 

all. The Sasbind (+Bit) DECL product 

enhanced rock durability to such an extent 

that the respective (shale) rock sample 

remained completely intact and showed no 

clear signs of material loss or deterioration. It 

can therefore be concluded that the Sasbind 

(+Bit) DECL product effectively opposed the 

effects of slaking and disintegration of the 

Kimberley shales when exposed to natural 

weathering conditions and a continuous 

cycle of wetting and drying. According to this 

specific cyclic wetting and drying test, the 

Sasbind (+Bit) DECL product can be seen as 

representing a (possibly) viable DECL 

product to be used for the defined slope 

stability problem at the Kimberley “Big Hole” 

Mine and is worth further investigation. Total 

percentage of material loss for the Sasbind 

(+Bit) treated shale sample equated to a 

mere 0.69%, which is the smallest amount of 

material loss calculated for all five DECL 

treated shale samples, uncluding the 

untreated reference sample. The fact that 
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material loss for this specific sample was so 

small and the fact that reasons therefore can 

only be suggested, means that it will not be 

discussed any further as it is insignificant.  

 

After completion of the respective cyclic wetting and drying tests as conducted for each DECL 

product and an untreated reference sample of the Kimberley shales, the visual inspections and 

mass determinations (as desribed and discussed above for each shale sample) rendered some 

interesting and worthwhile results. According to the cyclic wetting and drying test of an untreated 

shale sample , the rock will not withstand the effects of natural weathering conditions, especially if 

confronted with a continuous cycle of wetting and drying. The untreated shale sample only 

managed  to retain its physical (rock) structure for approximately 4 weeks before completely 

weathering and deteriorating to an unstable state. In other words, after only four weeks, it had 

completely lost its durability and weathering resistance to the processes of slaking and 

disintegration, to such an extent that it became unmeasurable. First, slaking and then 

disintegration completely dominated the rock sample until the rock was completely broken down 

and weathered into smaller rock fragments (~20mm) and even smaller finer-sized particles (≤ 

20mm). The rock lost all support characteristics and proved completely invaluable after 

commencement of the test.  

Of the five DECL treated shale samples, two DECL products proved less effective than the rest 

namely NanoSil and NanoBond. Both NanoSil and NanoBond DECL products showed an 

improvement towards rock durability and weathering resistance for the Kimberley shales, but only 

to a certain extent. After a short period of time, cracks started to form and both rock samples 

started to weather and deteriorate through the processes of slaking and (to a lesser extent) 

disintegration. After six months of subjecting the rock samples to a simulation of long term 

weathering conditions, by continuously wetting and drying them, the NanoSil treated shale sample 

lost 3.7% of its original dry mass through slaking and disintegration processes and the NanBond 

treated shale sample 3.1%. Although this does not seem like a lot of material / mass loss, 

especially when compared to the untreated reference sample, it is still significantly more than that 

experience by the other three DECL treated shale samples and can be seen as “unsatisfactory” or 

“unsuccessfull” results in terms of the undertaken cyclic wetting and drying tests.  

The other three DECL products, namely NANO, Sasbind and Sasbind +(Bit), proved to be much 

more effective in combatting the effects of natural weathering conditions and a continuous cycle of 

wetting and drying as no traces (or evidence) of slaking and disintegration were observed at either 

of the repsectively treated shale samples. In other words, all three samples remained completely 
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intact and showed very little to no signs of material loss or disintegration. In fact, after six months of 

testing, NANO, Sasbind and Sasbind (+Bit) treated shale samples only indicated mass loss of 

0.8%, 0.8% and 0.7% respectively. This, combined with the visual assessments, proved that the 

NANO, Sasbind and Sasbind (+Bit) DECL products were exceptionally effective towards increasing 

rock durability and weathering resistance of the Kimberley shales, to such an extent that all three 

rock samples remained completely intact. Thus, either one (i.e. NANO, Sasbind, Sasbind (+Bit)) 

might possibly be used as a viable solution towards the defined slope stability problem at the 

Kimberley “Big Hole” Mine and would be advised for further testing and investigation. 

The reasons for the difference in performance / effectiveness between the “Nano” DECL products 

(i.e. NanoSil & NanoBond) and the “Sasbind” DECL products (i.e. Sasbind & Sasbind + Bit) as 

discussed above, might involve the fact that these products are made of slightly different chemical 

constructs. According to the safety and hazard reports of both the “Nano” and “Sasbind” products, 

the only noticeable difference between the two is that the “Sasbind” DECL products are made up of 

a string of acrylic polymers, whilst the “Nano” DECL products are made up of a combination of 

acrylic coplymers. To explain the difference between an acrylic polymer and an acrylic coploymer, 

a brief description / definition of the words “polymer”, “monomer” and “acrylic” will first be provided: 

 A “polymer” is a large molecule (or macromolecule) that is composed of many repeating 

sub-units (or micromolecules). 

 A “monomer” represents one of these sub-units that are used to create a ploymer. In other 

words, it is a smaller molecule (or micromolecule) that, if bonded together with other 

identical molecules, forms a polymer. 

 “Acrylic” refers to a group of polymers which can generally be referred to as plastics. They 

are noted for their transparency, resistance to breakage and elasticity.  

Thus, the difference between an acrylic polymer and an acrylic copolymer is that an acrylic 

polymer is made by linking only one type of identical molecule (or monomer) together, whilst an 

acrylic copolymer is made by joining two different types of molecules (or monomers) to the same 

polymer chain. In other words, polymers generally represent a much more pure type of monomer 

chain, containing only one type of monomer (A) that is identic in every way. This is graphically 

illustrated below by showcasing mutiple molecular bondings between only one type of monomer, 

named (A) for this example:  

A-A-A-A-A-A-A-A-A-A-A 

Acrylic polymer 

Copolymers on the other hand, usually represent much large polymer chains with alternating sub-

units of monomers (A & B). This might cause them to be slightly weaker than their polymer 
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counterparts, in the sense that they have weaker bondings between alternating molecules. 

However, this is not always the case as it is very dependant on the type of molecules within the 

chain. A basic example of an alternating acrylic copolymer is illsusrated below with two different 

types of monomers namely A and B for this example: 

A-B-A-B-A-B-A-B-A-B-A 

Alternaring acrylic copolymer 

This might be a possible reason why the “Nano” DECL products performed less effective in the 

conducted cyclic wetting and drying tests than their “Sasbind” DECL counters, as their chemical 

construct is made up of acrylic copolymers instead of acrylic polymers. It is generally assumed that 

acrylic copolymers would lose their inner molecular bondings much quicker when exposed to an 

external aggitation, such as water or heat for example, due to their alternating monomer structure. 

Acrylic polymers on the other hand, will presumably have closer inner molecular bondings with 

identical monomers that are held more tightly, hence resisting weathering and deterioration much 

easier. Although this is only a speculation towards the reason for a difference in performance / 

effectiveness between the “Nano” DECL products and the “Sasbind” DECL products after the 

conducted cyclic wetting and drying tests, further research on this matter is recommended and 

beyond the scope of this project, which is why it will not be discussed any further. 

Another possible reason for the “Nano” DECL products performing slighty worse in the conducted 

cyclic wetting and drying tests than their “Sasbind” DECL counterparts, especially in terms of 

exhibiting weathering resistance and increased durability against frequent wetting, might be 

ascribed to the disintegration or dissolution of the “Nano” DECL liquids themselve, which would 

have required a re-application procedure. The fact that the “Nano” treated shale samples, changed 

surface colour from dark (after application) to pale (a few weeks into testing), might indicate that 

the “Nano” DECL products started to disintegrate or fade away, causing the rocks the slowly 

become less waterproof and allow for more water ingress through the surface of the rock. This 

would have prompted the application of another layer (or coat) of the “NANO” DECL products to 

the surface of the rocks as to ensure it remains completely waterproof. Eventhough the health and 

safety reports of both the “Nano” and “Sasbind” DECL products suggested that the various liquids 

be applied on a 2 to 4 basis, meaning between 2 and 4 coats with the coat thickness not specified, 

it is logically assumed that the more coats applied to the surface of the rock, the better its 

weathering resistance and overall durability. As had previously been mentioned in Chapter 5 (i.e. 

Section 5.2.3), due to cost limits and time constraints associated with this project, only two layers 

or coats of each DECL product was applied to the surfaces of the shale samples for each 

respective durability and weathering test. According to the health and safety reports for each DECL 

product, the application of two layers or coats should be sufficient enough (as a minimum 

requirement) to last a lifetime after application assuming no mechanical / external agitation to the 
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surface it is applied to. This is why two coats of each DECL product to the surfaces of the test 

samples was considered sufficient enough to obtain the necessary results, keeping the cost factor 

of each DECL product in mind.  Unfortuantley, within the scope of this project, it was also not 

possible to measure whether the applied DECL products started to disintergrate / wash off after  a 

certain period of time based on their applied thicknesses and therefore the abovementioned theory 

could only be sugessted and assumed.  

6.9 Comparative accelerated weathering tests 

As oppose to the cyclic wetting and drying and the slake-durability index (SDI) test as discussed 

above and below respectively, the accelerated weathering test (AWT) simulated a relatively long 

term weathering process in the form of continuous wetting and drying cycles along with some 

extent of mechanical aggitation. It managed to not only compare the durability and weathering 

resistance of all five DECL products and an untreated reference batch against the effects of 

wetting and drying conditions and mechanical aggitation, but it also managed to equate the 

effectiveness of the five different DECL products against one another as to determine which 

proved most successful in terms of increasing rock durability and weathering resistance and would 

subsequently also be used as the “test” DECL product in the following SDI test. 

Table 18 showcases the results of the comparative accelerated weathering tests, including the 

original dry mass of each sample batch, the total mass in grams of the degraded and residual 

material after completion of the third and final cycle of wetting and drying as well as the calculated 

percentages of the total degraded and residual material left in the respective bins after completion 

of the test. The percentage degradation and retained material in the bins were calculated by taking 

the total of the each respective mass category and comparing it to the original dry mass, for 

example, the percentage degradation for the Nanosil product was calculated by dividing the total 

amount of degraded material in grams (183g) by the original dry mass of the same sample batch 

(199g) and multiplying it by a hundred (x100%) to get the total percentage of degraded material. 

These calculations were repeated for each sample batch and for each respective category.  

 

 

 

 

 

 

Table 18 - Total percentage of degraded and residual material after the third wetting and drying cycle of the 
accelerated weathering test, also including remarks on the visual state of the rocks post completion. 
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From the results, it could once again be concluded that the DECL treated shale samples performed 

much better in terms of exhibiting weathering resistance and overall durability against mechanical 

agitation than the equivalent untreated reference batch. In fact, the untreated reference batch did 

not even surpass the first wetting and drying rotation and failed to deliver any residual material in 

the bin after the first cycle. In other words, 97.13% of the original rock mass was degraded during 

the first wetting and drying period, whilst the rest of the sample was unmeasruably lost in 

suspesion. Thus a second and third wetting and drying cycle could not be performed on the 

untreated reference batch.  

This means that without any prior treatment, individual (shale) rock lumps had no resistance or 

protection against the effects of mechanical aggitation that was experienced during 

commencement of the test and that they remained extremely susceptible to the processes of 

slaking and disintegration (to such an extent that all of the untreated rock lumps degraded to a 

particle size of less than 20mm). The results of the untreated reference batch therefore suggests 

that the absence of a water repellent coat / base around the surface of the rock to bind soil and 

mineral particles together, will only cause clay minerals (such as illite for example) to more easily 

absorb water and undergo internal shrinkage and swelling, even if only to a small extent. This non-

durable behaviour will cause the same rocks to fracture and crack along their planes weakness 

(i.e. cleavage planes / foliations) and become more permeable, which in turn allows more water to 

infiltrate the surface of the rock and eventually speed up the process of deterioration and 

breakdown. In the same sense, mechanical agitation is also much more likely to cause soil and 

mineral particles on the surface of the rock to become unstable and eventually erode (i.e. 

suspension) if not protected and bound by an outer synthetic coat or layer such as represented by 

the DECL products. Particles tend to loose cohesion quickly when saturated or in contact with 

water (or a fluid), which is why the untreated reference batch lost all of its mass / material within 

the first wetting and drying period. There was no outer syntheitic coat / layer (which acted as a 

water repellent base or a particle-binder) to protect the rocks against the combined effects of water 

infiltration and mechanical aggitation, hence the untreated reference batch losing more than 90% 

of its original rock mass during the first wetting and drying period.   

All of the DECL treated shale samples on the other hand, made it to the end of the third wetting 

and drying cycle with some (although in some cases not a lot) residual material left in the bins, 

which in essence itself is considered a very successful outcome to the viability and effectiveness of 

using DECL products to help combat the vast breakdown and deterioration of the Kimberley shales 

under natural weathering conditions and mechanical aggitation. Even though all five DECL sample 

batches still showed evidence of slaking and disintegration of individual rock lumps to a certain 

extent, some proved less so than others. Of the five DECL products used during the procedure of 

this test, NanoSil seemed to have delivered the worst results in terms of preserving rock mass 
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against mechanical agitation and continuous wetting and drying. It retained only 5.03% of the 

original rock mass with which the test was started and delivered an extremely high percentage of 

degraded material at 91.96%, meaning that it still left individually treated rock lumps relatively 

susceptible to the processes of slaking and disintegration. Sasbind on the other hand, proved to 

be most successful and effective in terms of preserving individually treated rock lumps as it 

retained 28.12% of the original rock mass after the third long term wetting and drying cycle and 

contained the least percentage of degraded material at only 65.46%. This means that the  DECL 

product, Sasbind, combatted the respective effects of slaking and disintegration most successfully 

and acted as a suitable product to increase rock durability and weathering resistance against 

mechanical aggitation and wetting and drying conditions.  

Unfortunately, due to the external influence of mechanical agitation that was factored in during the 

conduction of these tests (i.e. rotation of the bins), it is worth mentioning that there was no way of 

comparing the test conditions experienced by each sample batch for the accelerated weathering 

tests to the actual conditions experienced by rocks at the Kimberley “Big Hole” Mine. In other 

words, the comparative accelererated weathering tests, as conducted for the purpose of this 

project, was purely aimed at contrasting and comparing the performance and effectiveness of the 

applied DECL products against one another and an untreated reference batch. It was purely a 

comparative study as to see which of the five DECL product prevailed after three cycles of wetting 

and drying with the external influence of mechanical agitation taken into account.  

As for the remaining DECL products and as illustrated on the graph in Figure 68, Sasbind (+ Bit) 

managed to preserve 20.46% of the original rock mass after the third weathering cycle of the 

accelerated weathering test, whereas the Nano products in general (including NanoBond and 

NANO), prevailed to a lesser extent preserving only approximately 9% of the original rock mass on 

average. 

 

 

 

 

 

 

 

 
Figure 68 - Graph depicting the total degraded versus retained rock material after the third wetting and drying cycle of 
each respective accelerated weathering test for the five different DECL products and an untreated reference batch. 
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The compiled data sheet for each absoprtion test as conducted for the purpose of this project 

therefore seem to suggest that the Sasbind DECL products in general (including Sasbind and 

Sasbind + Bit) are much more effective in preserving shale (rock) material against natural 

weathering conditions and mechanical aggitation than the Nano (including NanSil, NanoBond and 

NANO) DECL counterparts. The Sasbind DECL products seem to form much more of a protective, 

water repellent coat / layer around the surface of the rock, allowing less mechanical aggitation and 

water infiltration to take place by binding closer and stronger to the the individual soil / mineral 

particles on the surface of the rocks than did their Nano DECL counterparts.  

The reason for this might be ascribed to the fact that after the two-coat-application of the DECL 

products to each respective sample batch, the “Sasbind” DECL products in general seemed to 

have a thicker protective and waterproof surface coat / layer around them, than what was observed 

for the “Nano” DECL counterparts (i.e. due to one product being thicker in nature than the other). In 

fact, the “Nano” DECL products seemed much more water soluble, which means that the thinner 

surface coat / layer might have been more easily disintegrated by mechanical agitation 

experienced by the rotation of the bins, than was the thicker protective coat of the “Sasbind” DECL 

counterparts, which seemed to have lasted longer, hence proving more durable. Logically, the 

thicker the protective waterproof coat around the surface of the rock, the stronger its weathering 

and water resistant properties and the more durable the rock. In affect, both the “Sasbind” and 

“Nano” DECL products should remain unchanged throughout its application lifetime, with both 

product’s hazard and safety reports claiming a two to four coat application is sufficient enough to 

last a lifetime. However, these reports did not take mechanical agitation into account, which might 

be the reason for, especially, “Nano” DECL products to show a fair amount of weathering and 

deterioration through the duration of these tests. It is therefore recommended that whatever the 

application procedure, a frequent re-application of the products is necessary, just to be safe. In 

essence and as previously mentioned, the thicker the protective coat from the DECL product, the 

more water and weather resistant the rock. In other words, varying thicknesses of the DECL 

coating will effectively either improve or reduce the water resistance of the surface it is applied to 

and will also influence the period of time it will remain on the surface of the rock before a fresh coat 

is needed.  

The reason for the successful outcome of this test and for an overall improvement in rock durability 

and weathering resistance of the Kimberley shales when treated with a DECL, is because of the 

water repellent and soil-binding properties associated with these products. In general, the 

application of a DECL product (either one) to the surface of a rock creates a water repellent base 

(for the most part), which allows very little water / fluid infiltration through the surface of the rock 

and therefore preserves the chemical structure of the internal clay minerals to a certain degree. By 

decreasing water infiltration, the effects of swelling and shrinkage on clay minerals such as illite for 
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example is reduced, which leads to less fracturing and cracking of the orginal rock mass. It also 

binds soil particles closer to the surface of the rock, diminishing the overall effects of mechanical 

aggitation and leaves soil particles intack, which ultimately decreases rock durability.  

In support of these results, a visual inspection of each sample batch was also undertaken pre- and 

post procedure as to visually evaluate and determine which of the DECL products performed best 

in preserving the physical structure of the Kimberley shales. The following visual illustration 

therefore represents the individual rock lumps for each sample batch as seen pre-and post 

procedure along with a quick evaluation: 

 

 

 

 

 

 

 

  

Sasbind-treated shale samples showed very little (or the least) physical breakdown and 

weathering compared to other sample batches and much of the material collected in the container 

underneath the basket throughout the test was in the form of finer-sized particles (or rock 

fragments ≤ 20mm) that had degraded through mechanical interaction with the surface of the 

apparatus and other lumps of rock. In general, the Sasbind-treated shale lumps remained in an 

angular form, but were rounded at the edges.  

  

 

 

 

 

 

 

Sasbind 

Before commencement of test: At completion of test: 

Figure 69 - Visual representation of Sasbind-treated shale rock lumps pre- and post-accelerated weathering test. 

Before commencement of test: At completion of test: 

Sasbind (+Bit) 

Figure 70 - Visual representation of Sasbind (+Bit)-treated shale rock lumps pre- and post-accelerated weathering 
test. 
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Like Sasbind-treated shale samples, Sasbind (+Bit)-treated shale samples also showed very little 

breakdown and deterioration and much of the material recovered in the container under the 

Sasbind (+Bit) bin conisted of angular fragments of rock material with a dusty appearance. The 

Sasbind (+Bit)-treated rock lumps also remained angular and rounded at the lump edges.  

 

 

 

 

 

 

 

 

Nano-treated shale samples proved considerably less durable than Sasbind- and Sasbin (+Bit)-

treated shale samples showing an increase in physical breakdown and weathering of individual 

rock lumps and much of the material collected in the container underneath the basket consisted of 

larger flaky pieces of rock material along with sand-sized particles in suspension. The Nano-

treated shale lumps generally lost their angular form and progressed from being angular in 

appearance to rounded small-to-medium sized pebbles, many of which were small enough to fall 

out of the bin (< 20mm) and into the container.  

 

 

 

 

 

 

 

 

Figure 71 - Visual representation of NANO-treated shale rock lumps pre- and post-accelerated weathering test. 

NANO 

Before commencement of test: At completion of test: 

Figure 72 - Visual representation of NanoBond-treated shale rock lumps pre- and post-accelerated 
weathering test. 

Before commencement of At completion of test: 

NanoBond 
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Like Nano-treated shale samples, NanoBond-treated shale samples also showed very similar 

breakdown and weathering characteristics, following the same progressive trend from angular rock 

lumps, to small-and-medium sized pebbles that were rounded at the edges.  

 

 

 

 

 

 

 

 

 

NanoSil-treated shale samples showed the most weathering out of all DECL treated sample 

batches. Of the material collected under the NanoSil bin, most was in the form of sand- and silt-

sized particles. The NanoSil-treated shale samples completely progressed from being angular in 

appearance to rounded small-sized lumps, most of which were small enough to fall out of the bin 

and into the container (< 20mm). Most of the rock degraded through mechanical interaction with 

the surfaces of the apparatus and other rock lumps.   

 

 

 

 

 

 

 

 

Before commencement of test: At completion of test: 

NanoSil 

Figure 73 - Visual representation of NanoSil-treated shale rock lumps pre- and post-accelerated weathering test. 

Before commencement of test: At completion of test: 

Untreated 

Figure 74 - Visual representation of untreated shale rock lumps pre- and post-accelerated weathering test. 
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Untreated shale samples showed complete breakdown and weathering. All of the untreated shale 

lumps progressed from an angular form to small-sized irregular lumps , all of which were small 

enough to fall out of the bin and into the container (< 20mm). Most of the material collected in the 

container underneath the basket throughout the test was suspended in the form of silt-sized 

particles and the recovered material consisted of tiny flaky pieces of rock material with a powderish 

appearance.  

In summary of the abovementioned visual evaluation pre- and post- accelerated weathering test, it 

is worth mentioning that all rock lumps including both treated and untreated shale samples, broke 

down into different shapes and sizes (as expected) although to a different degree and extent for 

each individual test, depending on the DECL product used. The rounded edges of the shale rock 

lumps after completion of the test, especially for the Sasbind and Sasbind (+Bit) shale samples, 

can be ascribed to mechanical aggitation and the tumbling action of the wheel as the test 

progressed. In nature however, this would not necessarily be the case and most likely the slaked-

off fragments would be angular and sharp in size and shape. The individual accelerated 

weathering tests did however, reveal the extent to which a typical Kimberley shale would degrade if 

treated with different DECL products and subject to a certain degree of mechanical aggitation and 

a few wet / dry cycles. In general, Nano-treated shale samples proved considerably less durable 

than Sasbind-treated shale samples, losing more than 90% of their initial mass during three 

wet/dry cycles. Far less silt-sized particles and flaky pieces of rock material were found in the 

Sasbind and Sasbind (+Bit) containers in all of the Nano counterparts. Finally, when comparing the 

test results of the accelerated weathering test to the test results of the preceding absorption test, 

there seem to be no direct correlation between the two outcomes. This might only be circumstantial 

and attributed to human and measurement errors during weighing of each sample in the preceding 

absorption tests.   

6.10 Slake-durability index (SDI) tests 

Slake-durability index tests exposed the effects of a short term weathering process on the slaking 

and disintegration properties of both an untreated and DECL treated shale sample. The results 

proved useful in classifying and comparing one rock sample to another and in the specific case of 

this project, it was used to classify and compare an untreated reference sample of the Kimberley 

shales to an equivalent treated shale sample that was sprayed and coated with the DECL product 

– Sasbind. The simulation of a short term wetting and drying test (or SDI test) delivered the 

following results (see Table 19): 
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The simplicity and effectiveness of this test should not be undermined. Even though the results 

proved short and concise, the effectiveness of this test to classify and compare the durability of two 

of the same rock types / samples against one another is very accurate and the interference of an 

external influence, such as the applied DECL product to one of the samples, was clearly noted. As 

evident from the obtained results, the DECL treated shale sample performed much better in terms 

of keeping its physical form and stucture during commencement of the test than did the untreated 

reference rock. In fact, the shale that was treated / coated with two layers of the Sasbind product, 

almost completely mananged to keep its form by losing no more than 1% of its original dry mass 

during all four slake-durability cycles. The untreated reference rock on the other hand, lost 

approximately 40% of its original dry mass, which means that it was much more prone to the 

slaking and disintegration than was the DECL treated shale sample.   

The final durability class for each rock was subsequently classified according to their slake-

durability index after the second (2nd) wetting and drying cycle and by using the classification table 

as recommended by ISRM and proposed by Gamble (1971) (see Table 20). The following results 

were produced: 

 The untreared reference sample was classified as having a “medium durability” towards the 

simulation of a short term wetting and drying test, with a slake-durability index (SDI) of 

something between 60% and 85%.  

 The DECL (Sasbind) treated sample was classified as having a “very high durability” 

towards the simulation of a short term wetting and drying cycle, with a slake durability index 

(SDI) higher than 98%.  

Focussing solely on the classification of both samples, there seems to be a major difference in 

their durability towards the simulation of a short term wetting and drying cycle, with one rock (i.e. 

untreated) falling towards the lower end of the durability spectrum, whilst the other (i.e. treated) 

performed within the highest durability class of the proposed classification table (see table 20 

below).  

 

Table 19 - Calculated results of the slake-durability index (SDI) tests as carried out by Rocklab in Pretoria on both an 
untreated shale sample as well as a DECL treated (Sasbind) shale sample. 
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The only reason for the difference in behaviour between the two rocks, which are equal in every 

aspect and dimension, can only be ascribed to the external support / influence of the applied DECL 

product. Seeing as the application of a water repellent base to one rock sample and not the other 

was the only inconsistnet variable to this test, it can only be assumed that this is the reason for one 

rock behaving poorly in terms of it’s slake durability when exposed to a simulation of short term 

weathering conditions and the other performing exceptionally well.  

As a further evaluation on the abovementioned durability classification of both rock samples, a 

visual comparison of the rocks were also conducted based on their pre- and post test appearance. 

Various numbers were used in the obtained results under “Notes” as to denote the exact physical 

appearance of both rocks samples (both treated and untreated) after completion of the 4th cycle of 

the slake-durability test and according the Rocklab personnel: 

 the untreated reference sample, denoted by the symbol (4), was completely broken up into 

a lot of smaller pieces; and 

 the DECL treated (Sasbind) samples, denoted by the symbol (1), was still completely intact. 

This suggests that the untreated reference sample was extremely susceptible to the process of 

slaking and disintegration, to such an extent that it lost its original form and broke / weathered 

down into smaller fragments (< 20mm). The Sasbind treated shale sample on the other hand, 

stayed completely intact even through four cycles of continuous wetting and drying, which means 

that it resisted weathering fairly well and retained rock fragments larger than 20mm. The visual 

inspection as described above therefore supports the effectiveness of the DECL (Sasbind) product 

as a rock mechanic stabilizer. It proved extremely successful in protecting the rocks against a 

continuous process of wetting and drying and enhanced the durability characteristics and the 

weathering resistance of the Kimberley shales. Even though Sasbind was the only DECL product 

tested and compared to an untreated reference batch, it is considered that all five products as used 

within the scope of this project would have shown similar results.  

In general, it is worth mentioning that the slake-durability index test as conducted and discussed 

above for the purpose of this project, was not conducted with the purpose of  obtaining a universal 

standard explaining the durability or weathering resistance of a specific rock type as a whole, but it 

was rather meant to discriminate between one rock sample and another as to evaluate the 

performance of the DECL products tested. In other words, slake-durability index tests are generally 

used to compare one rock sample from the same sample locality or the same time period for 

Table 20 - Slake-durability index (SDI) classification table, Gamble (1971) 
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example, to another and to use the obtained results / information to draw certain conclusions about 

the durability or weathering restistance of each sample with regards to the other. Therefore, the 

slake-durability index tests as conducted for the purpose of this project was only to compare the 

performance and durability of a DECL treated shale sample to an untreated shale sample from the 

Kimberley “Big Hole” Mine after four cycles of slaking. The results of this specific test was 

subsequently used to comment on the effectiveness of the respective DECL product “Sasbind” to 

increase rock durability and weathering resistance of the Kimberley shales and enhance overall 

performance with regards to combatting natural weathering conditions. In other words, the 

abovementioned slake-durability index test was only conducted with the main purpose of 

assessing whether the Sasbind-treated shale sample would perform better and more effective in 

terms of durability and weathering resistance than its untreated counterpart and the results did in 

fact prove very informative and successful. There was a definite correlation between the rate of 

weathering, the treatment of the sample and the resultant slake-durability index with the correlation 

being that a DECL treated shale sample (with specific reference to the “Sasbind” DECL product) 

undergoes a significantly slower rate of weathering compared to an untreated reference sample 

and hence, also possess over a much higher slake-durability index. The category of highest 

durability (i.e. “Sasbind” treated shale sample) could be termed “rock” and materials of lower 

durability (i.e. untreated shale sample) could be termed “soil” as illustrated below in Figure 75.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 75 - Gamble’s geotechnical classification for the untreated and DECL treated Kimberley shale samples. 
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A disitinction between rock and soil is often required in engineering practices and the slake-

durability index affords a possible quantitative method of discriminating between the two. It is worth 

mentioning however, that the boundary at 90% slake durability index must be regarded as tentative 

and should always be re-examined on the basis of experience and specific test conditions. To 

conclude this section, it is worth mentioning that this test is intended for use with other rock-index 

tests as an aid to rock classification and in predicting problems of excavation stability and rock 

support. However, when comparing the test results (as obtained above) to available literature on 

the predicted safe slope angles and engineering properties of shale slopes after the second cycle 

slake-durability index test (as discussed in Chapter 2), the Sasbind-treated Kimberley shale 

sample and the untreated reference shale sample from the Kimberley “Big Hole” Mine can possibly 

be expected to render the following values (see Table 21).  

 

 

 

 

According to literature, an untreated shale slope at the Kimberley “Big Hole” Mine would only start 

to stabilize at a safe slope angle of something like 34°. This varies slightly from the findings by 

Preece at al. (2008), whom suggested in his report that a safe slope angle of something between 

20° and 30° is expected on the sidewalls of the Kimberley “Big Hole” Mine. In other words, Preece 

et al. (2008) predicted a natural angle of repose for the slopes of the Kimberley “Big Hole” Mine to 

be something between those approximate values. The results from the slake-durability index test 

as conducted for the purpose of this project seem to suggest a more accurate value, with a safe 

slope angle (or natural angle of respose) of 34°. Compared to the current slope angle of 38° at the 

Kimberley “Big Hole” Mine, the slake-durability index test of an untreated Kimberley shale sample 

predicts that the slopes of the Big Hole Mine still need to degrade / regress another 4° before a 

safe slope angle (or the natural angle of repose) of the sidewalls is reached. This equates to an 

approximate total of 17.21 metres away (or outward) from the current mine pit perimeter, which 

means that any and all infrastructure, including businesses and buildings, within the vicinity of this 

new break-back perimeter needs to be evacuated and cleared for the potential risk of a near future 

slope slip or failure. 

If the sidewalls, with specific reference to the Kimberley shales, had to be treated with the Sasbind 

DECL product, a safe slope angle (or natural angle of repose) of 63° is expected. This means that 

the sidewalls of the Kimberley “Big Hole” Mine would have stopped migrating outward a long time 

ago, having reached stability at a safe slope angle or natural angle of repose of 63° already. One 

Table 21 - Predicted safe slope angle and engineering properties of an untreated and Sasbind-treated Kimberley 

shale sample, according to their respective second slake-durability index values. 
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can therefore argue that spaying the surface of the Kimberley shales on the sidewalls of the 

Kimberley “Big Hole” Mine with the Sasbind DECL product, would effectively stop any and all slope 

instabilities measured over the past few years as it would effectively address the slope failure 

mechanism as desribed and discussed in Chapter 2. Using DECL products as a viable solution 

towards the defined slope stability problem at the Kimberley “Big Hole” Mine, is therefore 

considered as very plausible and the results as obtained from the completed slake-durability index 

test, as conducted for the purpose of this project, justifies further research on the matter.  
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Chapter 7: Discussion of Results 

The following chapter will aim to briefly summarize the most important aspects of the findings on 

the slope stability problem at the Kimberley “Big Hole” Mine, as well as highlight the most 

significant results as obtained and discussed in the previous chapter (see Chapter 6). This chapter 

will therefore briefly review the exact mechanism behind slope failures or slope instabilities at the 

Kimberley “Big Hole” Mine, as well as include an informative section on the advantage and 

disadvantages of using alternative solutions to help mitigate the slope stability problem at the Big 

Hole Mine.  

7.1 Slope instability at the Kimberley “Big Hole” Mine 

The main culprit behind slope stability problems at the Kimberley “Big Hole” Mine could be 

ascribed to the Kimberley shales and their vast susceptibility to weather and deteriorate when 

exposed to natural weathering conditions. As the geological shale unit weathers and deteriorates 

rapidly under humid climatic conditions over the town of Kimberley (especially during the heavy 

rainfall months of November to February), vast regression of the underlying shales result in support 

loss for the overlaying dolerite cap causing the orthogonally jointed dolerite blocks to break off and 

topple over and into the open mine pit as single block toppling slope failure events. This 

continuously occurring process of undermining and toppling at the sidewalls of the Kimberley “Big 

Hole” Mine is frequently repeated and consistently exposes fresh pieces of shale to the 

atmosphere and natural weathering conditions, prompting the whole process of regression and 

toppling to start all over again. This repeatedly occurring cycle is commonly referred to as mine pit 

break-back and is considered to be the responsible mechanism behind slope stability problems 

and failures at the Kimberley “Big Hole” Mine. In other words, mine pit break-back is what causes 

the sidewalls of the pit to actively migrate outward in an unstable manner towards their natural 

angle of repose and the process, as a function of time, is illustrated below in Figures 76 A to F.  

The defined slope stability problem at the Kimberley “Big Hole” Mine could therefore, after a very 

comprehensive review of all available literature including geological and geotechnical reports 

written by Preece et al., (2008) and Croukamp (2008), be defined as a regressive problem where 

the underlying shale unit undercuts the overlying dolerite caps (due to their vast susceptible to 

weathering and deterioration under natural weathering conditions), which causes the occurrence of 

block toppling slope failure events. 
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Figure 76 A- Regressive process at the Kimberley “Big 
Hole” Mine (Time 0). 

Figure 76 B - Regressive process at the Kimberley 
“Big Hole” Mine (Time 1). 

Figure 76 C - Regressive process at the Kimberley 
“Big Hole” Mine (Time 2). 

Figure 76 D - Regressive process at the Kimberley 
“Big Hole” Mine (Time 3). 

Figure 76 E - Regressive process at the Kimberley 
“Big Hole” Mine (Time 4). 

Figure 76 F - Regressive process at the Kimberley 
“Big Hole” Mine (Time 5). 
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7.2 Alternative solutions 

The solution towards the defined slope stability problem at the Kimberley “Big Hole” Mine was 

therefore to develop a viable technique / method for decreasing the susceptibility of the Kimberley 

shales to weather and deteriorate when exposed to natural weathering conditions. In other words, 

the proposed solution would have to increase the rock durability and weathering resistance of the 

Kimberley shales without further damaging the sidewalls of the pit, changing the aesthetics of the 

Big Hole or adding to the overburden of the slopes. If the whole process of sidewall regression and 

mine pit break-back (with specific reference to the weathering properties of the Kimberley shales) 

at the Kimberley “Big Hole” Mine could be controlled, then slope slips / failures and subsequent 

sidewall migration would cease to exist. 

Before proposing such a solution however, it was worth briefly looking at previously implemented 

and other possible slope stabilizing techniques that might be considered as valuable solutions 

towards the defined slope stability problem at the Kimberley “Big Hole” Mine. Table 22 therefore 

represents a few mentionable slope stabilizing techniques, together with their respective 

advantages and disadvantages on the slopes of the Kimberley “Big Hole” Mine. 

Table 22 - Advantages and disadvantages of various slope stabilizing techniques. 

Solution Advantages Disadvantages Remarks 

Installation of water 

tunnels (or drainage 

structures) 

 Diverts water from 

slope. 

 Lowers water table. 

 Increases shear 

strength of soil. 

 Reduces pore water 

pressure. 

 Demotes physical and 

chemical weathering. 

 Expensive. 

 Excavation of slope if 

constructed directly to 

the sidewalls of the pit. 

 Labour intensive. 

 Implementation in the 

form of a massive 

dewatering tunnel that 

circumvents the pit 

some 60 meters below 

the surface.  

 Already implemented at 

the Kimberley “Big Hole” 

Mine from August, 1995. 

 Does not mitigate the 

effects of surface 

exposure of the rocks to 

natural weather 

conditions / elements. 

Providing in-situ 

reinforcement (i.e. 

anchors or mesh) 

 Lateral earth support. 

 Slope reinforcement. 

 Buttress effect. 

 Allows natural 

vegetation growth. 

 Expensive. 

 Labour intensive. 

 Aesthetically 

unpleasing. 

 Requires drilling. 

 Adds to slope 

overburden. 

 Neither horizontal nor 

vertical emplacement of 

anchors or mesh to the 

sidewalls of the pit will 

successfully stop the 

effects of regression as 

the shale will only 
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continue to weather 

around the 

reinforcement (i.e. does 

not address the 

problem).  

 Therefore, not viable at 

the Kimberley “Big Hole” 

Mine. 

Chemical treatment 

(i.e. shotcrete / 

grouting / gunite) 

 Hardens / stabilizes 

soil. 

 Seals surface fractures 

and cracks. 

 Minimizes erosion. 

 Reduces raindrop 

impact. 

 Permits water to pond 

behind slope surface. 

 Increases surface 

runoff, which leads to 

erosion gullies further 

down slope. 

 Inhibits surface 

drainage. 

 Expensive. 

 Labour intensive. 

 Aesthetically 

unpleasing. 

 Adds to slope 

overburden. 

 Inhibits natural 

vegetation growth. 

 Implementation against 

the shale rock face 

would only cause a 

buildup of pore water 

pressure behind the 

surface of the slope (or 

rock) and lead to further 

and far greater slope 

instabilities.  

 Therefore, not viable at 

the Kimberley “Big Hole” 

Mine. 

Vegetation 

 Roots hold soil in 

place. 

 Natural anchor / slope 

reinforcement. 

 Absorbs water. 

 Aesthetically pleasing. 

 Cost effective. 

 Promotes biological 

weathering. 

 Blocks drainage 

structures. 

 Loosens rock material. 

 Vegetation growth 

would fail to fully 

address the slope 

stability problem as 

water will continue to 

enter the face of the 

rock or the surface of 

the slope and therefore, 

not prevent weathering.  

 Not a viable solution at 

the Kimberley “Big Hole” 

Mine. 

 

For the above tabulated reasons and the fact that other conventional slope stabilizing techniques 

such as geotextiles for example, could not be used on the slopes of the Kimberley “Big Hole” Mine 

due to its geometry, geology and aesthetics, five different dust and erosion control liquids (DECL) 
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were introduced and tested within the scope of this project with the aim of identifying one of them 

as a viable solution towards the defined slope stability problem at the Kimberley “Big Hole” Mine.  

7.3 Proposed solution 

The main reasons for considering DECL products as the most viable solution towards addressing 

the defined slope stability problem at the Kimberley “Big Hole” Mine, which refers to the vast 

susceptibility of the Kimberley shales to weather and deteriorate under natural weathering 

conditions, and to protect the Kimberley shales from various environmental factors are: 

(1) They are easily applied / equipped.  

(2) They are relatively cost effective compared to other slope stabilizing techniques. 

(3) They will not change the aesthetics of the Kimberley “Big Hole” Mine to any extent. 

Therefore, five different DECL products, namely NanoSil, NanoBond, NANO, Sasbind and Sasbind 

(+Bit) were tried and tested on a small scale during the scope of this project as to identify which 

proved most effective and successful with regards to increasing rock durability and weathering 

resistance of the Kimberley shales. The testing program comprised the execution of absorption 

tests, comparative accelerated weathering tests, cyclic wetting and drying tests and a slake-

durability index tests, all referenced to an untreated shale sample of the Kimberley shales. 

After completion of all the above mentioned test procedures to test the effectiveness of the DECL 

products on the durability characteristics of the Kimberley shales, one DECL product in particular 

stood out from the rest as being the most effective and successful towards combatting the effects 

of natural weathering conditions. The DECL product that proved most successful in preserving the 

rock structure and increasing the rock durability and weathering resistance of the Kimberley shales 

after each weathering and durability test was the DECL product – Sasbind. Sasbind, as a 

translucent water-repellent base, preserved the physical rock structure and internal rock strength 

parameters of the Kimberley shales most and prevailed after almost each and every durability test. 

Sasbind represents an uniquely formulated water based emulsion of modified acrylic polymers that 

is most suitable and often used for the binding and stabilization of different soil layers, especially 

with regards to the construction of roads. It is worth mentioning that the Sasbind DECL product is 

also often applied to various surfaces that require dust palliation, due to its strong binding and 

cohesive properties. Specific benefits of the Sasbind DECL product are extensive and include: 

 It is water-based and dilutes easily with water to increase quantity. 

 It is suitable for the application to a wide variety of different soil types. 

 It is ultraviolet (UV) and heat stable. 

 It is non-leachable. 

 It has a safe chemistry. 
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 It requires no specialized equipment for application. 

 It reduces erodibility and improves waterproofing of the surface it is applied to. 

 It significantly increases the California bearing ratio (CBR) and unconfined compression 

strength (UCS) of the surface it is applied to.  

 

Sasbind, which was originally formulated for the durability treatment of roads and other paved 

surfaces, is a translucent liquid / product which means that it will not change the aesthetics of the 

Kimberley “Big Hole” Mine if applied to the sidewalls of the Kimberley shales. It proved very 

effective in bonding to the surfaces of the various test shale samples it was applied to and acted as 

a sufficient water proof coat / base around the surface of the rocks to inhibit water infiltration and 

keep soil particles bonded tightly together. With regards to the various laboratory tests conducted 

on each individual DECL product, Sasbind treated shale samples produced the following results as 

presented in Table 23. 

 

 

 

 

 

 

 

Sasbind treated shale samples allowed only 5 % moisture uptake of the original dry mass during 

one week of being submerged underwater, whilst during the cyclic wetting and drying tests, the 

Sasbind treated shale sample experienced only 0.83% material loss during the full six months of 

being exposed to natural weathering conditions and a frequent cycle of wetting and drying. These 

results, especially when compared to the test results of the other four DECL products, is 

considered as insignificantly small and extremely successful in terms of increasing rock durability 

and weathering resistance of the Kimberley shales. During the cyclic wetting and drying tests, 

Sasbind treated shale samples were also one of the few DECL treated shale samples that showed 

no evidence for the development of cracks or fractures on the surface of the rocks, which strongly 

suggests that the Sasbind DECL product proved very successful against combating the effects of 

constant temperature changes and a fluctuating water content. With regards to the comparative 

accelerated weathering tests, which included a component of mechanical agitation (i.e. rotation of 

the bins), Sasbind treated shale samples managed to retain a total of 28.12% of its original dry 

mass material, which is 7.66% better than the nearest performance of one of its DECL 

Table 23 - Test results for Sasbind treated shale samples. 
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counterparts. It also showed the lowest percentage of degraded material at only 65.46%. Due to 

the fact that the Sasbind DECL product prevailed as the most effective and successful DECL 

product with regards to increasing rock durability and weathering resistance of the Kimberley 

shales during the preceding durability and weathering tests (as discussed above), it was 

subsequently also chosen as the representative DECL product to be tested against an untreated 

reference sample during the ensuing slake-durability index test done at Rocklab in Pretoria. During 

the slake-durability index test of a Sasbind treated shale sample and an untreated reference shale 

sample, the Sasbind treated shale sample performed exceptionally well and received a very high 

durability classification on the slake durability index, whilst an untreated reference shale sample of 

the Kimberley shales only ranked on the medium durability side of the slake durability index scale. 

This suggests that the Sasbind DECL product acts as an extremely effective waterproof base / 

coat around the surface of the rock or the surface it is applied to, allowing for very little to no water 

ingress through the surface of the rock and hence, a delayed effect of weathering. It dramatically 

slows down the weathering and deterioration rate of the Kimberley shales when exposed to natural 

weathering conditions and considerably decreases its susceptibility to slake and disintegrate when 

exposed to a continuous cycle of wetting and drying. The Sasbind liquid coat can be seen as a 

protective layer around the rock, inhibiting water ingress through the surface of the rock, which in 

turn binds the soil / rock particles closer together and increases the inner rock strength parameters 

of the shale by increasing overall rock durability and weathering resistance. If water is inhibited (for 

the most part) to enter the structure of the rock, then weathering of the material in the form of 

physical and chemical weathering, will occur on a much smaller scale and to a much lesser extent, 

causing the rock to become more durable.  

Possible disadvantages that might be associated and need to be considered with the application of 

the Sasbind DECL product as a viable solution towards the defined slope stability problem at the 

Kimberley “Big Hole” Mine are very few, but still worth mentioning. As with any chemical treatment 

of a rock face, by means of either shotcrete, grouting or gunite for example, the risk exists that a 

buildup of pore water pressure behind the surface of the slope would become so intense that slope 

instabilities start to develop as a matter of time. This is no different when considering the spray-on 

application of the Sasbind DECL product to the surface of the rocks, which still leads to some 

degree of concern. The only reason for considering the Sasbind DECL product as a more effective 

and well-equipped solution towards the defined slope stability problem at the Kimberley “Big Hole” 

Mine (as oppose to previously mentioned surface chemical treatment procedures) is that the 

Sasbind DECL product is “breathable”, meaning that it eliminates capillary rise and water ingress 

from the top (i.e. reduces water permeability of the base it is applied to), whilst completely 

maintaining vapor permeability. In other words, water is not allowed to infiltrate the surface of the 

rock, but moisture is allowed to leave the structure of the rock through the process of evaporation. 

This means that ponding and buildup of pore water pressure behind the surface of the slope is less 
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likely to occur and if so, to a lesser extent than what would have been expected with other 

conventional surface chemical treatments. In addition to this, the Sasbind DECL product is also 

very light in weight when applied to the surface of the rocks, which means that it would not add 

drastically to the overburden of the slope, whilst also being aesthetically pleasing (i.e. translucent 

in appearance). As a final remark, application of the Sasbind DECL product to the slopes of the 

Kimberley “Big Hole” Mine might be quite labour intensive and require a well-executed and detailed 

plan of the application procedure, which is why further investigation on this matter is strongly 

recommended.  

To conclude the discussion of the results, it is worth mentioning that the Sasbind DECL product 

performed much better than the author had anticipated prior to commencement of the testing 

program. It showed an excellent durability performance against natural weathering conditions and 

an influence of external agitating factors such as mechanical agitation and accelerated weathering 

test conditions. This proved that the Sasbind DECL product provides sufficient external protection 

and support to the structure of the Kimberley shales and as such, further investigation into the 

suitability of this product as a viable solution towards the defined slope stability problem at the 

Kimberley “Big Hole” Mine is justified.  
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Chapter 8: Conclusion and Recommendations 

8.1 Introduction 

After completion of a full desk study, a comprehensive literature review, a practical case study and the 

necessary field and laboratory work as conducted for the purpose of this project and to find a viable 

solution towards the defined slope stability problem at the Kimberley “Big Hole” Mine, this chapter 

presents the conclusion and recommendations relevant to the completed research. Conclusions 

related to the slope instability problem at the Kimberley “Big Hole” Mine and a possible solution is 

presented forthwith, followed by the recommendations. 

8.2 Conclusions 

8.2.1 Current state and stability of the Kimberley “Big Hole” Mine 

To unambiguously prove that the sidewalls of the Kimberley “Big Hole” Mine are still actively migrating 

in an unstable manner towards their natural angle of repose (i.e. natural equilibrium), a full desktop 

study in the form of direct visual inspections / site walkovers, aerial photography and pixel tracking 

were undertaken. All three research methods concluded enough visual evidence to suggest that the 

sidewalls of the Kimberley “Big Hole” Mine, including the outer perimeter, are still actively moving and 

that a slope slip / failure is inevitable. Direct visual inspections for example, delivered plentiful 

evidence of tension cracks, landslides and block toppling slope failures in and around the sidewalls of 

the Kimberley “Big Hole” Mine to suggest that slope instabilities are still frequently occurring, whilst 

aerial photography and pixel tracking exhibited excellent examples of sidewall migration patterns from 

the inside of the pit, outward, between the years 1968 and 2017. All three movement measuring 

techniques were considered to show sufficient evidence of sidewall migration up until the year 2017 

and the conclusion was made that a nearby slope slip / failure in and around the sidewalls of the 

Kimberley “Big Hole” Mine is imminent. 

8.2.2 Laboratory tests and proposed solution 

Various durability and weathering tests were conducted within the scope of this project to test and 

evaluate the effectiveness of different dust and erosion control liquids on the durability and weathering 

resistance of the Kimberley shales when exposed to natural weathering conditions. From these tests 

and with specific reference to the slake-durability index test, three significant conclusion were drawn: 

(1) The first being that a safe slope angle (or natural angle of repose) of 34° is expected on the 

sidewalls of the Kimberley “Big Hole” Mine. This means that the sidewalls of the pit are still 

expected to regress / degrade another 4° before a safe slope angle or natural angle of repose is 
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reached and maintained. When converting this to actual horizontal ground movement around the 

pit, it equates to 17.21 meters back (or outward) from the current mine pit perimeter. This means 

that all infrastructure, including buildings, businesses and roads, that fall within the vicinity of 

17.21 meters from the current mine pit perimeter needs to be evacuated and cleared as a high 

risk zone for potential slope slips or failures in the nearby future. 

(2)  Secondly, dust and erosion control liquids (DECL) as introduced and tested within the scope of 

this project, effectively contributed towards increasing the durability and weathering resistance of 

the Kimberley shales after each and every laboratory test. In other words, the use or application of 

DECL products to reduce weathering and increase durability of the Kimberley shales when 

exposed to natural weathering conditions was considered successful and concluded an 

implementable solution towards the original problem statement as defined for this project. The 

findings of this project therefore justifies further research and testing on DECL products as a 

viable solution towards the defined slope stability problem at the Kimberley “Big Hole” Mine, with 

the added mention and consideration of the recommendations as made below.  

(3)   Finally, of the five DECL products that were introduced and tested within the scope of this project, 

it was concluded that the Sasbind DECL product performed best under the various testing 

conditions. Sasbind effectively managed to preserve and protect the rock structure of the 

Kimberley shales whilst being exposed and tested against various durability and weathering tests. 

The Sasbind DECL product was therefore considered as the most effective DECL product with 

regards to the slope stability problem at the Kimberley “Big Hole” Mine and proved, by means of 

the undertaken slake-durability index test, that a safe slope angle of 63° would be expected if the 

product had to be applied to the sidewalls of the Big Hole Mine. This concludes a considerable 

improvement from the 34° safe slope angle of an untreated shale slope.  

8.3 Recommendations 

Following the above made conclusions surrounding the slope stability problem at the Kimberley “Big 

Hole” Mine and the undertaken testing program, numerous recommendations can be made in terms of 

the results obtained directly from this thesis and any and all future research that is concerned with the 

state and stability of the sidewalls at the Kimberley “Big Hole” Mine. 

8.3.1 Recommendations from own research 

The following application procedure is recommended based on the weathering and durability test 

findings and conclusions as experienced during experimental tests with Sasbind: 

Stellenbosch University  https://scholar.sun.ac.za



156 

 

 Spay diluted mixture of product by means of using a knapsack sprayer, water tanker or any 

suitable equipment that can hold a diluted mixture of the Sasbind DECL product provided that 

the solution per m2 can be ensured and the area is saturated.  

 A minimum of two coats should be applied in the form of a spray-dry-spray application 

procedure (however, it is worth mentioning that because there is no upper limit to the amount 

of layers / coats that can be applied to the surfaces of the rocks, it is generally accepted that 

the more coats, the better, depending on the cost limit of the project).  

 A 1:2 water to product ratio (i.e. 200ml of water mixed with 400ml of the Sasbind product to 

give a 600ml diluted mixture for example) should be followed, mixing thoroughly between 

applications. 

 It should be ensured that the initial application procedure of the Sasbind DECL product is 

applied to a dry clean surface (i.e. free of excess moisture and loose material), thereafter 

waiting at least 2 to 3 hours before applying of the second layer / coat. 

 Any excess runoff or pooling of the diluted Sasbind mixture on the surfaces of the rock surface 

should be avoided.  

This project was only considered an introductory research initiative for using dust and erosion control 

liquids (DECL), which are most frequently used by mines and roadwork specialist to suppress dust, as 

an effective slope stabilizing technique by increasing rock durability and weathering resistance of the 

Kimberley shales. Therefore, future research considering the same topic might need some further 

recommendations as seen below. 

8.3.2 Recommendations for future research 

 The effects of more than two layers / coats of various DECL products on the effectiveness of 

the rocks to withstand weathering and deterioration under natural weathering conditions should 

be tested (i.e. apply more coats / layers of the DECL products to the surfaces of the rocks to 

evaluate the significance thereof towards increasing durability and weathering resistance). 

 The coat thicknesses of the various DECL products to the applied surfaces should be 

measured (if possible), as to evaluate whether the liquid products wash off / disintegrate as a 

function of time. A possible means of doing this is to use laser sensors (i.e. laser 

interferometry) as a suitable coat thickness measuring technique and further investigation on 

this matter is strongly recommended. Unfortunately, due to a lack of equipment at Stellenbosch 

University and cost constraints associated with this project, this could not be tested.  

 Testing the effectiveness of the DECL products on a much larger scale by using in-situ rocks, 

such as that found on the sidewalls of the Kimberley “Big Hole” Mine for example, can be 

explored.  
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 Assess the possibility of pore water pressure buildup behind the surface of the slope and 

possible ways to prevent this (e.g. drainage pipes / holes). 

 Implementing pixel tracking in combination with satellite interferometry as a mass movement 

monitoring technique should be explored. The combined effect of measuring ground movement 

via pixel deformation and supporting the results with satellite interferometric data would give 

compelling evidence for slope movements and mass deformation. 

 Repeat absorption tests on a second set of samples, under the exact same conditions, as to 

ensure accuracy and consistency within the obtained results. 

 Conduct cyclic wetting and drying tests by simulating the weathering conditions of the focus 

area as closely as possible (i.e. consider testing the rock samples in Kimberley, under the 

same climatic conditions, as oppose to conducting the experiments in Stellenbosch where the 

climate and weathering conditions are somewhat different).  

 Develop more methods of measuring weathering and deterioration in shale type rocks (or 

mudrocks), besides the weight and visual inspections as conducted within the scope of this 

project, by looking at volume decreases or abrasion rates for example. 

 Conduct cyclic wetting and drying tests over a longer period of time (i.e. over 1 year for 

example) as to more accurately determine the lifespan of DECL products and their exact 

durability properties.  

 Equate an actual time series to the test conditions of the comparative accelerated weathering 

tests, as to make it more practical and relevant to the actual conditions experienced by rocks of 

the study area. 

 Test the slake-durability index of all DECL products against an untreated reference sample and 

try and apply a practical conclusion to the obtained results. 

8.4 Final remarks 

It is ultimately recommended however, that a fresh coat of the DECL product, Sasbind, be applied 

frequently or annually to the surface of the rock as to ensure the most effective outcome and 

waterproofing effect. Logically, a spray-on product such as Sasbind for example, will inevitably always 

start to disintegrate and wash off after a certain period of time (or to a certain extent at least). This is 

why a frequent (or annual) re-application of the Sasbind DECL product is crucial if the effectiveness of 

the product as a protective waterproofing coat against weathering and natural weathering conditions 

wants to be maintained. Even though using a DECL product, such as Sasbind, is preliminary 

considered a viable solution towards the defined slope stability problem at the Kimberley “Big Hole” 

Mine, further testing and trail applications on a much larger scale is highly recommended and requires 
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a lot more research and thought, especially considering the exact application procedure of the product 

to the sidewalls of the open mine pit itself.  

To summarize, the Sasbind DECL product is, within the scope of this project, considered a viable 

solution towards the defined slope stability problem at the Kimberley “Big Hole” Mine as it proved very 

successful and effective towards decreasing the weathering and deterioration rate of the Kimberley 

shales when exposed to a continuous cycle of wetting and drying as well as the effects of natural 

weathering conditions. It successfully increased the inner rock strength parameters, rock durability and 

weathering resistance properties of the Kimberley shales after each durability and weathering test as 

conducted within the scope of this project and is therefore considered a viable solution towards 

slowing down the regression / undermining processes experienced by the sidewalls of the Kimberley 

“Big Hole” Mine and as a result, should also combat block toppling slope failure events and 

subsequent sidewall migration outward from the center of the pit.  
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WORLD CLASS LEADERS IN DUST SUPPRESSION USING NANOTECHNOLOGY

Nanobond is arguably the world’s most effective surface spray dust palliative. It has been 
developed to supersede existing technologies from an efficiency, durability, particle-adhesion
and commercial perspective. Nanobond has been designed by taking existing environmental 
conditions (below and above ground) into consideration by removing application obstacles 
thus improving dust control and reducing vehicle maintenance costs.

• Improved coating due to smaller particle 
   sizes and particle-adhesion chemistry
• Water soluble, spray application
• UV and heat stable
• Chemically converts water absorbing
   silanol groups to water resistant 
   alkyl siloxane surfaces at room 
   temperature
• Si-O-Si Siloxane bond (sand) survives
   for centuries
• Works with all types of soils
• One time full drying essential for
   performance
• Non leachable, Safe Chemistry, 
   REACH & TSCA registered

NANOBOND BENEFITS DOSAGE RATE AND APPLICATION

STORAGE AND LIFE

PARTICLE SIZE COMPARASIONS

1 liter : 300 liters H20 
3 liters / m2 (to a point of saturation)

Nanobond must be mixed with potable
water that must be as close to neutral
as possible. Once combined the solution
must be thoroughly mixed.

The Nanobond solution can be sprayed onto
the surface by knap-sack sprayers or water 
tankers provided the quantity of the 
solution / m2 can be ensured and the area 
is SATURATED.

Nanobond will coat the extremely fine dust 
particles that other technologies battle to 
capture. This is due to the particle size of 
the Nanobond is 50nm in size which is 
100 times smaller than a bitumen particle 
which is 5000nm in size. Nanobond should be stored between 

5 - 45 °C (41 - 113 °F) in a shaded, dry 
area away from sunlight, heat, ignition, 
source of sparks, rain and standing water. 
The container lid should be securely 
fastened every time it is used. 
Its shelf life is 24 months.  

Nanobond’s efficiency of chemically coating the dust particle as well as its particle-adhesion 
improvement property, allows the dust particle to remain heavier and in much closer proximity
to other dust particles for longer periods of time. This will reduce the frequency of application
and thus maintenance costs. Site visibility and health conditions will vastly improve.
Nanobond is possibly the worlds first dust suppressant incorporating nanotechnology. 

Tel: +27 (0)11 050 0705 • Email: info@cruzeholdings.co.za • Website: www.cruzeholdings.co.za
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Material Safety Data Sheet  

 Product 
Product Name : NANOBOND 
Acrylic Co-polymer Based Composition in Water 

 Possible Hazards 
 HMIS Rating 
Health 1 
Flammability 0 
Reactivity 0 
Physical Hazards 1 
 Potential Health Effect 
Eye : May cause irritation 
Skin : May cause irritation 
Injection  : May cause gastrointestinal discomfort 
Inhalation: May cause irritation to respiratory tract 

 First aid Measures 
The person should be removed from the source of exposure. 
If product is spilled on clothing or skin, remove soiled clothing, wash the affected area with lukewarm water for at least 10 - 15 minutes and 
seek medical advice. 
If product is splashed in eyes, remove contact lenses, irrigate the affected eye with lukewarm water for at least 10 - 15 minutes and seek 
medical advice. 
If product is inhaled or ingested seek medical advice. 

 Fire-fighting methods 
FLASH POINT : Not Flammable 
BOILING POINT : Approx.100°C (212°F) at 1013 hPa 
 FIRE EXTINGUISHING MATERIALS: 
General Information 
The product is soluble in water. Containers can build up pressure if exposed to heat and/or fire. As in any fire, wear a self-contained breathing 
apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. Vapors may form an explosive mixture 
with air. Vapors can travel to a source of ignition and flash back. It will burn if involved in a fire. Flammable liquid can release vapors that form 
explosive mixtures at temperatures above the flashpoint. Use water spray to keep fire exposed containers cool. Containers  may 
explode in the heat of a fire. 
 Extinguishing Media 
For small fires, use dry chemical, carbon dioxide, water spray or alcohol-resistant foam. For large fires, use water spray, fog, or alcohol- 
resistant foam. Use water spray to cool fire-exposed containers. 
 Accidental release measures 
Environmental precaution Do   not   let   product   enter   drains   and   water sources. 
Methods for cleaning up Contain with absorbent material and dispose. Clean with water. Discard material according to local state and 
federal regulation. 
Precautions Use Hand gloves and Safety glass for handling spill. 
Handling Ensure thorough ventilation of stores and work areas. 
Protection against fire 
and explosion Keep away from heat and ignition source, Keep away from sparks. 
Handling and storage 
Exposure to Moisture No effect on Moisture Exposure. 
Handling Wash thoroughly after handling. Use only in a well-ventilated area. Ground and bond containers  when 

transferring material. Use spark-proof tools and explosion proof equipment. Avoid contact with eyes, skin, 
and clothing. Empty containers retain product residue, (liquid and/or vapor), andcan be dangerous. Keep 
container tightly closed. Keep away from heat, sparks and flame. Avoid ingestion and inhalation. Do not 
pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames. 

Storage Keep away from heat, sparks, and flame. Keep away from sources of ignition. Store in a tightly closed   container. 
Keep from  contact  with oxidizing materials. Store in a cool, dry, well- ventilated area away from incompatible 
substances. Flammables-area. Do not store near perchlorates,  peroxides,  chromic  acid or nitric  acid. 
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Material Safety Data Sheet  

 Exposure controls and personal protection 
 Engineering Controls 
Use explosion-proof ventilation equipment. Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety 
shower. Use adequate general or local exhaust ventilation to keep airborne concentrations below the permissible exposure limits 
 Personal Protective Equipment 
Eyes Wear  appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye  and  face  protection 

regulations in  29  CFR 1910.133 or European Standard EN166. 
Skin Wear appropriate protective gloves to prevent skin exposure. 
Clothing Wear appropriate protective clothing to prevent skin exposure. 
Respirators  A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European  Standard 

EN 149 must be followed whenever workplace conditions warrant a respirator's use. 

 Physical and chemical properties 
Appearance White Liquid 
Odor Mild 
Chemical Type Acrylic Co-polymer 
Physical State Liquid 
Solubility Dispersible in Water 
Density 1.01-1.02 g/ml 
pH value Approx. 6.5-8 
Stability and Reactivity 
Chemical Stability Stable under normal temperatures & Pressures 
Conditions to avoid Incompatible materials, ignition sources, excess heat, oxidizers 
Incompatibilities with 
other Materials Strong oxidizing agents, acids, alkali 
Hazardous Polymerization Hazardous polymerization will not occur 

 Toxicological information 
Effects of Overexposure Carcinogenicity Ecotoxicity Neurotoxicity 
No information available No information is available No specific information. 

is available 
No information available. 

 Ecological Information 
Environmental Fate and Distribution : When released to the soil and water, solvent Benzyl alcohol and ethylene glycol and alcohol generated 
due to reaction with water may evaporate to moderate extent. When released into the soil, this ethanol may leach into groundwater. When 
released into the water, these materials are expected to have a half life between 1 and 3 days. The active ingredient Organo silicon compound 
will react chemically with inorganic substrates such as soil, aggregates, or sand before any possibility of leaching out to ground water. 

 Disposal consideration 
Chemical  waste  generators must  determine  whether  a  discarded  chemical  is classified as a hazardous waste according to the local, 
state and federal regulation. Additionally, disposal of the waste generators must follow local, state and federal hazardous waste regulations to 
ensure complete and accurate compliance. 

 Transport Information 
The product do not constitute a hazardous substance in national/international road, rail, sea and air transportDOT regulations Hazard class 
Not regulated 
Land transport ADR/RID (Cross-border) ADR/RID Class Not regulated 
Maritime transport IMDG, IMDG Class Not regulated 
Air transport ICAO-TI and 
IATA-DGR , ICAO/IATA Class Not regulated 
U.S. Department of 
Transportation Hazard Class: Not Regulated 

 Regulatory information 
 USA 
TOXIC SUBSTANCES CONTROL ACT (TSCA): All ingredients are on the TSCA inventory. 
SARA section 313 Notification: This material does not contain any SARA 313 chemical in above de minimus levels. 
 Other Information 
These data are offered in good faith as typical values and not as product specifications. No warranty, either expressed  or  implied, is
hereby made. The recommended industrial hygiene and safe handling procedures are believed to be generally applicable. However, each
user should review these recommendations in the specific context of the intended use and determine whether they are appropriate.
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 Product  
Product Name : NANOBOND 	
Acrylic Co-polymer Based Composition in Water 

 Possible Hazards  
 HMIS Rating  

 

Health 1 
Flammability 0 
Reactivity 0 
Physical Hazards 1 
 Potential Health Effect  
Eye : May cause irritation 
Skin : May cause irritation 
Injection  : May cause gastrointestinal discomfort 
Inhalation: May cause irritation to respiratory tract 

 First aid Measures  
The person should be removed from the source of exposure. 
If product is spilled on clothing or skin, remove soiled clothing, wash the affected area with lukewarm water for at least 10 - 15 minutes and 
seek medical advice. 
If product is splashed in eyes, remove contact lenses, irrigate the affected eye with lukewarm water for at least 10 - 15 minutes and seek 
medical advice. 
If product is inhaled or ingested seek medical advice. 

 Fire-fighting methods  
FLASH POINT : Not Flammable 
BOILING POINT : Approx.100°C (212°F) at 1013 hPa 
 FIRE EXTINGUISHING MATERIALS:  
General Information 
The product is soluble in water. Containers can build up pressure if exposed to heat and/or fire. As in any fire, wear a self-contained breathing 
apparatus in pressure-demand,MSHA/NIOSH (approved or equivalent), and full protective gear. Vapors may form an explosive mixture 
with air. Vapors can travel to a source of ignition and flash back. It will burn if involved in a fire. Flammable liquid can release vapors that form 
explosive mixtures   at   temperatures    above    the flashpoint. Use water spray to keep fire exposed containers cool. Containers may 
explode in the heat of a fire. 
 Extinguishing Media  
For small fires, use dry chemical, carbon dioxide, water spray or alcohol-resistant foam. For large fires, use water spray, fog, or alcohol- 
resistant foam. Use water spray to cool fire-exposed containers. 
 Accidental release measures  
Environmental precaution Do   not   let   product   enter   drains   and   water sources. 
Methods for cleaning up Contain with absorbent material and dispose. Clean with water. Discard material according to local state and 
federal regulation. 
Precautions Use Hand gloves and Safety glass for handling spill. 
Handling Ensure thorough ventilation of stores and work areas. 
Protection against fire 
and explosion Keep away from heat and ignition source, Keep away from sparks. 
Handling and storage 
Exposure to Moisture No effect on Moisture Exposure. 
Handling Wash thoroughly after handling. Use only in a well-ventilated area. Ground and bond containers  when 

transferring material. Use spark-proof tools and explosion proof equipment. Avoid contact with eyes, skin, 
and clothing. Empty containers retain product residue, (liquid and/or vapor), andcan be dangerous. Keep 
container tightly closed. Keep away from heat, sparks and flame. Avoid ingestion and inhalation. Do not 
pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames. 

Storage Keep away from heat, sparks, and flame. Keep away from sources of ignition. Store in a tightly closed   container. 
Keep from  contact  with oxidizing materials. Store in a cool, dry, well- ventilated area away from incompatible 
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substances. Flammables-area. Do not store near perchlorates,  peroxides,  chromic  acid or nitric  acid. 

 Exposure controls and personal protection  
 Engineering Controls  
Use explosion-proof ventilation equipment. Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety 
shower. Use adequate general or local exhaust ventilation to keep airborne concentrations below the permissible exposure limits 
 Personal Protective Equipment  
Eyes Wear  appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye  and  face   protection 

regulations in  29  CFR 1910.133 or European Standard EN166. 
Skin Wear appropriate protective gloves to prevent skin exposure. 
Clothing Wear appropriate protective clothing to prevent skin exposure. 
Respirators  A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European  Standard 

EN 149 must be followed whenever workplace conditions warrant a respirator's use. 

 Physical and chemical properties  
Appearance White Liquid 
Odor Mild 
Chemical Type Acrylic Co-polymer 
Physical State Liquid 
Solubility Dispersible in Water 
Density 1.01-1.02 g/ml 
pH value Approx. 6.5-8 
Stability and Reactivity 
Chemical Stability Stable under normal temperatures & Pressures 
Conditions to avoid Incompatible materials, ignition sources, excess heat, oxidizers 
Incompatibilities with 
other Materials Strong oxidizing agents, acids, alkali 
Hazardous Polymerization Hazardous polymerization will not occur 

 Toxicological information  
Effects of Overexposure Carcinogenicity Ecotoxicity Neurotoxicity 
No information available No information is available No specific information. 

is available 
No information available. 

 Ecological Information   
Environmental Fate and Distribution : When released to the soil and water, solvent Benzyl alcohol and ethylene glycol and alcohol generated 
due to reaction with water may evaporate to moderate extent. When released into the soil, this ethanol may leach into groundwater. When 
released into the water, these materials are expected to have a half life between 1 and 3 days. The active ingredient Organo silicon compound 
will react chemically with inorganic substrates such as soil, aggregates, or sand before any possibility of leaching out to ground water. 

 Disposal consideration  
Chemical  waste  generators must  determine  whether  a  discarded  chemical  is classified as a hazardous waste according to the local, 
state and federal regulation. Additionally, disposal of the waste generators must follow local, state and federal hazardous waste regulations to 
ensure complete and accurate compliance. 

 Transport Information  
The product do not constitute a hazardous substance in national/international road, rail, sea and air transportDOT regulations Hazard class 
Not regulated 
Land transport ADR/RID (Cross-border) ADR/RID Class Not regulated 
Maritime transport IMDG, IMDG Class Not regulated 
Air transport ICAO-TI and 
IATA-DGR , ICAO/IATA Class Not regulated 
U.S. Department of 
Transportation Hazard Class: Not Regulated 

 Regulatory information  
 USA  
TOXIC SUBSTANCES CONTROL ACT (TSCA): All ingredients are on the TSCA inventory. 
SARA section 313 Notification: This material does not contain any SARA 313 chemical in above de minimus levels. 
 Other Information  
These data are offered in good faith as typical values and not as product specifications. No warranty, either expressed  or  implied, is 
hereby made. The recommended industrial hygiene and safe handling procedures are believed to be generally applicable. However, each 
user should review these recommendations in the specific context of the intended use and determine whether they are appropriate. 
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SIL

Nanosil technology is water-soluble, UV and heat stable, reactive soil modi�er with the ability to retain strength
of road bases and resistance to deformation.

BREATHABLE SOIL WATERPROOFING OF ROAD BASES & SLOPES

Nanobond acrylic co-polymer emulsion bonds the soil
particles to resist soil erosion in side shoulders and 
slopes. It is mixed with Nanosil solution for one step
waterproo�ng and bonding of compacted soils.

NANOSIL BENEFITS

SX 100 nano silicone emulsion extends
performance of Terrasil up to 100%. It is 
mixed with Nanosil solution and sprayed
on compacted soils.

Eliminates Capillary rise and water
ingress from top

Reduce water permeability of soils bases
(10-5 cm/s to 10-7 cm/s) while maintaining
100% vapor premeability

Maintains Dry CBR under wet conditions
Retains strength of road bases and
increases resistance to deformation by
maintaining frictional values between slit,
sand and clay particles.

Controls erosion of soils in side
shoulders and slopes

Treated with Nanosil
(%CBR)Untreated

(4 Day soak
% CBR)

Soil Type
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SIL

Tel: +27 (0)11 050 0705
Email: info@cruzeholdings.co.za

Website: www.cruzeholdings.co.za

Soil Layer Nanosil : Water
(<1000 ppm TDS) Ratio

Nanobond
in kg

SX 100
in kg

Spray Rate Liters/m2

upto saturation
No. of

Applications

* Nanobond binds side slopes to be used for stone pitching

• Road Bases - Asphalt and Concrete Pavements

• Dirt Roads - Rural, Mining, Waste Sites

• Land�lls / Construction Sites, Ponds, Canals, Levees (Bunds) etc.

• Solar Farms & Reclamations

Nanosil should be stored between 5 - 45 oC (41 - 113 oF) in a shaded, dry area away from sunlight, heat, ignition, source of sparks, rain

and standing water. The container lid should be securely fastened every time it is used. Its shelf life is 24 months.

Apply Nanosil solution through two application cycles of
Spray-Dry-Spray on compacted soil (Proctor density above
95% optimum moisture content).

First spray cycle waterproofs almost 90-95% of soil surface.

Second spray cycle ensures 100% saturation of the soil
surface, penetration and waterproofing of micro-cracks.

Shoulders & Side Slopes
Use regular soil to cover the treated slopes and build
shoulders. For extra binding of the side slopes, mix
10kgs of Nanobond with Nanosil solution.
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Material Safety Data Sheet 

SECTION 1: Identification of the substance/mixture and of the company/undertaking
1.1. Product identifier
Product form : Mixture
Product name : Nanosil TM

1.2. Relevant identified uses of the substance or mixture and uses advised against
evitidda rednib )tlahpsA(nemutiB:sesU

Uses advised against: None identified

1.3. Supplier's details
Cruze (Pty) Ltd.
Block C, Coachmans Crossing Office Park,
4 Brian street, Bryanston, 2052
T +27-0110500705
mark@cruzeholdings.co.za

1.4. Emergency telephone number
Emergency number : +27 (83) 6752438

SECTION 2: Hazards identification                                                                                              
2.1. Classification of the substance or mixture (Benzyl alcohol)
Product classification according to Regulation (EC) 1272/2008 (CLP):
Acute toxicity, Inhalation - Category 4, H332.
Acute toxicity, Oral - Category 4, H302.
Eye irritation - Category 2, H319.
Product classification according to Directive 67/548/EEC or 1999/45/EC: Harmful

R20/22 Harmful by inhalation and if swallowed.
R36 Irritating to eyes.

2.2. Label elements
Product labeling according to Regulation (EC) 1272/2008 (CLP): 

Hazard Pictogram

Signal word: Warning.
Hazard statements: H302 Harmful if swallowed.

H319 Causes serious eye irritation.
H332 Harmful if inhaled.

Precautionary statements: P261 Avoid breathing dust/fume/gas/mist/vapours/spray.
P264 Wash thoroughly after handling.
P270 Do not eat, drink or smoke when using this product.
P271 Use only outdoors or in a well-ventilated area.
P280 Wear eye protection/face protection.
P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
P330 Rinse mouth.
P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact
lenses, if present and easy to do. Continue rinsing.
P337+P313 If eye irritation persists: Get medical advice/attention.
P312 Call a POISON CENTER or doctor/physician if you feel unwell.
P501 Dispose of contents/container in accordance with local, regional and international regulations.

Supplemental information: Not Applicable
Notes: No Additional Information.

Product labeling according to Directive 67/548/EEC or 1999/45/EC:

Indications of danger: Harmful
Risk phrases: R20/22 Harmful by inhalation and if swallowed.

R36 Irritating to eyes.
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Safety phrases: S26 In case of contact with eyes, rinse immediately with plenty of water and
seek medical advice.

2.3. Other hazards:

PBT/vPvB criteria: This product does not meet the PBT and vPvB classification criteria.
0

SECTION 3: Composition/information on ingredients
3.1. Substance
Proprietory Organosilane compound
3.2. Mixture

Name Product identifier % Classification according to 
the United Nations GHS 
(Rev. 4, 2011)

Benzyl Alcohol CAS 100-51-6 25-27 Inhalation 4,
Acute Tox. (oral) 4, 
Eye Irrit. 2

Ethylene Glycol CAS 107-21-1 3-5 Acute Tox., 4, H302
STOT RE, 2, H373

SECTION 4: First aid measures
4.1. Description of first aid measures
First-aid measures general : Never give anything by mouth to an unconscious person. If you feel unwell, seek medical advice 

(show the label where possible).
First-aid measures after inhalation : Remove to fresh air and keep at rest in a position comfortable for breathing. Call a POISON 

CENTER/doctor/physician if you feel unwell.
First-aid measures after skin contact : Remove/Take off immediately all contaminated clothing. Wash with plenty of soap and water. 

Immediately call a POISON CENTER or doctor/physician. Wash contaminated clothing before 
reuse.

First-aid measures after eye contact : Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to 
do. Continue rinsing. Obtain medical attention if pain, blinking or redness persist.

First-aid measures after ingestion : Rinse mouth. Do NOT induce vomiting. Obtain emergency medical attention.

4.2. Most important symptoms and effects, both acute and delayed
Dizziness, Drowsiness, Headache, Irritation, Nausea. Preexisting sensitization, skin and/or respiratory disorders or diseases may
be aggravated. See section 11 for additional information.

4.3. Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

SECTION 5: Firefighting measures
5.1. Extinguishing media
Suitable extinguishing media : Foam. Dry powder. Carbon dioxide. Water spray.
Unsuitable extinguishing media : Not Known.

5.2. Special hazards arising from the substance or mixture
Fire hazard : Can form highly flammable liquid and vapour.
Explosion hazard : May form flammable/explosive vapour-air mixture.
Reactivity : Stable under normal conditions.

5.3. Advice for firefighters
Firefighting instructions : Use water spray or fog for cooling exposed containers. Exercise caution when fighting any 

chemical fire. Do not allow run-off from fire fighting to enter drains or water courses.
Protection during firefighting : Do not enter fire area without proper protective equipment, including respiratory protection. Wear 

self-contained breathing apparatus (SCBA) equipped with a full facepiece and operated in a 
pressure-demand mode (or other positive pressure mode) and approved protective clothing.

SECTION 6: Accidental release measures
6.1. Personal precautions, protective equipment and emergency procedures
General measures : Remove ignition sources. Use special care to avoid static electric charges. No naked lights. No 

smoking.

6.1.1. For non-emergency personnel
Emergency procedures : Evacuate unnecessary personnel. Stop leak without risks if possible. Avoid contact with skin, 

eyes and clothing. Avoid inhalation of vapours.

Material Safety Data Sheet 
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6.1.2. For emergency responders
Protective equipment : Equip cleanup crew with proper protection. Avoid inhalation of vapours. Avoid contact with skin 

and eyes.
Emergency procedures : Ventilate area.

6.2. Environmental precautions
Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters.

6.3. Methods and material for containment and cleaning up
Methods for cleaning up : Soak up spills with inert solids, such as clay or diatomaceous earth as soon as possible. Collect 

spillage. Store aways from other materials.

SECTION 7: Handling and storage
7.1. Precautions for safe handling
Additional hazards when processed : Handle empty containers with care because residual vapours may be flammable.
Precautions for safe handling : Wash hands and other exposed areas with mild soap and water before eating, drinking or 

smoking and when leaving work. Provide good ventilation in process area to prevent formation of 
vapour. No naked lights. No smoking. Use only non-sparking tools. Use only outdoors or in a 
well-ventilated area. Do not breathe vapours. Avoid contact with skin, eyes and clothing.

Hygiene measures : Do not eat, drink or smoke when using this product. Wash hands thoroughly after handling.

7.2. Conditions for safe storage, including any incompatibilities
Technical measures : Ground/bond container and receiving equipment.
Storage conditions : Keep only in the original container in a cool, well ventilated place away from : Sources of ignition. 

Keep container tightly closed.
Incompatible products : Strong bases. Strong acids.

SECTION 8: Exposure controls/personal protection
8.1. Control parameters

Chemical Name EU OELV EU IOELV ACGIH - TWA ACGIH - STEL UKWELs
Benzyl alcohol N/E N/E N/E N/E N/E
Ethylene Glycol 40 ppm 40 ppm 100mg/M3 40 ppm TWA 52 ppm, STEL 104 ppm

N/E=Not established (no exposure limits established for listed substances for listed country/region/organization).

8.2. Exposure controls
Personal protective equipment : Avoid all unnecessary exposure.
Hand protection : Wear protective gloves.
Eye protection : Chemical goggles or safety glasses.
Skin and body protection : Wear suitable protective clothing.
Respiratory protection : Where exposure through inhalation may occur from use, respiratory protection equipment is 

recommended.
Thermal hazard protection : Not required for normal conditions of use.
Environmental exposure controls : Avoid release to the environment.
Other information : Do not eat, drink or smoke during use.

SECTION 9: Physical and chemical properties
9.1. Information on basic physical and chemical properties
Physical state : Liquid
Colour : Pale yellow.
Odour : Slight Aromatic
Odour threshold : No data available
pH : No data available
Relative evaporation rate (butylacetate=1) : No data available
Melting point : 6°C
Freezing point : No data available
Boiling point : Approx.  200 oC
Flash point : 90 °C (closed cup)
Self ignition temperature : No data available
Decomposition temperature : No data available
Flammability (solid, gas) : No data available
Vapour pressure : No data available
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Relative vapour density at 20 °C : No data available
Relative density : No data available
Density : 1.04 g/ml
Solubility : Miscible with : Ethanol. Methanol. alcoholic. Acetone.
Log Pow : No data available
Log Kow : No data available
Viscosity, kinematic : No data available
Viscosity, dynamic : 100 - 500 cP @ 25°C
Explosive properties : Not Explosive
Oxidising properties : Not Oxidizing
Explosive limits : No data available

9.2. Other information
No additional information available

SECTION 10: Stability and reactivity
10.1. Reactivity
Stable under normal conditions.

10.2. Chemical stability
Stable under normal conditions. Moisture exposure may form flammable/explosive vapour-air mixture.

10.3. Possibility of hazardous reactions
Under fire conditions closed containers may rupture or explode. Can form explosive mixture with air.

10.4. Conditions to avoid
Direct sunlight. Extremely high or low temperatures.

10.5. Incompatible materials
Water. Acids. Oxidizing agents.

10.6. Hazardous decomposition products
Carbon monoxide. Carbon dioxide.

SECTION 11: Toxicological information

11.1. Information on toxicological effects
Acute toxicity  :        Not classified
Information on likely routes of exposure:
General: Overexposure by inhalation or ingestion may cause dizziness, drowsiness, headache, nausea, vomiting, diarrhea, convulsions, central
nervous system depression and loss of consciousness.
Eyes: Causes eye irritation.
Skin: May cause skin irritation. Repeated or prolonged contact may cause irritation, dermatitis, defatting and drying or cracking of the skin. 
Repeated or prolonged skin contact may cause allergic reactions with susceptible persons.
Inhalation: Harmful by inhalation. Inhalation at high vapor concentrations may cause respiratory tract irritation and central nervous effects.
Ingestion: Harmful if swallowed. Ingestion may cause nausea, vomiting and diarrhea.

Acute toxicity information: Harmful if inhaled - Category 4. Harmful if swallowed - Category 4.

Chemical Name LC50 Inhalation        Species            LD50 Oral Species LD50 Skin             Species
Benzyl alcohol       >4178/M3 4 hrs          Rat/adult         1620mg/kg       Rat/adult    N/E
                                   Aerosol

Corrosion/Irritation/Sensitization information:
Skin corrosion/irritation: Not classified (based on available data, the classification criteria are not met).
Serious eye damage/irritation: Causes serious eye irritation - Category 2.
Respiratory or skin sensitization: Not classified (based on available data, the classification criteria are not met).
BENZYL ALCOHOL: This material has a low potential to cause allergic skin reactions, however cases of skin sensitization have been reported.

Chemical Name             Eye Irritation         Species/Dose           Skin Irritation                Species/Dose          Skin Sensitization             Species/Dose
Benzyl alcohol               Irritant (OECD 405)    Rabbit/adult              Non irritant (OECD 404)     Rabbit/adult                 Non Sensitizer                   Guinea Pig and     
                                                                                                                                                                                                             Human Patch

Carcinogenicity/Mutagenicity/Reproductive toxicity information:

Carcinogenicity: Not classified (based on available data, the classification criteria are not met). 
BENZYL ALCOHOL: Under conditions of a two-year NTP gavage study, there was no evidence of carcinogenic activity for rats or mice
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receiving 200 or 400 mg/kg.

Germ cell mutagenicity: Not classified (based on available data, the classification criteria are not met). 
BENZYL ALCOHOL: Ames testing showed no mutagenic activity and mixed results both positive and negative were observed from other in-vitro 
genotoxicity assays. Benzyl alcohol showed no genotoxicity during in-vivo testing. The weight of the evidence indicates this material is not 
mutagenic or clastogenic.

Reproductive toxicity: Not classified (based on available data, the classification criteria are not met). 
BENZYL ALCOHOL: No effects on reproductive organs were observed in subchronic and long-term studies with rates and mice. Developmental 
toxicity oral study, mouse: NOAEL (no-observed-adverse-effect level), maternal toxicity=550 mg/kg bw/day; NOAEL, developmental 
toxicity=550 mg/kg bw/day. No developmental effects were observed in absence of maternal toxicity.

Specific target organ toxicity (STOT):

STOT-single exposure: Not classified (based on available data, the classification criteria are not met).
STOT-repeated exposure: Not classified (based on available data, the classification criteria are not met). 

BENZYLALCOHOL: Long term animal studies indicate a gavage NOAEL (no-observed-adverse-effect-level) >=400 mg/kg/day for rats and 
>=200 mg/kg/day for mice. At higher doses, effects on bodyweights, brain lesions, thymus, skeletal muscle, kidneys, liver and central nervous 
system were observed. In a 4-week inhalation study in rats on Benzyl Alcohol, no adverse effects were observed with a no-observed-adverse-
effect level (NOAEC) of 1,072 mg/m3.

SECTION 12: Ecological information
12.1. Toxicity

Chemical Name  Fish 96 hour LC50 Species                        Fish 96 hour LC50                 Species Fish Chronic NOEC               Species
Benzyl alcohol 460mg/L                                 Pimephalis promelas   >100 mg/L                        Oryzias latipes (Medaka) N/E
                                                                                             (Fathead minnow)

Chemical Name                          Invertebrates 48                Species                   Invertebrates 24 Species                            Invertebrates                   Species
                                                      hour EC50                                                           hour EC50                                                                    Chronic NOEC
Benzyl alcohol                            230mg/L                              Daphnia magna          440mg/ L                        Pseudokirchneriella 310 mg/L (72 hours Pseudokirchneriella                        
                                                                                                                                                                           subcapitata                                                        subcapitata

Chemical Name                      Algal 96 hour EC50            Species                        Algal 72 hour EC50        Species                                 Algal Chronic             Species                                         
                                                                                                                                    groath rate)                                                                   NOEC
Benzyl alcohol                             N/E                                                                          770 mg/L                  Pseudokirchneriella                  310 mg/L (72 hours Pseudokirchneriella
                                                                                                                                                                  subcapitata,                                                                  subcapitata

12.2. Persistence and degradability
NANOSIL
Persistence and degradability Not established.

12.3. Bioaccumulative potential
NANOSILL
Bioaccumulative potential Not established.

12.4. Mobility in soil
No additional information available

12.5. Other adverse effects
Other information : Avoid release to the environment.

SECTION 13: Disposal considerations
13.1. Waste treatment methods
Waste disposal recommendations : Dispose in a safe manner in accordance with local/national regulations. Dispose of this material 

and its container to hazardous or special waste collection point.
Additional information : Handle empty containers with care because residual vapours are flammable.
Ecology - waste materials : Hazardous waste due to toxicity. Avoid release to the environment.

SECTION 14: Transport information
14.1. UN number
UN-No (Land transport) : Not Regulated

14.2. UN proper shipping name
Proper Shipping Name (Land transport) : Not Regulated
Proper Shipping Name (IATA) : Not Regulated
Proper Shipping Name (IMDG) : Not Regulated
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14.3. Transport hazard class(es)
Class (Land transport) : Not Applicable
Class (IATA) : Not Applicable
Class (IMDG) : Not Applicable

14.4. Packing group
Packing group (Land transport) : II

14.5. Environmental hazards
Other information : Not classified.

14.6. Special precautions for user
Special transport precautions : - Ensure there is adequate ventilation.

14.6.1. Overland transport
Not Regulkated

14.6.2. Transport by sea
Not Regulated

14.6.3. Air transport

14.7. Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code
Not applicable

SECTION 15: Regulatory information
15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

EU Authorizations and/or restrictions on use: Not Applicable
Other EU information: REACH Registration Numbers, 17-21-20000364-74-0000, 17-2119878844-19-0000,  

17-210000366-70-0000
National regulations: No Additional Information

Chemical inventories:

Regulation Status
Canadian Domestic Substances List (DSL): Y
Canadian Non-Domestic Substances List (NDSL): N
European Inventory of Existing Chemical Substances (EINECS): Y
European List of Notified Chemical Substances (ELINCS): Y
Europe REACH (EC) 1907/2006: N
U.S. Toxic Substances Control Act (TSCA): Y

SECTION 16: Other information
Other information : None.

This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be 
construed as guaranteeing any specific property of the product
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TECHNICAL DATA SHEET  Road Material Stabilisers  

 (Pty) Ltd 
 1986/004184/07 

 PO Box 84513 Greenside  

 2034 Johannesburg Gauteng 
 Republic of South Africa 
 Tel  27 (0)11 390 3499  
 Fax 27 (0)11 390 3284  

 E-mail info@roadmaterial.co.za 
 Website www.roadmaterial.co.za 

 

 
SASBIND  

DATE: 03/06/2004 
REVISED: 19/01/2005 

DESCRIPTION: 
SASBIND is a uniquely formulated water based 
emulsion of modified acrylic polymers suitable for the 
binding and stabilisation of layers for use in the 
construction of all types of roads. SASBIND is also 
suitable for application to the surface of already 
constructed roads requiring dust palliation. 

APPLICATION RATES: 
 Stabilisation:  0.4-0.7% MDD 
 Seal coat: 0.1 ℓ/m

2 
 
 (Application rates are offered as a guide, use 

 as directed) 

BENEFITS: 
- Water-based (mixes in with compaction water)  
- Suitable for application to a wide variety of soil types 
- No specialised equipment required 
- Minimal disruption to traffic 
- Reduces erodibility and improves waterproofing of unsurfaced roads 
- Increases CBR and UCS significantly 

PREPARATION: 
- Establish the suitability of the soil for use with SASBIND 
- Add the required quantity of SASBIND directly to the water bowser with the compaction water 

APPLICATION: 
Mix-in 

- Rip the layer to 100-150 mm and break large agglomerations to max 50 mm 
- Calculate the approximate volume of water required to reach OMC 
- Add the required quantity of SASBIND to required quantity of water 
- Apply the solution onto prepared surface in 2-4 applications, mixing thoroughly between applications 
- Shape to required camber and compact with pneumatic or vibratory roller to required density 
- Apply the seal coat if required to the road surface while still damp and allow to dry (approx 1-2 hours) 

 

Surface treatments (spray-on application) 
- Road structure: well compacted base or wearing coarse layer; density >93%. 
- Ensure the road surface is firm, free of excess loose material and with sufficient camber to ensure 
    proper drainage 
- Apply the product in multiple applications using the prescribed dilution ratio. Avoid run-off and pooling 

CHARACTERISTICS: 
 Appearance -    milky white liquid 
 Specific gravity -    1.04 @ 25°C 
 pH -    7 ±1 
 Odour -    mild Acrylic 
 Solids %m/m -    46-55 
 Diluent -    water 
HAZARDS: 
Fire -   non-flammable 
Explosion: -   non-explosive 
 

Skin -   slightly Irritating 
     when undiluted 
Ingestion -   irritant 
Eyes -   slightly irritating 

PRECAUTIONS: 
−  
− 
 

Wear protective clothing for 
   sensitive skins 
Do not ingest 
Avoid splashing 

FIRST AID: 
− 
− 
 

Rinse with water 
 

Do not induce vomiting* 
Flush with water for min 20 min* 
* (Seek prompt medical advice) 

STORAGE: 
Maximum handling temperature   -  75°C 
Storage temperature    -  5-60°C 
Transport temperature    -  5-60°C 

PACKAGING / LABELLING: 
Packed: -   200 kg mild steel drums 
Label: -   including description, application, first aid 
     and batch number 
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 (Pty) Ltd 
 1986/004184/07 

 PO Box 84513 Greenside  

 2034 Johannesburg Gauteng 
 Republic of South Africa 
 Tel  27 (0)11 390 3499  
 Fax 27 (0)11 390 3284  

 E-mail info@roadmaterial.co.za 
 Website www.roadmaterial.co.za 

 

 
SASBIND  

DATE: 03/06/2004 
REVISED: 19/01/2005 

DESCRIPTION: 
SASBIND is a uniquely formulated water based 
emulsion of modified acrylic polymers suitable for the 
binding and stabilisation of layers for use in the 
construction of all types of roads. SASBIND is also 
suitable for application to the surface of already 
constructed roads requiring dust palliation. 

APPLICATION RATES: 
 Stabilisation:  0.4-0.1% MDD 
 Seal coat: 0.1 ℓ/m

2 
 
 (Application rates are offered as a guide, use 

 as directed) 

BENEFITS: 
- Water-based (mixes in with compaction water)  
- Suitable for application to a wide variety of soil types 
- No specialised equipment required 
- Minimal disruption to traffic 
- Reduces erodibility and improves waterproofing of unsurfaced roads 
- Increases CBR and UCS significantly 

PREPARATION: 
- Establish the suitability of the soil for use with SASBIND 
- Add the required quantity of SASBIND directly to the water bowser with the compaction water 

APPLICATION: 
Mix-in 

- Rip the layer to 100-150 mm and break large agglomerations to max 50 mm 
- Calculate the approximate volume of water required to reach OMC 
- Add the required quantity of SASBIND to required quantity of water 
- Apply the solution onto prepared surface in 2-4 applications, mixing thoroughly between applications 
- Shape to required camber and compact with pneumatic or vibratory roller to required density 
- Apply the seal coat if required to the road surface while still damp and allow to dry (approx 1-2 hours) 

 

Surface treatments (spray-on application) 
- Road structure: well compacted base or wearing coarse layer; density >93%. 
- Ensure the road surface is firm, free of excess loose material and with sufficient camber to ensure 
    proper drainage 
- Apply the product in multiple applications using the prescribed dilution ratio. Avoid run-off and pooling 

CHARACTERISTICS: 
 Appearance -    milky black liquid 
 Specific gravity -    1.04 @ 25°C 
 pH -    7 ±1 
 Odour -    mild Acrylic 
 Solids %m/m -    46-55 
 Diluent -    water 
HAZARDS: 
Fire -   non-flammable 
Explosion: -   non-explosive 
 

Skin -   slightly Irritating 
     when undiluted 
Ingestion -   irritant 
Eyes -   slightly irritating 

PRECAUTIONS: 
−  
− 
 

Wear protective clothing for 
   sensitive skins 
Do not ingest 
Avoid splashing 

FIRST AID: 
− 
− 
 

Rinse with water 
 

Do not induce vomiting* 
Flush with water for min 20 min* 
* (Seek prompt medical advice) 

STORAGE: 
Maximum handling temperature   -  75°C 
Storage temperature    -  5-60°C 
Transport temperature    -  5-60°C 

PACKAGING / LABELLING: 
Packed: -   200 kg mild steel drums 
Label: -   including description, application, first aid 
     and batch number 
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Petrographic analysis (thin section description) 

Sample: KSU-1 

Macroscopic rock description 

Very fine grained, dark grey colored rock with alternating light and dark layers. 

Microscopic rock description 

Composition: Quartz (55%), Clay minerals (30%), Mica (5%), Iron oxide (3%), Feldspar (7%), Rock 

fragments (<1%), Carbon (0%) (extremely fine grained nature of rock makes petrographic description 

particularly difficult). 

Grain size: Very fine grained (<40µmm). 

Sorting: Very well sorted. 

Rounding: Very well rounded. 

Clast / Matrix supported: Predominantly matrix supported layers. 

Other textures: Horizontal layers (i.e. rhythmite). 

Description: The rock is a rhythmically layered sedimentary rock consisting of lighter and darker 

brown interlayers as seen in Figure 53. The rock is extremely fine grained, which makes the 

petrographic analysis extremely difficult.  

Sample: KSAG-1 

Macroscopic rock description 

Very fine grained, dark grey colored rock with alternating light and dark layers. 

Microscopic rock description 

Composition: Quartz (48%), Clay minerals (34%), Mica (7%), Iron oxide (3%), Feldspar (8%), Rock 

fragments (<1%), Carbon (0%) (extremely fine grained nature of rock makes petrographic description 

particularly difficult). 

Grain size: Very fine grained (<30µmm). 

Sorting: Very well sorted. 
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Rounding: Very well rounded. 

Clast / Matrix supported: Predominantly matrix supported layers. 

Other textures: Horizontal layers (i.e. rhythmite). 

Description: The rock is a rhythmically layered sedimentary rock consisting of lighter and darker 

brown interlayers as seen in Figure 53. The rock is extremely fine grained, which makes the 

petrographic analysis extremely difficult.  
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