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Abstract  

Metabolic syndrome (MetS) is rapidly becoming an epidemic in society, affecting between 

10% and 40% of Western populations. High-fat and refined sugar diets have been 

implicated in the increased prevalence of insulin resistance, obesity and dyslipidaemia, 

the hallmarks of MetS. Risk factors of MetS have been correlated with decreased 

reproductive potential and suboptimal pregnancy outcomes, while predisposing offspring 

to a MetS state in adulthood. 

Therefore, this study aimed to assess the effects of a high-sucrose diet on the reproductive 

potential and mating outcomes of albino Wistar rats, and their offspring using a foetal 

programming model.  

Female nulliparous albino Wistar rats (n=28) were randomly divided into a high-sucrose 

feed group (HSF) (n=19) and a control-feed group (CF) (n=9). All animals in this study 

were housed in standard rat cages in a temperature and humidity-controlled environment 

on a reverse 12-hour dark/light cycle with free access to water and respective feeds. Diets 

consisted of 68% carbohydrate consisting of either sucrose (HSF) or corn starch (CF). 

Maternal feeding commenced four weeks prior to mating with unexposed males. Maternal 

metabolic profile and mating outcomes were recorded. Maternal animals were euthanised 

and the ovaries harvested immediately after their offspring were weaned. The offspring 

were randomly divided into three groups; HSF/HSF (pups from HSF dam maintained on 

high-sucrose feed) (n=6), CF/CF (pups from CF dam maintained on control-feed) (n=6) 

and HSF/CF (pups from HSF dam and maintained on control-feed) (n=4). Pups were 

maintained on their respective feed for 10 weeks to achieve an age match comparison 

with dams. All animal’s ovaries were harvested, formalin-fixed and paraffin-embedded, 

routinely stained and histologically evaluated for follicle type and numbers, follicle 

development, and morphological changes. 

Results indicated no overt hyperglycaemia or obesity in any group, however a significant 

(p<0.01) decrease in mean body mass (MBM) was observed in the HSF and HSF/HSF 

groups when compared to their respective controls. Mating was deleteriously affected, 

with HSF dams birthing fewer and significantly lighter offspring. End point metabolic 

profiles of pups, indicated no significant differences in fasting blood glucose level, however 

the HSF/HSF MBM was found to be significantly decreased. An intermediate metabolic 

profile was observed in the HSF/CF group. Histological examination indicated a significant 

decrease in numbers of functional follicles in any sucrose feed group, with varying degrees 

of indicative morphological changes. 
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Metabolic profiles of all animals, although not overtly pathological, displayed dysregulation 

in energy balance. This is hypothesised to be a result of adaptations in hepatic fructose 

metabolism and the protective effects of oestrogen. Effects on reproductive potential and 

ovarian morphology in this study appear to be as result of gonadotropic hormone 

dysregulation mediated by metabolic status. Foetal programming by means of high-

sucrose diet was confirmed in this study with HSF/CF being deleteriously affected despite 

control feed postnatal diet.  

This study demonstrated the deleterious effects of a high-sucrose diet on maternal 

reproductive health and its compounding effects on their offspring. Deductions from this 

research emphasise the importance of maternal diet beyond overt MetS risk factors and 

can be applied in family planning. 

Keywords: Maternal nutrition, sucrose diet, ovarian morphology and foetal programming 
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Opsomming 

Metaboliese sindroom (MetS) is vinnig besig om ŉ epidemie in die samelewing te word, 

en affekteer tussen 10% en 40% van Westerse populasies. Diëte met ŉ hoë vet en 

verfynde suikerinhoud word geïmpliseer by die kenmerke van MetS, naamlik ŉ toename 

in insulien weerstandigheid, vetsug en dislipidemie. Daar is verder ook ŉ korrelasie tussen 

die risikofaktore van MetS, ŉ afname in reproduktiewe potensiaal en ŉ sub-optimale 

uitkoms met swangerskap gevind, terwyl dit ook die nakomelinge predisponeer tot MetS 

as volwassenes. 

Die doelwit van die studie was om die effek van ŉ hoë sukrose dieet op die 

voortplantingspotensiaal en die uitkomste van paring in albino Wistar rotte, te bepaal, 

sowel as die effek op die nakomelinge met behulp van ŉ fetale programmeringsmodel.  

Vroulike, nullipareuse albino Wistar rotte (N=28) is lukraak ingedeel in ŉ hoë sukrose 

voedingsgroep (HSF) (n=19) en ŉ kontrole voedingsgroep (CF) (n=9). Alle diere in die 

studie is in standaard rothokke gehuisves, in ŉ temperatuur en humiditeit gekontroleerde 

omgewing met ŉ 12-uur donker/lig siklus, en met vrye toegang tot water en die onderskeie 

voere. Diëte het 68% koolhidrate bevat, wat bestaan het uit sukrose (HSF) of mieliestysel 

(CF). Voeding van vroulike diere het vier weke voor paring met manlike diere wat nie 

blootgestel is nie, begin. Vroulike diere se metaboliese profiele en die resultate van paring 

is aangeteken. Onmiddellik nadat die kleintjies gespeen is, is die vroulike diere 

getermineer en die ovaria geoes. Die kleintjies is lukraak in drie groepe verdeel; HSF/HSF 

(kleintjies vanaf HSF moeders is op hoë sukrose voedings behou) (n=6), CF/CF (kleintjies 

vanaf CF moeders het voortgegaan met kontrole voedings) (n=6), en HSF/CF (kleintjies 

vanaf HSF moeders het voortgegaan met kontrole voedings) (n=4). Kleintjies is vir 10 

weke op die onderskeie voere gehou totdat ‘n ouderdom soortgelyk aan dié van die 

moederlike diere bereik is. Alle diere se ovaria is geoes, in formalien gefikseer en in 

paraffien ingebed, het roetine kleuring ondergaan, en is histologies geëvalueer vir tipe en 

aantal follikels, follikel ontwikkeling en morfologiese veranderinge. 

Resultate het geen uitgesproke hiperglisemie of obesiteit in enige groep getoon nie, maar 

ŉ betekenisvolle (p<0.01) afname in gemiddelde liggaamsmassa (MBM) is in die HSF en 

HSF/HSF groepe waargeneem, in vergelyking met die onderskeie kontroles. Paring is 

nadelig beïnvloed, met HSF moeders wat geboorte gegee het aan kleiner getalle kleintjies, 

met ŉ betekenisvolle laer geboortegewig. Eindpunt metaboliese profiele van die kleintjies 

het geen betekenisvolle verskille in vastende bloedglukosevlakke getoon nie, maar die 

HSF/HSF MBM was betekenisvol laer. ŉ Intermediêre metaboliese profiel is waargeneem 
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in die HSF/CF groep. Histologiese ondersoek het ŉ betekenisvolle afname in die getal 

funksionele follikels in die groepe wat met sukrose gevoer is, getoon, met aanduidings van 

variërende grade van beduidende morfologiese veranderinge. 

Metaboliese profiele van alle diere het ŉ wangereguleerde energiebalans getoon, 

alhoewel nie uitermatig patologies nie. Die hipotese is dat dit die resultaat van 

aanpassings in fruktose metabolisme in die lewer, asook die beskermende effekte van 

estrogeen, is. Dit blyk uit die studie dat die effekte op die voortplantingspotensiaal en 

ovariale morfologie die gevolge van wanregulasie van die gonadotropiese hormone is, wat 

deur die metaboliese status bewerkstellig is. Fetale programmering deur middel van ŉ hoë 

sukrose dieet is in die studie bevestig, met HSF/CF wat nadelig geaffekteer is ten spyte 

van ŉ gekontroleerde postnatale dieet.  

Die studie toon die nadelige effekte van ŉ hoë sukrose dieet op die moederlike 

voortplantingsgesondheid, asook die saamgestelde effekte op die nakomelinge. Bo en 

behalwe uitgesproke MetS risiko faktore, beklemtoon gevolgtrekkings vanuit die navorsing 

die belang van die dieet wat deur die moeder gevolg word, en kan in gesinsbeplanning 

toegepas word. 

Sleutelwoorde: Moederlike voeding, sukrose dieet, ovariale morfologie en fetale 

programmering. 
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1.1  Background 

Metabolic syndrome (MetS) and its risk factors are rapidly rising to epidemic proportions in 

western society. An American study in 2002 determined that 23.7% of the population were 

diagnosed with MetS with male and females affected equally (Ford, Giles and Dietz, 2002). 

However, in some population groups the prevalence in females was found to be more than 

twice that of males (Al Awlaqi, Alkhayat and Hammadeh, 2016). Risk factors of MetS include 

insulin resistance (IR), obesity and dyslipidaemia and result in an altered metabolic profile 

(Huang, 2009). 

Associated risk factors of MetS are known to exert both individual and compound effects 

(Sookoian and Pirola, 2011) on the reproductive system leading to infertility, sub-optimal 

pregnancy outcomes and poor foetal health (Diamanti-Kandarakis and Bergiele, 2001; 

Michalakis et al., 2013; Talmor and Dunphy, 2015). Hyperinsulinemia is found to cause 

modifications of the reproductive system indirectly at the level of the hypothalamus as well as 

direct inhibition of gonadotropic hormones and steroidogenesis at the level of the ovary 

(Evanthia et al., 1999; Budak et al., 2006). Obesity and dyslipidaemia are associated with poor 

rates of conception and poor foetal health (Michalakis et al., 2013). In combination these 

factors lead to a systemic inflammatory state and result in multiple tissue level complications.  

Changes in follicles numbers and morphology of the ovary are in direct relation to the 

reproductive potential of an individual. It is well established that alterations to gonadotropic 

hormones result in dysregulation of reproductive cycling and ultimately follicle numbers and 

ovarian morphology (Dixon et al., 2014; Fontana and Della Torre, 2016). Additionally, systemic 

inflammatory and glucohomeostatic changes are known to lead to increased levels of oxidative 

stress and can result in the inhibition of intraovarian follicle recruitment and morphological 

changes within the ovary (McGee and Hsueh, 2000). 

Links between metabolism and reproduction are well established yet not fully understood 

(Fontana and Della Torre, 2016). Theories of glucotoxicity in hypothalamic neurons causing 

dysregulation of gonadotropin releasing hormone (Roa et al., 2006; Roa, Navarro and Tena-

Sempere, 2011), as well as potential hepatic alterations leading to poor hepatic 

steroidogenesis modulation have been assessed in rats with varying success (Fontana and 

Della Torre, 2016). Highlighted in these studies are the variable nature of response to different 

feeding models as well as sexual dimorphism in MetS induction (Kim et al., 2013). 

Foetal programming as a result of dietary intervention has been well studied in small animals, 

as well as epidemiology using multiple mixed fat and sugar feeding models proving that poor 

maternal diet is sufficient to predispose offspring to adulthood illness (Aiken and Ozanne, 

2014; Aiken, Tarry-Adkins and Ozanne, 2016; Khanal and Nielsen, 2017). Mechanisms by 

which this occur are only partially elucidated and believed to be multifactorial, as varying diets 
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led to different results. Furthermore, literature is limited regarding the isolated 

transgenerational effects of sucrose, and the reproductive potential of the resultant offspring, 

particularly potential ovarian and follicular morphological changes. 

This study makes use of a novel sucrose diet foetal programming model in Wistar rats, to 

evaluate the effects of a high-sucrose diet on the metabolic profile and reproductive potential 

of dams and their offspring at the same age. 

1.2 Research questions 

• Does a high sucrose diet have an effect on the metabolic profile, mating outcomes 

and ovarian morphology in Wistar rats? 

• Does a high sucrose maternal diet have transgenerational effects on offspring at the 

same age?  

1.3 Aim 

Primary:  

Identify, describe and quantify changes in the metabolic profile, mating outcomes and ovarian 

morphology of Wistar rats maintained on a post-weaning high sucrose diet.  

Secondary: 

Identify, describe and quantify changes in the metabolic profile and ovarian morphology of age 

matched Wistar rats born of a high sucrose foetal programming model on a post-weaning high 

sucrose diet.  

1.4 Objectives  

• Compare age-matched metabolic data of dams and pups for control and experimental 

groups: 

o Body mass 

o Blood glucose levels 

• Assess mating outcomes of dams and comparing on the basis of: 

o Size of litter 

o Sex ratio 

o Body mass of pups 

• Macroscopically examine the ovaries of all animals to compare: 

o Ovarian mass 
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• Microscopically examine all ovaries to describe and compare: 

o Follicle numbers 

o Follicular development by mean of stem cell factor staining 

o Morphological changes in ovaries 
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2.1 Metabolic syndrome 

2.1.1 Background 

Metabolic syndrome (MetS) is rapidly rising to epidemic proportions, and thus resulted in 

increased attention from the scientific community (O’Neill and O’Driscoll, 2015). Gerald 

Reaven was the first individual to present the concept of MetS, then referred to as ‘syndrome 

X’ which had the development of coronary heart disease and Type 2 diabetes mellitus (T2DM) 

as central features  (Reaven, 1988; Kassi et al., 2011). Definitions of MetS are highly variable 

causing inconsistent and unreliable reports of prevalence of the syndrome (Huang, 2009).  

Metabolic Syndrome (MetS) is detailed by the presentation of multiple risk factors, which in 

combination, will have a detrimental effect on health (Huang, 2009). Risk factors include insulin 

resistance (IR), central obesity, hypertension, dyslipidaemia and microalbuminuria (Huang, 

2009; O’Neill and O’Driscoll, 2015). Health agencies and institutes have various criteria for the 

specific combinations of risk factors, as well as specific definitions of the risk factors 

themselves, used in defining MetS. However, in most definitions IR and central obesity are 

vital requirements for a diagnosis of MetS. The criteria for diagnosing MetS as stipulated by 

the World Health Organization (WHO) requires IR as an absolute requirement with two 

additional risk factors (WHO, 1999). 

Sookoian and Pirola, (2011) suggest that the effects of MetS are not only a cumulative result 

of its risk factors, but rather that, in combination, the clinical outworking of these risk factors 

are amplified. Additional, studies have proposed that individuals with MetS have a fivefold risk 

of developing Type 2 Diabetes mellitus (T2DM) and twice the risk of developing cardiovascular 

diseases (CVD)(O’Neill and O’Driscoll, 2015). 

2.1.2 Genetic components 

Genome wide association studies (GWAS) have been conducted in search of single nucleotide 

polymorphisms (SNPs) that could account for MetS as a whole (Zabaneh and Balding, 2010). 

While a single SNP was not found, it has been postulated that five SNPs in the apolipoprotein 

A-V, lipoprotein lipase and cholesteryl ester transfer protein genes were identified to correlate 

with the development of MetS in populations of European origin (Kraja et al., 2011). In addition, 

studies have highlighted various other groupings of SNPs correlating with MetS in differing 

populations, indicating a possible population specificity for genetic predispositions of MetS 

(Zabaneh and Balding, 2010). In most of these cases SNPs are found to be in close proximity 

to genes responsible for or play a role in lipid metabolism and IR (O’Neill and O’Driscoll, 2015). 

Stellenbosch University  https://scholar.sun.ac.za



7 
 

2.1.3 Major components of metabolic syndrome 

2.1.3.1 Insulin resistance 

Insulin resistance is characterised by impaired insulin-mediated glucose uptake in cells 

(Petersen et al., 2007). The term insulin resistance is often used interchangeably with 

hyperinsulinemia or can be defined as an impaired glucose tolerance (Roberts, Hevener and 

Barnard, 2013). In Gerald Reavens’s initial hypothesis (Reaven, 1988), great importance was 

placed on the central role of IR in the development of MetS  and has since been supported by 

various studies (Petersen et al., 2007; Moran et al., 2008; Romeo, Lee and Shoelson, 2012) . 

Insulin is a vital hormone in the regulation of blood glucose homeostasis, with additional 

anabolic functions with regards to tissue growth and development. Blood glucose levels are 

conserved through various mechanisms, which include glucose production by the liver, through 

glycogenolysis, and glucose uptake by peripheral tissues such as skeletal muscle, liver and 

adipose tissue (Petersen et al., 2007; Roberts, Hevener and Barnard, 2013). Uptake of glucose 

in the cell is mediated by various transmembrane proteins known as glucose transporters 

(GLUT). Current literature suggests that there are more than 14 different GLUTs, stratified into 

3 different subgroups according to gene sequence similarities. Class I glucose transporters 

(GLUT1 - GLUT4) are predominantly expressed in glucoregulatory tissue such as adipose and 

skeletal muscle (Roberts, Hevener and Barnard, 2013). All GLUT isoforms have specific 

functions in hexose (sugars containing 6 carbon atoms) metabolism (Petersen et al., 2007). 

Insulin mediated glucose uptake is achieved by insulin binding to surface receptors which 

triggers a signalling cascade (Bryant, Govers and James, 2002; Watson and Pessin, 2007), 

resulting in the redistribution of GLUT4 transporters to the plasmalemma (Watson and Pessin, 

2007). This allows for increased uptake of glucose into the cell to be stored as glycogen or 

metabolised to produce adenosine triphosphate (ATP) (Roberts, Hevener and Barnard, 2013). 

As seen in Figure 2.1. 
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Figure 2.1: The insulin stimulated translocation of glucose transporters to the cell membrane. 

Adapted from Watson and Pessin, (2007). 

Insulin resistance can be fundamentally understood as a decrease in cellular insulin sensitivity, 

resulting in reduced glucose uptake (Bandyopadhyay et al., 2005). In early stages of IR 

development, pancreatic β-cells are stimulated to secrete excess insulin to adjust for the 

reduced insulin sensitivity. However, β-cells are incapable of fully compensating for this 

reduced insulin sensitivity, which results in a hyperglycaemic condition (Petersen et al., 2007). 

Thresholds for β-cell compensation vary for individuals, resulting insulin resistant individuals, 

having varying levels of glucose tolerance (Petersen et al., 2007). 

The pathogenesis of IR is well described, with multiple mechanisms being identified as 

possible causative factors. Abnormal lipid supply (Hirosumi et al., 2002; Schmitz-peiffer, 2002), 

and metabolic substrate alterations (Arkan et al., 2005; Turban and Hajduch, 2011) lead to 

chronic tissue inflammation and promote the development of IR. Reports indicate that the 

build-up of these bioactive lipids in peripheral tissue promote pro-inflammatory signalling 

pathways, which alters integral phosphorylation events in the insulin signalling cascade (Arkan 

et al., 2005; Bandyopadhyay et al., 2005). These post-receptor defects are regarded as the 

chief impairment in the development of IR (Roberts, Hevener and Barnard, 2013). 

2.1.3.2 Dyslipidaemia 

Dyslipidaemia is a broad term that describes a dysfunctional maintenance of lipids in an 

individual (Ruotolo and Howard, 2002). Individuals with MetS are often found to have 

increased levels of plasma triglycerides and small dense low-density lipoproteins (LDLs), with 

decreased levels of high-density lipoproteins (HDLs) (Sparks and Sparks, 1994). Due to the 
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integrated nature of lipoprotein metabolism, it is hypothesised that a common metabolic defect 

explains all the lipid changes in the metabolic syndrome (Ruotolo and Howard, 2002).  

Hepatic overproduction of very low-density lipoproteins (VLDLs) plays a central role in the 

dyslipidaemic state within IR (Ruotolo and Howard, 2002). Metabolic irregularities affecting 

hepatic VLDL regulation include increased hepatic glucose production, glucose intolerance 

and excessive free fatty acid (FFA) release from the liver, muscle and adipose tissue 

respectively (Phillips et al., 2002; Gibbons, 2004).  

Hormone sensitive lipase (HSL) is an insulin responsive enzyme that acts to regulate the 

release of FFA in adipocytes, by modulating the hydrolysis of triglycerides (TGs) to their FFA 

and glyceride components (Meijssen et al., 2001). In a healthy individual, insulin results in the 

suppression of the HSL enzyme, resulting in decreased FFA and glyceride production. 

However, in the insulin resistant state, the HSL enzyme is over stimulated and results in 

increased FFA and glyceride plasma levels (Sparks and Sparks, 1994).  

Excessive levels of FFA in hepatic circulation result in the increased production of VLDLs in 

an effort to facilitate the transport of the FFAs. A number of the newly produced VLDLs are 

immediately removed from circulation by the hepatic lipase enzyme. Lipoprotein lipase (LPL) 

within the peripheral tissues bind the circulating VLDLs and cause the release of TGs into 

these tissues, causing the VLDL to transition into an intermediate lipoprotein (IDL) (Gibbons, 

2004).  

Hepatic lipase subsequently acts on these IDLs and converts them to LDLs. Low-density 

lipoproteins are prone to oxidation and glycation whereby they become detrimental to tissue. 

Alternatively, LDLs can be acted upon by cholesterol esterase transfer enzyme, whereby LDLs 

become TG-rich LDLs (Ruotolo and Howard, 2002; Kotsovassilis and Bei, 2003). These TG-

rich LDLs in turn release FFA and monoglycerides into the liver by the action of hepatic lipase 

forming a small dense LDLs. Small dense LDLs have decreased affinity for LPL, and increased 

endothelial permeability leading to the development of atherosclerotic plaque in blood vessels 

(Kotsovassilis and Bei, 2003).    

2.1.3.2 Central obesity   

Central obesity is considered one of the key cluster factors in the diagnosis of MetS (Björntorp, 

2009; Al Awlaqi, Alkhayat and Hammadeh, 2016). It is predicted that by the year 2030 

approximately half of the world’s adult population will be classified as obese (Paley and 

Johnson, 2018). Although a cohort of obese metabolically stable individuals does exist, obesity 

is largely seen as a precursor / indicator of MetS. Conversely a non-obese MetS cohort exists 

in which muscle to fat proportionality are often considered as key factors in the development 

of metabolic dysfunction (Paley and Johnson, 2018).  
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Insulin resistance and central obesity are closely linked, with the development of ectopic fat in 

peripheral tissue being highly correlated with IR development in the MetS state (Snel et al., 

2012). It is hypothesised that systemic inflammation leads to the formation of enlarged and 

dysfunctional adipocytes, which in turn secrete additional pro-inflammatory prostaglandins and 

cytokines such as C-reactive protein (CRP), interleukin-6 (IL6), tumour necrosis factor alpha 

(TNF-α) and leptin. This increased inflammatory state promotes the development of T2DM and 

hyperlipidaemia which results in poor cardiovascular health (Arkan et al., 2005; Björntorp, 

2009; Paley and Johnson, 2018).  

Excess adiposity and more specifically the systemic inflammation are reported to cause 

additional complications in humans. These complications include dysfunctional vascular 

neogenesis, leading to hypoxia of tissues, which has been attributed to increased levels of 

leptin. Hypoxic conditions contribute to the inflammatory state which in turn also increase levels 

of oxidative stress (Arkan et al., 2005; Paley and Johnson, 2018).  

Cortisol levels have also been found to be elevated in individuals with MetS, especially with 

the risk factors of central obesity and IR (Ruotolo and Howard, 2002). This indicates a 

derangement in the hypothalamic-pituitary-adrenal (HPA) axis. Excess cortisol drives 

processes of gluconeogenesis as a stress response, causing the cycles of inflammation and 

oxidative stress. Additionally, low grade inflammatory markers are hypothesised to be 

activators of the HPA axis, forming a positive feedback loop (Haffner et al., 1988).  

2.1.4 Metabolic syndrome and fertility 

2.1.4.1 Metabolism and oestrogen 

Fertility in females has been found to be strongly linked to the energy stores of an individual 

and the competency of the individual’s metabolism (Al Awlaqi, Alkhayat and Hammadeh, 

2016). Links between fertility and metabolism do not develop over time, but energy balance 

underpins the overall onset of puberty, albeit by mechanisms poorly understood at present (Al 

Awlaqi, Alkhayat and Hammadeh, 2016). Conditions of dysfunctional or irregular energy 

balance and metabolic stress have been found to affect fertility in females (Schneider, 2004; 

Torre et al., 2014; Fontana and Della Torre, 2016). These conditions include MetS and its 

individual risk factors; obesity, IR and dyslipidaemia.  

Oestrogen and its related receptors play a central role in the link between energy metabolism 

and reproduction (Schneider, 2004; Torre et al., 2014; Fontana and Della Torre, 2016). The 

functions of oestrogen in female reproduction are well studied, however oestrogenic control of 

metabolism has only recently become a desired topic of research (D’Eon et al., 2005; Riant et 

al., 2009). Oestrogen receptor alpha (ER α) is of particular interest as ER α knockout mice 

Stellenbosch University  https://scholar.sun.ac.za



11 
 

show not only reproductive deficits, but also increased food intake and weight gain (Lundholm 

et al., 2008). 

Oestrogen is known to attenuate the expression of neuropeptide Y (NPY) and agouti-related 

protein (AgRP) in the hypothalamus, which are both appetite stimulating (orexigenic) agents 

(Kalamatianos et al., 2008). An increase in hypothalamic oestrogen leads to decreased in food 

intake, increased energy expenditure and promotion of subcutaneous fat storage over visceral 

fat storage (Tchernof et al., 2004; Lundholm et al., 2008; Stubbins et al., 2012). Additionally, 

oestrogen conveys a potentiation of the anorexigenic neuropeptide secretion by the pro-

opiomelanocortin (POMC) neurons. Peripheral leptin and ghrelin release have been shown to 

compound these effects (Olofsson, Pierce and Xu, 2009). 

Oestrogen is shown to have effects on pancreatic, hepatic and adipose tissue. In adipocytes, 

oestrogen has both a anti-lipogenic and pro-lipolytic effect (Torre et al., 2014). In pancreatic β-

cells, oestrogen promotes the biosynthesis of insulin and prevents lipid accumulation, therefore 

sparing them from the detrimental effects of lipotoxicity. Similarly, in the liver ER α is pivotal in 

the metabolism of fatty acids and cholesterol. Oestrogen receptor alpha in the liver has also 

been shown to be metabolically sensitive and facilitates the correct metabolic output to suit the 

current reproductive needs (Lundholm et al., 2008). 

2.1.4.2 Compromised metabolism and reproduction  

It has been understood for many years that there is a link between energy balance and 

reproduction. The most widely studied scenario is undernutrition and its effects on 

reproduction. Underweight individuals, as represented by a body mass index (BMI) less than 

19 kg/m2, are shown to require four times the amount of time to conceive a child (Hassan and 

Killick, 2004). In developed countries, where food is abundant, eating disorders, and various 

other psychosomatic illnesses lead to identical outcomes (Devlin et al., 1989; Sakurazawa et 

al., 2013). Disruption of the hypothalamic control of FSH and LH, with altered steroidogenesis 

in the ovaries leads to the development of compromised reproductive cycles (Leyendecker and 

Wildt, 1984; Devlin et al., 1989; Clegg, 2006; Fontana and Della Torre, 2016). In summary, in 

an energy poor environment, processes for life will be favoured above those of growth and 

reproduction (Schneider, 2004). 

Similarly, in the case of obesity, reproductive deficits can be observed with the probability of 

conception decreasing for every unit if BMI increase over 29 kg/m2 (Hassan and Killick, 2004; 

Van Der Steeg et al., 2008). Other associated outcomes include infertility, suboptimal 

pregnancy outcomes and poor foetal health (Diamanti-Kandarakis and Bergiele, 2001; 

Michalakis et al., 2013; Talmor and Dunphy, 2015). Although the mechanisms are not fully 

understood, obesity strongly correlates with the development of polycystic ovarian syndrome 
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(PCOS), a hormonal disorder, resulting in the production of ovarian cysts and impaired fertility 

(du Toit and Siebert, 2009; Michalakis et al., 2013).  

As previously stated, dyslipidaemia is often identified in obese individuals. Unbalanced levels 

of cholesterol and free fatty acids have been shown to affect oocyte development and various 

other factors at the level of the ovary and uterus (Bellver et al., 2007, 2010). Della Torre et al. 

(2016) reports a hepatic ER α dependent modulation of cholesterol metabolism, indicating a 

bidirectional influence between metabolism and reproduction. 

Insulin levels play multiple direct and indirect roles in hormonal control of reproduction. The 

liver, pancreas and adipose tissue secrete sex hormone binding globulin (SHBG), insulin, 

leptin and adiponectin respectively (Asuncion et al., 2000; Budak et al., 2006). These 

hormones work in concert to mediate follicular development and steroidogenesis by direct and 

indirect modulation (will be elaborated on in section 2.3 and Figure 2.3). In the case of IR 

however, this balance of hormones is skewed and leads to anomalies in the hypothalamic 

control of sex hormones as well as end product steroidogenesis (Budak et al., 2006; Comninos, 

Jayasena and Dhillo, 2014). Furthermore, insulin is strongly correlated with the development 

of PCOS (Asuncion et al., 2000). This is hypothesised to be due to the ability of insulin to act 

as an analogue for FSH, leading to hyper-stimulation of the ovaries (Asuncion et al., 2000; 

Fontana and Della Torre, 2016). 

2.1.5 Oxidative stress and the reproductive system  

Reactive oxygen and nitrogen species (ROS and RNS) are momentary, highly reactive 

compounds formed as result of all oxygen dependent metabolic activity (Agarwal et al., 2005; 

O’Neill and O’Driscoll, 2015). Oxidative stress (OS) occurs when there are excessive 

concentrations of the volatile compounds present, and may be due to an increase in ROS, an 

insufficiency in the antioxidant system, or a combination of the two (Roberts and Sindhu, 2009). 

Oxidative stress is considered key in the pathophysiology for most of the risk factors for MetS 

(Agarwal et al., 2005). This has been shown in MetS patients presenting with decreased 

antioxidant protection and significant oxidative damage to tissues (Roberts and Sindhu, 2009). 

Additionally, OS has been positively correlated with visceral adiposity and total body fat 

percentage (Snel et al., 2012). The Coronary Artery Risk Development in Young Adults 

reported that the high levels of oxidised low-density lipoproteins (oxLDL) correlate with 

development of MetS and it risk factors (Koenig et al., 2011). Oxidised low-density lipoproteins 

have also been positively correlated with increased levels of CRP and inversely correlated with 

levels of adiponectin.  

Free radical development is often described as a purely negative event however, moderate 

concentrations of the reactive species have been found to be vital in normal reproductive 

Stellenbosch University  https://scholar.sun.ac.za



13 
 

physiology. Reactive oxygen and nitrogen species have been found to modulate oocyte 

maturation, ovarian steroidogenesis, corpus luteal function and ovum expulsion by various 

mechanisms (Agarwal et al., 2005). 

Nitric oxide (NO) is a RNS and is produced by the NO synthase (NOS) enzyme. These 

enzymes have been found to present in the theca cells, granulosa cells and the oocyte during 

follicular development. In a normal homeostatic environment this allows adequate localised 

formation of NO for normal physiological functioning (Agarwal et al., 2005). However, research 

has indicated that inducible NOS is activated by inflammatory cytokines such as IL-1 and TNF-

α producing toxic levels of NO (Ben-Shlomo et al., 1994; Hung et al., 2004).  

2.2 The female reproductive system 

The reproductive system consists of the ovaries, fallopian tubes, uterus, vagina and mammary 

glands. Oogenesis and follicle development occur in the ovary under the influence of a 

hormonal feedback from the hypothalamic-pituitary-gonadal (ovarian) (HPG) axis. Primary 

functions of the female reproductive system include the production and maturation of the 

female gamete known as the oocyte, the site of fertilisation, foetal development and foetal 

maturation. 

2.2.1 Ovarian morphology 

In humans the ovaries are ovoid in shape and located lateral to the uterus within the pelvic 

cavity (Moore, Dalley and Agur, 2014). Ovaries are secured in place by the ovarian ligament, 

suspensory ligament and broad ligament and consist of a capsule, outer cortex and medulla 

(Moore, Dalley and Agur, 2014).  

The capsule of the ovary is comprised of two layers, the outer germinal epithelium which is 

continuous with the mesovarium and the tunica albuginea (TA) (Young et al., 2006). 

Thickening of the tunica albuginea has been highly correlated with the development of PCOS 

(Amirikia et al., 1986). Post puberty, the largest constituent of the ovary is the cortex, which 

comprises of stroma, numerous collagen fibres and the quiescent and developing follicles. The 

medulla is highly vascularised area which consists mainly of loose connective tissue (Young 

et al., 2006).  

2.2.2 Follicular morphology 

Follicles have a varying morphology dependent on their current stage of maturation. General 

structures of the follicle include the oocyte surrounded by concentric layers of granulosa cells 

surrounded by two layers of theca cells. Pedersen and Peters (1968) were the initial 

researchers to propose a system to classify follicles based on their stage of development 

indicated by size, layers of granulosa cells and antrum formation. Their initial classifications 

Stellenbosch University  https://scholar.sun.ac.za



14 
 

were highly stratified with three major groups and eight types excluding sub-types (Pedersen 

and Peters, 1968). Subsequently, many researchers choose to make use of a simplified 

classification system using five groups; primordial follicles, primary follicles, primary developing 

follicles, secondary developing (antral) follicles and mature (Graafian) follicles (Yoshida et al., 

2009).  

Primordial follicles consist of an oocyte surrounded by a flatted layer of granulosa precursor 

cells. At the onset of follicular recruitment, various factors trigger several morphological 

changes in the follicle. The first observable change is the granulosa cell change from a flatted 

to a cuboidal cell shape, at which point the follicle is referred to as a primary follicle (McGee 

and Hsueh, 2000). Activated granulosa cells become proliferative, causing the formation of 

multiple granulosa cell layers as well as the first appearance of theca cells. At this stage the 

follicle is referred to as a primary developing follicle (Young et al., 2006). Granulosa cells 

secrete follicular fluid into the intestinal space and cause the formation of an antrum, at which 

point the follicle is referred to as secondary developing or antral follicles (Hsueh et al., 2015). 

A follicle is considered mature once the antrum has increased considerably in size and displays 

the formation a cumulus stalk (Figure 2.2) (Young et al., 2006; Ross and Pawlina, 2011).  

 

Figure 2.2: Stages of follicular development. Indicated below are the represented stages according 

to Pedersen and Peters. Modified from Edson, Nagaraja and Matzuk (2009).  

2.2.3 Hormonal regulation of reproduction 

Regulation of the reproduction is predominantly controlled by the hypothalamic mediated 

release of gonadotrophic hormones from the anterior pituitary (Sherwood, 2012). The 

relationship between the hypothalamus, anterior pituitary and the gonads is referred to as the 

hypothalamic-pituitary-gonadal axis (HPG). Modulation of the HPG axis is achieved through 

multiple integrated feedback loops, resulting from gonadotrophic hormone levels, gonadal 

steroidogenesis and hormones secreted by metabolically sensitive tissue (Pralong, 2010; 

Sherwood, 2012; Fontana and Della Torre, 2016).  
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2.2.3.1 Hypothalamic-pituitary-gonadal axis 

Hypothalamic Kisspeptin 1 and gamma-amino butyric acid (GABA) are vital in initiating and 

modulating the secretion of gonadotropin releasing hormone (GnRH) from the hypothalamus 

(Roseweir and Millar, 2009; Roa, Navarro and Tena-Sempere, 2011; Watanabe, Fukuda and 

Nabekura, 2014). This in turn triggers the production and secretion of luteinising hormone (LH) 

and follicle stimulating hormone (FSH) from the anterior pituitary (Sherwood, 2012). In the 

ovary, FSH triggers and mediates follicular development, while LH is responsible for final 

stages of maturation and ovulation (McGee and Hsueh, 2000). Steroidogenesis occurs 

throughout follicular development and continues after ovulation via the corpus lutueum. 

Hormones produced by the ovary include oestrogen, progesterone and inhibin (Xu et al., 2011; 

Sherwood, 2012). Gonadotrophic hormone variations occur cyclically on a conventional 28 day 

cycle in humans and can be separated into the follicular and luteal phases separated by the 

ovulation of an oocyte (McGee and Hsueh, 2000; Edson, Nagaraja and Matzuk, 2009).  

Feedback control of the HPG axis, is achieved by the release of oestrogen, inhibin and 

progesterone from the granulosa cells and corpus luteum (McGee and Hsueh, 2000; 

Sherwood, 2012). The effect of oestrogen varies as it is dependent on its concentration (Young 

and Jaffe, 1976). During the follicular phase, low levels of oestrogen secreted by the 

developing follicle inhibit the release of LH and FSH. On approximately day 10 of the 

reproductive cycle, increased levels of oestrogen selectively promote the release of LH, 

triggering ovulation (Sherwood, 2012). The resultant corpus luteum maintains relatively high 

levels of oestrogen and secretes inhibin and progesterone. Inhibin acts at the level of the 

anterior pituitary by further selectively inhibiting the secretion of FSH (McGee et al., 1997). 

Progesterone supresses the release of GnRH from the hypothalamus, effectively supressing 

gonadotropin hormone release. This cycle is repeated when the corpus luteum degenerates, 

and the levels of GnRH, and FSH can return to normal (Sherwood, 2012). 

Metabolic influence on the HPG axis is provided by secretion of insulin and SHBG from the 

pancreas and liver respectively, in conjunction with the secretion of leptin and adiponectin from 

adipose tissue (Fontana and Della Torre, 2016). In normal physiological conditions, insulin 

serves as a co-gonadotropin and modulates the production of SHBG from the liver. Sex 

hormone binding globulin is chiefly responsible for the removal of excess androgens produced 

by the gonads (Diamanti-Kandarakis and Bergiele, 2001; Diamanti-Kandarakis and Dunaif, 

2012). Leptin is chiefly responsible for indicating satiety in an individual, however, it has also 

been found to be a stimulus for GnRH release from the hypothalamus (Campos et al., 2008). 

Adiponectin acts as an insulin sensitising hormone. Additionally, adiponectin exerts insulin-like 

functions in tissues and with a large constituent of adiponectin receptors in the reproductive 

tissues, this indicates a direct relationship with reproduction and lipid metabolism (Kadowaki 

and Yamauchi, 2005; Kim et al., 2011). See Figure 2.3 for a summary of these actions. 
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Functions of insulin include stimulation of GnRH from the hypothalamus, as well as being an 

analogue for gonadotropins in the stimulation of steroid production in the ovary (Medina and 

Nestler, 1998). Dysregulation of the reproductive system will be discussed in the following 

section.  

 

Figure 2.3: Hormonal control of the HPG axis. E2 = oestradiol, P4 = progesterone and T = 

testosterone. Adapted from Fontana and Della Torre, (2016). 

2.2.3.2 Dysregulation of the HPG axis 

Central factors in the metabolic syndrome include obesity, dyslipidaemia and IR (Huang, 

2009). In this metabolically compromised state, increased levels of insulin and leptin are 

increased with a decrease in levels of adiponectin (Fontana and Della Torre, 2016). Leptin 

receptors are found on granulosa cells, theca cells and stromal cells in the ovary (Caprio et 

al., 2001; Sirotkin, 2011). Studies in rats have shown that a medium to high dose of leptin, 

mimicking that of an obese individual, caused a decrease in steroidogenesis, with a marked 
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decrease in ovulated oocytes (Spicer and Francisco, 1997; Ghizzoni et al., 2001; Kendall et 

al., 2004). 

Increased levels of insulin lead to increased inhibition of SHBG leading to increased levels of 

testosterone (Diamanti-Kandarakis and Dunaif, 2012). High testosterone levels result in 

irregular reproductive cycles and correlate strongly with the development of PCOS (Soto et al., 

2009; Sirotkin, 2011). Insulin resistance is found to correlate strongly with development of 

PCOS independent of other factors, which is hypothesised to be as result of the direct hyper-

stimulating effect of insulin on steroidogenesis in the ovary (Evanthia et al., 1999; Asuncion et 

al., 2000).  

Studies have shown that metabolic disturbances, and hyperglycaemia in particular, supress 

the expression of hypothalamic KiSS/kisspeptin, resulting in decreased reproductive potential. 

Roa et al. (2006, 2008) report that the administration of kisspeptin is sufficient to restore normal 

gonadotrophic hormone release in rats (Roa et al., 2006, 2008). Similarly, the use of 

kisspeptin-10 has been used to improve the longstanding reproductive deficits of 

streptozotocin (STZ) induced diabetic rats (Castellano et al., 2010). This strengthens the 

hypothesis of hypothalamic Kiss 1 neuron tone being fundamental in the regulation of the HPG 

axis. 

2.2.4 Oogenesis and Folliculogenesis 

Oogenesis is the formation of the female gamete within the ovaries. Prior to the birth of 

females, primordial germ cells in their ovaries undergo mitosis, resulting in the production of 6 

to 7 million oogonia (Sherwood, 2012). Proliferation ceases by the fifth month of gestation 

whereby all oogonia enter a state of mitotic arrest until puberty and subsequent follicle 

recruitment (McGee and Hsueh, 2000). Post-early mitotic divisions and prior to the birth of an 

individual, oogonia are encapsulated by a flattened layer of granulosa cells at which point they 

are referred to as primordial follicles (Sherwood, 2012). Oogonia that have not been 

encapsulated will undergo programmed cell death, namely apoptosis. At the time of birth, it is 

reported that approximately 1 to 2 million viable primordial follicles remain (Oktem and Urman, 

2010). 

2.2.5 Follicle recruitment and selection 

Recruitment of follicles can be separated into two main stages in the follicular life cycle, namely 

initial recruitment and cyclical recruitment (McGee and Hsueh, 2000). Initial recruitment occurs 

well before the onset of puberty, is constant and thought to be controlled by intraovarian growth 

factors and other unknown paracrine stimuli (Hsueh et al., 2015). Follicles recruited at this 

stage are not capable of undergoing germinal vesical breakdown and thus are never released 
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from the ovary (Hirshfield, 1991). The majority of primordial follicles will remain in a state of 

quiescence until pubertal onset, and cyclic recruitment (Sherwood, 2012).  

Cyclic recruitment of follicles occurs after the onset of puberty as the result of increased levels 

of circulating FSH (Rombauts et al., 1998). Follicle stimulating hormone acts as a sparing 

hormone allowing cohorts of these follicles to progress to maturation (McGee et al., 1997). 

Recruited follicles have developed antrums with the oocyte undergoing its final maturation 

processes. Oocytes increase in size, form a zona pellucida and undergo the final stages of 

meiosis. Multiple follicles are recruited, however, majority of these follicles will undergo 

apoptosis (atresia) owing to the process of selection (Hsueh, Billing and Tsafriri, 1994). 

Cyclic recruitment results in the production of multiple devolving pre-ovulatory follicles, 

however, it can be seen that among this group a single follicle will have a higher rate of growth 

(Figure 2.4). Follicle selection is most easily identified in the premenstrual phase of the 

reproductive cycle, whereby approximately 10 antral follicles are recruited, with a single follicle 

showing an increased rate of growth (McGee and Hsueh, 2000). The exact mechanisms of 

follicle selection are unclear. Some authors theorise that increased numbers of FSH and LH 

receptors, and / or size mediated increase in the production of oestrogens and inhibin’s, may 

lead to the selection of specific follicles (Yoshida et al., 1997; Rombauts et al., 1998) .  

 

Figure 2.4: Stages of follicular recruitment. Adapted from McGee and Hsueh, (2000). 

Investigating initial follicle recruitment is a challenging procedure, as this process occurs over 

a protracted period whereby a considerable number of primordial follicles develop into small 

follicles (McGee and Hsueh, 2000). Many studies have taken the approach of enumerating 

and classifying follicles, however this method has limitations when identifying abnormalities if 

initial follicle recruitment is of relevance to the researcher (Myers et al., 2004). 

Quiescent pools of primordial follicles are hypothesised to be maintained by the tonic release 

of systemic and intraovarian inhibitory factors (Nilsson and Skinner, 2001). The initial 

recruitment of primordial follicles has largely been considered to be independent of circulating 
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levels of FSH, due to the low levels of FSH receptors located on the oocytes of primordial 

follicles. Studies on hypophysectomised mice showed decreased numbers of pre-antral 

follicles with many atretic follicles, supporting this hypothesis (McGee et al., 1997). However, 

when mice were treated with FSH, an increased rate of follicular development was observed 

(Abel et al., 2000), which suggests that FSH may not be directly responsible for initiating 

follicular recruitment but rather has a complementary role.  

Intraovarian factors that are hypothesised to influence the recruitment of follicles include 

factors expressed by the oocyte granulosa cells and the theca cells. It has been suggested 

that by unknown mechanisms the morphological change (flattened cells to cuboidal) in the 

granulosa cells is as a result of the factors expressed by the developing oocyte (Hsueh et al., 

2015). Oocyte-granulosa cell communication has been demonstrated to be of paramount 

importance in follicle recruitment (Barnes and Sirard, 2000).   

Stem cell factor (SCF), also known as kit ligand or the Steel factor is expressed by granulosa 

cells in the developing follicles (Manova et al., 1993). Receptors for SCF form part of the 

platelet derived growth factor receptor family and can be found on the oocyte as well as the 

theca cells (Manova et al., 1993). Studies have indicated that the cessation in production of 

soluble SCF results in follicular development not progressing past the primary stages (Kuroda 

et al., 1988; Huang et al., 1993; Bedell et al., 1995). Reduction in the quantity of soluble SCF 

produced has been shown to promote a small number of follicles to the antral stages of 

development. Animals with low levels of soluble SCF display irregular reproductive cycles with 

a reduction in fecundity (Yoshida et al., 1997). This indicates that the functioning of SCF may 

extend further than the initial recruitment of follicles.  

Growth differentiating factor 9 (GFD-9) and connexin 37 have been identified as key 

intraovarian factors, being expressed by the oocyte and granulosa cells respectively (Simon 

et al., 1997; Elvin et al., 1999). Functions of GFD-9 are not fully understood, however, irregular 

levels result in the failure of follicles to progress past the primary stage of development (Dong 

et al., 1996). Expression of GFD-9 has been shown to be dependent of levels SCF present 

(Nilsson and Skinner, 2002). Connexin 37 has been shown to be vital in oocyte-granulosa cell 

communication (Teilmann, 2005). Individuals with irregular connexin 37 have normal follicular 

development until antrum development, after which further development ceases (Simon et al., 

1997). 

2.3 Sucrose diet effect on reproduction 

Many studies have explored the deleterious effects of sucrose on the body, with increased 

fervour in recent years owing to the rise of MetS and its related risk factors (Coulston et al., 

1987; Douard et al., 2013; King et al., 2013). However, few studies have addressed sucrose 

in isolation (Kendig et al., 2015) with many studies using high-fat and sugar in combination to 
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mimic a western diet (Volk et al., 2017). Fewer studies yet have commented on the effects of 

sucrose on reproduction, especially when foetal programming is considered (Kendig et al., 

2015). To the best knowledge of the author, no literature exists where the maternal and 

transgenerational effects of a sucrose diet has been investigated on ovarian morphology. 

Sucrose is a common form of sugar and is used widely in society. Sucrose is a dimer formed 

by a glucose monomer bound to a fructose monomer. Due to the fructose content, the 

glycaemic insult is less than that of pure glucose. However, it has been found in small animal 

studies that sucrose consumption, matching that of the levels of sucrose found in commercial 

soft drinks, are sufficient to cause metabolic changes in the body that lead to deleterious 

consequence (Kendig et al., 2015).  

2.3.1 Maternal effects of a sucrose diet 

Sucrose diets display sexually dimorphic results on males and females in small animal studies. 

In males, sucrose diets of four weeks and longer lead to significant weight gain and increase 

of plasma glucose levels (Fuente-Martín et al., 2012). In females, mixed reports have indicated 

normal plasma glucose levels with no abnormal weight gain (Sánchez-Lozada et al., 2010). 

However, long term exposure to sucrose diet has been shown to lead to the development of 

fatty liver, increased abdominal adiposity and impaired glucose tolerance (Sánchez-Lozada et 

al., 2010). Other relevant effects and actions of diet on the reproductive system have been 

discussed in section 2.2. 

2.3.2 Transgenerational effects of a maternal sucrose diet 

It is well accepted that poor diet during pregnancy can lead to difficulties during pregnancy as 

well as poor pregnancy outcomes, for both mother and child (Manova et al., 1993; Torre et al., 

2014; Al Awlaqi, Alkhayat and Hammadeh, 2016). It is common practice for pregnant 

individuals to alter their diets in order to insure correct nutritional balance to support the 

growing foetus. However, acceptance of the hypothesis of transgenerational or foetal 

programming has only recently becoming widely accepted (Aiken and Ozanne, 2014).  

Transgenerational programming can be described as an individual having an increased 

likelihood of developing a disorder due to prenatal exposure to the disorder. The individual 

may not be born with the disorder but is likely to develop it later on in life. Disorders for which 

transgenerational programming is best described include IR (Martin-Gronert and Ozanne, 

2012) and obesity (Cottrell and Ozanne, 2008) as confirmed by animal studies and 

epidemiological studies.  

Mechanisms by which maternal programming occurs are not well understood with two main 

theories proposed; DNA methylation and poor maternal uterine environment (Aiken and 
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Ozanne, 2014). The ‘thrifty gene hypothesis’ proposed by Hales and Barker (2013) suggest 

that poor foetal nutrition causes alterations in the epigenetics of the foetus, predisposing 

individuals for poor metabolic health later in life. Epigenetic alterations have been shown to be 

as result of low circulating levels of methionine, vitamins B6, B12 and folate (Brunaud et al., 

2003; Li et al., 2018). Additionally, the uterine environment has been shown to lead to 

transgenerational programming. Gill-Randall et al. (2004) demonstrated this by transferring 

wild-type rat embryos into a hyperglycaemic uterine environment, with the offspring developing 

hyperglycaemia in later life.   
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Chapter 3: Materials and Methods 
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3.1 Ethical consideration  

This study makes use of animals resulting from a current PhD study, for which, ethical 

clearance from the Stellenbosch University Research Ethics Committee: Animal Care and Use 

(REC: ACU) has been obtained. Ethics number SU-ACUD16-00074. The author of this study 

is a listed co-worker of the overarching PhD study and has permission to make use of 

metabolic data and ovaries from animals indicated below.  

3.2 Study groups and animal care 

Twenty-one-day old female albino Wistar rats (Rattus norvegicus) (n=28), were used in the 

present study. These animals were provided by, and housed in the Stellenbosch University 

Animal unit, Faculty of Medicine and Health Sciences, Tygerberg campus. Initially only 18 

female albino Wistar rats were assigned and were randomly selected and divided into two 

groups namely an experimental group 1: High-Sucrose feed 1 (HSF1, n=9) and a control group 

1: Control feed (CF1, n=9). Due to requirements of the overarching PhD study, an additional 

10 female albino Wistar rats with identical feed and housed under identical conditions were 

added to the study and formed experimental group 2: High-sucrose feed 2 (HSF2, n=10) 

Female rats were mated with unexposed males (n=28), with resultant female offspring of each 

group being included into the study. Female offspring from the HSF dams were divided into 

two groups; HSF/HSF (pups from a HSF dam, and maintained on high-sucrose feed) (n=6) 

and HSF/CF (pups from a HSF dam, and maintained on control feed) (n=4). Female offspring 

from the CF dams were maintained on control feed and labelled CF/CF (n=6). See Figure 3.1 

for a visual depiction of study groups.  
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Figure 3.1: Research animal number design showing animal numbers in maternal and pup 

groups. 

All animals in this study were cared for in abidance to the regulations stipulated by the REC: 

ACU in accordance with the South African National Standard (SANS) document. Rats were 

monitored twice a day with the use of an animal wellness sheet, observing for signs of stress, 

illness, pain or injury for the duration of the study.  

All animals were housed in standard rat cages according to group, in an isolated temperature 

and humidity controlled room following a 12-hour reverse light cycle. During this study, all 

animals had unrestricted access to water and their respective feed. Food was only withheld 

when rats underwent a fasting blood glucose test (FBGL) or oral glucose tolerance test 

(OGTT). All mating and technical procedures will be detailed in the following sections.  

3.3 Diets 

Two diets were used in this study and sourced from Research Diets incorporated, Open Source 

diets (New Jersey, USA) and produced by Nutritionhub (PTY) LTD (Stellenbosch, South 

Africa). This study made use of the D11708 diet as the control feed, and the D10001 diet as 

the high-sucrose feed. Detailed composition of both diets can be found in Appendix A.  

Diet compositions of both the high-sucrose feed and control feed were equal with regards to 

macro- and micronutrient quantities. Both diets consist of 20% protein, 68% carbohydrate, 5% 

fat. The high sucrose diet used sucrose and corn starch as a carbohydrate source, while the 

control feed diet used corn starch exclusively as a carbohydrate source. 
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3.4 Experimental design 

The experimental portion of this study consisted of three different phases; maternal feeding, 

mating and offspring feeding. Throughout all phases dietary groups of all animals were 

maintained.  

3.4.1 Maternal feeding 

During this phase all maternal groups were maintained on their respective feeds for a period 

of four weeks. This is the equivalent time it would require a male Albino Wistar rat to become 

insulin resistant on a diet with a large sucrose component. (Fuente-Martín et al., 2012). 

During this period, all animals were weighed, and their FBGL tested weekly.  

3.4.2 Mating 

All maternal groups were individually placed into small format cages with a single unexposed 

male. During this phase both the male and female consumed the diet assigned for the female 

in the cage. All handling and weekly tests were suspended with minimal handling taking place. 

Males remained in cages with the females until the first female gave birth ± 21-days after union, 

subsequently males were then removed from all cages. Number of offspring, sex of pups and 

body mass were recorded in all cases.  

Pups remained with their respective dam for 21-days, corresponding with normal weaning 

times for rats. Dams continued on the respective feed for their group. During this time no 

interventions were performed on the dams or pups, other than routine handling for animal 

wellness observations. Animals failing to give birth, with no visible signs of pregnancy 21-days 

after the removal of the male was considered a sterile mating and underwent further 

investigation by means of vaginal smear analysis (Goldman et al., 2007). 

At the end of the 21-day weaning period, pups were removed from their dams. Dams remained 

in solitary cages for approximately five days. During this period, weight measurements, and 

fasting blood glucose level measurements were performed. At the end of this period dams 

underwent deep sedation using 60 mg/kg sodium pentobarbitone (Kyron Laboratories, 

Johannesburg, South Africa) in combination with 0.1 ml of heparin intraperitoneal injection, 

and euthanised by transcardial perfusion. 

3.4.3 Offspring feeding 

Once removed, offspring were housed in large cages according to sex and their respective 

dietary group. Baseline weights and FBGL were recorded at the commencement of this phase 

for all animals. Animals were maintained for a further 10 weeks on their respective feed, whilst 

undergoing weekly weight and FBGL assessments. Animal wellness observations were 
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continued with special emphasis on secondary sex characteristics development, vaginal 

opening and prominent nipple formation.  

At the conclusion of this phase all animals were sedated and euthanised in the same manner 

as the maternal animals.  

See Figure 3.2 for a visual depiction of the phases of this study.  

 

Figure 3.2: Phases of the present study. 

3.5 Technical procedures 

3.5.1 Weighing 

Animals are all weighed with use of an automated scale fitted with a hemispherical container.   

3.5.2 Blood glucose testing 

Blood used for the FBGL testing was obtained using of the standard tail vein prick method 

(Van Herck et al., 2001). A vein was identified in the tail of the rat and pierced approximately 

2 cm from the tip of the tail. Blood was allowed to pool into a droplet which was then transferred 

to a BGL test strip (On Call® Plus, Acon®, United States) and inserted into a glucometer (On 

Call® Plus, Acon®, United States). Readings were reported in mmol (glucose) / L(blood). 

Animals underwent fasting prior to BGL testing. Fasting time was dependent on the weight of 

the animals undergoing the procedure. Fasting time varied between 4 hours (for animals 

weighing less than 50 g) and 12 hours (for animals exceeding 150 g). Specific weight to fast 

length ratios can be found in Appendix B.  
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3.5.3 Euthanasia 

Prior to euthanasia the body mass of all animals were recorded to be used for anaesthetic 

dosage calculations. Rats were initially anesthetised using sodium pentobarbitone at a dosage 

of 60 mg/kg, with addition of 0.1 ml heparin to avoid blood clots. Once animals appeared to be 

sedated, both pedal and corneal reflexes were assessed. When unresponsive, non-

recoverable surgery could commence. All procedures were conducted by an individual 

authorised by the South African Veterinary Council in accordance with Section 21 of the 

Veterinary and Para-veterinary Act 19 of 1982. 

3.5.4 Perfusion of animals 

An incision was made to expose the superior portion of the abdominal cavity. The incision was 

continued through the lateral aspect of the thoracic cage to expose the thoracic cavity. An 18-

gauge needle, at the end of the hose of a perfusion device was used to pierce the left ventricle 

of the heart whilst the right atrium of the heart was nicked to allow outflow of blood. Perfusion 

was initiated by clearing the rat with approximately 200 ml of physiological saline at a rate of 

167ml/min using the Leica Perfusion One (Leica Biosystems, Wetzlar, Germany) perfusion 

device. Subsequently, the perfusion device was switched to dispense 10% neutral buffered 

formalin (NBF) at the same quantity and rate.  

Signs of adequate clearing included clear saline flowing from the nose, clearing of the liver and 

inflation of the lungs (Gage, Kipke and Shain, 2012).     

Upon completion of perfusion, the abdominal cavity was exposed fully and flushed out with 

formalin. Whole perfused rats were post-fixed by emersion in 10% NBF for 24 hours, after 

which these were transferred into 50% ethanol for short-term storage. Noteworthy anomalies 

were photographed and recorded. 

3.5.5 Tissue harvesting 

All animals from the principal PhD study were dissected to form part of a biorepository of 

material and therefore a standardised dissection procedure was followed to preserve tissue 

for future studies (Morawietz et al., 2004).  

The gastrointestinal tract was initially removed, including accessory organs. Subsequently, the 

uterine horns were located, followed inferiorly to its point of union where it was severed in close 

proximity to the vaginal canal. The uterine horns were traced superiorly to identify the ovaries 

embedded in the paranephric fat pads, and carefully loosened. Uteri and ovaries were 

removed together and intact for later separation. Further dissection took place to remove the 

kidneys and bladder.  
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Uteri and ovaries were separated by dissection using forceps and a dissecting magnifying 

glass, when needed. Minimal contact was made with either structure by handling the 

surrounding connective tissue in order to prevent any damage of tissues. Noteworthy 

anomalies were photographed and recorded. 

3.6 Macroscopic analysis 

3.6.1 Photography 

High quality standardised photographs were captured of uteri and ovaries using a digital 

camera (Nikon, Tokyo, Japan) and a fixed tripod. Photographs were used for subjective 

analysis of fat deposition and additional morphological changes. 

3.6.2 Ovarian mass 

Both ovaries of all animals were weighed with the use of an anatomical mass balance. Ovaries 

were cleaned of all excess fat and uterine tissue before weighing. 

3.7 Histological techniques 

3.7.1 Processing, embedding and sectioning 

Formalin-fixed and paraffin-embedded ovaries were processed in a Leica ASP 6025 

automated tissue processor (Leica Biosystems, Wetzlar, Germany) using a modified 12 hour 

xylene program (See Appendix C for processing schedule). Both ovaries from each animal 

were embedded together using the Leica HistoCore Arcadia H tissue embedder (Leica 

Biosystems, Wetzlar, Germany). The method of tissue allocation on slides is illustrated in 

Figure 3.3. All samples were sectioned at 4 μm using a Leica RM 2125 RT microtome (Leica 

Biosystems, Wetzlar, Germany). Standard uncharged glass slides were used to mount 

sections for Haematoxylin and Eosin (H&E) and positively charged glass slides were used for 

mounting sections selected for immunohistochemical analysis.  
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Figure 3.3: Distribution of serial sections on respective slides. Five slides with 3 sections each 

were obtained from each animal for various stains, slide 1: haematoxylin and eosin (H&E), slide 2: H&E, 

slide 3: potential Masson’s trichrome stain, Side 4: immunohistochemical (IHC) analysis and slide 5: 

spare. Serial sections were obtained and distributed between the slides, with a minimum of 10 sections 

being discarded before the following set of serial sections was taken. 

3.7.2 Tinctorial staining  

Haematoxylin and eosin staining 

Five random sections from each tissue block were deparaffinised and hydrated to be used for 

routine H&E staining by means of the Leica Auto stainer XL (Leica Biosystems, Wetzlar, 

Germany). 

Haematoxylin was used to stain the basophilic tissue, such as the nucleic acid in the nuclei, 

with eosin used as counter stain for acidophilic tissue, such as cytoplasm. See Appendix D for 

H&E staining protocol. All slides were mounted using a resinous mounting medium. 

3.7.3 Immunohistochemistry 

Samples were stained using the Leica BondMax™ auto stainer in conjunction with the Bond™ 

Polymer Refine detection kit (Leica Biosystems, Wetzlar, Germany). This detection kit uses a 

two stage indirect staining method with horseradish peroxidase and dextran polymer (Poly-

HRP) and 3,3’-diaminobenzidine tetrahydrochloride hydrate (DAB) as the chromogen. Use of 

an automated platform allows for consistent staining of tissue as it strictly controls all volumes 

of reagent dispensed.  

After deparaffinisation and hydration, endogenous peroxidase activity was blocked using 

hydrogen peroxide and the primary antibody applied. This was to reduce artefactual 
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background staining, due to the reaction of DAB and the endogenous peroxide. Subsequently, 

epitope retrieval was conducted to unmask antigen binding sites. The affinity of antigen binding 

sites to bind, or the antigenicity of a tissue, is affected by factors relating to fixation of the 

tissue. Included in this, is the time before fixation occurred, type of fixative used, concentration 

thereof and duration of fixation. 

Using the Bond™ Polymer Refine detection kit required the use on an immunoglobulin G (IgG) 

mouse anti-rat primary antibody to be used. Successive binding of the rabbit anti-mouse post 

primary and the anti-rabbit Poly-HRP. The introduction of DAB with hydrogen peroxide causes 

an oxidation reaction that is catalysed by HRP which causes a brown percipient to form in the 

region of the antigen.   

Stem Cell Factor staining  

Stem cell factor ligand (SCF) was labelled with the use anti-SCF polyclonal affinity purified 

antibody (ab64677, Abcam®, United Kingdom). After endogenous peroxidase quenching, 

slides underwent epitope retrieval (ER) using ethylenediaminetetraacetic acid at a pH 9 at 100 

°C, referred to as ER 2 when using the BondMax™ platform, for 20 minutes. As can be seen 

in Appendix E. 

Primary antibody was incubated at a dilution of 1:500, for 40 minutes at room temperature. 

Slides were counterstained with haematoxylin to provide sufficient contrast for visualisation. 

After staining all sections were dehydrated through graded ethanol and mounted using a 

resinous mounting agent. All tissue presenting with well localised, granular staining, owing to 

the DAB, was considered to be positive for SCF ligand. Stem cell factor can be free floating, 

bound to the granulosa cells theca cells oocytes. 

3.7.4 Morphometry and morphology 

All light microscopy was conducted with the use of a Zeiss Axioskop 2 (Carl Zeiss Microscopy, 

Oberkochen). Micrographs were captured using the Zeiss Axiocam 105 colour camera (Carl 

Zeiss Microscopy, Oberkochen) with image analysis being conducted using Zen10 Blue 2012 

(Carl Zeiss Microscopy, Oberkochen). 

Follicle classification and numeration 

Follicles were classified by methods adapted from Pedersen and Peters (1968). Initial 

parameters were primarily identified for application in mice, however, the use of these 

parameters in the rat and hamster has been recommended and applied in various studies to 

date (Yoshida et al., 2009; Gaytan et al., 2015; Picut et al., 2015). In Pedersen and Peters 

(1968), oocyte / follicle maturation was stratified into three main groups and further into eight 
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types. Stratification is based on the number of surrounding granulosa cells (follicle cells used 

in original article) and antrum development as can be seen in Appendix F. 

In the present study, follicles were similarly classified with regard to quantity of granulosa cells 

and the level of antral development. Categories in the present study were; primordial / primary 

(Type 1), primary developing (Type 2), secondary developing (Type 3), mature / Graafian 

follicles (Type 4). Oocytes that have a single layer of granulosa cells or less are labelled as 

Type 1. Oocytes with multiple layers of granulosa cells and oocytes with multiples layers 

granulosa cells and with antral development are labelled Type 2 and Type 3 follicles 

respectively. Follicles consisting of an oocyte, multiple layers granulosa cells and a large 

antrum development with the presence of a cumulus stalk have been considered as a Type 4 

follicle. Figure 3.4 is a schematic representation of these types. Table 3.1 depicts the 

relationship with the Pedersen and Peters (1968) method.  

 

Figure 3.4: Classification of follicle types. A = Granulosa cells, B = Theca cells, C = Antrum formation 

and D = cumulus stalk. 

Follicles were enumerated by counting the follicles present in five random sections from each 

animal, as was considered adequate by Smith, Plowchalk, Sipes, & Mattison (1991). Follicles 

were only considered complete and counted if the oocyte was visible. Follicles were counted 

at 100x magnification. 

Enumeration of both corpora lutea and atretic follicles were conducted. Follicles were 

considered atretic according to guidelines stipulated by Devine et al., (2000). Atretic follicles 

were identified by the visualisation of apoptotic markers in granulosa cells or a hyalinised scar 

formed from the degeneration of the oocyte with accompanying cell debris. Corpora lutea were 

identified as large congregations of luteal cells. For the purpose of this study, secretory and 

non-secretory corpora lutea were not distinguished. 
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Table 3.1: Comparison of classification criteria 

Description Pedersen & Peters (1968) Present study 

Number of 

granulosa cells 

Antral 

development 
Type Group Group 

0 - Type 1 

Small follicles 

Type 1 

(Primordial / 

Primary 

follicles) 

Incomplete 

ring 

surrounding 

oocyte 

- Type 2 

Complete ring 

surrounding 

oocyte (≤ 20) 

- Type 3a 

21 – 60  - Type 3b 

Medium follicles 

Type 2 

(Primary 

developing 

follicle) 

61 – 100  - Type 4 

101 – 200  - Type 5a 

201 – 400 - Type 5b 

Large follicles 

401 – 600  
Initial growth of 

antrum 
Type 6 

Type 3 

(Secondary 

developing 

follicle) 
> 600 

Large antrum 

but lacks 

cumulus 

oophorus 

Type 7 

> 600 

Large antrum 

with cumulus 

stalk present 

Type 8 

Type 4 

(Mature / 

Graafian 

follicle) 

 

 

Morphology evaluation 

Haematoxylin and eosin stained slides were used of for morphology evaluation. All 

morphological examinations were conducted with the observer being blinded to the groups 

examined. 

A minimum of five sections were examined for various histological changes: 
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1. Inflammation 

2. Oedema 

3. Fibrotic changes 

4. Tunica albuginea thickening 

5. Follicular cysts 

Inflammation is a response by vascularised tissues to attenuate infections, and repair affected 

tissues by recruiting immune cells and inflammatory mediators. Morphological changes in the 

tissue due to inflammation can be identified as increased numbers of white blood cells. These 

cells, polymorphonuclear (PMN) white blood cells (WBC) and mononuclear WBCs were 

identified using slides stained with H&E. Polymorphonuclear cells include: eosinophils, 

neutrophils and basophils, which all present with multi-lobulated nuclei and granular 

cytoplasm. Mononuclear WBC’s include: B and T lymphocytes (not distinguishable using H&E 

staining) and monocytes, which present with single, mostly round nuclei.  

Normal follicular rupturing is said to be assisted by inflammatory-like functions (Oakley et al., 

2010), therefore diffuse inflammatory cells were expected. All tissue was examined for any 

inflammatory foci. 

Oedema is characterised by the excess build-up of fluid in tissues and can be as result of 

various causes. Fluid accumulation can occur either within cells, or more commonly within the 

interstitial space. This can be characterised by a distortion of normal cellular morphology by 

large fluid filled spaces in the interstitial tissue, often accompanied by highly congested 

surrounding blood vessels. Oedema was scored as follows: 0 = none and 1 = present.  

Fibrosis is defined by the excessive deposition of extracellular matrix and it constituents which 

commonly occurs in the case of injury and chronic inflammation. In sections stained with H&E, 

fibrosis was visualised by a highly eosinophilic area, but cannot always be easily visualised. 

The present study displayed no overt fibrotic changes in the ovaries and therefore a Masson’s 

trichrome stain was omitted. Collagen deposition was scored as follows: 0 = none or 1 = 

present.  

The TA is a dense regular connective tissue layer rich in connective tissue fibres and found on 

the surface of the ovary. Thickness of the tunica albuginea was measured in two regions per 

section for all groups, for a minimum of 3 sections. Randomisation of sampling sites was 

conducted by measuring nine potential sites in each section. Every second digit in a random 

number table (Appendix G) (which was not a repeat of any previously selected digit for that 

sample) were used to select the measurement site. 
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Follicular cysts appeared as thin-walled follicles filled with acidophilic residue and often the 

debris of degraded oocytes. These cysts usually occurred with approximately four layers of 

flattened to cuboidal un-luteinised granulosa cells, lined with a thin layer of fibrous connective 

tissue. Follicular cysts were scored as: 0 = absent and 1 = present, with the number of follicular 

cysts being tallied (Camargo et al., 2014). 

Stem Cell Factor staining interpretation 

Stem cell factor is a ligand that can be either free floating, bound to granulosa cells, bound to 

theca cells or the oocyte itself. Scoring of SCF staining was conducted using a modified 

oestrogen receptor scoring tool (Detre, Saccani Jotti and Dowsett, 1995). 

Scoring was stratified for all cases as can be seen in Table 3.2. In the case of scoring free 

floating SCF, the area of tissue stained, as well as intensity of staining was evaluated.  

Table 3.2 SCF staining score 

Location Scoring 

Free floating ligand proportion stained 

0 = Absent 

1 = Slight (< 33% of tissue stained) 

2 = Moderate (34% - 65% of tissue stained) 

3 = Extensive (66% - 100% of tissue 

stained) 

Free floating ligand intensity staining 

0 = None 

1 = Weak 

2 = Moderate 

3 = Strong 

Theca bound 

0 = Absent 

1 = Present in less than 50% of cells 

2 = Present in more than 50% of cells 

Granulosa bound 

0 = Absent 

1 = Present in less than 50% of cells 

2 = Present in more than 50% of cells 

Oocyte bound 

0 = Absent 

1 = Present in less than 50% of cells 

2 = Present in more than 50% of cells 
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3.8 Statistical analysis 

Statistical analysis was conducted with the assistance of a biostatistician from the Centre for 

Statistical Consultation at Stellenbosch University. Analysis was conducted using Tibco® 

StatisticaTM version 13.3 (Palo Alto, USA).  

Descriptive statistics were used to examine all data to produce means values, standard 

deviation and standard error values. Raw data has been analysed with the use of a theoretical 

linear model in order to identify and exclude outliers. Data was represented as graphs and 

other visual aids at a confidence interval of 95% (p= 0.05).  

An analysis of variance was conducted between the sample groups. This test uses the 

variance of normally distributed samples groups and compares them by assuming that the 

variance in each sample group is the same. If analyses result in a p-value ≤ 0.05, it indicates 

that there is significant difference between the sample groups, and the null hypothesis must 

be rejected. Validity of this test was tested with the use of Levene’s test at significance of 

0.01%. In this event, a Welch test would be conducted to consider weighted means with the 

Games-Howell test being used to determine the least significant difference. 
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Chapter 4: Results 
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This chapter aims to provide a descriptive, graphical and statistical evidence of the effect of a 

high sucrose diet on ovarian morphology in parental and F1 generation age-matched female 

albino Wistar rats. Metabolic status, mating outcome, macroscopic and microscopic changes 

have been presented. Note in all sections, except for mating outcomes, both parental and F1 

generation results have been reported together. Parental groups consist of: Control feed (CF), 

High sucrose feed group 1 (HSF1) and High sucrose feed group 2 (HSF2), whilst F1 

generations consist of: Control feed / Control feed (CF/CF) (pups from a CF dam and 

maintained on a control feed diet), High-sucrose feed /High-sucrose feed (HSF/HSF) (pups 

from a HSF dam and maintained on a high sucrose diet) and High-sucrose feed / Control feed 

pups (HSF/CF) (pups from a HSF dam and maintained on a control feed diet).  

An analysis of variance was conducted, with a significance being defined by p-value less than 

0.05. Trends are defined by a non-significant f-test value, with a Fischer’s least significant 

difference value less than 0.05. 

4.1 Metabolic findings 

4.1.2 Body mass 

Significant differences (p<0.01) in mean body mass (at time of death) were in all animals were 

identified among various groups. Control feed dams were found to weigh significantly more 

than all other groups. A detailed description of all significant differences can be seen in the 

caption of Figure 4.1. All means and standard deviations can be seen in Appendix H. 
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Figure 4.1: Mean body mass comparison. CF dams were found to be significantly (p<0.01) heavier 

than all other groups. HSF1, HSF2 and CF/CF groups were found to be significantly lighter than the CF 

group, but significantly heavier than the HSF/HSF and HSF/CF groups. The HSF/HSF group was found 

to be significantly lighter than all other groups. All differences occurred with LSD values less than 0.01. 

Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), Control feed / Control feed 

(CF/CF), High-sucrose feed / High-sucrose feed (HSF/HSF) and High-sucrose feed / Control feed 

(HSF/CF). Differing letters indicate significant differences. Vertical bars denote 0.95 confidence interval. 

4.1.3 Fasting blood glucose levels.  

Fasting blood glucose levels (FBGL) were found to vary significantly (p<0.01) among groups 

as was confirmed by a Welch test (p<0.01) owing to a lack of homogeneity of variance. A 

Games-Howell post hoc test was conducted to calculate LSD values. A detailed description of 

all significant differences can be seen in Figure 4.2. Means and standard deviations can be 

found in Appendix H. 
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Figure 4.2: Mean fasting blood glucose levels. Fasting blood glucose levels (FBGL) in the HSF1 

were found to be significantly (F test, p<0.01 & Welch test, P<0.01) higher than those of the CF/CF 

(Games-Howell, LSD<0.01) and HSF/HSF (Games-Howell, LSD=0.01) groups. Additionally, CF/CF 

pups were found to have a significantly lower FBGL than that of the CF (Games-Howell, LSD<0.01.) 

Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), Control feed / Control feed 

(CF/CF), High-sucrose feed / High-sucrose feed (HSF/HSF) and High-sucrose feed / Control feed 

(HSF/CF). Differing letters indicate significant differences. Vertical bars denote 0.95 confidence interval. 

4.2 The effect of diet on mating outcomes 

Mating outcomes recorded were total pups birthed, sex of pups and wean weights. 

4.2.1 Litter sizes and sexes 

No significant differences in mean litter sizes were identified between different feeding groups 

(p=0.14). However, the LSD post hoc test demonstrated a trend where the HSF2 group litter 

sizes were smaller than that of the CF group (LSD=0.049) (Figure 4.3 A). Results displayed 

no significant differences in male pup numbers between groups (p=0.83) (Figure 4.3 B), 

however, a significant decrease (p=0.03) in female pup numbers were found in the HSF2 group 

when compared to the CF group (p=0.03 and LSD=0.001) (Figure 4.3 C). Means and standard 

deviations can be seen in Appendix H. 

A 

B 
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Figure 4.3: Mating outcomes. A) No significant differences were identified (p=0.14) in litter size. A 

trend was observed in the HSF2 group (LSD=0.049) in comparison to the CF group. B) No significant 

differences were found between number of males per litter (p=0.83). C) Significantly less females were 

born in HSF2 group in comparison to the CF group (p=0.03 and LSD=0.01).  Control feed (CF), High-

sucrose feed 1 (HSF1) and High-sucrose feed 2 (HSF2). Differing letters indicate significant differences. 

Vertical bars denote 0.95 confidence interval. 

4.2.2 Pup body mass 

At time of weaning both male and female pup body mass were significantly decreased by the 

high sucrose diet as can be seen in Figure 4.4 A (p=<0.01) and Figure 4.4 B (p=<0.01). Male 

pup weight was found to be significantly different across all groups, with all LSD values less 

than 0.01. Female CF pup weights were found to be significantly different to those of the HSF1 

(LSD<0.01) and HSF2 (LSD<0.01). No significant difference in body mass was found between 

the HSF1 and HSF2 female pups. Means and standard deviations can be seen in Appendix 

H. 
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Figure 4.4: Mean pup body mass. A) Significant differences in male pup body mass were found 

between all groups (p<0.01), with LSD values less than 0.01. B) In females, CF pup body mass was 

found to be significantly different (p<0.01) to HSF1 (LSD<0.01) and HSF2 (LSD<0.01). Control feed 

(CF), High-sucrose feed 1 (HSF1) and High-sucrose feed 2 (HSF2). Differing letters indicate significant 

differences. Vertical bars denote 0.95 confidence interval. 

4.3 Macroscopic findings  

Macroscopic findings are defined by qualitative dissection descriptions and ovarian organ 

mass results.   

4.3.1 Dissection findings 

Specific areas that were noted include general visceral adiposity in the abdominal cavity, 

uterus bound and ovarian bound fat. Figure 4.5 demonstrates the difference in ovarian and 

para-uterine fat between a uterus and ovaries harvested from a CF animal (Figure 4.5 A) and 

those from HSF2 and HSF/HSF group. 

In dissection, subjective comments concluded that overall size and fat deposition was 

decreased in the all groups that were maintained on a sucrose diet (HSF1, HSF2 and 

HSF/HSF). However, in the CF CF/CF feeding condition, groups presented with normal fat 

deposition whilst the HSF/CF group responded as an intermediate between these groups.  
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Figure 4.5: Differences in para-uterine fat deposition. A) Uterus of a CF dam. B) Uterus of a HSF2 

dam. C) Uterus of an HSF/HSF pup. Control feed (CF), High-sucrose feed 1 (HSF1) and High-sucrose 

feed 2 (HSF2). Scale bars = 0.5cm. 

4.3.2 Ovarian mass 

Multiple significant differences in ovarian mass were identified among groups (p<0.01) (Figure 

4.6). A detailed description of all significant differences can be seen in the caption of Figure 

4.6.  All means and standard deviations can be found in Appendix H. 
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Figure 4.6: Mean ovarian mass. Multiple significant differences were identified in ovarian mass 

(p<0.01). The HSF1 and HSF/HSF groups were found to be significantly lighter than all other groups. 

The HSF2, CF/CF and HSF/CF groups were found to be significantly heavier than all other groups. CF 

animals were found to be significantly different to all other groups. All LSD values are <0.01 except 

when HSF2 and CF (LSD=0.02) groups are compared. Control feed (CF), High-sucrose feed 1 (HSF1), 

High-sucrose feed 2 (HSF2), Control feed / Control feed (CF/CF), High-sucrose feed / High-sucrose 

feed (HSF/HSF) and High-sucrose feed / Control feed (HSF/CF). Differing letters indicate significant 

differences. Vertical bars denote 0.95 confidence interval. 

4.4 Microscopic findings 

4.4.1 Follicle numbers 

No significant differences were observed when number of Type 1 follicles were compared. 

Initial f-test results (p<0.01) and LSD values indicated multiple significant differences. 

However, after conducting Levene’s Test for Homogeneity of Variances, the Games-Howell 

post hoc test was conducted and these differences were found to be non-significant (Figure 

4.7 A). 

The number of Type 2 follicle in the HSF2 group were found to be significantly less (p=0.01) 

when compared to CF (LSD<0.01), HSF1 (LSD=0.03) and CF/CF (LSD<0.01) groups. 

Additional significant differences were observed between CF/CF and HSF/HSF (LSD=0.01) 

group, as well as the CF and HSF1 (LSD<0.01) group (Figure 4.7 B). 
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Figure 4.7: Number of Type 1 and Type 2 follicles. A) Number of Type 1 follicles did not vary 

significantly between groups (as confirmed by Games-Howell post hoc test). B) Significantly fewer Type 

2 follicles were found in the HSF when compared to the CF (LSD<0.01), HSF1 (LSD=0.03) and CF/CF 

groups. Additional significant differences were observed between CF/CF and HSF/HSF (LSD=0.01) 

groups, as well as between CF and HSF1 (LSD<0.01) groups. Control feed (CF), High-sucrose feed 1 

(HSF1), High-sucrose feed 2 (HSF2), Control feed / Control feed (CF/CF), High-sucrose feed / High-

sucrose feed (HSF/HSF) and High-sucrose feed / Control feed (HSF/CF). Differing letters indicate 

significant differences. Vertical bars denote 0.95 confidence interval. 

 

The number of Type 3 follicles did not vary significantly (p=0.12) among groups. However, 

various trends were observed and are noted in the caption of Figure 4.8 A. Type 4 follicle 

distribution displayed no significant differences between groups (p=0.22) (Figure 4.8 B). 

Means and standard deviations can be found in Appendix H. 

 

Figure 4.8: Number of Type 3 and Type 4 follicles. A) No significant differences (p=0.12) were 

observed in the number of Type 3 follicles among groups. A trend was observed with the HSF1 group 

having a greater number of Type 3 follicle than the HSF2 (LSD=0.02) and HSF/HSF (LSD=0.03) groups. 

B) No significant differences (p=0.22) were observed in the number of Type 4 follicles between groups. 

Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), Control feed / Control feed 

(CF/CF), High-sucrose feed / High-sucrose feed (HSF/HSF) and High-sucrose feed / Control feed 

(HSF/CF). Vertical bars denote 0.95 confidence interval. 
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4.4.2 Atretic and cystic follicles 

Multiple significant differences (p=0.01) were observed in the number of atretic follicles among 

groups and are detailed in the caption of Figure 4.9 A.  

All differences in the number of cystic follicles among groups was deemed to be non-significant 

(p=0.30). Levene’s test for homogeneity was violated (p=0.002) and prompted a Welch test 

which remained again reported no significant differences (p=0.54) in the number of cystic 

follicles between groups (Figure 4.9 B). Means and standard deviations can be found in 

Appendix H. 

 

Figure 4.9: Atretic and cystic follicles. A) The number of atretic follicles in HSF2 was found to be 

significantly (p=0.01) lower than that of the HSF1 (LSD<0.01) and CF/CF (LSD<0.01) groups. Additional 

significant difference were observed between CF/CF and CF (LSD=0.03) as well as CF/CF and HSF/CF 

(LSD=0.047). B) No significant differences (p=0.30) in the number of cystic follicles were identified. Due 

to heterogeneous variance in the data a Welch test conducted to confirm no significant differences 

between groups (P=0.54). Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), 

Control feed / Control feed (CF/CF), High-sucrose feed / High-sucrose feed (HSF/HSF) and High-

sucrose feed / Control feed (HSF/CF). Differing letters indicate significant differences. Vertical bars 

denote 0.95 confidence interval. 

4.4.3 Stem cell factor staining 

 Stem cell factor (SCF) staining was evaluated by assessing the SCF staining of the oocyte, 

granulosa cells, theca cells and stroma and stratified according to follicle type where 

applicable. Score were as follow: 0 = no staining, 1 = Less than 50% of cells structures stained 

and 2 = more than 50% of structures stained. 

4.4.3.1 Oocyte staining  

No significant differences were identified in the SCF staining in the oocytes of Type 1 follicles 

as evaluated by the f-test (p=0.05) (Figure 4.10 A). Trends were initially indicated using 

conventional LSD tests, however, these were deemed false by a Games-Howell post hoc test 

(conducted due to heterogeneous variation in data). Similarly, differences in staining of oocytes 
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in Type 2 (p=0.19) (Figure 4.10 B) and Type 3 (p=0.26) (Figure 4.10 C) follicles were found to 

be non-significant with no trends indicated by the Games-Howell post hoc test (conducted due 

to heterogeneous variation in data). All oocytes of Type 4 follicles were found to stain positively 

regardless of group. 

 

Figure 4.10: Stem cell factor oocyte staining. No significant differences were identified in the staining 

of oocytes for Type 1 (A, p=0.05), Type 2 (B, p=0.19) or Type 3 follicles (C, p=0.26). Control feed (CF), 

High-sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), Control feed / Control feed (CF/CF), High-

sucrose feed / High-sucrose feed (HSF/HSF) and High-sucrose feed / Control feed (HSF/CF). Vertical 

bars denote 0.95 confidence interval. 

4.4.3.2 Granulosa cell staining  

No granulosa cells of the Type 1 follicles were found to stain positively. Type 2 follicle 

granulosa cells were found to be significantly different (p<0.01) (Figure 4.11 A), with 

heterogeneous variation. Significance was confirmed with a Welch test (p<0.01) and LSD 

values determined using the Games-Howell post hoc test. The CF group scored significantly 

lower than the HSF2, CF/CF, HSF/HSF and HSF/CF groups, with LSD values less than 0.01. 

Additionally, the HSF1 group was found to score significantly lower than all other groups. (CF; 

LSD=0.03, HSF2; LSD<0.01, CF/CF; LSD<0.01, HSF/HSF; LSD<0.01, HSF/CF; LSD<0.01) 

Similarly, differences (p<0.01) (Figure 4.11 B) in the staining of granulosa cells of Type 3 

follicles were found to be significant, with heterogeneous variation. Significance was confirmed 
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with a Welch test (p<0.01) and the Games-Howell post hoc test used to determine LSD values. 

CF and HSF scored significantly lower than that of the HSF2, CF/CF, HSF/HSF and HSF/CF 

groups. 

 

Stem cell factor granulosa staining of the Type 4 follicle was found to be significantly (p<0.1) 

(Figure 4.11 C) lower in the CF and HSF1 groups than all other groups. All LSD values are 

less than 0.01 except for when CF and CF/CF (LSD=0.02) groups are compared 

 

Figure 4.11: Stem cell factor granulosa staining. A) Staining of Type 1 granulosa cells in CF and 

HSF1 groups were found to score significantly (p<0.01) less than all other groups with LSD values less 

than 0.01. Additionally, the HSF1 group was found to score significantly lower than the CF group 

(LSD=0.3). B) Type 3 follicle granulosa cells of the CF and HSF1 groups were found to score significantly 

(p<0.01) lower than all other group (All LSD values less than 0.01). C) Similarly, staining of the Type 4 

follicle granulosa cells in the CF and HSF1 staining scored significantly (p<0.01) lower than all other 

groups (All LSD values less than 0.01). Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose 

feed 2 (HSF2), Control feed / Control feed (CF/CF), High-sucrose feed / High-sucrose feed (HSF/HSF) 

and High-sucrose feed / Control feed (HSF/CF). Differing letters indicate significant differences. Vertical 

bars denote 0.95 confidence interval. 

4.4.3.3 Theca cell staining 

Theca cell staining was only observed in Type 3 and 4 Type follicles across all groups. No 

significant (p=0.14) (Figure 4.12 A) differences in theca cell staining was identified between 
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groups for Type 3 follicles however trends were present. The CF group tended to score higher 

than the HSF1 (LSD=0.04), HSF2 (LSD=0.03) and HSF/HSF (LSD=0.01) groups. Similarly, 

staining of theca cells in Type 4 follicles did not vary significantly (p=0.18) (Figure 4.12 B). 

However, the HSF2 group tended to score higher than the CF/CF (LSD= 0.03) group.  

 

Figure 4.12: Stem cell factor theca staining. A) No significant differences were observed in the 

staining of Type 3 follicle theca cells. However, the CF tended to score higher than the HSF1 

(LSD=0.04), HSF2 (LSD=0.3) and HSF/HSF (LSD 0.01) groups. B) No significant differences were 

found in the staining of Type 4 follicle theca cells. However, the HSF2 tended to score higher than the 

CF/CF (LSD=0.03) group. Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), 

Control feed / Control feed (CF/CF), High-sucrose feed / High-sucrose feed (HSF/HSF) and High-

sucrose feed / Control feed (HSF/CF). Vertical bars denote 0.95 confidence interval. 

4.4.3.4 Stromal staining 

No significant differences were identified in the proportion stained (P=0.09) (Figure 4.13 A) or 

intensity (p= 0.14) (Figure 4.13 B) of stromal staining across all groups, however various trends 

were identified. The CF/CF (LSD=0.048) and HSF/HSF (LSD<0.01) group tended to have a 

higher proportion of stromal staining in comparison to the CF group. Intensity of stromal 

staining tended to score higher in the HSF2 (LSD=0.01) and HSF/HSF (LSD=0.03) groups 

when compared to the HSF1 group. 
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Figure 4.13: Stem cell factor stromal staining. A) No significant (p=0.09) differences were observed 

between the proportion of stroma stained among groups. However, the CF/CF (LSD=0.047) and 

HSF/HSF (LSD<0.01) groups did tend to have increased stromal staining when compared to the CF 

group. B) No significant (p=0.14) differences were identified in the intensity of stromal staining. However, 

it was noted that staining intensity in the HSF2 (LSD=0.01) and HSF/HSF (LSD=0.03) group tended to 

score higher than the HSF1 group. Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose feed 

2 (HSF2), Control feed / Control feed (CF/CF), High-sucrose feed / High-sucrose feed (HSF/HSF) and 

High-sucrose feed / Control feed (HSF/CF). Vertical bars denote 0.95 confidence interval. 

4.4.4 Descriptive morphological changes 

4.4.4.1 Inflammatory changes  

Ovarian tissue contains a basal level of inflammatory cells as this organ is highly regenerative 

with constant cycles of follicle development, atresia and corpus luteum breakdown. Therefore, 

in all cases regardless of group, polymorphonuclear and mononuclear inflammatory cells were 

identified. None of the animals, regardless of group, presented with any inflammatory foci, thus 

it was concluded that no acute inflammatory processes were underway (Figure 4.15 & 4.16).    

4.4.4.2 Oedema 

Oedema characterised by large fluid filled spaces within the interstitium were not identified in 

any group. However, congestion, a precursor and hallmark of oedema was identified in various 

groups as indicated in Table 4.1. Congestion found to be prominent mostly in the HSF1 (Figure 

4.15, C & D) and even more so in the HSF2 (Figure 4.15, E &F) group. Additionally, the HSF/CF 

group presented with cases of relatively mild congestion. 
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Table 4.1: Number of cases presenting with congestion. 

 
CF HSF 1 HSF 2 CF/CF HSF/HSF HSF/CF 

N 9 9 10 6 6 4 

CONGESTED 1 6 9 1 2 2 

Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), Control feed / Control feed (CF/CF), 

High-sucrose feed / High-sucrose feed (HSF/HSF) and High-sucrose feed / Control feed (HSF/CF). 

 

4.4.4.3 Fibrotic changes 

No overt abnormal collagen depositions were observed in any of the study groups. 

4.4.4.4 Tunica albuginea thickness 

Significant (p<0.01) differences in TA thickening was observed between all groups except 

HSF1 and HSF/CF. The HSF1, HSF2 and HSF/CF were found to have the thickest TA with 

the HSF/HSF group having the thinnest TA. All comparisons presented with an LSD value less 

than 0.01, except for CF and CF/CF (LSD=0.02). 
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Figure 4.14: Tunica albuginea thickness in micrometres. Significant differences (p<0.01) were 

observed among all groups except between the HSF and HSF/CF group. Control feed (CF), High-

sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), Control feed / Control feed (CF/CF), High-sucrose 

feed / High-sucrose feed (HSF/HSF) and High-sucrose feed / Control feed (HSF/CF). Differing letters 

indicate significant differences. Vertical bars denote 0.95 confidence interval. 

4.4.4.5 Additional morphological changes 

In addition to the predicted morphological changes, additional morphological changes were 

observed. 

Control feed dams 

In a single case within this group, two oocytes were found surrounded by granulosa cells 

forming a polyovular follicle. This is a normal variation that can occur at a low frequency within 

rat ovaries. No additional changes were identified (Figure 4.15, A & B). 

High sucrose feed 1 

In addition to congested blood vessels cases (6/9) from this group were found to have distinct 

changes to both their corpus luteum and stroma (Figure 4.15, E & F). Morphology of 

approximately a third of all corpora lutea presented cells with microvesicular and 

macrovesicular vacuolation and observable pyknotic nuclei. Within the same region, 

contracted cells, and additional vesicles containing cell debris were identified. (Figure 4.17 A). 
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This is indicative of an active apoptotic process. Likewise, the stroma also displays micro and 

macrovesicular vacuolation (Figure 4.17 B).  

High sucrose feed 2 

Nine out of ten cases from this group presented with notably more extensive congestion than 

all other groups (Figure 4.15 E & F). Multiple corpora luteua were found to have areas of 

eosinophilic cells with faded or non-staining nuclei. Peripheral nuclei were found to be pyknotic 

(Figure 4.17 C). Stroma presented with multiple congested blood vessels and increased levels 

of micro and specifically macrovesicular vacuolation (Figure 4.17 D). 

Control feed / Control feed pups 

All cases from this group were found to display normal morphology with physiological levels of 

macro and micro- vesicular vacuolation present.  

High sucrose feed / High sucrose feed pups 

Variable morphology was observed throughout this group. Most cases presented with 

increased macro and micro vesicular vacuolation, spindle-shaped and pyknotic nuclei (Figure 

4.17 E). In 3/6 cases macrovesicular vacuolation caused severe distortion of stroma (Figure 

4.17 F). Overall ovaries were found to contain fewer corpora lutea, with 2/6 cases presenting 

no observable corpus luteum. Most sections were found to have dense clusters of Type 1 

follicles along the cortical periphery of the ovary. 

In all cases, luteal cysts were identified surrounded by granulosa cells. Contents of the cysts 

appeared to be proteinaceous in nature (but remains undetermined) and was well 

circumscribed by flattened endothelial cells (Figure 4.18). 

High sucrose feed / Control feed pups 

All cases from this group presented with physiological to moderate levels of micro and 

macrovesicular vacuolation within the corpus luteum and physiological levels in the stroma. 
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Figure 4.15: Overview of ovarian morphology in dams. A) Corpus luteum of a CF dam displaying 

typical morphology. B) Stroma of CF dam displaying typical morphology. C) Corpus luteum of HSF1 

dam displaying morphological characteristics of an apoptotic process (represented by arrows). D) 

Congested stroma of a HSF1 dam presenting with micro- and macrovesicular vacuolation (Represented 

by arrow heads). E) Corpus luteum of a HSF2 dam, with observable congestion and necrotic lesion 

(represented by arrows). F) Extensive congestion of stroma (indicated with arrows) with increased 

micro- and macrovesicular vacuolation (Represented by arrow heads). Control feed (CF), High-sucrose 

feed 1 (HSF1) and High-sucrose feed 2 (HSF2). Haematoxylin and eosin preparations at 50x 

magnification (Scale bar = 100µm).  
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Figure 4.16: Overview of ovarian morphology in pups. A) Corpus luteum of a CF/CF pup displaying 

slight congestion (indicated by arrow), and physiological levels of micro- and macrovesicular vacuolation 

(indicated with arrow heads). B) Stroma of CF/CF pup displaying typical morphology. C) Stroma of a 

HSF/HSF pup displaying increased levels of micro- and macrovesicular vacuolation (indicated by arrow 

heads) including with scattered luteal cysts (indicated by arrows). D) Stroma of a HSF/HSF with multiple 

dilated blood vessels (indicated with arrows). E) Corpus luteum of a HSF/CF pup, with dilated sinusoids 

(indicated with arrows) and displaying physiological levels of micro- and macrovesicular vacuolation 

(indicated by arrow heads). F) Mildly congested stroma of a HSF/CF pup, with increased micro- and 

macrovesicular vacuolation (indicated by arrows). Control feed / Control feed (CF/CF), High-sucrose 

feed / High-sucrose feed (HSF/HSF) and High-sucrose feed / Control feed (HSF/CF). Haematoxylin and 

eosin preparations at 50x magnification (Scale bar = 100µm). 
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Figure 4.17: Overview of morphological changes. A) Corpus luteum of a HSF1 dam observable 

micro- and macrovesicular vacuolation, pyknotic nuclei and apoptotic body formation. B) Stroma of a 

HSF1 dam with observable micro- and macrovesicular vacuolation, and pyknotic nuclei. C) Necrotic 

lesion within the corpus luteum of a HSF2 dam. Additional micro- and macrovesicular vacuolation, and 

pyknotic nuclei can be observed. D) Stroma of a HSF2 dam presenting with macrovesicular vacuolation 

and wide spread macrovesicular vacuolation. Additionally, numerous congested blood vessels can be 

observed. E) Stroma of a HSF/HSF pup with observable micro- and macrovesicular vacuolation. 

Additionally, two well defined endothelial circumscribed luteal cysts can be observed (top right and 

middle right of the image). F) Extreme macrovesicular vacuolation, distorting normal cell morphology. 

Yellow arrows = Microvesicular vacuolation, Green arrows = Macrovesicular vacuolation, Red arrows = 

Pyknotic nuclei and Black arrows = Apoptotic bodies. High-sucrose feed 1 (HSF1), High-sucrose feed 

2 (HSF2) and High-sucrose feed / High-sucrose feed (HSF/HSF). Haematoxylin and eosin preparations 

at 200x magnification (Scale bar = 20µm). 
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Figure 4.18: Abnormal cysts. Well defined, endothelial circumscribed cysts, surrounded by granulosa 

cells with an unknown proteinaceous content found in ovaries from the HSF/HSF group. (H&E 

preparation at 200x magnification) (Scale bar = 20µm). 
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Chapter 5: Discussion 
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5.1 Effects of a high sucrose diet on metabolic status 

Results from the present study has shown that rats on a high-sucrose diet, had a reduced 

mean body mass (MBM), while maintaining a normal fasting blood glucose level (FBGL) when 

compared to animals maintained on a corn-starch control diet. This is contrary to the increase 

in body mass and FBGL which is considered a normal physiologic response to a high sugar 

diet (Romeo, Lee and Shoelson, 2012). Adaptations in hepatic fructose metabolism (Bizeau 

and Pagliassotti, 2005) and sexual dimorphism (Galipeau, Verma and McNeill, 2002) normally 

seen at the onset of metabolic syndrome are potentially responsible for these abnormal results. 

The reason is that in the postprandial state the liver consumes approximately 30% of glucose 

intake, however this is altered depending on carbohydrate source (Bizeau and Pagliassotti, 

2005). In the present study sucrose constituted 68% of the high sugar diet and is a molecule 

consisting of a single glucose and fructose monomer. Glucose is absorbed and used as an 

insulin mediated energy source for most cells in the body, however up to 70% of all fructose is 

metabolised by the liver (Mayes, 1993). Increased levels of hepatic fructose has been found 

to increase the glucose requirements of the organ as well as increase the rate of fatty change 

in the liver, due to increased levels of energy storage (Bizeau and Pagliassotti, 2005). These 

changes in the liver could potentially lead to the development of a non-alcoholic fatty liver 

disease state, which would result in an immediate MetS diagnosis. This diagnosis will be made 

regardless of all other MetS risk factors (Alessandro et al., 2012). Additionally, diets with 

increased fructose components could potentially result in a reduction in nutrient absorption, 

however the mechanisms by which this occurs remains unknown (Alessandro et al., 2012). 

Therefore, in the present study the decrease in nutritional absorptive capacity in the liver may 

account for decreased BM in the HSF maintained groups. In addition, sexual dimorphism in 

the development of metabolic disturbances may be primarily or partly responsible for the 

unconventional results obtained in this study (Galipeau, Verma and McNeill, 2002).  

In a study conducted on female Wistar rats using the same diet as the present study, no 

significant differences in MBM or FBGL were detected between the control or high sucrose fed 

groups (Horton et al., 1997). The same high sucrose diet caused significant increases in weight 

and FBGLs after two weeks of feeding in males (Horton et al., 1997). The present study agrees 

with findings of FBGLs, however differs when body mass is considered, with the HSF groups 

presenting with significantly lowered MBM. 

Differences in MBM between Horton et al., (1997) and the present study may be as result of 

the indicated study using a 7-week old rats, in contrast to the present study which initiated 

experimental feeding at 21-day old rats. This difference in findings may indicate that sucrose 

feeding has a significant effect on pre-pubertal developmental phases in rats. This hypothesis 

is supported by the HSF/HSF pup group weighing approximately a third of the HSF groups 
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and a quarter of the CF group. The HSF/HSF group was weaned by an HSF dam as well as 

maintained on a high sucrose diet and euthanised at the same chronological age as the dams.  

A common hypothesis widely accepted in literature is that the increased levels of oestrogen 

and lack of androgens in female rats act as a protective factor against the development of 

metabolic syndrome (D’Eon et al., 2005; Xu et al., 2011; Stubbins et al., 2012). This was 

demonstrated by Busserolles et al. (1990) where control, ovariectomised and oestrodial-

treated ovariectomised rats were fed a high sucrose diet, and their oxidative stress status 

measured. All experimental groups presented with raised TG and NO levels like those of 

males. Lipid peroxidation on homogenised tissues indicated a significant increase in 

thiobarbituric acid-reactive substances (TBARS) in ovariectomised animals. Thiobarbituric 

acid-reactive substances are used to identify levels of oxidative stress and correlates with the 

development of non-alcoholic fatty liver disease. This was found to be reversed in the 

oestrodial treated ovariectomised group. Although oestrogen levels were not directly measured 

in the present study, it can be said that there was some degree of protection afforded to 

maternal animals on HSF, as they did not display an overt metabolic disorder. Additionally 

Busserolles et al., (1990)  found that the anti-oxidant super oxide dismutase was found to be 

increased in all groups except the ovariectomised group. Therefore, it is hypothesised that 

oestrogen acts as a protective agent against the OS and its adverse effects, not as an anti-

oxidant, but rather increasing anti-oxidant potential.  

The protective of effects of oestrogen cannot be confirmed in the present study due to the 

significant differences in metabolic status and morphological changes to the ovary. However, 

it must be noted that feeding was initiated at 21 days old, prior to the onset of puberty and thus 

changes could have been caused prior to the increase in oestrogen during puberty as was 

seen by Hilakivi-Clarke et al., (1998) using a high fat diet in a mouse model. Increased severity 

of changes in metabolic status and ovarian morphology observed in the HSF/HSF pup group 

may also be as result of pre-pubertal exposure to the high sucrose feed and potentially 

comprised milk during weaning. Potential foetal programming may also be responsible for 

these results and will be discussed below (Mulder et al., 2002).  

5.2 Metabolic status and mating outcomes 

Mating outcomes are determined by multiple factors which include the metabolic status and 

genetics of the parental generation (Aiken and Ozanne, 2014; Aiken, Tarry-Adkins and 

Ozanne, 2016). The metabolic status of the female during pregnancy has been known to be 

responsible for providing an adequate intrauterine environment (Aiken and Ozanne, 2014). It 

is well documented that, a compromise in the intrauterine environment can have immediate 

and / or predisposing effects on the foetus leading to the development of adulthood metabolic 

disturbances (Martin-Gronert and Ozanne, 2012). In the present study no significant 
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differences in litter sizes were identified, however the HSF2 group tended to produce fewer 

pups than the CF groups. Additionally, it was noted that all pups born to HSF dams were 

significantly lighter than that of pups birthed to CF dams at the time of weaning. Differences in 

the number of pups and the mass of the pups may been as result of a dysfunctional 

hypothalamic-gonadotropic hormone release and poor intrauterine environment respectively 

as was observed in rat studies by Fontana and Della Torre, (2016) and Aiken, Tarry-Adkins 

and Ozanne, (2013) respectively.  

Underweight individuals have been shown to have disrupted reproductive cycles and altered 

ovarian steroidogenesis, resulting in significant conception difficulties (Leyendecker and Wildt, 

1984; Devlin et al., 1989; Xu et al., 2011). Results of the present study did not record any 

significant differences in time of conception for HSF groups in comparison to other groups. 

However, a single dam from the HSF2 group was found to be a sterile mating. Vaginal smears 

determined that the animal was amenorrhoeic. If cohorts were enlarged and standard 

reproductive cycle monitoring conducted, this parameter may have become a significant 

finding in the present study. 

Significantly fewer females were birthed to HSF dams than to CF dams. This disparity is 

potentially an indication of excess of nutrition as hypothesised by Trivers and Willard (1989). 

The hypothesis of Trivers and Willard (1989) suggests that when maternal nutrition is 

compromised, female offspring are naturally selected, but when excess nutrition is available, 

male offspring are favoured (Trivers and Willard, 1989). Mechanisms by which this occur, 

remain uncertain, with male placental sensitivity being identified as a potential key factor (Mao 

et al., 2010).  

Munetsuna et al (2018) found that using a diet consisting of 18% fructose caused dysregulation 

in oestradiol regulation in offspring, as indicated by the attenuation of oestrogen receptor 

alpha. However, in the indicated study as well as the present study, it is not possible to 

adequately identify whether the deleterious phenotypic effects seen in pups have been as 

result of direct effects of diet on the foetus during gestation and weaning or as result of an 

epigenetic modification. The latter hypothesis would result in the offspring predisposed to 

developing metabolic disturbances which was seen in the present study. 

The HSF/CF group of the present study served as a crossover control diet. Pups in this group 

were birthed and weaned by a dam maintained on high sucrose feed. Body mass results at 

the time of death of this group were shown to be significantly higher than that of the HSF/HSF 

pups, yet still significantly lower than the CF/CF pups. These differences promote the 

hypothesis that changes identified in the HSF/HSF pup group are not purely result of their 

direct feeding after weaning. Mean body mass in the HSF/CF groups displayed some degree 

of reversal but failed to match that of the CF/CF pups. Therefore, it can be extrapolated that 
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potential semi-permanent changes were made to the metabolic and hormone homeostasis of 

the pups in utero or during weaning (Aiken, Tarry-Adkins and Ozanne, 2016; Munetsuna et al., 

2018).  

5.3 Effects of metabolic status on the ovary 

Ovarian mass was significantly decreased in groups maintained on high sucrose feed with 

exception of the HSF2 group in the present study. In most cases ovarian mass corresponded 

with a decrease in overall body mass except for in the HSF/HSF pup, in which follicle 

distribution and morphology was indicative of atrophy. Animals in this group displayed 

significantly increased numbers of Type 1 follicles, few corpora lutea and highly vacuolised 

stroma which is indicative of atrophy as result of immaturity as was described in rats (Dixon et 

al., 2014).  

Ovarian follicle development is a complex and integrative process governed by multiple factors 

which include: intraovarian factors, hypothalamic gonadotropic control and metabolic status 

(McGee and Hsueh, 2000; Webb et al., 2004; Fontana and Della Torre, 2016). In the present 

study the only significant differences were found in Type 1 follicles as stated above, and 

significantly less Type 2 follicles were found in the HSF2 groups. This reduction of preantral 

follicles is potentially a result of dysregulation in the intrauterine follicle development (Manova 

et al., 1993; McGee and Hsueh, 2000), as follicles at this stage of development are 

predominantly unresponsive to the control of gonadotrophic hormones. Similar non-significant 

decreases in Type 2 and Type 3 follicles were observed for the HSF2 group and indicate a 

decrease in reproductive potential and is confirmed by significantly fewer atretic follicles. 

Atresia is considered as an adequate indicator of ovarian activity (Hsueh, Billig and Tsafriri, 

1994).  

An interesting and unexpected finding was differences observed between HSF1 and HSF2 

groups. Despite undergoing the same experimental measures, and presenting with identical 

metabolic profiles (with exception of a non-significant increase in FBGL of the HSF1 group) 

significant differences were observed in follicle numbers, atresia and cyst formation. 

Increased numbers of Type 1, Type 2 and Type 3 follicles in addition to increased levels of 

atresia indicate that ovaries of the HSF1 group were potentially more active than that of the 

HSF2 group. In addition, increased numbers of follicular cysts were observed in this group with 

a non-significant increase in FBGL was observed for this group. It may therefore be that in the 

present study the developmental and cystic increase is potentially due to the analogous 

stimulatory effect of insulin in follicular development (Diamanti-Kandarakis and Dunaif, 2012). 

Positive SCF staining is predominantly found in the oocyte and theca cells of developing 

follicles and is hypothesised to assist in the promotion follicles to the antral stage (Manova et 

al., 1993). Staining of oocytes and theca cells indicated no significant differences in staining 
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pattern or quantity in the present study. Differences in the number of follicles found contradict 

the results of the SCF staining, indicating that SCF may not responsible for the changes in 

follicle number. 

In the assessment of diffuse stromal staining it was found that the HSF/HSF pup group was 

found to have increased staining proportion and intensity in contrast to variable decreased 

follicle production. Although this finding is contradictory to literature it must be noted that SCF 

has additional proto-oncogenic functioning (Huang et al., 1990; Manova et al., 1993). This is 

an increased likelihood when the potential for oxidative stress, due to abnormal hepatic 

metabolism is considered.   

5.4 Morphological changes in the ovary 

The microscopic morphology of the ovary is of high importance, as morphological changes are 

potentially indicative of hormonal and metabolic homeostasis. The corpus luteum and the 

stroma were selected as regions of interest in this study. Ovaries undergo normal cyclical 

change that correlates with the reproductive stage. It is therefore important to compare ovarian 

morphology at similar stages of their reproductive cycle when assessing morphology (Dixon et 

al., 2014).    

No morphological changes above normal cyclical change were observed in any of the groups 

maintained on control feed. Morphological changes observed in high sucrose feed maintained 

groups indicated varying abnormal degrees of micro- and macrovesicular vacuolation, 

apoptosis and necrosis. Excessive micro- and macrovesicular vacuolation has been shown to 

occur when steroidogenic activity is inhibited  and  leads to lipid accumulation in the cells 

(Towns et al., 1999). Additionally, vacuolation has been found to be indicative of 

phospholipidosis, an indication of potential metabolic dysregulation (Towns et al., 1999; Dixon 

et al., 2014). Apoptosis and small necrotic lesions are also occasionally seen in the metoestrus 

phase, however excess apoptotic activity and large necrotic lesions as seen in high sucrose 

maintained animals in the present study, indicate a possible disruption in steroid homeostasis 

(Dixon et al., 2014). Potential changes in steroidogenesis may be as result of an end point 

insult due to oxidative stress, or dysregulation of the HPG axis (Fontana and Della Torre, 2016; 

Munetsuna et al., 2018). 

Metabolic effects on the HPG axis have been hypothesised to be due to glucotoxicity in the 

hypothalamus and or the effects of adipose tissue metabolites and insulin on gonadotropic 

hormones and endpoint steroidogenesis (Roa et al., 2006; Castellano et al., 2009; Roa, 

Navarro and Tena-Sempere, 2011). The present study indicated no evidence of excess blood 

glucose or hyperinsulinemia and thus do not consider any of the effects to be as result of 

glucotoxicity in the hypothalamus, however, any oxidative process in the hypothalamus cannot 

be discredited. 
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All animals maintained on high sucrose feed were found to be significantly lighter than control 

fed groups. In addition, dissection findings also indicated a reduction in fat and muscle 

deposition. Although fat quantity was reduced, it was not possible to assess the metabolic 

profile of the adipose tissue and assess if it was sufficient to cause hyperleptinemia and effect 

the gonadotropin hormone levels (Kendall et al., 2004; Stubbins et al., 2012; Comninos, 

Jayasena and Dhillo, 2014). It must also be noted that potential fatty change occurring in the 

liver in MetS may also effect the secretion of sex hormone binding globulin (SHBG), leading to 

increased plasma testosterone levels (Torre et al., 2014; Fontana and Della Torre, 2016). 

Increased testosterone levels are highly correlated with the development polycystic ovarian 

syndrome (PCOS) (Vom Saal, Even and Quadagno, 1991; Steckler et al., 2005). In contrast 

significant production of follicular cysts were observed in the present study. However, 

significant increases in tunica albuginea thickness, like those found in the HSF dam groups 

are consistent with PCOS (Stener-Victorin et al., 2005). 

5.5 Transgenerational effects of a high sucrose diet 

Foetal programming and its effects are increasingly studied using various maternal diets 

(Martin-Gronert and Ozanne, 2012; Perrone et al., 2016; Khanal and Nielsen, 2017). However, 

few studies have evaluated the potential foetal programming as a result of the isolated effects 

of maternal sucrose feeding (Kendig et al., 2015). The present study makes no attempt at 

identifying the origin, if by uterine environment and or epigenetic modification, but rather 

suggests that maternal high sucrose feeding causes a potential predisposition for metabolic 

instability. 

Significant differences in the metabolic status of the HSF/HSF pups were identified. However, 

in this group it is not possible to delineate the effects of foetal programming and the postnatal 

feeding. The HSF/CF pup group, which was born and weaned of a HSF dam, and then fed a 

post-natal control diet failed to recover a normalised metabolic profile at adulthood. Therefore 

it can be concluded that some form of foetal programming has occurred in the offspring of 

animals birthed to HSF dams (Aiken and Ozanne, 2014). In a similar study conducted using 

only male offspring, sucrose feeding was found to alter glucose homeostasis and hepatic lipid 

metabolism. This led to the development of insulin resistance and metabolic disorders in 

adulthood regardless of postnatal feed (Alessandro et al., 2012). 

In the present study no morphological or follicle number differences were identified despite the 

change in metabolic profile. This is in contrast to the morphological changes found in the males 

of the previously mentioned study. The lack of morphological change could potentially be as 

result of the ameliorating effects of oestrogen with regards to oxidative stress (Busserolles et 

al., 1990; Riant et al., 2009; Stubbins et al., 2012). 
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Chapter 6: Conclusion 
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In conclusion, the consumption of high sucrose diet has been shown to affect the metabolic 

profile of female Wistar rats even though the results were non-significant. Metabolic changes 

were marked, however, not severe enough to suggest the development of insulin resistance. 

These results are in keeping with theories of metabolic robustness of female rats with regards 

to the maintenance of glucose homeostasis and protection against oxidative stress. Mean body 

mass values were found to be decreased in rats fed on a high sucrose feed, and is 

hypothesised to be due to the early onset of experimental feeding. 

Sucrose feeding was found to decrease overall ovarian mass, as well as fat deposits 

surrounding the uterus and ovaries as determined by subjective evaluation. High sucrose 

feeding had varying effects on numbers of follicles within sucrose fed groups. Potential 

differences may be linked to the effects of insulin on the ovary. Stem cell factor staining showed 

no differences in intra-ovarian follicle stimulation, indicating that differences observed in follicle 

numbers were as result of extra-ovarian factors. Apoptosis, necrosis, congestion and 

vacuolation observed in ovarian morphology of stroma and corpora lutea were indicative of 

alterations in gonadotropin hormone release. Changes in the metabolic profile are 

hypothesised to be responsible for the potential changes in hypothalamic pituitary gonadal axis 

and gonadotropic hormones.  

Additionally, it was found that animals born of HSF dams were found to have a low mean body 

mass, regardless of postnatal feed. Animals converted to control feed after weaning displayed 

some normalisation in metabolic profile, however remained significantly different to CF dam 

birthed and control fed pup.  These results allowed the author to say with certainty that some 

degree of foetal programming has taken place in the present study within the HSF/HSF and 

HSF/CF groups. 

Thus, answering the research questions, a high sucrose feed causes marked changes in the 

morphology of the ovary, which are compounded in the F1 generation. This study 

demonstrates that metabolic changes can influence the reproductive potential of parental and 

F1 generations, despite the lack of overt metabolic dysregulation.  
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Limitations and future studies 

Specimens obtained for the present study were harvested from animals used in an unrelated 

PhD study in the Division of Clinical Anatomy, in an effort to maximise the information that 

could be attained from the feeding model. However, parameters of the main study limited 

potential additional investigations. Limitations were ameliorated to the best of the author’s 

ability. 

Monitoring of reproductive cycles of all animals were constrained by the ethical consideration 

of the overarching protocol of the study. In this case ovarian morphology was evaluated taking 

into consideration potential morphological differences. Additionally, molecular and advanced 

immunohistochemical investigations were limited due to financial restraints. These would have 

provided further insight into potential reasoning behind the phenotypic changes seen in this 

study 

Future studies could investigate potential cyclical changes due to high sucrose feeding, as was 

highlighted by the changes in ovarian morphology. Additionally, the effect of pre-and post-natal 

high sucrose on oestrogen production in maternal animals should be assessed to further 

delineate the protective effects of oestrogen in female rats. 

Duration of the feeding model was governed by the overarching study. This was not a 

significant limitation in the present study, however it may be of value to study the progressive 

effects over extended time periods. This is of particular interest when the foetal programming 

effects of high sucrose feed are considered.  

In summary, this study could have benefited from reproductive cycle monitoring and additional 

molecular testing. This would give additional insights into delineating the direct effects of 

metabolic status on ovarian morphology and the indirect effects via dysregulation of the 

hypothalamic-pituitary-gonad axis. 
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Appendices 

Appendix A: Diet compositions 
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Appendix B: Animal fasting times 

Table 6.1: Fasting time per weight for fasted blood glucose level assessment 

Animal weight (Grams) Fasting time (hours) 

0-49 4 

50-99 6 

100-149 8 

150+ 12 
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Appendix C: Tissue processing schedule 

Table 6.2: Processing schedule for ovaries 

Reagent Temperature (°C) Vacuum Time (min) 

Ethanol (70%) 45 No 30 

Ethanol (80%) 45 No 30 

Ethanol (95%) 45 No 30 

Ethanol (100%) 45 No 30 

Ethanol (100%) 45 No 60 

Ethanol (100%) 45 No 90 

Xylene Ambient No 45 

Xylene Ambient No 45 

Xylene 45 No 90 

Paraffin wax 65 Yes 60 

Paraffin wax 65 Yes 60 

Paraffin wax 65 Yes 60 
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Appendix D: Haematoxylin and eosin staining protocol 

Method: 

1. Load slides into auto-stainer. 

2. Run program as presented in Table 6.3. 

3. Subsequently, mount slides using a resinous mounting agent. 

Table 6.3: Automated staining protocol 

Staining 

step 
Reagent Time 

1 Xylene 10 min 

2 Xylene 10 min 

3 99% Ethanol 2 min 

4 96% Ethanol 2 min 

5 70% Ethanol 2 min 

6 Distilled water 5 sec 

7 Meyers Haematoxylin 8 min 

8 Running water 5 min 

9 Eosin 45 sec 

10 96% Ethanol 10 dips 

11 96% Ethanol 10 dips 

12 70% Ethanol 10 dips 

13 70% Ethanol 10 dips 

14 Xylene 5 min 
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Appendix E: Stem cell factor 

Method: 

1. Titrate SCF antibody (ab64677, Abcam®, United Kingdom) to 1:500 concentration 

using antibody diluent. Load titrated antibody and Bond™ Polymer Refine detection 

kit (Leica Biosystems, Wetzlar, Germany) into the Bond Max™ platform. 

2. Run the protocol as stated in Table 6.4. 

3. Subsequently, remove slides, dehydrate and mount according to routine practice. 

Table 6.4: Automated staining protocol 

Staining 

step 
Reagent Time 

1 Peroxide Block 5 min 

2 ER 2 (antigen retrieval)  20 min 

2 Bond wash 0 

3 Primary antibody 40 min 

4 Bond wash 0 

5 Secondary antibody 8 min 

6 Bond wash 0 

7 Polymer 8 min 

8 DAB 10 min 

9 Deionized water 0 

10 Haematoxylin  2 min 

11 Deionized water 0 

12 Bond wash 0 
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Appendix F: Pederson and Peters follicle classification  

Table 6.5: Follicle classification according to Pederson and Peters (1968) 

Group Type 
Number of granulosa 

cells 

Follicle antrum 

development 

Small follicles 

Type 1 0 - 

Type 2 
Incomplete ring 

surrounding oocyte 
- 

Type 3a 

Complete ring 

surrounding oocyte 

(≤ 20) 

- 

Medium follicles 

Type 3b 21 – 60  - 

Type 4 61 – 100  - 

Type 5a 101 – 200  - 

Large follicles 

Type 5b 201 – 400 - 

Type 6 401 – 600  
Initial growth of 

antrum 

Type 7 > 600 

Large antrum but 

lacks cumulus 

oophorus 

Type 8 > 600 

Large antrum with 

cumulus stalk 

present 

 

Stellenbosch University  https://scholar.sun.ac.za



88 
 

Appendix G: Random numbers table 
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Appendix H: Means and Standard deviations  

 

Table 6.6: Mean body mass comparison (±Std. Dev.) 

 CF HSF 1 HSF 2 CF/CF HSF/HSF HSF/CF 

N 9 9 10 6 6 4 

MASS 

(G) 

226.7 ± 

16.4a 

168.3 ± 

16.2b 

168.7 ± 

38.2b 

190.7 ± 

20.2b 

58.8 ± 

21.0d 

121.0 ± 

5.5c 

Differing letters indicate significant differences. Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose feed 

2 (HSF2), Control feed / Control feed (CF/CF), High-sucrose feed / High-sucrose feed (HSF/HSF) and High-sucrose 

feed / Control feed (HSF/CF). 

 

Table 6.7: Mean fasting blood glucose levels (±Std. Dev.) 

 

CF HSF 1 HSF 2 CF/CF HSF/HSF HSF/CF 

N 9 9 6 6 6 4 

FBGL 

(Mmol/L) 
4.7±0.3ab 5.1±0.6a 4.8±1.1abc 3.7±0.4c 3.7±0.6bc 4.1±0.6abc 

Differing letters indicate significant differences. Control feed (CF), High-sucrose feed 1 (HSF1), High-sucrose feed 

2 (HSF2), Control feed / Control feed (CF/CF), High-sucrose feed / High-sucrose feed (HSF/HSF) and High-sucrose 

feed / Control feed (HSF/CF). Fasting blood glucose level (FBGL). 

 

Table 6.8: Mean litter size (±Std. Dev.) 

 CF HSF 1 HSF 2 

N 9 9 6 

MALE 3 ±1 3 ±1 3 ±2 

FEMALE 5 ±2a 4 ±2ab 3 ±2b 

TOTAL 9 ±3 7 ±2 6 ±3* 
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Differing letters indicate significant differences. * Indicates trends observed with an LSD<0.05. Control feed (CF), 

High-sucrose feed 1 (HSF1) and High sucrose feed 2 (HSF2). 

 

Table 6.9 Mean pup weights (±Std. Dev.) 

 
CF HSF 1 HSF 2 

N 9 9 6 

MALE 36.9±10.4a 23.9±9.8b 11.4±5.9c 

FEMALE 36.5±10.5a 23.2±9.4b 15.7±9.8b 

Differing letters indicate significant differences. Control feed (CF), High-sucrose feed 1 (HSF1) and High-sucrose 

feed 2 (HSF2). 

 

Table 6.10: Mean ovarian mass (±Std. Dev.) 

 CF HSF 1 HSF 2 CF/CF HSF/HSF HSF/CF 

N 9 9 6 6 6 4 

OVARY 

1 

0.046 

±0.004 

0.0274 

±0.006 

0.064 

±0.017 

0.067 

±0.015 

0.025 

±0.010 

0.067 

±0.011 

OVARY 

1 

0.046 

±0.004 

0.0274 

±0.006 

0.064 

±0.017 

0.067 

±0.015 

0.025 

±0.010 

0.067 

±0.011 

OVARY 

2 

0.061 

±0.012 

0.040 

±0.010 

0.074 

±0.020 

0.089 

±0.026 

0.039 

±0.022 

0.095 

±0.025 

MEAN 
0.054 

±0.007b 

0.034 

±0.008c 

0.069 

±0.017a 

0.078 

±0.020a 

0.033 

±0.011c 

0.081 

±0.018a 

Differing letters indicate significant differences. Control feed (CF), High-sucrose feed 1 (HSF1) and High-sucrose 

feed 2 (HSF2). 

 

Table 6.11: Mean of follicle distribution (±Std. Dev.) 

FOLLICLE 
TYPE 

CF HSF 1 HSF 2 CF/CF HSF/HSF HSF/CF 
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N 9 9 6 6 6 4 
 

TYPE 1 
57.4±29.

1 114.6±47.8 80.0±35.0 79.8±78.4 181.8±110.
3 61.8±17.6 

TYPE 2 
24.7±6.9a

b 
22.2±7.2aab 13.9±4.7c 29.2±13.5a 16.5±8bc 18.8±10.7abc 

TYPE 3 15.0±3.6 20.1±4.8* 14.0±7.3 18.8±5.2 13.5±6.1 15.5±4.8 

TYPE 4 5.2±2.5 3.2±1.3 4.7±3.5 2.8±1.9 3.3±2.1 2.5±1.3 

Differing letters indicate significant differences. * Indicates trends observed with a LSD<0.05. Control feed (CF), 

High-sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), Control feed / Control feed (CF/CF), High-sucrose feed 

/ High-sucrose feed (HSF/HSF) and High-sucrose feed / Control feed (HSF/CF). 

 

Table 6.12 Means number of atretic and cystic follicles (±Std. Dev.)  

 
CF HSF 1 HSF 2 CF/CF HSF/HSF HSF/CF 

N 9 9 6 6 6 4 

ATRETIC 7,2±3,2a 10,9±5,6a 4,3±3,4a 12,7±7,2b 8,0±4,7a 6,5±2,9a 

CYSTS 2,8±3,8 9,0±12,2 3,2±3,3 3,3±2,1 2,5±3,1 8,0±10,9 

Differing letters indicate significant differences. * Indicates trends observed with a LSD<0.05. Control feed (CF), 

High-sucrose feed 1 (HSF1), High-sucrose feed 2 (HSF2), Control feed / Control feed (CF/CF), High-sucrose feed 

/ High-sucrose feed (HSF/HSF) and High-sucrose feed / Control feed (HSF/CF). 
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