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ABSTRACT

In this thesis we give an overview of self-organised criticality and its application to studying

seismicity. We recall some of the basic models and techniques for studying self-organised critical

systems. We discuss one of these, the sandpile model, in detail and show how various properties

of the model can be calculated using a matrix formulation thereof. A correspondence between

self-organised critical systems and seismicity is then proposed. Finally, we consider the time-

evolution of the sandpile model by using a time-to-failure analysis, originally developed in the

study of seismicity and obtain results for the sandpile model that show similarities with that of

the analyses of seismic data.

OPSOMMING

In hierdie tesis gee ons 'n oorsig van self-organiserende kritikaliteit en die toepassing daarvan

in die studie van seismisiteit. Ons beskryf die basiese modelle en tegnieke vir die studie van

self-organiserende kritiese sisteme. Ons bespreek een van hierdie, die sandhoopmodel, in beson-

derheid en wys hoe om verskeie eienskappe van die model te bereken deur gebruik te maak van 'n

matriks-formulering daarvan. Ons stel dan 'n korrespondensie tussen self-organiserende kritiese

sisteme en seismisiteit voor. Ter afsluiting ondersoek ons die tydontwikkeling van die sand hoop-

model deur gebruik te maak van 'n deurbreektyd analise wat oorspronklik in die bestudering seis-

miese data ontwikkel is. Die resultate vir die analise van die sandhoopmodel toon ooreenkomste

met dit wat verkry word vir seismiese data.

III
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Introduction

It has been known for some time that many natural phenomena occur via non-equilibrium pro-

cesses. To date, however, there is not a single unified framework with which to study non-

equilibrium systems. Self-Organised Criticality (SOC) represents one particular framework to

study the behaviour of non-equilibrium systems [1]. It was introduced into statistical physics in

1987 by Bak, Tang and Wiesenfeld [5] in an attempt to explain the ubiquity of power-laws in

nature. Many non-equilibrium natural phenomena are known to be characterised by probability

distribution functions and correlation functions that have power-law behaviour. For example,

earthquake sizes are distributed according to a power-law (the Gutenberg-Richter law) [2].

Bak, Tang and Wiesenfeld [5] introduced a simple cellular automaton (the so-called BTW

sandpile model) in which power-law distribution functions of fluctuations emerge spontaneously

without tuning any external parameters. From knowledge of equilibrium critical phenomena, we

know that close to the critical point of continuous phase transitions, thermodynamical variables

have power-law behaviour. Based on this, Bak et al. [5] suggested that power-law distribution

functions in their model signalled that the system has reached a critical point. Hence the name

self-organised criticality, because the criticality seemed to emerge spontaneously without explicit

tuning of control parameters. The sandpile model represents a class of systems that are driven

by some external source and respond to perturbations from it.

Soon after the proposal of SOC, many natural phenomena that were known to have power-law

distributions, were analysed to see if they exhibited SOC behaviour. Amongst these, tectonic

earthquakes have received much attention. It was soon suggested that tectonic earthquakes are

indeed an example of systems displaying SOC behaviour since many of their observable features

could be explained by using SOC [2]. Other systems, like real sand piles, were however found

not to exhibit true SOC behaviour [9, 10, 11]. There was also a flurry of activity to establish

what the essential features of SOC systems are and the conditions under which it is observed.

This led to the introduction of many other models [6, 21, 22, 23] that were inspired by natural

phenomena. Most of these models have been shown to exhibit SOC behaviour.

Although SOC has had some success in terms of giving a qualitative explanation for the be-

haviour of specific systems, there exists no general mathematical formalism that can account for

the behaviour of such systems. This is unlike the situation in equilibrium critical phenomena

where Renormalisation Group Theory has been very successful. Most of the attempts at con-

structing a mathematical theory of SOC have been somewhat ad-hoc and have only applied to

Xl
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very specific model systems [7, 8, 20]. For the most part, SOC studies have been numerical.

The purpose of our study of SOC in this thesis is two-fold. Firstly, we attempt to extend

the SOC-based analysis of earthquakes to those induced by human activity. While it is gen-

erally accepted that SOC provides a framework for earthquakes that occur naturally, it is not

entirely obvious that it describes induced earthquakes. Secondly, we hope to gain some further

understanding of the dynamics of SOC systems by explicitly considering the time-evolution of

such systems. Power-law distribution functions seem to imply that the dynamical behaviour of

a self-organised critical system is completely unpredictable since fluctuations on all scales are

possible. We investigate whether there is some way in which one can extract information that

will help with predicting the evolution on short time scales. Throughout the thesis we use the

BTW model as our example of a SOC system.

The thesis is structured in the following way. In Chapter 1we briefly recall the relevant ideas

from equilibrium critical phenomena and then introduce Self-Organised Criticality. We also dis-

cuss the conditions under which SOC is observed by considering some examples. Chapter 2 gives

an overview of the BTW sandpile model. We discuss the basic rules of the cellular automaton

and the measurable properties of interest that quantify the system response to external pertur-

bations. We then discuss some scaling relations between the exponents of the critical state and

conclude the chapter with a brief description of variants of the BTW sandpile model.

In Chapter 3 we discuss an algebraic approach to the BTW model developed by Dhar [20].

This approach allows one to characterise the system in terms of the probabilities of configurations

that the automaton can access in the critical state. This algebraic approach also provides a tool

for calculating certain correlation functions in the critical state. We conclude Chapter 3 with

a discussion on the connection between sandpile model configurations in the critical state and

spanning trees on the square lattice.

Chapter 4 deals with the relation between SOC and induced seismic activity. The observable

properties of induced seismicity are discussed and it is shown how one can explain it in terms of

SOC. The results obtained by using the formalism presented in Chapter 3 form an integral part

of this discussion.

In Chapter 5 we consider the dynamics of the sandpile model in detail. We give an overview

of the time-to-failure analysis, which is a technique developed in the study of the large scale

breakdown in disordered systems [37, 48]. This technique represents a framework with which

to predict, on short time scales, when large breakdown events will occur in disordered systems.

It is based on the hypothesis that large breakdown events are analogous to critical points of

continuous phase transitions. We discuss its application to predicting large earthquakes in both

xu
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tectonic and mining-induced seismicity contexts. Based on the relation between seismicity and

SOC systems, we apply the time-to-failure analysis to the BTW sandpile model and find that

one can make qualitative statements concerning the time of occurrence of large events. We also

discuss the conditions under which the time-to-failure analysis is valid. In Chapter 6 we conclude

this work and discuss some remaining problems.

Xlll
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CHAPTER 1
Self-Organised Criticality

1.1 Introduction

In the introduction we said that the concept of self-organised criticality is defined analogously

to that of equilibrium critical phenomena. We shall therefore start by first recalling some con-

cepts from equilibrium critical phenomena and then define self-organised criticality, giving some

examples.

1.2 Phase Transitions

We know from everyday experience that substances can exist in different phases under different

conditions. For example, water can exist as a solid, liquid and a gas given the right conditions

of temperature and pressure. In this section we give a brief description of how phase transitions

between different phases of matter occur and the concepts used to describe these transitions 1.

Phase transitions occur when there is a singularity in some thermodynamic potential, such as

the free energy. Consider the phase diagram of a typical liquid in Figure 1.1. We see that well-

defined phase boundaries separate the different phases. Crossing the phase boundaries such as the

liquid-gas in Figure 1.1, there is a jump in the densities (see Figure 1.2), which is a signature of a

first-order transition. However, as the temperature is increased along the liquid-gas coexistence

line, the difference in the liquid and gas densities decreases as we see from Figure 1.2. At the

critical temperature, Tc, it becomes zero and beyond Tc it is possible to pass continuously from

a liquid to a gas and vice versa.

Magnetic phase transitions show similar behaviour. Consider the phase diagram of a simple

ferromagnet in Figure 1.3. Similar to liquid-gas transitions, there is a line of first-order transitions

that ends in a critical point. Below Tc there is a jump in the magnetisation (Figure 1.5), but

above Tc the transition from positive to negative magnetisation occurs continuously.

The density difference between the liquid and gas phases, Pliquid(T) - Pgas(T), and the mag-

netisation, M, are examples of order parameters for the liquid and magnetic systems respectively.

The order parameter is defined [3, 4] as a quantity that has the value of zero in the disordered

phase and non-zero in the ordered phase. It gives a characterisation of the state of the system

as it approaches the critical point. A specific order parameter for a given system is not uniquely

defined. For the magnetic system we could have chosen M3 for an order parameter as well. In

lSee [3, 4] for excellent introductions to the theory of phase transitions

1
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1. Self-Organised Criticality 2
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Figure 1.1: The pressure-temperature phase diagram of a typical fluid
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Figure 1.2: The values of the densities of liquid and gas on the coexistence curve
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1. Self-Organised Criticality
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Figure 1.3: Phase diagram of a ferromagnet.

liquid and magnetic phase transitions the temperature is a control parameter that has to be

tuned to observe these transitions.

We see that the line offirst-order transitions ends in the critical point beyond which transitions

become continuous. We mentioned above that phase transitions occur when there is a singularity

in a thermodynamic potential. If there is a finite discontinuity in one or more of the first

derivatives of the appropriate thermodynamic potential, the transition is said to be first-order.

For a magnetic system the free energy, F, is the appropriate thermodynamic potential, with a

discontinuity in the magnetisation (M = - (g~ )T)' below Tc, indicating that the transition is

first-order (see Figure 1.5).

A transition is said to be continuous if the first order derivatives of the appropriate thermo-

dynamic potential are continuous but second or higher order derivatives are discontinuous or

infinite. Such transitions correspond to a divergent susceptibility, infinite correlation length and

power-law correlations. The phase transition occurs as a result of the collective behaviour of the

individual degrees of freedom. At the critical point the system as a whole has to be considered

because of the diverging correlation length.

In the following section we describe some characteristics of continuous phase transitions by

considering the example of the Ising model of ferromagnets.
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1. Self-Organised Criticality 4

H

Figure 1.4: The magnetic susceptibility at different temperatures. Above and below
Tc it is finite, but at Tc it diverges.

1.3 Ising model of ferromagnets

The Ising model is defined in terms of spins on the vertices of a lattice, labelled by indices

i = 1,2, ... ,N. In this model the spins are restricted to point parallel or anti-parallel to one

particular direction, say the z-axis. This is indicated by assigning the values Si = +1and Si = -1

to spins that point parallel and anti-parallel to the z-axis, respectively.

Each spin is allowed to interact with its nearest neighbours with an interaction strength, J,

which favours parallel alignment of spins. Each spin can also interact with other degrees of

freedom such as external fields. The Hamiltonian of the model is given by

H = -h LSi - JL SiSj,
<ij>

(1.1)

where < ij > denotes a sum over nearest neighbours, h is the external magnetic field and J the

interaction strength between nearest neighbour spins.

The two-dimensional model, at zero external field, was solved exactly by Onsager in 1944 and

is furthermore known to have a phase diagram as shown in Figure 1.3 with a continuous transition

at temperature Tc. The magnetisation becomes non-zero at Tc and increases continuously with

decrease in T to its saturation value, which corresponds to all spins being aligned at T = 0 (see

Stellenbosch University http://scholar.sun.ac.za



1. Self-Organised Criticality 5

M

T

Figure 1.5: Magnetisation as a function of temperature.

Figure 1.5).

The behaviour of the individual spins is controlled by a competition between the contributions

that the interaction, J, and entropy make to the interaction energy between the spins. At

temperatures greater than Tc the entropy dominates and spin configurations are random. As the

temperature is loweredthe nearest neighbour interaction begins to dominate. Nearest neighbour

spins start aligning and clusters of parallel spins start appearing.

The correlation length is a measure the size of the largest correlated clusters. Close to the

critical temperature the correlation length is given by the expression

(1.2)

As the temperature is decreased the correlation length increases. The system shows interesting

behaviour as the temperature is decreased. Not only does the correlation length increase, but

small regions of clusters of correlated spins still appear. At the critical temperature itself, the

regions of correlated spins range in size from a single spin to those of the size of the correlation

length. We see from (1.2) that at Tc the correlation length becomes infinite.

The criticality of the system is embodied in the fact that even though the interactions are

purely local, at Tc far-removed regions are correlated with each other. The critical point is thus
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1. Self-Organised Criticality 6

marked by two characteristics: an infinite correlation length and ordered structures on all length

scales.

As a concluding remark we want to emphasize that the temperature has to be tuned explicitly

to the special value of Tc to observe the interesting behaviour of a diverging correlation length

and fluctuations on all length scales.

1.4 Self-Organised Criticality (SOC)

The study of out-af-equilibrium dynamics and heterogeneous systems has in recent years made

the concept of complex systems popular. Systems with a large number of mutually interacting

degrees of freedom that also exchange information or energy with their enviroment often have

interesting macroscopic behaviour. Central to the study of complex systems is the potential

for coherent large-scale collective behaviour which results from repeated non-linear interactions

among the individual constituents.

Another aspect of complex systems that seems to be of central importance is that of punc-

tuated dynamics. Punctuations correspond to rare and sudden bursts of activity that occur on

time scales that are short compared to the characteristic time scales of the evolution.

Self-organised criticality is but one framework which has been proposed to study complex

systems. It is defined in analogy with equilibrium critical phenomena. In this context, however,

one has a non-equilibrium system that evolves into a state characterised by fluctuations on all

length scales and long-range correlations embodied in power-law correlations.

Bak, Tang and Wiesenfeld [5] considered a model representing a dynamically driven, non-

equilibrium open system that exhibits behaviour similar to critical phase transitions. It must be

noted that the model does not represent all dynamically driven systems, but only captures the

essence of some with threshold dynamics. Locally, at each position in space, the dynamic variable

(energy, stress, etc.) or its derivatives have a maximum allowed value. When this maximum is

exceeded, because of external perturbations, the system responds by redistributing, say, energy

to surrounding positions. As an explicit example consider a pile of sand on a flat table. The

dynamic variable in this case is the height of the sand column at a point and its derivative is

the local slope of the pile. When the local slope exceeds a certain value, because of an external

agent adding sand, the pile responds by redistributing sand to neighbouring positions by means

of avalanches, in an attempt to restore the slope to below its maximum value.

Bak et al. [5] observed that the model evolves to a state where fluctuations occur on all length

scales as is seen from the power-law event size distribution for avalanches. It was suggested

that the power-law distributions are a manifestation of some underlying long-range correlation

Stellenbosch University http://scholar.sun.ac.za



1. Self-Organised Criticality 7

between the microscopic degrees of freedom of the model and thus of a system at a critical point.

Beyond this point the analogy with equilibrium critical phenomena breaks down in that,

unlike the situation in equilibrium systems, there seem to be no external parameters such as

temperature or pressure that have to be tuned explicitly to special values to observe the critical

behaviour. Hence the name self-organised criticality.

An important feature of systems that exhibit SOC behaviour is the separation of time scales

[2J. The relaxation events occur on a time scale much shorter than the time required for the

local dynamic variables to reach their threshold value. In practise this is equivalent to saying

that there are no external perturbations during relaxation events.

The sandpile model on the fiat table is a good example of a complex system consisting of

many degrees of freedom that evolve to a state where their collective behaviour starts playing a

crucial role. The final state of the system depends in detail on the local state of each part of the

pile and its interaction with the neighbouring sites.

1.5 Examples of SOC systems

In this section we briefiy consider a few real systems that have been investigated as possible

examples of systems exhibiting SOC.

1.5.1 Earthquakes

Earthquakes occur due to the relative motion of tectonic plates along faults in the crust of

the earth [2J. Because of friction between the plates, they are prevented from moving relative

to each other in a smooth manner. The plates stick together until the stress at the interface

exceeds the friction between them. Once this happens, the plates slip.

The phenomenon described above has some of the features of a SOC system. Clearly the

stress at the interface between the plates is the dynamic variable with a threshold value equal

to the friction between the plates. Earthquakes thus have threshold dynamics. The relative

motion of the tectonic plates, which occurs on a scale of a few centimeters per year, serves as the

slow driving force. The process of accumulating stress occurs over many years, while the release

thereof happens in a few seconds. There is thus clearly a separation of time scales.

When the plates slide relative to each other, seismic waves are radiated. The size of an

earthquake is characterised by the amount of energy E released by these seismic waves. The

distribution of earthquake sizes is found to be a power law P(E) '" E-B. This is known as

the Gutenberg-Richter law for earthquake sizes. The exponent B shows some geographical

dependence, but usually falls in the interval 1.8 to 2.2.
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1. Self-Organised Criticality 8

Another quantity of interest is the temporal frequency of aftershocks following a large earth-

quake. It also follows a power-law n(t) ,....,CA, where n(t) is the number of aftershocks occuring

a time t after a major earthquake. This relation for the aftershocks is known as Omori's law.

The exponent A has values lying between 1 and 1.5.

Even though the earthquake sizes have a broad distribution, there appears to be a maximum

size that earthquakes can have. This maximum size is determined by the thickness of the layer

of the earth's crust. This is an example of a finite-size effect which will be discussed in Chapter

2. The power-law distribution is thus relevant up to a certain scale after which system size has

to be compensated for.

1.5.2 Sandpiles

Since the introduction of the concept of SOC, and Bak, Tang and Wiesenfeld's use of the

sandpile as an intuitive example of a system exhibiting SOC behaviour, a reasonable amount of

experimental work [9, 10, 11] has been performed on real sandpiles to verify if it does exhibit

SOC behaviour.

In one experiment [9] avalanches were induced in the sandpile by sprinkling sand grains onto

the pile. However, a narrow distribution of avalanche lifetimes was found with no sign of power-

law behaviour or criticality. The dynamics of the sandpile is such that the angle of the slope

of the pile oscillates between two extreme values, Or, the angle of repose and Om, the maximum

slope. As the system is perturbed 0 increases until it reaches Om. An avalanche then occurs and

it lasts till 0 is lowered to Or again.

In another series of experiments [10, 11] on real sandpiles power-law behaviour was observed.

In [10] and [11] a sandpile on a circular base, mounted on a scale was studied. Small avalanches

were found to exhibit power-law behaviour. Avalanches containing between 3 and 80 grains are

distributed as P(8) ,....,8-2.5, where 8 is the mass carried out of the system by the avalanche.

When the diameter of the base is increased the power-law behaviour is lost and system-spanning

avalanches dominate the dynamics. The system thus does not display true SOC behaviour.

1.5.3 Ricepiles

The appearance of a characteristic event size in the real sandpile seems to be due to inertial

effects. As the grains move down the slope, they gain kinetic energy and become difficult to stop.

Rice grains have a smaller mass density than sand grains and one thus expects inertial effects to

be less important.

In ref.[12] a series of experiments was performed on three types of rice that differed in surface

quality and aspect ratio (length divided by width). Type A was unpolished and elongated with
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aspect ratio 3.8. Type B was polished with an aspect ratio of 2.0 and type C was polished with

an aspect ratio of 2.6.

The rice pile was formed by placing grains between two glass plates that were separated by a

distance of about 80 percent of the grain length. Grains were added at a slow rate at one closed

edge and allowed to leave the system at the other edge which was open.

The elongated grains were found to move in more or less coherent clusters and their dynamics

seem to be dominated by local friction. The rounded grains of type B were found to be very

difficult to stop once they were moving.

From the redistribution of mass during an avalanche the gravitational energy released was

calculated. This release of gravitational energy was used as a measure of the avalanche size.

For type A and type C rice the avalanche distribution was P(E) '" E':" with a '" 2.04. The

distribution of energy released does not change with increasing system size.

Rice of type B was observed to have a size distribution that falls off like a stretched expo-

nential P(E) '" exp{ -(EI Eo)'}. The systems with elongated grains thus seem to exhibit SOC

behaviour while those with rounded grains do not. This seems to be consistent with the idea that

the existence of local thresholds is an important ingredient for SOC behaviour to be observed.

Because the rounded grains flow so easily down the slope, it eliminates threshold dynamics.

1.5.4 Other examples of possible SOC systems

Here we briefly list a few more real systems that are believed to exhibit SOC behaviour.

It is believed that the formation of landscapes and landslides occurs through a SOC process.

In observations of landslides in the Himalayas, Noever [13] observed that the avalanche sizes,

measured by the volume of sand involved in a slide, are distributed according to a power-law. In a

series of controlled laboratory experiments on the formation of landscapes, Somfai et al. [14] also

observed that the avalanches leading to the formation of landscapes are power-law distributed.

It is also believed that the fluctuations in economics, such as price changes, are due to a self-

organising mechanism. In the 1960's Mandelbrot [15] investigated the price changes of various

commodities and observed that these price changes also had a broad distribution.

Whether these systems are really poised at some critical point, remains to be verified. How-

ever, based on observations thus far it seems as if SOC is a useful framework within which one

can explain these phenomena. In the next chapter we discuss a simple cellular automaton, the

sandpile model, that has become the standard test-bed for studying SOC.
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CHAPTER 2
Sandpile Models

2.1 Introduction

In the previous chapter we introduced the concept of self-organised criticality. In the present

chapter we consider the BTW sandpile model, originally introduced by Bak, Tang and Wiesenfeld

[5], as a paradigm for studying SOC. We start by defining the model and then discuss its statistical

properties. Following this, we discuss the derivation of simple scaling relations for the various

distribution exponents. We conclude the chapter by briefly mentioning variants of the BTW

sandpile model.

2.2 The BTW Sandpile Model

The model is defined on a d-dimensionallattice. Each lattice site i is assigned an integer value

Zi, which indicates the height of a sand column at that position. The evolution of the model is

defined in terms of two operations: (a) random addition of particles, and (b) relaxation events.

(a) At each time step a site is selected at random and the height there is increased by one unit.

That is,

Zi --7 Zi + 1. (2.1)

(b) If Zi exceeds some specified threshold value, Ze (also called the critical height), the site

topples by discarding particles to its nearest neighbours. That is, if Zi > Ze

Zi --7 Zi - 2d, (2.2)

Zj --7 Zj + 1, (2.3)

where the j's are the nearest neighbours of the site i. If any of the neighbouring sites are

unstable, Le. Zj > Ze, they will also topple, giving rise to an avalanche of such toppling events.

The avalanche ends when all sites are stable, i.e Zi ~ Ze, for all i. We assume here that Ze is

the same for all lattice sites. All lattice sites that are unstable at a given time step are toppled

simultaneously. While an avalanche is taking place, no particles are added from the outside,

implicitly introducing a separation of time scales to the model.

The model is defined so that there is conservation of particles in the bulk of the lattice. We

assume the lattice to have open boundaries, therefore particles can leave the system once they

10
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2. Sandpile Models 11

reach the boundaries.

In the following example we illustrate the toppling rules. Consider a 5 x 5 lattice, and assume

the system has evolved into the following stable configuration. We choose the critical height to

be 4.

2 3 1 3 4

3 4 3 4 1

2 3 4 4 3

4 2 4 3 2

1 3 3 2 3

Now we continue the evolution by adding a particle to a randomly chosen site. In this case

the central site was chosen. It now has height 5 and is unstable and we allow it to topple.

2 3 1 3 4
3 4 3 4 1
2 3 5 4 3
4 2 4 3 2
1 3 3 2 3

--+

2 3 1 3 4
3 4 4 4 1
2 4 1 5 3
4 2 5 3 2
1 3 3 2 3

--+

2 3 1 3 4
3 4 4 5 1
2 4 3 1 4
4 3 1 5 2
1 3 4 2 3

--+

--+

2 3 1 4 4
3 4 5 1 2
2 4 3 3 4
4 3 2 1 3
1 3 4 3 3

--+

2 3 2 4 4
3 5 1 2 2
2 4 4 3 4
4 3 2 1 3
1 3 4 3 3

--+

2 4 2 4 4
4 1 2 2 2
2 5 4 3 4
4 3 2 1 3
1 3 4 3 3

--+

--+

2 4 2 4 4
4 2 2 2 2
3 1 5 3 4
4 4 2 1 3
1 3 4 3 3

--+

2 4 2 4 4
4 2 3 2 2
3 2 1 4 4
4 4 3 1 3
1 3 4 3 3

Figure 2.1: Illustration of the toppling rules for the BTW model on a 5 x 5 lattice

Using the toppling rules defined above, the system evolves into the final configuration shown

in the figure.

We are interested in the statistical properties of the system [2]. After sufficient time, the

statistical properties of the system are independent of the initial configuration. The system is

said to be in a statistically stationary state, Le. the statistical quantities do not evolve with

time. A check of whether the system is in a stationary state is to measure the average height
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2. Sandpile Models 12

(z(t)) as a function of time, where the average is taken over all lattice sites. Starting from an

empty lattice, (z(t)) will increase until it fluctuates about an average given by

liT(z) = lim - (z( t) )dt.
T-too T 0

(2.4)

Once this happens the system is said to be in a stationary state. The physical meaning of a

constant (z(t)) is that on average the number of particles added to the system equals the number

of particles lost at the boundaries, a signal of a statistically stationary state.

2.3 Measurable Quantities

The sandpile responds to external perturbations by means of avalanches. We need to quantify

the response of the system. Some useful measures of the response are the lattice area affected

by the avalanche, number of topplings and the duration of the avalanche.

The area, a, is the number of sites in the lattice that toppled at least once during an avalanche.

The number of topplings s is the total number of relaxation events induced by adding a single

particle to the system. In general s ~ a since any site may topple more than once. The duration,

t, is defined as the number of simultaneous updates needed to reach a stable configuration. In

the example of the previous section the avalanche consisted of 9 topplings events, covered 8 sites

and lasted for 7 updates.

2.4 Scaling Relations

Define p( x) as the probability density function for the variable x, with x E {a, s, t}. Then,

p(x)dx is the probability that x has a value in the interval dx around x. From numerical

simulations [2, 5, 16] of the model it is found that in the stationary state, the probability density

functions defined above are power-laws,

p(s) -T
S ,

p(a) -).a ,

p(t) '" r=.

(2.5)

(2.6)

(2.7)

As mentioned in chapter 1, these power-laws are considered to be a manifestation of a system

at a critical point and therefore of scale invariance. It was noted by Bak et al. [5] that in the one

dimensional case the model did not show critical behaviour. Figure 2.2 shows the cumulative

distribution of the toppling number for the 2-dimensional BTW model. We see that it is indeed
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L= 100--
L = 200 -------

10000

1000

100

10

10 100 1000
size s

10000 100000 re-oe

Figure 2.2: The cumulative probability Prob(s) that an avalanche is of size greater
than or equal to s, as a function of s for lattice sizes L = 100and L = 200.

distributed according to a power-law. For the remainder of this dissertation we will only consider

2-dimensional sandpile models.

The model defined above has all the properties of a SOC system. It has threshold dynam-

ics, a separation of time scales and a stationary state characterised by power-law probability

distributions.

Since each of the quantities a, sand t gives a measure of the size of an avalanche, one expects

that they will not be independent of each other [2, 17]. Using these relations among the measur-

able quantities we can derive certain scaling relations between the various distribution exponents

[2].
Since there is no characteristic scale in the system, we assume that the area, toppling number

and duration are also related to each other through power-law equations. The scaling relations

between the measurable quantities are defined in terms of conditional expectation values. Con-

ditional expectation values are defined as follows; the average value of variable x, given that

variable y has the value y = Y is given by

E[xly = Y] = :LXP(x = Xly = Y),
x

(2.8)

where P(x = Xly = Y) is the conditional probability that variable x has the value X given that
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2. Sandpile Models 14

y has value Y. Consider, for example, the subset of avalanches whose area is exactly A. We can

now, for example, consider how the average number of topplings S depends on the value of A.

In order to fully describe the model, we have to consider the following conditional expectation

values:

E[slt = Tl ,...., T'Y1 (2.9),
1

E[tls = Sl S1'l, (2.10)

E[sla = Al ,...., A'Y2 (2.11),
1

E[als = Sl S1'2, (2.12)

E[tla = Al ,...., A'Y3 (2.13),
1

E[alt = Tl ,...., T1'3. (2.14)

In the definitions above, we have assumed that there exist some reciprocal relationships

between these quantities. We have assumed that they are related as

...L
t = S1'l ,

...L
a S1'2,

1

a t1'3.

(2.15)

(2.16)

(2.17)

If this is true, the exponents "Ii are related by

"12 = "11"13· (2.18)

This can be seen by substituting eq.(2.15) into eq.(2.17);

1 1
a (s 1'1 ) 1'3

_1_

(2.19)= S 1'l1'3 •

Now using eq.(2.16), we have
...L _1_

S1'2 = 81'11'3. (2.20)

The relations (2.15) to (2.17) are not strictly true. There might be more than one toppling

with the same area. However, we assume that the conditional probabilities have sufficiently

narrow support so that one can for example talk of a characteristic number of topplings S for

an avalanche of duration T.
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2. Sandpile Models 15

We can now construct a set of scaling relations between the exponents by using the following

identity for any three stochastic variables x, y and z [17];

!E[xly = Y]p(y = Y)dY =!E[xlz = Z]p(z = Z)dZ. (2.21)

In eq.(2.21) the identity follows from the fact that the LHS and RHS are both equal to the

average value of variable X for a given process. By setting x = s, y = tand z = a and assuming

that the relations (2.5) to (2.7) hold, we have the folowing;

!E[slt = T]P(t = T)dT

!T'Yl-adT
T'Y1-a+1

!E[sla = A]P(a = A)dA

!A'Y2-AdA
A'Y2-A+1 ,

(2.22)

(2.23)

(2.24)

following from indefinite integration and where we have dropped the constants.

Using (2.17) we have

(2.25)

Thus
,2-).+1,1 - a + 1= ...:...::....__ -,3
).-'2-1a = 1+ ,1+ _ __:_::...___,3

Following the same procedure but setting x = a, y = sand z = t we derive

(2.26)

(2.27)

r = 1 + ~ + _)._-_'-,-3_-_1,1 ,2 (2.28)

Now using (2.18), eq.(2.27) can be reduced as follows.

).-'2-1a = 1+ ,1+ _ __:_::...___,3
). - 1 ,2

= 1+'1+-- --,3 ,3
A-I= 1+ ,1 + -- - ,1·,3 (2.29)

Thus,
A-I

a=I+--.,3 (2.30)
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Avalanche distributions Conditional Expectation relations Assumed power-law scaling
p(s) ,....,s T E[slt = T] ,....,T'Yl 1

1 t = s'n
p(t) ,....,Ca E[tls = B] ,....,B-rl
p(s) ,....,S T E[sla = A] ,....,A'Y2 .i,

p(a) ,....,a-A
1 a = S-r2

E[als = B] ,....,B-r2
p(t) ,....,t a E[tla = A] ,....,A'Y3 1

p(a) ,....,a-A
1 a = t-r3

E[alt = T] ,....,T-r3

Table 2.1: Summary of the probability distributions and the corresponding condi-
tional expectation values from which the scaling relations are derived

In a similar way we can reduce (2.28) to

A-I
T= 1+--.,2 (2.31)

By introducing the conditional expectation values for the measurable quantites and assuming

that they scale as power-laws of each other we have been able to derive simple scaling relations

for the various distribution exponents. See Table 2.1 for summary of the relation between the

various probability density functions in terms of conditional probabilities.

2.5 Finite-Size Scaling

Due to the finite size of the systems considered, the power-law probability distributions will

only be valid up to some cut-off size [2, 18, 19]. It is assumed that this cut-off scales with the

system size as Xc ,....,LV so that in the thermodynamic limit the cut-off diverges. The probability

distribution will thus be of the following form,

(2.32)

where 9 is a scaling function correcting for the finite system size. The scaling function g( :c )
should have the property g(O) = 1, so that in the thermodynamic limit the distribution is just

a pure power-law as expected. Let us denote p(x, L) as the probability distribution for variable

x E {a, s, t} in a system of linear size L. The finite-size scaling ansatz is

(2.33)

_fiL &..

By inserting the identity (L;x) Vx (L;x ) Vx into (2.33) we can rewrite the finite-size scaling

ansatz in a form where the x dependence of the probability density is clear and the L-dependence
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2. Sandpile Models 17

has been absorbed in the scaling function. That is

(2.34)

where,

(2.35)

Comparing eqs. (2.32) and (2.34) we have another scaling relation,

/3x
Tx= -.

1/x
(2.36)

By making use of the fact that the average size of the avalanche (8) scales with the system size

as

(2.37)

[20, 19, 18Jwe can derive further relations between the finite size scaling exponents.

(2.38)

Set x = lv where x is now a rescaled variable. Then we have that if 8 = 1 then x = lv and if

8 = 00 then x = 00. Thus the integral becomes

(8) = !~L2v-(3xg(x)dx
LV

= L2v-(3!~xg(x)dx
LV

(2.39)

where it is assumed that the integral converges [18, 19J. Thus we have the scaling relation

21/ - /3 = 2. (2.40)

We see that apart from providing the corrections to scaling of the probability distributions
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2. Sandpile Models 18

due to the finite size of the system, the finite size scaling ansatz also provides us with useful

scaling relations between the exponents of the model. We shall return to the finite size scaling

ansatz in chapter 3 when we consider the structure of avalanches in more detail.

2.6 Other Sandpile Models

The BTW model discussed in this chapter is the prototype for models of SOC. Since its

introduction numerous versions of the sandpile model have been proposed to identify the relevant

parameters of the model. In this section we shall briefly mention these models and how they

relate to the BTW model. However, for the rest of this work we shall concentrate on the BTW

model since it has certain features, to be discussed in the next chapter, that makes it simpler to

treat analytically and numerically.

2.6.1 Directed Model

This model [21]is defined similarly to the BTW model, but it has a preferred direction of top-

pling. When a site, labelled by coordinates (x, y), becomes unstable it only distributes particles

to two adjacent neighbours eg. the sites (x + 1,y) and (x, y -1). The choice of transfer direction

is made at the start of the simulation and remains fixed for the duration of the simulation. Thus

particles are transferred along a preferred direction. This model has been solved exactly by Dhar

and Ramaswamy [21] in all dimensions. The avalanche distributions also display power-law be-

haviour. For the two-dimensional case, the distribution exponents have the values T = 2.33 and

a = ~. For the directed model the area and toppling number are the same since each site can

only topple once during an avalanche.

2.6.2 Zhang Model

The evolution rules for this model [22]are defined almost exactly like that of the BTW model.

The only difference is that the dynamical variable at each site can now take on continuous values.

It is more intuitive to think of these dynamical variables as energy instead of the height of the

sand column at that a site. Without loss of generality one can set the threshold value Ee = 1.

The probability distribution for event sizes and durations also show power-law behaviour.

From numerical simulations one finds that the exponents for toppling number, area and duration

are respectively T = 1.282± 0.01, A= 1.338± 0.015 and a = 1.512± 0.014.

2.6.3 Manna Model

This model [23] is defined so that each site can have a maximum of one particle. Just as

in the BTW model a site is chosen at random and a particle is added there. If the site is
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already occupied, it becomes unstable and topples. Upon toppling its height decreases to zero

and it discards both particles to neighbours that are chosen randomly. The model is thus not

deterministic, unlike the previous models.

The probability distribution for number of topplings and duration also satisfy power-law

behaviour with exponents T = 1.28 ± 0.02 and a = 1.47 ± 0.10 respectively.

The BTW sandpile model has, in a certain sense, become for SOC what the Ising model is for

equilibrium critical phenomena. Although the model is simply defined, very few questions can

be answered exactly and most of the results for the model are based on numerical simulations.

For example, the distribution exponents have not been calculated exactly. However, Dhar and

coworkers have been able to compute some of the properties of the model analytically using an

algebraic approach. In the next chapter we discuss the basic formalism they have developed and

some of the results that have followed from their work.
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CHAPTER 3
Abelian Sandpiles

3.1 Introduction

In this chapter we consider some of the properties of the sandpile model in more detail.

We start by formulating the model more generally in terms of a toppling matrix and addition

operators. Using the toppling matrix, we show that the addition operators commute. This

property is later used to decompose the avalanche process into more elementary sub-processes.

Next, we define recurrent configurations in terms of the addition operators and introduce a

simple test, called the burning algorithm, to see if a given configuration is recurrent or not. We

also calculate some stationary state correlation functions of the model and find that they can be

expressed in terms of the toppling matrix.

In the latter half of the chapter we use the burning algorithm to show the equivalence between

recurrent sandpile configurations and one-rooted spanning trees. This equivalence then allows

us to use graph-theoretical techniques to compute certain properties of the sandpile model.

3.2 Definition

We summarise the evolution rules again. Consider the square lattice with sites labelled by

indices i ~1,2, ... ,N. At each site the height of the sand column is given by an integer value Zi·

The evolution rules are [20]

1. At each time step a site is selected, with a probability Pi and the height increased by one

unit,

Zi --7 Zi + 1. (3.1)

2. The toppling rule is now given in terms of the toppling matrix. If Zi > Zi,c then

Zj --7 Zj - f:l.ij for every j. (3.2)

Without loss of generality we can set Zi,c = f:l.ii. The toppling matrix has the following properties.

1. f:l.ii > 0 for every i. This condition ensures that the height of a site decreases upon toppling.

f:l.ii is the number of particles removed from site i when it topples.

2. f:l.ij ::; 0 for i of. j. This ensures that heights of nearest neighbours increase when a site

topples. f:l.ij is the number of particles passed to j when i topples.
20
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3. Abelian Sandpiles 21

3. L:j !lij;::: 0 for every i. This condition determines the amount of sand lost from the system

during a toppling event. For bulk toppling L:j !lij = 0 and only for boundary topplings is

it greater than zero.

We shall restrict ourselves to the special case where the !l matrix is symmetric. As a specific

example consider a 2 x 2 lattice, with the site labels indicated,

~
[IE]

The !l matrix has the followingentries:

Ll.ij = {

4 if i = j

-1 if i and j are nearest neighbours

0 otherwise.

Therefore, we have

!l=
-1

-1

4

o
o -1

4 -1
(3.3)

4 -1 -1 0

o -1 -1 4

3.3 Abelian property

Let us denote a stable configuration by C. Define operators ai [20Jsuch that the stable

configuration C' = aiC is obtained after adding a particle at site i and allowing the system to

relax. We shall prove that for all i and j the operators satisfy the followingproperty:

(3.4)

i.e. the operators commute. Physically this means that the final configuration does not depend

on the order in which unstable sites are relaxed.

This can be proven as follows. Suppose we have a configuration with two unstable sites i

and j. Toppling i first increases the height of j (using the condition 2 for the toppling matrix),

but the site j remains unstable. Next topple site j. Because of these two toppling events, the

height at any other site, say k, changes by -!lik - !ljk. The nett change in height at site k is

clearly independent of the order in which the sites i and j were toppled. By repeated use of this

argument we can show that this applies to any number of unstable sites. Together with this we
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also have that the operations of toppling an unstable site i and adding a particle to a site j,

commute. This is so because if site i is unstable it will topple whether or not the particle was

added to j first. It is clear that the Abelian property of toppling events holds even when the /j.

matrix is asymmetric.

3.4 Recurrent Configurations

It can be shown that the sandpile model dynamics is Markovian [20, 24]. From the general

theory of Markov chains it is known that the stable configurations can be divided into two classes

namely transient and recurrent. In terms of the addition operators, a recurrent configuration

is defined as follows. A configuration is said to be recurrent if and only if there exist positive

integers mi (i = 1,2, ... ,N) such that

(3.5)

Using the Abelian property we find that if C is a recurrent configuration, then ajC (for all j)

is also recurrent. This followssince

(3.6)

Denote by R the set of all recurrent configurations. From eq.(3.6) we have that R is closed under

multiplication by the operators ai. Thus, once the system gets into the set of recurrent config-

urations it cannot escape from there again. In the stationary state the transient configurations

appear with zero probability. The long-time behaviour of the system is thus determined by its

evolution from one recurrent configuration to another.

If we consider only the recurrent configurations, we can define inverses for the addition oper-

ators as follows;

(3.7)

We can now use these inverses of the addition operators to compute the probability for having a

recurrent configuration. Let P(C, t) denote the probability of having the system in the configu-

ration C at time t. Further, let W (C -+ C') denote the probability that the system changes from

configuration C to C'. Then we can write the master equation for the probability distribution

P(C, t) as

P(C, t + 1) = P(C, t) - L P(C, t)W(C -+ C') + L P(C', t)W(C' -+ C). (3.8)
G'ER G'ER
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The transitions in the system occur as a result of the action of the operators ai on the stable

configurations. The transition probabilities can be written as

N

W(C -7 C') = LPiP(aiC = C'),
i=l

(3.9)

where Pi is the probability that site i is chosen as the random addition position and P(aiC = C')

is the probability that the system evolves from C into C' when a particle is added to site i. Now

using the invertibilty of the operators ai we can write

_ { 1 if C = a-:1C'P(aiC = C') = z
o otherwise.

If we now substitute eq.(3.9) into the master equation and use eq.(3.4) we have

N N

P(C, t + 1) = P(C, t) - L P(C, t) LPiP(aiC = C') + L P(C', t) LPiP(aiC' = C) (3.10)
G'ER i=l G'ER i=l

Summing over the configurations C' we have

N N

P(C, t + 1) = P(C, t) - LPiP(aiC, t) + LPiP(ai1C, t). (3.11)
i=l i=l

From this equation it followsthat a time-independent uniform distribution, P( C, t) = constant

is a stationary solution to the master equation [2]. Thus all recurrent configurations appear with

equal probability, Pn' where IRI is the number of recurrent configurations.

Since it is only the recurrent configurations that are of interest in the stationary state we have

to be able to characterise them. Before we show how to test whether a configuration is recurrent

or transient we first introduce the concept of forbidden subconfigurations (FSC). There are some

sub configurations of the sandpile that cannot be reached by the addition and relaxation rules

unless they are present initially.

A forbidden sub configuration is a set of connected sites F such that the height, Zi of each site

in F is less than or equal to the number of neighbours of site i in the set F. Mathematically it

is expressed by the following inequality

(3.12)
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Consider the following examples;

~,

Consider for example the first sub configuration in the list above. Because Zi > 0 a height of 1 in

the steady state can only be created if one of the sites toppled. A toppling at any other site can

only make the height of either of these sites greater than 1. But toppling at either of these sites

would result in a height of 2 for the other one. Thus, a configuration with two adjacent sites

having the minimum height is not allowed. We can now extend this argument to prove that the

other sub configurations shown are also forbidden.

3.4.1 The Burning algorithm

There exists a simple test [20, 25], called the burning algorithm, to test whether a given

configuration is recurrent or transient. Consider a stable configuration. Initially all sites are

considered unburnt. A site can burn if and only if its height is strictly greater than its number

of unburnt neighbours. The process is repeated until no more sites can burn. If all the sites

burn, the initial configuration was recurrent. If some of the sites remain unburnt, the original

configuration was transient and the unburnt sites form a FSC. Consider the following example

of using the burning algorithm to test if the configuration is recurrent or not. We see that the

4 3 2 4
3 4 3 2
1 4 2 3
3 2 3 4

3 2
3 4 3 2
1 4 2 3

2 3

2
4 3 2

1 4 2
2

4 3
1 4 2 1 2 --+ t---t--+-+---i

Figure 3.1: An example of using the burning algorithm

lattice burned completely, therefore the configuration is recurrent.

3.5 Number of recurrent configurations

In the previous section we showed that the configurations of the ASM can be divided into two

classes namely recurrent and transient. Now we use the toppling matrix to calculate the number
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of recurrent configurations of the model in the steady state [2, 20].

Let us first introduce some notation. Let êi, (i = 1,2, ... ,N) be the unit vectors in the space

ZN. We can denote any configuration of the model as z = 2:~1 Ziêi, where Zi is the height at

site i.

We can define an equivalence relation on the set of all configurations. Two configurations are

said to be equivalent if they evolve into the same configuration when toppled. To give this a

more precise mathematical definition we define toppling operators, Tn that have the following

effect on a configuration C = {Zi}.

if Zn > ~nn

otherwise.

Thus, two configurations are said to be equivalent if there exist sequences such that

(3.13)

Using eq.(3.5) this becomes

(3.14)

m m
Zj - L~a;j = Zj - L~á;j. (3.15)

i=l i=l

This can be rewritten in the form

N

Zj = Zj - L ri~ij,
i=l

(3.16)

where the ri indicate how many times site i toppled. This equation says that two configurations

are equivalent if the one can be obtained from the other by a series of toppling events.

Let iii = 2:f=l ~ijêj. Define the space V by

N

V == span{ii1, ii2, ... , iiN} = {v E ZNliJ =L aini, ai E ZN}
i=l

(3.17)

We now show that the set of equivalent configurations is in the space V. Any configuration

of the model can be written as

(3.18)
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In this form eq.(3.16) is

N N N
Z (Zl - L ri.D.il)Ê1+ (Z2 - L ri.D.i2)Ê2+ ... + (ZN - L ri.D.iN )ÊN

i=l i=l i=l
N N N

(ZlÊ1+ Z2Ê2+ ... + ZNÊN) + {L(-ri).D.ilÊl + L(-ri).D.i2Ê2 + ... L(-ri).D.iNÊN}
i=l i=l i=l

N

(ZlÊ1+ Z2Ê2+ ... + ZNÊN) + L(-ri){ .D.ilÊl+ .D.i2Ê2+ ... .D.iNÊN}
i=l

N N

Z+ L( -ri) L .D.ijÊj
i=l j=l
N

Z+ L( -ri)ni.
i=l

(3.19)

Thus, we see that two configurations are equivalent if and only if Z - z is in the space V. It

can be shown that there is exactly one recurrent configuration in each equivalence class. Thus

the number of recurrent configurations is equal to the number of equivalence classes. This is

simply equal to the volume of V. We know that the volume of V is given by det .D..Therefore

the number of recurrent configurations is just

IRI = det.D.. (3.20)

3.6 Two-point correlation function

We now calculate the two-point correlation function for the sandpile model in the stationary

state [20]. Let Gij be the average number of toppling events at site j caused by an avalanche

initiated at site i. We know that in the steady state, on average, the number of particles added

to a site must be equal to the number of particles discarded from that site.

The average number of particles entering a site j is

Jin(j) = L Gik( -.D.kj) + Óij,
i::pj

(3.21)

where the second term on the RHS represents the random addition of particles from the outside.

The average number of particles leaving a site j is

(3.22)
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Thus using the conservation of particles in the stationary state we have

LGik( -~kj) + Jij = Gij~jj

i-lj

N

LGik~kj = Jij.

k=l

(3.23)

(3.24)

From eq.(3.24) we see that Gij is the inverse of the toppling matrix, i.e

(3.25)

However, the toppling matrix is just the lattice Laplacian [2]. Therefore eq.(3.24) is the discrete

version of the Poisson equation. We know what the solutions to this equation are. In the

continuous limit we have,

{

r2-d for d > 2
G(r) rv

logr for d = 2,

where r is the distance separating sites i and j and d is the spatial dimension.

We see that the correlation function is also a power-law, further indicating that the sandpile

is indeed in a critical state with long range correlations.

3.7 Height correlations

In this section we show how the toppling matrix can be used to calculate the probability that

a site has a given height and also the height correlations in the stationary state [25]. We will

only outline the procedure and not go through the detailed calculations.

Suppose we want to calculate the probability that a given site, say i, has height 1. This is

given by

P(
. _ ) _ no. of recurrent configurations in which Zi = 1

Zt - 1 - .total no. of recurrent configurations

We know that the denominator is simply det ~. To calculate the numerator we introduce

(3.26)

an auxiliary lattice in which all recurrent configurations have the height of site i equal to 1.

We then show that the set of recurrent configurations on the auxiliary lattice is in one-to-one

correspondence with those that have Zi = 1 on the original lattice.

Consider a configuration, C, with Zi = 1. Define the auxiliary lattice such that the bonds

between site i and three of its neighbours, say N, B, and W, are deleted. Thus, when i topples

it cannot pass particles to these three neighbours. Also, for each bond deleted, we reduce the

threshold height of the sites at the end of the bond by 1.
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On the auxiliary lattice, now consider the configuration C' obtained from C, on the origi-

nal lattice, by decreasing the height of each of i's neighbours by one. We can show that the

configuration C', on the auxiliary lattice, burns in the same order as C on the original lattice",

From this it follows that the recurrent configurations on the auxiliary lattice are in one-to-one

correspondence with recurrent configurations on the original lattice with Zi = 1. We know that

the number of recurrent configurations on the auxiliary lattice is detzx', where f:),.'is the toppling

matrix on the auxiliary lattice. f:),.'is defined as

(3.27)

where the Bij = 0 except for the following elements.

BNN = Bww = Bss = -1 (3.28)

(3.29)

(3.30)

Thus to solve eq.(3.26) we have to consider the quantity

P(l)
detf:),.'
detf:),.

= det(f:),.-1)det(f:),.')

det(f:),.-1f:),.')

= det(f:),.-1(f:),.+ B))

det(I + f:),.-IB). (3.31 )

A computation of (3.31) gives the value of P(l) = 0.0736. The distributions for Zi = 2,3,4

can also be calculated, but require more advanced techniques. Detailed calculations of these give

the following results [25J

P(2) 0.1739

P(3) 0.3063

P(4) = 0.4461.

(3.32)

(3.33)

(3.34)

These values agree very well with numerical estimates for them. Manna [16J calculated these

2See appendix A for an example
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_______I 1_ 1
Figure 3.2: A spanning tree on a 5 x 5 lattice

relative occupation of sites numerically and found

P(l) 0.073

P(2) = 0.174

P(3) 0.307

P( 4) = 0.446.

(3.35)

(3.36)

(3.37)

(3.38)

Using a similar technique of ratio of determinants one can calculate the joint probability that

two sites i and j both have height 1. If r is the distance separating the sites one finds [25]

2 KP(Zi = 1,Zj = 1) '" P (1)+ 4'
r

(3.39)

with K constant. One can also calculate the general case where the sites i and j have heights a

and b respectively. It has the form,

() ) x,«,
P(Zi = a,zj = b) '" Pa P(b + --4-.

r
(3.40)

Once again we see that the correlations in the sandpile are long-ranged. This serves as further

evidence that the sandpile is in a critical state. In section 3.4 we introduced the concept of FSC's

and saw that there were certain restrictions on the allowed height configurations. It is therefore

not surprising that the heights of the sandpile are long-range correlated.

3.8 Equivalence of Recurrent Configurations and Spanning Trees

In this section we show how to use the burning algorithm to construct a spanning tree

representation of the recurrent configurations [26]. A spanning tree is defined on a graph as a

set of edges that touch all nodes, but contains no loops (see Figure 3.2). It provides a unique
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Figure 3.3: The spanning tree representation for the configuration in fig.(3.1)

path between any two nodes on the graph.

To be able to construct the spanning tree representation, we introduce an extra site, called

the "sink", that is connected to every boundary site. When using the burning algorithm we can

now consider the fire to start at the sink, spread to the boundary and from there to the rest of

the lattice.

We have seen that due to the Abelian property the order in which sites are burned is not

important. However, we introduce a specific burning order by introducing a so-called burning

time. In this formulation the sink is assumed to burn at time t = 0 and the boundary sites at

time t = 1. We define a site to be burnable at time t if its height strictly exceeds its number of

unburnt neighbours at time t. A site that is burnable at time t burns at time t + 1.

For a site to burn at time t it must have had at least one neighbour that burned at time

t - 1. The spanning tree for a recurrent configuration is constructed by connecting each site to

a neighbour with a burning time one unit less than its own.

However, there can be some ambiguity since two or more neighbours may have a burning time

of t - 1. Let us denote the number of unburnt neighbours of site i by ei and the number of burnt

neighbours by Ki. Then we can always write the height of site i as Zi = ei +Ki. Now depending

on the value of Ki, we construct the unique path between i and its neighbours. Let us introduce

an order of preference for the neighbouring sites as follows,

N>E>S>W. (3.41)

If the height at site i is Zi = ei + s we say the fire reached site i from its s-th neighbour and we

choose the s-th neighbour from the ordered list.

Consider the example in Figure 3.3 At time t = 1 the four corner sites are burned. Consider

the top left site and assign it the label A. The value of eA = 2 and KA = 2, since it can be

connected to the sink by two bonds. The two possible neighbours from which the fire reached
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site A are Nand W. According to the ordering introduced we have that N > W. Since the

height at A is ZA = ~i +2 we choose the second neighbour from the ordered list of possible bonds,

i.e. W.

As a second example, consider the bottom left site and call it B. For this site ~B = 2 and

KB = 1. The possible neighbours are Wand S. In the ordered list we have S > W. And since

ZB = ~B + 1 we choose the first neighbour Le. S.

3.9 Waves of Toppling

We start this section by briefly discussing the problem with the finite-size scaling ansatz for

the toppling number proposed in chapter 2. The finite-size scaling ansatz is

(3.42)

where x E {a, s, i}. It is found that for the area the scaling form (3.42) works very well, but

for the toppling number there are significant deviations from it [27]. Recent simulations indi-

cate that the BTW model may possibly be characterised by multi-fractal behaviour [28]. At

first it was thought that avalanches that reach the boundary obey different statistics than bulk

avalanches and therefore the observed deviations from the simple scaling form occur. However

these deviations also appear for bulk avalanches that do not touch the boundary. To illustrate

that there is indeed a problem with the scaling for the toppling number, the ratio ;: ~:~) of the

integrated distributions Ps(x, L) = JxooPs(x', L)dx' was considered in ref [27]. If the area and

the toppling number obey the same scaling form then we expect the ratio to scale as XTa-Ts for

x« min{LVa, LVs}.

From numerical simulations it is found that this ratio does not scale as expected [27]. A

possible explanation for the deviation from the simple scaling is that in the BTW model sites

can perform multiple topplings during an avalanche. This would explain why the deviation is

seen for bulk topplings as well and not just because of some boundary effects.

In this section we show how an avalanche can be decomposed into more elementary objects,

called waves of toppling. From the definitions of waves it follows that each site can only topple

once in a wave. We find that waves obey the simple finite size scaling ansatz of eq.(3.42).

The other reason for decomposing an avalanche into waves follows from the fact that we can

construct a spanning tree representation of waves of toppling in a similar way that we did for

recurrent configurations. We can then use results from graph theory to make predictions about

the statistics of waves.
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3.9.1 Definition of waves of toppling

From the Abelian property of the BTW model we know that the order in which unstable

sites are toppled is not important. The wave decomposition performs the toppling of sites in a

very specific order [29J. Suppose we add a particle at site i and it becomes unstable. We allow

the site to topple and if it becomes unstable a second time, we prevent it from toppling again,

first allowing all other sites that became unstable due to its first toppling to relax. This set

of relaxation events constitutes the first wave of topplings. Once all sites are stable, we allow

the initial site to topple a second time and repeat the process. This forms the second wave of

topplings. This process is repeated until the initial site is stable and the avalanche comes to an

end.

We now prove that in a wave each site only topples once. Consider a site jl that initially

topples before a neighbouring site)2. In order for site )2 to topple twice, the site jl has to topple

a second time. If jl is constrained to topple once then )2 can also only topple once. Therefore,

since the initial site of the avalanche is constrained to topple once during a wave, and all other

sites topple after it, all sites involved in the wave can only topple once.

Because of this property of waves, avalanches initiated at the boundary consist of only one

wave. For a site to become unstable a second time all four its neighbours have to topple when it

is initially relaxed. Since a boundary site has a maximum of three neighbours, it cannot topple

a second time.

The size of the wave is the area covered by the wave. Denote the size of the i-th wave by uu.
The size of the avalanche is then simply the sum of the sizes of all the waves, i.e.

S = WI + W2 + ... + WN, (3.43)

if the avalanche consists of N waves.

3.10 Waves and Spanning Trees

In this section we show how to obtain a spanning tree representation of waves by once again

using the burning algorithm [29, 27J. We will construct a spanning tree representation for

unstable configurations that appear after successive waves during an avalanche.

To do this we introduce an auxiliary model on a new lattice. In the new model we add a

bond between the sink and the site i where an avalanche is initiated. The site i is now on the

boundary of the new lattice. Therefore, every avalanche starting at i will consist of exactly one

wave. In fact each avalanche in the new model corresponds exactly to a wave in the original

model.
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Figure 3.4: Example of a two-root spanning tree showing the wave decomposition
of avalanches

We can now apply the burning algorithm to this new lattice to obtain its spanning tree

representation. Upon burning wefind that somebranches of the tree are completely independent

of site i, but one branch passes from the sink to i and the fire then propagates further from there.

If we now remove the bond between site i and the sink, we obtain two disjoint subtrees. The

one containing site i corresponds to the sites toppled during the wave and those not containing

i to those sites that were not toppled. The lattice is now spanned by a two-rooted tree, whereas

for the stable recurrent configurations it is spanned by a one-rooted tree (see Figure 3.4).

3.11 Wave distributions using spanning trees

The spanning tree representation of wavesallowsus to compute some statistical properties of

waves using graph-theoretical techniques. We start by calculating the distribution for the size

of the last wave in an avalanche. We note that an avalanche ends when the initial site is on the

boundary of the wave since it then only has a maximum of three neighbours that can topple.

Manna et al. [30]showed that obtaining the spanning tree representation for the last wave is

equivalent to cutting a random bond with the site where the bond was cut on the perimeter of

one of the resulting sub-trees. The size of the last wave is the number of sites disconnected from

the tree by cutting the bond. They found that the distribution for the number of sites removed

from the tree when deleting a random bond is

(3.44)

From this we can now calculate the probability distribution for general waves. To do this

we consider the evolution of the sandpile as a sequence of waves, without considering to which

avalanche they belong. We know that the waves are in one-to-one correspondence with all

recurrent configurations on the auxiliary lattice and that recurrent configurations appear with
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equal probability in the steady state. Thus all waves occur with equal probability in the steady

state. However, the last wave of each avalanche differs from the general wave in terms of the

location of the origin of the wave. For general waves the origin can be anywhere in the bulk,

whereas for the last wave it is on the boundary. Therefore we have to consider a correction to

the distribution for waves, induced by the last wave. If we denote the perimeter of the wave by

l then the probability per site for being the origin of the last wave is Plait(S). If S is the size of

the wave, there are S possibilities. Therefore the probability for all waves has to be multiplied

by the factor SPlar(S) [29].Using the relation l ,.....,s~ [30]we have the probability distribution for

all waves is

Pall(S) ,....., SPlast(S)
l

SPlast(S)
5

SB

(3.45)

= (3.46)

1 (3.4 7)=
S

This result agrees very well with numerical simulations. Even though this result is relatively

easy to obtain, it has proven more difficult to obtain the avalanche distribution from it. There

have been attempts to obtain the avalanche distribution from the wave distribution but these

have not been successful.

This chapter discussed some advances in our understanding of the BTW sandpile model. Even

though all the relevant quantities have not been calculated thus far, the existence of the elegant

operator formalism and the results it produces does make one hopeful that the model may indeed

be solved completely analytically. The wave picture of avalanches further helps to give insight

into our understanding of the avalanche phenomenon.

3.12 Application of Abelian Sandpile results

In the following chapter we discuss the connection between sandpile models and mining in-

duced seismicity. In motivating our approach, wefind that the results that followfrom the analyis

of the model based on Dhar's abelian formalism are qualitatively similar to that observed in the

more traditional approaches to modelling induced seismicity. Also, indirect observations of the

conditions of the earth's crust would suggest that SOC is indeed a suitable formalism with which

to study mining induced seismicity.
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CHAPTER4
Mining Induced Seismicity and SOC

4.1 Introduction

In Chapter 1 we briefly discussed the study of tectonic earthquake phenomena using Self-

Organised Criticality as the framework of investigation. In the present chapter we look to

extend the analysis to the case of seismicity induced by human activity by establishing a corre-

spondence between mining-induced seismicity and the sandpile model. We start by considering

the general equilibrium conditions that exist in the earth's crust prior to any perturbations.

Then we briefly mention examples of induced seismicity. Next we look at the common features

of the sandpile model and mining-induced seismicity and give a motivation for this approach to

modelling mining-induced seismicity.

4.2 Equilibrium conditions in the earth's crust

In general it can be accepted that the rock mass in the earth's crust is in equilibrium under

the action of virgin or primitive stresses [31]. These primitive stresses are the natural stresses in

the rock mass prior to any perturbations. The virgin stresses at a point in the rock mass are the

result of events in the geological history of the rock mass and may be the result of many earlier

stress states. We now briefly discuss three contributions to the virgin stress in the rock mass.

Consider a geologically undisturbed rock mass. The vertical component of the virgin stress is a

result of the effect of gravity on the rock mass [31]. In homogeneous rock the vertical component

is simply the pressure exerted by the weight of a column of overlying rock of unit cross sectional

area. If the rock density is p and taking the origin at the surface and letting z increase vertically

downward, the vertical component of the primitive stress is

O"z = pgz, (4.1)

where 9 is the gravitational acceleration and z the depth below surface.

The horizontal components of the virgin stress also depend on the depth below surface. For a

relatively undisturbed rock mass the two horizontal components are generally found to be equal,

O"x = O"y [31, 32]. They usually take the form

(4.2)

35
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where k is a constant that depends on the geographical location. Values of k are generally

between 0.5 and 1.0, but in some places values of k exceeding 1.0 have been measured. The

origin of this may be in tectonic stresses or residual stresses in the rock mass.

Tectonic stresses arise due to the straining of the crust, either currently or in previous times

[31J. These stresses may be due to regional uplift, faulting, folding or surface irregularities. The

superposition of tectonic stresses on gravity induced stresses can result in significant changes in

both the magnitude and direction of the resultant virgin stresses. Furthermore, regional uplift

may develop horizontal tensile stresses, causing the formation of faults. Faults divide the rock

mass into distinct blocks and thus disrupt the continuity of the stress field [31, 33J.

Residual stresses are defined as stresses that remain in the rock mass even after their cause is

removed [31J. It is usually explained as follows. During the history of the rock mass it may have

been been subjected to higher stresses than it is at present. When removing the load causing

the stress, the relaxation of the rock is inhibited. Thus, part of the earlier stress remains locked

in the rock. One can consider it as a memory effect.

4.3 Examples of induced seismicity

In this section we briefly describe examples of induced seismicity without giving a detailed

account of the mechanisms. The first example is that of the changes in pore pressure that occur

due to reservoir impoundment [34J. The pore pressure below a reservoir changes due to the

change in water level of the reservoir and subsequently induces fracturing, or increases the stress

on existing faults causing them to slip. This is easily understood since there is now a greater

gravitational load on the rock mass beneath the reservoir. The most common values of the stress

changes induced by reservoir filling are between 1 and 2 MPa. These stress changes are enough

to induce seismic events of magnitude ~ 2.5 in areas that are historically seismically inactive.

However, there are also reported cases where stress changes of 0.1 MPa, corresponding to small

changes in the water level, were sufficient to induce seismicity in historically seismically inactive

areas [34J.

The second, related, source of induced seismicity is that of hydrocarbon extraction. Again,

relatively small stress changes can induce seismic activity in previously seismically inactive areas

[34J.

4.3.1 Mining-induced seismicity

The third example of induced seismicity is the one of central importance in this dissertation,

i.e., seismicity induced by deep-level gold mining in South Africa.
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Before we discuss mining-induced seismicity we briefly describe the mechanism by which earth-

quakes occur in tectonic settings where the driving force is the mantle motion. The mechanism

described here is also applied to mining-induced seismicity. We also discuss how earthquake sizes

are determined. Earthquakes occur on fault planes or discontinuities in the earth's crust. Due to

the motion of the mantle, the tectonic plates move relative to one another. However, due to fric-

tion, the plates do not slide over each other smoothly. As long as the frictional forces exceed the

driving forces, the plates will not slip, but only build up potential energy and deform each other

elastically. Once the driving force exceeds the frictional force, the two plates move very suddenly

relative to each other. This sudden slip motion induces elastic waves that travel through the

crust and this is what is experienced as the ground motion associated with earthquakes. These

seismic waves are recorded at monitoring stations and the amplitude, frequency and energy of

these seismic waves contain information about what happened at the source of the earthquake.

There are various measures of earthquake sizes. The two we will discuss are the energy

radiated by the seismic waves and a quantity called the seismic moment. We first discuss energy

budget on a fault plane during an earthquake. Some of the energy is used to overcome the

frictional forces opposing slip. Once the slip motion starts, friction is not "turned off", so there

is work required to overcome it. Secondly, some of the energy is expended on the fracturing of

rock as the plates slide. The rest of the energy is radiated as seismic waves. We see that what is

measured as the energy of the earthquake is only a portion of the total energy available on the

fault plane.

Seismic moment is a measure of the slip that takes place when the earthquake occurs. It is

defined by the relation

Mo = J.LAd, (4.3)

where J.L is the rigidity of the rock mass, A is the area of the slip and d is distance over which

the plates slipped. Seismologists have ways of determining A and d from seismograms and other

geodetic data and J.L is a property of the rock mass that is generally known, so Mo can be

determined [35].

Another important quantity is the ratio of radiated energy to the seismic moment. That is

(4.4)

This ratio is known as the apparent stress and it is a measure of the change in stress at the

source of the earthquake [36, 35].

We now turn to the discussion of mining-induced seismicity in deep-level gold mining in
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South Africa. Ore deposits in South African gold mines are generally found at depths that vary

between lOOOmand 3500m. In order to extract the ore, deep excavations have to be made.

These excavations include the initial work for the development of the infrastructure to operate

the mine. This includes sinking the shaft for travelling up and down the mine, transport roadways

underground, etc. For the discussion here and for all practical purposes we suppose that the rock

mass including the development infrastructure is in equilibrium. The process of extracting the

ore on a daily basis for production purposes is considered the driving mechanism of the system.

The ore is extracted by placing explosive charges in the reef and removing the first 1.5m of rock

by detonating the explosives. In the gold-mining industry this is known as "blasting". The

explosion and subsequent removal of the rock mass serves as the perturbation on the equilibrium

stress conditions and subsequently induce both elastic and inelastic deformation in the rock mass

surrounding the excavations [36J.

As we have already mentioned above, the same mechanism for earthquakes described above

holds in the context of seismicity induced by mining activities. In a typical mine there are already

existing fault planes on which the stress state is perturbed by the mining process. However, in

addition to existing natural faults, the mining excavations can also create further planes of

weakness on which slip can take place.

It is interesting to note that in the gold mining industry seismic activity is strongly correlated

with production activity. There is ample data showing the decrease in seismic activity on week-

ends and other days when no production takes place [34, 36J. Thus, it is reasonable to assume

that the seismic activity is due to human ativities that perturb the stress state of the rock mass.

It is important to note that not all perturbations induce seismic activity. There is evidence of

stress changes due to hydrocarbon extraction and reservoir filling with no subsequent seismicity

in the area of interest [34J.

The essential point to grasp is that prior to a perturbation equilibrium stress conditions exist

in the rock mass. The perturbation can cause some locations to deform inelastically during the

redistribution of stress to re-establish equilibrium. This is similar to the situation for the sandpile

model. Prior to any external perturbations, the system is stable (equilibrium) and no activity

takes place. Once an external perturbation is applied, and some sites become unstable, there is

an internal redistribution of sand to reach a stable configuration again.

4.4 The Gutenberg-Richter relation

In Chapter 1 we briefly mentioned the Gutenberg-Richter law for earthquakes and its power-

law form that led to speculation that seismicity is a self-organised critical phenomenon. It may
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not be entirely obvious how the form presented in Chapter 1 is related to the usual form seen in

seismicity or earthquake physics literature. In this section we explicitly show the connection and

also clarify how the Gutenberg-Richter relation enters into our correspondence between seismicity

and the sandpile model.

The Gutenberg-Richter law states that the number of earthquakes equal to or greater than

magnitude me is given by

(4.5)

where ae is a constant with some geographical dependence and bE is the so-called b-value of

the distribution. The subscript E denotes the fact that we are considering the radiated seismic

energy during an earthquake. The magnitude me is defined as

loglOE = K + f3mE, (4.6)

which gives
1 K

me = :e loglOE - (3'

with f3 and K constants. The magnitude here is the familiar Richter scale magnitude that is

(4.7)

used to quantify the size of an earthquake. Combining eqs. (4.5) and (4.7) we find

1 K
= a» - bE(:e loglOE - (3)

bEK be
= ae +T-73log10 E.

(4.8)

(4.9)

This in turn gives

(4.10)

with B = ~ and where the;:::: sign indicates that we are dealing with the cumulative distribution.

This is the form which was mentioned in Chapter 1.

As we saw in the previous section, seismic events are also characterised by their seismic

moment which is a measure of the deformation at the source of the event. The Gutenberg-

Richter relation in terms of moment then becomes

(4.11)
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with mt« the moment-magnitude which is defined by [36]

2
mM = 310g10 Mo - 6.1. (4.12)

This is known as the Hanks-Kanamori moment-magnitude relation. Combining (4.11) and (4.12),

exactly like we did for the case of radiated energy, we find a power-law form for the Gutenberg-

Richter law in terms of the seismic moment

(4.13)

where a = ~bM'

The Gutenberg-Richter law is a cumulative distribution of events equal to or greater than

some given size. The sandpile model event size distributions discussed in Chapter 2 are non-

cumulative distribution functions of the form p(x) f"V X-A. However, the cumulative probability

distribution functions for these distributions are of the form

1 1 A
P?:.(x) f"V 1 _ A x - , (4.14)

which is also a power-law [37]. It is from the fact that both self-organised criticality and seismic

systems have power-law cumulative distributions that the initial attempts to describe seismicity

in terms of an SOC framework are motivated.

We just make a few comments here concerning cumulative and non-cumulative distribution

functions. In essence when one cumulates the probability distribution function you are binning

the data, which automatically smooths it. Hence the observed scatter in Figure 4.1 and the

smooth curve in Figure 4.2. We should also point out that the apparent multi-valuedness of the

distribution function in Figure 4.1 is simply due to the scale on which it is viewed. If one were

to view the distribution on a scale that zooms in sufficiently, it will indeed be clear that it is

single-valued.

Finally we comment on the usefulness of the Gutenberg-Richter relation in the mining seis-

micity context. In the mining industry the calculation of seismic hazard is of crucial importance.

Seismic hazard is simply a generic term used to quantify the probability of having potentially

dangerous situations underground in a mine. This includes large magi tude events, rock falls,

etc. The Gutenberg-Richter relation is used in many of these calculations of seismic hazard. For

example, the mean recurrence time for events greater than a certain magnitude, T;(~ mu), is
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Figure 4.1: The non-cumulative event size distribution for the BTW sandpile model.

computed using the following relation [38J

(4.15)

where !:It is the period of observation and N(?:. mM) is obtained from eq.(4.11).

4.5 Correspondence between the sandpile models and mining-induced
seismicity

In the previous two sections we gave examples illustrating how induced seismicity relates to

self-organised criticality. In this section we summarise all that and also discuss some of the

shortcomings of the sandpile model approach to modelling seismicity. We first give a list of

similarities between seismicity and general self-organised critical systems,

• both are complex systems with a large number of degrees of freedom;

• both posses inherent randomness;

• their major statistical ingredients are scale invariant over several orders of magnitude;

• they both have hierarchially organised structures;

• both phenomena are intermittent in space and time;
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Figure 4.2: The cumulative event size distribution for the BTW sandpile model.

• both phenomena are subject to threshold dynamics.

In order to apply the sandpile model of self-organised criticality to induced seismicity we make

the following correspondences. The sandpile lattice configuration represents some stress state of

the rock mass while particle addition corresponds to increasing the stress load on the rock mass.

Finally avalanches will be representative of the hierarchical failure once the rock mass reaches

its failure threshold under the load added by the external perturbation.

It is tempting, but misleading, to think of the sandpile lattice of possible cracks as a physical

volume of rock. A more appropriate picture, however, may be to think of the lattice as a simpli-

fication, where the physical rock mass has been subtracted out, leaving one free to concentrate

on the potential fractures, stress transfer and hierarchical cascades of stress transfer without a

specific spatial connection. The lattice can be viewed as a so-called "fracture space". Of course,

we then lose sight of the fact that fractures surround excavations.

It is also important to mention some of the apparent shortcomings of the sandpile model

approach to modelling mining-induced seismicity. The sandpile model, by construction, cannot

take real-time into consideration. Time steps correspond to the moments when perturbations

are applied. Since avalanches have different durations, the real-time intervals between external

perturbations will not be constant. In the mining situation, however, external perturbations are

applied at fixed real times. This does not present a problem since for all practical applications

the rock mass is assumed to have reached equilibrium before the next external perturbation is

Stellenbosch University http://scholar.sun.ac.za



4. Mining Induced Seismicity and SOC 43

applied. There will thus be no activity unless an external perturbation is applied. In a sense the

"time steps" in the mining context are also set by the external perturbations.

Although the sandpile model is a very simple toy model we have seen that it captures the

essential aspects ofmining-inducedseismicityphenomena. In the followingchapter we investigate

further similarities between the sandpile model and seismicity and enquire if the sandpile has

any predictive qualities.

4.6 Bi-modal distributions

At this point we briefly discuss another observed feature of mining-induced seismicity and

its possible realisation in terms of the sandpile model. It is observed in mining-induced seismic

data that sometimes the Gutenberg-Richter relation has two distinct slopes [38]. Here we briefly

describe a possible explanation for this observed two-slope or bi-modal phenomenon. We also

discuss how such behaviour may be generated in the sandpile model.

4.6.1 Bi-modal distributions in mining-induced seismic data

The explanation for the two-slope behaviour is due to Jordan and Richardson and collab-

orators [39]. Based on extensive monitoring of mining-induced sesimic events in major South

African gold mines, they have concluded that there are two types of mining-induced seismic

events, designated as type A and type B.

Type A events are clustered around development ends and show an upper cutoff is size of

M rv 0.5. Based on the seismograms, they interpret these events to be "fracture-dominated"

ruptures of competent rock, induced by dynamic stress during blasting.

Type B events are spatially and temporally distributed throughout the active mining area.

Again, based on interpretations of seismograms these events are said to be "friction-dominated"

ruptures that occur on existing faults or other geologicstructures. Type B events also have a

minimum cutoff of about M rv O.O.

4.6.2 Bi-modal distributions in the BTW sandpile model

We now briefly discuss how such bi-modal behaviour can be generated in the BTW sandpile

model. At the outset we point out that the aim is simply to show that one can construct a

model that can reproduce such bi-modal behaviour. We are not in any way trying to explain the

fundamental reasons for such bi-modal behaviour.

The simplest way to understand the Jordan-Richardson explanation is that there are two

mechanisms, fracture and slip, operating somewhat independently of each other and that they

give rise to different values for the slope of the Gutenberg-Richter relation.
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We incorporate this in the sandpile model by introducing two different types of toppling rules.

The simplest combination is that of non-directed (BTW model) and directed toppling rules (see

section 2.6.1 for the definition of directed toppling). One starts with an ordinary non-directed

BTW model and then superimposes directed toppling with a given probability. We introduce a

continuously varying parameter p that ranges from 0 to 1. p = 0 corresponds to non-directed

toppling and p = 1 to directed toppling. At each time step a random number a with 0 < a < 1

is generated. If a < p the directed toppling rule is applied and if a 2:: p the non-directed toppling

rule is followed.

In Figures 4.3 to 4.7 we plot the event size distribution for a range of p-values. For p = 0

(normal BTW model) and p = 1.0 (directed model) we find the expected power-law behaviour

of the event size distribution. For p = 0.5, which effectively simulates that directed and non-

directed topplings are equally likely, the event size distribution is a deviation from the simple

power-law. There is a slight "kink" which is reminiscent of the two-slope Gutenberg-Richter

law. We thus see when we have two toppling rules superimposed on each other, the sandpile

model also exhibits a form of bi-modality. It should be mentioned, however, that the bi-modal

behaviour in the sandpile model is not as pronounced as in real seismic data. It is not clear why

this is the case.
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Figure 4.4: The cumulative probability distribution with p = 0.0
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Figure 4.5: The probability distribution with p = 0.5.
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Figure 4.6: The cumulative probability distribution with p = 0.5.
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Figure 4.7: The probability distribution with p = l.O.
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Figure 4.8: The cumulative probability distribution with p = Lfl.
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Figure 4.9: The cumulative distributions on a single graph.
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4.7 Motivation for the SOC approach to induced seismicity

Apart from the ingredients that helped to define SOC, such as power-law event size probability

distributions, threshold dynamics, slow driving, what are the observable consequences of systems

that are described by the SOC formalism? In other words, what can one predict and measure

about those systems using the SOC framework, other than those things used to define it? In this

section we will look at such properties of SOC systems, and then relate them to observations

from induced seismicity.

In Chapter 3 we recalled Dhar's detailed analysis of the critical state of the sandpile model

using his generalised matrix formulation of the model. As we showed, one is able to compute

certain correlation functions, notably the two-point correlation function and the height-height

correlation, both of which were seen to be power-laws and thus indicating long-ranged correla-

tions. Within Dhar's formulation it is also possible to compute the fraction of lattice sites that

have height z = 1, z = 2, etc. We saw that the average height of sand per lattice site reaches an

average value about which it then fluctuates. From the analysis of the relative fraction of lattice

sites in a particular "state", we see that a reasonable proportion of the lattice is close to the

failure threshold whilst the rest of the lattice is fairly robust against perturbations. Sornette and

Virieux [40] came to similar conclusions about the strain field, which is proportional to the stress

field, of the lithosphere'' using a non-linear Langevin equation. Their analysis was based on work

by Hwa and Kardar [41, 42], who used the same Langevin equation to construct a continuum

formulation of the sandpile model of SOC.

In terms of tectonic and earthquake physics and studies of induced seismicity, what does this

imply? In other words what are the observable consequences for the earth's crust? Firstly,

following from the computation of correlation functions, it implies that the stress field in the

earth's crust is long-range correlated. There is not direct evidence that the stress field of the

crust is in fact long-range correlated. However, some authors believe that increased seismic

activity prior to large earthquakes is a signature of long-range correlations in the stress field. We

shall return to this in more detail in the following chapter. Secondly, following from the relative

fraction of lattice sites calculation, there are two consequences. One is that a significant portion

of the crust is close to failure and a relatively small perturbation can induce seismic activity.

This is in fact observed in many cases of induced seismicity (eg. reservoir filling as we pointed

out in section 4.3). The second consequence is that due to the fluctuations, not all perturbations

of the crust induce seismicity. This is also seen in case studies of induced seismicity [34].

3The lithosphere is the outermost lOOkmof the crust which is relatively rigid and lies on top of the astheno-
sphere, which is a softer layer of about 400km but which is at a much higher temperature and therefore moves
more easily [37].
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In hindsight, the conclusions drawn from the calculation of relative occupation of lattice

sites seems almost obvious. However, there has been much confusion in the earthquake physics

and seismology literature concerning the use of SOC as a modelling framework for seismicity

in general. One often encounters the statement that because the system is in a SOC state, the

entire crust is close to the failure threshold and that any small perturbation can induce seismic

activity. However, as we see from the exposition above, this is clearly not correct.
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CHAPTER 5
Frequency size statistics and temporal patterns

5.1 Introduction

In the previous chapters we considered the global statistical properties of the sandpile model.

In particular in Chapter 2 we considered the event size probability distribution and in Chapter 3

we reviewed the calculation of correlation functions in the critical state. In the present chapter we

look to further establish the correspondence between seismicity and self-organised criticality by

considering aspects of the short term temporal behaviour of both types of systems. In particular

we consider whether large events can be predicted in some way. The strategy for such an analysis

is based on recent ideas that the occurence of large earthquakes is similar to critical points of

continuous phase transitions. We further consider under which conditions this assumption holds.

5.2 Dynamic regimes in tectonic seismicity

In this section we briefly discuss a model of fault systems and the evolution of earthquakes,

studied by Ben-Zion, Lyakhovsky and co-workers [43, 44], that exhibits both Gutenberg-Richter

and characteristic event size statistics. The model to be discussed is designed for the study of

the creation and evolution of faults and fault systems.

The model consists of a seismogenic upper crust that overlays a viscoelastic substrate. The

upper crust is subject to damage rheology that is compatible with observed nonlinear and ir-

reversible strain. This simply means that the evolving damage modifies the effective material

properties of the material in the upper crust. The upper crust is coupled viscoelastically to

the substrate, where steady plate motion drives the deformation in the upper crust. The plate

motion thus serves as the slow driving for the system.

The model parameters such as boundary conditions, rheological and damage parameters were

determined by fitting model calculations to average observed geodetic deformation of the San

Andreas fault in California. The remaining parameter of interest, and ultimately the one that

controls the dynamic response of the model, is the ratio of the time scale for healing, TH, to

the time scale for loading, TL, i.e., !/t. The value for TH depends on the damage rate coefficient

and controls the time for strength recovery after a brittle failure event occurred. The value

for TL is the time needed for stress to reaccumulate to its threshold value (breaking strength)

after a location has failed. This depends on the driving conditions that serve as the external

perturbations to the system [43, 44].

50
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The simulation results of Ben-Zion and co-workers [43, 44J show the following. Relatively high

values of 'If!; lead to the formation of geometrically smooth or regular fault zones and frequency

size statistics consistent with a characteristic earthquake distribution. Characteristic events are

the largest possible events on a fault system and are determined by the size of the fault. The

term "characteristic" in this context means that the event size is set by characteristics of the

fault itself. Low values of 'If!; lead to the formation of highly irregular or geometrically disordered

fault zones and frequency size statistics compatible with the Gutenberg-Richter relation. This

result is easy to understand in physical terms. Smooth surfaces slide more easily than rough,

disordered ones. The highly irregular surfaces will have a more jerky slip associated with them.

It is well known in the earthquake physics literature that the earthquake size is proportional to

the amount of slip on the fault surface [35J. Intermediate values of 'If!; lead to a seismic response

that alternates between these two modes. This is the so-called mode-switching behaviour. In

this type of response there are periods of intense seismic activity containing large events and

periods of lower intensity where only small and intermediate events are observed.

5.3 Dynamic regimes in sandpile models

The results of the analysis by Ben-Zion and Lyakhovsky motivated us to ask whether there

are different dynamical responses for the sandpile model under different conditions. We found

that it is possible to access different dynamical response regimes of the sandpile model. To this

end we introduce a driving rate for the sandpile model. The driving rate is simply defined as

the number of particles added to the system at each time step and is denoted by n. Most of the

studies of the sandpile model have focussed on the limit n = 1. We now extend the analysis to

higher values of n.

The basic model is the same as the BTW model. As already mentioned we now add n particles

(where n 2:: 1) at each time step. This is accomplished in the following way. At each time step

n random positions for particle addition are generated. Each of these sites then receive a single

particle. These sites are checked for stability and if necessary, they are updated in exactly the

same way as the original BTW model. That is, each site that topples discards one particle to

each of its nearest neighbours. The order in which the addition sites are updated is irrelevant

because of the Aelian property of the model. Recall from the discussion is section 3.3 on the

Abelian property that the order in which unstable sites are toppled is irrelevant for the final

configuration. Also recall from section 3.3 that the operations of adding a particle and toppling

unstable sites commute. Thus, the same final lattice configuration will be reached whether you

add n particles simultaneously to randomly selected sites or whether you add them sequentially
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to the same set of sites and allow the system to relax at each time step.

The question may well be asked why we are interested in adding the particles simultaneously

if the same final configuration will be reached if you add them sequentially. The important point

under consideration is not the final configuration that is reached, but rather the system response

to a particular perturbation. Admittedly the nett input into the system is the same whether we

set (say) n = 10 or whether we wait for 10 consective time steps, picking the same set of sites.

As we shall see, the response of the system is very different for the two situations. The Abelian

property in this case merely provides a very convenient computational simplification.

We now show the analogous roles played by the driving rate in the sandpile model and the

ratio!/;: in the Ben-Zion - Lyakhovsky model. Large n corresponds to large values of !/;: and

vice versa. This can be motivated as follows. In the sandpile model there is no real equivalent

of TH so we arbitrarily set it equal to a constant, say 1. The definition for the loading time

is exactly the same as in the tectonic context, i.e., the time for reaccumulation of stress to its

threshold value at a failed site. Consider the special case of loading a fixed site. This leads to no

loss of generality since it is quite possible to select the same site at four consecutive time steps.

Suppose our loading site topples during an avalanche and let us assume it is the only site to

topple (avalanche of size a = 1). If the driving rate is n = 1, it will take 4 time steps for the site

to reach its maximum value again, and therefore TL = 4 and !/;: = t. If, on the other hand, the

loading rate is n = 4, say, it will take 1 time step to reach the maximum value, and thus TL = 1

and !/;: = 1. The correspondence between nand !/;: then follows.

From simulations we have the following results. For small values of n the sandpile model

response is that compatible with power-law Gutenberg-Richter type frequency size statistics and

for large values of n that of a characteristic event size distribution (see Figures 5.1 and 5.2 for

the event size distribution). Thus, there are also at least two dynamical response regimes for the

sandpile model that is controlled by the driving rate.

5.4 Time-to-failure concept

In recent years it has been proposed that the occurence of large earthquakes can be compared

to critical points of continuous phase transitions. In this section we will discuss this concept in

some detail as well as the conditions under which the analogy is valid. Before we do this, for

the sake of completeness, we briefly repeat parts of the discussion presented in chapter 1 on the

basic results of continuous phase transitions.

The critical point is characterised by the existence of long-range correlations between the basic

degrees of freedom of the system under consideration. More specifically, close to the critical point
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Figure 5.1: The non-cumulative event size distribution for the BTW sandpile model
for driving rate n = 1.
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Figure 5.2: The non-cumulative event size distribution for the BTW sandpile model
for driving rate n = 40.
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the correlation length is given by the relation

(5.1)

We see that the correlation length grows as a power-law as the critical point is approached and

eventually diverges at the critical point. It is not only the correlation length that displays this

power-law form in the region of the critical point, but also all other measurable observables. For

example, the magnetisation of the Ising model is given by the expression

(5.2)

which is a further reflection of the scale invariance at or close to the critical point as implied by

(5.1).

It was said above that the occurence of large earthquakes is believed to be analogous to critical

points of continuous phase transitions. This is motivated by the fact that many large earthquakes

are preceded by an increase in seismic activity prior to the large event. Specifically,the number

of intermediate to large earthquakes increase as the time of the large event is approached. It has

been found that the increase in activity prior to large earthquakes is described by the following

relation;

A(t) = B +C(te - tY\ (5.3)

where A(t) is the cumulative seismic activity at time t and te is the time of occurence of the

large event and Band C are constants determined by fitting the data. The exponent 0: is found

to have values between 0 and 1 and C < o.
This still did not explain why the cumulative seismic activity increases as the time of oc-

curence of the large event is approached. In 1995 Sornette and Sammis [45]proposed that large

earthquakes are similar to critical points of continuous phase transitions and that they occur due

to progressive correlations in the stress field that build up in a region surrounding the location of

the large event. These progressive correlations in turn lead to events at increasing length scales

which is reflected in the increasing number of intermediate to large events as the large event

is approached. The relation to continuous phase transitions is thus embodied in the power-law

increase in cumulative seismic activity as one approaches te. In terms of the analogy, te now

plays the role of the critical temperature, Te and the cumulative seismic activity, A(t) in this

case, that of the observable quantities that scale as power-laws in the approach to the critical

point.
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Apart form its obvious theoretical value, the above formalism also provides a framework for

predicting large earthquakes. This is achieved by fitting the cumulative seismic release to the

relation (5.3) in which B, C and a are parameters of the fit. In section 5.5 we will discuss the

basic algorithm used to predict large events.

An important question is of course under which conditions one will observe such critical

behaviour prior to large earthquakes. If a system is in a stationary state, the contribution of

each event to the cumulative activity is exactly the same as that of its predecessor [46]. That is,

Ai is the same for all i or stated differently, the activity rate is time-independent. By activity

rate we simply mean the average event size per unit time. Plotting the cumulative activity for a

stationary state as a function of time one obtains a straight line. That is, if A(t) is the cumulative

value of the parameter of interest at time t, then

A(t)=Bt+C, (5.4)

where Band C are constants.

The gradient of this line is the activity per unit time. This type of response could be termed

a "typical" response of the system to an external perturbation since under the same driving

conditions the system always gives this response. The event size probability distribution will in

this case be peaked about the value corresponding to the typical response. We have seen that

for the sandpile model and the model of Ben-Zion and Lyakhovsky for tectonic earthquakes this

type of probability distribution corresponds to large values of n and iu: respectively.
TL

It still remains to see what happens if the system is not in a stationary state. It has been

proposed that the evolution of the system takes place in terms of episodes from one critical event

to the next and that event sizes in the period between critical events are distributed according

to a power-law like the Gutenberg-Richter [46].

In summary thus, the basic idea is that if the events follow a power-law distribution in their

size, they will exhibit power-law time-to-failure behaviour as given by eq. (5.3). If they follow

the characterisitic event size distribution there will be no signs of power-law acceleration prior to

large earthquakes and the cumulative seismic activity simply increases linearly in time according

to (5.4). As mentioned above we will discuss the algorithm for performing time-to-failure analysis

in the following section. In section 5.6 we discuss the results of the time-to-failure analysis for

the Ben-Zion - Lyakhovsky model of tectonic seismicity (see section 5.2) and the relation to the

probability distribution function of the events. Thereafter we discuss the results of a time-to-

failure analysis for real mining-induced seismicity data and and in section 5.8 we present the

results for the same analysis for the BTW sandpile model.
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Figure 5.3: Graphical representation of critical accelerating behaviour by a variable
(power-law behaviour). Reproduced from [46]

5.5 Time-to-failure algorithm

As was explained in the previous section the critical event hypothesis was first introduced

in the context of tectonic earthquake phenomena. We also said there that it provides one

with a framework for predicting large earthquakes. In this section we give a description of

the algorithm used to perform forward prediction of large events. The procedure we will outline

here was developed for the analysis of mining-induced seismic data but also used in establishing

the critical event concept in the sandpile model data.

The tools for performing the analysis were developed by Willem de Beer (formerly of ISS

International) as part of a research contract for the Safety in MinesResearch Advisory Committee

(SIMRAC) [46]. The practical output of the research was a working program that tests the

critical event hypothesis in the mining-induced seismicity context and at the same time has

the functionality to predict such critical events using the hypothesis. Without discussing the

technical details we will briefly outline the basic algorithm used.

As already mentioned in section 5.4, the prediction strategy is based on the hypothesis that

large seismic events are similar to critical points of continuous phase transitions. We saw that

in the seismic context this translates to large events being preceded by an acceleration in the

seismic activity. Specifically the accelerated increase followsa power-law in the time to the large
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tive activity using sandpile model data. The critical events are indicated
by the solid circles.

event. Mathematically this is given by the relation

(5.5)

This equation simply says that the cumulative activity follows a power-law in the time to the

large event at tc.

For real prediction purposes one is interested in knowing when a large seismicevent will take

place and what its magnitude will be. In terms of the critical event formalism this means one

would like to obtain the parameters Ac, tc, C and a in (5.5) from fitting the data at time t.

Here we have denoted the critical event size by Ac. The left hand side of eq. (5.5) contains the

observed seismic parameters at time t (see Figure 5.4).

In order to ensure that the Inversion routine used to obtain the above mentioned parameters

does not get trapped in a local minimum a positive feedback loop was developed in which the

algorithm learns the characteristics of the system. There are three phases for the algorithm in

the prediction process. The first phase, where the algorithm learns about the characteristics of

the system, is called the "learning phase". The other two phases are known as the "learning to

predict" and "the prediction" phases respectively.
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5.5.1 The Learning Phase

The steps in this phase are summarised by the following main points:

• There exists an empirical relationship between the constant C in (5.5) and the size of the

critical event Ae [46J. The relation is

logC = K + PlogAe. (5.6)

An initial set of large events is used to establish this relationship. This serves to eliminate

one parameter from the inversion routine.

• Episodes of cumulative activity that culminate in critical events, are related by a simple

linear relation in time (see Figure 5.4). This linear relationship is established.

• The periods between large or characteristic events are searched for power-law sequences

which exclude the characteristic events. The average and median of te - te-I, as well as

relevant standard deviations are calculated. te-I denotes the time of occurrence of the last

event before the critical event.

• Average and median critical exponents, a and higher moments are established.

• The average and median of the critical event size, Ae, and higher moments are computed.

5.5.2 Learning to Predict Phase

Once the learning phase is complete and the algorithm has learnt the characteristics of the

system, it can now learn how to predict. For this phase a further set of critical events is used.

The procedure for this phase is summarised as follows:

• The constant C in (5.5) is replaced by the relation (5.6) which relates the size of the critical

event and C.

• A first estimate for the cumulative activity at te is made by extrapolating the linear relation

between the episodes of critical events (the relation illustrated in Fig. 5.4).

• The moments of the exponents and te - te-I are used as the first estimates for the inversion.

• Starting from six events after a critical event, the inversion is performed if an event is the

termination of a power-law sequence.

• A prediction is issued if the predicted size of the critical event, Ae and time of failure, te,

falls within two standard deviations from the means computed in the learning phase.
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• The average and median errors and higher moments of the predicted quantities are com-

puted.

This concludes the learning to predict phase.

5.5.3 The Prediction Phase

The algorithm continues in the same way as in the previous two phases. However, the inversion

is now perturbed by the errors in the prediction as calculated before. Alerts are issued when the

predicted values for the size of the critical event and te fall within two standard deviations from

the mean values calculated in the learning phase.

5.5.4 Computation Time

We thus see that the process of predicting large events as discussed above is quite complex.

It requires considerable computing power and sufficient data to establish the patterns in a given

area. As already mentioned above, the same procedure was used in the sandpile model analysis.

Even for the simple sandpile model the computations described above require considerable com-

puting time. For example, for a lattice of linear size L = 100, considering 21 different simulations

with driving rates n = 1,2,4,6, ... ,40 respectively and each containing about 5 x 105 avalanches,

it took more than two weeks just to establish the learning phase of the model.

5.6 Time-to-failure for fault systems

Ben-Zion and Lyakhovsky [44] analysed the temporal statistics of the model discussed in

section 5.2 by considering the cumulative Benioff strain as a function of time (see Figure 5.6).

The Benioff strain is defined as ...[M, where M is the seismic moment, defined in Chapter 4.

Part A of Figure 5.6 is the cumulative Benioff strain for seismicity having the characteristic

event size distribution. It is clear that the cumulative activity is approximately linear, with no

episodic behaviour. In part C of Figure 5.6 we have the cumulative Benioff strain for seismicity

corresponding to a Gutenberg-Richter distribution. There is clear evidence of accelerated seismic

activity prior to a large event. According to the analysis of Ben-Zion and Lyakhovsky [44] the

accelerated increase follows a power-law in the time-to-failure. For the case of mode-switching

behaviour (part B of Figure 5.6) the first period is a straight line, associated with a character-

istic event size distribution, whereas for the second period associated with Gutenberg-Richter

statistics, there is a weak accelerating phase before the large event in that period.

The simulation results of Ben-Zion and Lyakhovsky [44] seem to be consistent with (1) the

suggestion that the cumulative activity is stationary when the individual events are distributed
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according to a characteristic event size distribution and, (2) there is power-law accelerated ac-

tivity prior to large events if the individual events follow the Gutenberg-Richter law.

5.7 Time-to-failure in mining-induced seismicity

We now turn our attention to the situation in mining-induced seismicity. In particular, we

consider the work of de Beer [46] that focusses on establishing whether accelerated seismic release

is observed prior to large events in mining-induced seismicity as well.

The first important point is the choice of suitable variables for the analysis. During the

course of the research conducted in [46] nine different variables were considered, but three were

eventually decided on. These are,

1. Cumulative Benioff strain, L:..JM

2. Cumulative square root of radiated seismic energy, L:..JE

3. Cumulative Apparent volume, L: VA.

The second important aspect of the analysis is the choice of the volume and time windows in

which to search for accelerated activity. Stated differently, one is searching for the region and

time window over which the stress field becomes correlated. Before we show how such a region

is selected we introduce a few concepts that will be needed in the discussion. When considering

real seismic data it is important to be able to estimate which of the linear or power-law fits to the

cumulative activity gives a more accurate description of the data. This is done in the following

manner [46]. The cumulative seismic quantity of interest, L:f=n At; is computed, and then fitted

to a power-law,

(5.7)

and a linear equation,

81(t) = C + Bt, (5.8)

where the 8(t) denotes the cumulative seismic parameter at time t: The variances

(5.9)

and

(5.10)
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are then computed and compared. The ratio r = ~ gives an indication of which of the two

hypotheses gives a better fit to the data. For large values of r the linear fit is more appropriate,

whereas for small r, the power-law in the time-to-failure is more accurate. If r = 1, we cannot

say which of the two fits gives the best fit to the data.

We now briefly outline the strategy for selecting optimal windows in space and time [46,47].

The volumes are all taken as circular or spherical around the location of the critical events in

[46]. For a given event, a minimum radius is fixed and time windows of 24,48,72,96, ... hours are

considered and the ratio r, defined above, calculated. The time window for which r is minimal,

as well as the corresponding value of r are stored. The volume radius is then increased by 100m

and the process repeated until the spatial limit of the data catalogue is reached. Finally, the

minimum r value for each spatial window is plotted as a function of the radius of the circular

area. The parts of the curve where r is minimal help to define a suitable radius within which to

search for power-law behavior preceding the large event of interest.

In section 5.4 wementioned that the time-to-failure analysis presents a strategy for predicting

large earthquakes. However, in the discussion as outlined in section 5.4, it is assumed that one

has the time of the large event, te, fixed and merely attempts to fit the data to obtain the

parameters B, C and a of the equation (5.3). On the other hand, if one is trying to predict the

time of the large event te has to be obtained as one of the parameters of the fit. We discussed the

basic algorithm for performing forward prediction in section 5.5. De Beer discusses the results of

such forward prediction of mining-induced seismic data at length in [46]and we will not attempt

to do so here.

In the rest of this section we discuss the results of a back-analysis of real mining-induced

data which tested for the accelerated activity prior to 9 large events. The purpose is simply to

illustrate that such accelerated activity has been observed in mining-induced seismic data.

De Beer considered a data catalogue containing about 30000 events and spanning a time

period of one year. In this case the first nine events with 10glOM ~ 12 are considered as the

critical events. The results of the analysis are summarised in Table 5.1.

The table contains a column for the power-law accelerated activity exponent, a, as defined in

eq. (5.3) as well as the r ratio for both 2 and 3 dimensional analyses. For each event, a seismic

variable with an entry in the exponent column, shows power-law accelerated activity prior to

the large event. For example, for event nO.2 there was no power-law acceleration prior to it,

whereas for event no. 3 there was accelerated seismic activity only in the cumulative apparent

volume. The table indicates that eight of the nine events show accelerated release in at least one

of the seismicity variables. The table also shows the results for the analysis being performed in
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Event Variable a r
3D 2D 3D 2D

1 L_.v'E 0.232 0.232 0.211 0.211
1 L_.VM 0.228 0.228 0.234 0.234
1 L_.VA - 0.189 - -
2 L_.v'E - - - -
2 L_.VM - - - -
2 L_.VA - - - -
3 L_.VE - - - -
3 L_.VM - - - -
3 L_.VA 5.040 5.040 0.468 0.468
4 L_.VE - 0.627 - 0.230
4 L_.VM - 0.521 - 0.199
4 L_.VA - - - -
5 L_.v'E - 0.570 - 0.000
5 L_.VM - 0.054 - 0.000
5 L_.VA - - - -
6 L_.VE 0.585 0.670 0.081 0.107
6 L_.VM 0.612 0.928 0.141 0.202
6 L_.VA - 0.472 - 0.429
7 L_.v'E 0.286 0.286 0.047 0.047
7 L_.VM 0.364 0.365 0.048 0.049
7 L_.VA - 0.731 - 0.117
8 L_.v'E 0.087 0.118 0.251 0.117
8 L_.VM 0.054 0.327 0.297 0.000
8 L_.VA - - - -
9 L_.VE - - - -
9 L_.VM - - - -
9 L_.VA - 1.540 - 0.000

Table 5.1: Summary of the time to failure analysis of mining-induced seismicity data

2D and 3D. In the 3D case the actual vertical location of the events were taken into account,

whereas in the 2D case all events were considered to be in the plane of the ore body. The reason

for this is that in general the vertical location of the seismic events is problematic. We see that

in some cases (events 4, 5 and 9) neglecting the vertical location indicated accelerated release

whereas including it did not. Also, for those cases where both the 2D and 3D analyses indicate

accelerated release, the differencein value of the exponent a is not large.

5.8 Time-to-failure in the BTW sandpile model

In this section we discuss the results of a time-to-failure analysis performed on BTW sandpile

model data. As mentioned earlier, this is done because of our belief that the sandpile model
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Figure 5.6: The cumulative area for the sandpile model as a function of time for
driving rate n = 1 for a lattice of linear size L = 100.

represents a simple model that captures the essential features of seismicity. One thus expects

similar behaviour for the sandpile model evolution as observed in the case of seismic data. We also

explicitly consider the conditions under which the time-to-failure analysis is valid in this model

by considering the percentage of critical events that are preceded by power-law acceleration of

activity as a function of the driving rate of the model. As we saw in section 5.3, different driving

rates lead to different response regimes as encoded by the event size probability distribution

functions.

For the sandpile model, we chose the area affected by avalanches as our measurable quantity

with which to perform the analysis. In all the simulations we used a = 0.59N as the critical event

size, where N is the number of lattice sites. The motivation for this particular choice is given

in the following section. The cumulative area affected by avalanches (simulated on a 100 x 100

lattice), is plotted for a time window of 200 time steps in Figures 5.6 and 5.7 for driving rates

n = 1 and n = 40 respectively. For the slow driving limit there is clear evidence of episodic

behaviour. After large events there are periods of relatively little activity (A to Band C to D in

Figure 5.6) which are followed by periods of accelerated activity (B to C and D to E in Figure

5.6) prior to the next large event. The average value for the exponent Cl! for this driving rate

is 0.351. This is within the range 0 < Cl! < 1 which is generally found from fits of tectonic and

induced seismicity data. For the fast driving limit the activity rate is more or less stationary
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Figure 5.7: The cumulative area for the sandpile model as a function of time for
driving rate n = 40 for a lattice of linear size L = 100.

with no discernible episodes as seen from the almost straight line for the cumulative activity

with time. This observed straight line is in agreement with the form suggested by eq. (5.4).

In Figure 5.8 we plot the percentage of critical events preceded by power-law acceleration

of activity in the time-to-failure as a function of the driving rate. For the case of n = 1, 81.31

percent of critical events were preceded by power-law time-to-failure increase in activity, whereas

for n = 40only 0.30percent of critical events were preceded by such power-law acceleration. We

thus see that this is highest for small driving rates, further confirming the assertion that phases

with power-law event size distributions show power-law increase in activity prior to large events.

In section 5.5 we discussed the basic algorithm used to make forward predictions of large

events. We did not consider the case of forward prediction in the sandpile model due to limited

available computing time. As pointed out in section 5.5, performing such analyses is compution-

ally intensive and we thus decided to limit our investigation to establishing whether accelerating

activity is observed prior to large events in the sandpile model and if so, the conditions under

which it will be observed.

Let us briefly comment on the behaviour of the system in the different response phases.

First consider the Gutenberg-Richter phase. In a complex, disordered material, the stress is

not uniformly distributed or perturbed by the external driving force. Initially small regions of

excess stress are created and the energy released from these clusters is small. The release from
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Figure 5.8: The percentage of characteristic events preceded by power-law acceler-
ation in the release as a function of driving rate for a lattice of linear
size L = 100.

these clusters is also not uniform, and this gives rise to the scaling (power-law) regime of the

Gutenberg-Richter relation. This can be viewed as a self-organising phase during which, if the

driving force is slow enough, stress is progressively transferred to larger and larger clusters that

are close to failure.

In the phase with characteristic event size statistics, stress is not distributed to larger clusters

progressively. It can be imagined that the system remains in a state where large clusters of

sites that are close to failure are always present. It is as if the system remains in a state with

long-range correlations.

5.9 Critical events

In this section we briefly discuss the critical event concept and its origins in more detail. We

also motivate our choice of critical event size in the sandpile model.

The concept of a critical event has its origin in trying to understand the mechanism by which

disordered materials rupture [37, 48]. There are several strategies to modelling this rupture

process. The most basic models assume that crack growth is similar to a percolation transition

in that when a macroscopic crack spans the material, global breakdown has occured. Several

models that go beyond just a simple percolation type analysis have been developed over the

years [37]. These models try to incorporate the dynamical aspects such as stress redistribution
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[37]. All of these models point to the fact that large scale breakdown occurs at some critical

value of stress or density of micro-cracks. The basic physical picture is that one starts off with

isolated randomly located defects or micro-cracks that grow under the increased loading stress

or with time until a "critical" density of defects or micro-cracks per unit volume is reached. This

then signals global breakdown of the material under consideration. Most of the models show

an acceleration of cumulative damage or cumulative energy released as these critical density or

stress values are approached. This accelerating behaviour is found to be described by

(5.11)

where D is some measure of the cumulative damage in the sample and a is the stress applied to

the material and ac is the stress at which breakdown occurs. This is exactly of the same form

as eq. (5.3).

Such critical point behaviour has also been observed when testing the breakdown of real

materials. In refs. [37,48] Sornette describes tests performed by the French Aerospace company

Aerospatiale on real composite materials that are used in the manufacturing of pressure tanks.

Tests of the breakdown properties of these tanks reveal such critical point behaviour as described

byeq. (5.11).

These studies and experiments form the basis on which the critical event concept for tectonic

earthquakes was introduced. It is also interesting to note that in the early 1980s there were

already suggestions that large earthquakes correspond to some critical breakdown phenomenon.

This was made on the basis of a renormalisation group study of a model that simulates the

mechanical breakdown of materials [49]. In conclusion, the critical event concept is based on the

fact that large scale breakdown occurs at a specific value of some parameter of the system under

consideration and it is preceded by a power-law increase in the cumulative activity.

We now turn to the question of our particular choice of ac = 0.59N for the critical event

size in the sandpile model simulations. The most convenient way to think of how to choose the

critical event size is to make a connection with percolation theory. This approach is motivated

by studies of the Forest Fire Model by Turcotte and co-workers [50]. We first give a description

of the Forest Fire Model in two dimensions. Consider a lattice where each site can be either

occupied by a tree or empty. At each time step a random site is selected and if the site is empty

a tree is planted there. If the site is occupied, a new random site is selected. Trees can also be

removed from the lattice by so-called fires that are ignited with a sparking frequency f. This

means that every J time steps, instead of planting a tree, a spark is dropped om a randomly

selected site. If a site is occupied by a tree, it burns and all nearest neighbour sites that are
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occupied also burn. If a site is empty when a spark is dropped, nothing happens and the planting

process continues at the next time step. One can think of the dynamics of the forest fire model

as a competition between growing and destryoing clusters of trees. The Forest Fire Model has

also been shown to exhibit SOC behaviour in that the distribution of fire sizes (defined as the

number of trees burnt in a fire), and the distribution of cluster sizes both display power-law

behaviour [2, 50J.

We now discuss the relation between the Forest Fire Model and site percolation as studied

by Turcotte and co-workers [50J. Site percolation is defined on a lattice where each site can

either be occupied or empty. At each time step a site is randomly selected and if it is empty it

receives a particle. If the site is already occupied nothing happens and the next random position

is generated. It is well known that in 2 dimensions the critical density where a connected cluster

of occupied sites spans the lattice is Pc = 0.59275 [50J. Here the density is defined as P = Ïï
where p is the number of occupied sites and N is the total number of lattice sites. It is clear that

the forest fire model without any fires is exactly a site percolation problem. It is precisely this

forest fire model without fires that Turcotte et al. considered in making the connection between

site percolation and the forest fire model [50J. Thus, a Forest Fire Model without fires will have

a connected cluster of trees that span the lattice when the density of trees is 0.59275 of the total

number of lattice sites. Consider dropping sparks on the lattice again. If one were now to drop

a spark and hit a tree, the ensuing fire would span the lattice with size aF = 0.59275N where

we denote the area covered by the fire by aF.

Now consider the sandpile model. Just as the fires were "switched off" in the forest fire

model, consider a sandpile model where one temporarily does not allow avalanches to occur.

Every site is still limited to have a maximum of 4 particles, but if a site reaches its threshold it

is not allowed to topple. Continuing in this way one will reach a stage where sites with height

z = 4 (those that can topple when they receive a particle) will form a connected cluster that

spans the lattice. Careful consideration will reveal that this is equivalent to the forest fire model

without fires. Sites with z = 4 now replace the trees that can burn. A convenient way to think

of it is to consider the sites with height z = 4 as "occupied" and all other sites as "empty".

This is of course equivalent to the site percolation problem and the critical density of sites that

will participate in an avalanche when perturbed is the same as the percolation density of site

percolation. Thus we choose ac = 0.59N as the critical event size.

We realise that there are some problems associated with this site percolation approach for

the sandpile model. It is much easier to implement it in the forest fire model since there are

two distinct "operations" that govern the dynamics of the clusters of trees. Planting trees grow
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BBj,
Figure 5.9: Examples of induced topplings during an avalanche

clusters whereas dropping sparks destroy them. By simply taking the sparking frequency small

enough one can grow clusters large enough that will allow system spanning fires. In the sandpile

model the same operation that adds particles, and hence grows clusters of sites with z = 4, is

also responsible for inducing avalanches and thus destroying these clusters. One thus cannot

control when avalanches will occur and they may be induced before one has system spanning

clusters of sites susceptible to toppling. However, one finds that topplings can be induced on

sites that do not have their heights equal to 4 when the avalanche is initiated (see Figure 5.9).

In first example the site with height z = 3 will also topple if any of the sites with height 4 topple

during an avalanche. Likewise in the second example the site with height 1 is not included in the

cluster of susceptible sites, but it will topple if each of its neighbours topple during an avalanche.

The hope is thus that the effects of (1) not being able to control when avalanches occur and

(2) these so-called "induced" topplings more or less cancel each other so that the site percolation

density value is still a valid approximation for the critical event size. This of course has to be

checked carefully. However, from the results of the sandpile model data of the previous section

it would seem as if this choice provides a good first approximation to the critical event size. The

percolation argument for the sandpile and forest fire models also makes a connection with the

discussion at the beginning of this section on the breakdown of materials where the large scale

breakdown is assumed to be some sort of percolation transition.

We now briefly discuss another approach, due to Chakrabarti and co-workers [51, 52], to

analyse large events in the BTW sandpile model. The basic question is again whether large

events correspond to a critical value of some parameter of the model? In other words, is there

some measurable property of the sandpile model that assumes a critical value when large or

system spanning events take place? The average height, hav, of the sand columns turns out to

be a good indicator of such critical behaviour. Large events occur when hav reaches some critical

value, he. Again, as was previously discussed for the time-to-failure approach, if this is a critical

point, the approach to criticality should be signalled by power-law behaviour of the measurable

quantities.

In their analysis Pradhan and Chakrabarti [52] considered how the number of topplings in
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an avalanche, s, the relaxation time, T, and the correlation length behave as the critical point

is approached. The first of these two parameters were already defined in Chapter 2 of this

dissertation. The correlation length is here defined as the average distance between the addition

site and the furthest site that toppled during an avalanche. In their numerical studies Pradhan

and Chakrabarti found that all three quantities show power-law divergence as he is approached.

That is,

T""" (he - hav)-'Y

s r- (he - hav)-Ó

(5.12)

(5.13)

(5.14)

This analysis also shows that some form of critical behaviour is indeed observed in the sandpile

model. It would thus seem as if the concept of critical events in the sandpile model is well justified.

In this section we have presented arguments that support the critical event concept in both

earthquake physics as well as the sandpile model. As shown in the preceding sections on the

application of the time-to-failure analysis, the identification of such critical events makes short

time prediction of large events possible. This is encouraging since it was initially believed that

systems that have SOC characteristics preclude any form of prediction.
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CHAPTER 6
Conclusions

We have been concerned with two questions in this thesis. Firstly whether seismicity induced by

human activity can be explained within the context of self-organisedcriticality. This is motivated

by the success of SOC to explain certain qualitative aspects of natural tectonic earthquakes. The

second question is whether there is any possibility of temporal prediction is SOC systems. At

first, it would seem as if self-organised critical systems allow no such predictability due to the

power-law event size distributions.

In answering these questions we followed the following route. Chapter 1 briefly discussed

self-organised criticality in analogy with ordinary critical phenomena in equilibrium statistical

mechanics. Several examples of systems believed to exhibit self-organisedcritical behaviour were

mentioned and we discussed the conditions under which SOC occur.

In Chapter 2 we discussed the BTW sandpile model and its statistical properties and briefly

highlighted certain known facts about the model. These include the observation that numerical

simulations produce power-law event size probability distributions in the limit of slow driving.

A scaling hypothesis was presented and we recalled how certain scaling relations can be derived.

In Chapter 3 we considered the critical state of the sandpile model in more detail. Firstly

a more general description of the sandpile model in terms of an operator algebra due to Dhar

[20Jwas discussed. This elegant formalism allows the calculation of certain correlation func-

tions, notably the two-point correlation function and the correlation of heights. Still using this

formalism one is also able to calculate the relative occupation of sites in the critical state. We

also considered the connection between graph-theoretical concepts and the configurations of the

Abelian Sandpile model. It followsthat there is a one-to-one correspondence between recurrent

configurations of the sandpile model and spanning trees on the lattice.

The second half of the disseration was devoted to answering the questions posed above. Chap-

ter 4 discussed induced seismicity in general and highlighted the several correspondences that

exist between seismicity and self-organised criticality. In that chapter we also provided a mo-

tivation for studying induced seismicity using the self-organised criticality framework. Two

qualitative features of induced seismicity can be motivated by using the results of the analysis

of the properties of the critical state of the sandpile model as done by Dhar and co-workers

for the Abelian Sandpile model [20, 25J. Firstly, the possibility of small perturbations inducing

large responses is justified by showing that a considerable portion of the system is close to its

failure threshold. Together with this is the observation that not all perturbations induce seismic
71
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activity. This follows from the fact that the rest of the lattice, that is not close to failure, is

fairly stable against external perturbations. Secondly, results of traditional modelling approaches

of the earth's crust as well as observations indicate that the stress field is correlated over long

distances. Analysis of the sandpile model indicate that the sandpile heights are also long-range

correlated. An important point to consider is that neither of these properties are required in

the definition of self-organised criticality. They emerge from an analysis of the sandpile model

and correspond to real observed features of induced seismicity. It would thus seem as if our first

question can be answered in the affirmative.

We also discussed the question of bi-modal distributions in mining-induced seismic data in

Chapter 4 and its possible realisation in terms of sandpile models. To this end we introduced

a model that has two sets of toppling rules (directed and non-directed) that are selected ran-

domly at each time step. This model, however, only gives slight indications of having bi-modal

behaviour.

In Chapter 5 we analysed the short term temporal patterns of the sandpile model in more

detail. The primary question considered is whether there is any predictive information that can

be extracted from the sandpile model data. This was done in analogy with similar studies of

the temporal evolution of seismicity on fault systems and mining-induced seismicity. Although

one cannot account for the exact time evolution at each time step, one is able to extract enough

information from the behaviour of the cumulative activity in order to make qualitative statements

concerning the prediction of large events in the system. Central to the analysis of the temporal

patterns is the concept of a critical event which allows the use of tools familiar from the study of

continuous phase transitions. This is approach is known as a time-to-failure analysis. We gave

an overview of the same analysis in tectonic [44] and mining-induced seismicity [46]. We then

defined the critical event size for the sandpile model and gave a motivation for this particular

choice that relies on aspects of percolation theory. The results of the analysis for the sandpile

model indicate that large events are indeed preceded by a power-law increase in activity in the

slow driving limit and thus the critical event hypothesis seems to apply to the model. Given

the fact that the critical event hypothesis also gives one a framework within which to predict

large events, it would seem as if power-law event size distributions and correlation functions in

the sandpile model do not necessarily preclude the possibility of predicition of large responses to

external perturbations.

Finally we consider what the open questions are related to this work. Firstly, as mentioned in

Chapter 5, the exact choice for the critical event size in the sandpile model has to be determined

more rigorously than we did in this work. The relation with percolation suggested here seems to
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be a good starting point. Secondly, the time-to-failure analysis for the sandpile model should be

extended to perform forward predictions of large events.

Thirdly, the question of modelling bi-modal behaviour in seismicity using sandpile models

can be further investigated. It is not clear how to realise such bi-modal behaviour in terms of

sandpile models but we suspect that it will invlove two distinct types of toppling rules. The

details, however, are not yet clear.

Finally, in terms of the bigger SOC picture, there are still many open questions. As already

mentioned in the Introduction to this thesis, there is as yet no single unified mathematical

framework for studying SOC systems. Also, except for a few very specific models [21], the

avalanche distribution exponents have not been determined analytically and questions of whether

the sandpile model obeys multifractal or ordinary scaling remain unanswered.
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APPENDIX A
Burning algorithm on auxiliary lattice

In this appendix we give an explicit example of constructing a new configuration on an auxiliary

lattice for calculating the height correlations in the critical state of the sandpile model. We also

show explicitly that the new configuration burns in exactly the same order as the configuration,

on the original lattice, from which it was constructed.

4 3 2 4
3 4 3 2
1 4 2 3
3 2 3 4

Figure A.I: A recurrent configuration of the Abelian Sandpile Model

Consider the configuration in Figure A.1. Focus on the site with height z = 1. The auxiliary

lattice is constructed by deleting the bonds of the sites above and below it. (Here we are following

the prescription of Majumdar and Dhar as explained in [25]and in Chapter 3). This means that

when those sites or the site with height z = 1 topple, no particles are exchanged between them.

Effectively, they are no longer considered to be neighbouring sites. The configuration is obtained

by deleting height of each of the adjacent sites (including those which bonds have been cut) so

the following configuration is obtained

4 3 2 4
2 4 3 2
1 3 2 3
2 2 3 4

Figure A.2: The configuration equivalent to that in Figure A.I on the auiliary lattice

We now apply the burning algorithm to this new configuration to determine whether it is a

recurrent configuration on the auxiliary lattice.

We see that the lattice burned completely, therefore the configuration is recurrent. If we

compare the burning order to that of the original configuration in Figure 3.1, we see it is exactly

the same. This illustrates the assertion in the text that the burning order remains the same on

the auxiliary lattice.

We should clarify one technical detail. Consider the second lattice in Figure A.3, i.e. after

step 1 of burning. In the original lattice these two highlighted sites would not be able to burn
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A. Burning algorithm on auxiliary lattice

4 3 2 4
2 4 3 2
1 3 2 3
2 2 3 4

--T

3 2
2 4 3 2
1 3 2 3

2 3

4 3
1 3 2 --T

1 2

75

2
4 3 2

1 3 2
2

--T

--T 1--+-+-+-..,

Figure A.3: An example of using the burning algorithm on the auxiliary lattice

since their heights are not strictly greater than their number of unburnt neighbours. However,

on the auxiliary lattice each of these sites effectively have one unburnt neighbour, and not two,

because one of the bonds was deleted and hence it is no longer considered a neighbouring site.
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