
Design of a low power wireless sensor network

for environmental monitoring

by

Gideon Spreeth

Thesis presented in partial fulfillment of the requirements

for the degree of

Master of Science in Electronic Engineering

at Stellenbosch University

Supervisor:

Dr. R. Wolhuter

December 2008

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained

therein is my own, original work, that I am the owner of the copyright thereof (unless to

the extent explicitly otherwise stated) and that I have not previously in its entirety or in

part submitted it for obtaining any qualification.

Copyright 2008 Stellenbosch University

All rights reserved

i

Stellenbosch University http://scholar.sun.ac.za

Abstract

A WSN (wireless sensor network) consists of a collection of small, low power electronic

devices that can sense their environment and communicate with each other in order to

send data to a base station for logging and monitoring. Research done on WSNs has

increased rapidly over the past few years, as the necessary RF hardware has become

cheaper and smaller. The wealth of information and hardware available in this field has

made it possible to design and deploy networks for a multitude of monitoring purposes,

on almost any terrain, without an existing telecommunication infrastructure.

This thesis presents research into some major aspects of WSNs and the implementation of

a test system with wireless sensor motes, that can be used for environmental monitoring,

conservation purposes, impact studies, early warning systems for floods, fires etc. The

system also has a wide range of possible uses in agriculture, as more data and better

control over crops can increase yield.

The power constraint of sensor nodes is one of the biggest concerns, as batteries can

be depleted quickly and render a system useless. For this reason, work was focused on

reducing power consumption of the hardware by means of various methods. Power use was

also simulated very successfully, giving a accurate way of predicting node lifetime with

a variety of battery types. The system was implemented on the Tmote Sky hardware

platform using the open source sensor network operating system, TinyOS.

ii

Stellenbosch University http://scholar.sun.ac.za

Opsomming

’n RSN (radio sensor netwerk) bestaan uit klein, lae energie elektroniese toestelle wat

hulle omgewing kan monitor en met mekaar kommunikeer om data te stuur na ’n basis

stasie vir stoor en monitering. Navorsing in die veld van RSN’e het drasties toegeneem

oor die afgelope paar jaar, soos die nodige RF hardeware goedkoper en kleiner raak. Die

magdom informasie en hardeware beskikbaar in die veld het dit moontlik begin maak om

netwerke daar te stel vir ’n verskeidenheid van moniterings toepassings, op amper enige

terrein sonder bestaande telekommunikasie infrastruktuur.

Die tesis bied navorsing aan wat gedoen is op sommige aspekte van RSN’e en die im-

plementasie van ’n toetstelsel met radio sensor motes, wat gebruik kan word vir omgew-

ingsmonitering, bewaringsdoeleindes, impakstudies, vroeë waarskuwingstelsels vir vloede,

vure ens. Die stelsel het ook ’n wye reeks moontlike gebruike in landbou, omdat meer

data en beter beheer oor oeste dravermoë kan verbeter.

Die beperkte krag beskikbaar tot die nodusse is een van die grootste probleme, omdat

batterye baie vinnig pap kan raak en ’n stelsel onbruikbaar maak. Om hierdie rede is

die werk gefokus op die vermindering van kragverbruik deur gebruik te maak van verskil-

lende metodes. Kragverbruik is ook suksesvol gesimuleer, wat ’n akkurate manier gee om

nodusleeftyd af te skat vir ’n verskeidenheid batterytipes. Die stelsel is gemplementeer

op die Tmote Sky hardeware platform, deur gebruik te maak van die die oopbron sensor

netwerk bedryfstelsel, TinyOS.

iii

Stellenbosch University http://scholar.sun.ac.za

Acknowledgements

I’d like to thank Dr Riaan Wolhuter for all his efforts in helping me produce this piece

of work. Another big thank you to all my friends and family who supported me through

years of studying.

iv

Stellenbosch University http://scholar.sun.ac.za

Contents

Declaration i

Abstract ii

Opsomming iii

Acknowledgements iv

1 Introduction 1

1.1 Typical network and system requirements 3

1.2 Design approach . 5

1.3 Summary of major aspects addressed and contributions 5

1.4 Thesis layout . 7

2 Theory and previous work 8

2.1 Communication basics . 8

2.1.1 Radio propagation . 8

2.1.2 ISM communication bands . 10

2.1.3 802.15.4/ Zigbee communication standard 11

2.2 Connectivity and coverage . 11

2.2.1 Voronoi diagrams . 12

2.3 Localization . 14

2.3.1 Connectivity based . 14

2.3.2 Signal arrival time . 16

2.3.3 Signal strength . 17

2.4 Routing . 19

2.4.1 Classification of routing protocols 19

2.4.2 Relevant protocol summary . 21

2.5 Hardware . 23

2.5.1 Microprocessors . 24

2.5.2 WSN motes . 24

2.6 Powering WSN hardware . 26

v

Stellenbosch University http://scholar.sun.ac.za

CONTENTS vi

2.6.1 Battery technology . 26

2.6.2 Solar energy . 28

2.6.3 Piezoelectrical energy harvester . 29

2.7 Summary . 30

3 Hardware implementation 31

3.1 Tmote Sky . 31

3.1.1 Radio . 34

3.2 Sensors . 34

3.2.1 On chip sensors . 34

3.2.2 Mote integrated sensors . 36

3.2.3 Analogue sensors . 38

3.3 Summary . 40

4 Software 41

4.1 TinyOS . 41

4.1.1 Boomerang . 42

4.1.2 NesC - Network embedded system C 42

4.2 Sense application . 42

4.2.1 Sensor interfaces . 43

4.2.2 Watchdog timer . 44

4.3 Multihop routing . 44

4.3.1 Data routing . 44

4.3.2 RSSI and Battery level route setup system 45

4.3.3 Sendrouteupdate . 46

4.3.4 Route cost setup . 47

4.3.5 Insert . 47

4.3.6 Selectparent . 49

4.4 SP : Sensornet Protocol A Unifying link abstraction 50

4.5 Duty cycling system . 52

4.6 Deluge network programming . 52

4.6.1 Using Deluge . 53

4.6.2 Led debugging . 54

4.7 Java interfacing . 56

4.7.1 Trawler user interface . 56

4.7.2 Serialforwarder . 57

4.7.3 CSV data logging . 57

4.8 Summary . 58

Stellenbosch University http://scholar.sun.ac.za

CONTENTS vii

5 Simulations 59

5.1 Simulating sensor networks . 59

5.1.1 TOSSIM . 59

5.1.2 OMNeT++ . 60

5.1.3 Truetime . 61

5.2 Simulation model buildup . 62

5.2.1 Node model . 62

5.2.2 Network model . 63

5.2.3 Overall model structure . 65

5.3 Functions . 66

5.3.1 Initialization functions . 67

5.3.2 Node functions . 67

5.4 Simulation outputs . 67

5.4.1 Text output . 67

5.4.2 Node animation . 68

5.4.3 Network schedule . 69

5.4.4 Battery levels . 69

5.5 Summary . 71

6 Performance measurements 72

6.1 Battery life . 72

6.1.1 Alkaline . 73

6.1.2 Ni-Cd . 73

6.1.3 Ni-MH . 74

6.2 Duty cycle tests . 75

6.2.1 Synchronization test . 75

6.2.2 Discharge rates . 75

6.3 RSSI and LQI radio link measurements . 77

6.3.1 RSSI and LQI comparison . 77

6.3.2 RSSI accuracy . 78

6.3.3 Transmission limits . 78

6.3.4 RSSI vs Distance . 78

6.4 Network setup and communication . 80

6.4.1 Route discovery . 80

6.4.2 Network throughput . 81

6.5 Sensor readings . 82

6.5.1 Outdoor measurements . 82

6.5.2 Indoor measurements . 83

6.6 Summary . 85

Stellenbosch University http://scholar.sun.ac.za

CONTENTS viii

7 Comparative results 86

7.1 Battery life . 86

7.1.1 Always ON system . 87

7.1.2 Duty cycling system . 89

7.2 Voronoi routing analysis . 91

7.3 Summary . 93

8 Conclusions and future developments 94

8.1 Summary of contributions . 95

8.2 Hardware of the future . 97

8.2.1 Motes . 97

8.2.2 Communication . 98

8.2.3 Power supply . 99

8.2.4 Pervasive computing . 99

8.3 System Deployment . 100

8.3.1 Off site monitoring . 100

A Tmote Schematics 105

B Flow Diagrams 109

C Message Format 114

D Program installation 117

D.1 TinyOS . 117

D.1.1 Requirements . 117

D.1.2 Installation . 117

D.1.3 TinyOS usage . 118

D.1.4 Java apps . 119

D.2 Truetime . 120

D.2.1 Requirements . 120

D.2.2 Installation . 120

D.2.3 Compilation . 121

E CD-ROM guide 122

E.1 Simulations . 122

E.2 System software . 122

E.3 Thesis Files . 123

Stellenbosch University http://scholar.sun.ac.za

List of Figures

1.1 Layout of a typical sensor network . 2

1.2 Design criteria for a sensor network . 3

2.1 IEEE 802.15.4 operating channels . 11

2.2 Voronoi tesselation of node locations . 12

2.3 Delaunay triangles with corresponding voronoi polygons 13

2.4 Maximal support and breach paths in a sensor field 14

2.5 By measuring distances to three reference points, the centre node, U, can

determine its position by multilateration 16

2.6 The typical RSSI value measured vs. actual RF input power for Chipcon

CC2420 radio . 18

2.7 WSN Routing protocol classification . 20

2.8 Tmote Mini and Tmote Mini Plus mote cores 26

2.9 Typical alkaline cell lifetime at different discharge rates 27

2.10 Piezoelectric energy harvester model . 29

3.1 Tmote Sky module . 32

3.2 Tmote Sky Block diagram . 33

3.3 Functionality of the 6 and 10 pin expansion connectors(Alternative pin

usage in gray) . 35

3.4 The SHT11 Temperature and relative humidity sensor 36

3.5 Photo sensitivity of the light sensors . 38

3.6 Analogue sensor add-on circuits . 39

4.1 The TinyOS Logo . 41

4.2 Sense application block diagram . 43

4.3 Routing system functional diagram . 45

4.4 Sendrouteupdate functional block diagram 46

4.5 Insert function block diagram . 48

4.6 Selectparent function block diagram . 49

4.7 SP connection between network and link layer 50

ix

Stellenbosch University http://scholar.sun.ac.za

LIST OF FIGURES x

4.8 Trawler user interface . 56

4.9 The Serialforwarder java application which connects client applications to

the motes . 57

5.1 GNED graphical simulation model buildup 61

5.2 Truetime kernel block mask dialog setup box 62

5.3 Wireless node truetime simulation model 63

5.4 Wireless network mask dialog setup box 64

5.5 Wireless network Truetime simulation model 65

5.6 A 10 node network Truetime simulation model 66

5.7 Network simulation node visualization . 68

5.8 Simulation network packet schedule . 69

5.9 Simulation battery usage output . 70

6.1 Discharge curve of alkaline cells when used to power motes 73

6.2 Discharge curve of 700mAh NI-CD cells when used to power motes 74

6.3 Discharge curve of 2500mAh Ni-MH cells when used to power motes 75

6.4 Oscilloscope view of voltage difference while running duty cycle system . . 76

6.5 Ni-MH discharge curves for different duty cycle settings 76

6.6 RSSI vs LQI measurements for the same packets received 77

6.7 RSSI correlation between 2 nodes . 78

6.8 RSSI limits of transmission at different power levels 79

6.9 RSSI correlation with distance . 79

6.10 Trawler display of constructed multihop network 80

6.11 Maximum report rate against number of nodes in the network 81

6.12 Outdoor humidity and temperature measurements 82

6.13 Outdoor mote voltage . 83

6.14 In lab humidity and temperature measurements 84

6.15 Indoor mote voltage . 84

6.16 Light intensity inside lab . 84

7.1 Math model battery life comparison . 88

7.2 Lifetime of nodes at different duty cycle settings. 89

7.3 Math model node lifetime predictions at 10% duty cycle 89

7.4 Math model node lifetime predictions at 5% duty cycle 90

7.5 Math model node lifetime predictions at 1% duty cycle 90

7.6 Difference between shortest path and closest neighbour routing 92

8.1 Golem dust mote with American penny for size comparison 97

8.2 Energy used per bit transmission for different methods 98

Stellenbosch University http://scholar.sun.ac.za

LIST OF FIGURES xi

B.1 Sense application components and interfaces 110

B.2 Multihop routing components and interfaces 111

B.3 SPC link abstraction components and interfaces 112

B.4 Humidity sensor components . 113

B.5 Internal voltage sensor components . 113

C.1 Message format . 115

C.2 Message format . 116

D.1 Truetime Block library . 121

Stellenbosch University http://scholar.sun.ac.za

List of Tables

2.1 Attenuation of common Materials . 9

2.2 A basic microcontroller history . 23

2.3 Measured current consumption of Telos compared to Mica2 and MicaZ motes 24

2.4 Approx. power ratings for common alkaline-manganese dioxide batteries . 27

3.1 Radio power levels . 34

4.1 Segment of CSV file written by data logging program 58

7.1 Current draw of various operations by the Tmote 87

xii

Stellenbosch University http://scholar.sun.ac.za

Nomenclature

AOA Angle of arrival

bps Bits per second

bsl Boot sector loader

GPIO General purpose input output

GUI Graphical user interface

LDR Light dependant resistor

LED Light emitting diode

LOS Line of sight

LQI Link quality indicator

mAh milli Ampere hour

MEMS Micro electrical mechanical systems

NI-Cd Nickel Cadmium

Ni-MH Nickel metal hydride

OS Operating system

QoS Quality of service

RF Radio frequency

RH Relative humidity

RSSI Received signal strength indicator

SP Sensornet protocol

SPI Serial peripheral interface

TDOA Time difference of arrival

TOA Time of arrival

USB Universal serial bus

Ws Watt seconds

WSN Wireless sensor networks

xiii

Stellenbosch University http://scholar.sun.ac.za

Chapter 1

Introduction

Acquiring information on our environment has become increasingly important in many

areas over the last couple of years. The increase in natural disasters and weather changes

in the recent past are cases in point. Due to population growth, mismanagement and

overuse of resources like fresh water supplies, it is clear that we need to look at more

efficient ways of producing, using and saving everything we have.

If one could, for example, collect information on ground-moisture level along a riverbank,

the effect of alien plant species on the environment could be examined. Forest fires could

be detected much earlier if one could monitor temperatures at a number of critical points

and be warned immediately of any dangerous levels. Farmers can increase their yield and

reduce work at the same time, by having an automated and distributed sensing system in

a field. This could monitor information like temperature, humidity and ground moisture

and automatically adjust irrigation in different areas according to each one’s needs. It is

particularly for this type of environmental application that we want to design a robust

sensor network that would require minimal maintenance.

To implement such a distributed sensing system, a number of inexpensive sensors is re-

quired, as well as a way to get the collected data to a central control point. A wired

sensor system is only feasible in a small number of applications because it can only cover

a small area. A wired system could be the best choice in control of small greenhouses,

home alarm systems or buildings with existing wired network support. In most cases of

environmental monitoring, however, the area in need of coverage is much too large and

does not have an existing power or communications infrastructure.

Because low power processors and radios have become widely available and inexpensive,

WSNs have become a widely researched subject. Figure 1.1 shows a basic WSN, consisting

1

Stellenbosch University http://scholar.sun.ac.za

Chapter 1 — Introduction 2

Figure 1.1: Layout of a typical sensor network

of wireless nodes with the necessary sensors attached. Collected data can then be sent

wirelessly, through a multihop protocol via other nodes in the system, to a central base

station or sink. This will be a computer that can be used to monitor the data, or that

is connected to a web server for off site monitoring. The wireless nodes1, need only do

basic processing tasks and send sensor data at the required rate. With this functionality,

WSNs can be used with great success in the aforementioned applications. The greater

resolution and spread of data acquired on a specific area, as compared to what is collected

from one weather station, can produce a bigger understanding of weather influences and

offer an easy and accurate way to micro manage the environment.

1Also called motes, when referred to in the physical sense (as a piece of hardware).

Stellenbosch University http://scholar.sun.ac.za

Chapter 1 — Introduction 3

Figure 1.2: Design criteria for a sensor network

1.1 Typical network and system requirements

Each application has its own goals, but to design a suitable WSN three main criteria

[23] have to be considered. Figure 1.2 shows the relationship between energy use, data

loss / network delay and quality of service (QoS). Each of these can vary greatly in

relative importance, depending on the application of the network. For our environmental

monitoring application, low energy use is by far the most important. The motes will

have to run off battery power, as they will be used outside where mains power supply

is not available. It is not feasible to replace batteries daily, or even weekly, in most

applications, so it is necessary to design the system in such a way that energy use is

limited as far as possible. This can be achieved by using low power hardware and also

intelligent communication and data gathering schemes.

Because of power constraints radio ranges are usually small. Therefore, next in line of

importance will be ensuring good QoS and coverage of the network. The monitored area

will be covered by a number of sensors per unit area for an application like plantation

moisture control. Big gaps between motes can lead to inadequate data resolution and,

therefore, ineffective watering management. The communication range limitations require

that a multihop system be implemented. This may result in a problem if certain nodes

in the network die, or are too sparsely placed. Network coverage and connectivity of

other nodes might then suffer. Therefore, the overall QoS, coverage and connectivity can

depend on the functioning of single nodes, if these problems are not addressed accordingly.

It is not always important to have perfect packet transmission. For example, a system

that logs the local temperature every thirty seconds will be adequate even if every ten

minutes or so a packet is dropped. Especially with weather data that does not change

Stellenbosch University http://scholar.sun.ac.za

Chapter 1 — Introduction 4

very quickly, it is also acceptable to have a large network delay of multiple seconds. A

good example of where both coverage and reliable packet transmission become much more

important is in early warning systems like fire detection. The system would be useless if

an area of forest could burn down before a sensor were triggered, or if the chance of an

alarm message being dropped were so large that the system could fail totally.

Because of the outdoor placement of the motes it is essential that the electronics be

resistant to weather extremes and also the occasional rough handling. These requirements

can easily be met by using robust enclosures for the motes.

A big problem with distributed systems like these is the fact that one might need many

nodes to effectively cover an area. This might prove too costly, therefore the effectiveness

of the system also depends to a large extent on the price of the hardware. If one can use

inexpensive nodes, it would not be a problem to have redundant nodes in an area, or even

lose a couple every now and then.

If we assume the WSN is up and running and sending data to the sink, the next consider-

ation is being able to use the information received, be it close or far away from the actual

system, immediately or even months after actual data gathering. Software is needed for

saving data in a usable format and also some kind of interface for visualizing it. Func-

tionality of a WSN greatly improves if data can be made available over a network or the

internet. This would enable users to access their monitored environment from anywhere

in the world.

The main goal of our system will be to monitor weather and/or ground moisture informa-

tion. This will be monitored in places where frequent access is not possible. As mentioned,

speed and reliability of data delivery is not important with this type of data. With the

criteria as stated above, we could now specify that our system will be focussed mainly on

ensuring low power consumption and also have robust features, in order to extend lifetime

and limit down time. Data will need to be accessible off site, therefore, a system that will

reliably sense and relay data to distant users, without requiring frequent maintenance, is

a goal to keep in mind while designing the WSN.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1 — Introduction 5

1.2 Design approach

Relevant work in the field of wireless communication and sensing systems was studied to

determine common standards and the correct approach towards implementing a WSN.

The subtle differences between WSNs and other wireless systems had to be kept in mind

when considering communication principles and protocols. A basic system specification

and communication protocol strategy could now be outlined to address the relevant prob-

lems.

With the basic system outline in mind, we now had to find an adequate simulation and

hardware platform for system development and testing. There are a number of network

simulation platforms available, but not all are suited to WSNs. The power constraint

is the biggest issue that must be resolved and most packages do not have support for

simulating power usage. Most of the development required on sensor networks is in

the software department and not hardware, as a wide range of very capable platforms

designed for WSNs is currently available on the market (see section 2.5). It was therefore

decided to use off the shelf WSN motes. With a suitable WSN simulator and hardware

platform, the system could now be implemented and simulated concurrently. Testing and

using a system easily and quickly is essential, therefore an interfacing system had to be

constructed. A graphical user interface (GUI) was used throughout the implementation

process of the system, to visualize system data for debugging and testing. The simulation

and hardware platforms, coupled with the data logging and user interface applications,

made it possible to test our improvements and compare them to existing systems and

then present the expected system performance.

1.3 Summary of major aspects addressed and contri-

butions

It was decided at the outset that there is merit in carefully investigating few aspects of

WSN development and implementation, in an effort to realize corresponding improve-

ments, not just to the individual areas, but also consequently to the overall WSN func-

tionality. These aspects can be summarized as follows:

Hardware platform with open source operating system. A very capable hardware

platform was found in the Tmote Sky motes with the TinyOS operating system. TinyOS

has many basic components that can be combined to implement a successful system.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1 — Introduction 6

This OS was studied to determine its abilities and the shortcomings of the available

components.

Smart application. A mote control application was developed with network program-

ming and lockup safeguard feature. This program also automatically detects sensors and

reports data through the multihop system.

Power aware multihop transmissions. A basic link quality routing protocol was

already incorporated, enabling multihop message transmission. This was studied in depth

and extended to make the protocol power-aware, as such a protocol was not yet available

in the TinyOS distribution.

Duty cycle power saving incorporated. The routing protocol was used to good effect,

in conjunction with a dutycycle system incorporated in TinyOS, to limit power usage as

far as possible.

Development of WSN simulator with power simulations. It was necessary to find

a suitable simulation platform with the ability to simulate power usage. It was found that

most platforms did not have this ability and were not written to take aspects of WSNs

into account. This led to the development of a suitable system in Truetime, with very

accurate end results.

Range of battery technology tests. Tests were also done to demonstrate the suitabil-

ity of different battery technologies for sensor networks. This gave a great view of what

could be expected from different types of cells.

Mote lifetime tests and estimations. The lifetime of motes with different cell types

could be measured and this was very accurately matched by the simulation and mathe-

matical models written. This gave an accurate means of demonstrating power usage of

motes and estimations of lifetime extensions without the need for long system test runs.

GUI extensions. Another aspect addressed was the visualization and logging of data.

A basic GUI was supplied with TinyOS but this was extended to make development easier

and the display of more data channels possible.

Data logging. A basic data logging system was also constructed to store information

and make incorporation with systems such as web display possible.

Voronoi diagram as communication analysis tool. Voronoi diagrams were used

to calculate the difference in path length and network throughput in multihop routing

applications between the best quality and shortest routes.

Stellenbosch University http://scholar.sun.ac.za

Chapter 1 — Introduction 7

During these investigations and developments, a complete WSN was implemented as a

test platform.

1.4 Thesis layout

The theory behind WSNs will be discussed in Chapter 2, which will provide an overview

of the different aspects of sensor networks and the issues to be addressed in order to

implement a successful system. From the background study we will go to the hardware and

software implementation of the system in Chapters 3 and 4. Performance measurements

of the implemented system will be discussed in Chapter 6. Simulations of the system

will be shown in Chapter 5 with some comparative results between this and the actual

network performance in Chapter 7. Concluding remarks and some proposals on future

work required in the field will be given in Chapter 8. The appendices include hardware

schematics, system block diagrams and other relevant reference information.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2

Theory and previous work

2.1 Communication basics

2.1.1 Radio propagation

Communication is the single most important and difficult aspect of WSNs. The ability of

motes to relay data effectively, to maintain connectivity and to provide an acceptable QoS

all rely on this. Therefore a short discussion on different natural effects that influence

signal propagation will be provided. Our system will consist of stationary nodes and this

reduces certain effects, such as Doppler and fading, which are much more apparent in

mobile systems.

The quality of a wireless link can vary greatly, even with stationary nodes, because of

propagation effects such as:

Reflection from the ground or large objects

Diffraction from edges and corners of terrain or buildings

Scattering by foliage or small objects

Attenuation by rain, the atmosphere or other objects

This list itemizes most of the important effects for frequencies above 500MHz and thus

includes the type of wireless system that we are investigating (see section 2.5 on hardware).

Generally these effects reduce received signal power and result in path loss calculations

being very difficult and imprecise. The Friis formula, 2.1, shows that basic path loss

8

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 9

Material Frequency Loss(dB)

Concrete Wall 1.3 GHz 13

Sheetrock 9.6 GHz 2

Plywood 9.6 GHz 4

Chain link fence 1.3 GHz 5-12

Loss between floors 1.3 GHz 20-30

Corner in corridor 1.3 GHz 10-15

Table 2.1: Attenuation of common Materials

is 1
R2 but this is only nearly accurate if there are no other losses with a perfect single

line-of-sight (LOS) path between transmitter and receiver.

Pr =
GtGrλ

2

(4πR)2
PtW (2.1)

Reflection, diffraction and scattering all have basically the same negative effect of pro-

ducing signals at the receiver with different amplitudes and time offsets. This causes

destructive interference which can greatly reduce received signal strength, even if it seems

as if there is a LOS path between sender and receiver. In spite of the negative effects, this

multipath effect can also be beneficial in some cases. If one has a wireless communication

link without a LOS path but there is a reflective surface in sight of both sender and

receiver, the reflected signal might be even greater than the direct signal and therefore

produce better communication.

Attenuation is the decrease in signal power due to losses in the propagation path. In table

2.11 the attenuation figures of common materials in our everyday environment are shown.

A system that gives a theoretical range of hundreds of meters may only be able to relay

data indoors over tens of meters. Atmospherical attenuation is negligible at frequencies

below 10GHz.

1This and more relevant information can be found in [33]

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 10

2.1.2 ISM communication bands

Usage of the RF spectrum is controlled differently in each country but a few frequency

bands are open for use by the general public, without licensing. These are still subject

to the different limitations set by each government. The bands most commonly used in

licence free wireless applications are:

433 and 868/915 MHz

The 433 MHz band is open for any wireless communication, but has a +20dBm transmit

power limit and a radio duty cycle limit of 10%. The duty cycle states the percentage of

the time that the radio may be transmitting. The 868 and 915 MHz bands are split into

a couple of groups that are either allocated for alarm systems or open for any use. The

duty cycle limits range from less than 0.1% to 100%. Transmit power limits also vary

between bands in different countries.

2400 to 2483.5 MHz

This frequency band is the most commonly used communication spectrum, with no limi-

tations on application or transmit duty cycle. The worldwide minimum limit on transmit

power in this band is +10dBm. This frequency is used in many applications, such as voice

communication radios, cordless phones and most wifi standards.

5150 to 5825 MHz

There are three 100MHz bands in this range that are also used for wifi operation, though

to a lesser extent than the 2.4GHz band is. The 802.11a wifi standard, released in 1999,

produced a maximum data rate of 54Mbit/s. As this band is used in far fewer applications,

it is less prone to interference than other wifi bands. The downside is that the higher

frequencies result in a shorter communication range.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 11

2.1.3 802.15.4/ Zigbee communication standard

Figure 2.1: IEEE 802.15.4 operating channels

This is a IEEE standard that defines the Medium Access control (MAC) and Physical

Layer (PHY) specifications for Low-rate wireless personal area networks (LR-WPANs)

[17]. This standard is designed to be used with low power and low complexity hardware

that communicates wirelessly over short ranges. The standard uses a contention based

(CSMA /CA) carrier sense multiple access with a collision avoidance medium access

mechanism.

2.2 Connectivity and coverage

One of the most important issues in WSN is coverage [41] of the network. Due to the

large variety of network applications, there are multiple interpretations of what coverage

entails. In wireless networks it may be seen as the communication coverage of nodes. In

environmental monitoring WSNs this issue also relates to how well the system observes a

given area and how accurately it can detect and report changes. If, for example, the main

goal is to detect fires, an area with poor sensor coverage could already have been burning

for some time before detection takes place, by which time the fire has spread further. A

system used for irrigation control in a plantation, will also be untrustworthy if an area

can dry out and this is not picked up by a sensor node.

The issue of coverage coincides with that of connectivity. The sensor nodes have a limited

range of communication and therefore, if an area has too few nodes, the connectivity of

the nodes throughout that area might also suffer. The lifespan [21][40][20] of the whole

network2 is much more important in these types of network than the lifespan of individual

nodes. Especially in large density networks, certain nodes can die out while the network

continues to function with adequate efficiency and accuracy. In securing a good lifetime

for the system the connectivity becomes most important. If a certain number of nodes

2The network lifetime can be seen as the length of time that enough nodes are still connected to give
adequate coverage.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 12

100 200 300 400 500 600 700 800 900

100

200

300

400

500

600

700

800

900

Figure 2.2: Voronoi tesselation of node locations

is needed to relay data through a poorly connected zone, the death of one or two critical

nodes could also imply the death of a big part of the network.

2.2.1 Voronoi diagrams

Voronoi diagrams [5][6][3] can be basically explained as follows: If one considers a set

of coplanar points then, for each point in the set, a boundary can be drawn around the

area which includes all the points that are closer to this point than any other. These

boundaries are called Voronoi polygons, and the set of all Voronoi polygons for a given

area are called a Voronoi diagram. Figure 2.2 shows a Voronoi diagram for a given set of

random points.

Voronoi diagrams have been re-invented and studied independently in the fields of applied

natural sciences, mathematics and computer science. There are three main reasons why

these diagrams receive so much attention. Firstly, Voronoi diagrams arise in nature in

various situations. For example, human intuition is often guided by visual perception,

so if one sees a structure it can be much easier to understand the underlying problem.

Voronoi diagrams also have very interesting mathematical properties and are related to

many well known geometrical structures. Finally, Voronoi diagrams have also been a

powerful tool in solving seemingly unrelated computational problems and, therefore, have

seen increasing use in computer science. It is especially in the field of connectivity and

coverage in WSNs that they can be used to good effect.

Structures that are directly related to these diagrams are Delaunay triangulations. These

can be found by connecting the points in the Voronoi diagram whose polygons share

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 13

Figure 2.3: Delaunay triangles with corresponding voronoi polygons

an edge. As shown in figure 2.3, another interpretation is that the centre of a circle

circumscribing a Delaunay triangle is at the vertex of a Voronoi polygon. Neighbour

information can be extracted from these triangulations, because points in close proximity

are connected. It is with the properties of Delaunay triangulations and Voronoi diagrams

that the best and worst case coverage areas can be found.3

Worst case coverage- Maximal Breach Path

This is defined as a path through a sensor field with the property that for every point on

the path (from arbitrary point A to B), the distance to the closest sensor is maximized.

Since the Voronoi polygons maximize the distance to the closest sensor sites, this path

will lie on the Voronoi line segments. The algorithm to find this path basically does the

following: [24]. Each edge in the graph is given a weight equal to the distance to its

closest sensor. A binary search is now made to find a path from A to B through edges

with weights more than a predefined breach weight. If a path is found, this weight is

increased and another search is made. In the end, the Maximal Breach Path will have

been found.

Best case coverage- Maximal Support Path

This is defined as a path between two points through the sensor field where for any point

on the path, the distance to the closest sensor is minimized. In this case the Delaunay

triangulations produce triangles with minimal edge lengths and, therefore, the path must

lie on the Delaunay edges between sensors. The algorithm is very similar to the worst case

computation, with the difference that the Delaunay edges are used and they are given

3Works equally well for sensor coverage, and communication coverage

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 14

Figure 2.4: Maximal support and breach paths in a sensor field

weights equal to their own lengths. Lastly, of course, the support weight parameter is

used and must be minimized. Figure 2.4 shows the maximal breach and maximal support

path for two points through a sensor field.

2.3 Localization

The problem of localization4 in WSN’s [14][16][28][35][36], or determining where a given

node is physically located in a network, can be very challenging but is also important

in many applications. Localization, for example, can produce novel ways of reducing

power consumption in sensor networks and in context-aware applications it enables the

smart selection of devices and supports intelligent coordination among nodes. Because of

practical constraints such as the size, cost and available power of nodes, it is not possible

to fit motes with GPS, therefore a different approach to localization must be found [7].

A couple of popular schemes will be analyzed to help in deciding which approach would

be most beneficial for our application.

2.3.1 Connectivity based

In [11] a localization scheme based on the connectivity of nodes to beacons with known

locations is proposed. An idealized radio model is used, because of the simple mathematics

behind it. This model compares quite well with an uncluttered outdoor environment. Two

4The term localization was borrowed from robotics,where it refers to determining the position of a
mobile robot in a certain coordinate system.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 15

assumptions are made in the model:

• Perfect spherical radio propagation

• Identical transmission range for all radios.

A number of nodes in the network with known positions, (X1, Y1) to (Xn, Yn) act as

reference points (R1) to (Rn). These nodes form a mesh and transmits periodic beacon

signals containing their positions. It is assumed that in any time interval T, all the

reference points have transmitted exactly one beacon signal. The following terms are

used in localization calculations:

d Distance between reference points

R Transmission range of reference point

T Time interval between beacon signals transmitted

t Data collection time

Nsent(i,t) Number of beacon signals sent by Ri in time t

Nrecv(i,t) Number of beacon signals sent by Ri that have been received in time t

CMi Connectivity metric for Ri

CMthresh Threshold for CM

(Xest, Yest) Estimated location of the receiver

(Xa, Ya) Actual location of the receiver

Each node will listen for a fixed period of time t and collect beacon information from all

reference points in its area. The information per reference point can now be characterized

by the connectivity metric:

CMi =
Nrecv(i, t)

Nsent(i, t)
× 100 (2.2)

From the information it receives, the node will be seen as connected to a reference point,

if its connectivity metric for that reference point exceeds a given CMthresh. The receiver

can now localize itself to a region that is given by the centroid of the reference points, as

in equation 2.3.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 16

Figure 2.5: By measuring distances to three reference points, the centre node, U, can

determine its position by multilateration

(Xest, Yest) = (
Xi1 + • • •+ Xik

k
,
Yi1 + • • •+ Yik

k
) (2.3)

The accuracy of localization can be characterized by the localization error LE [12].

LE =
√

(Xest −Xa)2 + (Yest − Ya)2 (2.4)

By increasing the range overlap, R
d

the granularity of the regions can become finer and

therefore minimize LE. Tests were done in a 10mx10m grid with reference points at the

four corners. Measurements were taken at all of the 121 1mx1m grid intersection points

and produced adequate results. The average LE was 1.83m with standard deviation of

1.07m. Minimum error was 0m and maximum 4.12m.

2.3.2 Signal arrival time

Signals that propagate through the air take time to cover a certain distance [9], be they

sound waves, light or radio signals. If this time can be measured accurately, one can cal-

culate to a very good degree of accuracy, the distance between the source and destination

of such signals. This approach to localization is referred to as TOA (Time of arrival)

or TDOA (Time difference of arrival) method. In WSNs radios are already in use, so

a RF based system might work, but it is very difficult and often impossible to achieve

the time synchronization needed between nodes to make accurate measurements. This is

why many schemes use a round trip based system. Other information that can be used is

the DOA (direction of arrival). This can be measured if directional antennas or acoustic

sensors are used, with this and the TOA information the relative position and orientation

of the node can be calculated.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 17

In [25] such a scheme based on acoustic sources in a sensor field is proposed. Each source

in turn emits a signal. All sensors attempt to receive source signals and then work out

TOA on a network time base. This time base can be established over the network radio

links, or by synchronizing times before deployment. Because acoustic signals are used the

margin of error is much less, due to the huge difference in speed between sound waves

and radio signals. The DOA is estimated based on the mote’s local reference direction.

Each node now sends its information to a central information processor which, in turn,

computes the locations of the nodes.

This process of finding a location by means of given distances is called multilateration

and, when angles are used, multiangulation. In a two dimensional plane with n known

references R1 to Rn(as shown in figure 2.5, the node U can calculate its position using

the distances d(R1, U). A minimum of three equations must be formed as given below.

By solving the quadratic equation for Ux and Uy, the position is found.

(R1x − Ux)
2 + (R1y − Uy)

2 = d(R1, U)2

(R2x − Ux)
2 + (R2y − Uy)

2 = d(R2, U)2

... = ...

(Rnx − Ux)
2 + (Rny − Uy)

2 = d(Rn, U)2

2.3.3 Signal strength

Another way to try and localize a node is by using signal strength information. As shown

in section 2.1.1 a signal could be affected by a varying amount of interference and therefore

the basic Friis path loss formula is only accurate if there is a LOS connection between

nodes.

Calculating distances by signal strength relies on the assumption that the nodes can

accurately measure received signal strength. Luckily, radios now usually have some kind

of signal strength measurement built in. The two commonly used measurements are

(received signal strength indicator) RSSI [38] [37] and (link quality indicator) LQI.

The CC2420 radio from Chipcon gives both these measurements (see [34] for more infor-

mation on the radio). The RSSI measurement is given as a continuously updated average

value over eight symbol periods (128us), while the radio is receiving. Figure 2.6 shows

the linearity of the RSSI reading over the whole reception range. The radio also provides

an average correlation value for each incoming packet. This value can be seen as the chip

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 18

Figure 2.6: The typical RSSI value measured vs. actual RF input power for Chipcon

CC2420 radio

error rate. The LQI value is therefore more a measurement of packet quality than signal

strength.

Let’s say a system is deployed and all nodes have a perfect LOS path to one another. This

can be achieved in practice if nodes with omnidirectional antennas are placed in an open

field above ground. If a constant transmit power is used, the received signal strength can

be correlated to a distance and very accurate distance calculations can be made between

all nodes within range of one another. Multilateration, as shown in the previous section,

can now be used to localize the nodes.

The problem with this is that in most applications it would be impossible to ensure perfect

LOS connections, and it is impossible to predict the attenuation resulting from all objects

in the area. On the other hand, it might be unnecessary for a node to have its own

location to ensure connectivity and efficient routing.

A virtual localization of nodes can be achieved if the measurements between nodes are

made not in distance but in transmission cost, or quality. If, for instance, you want to

localize nodes just to find the shortest paths for communication between them, it is NOT

the distances that matter but, in fact, the cost of transmission over that distance [13].

Therefore it might be advisable rather to use such a cost metric to localize nodes for

routing and connectivity calculations.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 19

2.4 Routing

The design of routing protocols in sensor networks can be a difficult issue to tackle. In

static and wired networks smart routing can increase throughput and as long as a reliable

path [43] is available between two points, communication is always possible. In WSNs

the shortest and fastest path might not always be the best and it might not be available

at all times [39]. Some of the issues that arise are:

• Variable wireless link quality

• Propagation path loss

• Fading

• Power expended

• Topological changes

As discussed in section 2.1.1, these transmission effects can have a huge effect on signal

reception. Coupled with the energy [27] constraints and possible changes in network topol-

ogy, whether because of nodes dying or moving, a robust and efficient routing protocol

must be implemented in WSNs.

2.4.1 Classification of routing protocols

WSN routing protocols can be classified by breaking them up into the three main aspects

[19] of the protocol and then classifying these according to the different approaches to

the problem. Figure 2.7 gives a graphical view of the different subclassifications of WSN

routing protocols.

Path establishment

Path establishment can take place by the three different methods shown. Proactive path

establishment means that all nodes work out the necessary paths and store them in

routing tables. This means that a path is always available immediately when a message

needs to be sent. The problem is that whenever a route changes the new routing tables

have to be sent to all the nodes. In very big and power constrained networks this becomes

impractical. Reactive protocols only work out a route when it is required, which eliminates

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 20

Figure 2.7: WSN Routing protocol classification

the problem of unnecessary work being done, but it might be too slow a process if a high

throughput is needed. Hybrid protocols are constructed by using a combination of these

two approaches.

Initiator of communication

The data sent through the network will either be requested by the destination (sink, base

station) or just sent by the source when data is ready. In networks where communication

is initiated by the destination, much more communication overhead results. Data requests

will have to be flooded through the network, or the sink will need to have reverse paths

to all the nodes for individual polling. Source initiated networks are event or time driven.

This means that nodes can be set up either to report data at a constant rate or only to

send data when a certain event occurs.

Network structure

The network structure constructed by the protocol can be classified in three different ways.

The nodes in flat protocols all have the same importance and ability to route messages.

Because messages must usually be sent to the same sink, network traffic in nodes closest

to the sink will normally be higher. Hierarchical protocols make use of clustering [18] and

cluster heads. Nodes are grouped into clusters and they all relay their data to the sink

only via their cluster head. In direct protocols, all nodes communicate directly with the

sink. No actual routing is therefore necessary, but in WSNs with a limited communication

range this is usually not a viable option.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 21

The disadvantage of hierarchical protocols is that the cluster heads will require a higher

communication throughput than the other nodes and, therefore, might require more

power. Some protocols for WSNs select and rotate cluster heads to even out the power

usage, but this just complicates the system and requires more communication overhead.

Scalability of the network is also an issue because a larger number of cluster heads will be

required, or the overhead at the heads will increase dramatically. A flat network structure

is the best suited to an WSN application and in the next section we will be looking at a

few of these types of protocol as used in sensor networks.

2.4.2 Relevant protocol summary

Flooding and Gossiping

Flooding is an old and very basic technique for routing messages. In flooding, every

node that receives a packet forwards it directly to all of its neighbors by broadcasting.

This repeated rebroadcasting only stops when the message reaches its destination or a

maximum number of hops for the packet is reached. The benefit of this scheme is that

it does not use complicated topology control or route discovery algorithms, but it does

present some problems. Implosion occurs when multiple copies of the same message

arrive at a node; this will happen if two communicating nodes are connected by more

than one neighbor. Each of these will relay the same message to the other node. Overlap

occurs if two nodes share an observation region and an event in this region triggers both

nodes to send data. Resource blindness is the biggest problem with this approach, as

available power is never considered and no attempt is made to limit power usage in

transmission. Gossiping is a derivative of flooding and eliminates the implosion problem

by not broadcasting messages, but by sending them to only one randomly selected node.

Sensor protocols for information via negotiation

The SPIN family of protocols is based on two simple ideas. Firstly, that sensor nodes

can conserve power if they have to send information only on the data sensed and not on

all the actual data. Secondly, nodes must monitor their available power resources. SPIN

uses a flat network structure and reactive routing. Communication is source initiated.

The protocol uses three different types of packet. First, the node with new data sends

an advertisement message (ADV) to all its neighbours. Neighbours that receive the ADV

message and are interested in the data now send a request message (REQ). Subsequently

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 22

the initial node sends the DATA message to all the interested nodes. All the nodes with

the new data now in turn repeat this process. In the end, all nodes in the network have

the data of all nodes they are interested in.

Direct Diffusion

This is a popular protocol in WSNs, and many derivatives have been implemented. The

protocol is destination initiated and uses data-centric routing [2]. Queries are directed

at certain areas of the network and not at specific nodes, or at the whole network. The

system comprises three different stages. The interest diffusion stage is when the sink floods

an interest in data through the network. This interest includes named data with a certain

value, for instance ”humidity” with a value of 50 or more. This request is, therefore,

made to all nodes making humidity measurements with values above 50. A gradient for

the data, or report rate, and timestamp is also included in the interest request. In the

gradient setup stage, the nodes now set up this report rate for the interest. The timestamp

gives the duration of the interest (for how long this data must be reported). The nodes

now report data along the gradient path, allowing for data aggregation to take place. The

nodes receiving the message only report it further if it is new data. Now when the data

arrives at the sink it, in turn, reinforces the paths to specific nodes that reported the

relevant data. This reinforcement can ask for a higher report rate and gives a different

timestamp to give an extended report time to the node. In the data report stage, the

node now sends data at the requested report rate along the reinforced path.

Minimum energy communication network

This protocol was proposed to work with motes that have variable transmit power. Energy

can be saved in the transmission of packets by minimizing the energy used by each node in

routing of the packet. An energy efficient sub-network of a given communication network

is created. Each node is given a circular relay region which includes nodes close enough to

minimize transmission power for each transmission hop. The protocol uses the minimum-

energy property which states that in the network a minimum energy path exists between

all connected nodes.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 23

Manufacturer Device RAM Flash Active Sleep Release

(kB) (kB) (mA) (µA)

Atmel AT90LS8535 0.5 8 5 15 1998

Mega128 4 128 8 20 2001

Mega165/325/645 4 64 2.5 2 2004

General PIC 0.025 0.5 19 1 1975

Instruments

Microchip PIC Modern 4 128 2.2 1 2002

Intel 4004 4-bit 0.625 4 30 N/A 1971

8051 8-bit Classic 0.5 32 30 5 1995

8051 16-bit 1 16 45 10 1996

Philips 80C51 16-bit 2 60 15 3 2000

Motorola HC05 0.5 32 6.6 90 1988

HC08 2 32 8 100 1993

HCS08 4 60 6.5 1 2003

Texas TSS400 4-bit 0.03 1 15 12 1974

Instruments MSP430F14x 16-bit 2 60 1.5 1 2000

MSP430F16x 16-bit 10 48 2 1 2004

Table 2.2: A basic microcontroller history

2.5 Hardware

Moore’s Law states that about every 18 months the size of computer logic hardware will

be halved. This means that the number of transistors you are able to fit in the same area

doubles. It has been shown over the last couple of decades that this law is followed rather

accurately. Another such law, Bell’s Law, states that every decade we can expect to see

a whole new class of computers. This is also an accurate statement if one looks at how

we progressed from the monster vacuum tube computers of yesteryear, to the personal

computer, PDAs and cellphones and are now moving into the field of micro computers

that stream data to and from the physical world. These steady advances in the electronics

industry have led to us now being able to realistically look at deploying large networks of

small devices. This section describes some hardware relevant to sensor networks.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 24

Operation Telos Mica2 MicaZ

Minimum Voltage 1.8V 2.7V 2.7V

Mote Standby (RTC on) 5.1 µA 19.0 µA 27.0 µA

MCU Idle (DCO on) 54.5 µA 3.2 mA 3.2 mA

MCU Active 1.8 mA 8.0 mA 8.0 mA

MCU + Radio RX 21.8 mA 15.1 mA 23.3 mA

MCU + Radio TX (0dBm) 19.5 mA 25.4 mA 21.0 mA

MCU + Flash Read 4.1 mA 9.4 mA 9.4 mA

MCU + Flash Write 15.1 mA 21.6 mA 21.6 mA

MCU Wakeup 6 µs 180 µs 180 µs

Radio Wakeup 580 µs 1800 µs 860 µs

Table 2.3: Measured current consumption of Telos compared to Mica2 and MicaZ motes

2.5.1 Microprocessors

A microprocessor sits at the core of most electronic devices these days. In sensor net-

work motes you need a processor to read sensors, store and read data from memory and

to control the radio communication. To control these actions and to implement smart

protocols, the motes need a processor with enough computational power, coupled to high

energy efficiency.

Table 2.2 gives a comparison of a number of microprocessors that have become available

over the years. As indicated by the typical individual power usage, only some of them

are suited to low power devices like sensor motes. Luckily, chip manufacturers have made

great advances in supplying devices suited to ultra low power applications.

Some of the popular choices for WSN motes are the MSP430 processors from Texas Instru-

ments (TI) and the Mega range from Atmel. These have a very low power consumption

in active mode and they provide different levels of standby and sleep modes to further

reduce consumption.

2.5.2 WSN motes

During the last couple of years more and more mass produced motes have become avail-

able. These have made WSN research and development much easier, as an effective

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 25

testbed can now be deployed very quickly and cost effectively. It is especially the MICA

and Telos motes that have been most widely used in WSN applications. The first MICA

mote was introduced in 2002 as an open experimental platform. With a low power 40kbps

radio and ATmega128 processor, this was the first of a couple of generations of MICA

motes to come. The MICA2 and MICAz use the same processor but the MICA2 uses

the TI CC1000 radio that operates in the 868-870 and 902-928 MHz frequency ranges.

The MICAz motes uses the TI CC2420 2.4GHz radio which is IEEE 802.15.4 and Zig-

bee compliant. The Telos motes5 use the same CC2420 radio, but its processor is the

MSP430, also from TI. These motes all have expansion connectors for external devices

such as sensor boards with a multitude of sensing capabilities. Table 2.3 gives a current

consumption comparison between the Telos and MICA motes.

The Telos mote has a clear advantage because of its much lower power consumption. It

can also run at the low voltage of 1.8V which means that basically all of the capacity

of two series 1.5V cells will be used, whereas the MICA motes will not do this. These

three are all, incidently, the size of a two AA battery pack and usually ship with this

included. Another big advantage is the USB capability of the Telos motes. The WSN can

be accessed through this interface and the motes are also programmed through it. The

MICA motes need an external serial interface for programming and PC connectivity.

Crossbow offers a wide range of sensor board add-ons for their mote which range from

extra analog inputs to accelerometers, actuator relays, sensors and GPS modules. They

also have a Cricket version of the MICA2 mote with a ultrasound transmitter and receiver

for distance measurements. Moteiv now offers the Tmote Mini and Tmote Mini Plus,

mote cores. The Mini is a 25x20mm version of the Tmote Sky in the industry-standard

miniSDIO form factor. The Tmote Mini Plus is the same but with a 100mW power

amplifier for a range of up to 500m. These cores make it possible to embed motes in other

hardware for a compact and easily deployable WSN or pervasive computing6 solution.

5This is the original name but Moteiv corporation markets their Telos motes as Tmote Sky

6Pervasive computing is the term given to embedded computers in everyday objects

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 26

Figure 2.8: Tmote Mini and Tmote Mini Plus mote cores

2.6 Powering WSN hardware

2.6.1 Battery technology

The most commonly used cell is definitely the AA, and for further discussions this will

be the cells that are referred to. This is usually the cheapest and most readily available

power source. This is also why most available motes are designed to use around 3V (2 cells

in series). A very good lifetime can be achieved with these if correctly used in low power

electronics. The huge number of batteries available, with different capacity and current

ratings, might make decisions on which ones are best for an application difficult. Most

people can also tell from personal experience that these ratings are not always believable.

For this reason the following discussion on popular battery technology and what could be

expected of the different types, could be useful.

In the industry, batteries are usually rated in milliampere hour. This basically means

that a 1mAh cell will power a 1 mA load for 1 hour. This can be a very inaccurate

measurement, because different discharge rates have a huge effect on the efficiency of

power delivery. This is also why non-rechargeable batteries usually do not carry such a

rating.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 27

Battery type Typical household use Capacity (mAh) Typical drain (mA)

designed for

D Radio , Flashlight 12000 200

C Radio , Flashlight 6000 100

AA Clocks, cameras 2000 50

AAA remotes 1000 10

9 Volt Cordless mics, etc. 500 15

Table 2.4: Approx. power ratings for common alkaline-manganese dioxide batteries

Figure 2.9: Typical alkaline cell lifetime at different discharge rates

Non-rechargeable cells

The most commonly available cells are non-rechargeable alkaline types. Table 2.4 provides

the capacities and applications of typical cells. They are all designed for a typical drain

current and if used far outside this range, results can be far worse. The voltage of alkaline

cells steadily drops with usage. Maximum voltage is usually 1.54 V and it can drop down

to a minimum of 0.9 V. At the 50 percent discharge point, the voltage is around 1.25

V. These cells exhibit an increase in capacity when warmed and a rapid decrease when

temperatures drop. Figure 2.9 shows the different discharge curves at varying current.

Rechargeable cells

Shops stock mostly Ni-Cd and Ni-MH rechargeable cells. They can range from low capac-

ity of a couple of hundred mAh to the biggest cells these days, at more than 2500mAh.

Rechargeable cells can deliver much more of their rated capacity than alkaline cells, due

to their more complicated design. Ni-Cd and Ni-MH cells have a lower voltage level

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 28

than alkalines, at 1.2V. They can still be used instead of alkalines, because they stay at

this voltage level until they are almost depleted, where alkalines do not. The problem

with these rechargeables is that they normally lose a few percent of their charge per day

without a load. Freezing them can greatly reduce this effect.

Ni-Cd and Ni-MH cells do not differ very much in power delivery or lifetime. Ni-MH

cells of the same size normally have a larger capacity and suffer less from the voltage

depletion effect after multiple discharge cycles, than Ni-Cds. The biggest problem with

Ni-Cd cells and why Ni-MH technology is better, is their use of the highly toxic heavy

metal Cadmium. This is why they need to be recycled and not discarded. Ni-MH batteries

require a somewhat more sophisticated charger than those used for Ni-Cd, and care should

be taken not to use the wrong charger as this could lead to overcharging and damage to

Ni-MH cells

2.6.2 Solar energy

Alternative energy has been a heavily debated topic in recent times. Solar energy is clean,

renewable and is available everywhere most of the time (weather permitting). The earth

receives about 174 PW of power at the level of the upper atmosphere. This energy is

reflected, absorbed and affected by other atmospheric effects. Received solar energy at

ground level has been measured at an annual average of about 6 kWh /m2 per day in

South Africa.

Photovoltaic cells convert solar energy into electric power and these have been around for

many years. The efficiency of these cells has been increased many times over in recent

times and at the moment most commercially available modules are about 15% efficient.

This means that a square meter array of cells can produce an average of 900 Wh of energy

per day in South Africa.

The benefits of powering devices with solar power is seen especially in remote areas where

a normal electricity supply is not available and also where the replacement of batteries

is an issue. For these reasons it is also a very good option for powering sensor networks.

A Telos mote uses about 66mW of power at 3V with its processor and radio switched

on. This equates to about 1.59Wh of energy use each day. It can now be calculated that

a 5cmx5cm solar panel with 15% efficiency can produce 1.8Wh per day and therefore

produces more than enough power to run one of these motes indefinitely. The problem

is that about 90% of this is delivered in a 7 hour period, so one would need to store this

energy efficiently for the rest of the day. Therefore, rechargeable batteries and charger

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 29

Figure 2.10: Piezoelectric energy harvester model

electronics are required with each mote. This, and the cost of solar panels, make it a

much more expensive approach than only using batteries.

2.6.3 Piezoelectrical energy harvester

Piezoelectric materials (PZT) can be used to great affect to power low consumption de-

vices. When exposed to vibrations straining the PZT element, it converts these vibrations

to electric energy. In [4], Microstrain Inc. reports a test system used to power a wireless

network of strain gauges. Figure 2.10 shows a model of the energy harvester. The PZT

elements are mounted on a tapered cantilever beam (50 mm long) with a 250g proof mass

(resonant frequency of 60 Hz) at the end. This creates a nearly uniform strain on the

elements.

This system was shown to supply up to about 3mW of power with 57 Hz vibrations

between 100 and 130 mGs. As shown in section 2.5.2, modern motes use much less power

than this in standby mode. With duty cycling techniques it is therefore possible to run a

mote almost indefinitely with such a harvester subjected to constant vibrations. A system

that runs off this type of harvester has been implemented in airplanes for hull integrity

checking.

Stellenbosch University http://scholar.sun.ac.za

Chapter 2 — Theory and previous work 30

2.7 Summary

This chapter contained sections on various relevant areas studied to enable good system

implementation. Radio communication will be used between motes, so the different effects

to be expected when working with RF based motes were studied. A number of commu-

nication spectral bands are available, but because of standards and hardware availability

(more in next chapter), the 2.4GHz band was selected.

Coverage and connectivity are important aspects to investigate in sensor networks. Cov-

erage in the sense of sensor coverage and communication coverage is relevant in designing

a WSN. In this field the Voronoi diagram was shown to be a very handy geometric tool

for calculating best and worst case coverage and connectivity regions.

Nodes might require their location information, so localization is another issue. Some

ideas were presented that could be used to localize nodes very accurately. In our system,

however, this is not a critical aspect. This is only required in a ”communication localized”

sense, so a signal strength system is used to aid the routing protocol.

Routing of packets in WSNs can be a tricky subject, as range and power is limited. This

can produce novel ideas on how to route data efficiently and reliably. We decided to

use a routing scheme that is power aware, to try and prolong the battery life of motes.

Another type of scheme that produce better throughput or route data more reliably is

not necessary, as these are not important features in low data rate WSNs.

The hardware required to implement these ideas must meet the energy and communication

criteria in order to be a good choice for sensor networks. A very good WSN platform

was found in the Tmote Sky modules, and the community of users that work on the

associated open source operating system, TinyOS, made this a good choice. Powering a

sensor network can be achieved in a couple of ways. The cheapest and most commonly

used way is with AA batteries. However, the decrease in the price of solar cells and the

improvements to vibration energy harvesters, would make these viable options in the near

future.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3

Hardware implementation

In section 2.5 the range of hardware platforms available for the WSN was considered. As

discussed, the Telos motes from Berkeley are a very good choice for a low power system.

They were also the cheapest and most easily acquired motes available in South Africa. In

this chapter relevant information will be given on the motes and also on other hardware

that was added on for more functionality.

3.1 Tmote Sky

The Telos Revision B module [26] [32] was an upgrade of the original model designed by

Berkeley. The Tmote Sky module is made by the Moteiv corporation to be functionally

equivalent to the Telos B motes. They provide a very easy way of deploying and testing

low power sensor networks. Some of the key features that makes these motes a better

choice than others currently available are provided below. 1

• IEEE 802.15.4 interoperable Chipcon Wireless Transceiver

• Largest on chip RAM size (10kB)

• Integrated onboard antenna with 125m LOS range

• Optional integrated humidity, temperature and light sensors

• Ultra low current consumption

1Circuit diagrams of the motes are given in appendix A for reference.

31

Stellenbosch University http://scholar.sun.ac.za

Chapter 3 — Hardware implementation 32

Figure 3.1: Tmote Sky module

Stellenbosch University http://scholar.sun.ac.za

Chapter 3 — Hardware implementation 33

Figure 3.2: Tmote Sky Block diagram

• Fast wakeup from sleep (less than 6us)

• Hardware protected 1Mb external flash memory

• Programming and data collection via USB

• Hardware link-layer encryption and authentication

• TinyOS support: mesh networking and communication implementation

• Network programming support

Figure 3.1 shows the Tmote with all the major parts marked. It is easy to see the small

size of the motes compared to the USB connector. The block diagram of the mote in

figure 3.2 shows the peripheral devices connected to the microprocessor. The processor is

connected to a USB controller via the RS232 serial interface. This makes it possible to

connect the node to the USB port of a PC and to use the connection as a normal serial

COM port for programming and data interfacing. A 1024k flash chip, also interfaced via

SPI, can be used for data storage or program images.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3 — Hardware implementation 34

PA LEVEL Output Power Current Consumption RSSI

(dBm) (mA)

31 0 17.4 42

27 -1 16.5 40

23 -3 15.2 39

19 -5 13.9 36

15 -7 12.5 34

11 -10 11.2 30

7 -15 9.9 25

3 -25 8.5 20

Table 3.1: Radio power levels

3.1.1 Radio

The CC2420 radio is controlled via the SPI interface and can be connected to either the

onboard antenna or the optional SMA connector that can be used for a 2.4 GHz external

antenna. The radio can be switched off and on by the processor as needed, making it

possible to use a low power duty cycle system. The radio also has support for different

transmit power levels. Table 3.1 gives the eight different settings, with their corresponding

output power levels, current consumption and measured RSSI value at antenna output.

3.2 Sensors

The processor also has a number of ADC and GPIO ports connected to two expansion

connector headers for external transducers. Figure 3.3 shows the 6 and 10 pin headers.

These supply 6 ADC ports and 2 GIO lines as well as a UART connection for serial

devices and the I2C bus. There are also lines connected to the reset and user buttons for

external triggers, if these should be necessary for an application.

3.2.1 On chip sensors

The MSP430 microprocessor has internal voltage and temperature sensors, usable through

the ADC interface. Because of the possible outdoor use of the motes it is convenient to

have a temperature gauge, for system safety. This sensor is internal and therefore shows

Stellenbosch University http://scholar.sun.ac.za

Chapter 3 — Hardware implementation 35

Figure 3.3: Functionality of the 6 and 10 pin expansion connectors(Alternative pin

usage in gray)

the actual hardware temperature, which varies with processor use. The voltage sensor

will be used for battery monitoring to support the low power protocol stack.

Temperature

The temperature sensor consists of an uncalibrated diode. This means there is an offset

in the reading, and this should be corrected before the sensor is suitable for accurate

use. This offset can easily be calculated using an accurate sensor to get a temperature

measurement at the same location as the sensor that has to be calibrated. The linear

equation 3.1 can now be used to calculate the actual temperature from the output voltage

of the sensor.

VTEMP = 0.00355(TEMPC) + 0.986 + (offset) (3.1)

Stellenbosch University http://scholar.sun.ac.za

Chapter 3 — Hardware implementation 36

Figure 3.4: The SHT11 Temperature and relative humidity sensor

Voltage

The 12-bit ADC monitors the output of a voltage divider circuit. To get the voltage

reading this raw ADC output can be converted with equation 3.2.

DVcc =
ADCCounts

4096
× Vref ×

2R

R
(3.2)

3.2.2 Mote integrated sensors

The integrated sensors are an optional extra when buying the Tmote Sky modules, but

can easily be added later if needed. Only the humidity sensor has been implemented on

some nodes in our system.

Humidity and temperature sensor

The available port can be used for the SHT11 or SHT15 model sensors from Sensirion.

The SHT11 shown in Figure 3.4 was used. The difference between the two is only that

the SHT15 produces readings of higher accuracy. These sensors are calibrated with their

calibration coefficients saved on the sensor’s own EEPROM. The sensors are coupled with

a 14-bit A/D converter which has a digital output. Relative humidity from 0% to 100%

Stellenbosch University http://scholar.sun.ac.za

Chapter 3 — Hardware implementation 37

can be measured in steps of 0.03%. The temperature sensor has a range of -40 to 123.8

degrees with a 0.01 degree resolution.

The relative humidity (RH) sensor is non-linear and to calculate the relative humidity

from the sensor reading equation 3.3 must be used. The humidity readings obtained

are very accurate, but in temperatures very much above or below 25 degrees Celsius,

the temperature coefficient of the RH sensor must be taken into consideration by using

formula 3.4.

RHlinear = −4 + 0.0405SORH − 2.8× 10−6SO2
RH (3.3)

RHtrue = (Tdeg C − 25)× (0.01 + 0.00008SORH) + RHlinear (3.4)

The SHT11 temperature sensor is a very linear bandgap PTAT (proportional to absolute

temperature) sensor. The temperature can be calculated from the sensor reading by using

formula 3.52.

Temperature = −39.55 + 0.01SOT (3.5)

2Note that the constants in this formula are dependant on supply voltage. See data sheet for more
information

Stellenbosch University http://scholar.sun.ac.za

Chapter 3 — Hardware implementation 38

Figure 3.5: Photo sensitivity of the light sensors

Total solar radiation sensor

The default photo sensor is the S1087-01. Light in the visible spectrum is measured. This

is an analogue sensor connected to ADC port 5 of the processor.

Photosynthetically active radiation sensor

The default sensor is the S1087 and it measures only solar radiation used in photosynthesis.

This sensor is also analogue and connected to ADC port 4 of the processor. Figure 3.5

gives the sensitivity ranges of the two different types of light sensor.

3.2.3 Analogue sensors

To illustrate the ease of use of the external ADC ports, some basic sensors were added

for extra functionality in testing. The possibilities of what can be measured are almost

endless, as multitudes of sensors measuring light, pressure, speed, etc. are obtainable in

basic analogue format.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3 — Hardware implementation 39

Figure 3.6: Analogue sensor add-on circuits

Light intensity

A light dependant resistor connected to the ADC port 0 was used to measure light intensity

as the mote’s optional light sensors were not available. Figure 3.6 shows the basic circuit

that connects this to the ADC port, as well as the open door detector. The value read

at the ADC port will depend on light intensity, the properties of the LDR and also the

resistor R. The parts can be chosen to give readings in a required range.

Door open detector

A detector to determine whether a door is open or not was added to one of the ADC

ports. It is a basic switch connected to the door. If not connected (door open) a 0 V

measurement is made and if the switch is activated (door closed), it will produce a higher

reading and the door will then be recognized as closed.

Stellenbosch University http://scholar.sun.ac.za

Chapter 3 — Hardware implementation 40

3.3 Summary

This chapter has presented the Tmote Sky, used as the platform for implementation

of our system. The basic mote layout has been shown, with the most important parts

explained. The hardware was mostly used as is, but some additional sensors were included,

enabling system deployment for a test network. Also included in the chapter are the

methods required to be used to accurately interpret sensor information for real world

data acquisition.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4

Software

4.1 TinyOS

Figure 4.1: The TinyOS Logo

TinyOS is an open-source event based operating system (OS) designed for wireless sensor

networks. The OS has a component based architecture which enables fast implementation

and also minimizes memory usage. The TinyOS core requires as little as 400 bytes of code

and memory combined. Because all TinyOS code are open source, the growing commu-

nity of users is actively contributing code and numerous groups are working together to

establish standards and interoperable networking services.

The TinyOS component library comprises network protocols, distributed services, data

acquisition tools and sensor drivers. These components can be combined as standard to

implement a network, or they may be refined and extra code added for more specific

applications.

41

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 42

4.1.1 Boomerang

Boomerang is the Moteiv certified distribution of TinyOS. This consists of components

specially made to be compatible with all Moteiv hardware. This includes a ready to use

multihop communication system and complete example programs with server-side tools.

An extensive sensing library for compatibility with common Tmote Sky add-on hardware

is incorporated. This system is fully compatible with existing TinyOS 1.x applications

and also incorporates key features of TinyOS 2.x. It is not intrusive on other systems as

it can perfectly coexist with an existing TinyOS installation.

4.1.2 NesC - Network embedded system C

NesC is a component based C dialect for embedded systems such as motes, and has

been used to implement TinyOS. NesC separates the construction and the composition

of programs. Components are assembled or ”wired” together to form whole programs.

Components are split into two scopes. One defines their specification, containing the

names of their interfaces, while the other consists of the component implementation.

Threads of control pass to a component through its interfaces and these threads are

rooted in the form of tasks or hardware interrupts.

Interfaces in the specification may be used or they may be provided by the component.

The interfaces specified in the component represent the functionality provided to the user

by its implementation. The interfaces utilized, on the other hand, represent other com-

ponents that are required to perform a particular job. These interfaces are bidirectional,

because they specify a set of functions (commands) implemented by the provider and

also a set to be implemented by the user (events). This is necessary because the com-

pletion of lengthy commands in TinyOS (like send packet) is signalled through an event.

A component can therefore only use the commands provided if it, in turn, provides an

implementation of the ”command done” event. Commands will typically call downwards

from application components towards the hardware level, while events call upwards from

the hardware.

4.2 Sense application

After hardware initialization, the sense application is the main program that starts up.

This links in all the TinyOS components describing the other system layers, such as

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 43

Figure 4.2: Sense application block diagram

medium access and routing. The program is driven by periodically firing timers and on

execution of these events sensing and packet sending takes place. Figure 4.2 shows the

main flow of the program. A timer fires at a set interval and this initializes another

short timer (in the range of 50ms) which lets each sensor switch on in turn, to sense the

surroundings. After all sensors are done, the program uses the multihop system to send

data to the base station. All packets are stored in a circular queue until they have been

sent successfully, which is reported by the senddone function. Also shown is the watchdog

timer implemented to reset the system.

4.2.1 Sensor interfaces

TinyOS components are available for the SHT11 humidity sensor and the ADC ports.

As the internal temperature and voltage sensors are connected to the ADC, these can be

accessed by binding an ADC interface number to the actual input ports. In this way sepa-

rate interfaces are created, with reference voltages to each port that needs to be read. The

extra ports available in the expansion header can be used by creating similar interfaces.

The I2C and SPI interfaces provided can also be used to construct components for any

kind of required sensor that runs on these standards. The interfaces were incorporated

in such a way that if a mote had a specific sensor connected, it would be initialized and

used correctly. If the sensor was not connected, the mote would automatically not try to

collect data off it and send a zero result. This enables the coding of all nodes in a network

with the same software, regardless of which sensors are attached.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 44

4.2.2 Watchdog timer

Even with a very stable system, something can always go wrong while running software

on a microprocessor. In a sensor network application it is not acceptable to lose motes due

to unforseen software errors, because resetting a mote physically is not always possible.

The processor has support for setting a Watchdog timer that runs in the background, and

when its timer is run down, the system is automatically reset. A counter is incremented

each time a logging period passes and a packet is not successfully sent. If a set maximum

is reached, the watchdog is started and the mote reset. Even with the relatively higher

level language of TinyOS, support is still given to set basic hardware level registers in the

MPS430 platform drivers. The code segment below sets the watchdog timer to run for

250ms and then reset the mote.

WDTCTL = WDT_ARST_250;

4.3 Multihop routing

4.3.1 Data routing

The MultihopLQI routing system from Moteiv ’s Boomerang, was studied in depth and

used as a base to develop the power aware add-ons. The system is split into two parts. The

data message section handles only data message forwarding. Messages sent by the Sense

application are received in this layer and then queued for transmission to its multihop

parent using SP. Messages sent by other nodes are also received at this layer and a

check is made to see if this node should do anything with them. If the packets require

forwarding, they are also queued for transmission to the current node’s multihop parent.

The information on the parent and power level which is required for routing to take place

is acquired by using the interfaces provided by the route setup section.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 45

Figure 4.3: Routing system functional diagram

4.3.2 RSSI and Battery level route setup system

This part of the routing layer sets up the node’s parents and other information required to

route packets. Figure 4.3 gives the basic TinyOS function flow of the routing subsystem.

At initialization of the routing system, the node first checks to see if it is the base station

and then nullifies all parent information the memory might contain. A timer is then

started, which fires at a fixed interval. Each time the timer is fired, all parents that have

timed out are evicted and the best parent is selected. A route update message is now

broadcasted to all neighbours, using SP 1. Each time a route message is received from

another node the information is examined to see if it might be a better parent. The

new best parent is selected for routing to the base station. This subsystem provides the

interface through which the next hop in the route is sent to the data sending subsystem.

The following sections explain the functionality of the routing system by looking at the

critical functions used in route discovery and how they control the route setup.

1Sensornet Protocol, which bridged the link and network layers. (Discussed in section 4.4)

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 46

Figure 4.4: Sendrouteupdate functional block diagram

4.3.3 Sendrouteupdate

This function (Figure 4.4) is called when the route timer is fired to send the next beacon

message. A check is made through the parent list to see if any parents have timed out.

This will happen if they have not been heard from in the last couple of beacon message

intervals. This ensures that no outdated information is sent, which could negatively affect

route setup of neighbour nodes. The information is then inserted into the packet structure

and sent, using SP. The message contains the following information:

16bit parent;

16bit cost;

16bit hopcount;

16bit batterylevel;

32bit timestamp;

The node’s current multihop parent address is included, together with the hopcount and

cost of transmission to the base station through this parent. The cost includes the cost

of all hops to the base station from the current node. A timestamp is included, plus the

node’s current battery level, which is received with the nodestats interface provided by

the sense application. The setup of the cost metric is described in the next section.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 47

4.3.4 Route cost setup

The cost of transmission over a link is based on the power necessary to transmit and the

available battery power of the node. The radio has different transmit power levels (see

Table 3.1) which require anything form 17.4mA to transmit at 0dBm, down to 8.5mA

for transmission at -25dBm. This means that power usage for the radio can be halved

if two nodes are close together, and the radio range is adjusted accordingly. Setting the

radio output power each time before a packet is transmitted is facilitated by using the

radio control interface. The number (31) in the code below is the power amplifier level

corresponding to the output power, as shown in table 3.1.

call CC2420Control.SetRFPower(RESOURCE_NONE,31);

The battery level of the node is also used to a degree to manually deteriorate links as

battery levels go down. This ensures that nodes will not rely on a route through a node

with low power. The power usage of the node is thereby limited somewhat and dropped

packets due to node failure will be minimized. The LQI measurements (examined together

with RSSI in chapter 6) can be used as an additional indicator, to ensure that very low

quality links are not used. A lower cost path might be made through bad links, but

depending on the importance of data, this can be limited.

4.3.5 Insert

The insert function is used each time a beacon message is received from another node. The

function runs through the current parent list, which contains the following information

for each of the possible parents:

addr; Parent’s network address

cost; Parent’s cost to base

batterylevel; Parent’s battery level

powerlevel; Power level needed to transmit to parent

lqi; Link quality

rssi; Link RSSI value

hopcount; Parent hopcount to base

lastheard; Update intervals since last received message

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 48

Figure 4.5: Insert function block diagram

If the function finds that the node in the list that has just sent the message now has an

invalid hopcount, it will evict it from the list. This will ensure that nodes will not try to

route messages through others that do not have valid parents. If, for some reason, the

other node has set this one as its own parent, the link cost will be increased by 10 %.

If, therefore, a loop is created between two nodes, the link will start to appear very bad

after a couple of messages and another parent will be used. If there is no problem with

the node the newly received information is inserted into the parent entry.

If the node is not found in the parent list, a check is made to see if it has a valid route

to the base and that it has not set the current node as its parent. If this test is passed,

a loop is again made through the current parent list and the new node will then replace

some other node in the list, provided that its link is 10 % better. In the end, if changes

have been made to the parent list, the new best parent is selected. This might be different

from the previous one, as link costs between nodes change constantly. Even if no new

nodes appear, the best parent today might not be the best one tomorrow. This can be

due to a multitude of effects. See section 2.1.1 for radio propagation details.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 49

Figure 4.6: Selectparent function block diagram

4.3.6 Selectparent

This function is called a couple of times in the route setup process to ensure that the best

possible parent is always used for packet routing. A check is always made to see if the

node has a valid parent. If it does not, the first one in the parent list is selected and its

cost is compared to the others. The best one is then selected. This will ensure that there

is always a selected parent.

If the node has a valid parent, it is compared to all the others in the list and a switch is

only made if the other one’s link is 10% better. This hysteresis limit is imposed to combat

the unnecessary switch between parents with similar link costs at every update round.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 50

Figure 4.7: SP connection between network and link layer

4.4 SP : Sensornet Protocol A Unifying link abstrac-

tion

SP [30] [31] bridges the link and network layers. Figure 4.7 shows the interfaces provided

by SP to link the network layer to the lower levels, down to the radio control compo-

nent. This decoupling of the layers does not affect performance negatively but, in fact,

provides the necessary primitives to implement efficient network protocols. SP supports

many network protocols implementing a variety of functions like collection for data de-

livery and aggregation. This is, in fact, the main function of SP to let different network

protocols coexist effectively. The SP abstraction can be implemented on a number of link

technologies using different physical technologies, media access mechanisms and power

management. SP performs three main tasks which are data reception, data transmission

and neighbour management.

Data reception

When a packet arrives on the link interface it is sent to the associated network layer.

TinyOS messages work on an Active Message (AM) type system and in this way a decision

can be made in SP on which layer it must be sent to. In our system, Beacon messages will

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 51

be sent to the routing system for route setup and data messages will go to the data message

part of the multihop system to be examined and sent to upper layers, or forwarded to

other nodes.

Data transmission

This is implemented using a shared message pool data structure in SP. The different

network layers submit messages to be sent to the pool when a link is available. After

a message is sent, SP provides feedback to the network protocol. Messages pending in

the pool can be inspected by the link layer, or other network protocols, to change their

behaviour based on the message pool contents.

Neighbor management

SP allows the link and network layers to cooperatively maintain a list of usable neighbours.

This information is stored in the neighbor table data structure, which contains the relevant

information such as link cost, power information and scheduling of each neighbour.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 52

4.5 Duty cycling system

The Netsync 2 system sets up radio duty cycling by synchronizing the nodes to switch

their radios on and off at the same time. The base station sets up a schedule with a

two second period. A 1% duty cycle, therefore, means that every 2 seconds the radio

is only switched on for 20ms. This can equate to a large amount of power saving. The

schedule information is sent to other nodes with a 24 byte packet containing the following

information:

uint16_t addr; // 2

uint32_t on; // 4

uint32_t off; // 4

uint32_t period; // 4

uint32_t local_time; // 4

uint32_t global_time; // 4

uint8_t hopcount; // 1

uint8_t seqno; // 1 -- 24 bytes total

This enables the other nodes to synchronize their time to the base station’s schedule and

also to set the correct duty cycle period and ON and OFF times. At the start of setup

the other nodes will keep their radios on until they have successfully joined the schedule.

With a system running at a very low duty cycle it might be necessary to repeat this listen

and setup phase more frequently, to ensure stability.

4.6 Deluge network programming

Deluge 3 provides an effective method to send large data objects like program images

through the wireless network to many nodes. This, combined with a bootloader and

command dissemination, provides an effective network programming mechanism. Deluge

offers multihop support for reprogramming large networks without having to work with

individual nodes. A continuous epidemic propagation method is used to ensure that

program images reach all nodes. Overlapping CRC calculations are made to ensure the

integrity of program images at all nodes. The system also lets nodes store multiple

2The name given to the TinyOS module that sets up the radio dutycycle.

3The name of the TinyOS module that enables network programming.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 53

program images to make it possible to switch between programs without continuous code

uploading. An isolated bootloader is used, that will execute at each reset regardless

of what program is used. This bootloader programs the microcontroller with a program

image and will recover from errors by installing a golden image that cannot be overwritten

over the network, but only by means of a USB link to a PC. The reset button on the node

can also be pushed three times, after which the golden image is installed. This makes

it possible to always recover nodes without individual reprogramming, no matter what

software errors might occur. This whole system uses only 150 bytes of RAM.

4.6.1 Using Deluge

The Deluge system uses the onboard memory of the mote to store program images. Before

it can be used, the memory must first be formatted. The flashformat application, available

with the TinyOS distribution is used to prepare the memory. When it is installed and the

mote reboots, it starts reformatting the memory and will indicate via one of the LEDs

when formatting is complete. The Delugebasic application can now be installed. This will

install a basic Deluge program as well as TOSBoot, which is the bootloader for Deluge.

With the initial system setup now done, there are a couple of commands in the Deluge

java tool chain that can be used to control the Deluge network programming system.

These are:

java net.tinyos.tools.Deluge --ping

java net.tinyos.tools.Deluge --inject --tosimage=<file> --imgnum=<imgnum>

java net.tinyos.tools.Deluge --reboot --imgnum=<imgnum>

java net.tinyos.tools.Deluge --erase --imgnum=<imgnum>

java net.tinyos.tools.Deluge --reset --imgnum=<imgnum>

java net.tinyos.tools.Deluge --dump --imgnum=<imgnum> --outfile=<xml>

You can ping a node to receive a command line printout with information on all currently

installed images. This includes the image compile time and size. Inject is used to send a

compiled program image to all the nodes and save it in a specified image spot in memory.

The reboot function with a chosen image number reprograms all the motes in the network

with the program image stored in that slot. Erase is used to erase a certain image from

all the nodes. Reset erases the versioning information of a program image to combat the

occurrence of cross-pollination of images between different networks that might exist in

the same area. Dump extracts an image file from the network to the PC. This can be run

on any node in the network to retrieve images if required.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 54

This system can put some strain on communication while programs are rewritten, and

accessing the memory frequently can drain a lot of power.4 The system is, therefore,

very well suited to simplify development, but overuse with deployed systems is not rec-

ommended.

4.6.2 Led debugging

The Tmote has an array of three LEDs, red green and blue, to give a method of visual

output to the user. It also has LEDs to show sending and receiving of data to and from

the USB interface. At power up, the LEDs have a certain flashing sequence to show

when it has successfully booted. It will then flash the red LED a couple of times if the

battery level has dropped too low to reprogram the mote. The mote also has another

flash sequence while it is reprogramming.

The LEDs were used for easy debugging in different layers, to give an indication of program

flow.

Sense Application

In the Sense application, the red LED was switched on when a data packet was sent. It

was only switched off after sending of the packet had been successfully completed. When

a data packet was received, the blue LED was flashed. In the lab situation, while doing

development, the nodes are used close together and this flashing sequence gave a good

indication of when and why packets were not delivered successfully. Also, if a certain

route was tested and packets were received by the wrong nodes, the problem could be

addressed accordingly.

Route setup

Similar to the Sense application two LEDs were used in the routing layer to show sending

and receiving of beacon messages. This would show if messages were being sent at the

interval given, and also if messages were successfully received by all the sending node’s

neighbours.

4It must be noted that the memory can only be reprogrammed while the mote voltage is above 2.6V

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 55

Packet routing

The LEDs could be used here to show the queueing of packets and their successful trans-

mission. The reception of messages from SP was also shown, as well as the subsequent

transmission of these packets to the upper or lower layers. Errors created by packets

wrongfully forwarded to upper layers could be detected and addressed.

dutycycling

A LED was used here to indicate whether a node had a valid schedule. Another LED

would show the radio state. An indication could also be given if schedule messages were

sent and received and a LED could give an indication of nodes in the setup phase.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 56

Figure 4.8: Trawler user interface

4.7 Java interfacing

Included with the TinyOS system are a range of Java applications, to provide an interface

to the motes running TinyOS. Some programs can be used very easily to display data

received from motes and they can also be adapted to cater for more specific needs.

4.7.1 Trawler user interface

This basic graphical interface comes with the Boomerang distribution of TinyOS. It was

extended to display all information received from the motes. This includes panels to

display LQI, RSSI or link cost between motes, which greatly helped development, as

a continuous stream of data from the motes could be seen and analyzed in real time.

Display panels for the various incorporated sensors are also included. Another good

feature, provided by Trawler, is a graphical view of the network topology which is used

to show all links between nodes, with their respective costs. See Figure 4.8 for the node

voltage display in Trawler and note the tabs showing other information panels.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 57

Figure 4.9: The Serialforwarder java application which connects client applications to

the motes

4.7.2 Serialforwarder

The serial forwarder is used to connect to the base station mote. It reads all the messages

coming from the motes and forwards them to other connected applications. This makes

it possible to connect multiple programs to the same sensor network, and also to connect

programs through a computer network. With this interface the WSN can be accessed

through a program like Trawler from any computer on the same network as the one which

has the serial forwarder connected to the mote base station.

4.7.3 CSV data logging

A basic logging program was written that connects to SerialForwarder and then interprets

the packet data. The relevant readings were then converted with the right formula (see

section 3.2) and the data stored in comma separated files. These files could now be

accessed by an ASP web page, actively displaying the newest available data from nodes.

This exercise gave good insight into the development of web based logging. The CSV files

can also easily be imported into Matlab or any spreadsheet program for data plotting or

processing.

The files are written as shown in Table 4.1. For each packet received a new row of

information is added. This includes the packet time of arrival and sensor readings. In

this example the voltage, internal and external temperatures and the humidity were logged

every four seconds. A separate file is created for each network address, with the specific

data columns as desired for that specific node.

Stellenbosch University http://scholar.sun.ac.za

Chapter 4 — Software 58

Time Voltage Internal Temp External Temp Humidity

16:25:03 2509 19.14 18 53.57

16:25:07 2509 19.14 18.01 53.63

16:25:11 2507 19.24 18.02 53.6

16:25:15 2510 19.24 18.04 53.54

Table 4.1: Segment of CSV file written by data logging program

4.8 Summary

This chapter explains the TinyOS operating system as used in the network under discus-

sion. The existing components were studied to find their strong and weak points. This

led to to the effective use of:

Sense application

Power aware multihop routing

SP link abstraction

Netsync duty cycling system

Deluge network programming

LED Debugging

Delta is a basic application that logs temperature data, through the LQI multihop routing

system(with the option of duty cycling) and SP to the base station with Trawler. This

was used as a base to develop Sense. This application incorporated the other components

as listed above. The LQI multihop router was studied in depth and then adapted to

make it power aware. This included utilization of the battery level and RSSI information

of neighbour nodes to make intelligent power saving routing decisions. Other incorpo-

rated features like the Deluge network programming system and SP link abstraction is

explained, together with the use of LEDs for debugging purposes in the separate layers.

The duty cycling system was used as a big energy saver, with some adjustments made to

synchronization timing for stable dutycycling at different settings. A discussion on the

Java interface programs used on the basestation PC is provided at the end. The exten-

sions to Trawler and the CSV logging program facilitated development and test system

deployment.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5

Simulations

In this chapter the construction of a simulation model for the network is discussed. A

few feasible simulation platforms are examined to find one best suited to our needs. The

construction of the model is then explained, giving its simulation abilities and the different

outputs provided.

5.1 Simulating sensor networks

A number of simulation packages are available for network simulations. NS2, Erlang

and others have been developed and used for a wide range of simulations. The problem

is that they usually do not have support for the more specific needs of wireless sensor

networks. Simulation packages have better support for wireless communication protocols,

but components for newer standards, eg. Zigbee, have not yet been fully developed and

this creates problems when attempting to simulating them. Another problem is the design

criteria of sensor networks, as opposed to those of other wireless communication systems.

Very important performance measurements like throughput and packet delivery success

rate take a back seat to power usage when dealing with sensor networks. For this reason

a simulation package must be used that can cater specifically for the needs of sensor

networks, as opposed to more standard wireless systems.

5.1.1 TOSSIM

TOSSIM [22] is a discrete event simulator for sensor networks running TinyOS. Code

written to run on a mote can be compiled into the TOSSIM framework, which runs

59

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 60

on a PC. This allows for debugging, testing and analysis of algorithms in a controlled

environment. Thousands of nodes running the same TinyOS program can be simulated

simultaneously.

TinyViz is a java-based GUI that allows one to visualize and control the simulations

while running. This makes it easy to inspect debug messages and the simulated radio and

UART packets. Packets can also be statically or dynamically injected into the network.

TOSSIM focuses on simulating TinyOS and its execution and not the real world. It

cannot, therefore, be used for absolute evaluations, because of all the assumptions that

have to be made (for instance in radio propagation). Energy usage is also not modeled,

which is one of the main areas in which we would like to have accurate simulation output.

Newer versions of TOSSIM are always in development and Power TOSSIM for TinyOS

2 has built in support for power usage simulations. This is a big step forward, but there

are compatibility issues with TOSSIM and the Boomerang distribution of TinyOS. As

Boomerang is mostly TinyOS 1 based and specifically designed for the Tmote Sky motes

with some version 2 functionality, TOSSIM is not a conveniently usable platform for our

system.

5.1.2 OMNeT++

OMNeT++ is a public-source discrete event simulation environment [1] and is free for aca-

demic and non-profit use. It is component based, modular and has an open-architecture

simulation environment. The primary application is the simulation of communication

networks but, because of it’s flexible architecture, it has been used successfully in other

areas like queueing networks, hardware architectures and even business processes. Several

open source simulation models have been published, like TCP/IP and IPv6 for internet

simulations, 802.11 wireless standard, mobility and ad-hoc simulations as well as models

covering other areas.

OMNeT++ models are built from modules which communicate by exchanging messages.

These modules are linked together into the required hierarchy of communication and the

structure is defined using the NED language. NED can be edited in a text editor or

in GNED, the graphical editor of OMNeT++. Figure 5.1 shows a proposed model for

a sensor network node, where simple modules are combined to construct the nic which

includes the MAC and PHY models. This and and other modules, such as a battery

and network layer, are used to construct the node model. The active components(simple

modules) are linked together with NED to build the model, which is programmed in C++.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 61

Figure 5.1: GNED graphical simulation model buildup

When the simulation program is built, it will run in a user interface showing command

line outputs and interactive user interfaces. Simulation results are written into output

vector and scalar files, which can be visualized by using the Plove and Scalars programs.

Analysis of this data with packages like MATLAB and Octave is also possible.

While the community of users and available models is growing rapidly, the simulation

of sensor networks is still problematic as models for standards like Zigbee, on which

mote radios are based, are still not available. Writing accurate models for them can

become a very time consuming job. In recent months more functionality, such as a battery

simulation model, has become available. This growing number of models is helping to

make OMNeT++ very easily usable and a great prospect for any network simulations in

the near.

5.1.3 Truetime

Truetime [15] [29] is an event based simulation add-on package for Matlab/Simulink writ-

ten in C++ MEX. It facilitates the co-simulation of controller task execution in real-time

kernels, network transmission and continuous plant dynamics. Truetime supports both

wired and wireless networks, with models for the IEEE 802.11b/g WiFi and IEEE 802.15.4

Zigbee wireless standards. This is one of the first simulation tools that offers support for

802.15.4 as standard. This, and the fact that a model for battery usage is available, made

this the best choice for simulating our WSN.

Truetime adds an extra block library to the existing Simulink environment. The library

(shown in figure D.1) has a couple of useful blocks that can be used in conjunction with

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 62

Figure 5.2: Truetime kernel block mask dialog setup box

standard simulink blocks to build simulation models. The usage of the blocks will be

explained in section 5.2. The functions describing the system running on the model and

simulation tasks can be written in Matlab m-files or C++ code.

5.2 Simulation model buildup

5.2.1 Node model

The wireless node model is built around the Truetime kernel block. The block has some

parameters that can be set in the block mask dialog shown in figure 5.2. The Init function

is the name of the Matlab script run to initialize the kernel block. This can be seen as the

application run on the motes to set data delivery and so on. The Init function argument

is an extra parameter that can be sent to the initialization script. In this instance, it

is used to set the network address of the node in the simulation. The kernel can also

be set to use a battery. This enables it to be connected to the truetime battery block.

This was used to simulate the battery usage of the nodes. A clock drift and offset can be

implemented for the node, but were not used as precise timing and synchronization were

not used in our system.

Figure 5.3 shows how the kernel and battery blocks are connected with other simulink

blocks to build the simulation model. The kernel has analogue input and output channels,

of which the input was used to measure the battery level and forward it to the node func-

tion. Support is given for external interrupts and monitors, but these were not used. For

power usage simulations, the kernel has an energy input port available which is connected

to the battery so that the system has an indication that there is still sufficient power

remaining for operation, as the node will stop functioning as soon as the power runs out.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 63

Figure 5.3: Wireless node truetime simulation model

The power usage output port is also connected to the battery and drains the battery as

the system runs. Three other ports are used for connection to the rest of the simulation

model. The send and receive ports are for sending and receiving packets through the

wireless system. The power port connects to the network model to change power usage

dynamically, as packets are transmitted and received. The schedule (example of schedule

output in figure 5.8) gives a graphical output of packet transmission and reception.

5.2.2 Network model

The Truetime wireless network block simulates medium access and packet transmission

in a wireless network. This block has a mask dialog box (Figure 5.4), where the type

of network required can be set up and also network specific parameters. At the moment

models are given for the 802.11b and 802.15.4 wireless standards. As we are using a

802.15.4 radio, this is the model that will be specified. Some parameters must also be set

up to ensure precise simulations of the radio hardware and wireless transmissions, these

are: Network number The number of the network block. This is to ensure that all

nodes are connected to the correct network. This is only critical if multiple networks are

simulated.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 64

Figure 5.4: Wireless network mask dialog setup box

Number of nodes The number of nodes that are connected to the network is set, so

that the network block knows how many send, receive and schedule channels are required.

Data rate (bits/s) This sets the transmission speed of the network. The CC2420 radio

transmits at 250kb/s.

Minimum frame size (bits) Most network protocols have a fixed number of header

and tail bits, so the frame must be at least the length of the tail plus the header. If it is

not, the message is padded to reach the set minimum length.

Transmit power This determines the radio signal level and, thereby, how far the signal

will reach. This is set to the radio maximum which is 0dBm.

Receiver signal threshold This sets the minimum receive level at which the radio will

detect messages. this is set to -90dBm for the CC2420 radio.

Path-loss exponent The path loss of the radio signal is modeled as 1/da where d is the

distance in meters and a is a suitably chosen parameter to model the environment, which

is typically chosen in the interval 2-4 for standard over the air transmission.

ACK timeout This is the time a sending node will wait for an acknowledgement message

before retransmission.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 65

Figure 5.5: Wireless network Truetime simulation model

Retry limit The maximum number of times a node will try to retransmit a message

before giving up.

Error coding threshold A number in the interval [0, 1] which defines the percentage

of block errors in a message that the coding can handle. For example, certain coding

schemes can fully reconstruct a message if it has less than 3% block errors. The number

of block errors is calculated using the signal-to-noise ratio, where the noise constitutes all

other ongoing transmissions.

The network model built with the truetime and simulink blocks is shown in Figure 5.5.

When a node sends a message, a signal is sent to the network block on the send input

channel. When the transmission simulation is done, the network block sends a message

on the receive output channel to the corresponding node’s receive port. The network

block also has an input for the x and y coordinates of each node. A schedule output is

given to provide information on the whole network’s packet transmission. The power port

is connected to all the nodes in the network to simulate the changes in power usage as

packets are transmitted and received.

5.2.3 Overall model structure

The node and network models can now be used to construct the whole network as required

for simulation. The node model was used as a single block with the three ports connected

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 66

Figure 5.6: A 10 node network Truetime simulation model

to the outside. This block can now easily be duplicated to simulate multiple nodes.

The network model was also built into a single block with the send receive and power

ports to all nodes in the network on the outside. Figure 5.6 shows the overall system as

implemented in Matlab. Also provided is the mote animation block which has as input the

x and y positions of each node and then gives a graphical output of the node positions with

their transmission range radii. This simulation can now easily be manipulated to include

a larger number of network nodes by just pasting in more node blocks and adjusting the

necessary parameters in the network setup.

5.3 Functions

The functions controlling the behaviour of the nodes built with the truetime blocks are

written as Matlab m-files. It is also possible to use more simulink blocks to build the

system, and less code. The idea was to keep the model of the network as close as possible

to the real system running on the motes. For this reason the code for the main functions

used in the TinyOS system was ported directly to Matlab code, for implementation in

the simulation. The similarity between C++, NESC and Matlab code made it possible

to adapt the code with changes only in syntax and minor functions where needed. This

ensured that changes made in simulation code could be incorporated precisely in TinyOS.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 67

5.3.1 Initialization functions

A main simulation initialization function is run first, when the simulation starts. This

sets up initial power usage, global variables and structures needed in the simulation and

also the node start positions. The node initialization function is now run for each node

built into the network. Interrupt handlers used in the simulation are set up here, as well

as periodic tasks like the sending of data and routing packets.

5.3.2 Node functions

The routing system was built on the same functions as described in Chapter 4, by porting

the TinyOS code as described earlier. Each time a new routing message has to be sent,

as set in the node initialization script, the sendrouteupdate function is called. From here

on all other functions, such as Insert (to create a parent structure), are used precisely as

on the motes.

Interrupt handlers were created to simulate battery usage. Each time change occurs in

power usage, eg. when messages are sent or received, or a node goes from the OFF to

the ON state (duty cycling system), the appropriate interrupt is called and the power

consumption is set to the correct level until the system goes into another power state.

5.4 Simulation outputs

5.4.1 Text output

The simulation was written to create command line outputs in whatever function was re-

quired. This gave real time information on packet transmission, reception and in-function

routing system reports. Every event was reported with a precise time stamp, node num-

ber and other relevant information. The precise moment when a certain node receives

a routing packet and, subsequently, when the parent insert function executed and what

checks are made to see if it should be inserted into the parent list can, for instance, be

seen.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 68

Figure 5.7: Network simulation node visualization

5.4.2 Node animation

Figure 5.7 shows the output figure made by the moteanimation Matlab function. The

motes are represented by their address at their given locations in a 2D field. The circles

represent their radio ranges, which are computed by using the radio parameters supplied

to the network block. The lines connecting the nodes show the best links to the base

station (node 1) that they have set up. It is also possible to change the node locations

while the simulation is running, to simulate mobile nodes This movement will also be

shown on the animation output figure.

Note the two paths of node four through node six and node ten. Node four first found

node six to be its best path to the base station. After more rounds of route discovery

messages, node ten was chosen, as this is the better option. This shows the effect of the

paths filtering through from the base station to the outer nodes as usable links are set

up.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 69

Figure 5.8: Simulation network packet schedule

5.4.3 Network schedule

The network schedule, given as output by the wireless network block, is a graphical pre-

sentation of packets sent over the transmission channel. Figure 5.8 is an example of a

network schedule output over about 50ms showing the nodes’ transmission of route setup

packets. The channel activity for each node is represented on a line. This line advances

to one level to show that the channel is activated and to a higher level when packet

transmission takes place. The different transmission times for each node demonstrate the

random backoff periods incorporated in the transmission system. With this information

problems like channel congestion and any fluke errors, such as multiple unnecessary re-

transmissions, can be seen. Packet timing and transmission delays can easily be seen and

used in calculations. Another use for the schedule output is to assist with debugging of

the system. The route through which a packet is sent can, for instance, be monitored as

can undesired reactions.

5.4.4 Battery levels

The battery level is the most important output obtained from the simulations. With this,

the effects of the different battery saving techniques can be seen and compared to real

life batteries. Figure 5.9 shows a battery simulation output over 150s. Note that the

power usage graph will always be close to linear, as the network runs on periodic cycles.

Therefore, only short simulation runs are required to get a very good approximation of

power usage over a longer time. The battery capacity is measured in Joule or Ws. This

is the easiest unit to work with in simulations, as power requirement is measured in Watt

and this usage information, combined with the length of time at different power levels,

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 70

Figure 5.9: Simulation battery usage output

provides output measured in Ws. This unit can easily be converted to the standard

battery capacity measurement unit, which is mAh. In the example below, 2500mAh cells

at 3V are used, as this is the supply voltage and capacity of two AA cells as used in our

motes.

9000000mAs = 2500mAh× 3600

27000000mWs = 9000000mAs× 3V

27000000mWs/1000 = 27000Ws

An 2500mAh cell can deliver a current of 2500mA for one hour, therefore, it can deliver

9000000mA of current for one second,(not physically possible, but just for the sake of

explanation). At a supply voltage of 3V this means that 27000000mW of power can be

delivered for one second; converting this to Ws gives a final value of 27000Ws, which is

equivalent to 1W power delivered for 27000 seconds, or 20mW for 125 hours.

Stellenbosch University http://scholar.sun.ac.za

Chapter 5 — Simulations 71

5.5 Summary

The simulation platform used to develop a model for our system is Truetime. It incor-

porates an accurate model of the routing system and uses the Truetime blocks to closely

simulate wireless transmissions done by our transceiver. The most important develop-

ment in the model was the extensions made to simulate the power usage of motes, as

this is a feature that was not available with standard network simulation tools. This

gave an easily scalable platform for network simulations, that helped in developing the

actual system and can be used to great effect in power use modeling (as demonstrated in

following chapters).

Stellenbosch University http://scholar.sun.ac.za

Chapter 6

Performance measurements

This chapter reports the results from measurements made while developing and testing the

system. This includes measurements on the link quality estimators that were necessary to

improve the routing system. Also included are the results of tests run to show the energy

usage improvements made. A basic system was deployed and weather data monitored to

observe environmental effects on the mote operation over an extended period of time.

6.1 Battery life

Our main focus was placed on measuring the lifetime of motes, and then improving on

this, using the various methods described in Chapter 4. Different types of AA cells, as

described in Chapter 2, were used to run the motes. By continuously logging the battery

level over its whole lifetime, discharge curves for the cells and the total lifetime of the

motes could be obtained.

The motes were set up for full power operation with no duty cycle. A beacon message

rate of one every two minutes and a data message rate of one every thirty seconds were

set for data logging. New sets of cells were used and the rechargeables put through a

couple of charge and discharge cycles, to reach top capacity. All test motes were used in

the same lab environment, with similar environmental conditions.

72

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 73

Figure 6.1: Discharge curve of alkaline cells when used to power motes

6.1.1 Alkaline

The discharge curve of alkaline cells (figure 6.1) shows the expected behaviour of a steady

voltage drop over their lifetime. The mote logged data with no packet loss over the whole

voltage range, down to the 1.5V limit. Around the measured level of 1.513V the motes

started to die and recover intermittently for another 2 hours. This can be explained by the

”recovering” effect of alkaline cells while current is not drawn. The motes had a lifetime

of about 125 hours on a set of cells. This steady alkaline cell discharge curve provides a

convenient way to predict battery level. As the motes will normally use a maximum of

21.8mA, the power requirements are low enough to make normal AA alkaline cells a good

choice.

6.1.2 Ni-Cd

For the next test a set of 700 mAh Ni-Cd cells was used. The discharge curve in figure

6.2 shows that these cells stay at a combined steady voltage level of around 2.5V, for

most of their discharge cycle. The voltage then drops down steeply to the 1.5V limit

in the last couple of hours after about 2 days. This can be a good feature, because the

higher level for longer periods of time will ensure that more devices on the node could

continue to operate properly. For example, reprogramming of the mote with the Deluge

system will be available for longer, because the external flash memory can still be used.

The problem is that battery lifetime predictions cannot be made accurately, and a mote

might seem viable, but then die within a couple of hours. This is not an issue for system

communication, as there is enough time for different routes to be set up. A problem

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 74

Figure 6.2: Discharge curve of 700mAh NI-CD cells when used to power motes

arises, however, if there are critical nodes that might need a battery change, but this fact

is detected too late.

6.1.3 Ni-MH

A set of 2500mAh Ni-MH cells was used next. The discharge curve in figure (Figure

6.3) show that their discharge characteristics are very similar to that of the Ni-Cd cells,

except that an even sharper voltage drop at the end of a cycle was noticed. The cells

provided a mote lifetime of about 123 hours. This proves the fact that alkaline cells have

around 2500mAh of capacity. As these cells give very much the same results as Ni-Cd

cells they have the same pros and cons1. The problem with all rechargeable cells in long

life applications is that they always lose charge, even under no load. The sets of cells were

charged and their voltage tested daily without being used. They had a similar discharge

curve as when they were used, and reached the 2.5V mark after eight days. Cells in

use reached this level at about the halfway mark of their life. These cells will therefore,

produce a poor lifetime in motes that might survive years (See next chapter) with alkaline

cells.

1They are, however, safer to the environment and have other features as described in Chapter 2

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 75

Figure 6.3: Discharge curve of 2500mAh Ni-MH cells when used to power motes

6.2 Duty cycle tests

6.2.1 Synchronization test

The performance of the duty cycle system could be monitored while developing the system,

by measuring the voltage of motes with an oscilloscope. The voltage drops to a lower level,

faster, at times of larger current draw. Figure 6.4 shows a section of time including two

ON periods. The mote in the test was running a 4% duty cycle with a 2 second period.

This percentage equates to the 80ms ON time, shown by the lower voltage levels in the

graph. The synchronization of nodes could now be studied easily and adapted by using

this visualization method. The base station (running off USB power) voltage dropped

about 133mV when the system switched on, while the voltage of the battery powered

nodes only dropped by about 11mV. This large drop could be because of resistance in the

supply line over USB.

6.2.2 Discharge rates

Motes were now set up with different duty cycles to test the difference in drain on cells.

The same Ni-MH cells were used for all the tests and care was taken to fully charge

them in between runs. While quick charging, the cells can get very hot and they were

trickle charged until cooled down, to ensure full capacity. The discharge rate improved as

expected and can be seen in figure 6.5, when reducing the duty cycle percentage. See the

next chapter on life expectancy of a system related to duty cycle. Due to the significant

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 76

Figure 6.4: Oscilloscope view of voltage difference while running duty cycle system

Figure 6.5: Ni-MH discharge curves for different duty cycle settings

lifetime extension it was not feasible to do lifetime tests with the system in this mode.

For this reason only the basic trends were visualized and used as a lifetime estimate.

The nodes reported data with a 100% success rate down to a duty cycle of 1 %. When

setting this to 0.5% the nodes still synchronized, but on average about 50% of packets

were dropped and nodes disappeared intermittently.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 77

Figure 6.6: RSSI vs LQI measurements for the same packets received

6.3 RSSI and LQI radio link measurements

In this section, results are presented for tests done on the link estimators. These are the

RSSI and LQI values calculated by the radio for each packet received (explanation given in

Chapter 2). The basic multihop component, supplied with Boomerang, uses only LQI to

estimate link qualities. To make range adjustments, and therefore power savings possible,

RSSI values also had to be studied to determine its feasibility as a range estimator.

6.3.1 RSSI and LQI comparison

Through all the tests run, the RSSI and LQI measurements could be monitored and logged

to compare them with external variables. To expedite variations in the radio link, the

packet interval of the nodes was set to two seconds. The first test was done to compare

LQI and RSSI over the range of reception. It can be seen in figure 6.6, that with RSSI

levels2 down to about 10, the LQI remains steady over the 100 mark. From here it dropped

down quickly, to around 60 at an RSSI level of 4, but big variations were seen from packet

to packet. The absolute limit of reception is at a value of -94dBm, which is 0 on our scale.

Very few packets were ever received with a RSSI value lower than 4, and the minimum

level measured was 2. This means that the LQI measurement can only really be relatively

accurate in the final range of reception. This drastic fall in the link quality means that

LQI can be compared very well to packet reception rate[32].

2This level minus 50 is the RSSI register value that can be converted to dBm using Figure 2.6, giving
-84dBm for a value of 10

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 78

Figure 6.7: RSSI correlation between 2 nodes

6.3.2 RSSI accuracy

The accuracy of RSSI was measured to check stability and correlation between measure-

ments of both links between two nodes. As seen in figure 6.7, the variation between

measurements are small and always within about 4dBm of each other, throughout the

whole reception range. This makes it possible to predict the signal strength of packets

sent to other nodes without receiving this information from the particular targeted node,

which assists with the accuracy of radio range adjustments.

6.3.3 Transmission limits

To safely adjust radio range, the limits of packet transmission have to be found at all

power levels. This experiment was run with route packets sent at full power to measure

the RSSI value. Data packets were sent at the seven different power levels available, to

ascertain the RSSI level where perfect transmission is no longer possible. Down to this

level RSSI on its own is a good measurement of link quality as LQI stays relatively the

same, as shown in the previous section. Figure 6.8 shows that there is a good linear

relationship between lowering power levels and received power, as is to be expected.

6.3.4 RSSI vs Distance

The stability and accuracy of RSSI values at different ranges enable the prediction of

distance between nodes. In these tests, nodes were placed at measured distances from

each other at a constant level above ground. A LOS path was always ensured as anything

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 79

Figure 6.8: RSSI limits of transmission at different power levels

Figure 6.9: RSSI correlation with distance

in the way produces variable attenuation. The values of a number of equal length links

were now averaged to get the RSSI correlation to distance. Figure 6.9 gives the RSSI

values over distance for measurements made indoors. Nodes were transmitting at -10

dBm to limit range for easier indoor usage. Due to multipath issues indoors, very big

variations were seen. Outdoors, the measurements were made at 0dBm. Readings are

a lot more stable in an environment without too many buildings and too much other

clutter, therefore, in outdoor applications where stable links are available, range can be

much more accurately estimated from RSSI. The important point here is to recognize

that the propagation range can be adjusted conveniently by observing the RSSI.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 80

Figure 6.10: Trawler display of constructed multihop network

6.4 Network setup and communication

6.4.1 Route discovery

System setup time can be very long, depending on the interval between beacon messages.

Figure 6.10 shows a network of 7 nodes with their current route paths in dark lines and

connections to other neighbours in the lighter lines. In this example beacon message

interval was set to 10 seconds. Nodes one and two will be the first to have valid routes,

as soon as they receive a message from the base station. After 10 seconds, when they

send their beacon messages, nodes three, four and six, will each receive valid routes from

both these nodes. All three of these might set node 2 as their parent, if they receive its

message first, but when node one sends a message they will make a decision as to which

one is best. Only after another ten seconds will node five receive beacon messages from

nodes three four and six with valid routes and be able to set a path. Each one of these

could be set as its parent, depending on the first message received, but in the end the

best path is through Node three and then one. The maximum time taken for nodes to go

online, therefore, is the minimum number of hops to the base, multiplied by the beacon

message interval. The message queue size can be set, to ensure packets are not dropped

due to setup time in large networks. If a node is 5 hops away from base and beacon and

data message interval is at 10 seconds, setting the data message queue to 5 will ensure

that all messages are sent, even if route discovery takes the maximum amount of time.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 81

Figure 6.11: Maximum report rate against number of nodes in the network

6.4.2 Network throughput

No dutycycle

High throughput in a sensor network such as the present is not very critical, as environ-

mental data does not change dramatically in short periods of time. Measurements were

made to find the maximum report rate that the system can produce, as limits can be

reached in large networks. The bottleneck is seen at the base station which has to receive

data from all other nodes before reporting it over USB, to a PC.

Tests were run with nodes set up with a report rate of eight packets per second. This

means that every second 448 bytes (See appendix C on packet data) of data packets is sent

to the base station. This was the limit at which the base station could receive and send

messages from one reporting node without loss. The problem is that with multiple nodes

this rate will go down accordingly. Packet loss with 2 nodes was on average 50% and

with three nodes 64%. The maximum report rate, therefore, decreases with the number

of reporting nodes. This is shown in figure 6.11.

1% Dutycycle

When setting the system for 1% dutycycle operation, the rate at which data can be

sent is dramatically reduced, as the motes are only operating for 20ms every 2 seconds.

This means that the maximum report rate of nodes is only once every 2 seconds. With

one node, packet transmission success at this rate is still 100% but with two nodes, on

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 82

Figure 6.12: Outdoor humidity and temperature measurements

average about 50% of packets are dropped. When halving the rate to once per 4 seconds,

packets can again be received perfectly. This means that the maximum rate of perfect

transmission with this setup is the number of nodes multiplied by the 2 second period.

If all nodes send at the same time, then packets will still be dropped, but this evens out

until they send correctly.

6.5 Sensor readings

A couple of motes were deployed with sensors attached to obtain performance data over

a couple of days. It was found that packet delivery was near perfect over the whole

deployment time, with the only packet loss measured while moving the motes, or with a

lot of activity around the base station.

6.5.1 Outdoor measurements

The temperature and humidity3 in figure 6.12, were measured outdoors with a mote setup

for 3% duty cycle operation. Note that the voltage level at the start of measurement in

figure 6.13 increases for a while. This is because of the recovery effect of cells, after the

higher load due to programming and reset. The mote, now running in low power mode,

uses much less power. Another interesting thing to note is the very limited voltage drop

during the day and then the much higher loss at night. Over the two and a half day test

3It was noted that when the humidity measurements reached over 80 at night it started raining

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 83

Figure 6.13: Outdoor mote voltage

period, the battery voltage dropped by about 17mV. This difference correlates well with

the lower temperatures at night, during which the cells lose charge more quickly.

6.5.2 Indoor measurements

Indoor temperature and humidity (figure 6.14) varied much less than that outdoors, as

can be expected. From Figure 6.15 it is clear that the indoor mote’s battery voltage

dropped by much less over the same period of time than that of the outdoor motes. Due

to higher indoor temperatures a drop of only 7 mV was measured. The batteries of the

two motes were matched to have about the same charge level at the start of test. The

light intensity measurements shown in figure 6.16 are not measured according to a specific

scale. This was calibrated only to show the intensity difference between night and day. A

value of over 4000 is darkness and in the day, under lights, the value was around 200. Note

the steady climb and fall at evening and morning, and the sharp step increase/decrease

when a light was switched on or off.

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 84

Figure 6.14: In lab humidity and temperature measurements

Figure 6.15: Indoor mote voltage

Figure 6.16: Light intensity inside lab

Stellenbosch University http://scholar.sun.ac.za

Chapter 6 — Performance measurements 85

6.6 Summary

Three types of AA cells were used to run the motes in lifetime tests. This provided

discharge curves for the cells and node lifetime for comparison with models in the next

chapter. The suitability of the cell types for mote operation was examined by using

their respective discharge curves. These can also be used to good effect, to visualize the

difference in energy use with different duty cycle settings.

The RSSI and LQI link estimators, provided by the radio, were tested and compared. The

RSSI data was found to be a very accurate measurement of received signal strength. This

could be used to facilitate range adjustments by utilizing it as a signal strength, neighbour

localization tool. The LQI measurements was found to be a good link quality estimator

at the limits of packet reception, and can be used to ensure good routing links on top

of the power saving features. The limits of successful data throughput were measured

to ascertain the speed at which data can be logged. It was found that a much larger

amount of data can be handled than is normally necessary for environmental monitoring

applications. A deployed system gave steady results and good insight into environmental

effects on the system.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7

Comparative results

This chapter presents a comparison between real system test runs and system models.

The models in question are the simulations described in Chapter 5 plus a mathematical

model.

7.1 Battery life

The two formulas below can be used to model [10] the basic power usage of motes. The

amount of energy used is E and the supply voltage is V. This E
V

is measured in mAh

and, therefore, can be related to the rating of the batteries used. Im and tm are the

µprocessor’s current draw and the time it is switched on respectively. Ir and tr are the

current draw and time the radio is in receive mode. It and tt are the radio current draw

and time the radio is in full power transmit mode respectively.

Table 7.1 provides the power consumption for the various parts of the motes to be used in

calculations. The summated power used by other components, eg LEDs and sensors, must

also be added when power usage is calculated for a deployed system. Ici and tci represent

the current draw and ON time of these components. This will mostly be ignored, as power

calculations are utilized to provide information on the effects of communication on energy

usage.

E

V
= Imtm + Irtr + Ittt (7.1)

E

V
= Imtm + Irtr + Ittt + ΣiIcitci (7.2)

86

Stellenbosch University http://scholar.sun.ac.za

Chapter 7 — Comparative results 87

Operation Current draw

Mote Standby 5.1 µA

MCU active 1.8 mA

MCU + Radio RX 21.8 mA

MCU + Radio TX (0dBm) 19.5 mA

(-1dBm) 18.6 mA

(-3dBm) 17.3 mA

(-5dBm) 16 mA

(-7dBm) 14.6 mA

(-10dBm) 13.3 mA

(-15dBm) 12 mA

(-25dBm) 10.6 mA

Table 7.1: Current draw of various operations by the Tmote

7.1.1 Always ON system

The similarity between the lifetimes of rechargeable 2500mAh cells and alkalines was

shown in the previous chapter. With these, a lifetime of around 125 hours was achieved

with a system not running on a duty cycle. For our basic model, given in equation 7.1, we

combined the processor current draw with that of the radio component as it will always be

turned on. The usage calculations can now be made by the following derived equations:

mAs = Itrttr (7.3)

mAs = Itrttr + Itt(1− ttr) (7.4)

mAs = Ittttt (7.5)

With equation 7.3, the power usage is calculated for a system always in receive mode and

no transmissions made. Equation 7.4 takes receiving and occasional transmissions into

account. Equation 7.5 expresses power usage for a continuously transmitting theoretical

system. A lifetime of 114h 40m 55s is predicted for the first case with this model and

a lifetime of 128h 12m 20s for a continuously transmitting node. The expected life of a

node will, therefore, be somewhere between these values.

During the tests (Chapter 6), a maximum transmission rate of 3584bps was achieved

by sending the standard 56 byte packets. This equates to a 10 minute battery lifetime

extension when compared with our model as presented in figure 7.1. Our simulation

model also compared well with these figures, as a 125 hour total lifetime was achieved, in

Stellenbosch University http://scholar.sun.ac.za

Chapter 7 — Comparative results 88

Figure 7.1: Math model battery life comparison

keeping with the tests1. The fact that our mathematical model provides a slightly lower

lifetime when compared with the other methods of testing can be explained by the fact

that the current draw stays the same while the voltage drops. This may cause a mismatch

between the Ws and mAs rating of batteries.

Including radio range adjustments

To obtain the effects of radio range adjustments on energy consumption, the model can be

extended. Equation 7.6 below, shows how consumption at the seven different transmission

power levels is brought into the calculations.

E

V
= Imtm + Irtr + Σ7Itxittxi (7.6)

Lifetime can be extended to 235h 50m 56s if a system constantly transmits at the lowest

power level (-25dBm). With the 3584bps throughput attained in the test system, these

adjustments can equate to a one hour battery life extension, when running on 2500mAh

cells.

1This can be seen in Figure 7.2 at the 100% dutycycle point. Simulation outputs are not always shown
as this would have taken an impractical amount of time.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7 — Comparative results 89

Figure 7.2: Lifetime of nodes at different duty cycle settings.

Figure 7.3: Math model node lifetime predictions at 10% duty cycle

7.1.2 Duty cycling system

The duty cycle system is the main power saving feature, as a mote in standby only draws

about 5.1 µA of current. The math model below is extended by including the current draw

while the mote is in standby mode, Iltl. Figure 7.2 shows the dramatic improvements in

lifetime when the system duty cycle is reduced. From just over 5 days lifetime is increased

to 467 days at a 1% duty cycle.

E

V
= Imtm + Iltl + Ittt + Irtr (7.7)

The lifetime of a mote transmitting 448 bits every 2 seconds, can be increased to about

471 days. The range in lifetime due to changes in bit rate is shown in figures 7.3 to 7.5,

for duty cycles of 10 %, 5% and 1% respectively. For each one, again, this lifetime was

calculated over the whole theoretically possible range of bitrates.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7 — Comparative results 90

Figure 7.4: Math model node lifetime predictions at 5% duty cycle

Figure 7.5: Math model node lifetime predictions at 1% duty cycle

Stellenbosch University http://scholar.sun.ac.za

Chapter 7 — Comparative results 91

Including radio range adjustments

To include the effect of radio range adjustments, the model was once again extended to

include the term for the different power levels. With the test bit rate previously used,

equating to a throughput of 224bps, battery life is extended from 467 to 488 days, when

minimum transmission power is used. Tests on packet sizes of up to 80 bytes (320 bps)

still produced perfect packet transmission. This equates to a lifetime of 498 days. So a

lifetime extension of a full month is available over a system without range adjustments.

E

V
= Imtm + Iltl + Σ7Itxittxi + Irtr (7.8)

Figures 7.3 to 7.5 clearly indicate the possibility of lifetime extension by radio range

adjustments if the system bit rate can be further improved.

7.2 Voronoi routing analysis

Routing data through neighbours with the best link quality provides better connectivity.

As described before, the Voronoi diagram can be used to find the best connected path

between two points (maximum support path). This means that a path between nodes

and the base station can be found that has the best possible link quality between hops.

Using the Voronoi diagram it will now be proven that the best quality path (shortest

transmission links) in a sensor network is not always the best one.

In figure 7.6, one hundred nodes are placed randomly in a 400x400 grid. Let us assume

the distance between nodes is the ”radio” distance (90 corresponding to -90dBm which

is about the limit of reception). The routes of three nodes to the base station are shown

with the red lines indicating the best connected path (best support path) and the green

lines the shortest distance. The best connected path uses links which are all shorter than

the radio range at minimum transmit power.

It was found that on average the routes utilizing the best support path are 25% longer.

Another point to note is that nodes will have to route an average of 109% more packets

(correlating to 109% more hops) when using the best support path. In a 100 node network

the average maximum of nodes which will route data through a certain node is 50, but

by using the shortest path this drops to below 20. This may become a big problem with

the dutycycle system. As tested earlier, with low dutycycle settings, nodes do not have

Stellenbosch University http://scholar.sun.ac.za

Chapter 7 — Comparative results 92

Figure 7.6: Difference between shortest path and closest neighbour routing

a large communication throughput. Routing more data packets, therefore, means larger

data loss and ineffective routing, especially in larger networks.

The maximum support path computed by using the Voronoi diagram can, therefore, be

used to get the best quality links with the shortest hops possible, but will have adverse

effects on throughput. What also might happen is that transmissions continue beyond the

dutycycle ON time, which will cause higher energy consumption; synchronization might

need to be redone because of packet loss. It can be argued that transmitting at lower

power levels saves power, but to get packets through effectively, a higher duty cycle will

be required in large networks, meaning that this won’t make a positive difference.

Stellenbosch University http://scholar.sun.ac.za

Chapter 7 — Comparative results 93

7.3 Summary

A mathematical model was constructed for different types of system operation. These

include a system running with and without a duty cycle, and with the radio range adjust-

ments either on or off. It was also demonstrated that battery lifetime was very accurately

modeled by the simulation and mathematical model. The lifetime of nodes can be very

long, therefore, it was not feasible to do full lifetime runs. For this reason, the simulation

and mathematical models can be very good tools in estimating system lifetime. The life

extension achieved by using low duty cycle operation and radio range adjustments can

be very large, but it depends on the amount of data transmitted by a node. Voronoi

diagrams were used to research the best ways to route data in a sensor network and it

was found that just using the shortest (the best quality) connections are not the best

option.

Stellenbosch University http://scholar.sun.ac.za

Chapter 8

Conclusions and future developments

WSNs could be used in a very large range variety of applications. These range from

military threat detection to early warning systems. This led to the idea of designing

a WSN for environmental monitoring applications, which could be used in crop micro

management and forestry research, among others.

The differences between WSNs and conventional wireless networks are mostly based on

hardware limitations of WSNs. These include the limited computational power and stor-

age space of processors, as well as the limited radio ranges. This is due mostly to power

constraints and the need for hardware cost reduction. Other differences are in the WSN

control software, where issues like coverage, connectivity, localization and routing need to

be addressed in novel ways to ensure energy efficient and stable system performance over

long periods of time.

The following sections provide a summary of the major work that has been addressed

and contributed to the field in this thesis and also some future developments in the WSN

field.

94

Stellenbosch University http://scholar.sun.ac.za

Chapter 8 — Conclusions and future developments 95

8.1 Summary of contributions

This thesis set out to improve and extend aspects of existing WSN development, simula-

tion and implementation software tools, as well as to create some additional ones. This

serves to increase the overall predictability and functionality of the WSN application. In

this, it is felt that some success has been achieved. The main areas of focus, can be

summarized as follows:

Low power hardware platform. A comparison of available hardware platforms led

to the decision to use using the Tmote Sky platform. These motes were found to have

very low energy consumption characteristics as well as good support for sensor add-on

and the ability to be controlled by TinyOS. One of the main research areas [8] still open,

is in the reduction of mote power consumption, while ensuring good communication and

overall system performance. This was achieved by writing and adapting, as well as using

currently available, TinyOS components.

Smart sensing application. The Sense application was developed with network pro-

gramming ability provided by Deluge, and a lockup safeguard feature in the form of

a watchdog timer. This program also automatically detects sensors and reports data

through the multihop system. All these features ensure a stable and robust logging sys-

tem.

Power usage reduction by use of smart communication strategy The routing

system was made power aware. By using the multihop routing layer that was devel-

oped, in conjunction with the duty cycling system, a big reduction in power consumption

could be achieved. It utilizes battery level information to estimate lifetime and signal

strength information for virtual localization, to make range adjustments possible. The

aforementioned information was used in conjunction with a link quality indicator as a

route cost setup metric. This provided very stable routes, with nodes limiting power use

where possible. The in depth study of the radio link indicators made it possible to predict

what could be expected in different scenarios and they were, therefore, incorporated with

great success. With all the incorporated features, a stable and deployable system could

be developed with a lifetime extension from 5 to about 490 days. It provided more than

adequate performance for environmental monitoring systems.

Voronoi routing analysis. The Voronoi diagram is a useful geometric shape and was

used to show the problems that might arise in large networks when using the paths with

the best connectivity, in contrast to the shortest paths. Network throughput will be

adversely affected. Especially with a power saving, duty cycling system, using the wrong

Stellenbosch University http://scholar.sun.ac.za

Chapter 8 — Conclusions and future developments 96

routing strategy will produce and ineffective or faulty system.

WSN energy use simulations. Comprehensive tests to obtain the lifetimes at different

settings are not feasible on a real system, as it would be too time consuming. For this rea-

son, a simulation model was developed to simulate power usage while accurately modeling

network communication. Modeling of node power consumption in sensor networks was

not an easily achievable task, but the developed model makes it possible to successfully

simulate this for a variety of scenarios. The simulations, together with a basic math model

for comparison, produced results that were very close to actual hardware measurements

and which can, therefore, be used for accurate lifetime estimations.

AA cell comparison. Tests were only carried out over a short period, but with a range

of batteries to compare performance and capacity. It was found that alkaline cells would

be the best to use in deployed systems. They have a steady discharge curve and do not

lose capacity after long periods of time, while still producing similar power delivery to

2500mAh Ni-MH cells designed for high current applications.

User and developer tool creation. Software tools are needed to enable easy imple-

mentation and design of future WSNs. Display of all data throughout system development

was made possible by creating an extended version of the Boomerang Trawler application.

It can visualize all sensor channels, as well as link cost information and network topology.

The CSV data logger can be deployed as a system for data logging and display through

a web page. This paved the way for future developments in online data logging.

Open source program use. The system was designed using open source software

where possible. TinyOS and the Boomerang distribution, including all parts thereof is

open source software. The Truetime simulation package is also available as a freeware

MATLAB add-on.

An Ubuntu Linux distribution with built in TinyOS, called UbunTOS is available. This

distribution also has the ability to be installed on a 1GB flash drive, providing a fully

open source and compact WSN development system. This enables the development of a

purpose built and compact computer that can function as the base station.

Stellenbosch University http://scholar.sun.ac.za

Chapter 8 — Conclusions and future developments 97

Figure 8.1: Golem dust mote with American penny for size comparison

8.2 Hardware of the future

8.2.1 Motes

Hardware advances in the recent past have led to the development of cheap and readily

available WSN motes. Reduction in manufacturing cost, size and power usage, are the key

features addressed in hardware design, and great strides have been taken recently. Motes

cores with a size of a couple of square centimeters(eg. Tmote mini, figure 2.8)have become

available. The advances in the area of MEMS hardware are very advantageous to sensor

networks, as transducers and communication hardware can be successfully manufactured

in miniature sizes.

An example of such miniaturized motes, is the Golem Dust mote (Figure 8.1) from Berke-

ley. These motes are solar powered with bi-directional communications and sensing (ac-

celeration and ambient light) within a total displaced volume of 4.8 mm3

Stellenbosch University http://scholar.sun.ac.za

Chapter 8 — Conclusions and future developments 98

Figure 8.2: Energy used per bit transmission for different methods

8.2.2 Communication

A lot of work has been done on communications [42] to limit power consumption, per bit

sent. Figure 8.2 presents a comparison of the energy required to transmit data via RF,

laser and a corner cube retroreflector (CCR). Transmission by light uses far less power

than radio signals and messages can therefore, be sent over much larger distances without

using massive amounts of power. The passive CCR reflective system (used in miniature

hardware such as Berkeley Dust motes), bounces light back to a transmitter in modulated

format by actuating the mirrors. This uses about 16pJ/b for up to a range of 1km, as no

radiation generation is necessary. The problem with light transmission schemes is, that a

LOS path between nodes is essential.

Stellenbosch University http://scholar.sun.ac.za

Chapter 8 — Conclusions and future developments 99

8.2.3 Power supply

Batteries are still most commonly used as a power supply for sensor networks and are the

cheapest power solution. Solar panels and energy harvesters are becoming a more popular

choice, especially in miniature systems like dust motes etc. where the required energy is

very low and the size of normal batteries becomes a problem.

Other alternative methods of supply are wind power and even fuel cells. These cells have

been developed in the recent past and used successfully in small devices like cell phones

etc. Small wind power generators can also be used, in conjunction with solar panels if

required. With smart managing, motes can now be almost indefinitely powered with these

types of renewable energy.

8.2.4 Pervasive computing

Pervasive or ubiquitous computing is the next step in human-computer interaction in

which computing power are available in everyday devices. This differs from classic sensor

networks in the sense that pervasive computers are more intelligent and not only perform

sensing tasks, but can interact with and control one’s surroundings. Think, for example,

of a coaster that detects when your coffee cup is empty and then tells the coffee machine to

start up, which in turn lets you know when it is done by communicating with a pervasive

computer in your glasses. This might seem like a very unnecessary application, but the

whole idea behind this, is that anything is possible. A step to this type of system has

been taken by Moteiv, which has changed its name to Sentilla and is now developing

its hardware as pervasive computers, using a new Java platform, promising even easier

system development.

Stellenbosch University http://scholar.sun.ac.za

Chapter 8 — Conclusions and future developments 100

8.3 System Deployment

The system described in this thesis is ready for deployment. Some things that might have

to be addressed are the following:

• Weatherproof enclosures

• Safe and sturdy placement

• Base station placement

• Sensor connections

Sensors need to be connected in such a way that they can take accurate measurements,

but without hindering placement or enclosure of the motes. The base station will need

additional hardware to facilitate logging and monitoring. This should be kept in mind in

the supply power and safety of the hardware. Additions like an external antenna, which

would produce a better radio range can be made, if this is necessary.

8.3.1 Off site monitoring

Using the serial forwarder application and Trawler, it is already possible to monitor data

over a computer network as if one is sitting at the base station. The issue is that in

most applications a standard computer network is not available at the base station. A

connection like a satellite, a cell phone network or WiMAX can be used to connect the

base station to the internet. A web server with any desired functionality can now be

implemented to enable accessing of the sensor network data from anywhere in the world.

Stellenbosch University http://scholar.sun.ac.za

Bibliography

[1] “Omnet++ discreet event simulation system.” http://www.omnetpp.org, 2007.

[2] AKYILDIZ, I. F., SU, W., SANKARASUBRAMANIAM, Y., and CAYIRCI, E.,

“A Survey on Sensor Networks.” IEEE Communications Magazine, August 2002.

[3] ARAUJO, F. and RODRIGUES, L., “Survey on Position-Based Routing.” 2006.

[4] ARMS, S., TOWNSEND, C., CHURCHILL, D., GALBREATH, J., and

MUNDELL, S., “Power Management for Energy Harvesting Wireless Sensors.”

MicroStrain, Inc., SPIE Intl Symposium on Smart Structures & Smart Materials,

March 2005.

[5] AURENHAMMER, F., “Voronoi Diagrams A Survey of a Fundamental Geometric

Data Structure.” ACM Computing Surveys, September 1991, Vol. 23, No. 3.

[6] BOSE, P. and MORIN, P., “ONLINE ROUTING IN TRIANGULATIONS.” tech.

rep., School of Computer Science, Carleton University.

[7] CARUSO, A., CHESSA, S., DE, S., and URPI, A., “GPS Free Coordinate

Assignment and Routing in Wireless Sensor Networks.” tech. rep.

[8] CHOU, P. H., “Challenges on Low-Power Platform Design for Real-World Wireless

Sensing Applications.” 2006.

[9] CONG, L. and ZHUANG, W., “Non-Line-of-Sight Error Mitigation in Mobile

Location.” 2004.

[10] DUNKELS, A., OSTERLIND, F., TSIFTES, N., and HE, Z., “Software-based

On-line Energy Estimation for Sensor Nodes.” Swedish Institute of Computer

Science, EmNets 07, June 25-26.

[11] ESTRIN, D., BULUSU, N., and HEIDEMANN, J., “Gps-less low cost outdoor

localization for very small devices.”

101

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 102

[12] ESTRIN, D., BULUSU, N., and HEIDEMANN, J., “Adaptive Beacon Placement.”

in 21st International Conference on Distributed Computing Systems, April 2001.

[13] GAO, Q., BLOW, K., HOLDING, D., MARSHALL, I., and PENG, X., “Radio

range adjustment for energy efficient wireless sensor networks.” Ad Hoc Networks,

2004, Vol. 4.

[14] GOBER, P., ZIVIANI, A., TODOROVA, P., DE AMORIM, M. D.,

HUNERBERG, P., and FDIDA, S., “Topology Control and Localization in Wireless

Ad Hoc and Sensor Networks.” Ad Hoc and Sensor Wireless Networks, 2005.

[15] HANSEN, M. S. and STA, S., “Practical Evaluation of IEEE 802.15.4/ZigBee

Medical Sensor Networks.” Master’s thesis, Norwegian University of Science and

Technology, 2006.

[16] HU, L. and EVANS, D., “Localization for Mobile Sensor Networks.” Department of

Computer Science University of Virginia, MobiCom’04, September 2004.

[17] IEEE. 802.15.4 Wireless Medium Access Control (MAC) and Physical Layer (PHY)

Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), 2003.

[18] IYENGAR, R. and SIKDAR, B., “Scalable and Distributed GPS free Positioning

for Sensor Networks.” 2003.

[19] JACO LEUSCHNER, C., “The design of a simple energy efficient routing protocol

to improve sensor network lifetime.” Master’s thesis, University of Pretoria, 2005.

[20] KINNUNEN, K., “Summary of efficient algorithms for maximum lifetime data

gathering and aggregation in wireless sensor networks.” tech. rep., 2005.

[21] KIVILUOTO, L., “Summary on Improving Wireless Sensor Network Lifetime

through Power Aware Organization by Mihaela Cardei and Ding-Zhu Du.” tech.

rep., 2005.

[22] LEVIS, P. and LEE, N., TOSSIM: A Simulator for TinyOS Networks ,

September 2003.

[23] LOUREIRO, A. A. F., RUIZ, L. B., and NOGUEIRA, J. M. S., “Management of

wireless sensor networks.” Tutorial at IEEE/IFIP IM, May 2005.

[24] MEGUERDICHIAN, S., KOUSHANFAR, F., POTKONJAK, M., and

SRIVASTAVA, M. B., “Coverage Problems in Wireless Ad-hoc Sensor Networks.”

tech. rep., Computer Science Department and Electrical Engineering Department,

University of California, Los Angeles.

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 103

[25] MOSES, R. L., KRISHNAMURTHY, D., and PATTERSON, R., “A

Self-Localization Method for Wireless Sensor Networks.” tech. rep., Department of

Electrical Engineering, The Ohio State University, 2001.

[26] MOTEIV CORPORATION. Ultra low power IEEE 802.15.4 compliant wireless

sensor module.

[27] MOUSTAFA, H. and LABIOD, H., Adaptive Path Energy Conserving Routing in

MANETs . Old City Publishing, Inc., 2005.

[28] NAGPAL, R., SHROBE, H., , and BACHRACH, J., “Organizing a Global

Coordinate System from Local Information on an Ad Hoc Sensor Network.” tech.

rep., Artificial Intelligence LaboratoryMassachusetts Institute of Technology, 2003.

[29] OHLIN, M., HENRIKSSON, D., and CERVIN, A., TRUETIME 1.5Reference

Manual . Department of Automatic Control Lund University, January 2007.

[30] POLASTRE, J., A Unifying Link Abstraction for Wireless Sensor Networks . PhD

thesis, UNIVERSITY OF CALIFORNIA, BERKELEY, 2005.

[31] POLASTRE, J., HUI, J., LEVIS, P., ZHAO, J., CULLER, D., SHENKER, S., and

STOICA, I., A Unifying Link Abstraction for Wireless Sensor Networks . SenSys05,

2005.

[32] POLASTRE, J., SZEWCZYK, R., and CULLER, D., “Telos: Enabling Ultra-Low

Power Wireless Research.” tech. rep., University of California, Berkeley, 2005.

[33] POZAR, D. M., MIcrowave and RF designof wireless systems . Wiley, 2001.

[34] PRODUCTS FROM TEXAS INSTRUMENTS, C., 2.4 GHz IEEE 802.15.4 /

ZigBee-ready RF Transceiver .

[35] SAVARESE, C., RABAEY, J., and LANGENDOEN, K., “Robust Positioning

Algorithms for Distributed Ad-Hoc Wireless Sensor Networks.”

[36] SHANG, Y., RUML, W., and ZHANG, Y., “Localization from Mere Connectivity.”

[37] SRINIVASAN, K., DUTTA, P., TAVAKOLI, A., and LEVIS, P., “Understanding

the Causes of Packet Delivery Success and Failure in Dense Wireless Sensor

Networks.” tech. rep., Department of Electrical Engineering, Stanford University

Computer Science Division, UC Berkeley, 2006.

[38] SRINIVASAN, K. and LEVIS, P., “RSSI is Under Appreciated.”

Stellenbosch University http://scholar.sun.ac.za

BIBLIOGRAPHY 104

[39] STOJMENOVIC, I., “Localized Network Layer Protocols in Wireless Sensor

Networks Based on Optimizing Cost over Progress Ratio.” in IEEE Networks,

IEEE, January 2006.

[40] TAN, H., “Maximizing Network Lifetime in Energy-constrained Wireless Sensor

Network.” Australian National University, Faculty of Engineering and Information

Technology, IWCMC’06, July 2006.

[41] VARIOUS, Handbook of sensor networks, algorithms and architecture. Wiley series

on Distributed Computing. Wiley, 2005.

[42] VARIOUS, Smart dust: sensor network applications, architecture, and design.

Taylor and Francis, 2005.

[43] ZOU, L., LU, M., and XIONG, Z., “Pager-m: A novel location-based routing

protocol for mobile sensor networks.”.

Appendix A

Tmote Schematics

This section includes the schematics of all the hardware on the Telos module. In the

first schematic, the MSP430 processor is described, with connections to other peripheral

devices, like the sensors, flash memory, expansion connectors and LEDs.

The second schematic shows the CC2420 radio with necessary components and

connections. Note the 2.4 GHz antenna matching network, with matched traces to the

onboard antenna and to the SMA connector for external antenna. The choice can be

made between these two by connecting C73 (B5-C5 on schematic) to one or the other.

The third schematic shows mainly the USB interface hardware. Also included is the

power connections, either from the battery pack or through a filter from USB. Both of

these are active at the same time.

105

Chapter A — Tmote Schematics 106

Chapter A — Tmote Schematics 107

Chapter A — Tmote Schematics 108

Appendix B

Flow Diagrams

This section includes connection diagrams of the major TinyOS components used in our

system. This is to give a better understanding of how the components and interfaces

connect to form the operating system. These can be generated automatically with the

TinyOS system, simply by compiling with:

make tmote doc

Documentation in web page format is then created, including diagrams and descriptions

of all the components used in the compiled OS. In the diagrams, a component is

represented by a block, and the grey ovals pointing to it are the interfaces it provides. A

component can also point to another component whose interface it uses.

Figure B.1 describes the Sense application. Sense uses a number of interfaces provided

by the sensor, multihop routing and timer components. Figure B.2 next shows the

multihop routing system used. It consists of the Data component, providing interfaces

used by the Sense application. It also includes the Route setup component

(MultiHopRSSIBATM) which both use interfaces provided by the SP, timer and radio

components, among others. The SP, link abstraction layer component and the relevant

interfaces used and provided by it are presented in figure B.3. The component written

for the SHT-11 humidity sensor is shown in figure B.4. Figure B.5 incudes the

component for the internal voltage sensor and the ADC component, that will be the

same for all other ADC ports.

109

Chapter B — Flow Diagrams 110

Figure B.1: Sense application components and interfaces

Chapter B — Flow Diagrams 111

Figure B.2: Multihop routing components and interfaces

Chapter B — Flow Diagrams 112

Figure B.3: SPC link abstraction components and interfaces

Chapter B — Flow Diagrams 113

Figure B.4: Humidity sensor components

Figure B.5: Internal voltage sensor components

Appendix C

Message Format

The two main messages sent are the data messages from the Sense application, and the

beacon messages from the multihop routing layer. Messages consist of a standard header

(Figure C.1) that consists of data required for compatibility with the 802.15.4 radio. An

extra multihop header is added for data messages sent through the multihop routing

system. This includes information on the source and destination nodes, with sequence

numbers. Figure C.2 includes the beacon and data message information. The Beacon

message is added to the standard header when sent, producing a 20 byte message. The

Sense message is sent through the multihop system and is, therefore, added after the

standard header and multihop header, producing a 56 byte message.

114

Chapter C — Message Format 115

Figure C.1: Message format

Chapter C — Message Format 116

Figure C.2: Message format

Appendix D

Program installation

D.1 TinyOS

D.1.1 Requirements

To run the TinyOS system one needs a PC running Windows XP or Linux, with USB

support. Some long USB cables might come in handy to make node placement

easier.One will need the Moteiv Tmote tools installation; the last version available was

2.0.0.4. This includes the bash shell, cygwin and the Java platform. Also included are

the standard TinyOS components and the Boomerang distribution, that runs on top of

the standard TinyOS system.

D.1.2 Installation

Run the Tmote tools install package, which will automatically install, first cygwin, then

the Java tools, TinyOS system and then Boomerang on top of that. After setup is done

the first Tmote can be connected to a USB port in the PC. Windows will ask if you want

to install new hardware. Select the USB driver directory included with the tools CD. A

new USB serial port will be installed, and the Tmote will be connected as a COM port.

117

Chapter D — Program installation 118

D.1.3 TinyOS usage

To use the system one now need to run the Cygwin shell which takes you to a command

prompt. The system is configured at /opt/moteiv/ . This directory includes the

following directories:

apps

doc

tinyos-1.x

tools

tos

The apps directory holds the applications that can be compiled and installed on the

Tmotes. It includes sample programs like Delta, RadioDemo and others. This is also

where our Sense application is located. The doc directory holds compiled system

documentation. tinyos-1.x incudes the standard TinyOS subsystem, with interfaces and

components, and other contributed code. The tools include all the Java interfacing

programs like the serial forwarder, Trawler data display application and others. Tools

also holds extra make rules that are included when applications are compiled. tos holds

all the Boomerang interfaces and components (in tos/lib/ you can find the multihop

system, SP and others) you can use in your applications with platform specific code for

the Tmote.

To compile our sense application, for example, you have to enter the right directory and

compile the system for the Tmote platform (see code below). Another useful command

is the ”motelist” utility that displays the COM ports, that represent connected Tmote

modules.

cd opt/moteiv/apps/sense

make tmote

motelist

After the application has compiled successfully it can now be installed on the Tmote by

using the following commands.

make tmote reinstall,0

make tmote reinstall,0 bsl,4

Chapter D — Program installation 119

The first command can be used if only one mote is connected on a USB port. The

Tmote will be programmed with its network address set as 0. As is standard, address 0

is normally used for the base station node connected to the PC. When more Tmotes are

connected to the PC the bsl,x command is added on. This means that the program

must be sent to the boot strap loader on COM(x+1). (bsl programmer starts port

numbering from 0).

The currently installed program on the mote is erased and the new code programmed.

This process will give output in the Cygwin shell and the motes connection lights will

also be flashing while programming is in progress. The motes are now ready to deploy.

D.1.4 Java apps

The Java tools used in our system are situated in the following directories:

opt/tinyos-1.x/tools/java/net/tinyos/tools/

opt/tinyos-1.x/tools/java/net/tinyos/sf/

opt/moteiv/tools/java/com/moteiv/trawler/

The Listen program in tools/ was edited to make the CSV logger. Also shown is the

links to the Serial forwarder in sf/ and Trawler code. These directories all include a

prewritten makefile and when editing the java files you need to run the make command

to recompile the applications.

The applications can be started using the following commands:

MOTECOM=serial@COM4:tmote java com.moteiv.trawler.Trawler

java net.tinyos.tools.Listen

java net.tinyos.sf.SerialForwarder

The MOTECOM variable tells the java tools to communicate with the Tmote, in this

example over the serial connection on COM4. The variable can also be set for

connection to the serial forwarder.

This process can be made easier by writing the command as shown above in a text file

and then creating a shortcut. Trawler, for example, is automatically installed with a

desktop shortcut with the command below. The file /opt/moteiv/tools/bin/trawler sets

the MOTECOM variable and starts the Trawler application.

Chapter D — Program installation 120

C:\cygwin\bin\bash.exe --login /opt/moteiv/tools/bin/trawler

D.2 Truetime

D.2.1 Requirements

TRUETIME currently supports Matlab 7.x (R14 and later) with Simulink 6.x and

Matlab 6.5.1 (R13.1) with Simulink 5.1. A C++ compiler is also required to run

TRUETIME in the C++ version. For the Matlab version, pre-compiled files are

provided in the archive downloadable from the TRUETIME web site.

The following compilers are currently supported (it may also work using other

compilers):

• Visual Studio C++ 7.0 (for all supported Matlab versions) for Windows

• gcc, g++ - GNU project C and C++ Compiler for LINUX and UNIX

D.2.2 Installation

Extract the compressed archive (truetime-1.5.zip). Extracting the file creates a

truetime-1.5 directory (which will be referred to as DIR in descriptions below). Before

starting Matlab, you must set the environment variable TTKERNEL to point to the

directory with the TRUETIME kernel files, DIR/kernel. This is typically done in the

following manner:

• Unix/Linux: export TTKERNEL=DIR/kernel

• Windows: use Control Panel / System / Advanced / Environment Variables

Now add the following lines to your Matlab startup script, this will set up necessary

path to the TRUETIME kernel files.

addpath([getenv(TTKERNEL)])

init_truetime

truetime

Chapter D — Program installation 121

Figure D.1: Truetime Block library

Running truetime in the Matlab prompt, will now open the TRUETIME block library,

see Figure D.1.

You can now start to build your model out of standard Simulink blocks combined with

the Truetime blocks.

D.2.3 Compilation

Since the TRUETIME archive contains pre-compiled files, no compilation is required to

run TRUETIME with the M-file API. TRUETIME, however, also supports simulations

written in C++ code, which must be compiled. In this case, you first need to configure

your C++ compiler in Matlab. This can be done by issuing the command

>> mex− setup. In the setup, make sure that you change from the Matlab default

compiler to a proper C++ compiler. see [29] for more information.

Appendix E

CD-ROM guide

Included with the thesis is a CD that contains all the software used in, and developed

for this project. The following sections give short descriptions of the directories and

software it contains.

E.1 Simulations

The simulations directory includes the software for the different simulations and models

developed.

Matlab code Voronoi diagrams

Omnet++ Proposed Omnet++ simulation model

Truetime Simulation model

E.2 System software

This includes the Java interface applications as well as the mote operating system, with

documentation.

Interface applications PC software

Operating system Mote software

Documentation Nesdoc software documentation

122

Chapter E — CD-ROM guide 123

E.3 Thesis Files

The thesis latex code as well as a PDF compiled document.

