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Abstract 

This thesis explores the development of a methodology for using quadcopter aerial drones to measure currents 

in the nearshore zone, along with assessing other possible applications within the marine environment.  

Current velocities were measured at Monwabisi beach in False Bay, Cape Town to enable the results to be 

compared with similar studies already conducted in the area. This provided a means of result validation, as the 

scope of the study did not include budget for measurement of sea currents with electronic instruments during 

the testing for comparison. The primary drone used during testing was a DJI Mavic Air due to its affordable 

price and ease of use, making it more accessible to most users. 

Calibration tests were conducted on land to measure a fixed known length in order to adequately scale the 

photos taken by the drone to the altitude recorded by the on-board altimeter. During calibration the drone was 

flown at different heights with the camera facing directly down and a set of photos were taken of a tape measure 

which could then be scaled in AutoCAD. This was crucial as the typical land-based method of 

photogrammetry, to determine height and distance from the drone, would not be reliable over water as its 

surface is constantly shifting. 

A set of coordinates of a static point was also measured in order to determine the horizontal accuracy of the 

reported coordinates which rely on the on-board GPS measurements. It was found that the measured 

coordinates required smoothing to compensate for GPS errors encountered by the drone. The drone used has 

a reported horizontal hovering accuracy of ±1.5 m but was found to produce a measured mean current precision 

below 2 cm.s⁻¹ once averaged over 10 seconds. This information filtered into a method for tracking drifters as 

they floated on the sea surface behind the surf zone. This is similar to the existing method of GPS current 

drifters; however, biodegradable oranges could now be used in their place with the drone above measuring 

their coordinates as they drifted on the currents. 

Several tests were then carried out during different environmental conditions at Monwabisi and a range of 

currents were measured for comparison with the previous studies. Measurements taken by the drone resulted 

in similar current patterns to those seen in the previous studies model results. Furthermore, the current 

velocities were of the same order of magnitude.  

It was also found that the drone could observe other aspects from above such as: effluent plumes at diffusers, 

marine life and even sediment movements. Each of these aspects could prove valuable for coastal studies in 

providing data at a reasonable cost. Overall, the findings proved that a quadcopter aerial drone is a versatile 

engineering tool which was able to measure currents in the nearshore zone while finding similar flow patterns 

to previous model results. 
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Opsomming 

Hierdie tesis ondersoek die ontwikkeling van 'n metodologie vir die gebruik van hommeltuie om strome in die 

nabystrandse sone te meet, asook die evaluering van ander moontlike toepassings in die mariene omgewing. 

Stroomsnelhede is by die Monwabisi-strand in Valsbaai, Kaapstad gemeet sodat die resultate vergelyk kon 

word met dié van soortgelyke toetse wat reeds in die gebied uitgevoer is. Hierdie toetse het 'n geleentheid 

geskep vir die bevestiging van resultate aangesien die meting en vergelyking van seestrome met elektroniese 

instrumente nie deel van die projekbegroting was nie. Die primêre hommeltuig wat tydens die toetse gebruik 

is, was 'n DJI Mavic Air as gevolg van die bekostigbare prys en gemak van gebruik wat dit toeganklik vir die 

meeste gebruikers maak. 

Ykingstoetse is op land uitgevoer om 'n vasgestelde voorafbepaalde lengte te meet sodat die foto’s wat deur 

die hommeltuig geneem word, se skaal bepaal kon word met betrekking tot die hoogte wat deur die aanboordse 

hoogtemeter aangeteken word. Tydens yking is die hommeltuig teen verskillende hoogtes gevlieg met die 

kamera direk na onder gemik om 'n stel foto’s te neem wat dan in Autocad geskaal kon word. Die metode is 

noodsaaklik aangesien die tipiese landgebaseerde metode van fotogrammetrie om die hoogte en afstand van 

die hommeltuie te bepaal, nie betroubaar oor water is nie aangesien daar konstante beweging is. 

'n Stel koördinate van 'n statiese punt is ook gemeet om die horisontale akkuraatheid van die aangemelde 

koördinate wat van die aanboordse GPS-metings afhang, te bepaal. Dit is gevind dat die gemete koördinate 

gladstryking nodig het om vir foute wat deur die hommeltuig gemaak word, te kompenseer. Die hommeltuig 

het 'n gerapporteerde stilsweef-akkuraatheid van ±1.5 m, maar daar is gevind dat die gemete gemiddelde 

akkuraatheid onder 2 cm.s⁻¹ was nadat ‘n gemiddelde oor ‘n 10-sekonde-interval bepaal is. Hierdie inligting 

is gefilter deur 'n metode om boeie te volg terwyl hulle op die see- oppervlakte agter die nabystrandse sone 

dryf. Hierdie metode is soortgelyk aan die metode wat deur huidige GPS-stroomboeie gebruik word. 

Bioafbreekbare lemoene kan nou in hulle plek gebruik word met die hommeltuig wat van bo hulle koördinate 

meet terwyl hulle in seestrome dryf. 

Verskeie toetse is daarna uitgevoer tydens verskillende omgewingstoestande by Monwabisi en 'n 

verskeidenheid strome is gemeet vir vergelyking met vorige studies. Metings deur die hommeltuig het 

soortgelyke stroompatrone as vorige studiemodelle getoon. Verder, was die stroomsnelhede van dieselfde 

grootte-orde. 

Daar is ook gevind dat die hommeltuig ander aspekte van bo kon meet, soos uitvloeiselwolke by verspreiders, 

mariene lewe en sedimentbewegings. Elkeen van hierdie aspekte kan waardevol in kusstudies wees om data 

teen redelike koste te verkry. In die algemeen is daar gevind dat hommeltuie veelsydige ingenieursinstrumente 

is wat strome in die nabystrandse sone kan meet, terwyl die resultate soortgelyk aan vorige modelresultate is. 
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ADCP Acoustic Doppler Current Profiler 

AWAC Acoustic Wave Current Profiler 

AOV Angle of View 

CAA Civil Aviation Authority 

CoastalCOMS Coastal Conditions Monitoring System 

EXIF Exchange image file format 

FOV Field of view 

GCP Ground Control Point 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

GSD Ground Sample Distance 

RPA Remotely Piloted Aircraft 

SAWS South African Weather Service 

UTM Universal Transverse Mercator  

VBA Visual Basic for Applications 

WGS World Geodetic System 
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Chapter 1: Introduction 

Scientists and engineers are constantly searching for new and innovative ways to collect information 

about their surroundings in a simpler manner, while maintaining the accuracy of existing methods. 

Advances in other fields may often lead to a novel methodology that has been done a certain way in 

another field up until that point. This thesis aims to explore the use of the newly accessible technology 

of aerial quadcopter drones to measure currents in the nearshore zone which would typically have 

been carried out with expensive helicopters or submerged instruments. Using drones would allow for 

site data to be collected quickly and easily, early on in the project life reducing the number of 

assumptions made. Most notably when sea current modelling is required, using drones to provide 

onsite current measurements could provide calibration data, especially when little to no data would 

be available as budgets do not allow for expensive current measurements during project initiation, or 

during tender designs. 

1.1 Background 

This study was based on Monwabisi Beach off False Bay, on the South African Cape Peninsula. Two 

previous studies have already investigated the currents at Monwabisi to assess its safety for 

swimming, first by the CSIR in 1997 and then by Kistner in 2016 to fulfil his master’s degree 

requirements at the University of Stellenbosch. Neither of these studies were able to source adequate 

site measurements for calibration of the physical/numerical models. This was due to the high costs 

associated with traditional techniques for environmental measurement in the coastal zone. This study 

proposes a simpler and cheaper method for measuring currents, using widely accessible drones, to 

provide a solution to data collection in cases such as these two previous studies. 

1.2 Limitations of This Study 

This study included no scope for calibrating the results of the drone collection method using other 

more traditional measurement techniques, due to limited funding. The current magnitudes were 

compared to those modelled by Kistner. 

The environmental conditions tested were subject to the day on which the data was collected and 

hence the exact conditions tested in the previous studies were not sampled. The on-site environmental 

conditions were not measured and hence wind and wave data has been sourced from nearby weather 

stations or through numerical models for False Bay. 
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1.3 Chapter Layout 

This study is arranged such that after this introduction, Chapter 2 commences with a review of 

literature currently available. Chapter 3 then provides the methodology proposed followed by 

Chapter 4 with results. Chapters 5 and 6 contain conclusions and recommendations respectively. 

1.4 Objectives 

The main objectives of this study were as follows: 

1.4.1 Develop a method for utilising Drones for Current Data Collection 

The main objective of this study was to develop a methodology for the use of drones in the 

measurement of current velocity in the nearshore zone by tracking drifters through sequential aerial 

photographs. The developed method needed to orientate the acquired images geographically and then 

assign coordinates to the drifters such that the velocities could be calculated for each time-step. This 

then allowed for a set of velocities to be statistically processed to provide a characteristic flow 

pattern. The intention was to provide a simple and cost-effective method for quick nearshore current 

results without the need for existing expensive and difficult to implement current measurement 

methods. 

1.4.2 Compare Results with Previous Studies 

Two previous studies have been carried out on the currents within Monwabisi Bay and this study 

aimed to compare the results acquired using the drone method with the results from these studies as 

neither study was able to calibrate their models with actual measurements on site. 

1.4.3 Evaluate the use of Drones for Marine Data Collection 

During the collection of current data at Monwabisi Bay, any additional interesting aspects were 

highlighted to suggest possible applications for drones in further marine engineering studies while 

promoting drone use in the field. 

Stellenbosch University https://scholar.sun.ac.za

https://scholar.sun.ac.za/


3 

Chapter 2: Literature Study 

2.1 Aerial Photography 

2.1.1 Brief History 

The first successful aerial photograph was taken as far back as 1858 by French inventor Gaspard-

Félix Tournachon who went up in a balloon and photographed Paris (Editorial Board, 2019). Even 

back then advances strove for a smaller platform such as the kite used by M. Arthur Batut in the late 

1880’s to photograph Labruguiere, France and the pigeon mounted camera, designed by Julius 

Neubranner in 1903, which went on to be used in military surveillance. Rockets became the next 

innovation for launching aerial cameras, with even Alfred Nobel, after whom the Nobel prize was 

named, developing the first rocket camera (Baumann, 2014). 

All of this was soon replaced by aeroplanes after L.P. Bonvillain took the first aerial photograph over 

Italy by an aircraft piloted by Wilbur Wright in 1908 (Madeira & Green, 2016). World War 1 drove 

advances in plane mounted photography to provide up to date maps such as the camera developed 

by Sherman M. Fairchild which reduced distortion and motion blur from the speed of the plane as 

well as including an intervalometer which allowed for photos to be taken at any set interval 

(Baumann, 2014).  

Fairchild took his camera developed for the military and applied it commercially to map Manhattan 

Island which proved its usefulness for both local government and business in New York. He quickly 

built a successful aerial photography company working on projects such as mapping over 510 square 

miles of the Canadian wilderness, which further engrained the usefulness of aerial photography 

(Baumann, 2014). 

Figure 2-1: First Pictures of Earth From 161 km in Space (NASA, 2015) 
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Our view of the Earth was taken to new heights in 1935 when Captain Albert Stevens took a balloon 

named “The Explorer II” up to an altitude of 72 395 feet (22 066 m) which gave us the first view of 

the curvature of the Earth (Madeira & Green, 2016). The first image from space was then taken in 

1946 by a V-2 rocket launched from the White Sands Missile Range (Reichhardt, 2006) shown in 

Figure 2-1 above. 

According to the National Geo-spatial Information (NGI) website (NGI, 2013a), the first aerial 

photographs of South Africa in their archives go back to the 1930’s and by the 1950’s the whole 

country had been mapped using aerial photography from aeroplanes flying approximately 4570 m 

above ground. The entire country is remapped every 5-7 years using film cameras up until 2008 at 

which point NGI switched over to digital cameras (NGI, 2013a). Between 2008 and 2017 NGI had 

used an Intergraph DMC digital camera which has an image resolution with a pixel corresponding to 

a distance of 0.5 m on the ground, or commonly referred to as Ground Sample Distance (GSD), and 

then increasing the resolution to a GSD of 0.25 m since 2017 with the intention of covering the entire 

country every 5 years (NGI, 2013b). 

Drone technology has its roots back in World War I where, in 1916, the British Royal Air Force 

attempted to develop a rudimentary remote-controlled unmanned aircraft. Named the Ruston Proctor 

Aerial Target, they hoped it would counter the German Zeppelins. The project was abandoned after 

a number of failed launches leaving the Americans to develop a functioning aircraft a year later called 

the Hewitt-Sperry Automatic Airplane (Ford, 2018). 

Figure 2-2: Walt and Bill Good Holding their Model Aircraft "the Guff" (Gudaitis, 1994) 

Hobbyists had access to remote control model aircraft since the development of “the Guff”  in 1939 

(Gudaitis, 1994) which, by the 1960’s, became a popular hobby all over the world thanks to 

advancements in transistor technology and the models being sold in easy to build kits (Dormehl, 

2018). A picture of Walt and Bill Good with "the Guff" can be seen in Figure 2-2 above. 
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Predominately fixed wing drones continued to be developed for military use until 2006 where the 

government sector found applications such as disaster relief and the commercial sector realised its 

use in surveying as well as applications such as spraying pesticide (Ford, 2018). 

The quadcopter layout of the remote controlled aircraft used in this thesis was first released as a toy 

in 1991 called the Keyence Gyrosaucer II E-570 (Turi, 2014). However, it did not take off until the 

Dragonflyer quad helicopter gained some fame in the 1999 “Inspector Gadget” movie (Darack, 

2017). The Chinese based company, DJI, which as of 2018 had approximately 74% of the market 

share (French, 2018), released their first quadcopter named the Phantom in 2013 and the name DJI 

quickly became synonymous with drones. They have become the market leader targeting expensive 

commercial drones for industry, such as the Inspire 2, and the Mavic Air, which is more accessible 

to the public; both of which have been tested as part of this thesis. 

2.1.2 Drone Positioning 

Drones rely on the GPS positioning network to navigate themselves especially in recent years where 

they can follow a predefined set of coordinates which are loaded onto the drone prior to launch. In 

the case of the Mavic Air and the Inspire 2, DJI has fitted a duel GPS receiver which is able to use 

the US Army GPS satellite network as well as the Russian GLONASS satellite network, hoping that 

it will be able to achieve a high positioning accuracy wherever in the world the user wishes to fly 

(DJI, 2018a). 

In addition to GPS both drones are fitted with downward facing cameras which can detect horizontal 

movement by comparing the patterns from one frame to the next and hence prevent drift of the 

aircraft. These cameras are in a stereoscopic arrangement which also provides altitude measurements 

over and above the inbuilt altimeter which is based on a barometer sensor. The Inspire 2 also has a 

downward facing ultrasonic sensor which provides even more accurate altitude measurements even 

in low light situations. A summary of the positioning systems and performance of each drone can be 

found in Table 2-1 below: 

Table 2-1: DJI Positioning Systems (DJI, 2019a). 

Drone Mavic Air Inspire 2 

Global Navigation Satellite System (GNSS) 

Provider GPS + GLONASS GPS + GLONASS 

Downward Vision Sensing System 

Altitude Range: 0.1 - 8 m 0.1 - 5 m 

Operating Range: 0.5 - 30 m <10 m 

Hovering Accuracy Range 

Vertical: 

GPS Alone ±0.5 m ±0.5 m 

GPS & Vision System ±0.1 m ±0.1 m 

Horizontal: 

GPS Alone ±1.5 m ±1.5 m 

GPS & Vision System ±0.1 m ±0.3 m 
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The GPS reading will then be recorded in the metadata of each image taken by the drone. This can 

then be used to position each image from a sequence of images to get a time-series. The altitude data 

can also be used to scale the image. The GPS accuracy range, ±1.5 m, reported by DJI may not be 

enough for measuring currents as the vision system will not function over water (DJI, 2018a). This 

GPS error is due to several factors such as atmospheric conditions, signal interference or an 

unavailability of satellites at the time (U.S. Air Force, 2017). 

DJI released the Phantom 4 RTK early in 2019 which aims to address this problem and is aimed at 

more accurate surveying applications. The drone is equipped with a real-time kinematic (RTK) 

positioning unit which, similar to a GPS survey staff, connects to either a local network or a base 

station which provides real time error data. This then reduces the hovering accuracy range to a mere 

0.01m horizontally and 0.015m vertically (Mulakala, 2019) although this comes with an expected 

retail price of approximately €5,700 (DJI, 2018b). 

2.1.3 Orthorectifying and Orienting Aerial Images 

For an image taken from above to accurately represent the land below orthorectification needs to 

take place, then the image needs to be oriented using its GPS coordinates and finally rotated as per 

the compass reading. Orthorectification is the process of removing any distortion generated by the 

cameras lenses as well as any tilt of the camera. This distortion along with any topographical changes 

will cause details at the edges of the image to be more distorted than directly below the aircraft 

(Satellite Imaging Corp, 2017). This effect can be seen in Figure 2-3 which is a test shot carried out 

for the DJI Mavic Air. Note how the gridline appears to bend away at the edges but the onboard 

software corrects for the distortion in the centre of the image where the grid is seen as parallel. 

Figure 2-3: DJI Mavic Air Camera Test Shot (Half Chrome, 2018) 
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The distortion effect can be seen in the corners of the image above where the edges seem to curl 

away from the camera. However, the on-board image processing does correct some distortion in the 

centre of the image based on its lens profile. For aerial mapping this distortion is further exacerbated 

by drastic changes in topography as seen in Figure 2-4 below where two equal horizontal distances 

on the ground will appear different in the image, or the side of a tall building will be shown. 

Figure 2-4: Examples of Distortion in Aerial Photographs Adapted from (Devi & Veena, 2014) 

In order to correct for these errors software packages such as Pix4D, Agisoft Metashape, 

DroneDeploy and ESRI Drone2Map use photogrammetry to generate a digital elevation model 

(DEM) which can then be used to overlay the images and provide an accurate ortho-mosaic map 

(Hughes, Teuten, Starnes, Cowie, Swinfield, Humpidge, Williams, Bridge, Casey, Asque & Morris, 

2018). Photogrammetry is the process by which a complex computation is carried out to pick up 

overlapping ground points between at least two different camera positions. The software will 

determine the relative coordinates of the camera and ground points to then triangulate between the 

two images. If enough overlapping points are available in each image, a 3 dimensional model can be 

built (Upadhyay, 2014). For photogrammetry where this relative position is measured between three 

or more images it is best if the adjacent photos overlap by at least 60 %, as seen in Figure 2-5, in 

order to get sufficient coverage (Kaamin, Daud, Sanik, Farah, Ahmad, Mokhtar, Ngadiman & Yahya, 

2016) 

Figure 2-5: Overlapping Photographs for Aerial Photogrammetry (Kaamin et al., 2016) 
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This is similar to the process by which our brains determine depth using our stereoscopic vision by 

intuitively measuring the change in position of the image seen by our left eye compared to our right 

eye. The distance to the object (D) can be calculated using the known field of view (φ₀ or FOV) and 

the distance (B) between the two cameras (SL & SR) as well as the observed object angles (φ₁ & φ₂) 

as shown in Figure 2-6 below. In the case of drone aerial photography, the two camera positions 

would be the same camera at two different times. 

Figure 2-6: Stereoscopic Vision (Mrovlje1 & Vrančić, 2008) 

The software will then use the on-board GPS to scale and locate the map. The inherent errors in GPS, 

discussed in section 2.1.2 above, only allow for this method to provide a rough location. Tests of 

length measurements carried out by one of the software developers mentioned above achieved an 

average 1.1% error (Putch, 2017). This can be improved further by making use of at least 5 ground 

control points (GCP’s) which are static points placed around the study area, visible from above (see 

Figure 2-7) and have known coordinates. These points are then included in the photogrammetry 

calculations such that the DTM fits these points providing correct geographic location and scaling 

(Hughes et al., 2018) with a tenfold improvement on accuracy (Putch, 2017). 

Figure 2-7: Examples of GCP's (Baker, 2016) 
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The issue with this method is that if there is movement in the subject being mapped, i.e. water, then 

the algorithms cannot find matching points between images and the 3D model can become distorted 

or if no consistent points are available, photogrammetry will not be possible (Hughes et al., 2018). 

An example of this can be seen in Figure 2-8 below processed with the free to use software Maps 

Made Easy which highlights the elevation errors where water is present. 

Figure 2-8: Example DEM of the Monwabisi Spur. 

2.1.4 Conventional Drone Applications 

Drones have become widely used in the commercial field, most notably aerial videography where 

filmmakers are now able to get incredible footage from a vantage point previously only attainable 

using an expensive to run helicopter. In the agriculture sector drones are used to count plants and 

even estimate the plants health (Drone Deploy, 2018a) with thermal imaging cameras available for 

the DJI inspire (DJI, 2019b). Similar thermal imaging cameras on drones have been used to detect 

water leaks in underground pipelines (Australian Water Association, 2015). Amazon has stated that 

they are working on using drones to deliver packages (BBC News, 2016) and in South African game 

parks, drones have been used to prevent poaching (Air Shepherd, 2019). 

In surveying, drones have become an integral tool with photogrammetric surveys being a standard 

quick method for providing a detailed map and 3D model of an area with reported accuracies of 4cm 

horizontal and 7cm vertically (Buczkowski, 2017).  

The construction and engineering industries have taken to drone use the most in recent times with a 

year on year growth of 239% by May 2018, according to the mapping software company 

Drone Deploy. From site safety, to progress tracking and quality assurance, drones have become 

commonplace on site (Drone Deploy, 2018b).  

2.1.5 Existing Drone Coastal Applications 

Existing applications have focussed on longer term monitoring such as the Volta Delta, Ghana where 

drones have been used to monitor flooding and coastal erosion (Appeaning Addo, Jayson-Quashigah, 
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Codjoe & Martey, 2018) and in Truc Vert, SW France, low-cost drones have been used to monitor 

coastal dunes and assist with dune management (Laporte-Fauret, Marieu, Castelle, Michalet, Bujan 

& Rosebery, 2019). These monitoring studies rely on the mapping functionality of aerial photography 

to create a snapshot in time in the form of a DTM and orthomosaic photograph which can then be 

compared in software such as ArcGIS®(Long, Millescamps, Guillot, Pouget & Bertin, 2016).   

A more dynamic application more in line with measuring currents has been successfully tested by 

Le Roux (2018) who used drones to measure effluent dispersion plumes of marine outfalls through 

the surf zone. 

At the time of this thesis no similar use of drones measuring real-time coastal processes in motion 

has been found. 

2.1.6 Image Recognition 

Image recognition has been widely used as an effective method for tracking moving objects by 

comparing similarities and differences between two consecutive frames (Kalantar, Mansor, Abdul 

Halin, Shafri & Zand, 2017). One such common application is for pedestrian and vehicular tracking, 

where an algorithm detects, categorises and tracks objects from a network of citywide street mounted 

surveillance cameras (Keaikitse, 2014). Piepmeier et al. (2006) were able to track the surface 

elevation of water using stereoscopic cameras which allowed them to determine wave characteristics. 

The algorithms that process the images are vulnerable to noise which can be created by insufficient 

light, shadows and reflections (Viriyakijja & Chinnarasri, 2015) which are especially characteristic 

of water with its smooth reflective surface (Piepmeier et al., 2006). Aerial images have been used by 

Benbow et al. (2017) to study breaking waves by observing texture patterns on the surface due to air 

entrained by wave action creating foam on the water surface. 

With the advent of machine learning, systems can be taught to provide information from an image 

without the need for complex transformations used previously. It is possible to take video 

surveillance of the beach and train an algorithm to track individual waves to provide wave data such 

as wave period, wave velocity and the length of breakers (Stringari, Harris & Power, 2019). An 

example output is provided in Figure 2-9 below. 

Figure 2-9: Machine Learning Input (left) from Beach Surveillance (right) to Determine Wave Peaks 

Over Time (Stringari et al., 2019). 
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2.1.7 Legal Requirements 

While the use of drones is relatively new, the growth has drastically increased in recent years, such 

that Regulatory bodies, i.e. the Civil Aviation Authority (CAA) of South Africa, have not had an 

opportunity to adequately assess the risks involved and hence stringent restrictions have been placed 

on drone use. The CAA has defined a remotely piloted aircraft (RPA) in legislation as an “unmanned 

aircraft which is piloted from a remote pilot station…” which may be used for private use where 

there is no commercial outcome, interest or gain, while for all other uses RPA’s must be operated in 

terms of Part 101 of the South African Civil Aviation Requirements (SACAA, 2017a).  

All drone (RPA) operations are restricted to flying out of controlled, restricted or prohibited airspace 

and 10km away from an aerodrome (including helipad). The operator must leave a 50m buffer 

between the aircraft and any person or public road and needs to gain permission from the property 

owner before the operator wishes to fly over. Flights are also restricted to daylight and clear weather 

conditions. For private operations the drone weight is restricted to a maximum of 7kg, has to remain 

within line of sight at all times and may not fly over 150 feet above the ground (SACAA, 2017b). 

Should an operator wish to charge remuneration or deviate from the above restrictions, he/she is 

required to acquire the following certifications (SACAA, 2015): 

• Air Service Licence

• RPAS Operators Certificate

• RPAS Letter of Approval

• Remote Pilot Licence

• Certificate of Registration

Based on conversations with operators in the industry, this has proven to be a costly procedure with 

the whole process costing in excess of R100 000 and taking months to get final approvals. Therefore, 

the number of South African companies with a RPAS Operators Certificate is currently limited to 38 

(SACAA, 2019). Other countries such as New Zealand, do not distinguish between private and 

commercial operations and do not require certification, providing the drone is below 25kg and is 

flown within the set guidelines (Airshare, 2019).  

Regulations will also need to be updated as drones become safer with advancements such as the 

AirSense technology released by DJI which alerts drone pilots if an aircraft is on a collision course 

with the drone and allows for him/her to take evasive action (DJI, 2019c). 

As there is no intended commercial gain for this thesis there is no need for any specific certification 

in order to gather the required data. 
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2.2 Nearshore Currents 

Nearshore currents are the driving process behind many engineering concerns including movement 

of sediment along the coastline, discharges into the coastline being carried by currents effecting 

dispersion and public safety when swimming (Olsson, 2004). Consequently, getting a better 

understanding of site-specific current magnitudes and flowlines is imperative to the success of any 

project. 

2.2.1 Nearshore Current Generation 

Nearshore currents are generated by a combination of components which themselves are each 

interconnected(U.S. Army Corps of Engineers, 2003), namely: 

uw Steady current driven by breaking waves 

ut Tidal current 

ua Wind-driven current 

uo & uI Oscillatory flows due to wind waves and infragravity waves. 

These components combine as follows: 

𝑢 = 𝑢𝑤 + 𝑢𝑡 + 𝑢𝑎 + 𝑢𝑜 + 𝑢𝐼 (2-1) 

The currents can be illustrated on a time series plot seen in Figure 2-10 below which shows the 

velocity of the currents in the cross shore (U) and longshore (V) directions. The short period 

oscillations are due to the wind-wave orbital motion while the longer period oscillations are caused 

by infragravity waves and the overall average currents are due to the breaking waves, tides and wind 

(U.S. Army Corps of Engineers, 2003). 

Figure 2-10: Measured Flow Velocities (U.S. Army Corps of Engineers, 2003) 

In the surf zone, energy is dissipated as the waves break on the shore, causing a momentum flux 

gradient which in turn leads to wave setup (Kistner, 2016). When there is an angle between the 
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incoming wave crests and the shoreline, defined as b, a current develops along the shore from the 

waves breaking at an angle to the shoreline. This is caused by the component of the radiation stresses, 

perpendicular to the shoreline, driving the longshore current (Mangor, 2019). 

The velocity distribution of these longshore currents increases quickly from the beach to a maximum 

within the surf zone (equation (2-2)) and then soon decreases beyond this (see Figure 2-11 showing 

a large angle b between the shore and the incoming waves). During normal conditions these currents 

will typically have a mean value of 0.3 m/s or less (U.S. Army Corps of Engineers, 2003). 

Figure 2-11: Typical Cross Shore Current Distribution (Plant, Long, Dalyander, Thompson & 

Raabe, 2013) 

The maximum current velocity in the surf zone can be characterised by Komar and Inman with the 

following equation (U.S. Army Corps of Engineers, 2003). This illustrates that as the wave height 

increases, so does the current velocity. 

𝑉𝑚𝑖𝑑 =  1.17 √𝑔 𝐻𝑟𝑚𝑠.𝑏 sin 𝜶𝒃 cos 𝜶𝒃

Where: 

𝐻𝑟𝑚𝑠.𝑏 = Root-mean-square wave height at breaking (m) 

(2-2) 

When the incoming waves are more shore normal (a smaller b or equal to 0) the currents tend to 

divert causing circular cells with currents running longshore until meeting an opposing longshore 

current where they both turn seawards, forming a rip current in both directions perpendicular to the 

shoreline, seen in Figure 2-12.  
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Figure 2-12: Nearshore Circulation Systems (U.S. Army Corps of Engineers, 2003) 

The velocity of these longshore currents will increase from the point of diversion to a maximum 

where the rip current forms. A variation in wave setup can generate cell circulation which is often 

seen when an obstacle, such as a breakwater, creates a shelter from incoming waves (U.S. Army 

Corps of Engineers, 2003) creating cell circulation similar to that shown in Figure 2-13 below. This 

is specifically applicable at Monwabisi where the eastern breakwater shelters the predominant wave 

climate coming into False Bay.  

Figure 2-13: Schematic of Currents at Monwabisi (Theron & Schoonees, 2007) 

The Agulhas Current and Benguela which are the predominant currents flowing along the South 

African coasts, has little effect on the nearshore currents at Monwabisi within False Bay. The 

Agulhas current moves away from the East Coast at approximately port Elizabeth, continuing 

southerly along the Agulhas bank (Roberts, van der Lingen, Whittle & van den Berg, 2010) while 

the Benguela current upwells between Cape Agulhas and Cape Frio (Hutchings, van der Lingen, 

Shannon, Crawford, Verheye, Bartholomae, van der Plas, Louw, Kreiner, Ostrowski, Fidel, Barlow, 

Lamont, Coetzee, Shillington, Veitch, Currie & Monteiro, 2009) North West of False Bay. 
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Figure 2-14: Currents off Southern Africa (Hamukuaya, Willemse, O’Toole & Attwood, 2013) 

Coleman noted that the predominant large scale currents generated within False Bay were 

wind-driven, causing a clockwise (or cyclonic) gyre with a south-easterly wind (see Figure 2-15) 

while north-westerly winds would cause a spatially-uniform surface current field flowing out of the 

bay. However, he did note that his model did not include wave coupling which would account for 

wave generated longshore currents which are expected to be more significant in shallower regions of 

the bay (Coleman, 2019) such as Monwabisi.  
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Figure 2-15: South-easterly Generated Surface Current Circulation Pattern (Coleman, 2019) 

2.2.2 Vertical Velocity Distribution 

Although horizontally, near-shore currents tend to vary greatly, especially where a rip current is 

present; vertically the velocity distribution tends to remain relatively constant (Visser, 1991) which 

has been confirmed in studies such as that carried out by Shin et al., (2017) and shown in Figure 2-16. 

If an undertow is present, the shore normal currents may vary as depth increases with a strong 

offshore current near the seabed (U.S. Army Corps of Engineers, 2003). However, undertows are 

typically present when the nearshore bathymetry forms a uniform slope along the beach (Aagaard & 

Vinther, 2008) and hence would not be expected in Monwabisi Bay as the seabed is noted to contain 

rocky outcrops (Theron, Van Tonder, Blake, Barwell, Schoonees, Van Dulm & Vonk, 1997). 

Figure 2-16: Example Vertical Distribution of Horizontal Current Velocity (Shin et al., 2017) 
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2.2.3 Rip Current Safety 

Rip current related drownings are considered the most serious threat to beach goers, with more deaths 

attributed to rip current drownings than floods, hurricanes and tornadoes (Fietemeyer, 2014). It is 

estimated that annually there are 50 drowning related rip currents in Australia (Short & Hogan, 1994), 

100 in the United States of America (Fallon, Lai & Leatherman, 2018) and 30 in Korea (Shin et al., 

2017). The World Health Organisation prioritises drowning as a leading killer worldwide with a total 

number of deaths at 320 000 in 2016 (WHO, 2019). South Africa is no exception with 1 411 deaths 

due to drowning in 2016 (Statistics South Africa, 2016) and reports coming out, nearly every year, 

of December/January beach drownings (Pijoos, 2016; Savides, 2017; Daniel, 2018) which is the 

period when the most drownings occur (Timeslive, 2017). From discussions with the NSRI there 

were 79 fatal drownings in 2017 and 111 in 2018 nationally (including inland) with 5 and 28 being 

reported as rip currents for these years respectively. Monwabisi, the study area, has been known for 

its dangerous rip currents with 10 drownings reported between 2011 and 2016 (Kistner, 2016), and 

as recent as 2018, three men drowned during a baptism ceremony after two men were swept out by 

a suspected rip current and then a third went after them (Etheridge, 2018).  

Education is key to preventing these deaths as one’s initial instinct would be to swim back to shore, 

which will be against the flow and hence tire one out to exhaustion. Informative posters, such as the 

one provided by the NSRI in Figure 2-17 below, provides guidance to the conventional wisdom as 

to what to do if caught in a rip current: Stay calm, swim slowly and go with the flow until the current 

dissipates where one can swim around the rip to use the waves to return to the beach (NSRI, 2018). 

Figure 2-17: Rip Current Escape Figure (NSRI, 2018) 

This approach was contested when Jamie MacMahan a rip current expert at the Naval Postgraduate 

School in Monterey, and strong swimmer himself found that escaping by swimming sideways led 
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him to be resisted by the rip current until he swam in the opposite direction (Ferry, 2016). He then 

co-authored a study which carried out a current survey using GPS Drifters as well as a number of 

GPS-tracked human participants to attempt to determine which escape method is preferable. 

However, a “silver bullet” approach could not be determined. The study recommended further studies 

to identify the hazards relating to rip currents and better inform the public on safe water usage 

(McCarroll, Brander, MacMahan, Turner, Reniers, Brown, Bradstreet & Sherker, 2014) which will 

inevitably require innovative methods for measuring currents. 

2.3 Existing Methods for Current Measurements 

Methods for measuring sea properties are generally split up into either Lagrangian or Eulerian 

measurements (Inch, 2014): 

• Lagrangian measurements sample the movement of a particle of water hence floating along

with the current. I.e. the GPS Drifter and Dye Tracer methods described below.

• Eulerian measurements typically sample a static point in the water body. I.e. Acoustic

Doppler Current Profiler (ADCP).

2.3.1 GPS Drifter 

A GPS Drifter, as seen in Figure 2-18 below, unit is a floating unit which contains a GPS unit which 

either records its location or allows for it to be tracked as it floats on the currents (Inch, 2014). The 

benefit of the GPS drifter is that it collects data on the current velocity as well as the flow path 

(Olsson, 2004) however each unit can be expensive depending on the GPS unit used (Austin & 

Atkinson, 2004) and needs to be recovered manually once they return back to the beach or exit the 

study area (Scott, Austin, Masselink & Russell, 2016) (Olsson, 2004). 

Figure 2-18: Example of a GPS Drifter System (Scott et al., 2016) 
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A similar study achieved a spatial accuracy of 0.4 m horizontally and 0.01 m/s in velocity while 

finding a wind slippage effect of less than 0.08 m/s when the wind velocity was below 7.2 m/s. The 

drifter was fitted with dampening plates underneath which extended 450 mm into the water to prevent 

the float surfing down waves and their tests found that the GPS floats achieved similar results to dye 

tracer tests (Scott et al., 2016). A parachute drogue, seen in Figure 2-19 below, can also be fitted to 

the underside of the drifter to prevent surfing. Results with this setup have been tested and shown to 

be on average within 5% of depth averaged measurements from fixed Eulerian instruments (Olsson, 

2004).  

Figure 2-19: Parachute Drogue (Olsson, 2004). 

2.3.2 Dye Tracers 

Measuring currents using dye involves releasing a highly visible compound such as fluorescene into 

the current and then observing its movement through the water column. Previously a land based 

camera would observe this movement over time but more recently drones have been used to track 

the movement (Leatherman, 2017), as seen in Figure 2-20. At times the use of dye tracers may require 

obtaining a permit prior to use and in South Africa “artificial tracer testing” is regulated by the 

National Water Act (Act 36 of 1998) (Wolkersdorfer & LeBlanc, 2012). Releasing a bright substance 

into the sea will attract unwanted attention of the public. 

Figure 2-20: Dye Tracer as Captured from Aerial Drone (Leatherman, 2017) 
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2.3.3 ADCP Current Meters 

An Acoustic Doppler Current Profiler (ADCP) or Acoustic Wave Current Profiler (AWAC), seen in 

Figure 2-21 below, and similar Acoustic Doppler Velocimeter (ADV) are all based on the same 

principle that a frequency will be shifted as it is reflected off a moving object, like a train’s horn 

changing pitch as it goes past you on the tracks (Palmer, 2002). All three instruments send out 

acoustic wave pulses via transducers which then reflect off passing currents and return to the 

instrument and can provide readings in three axes depending on the setup. The AWAC is similar to 

the ADCP with the addition of a vertical transducer which measures the sea surface directly and 

allowing for wave measurements to be recorded (Nortek, 2019) although similar capabilities are 

available to a ADCP with the addition of a pressure sensor (Olsson, 2004). 

Figure 2-21: ADCP Seafloor Deployment (left) (SonTek, 2017) and AWAC Beam Arrangement 

(right) (Sutron, 2019) 

The ADCP and AWAC measure a current profile over a long distance of up to several hundred 

metres, depending on the model, while the ADV takes a measurement nearby to the instrument (see 

Figure 2-22). This makes the ADV more suited to the turbulent currents around the nearshore zone 

(DOSITS, 2019). An issue with these methods is that they are prone to error in the presence of 

bubbles and/or suspended sediment (Inch, 2014) which may be detrimental in the near-shore surf 

zone. 

Figure 2-22: An ADC Deployment in Sea-Grass (left) (Oanes, 2011) and the Instrument 

Arrangement (right) (SonTek, 2010) 
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2.3.4 High Frequency Radar Ocean Tower 

Currents and surface waves can be measured using high frequency radio signals which are 

transmitted from towers along the coastline, such as the tower installed on a farm near St Francis 

Bay, Eastern Cape by Lwandle Technologies in 2018 (CTS Heritage, 2017) shown in Figure 2-23 

below. The measurements are gathered as the radio signal is reflected off waves and currents and 

then returns to the tower. Similar to the acoustic instruments above, the current or wave velocity near 

the ocean surface causes a doppler shift in the return signal that can be measured; by combining 

information from two or more towers, a 2-D structure of the measurements can be calculated (Roarty, 

2014).  

Figure 2-23: A High Frequency Ratio Ocean Tower Installed in South Africa (Actimar, 2018) 

These instruments can measure up to approximately 200 km from the shore with a resolution 

typically ranging from 500 m to 6 km (NOAA, 2018) which does not provide enough detail to 

quantify rip currents (see Figure 2-24). 

Figure 2-24: Example of HF Radar Measured Surface Current During Cyclone Crossing 

Stellenbosch University https://scholar.sun.ac.za

https://scholar.sun.ac.za/


22 

2.3.5 Tilt Current Meters 

Tilt current meters are comprised of a float tethered to a seabed anchor which then uses an 

accelerometer in the float to measure the effect of the current on the tilt of the float in relation to the 

anchor, as seen in Figure 2-25 below. In low currents, the float will be in a 0° position above the 

anchor and as the velocity increases the angle will increase proportionally. Anarde and Figlus (2017) 

checked the validity of results for the surf zone and determined that this type of meter provides 

comparable results as an ADV for low-frequency currents in low wave energy conditions. 

Figure 2-25: TCM-1 Tilt Current Meter Diagram (left) and Deployment (right) (Lowell Instruments 

LLC, 2015) 

At a price of between 1000 and 1500 USD for a TCM-1 Tilt Current Meter (Lowell Instruments 

LLC, n.d.) along with the relatively simple installation required, they provide a good solution for this 

application. However, these are Eulerian instruments and will require either more than one 

deployment or numerical modelling of the bay to determine flow paths. 

2.3.6 Video Surveillance 

Video surveillance systems involve a camera mounted at a high vantage point behind the beach which 

allows for the surf zone to be recorded and monitored. Systems such as the ARGUS system, 

developed in 1989, can quantify the spatial variability of sand bar morphology over time while the 

Coastal Conditions Monitoring System (CoastalCOMS) uses advanced image processing to provide 

environmental data for the coastline. The largest benefit of a video surveillance system is the 

consistency of data provided and the ability to monitor over long periods. However, there are some 

drawbacks such as sun glare which makes interpreting the image difficult at times (Murray, 

Cartwright & Tomlinson, 2013). While determining the duration and frequency of rip currents using 

video surveillance is achievable, estimating the magnitude of the velocity would be more 

complicated as distances are not constant over the entire cameras frame. 

2.3.7 Satellite Remote Sensing 

On a much larger scale, Satellite altimetry measurements can provide a global surface current 

estimate at a resolution even larger than HF radio (approximately 10km). However, these require 

worldwide measurements along with complex calculations. Recent advancements in sensor 
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capabilities allow for water body features such as temperature and colour fluctuations, seen in 

Figure 2-26 below, to be tracked while estimating current eddies and flow every hour at a special 

resolution of 500m (Sun, Song, Shao & Schlicke, 2016). 

Figure 2-26: Altimetry Derived Surface Currents (Dohan & Maximenko, 2010) 

2.4 Previous Monwabisi Studies 

Monwabisi tidal pool has long been a recreational facility used by the local community. A spur, 

approximately 170 m long, was added seaward from Monwabisi tidal pool and was completed by 

February 1997. This was put in place in the hope of creating a safe bathing area adjacent to the pool 

while preventing excessive overtopping from the pools eastern overflow. Due to an unexpected beach 

response along with subsequent drownings in December 1996/January 1997, further studies were 

commissioned (Theron et al., 1997). Theron & Schoonees also presented a paper in 2007 on the 

sediment transport response to the breakwater attached to a large tidal pool at the site. 

The safety of the area was studied by the CSIR in 1997, then again by Kistner as part of his MSc 

research in 2016. The findings are summarised below. 

2.4.1 CSIR: Monwabisi Beach Safety 

The CSIR built on their initial 1994 study looking at the physical conditions at Monwabisi with a 

site investigation which included timing dye/drifter movements for limited calibration (see 

Figure 2-27), physical model testing, then proposed and tested some possible solutions. These 

solutions ranged from new groynes within the bay to creating a gap in the existing spur. After initial 

testing, a new T groyne (see Figure 2-28) between the spur and the existing groyne was tested more 

extensively which illustrated a reduced overall current magnitude, although it could possibly increase 

the beach width and then exacerbate the windblown sand problem in the area. The tests showed that 

there are always risks to bathers around near-shore groyne type structures. These risks cannot be 

eliminated without a larger scale intervention of an offshore structure. Therefore, keeping the layout 

as is should be considered along with more stringent beach management strategies (Theron et al., 

1997). 
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Figure 2-27: Physical Model Calibration Test Layout (Theron et al., 1997) 

Figure 2-28: Example CSIR Proposed T-Groyne Solution (Theron et al., 1997) 

2.4.2 Kistner (2016): Hydrodynamic Study of the Hazardous Cell Circulation and Potential 

Related Solutions to a Safer Bathing Facility. 

Kistner looked at testing the same cases as tested by CSIR in 2016 with a two-dimensional 

Boussinesq numerical model. This model resolves wave‐induced currents using of phase‐averaged, 

depth‐integrated formulations, which implies that the currents are limited to stable, time‐averaged 

and depth‐uniform flow on a 2D‐horizontal grid. The model could then not account for any cyclic 

events which was noted in the physical model testing (Kistner, 2016). 
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Additionally, he noted another limitation to his study was that there was insufficient current data 

available for calibration; hence his results were provided as a change in magnitude from the original 

layout. He was able to replicate the observed cell circulation, shown in Figure 2-13 above on page 

14, and then confirmed that the T-groyne tested by CSIR did in fact reduce the currents in the area 

overall but a similar hazard still persisted to the east side of the new T-groyne (Kistner, 2016). 

Kistner used the 30 m peak average current velocity (UPA30) to report his findings which he defined 

as the average velocity along a 30 m length, however a range of velocities would be measured over 

the model’s domain as seen in Figure 2-29. 

Figure 2-29: MB610 Velocity Exceedance Graph (Kistner, 2016) 

A summary of the UPA30 calibration test results for the current groyne layout carried out by the CSIR 

and Kistner are provided in Table 2-2 below.  

Table 2-2: Baseline Test Simulation Summary with UPA30 Results (Kistner, 2016) 

Kistner Hs (m) Tp 

(s) 

Dir 

(° N) 

Tide 

(m) 

Model Velocity Results [cm/s] 

U(H) U(I) U(J) U(K) 

MB110 1.3 12 188 -0.3 17.8 21.2 45.9 18.6 

MB210 1.1 12 188 -0.1 15.2 26 38.2 21.9 

MB220 1.4 12 188 -0.1 21.1 31.5 43.6 24.7 

MB310 1.3 12 188 0.3 18.7 31.4 35.7 30.1 

MB410 1.1 12 188 0.4 16.3 26.5 27.6 29.3 

MB420 1.4 12 188 0.4 22.1 30.9 37.3 32.2 

MB430 1.1 8 188 0.4 25.3 28.8 36.7 29.1 

MB510 1.4 12 188 0.45 24.4 30.2 35.7 31.3 

MB610* 1.5 12 188 0.7 25.2 30.4 34.1 32.1 

MB710 1.4 12 188 0.9 23.7 30 26.9 29.2 

MB720 1.8 12 188 0.9 34.9 36.7 42 34.3 

*CSIR baseline test

The locations of the reported results are marked in Figure 2-30 below which shows the plot of the 

results from test MB610 which also served as calibration for the CSIR model. 
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Figure 2-30: Results from Kistner Calibration Test MB610 (Kistner, 2016) 

Kistner used a bathymetry for his calibration testing based on that used in the CSIR’s 1997 model 

testing, as seen in Figure 2-31. This bathymetry is derived from a number of sources from survey 

data within the bay in 1997, offshore of the spur in 1994 as well as shoreline profiles from a CSIR 

topographic survey and Google Earth (Kistner, 2016) 

Figure 2-31: Bathymetry Profile Used in Kistner’s Model Testing (Kistner, 2016) 
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2.5 Literature Study Conclusion 

Aerial photography and platforms such as drones have been advancing in leaps and bounds since the 

1800’s with each advancement improving our view of the world and what we can learn from it. More 

recently this technology has become more accessible to everyone and widely used in industry to 

address a multitude of problems. 

Images taken remotely from a consumer drone can be located spatially using GPS data, and can be 

processed to provide outputs which would have previously been limited to direct measurements such 

as ADCP’s or GPS Drifters. These drone measurements could possibly provide a more accessible 

method for providing current data in the nearshore zone to help prevent dangers such as rip currents. 

The intention of this thesis is to use consumer drones to build on these methods and provide in-situ 

current measurements to compare with those cases tested by the CSIR and Kistner for Monwabisi in 

the hope of providing a magnitude of the current. The methodology as to how to achieve this 

continues in Chapter 3. 
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Chapter 3: Methodology 

3.1 Drifters 

For the purpose of this study, citrus fruit was used as floating drifters due to their; 

• near neutral buoyancy, allowing for a low profile in the water reducing the wind effects

• bright colour which stands out compared to the water colour in aerial photographs

• abundant availability at supermarkets which allow for many simultaneous deployments during

testing

• biodegradability hence not requiring the drifter to be collected should it float out of the bay

• light weight providing ease of a person throwing them behind the surf zone from the beach

As the current velocity was assumed uniform through the water column, see Section 2.2.2 above, the 

movement of this drifter on the surface was assumed to be indicative of the currents below. 

3.2 On-Site Measurements 

For each on-site test the following procedure was followed: 

1. The drone was flown up to an altitude of 30 m with the camera facing perpendicularly down

and with the field of view just behind the breaking waves.

2. The camera was set to take a photo as often as possible, 2 seconds (s) in the case of the Mavic

Air, and then left to hover in one place.

3. A set of drifters, normally 2 or 3, could then be deployed by standing at the bottom of the

beach and then thrown out underneath the drone with some space between each to provide a

spread of tracking points.

4. The video feed on the remote (if available) could then be monitored such that the drone was

manoeuvred to keep the drifters as central in the frame as possible.

5. This was maintained until the battery low warning signal was given from the remote at which

point the drone returned home (the initial take off point). The time span was typically

10 minutes for a Mavic Air.

6. The battery could then be replaced with a fully charged one and the test reset.

7. When possible, any drifters which returned to the beach could be retrieved and reused.

During the first few flights on-site, it was noted right away that the local kelp seagulls were quite 

interested in the drone, especially during take-off. The drone was hovered at 15 m above the take-off 

location for 30 seconds to a minute to allow for the bird’s interest to be assessed, as well as for them 

to get used to the drone. This minimised the risk of one of the birds attacking the drone and causing 

it to crash into the water. Should a bird knock the drone at this time it should fall onto the beach 

relatively unscathed. Typically, after this time the birds have lost interest and flew away. Although, 

during one or two data collection flights the drone was brought back to the beach when birds were 

circling too close. 
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3.2.1 Dealing with Distortion 

While it is common for lens distortion to introduce errors in measurements at the edges of an image, 

as seen at the edges of Figure 2-3 on page 6 above, no distortion correction has been explored as part 

of this study. Lens distortion is most often corrected with a calibrated lens profile, which at the time 

of this study was not available for the Mavic Air, and could possibly be determined in future studies. 

It was assumed that the effect of this distortion on the current measurements would be minimal as 

during testing the drifters were kept in the centre of the image frame where little to no distortion was 

present, as discussed in section 2.1.3. The distortion for current measurements should have less of an 

effect than for distance measurements; as it would most likely affect the coordinate readings at both 

time-steps by a similar magnitude and hence become negligible when used in calculating the velocity. 

3.3 Simple Drone Testing 

Initially tests were carried out using a very cheap DJI Phantom 2 with a GoPro mounted to the 

underside with a Gimbal. As this system was first released in 2013, it was rudimentary and did not 

have the capability for recording the GPS location with the recorded images (DJI, 2013). A test was 

carried out to determine if some current measurements could be taken with this platform, but it was 

soon apparent that a more capable drone would be required. 

3.4 Intermediate Prosumer Drone Testing 

3.4.1 DJI Mavic Air 

The DJI Mavic Air is a prosumer class drone which is small, portable and retails for approximately 

20 000 ZAR. With that in mind it is still a capable platform with a 12 mega pixel camera and a dual-

GNSS positioning system as seen in Table 2-1 on page 5 above. While it can’t operate in wind 

conditions as high as the more professional drones it is also able to view the camera through the 

remote control while recording the GPS and Altitude data in the metadata of any image taken.  

3.4.1.1 Camera Calibration 

The drone was taken into a car park and flown over a measuring tape on the ground in order to take 

a set of images of the tape and calculate its length using the proposed method (see Figure 3-1). The 

calculated length could then be compared to the known tape length to provide a scaling factor for the 

images from the camera. If the measured length was shorter than that of the tape, the scaling factor 

would be more than 1 and the images size would need to increase, and vice versa. The scaling factor 

of the image is related to the actual field of view, to the camera’s properties and the height of the 

drone above ground, elaborated on in section 3.5.1.3 below. The values for the DJI Mavic Air 

recommended on the manufacturer website, was tested to get a set of calculated measurements which 

were compared with the known length to check for accuracy. If an error was found the camera 

properties could be adjusted to align the calculations with the measurements.  
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Figure 3-1: Car-Park Calibration Setup 

During later tests at Monwabisi, a tape was laid out near the water line to get a second calibration 

test prior to measuring drifters. In addition to the camera properties, an “elevation correction” would 

be assessed as the drone’s altitude was measured relative to the take-off location, which on the beach 

was from a hand-held position behind the highest wave run-up. An initial value of 1.6 was used 

which was made up of 1.2 m from beach level to the average hand-held height, plus an additional 

0.4 m from the assumed current tide mean water level to the elevation of the beach where the drone 

was launched (see Figure 3-2). 

Figure 3-2: Elevation Correction Component Makeup 

3.4.1.2 Error Testing 

An initial simple GPS error check was carried out where a fixed ground point was used to provide a 

reference point to determine the error generated by GPS drift as well as any movement of the aircraft 

due to wind. A stationary point was used, and several aerial images were collected such that the 

theoretical coordinates could be calculated, as per Section 3.5.1 below, and these were compared to 

2.5 m TAPE 17.5 m TAPE 

1.2m 

0.4m 

1.6m 

Tide Level 
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each other to determine the difference. Data collection was carried out at different heights as well as 

while the drone was in motion to determine if there was any influence of these factors on the location 

error. 

Additionally, the final site test included a long stake which was driven into the sand just behind the 

breakers (see Figure 3-3 & Figure 3-4 below) to provide a GCP which could be used to compare the 

generated error to a set of drifter velocity measurements directly.  

Figure 3-3: Monwabisi GCP Test Setup 

Figure 3-4: Aerial View of Monwabisi GCP Test Setup 
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3.4.2 DJI Inspire 2 

To provide a comparison with a more advanced drone model, the DJI Inspire 2 provided by the 

Stellenbosch University Civil Department was included in the study. Being a much larger drone with 

increased flight time and a better camera, it comes with a much higher price tag at around three times 

that of the Mavic Air. No calibration or error testing was carried out for this drone as the time on site 

was limited to one data collection trip due to logistics. 

3.5 Extracting Data from Photographs 

3.5.1 Reference Coordinate System Conversion 

3.5.1.1 Extracting data from each set of images 

Each image captured by a digital camera included additional information, called tags, in the file such 

as camera make/model, lens details, date at which the photo was taken and GPS location (if 

available). This metadata is called the exchange image file format (EXIF) data (CIPA & JEITA, 

2016). In the case of a DJI drone this EXIF data included the tags listed in Table 3-1 below. 

Table 3-1: Summary of EXIF Tags Used in this Study 

EXIF Tag MavicAir Output Description Use 

FileName DJI 1414.JPG Name of the image from the drone. Reference 

Make DJI Make of the drone. Info 

Model FC2103 Model of the drone corresponding to the 

Mavic Air. 

Info 

DateTimeOriginal 2018:12:11 

07:45:38 

Date and time at which the image was 

taken. 

Reference 

ApertureValue 2.8 Fixed amount of light let into the camera. Scaling 

FocalLength 4.5 mm Fixed lens focal length which. Scaling 

ExifImageWidth 4056 Number of pixels on the sensor 

horizontally. 

Scaling 

ExifImageHeight 3040 Number of pixels on the sensor vertically. Scaling 

FocalLengthIn-

35mmFormat 

24 mm Photographic standard metric for lens focal 

distance. 

Scaling 

GPSLatitude 34° 4' 22.29" S GPS output for latitude in degrees, minutes 

and seconds. 
Omitted* 

GPSLongitude 18° 41' 32.62" E GPS output for latitude in degrees, minutes 

and seconds. 
Omitted* 

Latitude -34.0728700 Decimal degree latitude reference, -'ve for 

south. 

Geolocating 

Longitude 18.6924006 Decimal degree longitude reference, +'ve 

for east. 

Geolocating 

AbsoluteAltitude 1.2 Absolute altitude of take-off location 

above sea level. 
Omitted** 

RelativeAltitude 29.2 Relative altitude of drone when photo was 

taken. 

Scaling 
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EXIF Tag MavicAir Output Description Use 

GimbalYawDegree -13.9 Orientation of camera in relation to 

magnetic north. 

Geolocating 

GimbalPitchDegree -89.9 The vertical angle of the camera in relation 

to the horizon. 

Check 

FlightRollDegree -7.3 Orientation of the drone to the right or left. Check 

FlightYawDegree -13.1 Orientation of the drone in relation to 

magnetic north. 

Check 

FlightPitchDegree -12.7 Orientation of the drone to the forward or 

back. 

Check 

ScaleFactor35efl 5.3 Hypothetical scale factor of actual focal 

length to 35mm equivalent focal length. 

Check 

FOV 73.7° Angle of image width field of view. Scaling 

* The official GPS Latitude and Longitude provided by DJI was rounded to two decimal

seconds which was found to have an insufficient accuracy and hence omitted. See 

Section 4.1.1. 

** The Absolute Altitude for the Mavic Air was found to be fixed at 1.2 and hence of no use. 

However, the Inspire 2 did provide results for review. 

Table 3-1 does not include all the EXIF data tags available in the image file; however, these were 

the tags relevant to this study. These were extracted from each image using a freeware application 

called ExifTool version 10.08 by Phil Harvey (2018). ExifTool is a command line application which 

can read and write EXIF tags on an image file with functionality which allowed for the tags from an 

entire folder of images to be read and then written into a .csv file. The command prompt code used 

was as follows: 

exiftool -a -csv 2019-02-07_Inspire_Comparison > 2019-02-07_ExifData.csv 

This calls the ExifTool application, then reads all tags (term: -a) in files from the folder “2019-02-

07_Inspire_Comparison” and wrote them to a .csv called “2019-02-07_ExifData”. The columns 

corresponding to the tags shown in Table 3-1 were then extracted into an Excel spreadsheet for 

further processing. 

3.5.1.2 Coordinate Transformation 

Excel was used to convert the geographical latitude/longitude coordinates written in the image file 

to gauss conform (x : y) and then UTM (Y : X) coordinates. This was done as the UTM coordinates 

are measured in metres (m); hence displacement and velocity calculations could be carried out with 

ease. The transformation was set out based on Parker (2011). The transformation equations provided 

in the article have been adapted for Monwabisi to suit the World Geodetic System (WGS) 1984 

ellipsoid with the central meridian 19 East, see Appendix: C, which could be simplified as follows: 
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𝑥 = 𝐵Φ +
ℓ2

2
. 𝑁. sin Φ . cos Φ +

ℓ4

24
. 𝑁. sin Φ . cos Φ3 . (5 + 9Ƞ2 + 4Ƞ4 − 𝜏2)

+
ℓ6

720
. 𝑁. sin Φ . cos Φ5 . (61 − 58𝜏2 + 𝜏4 + 270Ƞ2 − 330Ƞ2. 𝜏2)

(3-1) 

𝑦 =  ℓ. 𝑁. 𝑐𝑜𝑠 𝛷 +
ℓ3

6
. 𝑁. 𝑐𝑜𝑠 𝛷3 . (1 + Ƞ2 − 𝜏2)

+
ℓ5

120
. 𝑁. 𝑐𝑜𝑠 𝛷5 . (5 − 18𝜏2 + 𝜏4 + 14Ƞ2 − 58Ƞ2. 𝜏2)

Where: 

Φ = Absolute value of Latitude (radians) 

λ = Absolute value of Longitude   (radians) 

Ƞ, τ, BΦ, N = Input equations provided in Appendix: C 

(3-2) 

The convention for the South African Gauss Conformal Projection has the x coordinate (3-1) running 

positive towards the south and the y coordinate (3-2) running positive towards west. These need to 

be converted further in order to work with AutoCAD which uses Universal Transverse Mercator 

(UTM) convention which has Northings, Y values increasing north, and Eastings, X values 

increasing east. Hence in AutoCAD the coordinates (Y=-x , X=-y) as per Figure 3-5 below and this 

study used the UTM convention for all calculations (Parker, 2011). 

Figure 3-5: Gauss Conform & UTM Conventions (Parker, 2011) 

3.5.1.3 Scaling the Images 

In order to determine the coordinate for the drifter in relation to the drone’s GPS, the image required 

scaling based on the height above ground. This scaling was based on the camera’s focal length as 
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well as the image sensor size. This relationship can be seen in Figure 3-6 below which illustrates the 

ratio: 

𝑆𝑊

𝑓
=

𝐹𝑂𝑉𝑤

ℎ

Where 

Sw = Sensor Width  (mm) 

ƒ = Focal Length  (mm) 

FOVw = Field of View width (m) 

h = Altitude/Distance to subject (m)

(3-3) 

Figure 3-6: Image Scale Ratio  

The Mavic Air and the Inspire 2’s Zenmuse X4S cameras are reported to have specifications as 

indicated in Table 3-2.  

Table 3-2: Sensor Properties (D’Agostino, 2018) 

Description MavicAir Inspire2’s Zenmuse X4S 

camera 

Sensor Size 1/2.3” 1” 

Maximum Resolution (pixels) 3840 x 2160 (12 MP) 4096 x 2160 (20 MP) 

Sw Sensor Width (mm) 6.17 12.8 

Sh Sensor Height (mm) 3.47 7.2 

Assuming an average flight height of 30 m and ƒ = 4.5 mm as per Table 3-1 above, the FOVw of the 

image would be 41.1m.  

3.5.1.4 Reference Output 

The image name, the coordinates, the Gimbal Yaw Degree and the FOVw was then exported from 

EXCEL to a .csv file in a list which could be read into AutoCAD. 
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3.5.2 Processing the Images 

All readily available software packages for processing aerial photography that were found as part of 

this study, focused on stitching all images together to form a 3D model and a map. While the 

functionality of packages such as Agisoft© Metashape could easily orientate each image in coordinate 

space, the ability to locate, track and then export the coordinates of the drifters along each time-step 

was limited; hence, the decision was made to import each image into AutoCAD which allowed for 

Visual Basic for Applications (VBA) Macro’s to be developed to build-in the required functionality. 

3.5.2.1 Importing Photo Series into AutoCAD 

The VBA macro is provided in Appendix: D but the code executes as follows: 

Firstly, the code needed to be modified to define the fileDirectory variable in which the images were 

stored as well as the file path of the .csv file which contains the image data list, as seen in Figure 3-7. 

Figure 3-7: VBA Code for File Path Definition 

The AttachMultipleImages() function could then be called which initialises the files by reading the 

.csv file into memory, then looping through each image in the list and carrying out the following 

steps: 

1. The image was inserted at the coordinates (FOVw/2 , FOVh/2), the top left as seen in

Figure 3-8 below, which was the convention used by AutoCAD.

2. The scale factor was applied from the top left corner such that the width of the image was

now equal to the FOVw which also brought the centre of the image to the coordinate (0,0)

or the origin.

3. The imageVisibility AutoCAD attribute was turned off to prevent the computer being

overwhelmed with a large amount of data, affecting performance.

4. The image was rotated by the GimbalYawDegree.

5. Finally, the image was moved from the origin to the coordinates at which the image was

taken.
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Figure 3-8: AutoCAD Image Insertion 

As part of the initialisation process an index of image names needed to be stored in AutoCAD’s 

memory which was carried out by the ReadNames() function. Like the function above, it worked 

through the list of images and read each name into memory. The total number of images was also 

recorded. Once the entire list has been worked through the first image in the list was made visible. 

3.5.2.2 Moving Through Images 

Two functions NextImage() and PreviousImage() allow for images to be sequentially worked 

through. This was achieved by turning the visibility of the current image off and then turning on the 

Next/Previous image. If the end of the list of images was reached then the first image was turned on, 

and vice versa if working backwards. 

3.5.2.3 Marking Drifter Locations 

Starting at the first image each time-step was worked through until a drifter had entered in the frame. 

A point node was placed at each drifter location using a custom VBA function which pulls up the 

image and then inserted a point, as seen in Figure 3-9 below, and any features of interest were 

recorded in the calculation Excel sheet, such as a passing wave which may have led to surfing effects. 

This process was repeated until the drifter was lost or the drone has finished the flight. These points 

also provided an indication of the surface current pattern. Before moving onto the next flight/drifter 

deployment, the colour attribute in AutoCAD for the set of points corresponding to the previous 

drifter were all set to a unique colour for identification. 

Figure 3-9: Marking Drifter Locations in AutoCAD 

Stellenbosch University https://scholar.sun.ac.za

https://scholar.sun.ac.za/


38 

3.5.2.4 Exporting Drifter Coordinates 

Another VBA function was created to run through the entire drawing and export the coordinates of 

each point as well as the corresponding unique colour id, which was a number between 0 and 255, 

to a *.csv file, as see in Figure 3-10. This function also allowed for the coordinates of a polyline or 

single line to be exported if any reference lengths had been placed for calibration as described in 

Section 3.4.1.1 above. 

Figure 3-10: AutoCAD Drifter Coordinate Output 

3.5.3 Analysing Currents from Coordinates 

Once back in the Excel calculation file the current velocity of the drifter at each time-step could be 

calculated using the following equation: 

𝑢𝑖 = √
(𝑋𝑖+1 − 𝑋𝑖)2 + (𝑌𝑖+1 − 𝑌𝑖)2

|𝑇𝑖+1 − 𝑇𝑖|. (24.3600)

Where: 

ui = Overall current velocity at time-step i (m/s) 

X i+1 & Xi = X coordinate of drifter at time-step i and i+1 (m)

Y i+1 & Yi = Y coordinate of drifter at time-step i and i+1 (m)

T i+1 & Ti = Timestamp of image at time-step i and i+1  (decimal days) 

(3-4) 

The noisy data included any orbital motions and surfing effects of passing waves, along with any 

errors generated by the drone’s GPS. If any notable events were to be excluded this could be done at 

this stage and then the data could be averaged out over several time-steps. Tests were carried out to 

adjust this period and optimise accordingly to smooth out the orbital motions as well as to reduce the 

GPS error.  

Assuming that the GPS error was scattered in all directions, one way of reducing the velocity error 

generated was to average out a number of coordinate readings to provide an average coordinate which 

could then be used to calculate the velocity. This essentially applied an averaging filter to the data 

set, smoothing out the results where the frequency in Hz was 1 divided by the period over which the 

averaging took place, in seconds.  
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The following example equation was used to calculate the velocity of the points every 6 seconds, as 

each time-step equated to 2 seconds when each photo was taken: 

𝑈𝑡=2  =
√(∑ 𝑋𝑡6

𝑡=4  − ∑ 𝑋𝑡3
𝑡=1  )2  + (∑ 𝑌𝑡6

𝑡=4  − ∑ 𝑌𝑡3
𝑡=1  )2. 100

|𝑇𝑡=5 − 𝑇𝑡=2|. 24.3600

Where 

𝑈𝑡=2 = Velocity at time-step 2 (cm.s⁻¹) 

= Average X coordinate over time-steps 1 through 3 (m) 

  (Similar notation for other X and Y coordinates) 

𝑇𝑡=5 = Exif time tag at time-step 5 (or 2) (day) 

(3-5) 

This equation averaged out the three coordinates around time-step 2 and 5, then provided the average 

velocity between these time-steps over 6 seconds. The next velocity was then calculated between 

time-step 5 and 8, then 8 and 10 and so on.  

A similar filtering method has been used on drifter data results in previous studies to average out 

short wave motions and noise. Olsson (2004) used a 0.1 Hz filter, Mccarroll et al. (2014) used a 

0.4 Hz filter while Gallop et al. (2018) used a 0.05 Hz filter. This equated to an averaging period of 

10 , 25 and 20 seconds respectively and a similar range of averaging periods was used when 

averaging out the drifter data. Similar to these studies, the data was then grouped into 5 m by 5 m 

grids to resolve the current velocity spatially to provide adequate resolution over the study area while 

also providing enough data to characterise each cell. 

The current’s components in the X and Y direction was calculated, in such a way that once grouped, 

the overall current direction at each grid cell could be displayed using the MATLAB quiver function. 

This was calculated using the following equations which were also averaged as per equation (3-5): 

𝑢𝑥𝑖 =  √
(𝑋𝑖+1 − 𝑋𝑖)2

|𝑇𝑖+1 − 𝑇𝑖|. (24.3600)
 &  𝑢𝑦𝑖 =  √

(𝑌𝑖+1 − 𝑌𝑖)2

|𝑇𝑖+1 − 𝑇𝑖|. (24.3600)

Where: 

uxi = Current velocity in the x direction at time-step i (m/s) 

uyi = Current velocity in the y direction at time-step i (m/s) 

(3-6) 
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3.6 Environmental Data 

WindGuru© and Windy (weather forecasting websites focussing on wind and waves) were followed 

in the week prior to each data collection excursion in order to plan for the best conditions for flying 

the drone as well as attempting to vary the metocean conditions.  

A few hours after the data had been collected, a set of wind and wave estimates for Monwabisi, as 

well as Muizenberg and Strand were recorded from WindGuru©, Windy and windreport.co.za 

assuming that the sites had been updated with the actual readings, examples of which can be found 

in Figure 3-11 and Figure 3-12 below. 

Figure 3-11: Windreport.co.za Example Wind Data for Strand 

Note: “Current” in Figure 3-11 refers to the Average, High and Low at the time: 2019-02-05 16:15 

Figure 3-12: Example Data for Macassar (near Monwabisi) (WindGuru, 2019) 

The South African Weather Service (SAWS) was also contacted at the end of all data collection 

sessions to provide actual wind data recordings from the Strand and Cape Town International Airport 

weather stations. PRDW Port and Coastal Engineer’s also provided extracts for Monwabisi from a 

Boussinesq wave numerical model, which was set up for False Bay to provide wave results from 

NCEP hindcast data. A combination of these was used to compare conditions between each of the 

data sets and those tested previously.  
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3.7 Comparison with Previous Studies 

The 1997 CSIR report did not provide any current magnitudes in the model results; hence, it was not 

possible to make a direct comparison between the results and the drifter velocities measured in this 

study. Therefore, the comparison focused on Kistner’s results which provide current magnitudes 

while also correlating with the current patterns found in the CSIR’s calibration tests. In order to 

provide a comparison to Kistner’s 30 m peak average velocity (UPA30) results, a lookup table was 

used to average out the entire set of velocity results over a 25m by 25m grid. This provided a balance 

between an average 30 m path length through the domain, as seen in Figure 3-13, as well as for ease 

of data processing in Excel. This provided an approximation of the UPA30 distributed over the domain 

of the drifters. 

Figure 3-13: 30m Current Averaging Domain Sketch 
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Chapter 4: Results 

4.1 Drone Output Review 

It was noted early in the review of the collected images that the results would rely on the ability of 

the drone to provide accurate positioning data. Initially with the original Phantom 3 drone it was 

found to be extremely difficult to orientate the images with no recorded drone location data and no 

reliable GCP’s, as the water surface below was always moving and evolving such that 

photogrammetry could not align the images post collection. Therefore, the study hinged changing to 

the more advanced MavicAir drone which did record the drone’s GPS and altitude reading in the 

images EXIF tags. The results from the tests described in section 3.4 are as follows: 

4.1.1 Scaling 

In order to get the correct scaling factor, a tape was used as a reference measure as described in 

section 3.4.1.1. The following section describes the calibration results carried out at a controlled 

car-park as well as on site at Monwabisi Beach. 

4.1.1.1 Car-Park Calibration 

Initial calibration tests included setting a tape measure out on a car-park. This gave a mean drone 

measurement of 2.29 m which was approximately 90 % of the actual length measured which was 

2.5 m (see Figure 4-1). This was due to an incorrect FOW scaling factor of the 
𝑆𝑤

𝑓
 term from equation

(3-3). While the Sw was constant at 6.17 mm the actual ƒ may differ from that reported on the EXIF 

file. DJI also provided the angle of view (AOV) for the Mavic Air as 85° diagonally (DJI, 2019a) 

and this was proportional to the FOV divided by the height. Because of this, the following 

relationship could be used: 

tan
𝐴𝑂𝑉𝑑

2
=

𝐹𝑂𝑉𝑑

2
.
1

ℎ

(4-1) 

Equation (4-1) could be rearranged and substituted into equation (3-3) in the diagonal form to provide 

the following equation for ƒ: 

ƒ = √𝑆𝑤
2 + 𝑆ℎ

2. 0.5 cot
𝐴𝑂𝑉𝑑

2

(4-2) 

If the values from Table 3-2 on page 35 and the angle above were substituted into (4-2), the calculated 

focal length for the camera equals 4.18 mm which was less than the 4.5 mm reported by DJI. This 

reduction of the focal length led to a 7.6 % increase in the scale factor which would increase the 

measured length of the tape to 2.46 m, which was approximately 98 % of the actual measurement.  
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Figure 4-1: Initial Calibration Test Length Distribution Results Taken at Drone Altitudes of 10.5, 

14.5 and 30m Above Ground 

Figure 4-1 also highlighted that at lower altitudes, such as the set of readings at 10.4 m altitude, the 

effect of the barometer sensitivity being 0.1 m was more prominent and hence the results were more 

spread out. At higher altitudes the tape was less clear as the image was more enlarged, and some 

variation was introduced when selecting the start and end points. Therefore, there was a trade-off 

between flight height and visibility of the point of interest. 

It should also be noted that the results above exclude measurements taken as the drone was moving 

between these altitudes as these generated outlying errors with readings as low as 1.65 m. It was 

assumed that as the drone altitude changed drastically, the absolute altitude tag stored in the image 

file was for slightly before/after the photo was taken. A similar effect was noted for the coordinates 

which will be elaborated on in section 4.1.2. 

Figure 4-2: Bottom Right Quadrant of Image Showing Car-Park Edge Distortion 
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The images from the car-park calibration tests were also used to assess the effect of the lens edge 

distortion, as discussed in section 3.2.1. Although some distortion was noted, it only became 

noticeable at the edge of the image. This is shown in Figure 4-2 where only the last bay markings 

became distorted. The kerb was ±15 cm out of alignment, which when considering that this point 

was ±1221 cm from the centre of the image, equated to an error of 1% in distance. As noted in section 

3.2.1 this should not affect the current measurements as both coordinates experienced similar 

distortions if measured at the corner of the image, while the drifters were kept in the centre of the 

frame, where possible. 

4.1.1.2 On Site Calibration 

Results from the calibration testing at Monwabisi showed a high variability in the measurements for 

length over three different flights. Figure 4-3 below illustrates the histogram for the three sets of 

results showing that the mean value varied from 2.57 m to 2.83 m. This could be due to the elevation 

correction value which was set at 1.6 m when processing all three sets of results below. The on-board 

barometer reference altitude on the drone could have drifted over the tests with atmospheric changes, 

and this coupled with launching the drone from different arm heights/beach elevations could lead to 

some variability in the altitude between flights. Therefore, an elevation correction may be required 

for each flight with the 3rd flight requiring a much lower value to bring the mean in line with the 

expected measurement of 2.5 m. This would also be expected as the take-off location was 

approximately 7m down the beach. Again, measurements were excluded if the drone was 

gaining/losing altitude and the results below were taken while the drone was hovering around 15.1 m, 

15.6 m and 29.9 m. The results near an altitude of 30 m are highlighted in the figure as that was the 

altitude at which the drifter testing was due to take place. 

Figure 4-3: Calibration Results of Three Flights at Monwabisi 

Only the first flights measurements were used to compare the two proposed focal length values to 

eliminate the effect of the elevation correction, as indicated in Figure 4-4 below. These tests also 
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confirm those of the car-park in that the ƒ value of 4.18 mm was more likely the focal length of the 

Mavic Air’s camera. With an ƒ of 4.5 m the mean measurement was 2.33 m, while at an ƒ value of 

4.18 mm the mean measurement was 2.52 m.  

Figure 4-4: On-Site Calibration 1st Flight Results Comparing f = 4.18 mm & 4.5 mm 

This figure also highlighted that the additional variability of measurements at lower elevations have 

a larger range which implied that the height used in the calculations has a notable influence on the 

results. As the drone hovering accuracy was a constant, the recorded height of the drone, as seen in 

Figure 4-5 below, had a larger percentage of the overall height measurement due to the hovering 

error than compared to higher altitudes where this error was small compared to the overall height. 

Figure 4-5: Drone Altitude Error Effect 

Typical drone applications, such as photogrammetry, circumvent this problem by requiring an 

overlap between adjacent images, as described in section 2.1.3. In this application however, the 

continually moving sea surface would not facilitate correlating two temporally spaced images; hence, 

the drone’s internal altitude determination was relied on in this study. This could be addressed by 

σH 

σH 

H 

H 
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drones such as the Phantom RTK which utilises superior positioning technology, or by implementing 

a specialised stereoscopic camera, also described in section 2.1.3, which would record at least two 

images simultaneously, allowing for of the distance from the drone to the water’s surface to be 

calculated at each time-step, along with the distance to the drifters below. 

4.1.2 Coordinates 

4.1.2.1 On Beach Testing 

The site measurements provided not only the lengths for calibration, but the coordinates from one 

side of the tape could be used to assess the measurement error. Figure 4-6 shows the set of 

measurements taken for the three flights at Monwabisi. The centre of all the coordinates can be seen 

in the centre of the image, and 95% off all coordinates were within 1.75 m of this point. A subset of 

coordinates was selected based on the horizontal velocity of the drone, which was limited to 

20 cm.s⁻¹. This cleaned subset provided a second point which appeared to be more centred over the 

expected coordinates. The radius in which 95 % of this subset falls, was also reduced to 1.14 m.  

Figure 4-6: On-Site Measurements 

The overall spread may be quite large, but the distance from one coordinate measurement to the next 

was not as drastic, with an average point to point distance of 0.079 m over the entire set of results. 

To determine the effect of this error on current velocity, the velocity of the points at each time-step 

was calculated and compared to the known velocity of the point, which was stationary and hence 

0 cm.s⁻¹. Figure 4-7 provides a time-series plot of the velocity error for the points calculated using 

an ƒ value of 4.5 mm and 4.18 mm as well as the horizontal velocity over of the drone over the same 

period. For simplicity’s sake the time has been benchmarked at the start of the first flight and each 

period in which the drone was not over the tape has been condensed to 30 seconds and highlighted 

in grey below. 
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Figure 4-7: Time-Series Plot of Calculated Error Velocity 

What was notable was that the velocity error of the measurements with an ƒ set at 4.18 mm were 

lower than that of 4.5 mm which further pointed to the use of the ƒ value calculated in section 4.1.1.2. 

Also, for the most part the horizontal velocity of the drone was quite low as it hovered above the 

tape, with a magnitude similar to the calculated velocities below. This could be due to the drone 

sensing that it was moving, within the accuracy of the on-board GPS, refer to Section 2.1.2; however, 

this appears to be much more accurate than the 0.3 m reported by DJI. 

There were 5 events of interest along the time-series plot which have been highlighted with circles, 

which correlate to times at which the drone was no longer hovering and was moving horizontally. 

As the drone velocity increased so did the “error” velocity of the point below which indicated that 

the accuracy of the results decreased as the drone was in motion, like the vertical movement noted 

in 4.1.1.1 above. Therefore, a drone velocity threshold could be set at which point the measurements 

were excluded from the results. It was suggested that 20 cm.s⁻¹ was used as this allows for some 

autopilot correction of the drone in the wind but was far less than when operator input was provided, 

and the drone velocity could reach up to 630 cm.s⁻¹. 

This was processed in excel to get the average velocity every 6 , 10 , 14 , 18 and 22 seconds which 

is indicated in Figure 4-8 below. 
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Figure 4-8: Averaged Velocity Error Mean ±1σ Results 

This illustrates how cleaning up the data from measurements while the drone was in motion already 

reduced the mean error from 3.9 cm.s⁻¹ to 2.9 cm.s⁻¹ (a 26 % reduction), even before any averaging 

took place. Once the set had been averaged the mean error dropped further to 1.9 cm.s⁻¹ but the 

reduction soon flattened out at around 1.5 cm.s⁻¹ when averaging every 10 to 22 seconds. The 

deviation reduced to a minimum when averaging every 18 seconds with all calculated velocity being 

between 0.26 and 2.8 cm.s⁻¹.  

4.1.2.2 Over Water Testing 

The poles used for GCP’s just behind the breakers, as described in section 3.4.1.2 above, proved to 

be quite successful and stationary points were easily tracked. This provided a good reference point 

to compare to the movement of the drifter which was placed nearby. Figure 4-9 below shows an 

extract from velocity time-series plot for the first flight which highlights the typical relationship 

between the GCP error found and the velocity of drifters 1D, 2D and 3D. The GCP velocity shown 

were the averages of the four stakes placed behind the breakers. On average the velocity error found 

at the GCP’s was approximately 22% of the current velocity found at the drifters. 
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Figure 4-9: Example of Velocity Time-Series Plot from Calibration Test Flight 1 

This figure also highlights that the error follows the movement of the drone which implied that this 

error could be reduced easily with better GPS technology, such as the Phantom RTK, which increases 

the hovering accuracy. 

It was also found that during these tests when the drone rotated to return to the beach, an inaccurate 

yaw reading was recorded in the images which in turn generated excessive drifter movements 

between 3.75 m and 5.63 m, shown in Figure 4-10. It appears as if the underlying sediment location 

similarly shifts, implying that it was not current induced and must be due to incorrect readings. This 

again highlighted the need to clean up the raw data from flight induced errors when the drone was in 

motion. 

Figure 4-10: Drifter Coordinate Result Example During Drone Rotation 

The GCP’s may have worked for the conditions on the specific day of testing, but if the wave climate 

was any larger, there would have been an increased deployment risk in attempting to place the stakes 

behind the breakers. This would also negate some of the benefits of using this drone method over a 
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more traditional method such as GPS drifters. As it was there were instances when a large set of 

waves came in obscuring the GCP stakes, as seen in Figure 4-11. This also risked moving the stakes 

and influencing the error results. To mitigate this more than one stake was used to average out any 

movements during testing. 

Figure 4-11: Waves Obscuring the GCP Stake During Testing 

Another effect which was noted was any instance where a wave picked up the drifter which surfed 

along generating excessive velocity, as seen in Figure 4-12 and Figure 4-13. This was easily picked 

up from the images and it could be flagged when processing the images in AutoCAD such that these 

coordinates could then excluded from the data set if required.  

Figure 4-12: Drifter Surfing Effects 

Figure 4-13: Drifter Caught in Wave 

During testing sunlight could obscure the drifter if in the correct angle for the glare to reflect to the 

drone, as seen in Figure 4-14. This would typically occur as a wave passed underneath but would 
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need to be considered in planning the time of data collection. A polarised filter fitted to the camera 

lens could reduce this effect somewhat. 

Figure 4-14: Sunlight Reflection 

During large wave events where sea foam was generated in abundance within the bay it became 

difficult to detect the drifters as seen in Figure 4-15 below, which shows a drifter entering foam in 

frames 2 seconds apart. This could be mitigated by using a larger drifter protruding further above the 

water surface which would in turn require additional baffles below to prevent surfing. A drifter which 

reflects a specific colour spectrum coupled with an enhanced spectral camera or a thermal camera 

could presumably see through the foam. One such solution is the Zenmuse XT camera which is a 

commercially available thermal camera which is compatible with the DJI Inspire 2 drone (DJI, 

2019d). 

Figure 4-15: Drifter Obscured by Sea Foam 

Again, the data was cleaned from high drone movements and then averaged over different periods to 

smooth out the error. Figure 4-16 provides the results of this process and shows that when averaging 

over 14 seconds the difference between the cleaned data and the entire set appears minimal. When 

averaging over more than 14 seconds the effect of the localised errors generated by the drone 

movements seem to be averaged out. The overall mean error decreased with increased averaging 

periods, like the tests on the beach; however, this flattened out after 14 seconds just under 2 cm.s⁻¹.  
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Figure 4-16: GCP Velocity Error Results for Flight 1 

Over the same flight the drifter velocity followed a similar trend with the mean reducing with higher 

averaging periods as seen Figure 4-17 below. Increasing the averaging period past 10 seconds only 

provided incremental reductions in the velocity mean and range of results.  

Figure 4-17: Drifter Velocity Results for Flight 1 

The results for the second flight where correlated with the first, as shown in Figure 4-18 and Figure 

4-19 below. The GCP velocity error and drifter velocity decreased at 6 seconds and then flattened

out with increasing averaging periods. The average difference between the cleaned set and the entire 

set also bacame minimal after averaging.  
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Figure 4-18: GCP Velocity Error Results for Flight 2 

Figure 4-19: Drifter Velocity Results for Flight 2 

The trend for the measured velocity and error to decrease with increasing averaging periods was due 

to the coordinates used in the calculations all tending towards the centroid of the entire set of data, 

see. This lead to movements of the drifter, such as the arc back (circled in Figure 4-20 below), being 

averaged out and hence a much lower current velocity being calculated. The green path averaged 

over 6s, followed the drifters as they moved north and then south in line with the incoming waves. 

The red path averaged over 6s, does not show this movement rather moving to the centre of all these 

points. This may be beneficial in excluding the wave effects and providing an overall current, but 

this also reduced the resolution of the data.  
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Figure 4-20: Drifter Tracks Averaged 

A lower averaging period would be useful should local small-scale movements be of interest, such 

as oscillatory currents, or if the current magnitude was small. In these circumstances, a 6 to 

10 seconds averaging period seemed reasonable for processing data although a higher velocity error 

was then included in the results. In cases where a longer-term current trend was required, such as a 

steady longshore current or tidal current, an averaging period longer than 22 seconds would smooth 

out short term wave effects while further smoothing any errors generated during data collection. 

4.1.2.3 Drone Elevation Tests 

The elevation of the drone influenced the number of pixels which picked up the drifter making it 

harder to track. The less clear image on the right of Figure 4-21 was taken with the drone at an 

altitude of 100 m and while a larger area could be covered at once, the drifter only took up a few 

pixels.  

Figure 4-21: Drifter Imaged from Altitudes 30 m (left) and 100 m (right) 

A higher resolution camera such as the Inspire 2’s 20 MP camera, vs the Mavic Air’s 12 MP would 

allow for clearer images at a higher altitude. Figure 4-22 illustrates the drifter taken from the Mavic 

Air at an altitude of 30 m, shown on the left, while the Inspire 2 took the same drifter at an elevation 
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of 40 m, shown on the right. The Inspire 2 has a much sharper image even at the higher altitude 

which allows for the drifter to be picked out easier. 

Figure 4-22: Comparison Between Drifter from Mavic Air (left) & Inspire 2 (right) 

4.1.3 Calibration Conclusions 

Initial scaling found that the focal length of 4.5 mm for the Mavic Air reported by DJI led to a 10% 

underestimation of a 2.5 m length measured on the ground; hence, the focal length was calibrated 

and set to 4.18 mm which resulted in better overall results. This could be due to slight discrepancies 

in the camera manufacture; hence the calibrated number was used for the remainder of the 

calculations. An elevation correction of 1.6 m was also added to each altitude to account for the take-

off location of the drone in relation to the water level. 

It was noted that whenever the drone velocity increased, either horizontally or vertically, the error 

increased accordingly. This led to some measurements during calibration being excluded as the drone 

ascended from one elevation to the next where outlying measurements as low as 1.65 m for the 2.5 m 

tape were noted. 

The average instantaneous error, characterised as a velocity determined by tracking stationary points 

on the ground, ranged between 4 cm.s⁻¹ and 6 cm.s⁻¹ which then reduced to around 2 cm.s⁻¹ when 

averaging out the points over 10s for all calibration tests. During the same tests the average drifter 

velocity measured were around 30 cm.s⁻¹ instantaneously (which included orbital velocity from 

waves) and then reduced to between 18 cm.s⁻¹ and 10 cm.s⁻¹ for the averaged results corresponding 

to longer period currents. 
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4.2 Environmental Conditions 

In total, 10 trips were made to Monwabisi with the Mavic Air to collect data for currents. This 

excluded the preliminary flights with the Phantom which did not yield usable images. Each data 

collection trip was labelled sequentially FA to FJ and listed in Table 4-1. During each trip up to three 

flights took place, with the batteries changed in between. 

Table 4-1: Data Collection Trip List 

Date Number 

of Flights 

Time (hh:mm) Comments 

Start End 

FA 2018-05-15 1 10:15 10:29 First Mavic-Air test. 

FB 2018-07-17 1 10:37 10:40 Further initial testing. 

FC 2018-12-11 3 06:51 07:33 

FD 2019-01-07 3 06:54 07:39 Big wave conditions. 

FE 2019-01-11 2 07:32 08:00 

FF 2019-01-17 3 07:55 08:39 

FG 2019-01-28 0 08:00 08:40 High winds prevented flight. 

FH 2019-02-05 3 08:17 10:13 

FI 2019-02-07 3 08:17 09:52 Inspire 2 comparison. 

FJ 2019-04-11 3 11:07 11:52 Calibration testing. 

Wave data was provided by Kistner on behalf of PRDW Port and Consulting Engineers, on the date 

each data collection took place and is provided in Table 4-2. These measurements were located at 

the wave generation line, approximately 1000m offshore from the Monwabisi groyne, in Kistner’s 

Model which was set up to correlate with CSIR’s wave measurements. Of the tests, FE on the 

11th Jan 2019 had very similar conditions to that of Kistner’s case MB610 which was tested from the 

CSIR report. In the rest of the conditions the wave heights were generally lower than those tested 

previously, as seen in Figure 4-23. The spread of water levels during collection was in a similar range 

to that tested previously and the wave periods were close to the 12 seconds tested by Kistner. 

Table 4-2: Sea Conditions During Data Collection 

Hs (m) Tp (s) Dir (°) Predicted Tide (m MSL) 

 Start End 

FA 1.8 16 180 -0.6 -0.6

FB 0.8 10 180 -0.2 -0.2

FC 0.7 11 189 0.7 0.5 

FD 2.2 19 187 0.5 0.2 

FE 1.5 12 192 0.7 0.6 

FF 1.0 12 185 0.0 0.2 

FG 1.1 9 150 0.6 0.7 

FH 0.9 11 178 0.0 -0.3

FI 1.2 10 158 0.2 -0.2

FJ 0.8 12 190 -0.1 -0.3
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Figure 4-23: Data Collection Comparison to Previous Studies 

Most of the data collection trips took place in the morning before the wind picked up. With no access 

to an anemometer, or a local wind station the most reliable wind measurement was for Strand 

provided by SAWS (see Table 4-3). This does provide an indicative magnitude of the wind conditions 

during testing. The wind did not prevent testing taking place apart from test FG on the 28th of Jan. 

On this day the wind was substantially higher than the others, with readings nearly double that of the 

next highest reading at Strand. 

Table 4-3: Wind Conditions During Data Collection 

Strand Cape Town Airport 

Speed (kts) Wind Dir (°) Speed (kts) Wind Dir (°) 

FA 1.9 230 1.2 175 

FB 1.3 235 1.4 159 

FC 1.6 49 1.2 138 

FD 0 0 6.7 206 

FE 4.1 350 7.7 328 

FF 1.4 223 3.3 328 

FG 10.2 118 4.3 206 

FH 3.2 177 5.2 223 

FI 6.05 104 3.3 204 

FJ 5.0 260 6.0 200 

4.3 Current Velocity 

For the processing of the remainder of the tests the focal length ƒ was kept at 4.18 mm and an 

elevation correction factor of 1.6 m was used to account for handheld drone release from the beach.  

4.3.1 Summary of Tests 

The results of each data set are shown below. 
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4.3.1.1 Data Set FA 

During the first data collecting test with the Mavic Air drone, the sea conditions were energetic with 

a Hs of 1.8 m at a period of 16 seconds which was above average for the area. The test was carried 

out during low tide; hence, the drifters often experienced surfing effects before being washed up on 

the beach. The longest path, shown in Figure 4-24 below, was 30 m with some oscillations due to 

waves before being lost in wave sea foam and turning up on the beach. Still, 370 points were collected 

which provided initial currents along the beach towards the spur. 

Figure 4-24: Flight FA Drifter Paths 

The conditions during the test most resembled that modelled by Kistner in MB110 as both occurred 

at similar low tide levels. However, the wave conditions were stronger during the on-site 

measurements. Therefore, as expected through equation (2-2), the overall velocity exceedance profile 

was found to be higher than that found by Kistner (see Figure 4-25). 

AVERAGE DRIFT 

DIRECTION 
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Figure 4-25: FA – MB420 Velocity Exceedance Comparison 

With the stronger wave conditions, it was expected that the maximum UPA30 current velocity of 

31 cm/s⁻¹ measured at point I, as seen in Figure 4-26 below, was larger than that modelled by Kistner 

of 21.2 cm/s⁻¹. The current pattern aligns with the model, but there were not enough measurements 

to get a full characterisation within the bay. 

Figure 4-26: FA – Comparison of UPA30 Results 

The 10s averaged results, in Figure 4-27 below, showed a maximum current of 56 cm/s⁻¹ near where 

the drifters were launched from the beach and then moving towards the head of the spur in an 

anti-clockwise direction around the bay. 

Stellenbosch University https://scholar.sun.ac.za

https://scholar.sun.ac.za/


60 

Figure 4-27: FA – 10 Seconds Averaged Current Velocities 

4.3.1.2 Data Set FB 

The next set of data was collected along with a site inspection of the nearby desalination plant 

construction and an attempt to use Drone Deploy to survey the area with Photogrammetry. A small 

number of 217 drifter coordinates were collected, as shown in Figure 4-28 below, which did not lead 

to substantial current measurements. 
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Figure 4-28: Flight FB Drifter Paths 

The lack of sufficient measurements resulted in an erratic exceedance curve which was below that 

of Kistner, as seen in Figure 4-29. 

Figure 4-29: FB – MB210 Velocity Exceedance Comparison 

The three drifters deployed remained in close proximity of the area they were deployed and bobbed 

in the waves. This resulted in vectors which pointed towards themselves when averaged over the 
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25 m for the UPA30 results with a maximum of 5 cm/s⁻¹. These vectors were in an opposite direction 

to Kistner’s results of 26 cm/s⁻¹ from his MB210 model tests which had similar tide levels although 

the waves were smaller during the on-site tests, as seen in Figure 4-30 below. 

Figure 4-30: FB – Comparison of UPA30 Results 

The 10 seconds averaged results, shown in Figure 4-31, provided a maximum current of 18 cm/s⁻¹ 

with the remainder of the results averaging around 5 cm/s⁻¹ with no clear directional pattern as the 

drifters bobbed in the waves. Substantially more readings are required to characterise the current 

patterns being studied. 

Figure 4-31: FB – 10 Seconds Averaged Current Velocities 

Stellenbosch University https://scholar.sun.ac.za

https://scholar.sun.ac.za/


63 

4.3.1.3 Data Set FC 

During the third set of current measurements the currents where found to be quite low with the 

longest drifter path along the shoreline, 50 m towards the spur over the 12-minute flight. A test was 

therefore carried out at the groyne in the hope of stronger currents, shown to the right of Figure 4-32 

below. 2157 drifter measurements were taken; 1312 over two tests at the beach and 845 during a 

third at the groyne.  

Figure 4-32: Flight FC Drifter Paths 

This test provided a much better idea of the currents in the bay with a maximum UPA30 current of 

6 cm/s⁻¹ measured at point I, as can be seen in Figure 4-34 below, with the maximum over the entire 

test being 15 cm/s⁻¹ at the breakwater. The low currents were possibly due to the low wave height 

and period along with the high tide during the test, which is shown in Figure 4-33 below. The closest 

test by Kistner, namely MB430, resulted in currents of 28.8 cm/s⁻¹ at point I most likely due to the 

higher wave height of 1.1m tested. 

Figure 4-33: FC – MB430 Velocity Exceedance Comparison 

The currents off the groyne start from 8 cm/s⁻¹ at the head increasing to 15 cm/s⁻¹ off the end which 

corresponds to those read off Kistner’s MB430 results, also provided in Figure 4-34, which seems to 

be between 5 and 25 cm/s⁻¹ while also following a similar flow path, as expanded in Figure 4-36. 
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Figure 4-34: FC –  Comparison of UPA30 Results 

The 10 seconds averaged results showed currents of 14 cm/s⁻¹ running longshore in a clockwise 

direction and 19 cm/s⁻¹ at the tip of the groyne to the east, as seen in Figure 4-35 and expanded in 

Figure 4-36 below. 

Figure 4-35: FC – 10 Seconds Averaged Current Velocities 
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Figure 4-36: FC - 10 Seconds Averaged Current Velocities (Zoomed-In) 

4.3.1.4 Data Set FD 

Set FD was taken during the largest Hs at 2.2 m for the study during an average water level of 0.3 m 

which was comparable to Kistner’s calibration test MB420 which had a water level of + 0.4 m and a 

Hs of 1.4m. A total of 3936 drifter positions were recorded during the test. Of these, 288 points were 

omitted, shown as light green in Figure 4-38 below, as it appeared that the drifter was caught in the 

surf zone and hence moved clockwise along the bay near the beach until being washed up on the 

beach. This movement seemed unusual as it was contrary to the predominant current pattern during 

this set of measurements, circled in red in Figure 4-37 below. 

Figure 4-37: Entire FD Drifter Data Results with Excluded Currents Circled in Red 

Figure 4-38 shows the predominately clockwise route of the drifters within the bay with the two 

green paths originating from the top right corresponding to drifters from the first deployment which 

had circulated around the entire bay and then picked up in the third deployment. Most drifters 

progressed towards the head of the spur in a zig-zag pattern as the wave sets entered the bay although 

some did appear to be trapped in a lull behind the spur 
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Figure 4-38: Flight FD Drifter Paths 

Unfortunately, it was difficult to pick up any drifters near the head of the spur as the sea foam 

generated by the waves breaking past the spur obscured the floating drifters (see Figure 4-39). 
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Figure 4-39: Sea Foam Generated by Large Waves at the Spur Head on the 2019-01-07 

During test condition MB420, Kistner estimated the UPA30 velocity to be 30.9 cm.s⁻¹ longshore near 

the beach, at point I, towards the spur, and a rip current of 37.3 cm.s⁻¹ at point J. The drifters showed 

a UPA30 longshore current of 20.1 cm.s⁻¹ at point I with a current of 26.5 cm.s⁻¹ at point J towards the 

beach, as indicated by Figure 4-41 below. The overall velocity exceedance profile for the test 

matched the measured results well, as seen in Figure 4-40. 

Figure 4-40: FD – MB420 Velocity Exceedance Comparison 

The difference in the direction of the rip current at point J could be due to the waves entering the bay 

causing surfing effects with the drifters pushing them more towards the flow direction at point K. 
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Figure 4-41: FD – Comparison of UPA30 Results 

Figure 4-42 is a better representation of the flow pattern within the bay with the anti-clockwise 

circulation forming a rip along the beach and out the spur. 

Figure 4-42: FD – 10 Seconds Averaged Current Velocities 

4.3.1.5 Data Set FE 

It was expected that the results from FE would correspond to the results from Kistner’s calibration 

test MB610, which also corresponded to the CSIR’s calibration test, as the sea conditions were 

similar. However, the drifters did not follow the anti-clockwise circulation pattern found in their 

results as the drifters were launched from the beach to the west and then moved in a clockwise 
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direction around the bay as seen in Figure 4-43 below. During this test the drifters were launched 

during the first flight and then picked up again for the second flight and hence the entire drifter path 

was approximately 130 m over approximately 25 minutes. 

This could be due to the wind and the waves coming from the south and consequently the drifter 

surfed towards the beach on the north. Unfortunately, as it was overcast and the sea was murky, it 

was not possible to observe sediment movement below the drifter to test if the surface was moving 

in a different direction to the column below. It should be noted that the water surface did not show 

signs of high winds such as white caps or excessive wind waves. 

Figure 4-43: Flight FE Drifter Paths 

The final test conditions corresponded to the test condition MB610 where Kistner estimated a UPA30 

velocity of 30.2 cm.s⁻¹ longshore towards the spur near the launch point at the beach, and a current 

of 32.1 cm.s⁻¹, still anti-clockwise at the north of the bay (points I & K respectively in Figure 4-45 

below). The overall velocity exceedance profile was similar to that of Kistner’s model as seen in 

Figure 4-44. 
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Figure 4-44: FE – MB610 Velocity Exceedance Comparison 

The drifter paths however, showed a UPA30 rip current of 47 cm.s⁻¹ off the beach and then a clockwise 

longshore current of approximately UPA30 11 cm.s⁻¹, as shown in Figure 4-45.  

Figure 4-45: FE - Comparison of UPA30 Results 

The 10 seconds averaged current velocities indicated an average of 18 cm.s⁻¹ with a maximum of 

58 cm.s⁻¹, as seen in Figure 4-46. 
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Figure 4-46: FE – 10 Seconds Averaged Current Velocities 

4.3.1.6 Data Set FF 

During collection for data set FF, 1455 drifter positions were collected over three flights. Drifters 

were launched from the beach for the first two then as these drifters moved towards the head of the 

spur, the third flight found one of these drifters to get measurements further in the bay (see 

Figure 4-47). The longest drifter path during the test was approximately 60 m from its launch position 

after 7 minutes. 
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Figure 4-47: Flight FF Drifter Paths 

The wave and tides during the test again most closely resembled those of Kistner’s MB210 test and 

the UPA30 currents measured at points H and K were 26 cm.s⁻¹ and 25 cm.s⁻¹ respectively which were 

higher than the model results at 15.2 cm.s⁻¹ and 21.9 cm.s⁻¹. This could be due to the slightly higher 

tides during testing which leads to an overall increase in the current exceedance profile, as seen in 

Figure 4-48. 
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Figure 4-48: FF – MB210 Velocity Exceedance Comparison 

However, it seems that there may be more of a sheltered zone behind the spur diverting the current I 

from Kistner’s model slightly offshore which was reported as 26 cm.s⁻¹ as the drifter path was 

measured right through the centre of the model’s circulation cell within the bay, as seen in 

Figure 4-49 below. Another possible reason for the difference in current patterns behind the spur 

could be the recent construction of a HDPE seawater brine intake pipeline and brine outfall in the 

sheltered zone approximately 20 m behind the spur. 

Figure 4-49: FF - Comparison of UPA30 Results 

The 10 seconds average results, shown in Figure 4-50, gave a maximum current velocity of 58 cm.s⁻¹ 

with the average being 19 cm.s⁻¹ in the middle of the bay decreasing to 14 cm.s⁻¹ off the end of the 

spur. 
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Figure 4-50: FF – 10 Seconds Averaged Current Velocities 

4.3.1.7 Data Set FG 

No current results were measured during tests on this day as the wind speed was too high for the 

drone to fly. 

4.3.1.8 Data Set FH 

Test FH indicated considerable drifter movement with the drifters moving an average of 60 m during 

each 10-minute-long flight from the beach longshore towards the head of the spur (see Figure 4-51). 

Due to the high degree of movement, the drifters dispersed, and it was difficult to follow all of them 

with the drone simultaneously. At times one or two of the drifters would move out of the frame and 

therefore were not tracked. 
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Figure 4-51: Flight FH Drifter Paths 

The sea conditions corresponded to the Kistner’s test condition MB210 where the estimated UPA30 

velocity was 21.9 cm.s⁻¹ longshore near the beach towards the spur, and a rip current of 38.2 cm.s⁻¹. 

The velocity exceedance profile, shown in Figure 4-52, correlates between Kistner’s model results 

for MB210 and the drone measurements. 

Figure 4-52: FH – MB210 Velocity Exceedance Comparison 

The drifters showed a UPA30 longshore current of 13 cm.s⁻¹; however, there was not enough resolution 

to resolve the second rip current near the deployment location, as shown in Figure 4-53. It also seems 

that at this resolution, the 25 by 25 m grid size for resolving UPA30 current velocity included a large 

number of wave oscillations which reduced the average current magnitude. 
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Figure 4-53: FH – Comparison of UPA30 Results 

The 10 seconds averaged plot (see Figure 4-54) shows a better representation of the current path 

along the beach towards the spur with a maximum velocity of 66 cm.s⁻¹ and an average current 

velocity over the domain of 12 cm.s⁻¹. This test shows the expected anti-clockwise circulation pattern 

in the bay within the sheltered area behind the spur. 

Figure 4-54: FH – 10 Seconds Averaged Current Velocities 
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4.3.1.9 Trip FI 

During collection of this data set, the DJI Inspire 2 drone was used in order to collect some 

comparison measurements which have been elaborated on in section 4.3.2 below. The currents below 

were calculated only using the 4353 drifter points collected by the Mavic Air over three flights with 

the longest drifter path (ending closest to the spur in Figure 4-55 below) being 150 m over 

11 minutes, although there was a period where the drifter was out of the frame and was picked up 

again later in the flight. The longest continuous track was just shy of this at 130 m over 8 minutes.  

Figure 4-55: Flight FI Drifter Paths 

The conditions again matched Kistner’s MB210 model and the current pattern also showed the 

anticlockwise path around the bay (see Figure 4-57). There was a return current noticed in the 

opposite direction to that of point J in the model results which could be due to waves coming into 

the bay pushing the drifters as they go past the spur. This test allowed for a comparison to all points 

extracted from the model shown in Table 4-4 below. 
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Table 4-4: Test FI vs MB210 UPA30 Velocity Results 

Model Velocity Results 

[cm.s⁻¹] 

Measured Velocity Results 

[cm.s⁻¹] 

U(H) 27 15.2 

U(I) 21 26 

U(J) -28 38.2 

U(K) 26 21.9 

The velocity exceedance profile for the measurements are approximately 50% higher than that 

reported by Kistner. This is possibly due to a slightly higher wave height and tide allowing for more 

wave energy to penetrate into the bay and set up a strong anti-clockwise circulation cell behind the 

spur. Surfing effects of the drifters returning back at point J may also lead to higher average current 

measurements. 

Figure 4-56: FI – MB210 Velocity Exceedance Comparison 

Most results align closely with the model apart from point J which may be the model resolving an 

undertow; while the drifters were carried in by surface current driven by waves coming into the bay. 

Figure 4-57: FI - Comparison of UPA30 Results 
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The 10 second averaged results shown in Figure 4-58 below has a good spread over the bay giving a 

good resolution of the current patterns. The maximum velocity was found to the east of the results 

with a current velocity of 67 cm.s⁻¹ towards the beach, most likely due to surfing effects. Behind the 

spur the maximum current velocity was 47 cm.s⁻¹ towards the head of the spur with an overall 

average velocity of 18 cm.s⁻¹. 

Figure 4-58: FI – 10 Second Averaged Current Velocities 

4.3.1.10 Trip FJ 

The last data collection set FJ focussed more on the calibration tests of the tape on the shore and the 

GCP’s just behind the surf zone. Still the longest path, shown as blue in Figure 4-59, was 

approximately 50 m with some additional oscillations in the surf zone. During the third flight the 

drone was also sent further out to record some of the original drifters which had floated out into the 

centre of the bay. In total 2649 points were recorded. 

Stellenbosch University https://scholar.sun.ac.za

https://scholar.sun.ac.za/


80 

Figure 4-59: Flight FJ Drifter Paths 

The sea conditions again corresponded to the Kistner’s test condition MB210 where the longshore 

drift UPA30 at point I closer to the spur equalled to 26 cm.s⁻¹ and a rip current velocity of 15.2 cm.s⁻¹ 

was recorded at point H. This is highlighted by the velocity exceedance profile which is similar to 

that reported by Kistner, see Figure 4-60. 

Figure 4-60: FJ – MB210 Velocity Exceedance Comparison 

The drifters showed a UPA30 longshore current of 29 cm.s⁻¹ near the beach, dropping to 5 cm.s⁻¹ 

behind the spur, as shown in Figure 4-61. The drifter’s path again appeared to go through the area of 

low currents seen in the model results indicating a slightly different pattern in the bay. In this case 

the drifter’s path was into the wind indicating that it was  not due to wind. 
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Figure 4-61: FJ – Comparison of UPA30 Results 

The 10 second averaged plot, as represented in Figure 4-62 below, again shows a more detailed 

representation of the current path along the beach towards the spur with a maximum velocity of 42 

cm.s⁻¹ and an average over the domain of 12 cm.s⁻¹. This test shows again shows the rip current

flowing away from the beach behind the spur which at the time of this test was within the safe bathing 

area flags. 

Figure 4-62: FJ – 10 Second Averaged Current Velocities 
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4.3.2 Inspire Comparison 

Comparing the Inspire 2 directly with the Mavic Air proved difficult from the one test carried out as 

controlled conditions were not achieved, as seen in Figure 4-63 below. In the absence of a calibration 

test for the Inspire 2, a length was selected between two of the outfall pipelines concrete collars and 

a comparison was made between the Inspire 2 and the Mavic Air for calibration. 

The Inspire 2 focal length factor ƒ was kept at the reported 8.8 mm and the elevation correction factor 

of 5.5 m was selected in order to correctly scale the lengths measured from the Inspire 2, seen as 

yellow in Figure 4-63 below, and compared to those measured by the already calibrated Mavic Air. 

It was expected that the elevation correction factor would be higher than the Mavic Air as the drone 

was launched from higher up at the beach car park. 

Figure 4-63: Comparison Pipe-Collar Length for Calibration – Mavic Air (red) vs Inspire 2 (yellow) 

It was noted that the current velocity measurements by the Inspire 2 were on average higher than 

those measured by the Mavic Air over the same period, as indicated in Figure 4-64. Specifically, 

over the test period the average current velocity from the Inspire 2 was 63 cm.s⁻¹ with a standard 

deviation of 47 cm.s⁻¹ while the Mavic Air measured an average 37 cm.s⁻¹ with a standard deviation 

of 23 cm.s⁻¹, a reduction of approximately 40%. 

Figure 4-64: Extract Measured Current Velocity Comparison Between Inspire 2 and Mavic Air 
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It was suspected that the increased current velocity measurements by the Inspire 2 were pilot related 

as the Inspire 2 had an average horizontal speed of more than three times that of the Mavic Air 

(63 cm.s⁻¹ compared to 17 cm.s⁻¹) over the same period. By the time of this test the Mavic Air 

operator was already familiar with the technique of following the drifters and therefore was able to 

spend less time moving the drone to keep the drifters in frame. The Inspire 2 operator struggled and 

was noted to track around more in an attempt to follow the drifters. This led to a higher average drone 

horizontal speed. It should be noted that the average horizontal position of the Mavic Air during the 

first test FA was 200 cm.s⁻¹ when tracking the drifters. This horizontal velocity quickly dropped to 

between 10 and 20 cm.s⁻¹ for subsequent tests once the operator was more aware of how to track the 

drifters and what to look for. A larger, brighter display, instead of the cellular phones used, may also 

assist in picking out the drifters. 

Figure 4-65 below, shows the differences between the measurements from the Inspire 2 (positive 

values) and the Mavic Air (negative values) and highlights that most of the measurements were in 

the upper right corner where the Inspire 2 has both the larger velocity and the larger current 

measurement. This error could be introduced as the DJI platform tried to recalibrate its anticipated 

location based on both the GPS, which has its own built in error, as well as the downward facing 

sensors which are included to improve the hovering accuracy but may confuse the system over water. 

Figure 4-65: Drifter vs Drone Velocity Comparison 

As the horizontal displacement of the drone moved past a threshold the drone relied on the GPS data. 

Any GPS error accumulated during the period when the drone relied on the downward visual sensors 

was then introduced, causing higher displacement errors in the coordinate measurements. This is 

shown in Figure 4-63 above where the yellow lines were more spread out as the Inspire 2 moved 

around more than the Mavic Air which remained more stationary. Tests of similar DJI systems over 

water, such as the one carried out by Ricker (2017), show that there were some interaction between 
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the sensors over water and further testing would need to be carried out to quantify this. It should be 

noted, that the latest DJI Phantom RTK should reduce this error by vastly improving the GPS 

accuracy. 

A test where both drones remain stationary would be better suited to more accurately evaluate and 

compare the two drones than one where the drifters were followed, especially with a pilot who is not 

familiar with tracking drifters. 

4.3.3 Horizontal Current Velocity Distribution 

On clear days it was possible to see the sediments suspended below the drifters as they were tracked. 

This gave a good indication of the currents below the drifter which typically moved along with the 

drifters at a similar velocity, as seen in Figure 4-66 below, and reinforced the assumption set out in 

Section 2.2.2 that the surface currents were a good approximation for the entire water column. 

Figure 4-66: Drifter Tracking Along with Suspended Sediments 

4.3.4 Notable Surface Features 

During testing, objects were often noticed floating along with the drifters. Further investigations 

could do away with the artificial drifters and, with the aid of computer vision, using object such as 

surface debris (e.g. sea foam, driftwood and plastic) as can be seen in Figure 4-67 below. Suspended 

sediment could also be used to measure the currents below the drone like the method of using dye 

tracers. 

Figure 4-67: Examples of Debris Noted During Tests 

Colour manipulation can further assist in identifying drifters. The image on the left of Figure 4-68 is 

the centre image with a filter that cuts out the spectra of light which do not correlate to the oranges 

used as drifters. On the right a similar filter was used which has desaturated all colours apart from 
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the orange collar of the drifters. Similar techniques could be used to simplify processing the images 

and possibly even pick out drifters through surface foam and debris, especially if infra-red camera 

technology is utilised. 

Figure 4-68: Computer Aided Colour Manipulation 

4.4 Monwabisi Study Current Result Comparison Conclusions 

On average there was a 50% reduction in the currents measured compared to those at the extracted 

points from Kistner’s Model output, which is not unreasonable as the model was not originally 

calibrated. There were some results in opposing directions, shown as red results in Table 4-5, and 

these corresponded to reductions of up to -255% but may be due to surfing effects which skew the 

measured results.  

Table 4-5: Comparison Results Summary 

Measured Velocity Results [cm.s⁻¹] Kistner Model Velocity Results [cm.s⁻¹] 

U(H) U(I) U(J) U(K) U(H) U(I) U(J) U(K) 

FA 31 MB110 21.2 

FB -5 MB210 26 
FC 6 MB430 28.8 
FD 20 27 MB420 30.9 37.3 

FE -47 -11 MB610 30.4 32.1 
FF 26 25 MB210 15.2 21.9 
FH 13 MB210 29.1 
FI 27 21 -28 26 MB210 15.2 26 38.2 21.9 
FJ 5 29 MB210 15.2 26 

The remaining results which align with Kistner’s modelled directions are in line with the expected 

current velocities considering that the drifter may not have taken the path of peak velocity as 

extracted from the model. This is illustrated by Figure 4-69 which shows the velocity exceedance 

comparison to MB210 where tests FB, FH and FJ show a very similar exceedance profile to the 

model results and the remaining two tests which are 50% higher possibly due to stronger circulation 

pattern than that generated by the model due to a higher waves or lower tide experienced during the 

test. 
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Figure 4-69: Combined MB210 Comparison Velocity Exceedance Results 

It was noted that the current pattern did not always correlate well with Kistner’s model results. Many 

drifter measurements illustrated a rip path running from the corner of the bay straight out towards 

the head of the spur, which was different to the models shore perpendicular pattern as well as a return 

current in an opposite direction to the offshore rip J, as seen in Figure 4-70. The drifter measurements 

at this point were more in line with the original current pattern proposed by Theron & Schoonees 

(2017), (refer to Figure 2-13 on page 14 above). This may be due to a difference between surface 

currents and overall currents, possibly due to wind or wave surfing effects and may be a possible 

aspect for further study. 

Figure 4-70: Test FI Velocity Vectors Superimposed over Current Designation Areas per Kistner 

(2016) 
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4.4.1 Monwabisi Bathy 

One possible cause for this differing current patterns within the bay may be sea-bed profile which 

was tested by Kistner differing from the current bathymetry. An obvious difference is the desalination 

intake 630 OD HDPE seawater intake pipeline, 355 OD HDPE brine outfall pipeline and concrete 

weight collars which was installed in 2018, see Figure 4-71.  

l

Figure 4-71: Monwabisi Desalination Pipelines 

This structure may be causing a build-up of sediment between the pipelines and spur, making the 

area shallower. This would drive currents out into the bay along the pipeline, as seen in Figure 4-72, 

rather than along the breakwater as found in Kistner’s results. Hence, a lower current would be found 

at point H which Kistner extracted from the model, and a higher current would be found further in 

the bay, as seen in Figure 4-70 above. 

Figure 4-72: Pipeline Bathymetry Changes to Kistner Model Tests 

SHALLOW AREA BEHND PIPE 

ESTIMTE SHORELINE PROFILE

 CURRENT PATH

PIPELINE

Stellenbosch University https://scholar.sun.ac.za

https://scholar.sun.ac.za/


88 

4.5 Other Interesting Observations 

Over and above measuring currents, there are numerous applications for drones in the coastal 

engineering field. During this study the following additional observations were made which could 

prove to be drone applications in the future. 

4.5.1 Underwater Features 

If the water was clear enough at the time of collection, underwater features such as rocky outcrops, 

seen in Figure 4-73 below, could serve as GCP’s when the drone was over water. Image recognition 

algorithms would easily be able to pick up these features between frames and track them in order to 

provide an error estimate. The image recognition software should be able to find and track the drifter 

on the water which would be a better than the manual AutoCAD solution utilised in this thesis. 

Figure 4-73: Rocky Reef within Monwabisi Bay Seen from Above 

Another feature visible on clear days was the movement of sediment which showed both the path of 

the current, explored in section 4.3.2 above, as well as the actual sediment picked up clearly seen in 

Figure 4-74. Again, a computer vision algorithm would likely be able to be trained to estimate the 

sediment movement from these aerial photographs. 

Figure 4-74: Sediment Movement Visible from Above 
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4.5.2 Outfall Monitoring 

A marine brine outfall was installed during the study. On one occasion it was possible to observe the 

red tinge of the brine outfall due to the presence of ferric hydroxide, as seen in Figure 4-75, which is 

a by-product of desalination pre-treatment (Watereuse Association, 2011). This would provide a 

good method for confirming the actual effluent dilutions of the outfall using the gradient between 

the red brine and the blue sea surface as proposed by Le Roux (2018). For effluent discharges with a 

heat differential to the surrounding ambient sea temperature, a thermal camera fitted to the drone 

would be able to “see” the heat dispersion of the outfall and could possibly map dilutions based on 

temperature variation. 

Figure 4-75: Brine Outfall from Above 

4.5.3 Marine Life Monitoring 

During testing there were points at which marine life crossed through the field of study and could 

clearly be seen, such as the school of fish (left) as well as a seal (right) in Figure 4-76. This shows 

the possible use of drones for monitoring marine life, their interactions with both beachgoers, such 

as shark spotters, or possibly to monitor any impact of coastal construction works. 

Figure 4-76: Marine Life Seen During Testing 
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4.5.4 Algal Bloom 

During one flight looking out towards False Bay it was noted that there was a discoloured patch in 

front of Strandfontein Tidal Pool which was suspected to be a cloud of diatoms (see Figure 4-77) 

which is often seen in the bay (Kruger & Wilson, 2010). Similar images can be used to monitor 

seawater intakes which are susceptible to blocking, such as for desalination, and assist reduced pump 

flow when turbidity is high. 

Figure 4-77: Drone View of Suspected False Bay Diatom Cloud 

4.5.5 Additional Observation Conclusions 

Drones are ideal tools to solve niche problems which are often encountered specific to the coastal 

and marine environment. By observing what is below or swimming at the surface the range of 

possible coastal and marine applications for such a versatile tool is varied. 
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Chapter 5: Conclusions 

Drones are a powerful tool for utilisation within the built environment and may prove beneficial in 

advancing existing engineering techniques such as those used for measuring currents as tested in this 

thesis. The results prove that currents could in fact be measured by a method similar to that of GPS 

drifters while reducing the risks associated with launching and retrieving of the drifters. 

There was an error generated by the consumer DJI Mavic Air drone, but the magnitude of the error 

was less than the measured currents and was greatly reduced with an averaging filter. The error was 

also further reduced when the drone was operated such that movements were smooth and only when 

required, as it was found that in all tests the error greatly increased whenever the drone moved 

quickly.  

This provides a fast-simple method for gathering initial current velocity measurements on site by a 

single individual and can be coupled with other investigations using the drone such as site mapping. 

The measurement accuracy could also be improved with newer technology such as the DJI Phantom 

RTK which greatly improves the accuracy of the drone’s location recording and hence would provide 

more accurate drifter locations at each time-step. 

The method of tracking drifters from above using quadcopter drone photography was found to be 

dependent on conditions such as wind velocity, surface sea foam as well as sun position. As stated 

above, more advanced drones can handle a higher wind speed while including a polarised filter which 

would help to reduce glare from the sun. Specially coloured drifters with enhanced drone sensors 

should be able to pick up the drifters through the glare and possibly even through sea foam. Another 

aspect on site which influenced the methodology was the local bird life, where the local kelp seagulls 

were noted to fly at the drone and at locations near a large colony of sea birds this may impact the 

ability to carry out the investigation. In this case, simply hovering safely over the beach for 

30 seconds to a minute, allowed some time for the seagulls to acclimatise to the drone until they lost 

interest such that the drone could be flown over the water to commence data collection. 

The average instantaneous error, characterised as a velocity found in the drone’s ability to track 

stationary points on the ground ranged between 4 cm.s⁻¹ and 6 cm.s⁻¹ which reduced to around 

2 cm.s⁻¹ when averaging out the points over 10s for all tests. During the same tests the average drifter 

velocity measured was around 30 cm.s⁻¹ instantaneously (which included orbital velocities from 

waves) and then reduced to between 18 cm.s⁻¹ and 10 cm.s⁻¹ for the averaged results corresponding 

to longer period currents.  

Currents were able to be measured and tracked within Monwabisi bay and the magnitudes of these 

currents as well as the current patterns observed were found to correlate with the results of Kistner’s 

thesis results in certain cases. The other cases which disagreed were where a drifter was found to 

move in a direction contrary to that modelled by Kistner and CSIR. This could be attributed to wind 
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and wave surfing effects of the drifter as well as changes in the bathymetry from the modelled profile 

over time as well as a new pipeline installed in the bay. Further investigation is required to evaluate 

the surfing susceptibility of oranges as drifters over traditional drifters with baffles. 
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Chapter 6: Recommendations 

The following recommendations were made as part of this study for consideration in future studies: 

• The methodology for digitising the aerial photographs to attain the drifter coordinates was

manual and tedious. Further study towards the development of an automated tracking method

using computer vision is necessary, or possibly excluding drifters by tracking suspended

sediments and floating debris.

• There were a number of instances where the drifter experienced surfing effects. In future

studies, tests should be carried out to compare simple round drifters to more complex drifters

fitted with baffles or a drogue which will prevent the drifter surfing down a wave.

• The images were not corrected for lens distortion as no lens correction profile was available

and the effect was assumed negligible for current velocity measurements. Future studies

should include a step for calibration of the lens and correction of images before processing

in AutoCAD.

• Fitting the camera with a polarising filter to reduce glare of the water surface will assist in

identifying the drifters in harsh sunlight.

• The camera used should have a minimum of a 12 mega pixel with calibrated profile to reduce

distortion. If there are no budget constraints, then a thermal camera may further assist in

identifying the drifter in the water.

• As no concurrent measurements were available for calibration and verification, a further

study could carry out similar tests with other concurrent Eulerian or Lagrangian

measurements in obtaining a verification measurement of the exact conditions being tested.

In addition to this, local wind measurements should be gathered using a hand-held

anemometer.

• In addition measurements a more recent survey of the bathymetry should be acquired to

ensure that the model results are representative of the actual currents measured.

• The drone measurements were highly susceptible to variations in elevation and an elevation

calibration factor was required to account for the difference between the take-off height and

the water level which was not accounted for in the drone’s absolute height measurement.

Therefore, the use of a stereoscopic camera to capture the downward images could reduce

the vertical uncertainties of the drone altitude above the water as the images could be used

to calculate the exact distance from the drone.
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Appendix: A Drifter Profile A3 Drawings 

A.1 Drawing: Flight FA 2018-05-15 

A.2 Drawing: Flight FB 2018-07-17 

A.3 Drawing: Flight FC 2018-12-11 

A.4 Drawing: Flight FD 2019-01-07 

A.5 Drawing: Flight FE 2019-01-11 

A.6 Drawing: Flight FF 2019-01-17 

A.7 Drawing: Flight FH 2019-02-05 

A.8 Drawing: Flight FI 2019-02-07 

A.9 Drawing: Flight FJ 2019-04-11 
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A.1 Drawing: Flight FA  2018-05-15 
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A.2 Drawing: Flight FB  2018-07-17 
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A.3 Drawing: Flight FC  2018-12-11 
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A.4 Drawing: Flight FD  2019-01-07 
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A.5 Drawing: Flight FE  2019-01-11 
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A.6 Drawing: Flight FF  2019-01-17 
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A.7 Drawing: Flight FH 2019-02-05 
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A.8 Drawing: Flight FI  2019-02-07 
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A.9 Drawing: Flight FJ 2019-04-11 
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Appendix: B Car Park Calibration Drawing
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Car Park Calibration Drawing 
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Appendix: C Coordinate Transformation 
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Coordinate Transformation 

Aslam Parker provided the following equations in order to convert Geographical coordinates (Lat, 

Long) into Gauss Conform coordinates for the Southern Hemisphere (2011). 

Given the following equations: 

For the World Geodetic System 1984 ellipsoid the defining parameters are as follows: 

• Semi-major axis (a) : 6378137.0 m

• Semi-major axis (b) : 6356752.314 m

• Ellipsoid flattening (f) : 1/298.257223563

Therefore, the equations set out above become: 

𝑒2 =
𝑎2 − 𝑏2

𝑎2
=  

6378137.02 − 6356752.3142

6356752.3142
=  9.01675𝐸 + 17 
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𝑒′2 =
𝑎2 − 𝑏2

𝑏2
=  

6378137.02 − 6356752.3142

6356752.3142
=  0.006739497 

Substituting e² and e’² 

𝜂′2 =  𝑒′2. cos ²𝜙  =  √0.0820944379500432 ∗ cos Φ2

𝜏 = tan Φ 

A = 1.005052502 

B = 0.005063109 

C = 1.06276E-05 

D = 2.08204E-08 

E = 3.93237E-11 

F = 7.10845E-14 

𝐵Φ = 6378137. (1 − 0.08181919084296542). (1.00505250178825Φ −

0.00506310859728167

2
. sin 2Φ +

0.0000106275901588916

4
. sin 4Φ −

2.08203782649766𝐸−08

6
. sin Φ +

3.93237129393568𝐸−11

8
. sin 8Φ −

7.1084532292291𝐸−14

10
. sin 10Φ) 

λ₀ = 19° in radians 

ℓ = λ0 − λ = 0.331612557878923 −  𝜆

𝑁 =
𝑎

√1 − 𝑒2. sin ²Φ
=

6378137

√1 − 0.08181919084296542. sin2 Φ

Substituting these results into the final equations provided the X & Y coordinates as follows. 

𝑥 = 𝐵Φ +
ℓ2

2
. 𝑁. sin Φ . cos Φ +

ℓ4

24
. 𝑁. sin Φ . cos Φ3 . (5 + 9Ƞ2 + 4Ƞ4 − 𝜏2)

+
ℓ6

720
. 𝑁. sin Φ . cos Φ5 . (61 − 58𝜏2 + 𝜏4 + 270Ƞ2 − 330Ƞ2. 𝜏2)

𝑦 =  ℓ. 𝑁. 𝑐𝑜𝑠 𝛷 +
ℓ3

6
. 𝑁. 𝑐𝑜𝑠 𝛷3 . (1 + Ƞ2 − 𝜏2)

+
ℓ5

120
. 𝑁. 𝑐𝑜𝑠 𝛷5 . (5 − 18𝜏2 + 𝜏4 + 14Ƞ2 − 58Ƞ2. 𝜏2)

These equations can then be programmed into Excel to transform each coordinate: 
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Appendix: D Processing Code 
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D.1 AutoCAD processing code 
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Example 2018-05-15_MavicAirTest_CalculationsF4.18+1.6m.csv input file: 
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findImage() UserForm example. 
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D.2 Matlab figure code 

Output Figure Code 

1  % Read in all data 
2  close all;clc;clear all; 
3  mxContour = readmatrix('2018-05-15_MavicAirTest_FiguresMatlabUV.xlsm','Sheet','Spatial10sMAtlabData','Range','A1:AP42') 
4  velocity = readtable('2018-05-15_MavicAirTest_FiguresMatlabUV.xlsm', 'Sheet', '10sMatlabVectorData', 'Range', 'F1:I1643') 

%Range set to 5m by 5m bins 
5 
6  % Results Figure with filled contour 
7  figure('Renderer', 'painters', 'Position', [1 1 2900 2200])% [1 1 1450 1100]) 
8  hold on 
9  d = imread('C:\Users\Ryan\Documents\Thesis_Working\Mapping\FigureLowTide-Background.jpg'); 
10 image(flipud(d), 'XData', [-28750 -28400], 'YData', [-3771950 -3771730]); 
11 [C,h] = contourf(mxContour(1,2:end),mxContour(2:end,1),mxContour(2:end,2:end),[1 5 10 15 20 25 30 35 40 45 50]); 
12 set(h,'LineColor','none') 
13 hcb = colorbar 
14 set(get(hcb,'Title') ,'String','Current Velocity [cm/s]'); 
15 quiver(velocity.X,velocity.Y,velocity.Ux,velocity.Uy,'color',[1 0 0],'AutoScaleFactor',1.5); 
16 text(-28483,-3771940,'Arrow Scale: 50 cm/s','HorizontalAlignment','center', 'verticalalignment','bottom', 'FontSize',8) 
17 % Turn off Axes 
18 set(gca, 'XTickLabel', {}); 
19 set(gca, 'YTickLabel', {}); 
20 
21 saveas(gcf,'2019-01-07_BigWavesResultsFigure.jpg'); 
22 hold off 

UPA30 Figure Code 

25 % Read in all data 
26 close all;clc;clear all; 
27 mxContour = readmatrix('2018-05-15_MavicAirTest_FiguresMatlabUV.xlsm','Sheet','Spatial30mVAvg','Range','A1:L10') 
28 velocity = readtable('2018-05-15_MavicAirTest_FiguresMatlabUV.xlsm','Sheet','30mMatlabVectorData', 'Range','A1:D75') 

%Range set to 25m by 25m bins 
29 
30 % Comparison Figure to S Kistners results with contour 
31 figure('Renderer', 'painters', 'Position', [1 1 2400 1700]) 
32 hold on 
33 d =imread('C:\Users\Ryan\Documents\Thesis_Working\Mapping\kistner_monwabisi_2016-MB110.jpg'); 
34 image(flipud(d), 'XData', [-28776 -28376], 'YData', [-3771990 -3771728]); 
35 [C,h] = contour(mxContour(1,2:end),mxContour(2:end,1),mxContour(2:end,2:end),[1 5 10 15 20 25 30 35 40 45 50]); 
36 colormap(spring) 
37 hcb = colorbar 
38 set(get(hcb,'Title') ,'String','Current Velocity [cm/s]'); 
39 quiver(velocity.X,velocity.Y,velocity.Ux,velocity.Uy,'color',[1 0 0],'AutoScaleFactor',1.0); 
40 text(-28540,-3771975,'Arrow Scale: 10cm/s','HorizontalAlignment','center','verticalalignment', 'bottom','FontSize',8) 
41 % Turn off Axes 
42 set(gca, 'XTickLabel', {}); 
43 set(gca, 'YTickLabel', {}); 
44 
45 saveas(gcf,'2018-05-15_MavicAirTest_MB110Figure.jpg'); 
46 hold off 
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