
Received:
25 April 2018

Revised:
25 June 2018

Accepted:
10 July 2018

Cite as: Lesley Gibson,
Zahn M€unch,
Anthony Palmer,
Sukhmani Mantel. Future land
cover change scenarios in
South African grasslands e
implications of altered
biophysical drivers on land
management.
Heliyon 4 (2018) e00693.
doi: 10.1016/j.heliyon.2018.
e00693

https://doi.org/10.1016/j.heliyon.2018

2405-8440/� 2018 The Authors. Pub

(http://creativecommons.org/licenses/b
Future land cover change
scenarios in South African
grasslands e implications of
altered biophysical drivers on
land management

Lesley Gibson a,∗, Zahn M€unch b, Anthony Palmer c, Sukhmani Mantel d

a School of Engineering, John Muir Building, The King’s Buildings, Edinburgh, EH9 3JL, Scotland, United Kingdom

bDepartment of Geography and Environmental Studies, Stellenbosch University, Stellenbosch, 7600, South Africa

cCentre for African Conservation Ecology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6019, South

Africa

d Institute for Water Research, Rhodes University, Grahamstown, 6140, South Africa

∗Corresponding author.

E-mail address: Lesley.Gibson@ed.ac.uk (L. Gibson).
Abstract

Future land cover changes may result in adjustments to biophysical drivers impacting

on net ecosystem carbon exchange (NEE), catchment water use through

evapotranspiration (ET), and the surface energy balance through a change in

albedo. The Land Change Modeller (Idrisi Terrset 18.08) and land cover for 2000

and 2014 are used to create a future scenario of land cover for two catchment with

different land management systems in the Eastern Cape Province for the year

2030. In the S50E catchment, a dualistic farming system, the trend shows that

grasslands represented 57% of the total catchment area in 2014 decreasing to 52%

by 2030 with losses likely to favour a gain in woody plants and cultivated land. In

T35B, a commercial system, persistence of grasslands is modelled with

approximately 80% coverage in both years, representing a more stable system.

Finally, for S50E, NEE and ET will increase under this land cover change scenario

leading to increased carbon sequestration but less water availability and

corresponding surface temperature increases. This implies that rehabilitation and
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land management initiatives should be targeted in catchments under a dualistic

farming system, rather than those which are predominantly commercial systems.

Keywords: Environmental science, Geography

1. Introduction

Land use and land cover change (LULCC) has been suggested to be the most impor-

tant anthropogenic disturbance to the environment at a local level, causing various

microclimatic changes (Mishra and Rai, 2016). Anthropogenic influences on the

landscape such as alteration in land use through agriculture, forestry, urbanisation

and the introduction of invasive alien plant (IAP) species have a profound effect

on the functioning of the landscape and ecosystems. Further, the present land cover

may affect the movement of species as well as determining the availability of land for

future use (Singh et al., 2014). The modifications generally lead to a degraded envi-

ronment and thus the importance of maintaining the integrity of ecosystems is funda-

mental to preserve biodiversity (Singh et al., 2014). LULCC has been related to

biodiversity loss and thus recent research has arisen to meet land management needs

and to assess the role of LULCC in the functioning of the biosphere, through the

development of a range of LULCC models (P�erez-Vega et al., 2012). LULCC

modelling entails the simulation or prediction of the behaviour of the environmental

and social systems in the study area over a time period in such a way that it relates to

the measured land change (Paegelow et al., 2013).

In a water scarce country such as South Africa, climate change adaptation is partic-

ularly important for catchment management. A change in catchment land cover will

have a direct effect on the hydrological functioning of a catchment and thus predict-

ing land cover change may help to develop resilience to projected climate changes

through, for example, evidence-based water licensing (Palmer et al., 2017). The prin-

ciple drivers of change within the rural areas of southern Africa are linked to five

primary drivers, namely commercial afforestation, woody encroachment (both alien

and native woody plant invasion), urbanization, increased dryland cultivation and

rangeland degradation, and it is now well understood that invasion by alien woody

plants is a major driver of grassland transformation and influences the ecosystem ser-

vices (forage production, water supply, habitat, biodiversity, carbon sequestration

and recreation) provided by these rangelands (M€unch et al., 2017).

The storage of carbon in the landscape is driven by biophysical parameters associ-

ated with each land cover type and thus changes in land cover proportions across

a catchment will impact on the net ecosystem carbon exchange (NEE) of the catch-

ment as a whole. Similarly, the ecophysiology of the individual land covers affects

the water use of the vegetation within that land cover and changes in land cover
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proportions within a catchment impact on the hydrology of the catchment as a whole.

Palmer et al. (2017) determined, through field measurements and satellite imagery,

statistics around two biophysical parameters e leaf area index (LAI), and fraction of

photosynthetically active vegetation (fPAR) e which are used in NEE and evapo-

transpiration (ET) modelling. This knowledge, combined with predictions of how

the land cover will change in the future, precipitates the estimation of future carbon

storage and water use within the catchment.

Research has shown that land use changes will result in changes to the drivers of earth

surface conditions that force General Circulation Models (Cao et al., 2015; Pelletier

et al., 2015). Andrews et al. (2017) stated “A radiative forcing arises in response to

changes in land cover (e.g. forest to pasture and crops) predominantly because different

surface types have different albedos. Forests are generally darker than grasses or crop-

lands and so deforestation tends to increase the Earth’s albedo and reflect more solar

radiation to space d a negative radiative forcing which causes cooling (e.g. Myhre

et al., 2013). However the forcing from changes in land-use is further complicated

by its impact on hydrology and non-radiative fluxes (e.g. Brovkin et al., 2006; Betts

et al., 2007; Davin et al., 2007; Davin and de Noblet-Ducoudr�e, 2010; de Noblet-

Ducoudr�e et al., 2012) as well the coincidence of land-cover change and snow cover

at higher latitudes (e.g. Betts, 2000; Pitman et al., 2011).” These changes include var-

iations that are linked to surface albedo; that is the earth’s ability to absorb or reflect heat

energy. For the southern African region, carbon offsets from sequestration may be dis-

counted from the consequences of temperature increases linked to higher albedo. In

global change science it is vital to consider surface albedo and surface area of a range

of different land cover classes, and to recommend policies that will change albedo to

further promote the improvements being offered by carbon off-sets. Thus for each

land cover transition the shift in surface albedo should also be considered. Commercial

afforestation, IAPs and woody plant encroachment (e.g. Vachelia karroo) all result in

an increase in the total above-ground woody standing biomass (O’Connor et al., 2014)

in this region. In all situations, this is accompanied by an increase in leaf area index

(LAI) and possibly a reduction in surface albedo. The higher level of green water in

these land cover classes is a good absorber of heat, and this may result in further global

heating, possibly discounting the positive consequences of carbon sequestration. In

contrast, rural urbanization (which is different from conventional urbanization as dwell-

ings are more widely spaced, and are interspersed with bare soil) may result in higher

albedo. Similarly, degraded rangeland, with lower fractional canopy cover, also may

have higher albedo (Rotenberg and Yakir, 2010).

This paper builds on previous work (Palmer et al., 2017; M€unch et al., 2017; Gwate

et al., 2016; Okoye, 2016) by looking at land cover change trends for two grassland-

dominated catchments (S50E and T35B) with different land management systems, in

the Eastern Cape Province of South Africa. This is a first step in understanding the

trend of land cover change on catchment water and carbon fluxes in these
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catchments. Following an integrated multi-factor analysis of drivers of past land

cover change within the catchments, the Land Change Modeller (LCM) in IDRISI

was used to simulate future land cover scenarios for the year 2030 and postulate pre-

liminary consequences of this change with respect to carbon storage and water use

under each land management system.
2. Study area

The S50E and T35B catchments are located in the Eastern Cape Province of South

Africa (Fig. 1). In S50E, mixed farming (dualistic farming system) is practiced under

communal land tenure arrangements and includes both livestock grazing and crop culti-

vation (Kakembo, 2001). In T35B, the land tenure is predominantly freehold, and land

cover comprises extensive dryland cultivation, commercial afforestation and extensive

unimproved grassland for livestock production. However with an average density of

10% (Kotz�e et al., 2010), invasion by woody plants, particularly black wattle (Acacia

mearnsii), silver wattle (Acacia dealbata) and poplar (Populus spp.), is a major trans-

former of grasslands and rangeland production. This transformation is aggravated by

poor farming practices, including overgrazing, abandonment of cultivation, reduced

fire frequency and wood felling that have degraded the vegetation diversity and

richness.

The major fluxes of water and carbon in this socio-ecological system occur through

livestock and alien trees. Clearing of IAPs in both the catchments is managed by the
Fig. 1. Study area for land cover change analysis.
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Department of Environmental Affairs Working for Water (WfW) programme and is

premised on increasing water on the landscape in combination with socio-economic

development, involving pro-poor interventions (Macdonald, 2004; Oelofse et al.,

2016). Clearing IAPs that have higher water use relative to indigenous vegetation

(Clulow et al., 2011) is expected to increase the proportion of water to maintain other

ecosystem services provided by rangelands (Meijninger and Jarmain, 2014; Van

Wilgen et al., 2012). The S50E and T35B catchments are more fully described in

M€unch et al. (2017).

Land cover maps for change analysis were independently produced from Landsat

imagery. An existing national land cover product for 2000 (Van den Berg et al.,

2008) was updated through post-classification editing, while a second land cover

data set was derived for 2014 using geographic object-based image analysis

(GEOBIA) (Okoye, 2016). Theoretical accuracy for land cover change analysis,

derived as the product of the accuracies of the independent land cover maps, was

lower for T35B (67%) based on lower classification accuracies for 2000 (81%)

and 2014 (83%) than for S50E, where accuracies of 83% and 87% respectively for

2000 and 2014 produced a theoretical accuracy of 72% (M€unch et al., 2017). Con-

version labels were assigned as indicators to describe the transition trajectory iden-

tified at each intersection of the two land cover maps (M€unch et al., 2017; Okoye,

2016; Benini et al., 2010). Overall observed land cover change in S50E from

2000 to 2014 amounted to 21%, dominated by increased urbanisation and agricul-

tural intensification. However, change could be as high as 42% considering map er-

rors. Persistence and intensification of natural or invaded wooded areas possibly

IAPs, were identified as a degradation gradient within the landscape, which

amounted to almost 10% of S50E. In some areas, a return to grassland and bare areas

signified abandonment and degradation. However, despite a net loss of 5%, grass-

land still dominates the landscape.

A smaller overall land cover change (18%) was observed in T35B. Plantations

increased by 2% (R e Afforestation) through increase in commercial cultivation

while grassland was reclaimed (Re) from wooded areas (w6%), possibly due to

eradication of IAPs. Urban areas in T35B remained static as out-migration caused

a decline in population (Danuta Hodgson, MSc thesis, unpublished data). Fig. 1

illustrates the two catchments and the land cover change trajectories identified

from the land cover change analysis for 2000 to 2014 (M€unch et al., 2017;

Okoye, 2016).
3. Background

Most land change models follow a data-driven inductive approach, attempting to

draw correlations between a multitude of explanatory factors involved using
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statistical inferences (Overmars et al., 2007), however a deductive model allows the

inclusion of relevant driving factors assumed to have causal influence on LULCC,

such as political change or climatic disasters. Land Change Modeller (LCM), an

inductive model integrated into IDRISI Terrset 18.08, provides tools for the assess-

ment and projection of land cover change. LCM was developed by Clark Labs in

conjunction with Conservation International to provide a suite of tools to address

the problems of accelerated land conversion and the analytical needs required in

biodiversity conservation (Eastman, 2016). In LCM (Fig. 2), land cover is mapped

at two time steps (T1 and T2) and the patterns and processes of change are estimated

and used for model parameterization/calibration (Mas et al., 2014). The approach

used in LCM is to analyse changes in land cover between two past time steps

(T1 and T2) and use Multi-layer Perceptron (MLP) with explanatory spatial variables

to create transition potential maps. Markov Chain Analysis assigns the probability of

change determined by projecting the historic change to the future, which together

with transition potential maps, present a land cover scenario for some future data

(T3). Concurrently, the individual transition potential maps are aggregated to create

a map indicating the propensity of the landscape to experience change.
3.1. Spatial explanatory variables

Spatial explanatory variables are GIS datasets representing drivers of the observed

change (P�erez-Vega et al., 2012) and are typically based on biophysical or socioeco-

nomic criteria. Often used datasets include slope, distance to roads and settlements,
Fig. 2. LCM method to predict land cover change.
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land tenure and soil types (Mas et al., 2014) and these driver variables are used to

model the historical change process (Eastman, 2016).

The potential explanatory power of a variable can be tested using Cramer’s V test

where the level of association between GIS datasets representing phenomena

thought to be drivers in a particular transition and the land cover in question can

be determined. Cramer’s V is a quantitative measure of association that ranges

from 0.0, indicating no correlation (discarded variable), to 1.0, indicating perfect

correlation (excellent potential variable) (Megahed et al., 2015) and although these

values are not regarded as definitive, they can help in deciding whether to include an

explanatory variable in creating a transition potential map for a transition by exam-

ining whether the explanatory variable explains the transition for a particular land

cover. According to Eastman (2016), Cramer’s V values of 0.15 or higher are ‘use-

ful’ while those with values of 0.4 or higher are ‘good’.

Land cover transitions can be grouped into sub-models if the underlying driver of

change is assumed to be the same for each transition (P�erez-Vega et al., 2012).

For example, the processes which affect a land cover being changed from forest

to urban may be the same as those which affect grassland being converted to urban.

This urbanisation transition may be driven by proximity to existing urban areas,

proximity to road networks and may have the same topographic driver such as flatter

areas are more likely to transition than steep areas. In this example, forest to urban

and grassland to urban can be grouped in the same transition or sub-model and the

explanatory spatial variables would be the same. Explanatory spatial variables are

assigned to each sub-model on the basis of Cramer’s V values and the transition

potential of each sub-model is determined through a knowledge based approach

to machine learning.
3.2. Multi-layer perceptron (MLP)

A neural network consists of a number of interconnected nodes which are simple

processing elements that respond to the weighted inputs received from other nodes

(Atkinson and Tatnall, 1997). The MLP was an advancement in perceptron methods

as it is able to separate non-linear data due to it being ‘multi-layer’ and is a popular

classification method in remote sensing (Atkinson and Tatnall, 1997). MLP is a feed-

forward neural network in that data flows in one direction from the input layer

through the hidden layers which are sets of computational nodes, to the output layer.

The nodes are linked by a web of connections which are applied as a set of weights

and a backpropagation algorithm is used to train the network by iteratively spreading

the errors from the output layer to the input (Megahed et al., 2015) by adjusting

weights so as to minimise the error between the observed and the predicted outcomes

(P�erez-Vega et al., 2012). The capability of the model to learn and generalise de-

pends on its architecture (P�erez-Vega et al., 2012) and increasing the number of
on.2018.e00693
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hidden layers enables the model to learn more complex problems (Atkinson and

Tatnall, 1997). The training performance is assessed by a precision value expressed

in percent and networks that are too small cannot identify the internal structure of the

data and produce lower performance accuracies whereas too large networks overfit

the training data (P�erez-Vega et al., 2012).

The aim of the training is to build a model of the data generating process so that

network outputs can be predicted from unseen inputs. The network output is then

compared with the desired output, the error is computed and then back-

propagated through the network to adjust weights (Atkinson and Tatnall, 1997).

Large quantities of data are often required for training (Atkinson and Tatnall,

1997) and thus a small sample of training sites is unlikely to result in an accurate

model.

In the IDRISI MLP, half of the training data are randomly selected for learning and

half for validation. After the MLP has been trained, validation data are used to calcu-

late a "skill measure" (computed as the accuracy of transition prediction minus the

accuracy expected by chance) (Mas et al., 2014). The MLP thus creates time-specific

transition potential maps for each of the sub-models which are expressions of time-

specific potential for change (Eastman, 2016). However, further steps are required to

use this information to predict future land cover classes and also the potential for

each cell to either persist or transition between land covers.
3.3. Markov chain

Markov chain analysis is a stochastic modelling approach which has been used

extensively for land cover change modelling (Fathizad et al., 2015). It assumes

that the probability of a system being in a certain state at a certain time can be deter-

mined if its state at a prior time is known with the assumption that rates of change

observed during the calibration period (T1 to T2), will remain the same during the

simulation period (T2 to T3). Through cross-tabulation of land cover (Kamusoko

et al., 2009) Markov chain analysis determines the amount of land cover change

that will occur to the future date (Eastman, 2016). In LCM transition probability

maps are produced using either logistic regression, MLP trained by backpropagation

or a machine learning approach (Mas et al., 2014). This provides a probability esti-

mate for each pixel to either be transformed to another land cover or to persist and be

calibrated to an annual time step (Kamusoko et al., 2009).
3.4. Future scenarios

LCM produces two predictors of future land cover: soft prediction and hard predic-

tion. Soft prediction, or potential to transition, is a continuous mapping of vulnera-

bility to change (Eastman, 2016). It is calculated by aggregating all the transition
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potentials and provides an indication of the degree to which the areas have the right

conditions to precipitate change. The soft predictor thus provides a likelihood of a

cell to experience land cover change without providing an indication as to what

the new land cover will be.

The hard prediction procedure used by LCM is based on TerrSet’s multi-objective

land allocation (MOLA) module. MOLA determines a compromise solution by

maximizing the suitability of lands for each objective given the assigned weights

(Eastman, 2016). Land allocation conflicts are resolved by allocating the cell to

the objective (land cover class) for which its weighted transition potential is highest

based on a minimum distance to ideal point rule using the weighted ranks (Houet and

Hubert-Moy, 2006). Finally, the transition probability matrix derived from the Mar-

kov chain analysis determines how much land is allocated to a class over, T3 e T2,

an n-year period.

In LCM, change is thus modelled through MLP using mathematics and explanatory

spatial variables in a trends driven approach (P�erez-Vega et al., 2012). Spatial anal-

ysis of land cover change using the explanatory variables identifies: 1) maps of the

transition potential for each identified land cover transition, 2) a transition potential

map indicating the likelihood of each location in the study area to experience change

and 3) a scenario land cover map for a selected future date (T3).
4. Methods

Land cover maps at 30 m pixel resolution (Okoye, 2016), for T1 (2000) and T2

(2014) were used to create 1) transition potential maps for each transition, 2) a pro-

jected potential for transition map and 3) a predicted land cover map for 2030 (T3)

for S50E and T35B. An identical land cover legend consisting of eight land cover

classes was used for each time step (Table 1).
Table 1. Land cover legend developed by M€unch et al. (2017).

Abbreviation Description

UG Unimproved (degraded/natural) grassland

FITBs Forest indigenous, thicket bushlands, bush clumps, high fynbos

BRS Bare rock and soil (natural)

Wb Water bodies

Wl Wetlands

CLS Cultivated land

FP Forest plantations (clear-felled, pine spp., other/mixed spp.)

UrBu Urban/built-up (residential, formal township)

on.2018.e00693

ors. Published by Elsevier Ltd. This is an open access article under the CC BY license

censes/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00693
http://creativecommons.org/licenses/by/4.0/


10 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00693
Following M€unch et al. (2017), trajectories of land cover change describing both

change and persistence were identified and each possible transition of land cover be-

tween T1 and T2 was labelled (Table 2). Following P�erez-Vega et al. (2012) land

cover transitions with common underlying drivers of change were grouped into

sub-models. Trajectories of land cover change, identifiable at data resolution

(30 m) were also labelled (Table 2) as representing (1) intensification - the transition

of a lower intensity to a higher intensity usage; (2) afforestation - the planting of

commercial trees; (3) deforestation - the clearance of trees; (4) reclamation, degra-

dation and abandonment related to conversion to grassland and bare areas; (5)

natural dynamics - seasonal conversions not explained through anthropogenic

change; and (6) exceptionality - associated with potential map errors (M€unch

et al., 2017).

Of particular importance are areas where another land cover class has potentially

been replaced by IAPs (FITB intensification) and where forests (indigenous or alien)

and other woody areas have disappeared or been removed (reclamation, deforesta-

tion). A change from any other land cover class (with the exception of waterbodies

and wetlands) were labelled Iu: Urban intensification. It was not possible to deter-

mine change in the intensity of agricultural activities due to image resolution, but

conversion to agricultural practices was identified (agricultural intensification).

Although persistence (P) d where no land cover change has occurred d can be

considered a trajectory, it cannot be considered a transition and thus trajectories rep-

resenting persistence are ignored by LCM. In reality, not all possible transitions

occurred between 2000 and 2014 in S50E and T35B. Due to the low user’s and pro-

ducer’s accuracy for LC classes bare soil (BRS) and wetlands (Wl), M€unch et al.

(2017) labelled all transitions involving these classes as potential classification error.

Table 3 displays the labels, transitions and description for each sub-model. Small

transitions (less than 10 ha) have been removed from the analysis to exclude

exceptionalities.

In choosing explanatory variables, the processes producing land cover change need

to be visualised after which a spatial dataset of the particular process must be sourced
Table 2. Land cover conversion labels related to land cover change and drivers.

Class Label 2014

UG FITBs BRS Wb Wl CLs FPs UrBu

2000

UG P IF (1) De (4) Dn (5)

Dn (5)
Ia (1)

R (2)

Iu (1)FITBs Re (4) P Re (4) E (6)
BRS

Dn (5)

IF (1)

P
Wb

Dn (5)
P E (6)

Wl Dn (5) P
Iu (1)CLs A (4) A (4)

E (6) E (6)
P

FPs D (3) D (3)
Ia (1)

P
UrBu A (4) A (4) R (2) P
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Table 3. Transition sub-models and descriptors for catchment S50E and T35B.

Transition sub-model Description Land cover transitions*D

If: FITBs intensification
([FITBs)

Woody natural and artificial
vegetation substitutes
previous land cover

UG to FITBs; FP to FITBs; CLS to
FITBs

Ia: Agricultural
intensification ([Agric)

Agricultural activities
substitute previous land cover

UG to CLS; FITBs to CLS; Wb to
CLS*; Wl to CLS; UrBu to CLS; FP
to CLSþ

Iu: Urban intensification
([Urban)

Urban activities substitute
previous land cover

UG to UrBu; CLS to UrBu*; FITBs
to UrBu

R: Afforestation ([Forest) Other land covers are
converted to plantations

UG to FP; FITBs to FP; WL to FPþ;
CLS to FPþ

D: Deforestation (YForest) Plantations converted to other
land covers

FP to UG; FP to BRS*; FP to Wlþ

A: Abandonment
(Abandon)

Urban and agricultural areas
converted to grassland and
bare areas

CLS to UG; UrBu to UG; CLS to Wlþ

Dn: Natural dynamic
(Natural)

Areas where natural changes
occurred

UG to Wb; UG to Wl; Wb to UG; Wl
to UG; FITBs to Wlþ

De: Degradation (Degrade) Shrub area converted to
grassland and bare areas

UG to BRS

Re: Reclamation (Reclaim) Woody natural and artificial
vegetation areas converted to
grassland and bare area

FITBs to UG

*Bold text shows transitions which occurred in S50E only.
þitalics show transitions that occurred only in T35B.
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at appropriate spatial resolution. GIS data sets were identified to describe the poten-

tial transitions, geo-processing was performed to represent the particular process and

abbreviations were assigned to each processed spatial dataset. In addition to

geographical parameters, Evidence likelihood (EV) which calculates the relative fre-

quency of pixels which belong to the different classes within the areas of change, is

recommended where there are low Cramer V values (Eastman, 2016).

Derived biophysical and anthropogenic datasets were tested for their suitability us-

ing Cramer’s V where higher values represent stronger relationships between the

variable and a particular transition with values higher than 0.4 regarded as good

(Megahed et al., 2015).

Within the context of the communal/traditional farming methods practiced, prox-

imity to parts of the landscape already impacted by people may be considered as po-

tential drivers for degradation. For IAP intensification, infestation is more likely to

occur in those areas close to existing infestation through the process of seed

dispersal. Similarly afforestation is more likely to occur in those areas close to exist-

ing plantations since infrastructure is already in place to support this. Topographic

variables can be considered as having a potential constraining or flourishing effect

of certain transitions. For example, water bodies will not expand into areas with a
on.2018.e00693
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slope and certain vegetation may not grow higher than a specified altitude. Finally,

vegetation distribution is influenced by access to water and thus the Euclidean dis-

tance from rivers may be used as a proxy for water availability.
5. Results

5.1. Explanatory spatial variables

The variables selected for each transition sub-model are shown in Tables 4 and 5 for

S50E and T35B respectively. Overall Cramer’s V values are shown in Table 6 with

Cramer’s V values for individual land cover classes given in Table 7.
5.2. Transition potential and prediction

The skill measure and accuracy rate of each sub-model calculated through MLP,

summarized in Fig. 3, are recorded in Table 4 (S50E) and Table 5 (T35B) and shown

as maps in Fig. 4. The skill measure is based on the 2000 and 2014 land cover maps

and compares the number of correct predictions, minus those attributable to random

guessing, to that of a hypothetical set of perfect predictions. Thus the skill measure is

not an evaluation of future performance of the model but rather a gauge of how well

the explanatory variables explained change in the past.

The accuracy and skill measure reveal a wide disparity between the levels of confi-

dence in model predictions for different transitions. In S50E, the accuracy varies be-

tween 37 and 70 percent, with a correlation of 0.5 between accuracy and number of

pixels involved in transition (Table 4). Lowest accuracy is associated with Abandon-

ment (A) which also has the lowest skill measure. This is followed by Natural dy-

namic (Dn) with less than 40% accuracy and skill measure of less than 0.3.

Degradation (De) has a high accuracy due to the large number of pixels involved

in this sub-model (persistence of UG), but a low skill measure. These anomalies

may be explained by the low user’s and producer’s accuracy for LC classes Wetlands

(Wl) (in sub-model Dn) and Bare rock and soil (BRS) (in sub-model De) affecting

the MLP (M€unch et al., 2017) but may also be an indication that change is not totally

controlled by the drivers used in the model. Low accuracies amongst those transi-

tions which involve a small number of pixels should be regarded as being of low

importance.

Afforestation (R) and Urban intensification (Iu) in T35B have accuracies higher than

80% and matching high skill measures. Natural dynamics (Dn) has the lowest accu-

racy in T35B similar to S50E. Re (reclamation from FITBs) has the lowest skill score

of less than 0.1 based on the low class skill ratio for the FITBs to UG transition.
on.2018.e00693
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Table 4. Sub-models included in MLP for S50E with associated explanatory variables and performance indicators.

Sub-model Explanatory
variables

Transition/Persistence
Class

Minimum cells
transitioned/
persisted

Class skill
measure (ratio)

Sub-model
Accuracy (%)

Sub-model
skill

RMS

Training Testing

If: FITBs intensification Elev
Slope
D_FP
D_FITBs
D_rd
D_res

UG to FITBs 1846 0.4416 69.36 0.6324 0.2692 0.2733
CLS to FITBs 0.7959
FP to FITBs 0.7587
Persistence: UG 7918 0.4644
Persistence: CLS 0.6789
Persistence: FP 0.6601

Ia: Agricultural
intensification

Elev
Slope
Asp
D_res
EV

UG to CLS 32 0.8693 50.34 0.4482 0.2452 0.2530
FITBs to CLS �0.1111
Wb to CLS �0.1111
Wl to CLS 0.3519
UrBu to CLS �0.0317
Persistence: UG 508 0.6732
Persistence: FITBs 0.7222
Persistence: Wb 1.0000
Persistence: Wl 0.2361
Persistence: UrBu 0.5238

Iu: Urban intensification Elev
D_FITBs
D_rd
D_res

UG to UrBu 1875 �0.1048 54.34 0.4521 0.3196 0.3197
FITBs to UrBu 0.8399
CLS to UrBu 0.4775
Persistence: UG 30778 0.4189
Persistence: FITBs 0.6048
Persistence: CLS 0.4617

R: Afforestation Elev
Asp
D_FP
D_FITBs

UG to FP 342 0.5400 49.39 0.3252 0.3786 0.3856
FITBs to FP 0.4865
Persistence: UG 30778 0.4615
Persistence: FITBs �0.1686

(continued on next page)
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Table 4. (Continued )
Sub-model Explanatory

variables
Transition/Persistence
Class

Minimum cells
transitioned/
persisted

Class skill
measure (ratio)

Sub-model
Accuracy (%)

Sub-model
skill

RMS

Training Testing

D: Deforestation Elev
Asp
D_riv
D_rd

FP to UG 137 0.1269 66.51 0.4976 0.3804 0.3972
FP to BRS 0.8433
Persistence: FP 7918 0.5192

A: Abandonment Elev
Slope
Asp

CLS to UG 503 0.1926 37.45 0.1660 0.4150 0.4205
UrBu to UG 0.5060
Persistence: CLS 20948 0.0985
Persistence: UrBu �0.1390

Dn: Natural dynamic Elev
Slope
Asp
D_riv

UG to Wb 32 0.3246 39.13 0.2899 0.3131 0.3196
UG to Wl 0.1979
Wb to UG �0.1667
Wl to UG �0.1667
Persistence: UG 162 0.5702
Persistence: Wb 0.9222
Persistence: Wl 0.2708

De: Degradation Elev
Slope
Asp
D_riv
D_res
EV

UG to BRS 409 0.4314 69.76 0.3951 0.3995 0.4457
Persistence: UG 252574 0.3592

Re: Reclamation Elev
Slope
D_riv
D_res
EV
D_FITBs

FITBs to UG 13843 0.0866 62.47 0.2494 0.4723 0.4750
Persistence: FITBs 30778 0.4137
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Table 5. Sub-models included in MLP for T35B with associated explanatory variables and perfo ance indicators.

Sub-model Explanatory
variables

Transition/
Persistence Class

Minimum cells that
transitioned/persisted

Class skill
measure (ratio)

Sub-model
Accuracy (%)

Sub-model
skill

RMS

Training Testing

If: FITBs
intensification

Elev UG to FITBs 222 0.6751 67.89 0.5719 0.3195 0.3274
Slope CLS to FITBs 0.4234
D_FP
D_rd Persistence: UG 19736 0.2072
D_riv Persistence: CLS 0.5385
EV

Ia: Agricultural
intensification

Elev
Slope
D_rd
D_riv
EV

UG to CLS 122 0.3464 64.98 0.6108 0.2144 0.2197
FITBs to CLS 0.9668
FP to CLS 0.9454
Wl to CLS 0.6633
UrBu to CLS 0.4359
Persistence: UG 309 0.4362
Persistence: FITBs 0.6649
Persistence: FP 0.4444
Persistence: Wl 0.6481
Persistence: UrBu 0.5214

Iu: Urban
intensification

Elev
Slope
D_FP
D_rd
D_riv

UG to UrBu 187 0.9028 82.84 0.7712 0.3305 0.3274
FITBs to UrBu 0.8996
Persistence: UG 7586 0.5362
Persistence: FITBs 0.7391

(continued on next page)
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Table 5. (Continued )
Sub-model Explanatory

variables
Transition/
Persistence Class

Minimum cells that
transitioned/persisted

Class skill
measure (ratio)

Sub-model
Accuracy (%)

Sub-model
skill

RMS

Training Testing

R: Afforestation Elev
D_FP
D_rd
EV

UG to FP 569 0.9257 89.28 0.8775 0.1657 0.1734
FITBs to FP 0.9102
Wl to FP 0.9678
CLS to FP 1.0000
Persistence: UG 1996 0.7104
Persistence: FITBs 0.9246
Persistence: Wl 0.7771
Persistence: CLS 0.8115

D: Deforestation Elev
Asp
EV

FP to UG 437 0.3411 53.02 0.2953 0.4302 0.4342
FP to Wl 0.7867
Persistence: FP 23904 �0.2535

A: Abandonment Elev
D_FP
EV

CLS to UG 387 0.2734 42.69 0.2837 0.3454 0.3453
UrBu to UG 0.5833
CLS to Wl 0.5283
Persistence: CLS 309 �0.2500
Persistence: UrBu 0.2695

Dn: Natural
dynamic

Elev
Slope
Asp

FITBs to Wl 155 0.5143 36.47 0.2739 0.3045 0.3108
UG to Wl �0.1429
Wb to UG 0.4603
Wl to UG �0.1429
Persistence: UG 65 0.3364
Persistence: Wb 0.5357
Persistence: FITBs 0.6327
Persistence: Wl �0.1429

(continued on next page)
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Table 5. (Continued )
Sub-model Explanatory

variables
Transition/
Persistence Class

Minimum cells that
transitioned/persisted

Class skill
measure (ratio)

Sub-model
Accuracy (%)

Sub-model
skill

RMS

Training Testing

De: Degradation Asp
EV
D_FP
D_FITBs

UG to BRS 605 0.3510 71.16 0.4233 0.4474 0.4472
Persistence: UG 306061 0.4983

Re: Reclamation Elev
Slope
D_rd
D_FP
EV

FITBs to UG 26674 0.0168 54.67 0.0935 0.4929 0.4956
Persistence: FITBs 7586 0.1695
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Table 6.Description of potential explanatory variables and their overall Cramer’s V value. Cramer’s V values for S50E and T35B are shown in bold and

italics respectively.

Variable Elevation Aspect Slope Distance from
FP (2000)

Distance from
FITBs (2000)

Distance from
rivers

Distance from
roads

Distance from
residential areas

Evidence
likelihood

Abbreviated Elev Asp Slope D_FP D_FITBs D_riv D_rd D_res EV

Data source USGS SRTM 1 Arc-Second (USGS, 2004) Land cover 2000 (M€unch et al.,
2017)

NGI vector data (National Geo-Spatial Information).

Geo processing Aspect computed
for Elevation
dataset

Slope computed
from Elevation
dataset

Extracted LC
Class FP;
Euclidian
distance from
FP

Extracted FITBs;
Euclidian distance
from FITBs

Rasterize;
Euclidian distance
from all rivers

Rasterize;
Euclidian
distance from
all roads

Rasterize;
Euclidian distance
from residential
areas

Scale w30 m cell resolution Cell resolution 30 m 1: 50 000 vector scale converted to 30m cell resolution

CRAMER V
Overall 0.2675 0.2134 0.259 0.1997 0.1812 0.0978 0.1719 0.2298

0.2065 0.0887 0.1666 0.2747 0.087 0.1047 0.128 0.4083
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Table 7. Potential explanatory variables based on Cramer’s V values. ‘Good’

values are considered to be higher than 0.4 whilst ‘useful’ values are higher than

0.15. Values for S50E are bold and T35B is shown in italics.

Variable Elevation Aspect Slope Distance
from FP
(2000)

Distance
from
FITBs
(2000)

Distance
from
rivers

Distance
from
roads

Distance
from
residential
areas

Evidence
likelihood

CRAMER’S V

Overall 0.2675 0.2134 0.259 0.1997 0.1812 0.0978 0.1719 0.2298
0.2065 0.0887 0.1666 0.2747 0.087 0.1047 0.128 0.4083

UG 0.4366 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

FITBs 0.199 0.2026 0.3798 0.2029 0.2448 0.1304 0.2404 0.3121
0.4444 0.1074 0.3037 0.4971 0.1128 0.194 0.2657 0.6264

BRS 0.0288 0.1194 0.098 0.2671 0.3475 0.1615 0.0923 0.1725
0.1728 0.1861 0.1401 0.1848 0.2032 0.1216 0.0687 0.2583

Wb 0.4261 0.0334 0.0134 0.0228 0.0181 0.0108 0.0243 0.0234
0.0202 0.0383 0.0084 0.0317 0.0114 0.0069 0.0464 0.0111

Wl 0.0199 0.5539 0.5593 0.124 0.1589 0.0759 0.2038 0.1154
0.0474 0.0104 0.0206 0.0318 0.0127 0.0163 0.0203 0.2431

CLS 0.4139 0.0169 0.0236 0.0203 0.0183 0.047 0.0106 0.0147
0.1693 0.072 0.1928 0.1217 0.0311 0.0492 0.0359 0.2369

FP 0.163 0.1952 0.4151 0.2239 0.3385 0.2047 0.1291 0.2892
0.3678 0.1322 0.3553 0.3004 0.1014 0.195 0.1294 0.7176

UrBu 0.2087 0.0321 0.0306 0.4122 0.061 0.0211 0.0779 0.0734
0.3472 0.0654 0.1715 0.6749 0.0777 0.1677 0.3104 0.7248
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The probability of a land cover persisting (the diagonal highlighted by *) and of each

class transitioning to every other class from the Markov matrix are presented in

Table 8.

Table 9 shows the modelled land cover change based on the proportion of the study

area. The loss and gain per class is also recorded with the net loss per land cover class
Fig. 3. Sub-model accuracy and skill measure from MLP for (a) S50E and (b) T35B. Figures above bars

depict the number of pixels in each submodel.
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Fig. 4. Maps of results showing: propensity to change in T35B (A) and S50E (D), the land cover classes

predicted for 2030 in T35B (B) and S50E (E), and land cover conversion/persistence for T35B (C) and

S50E (F).

Table 8. Markov matrix probability of land covers in S50E (bold) and T35B

(italics) transitioning or persisting (*) from 2014 to 2030. Note land cover ab-

breviations are given in Table 1.

UG FITBs BRS Wb Wl CLS FP UrBu

UG 0.80* 0.05 0.00 0.00 0.00 0.07 0.00 0.08
0.91* 0.03 0.00 0.00 0.01 0.02 0.03 0.00

FITBs 0.34 0.58* 0.00 0.00 0.00 0.02 0.02 0.04
0.82 0.10* 0.00 0.00 0.01 0.03 0.03 0.00

BRS 0.43 0.05 0.00* 0 0.00 0.02 0.01 0.49
0.25 0.00 0.00* 0 0.01 0.11 0.62 0.00

Wb 0.03 0.00 0 0.93* 0 0.04 0 0.00
0.56 0.01 0.00 0.07* 0.16 0.13 0.06 0.00

Wl 0.52 0.01 0.00 0.00 0.00* 0.43 0 0.03
0.68 0.01 0.00 0.00 0.06* 0.12 0.13 0.00

CLS 0.11 0.03 0.00 0.00 0.00 0.84* 0.00 0.03
0.24 0.01 0.00 0.00 0.03 0.69* 0.02 0.00

FP 0.34 0.42 0.00 0 0.00 0 0.24* 0.00
0.16 0.00 0.00 0 0.02 0.01 0.82* 0.00

UrBu 0.03 0.00 0.00 0 0 0.05 0.02 0.92*
0.46 0.04 0.00 0.00 0.02 0.27 0.02 0.19*
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Table 9. Modelled land cover change as a percentage of the study area for S50E

(bold) and T35B (italics), * denotes persistence.

Change UG FITBs BRS Wb Wl CLs FP UrBu Total 2014 Loss Net

UG 44.7* 3.2 0.1 0.1 0.1 4 0.1 4.7 56.9 12 �4.8
72.7* 2.7 0.1 0 0.5 1.3 2.6 0.1 79.9 7.2 �0.2

FITBs 4 5.5* 0 0 0 0.3 0.2 0.5 10.5 5.1 �0.6
3.3 0.4* 0 0 0 0.1 0.1 0 4 3.6 �0.9

BRS 0 0 0.1* 0 0 0 0 0 0.1 0.1 0.1
0 0 0.2* 0 0 0 0 0 0.2 0 0.1

Wb 0.1 0 0 2.6* 0 0.1 0 0 2.9 0.3 �0.2
0 0 0 0* 0 0 0 0 0 0 0

Wl 0 0 0 0 0* 0 0 0 0.1 0.1 �0.01
0.8 0 0 0 0.1* 0.1 0.2 0 1.2 1.1 �0.3

CLs 2.2 0.5 0 0 0 15* 0 0.7 18.2 3.4 1.7
1.5 0.1 0 0 0.2 4.3* 0.2 0 6.2 1.9 �0.2

FP 0.6 0.7 0 0 0 0 0.4* 0 1.8 1.4 �1.1
1.3 0 0 0 0.1 0 6.8* 0 8.3 1.5 1.5

UrBu 0.3 0.1 0 0 0 0.6 0 8.5* 9.5 1 4.9
0.1 0 0 0 0 0.1 0 0.1* 0.2 0.1 0

Total 2030 52.1 9.9 0.2 2.7 0.1 20 0.7 14.4
79.7 3.1 0.3 0 0.9 6 9.8 0.2

Gain 7.4 4.4 0.1 0.1 0.1 5.1 0.3 5.9 23
7 2.7 0.1 0 0.8 1.7 3 0.1 16

Change
per year

1.5
1
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indicated. In S50E, the probability of UG persisting is approximately 80% with the

highest probability of UG being lost are to FITBs (w4.5%), CLS (w6.6%) and UrBu

(w8.3%), thus FITBs intensification (If), agricultural intensification (Ia) and urban

intensification (Iu) are at the expense of grasslands, constitutingw12% of the catch-

ment (5,283 ha) as shown in Table 9. The probability of 34% FITBs loss to UG

(Table 8), possibly due to alien invasive clearing programs, may seem high, but

in reality the number of pixels that can in fact transition are limited and the change

represents only 4% (1800 ha) of the total area (44,640 ha) in 2030 (Table 9). The

probability of persistence of FP is low (24%) with a likelihood of transition to FITBs

(42%) and UG (34%), which clearly reflects the changes from 2000e2014. Classes

Wl and BRS also show a very low probability of persisting.

In T35B, the probability of UG persisting is over 90% with the highest probability of

UG being lost are to FITBs (w3.3%) and FP (3.2%) (Table 8).

Based on the cross tabulation of land cover classes (Table 9), it was determined that

the total change (gain and loss) in the landscape for catchment S50E over all land

cover classes was 23% for predicted period 2014 to 2030, compared with 21% for

the period between 2000 and 2014 (M€unch et al., 2017), assuming a similar map
on.2018.e00693
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accuracy for the modelled map. Since the future scenario model mimics patterns of

past measured change, the change intensity, defined as the change per year, remained

constant at 1.5% per year for S50E. UG, the largest class, also has the largest loss,

though this relatively large dormant class, shows a higher change intensity during

the modelled period with the loss intensity increasing from 1.27% to 1.34%. In

contrast to the measured change, a net loss was modelled for FITBs. However, the

predicted loss falls within the 30% hypothetical error in landscape transition ascribed

to error propagation from contributing land cover maps calculated by M€unch et al.

(2017). Net change in FITBs for 2000 to 2014 varied between �0.5% to þ1% of

total catchment area. In T35B, the total change (gain and loss) in the landscape

over all land cover classes was only 15.5% for prediction period 2014 to 2030,

compared with 18.2% for the period between 2000 and 2014 (M€unch et al., 2017).

The change intensity decreased from 1.3% to less than 1% for T35B. FP showed a

small net gain. Intensification of FITBs were modelled in the upper reaches of the

Pot River and Little Pot. While FITBs systematically targets UG in transition (If),

clearing of FITBs also systematically results in UG (Re), though possibly degraded,

with a net loss of FITBs over the period. Afforestation (increased FP) is the strongest

trajectory in T35B showing a net gain of 1.5% with FP targeting Wl. This transition

may be the result of the low accuracy of the Wl class in the 2014 input land cover

dataset.
5.3. Evaluating land cover future scenario

Since the result of this model is a future scenario, typical land cover validation

methods cannot be employed since T3 is a future time step. Other indicators are

thus required to assess the prediction. While visual examination reveals spatial pat-

terns, it is subjective and can be misleading. Pontius and Millones (2011) suggest

that disagreement in land cover maps can be attributed to randomness based on:

1) random distribution of the quantity of each land cover class (quantity disagree-

ment), and 2) random spatial allocation of the land cover classes (allocation disagree-

ment). In addition, in this study, the disagreement could also be attributed to errors in

the land cover prediction model. However, the disagreement statistics can provide an

indication of the quality of the future scenario map. The disagreement budget be-

tween the actual land cover maps 2014 (T2) and 2000 (T1), as well as between

modelled land cover classes (T3) and 2014 land cover classes (T2), is provided in

Table 10. Quantity difference is defined as the amount of difference between the

T2 map and a comparison map where the proportions of the classes do not match.

Allocation disagreement occurs where the quantity per class remains the same but

the spatial distribution of the class changes and can be separated into exchange

and shift. Exchange describes the transition between the misallocated classes. Shift

refers to the difference remaining after subtracting quantity difference and exchange

from the overall difference (Pontius and Santacruz, 2014).
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Table 10. Comparison between transitions for 2000 to 2014 (T1eT2) and 2014 to 2030 (T2eT3) for S50E and T35B.

Class S50E T35B

2000e2014 2014e2030 2000e2014 2014e2030

Quantity Exchange Shift Quantity Exchange Shift Quantity Exchange Shift Quantity Exchange Shift

UG 4.5 8.9 4.0 4.8 12.0 2.8 4.3 9.3 2.7 0.2 11.6 2.5

FITBs 0.8 5.9 1.8 0.6 7.5 1.4 4.3 4.6 0.0 0.9 5.4 0.0

BRS 0.1 0.0 0.0 0.1 0.1 0.0 0.2 0.0 0.0 0.1 0.0 0.0

Wb 0.2 0.2 0.0 0.2 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0

Wl 0.4 0.1 0.0 0.0 0.1 0.0 1.9 1.4 0.1 0.3 1.5 0.1

CLS 1.9 4.0 0.7 1.6 6.3 0.5 0.1 2.6 0.6 0.2 3.0 0.3

FP 2.7 0.4 0.0 1.1 0.5 0.0 1.8 2.1 0.0 1.5 3.0 0.0

UrBu 4.9 0.8 0.0 4.9 2.0 0.0 0.0 0.2 0.1 0.0 0.2 0.0

Overall 7.7 10.3 3.3 6.7 14.4 2.4 6.3 10.1 1.8 1.7 12.4 1.4
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Even though applied to different land cover maps than proposed (Pontius and

Millones, 2011; Pontius and Chen, 2006), the disagreement budget provides a com-

parison between the measured land cover maps and the future scenario for which

there is no validation data.

Table 10 reveals the classes that account for the largest exchanges and therefore

possibly the largest model errors. In both measured and modelled transitions, UG

had the highest exchange percentage approximately 9% for the 2000e2014 transi-

tion and w12% for the modelled transition (in bold italics). In the measured data

(2000e2014) the similarity between categories with similar spectral signatures

could cause exchange error, which would be propagated to the predicted LULCC

model. Fig. 5 shows the overall disagreement budget of the catchment at the two

time steps for the two catchments.

Fig. 5 shows the increase in exchanged pixels in the predicted LULCC model for

2030, with lower quantity disagreement, particularly in T35B. The similarity in

quantity disagreement between measured and modelled scenarios implies that for

S50E the correct number of pixels were allocated to a class. The high exchange

disagreement for classes UG, FITBs and CLs, as well as FP in T35B suggests

that these classes may not be accurately modelled in the 2030 land cover map and

that certain transitions were incorrectly predicted. This may be expected based on

the model accuracies reported for S50E in Table 4 with none of the sub-models hav-

ing an accuracy level higher than 70%. For T35B (Table 5), sub-models for urban

intensification (Iu) and afforestation (R) provided accuracies of higher than 80%.

The disagreement budget for these classes in the two time periods is also similar.
Fig. 5. Disagreement budget.
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The sub-models for abandonment (A) and natural dynamics (Dn) presented accu-

racies lower than 50%, but very few pixels were associated with these transitions.

Despite these shortcomings, the overall proportion of the land cover within the

catchment is likely to be reasonably accurate.

Aldwaik and Pontius (2012) note that when a large dominant class exists, accounting

for a large percentage of the study area, other classes may appear more active by

comparison. However in this study area, the largest class UG is involved in substan-

tial modelled change, and cannot be excluded. In S50E, active transitions occurred

from FP (D), FITBs (Re) and CLs (A) to UG with a hypothesized error of 3%, while

UG was the target of intensification to FITBs (If) and UrBu (Iu). The intensification

of FITBs is regarded as a systematically targeting transition as a gain in FITBs tar-

gets UG while FITBs also targets the loss of UG. The same holds true for urban

intensification (Iu). This interchange of classes may contribute to the high exchange

disagreement. In T35B, FITBs intensification (If) and reclamation (Re) systemati-

cally targeted UG, implying an exchange of FITBs and UG over the prediction

period.
6. Discussion

Land cover change, which is closely linked to rural development initiatives, presents

challenges for integrated land and water resources management in the Eastern Cape.

The aim of this research was to project land cover change trends into the future

(2030) to gain an understanding of the implications on biophysical parameters which

in turn can guide land management strategies. However the complex processes of

land cover change are difficult to capture in variables, and model in algorithms, since

they are often shaped by dynamic, non-linear human-nature interactions (Camacho

Olmedo et al., 2015). For this reason, the discussion will firstly focus on potential

sources of error in the LCM and then, with these potential limitations in mind, the

focus shifts to the implications of the land cover trend projection on biophysical pa-

rameters, should no interventions be implemented.

A land change model must predict both the quantity of each land cover type as well

as the location of any change (Pontius et al., 2004). The accuracy of an inductive

model’s output is a function of both the model itself i.e. suitability of algorithms

within the model to fulfil the intended purpose, and the accuracy of the input

data. Thus to anticipate where possible inaccuracies may be entering into modelled

output, assumptions within the model can be examined, as can accuracies of input

data. Fig. 2 shows a flow diagram of the approach taken in LCM which is useful

to view in light of this discussion.

Since the LCM is an inductive approach, past land cover maps are used to empiri-

cally model change. Errors in the individual input land cover maps will be
on.2018.e00693

ors. Published by Elsevier Ltd. This is an open access article under the CC BY license

censes/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00693
http://creativecommons.org/licenses/by/4.0/


26 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00693
propagated through the model and produce errors in both future scenario output and

the potential to transition map. This study is a follow on from the change analysis

carried out by the same authors where the land cover maps, their accuracies, and

the implications of these accuracies in change analysis are described (M€unch

et al., 2017). The overall accuracies for the land cover maps was reported as 83

and 87% for S50E and 81 and 83% for T35B for T1 and T2 respectively and these

levels of accuracy equate to a change accuracy of 67% for T35B and 72% for

S50E. This may appear rather low however if higher change accuracies are required,

for example, change mapped with 75% reliability, the accuracy of input land cover

maps at T1 and T2 would need to be about 90% (Fuller et al., 2003), a seldom achiev-

able accuracy level when using mapping land cover from medium resolution satellite

imagery. Suffice to say, land cover classification is fraught with uncertainties

(M€unch et al., 2017) and these uncertainties are propagated through to errors in his-

toric change quantification and indeed future scenario mapping too. It is therefore

important to take cognisance of this limitation and any interpretation of results

should be with these accuracies in mind.

Within the LCM, past land cover spatial distribution is used to estimate both poten-

tial to transition and a future land cover scenario as a function of explanatory spatial

variables through mathematical modelling (Mas et al., 2014). This modelling is

based on two assumptions. Firstly, in the Markov projection, rates of change are

assumed to be constant implying that external forces exerting the change remain

constant too. In context of increasing human pressure on the land, climate change,

and variability in rainfall inter alia, this assumption can be flawed. Over short

time periods, the impact of the rate of change may not have a significant impact

on the projected change, as described by Roy et al. (2014), especially when the scale

of the input land cover maps is considered. However, climate patterns may be

cyclical and if change maps T1 and T2 represent different stages within that cycle

(e.g. one in a particularly wet year and the other in a particularly dry year) then

rate of change may show much higher than may otherwise be predicted, with the in-

verse also being true.

Secondly, in LCM the drivers of change (explanatory spatial variables) are assumed

to act identically to create the propensity for change maps. Cramer’s V is used to test

the level of association between a potential explanatory spatial variable and the his-

toric change recorded between T1 and T2. The user then decides based on his/her

own expert knowledge, the explanatory variables which should be allocated to

each transition sub model using Cramer’s V as a guide to which variables to include,

which in turn will impact on the resulting change propensity map. Then even though

some explanatory spatial variables may better describe the historic change, once the

variable is selected into a sub model, the model does not rank or weight the variable

on the basis of its usefulness in describing past change. Thus should a variable with a

low Cramer’s V be selected, it will have as much influence on the change propensity
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map as a variable with a high Cramer’s V. Much research in land change modelling

has been based on comparing the outputs between different models (e.g. Mas et al.,

2014) however, if a single model can produce different outputs based on the users

choice of model parameters, there can be greater variation within the outputs of a

single model than between the outputs of different models (Camacho Olmedo

et al., 2015). Furthermore, the spatial explanatory variables are implemented in

the model as stable over time, thus they will have the same influence at T2 all the

way through to T3. In reality this is unlikely to be the case as some of these variables

may also change over time, a topic explored in more detail by Kolb et al. (2013).

Despite these limitations, in the context of trying to understand appropriate land

management interventions for both catchments in light of the trends presented in

the results, a qualitative discussion of biophysical parameters that impact on catch-

ment water use, NEE and the surface energy balance and the expected land cover

transitions is presented. Firstly, from a water resource management perspective,

globally, >66% of the total precipitation over land is returned to the atmosphere

as ET (Fisher et al., 2005; Mu et al., 2011; Hoff et al., 2010; McMahon et al.,

2013; Liou and Kar, 2014) which makes ET very important in catchment water bal-

ance. During photosynthesis, plants accumulate new biomass as they release water in

exchange for atmospheric carbon and ET rates are closely related to the carbon

assimilation rates of plants (Franks et al., 2013). It is well established that knowledge

of land cover can give insight (via ecosystem surface conductance and ET) into the

water use of the land surface. A transition towards land covers with higher surface

conductance will result in higher water use via ET in the catchment. In this study the

loss of grasslands favouring an increase in anthropogenic land covers (agricultural

and FITBs intensification) will result in higher catchment ET for both S50E and

T35B with T35B being most impacted.

Next, from a carbon perspective, fPAR and LAI measured by Palmer et al. (2017) and

used in NEE and ET modelling respectively, indicate that both fPAR and LAI are

lower for un-improved grasslands than for potential transition classes (Intensification

of FITBs and Intensification of CLS and afforestation). These transitions will thus

represent a gain in both catchment NEE and ET, and a concomitant decrease in

run-off. From a carbon storage perspective, the transitions will result in more carbon

storage, which from a climate change outlook may be seen as a positive change, how-

ever in an already water scarce catchment, further water demands by the vegetation

will result in a decrease in the availability of water for other land covers.

Finally when considering the surface energy balance, the changes to surface albedo

that will accompany these land cover trajectories are less certain. Given that there is a

general increase in woody green biomass as a result of both afforestation and

continued invasion by IAPs, the findings of Rotenberg and Yakir (2010) make it

likely that the decrease in surface albedo from these cover classes will result in an
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increase in the absorption of energy, with a resultant rise in temperature. This

decrease in albedo may however be counteracted by an increase in degraded surfaces

associated with rural housing and in the unimproved grasslands where continuous

grazing by livestock changes species composition and cover. Rangeland degradation

is commonly associated with the changes in land tenure that are occurring in this

catchment (Bennett et al., 2012), and a reduction in the basal cover of herbaceous

plants (mainly grasses) is the first noticeable change. This results in a surface with

higher albedo.

Since, the land surface reflectance (albedo) affects net surface radiation, dark vege-

tation with a high LAI will have a lower albedo than open grasslands and it can be

postulated (however this must still be measured) that the transitions modelled in the

S50E catchment could lead to an overall lowering of albedo in the catchment. An

increase in net radiation is thought by some to be a driver of global warming, how-

ever, Bonan (2008) states that surface warming arising from the low albedo of forests

is offset by strong evaporative cooling. Thus the impact of a change in albedo in this

catchment remains speculative but is a research avenue which should be pursued.
7. Conclusion

In this paper, the Land Change Modeller (Idrisi Terrset 18.08) was used, together

with land cover mapped for the years 2000 and 2014 (M€unch et al., 2017), to model

land cover for the grassland dominated S50E and T35B catchments in the Eastern

Cape Province for the year 2030. It has been postulated that future land cover

changes may result in adjustments to biophysical drivers impacting on NEE and

catchment water use through ET. This work has thus built on previous work

(Palmer et al., 2017; M€unch et al., 2017; Gwate et al., 2016; Okoye, 2016) as a first

step in determining the impact of future land cover change on catchment water and

carbon fluxes.

It was found that in 2014 for S50E (T35B), grasslands represented 57% (80%) of the

total catchment area with this figure modeled to decrease to 52% (80%) by 2030 with

losses likely to favour a gain in woody plants and cultivated land. The results show

that the total change (gain and loss) in the landscape over all land cover classes was

21% (18%) for the period between 2000 and 2014 and 23% (16%) from 2014 up to

the future scenario for 2030, with the change intensity remaining constant at 1.5%
(<1%) per year. It was determined that the probability of grasslands persisting is

around 80% (>90%) with the highest probability of grasslands being lost to woody

encroachment w5% (3%) and cultivation w7% (<2%).

Since fPAR and LAI are lower for grasslands than for their transition classes (Palmer

et al., 2017), these transitions represent a gain in both catchment NEE and ET, result-

ing in increased carbon storage, and corresponding increased water use by vegetation.
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It is postulated that these carbon offsets from sequestration may be counterbalanced

by temperature increases linked to lower albedo increasing net surface radiation and it

is this carbon-water-surface energy flux nexus that requires further research in quan-

tifying impacts. The higher LAI will undoubtedly increase catchment-scale ET and

reduce run-off. The lower albedos will increase surface temperature, and although

these may be offset by higher albedo from urbanized and degraded surfaces, the

net result from an increase in woody biomass will be a catchment with a lower capac-

ity to provide water to its residents or downstream users.

The LCMmodels future scenarios based on trends of historic change and therefore the

results represent a future scenario based on no intervention deviating from past inter-

ventions. The impact of the different land management practices in S50E (dualistic

farming system) and T35B (commercial system) can be identified in the historic land

cover change trends and in the future scenario. It is apparent that under the dualistic

farming system, degradation is taking place at a more rapid rate than in T35B where

over 90% of current grassland is expected to persist to 2030. For those involved in plan-

ning in these rural catchments, there should be greater sensitivity amongst policy

makers towards the negative effects of further afforestation and uncontrolled invasion

of IAPs. Finally, the results suggest that rehabilitation and land management initiatives

should be targeted in catchments under a dualistic farming system, rather than those

which are predominantly commercial systems.
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