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Summary 

Non-Saccharomyces (NS) starter cultures of species such as Metschnikowia pulcherrima, 

Torulaspora delbrueckii, Pichia kluyveri and Lachancea thermotolerans, have received 

attention for their desirable properties and contributions in winemaking. These include the 

production of volatile compounds or enzymes to modify organoleptic attributes. Most studies 

have focussed on the use of single NS at a time with Saccharomyces cerevisiae to study the 

above contributions and properties; including effects on malolactic fermentation (MLF). 

However, there is growing interest in using complex multi-starter cultures to enhance wine 

aroma. Indeed, commercial products such as Anchor Alchemy II (Anchor Yeast), which 

comprises of different strains of S. cerevisiae, and Melody™ (CHR Hansen), comprising of 

S. cerevisiae, L. thermotolerans and T. delbrueckii in different ratios, are available. To develop 

such products, the understanding of genetic and phenotypic characteristics of strains and 

interactions amongst the different organisms is important. Consequently, some studies have 

investigated yeast-yeast interactions and their mechanisms, such as antagonistic interactions 

mediated by direct cell contact or through growth inhibitory metabolites. This, results in a 

decline of certain non-Saccharomyces like Hanseniaspora and therefore effect the final aroma 

composition. Conversely, synergistic effects can be observed in which species may be 

promoted to persist longer and therefore they contribute more to aroma. However, knowledge 

on population dynamics in multi-species starter cultures and their influence on alcoholic 

fermentation (AF) and MLF remains limited. 

 

The current study investigated a multi-species yeast consortium during AF and its 

effects on Oenococcus oeni viability during MLF. The consortium comprised of M. pulcherrima, 

L. thermotolerans, T. delbrueckii and S. cerevisiae. Fermentations were conducted in Chenin 

blanc and Pinotage at 15°C and 25°C, respectively. In all trials M. pulcherrima declined rapidly, 

while L. thermotolerans persisted until mid-fermentation. The best growth was observed for 

T. delbrueckii and it was able to persist until late fermentation stages. Fermentations that 

contained L. thermotolerans produced L-lactic acid in the Pinotage, but not in the Chenin blanc. 

There were no negative impacts observed on O. oeni populations during MLF for Pinotage 

and Chenin blanc wines. MLF kinetics were similar in all the Pinotage wines. In the Chenin 

blanc, the fastest L- malic acid consumption was displayed in wines that were fermented by 

L. thermotolerans and T. delbrueckii co-inoculations with S. cerevisiae. Different chemical 

profiles were detected using attenuated total reflection infrared (ATR-IR) spectroscopy. Mostly 

Chenin blanc wines were found to be significantly different from S. cerevisiae controls. Using 

gas chromatography, fold changes were observed for many volatile compounds. 

 

In conclusion, it is possible to predict a consortium population dynamic based on 

individual yeast performances in mixed fermentations. The volatile profiles are not additive 

between treatments and will be unique for each inoculation scheme. MLF seems to not be 
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detrimentally affected by a consortium so long as each strain is regarded as compatible with 

lactic acid bacteria. Future work should include the evaluation of more yeast species and at 

alternate inoculation levels. Additionally, the inclusion of Lactobacillus plantarum for MLF 

needs to be investigated and quantification of detected volatiles should be performed. 
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Opsomming 

Nie-Saccharomyces (NS) aanvangskulture van spesies soos Metschnikowia pulcherrima, 

Torulaspora delbrueckii, Pichia kluyveri en Lachancea thermotolerans, het aansienlike 

aandag ontvang as gevolg van hulle eienskappe vir wynbereiding. Dit sluit die bydrae tot 

wynaroma in deur die produksie van vlugtige verbindings soos esters, hoër alkohole en 

vetsure of die vrystelling van terpene tot hul aktiewe sensoriese status. Verder is die verlaging 

van alkohol of asynsuur asook die toename in gliserol of melksuur vlakke van belang. Die 

meeste studies het voorheen gefokus op die gebruik van enkel NS, soos T. delbrueckii of 

M. pulcherrima, wat agtermekaar of mede ingeënt is met Saccharomyces cerevisiae om 

bogenoemde bydraes en eienskappe te bestudeer; insluitend die effek op 

appelmelksuurgisting (AMG). Daar is egter toenemende belangstelling in die gebruik van 

komplekse multi-spesies aanvangskulture om wynaroma te verbeter. Kommersiële produkte 

soos Anchor Alchemy II (Anchor Yeast), wat bestaan uit verskillende stamme van S. 

cerevisiae of Melody™ (CHR Hansen), wat bestaan uit S. cerevisiae, L. thermotolerans en T. 

delbrueckii in verskillende verhoudings, is beskikbaar. Om sulke produkte te ontwikkel, is die 

begrip van genetiese en fenotipiese eienskappe van stamme en interaksies tussen die 

verskillende organismes, belangrik. Gevolglik het sommige studies gis-gis interaksies en hul 

meganismes ondersoek, soos antagonistiese interaksies bewerkstellig deur direkte sel kontak 

of deur groei-inhibitoriese metaboliete. Dit lei gevolglik tot 'n afname van sekere nie-

Saccharomyces soos Hanseniaspora en beïnvloed dus die finale aroma samestelling. 

Omgekeerd, kan sinergistiese effekte waargeneem word in spesies wat bevorder kan word 

om langer te oorleef tydens fermentasie en daarom dra hulle meer by tot aroma. Die kennis 

oor populasie dinamika in kulture met meer spesies, hul invloed op alkoholiese fermentasie 

(AF) en AMG, bly egter beperk. 

 

Die huidige studie het 'n multi-spesies gis konsortium ondersoek tydens AF en die 

effek daarvan op Oenococcus oeni se lewensvatbaarheid gedurende AMG. Die konsortium 

bestaan uit M. pulcherrima, L. thermotolerans, T. delbrueckii en S. cerevisiae. Fermentasies 

is onderskeidelik in Chenin blanc en Pinotage by 15 ° C en 25 ° C uitgevoer. In alle proewe 

het M. pulcherrima vinnig gedaal, terwyl L. thermotolerans tot mid-fermentasie oorleef het. Die 

beste groei is waargeneem vir T. delbrueckii en dit kon oorleef tot laat in die fermentasie. 

Fermentasies wat L. thermotolerans bevat, het L-melksuur in die Pinotage, maar nie in die 

Chenin blanc bevat nie. Daar was geen negatiewe effekte op O. oeni populasies tydens AMG 

vir beide Pinotage en Chenin blanc wyne waargeneem nie. AMG-kinetika was soortgelyk in al 

die Pinotage-wyne. In die Chenin blanc is die vinnigste L-appelsuur verbruik vertoon in wyne 

wat gefermenteer is deur L. thermotolerans of T. delbrueckii saam met S. cerevisiae. 

Verskillende chemiese profiele is waargeneem met behulp van verswakte totale refleksie 

infrarooi (ATR-IR) spektroskopie. Chenin Blanc-wyne is meestal aansienlik anders as die 

S. cerevisiae-kontrole in vergelyking met Pinotage. Met behulp van gaschromatografie is 

veelvoud veranderinge waargeneem vir baie vlugtige verbindings. 
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Ten slotte is dit moontlik om 'n konsortia populasie dinamika te voorspel wat gebaseer 

is op individuele gisprestasies in gemengde fermentasies. Die vlugtige profiele is nie ‘n 

toevoeging tussen behandelings nie en sal uniek wees vir elke inentingskema. AMG blyk nie 

nadelig beïnvloed te word deur 'n konsortium nie, solank as wat elke stam verenigbaar met 

melksuurbakterieë, beskou word. Toekomstige werk moet die evaluering van meer gisspesies 

en alternatiewe inokulasievlakke insluit. Daarbenewens moet die insluiting van Lactobacillus 

plantarum vir AMG ondersoek word en kwantifisering van vlugtige verbindings moet uitgevoer 

word. 
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Chapter 1 – Introduction and project aims 

1.1 Introduction  

The conversion of grape must to wine is a complex progression. It involves an important 

biological process which is alcoholic fermentation (AF) by yeasts (Fleet, 2003), the primary 

fermentation in winemaking and may include malolactic fermentation (MLF) by lactic acid 

bacteria (LAB), the secondary process aimed at lowering the malic acid content (Lerm et al., 

2010). The two processes can occur spontaneously, through the action of natural microbiota, 

or they may be induced deliberately by winemakers to protect against sluggish fermentations. 

The induction of AF is primarily done through inoculation with commercial strains of 

Saccharomyces cerevisiae, while MLF is induced with LAB, such as Oenococcus oeni or 

Lactobacillus plantarum. 

Non-Saccharomyces yeasts, such as Torulaspora delbrueckii, 

Metschnikowia pulcherrima and Hanseniaspora uvarum, have gained attention for their 

oenological properties, especially in aiding wine aroma (Oro et al., 2014; Belda et al., 2015; 

Velázquez et al., 2015; Kántor et al., 2016; Tristezza et al., 2016). This has led to the 

commercialisation of some non-Saccharomyces strains, which have specifically shown 

robustness in wine fermentation. Most of these strains can ferment to at least the mid stages 

of fermentation. Additionally, these strains may release enzymes during fermentation to 

change certain wine parameters. These strains are from species such as, M. pulcherrima, 

Pichia kluyveri, Lachancea thermotolerans (formerly Kluyveromyces thermotolerans) and T. 

delbrueckii, which are available from different commercial suppliers. However, it is still 

suggested by the suppliers that a S. cerevisiae commercial strain is required to ensure 

fermentation completion. This is generally employed since final stages of AF can still prove 

too harsh for the aforementioned non-Saccharomyces to survive, due to the high ethanol 

levels and limited nutrients. Studies have been conducted on some non-Saccharomyces 

yeasts, specifically on H. uvarum, Starmerella bacillaris (formerly Candida zemplinina) and M. 

pulcherrima (Oro et al., 2014; Zara et al., 2014; Wang et al., 2015) to understand their 

individual impacts on the fermentation process and resulting wines. The work done on 

T. delbrueckii by Velázquez et al. (2015) and Ramírez et al. (2016) investigated how T. 

delbrueckii strains interacted with S. cerevisiae in white and red wine respectively. The above 

studies however, mainly focused on mixed cultures containing two different strains at a time 

and mostly in synthetic grape must. Additionally, the strains used were natural isolates and 

not commercial strains. Other work on the interaction of T. delbrueckii, M. pulcherrima and 

L. thermotolerans with S. cerevisiae under oxygenation has also been published (Shekhawat 

et al., 2017). However, it was done in synthetic grape must, only one-to-one mixed 
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fermentations were performed and only one of the strains (T. delbrueckii) was a commercial 

strain. Bagheri et al. (2017), also studied 7 different non-Saccharomyces in a multi-species 

consortium. The authors described how the different species in the consortium respond to the 

presence of S. cerevisiae. However, the organisms used were not commercial strains and 

involved S. cerevisiae inoculated at low populations (103 CFU/mL). Additionally, the above 

works do not investigate the implications on MLF. Other authors do cover multi-species 

consortia, though again, no investigation on MLF was performed (Suzzi et al., 2012; Tofalo et 

al., 2016). 

Malolactic fermentation is not a true fermentation but a decarboxylation of L-malic acid to 

L- lactic acid with the release of CO2 via the malolactic enzyme (MLE) of LAB (Lerm et al., 

2010). Very little has been investigated on this secondary process in terms of when wines are 

produced by mixed yeast cultures during AF. The course that the yeast population dynamics 

takes during AF may influence how MLF occurs through parameters such as, final amounts of 

free nitrogen (Guilloux-Benatier et al., 2006) and compounds such as medium chain fatty acids 

or SO2 (Lonvaud‐Funel et al., 1988; Carreté et al., 2002; Alexandre et al., 2004). Conversely, 

it is hypothesized that MLF can be mimicked, using specific strains of 

Schizosaccharomyces pombe and L. thermotolerans. The consumption of L-malic acid is 

performed by Sch. pombe and the production of L-lactic acid is performed by L. thermotolerans 

during AF separately (Benito et al., 2016). Furthermore, L. thermotolerans and Sch. pombe 

are able to perform these processes in isolation from each other as these processes are a 

result of their individual metabolisms. Occasionally, MLF occurs spontaneously after AF when 

yeast autolysis begins and this provides some nutrients for LAB to grow. However, some 

strains of T. delbrueckii have been shown to promote MLF indirectly during AF, due to slower 

fermentation kinetics and therefore allowing LAB to adapt to increasing ethanol concentrations 

(Ramírez et al., 2016). A recent study has shown how different non-Saccharomyces, such as 

L. thermotolerans, H. uvarum, M. pulcherrima and others may either negatively or positively 

effect MLF in sequential or co-fermentations and therefore effect wine aroma (du Plessis et 

al., 2017). However, the study was only performed with mixed fermentations of single non-

Saccharomyces such as H. uvarum, Starmerella bacillaris and others as well as S. cerevisiae 

and not in a complex multi-yeast system. 

Complex multi-yeast starter cultures already exist, such as Melody™ (CHR. Hansen), 

which comprises of S. cerevisiae, L. thermotolerans and T. delbrueckii in different ratios, and 

Anchor Alchemy II (Oenobrands) comprising of different strains of S. cerevisiae. It is therefore 

important to expand on the works mentioned above (Suzzi et al., 2012; Tofalo et al., 2016; du 

Plessis et al., 2017) and investigate the implications of complex mixed cultures (consortia) on 

AF and MLF. 
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1.2 Rationale and project aims 

With the wine industry now having the option to inoculate with many commercialised strains 

and some products containing multiple species, it is important to investigate how these 

commercial starter cultures interact with one another. Additionally, investigations on how they 

might affect MLF and wine chemical properties should also be conducted. Previous studies 

on mixed–starter fermentations, were conducted on single strains of S. cerevisiae and 

selected strains of non-Saccharomyces species such as T. delbrueckii, M. pulcherrima and 

others (Romano, 2003; Comitini et al., 2011; Sadoudi et al., 2012; van Breda et al., 2013; 

Contreras et al., 2014; Jolly et al., 2014; Maturano et al., 2015; Ciani et al., 2016; Albertin et 

al., 2017; Shekhawat et al., 2017). Furthermore, these works have mainly been conducted in 

synthetic grape juice and predominantly with non-commercial strains. Only a few studies have 

been conducted on multi-yeast systems in real grape juice (Suzzi et al., 2012; Tofalo et al., 

2016; Bagheri et al., 2017; Del Fresno et al., 2017). In terms of MLF, little data has been 

published on the effects of non-Saccharomyces on MLF efficacy (Guilloux-Benatier et al., 

2006; Ramírez et al., 2016; du Plessis et al., 2017). Additionally, studies have only been done 

with pure or mixed cultures. Other attempts to “simulate” MLF were made (Benito, et al., 2015; 

Benito et al., 2016) but were not considered with O. oeni in L. thermotolerans and S. cerevisiae 

fermented wines. 

This project investigated the population dynamics of a consortium of commercial yeast 

strains in Chenin blanc and Pinotage grape juice, as well as assess the volatile profiles in the 

resulting wines. This is the first study to investigate the potential influence of a multi-species 

yeast consortium on MLF in sequential fermentation conditions.  

The specific aims are summarized below. 

1. Investigate the population dynamics and fermentation kinetics of a multi-yeast 

consortium containing commercial strains compared to mixed fermentations. 

2. Investigate the effect of the consortium on O. oeni viability and how MLF proceeds 

when compared to mixed fermentations. 

3. Assess the mid-infrared spectra and volatile profiles following AF and MLF from the 

different wines. 
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Chapter 2 – Literature review: The use of commercial 
S. cerevisiae and non-Saccharomyces yeast in winemaking 

2.1. Introduction 

Originally, the characteristics of wine were mainly associated with its region of origin or terroir. 

“Terroir, is a concept which refers to an area in which collective knowledge of the interactions 

between the identifiable physical and biological environment and applied vitivinicultural 

practices develops, providing distinctive characteristics for the products originating from this 

area. Terroir includes specific soil, topography, climate, landscape characteristics and 

biodiversity features” (OIV, 2010). This biodiversity includes the microbial ecology in the 

vineyards ranging from filamentous fungi and yeast to bacteria. It has been found that different 

terroirs over different vintages can result in different communities of fungi and bacteria on 

grapes that are ready for harvesting (Bokulich et al., 2014).  Therefore, this influences the 

starting populations of microbes in grape must regardless of whether it will be inoculated or 

naturally fermented. Alcoholic fermentation (AF), unless inoculated, is mainly initiated by yeast 

genera such as Candida, Issatchenkia, Hanseniaspora, Metschnikowia, Torulaspora, 

Lachancea, Pichia and other non-Saccharomyces yeasts (Fleet, 2003; Oro et al., 2014; 

Maturano et al., 2015; Liu et al., 2016). However, Saccharomyces cerevisiae will mostly 

dominate the latter stage of fermentations as seen in Figure 2.1.  

 

Figure 2.1 Example of population dynamics during a spontaneous fermentation (SF). Stage I : 

1.100 specific gravity (SG) (Day 0), Stage II : 1.080 SG (Day 3), Stage III : 1.050 SG (Day 4), 

Stage IV : 1.020 SG (Day 5) and Stage V : >4 g/L sugar (end of fermentation). Taken from (Liu et al., 

2016) 
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It is important to realise however, that these fermentations are not without problems, as 

native S. cerevisiae may not be able to complete a fermentation. This may be due to biotic 

interactions and abiotic factors as depicted in Figure 2.2. An example of these biotic 

interactions is the consumption of nitrogen sources by the initial prominent level of 

Hanseniaspora or Candida and other non-Saccharomyces yeasts (Bely et al., 2008; 

Taillandier et al., 2014). If the amount of yeast assimilable nitrogen (YAN) is approximately 

150 mg/L or less it will likely lead to stuck fermentations, where residual sugar will result in an 

incomplete fermentation (Albergaria and Arneborg, 2016). This directly determines the amount 

of biomass that can be reached (Tronchoni et al., 2017). Spoilage microorganisms can occupy 

this niche to proliferate and impart undesirable characteristics to the wine. Other possible 

microbial interactions include cell contact (Nissen et al., 2003; Arneborg et al., 2005) or growth 

inhibitory compounds (Maturano et al., 2012; Velázquez et al., 2015) that may occur during a 

fermentation. These factors certainly influence the ability of yeasts to proliferate. Although, 

these biotic factors are usually strain specific for both S. cerevisiae and non-Saccharomyces 

species, like Torulaspora delbrueckii or Lachancea thermotolerans. Several abiotic factors 

also influence the fermentation process since different yeasts have different optimal 

temperatures for growth, different ethanol and SO2 tolerance levels, as well as oxygen 

requirements (Fleet, 2003; Salvadó et al., 2011; Brandam et al., 2013). 

 

 

Figure 2.2 Examples of abiotic and biotic interactions that yeasts may encounter with each other in 

wine (Nissen et al., 2003; Arneborg et al., 2005; Albergaria et al., 2010; Salvadó et al., 2011; Brandam 

et al., 2013; Branco et al., 2014; Ciani and Comitini, 2015). 
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To combat the risks associated with spontaneous AF, commercialised products 

containing strains of S. cerevisiae with desirable characteristics were developed. These 

strains are inoculated at high cell densities (>106 CFU/mL), to ensure the dominance of 

S. cerevisiae from the early stages of fermentation and to complete fermentation (Belda et al., 

2017; Petruzzi et al., 2017). The practice became immensely popular through the late 20th and 

early 21st centuries, however, it was not without problems. According to a review done by 

Capozzi et al. (2015), opinions were forming that due to the use of commercial strains, wines 

were becoming too reproducible, predictable and lacking in complexity between and within 

cellars when compared to natural fermentations.  

An increased interest in understanding the effect that non-Saccharomyces yeasts, such 

as Metschnikowia pulcherrima, T. delbrueckii, Starmerella bacillaris and Hanseniaspora spp., 

to name a few,  have on wines started to develop to combat this perceived lack of complexity 

in inoculated S. cerevisiae wines. The investigations found that indigenous yeasts can have 

positive organoleptic properties and mainly contribute during the initial stages of fermentation 

(Silva et al., 2003; Ciani and Comitini, 2006; Bely et al., 2008; Kurita, 2008; Moreira et al., 

2008). Some of the organoleptic properties are summarised in Figure 2.3. Interestingly, in 

some investigations there were instances where certain species, from Hanseniaspora, 

Lachancea, Candida and Torulaspora, could even persist until the middle or late stages of 

fermentations and contributed to aroma complexity (Mills et al., 2002; Xufre et al., 2006; 

Nisiotou et al., 2007; Bely et al., 2008) 

 

Figure 2.3 Different effects that can result by using a combination of S. cerevisiae and industrialised 

non-Saccharomyces (Ciani and Comitini, 2015; Petruzzi et al., 2017). 
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Commercial strains of these organisms started to appear in the 21st century and some 

examples are given in Table 2.1. The products not containing S. cerevisiae are generally 

incapable of completing fermentation on their own and are always suggested to be either 

sequentially or co-inoculated with a commercial S. cerevisiae strain. However, the attributes 

they impart on wine can be significant (Beckner Whitener et al., 2015, 2016; Benito et al., 

2016; Liu et al., 2016). To generate complexity in wines with the use of commercial non-

Saccharomyces yeasts (Table 2.1) it is important to realise that every organism involved in 

winemaking can modulate aroma and flavour in some way. This literature review, therefore, 

addresses the studies performed on S. cerevisiae and strains of various non-Saccharomyces 

for their different outcomes in wine aroma or other properties. 

Table 2.1 Examples of commercialized non-Saccharomyces and mixed starter cultures. 

Product Name Organisms Use Manufacturer 

Biodiva™ Td Esters and low VA Lallemand 

Flavia™ Mp Thiols and Terpenes Lallemand 

Level 2 TD Td + Sc Ester and complexity Lallemand 

Concerto™ Lt Increased lactic acid CHR. Hansen 

Frootzen™ Pk Esters and low VA CHR. Hansen 

Harmony Td + Lt + Sc Varietal aromas CHR. Hansen 

Melody™ Td + Lt + Sc Floral and fruit esters CHR. Hansen 

Prelude™ Td Low VA CHR. Hansen 

Rhythm Lt + Sc Varietal aromas CHR. Hansen 

Anchor Alchemy II Different Sc Thiols Oenobrands 

Alpha Td Improved complexity Laffort 

ÉGIDE Td + Mp Improved complexity Laffort 

Abbreviations: Td = T. delbrueckii | Lt = L. thermotolerans | Mp = M. pulcherrima | Sc = S. cerevisiae | 

Pk = P. kluyveri | VA = Volatile acidity 

2.2. Benefits of using S. cerevisiae 

S. cerevisiae has been used extensively in the past to study cellular functioning and the 

biochemistry of eukaryotes (Karathia et al., 2011). It has also been widely used in many 

industries ranging from food and beverages to pharmaceuticals and renewable energy 

production (Cubillos, 2016). In winemaking, S. cerevisiae has indeed played an integral role. 

This is due to a highly efficient ability to ferment sugars to ethanol and carbon dioxide as part 

of its primary metabolism in high sugar environments (Fleet, 2003). Apart from this, it also 

holds the capacity to modify aroma precursors in grape juice to their sensorial active state 

(Jolly et al., 2014; Belda et al., 2017; Petruzzi et al., 2017). In Figure 2.4, the different 

environmental stressors that S. cerevisiae can survive, as well as the desired properties and 

processes that S. cerevisiae possesses, are shown. S. cerevisiae clearly has the means to 
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dominate its niche in wine. A genetic study by Steensels and Verstrepen (2014) demonstrated 

how S. cerevisiae became so specialized. The authors showed how duplication of genes for 

alcohol dehydrogenase (ADH), hexose transporters and glycolytic enzymes were key factors 

in fermentative capacity. In addition to this, the transcriptional mechanisms of S. cerevisiae 

have also been found to be optimized for fermentative metabolism (Steensels and Verstrepen, 

2014; Petruzzi et al., 2017). 

 

Figure 2.4 Examples of desirable processes (in green) that S. cerevisiae carries out during wine 

fermentation as well as environmental pressures (in red) that S. cerevisiae simultaneously withstands 

(Lambrechts and Pretorius, 2000; Fleet, 2003; Ciani and Comitini, 2015). 

2.2.1 Fermentative Robustness 

The Oxford English Dictionary defines robustness as, “The ability to withstand or overcome 

adverse conditions”. In terms of fermentation these adverse conditions are: competition for 

depleting sugars, low nitrogen content, low pH, low temperature and increasing ethanol levels 

(Albergaria and Arneborg, 2016). The growth rate within the wine matrix naturally plays a 

critical role, as it has a direct correlation to how fast an organism can take-up and ferment 

sugars. S. cerevisiae under anaerobic conditions and moderate temperature is known to have 

a higher growth rate than other wine yeasts, such as T. delbrueckii, Hanseniaspora uvarum 

and Candida stellata as shown in a study performed by Ciani and Picciotti (1995). Moreover, 

Nissen et al. (2004) confirmed this on studies performed with S. cerevisiae, T. delbrueckii and 

L. thermotolerans. They determined specific glucose uptake rates (qs) for the species 

mentioned and expectedly found S. cerevisiae to be the highest. 

Stellenbosch University  https://scholar.sun.ac.za



 

14 
 

Apart from growth rate, the regulation of sugar metabolism is also significant. Oxygen 

plays a crucial role in central metabolism and three classes have been characterized, with 

respect to yeast. The first class is obligatory aerobic, second is facultative fermentative and 

finally obligatory fermentative (Jolly et al., 2014), with most wine related yeast falling into the 

second category. However, except for S. cerevisiae, most of them display slow growth rates 

in strictly anaerobic environments. Since wine is mainly considered to be made under oxygen 

limiting conditions, yeasts that are facultatively fermentative, but still sensitive to low oxygen 

levels, will not persist as well as S. cerevisiae does. This results in S. cerevisiae sometimes 

being responsible for at least 50% of the sugar fermentation even when oxygen and 

biodiversity levels are higher in the initial stages (Albergaria and Arneborg, 2016).  

S. cerevisiae has another way to survive even in the initial stages. In high sugar 

environments, this species will induce fermentative metabolism, regardless of the presence of 

oxygen. This phenomenon is known as the Crabtree effect and is present in other yeasts, such 

as Torulaspora globosa, T. delbrueckii, Hanseniaspora vineae, L. thermotolerans, 

Hanseniaspora occidentalis and Zygosaccharomyces bailii (Merico et al., 2007; Goddard, 

2008; Albergaria and Arneborg, 2016). However, they do not exhibit the Crabtree effect as 

pronounced as S. cerevisiae. An advantage of being Crabtree positive might be that 

competing organisms (if any) for substrates, are more sensitive to ethanol. Ethanol is agreed 

to be a broad spectrum antimicrobial (Janzen, 1977; Thomson et al., 2005), which will now be 

produced at a significantly higher rate due to the Crabtree effect (Goddard, 2008). Although, 

it is important to realise that this behaviour is observed irrespective of the presence of other 

organisms. Certainly, in the case of S. cerevisiae, it has a very high tolerance for ethanol while 

obligatory aerobic and facultative yeasts are more sensitive. Additional to ethanol production, 

glycolytic flux is increased and this will limit the amount of substrate available to other 

organisms (Conant and Wolfe, 2007). The use of S. cerevisiae as a principal starter culture in 

winemaking therefore became of intrinsic value, since the practice led to more predictable 

outcomes and simultaneously cut risk of spoilage (Chambers and Pretorius, 2010). 

2.2.2 Yeast biotic interactions 

Apart from its robustness against the abiotic factors of a wine matrix, S. cerevisiae has been 

shown to possess numerous biotic ways of supressing other native yeasts. These 

mechanisms of yeast-yeast interactions were proposed in the first decade of this century, 

namely growth inhibiting compounds, killer toxins and cell contact (Ciani and Pepe, 2002; 

Nissen and Arneborg, 2003; Nissen et al., 2003; Arneborg et al., 2005; Pérez-Nevado et al., 

2006). An example of growth inhibition of Hanseniaspora guilliermondii and other non-

Saccharomyces yeasts by S. cerevisiae was demonstrated by Albergaria et al. (2010). The 

authors found small proteinaceous compounds (2-10 kDa), termed anti-microbial peptides 
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(AMPs), that exhibited inhibitory activity against H. guilliermondii that normally can persist 

during winemaking. Studies have also shown how similar mechanisms involving AMPs, such 

as glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein fragments (Branco et al., 

2014), were expressed by S. cerevisiae against other yeasts and Oenococcus oeni 

(Albergaria et al., 2010; Branco et al., 2015). The study by Albergaria et al. (2010) found that 

these protein fragments (<10 kDa) were active against H. guilliermondii, T. delbrueckii, 

Kluyveromyces marxianus and L. thermotolerans. However, the GAPDH fragments were only 

produced in the late stages of exponential growth and their production was associated with 

starvation and apoptosis via metacaspase (Delgado et al., 2003; Silva et al., 2011). 

Killer toxins are also a mechanism for interactions between yeasts. Killer toxins K1, 

K2, K28, and Klus are reviewed by Schaffrath et al. (2018). These K1, K2 and K28 toxins, 

unlike the GAPDH protein fragment, are dimers of two peptides covalently linked by a di-

sulphide bridge (Bostian et al., 1984; Schmitt and Tipper, 1995). They bind to the cell 

membrane of killer sensitive strains and cause membrane permeability. Two factors need to 

be realised when considering killer toxin production. Firstly, toxins may only be effective 

against the same or similar species (Wloch-Salamon et al., 2008). Secondly, the production 

of toxins syphons off energy and nutrients in metabolism (reduces fitness), that could have 

been used for growth and therefore hinders their ability to be competitive for resources (Pintar 

and Starmer, 2003; Wloch-Salamon et al., 2008). An investigation was performed on nutrient 

availability and dispersion of killer strains of S. cerevisiae, by Wloch-Salamon et al. (2008). 

The authors concluded that dispersion causes fitness reduction even when nutrients are 

abundant. It is important to realise however, that the killer phenotypes and killer sensitive 

yeasts are strain specific and therefore cannot be applied in a generalised sense. From an 

industrial perspective, it might be advantageous to use killer active S. cerevisiae as the killer 

toxins might help prevent the proliferation of Brettanomyces and other spoilage non-

Saccharomyces or lactic acid bacteria (LAB) such as Pediococcus. These organisms may 

alter certain white wine styles. Whereas in the case of most red and certain white wines it will 

be disadvantageous to inhibit LAB such as O. oeni or Lactobacillus plantarum for obvious 

reasons where malolactic fermentation (MLF) is required for their respective wine-styles. 

Cell-to-cell contact is another example of interaction between S. cerevisiae and other 

yeasts, such as L. thermotolerans and T. delbrueckii. This interaction was shown by Nissen 

et al., (2003). The group concluded that the growth arrest of the L. thermotolerans and 

T. delbrueckii was not due to nutrient or other abiotic factors, but rather due to the high 

presence of viable S. cerevisiae. The study’s findings were somewhat confirmed by Renault 

et al., (2013), where fermentations were conducted in double-compartment bioreactors with 

T. delbrueckii and S. cerevisiae. This setup allowed for the separation of the different species 
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while enabling the matrix to be shared. Therefore, if growth inhibition of T. delbrueckii was still 

observed the cause would be either nutrient depletion, the production of ethanol, killer toxins, 

AMPs or SO2 by S. cerevisiae. In agreement with Renault et al. (2013), similar findings where 

observed for L. thermotolerans by Luyt (2015). In contrast however, it was found that 

L. thermotolerans was also able to inhibit S. cerevisiae, though to a lesser extent. It was also 

shown that if abiotic factors such as oxygen availability are altered, the phenomenon can be 

alleviated such as when increased dissolved oxygen is available. Other work done by 

Shekhawat et al. (2016) showed that oxygenation during fermentation, enhanced the growth 

and persistence of T. delbrueckii, L. thermotolerans and M. pulcherrima in mixed fermentation 

with S. cerevisiae. The population levels could reach between 109 and 1010 CFU/mL while 

S. cerevisiae reached lower population levels for different oxygenation strategies. The higher 

the dissolved oxygen the lower the population level was observed for S. cerevisiae. However, 

one must realise that S. cerevisiae was inoculated at a 1:10 lower inoculation level than the 

aforementioned non-Saccharomyces yeasts. Additionally, the strain of S. cerevisiae (Cross 

evolution-285) was also different to the strain used in Luyt  (2015) (EC1118) indicating that 

strain variance and the environment of the fermentation can affect yeast-yeast interactions.  

Wang et al. (2016) also investigated interactions between S. cerevisiae and several 

strains from species, such as H. uvarum, Starmerella bacillaris, M. pulcherrima, and 

T. delbrueckii. The authors found that cell free supernatants, from S. cerevisiae fermentations, 

influenced cellular viability differently for every species tested and strain differences were also 

observed. Cells of T. delbrueckii and Starm. bacillaris survived longer with S. cerevisiae than 

H. uvarum and M. pulcherrima. In a previous investigation between H. uvarum and 

S. cerevisiae (Wang et al., 2015), the authors speculated that it might be, in addition to nutrient 

depletion (carbon and nitrogen sources), the total amount of sugar metabolized rather than 

the residual sugar level that has an impact on growth. Fermentations with 200 g/L of initial 

sugar showed a more rapid decline in H. uvarum viability than 100 g/L trials. The effect of 

ethanol was not found to be detrimental to H. uvarum growth, confirming previous findings 

where high tolerance for ethanol was observed in H. uvarum (Pina et al., 2004). Wang et al. 

(2015) also suspected the action of AMPs, such as the previously mentioned GAPDH protein 

fragments, and confirmed the presence of such AMPs in their follow up study (Wang et al., 

2016). 

Yeast interactions clearly vary with strains, environmental parameters and matrix 

composition as seen in the work of Wang et al. (2016) and other studies (Renault et al., 2013; 

Luyt, 2015; Shekhawat et al., 2017). Certain strains of S. cerevisiae clearly possess biotic 

means of managing its environment under normal conditions of winemaking. Therefore, using 

strains that have been commercialised for these abilities in preventing growth of spoilage non-

Stellenbosch University  https://scholar.sun.ac.za



 

17 
 

Saccharomyces, such as Brettanomyces bruxellensis and bacteria alike can help ensure 

certain wine styles. 

2.3. Benefits of using non-Saccharomyces yeasts 

The recent trend of sequential or co-inoculation with certain species of non-Saccharomyces 

yeasts (Table 2.1) and S. cerevisiae, in order to imbue wine aroma with the complexity of 

spontaneous ferments, has been investigated (Jolly et al., 2014; Padilla et al., 2016; Whitener 

et al., 2017). By using non-Saccharomyces yeasts, such as M. pulcherrima, Pichia kluyveri 

and other species and knowing how to improve their persistence in wine, one can modulate 

the aroma profile of resulting wines. For instance, several studies showed how Starm. 

bacillaris, L. thermotolerans, M. pulcherrima and T. delbrueckii are able to reduce ethanol and 

modulate other parameters in wine (Contreras et al., 2014; Quirós et al., 2014; Englezos et 

al., 2015, 2016; Varela et al., 2016; Wang et al., 2016; Shekhawat et al., 2017, 2018). The 

findings were that each yeast responded differently to the increased dO2 levels and distinct 

species-specific chemical volatile profiles were associated with non-Saccharomyces 

persistence in wine. 

Many different organoleptic properties may be altered due to the presence of 

L. thermotolerans or M. pulcherrima and other non-Saccharomyces yeasts. Additional 

examples are increased glycerol from mixed cultures with Starmerella bombicola (Ciani and 

Ferraro, 1998; Comitini et al., 2011) and increased thiol levels with P. kluyveri (Anfang et al., 

2009). Additionally, yeasts such as T. delbrueckii, L. thermotolerans, and M. pulcherrima 

might yield reduced acetic acid and ethanol levels when the fermentations are aerated or 

performed at lower temperatures (García et al., 2010; Gobbi et al., 2013; Morales et al., 2015).  

2.3.1 Volatile acidity 

Volatile acidity (VA) relates to the acetic acid (and sometimes other acid) levels in wine 

(Zoecklein et al., 1995). It is considered to be a sign of spoilage in wine when out of balance 

with other parameters such as ethanol levels, residual sugar and glycerol (Zoecklein et al., 

1995). Other acids that may contribute to volatile acidity are also lactic, formic, butyric and 

propionic acids. Acetic acid arises from the sugar metabolism of acetic acid bacteria, lactic 

acid bacteria and all yeasts found in wine (Fleet, 2003). Additionally, certain strains of 

S. cerevisiae have been shown to be inhibited by high levels of acetic acid (Ludovico et al., 

2001). 

Yeasts such as T. delbrueckii and M. pulcherrima have been shown through recent years 

to lower acetic acid levels in wines, as well as modifying other parameters such as glycerol 

and ester concentrations (Ciani et al., 2006; Bely et al., 2008; Renault et al., 2009; García et 
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al., 2010; González-Royo et al., 2014). Indeed, products (containing T. delbrueckii), such as 

ones listed earlier in Table 2.1, are advertised to be low producers of volatile acidity and 

improve aroma complexity. A recent study by Puertas et al. (2017) performed an investigation 

on industrial strains of T. delbrueckii (TD291) and S. cerevisiae (QA23). The experiments 

were in a semi industrial scale to assess acetic acid production in Chardonnay and Palomino 

cultivars over different vintages. The authors noted lower levels of acetic acid in fermentations 

sequentially inoculated; as opposed to control fermentations for the 2011 Chardonnay and 

Palomino vintages. However, higher amounts were found in the sequential fermentations 

when compared to controls in the 2012 Palomino vintage. No significant differences were 

observed between sequential and control fermentations for the Chardonnay 2012 vintage. In 

Whitener et al. (2017) T. delbrueckii (BIODIVA) and S. cerevisiae (Enoferm M2) and several 

other yeasts were evaluated in Shiraz fermentations. Specifically, no significant differences 

were noted for T. delbrueckii paired with S. cerevisiae in volatile acidity concentrations when 

compared to the controls. This was also observed alongside M. pulcherrima (FLAVIA) and 

P. kluyveri (FROOTZEN) ferments. However, the volatile acidity was significantly higher in the 

other non-Saccharomyces yeast fermentations, particularly in the fermentations with 

Kazachstania aerobia (IWBT Y845). These above studies demonstrate the variance between 

species, strain, vintage and cultivar. Additionally, certain strains of non-Saccharomyces may 

produce more VA such as Hanseniaspora vinea (reference??). 

2.3.2 Acid modulation  

Acid modulation is a topic of interest in winemaking (Fleet, 2008). Lachancea thermotolerans 

and Schizosaccharomyces pombe shows potential in acid modulation as these organisms 

may possess the ability to produce and consume acids in wine (Gobbi et al., 2013; Benito et 

al., 2016).  

A study done by Gobbi et al. (2013) shows comparisons between 

L. thermotolerans 101 and S. cerevisiae (EC1118) in mixed fermentations. Different setups of 

simultaneous and sequential inoculums were used. The findings illustrated increases in D,L-

lactic acid and glycerol, while lower volatile acidity, ethanol and pH was observed when 

compared to S. cerevisiae controls. Benito et al. (2016) had similar findings where 

fermentations containing L. thermotolerans (CONCERTO) showed trends of increasing lactic 

acid during fermentation. The authors also demonstrate how L. thermotolerans, combined with 

Schizosaccharomyces pombe 4.5, can mimic the outcome of MLF when compared to 

S. cerevisiae 88 and Oenococcus oeni 217 controls. Interestingly, it was demonstrated that in 

the trials, malic acid was degraded by Sch. pombe (regardless of the presence of 

L. thermotolerans), and lactic acid was produced by L. thermotolerans (regardless of the 

presence of Sch. pombe). The production of lactic acid and degradation of malic acid was not 
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directly linked as in the case with MLF carried out by O. oeni. Rather, it was as result of the 

individual metabolisms of L. thermotolerans and Sch. pombe respectively. Figure 2.5 

illustrates how yeast such as L. thermotolerans can produce lactic acid compared to O. oeni. 

 

 

Figure 2.5 Simplified biochemical pathways for lactic acid production by yeast (Left) and lactic acid 

bacteria (Right).  

Yeast like L. thermotolerans use sugar metabolism with lactate dehydrogenase (LDH) 

and NADH as the final catalytic step (Witte et al., 1989) to maintain redox balance. Lactic acid 

bacteria like O. oeni use a malolactic permease (mleP) to import malic acid with a proton (≤pH 

4 environment) and de-carboxylate to lactic acid using the malolactic enzyme (mleA) 

(Fugelsang and Edwards, 2007). In O. oeni the lactic acid is then exported out to maintain a 

pH gradient for ATP production. Pathways were adapted from Fialho et al. (2016) and 

Fugelsang and Edwards (2007). 

Figure 2.6 depicts the consumption of malic acid in yeast such as Sch. pombe versus 

lactic acid bacteria. It is important to note, that in comparison to control fermentations 

produced with S. cerevisiae and O. oeni, significantly higher amounts of lactic acid were found 

in wines that contained L. thermotolerans.  

The above findings illustrate that the combination of L. thermotolerans and Sch. pombe 

has an added benefit of enhancing total acidity on top of degrading malic acid without having 

to subject the wines to sequential MLF. This may be applied to areas where lower amounts of 

initial malic acid may occur due to climatic conditions. 
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Figure 2.6 Detailed malic acid metabolism in yeast (non-dashed section) versus malic acid metabolism 

in lactic acid bacteria (dashed section). Enzymes involved are malate dehydrogenase (MDH), malic 

enzyme (ME), malolactic enzyme (MLE), oxaloacetate decarboxylase (OADC), lactate dehydrogenase 

(LDH), pyruvate decarboxylase (PD), ethanol dehydrogenase (ED), fumarase (F) and fumarate 

reductase (FR). Taken from (Su et al., 2014). 

2.3.3 Aroma compounds 

Many studies have involved different non-Saccharomyces yeasts, such as P. kluyveri, 

M. pulcherrima and Hanseniaspora species in the venture to improve wine aroma and quality 

(Rojas et al., 2003; González-Royo et al., 2014; Jolly et al., 2014). A review by Mateo and 

Maicas (2016), comprehensively covers the contributions that several non-Saccharomyces 

yeasts may give. These include glycerol production, reducing ethanol or acetic acid, de novo 

volatile compound synthesis and enzyme activities such as β-glucosidase. M.  pulcherrima 

has received a lot of attention for its β-glucosidase production in varietal aroma enhancement, 

as well as modification of wine parameters such as, ethanol, medium chain fatty acids, fusel 

alcohols, esters and glycerol (Rodríguez et al., 2007, 2010; Contreras et al., 2014; Morales et 

al., 2015; Shekhawat et al., 2017). 

Varietal aroma is linked to certain classes of compounds based on the cultivar such as 

monoterpenes, C13-norisoprenoides and aromatic alcohols that are either in their volatile or 

non-active mono- or disaccharide glycosidic forms (Maicas and Mateo, 2005; Swiegers et al., 

2005). The non-active forms of these compounds are more abundant in the grape juice matrix 

and require hydrolysis to be rendered active. Yeasts such as M. pulcherrima (Rodríguez et 

al., 2010) and P. kluyveri (Steensels and Verstrepen, 2014) are examples of producers of β-

D-glucosidase which is responsible for the hydrolysis of the above compounds. Although, it is 

important to note that the reaction requires the preliminary step carried out by α-L-

arabinofuranosidase, α-L-rhamnosidase and β-D-apiosidase (Bayonove, 1988; Rodríguez et 

al., 2007; Villena et al., 2007) as seen in Figure 2.7. It is hypothesized that M. pulcherrima and 
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P. kluyveri are some of the many yeasts that are therefore able to enhance varietal aroma. 

Studies indeed show an increase of terpenols in mono-cultures and the expression of β-

glucosidase (Steensels and Verstrepen, 2014). However, these trends were not to the same 

extent and with some differences in results. The differences between terpenol trends occur in 

the studies with co-cultures of S. cerevisiae and M. pulcherrima (Rodríguez et al., 2010; 

Sadoudi et al., 2012). In Rodríguez et al. (2010), the authors hypothesized that the 

S. cerevisiae strain used was capable of transforming nerol and geraniol into α-terpineol at 

must pH, since similar trends were seen in S. cerevisiae mono-cultures. Therefore, no 

significant differences were seen in terpenol concentrations for co-culture fermentations. It is 

important to remember that in the case of mono-cultures, M. pulcherrima is not very 

fermentative and will struggle to complete fermentation. Therefore, a sequential or co-

inoculation is still required. Sadoudi et al. (2012), showed however, a synergistic effect 

between S. cerevisiae and M. pulcherrima in co-culture for terpenol compounds. Bučková et 

al. (2018) also showed that not all strains of M. pulcherrima express β-glucosidase. 

 

Figure 2.7 Enzymatic conversion of disaccharide precursors to terpenol. Taken from (Mateo and 

Maicas, 2016). 

Fermentative aroma is derived from classes like higher alcohols and esters are also a 

matter of interest that non-Saccharomyces like M. pulcherrima and others have shown 

potential in producing. González-Royo et al. (2015) observed significantly higher levels of fusel 
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alcohols. However, it should be noted that only 3-Methyl-1-butanol appeared to be contributing 

to the difference as shown in Table 2.2. Levels of higher alcohols should be retained at 

relatively low levels as they can contribute negatively to wine aroma. 

Table 2.2 Examples of higher alcohols detected in M. pulcherrima co-cultures and S. cerevisiae control 

Higher Alcohols (mg/L) S. cerevisiae (control) M. pulcherrima co-culture 

3-Methyl-1-butanol 178.6 ± 11.3 231.0 ±23.8 
β-Phenylethanol 53.6 ± 3.3 48.2 ± 1.8 
2-Methylpropanol 22.2 ± 2.1 29.9 ± 1.5 
1-Hexanol 0.92 ± 0.06 0.92 ± 0.05 
cis-3-hexen-1-ol 0.55 ± 0.03 0.54 ± 0.02 
Benzyl alcohol 0.01 ± 0.00 0.01 ± 0.01 
Methionol 1.04 ± 0.13 0.64 ± 0.03 
1-Butanol 0.51 ± 0.04 0.52 ± 0.03 

Total 257.4 ± 16.8 311.7 ± 22.6 

 

With regards to esters, it was found in Shiraz and Chardonnay fermentations investigated 

by Varela et al. (2016), that higher levels of ethyl acetate were found in treatments that 

involved M. pulcherrima (AWRI1149) than in controls with S. cerevisiae. It should be noted 

that the total esters, excluding ethyl acetate, show lower levels in all treatments when 

compared to S. cerevisiae fermentations as a control in Chardonnay. This also shows the 

effect of cultivar choice and demonstrates that aroma quantitative changes are a factor of both 

yeast strain and cultivar. Though, the trend is evident in other studies for the yeast strain 

choice regardless of cultivar (González-Royo et al., 2014; Benito et al., 2015; Varela et al., 

2017). The authors also show the effect that inoculation dosage may have at the start of 

fermentation. However, it was only tested for Saccharomyces uvarum at 106, 105 and 

104 CFU/mL. Additionally, when L. thermotolerans has been used, lower concentrations of 

certain major volatiles such as 2-methyl-1-proponol, 3-methyl-1-butanol and acetate/ethylic 

esters were observed (barring ethyl acetate). Conversely, higher amounts of 2-phenylethanol 

were observed for L. thermotolerans (Benito et al., 2016). It should be considered that elevated 

levels of esters may impart negative effects on wine (Varela et al., 2016). Other parameters 

that can be altered by T. delbrueckii include higher varietal thiols, 2-phenylethanol and fatty 

acid production (Comitini et al., 2011; Azzolini et al., 2012; van Breda et al., 2013), however, 

other findings have reported that no changes or significant differences in these parameters 

can occur (Petruzzi et al., 2017; Whitener et al., 2017). This may be due to strain variance as 

well as vintage and varietal differences. 

Considering the above, it is important to carefully select yeasts like M. pulcherrima, 

L. thermotolerans or P. kluyveri based on their previous performances and pair it with a 
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suitable cultivar to bring about an aromatic profile that is desirable since both factors play a 

major role. 

2.3.4 Low ethanol production 

Technology has improved to include winemaking practices centred around physical alcohol 

stripping after AF was performed (Belisario-Sánchez et al., 2009; Catarino and Mendes, 2011; 

Schmidtke et al., 2012). Unripe berries are also often used in order to produce low ethanol 

wines (Canals et al., 2008; Kontoudakis et al., 2011). Additionally, attempts have been made 

to alter S. cerevisiae via directed metabolism and evolution in order to reduce ethanol 

production during AF. However, these attempts have been difficult due to the tight regulation 

of pyruvate metabolism under anaerobic conditions (Quirós et al., 2013; Rossouw et al., 2013). 

Lower ethanol production in wine has therefore been a consistent theme in the studies 

performed on various non-Saccharomyces yeasts, like T. delbrueckii, L. thermotolerans and 

M. pulcherrima. Mainly, the methods involve increasing the available oxygen in the matrix 

(Morales et al., 2015; Shekhawat et al., 2017, 2018). The concept involves increasing the dO2 

levels, at specific intervals, to induce a respirative metabolism of sugar instead of fermentative. 

The advantage of taking this biological approach apart from the consolidation of fermentation 

and lowering alcohol is that other parameters, such as glycerol and acetic acid, are also 

modified versus using the physical methods above. The study performed by Morales et al. 

(2015), using S. cerevisiae (EC1118) and M. pulcherrima (CECT12841), showed that ethanol, 

glycerol and acetic acid were affected by oxygenation. Specifically, mixed cultures exhibited 

lower ethanol levels when dO2 was increased (Figure 2.9). The study exhibited a trend that 

when S. cerevisiae is used, in conjunction with M. pulcherrima, lower levels of ethanol are 

reached. Other studies have also found lower levels of ethanol when sparging with O2 using 

M. pulcherrima, T. delbrueckii and L. thermotolerans (Shekhawat et al., 2017, 2018). It is 

important to realise that final ethanol levels are also dependent on starting sugars, so it is 

imperative to monitor the sugars in the berries before harvest. Indeed, other strains such as 

T. delbrueckii, H. uvarum and L. thermotolerans have also been investigated for lowering 

ethanol levels and altering other standard parameters of wine (García et al., 2010; Gobbi et 

al., 2013; Contreras et al., 2014; Varela et al., 2016, 2017). 

In short, the use of non-Saccharomyces like M. pulcherrima or T. delbrueckii and others 

with the combined use of increasing dO2, through the means of punch downs or pump overs 

(du Toit et al., 2006; Moenne et al., 2014), allows the reduction of ethanol (although by smaller 

amounts compared to physical means), modification of standard parameters and modulation 

of volatile compounds (García et al., 2010; Gobbi et al., 2013; Contreras et al., 2014; Varela 

et al., 2016, 2017; Shekhawat et al., 2017, 2018). However, physical methods such as 
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distillation under vacuum, evaporation and others can even achieve alcohol free wines 

whereas using biological means can result in a relatively small change (Figure 2.9) . By using 

physical means one can then control the amount of ethanol to blend back. However, the 

methods will naturally require extra energy and therefore costs to employ. 

 

Figure 2.9 Ethanol changes due to oxygen (O2) sparging when compared to inert gas (N2) between 

S. cerevisiae (Control) and M. pulcherrima + 10% S. cerevisiae mixed cultures (Mixed). Data adapted 

from Morales et al. (2015). 

2.3.5 Multi-yeast consortia 

The use of many of the non-Saccharomyces yeasts mentioned so far has mainly involved one-

to-one mixed fermentations with S. cerevisiae. Attention is also being focussed on the use of 

multi-species consortia (Xufre et al., 2006; Wang et al., 2014; Bagheri et al., 2017). Indeed, 

there are now multi species starter cultures from yeast manufacturers on the market 

(Table 2.1). It is imperative that the same investigations involving environmental parameters 

of wine and strain combinations are investigated in consortia setups. This is to gain better 

knowledge on the topic and to be able to exploit the notion to its fullest. 

Wang et al. (2014) studied mixed fermentations of equal inoculums of H. uvarum, Starm. 

bacillaris and S. cerevisiae. The data shows that between one-to-one mixed fermentations 

and the multi-yeast fermentations, the populations dynamics of each yeast was similar. 

Indicating that S. cerevisiae (when high in populations at the beginning) can have an impact 

on the growth of multiple non-Saccharomyces such as H. uvarum or Starm. bacillaris. Bagheri 

et al. (2017) however, investigated 8 species (Table 2.3) in a consortium. A mutualism was 

found between H. vineae and S. cerevisiae, while antagonism existed between 

Wickerhamomyces anomalus and S. cerevisiae. The same consortium was used in Bagheri's 
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PhD dissertation (2018) to evaluate the environmental parameters, such as temperature and 

SO2 on the consortium. 

To summarise, each organism will produce their response similarly in one-to-one 

fermentations and consortia provided that the fermentation parameters were similar between 

the two setups. From the data that is available, it is apparent that different temperatures, SO2 

levels and the presence of S. cerevisiae promote the growth of different non-Saccharomyces 

species. Additionally, aroma profiles can be different for each setup and mainly attributed to 

the different non-Saccharomyces that survives (Suzzi et al., 2012; Tofalo et al., 2016; Bagheri 

et al., 2017; Del Fresno et al., 2017). 

Table 2.3 Yeast species used in the consortium of (Bagheri et al., 2017) 

Yeast Species Strain number 

M. pulcherrima Y981 
Pichia terricola Y974 
Starm. Bacillaris Y975 
Candida parapsilosis Y842 
W. anomalus Y934 
L. thermotolerans Y973 
H. vinea Y980 
S. cerevisiae EC1118 

 

2.4. Conclusion 

The use of both S. cerevisiae and non-Saccharomyces yeasts such as M. pulcherrima, 

T. delbrueckii, L. thermotolerans and the others mentioned in this chapter, can be an 

advantage to the wine-maker. If one modulates certain properties in wine while wishing to 

maintain the insurance of complete fermentations; one needs to think carefully of strain 

compatibility and inoculation techniques such as sequential or co-inoculation or higher doses 

of non-Saccharomyces relative to S. cerevisiae. Some characteristics are common between 

most non-Saccharomyces. For example, M. pulcherrima and L. thermotolerans when exposed 

to a parameter, like increased dissolved oxygen, will grow better, modify aroma profile, albeit 

each profile will be different, and standard parameters, such as decreasing ethanol or acetic 

acid. However, some changes are more specific to a group of organisms belonging to the 

same species, like lactic acid production in L. thermotolerans. A lot of the findings in studies 

showed trends for specific strains and fermentation setups, indicating that different outcomes 

may occur if any other factors such as types of strains used, number of strains used, timing of 

inoculation and fermentation parameters are changed. 
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Chapter 3 Multi-species wine yeast consortium population 
dynamics and its effects on malolactic fermentation 

3.1 Introduction 

Winemaking primarily involves yeast (Saccharomyces and non-Saccharomyces species) for 

the conversion of monomeric sugar to ethanol during alcoholic fermentation (AF). However, 

certain wine styles require the use of lactic acid bacteria (LAB) such as Oenococcus oeni or 

Lactobacillus plantarum for a secondary fermentation, known as malolactic fermentation 

(MLF), which entails the decarboxylation of L-malic acid to L-lactic acid and carbon dioxide. 

This is done to lower perceived acidity and achieve microbial stability (du Toit et al., 2011; 

Bartowsky et al., 2015). 

The use of non-Saccharomyces yeast in co-cultures with Saccharomyces cerevisiae 

in one-to-one pairings, has been extensively studied and reviewed (Romano, 2003; Comitini 

et al., 2011; Sadoudi et al., 2012; van Breda et al., 2013; Contreras et al., 2014; Jolly et al., 

2014; Maturano et al., 2015; Ciani et al., 2016; Albertin et al., 2017; Shekhawat et al., 2017). 

In general, non-Saccharomyces yeasts are either weak fermenters (such as Metschnikowia 

and Pichia) or moderate fermenters (Lachancea, Candida, Hanseniaspora or Torulaspora) 

compared to S. cerevisiae and their contribution to fermentation is influenced by the onset of 

S. cerevisiae domination. However, their presence during fermentation has been shown to 

yield altered wine chemical profiles compared to S. cerevisiae monoculture fermentations 

under different conditions, such as temperature or S. cerevisiae lag phase (Maturano et al., 

2015; Albertin et al., 2017). Limited studies on inoculated consortia have been conducted to 

investigate the population dynamics of the yeasts and resulting chemical compositions of 

wines (Xufre et al., 2006; Suzzi et al., 2012; Wang et al., 2014; Bagheri et al., 2017). Different 

doses of strains, temperature and SO2 concentrations were investigated to evaluate the 

population dynamics of the consortium and the chemical compositions resulting from the 

treatments (Bagheri , 2018). It was found that Wickerhamomyces anomalus and 

Hanseniaspora vinea exhibited suppressed and promoted growth respectively when in the 

presence of S. cerevisiae. Additionally, Starmerella bacillaris was found to be synergistic with 

S. cerevisiae but only when inoculated at higher population levels. Lastly the findings 

confirmed other studies where it has been observed that a signature of a yeast is detected in 

the aromatic profile if the yeast is able to persist longer in a fermentation (Sadoudi et al., 2012; 

Gobbi et al., 2013; Jood et al., 2017). However, standard parameters such as glycerol, ethanol 

and lactic acid were not measured. Other authors do cover these parameters with regards to 

certain non-Saccharomyces species such as L. thermotolerans, M. pulcherrima, H. uvarum 
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and Starm. bacillaris (Moreira et al., 2008; Sadineni et al., 2012; Englezos et al., 2015; Morales 

et al., 2015; Benito et al., 2016; Shekhawat et al., 2017). 

Most of the focus in the studies involving the aforementioned non-Saccharomyces 

yeasts, is on AF alone. A few studies and reviews looked at the effect of these yeasts on MLF 

(Lerm et al., 2010; du Plessis et al., 2017; Balmaseda et al., 2018; Gammacurta et al., 2018). 

In the review of Balmaseda et al. (2018), it is stated that MLF is influenced by yeast 

metabolism. This can range from being inhibitory to stimulatory depending mainly on factors 

such  as, starting parameters of the juice, competition for nutrients and the production of 

inhibitory compounds by yeast. Firstly, if the initial sugars are too high in grape juice, the 

resulting ethanol levels of the wine might be too high for most LAB strains to survive. Using 

non-Saccharomyces species, such as M. pulcherrima and L. thermotolerans, may help with 

this since they have been shown to result in lower ethanol levels in wine under aeration 

(Morales et al., 2015; Shekhawat et al., 2018). Testing the effects of these strains on LAB in 

anaerobic setups should be investigated too. Secondly, since LAB have complex nutrient 

requirements, the consumption of certain nutrients, such as nitrogen sources and malic acid 

are also of importance during AF by yeast. Using yeast that have high nitrogen demands or 

that consume malic acid such as T. delbrueckii (Belda et al., 2015), Starm. bacillaris (Tofalo 

et al., 2012; du Plessis et al., 2017) or Schizosaccharomyces pombe (Benito et al., 2016) may 

deplete the matrix and prevent LAB from growing. Lastly, the production of metabolites such 

as medium chain fatty acids or sulphur dioxide, in addition to ethanol (Nehme et al., 2008) by 

yeast, may affect LAB. In du Plessis et al. (2017), the effects of one-to-one co-inoculations for 

several non-Saccharomyces yeasts with S. cerevisiae (during AF) on LAB growth and MLF 

kinetics were assessed. The findings showed that, if yeast strains were compatible with LAB, 

MLF can occur in mixed fermentations. Additionally, different aroma profiles were detected 

between wines that went through MLF when compared to their respective S. cerevisiae 

controls.  

The lack of studies using multi yeast species in a consortium motivated this study to 

assess a multi-species yeast consortium population dynamic and its potential influence on 

O. oeni viability using classical microbiological techniques. Additionally, AF and MLF kinetics 

were assessed using enzymatic analysis and (ATR) infrared spectroscopy. Lastly, the final 

wine chemical compositions were investigated using gas chromatography coupled to mass 

spectrometry using an untargeted approach.  
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3.2 Methods and Materials 

3.2.1 Method optimization for 2018 experiments 

In the first year (2017) micro-fermentations were done in Cabernet Sauvignon obtained from 

Uva Mira Mountain Vineyards (Stellenbosch, South Africa) to optimize several parameters. 

These include thermo-vinification conditions, inoculum preparation, yeast enumeration 

methods and analytical methods. The data that was generated is presented in Appendix B. 

Based on the generated results, inoculation of yeast was chosen to be done via wet cultures, 

while inoculation of O. oeni was kept as dry active culture. Additionally, mid-infrared 

spectroscopy was performed as an analytical method and it was decided that for 2018 gas 

chromatography coupled to mass spectrometry would be performed to investigate individual 

volatile compounds. 

3.2.2 Grape Juice Preparation 

For the main experiment (2018) two cultivars were used, namely Pinotage and Chenin blanc. 

The juices were obtained from Wellington Cellars (Wellington, South Africa). The Chenin blanc 

was thermo-vinified, by heating with a copper coil steam boiler at 75°C for 15 min in the 

experimental cellar, at the Department of Viticulture and Oenology (Stellenbosch University), 

while the Pinotage juice had already been thermo-vinified at Wellington Cellars using their 

standard cellar equipment and procedures. The pH of the cooled juices was measured by 

means of a pH probe (702 SM pH meter, Metrohm, Herisau, Switzerland). Total SO2 was 

measured using a 702 SM Titrino and the manufacturers specifications (Metrohm, Herisau, 

Switzerland). Yeast Assimilable Nitrogen (YAN) was measured by an adapted formol titration 

method as follows. Fifty millilitres of wine samples were adjusted with 1N NaOH to pH 8.5. 

Afterwards, 20 mL of formaldehyde (pH 8.5) was then added. After the pH was stabilized, the 

samples were titrated with 0.1 N NaOH back to pH 8.5. The volume titrated multiplied by 28 

mg/L yielded the YAN values in mg N/L. Table 3.2 summarises the above parameters in the 

juices. Enzymatic analysis by an Arena 20XT (Thermo Scientific, Waltham, Massachusetts, 

United States) was used to determine the initial sugars and malic acid parameters (Table 3.1). 

Table 3.1 Juice parameters 

Cultivar pH Malic Acid 
(g/L) 

Total Sugar 
(g/L) 

Total SO2 

(ppm) 
YAN 
(mg N/L) 

Pinotage 3.75 1.69  270  45  286  

Chenin blanc 3.52 1.61  230  45  226  
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3.2.3 Media and microorganisms 

Wallerstein Nutrient (WL) agar (Sigma-Aldrich, St. Louis, Missouri, United States) was used 

for yeast enumeration. The WL agar was supplemented with 200 mg/L biphenyl (Riedel-de 

Haën, Seelze, Germany) and 30 mg/L chloramphenicol (Sigma Aldrich), to exclude 

filamentous fungi and bacteria respectively. Incubation times were for 4 days at 30°C. Man de 

Rosa and Sharpe (MRS) broth (Biolab, Merk, Modderfontein, South Africa) was made with 

15 g/L bacteriological agar (Biolab) for bacterial enumeration. The MRS agar was 

supplemented with 10% (v/v) preservative free tomato juice for O. oeni enumeration. For the 

exclusion of filamentous fungi and acetic acid bacteria, 100 mg/L and 25 mg/L Delvo®Cid 

Instant (DSM Food Specialists, Heerlen, Netherlands) and Kanamycin disulfate salt, from 

Streptomyces kanamyceticus (Sigma Aldrich) were used respectively to supplement the MRS 

agar. Plates were incubated for 8 days at 30°C in anaerobic chambers using Anaerocult® A 

strips (Biolab). Yeast extract peptone dextrose (YPD) broth (Biolab) was used for pre-culturing 

yeasts under agitation at 30°C. The organisms used are summarized in Table 3.2. All yeasts 

were streaked out and maintained as plate cultures on WL agar. O. oeni was kept at -20°C as 

a dry active culture. 

Table 3.2 Organisms used for this study 

Organism Product 
Name 

Manufacturer Bench 
Code 

Saccharomyces cerevisiae EC1118 Lallemand (Montreal, Canada) Sc 
Torulaspora delbrueckii BIODIVA Lallemand (Montreal, Canada) Td 
Metschnikowia pulcherrima FLAVIA Lallemand (Montreal, Canada) Mp 
Lachancea thermotolerans CONCERTO Chr Hansen (Hørsholm, Denmark) Lt 
Oenococcus oeni CH16 Chr Hansen (Hørsholm, Denmark) CH16 

 

3.2.4 Small-scale fermentations 

For small-scale fermentations, Pinotage and Chenin blanc juice was dispensed in 4.5 L glass 

fermentation bottles for alcoholic fermentations. The Pinotage was adjusted to 240 g/L sugar 

with dH2O to achieve final volumes of 4 L, while the Chenin blanc was left as is (4 L). In total 

five different inoculation types were performed for alcoholic fermentation. A pure Sc 

fermentation serving as the control, combinations of Sc with Mp (Mp/Sc), Sc with Td (Td/Sc), 

Sc with Lt (Lt/Sc) co-inoculations and a final combination of a consortium of all four strains 

together (CON). All strains were grown in YPD broth as previously mentioned before 

inoculation. For malolactic fermentation, the wines were racked off the lees into 2 L 

fermentation bottles and inoculated with 0.1 mg of fresh dry active culture. All alcoholic 

fermentations were static and performed at approximately 15°C for the Chenin blanc and at 

approximately 25°C for the Pinotage. Malolactic fermentations (MLF) were conducted at 
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approximately 22.5°C in an experimental cellar. All inoculation combinations of yeast for AF 

and the subsequent inoculations of CH16 for MLF were performed in triplicate to serve as 

biological repeats. 

3.2.5 Sampling 

Initial samples from each biological repeat were taken at inoculation for alcoholic fermentation, 

while for malolactic fermentation, samples were taken after an hour following inoculation. 

Interval sampling was done after the first 24 hours and thereafter as little as possible to not 

disturb the fermentations. Bottles were thoroughly mixed before 2 mL samples were taken for 

fermentation monitoring. The 2 mL samples were vortexed for 5 secs before a 100 µL fraction 

was used for yeast or bacterial enumeration. After the enumeration of yeast or bacteria, the 

remaining 1.9 mL samples were centrifuged at 10 000×g and 900 µL of supernatant was 

stored at -20°C to be used later for chemical kinetic analyses. The remaining 1 mL supernatant 

was kept as a backup for chemical kinetic analyses (-20°C), except for the end-points of 

alcoholic fermentation and malolactic fermentation where mid-infrared spectroscopy was 

immediately performed after yeast or bacterial enumeration. At the end of alcoholic 

fermentation and malolactic fermentation, 25 mL of wine was sampled, centrifuged at 10 

000×g and the supernatants stored at -20°C for gas chromatography. 

3.2.6 Yeast and bacterial enumeration 

The 100 µL fractions taken for yeast and bacterial enumerations from each biological repeat 

were serially diluted to 10-6-fold and were spread on WL agar for yeast population dynamics 

during alcoholic fermentation and on MRS agar for bacterial viability during alcoholic 

fermentation, using 100 µL of appropriate dilutions. Plates were then stored at 30°C for 4 and 

8 days for yeast and bacteria respectively. Colony counts were determined per organism and 

the respective CFU/mL was calculated. 

3.2.7 Enzymatic analysis 

For chemical determination, the 900 µL supernatants were thawed and centrifuged for 1 min 

at 10 000×g for each biological repeat. Thereafter, 400 µL supernatants were used to 

determine trends, for L-malic acid and L-lactic acid, using enzymatic analyses via the ARENA 

20XT (Thermo Fisher Scientific, Waltham, Massachusetts, United States). Additionally, juices 

were measured for starting sugars prior to alcoholic fermentation. The kits used are 

summarized in Table 3.3 and were obtained from R- Biopharm (Darmstadt, Germany). All kits 

were used per the manufacturer’s specifications.  
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Table 3.3 Enzymatic kits used to measure L-malic acid, L-lactic acid, D-fructose and D-glucose. 

Parameter Kit name Experiment ID/Ref No 

L-malic acid Enzytec Liquid Fermentation monitoring E8280 

L-lactic acid Enzytec Fluid Fermentation monitoring E5260 

L-lactic acid Enzytec Liquid End of MLF for Chenin blanc E8260 

D-glucose Enzytec Fluid Juice characterisation E5140 

D-fructose Enzytec Fluid Juice characterisation E5120 

 

3.2.9 Mid Infrared spectroscopy 

Mid-infrared spectra, for alcoholic fermentation and malolactic fermentation, were obtained for 

statistical analysis using the end-point 1 mL supernatants retained from sampling for each 

biological repeat. The spectra were obtained for fermentations immediately after yeast or 

bacterial enumeration, with 1 mL of centrifuged samples at 10 000×g for 1 min, using 

attenuated total reflection infrared spectroscopy (ATR-IR) on the Alpha II instrument (Bruker, 

Billerica, Massachusetts, United States). The Alpha II instrument was blanked with ddH2O. 

For fermentation monitoring, in terms of total sugar for the fermentations, ATR-IR was used to 

predict values. Absolute values of sugar consumption rates (g/L per day) were calculated 

using the average linear gradient between the end of lag phase and start of stationary phase 

in sugar consumption. 

3.2.10 Gas chromatography 

For solid-phase microextraction (SPME), the 25 mL samples from each biological repeat were 

thawed and centrifuged at 5000×g and 5 mL were aliquoted into separate 20 mL glass vials 

with magnetic screw caps. An internal standard of 50 µL of 0.2 ppm Anisol-D8 (Sigma Aldrich) 

and 1 g of NaCl were added to the vials. An Agilent PAL3 autosampler (Agilent technologies, 

Santa Clara, California, United States) equipped with the standard sample agitator and SPME 

fibre conditioning station was used to extract the volatiles from the sample vial head-space. 

Gas chromatography/mass spectrometry (GC/MS) analysis of the extracts was performed 

using an Agilent HP-5MS column and an Agilent 5977B series MSD detector. The sample 

incubation was adapted from Beckner Whitener et al. (2016). Samples were incubated for 5 

min at 35°C under 250 rpm rotation for 3 secs on and 2 secs rest. Extraction took place 30 

min prior to desorption in the inlet for 12 secs at 250°C. Quality control (QC) vials containing 

an equal mix of all wines were spaced at the beginning and every fifteenth sample thereafter 

within each time batch. The GC oven parameters and MS protocols were taken from Beckner 

Whitener et al. (2016) 
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3.2.11 Gas chromatography data analysis 

Analyte peak areas were divided by the peak areas of the internal standard to normalise the 

data. Chemical compounds were preliminarily identified using the m/z spectra of each peak 

and cross referencing with the National Institute of Standard and Technology (NIST) library 

based on the m/z spectra. Kováts Retention indices (𝑅𝐼 values) were calculated using an 

alkane standard curve shown in Figure 3.1 and Equation 1 taken from Kováts (1958). 

𝑅𝐼 = 100 [(𝑎) +
log (

𝑅𝑇𝑥
𝑅𝑇𝑎

)

log (
𝑅𝑇𝑏
𝑅𝑇𝑎

)
] 

           Equation 1 

Where 𝑎 refers to the lower carbon number and 𝑏 refers to the higher carbon number for 

analyte 𝑥 in question. The terms 𝑅𝑇𝑥, 𝑅𝑇𝑎 and 𝑅𝑇𝑏 refer to the retention times of analyte 𝑥, the 

lower carbon number and higher carbon number respectively. The 𝑅𝐼 values were used in 

conjunction with preliminary identifications based on m/z spectra to confirm compound 

identities using the NIST Chemistry WebBook search tool. 

 

Figure 3.1 Standard curve for retention index calculation based on carbon number. 

3.2.12 Statistical analysis 

Means and standard deviations from biological repeats were calculated for each treatment 

and represented on graphs using Microsoft Excel 2016 (Redmond, Washington, United 

States). Multivariate data analysis and Analysis of Variance of the cross‐validated residuals 
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(ANOVA-CV) tests were performed using SIMCA 14.1, (Umetrics, Umeå, Sweden) software 

to visualise and summarise the data on ATR-IR spectra. Models were built using Partial Least 

Squares Discriminant Analysis (PLS-DA). Microsoft Excel 2016 was used with XLSTAT 

premium 2016.1 (Paris, France) to generate heatmaps. 

Spectroscopy data was scaled using CTR scaling for visualisation of the data set and for 

ANOVA-CV tests. Significant differences were individually tested (p-value below 0.05) 

between final wines of every different inoculation type at the same fermentation phase and 

their respective control (pure Sc) wines of each phase respectively. For example, Td/Sc and 

Sc were chosen as two classes to compare in the Pinotage-AF group were separately tested 

from the Pinotage-MLF, Chenin blanc-AF and Chenin blanc-MLF groups. The same scheme 

was performed for every comparison between an inoculation type and Sc for each group. 

Significant differences were also tested between alcoholic fermentation and malolactic 

fermentation phases for each cultivar using all the treatments. Cultivars were kept as separate 

datasets. 

For SPME GC-MS data, the treatments were grouped together based on fermentation 

phase and cultivar. Group A comprised of Pinotage after AF, group B comprised of Pinotage 

after MLF, group C comprised Chenin blanc after AF and group D comprised of Chenin blanc 

after MLF. Fold changes in chemical compounds for each group were calculated by dividing 

the average normalised peak areas from the biological repeats of each treatment in a specific 

group with the average normalised peak area of Sc biological repeats in the specific group. 

These fold changes were then used to generate heatmaps using XLSTAT. The results were 

clustered by feature and coloured from blue to red through white on a 0 to 2 scale. Each group 

was kept separate when interpreting the data due to the nature of how fold changes were 

derived by using their specific Sc controls. 

3.3 Results 

3.3.1 Fermentation kinetics 

Generally, all the Pinotage fermentations were able to reach dryness by day 6 (Figure 3.2A 

and Figure 3.2B), while the Chenin blanc took 33 days (Figure 3.2C and Figure 3.2D). For 

Pinotage, the fructose consumption for Sc (49.68 g/L per day) Mp/Sc (49.37 g/L per day) and 

Td/Sc (46.60 g/L per day) fermentations were the fastest, while the CON (39.20 g/L per day) 

and Lt/Sc (36.48 g/L per day) fermentations were the slower (Figure 3.2A). The D-glucose 

kinetics were faster for Td/Sc (53.83 g/L per day), Sc (53.03 g/L per day), Lt/Sc (49.45 g/L per 

day) and Mp/Sc (48,97 g/L per day) fermentations. The CON (42.60 g/L per day) fermentations 

were slower (Figure 3.2B). 
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For Chenin blanc, the consumption rate for Td/Sc fermentations were the slowest for D-

fructose (3.79 g/L per day), while Lt/Sc (4.54 g/L per day), CON (4.58 g/L per day), Mp/Sc 

(4.97 g/L per day) and Sc (5.135 g/L per day) showed faster consumption rates (Figure 3.2C). 

For D-glucose consumption, Sc fermentations had the fastest rate (13.65 g/L per day), while 

Lt/Sc (11.94 g/L per day), CON (11.23 g/L per day), Mp/Sc (10.43 g/L per day) and Td/Sc 

(8.47 g/L per day) exhibited slower rates. Only the Td/Sc ferments were not able to achieve 

levels below 4 g/L total sugar, but instead levels of 9.43 ± 2.91 g/L and 2.6 ± 0.21 g/L of D-

fructose and D-glucose respectively. 

 

Figure 3.2 Chemical kinetics during 25°C fermentations in Pinotage (In A and B for D-fructose and D-

glucose, respectively) and 15°C in Chenin blanc (In C and D for D-fructose and D-glucose, respectively). 

Error bars were on average <0.01% of the maximum values. 

3.3.2 Yeast population dynamics for fermentations 

Overall in the Pinotage, the data exhibited that the non-Saccharomyces species populations 

declined rapidly and was below detection by the middle of fermentation, albeit with variable 

rates as seen in Figure 3.3A and Figure 3.3B. For instance, Mp declined below detection after 

1 day while Lt persisted until 2 days and Td showed persistence until 4 days in both pairings 

and CON fermentations. Populations of Sc were able to reach 7.77 log(CFU/mL) and 

7.74 log(CFU/mL), in monoculture and CON fermentations respectively. Populations of Td 

reached 6.88 log(CFU/mL) and 6.90 log(CFU/mL), in Td/Sc and CON fermentations 

respectively. Populations of 6.29 log(CFU/mL) and 6.31 log(CFU/mL) were reached for Lt in 

Lt/Sc and CON fermentations respectively. The population of Mp did not increase. 
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The Chenin blanc displayed different population dynamics compared to the Pinotage as 

seen in Figure 3.3C and Figure 3.3D. Generally, the non-Saccharomyces species populations 

declined slower than in the Pinotage, albeit that the relative fermentation stages of falling 

below detectable levels were similar. The most abundant population was Td in both the Td/Sc. 

and CON fermentations during the early stages of AF (4 days), reaching 7.18 log(CFU/mL) 

and 6.91 log(CFU/mL), respectively. A population of 7.05 log(CFU/mL) and 7.00 log(CFU/mL)  

Figure 3.3 Population dynamics, of Lt, Mp and Td in pairings with Sc (A,C) and in the consortium (B,D), 

in Pinotage (A,B) Chenin blanc (C,D). In A the averages of Sc in all the pairing ferments is represented. 

3.3.3 Malolactic fermentation kinetics 

The inoculation of CH16 was successful, in all ferments in the Pinotage and Chenin blanc, as 

seen in Figure 3.4A and Figure 3.4B respectively. Generally, a slow decline in population was 

observed as MLF proceeded. 
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Figure 3.4 Population trends of CH16 during MLF in the Pinotage (A) and Chenin blanc (B) small-scale 

fermentations. 

The Pinotage took 16 days to complete MLF and the kinetics for L-malic acid consumption 

appeared to be relatively similar between treatments (Figure 3.5A). However, Lt/Sc and CON 

fermentations had higher levels of L-lactic acid at the end of MLF (1.326 ± 0.090 g/L and 

1.304 ± 0.083 g/L, respectively from Figure 3.5B). 

 

Figure 3.5 Chemical kinetics of MLF in the Pinotage (In A and B for L-malic and L-lactic acid 

respectively) and the Chenin blanc (In C and D for L-malic and L-lactic acid respectively). 
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In the Chenin blanc, there were differences in the kinetics. The kinetics for L-malic acid 

consumption appears to be similar for all treatments for the first 9 days. Thereafter, Td/Sc 

fermentations superseded the other trials, followed by Lt/Sc fermentations. A delay in MLF 

was observed for Mp/Sc, CON and Sc fermentations (Figure 3.5C). However, after re-

inoculation for these trials, MLF was able to complete for these fermentations with the slowest 

kinetic being CON fermentations. Similar starting and final levels of L-lactic acid were observed 

for all fermentations (Figure 3.5D). 

3.3.4 Mid infrared spectrum results  

In general, significant differences were observed between the chemical spectra of the different 

wines after AF and after MLF in both the Pinotage and Chenin blanc (Table 3.4). The wines 

clearly separated according to fermentation phase, although the wines could not clearly be 

resolved based on inoculation type (Figure 3.6). However, when comparing pairings with the 

Sc mono-culture fermentations in the Pinotage, only the Mp/Sc wine was significantly different 

from Sc wines after AF.  

Table 3.4 ANOVA-CV generated p-values for tests between AF and MLF wines for Pinotage. Tests 
were performed on individual PLS-DA models between pairing inoculations and Sc. 

Matrix Phase Test p-Value Significant 

Pinotage 

AF and MLF All Wines (AF vs MLF) 3.95e-18 Yes 

AF Lt/Sc vs Sc 0.07 No 

AF Mp/Sc vs Sc 0.01 Yes 

AF CON vs Sc 0.10 No 

AF Td/Sc vs Sc 0.27 No 

MLF Lt/Sc vs Sc 0.07 No 

MLF Mp/Sc vs Sc 0.06 No 

MLF CON vs Sc 1.00 No 
MLF Td/Sc vs Sc 0.29 No 

Chenin Blanc 

AF and MLF All Wines (AF vs MLF) 2.18e-13 Yes 
AF Lt/Sc vs Sc 0.004 Yes 
AF Mp/Sc vs Sc 0.006 Yes 
AF CON vs Sc 0.12 No 
AF Td/Sc vs Sc 0.019 Yes 

MLF Lt/Sc vs Sc 0.17 No 
MLF Mp/Sc vs Sc 0.30 No 
MLF CON vs Sc 1.00 No 
MLF Td/Sc vs Sc 0.62 No 

 

This difference is observed to be diminished following MLF (Table 3.4). In contrast, the 

Chenin blanc wines from Lt/Sc, Mp/Sc and Td/Sc were significantly different to Sc wines after 

AF. However, this significance is diminished following MLF like in the Pinotage (Table 3.4). 
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Figure 3.6 PLS-DA models of infrared spectrum on Pinotage (A and B) and Chenin blanc (C and D) 

small-scale fermentations after AF and MLF. The model is coloured according to fermentation phase 

(A and C), and inoculation type (B and D). Each point represents a biological repeat for each treatment. 

3.3.5 Gas chromatography results 

In total 68 compounds were detected, and 53 identities were confirmed based on m/z spectra 

and retention indices. The 15 compounds not confirmed by retention indices were preliminarily 

identified by m/z spectra but labelled by their respective calculated retention indices. Fold 

changes were detected for certain compounds when compared to Sc fermentations of 

Pinotage and Chenin blanc wines after AF and MLF as seen in Figure 3.8. There is a shift in 

the intensity of compounds from AF to MLF for both Pinotage and Chenin blanc, however the 

compounds affected depended on the type of inoculum.  

For the Pinotage after AF, the Lt/Sc treatments showed that methyl hexanoic acid, methyl 

octanoate and methyl caprate were detected to be at least 2-fold greater than in Sc 

fermentations. In CON treatments only 1-dodecanol was detected to be at least 2-fold greater 

than in Sc treatments. In Td/Sc fermentations, ethyl propionate, propyl acetate, methyl 

hexanoic acid and methyl caprate were found to be at 2.35, 2.13, 2.55, and 2.16-fold more 

respectively. No compounds were detected to be more than 2-fold greater in Mp/Sc treatments 

than in Sc treatments. Methyl octanoate, 1-dodecanol and compound 1130 were however 

detected to be at 1.67, 1.80 and 1.88-fold more in Mp/Sc treatments than in Sc treatments, 

respectively. 
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For MLF treatments in the Pinotage more compounds were detected to be higher than 2-

fold greater than Sc treatments. For Lt/Sc treatments, isobutyl alcohol and methyl caprate 

were detected at 3.38 and 5.87-fold greater than in Sc treatments, respectively. Another 

eleven compounds were detected to be between 2 and 3-fold greater than in Sc treatments 

as seen in Figure 3.9. In Mp/Sc treatments 1-dodecanol was detected to be 9.28-fold greater 

than in Sc treatments, while five other compounds where detected to be between 2 and 3-fold 

greater than in Sc treatments. Only 1- dodecanal was detected to be more than 2-fold greater 

(4.95-fold) in CON treatments than in Sc treatments. Twelve other compounds were found to 

be between 1.5 and 2-fold greater in CON treatments than in Sc treatments. For Td/Sc 

treatments ethyl pelargnate and methyl caprate were detected to be 3.29 and 5.11-fold greater 

than in Sc treatments. An additional ten compounds were found to be between 2 and 3-fold 

greater than in Sc treatments.  

For the AF treatments in the Chenin blanc, the Lt/Sc treatments had 3-octanol, methyl 

caprate and compound 1030 at 7.19, 2.47 and 2.33-fold greater than in Sc treatments. 

Additionally, 3-methylbutyl hexanoate and isoamyl caprylate were found to be between 1.5 

and 2-fold greater than in Sc treatments. For Mp/Sc treatments, compound 1130 was found 

to be 3.63-fold greater than in Sc treatments while an additional five compounds were 

observed to be between 1.5 and 2-fold greater. Table 3.6 summarises the fold changes in 

CON treatments. No compounds were found to be greater than 1.5-fold in Td/Sc treatments 

than in Sc treatments. 

For MLF treatments in the Chenin blanc, Lt/Sc treatments had citronellyl acetate and 

compound 1566 at 6.58 and 5.20-fold greater than in Sc treatments. An additional twenty-five 

compounds were detected to be between 2 and 4-fold greater including decanoic acid at 4.04-

fold greater than in Sc treatments. In Mp/Sc treatments, citronellyl acetate and decanoic acid 

were detected to be 3.56 and 3.82-fold greater than in Sc treatments. Additionally, nineteen 

compounds were found to be between 2 and 3.5-fold greater. For CON treatments, methyl 

caprate and citronellyl acetate were found to be 5.22 and 5.42-fold greater respectively than 

in Sc treatments. Additionally, twenty-two compounds were detected to be between 2 and 5-

fold greater including decanoic acid at 4.84-fold greater than in Sc treatments. Finally, in Td/Sc 

trials, compound 1443 and decanoic acid was found to be 4.95 and 5-fold greater respectively 

than in Sc treatments. Additionally, fourteen compounds were found to be between 2 and 4.5-

fold greater. Exact fold changes of all additional compounds in the different treatments can be 

found in Table ii in Appendix A. 
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Figure 3.8 Relative fold changes coloured from 0 (blue) through 1 (white) to 2 (red) of all the treatments 
when compared to their respective Sc fermentations in groups A (Pinotage-AF), B (Pinotage-MLF), C 
(Chenin blanc-AF) and D (Chenin blanc-MLF). Compound names indicated by an * are the calculated 
RI vales. Preliminary identifications can be found in Table i (Appendix A) based on m/z spectra and 
exact fold changes can be bound in Table ii (Appendix A). 
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Table 3.6 Volatile compounds detected above 2-fold for CON treatments in Chenin blanc after AF 
(Group 2) using GC/MS and their respective fold changes across other treatments in Chenin blanc after 
AF when compared to Sc trials. 

Label C-AF-Lt/Sc C-AF-Mp/Sc C-AF-CON C-AF-Td/Sc 

1130* 1.25 3.63 2.08 1.21 

3-Methylbutyl decanoate  1.22 0.95 2.20 1.15 

3-Methylbutyl hexanoate  1.71 1.98 2.10 1.18 

3-Octanol 7.19 0.00 3.06 0.01 

Ethyl caprate  1.38 1.07 2.26 1.18 

Ethyl laurate  1.29 1.14 2.75 1.26 

Ethyl palmitate  1.29 1.05 2.29 1.02 

Isoamyl caprylate  1.54 0.98 2.14 1.16 

Isobutyl caprate  1.00 0.87 2.44 1.18 

Methyl caprate  2.47 1.27 2.17 1.09 

Propyl decanoate  1.06 0.96 2.26 1.18 

Compound names indicated by an * are the calculated RI vales. Preliminary identifications can be found 

in Table i (Appendix A) based on m/z spectra 

3.4 Discussion 

Since the knowledge on how yeasts grow and survive in multi-species setups during AF and 

how MLF might be affected by this, is limited, this study aimed at providing a better 

understanding on yeast population dynamics and downstream effects on MLF.  

Based on the population dynamics it was evident that the behaviour of the Lt, Mp and Td 

remained similar in mixed fermentations with Sc and in the multi-species consortium. The 

population trends were similar within cultivars but not between the Pinotage and Chenin blanc. 

This could be because of temperature on yeast populations and growth. It is apparent that 

these strains grow and fall below detectable limits based on their respective fermentative 

robustness and response to anaerobic environments. According to the population dynamics, 

Td persisted longer, followed by Lt while Mp always declined rapidly. The Mp trends agree 

with a previous study done by Wang et al. (2016) where M. pulcherrima did not persist after 

48 hours. Studies suggest that oxygen availability, nitrogen availability and glucose 

consumption rate are factors as to why certain strains persist longer than others (Holm Hansen 

et al., 2001; Nissen et al., 2004; Andorrà et al., 2012; Brandam et al., 2013; Wang et al., 2016). 

This effect appears to be consistent on a species level though exhibited at different extents 

between strains. 

Interestingly, in the Chenin blanc Td was able to grow better in the initial stages of the 

fermentations for both the mixed and consortium fermentations. The rates of D-fructose and 

D-glucose consumption were also slower. Similar findings have been reported in a study done 

by Taillandier et al.(2014), where T. delbrueckii NSC123 was investigated under different 
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nitrogen levels, with S. cerevisiae QA23 at 20°C. The sugar consumption was slower in mixed 

fermentations with QA23 when compared to mono-culture QA23 fermentations and the 

population of NSC123 was similar to the population of QA23 during mixed fermentations. 

Though, in mono-cultures of NSC123 the populations reached 8.63 log(CFU/mL) as opposed 

to 8.47 log(CFU/mL) of QA23. The reason for T. delbrueckii being able to grow better and alter 

fermentation rates could be attributed to temperature. It is well known that 

non-Saccharomyces species, like T. delbrueckii and M. pulcherrima, persist better at lower 

temperatures since ethanol effects membrane permeability less at colder temperatures 

(Salvadó et al., 2011). At 25°C however, in this study, Td was not able to exceed Sc population 

levels and did not slow down the fermentations.  

Gobbi et al. (2013) contrasts this study’s results regarding L. thermotolerans, since the 

strain used in their trial was able to persist to the end of fermentation in co-inoculations. This 

could however be strain dependent. The production of L-lactic acid in 25°C treatments does, 

however, agree with the findings of the current study, in that an increase was observed during 

AF. Though the amounts for L-lactic acid differ from this study’s observation at 365 mg/L, this 

could also be strain and juice parameter dependent as seen in other studies (Benito et al., 

2015, 2016). One should note, that the production of L- lactic acid is due to primary metabolism 

in L. thermotolerans and is dependent on the time that S. cerevisiae is inoculated during 

fermentation (Kapsopoulou et al., 2007; Gobbi et al., 2013; Benito et al., 2016). This might 

explain why very little production of L-lactic acid was observed during AF, since Sc was co-

inoculated at the same population as Lt in this study and in Benito et al. (2016) sequential 

inoculation was used. The slower kinetics in 15°C during AF could be the reason why the 

levels of L-lactic acid were relatively the same after AF, as primary metabolism is generally 

retarded at lower temperature for yeasts. It is apparent in this case that, since mono-cultures 

of Sc treatments had the same level as Lt/Sc and CON trials, Lt wasn’t active enough for L-

lactic acid production at 15°C. This is confirmed, since little differences were present in the 

concentrations of L-lactic acid after MLF. This contrasts the 25°C fermented wines that still 

showed higher levels of L-lactic acid for Lt/Sc and CON treatments after MLF. As for why the 

levels were higher after AF for 15°C as opposed to 25°C treatments, this could be an error in 

the enzymatic kit used as it was close to expiry date and could have cause errors in 

measurement. Therefore, a new one was used for the other time points for the Chenin blanc 

wines. 

The infrared spectra obtained provided a fast means to compare treatments with each 

other. The method, however, does not allow us to compare specifically for aroma compounds 

and rather gives a response spectrum on all the chemical compounds that can give an IR 

signal in the wines. The treatments do show differences in chemical profiles and it is well 
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known that the use of various non-Saccharomyces species such as T. delbrueckii, L 

thermotolerans and M. pulcherrima, depending on the strain used, can either decrease or 

increase concentrations of esters, fusel alcohols and terpenes (Comitini et al., 2011; Azzolini 

et al., 2012; Sadoudi et al., 2012; Whitener et al., 2017). Standard parameters, such as 

residual sugar and ethanol, are more dependent on S. cerevisiae. Considering that 

S. cerevisiae was the main driver in all the fermentations and present from the start of 

fermentation, this perhaps explains why the CV-ANOVA tests yielded very few comparisons 

that were significantly different from each other. The phenolics in the red wine would have also 

masked the differences greatly in the spectrum and is perhaps a reason why the differences 

in Chenin blanc were significant and not in the Pinotage. This is exacerbated by the fact that 

the Chenin blanc was fermented at 15°C and non-Saccharomyces are known to perform better 

at lower temperatures (Erten, 2002; Maturano et al., 2015), therefore allowing greater levels 

of aroma modulation to occur. This gave reason that any differences observed (significant or 

not) in the PLS-DA models needed to be investigated with a method that would target aroma 

compounds specifically, such as chromatography techniques.  

The GC/MS data showed how the use of these non-Saccharomyces species during AF 

can yield aroma profiles that contain different amounts of volatile compounds. It is apparent 

here that, indeed, higher levels in the 68 volatile compounds where observed. Chenin blanc 

AF wines were found to have greater increases (when compared to Chenin blanc AF Sc wines) 

than the Pinotage AF wines (when compared to Pinotage AF Sc wines), possibly due to the 

cooler fermentation temperature (15°C) which leads to greater persistence in all the non-

Saccharomyces used. This has been suggested in previous studies since temperature effects 

yeast metabolism (Torija, 2003; Maturano et al., 2016; Alonso-del-Real et al., 2017). Although, 

a repeat of this study involving 15°C fermentations of Pinotage and 25°C should be repeated 

to confirm this hypothesis. The CON fermentations were also found to be higher in ester 

concentrations than in pairings for Chenin blanc AF wines, although decreases were observed 

mainly for the Pinotage AF wines, except for 1-dodecenal and methyl esters of hexanoic and 

octanoic acid. The increase in esters could be attributed to the presence of all the non-

Saccharomyces used and their increased persistence in colder fermentations. However, the 

aromatic profiles of the CON wines are not a sum of the individual profiles from each pairing. 

In terms of MLF (22.5°C), the viability of CH16 might have been different if other yeast 

strains were employed that are incompatible with LAB. Certain strains could have caused 

inhibition on their growth and therefore influence MLF negatively. Examples of inhibition are 

through fatty acid, SO2 and high ethanol production (Alexandre et al., 2004; Arnink and Henick-

Kling, 2005). Since all the strains used were compatible with LAB, it is not surprising that MLF 

was able to proceed in all the treatments. However, it is still interesting to note that MLF was 

Stellenbosch University  https://scholar.sun.ac.za



 

55 
 

delayed in treatments (CON, Mp/Sc and Sc) that were at 15°C during AF and that the 

treatments could resume fermentation after re-inoculation of CH16. This could be due to the 

presence of decanoic acid, however elevated levels of decanoic acid (when compared to Sc 

ferments) was only detected after MLF. 

Decanoic has been known to retard the malolactic enzyme and affect O. oeni viability as 

reported in a study done by Carreté et al.(2002). Their study showed that (in the presence of 

ethanol) decanoic acid, lauric acid, Cu2+ and SO2 retard ATPase activity in O. oeni. Before 

MLF however, the decanoic acid levels were not higher than in Sc treatments. This may be 

due to the early sampling of the wines as soon as AF was complete and MLF only being 

induced once AF in Td/Sc fermentations were completed in the Chenin blanc. The decanoic 

acid might have been released due to yeast autolysis before the wines were racked off into 

the MLF vessels and thus have caused the MLF delays in the treatments. The amounts of 

decanoic acid needs to be quantified to determine if the decanoic acid is indeed responsible 

for the delay in MLF. Other inhibitory compounds or residual nutrient after AF should also be 

investigated.  

Wines that undergo MLF can also be modified aromatically due to the presence of O. oeni 

(Swiegers et al., 2005; Gammacurta et al., 2018). According to the infrared data, it is 

interesting to observe that MLF might cause a loss in chemical composition differences in 

wines fermented at moderate temperatures (25°C) as opposed to when fermented at cooler 

temperatures (15°C). It is important to remember that this may be specific to grape cultivar as 

volatile precursors might be different in the juices (Ghaste et al., 2015) and resulting wines 

before MLF. These precursors can then be modulated by O. oeni (Pérez-Martín et al., 2014; 

Gammacurta et al., 2018).  

The GC/MS results confirm that the Chenin blanc wines where more distinct from their Sc 

treatments and significant in the ATR-IR findings for MLF. It should also be noted that a similar 

trend was observed in Pinotage MLF wines, indicating that indeed the background of the 

phenolics of red wine causes some masking effect when using ATR-IR spectroscopy. To test 

for significance in these differences the detected compounds will need to be quantified and 

subjected to ANOVA tests against their Sc treatments to obtain p-values. Though it is expected 

that considering the observed trends for moderate temperature fermentations and timing of 

S. cerevisiae inoculations, the degree of significance might be less than what could be seen 

in cooler temperature fermentations (Erten, 2002; Kapsopoulou et al., 2007; Maturano et al., 

2015). It is apparent from this dataset that MLF has a greater effect on wine chemical 

composition than yeast treatment, this confirms what has been found in a previous study by 

du Plessis et al. (2017). 
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3.5 Conclusion 

Non-Saccharomyces yeast, such as T. delbrueckii, L. thermotolerans and M. pulcherrima, 

have been studied extensively in one-to-one pairings with S. cerevisiae and therefor strains 

have been commercialised. However, it is important to understand how these species behave 

in a multi-species consortium, as well as what the resulting effects on MLF and wine chemical 

composition might be. There were little differences in the persistence and growth of each strain 

between pairings and the consortium for both the Pinotage at 25°C and Chenin blanc at 15°C.  

No effect on O. oeni populations was observed but a delay in MLF was seen in Chenin 

blanc fermentations. One still needs to be aware of strain compatibility with LAB and under 

what conditions yeast could become inhibitory to MLF. 

The wine chemical composition is not only directly related to the population dynamics 

of the yeast, but it is also dependent on whether MLF occurred or not, especially for moderate 

temperature wines. Consortium fermentations resulted in higher concentrations of esters in 

Chenin blanc AF wines. In general, MLF had a greater effect on wine chemical composition 

than AF leading to increases in ester concentrations when compared to S. cerevisiae trials. 
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Chapter 4 General discussion and conclusion 

4.1 Discussion 

Starter cultures such as Melody™ or Harmony (CHR. Hansen) comprising multiple species of 

yeast are already available to the winemaker as active dry yeast preparations. However, the 

production of such cultures is still in infancy. To develop such cultures, it is important to 

understand how the individual species will perform within such a system and therefore affect 

fermentation kinetics and final wine parameters. Constituent species of such mixtures should 

be chosen individually based on their individual MLF compatibility, however, whether this trait 

is maintained even in complex consortia has not been the focus of research. 

The current study was aimed assessing the growth and fermentation performance of 

commercialised Torulaspora delbrueckii, Lachancea thermotolerans, 

Metschnikowia pulcherrima and Saccharomyces cerevisiae strains within a consortium. The 

population dynamics, chemical kinetics and volatile profile, during AF was investigated. 

Additionally, the effects of the resulting wines on Oenococcus oeni viability, its ability to 

perform MLF as well as the resulting wine volatile profiles, was investigated. In general, 

species dynamics were similar in fermentations performed in Pinotage (25°C) and Chenin 

blanc (15°C). Different growth and persistence patterns were apparent for M. pulcherrima, 

T. delbrueckii and L. thermotolerans. The trends for M. pulcherrima, T. delbrueckii and 

S. cerevisiae were consistent with literature (Taillandier et al., 2014; Wang et al., 2016). 

However, L. thermotolerans in our study showed less persistence than in a previous study 

(Gobbi et al., 2013), though this could be due to different strains tested. The least persistence 

was seen in M. pulcherrima, followed by intermediate persistence in L. thermotolerans while 

the longest was observed in T. delbrueckii. The chemical kinetics showed little differences in 

sugar consumption during AF due to the presence of S. cerevisiae, except a slower kinetic 

was observed for 15°C fermentations containing T. delbrueckii. This may be due to increased 

competition for sugar since T. delbrueckii may perform better in cooler temperatures than 

moderate ones (Taillandier et al., 2014). 

Elevated levels of L-lactic acid were also observed in fermentations containing 

L. thermotolerans compared to other setups at 25°C, but not at 15°C. This could be indicative 

of a retarded central metabolism in L. thermotolerans due to the cooler temperature since L-

lactic acid production results from the reduction of pyruvate to lactate in the presence of lactate 

dehydrogenase (LDH). Previously, LDH has been described to have increased activity with 

an increase in temperature (Birkbeck and Stewart, 1961), therefore the 15°C fermentations 

might have inhibited LDH. However, this was determined with LDH extracted from blood 
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samples. A study on LDH from L. thermotolerans should be performed in order to better 

understand the optimum conditions of yeast-derived LDH. For volatiles, greater increases 

were observed in the Chenin blanc than in Pinotage when comparing them to their respective 

controls. The effects of each treatment on volatile compounds levels were not additive in the 

consortium (CON) wines, but rather generated its own volatile fingerprint in both wines. Eleven 

different compounds were found to be increased in consortium wines when compared to the 

other treatments after AF in Chenin blanc, while consortium treatments in the Pinotage yielded 

a diminished aroma modulation. This could be due to the increased performance of 

S. cerevisiae at 25°C, since it is well known that the populations and aroma effects of non-

Saccharomyces (such as the ones used in the consortium) are heavily dependent on 

S. cerevisiae presence and performance (Nissen et al., 2003; Kapsopoulou et al., 2007; 

Albertin et al., 2017). It is apparent that the use of the consortium at a cooler temperature has 

the potential to modify aroma better than the other treatments.  

With regards to consortium design, the construction of this consortium with all strains at 

equivalent initial populations indicates that a lower initial population of S. cerevisiae might be 

an advantage in these setups. Certain commercial products such as Melody™ and Harmony 

from Chr. Hansen however have S. cerevisiae at a higher population (60% in Melody™ and 

80% in Harmony) in the starter cultures than L. thermotolerans (20% in Melody™ and 10% in 

Harmony) and T. delbrueckii (20% in Melody™ and 10% in Harmony). In situations such as 

these it might be better to increase the levels of the non-Saccharomyces (perhaps to 20% S. 

cerevisiae, 40% for T. delbruecki and 40% for L. thermotolerans or starting both non-

Saccharomyces with a 10-fold advantage). This should lead to a better performance of the 

non-Saccharomyces in a consortium and therefore aid in aroma modulation as found in 

studies who used lower initial levels of S. cerevisiae with higher levels of non-Saccharomyces 

such as Pichia kluyveri, Starmerella bacillaris (formerly Candida zemplinina) and 

Hanseniaspora uvarum (Anfang et al., 2009; Andorrà et al., 2012). Conversely, the opposite 

might be true where higher initial levels of non-Saccharomyces might deplete the environment 

of nitrogen or vitamins and prevent S. cerevisiae from driving the fermentation (Bisson and 

Butzke, 2000; Wang et al., 2003; Medina et al., 2012). Therefore, when considering the use 

of higher levels of non-Saccharomyces, as previously suggested, one needs to consider the 

total amount of nitrogen available in the juice before inoculation. Additionally, yeasts should 

also perhaps be investigated for the amino acids preferences as they have different uptake 

rates for different amino acids (Barrajón-Simancas et al., 2011) when considering the design 

of a consortium. Furthermore, fermentation temperature is also a factor, since products 

prescribed for Chardonnay and other white wine ferments are usually performed at lower 

temperatures which will aid the non-Saccharomyces found in Melody™ and Harmony to 
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perform better. In terms of M. pulcherrima, the use of this organism in red winemaking could 

be of benefit, since it yielded significantly different results in the Pinotage (which was not 

aerated). Using aerating methods commonly employed for anthocyanin extraction in red wine, 

such as pump overs or punch downs, could aid M. pulcherrima to persist longer since oxygen 

helps negate the effects of ethanol and improve cell physiology (Varela et al., 2012; Brandam 

et al., 2013) and M. pulcherrima is known to be more oxygen dependant than other wine 

related yeasts (Morales et al., 2015; Shekhawat et al., 2017). This practise should also benefit 

yeasts such as T. delbrueckii, H. uvarum and Hanseniaspora guilliermondii (Hanl et al., 2005; 

Pérez-Nevado et al., 2006), due to their oxygen requirements. 

During MLF (22°C), no hinderances to O. oeni populations and chemical kinetics were 

observed for Pinotage wines. However, for the Chenin blanc, slower kinetics were observed 

for CON, Mp/Sc and Sc wines, but the O. oeni populations were similar between all treatments. 

It should be noted that the initial levels of L-malic acid were slightly lower in the Chenin blanc, 

though a delay still occurred in some of the trials. It was difficult to establish why MLF was 

delayed in Chenin blanc fermentations, as levels of known inhibitors of MLF, such as decanoic 

acid, could not be quantified. Parameters such as nitrogen sources and SO2 in addition to fatty 

acid quantification should be analysed throughout fermentation. Kinetics of L-lactic acid were 

found to be similar in all treatments, although higher concentrations of L-lactic acid was found 

in Pinotage wines that contained L. thermotolerans (CON and Lt/Sc), due to its production 

during AF. In terms of volatiles, the differences in fingerprints (compared to MLF Sc wines) 

were greater than previously observed in AF wines. This has confirmed what was found in a 

recent study were MLF had a greater impact than yeast treatment on aroma profiles (du 

Plessis et al., 2017). The volatile fingerprints of each treatment were again not additive in the 

consortium. This is likely due to the diversity in ester metabolism found in yeast that varies on 

a strain level and coupled to the external factors (temperature, nutrient availability, pH, 

unsaturated fatty acid levels, and oxygen) which influence ester formation in wine (Styger et 

al., 2011). However, higher relative levels of citronellyl acetate, decanoic acid, methyl caprate, 

ethyl pelargnate, ethyl palmitate, butyl acetate and ethyl butanoate and other esters and fatty 

acids were observed in consortium wines after MLF. 

This study, however, did not evaluate yeasts inoculated at different ratios or at different 

sequential times. These are important aspects to consider, since the persistence and 

metabolic processes of non-Saccharomyces such as L. thermotolerans and others are directly 

related to the presence of S. cerevisiae at high populations (Nissen et al., 2003; Kapsopoulou 

et al., 2007; Gobbi et al., 2013; Albertin et al., 2017). Different combinations of the yeast (i.e. 

rotating the exclusion of one or two species at a time) would also be of benefit since the volatile 

profiles might be different resulting from each setup or perhaps signatures might be 
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established. All of these investigations (including the findings in this study) can be of use to 

industry when designing products as some effects by other species may be negated due to 

the pre-mature domination of S. cerevisiae or inclusion of incompatible strains. Additionally, 

the use of different lactic acid bacteria strains from Lactobacillus plantarum and O. oeni should 

be investigated and the effect of co-inoculation versus sequential MLF. 

4.2 Conclusion 

Overall, the data has shown that a multi-yeast consortium can follow predictable population 

dynamics and chemical kinetics based on each individual yeast’s ability to survive the 

winemaking process and operating conditions. Additionally, if each strain was previously 

determined to be compatible on its own with O. oeni for MLF, it is likely that a consortium of 

these strains would also have little effect on O. oeni populations. However, one should keep 

in mind strain differences and the initial parameters of the juice before fermentation. High initial 

sugars, low nitrogen and the presence of SO2 will affect the ability of O. oeni to perform MLF. 

It is interesting however, that the volatile fingerprint (particularly the esters) of the consortium 

was not additive of the one-to-one mixed fermentations even though chemical kinetics and 

population dynamics were similar. This therefore makes it difficult to predict an outcome for 

volatiles in new combinations of yeast starter cultures. In general, each combination of strains 

at 15°C and 25°C, generated a unique volatile fingerprint after AF. Following MLF, the volatile 

fingerprints of treatments where more different to the mono-cultures S. cerevisiae fermented 

wines than in the AF wines. This indicates that O. oeni has a great role to play in wine aroma 

in addition to yeast strain combination during AF. 

The use of multi-starter cultures can be of great use to enhance wine complexity This is 

apparent since each different combination of yeasts (in number of strains used and different 

species used) in the cultures have the potential to generate unique profiles especially when 

combined with different cultivars and fermentation techniques. 

4.3 Future Work 

From these findings it has been shown that given previously characterised yeast strains in 

specific parameters (temperature, initial sugar, pH etc) fermentation kinetics and population 

dynamics can be reliably predicted. However, the final volatile profiles proof difficult to predict 

as the effects of each strain are not additive in a consortium. Each new starter combination 

should be investigated for their own resulting volatile profiles. This is, however, an early 

investigation into these systems and it needs to be repeated with different combinations of 

strains and parameters. Trials in real juice should perhaps be conducted alongside synthetic 
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media fermentations to establish a baseline for trends in LAB and yeast-derived volatile 

compounds. Studies on gene expression should also be conducted in the future to get an 

understanding on the functional genes in the system contributing to volatile profile modulation. 

Additionally, other factors such as aeration, dispersion, cell segregation and the presence of 

killer strains should be used to follow up these findings. Comparison studies between native 

yeasts (resulting from the terroir) in a spontaneous fermentation and in constructed consortia 

should also be performed to assess differences in population performances, acid modulation, 

volatile profile modulation and MLF compatibility. 
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Appendix A 

 

i. Compounds detected using SPME-GC/MS 

The compounds detected in the different wines for Chapter 3 were identified based on their 

m/z spectra and retention index. Table I lists the identified compounds based on m/z spectra, 

their calculated retention indices from Chapter 3 and their reference retention indices. 

Compounds that did not fit in the standard curve in Figure 3.1 (Chapter 3) and identified based 

on m/z spectra were treated as confirmed identities due to their relatively lower carbon 

numbers. Higher carbon compounds that could not be matched to a reference retention index 

were named by their calculated retention index instead of their identification based on m/z for 

data analysis in Chapter 3. Figure I and Figure II are PCA and PLS-DA models of the Pinotage 

and Chenin blanc wines respectively. According to CV-ANOVA tests, no comparisons 

between non-Saccharomyces mixed fermentations and consortium wines were significantly 

different from Sc controls in each group respectively. Only wines that underwent MLF were 

significantly different to wines that only went through AF in both cultivars. 

 

 

 

Figure I PCA (Left) and PLS-DA (Right) models of GC/MS data on Pinotage wines after AF (green) 
and MLF (blue). 
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Figure II PCA (Left) and PLS-DA (Right) models of GC/MS data on Chenin blanc wines after AF (green) 
and MLF (blue). 

 

Table I Detected compounds accompanied by their calculated and reference retention indices from the 
GC/MS data in Chapter 3. 

Compound based on 

m/z spectra 

Calculated 

RI 

Reference 

RI 

CAS Number References 

Ethyl acetate  609 N/A 141-78-6 N/A 

Isobutyl alcohol  618 N/A 78-83-1 N/A 

1-Butanol  653 N/A 71-36-3 N/A 

Ethyl propionate 704 N/A 105-37-3 N/A 

Propyl acetate  706 N/A 109-60-4 N/A 

3-Methyl-butanol  734 N/A 123-51-3 N/A 

1-Butanol, 2-methyl  736 N/A 137-32-6 N/A 

Isobutyl acetate  774 N/A 110-19-0 N/A 

Ethyl butanoate  804 N/A 105-54-4 N/A 

Ethyl lactate  818 N/A 97-64-3 N/A 

Butyl acetate  818 N/A 123-86-4 N/A 

2-Butanoic acid, ethyl 

ester  

849 844 10544-63-5 Miyazaki et al., 

(2011) 

3-Hexen-1-ol  859 858 544-12-7 Zhao, Liu, et al., 

(2006) 
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1-Hexanol  877 876 111-27-3 Kim et al., (2001) 

Isoamyl acetate  884 883 123-92-2 Shalit et al., 

(2001) 

Amyl acetate  917 916 628-63-7 Weissbecker et 

al., (2004) 

Methyl caproate  928 927 106-70-7 Tešević et al., 

(2005) 

1-Octen-3-ol  981 981 3391-86-4 Liu et al., (2006) 

3-Methylpentyl acetate  984 980 35897-13-3 Andriamaharavo, 

(2014) 

1-Hexyl-acetate  984 N/A N/A N/A 

6-Methyl-5-hepten-2-

one  

989 988 110-93-0 Jalali-Heravi et 

al., (2006) 

3-Octanol  998 998 589-98-0 Sartoratto et al., 

(2004) 

Ethyl caproate  1002 1002 123-66-0 Mahattanatawee 

et al., (2005) 

cis-3-Hexenyl-acetate  1006 1007 3681-71-8 Zhao, Wang, et 

al., (2006) 

cis-3-hexenyl-acetate 1008 N/A N/A N/A 

2-Hexenyl acetate  1010 N/A N/A N/A 

N-Hexyl Acetate  1016 1015 142-92-7 Ruther, (2000) 

ρ-Cymene  1026 1025  99-87-6 Akpulat et al., 

(2005) 

1-Octanol  1030 N/A N/A N/A 

Limonene  1030 1030 138-86-3 Harzallah-Skhiri 

et al., (2006) 

Cineol  1032 1032 470-82-6 Ramos et al., 

(2000) 

Heptyl acetate  1045 N/A N/A N/A 

Ethyl E-2-hexanoate  1047 N/A N/A N/A 

Isoamyl butyrate  1058 1058 106-27-4 Forero et al., 

(2009) 

γ-Terpinene  1061 1061 99-85-4 Siani et al., 

(1999) 
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α-terpinolene  1088 1088 586-62-9 Asuming et al., 

(2005) 

Propyl caproate  1094 1094 626-77-7 Pino et al., 

(2010) 

Linalool  1099 1099 78-70-6 Vagionas et al., 

(2007) 

3-methyl-1-cyclohexene  1103 N/A N/A N/A 

Phenylethyl alcohol  1116 1116 60-12-8 Zhao, Li, et al., 

(2006) 

Methyl-octanoate  1125 1125 111-11-5 Tešević et al., 

(2005) 

Cyclopentane, 1,2-

dimethyl-3-methylene  

1130 N/A N/A N/A 

Isobutyl caprate  1140 N/A N/A N/A 

Octyl acetate  1213 1213 112-14-1 Saroglou et al., 

(2006) 

Isoamyl hexanoate  1251 1250.9 2198-61-0 Andriamaharavo, 

(2014) 

Geraniol  1256 1256 106-24-1 Hennig & 

Engewald, 

(1994) 

3-Methylbutyl 

hexanoate  

1254 1254 2198-61-0 Forero et al., 

(2009) 

Phenylethyl acetate  1259 1258 103-45-7 Oliveira et al., 

(2007) 

1-Decene  1272 N/A N/A N/A 

Vitispirane  1282 1281 65416-59-3 Demyttenaere et 

al., (2003) 

Propyl caprylate  1291 N/A N/A N/A 

Ethyl pelargnate  1295 1294 123-29-5 Pino et al., 

(2005) 

Methyl caprate  1324 1325 110-42-9 Saroglou et al., 

(2006) 

Citronellyl acetate  1353 1354 150-84-5 Jalali-Heravi et 

al., (2006) 
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Appendix B 

 

i. Trial micro-fermentations performed on Cabernet Sauvignon for method 

optimization 

This appendix contains data from Cabernet Sauvignon trial runs, performed in 200 mL 

Erlenmeyer flasks, that was used to optimise the methods used in Chapter 3. Methods and 

materials were the same as found in Chapter 3 for fermentation monitoring and juice 

characterisation. The grapes were obtained from Uva Mira mountain vineyards, were crushed 

and thermo-vinified with the skins, as done in Chapter 3 with the Chenin blanc juice, before 

pressing. Only ATR-IR was used for chemical profiling and no GC/MS was performed. Juice 

parameters were as follows: pH 3.6, 1.82 g/L malic acid, 250 g/L total sugar (adjusted to 230 

g/L with dH2O), 30 ppm total SO2 and 243 mg/mL YAN and determined the same as in 

Chapter 3. 

ii. Fermentation kinetics 

The different fermentations all showed similar behaviour with regards to the consumption of 

D-glucose, D-fructose and L-malic acid (Figure i-A, B and C). Only Lt/Sc and CON 

fermentations showed L-lactic acid production (0.171 ± 0.004 g/L and 0.162 ± 0.005 g/L, 

respectively) in the first day (Figure i-D). The fermentations lasted 6 days and all of them were 

able to achieve dryness (<4 g/L total sugar). After, MLF was induced by inoculating CH16. 

The inoculation of CH16 was successful in all fermentations. Overall the populations for 

CH16 did not differ between the fermentations (data not shown) and MLF took 3 days to 

complete. Generally, the kinetics were similar (Figure i-C) though a faster kinetic was observed 

after 2 days for Mp/Sc treatments (0.250 ± 0.013 g/L of L-malic acid) as opposed to the other 

treatments (an average L-malic acid level of 0.740 ± 0.051 g/L). The kinetic for L-lactic 

production is however similar. 

iii. Population dynamics 

Generally, the non-Saccharomyces could not persist past mid fermentation and fell below 

detectable limits at different times (Figure ii). The weakest persistence was exhibited by Mp, 

in both the Mp/Sc and CON fermentations. Mp persisted until 2 days before falling below 

detectable limits. However, the rate of decline was greater in the CON fermentations than in 

the Mp/Sc fermentations. Intermediate persistence was exhibited by Lt in both the Lt/Sc and 

CON fermentations . It was able to reach a population density of 7.21 and 7.30 log(CFU/mL) 

in 1 day, for Lt/Sc and CON fermentations respectively. Thereafter, the population gradually 
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declined until falling below detectable limits by 3 days in Lt/Sc fermentations and 2 days in 

CON fermentations. The greatest persistence was seen by Td in Td/Sc and CON 

fermentations. Like Lt, it showed a similar growth rate for the first day, reaching a population 

of 7.21 log(CFU/mL). Thereafter, Td reached a population of 7.28 log(CFU/mL) in Td/Sc 

fermentations and 7.25 log(CFU/mL) in CON fermentations. After 5 days, Td fell below 

detectable limits. The population dynamics for Sc exhibited similar trends between the different 

pairing fermentations. It should be noted that on average a higher number of Sc was found in 

Mp/Sc, Lt/Sc and Td/Sc pairings of 8 log(CFU/mL) by 2 days when compared to CON 

fermentations. Gradual decreases in numbers were then observed for all the trials until the 

end of fermentation (6 days). 

iv. Trial run mid-infrared spectrum results 

The PLS-DA score plots, generated for the wines using the infrared spectrum, are displayed 

in Figure iii and coloured according to fermentation phase (Figure 3.iiiA) and inoculation type 

(Figure 3.iiiB). It was observed that the sequential induction of MLF (red) after AF (green) 

affects the different wines. A shift in both dimensions of t[1] and t[2] occurs from AF to MLF. It 

appears that the MLF wines are more like each other than wines that only went through AF. 

The data shows that each replicate of the different inoculation treatments for AF are different 

but more similar for MLF in t[1] and t[2]. 
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Figure i Chemical kinetics of D-fructose, D-glucose, L-malic acid and L-lactic acid during 25°C fermentations in Cabernet Sauvignon (In A, B, C and D for D-

fructose, D-glucose, L-malic acid and L-lactic acid respectively). AF is depicted as the first 6 days before MLF was induced after day 6.
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Figure ii Culture based yeast population dynamics of Lt, Mp and Td in pairings with Sc (A) and population dynamics of Lt, Mp, Sc and Td in the consortium (B) 

for 25°C in Cabernet Sauvignon (In A and B for pairings and the consortium respectively). 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



 

82 
 

 

Figure iii PLS-DA model of infrared spectrum on Cabernet Sauvignon trial runs after AF and MLF. The model is coloured according to fermentation phase (A), 
and inoculation type (B). 
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