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ABSTRACT 

This thesis is completely based on a unique and rich establishment-level panel dataset that has never 

been used before provided by the Central Statistical Office (CSO) of Swaziland to study industrial 

dynamics. It begins with an assessment of aggregate resource flows among sectors of the Swazi 

economy to understand the nature of structural change over a period of 10 years since 1994. We find a 

slight shift in output and labour from the high-productivity manufacturing to low-productivity 

agriculture and services sectors, potentially developing into what is also known as the manufacturing 

hollowing out phenomenon. Within the manufacturing sector itself, the evolution of firm-size 

distribution appears to converge to a bimodal structure; while deeper investigation produces a missing 

‘missing middle’ in the economy. The analysis goes on to evaluate the job creating prowess of small 

firms. The general finding again is that job destruction dominates job creation, regardless of firm-size 

category. However, large firms destroy and create more jobs than small firms, even without relevant 

data to control for firm age. This suggests an absence of transition channels from subsistence to 

transformational entrepreneurship in the Swazi manufacturing sector. 

 

An in-depth analysis of the drivers of aggregate productivity growth is also carried out. It is found that 

resource reallocation across firms is productivity enhancing while longitudinal technical efficiency is 

productivity reducing in the manufacturing sector. However, the firm entry-exit dynamic is the main 

contributor to aggregate productivity growth. In the case of investment dynamics and unobserved 

heterogeneity, there is neither significant impact of the lagged investment variable nor presence of 

individual firm-specific heterogeneity that might raise firms’ propensity to invest in plant, machinery 

and equipment. That is, the impact of unobserved firm-specific characteristics underlying investment 

decisions is also insignificant. The most interesting finding though is that the cost of uncertainty in a 

trade liberalization environment can also be measured in our framework. We find that missing 

investments at time 𝑡𝑡 − 1 reduce the propensity to invest at time 𝑡𝑡 by a significant margin. 

Furthermore, by interacting missing investments with labour, we estimate a significant probability of 

capital substitution for labour. When an endogenous switching regime model of investment is 

estimated, the single investment regime produced by fixed and random effects models is validated. 
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OPSOMMING 

Hierdie tesis is volledig gebaseer op ’n eiesoortige en omvangryke stel paneeldata op die vlak van 

ekonomiese instellings wat deur die sentrale statistiekkantoor van Swaziland verskaf is vir die 

bestudering van industriële dinamika, onder meer totale groei in produktiwiteit. Die studie begin met 

’n evaluering van die saamgevoegde vloei van hulpbronne tussen sektore van die Swazilandse 

ekonomie ten einde insig te verwerf in die aard van strukturele veranderings wat oor ’n tydperk van 

tien jaar sedert 1994 plaasgevind het. Ons sien ’n effense verskuiwing in uitset en arbeid, van die 

hoëproduktiwiteit-vervaardigingsektor na die laeproduktiwiteitsektore van landbou en dienslewering, 

om moontlik te ontwikkel in die verskynsel wat as die uitholling van vervaardiging bekend staan. 

Binne die vervaardigingsektor self ontwikkel die verspreiding van ondernemingsgrootte in die rigting 

van ’n bimodale struktuur; ’n aanduiding van ’n “vermiste middel” in die ekonomie. Die ontleding 

gaan voort deur die vermoë van kleinsakeondernemings om werk te skep te ontleed. Die bevinding in 

die algemeen is weer eens dat werksgeleenthede wat vernietig word die werksgeleenthede wat geskep 

word oorheers, ongeag die kategorie van ondernemingsgrootte. Groot ondernemings vernietig én skep 

egter meer werksgeleenthede as kleiner ondernemings, selfs sonder tersaaklike data om vir die 

ouderdom van ondernemings te kontroleer. Dit dui op die afwesigheid van kanale wat ondernemings 

in die Swazilandse vervaardigingsektor van bestaansentrepreneurskap na transformasionele 

entrepreneurskap kan laat oorgaan. 

 

’n Diepgaande ontleding van die drywers van totale produktiwiteitsgroei word ook gedoen. Daar word 

bevind dat die toedeling van hulpbronne oor ondernemings heen produktiwiteit verbeter, terwyl 

longitudinale tegniese doeltreffendheid produktiwiteit in die vervaardigingsektor laat afneem. Die 

toetree-uittree-dinamiek van maatskappye is egter die grootste bydraer tot totale produktiwiteitsgroei. 

In die geval van investeringsdinamika en onopgemerkte heterogeniteit is daar nie ’n beduidende 

impak van die vertraagde investeringsveranderlike of die aanwesigheid van individuele, 

ondernemingspesifieke heterogeniteit wat ondernemings se geneigdheid om in masjinerie en 

toerusting te investeer, moontlik sal verhoog nie. Dit wil sê, die impak van onopgemerkte 

ondernemingspesifieke eienskappe onderliggend aan investeringsbesluite is ook onbeduidend. Die 

interessantste bevinding is dat die koste van onsekerheid in ’n omgewing van handelsliberalisering 

ook in ons raamwerk gemeet kan word. Ons vind dat verlore investering op tydstip 𝑡𝑡 − 1 die 

geneigdheid om te investeer by tydstip 𝑡𝑡 met ’n aansienlike marge laat afneem. Deur verlore 

investering voorts met arbeid in wisselwerking te plaas, dui ons beraming op ’n beduidende 

waarskynlikheid dat arbeid met kapitaal vervang word. ’n Beraamde model van ’n endogene 

omruilingsbestel bekragtig die enkelvoudige investeringsbestel wat deur modelle van vaste en 

ewekansige effekte geproduseer word. 
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MOTIVATION AND STRUCTURE  

The manufacturing sector traditionally plays an important role as economies grow and industrialize, 

contributing to the overall gross domestic product (GDP), and to the growth of productivity and 

employment. Its performance and dynamics continue to preoccupy economists, policymakers, and the 

public. However, economic development through industrialization seems to be becoming more 

difficult; see Rodrik (2006a, 2013) and McMillan and Rodrik (2011). A deeper understanding of the 

performance of the industrial sector can help small developing countries like Swaziland design 

policies which take these constraints to economic development into account. 

It is often the case that empirical analysis of the sector is performed at the aggregate level, which 

masks the heterogeneous behaviour of firms, including the churning that characterizes the labour 

market and firm turnover. Every year jobs are created while others are destroyed as firms expand and 

contract, or new firms enter the market while old ones shut down businesses. At high levels of 

aggregation, differentials in the magnitude of plant-level output growth induced by an additional unit 

of labour effort are hard to quantify. Aggregates prevent any analysis of the impact that the underlying 

firm’s entry-exit dynamics have on investment, and prohibit an estimation of observed and 

unobserved micro-effects on investment rates. Understanding micro-aspects matters, since sector and 

economy-wide outcomes are an aggregation of firm-level activities. Furthermore, appropriate policy 

responses might differ depending on the nature of firm-level behaviour. That is why theoretical and 

micro-econometric research has increased since the 1980s in response to improved access to firm-

level datasets which help researchers produce sharper results. 

As part of their general remit, many government statistical agencies, including the Central Statistical 

Office (CSO) of Swaziland, collect annual firm-level census data purely for internal office use. This is 

particularly for the calculation of aggregate measures such as the National Accounts. These datasets, 

if they are made more broadly available to researchers, can provide the basis for understanding both 

the firm-level dynamics and macroeconomic outcomes. This thesis represents the first effort to use 

micro-data collected by the Swaziland CSO to investigate industrial dynamics during a key period: 

the democratic transition and subsequent liberalisation in South Africa, a country to which Swaziland 

is inextricably linked. 

Benchmarked against the U.S. Longitudinal Research Database (LRD), the Swazi dataset is of good 

quality in terms of coverage and measurement of variables of interest. Although deficient in certain 

respects, it allows for the analyses of job movements in the labour market, firm turnover, investment 

dynamics and input productivity growth. An interesting aspect of this work is that it is on a small 

landlocked economy surrounded by a trading partner in the Southern African Customs Union 

(hereinafter referred to as the Customs Union) that is geographically 70.26 times larger and in 1994 

was economically 53.42 times larger. This means that in many ways Swaziland is not an equal partner 
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in the Customs Union and has to abide by economic decisions taken by larger members (i.e. South 

Africa). A recent period of substantial change occurred when South Africa democratized in the early 

1990s. This democratization was accompanied by substantial changes in the trade regime which 

affected the Customs Union. The dataset itself spans the entire period of trade liberalization 

precipitated by South Africa’s reintegration  into the world economy in the mid-1990s and thus can be 

used to investigate how Swazi firms responded to this course of events.  

This new economic environment exposed producers in the Customs Union to more import 

competition in a similar fashion to what occurred under similar circumstances in countries like Chile 

(see Pavcnik, 2002). As demonstrated by Edwards and Behar (2005), the exposure that establishments 

had to import competition in South Africa increased their access to new foreign technology that 

enhanced the innovation aspect of productivity in domestic industries. Trade liberalization led to the 

loss of domestic producer market share in the region and to expansion of output induced by 

exploitation of scale economies, particularly in the larger trading partner’s market.  

In the context of the Swazi economy, however, gains from economies of scale are improbable since 

increasing returns might be associated with industries involved in import competition. If trade reforms 

reduce market share of domestic firms without an increase in foreign exports, their propensity to 

invest in foreign technology is likely to decline as protection comes to an end. Therefore, the benefits 

of cheaper capital import goods and access to foreign technology made available by tariff reductions 

are eroded. Although these economic reforms aid procurement of foreign technology, it is uncertain if 

domestic firms adopt such innovations. Some models show how the benefits of innovation are spread 

from one country to another either through knowledge transfer or through the exchange of goods. The 

compelling finding in this case is that the effect of technology diffusion on productivity is vitally 

dependent on the proximity of the technology source and how flexible the labour market is. 

Furthermore, firm-level heterogeneity in its different dimensions suggests that trade liberalization 

may enhance the productivity of firms by inducing primary input and output reshuffling from 

inefficient to more productive firms within the same industry. Firm dynamics such as business 

shutdowns may contribute significantly to the resource reallocation process. In particular, high tariff 

barriers permit the coexistence of establishments with varying levels of productivity. Dismantling 

these trade barriers lowers domestic prices, thereby driving high-cost manufacturers out of business. 

However, these productivity gains are available only if the disposal of capital investment is easy 

enough not to hinder the exit process of less productive plants.  

In some instances, low productivity firms may opt not to exit the market but rather to engage in 

business reconfiguration in order to improve productivity and confront the new competition brought 

about by trade tariff reductions. Even if trade liberalization enhances productivity through the various 

channels, it may achieve that at the cost of firm exit, large resource reallocations and displacement of 
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primary inputs. The threat of initial costs of worker displacements and business closures deters 

policymakers from opening up their domestic markets to foreign competition. In cases where the 

option to choose whether or not to liberalize trade is unavailable, one likely policy choice involves 

pursuing programmes that promote firm entry. An example of this is the Swazi factory shell 

construction programme that reduces the fixed costs incurred by new manufacturers; see Ministry of 

Economic Planning and Development Report (2004/2005).  

This thesis contains four chapters dedicated to understanding the manufacturing sector in Swaziland, 

and is a unique contribution given the nature of the dataset and the time period it covers. This 

contribution is both Swaziland-specific, and also adds to the broader literature on firm-level 

dynamics. Although the thread of interconnection between consecutive chapters is embedded in our 

approach, each chapter is presented as a paper suitable for journal publication. As a prelude to the 

study of behaviour of primary inputs in manufacturing, we first consider the aggregate inter-sectoral 

movement of resources to determine the pattern of structural change in Chapter 1. In constructing a 

transition from the analysis of macroeconomic variables to the analysis of behavioural patterns of 

plant-level resources, we clean up the data, define variables and evaluate the panel dataset for quality 

assurance.  

In Chapter 2, we investigate the patterns of job flows to determine the role of small firms in creating 

jobs in the manufacturing sector. The chapter begins with descriptive analyses of employment trends 

for each two-digit ISIC industry and studies the evolution of firm-size distribution to extract some 

stylized facts about the sector. After laying out the precise framework for in-depth analysis, it goes 

straight to the empirical analysis of job flows. We then conclude with linking job flows to industrial 

productivity in order to learn about the role of turnover on aggregate labour productivity (ALP) 

growth. 

Chapter 3 is concerned with measurement issues associated with the decomposition and analysis of 

ALP growth. It outlines conventional methods of estimating the drivers of ALP growth and contrasts 

them with a new approach based on micro-foundations. The latter approach tracks the value of the 

marginal product (VMP) of labour and uses the index number theory to estimate the right-hand side 

components of aggregate productivity growth (APG). The ultimate goal in this analysis is to establish 

whether or not effects of technology diffusion dominate the impact of input reallocation across firms 

in manufacturing. To the best of our knowledge, this is the first study to use the VMP to estimate 

APG in an African economy. 

Finally, Chapter 4 estimates a structural model of investment to determine the potential role of state 

dependence and the impact of unobserved heterogeneity. It also investigates whether or not firms self-

select into high or low investment regimes. All these objectives are achieved by using fixed-effects 

methods, an array of random-effects techniques as well as regime switching regressions to produce 
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the answers. This Chapter uses a novel approach based on hierarchical modelling techniques to piece 

together random-effects models and nonparametric maximum likelihood estimation methods 

(NPMLE). Such an approach is used for the first time in a structural model of investment that also 

provides a framework to estimate the cost of delayed investment.1 

The slow pace of firm-level investment in capital goods appeared pronounced in the data, implying a 

potentially high level of economic uncertainty during the period under study. This suggests a need for 

firms to exercise an option-to-wait strategy. An economic environment characterized by high levels of 

uncertainty at time 𝑡𝑡 reduces the probability of investing in PME at time 𝑡𝑡 + 1. This cost of the 

option-to-wait strategy can be too high for the sector to experience optimal growth. The strategy also 

implies some capital/labour substitution measured by the sensitivity of investment rates to changes in 

employment. 

As a whole, the thesis suggests that the Swazi economy experienced a lacklustre performance and a 

potential hollowing-out process in the manufacturing sector during the period 1994-2003. There is 

evidence of resources reallocating from high-productivity manufacturing to low-productivity 

agriculture and services sectors. At the plant-level, the manufacturing sector appears to have evolved 

from a unimodal to a bimodal firm-size distribution by 2003, suggesting a ‘missing middle’ problem. 

Firms also destroyed more jobs than they created. Contrary to popular belief, the job creating ability 

of small industrial firms simply failed. Furthermore, in a decomposition of industrial aggregate 

productivity growth, technical efficiency effects only worked to reduce productivity growth, while 

input reallocation across plants was growth enhancing. At the same time, the analysis of investment 

patterns over the same period showed a high level of inactivity and, contrary to conventional wisdom, 

the lagged investment variable had no influence on the current rate of investment. Firms themselves 

were indistinguishable in terms of unobserved investment behaviour; that is, there is no impact of 

unobserved heterogeneity on investment decisions. However, the measured cost of investment 

uncertainty was very high, and so was the capital/labour substitution in favour of the latter. 

  

                                                           
1 I am grateful to Jesús Carro of the Universidad Carlos III de Madrid for his suggestion that I also consider an 
alternative estimation method based on Minimum Distance techniques as a robustness check. 
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CHAPTER 1: Overview 

1.1 Introduction 

Swaziland is a small landlocked and open economy surrounded largely by South Africa and, to a 

lesser extent, by the Republic of Mozambique. Since 1910, it has been a member of a constellation of 

five Sub-Saharan countries that form the Southern African Customs Union (SACU); namely, 

Botswana, Lesotho, Namibia, Swaziland and South Africa. It has also been a member of the Common 

Monetary Area (CMA) since 1974 involving the same countries, but Botswana. This arrangement 

grants Swazi exports free market access within the SACU and the CMA sub-regions without incurring 

any cost of currency exchange. At the same time, some of the country’s key commodities enjoy free 

access to more distant foreign markets such the European Union under the African, Caribbean and 

Pacific (ACP)-European Commission (EC) cooperation agreement and to the US under the African 

Growth and Opportunity Act (AGOA) of 2001. These export products are viewed as politically 

sensitive since they are major drivers of gross domestic product (GDP) through industrial policy that 

promotes job creation and investment in the manufacturing sector. 

Such patterns of development are typical in developing economies. Industrialization in particular has 

been  characterized by positive growth driven largely by structural change since the mid-1980s in 

many African economies; see McMillan, Rodrik and Verduzco-Gallo (2014), Rodrik (2014), and 

Timmer, de Vries and de Vries (2014). The structural change component of aggregate productivity 

growth entails reallocation of input resources across sectors, as opposed to the other component that 

involves growth induced by within-firm technical change. A few leading development economists 

such as Young (2012) and Rodrik (2014) have described this period as an ‘African Growth Miracle’. 

It replaces the traditional pessimism of growth prospects with stories of expanded Chinese investment 

and positive commodity price movements. However, over-dependence on the external environment, 

low levels of productivity and constrained private sector investment in globally competitive industries 

might re-ignite pessimism about the potential to create a sustainable and robust growth path for the 

economies of Africa (Rodrik, 2014). 

This thesis is based on a unique establishment-level panel dataset covering a period of 10 years since 

1994 to study industrial job flows, productivity and investment dynamics. The data have never been 

used before for the analysis of industrial dynamics in Swaziland. This confidential information was 

provided by the Central Statistical Office of Swaziland, or the CSO. Although the source records were 

largely available electronically, some statistics were in physical form and needed digitization. The 

Private Enterprise Development in Low-Income countries (PEDL), a joint research initiative of the 

Centre for Economic Policy Research (CEPR) and the Department for International Development 

(DFID), assisted with funding for the digitization of the data, hiring of a research assistant, financing 

of buy-out time at the University of Swaziland and travel costs for research purposes.  
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The purpose of this investigation is broadly two-fold. First, it exploits the unique dataset to extract 

evidence on micro-activities that culminate in macro-outcomes during a very interesting period in the 

Customs Union. Second, it answers very specific questions:  

a) What is the general nature of structural change in the Swazi economy? How has firm-size 

distribution in the manufacturing sector evolved? Is the popular belief about the job creating 

prowess of small firms a valid proposition for the manufacturing sector in Swaziland?  

b) What impact does firm-level technical efficiency and primary input reallocation across firms 

have on aggregate productivity growth (APG) in manufacturing? As an auxiliary question, 

how much impact does firm turnover have on APG in the sector? 

c) What are the characteristic patterns of industrial investment in plant, machinery and 

equipment in Swaziland? What effects do state dependence and unobserved heterogeneity 

have on investment decisions? Is a structural investment model best explained in terms of an 

investment regime switching model in the manufacturing sector? How can the cost of 

exercising the investment option to wait be measured in an economic environment replete 

with uncertainty? 

A robust finding in the large and growing literature using labour force surveys and population 

censuses is that trade liberalization has facilitated labour reallocation from inefficient uses to more 

productive sectors. In Sub-Saharan economies, however; globalization seems to have generated 

results that move resources from highly productive to less productivity activities, see McMillan and 

Harttgen (2014) and Rodrik (2013, 2015). This suggests that labour resources are moving from urban 

factories to country-side agricultural activities or even to informality. Such forms of structural change 

engender a process of hollowing out, although conceptual and measurement issues around that are not 

yet settled; see Levinson (2016). At the same time, these countries are said to be characterized by a 

‘missing middle’ where firm-size distributions are bimodal rather unimodal, see Gelb, Meyer and 

Ramachandran (2014) and Mazumdar and Sarkar (2008).2 

Similarly, conventional wisdom since the 1980s claims that small firms are principal creators of jobs 

in market economies and developing nations alike following the empirical work of Birch (1987). 

Policymakers have responded by designing policies to prop up small firm participation in the 

economy in the hope of getting more jobs created. Subsequent case studies confirmed the Birch 

findings; see Davis, Haltiwanger and Schuh (1996) for an elaborate discussion. However, recent work 

led by Davis et al. (1996) and Haltiwanger, Jarmin and Miranda (2013) demonstrates that the standard 

results about the ability of small firms to create disproportionately more jobs than their larger 

counterparts are based on flawed conceptual and measurement issues. These researchers found that it 

is firm birth and young firms, that happen to be small, that actually create jobs more than larger ones. 
                                                           
2 See counter arguments from Hsieh and Olken (2014) for the case of the Indian manufacturing sector. 
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It is also the new and young firms that are subject to high levels of churning relative to old incumbent 

firms. 

This implies a particular role for the entry-exit dynamics, the productivity of incumbent firms and the 

primary input reallocation across firms on aggregate productivity growth. The literature is inundated 

with methods largely based on the neoclassical Solow (1957) model that seeks to estimate the drivers 

of productivity growth. Most notable among these is Baily, Hulten and Campbell (1992) and its 

derivatives such as Foster, Haltiwanger and Krizan (2001). However, Petrin and Levinsohn (2012) 

identifies critical deficiencies associated with the neoclassical approaches to estimating the impact of 

resource reallocation across producers. Instead, their paper rationalizes a proposition that is based on 

micro-foundations that trace the value of the marginal product of labour. The latter approach has been 

applied by, among others, Nishida, Petrin and Polanec (2014) to Chile, Slovenia and Colombia.  

The fundamentals of economic development also find partial expression in the robustness of industrial 

investment. Hence, the behaviour of investment in plant, machinery and equipment is also an 

interesting aspect of this work. In particular, we ask; what is the nature of longitudinal dependence of 

investment due to the effects to its previous state and dependence due to firm-specific characteristics 

such as managerial efficiencies; that is, unobserved heterogeneity? A large literature estimating 

structural models relies on either fixed or random effects with balanced datasets; see Arellano and 

Bond (1991), Stewart (2007) and Drakos and Konstantou (2013). However, the insistence on 

estimating dynamic nonlinear models under conditions of balanced datasets leads to the loss of useful 

information and to estimation difficulties due to potentially insufficient observations. As Albarran, 

Carrasco and Carro (2015) argue, the problem is magnified in structural investment models with a 

high incidence of missing values.  

This thesis makes four novel contributions to the literature. First, it presents the first systematic 

results on the creation and destruction of jobs in the Swazi manufacturing sector. Second, it uses 

standard approaches and new methods based on micro-foundations to estimate aggregate productivity 

growth over time and across broadly defined industries. The value of the marginal product has never 

been used in any African economy before, let alone in a small open economy within a liberalizing 

customs union. Third, it demonstrates the impact of confounding effects of plant turnover on resource 

reallocation effects estimates calculated on the basis of neoclassical approaches that populate the 

literature. Fourth, it uses firm-level data to estimate a structural nonlinear investment model without 

the requirement for a balanced dataset. Instead, it relies on a method that does not discard 

observations and still generate unbiased results concerning the variables of interest. To the best of our 

knowledge, this estimation method has never been applied before at this level of disaggregation to 

study the industrial behaviour of producers. 
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It is therefore instructive to begin this study by providing a brief economic background on the country 

in question. Swaziland is a small and landlocked open economy surrounded largely by South Africa 

and, to a lesser extent, by the Republic of Mozambique. Despite its foreign trade index of 1.67 in 

2000 and a relatively diversified production structure, the country’s economic development appears to 

be caught in a middle-income trap; see Brixiová and Kangoye (2013) and Edwards et al. (2013). Its 

economic growth has at best stagnated since the 1990s following the lifting of economic sanctions on 

South Africa and the ensuing de facto trade liberalization in the Customs Union.  

These economic reforms facilitated industrial structural adjustments where new industries were 

created and others were destroyed through the firm-exit dynamic. The impact of the observed firm 

churning and behaviour of incumbent firms on capital goods investment was characterized by caution 

concerning input procurement. Rather, rational firms raised employment only marginally to keep 

operations running since the hiring and firing costs are not as costly a proposition as the cost of 

investment irreversibility.3 Investment in specific skills required by the manufacturing sector to 

remain competitive in the Customs Union and beyond was also held back. This put the country at the 

risk of lagging behind its comparator economies and drifting away from its own development path 

(Edwards et al., 2013). Its exposure to foreign trade shocks due to global and regional economic crises 

dampened the demand for industrial goods manufactured in Swaziland and therefore produced low 

economic growth in the sector.  

This vulnerability to external events reinforced some of the already identified structural constraints to 

growth and competitiveness. There is notable heterogeneity in industrial exposure to exogenous 

shocks and channels for their propagation throughout the sector and the economy as a whole. 

Following the logic of Gabaix (2011), any negative shocks hitting, for example, the sugar industry 

which has firms on the right (fat) end of firm-size distribution is likely to affect macroeconomic 

outcomes. Similarly, given the limited domestic population of firms in each industry, any strategic 

move between two large firms to either merge or acquire another, shakes up the structure of capital 

investments and employment of the whole industry. 

This portrait of industrial economic growth and development in Swaziland is also documented in the 

country’s macroeconomic performance indicators. Any robust and reliable micro-analysis should 

therefore be amenable to a form of aggregation that matches these macroeconomic outcomes. In 

particular, it should mimic the sectoral outputs, fixed capital stock and employment levels. In the next 

section, the structure of the Swazi economy is assessed. Section 1.3 explains the procedure used in the 

preparation and management of data. Section 1.4 performs an elaborate demonstration to show that 

the annual census data on manufacturers is of good quality and therefore suitable for deeper analysis 

in this thesis. 
                                                           
3 See similar arguments in Bentolila and Bertola (1990). 
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1.2 The Structure of the Swazi Economy 

The concepts of structure and structural change in economics originate from at least two main 

sources. One such source is based on the dual-economy approach in development economics and was 

first introduced by Lewis (1954) and Ranis and Fei (1961). It views the economy as a structurally 

heterogeneous system represented by two sectors: one traditional and the other modern, each with 

very specific characteristics. In particular, as argued by Rodrik (2013), the traditional sector depends 

on technologically backward methods of production while the modern one accumulates human and 

physical capital, innovates, and raises its productivity growth. Economic growth is in this sense 

essentially an outcome of resource flows from the traditional to the modern sector. The other source 

has its foundations in macroeconomics under the neoclassical framework of the Solow (1957) growth 

model. In contrast, this model assumes a constellation of heterogeneous activities which are 

structurally similar enough to be aggregated in a representative sector, see Rodrik (2013). A typical 

condition presented in either framework is the assumption of full employment, see Rodrik (2006b). 

It seems useful to think of these conceptual insights as complementary perspectives on economic 

growth, while considering the agricultural and manufacturing/services activities as traditional and 

modern sectors, respectively. According to Rodrik (2013), this provides a basis for associating the 

dual-economy principle with inter-sectoral economic relationships and flows which allow skilled 

labour to move from unsophisticated agriculture to the modern manufacturing/services sector. It also 

raises two issues. First, structural transformation is derived from the rapid inter-sectoral reallocation 

of resources. The sophisticated sector is expected to operate under conditions of increasing returns to 

scale, see Nassif, Feijó and Araújo (2014). The second is the fundamentals challenge of increasing 

skilled labour and effective institutions needed to support productivity across industries in both 

manufacturing and services sectors, see Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012) for 

an argument on the robust impact of institutions on long-run development.  

In the African context, data collected by the Groningen Growth and Development Centre as well as 

the World Bank’s World Development Indicators suggest that the agricultural sector has lost labour 

inputs and value added largely to the services sector rather than to manufacturing since the 1960s 

(Rodrik, 2014). Specifically, industrialization appears to have lost its vitality since the 1970s without 

much recovery in the subsequent decades. The countries studied are not sufficiently rich to experience 

any form of de-industrialization, yet this pattern seems evident in Africa; see McMillan and Rodrik 

(2011) and Rodrik (2014).  

Since the 1990s, developing countries have generally become more integrated into the world 

economy. A country’s ability to benefit from globalization effects appears mostly dependent on its 

readiness to internalize the technological transfers and associated production efficiencies; see 

McMillan et al. (2014). In readier countries, high productivity jobs have increased and structural 
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change has contributed to economic growth. In Africa, contrary to conventional wisdom, labour 

resources pre-2000s have moved from high productivity to low productivity areas, and also to 

informality (McMillan et al., 2014). This was an atypical response of these economies to the standard 

productivity-enhancing effects of trade liberalization. It was characterized by import competing 

industries losing low-productivity firms through exit and gaining high-productivity ones through 

entry. Tariff reduction also required firm-level rationalization of resources by shedding labour to 

improve production efficiency. However, it is these newly unemployed workers that moved to 

agriculture and informality.  

In the post-2000 period, the economic performance of the African continent is referred to as ‘the 

African Growth Miracle’ (Young, 2012) based on the consumption growth rate ranging from 3.4 to 

3.7 percent. McMillan et al. (2014) found a turning point in the structural change performance of 

African countries. A positive contribution of labour reallocation from inefficient activities to more 

productive activities was a prominent characteristic of their results. According to McMillan and 

Harttgen (2014), the patterns of structural change in Sub-Saharan Africa post-2000 mimic patterns of 

structural change that characterize the situation in well-functioning market economies. This 

component of productivity growth contributed one percentage point to aggregate labour productivity 

in this region.  

As a country in the Sub-Saharan region, Swaziland’s economic structure and its evolution can be 

viewed through the lens of a dual economy that is primarily subject to external influences. Since the 

period of analysis covers the entire trade liberalization episode of 1994-2004, the expectation is a 

substantial movement of primary inputs and market shares from low-productivity to high-productivity 

sectors. In Figure 1.1(a), sectoral shares of GDP at factor cost are presented.4 The agricultural sector 

experienced a roughly stagnant share of GDP, with a moderate and intermittent annual increase and 

decline. Although the increase in output shares was evident in both services and manufacturing 

sectors, the two economies co-moved in output share growth until 1997. After this period, the sectors 

formed a bell-shaped funnel, with conservative growth in the annual shares of the services’ GDP. 

Specifically, the output share of the manufacturing sector stagnated at 41 percent in the first half of 

the period and began a steady decline down to 39 percent GDP share by 2003. In summary, as shown 

in Appendix A1.1, the agricultural share of output is largely fixed at the same level throughout the 

period of analysis, the manufacturing sector’s share of GDP is trending downwards and the services 

sector’s share of GDP is trending upwards. The pattern of economic development in Swaziland 

mimics global patterns of structural change as shown in Figure 1.1(b). The world industrial and 

agricultural sectors started growing more slowly than the services sector since 1980. 

                                                           
4 All output time series in Swaziland should be interpreted with caution, given the recent rebasing exercise by 
the Central Statistical Office from 1985 to 2000 constant prices, which shows a dramatic economic growth rate 
of 35.5 percent. 
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Figure 1.1(a): Sectoral Composition of Swazi GDP at 1985 Factor Cost in Emalangeni (LCU)5  

 
Source: IMF Country Reports 99/13, 00/113 and 06/109. 

Figure 1.1(b): Sectoral Composition of World Value Added 

 

Source: UNIDO calculation based on UN Statistics (data in current prices, in US$). 

This empirical outcome is a typical indication of limited structural change in an economic 

environment that lacks robust industrialization. The size of the manufacturing sector and the degree of 

global competitiveness of industrial investment may partly explain poor performance in the sector, see 

Rodrik (2014). This is consistent with the observation by Rodrik (2014) that economic development 

in Africa is not likely to come from the manufacturing sector, but rather from either agriculture or 

                                                           
5 Emalangeni refers to the local currency unit. 
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services. The latter appears at face value to ring true as a potential alternative for Swaziland. 

However, given Swaziland’s level of development, its economic development driven by the services 

sector would constitute premature de-industrialization that might render the country’s economic 

growth trajectory unsustainable at best or divergent at worst; see Rodrik (2015). A recent empirical 

finding by Rodrik (2015) reaffirms that countries have generally developed a hump-shaped 

relationship between incomes and industrialization that has moved closer to the origin. This is 

interpreted to mean that countries are running out of opportunities for entrepreneurial transformation 

in manufacturing as argued in Schoar (2010).  

In Figure 1.2, an evolution of employment by sector is presented for the 10-year period. The number 

of workers employed in the services sector in Swaziland is on average higher than in the agricultural 

and manufacturing sectors every year. The agricultural sector started with higher employment relative 

to manufacturing in the first four years and rose again in the last two years. While the services sector 

shows an increase in employment in the first four years, it drops in 1998 and starts rising again 

thereafter.  

Figure 1.2: Employment by Sector in the Swazi Economy  

 

Source: IMF Country Reports 99/13, 00/113 and 06/109. 

Figure 1.3 plots annual output/labour ratios to represent sectoral aggregate productivities. The 

manufacturing sector is on average 3.7 times more productive than the traditional sector, while it is 

over 1.2 times more productive than the services sector. The services sector is approximately three 

times more productive every year than the traditional sector. In terms of productivity patterns over 

time, although performing better than the other sectors; the manufacturing sector experienced 

persistent deterioration of productivity since 1997 while the services sector shows an improvement 

since a year earlier.  
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Figure 1.3: Sectoral Ratio of Real Value-Added to Labour in Swaziland 

 

Source: IMF Country Reports 99/13, 00/113 and 06/109. 

Taken as a whole, the overall performance of the Swazi economy has been rather mediocre during the 

decade under investigation. All three sectors basically stagnated, at best, or deteriorated, at worst. The 

analysis of economic structural change using changes in the country’s GDP, however, conceals the 

underlying microeconomic dynamics that ultimately translate into these macroeconomic outcomes. In 

the next sections, particular attention is paid to the nature of firm-level data that are used to analyse 

the behavioural patterns of primary inputs, firm entry-exit dynamics and their individual impact on 

aggregate productivity growth in the manufacturing sector. 

1.3 Panel Data Source and Preparation 

The data used in this thesis are constructed from the firm-level “census” data collected by the CSO, 

which is sanctioned by legislation. Although the survey is supposed to be a census, firms are not 

specifically targeted unless they contribute a significant amount of output to the sector. A firm may 

remain off the radar of the CSO until this requirement is met. Furthermore, the response rate also falls 

short of 100 percent, but firms known to contribute substantially to GDP are followed up until returns 

are made. This approach has the effect of leaving out of the census a large number of informal and 

formal microenterprises as well as small manufacturers. Therefore, the probability of an establishment 

responding to the survey instrument increases with establishment size. Given this data characteristic, 

the establishment size distribution is likely to be similar to other datasets which have been used for 
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Our dataset contains information on all surveyed manufacturing producers that responded to the 

questionnaire. This consists of two data-files: the first one includes the component of plant-level 

output consumed domestically and abroad, employment, wages and benefits, material inputs, energy 

(combining electricity, water and fuel), and other balance sheet information. The second data-file 

contains detailed records on each individual establishment’s investment and gross capital formation. 

These include the procurement of and expenditure on land, plant, machinery and equipment, vehicles 

and other transport equipment, office furniture and equipment.  

In order to merge the two data-files, the dataset was cleaned up first.6 The process of data linkage 

relied heavily on Christen (2012) to ensure good data quality. If any of the three fields; namely, 

establishment ID, year or the four-digit ISIC code was empty, the whole record was excluded. The 

merging of the two files produced a single file with a total of 2 179 records and 335 establishments 

that ever operated between 1994 and 2003 with identifiable patterns of industrial and export market 

entry and exit. The resulting dataset was compared with the dataset that was manually compiled by 

the CSO and also the data published in the World Bank Indicators to establish representativeness. Any 

differences were accounted for by the inclusion of mining and quarrying establishments and 

establishments that had either zero or missing values for output, material and/or employees. During 

the post-2003 period, the CSO experienced technical difficulties with capturing some of its returns, 

and our data set shows this by the acute decline of establishment count from a total of 171 in 2003 to 

128 in 2004 and only 89 in 2010. 

To characterize firm entry-exit dynamics in manufacturing, an entrant firm is one that sufficiently 

expands output and contributes to the top 90 percent of GDP in its industry and enters the database at 

time 𝑡𝑡 while its ID code is missing at 𝑡𝑡 − 1. Firm exit is distinguished by the presence of its ID code 

at 𝑡𝑡 and a missing ID code at 𝑡𝑡 + 1. A continuing firm has its ID code in the database at time 𝑡𝑡 − 1 

and 𝑡𝑡 for backward calculations or time 𝑡𝑡 and 𝑡𝑡 + 1 for forward calculations. The literature favours 

the first definition of an entrant firm; see Dunne et al. (1988). Table 1.1 presents a full schema 

defining firm entry/exit dynamics adopted in this work.7 

  

                                                           
6 Data quality issues in quantitative research are crucial for the validity of subsequent conclusions drawn. In our 
case where separate databases are located in different electronic platforms, they need to be combined for ease of 
analysis. One alternative involves a process of duplicate deletion to ensure a correct history of the firm’s 
performance in the panel is pursued. Achievement of this mission leads to a comparison analysis of variables in 
the unified database with similar variables in official data to establish representativeness of census data. It is 
only after these activities and variable definitions that a systematic data analysis is carried out to answer 
predetermined questions, see Christen (2012). 

7 This definition is similar to Jarmin and Miranda (2002) and Roberts and Tybout (1996) for the Longitudinal 
Research Database in the U.S. 
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Table 1.1: The Schema of Firm Entry and Exit Dynamics 

Firm Type (𝒕𝒕 − 𝟏𝟏) (𝒕𝒕) (𝒕𝒕 + 𝟏𝟏) 
Entry Missing Active − 
Exit − Active Missing 
Incumbent-Lag Active Active − 
Incumbent-Forward − Active Active 

Note: Active means the presence of establishment identity code  

The nomenclature reported in Appendix A1.2 is a standardized industrial set of definitions and 

conventions used in Roberts and Tybout (1996) for developing countries and Haltiwanger et al. 

(2013) for the USA. A detailed specification and robustness checks for capital adjustment based on 

the perpetual inventory method (PIM) are presented as Appendix A1.3. The capital stock series is 

robust to small variation in definition and the actual panel data analysis is carried out in the next 

chapters of this thesis. 

There is however a caveat with the panel dataset. We use the U.S. Census Bureau’s Longitudinal 

Business Database (LBD) as a quality benchmark for the micro-level manufacturing data to identify 

any possible caveat in the Swazi data. Firstly, the data collection instrument makes no provision for 

distinguishing between a firm, a plant or an establishment. Normally, a firm with multiple 

establishments receives a unique identity code and its individual establishments are allocated unique 

identity codes that is not linked to the parent company. As a result, longitudinal linkages that provide 

for accurate measurement of establishment and firm deaths and births are not available in the dataset. 

This unavoidably leads to spurious entry and exit dynamics. Furthermore, when a firm or 

establishment exits the market, it does not retain its original unique identity when it re-enters the 

industry. Instead, it is issued with a new unique identity code. Again, a change in firm ownership due 

to either business acquisition or merger does not lead to a change in firm identity code. The purchased 

firm or establishment simply disappears from the radar of the CSO. This lack of distinction between 

the firm and its constituent establishments hinders tracking of the dynamics of both entities to 

understand firm growth and entry-exit dynamics. This implies that we can neither calculate between-

firm nor between-establishment rates of job flows.8 

Secondly, the unavailability of information on firm age also prohibits any analysis of the relationship 

between firm size and net job creation, conditional on firm age. The standard ad hoc definition of firm 

entry based on the first appearance of its unique identity code and using that as a basis for calculating 

firm age is deficient. If a firm’s probability of making it to the radar of the census instrument of data 

collection is conditional on some administrative criteria, it is probable that the firm may be surveyed 

                                                           
8 If between-firm reallocation rates dominate between-establishment reallocation rates, then such patterns are a 
reflection of employment shifts between establishments of the same firm, see Davis and Haltiwanger (1999). 
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years after its actual birth and still be classified as an entrant. As a result, business start-ups and young 

firms cannot be consistently identified. It is a crucial feature of the data that the majority of small 

firms, most of which are likely to be young, are excluded from the annual surveys by design.9 The 

under-representation and lack of age variable for this group of firms means we cannot reliably assess 

the relationship between net employment growth and firm size. 

1.4 Panel Data Representativeness 

The previous section discusses the data sources and implicit quality features in relation to the US 

benchmark. In this section, the data set is assessed to establish its representativeness of domestic 

aggregate outcomes. Thus, a high degree of similarity between aggregated firm-level series data and 

the official or published macroeconomic indicators is treated as evidence of representativeness of the 

Annual Manufacturing Census of firms. For conciseness, variables of interest are real value added, 

real capital stock and employment over time and across industry. The closer in magnitude the CSO 

aggregates are to the published macroeconomic indicators the better. In Table 1.2, these comparisons 

are made.10 

Table 1.2: Representativeness of Firm-Level Annual Census Data for the Manufacturing 
Sector* 

 Data from existing macroeconomic sources Calculated from CSO firm data 
YEAR Employment 

(PE) 
Capital Stock 

(E’ Million) 
Value Added 

(E’ Million) 
Employment Capital Stock 

(E’ Million) 
Value Added 

(E’ Million) 
 Column 1 Column 2 Column 3 PE WP Column 4 Column 5 
1994 16 055 828 2 865 16 176 132 903.1 2 414 
1995 16 358 1 225 2 979 17 086 150 962.2 2 938 
1996 15 969 1 241 3 052 16 396 155 1 081.1 3 122 
1997 16 277 1 707 3 219 16 917 95 1 137.7 3 003 
1998 17 773 1 978 3 270 18 488 152 1 377.1 3 273 
1999 17 905 2 099 3 311 17 907 275 1 666.1 3 421 
2000 18 897 1 189 3 360 16 844 307 1 826.7 3 427 
2001 19 898 1 129 3 392 26 639 355 1 998.2 4 009 
2002 19 370 1 551 3 465 29 879 384 2 157.0 3 420 
2003 20 165 1 773 3 527 21 683 307 1 810.9 2 345 
Source: Official Macroeconomic Indicators in Columns 1-2 come from the IMF Annual Country Reports (1999, 
2000, 2003 and 2006). The real value-added series in Column 3 comes from the World Bank Indicators. 
Columns for PE and WP as well as Columns 4-5 come from the Annual Census collected by the CSO. PE and 
WP denote Paid Employees and Working Proprietors, respectively. Note: *Value added and capital stocks are 
expressed in constant year-2000 prices. 

                                                           
9 This data weakness prohibits consistent investigations of the role of entrepreneurship on job creation and 
economic dynamism and prevents determining the relative dominance of subsistence versus transformational 
entrepreneurship in the manufacturing sector in Swaziland, cf. Decker et al. (2014) and Schoar (2010). 
10 An enquiry with the CSO Authorities in July 2016 revealed that published aggregate time series reflect the 
output of those firms that contribute to the top 90 percent of GDP in the relevant industry. In order to maintain a 
clear trend, trend smoothing techniques to remove any discernible volatility are then applied. Aggregate datasets 
submitted to multilateral agencies are subjected to another set of standardization rules for ease of international 
comparisons. 

Stellenbosch University  https://scholar.sun.ac.za



13 
  

It is instructive at this point to explain how the two sources of data are compiled. First, published 

information by the CSO considers large firms that consistently contribute significant output over time. 

These macro-indicators are also initially standardized by subjecting the time series to trend smoothing 

techniques to remove any cyclicality, seasonality and any irregularity that may characterize the data. 

Therefore, any exogenous shocks to the macro system might be muted in the published aggregates. 

Second, the firm-level panel dataset used has been cleaned up to remove only observations with 

missing sales revenue and/or employment. In order to replicate the orders of magnitude of the macro-

indicators, only paid employment for firms with more than 50 workers is reported, although in 

subsequent chapters firms employing fewer than 50 workers are used in the analysis. The labour 

series closely mimic the published aggregates, except for the labour sizes in 2001-2002. In the public 

data, these two years are likely to have been smoothed out by the Authorities. In the case of real 

capital stock, while using the perpetual inventory method (PIM) explained in the appendix, the rentals 

from buildings were not capitalized and a backward calculation was then performed.  

For ease of comparison, the employment column in the CSO data separates Working Proprietors (WP) 

from Paid Employees (PE). The PE column representing employment numbers collected from official 

macroeconomic sources is compared with employment numbers in the PE column calculated from the 

CSO panel data set. Although the two series commove in synchrony, the CSO aggregate employment 

numbers overshoot the official employment numbers in 2001 and 2002. This could potentially be 

explained as an outcome of strict smoothing procedures implemented by the authorities on official 

statistics to avoid extreme values of aggregate employment. The columns for the official and panel 

data real capital stock match as reasonably as could be expected, except for intermittent deviations 

from one another. Similarly, the real value-added series are well-matched. That is, the real value 

added series also mimic the macroeconomic indicators when only data from larger firms are 

considered. 

Looking at the firm-level cross-sectional panel data, the manufacturing sector is driven by the 

performance of only a few tradable commodities in the food, textile, wearing apparel, wood, and pulp 

and paper industries, see Edwards et al. (2013). Table 1.4 presents aggregate statistics compiled from 

the panel dataset by industry. The columns report proportions of real values of production and capital 

stock as well as employment for each industry during the 10-year period. The food industry accounts 

for 19.47 percent of real value added whereas the pulp and paper industry accounts for 47.78 percent. 

The former is the most labour intensive industry hiring 47.66 percent of manufacturing workers and 

the latter is responsible for 11.55 percent. However, the pulp and paper industry contains 43.38 

percent of the total capital stock in the manufacturing sector. 
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Table 1.3: Real Value Added and Primary Inputs by Two-Digit ISIC Industry (1994-2003) 

INDUSTRY 
VALUE ADDED 

(Percentage) 
CAPITAL 

(Percentage) 
EMPLOYMENT 

(Percentage) 
 

Food (15) 19.47 9.50 47.66  
Textile (17) 5.90 2.08 15.83  
Apparel (18) 0.74 2.28 2.70  
Wood (20) 2.96 2.92 4.16  
Pulp & Paper (21) 47.78 43.38 11.55  
Printing & Publishing (22) 1.09 2.69 2.29  
Chemicals (24) 6.63 5.62 3.28  
Rubber (25) 1.35 12.33 0.79  
Non-Metallic Mineral (26) 1.41 3.68 2.03  
Basic Metals (27) 0.25 2.61 0.23  
Fabricated Metal (28) 0.82 3.86 2.21  
Furniture (29) 5.38 3.38 2.76  
Other Manufacturing (36) 6.21 5.67 4.50  

 Source: Own calculations from SCO data. 

Given the limited domestic market size, producers in each industry tend to focus only on a limited 

product mix. Local exporters are themselves highly concentrated, such that either a strategic action of 

one large producer or its vulnerability to a significant external shock can shake up the performance of 

the entire industry. This was observed in the merger and acquisition involving two firms in the pulp 

and wood industries in 1998 and can be seen in the underlying data. Edwards et al. (2013) note that 

most manufactures are exported to protected markets in the Customs Union, the European Union for 

sugar, the U.S. for textile and apparel through AGOA, and Norway for beef through the SACU-EFTA 

(European Free Trade Area). This fact alone exposes the sector to the risk of preferential treatment 

erosion with potentially adverse effects on the individual producers, the industry, upstream customers 

and suppliers of intermediate inputs.11 Furthermore, commodities traded in the free world markets are 

subject to price volatility as well as to the Prebisch-Singer thesis, which suggests primary products are 

likely to experience long-term price deterioration relative to manufactures. 

1.5 Conclusion 

The analysis of structural change in Swaziland shows a persistent weakening of the manufacturing 

sector in terms of its share of economic activity and employment relative to the services sector. The 

manufacturing sector’s share of GDP is trending downwards while the agricultural share of output is 

largely fixed at the same level throughout the period of analysis. During the same period, the services 

sector’s share is trending upwards. The size of the manufacturing sector in Swaziland, the lack of 

robust industrialization and the limited diversification into globally competitive industrial investments 

are potential constraints to structural change. In the large and growing literature, the observation is 

that economic development in Africa is not likely to come from the manufacturing sector, but rather 
                                                           
11 Cf. the deposition by Mulally (2008, pp. 31-32) to the US Committee on the Automobile Industry in Detroit. 
Also see Gabaix (2011) and Acemoglu et al. (2012) for a theory of propagation of idiosyncratic micro-shocks 
that produce aggregate outcomes. 
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from either agriculture or services. However, given Swaziland’s level of development, economic 

development driven by the services sector would constitute premature de-industrialization that might 

render the country’s economic growth trajectory unsustainable at best or divergent at worst.  

At a micro level, the character of the firm-level data has been evaluated to establish its quality in 

relation to published macro data. The annual census data for the manufacturing sector in Swaziland 

closely resembles similar datasets collected by other statistical agencies. In order to analyse the panel 

dataset directly, the entry-exit dynamics are measured on the basis of a plant’s identity code appearing 

for the first time rather than on firm registration or the last date of existence in the database, 

respectively. On the whole, we can make the claim that the dataset is of a quality at least as good as 

any other compiled by a government statistical agency. 

The preliminary analysis of the data by two-digit ISIC industry shows the sector’s overdependence on 

a few primary commodities for export to preferential markets. This exposes producers, upstream 

suppliers of inputs, and downstream customers to potential risk of preferential treatment erosion. For 

example, a loss of market access for sugar in the EU and U.S. would cause the sugar industry to trade 

in the volatile world market where sugar prices are generally depressed. Export revenue would decline 

significantly forcing sugar producers to scale down operations. Likewise, upstream sugarcane farmers 

would receive reduced revenue, such that the scale of production would also need to be diminished. 

Again, downstream manufacturers of soft drink concentrates and other users of sugar would have 

inadequate supplies of this critical input, and may have to import it and incur transport costs. The 

effect on the whole value chain would be a loss in revenues and employment. 

Our future enquiry will  take advantage of the newly available and rebased time series on sectoral 

outputs and inputs to investigate the extent of structural change and the impact of innovation and 

transformational entrepreneurship ‘within’ sectors in Swaziland.  

  

Stellenbosch University  https://scholar.sun.ac.za



16 
  

APPENDIX 

Appendix A1.1: Sectoral Shares of Swazi GDP at 1985 Factor Cost 

YEAR Agriculture Manufacturing Services TOTAL 
1994 0.12 0.41 0.47 1.00 
1995 0.11 0.42 0.47 1.00 
1996 0.13 0.41 0.46 1.00 
1997 0.13 0.41 0.46 1.00 
1998 0.13 0.41 0.46 1.00 
1999 0.13 0.40 0.47 1.00 
2000 0.12 0.40 0.48 1.00 
2001 0.11 0.40 0.49 1.00 
2002 0.12 0.39 0.49 1.00 
2003 0.13 0.39 0.49 1.00 
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Appendix A1.2: Definitions of Variables and Section D Sectors 

Variable Definition 
Deflators Annual deflators sourced from the WBI are weighted by  𝜗𝜗it = (Rit+Rit−1)

Σi∊ℰjt(Rit+Rit−1)
, where Rit is the 

establishment i’s quantity that is subject to deflation in year t and ℰjt is the set of enterprises in 
the jth four-digit ISIC industry at time t.  These deflators include the fixed asset deflator for 
capital assets, new capital investments, and the manufacturing value added (MVA) for output 
and material inputs. Wages are deflated with annual inflation sourced from Central Bank 
Annual Reports. 

Output (Qit) The total value of outputs for establishment i in year t to local and foreign markets is 
Qit = 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖

 𝜗𝜗it∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡
+ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖

 𝜗𝜗it∗𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡
+ NFIit+NWPit

 𝜗𝜗it∗MVADEFt
, else Qit = TVSit if NFIit+NWPit = 0, where 

TVSit = 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖
 𝜗𝜗it∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡

+ 𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖
 𝜗𝜗it∗𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡

 is the total value of outputs for establishment i in year t to 

local and foreign markets, NFIit is the difference between the values of end-of-year and 
beginning-of-year finished goods inventories for establishment i in year t, NWPit is the 
difference between the values of end-of-year and beginning of-year work-in-progress 
inventories for establishment i in year t, and MVADEFt is the annual manufacturing value 
added deflator. When components of NFI or NWP are missing, they are set to zero. 

Capital Stock 
(Kijt

k ) 
Kijt
k = Iijtk + (1 − δk)Kijt−1

k , where Iijtk  denoted the real flow of new investment of asset type k 
for establishment i in industry j and year t, δk represented the rate of depreciation of asset 
class k, and Kijt−1

k  was the previous year’s capital stock in industry j. The j subscript is used to 
refer to a wave in Chapter 4. The capital series is constructed using the perpetual inventory 
method (PIM). 

Labour ( Labit)  Use paid employees and working proprietors. 
Material (Mit) The cost of real establishment-level non-energy material, Mit, is calculated as  

Mit =
CMit+CSit+CWit

 𝜗𝜗it ∗ MVADEFt
,  

where CMit is the cost of material for establishment i in year t, CSit is the cost of re-sale 
products for establishment i in year t, and CWit is the cost of work done for the establishment 
by others on the establishment’s materials in year t. We calculate real energy-water costs as 
shown in  

Eit =
EFWit

 𝜗𝜗it ∗ EPIlt
 

where EFWit is the cost of purchased electricity-fuel-water for establishment i at year t and 
EPIlt is the industry-level energy deflator. 

Wage (𝑊𝑊𝑖𝑖𝑖𝑖) 
 

The real wage, 𝑊𝑊𝑖𝑖𝑖𝑖 = Wagesit
 ϑit∗ CPIt

, is the total annual payroll for establishment i at year t, where 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡  is the Consumer Price Index. This excludes all personnel overheads like housing, 
transport, pension and others. 

 
Live Sectors 

Food and Food Products (15), Textiles (17), Wearing Apparel (18), Wood and Wood Products 
(20), Pulp, Paper and Paper Products (21), Publishing and Printing (22), Chemicals (24), 
Rubber and Plastic Products (25), Other non-Metallic Mineral Products (26), Basic Metals 
(27), Fabricated Metal Products (28), Machinery and Equipment (not elsewhere classified; 
i.e., n.e.c.)  (29), Furniture and Other Manufacturing (n.e.c.) (36) 
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Appendix A1.3: Construction of a Capital Series 

The definition of establishment or firm-level capital in the literature is diverse and ranges from a 

combination of equipment, machinery, plant, and transport equipment, depending on data availability. 

In what follows, we use the perpetual inventory method (PIM) to construct capital stocks based on net 

fixed asset expenditure on plant, machinery and equipment. Our measure of capital stock allows us to 

initiate the process with the cost of fixed assets per capita and also implement a backward calculation 

of the series. The net investment, 𝐼𝐼𝑖𝑖,𝑡𝑡 = 𝐸𝐸𝑖𝑖,𝑡𝑡−𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡, where  𝐸𝐸𝑖𝑖,𝑡𝑡 is investment expenditure and 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡 is 

fixed capital retirement, enables us to study the fixed capital asset behaviour. Therefore, we proceed 

as follows:  

Case I: Kit = δKit−1 + Iit, assuming Iit ≠ 0 for some 𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇. When this accounting identity 
produces Kit = 0 for some 𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇, then the nominal fixed-capital-assets (𝑧𝑧𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛) plus 
capitalized rentals for buildings (𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) is used as capital stock. Rent capitalization is partly an 
outcome of the Government’s factory shell programme since the early 1990s. 

Sensitivity Analysis 

The prevalence of zeros in the establishment-level net investment data set requires careful analysis of 

the capital stock series constructed. Thus, in order to perform a sensitivity analysis, several 

assumptions are made and the capital stock series is recalculated to check its robustness. The forward 

calculation is performed by initializing it with the expenditure on fixed assets and results stored. We 

then reverse the capital stock computation by starting from the last year and these results are also 

stored. Both sets of results are then compared with the results in Case I to see if the series is 

replicated.  

Case II: Kit = δKit−1, assuming Iit = 0 ⩝  𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇. When Kit = 0, then the real fixed-

capital-assets (𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) plus 𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is used as capital stock.   

Case III: Kit = δKit−1 + Iit, assuming Iit ≠ 0 for some 𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇. When Kit = 0 for some 𝑖𝑖 ∊
𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇, then the 𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 plus 𝑧𝑧𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 = 1

3
∑ 𝐼𝐼𝑖𝑖𝑖𝑖

𝐾𝐾𝑖𝑖𝑖𝑖−1

𝑡𝑡
𝑡𝑡=−3 ,  the average investment rate calculated over the 

three year period prior to Kit = 0 for some 𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇, is used as capital stock.  
Case IV: Kit = δKit−1 + Iit, assuming Iit ≠ 0 for some 𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇. When Kit = 0 for some 𝑖𝑖 ∊

𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇, then the capitalized depreciation charge (𝑧𝑧𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

0.9
) plus 𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is used as capital stock.  

Case V: Kit = δKit−1 + Iit, assuming Iit ≠ 0 for some 𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇. When Kit = 0 for some 𝑖𝑖 ∊

𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇, then the (𝑧𝑧𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

0.9
 + 𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) is used. If 𝑧𝑧𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

0.9
= 0 is for some 𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇, then (𝑧𝑧𝑖𝑖𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 

+ 𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) is used as capital stock. 

Case VI: Kit = δKit−1, assuming Iit = 0 ⩝ 𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇. When Kit = 0 for some 𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊

𝑇𝑇, then the  𝑧𝑧𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

0.9
 + 𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is used. If  𝑧𝑧𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

0.9
= 0 for some  𝑖𝑖 ∊ 𝑛𝑛 and 𝑡𝑡 ∊ 𝑇𝑇, then (𝑧𝑧𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛+𝑧𝑧𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) is used 

as capital stock. 
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CHAPTER 2: Job Creation and Destruction in Swazi Manufacturing  
2  
2.1 Introduction 

Economic development and growth in Swaziland evolved from a period of impressive performance in 

the 1980s due to incoming resources from the larger and inward-oriented trading partner, South 

Africa. High-productivity firms and subsidiaries relocated to Swaziland to extract rents from cheaper 

intermediate inputs and also gain access to foreign markets available to Swazi exporters. As a result, 

the national gross domestic product (GDP) grew by 11 percent in the manufacturing sector. However, 

the 1994 political dispensation in South Africa altered the business terrain in the Customs Union, with 

South African trade liberalization becoming a de facto economic policy reform for all member States.  

The 1990s therefore marked the beginning of a major turning point in the history of economic 

development and growth in the Swazi economy. In response to the new competitive pressures, Swazi 

firms either engaged in structural adjustments to operate lean businesses, or relocated to larger 

markets including South Africa, or even liquidated their assets and closed down. These firm-level 

outcomes led to the shedding of labour and lost the ability to employ new workers. Such activities 

raised the economy-wide level of unemployment to 22 percent in 1995, and by 2007 the level of 

unemployment had increased to 26.3 percent, with the population aged between 15-24 years hardest 

hit at 53 percent, see Edwards et al. (2013) and Brixiová and Kangoye (2013). Are the observed 

developments explained by tariff reduction or by South African multinationals with subsidiaries in 

Swaziland consolidating resources to enhance their own export market shares? 

The purpose of this chapter is to investigate the patterns of job flows and to link these to cross-

sectional aggregate productivity growth differences during the economic reform period. This is the 

first systematic evidence of job creation and destruction in the Swazi manufacturing sector. It assesses 

the evolution of firm-size distribution to confirm or refute the apparent lognormal distribution 

suggested by the national survey of small and medium enterprises conducted in 2003. The estimation 

of job creation and destruction makes a distinction between the contributions of small and large firms. 

There is already a popular belief across economies of the world that small firms are job creators, and 

this perception is supported by many case studies including Davis et al. (1996) for the U.S., provided 

firm age is not controlled for. 

In response to this increasingly robust perception across economies, policymakers in Swaziland 

formulated a four-fold SME policy that included, inter alia, fostering economic growth and 

development as well as increasing employment opportunities. A set of policy interventions such as 

access to business finance and training services to support SMEs was adopted, see SME Report 

(2003). The State also launched a programme designed to localise the new world economic order on 
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the job creation prowess of small businesses in partnership with Malaysian private sector leading 

enterprises, as detailed in various reports of the country’s Smart Partnership Secretariat.  

An important consideration concerns the distinction between subsistence and transformational 

entrepreneurship that identifies entrepreneurs with the potential for business growth. Schoar (2010) 

argues that the two types of business owners are not only dissimilar in nature but that an insignificant 

percentage of them transition from subsistence to transformational entrepreneurship. The majority of 

entrepreneurs start businesses without the express purpose to innovate and grow in any observable 

dimension, see Hurst and Pugsley (2011). In the national survey of SMEs in 2003 in Swaziland, only 

6.5 percent of the 70 000 small business owners surveyed had an intention to expand their businesses 

while 28 percent desired only to supplement their income. This suggests a potentially high level of 

marginal utility of consumption for a large number of small business owners. In respect of 

creditworthiness, 87 percent applicants were declined credit and 78.1 percent started businesses with 

their personal savings. Although the educational heterogeneity of owners was pronounced, as much as 

77 percent of them had no more than secondary education. In this scenario, an entrepreneur with a 

suitable mix of business skills, drive for innovation, access to capital and a vision for business 

expansion is unlikely to emerge. This chapter investigates the creation and destruction of jobs in the 

Swazi manufacturing sector in order to interrogate these views in more detail. 

The organization of the chapter is as follows: the next section presents a review of the literature while 

section 2.3 reviews the data, identifies any potential caveats in the data and conducts preliminary 

descriptive analyses of the dataset to extract stylized facts. Special attention is given to the assessment 

of the evolution of firm-size distribution to establish if the “missing middle” phenomenon associated 

with developing countries does exist. Section 2.4 addresses theoretical and measurement issues for job 

creation and destruction. Section 2.5 decomposes the aggregate labour productivity growth into 

several components and estimates it using firm-level manufacturing data to identify specific drivers of 

growth in the sector. The last section concludes the chapter. 

2.2 Literature Review: Job Creation and Destruction 

The general acceptance of small firms’ ability to create relatively more jobs than their larger 

counterparts is reviewed in Davis and Haltiwanger (1996a) and Haltiwanger et al. (2013). This 

hypothesis has become a remarkable regularity in public discourse to justify specific policies in 

economies such as the U.S., see Decker et al. (2016) and Haltiwanger et al. (2016). This perception 

has its origins in the empirical contributions of Birch (1987) that prompted researchers to examine his 

techniques and to test his assertions in different countries. The data structures in subsequent case 

studies that support Birch’s results suffered from a host of limitations such as lack of data suitability 

for the purpose, inappropriate firm/establishment size classification, regression to the mean problems, 
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and failure to draw a distinction between gross and net job creation. Other crucial data constraints 

involved lack of sample representativeness, and inability to distinguish ownership transfers from birth 

to death – see Davis et al. (1996). Haltiwanger et al. (2013) highlight the statistical and measurement 

complications associated with methods of firm-size classification and the regression-to-the-mean 

fallacy as major pitfalls in the evidence.12  

The point of methodological contention with Birch’s work is based on his measure of firm growth 

using the difference between time 𝑡𝑡 and time 𝑡𝑡 − 1 employment divided by the base year employment 

at 𝑡𝑡 − 1. As argued in Davis et al. (1996a), this introduces the regression-to-the-mean problem. 

Several sources of this problem have been advanced. For example, a business experiencing a negative 

transitory shock at 𝑡𝑡 − 1 or subject to a transitory measurement error is likely to grow at 𝑡𝑡, while a 

business that experiences a positive temporary shock at 𝑡𝑡 − 1 is likely to contract at 𝑡𝑡, see Davis et al. 

(1996a, b). On the same basis, Friedman (1992) concludes that this type of regression fallacy “is the 

most common fallacy in the statistical analysis of economic data”. Davis et al. (1996a, b) propose and 

popularize a firm-size classification methodology that relies on the average of the base year (𝑡𝑡 − 1) 

and current year (𝑡𝑡) to mitigate the effects of the regression fallacy.  

However, the Davis et al. (1996a, b) approach is also vulnerable to effects of permanent shocks that 

move the plant across multiple size-class boundaries between 𝑡𝑡 − 1 and 𝑡𝑡. The plant then becomes 

categorized in a size class that is between the starting and ending size classes (Davidsson, Lindmark 

and Olofsson, 1998). In spite of this limitation, however, its results are robust to the kind of dynamics 

introduced by Butani, Clayton, Kapani, Spletzer, Talan, and Werking (2006) which attributes job 

gains or losses to each size class that the firm passes through, see Haltiwanger et al. (2013). The 

technical concerns highlighted by Davis et al. (1996a, b) still do not obviate the perceived ability of 

small firms to create the most jobs in empirical work, including in developing economies.  

In the latter literature represented by Haltiwanger et al. (2013), the role of firm age is shown to have a 

real impact on the job creation ability of small firms. It finds new births and young firms that happen 

to be small, to create the most jobs. Using an enhanced U.S. Longitudinal Business Database, 

Haltiwanger et al. (2016) find that high-growth young firms contribute disproportionately to job 

creation, and they identify high heterogeneity among young firms in terms of the failure rate in the 

first few years of existence. The growth patterns among surviving firms are characterized by marked 

dispersions. Conditional on survival, young firms have higher average net employment growth 

compared to their more mature counterparts. In the U.S. case, firm-level net employment growth is 

characterized by robust positive skewness with a small fraction of very fast growing firms driving the 

                                                           
12 However, Davidsson, Lindmark and Olofsson (1998) use Swedish data to estimate the extent to which job 
creation by small firms is overestimated by using Birch methods and find insignificant regression bias effects. 
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higher average growth of net employment. This is a typical case of small firms’ transition to 

transformational entrepreneurship. 

Using a good quality firm-level manufacturing panel dataset, our investigation performs the first 

systematic job flow analysis in Swaziland covering the period 1994-2003. Access to such data 

provides a valuable opportunity to understand the main sources of employment variation. Specifically, 

we slice firms into small and large class sizes of less and more than 50 workers, respectively. For each 

firm-size category, different types of job flows are calculated over time and across two-digit ISIC 

industries. This allows us to answer questions about sources of job flows by firm size over time and 

across two-digit ISIC industries. 

2.3 The Data and Descriptive Analysis 

The Central Statistical Office of Swaziland conducts annual census data collection for firms that 

contribute to the top 90 percent of the industry’s gross domestic product (GDP). Although this is 

treated as a census of firms, there is still a non-negligible level of nonresponse by some producers. 

The dataset does not distinguish between a firm, a plant or an establishment. These terms are used 

interchangeably here to refer to the unit of observation. Each firm-year observation is identified by a 

unique time-invariant identity code. It is therefore possible to track a business unit from “start-up” 

stage when it appears in the data for the first time to its exit, at least in theory. However, sometimes a 

firm is observed at entry, then disappears for a year and reappears in the data. When this occurs, it is 

interpreted as a case of nonresponse or administrative measurement error rather than the firm shutting 

down for a year and resurfacing to produce the same product.  

2.3.1 Descriptive Statistics 

This section looks at descriptive patterns of establishment size distribution in the context of popular 

belief that producer size dynamics are scale dependent; that is, small manufacturers grow faster than 

larger ones conditional on survival, see Rossi-Hansberg and Wright (2007). Such dynamics should 

necessarily feature prominently in patterns of plant size transition probabilities where a significant 

proportion of small firms at time 𝑡𝑡 would cross-over to a larger size category at time 𝑡𝑡 + 1. This 

notion has, however; been challenged by evidence in Sub-Saharan Africa through identifying the 

presence of a dense mass of smaller firms coexisting with fewer medium sized establishments 

together with even fewer large firms, see Gebreeyesus (2008). This line of enquiry is complemented 

with investigations of the entry-exit dynamics to understand the degree of firm churning during 

periods of trade reforms. The descriptive analysis further focuses on an elaborate analysis of the 

“Missing Middle” hypothesis to determine its validity or otherwise in the case of the Swazi 

manufacturing sector. It concludes with studying the distribution of employment by industry and plant 

size category as well as employment growth along similar dimensions.  
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Figure 2.1 shows the pattern of establishment distribution over a ten-year period. This is a period of 

trade liberalization in the customs union that also experienced industrial development of factory shells 

in 2001. Analysing the population of firms sliced into two size categories: small firms employing at 

most (≤) 50 workers and large firms employing more than (>) 50 workers, allows us to detect key 

firm size dynamics. As expected, the mass of smaller firms constitutes approximately two-thirds of 

the population of surveyed manufacturing producers in any one year. In this case, the population 

growth rate is likely to be firm-size independent. This scenario can arise for at least two reasons. First, 

it may occur when the entry-exit dynamics are the same across firm sizes. Second, it may also be that 

the rate of firm size growth is the same across firm size categories; that is, transition probabilities 

from small to large firms and vice versa are the same. 

Figure 2.1: Annual Number of Firms by Firm Size Category 

 

Source: Author’s calculations from data compiled by the CSO 

Table 2.1 therefore presents a matrix of firm size transition probabilities. Slicing the panel dataset of 

establishments into different size categories allows us to understand cross-over rates of firms between 

groups. One way to perform these calculations is to assume that there are missing values of firms so 

that the data can be rectangularized for normalization in order to compute Markov transitions. 

Another way is to simply order the data by time t and count transitions of observations between states. 

The latter approach is used here to produce our results. 
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Table 2.1: Firm-Size Transition Probabilities 

 

 
Source: Author’s calculations from data compiled by the CSO 

 
Thus, using 0 as a proxy for firms employing ≤50 workers and 1 as a proxy for firms employing >50 

workers in manufacturing, the table shows that each year, 98.02 percent of small firms remained small 

while the 1.98 percent of small firms transitioned across the 50 employee threshold to enter the large 

firm category. At the same time, large firms had a 1.72 percent probability of crossing over the size 

category to become smaller firms. These results remain robust to using Markov transition estimation 

methods as in Sandefur (2010). Therefore, large firms in Swazi manufacturing were born large and 

did not grow out of the small size category while small plants remained small.  

2.3.1.1 Entry and Exit of Firms in Manufacturing (1994-2003) 

The schema of firm entry and exit presented in Table 1.1 provides measurement methods for firm 

churning dynamics. This section begins with the measurement of four-digit ISIC industries’ average 

results of firm entry and exit as well as the churning rate in each year in Table 2.3. As expected from 

the firm-size distribution results, entry rates exceed exit rates during the 1995-2001 period and exit 

rates become spiky in 2002 and 2003. These spikes are a reflection of the general disappearance of 

firms from the sample since 2003 due possibly to non-response to questionnaires or non-digitization 

of responses from establishments, or a combination of factors. The churning rate (sum of entry and 

exit rates) shows considerable volatility ranging from 9.26 percent in 1999 to 44.06 percent, in 2003, 

reflecting the simultaneous entry and exit of firms in manufacturing. 

Table 2.3: Establishment Churning and Survival Rates in Manufacturing 

  1995 1996 1997 1998 1999 2000 2001 2002 2003 
Entry 0.0862 0.1339 0.1014 0.1355 0.0864 0.0747 0.0806 0.0808 0.096 
Exit 0.0517 0.0236 0.0217 0.0387 0.0062 0.023 0.0269 0.1869 0.3446 
Churning 0.1379 0.1575 0.1231 0.1742 0.0926 0.0977 0.1075 0.2677 0.4406 
Survivor (−1) 0.9138 0.8661 0.8986 0.8645 0.9136 0.9253 0.9194 0.9192 0.904 
Survivor (f) 0.9483 0.9764 0.9783 0.9613 0.9938 0.977 0.9731 0.8131 0.6554 

Source: Author’s calculations from data compiled by the CSO 
Notes:  

 Entry is defined as a firm missing at 𝑡𝑡 − 1 and active at time 𝑡𝑡. 
 Exit is defined as an active firm at time 𝑡𝑡 and missing at time 𝑡𝑡 + 1. 
 Lagged survivor means a firm is active at times 𝑡𝑡 − 1 and 𝑡𝑡. 
 Forward survivor means a firm is active at times 𝑡𝑡 and 𝑡𝑡 + 1. 

 
Firm Size 

 Firm Size 0 1 Total 
0 98.02 1.98 100.00 
1 1.72 98.28 100.00 

Total 33.66 66.34 100.00 
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The measure of firm survival rate is based on the number of firms present at 𝑡𝑡 − 1, with 𝑡𝑡 calculated 

using the time lag method or those present at 𝑡𝑡, and 𝑡𝑡 + 1 calculated using the forward lead method. 

As gleaned from the table, a sudden increase in the exit rate leads to a sudden drop in the forward 

survivor rate since these are inextricably linked. A similar pattern between the entry rate and lagged 

survivor rate is observed. A deeper scrutiny of these results shows that Entry Rate +

Survivor(−1)=100 percent and Exit Rate + Survivor Rate(f)=100 percent. Thus, both definitions of 

the survival rate produce useful results.  

2.3.1.2 Annual Employment by Industry Category 

In this section we look at the behaviour of firm-level employment over the 10-year period by ISIC 

industry in order to get a sense of the growth of firms in each industry. In table 2.4, different 

industries responded differently to external shocks, with some displaying spiky growth of 

employment such as observed in the Food (15), Textile (17), Clothing (18) and Wood (20) industries. 

The Food industry, the leading employer, includes key national export products like sugar, soft drink 

concentrates, fruits and nuts as indicated in Edwards et al. (2013). Other industries either remained 

marginally unchanged in employment levels or declined like the Pulp and Paper (21), Basic Metal 

(27) and Furniture (29) industries. In almost all industries, the number of firms declined in 2003. 

Table 2.4: Annual Employment by Two-Digit ISIC Industry 

ISIC   1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 
 15 7 891 8 259 8 443 9 092 9 671 11 432 11 932 15 214 15 534 11 241 
 17 2 088 2 081 1 103 1 508 2 513 2 966 3 132 5 574 8 263 5 281 
 18 28 30 81 85 86 94 95 1 676 1 866 1 874 
 20 855 932 827 837 894 874 929 870 1 119 957 
 21 3 351 3 543 3 463 2 827 2 857 2 829 2 024 1 533 1 663 848 
 22 396 432 494 517 527 492 506 567 466 755 
 24 611 598 666 633 696 788 852 873 870 624 
 25 108 118 126 181 182 193 231 245 252 130 
 26 405 434 477 507 506 445 491 507 494 309 
 27 157 150 27 20 19 20 36 34 46 35 
 28 296 268 343 378 385 452 507 811 807 844 
 29 700 741 919 923 1 029 1 017 191 174 163 151 
 36 507 783 1 025 1 100 1 084 1 083 1 088 1 138 1 084 950 

FIRM SIZE           
Firms≤50 1084 1130 1441 1596 1808 1853 2192 2222 2340 1816 
Firms>50 16176 17086 16396 16917 18488 17907 16844 26639 29879 21683 

TOTAL 17260 18216 17837 18513 20296 19760 19036 28861 32219 23499 
 
Author’s calculations from data compiled by the CSO 

Looking at employment levels for small firms shows a monotonic increase in employment until 2002 

and a decline in the last year (2003). In contrast, large plants’ employment growth oscillates 

somewhat in the first eight years, spikes in 2001 and 2002, and declines in 2003. The years from 2000 

and 2002 appear to be a period of relatively high activity. This size-dependent heterogeneity suggests 

that there might be fundamental differences between small and large firms in manufacturing.  
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2.3.1.3 Employment Growth in Manufacturing in Swaziland 

A few broad messages are gleaned from Table 2.5 and Table A.2.1 which present results over time 

and cross-sectionally. Although the median annual firm growth is positive every year but 2003, the 

average growth rate over time is negative only in those years when industries experience business 

closures by large firms. That is, the negative average numbers are explained largely by the fall in 

employment growth at 139 percent in Basic Metals (27) in 1996 and at 137 percent in Furniture (29) 

in 2000. The large positive mean employment growth rate of 22 percent in 2001 is driven by a 

positive shock in the Apparel (18) industry due possibly to the AGOA effects. As expected, the 

highest volatility in employment growth is observed only in the years 1996, 2000, 2001 and 2003. 

However, the Food (15) industry shows the most significant and robust resilience in employment 

growth, except only in 2003.  

Most employment growth, however; came from in the Apparel and Clothing (18) and Textile 

industries with an average of 38.13 percent and 17.13 percent, respectively. This occurred in the 

backdrop of significant volatility of 64.54 and 37.43, respectively. Since the transition probabilities 

suggest absence of firm-level longitudinal growth or contraction, the growth patterns observed in 

these industries resulted from entry of new firms. That is, these patterns of firm growth are largely a 

measure of the impact of entry-exit dynamics observed in the manufacturing sector. For example, 

while the exit rate ranged between 0.62 percent and 5.17 percent in 1999 and 1995, respectively; it 

started developing into a spike growing from 18.69 percent in 2002 to 34.46 percent in 2003. 

Similarly, the highest rate of firm entry was experienced in 1998 at 13.55 percent as a result of 

mergers and acquisitions in the Wood and Pulp industry. On the other hand, the reduction of 

protection induced closure of high cost producers mainly in the Basic Metal and Furniture industries 

due to loss of competitiveness, see Table A.2.2 in the Appendix. 

Table 2.5: Annual Employment Growth Rate,𝒈𝒈𝒊𝒊𝒊𝒊 =  (𝐍𝐍𝐢𝐢𝐢𝐢−𝐍𝐍𝐢𝐢𝐢𝐢−𝟏𝟏)
(𝟏𝟏 𝟐𝟐⁄ )(𝐍𝐍𝐢𝐢𝐢𝐢+𝐍𝐍𝐢𝐢𝐢𝐢−𝟏𝟏)

, by Two-Digit ISIC Industry 

 YEAR FIRM SIZE 
ISIC CODE 1995 1996 1997 1998 1999 2000 2001 2002 2003 Firms≤50 Firms>50 

15 0.05 0.02 0.07 0.06 0.17 0.04 0.24 0.02 -0.32 2.58 0.42 
17 0.00 -0.61 0.31 0.50 0.17 0.05 0.56 0.39 -0.44 -0.45 0.36 
18 0.07 0.92 0.05 0.01 0.09 0.01 1.79 0.11 0.00 -0.06 0.05 
20 0.09 -0.12 0.01 0.07 -0.02 0.06 -0.07 0.25 -0.16 0.22 0.01 
21 0.06 -0.02 -0.20 0.01 -0.01 -0.33 -0.28 0.08 -0.65 -0.07 -0.26 
22 0.09 0.13 0.05 0.02 -0.07 0.03 0.11 -0.20 0.47 -0.13 0.16 
24 -0.02 0.11 -0.05 0.09 0.12 0.08 0.02 0.00 -0.33 -4.50 0.10 
25 0.09 0.07 0.36 0.01 0.06 0.18 0.06 0.03 -0.64 0.40 0.07 
26 0.07 0.09 0.06 0.00 -0.13 0.10 0.03 -0.03 -0.46 -0.88 -0.10 
27 -0.05 -1.39 -0.30 -0.05 0.05 0.57 -0.06 0.30 -0.27 -0.18 -0.02 
28 -0.10 0.25 0.10 0.02 0.16 0.11 0.46 0.00 0.04 1.01 0.26 
29 0.06 0.21 0.00 0.11 -0.01 -1.37 -0.09 -0.07 -0.08 0.13 0.03 
36 0.43 0.27 0.07 -0.01 0.00 0.00 0.04 -0.05 -0.13 -0.55 0.29 

Total 0.84 -0.07 0.53 0.84 0.58 -0.47 2.81 0.83 -2.97 -0.19 0.10 
Average 0.06 -0.01 0.04 0.06 0.04 -0.04 0.22 0.06 -0.23 -0.19 0.11 

Stellenbosch University  https://scholar.sun.ac.za



25 
  

Median 0.06 0.09 0.05 0.02 0.05 0.05 0.04 0.02 -0.27 -0.07 0.07 
Std Dev 0.12 0.53 0.17 0.14 0.10 0.44 0.52 0.16 0.30 1.55 0.19 

Looking at the industrial growth performance by firm size provides useful information. A distinction 

between small and large firms by industry enables us to assess the related decomposition of firm-size 

growth. Firms with less than 50 workers reduced employment by 19 percent on average while larger 

ones increased their employment by 11 percent every year on average. Put differently, unlike in the 

US case which displayed a heightened pace of business dynamism and entrepreneurship in the period 

preceding 2000 in Decker et al. (2016), large firms in the Swazi manufacturing were generally born 

large. Large firms did not emerge from a growing mass of small dynamic and entrepreneurial 

businesses. 

A few exceptions of positive growth were however identified at the two-digit industry level. Small 

establishments in the Food (15) and Fabricated Metal (28) industries experienced significant growth. 

The latter industry is an important upstream supplier of key inputs to the Textile (17) and the Wearing 

Apparel (18) industries. Marked plant-level growth among larger firms was observed in the Food, 

Textile, Printing and Publishing (22) and Fabricated Metals (28). Thus, large firm growth dominates 

the growth of firms employing less than 50 workers.  However, the robust small firm decline is 

characterized by heterogeneity that is 8.2 times higher than that of larger firms. This suggests the high 

sensitivity of small firms to exogenous shocks that influenced the performance of business and 

industry during the period of trade reforms in the Customs Union. The observed divergence in the 

growth of small and large firms may sound a warning for the development of a bimodal firm-growth 

distribution in the sector. This hypothesis is formally studied and tested in section 2.3.2.4. 

While useful as far as it goes, Table 2.5 is unable to provide direct information about the impact of the 

entry-exit dynamic on firm-level growth.  It also provides no guidance on the incidence of incumbent 

plants that neither supply new nor reduce existing jobs. The literature, led by Davis and Haltiwanger 

(1992), suggests that the growth rate of establishments is symmetric about zero and lies in the closed 

interval [-2, 2], with shut-downs and start-ups respectively corresponding to the left and right 

endpoints. This measure facilitates a unified treatment of plant entry, exit and continuation in the 

analysis of employment dynamics. Using Eq. 1, we calculate growth rates of firms by size category 

and plot the frequency distributions in Figure 2.2. As in Davis and Haltiwanger (1992) for the U.S. 

and Shiferaw and Bedi (2009) for Ethiopia, these densities are asymmetric with central peaks in the 

interval around the zero growth rate and endpoint spikes corresponding to firm deaths and births. The 

firm-growth distribution reveals that firm entry-exit dynamics were important for job creation and 

destruction during the economic reform period. Larger firms are characterized by higher entry and 

exit activity than firms employing at most 50 workers, and a relatively greater mass of firm growth is 

concentrated around the centre with the distribution decaying along the tails. As seen earlier, plant 
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turnover and employment volatility is a function of sharply declining firm size in manufacturing 

during the period of trade liberalization.  

Figure 2.2: Frequency Density of Job Growth Rates 

 
Source: Author’s calculations from data compiled by the CSO 

2.3.2 Is the “Missing Middle” Hypothesis a Valid Industrial Proposition for Swaziland? 

2.3.2.1 Firm Size Distribution 
 

This section considers firm size distribution over the 10-year period to establish any potential 

presence of the “Missing Middle” phenomenon in manufacturing as claimed to exist in Sub-Saharan 

African economies. Proponents of its presence in developing countries include Dasgupta (2010) and 

Mazumbdar and Sarkar (2008). However, this developing conventional wisdom has been challenged 

by Teal (2016) for Ghana, Hsieh and Olken (2014) for India, Mexico and Indonesia and by Tybout 

(2014) using normative arguments. In analysing the case of the missing middle in the Swazi data, 

visual methods for the firm size distribution are initially used and the approach adopted by Hsieh and 

Olken (2014) is subsequently applied. 

 

Figure 2.2 therefore plots the evolution of the cross-sectional density distribution by firm size to 

establish if there is more than a single peak in firm-level employment. The firm-size distribution in 

the first panel is based on selected cross-sections of four years and the second panel is a firm-size 

distribution of all the years under study. In both panels, there is a clear gradual shift of firm sizes to 

what visually seems like two clusters or twin peaks. One cluster is around the highest modal value of 

the natural logarithm (20 employees) and the lower concentration is around the natural logarithm (403 

employees). While generally resembling a lognormal distribution, it is interesting that the firm-size 
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distribution appeared to evolve gradually from a unimodal structural distribution in 1994 to a bimodal 

distribution in 2003.13 It may be that trade liberalization of the 1990s and mid-2000s in the Customs 

Union resulted in the gradual exit of productive medium-sized foreign subsidiaries to relocate in 

larger markets. Such self-selection may have created a gap between small unproductive firms and 

larger productive ones that remained due to, among other reasons, capital irreversibility.14  

 

The evolutional structural change in the manufacturing sector in Swaziland resembles that of Ghana’s 

single cross-section in 2003, see Sandefur (2010).15 It initially exhibits a lognormal distribution that 

cross-sectionally shifts to the left and gradually develops differential rates of change after the modal 

point over the 10-year period. More specifically, the cross-sectional distribution of log employment 

experienced a gradual decline in the rate of change after reaching its modal level; albeit, without a 

discernible tendency towards a second peak. There are at least three potential explanations for a twin-

peak firm size distribution in the development economics literature; see for example Quah (1997), 

Krueger (2013) and Dasgupta (2010).16 First, small firms may be financially constrained and unable 

to grow to become medium sized. The process leads to a “missing middle” situation. Second, a dual 

economy may develop due to high fixed costs of regulation for large firms, which deters middle-sized 

firms from growing. Third, the self-selection of agents into either the traditional or modern sector 

based on the level of individual competitive advantage in knowledge and innovation with a low mean 

firm size may produce the missing middle feature in manufacturing. Typically, as the mean firm-size 

increases, the firm-size distribution converges from the bimodal to a unimodal density distribution in 

the development trajectory of nations. The next sub-sections pursue a rigorous inquiry into whether or 

not a missing middle exists using returns to primary inputs. 

 

  

                                                           
13 Dasgupta’s (2015) theory suggests the “missing middle” phenomenon is a stage of development characteristic 
of developing countries. In the manufacturing data for India, Indonesia and Mexico, Hsieh and Olken (2014) 
find no evidence of the “missing middle” while Mazumdar and Sarkar (2008) confirm its persistent presence in 
India and Sandefur (2010) detects its presence for the case of Ghana. 

14 Our definition of the “missing middle” is immune to the Hsieh and Olken (2014) critique based on binning 
firm size classes. It is also richer than the case of Ghana which focuses on a single cross-section of 2003 firms, 
see Sandefur (2010). 

15 Hsieh and Olken (2014) present strong arguments against bimodality in developing countries based on 
manufacturing data from India, Indonesia and Mexico. In their objection, they argue that developing economies 
have a few main characteristics: missing medium-sized and large firms at the same time, higher average product 
of labour and capital for small firms than for larger ones and absence of material discontinuities in firm-size 
distribution that may suggest the presence of regulatory obstacles for large firms. 

16 Hsieh and Olken (2014) refute the “missing middle” hypothesis for developing economies arguing that both 
medium-sized and large firms are missing.  
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Figure 

2.2: Firm-
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Source: Author’s calculation based on data from CSO. 

 

2.3.2.1.1 The Distribution of Average Returns to Primary Inputs  

As discussed thus far, measurement issues around the definition and the inherent nature of the 

“missing middle” are a subject of continuing discourse. Key among these is the idea that small 

enterprises are constrained to grow due to lack of credit capital while medium-sized firms grow to 

become large, leaving a firm-size gap in the middle of the distribution. On the other hand, there is the 

‘dual economy’ proposition of co-existence of small low-productivity enterprises with large and 

disfavoured high-productivity firms. This hypothesis argues that the requirement for larger firms to 

bear large fixed costs of regulation deters the potential growth of medium-sized firms to become 

established as well. Micro-based country studies such as Hsieh and Olken (2014) on India for 2011, 

Indonesia for 2006 and Mexico for 2008 find unimodal distributions of average returns to individual 

and joint primary inputs. This suggests the absence of the missing middle in the referenced 

economies. In contrast, working on the Vietnamese manufacturing data for the 2000-2008 period, 

Pham and Takayama (2015) find that the “missing middle” in the distribution of production efficiency 

is present.  

A choice in the definition of what constitutes a missing middle and the related method of analysis 

appear to drive the results observed in empirical studies. The analysis of the Swazi case relies on the 

heterogeneity of the marginal product of primary inputs that we proxy with the average product of 

input due to data availability, see Hsieh and Olken (2014). In the Appendix, Figure A.2.1 graphically 

looks at correlation patterns between the average product of capital and firm-size. This analysis is 
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complemented with a more rigorous statistical evaluation of the average product of output relative to 

real capital stock in Figure A.2.3.  

The graph shows a largely flat distribution of the average product of capital in relation to 

employment. This may be due to the high degree of capital irreversibility and high adjustment cost of 

the plant and machinery component of capital stock across establishments over time. Ceteris paribus, 

and assuming proportionality of the average to the marginal product of capital, the observed empirical 

distribution predicts that the marginal cost of capital is largely insensitive to firm size. Such a reality 

is not consistent with the commonly held notion that the return to capital is higher in small 

establishments in developing economies. Put differently, if the return to capital in small firms is low, 

the evidence here suggests that the return to capital in larger firms is not significantly different from 

that of small firms. 

However, the most relevant variables of interest in our context is the study of behavioural patterns of 

the average product of labour in relation to establishment size. Figure 2.3 plots the nonparametric 

correlation between the average product of labour and firm size. As can be seen, the relationship is 

negative. This implies that marginal costs of labour are declining with employment size, in sharp 

contrast to the Banerjee and Duflo (2005) model of dual technology which posits existence of high 

capital-intensity for modern technologies. A potential explanation for this pattern is that larger 

establishments charge lower mark-ups due to economies of scale relative to smaller firms and their 

exposure to international competition, see De Loecker and Warzynski (2012) and Hsieh and Olken 

(2014).  

Figure 2.3: Average Product of Labour by Employment (1994-2003) 
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Taken together, Figure 2.3 and Figure A.2.2 produce a stylized fact that there is no obvious evidence 

of bimodality in any of these empirical distributions. However, it remains crucial to produce 

conclusive results of the unimodality versus multimodality conundrum about the average return to 

primary inputs using statistical tests. 

2.3.2.1.2 Numerical Test Methods for the Missing “Missing Middle”  

The previous section has visually established the missing bimodality distribution of the average 

product of capital and labour but has implicitly suggested the need for a rigorous analysis of the 

bimodality hypothesis in the study of the missing middle. A variety of methods exists in the statistics 

literature for assessing statistical significance of empirical distributions, but the Hartigan and Hartigan 

(1985) dip test of unimodality is more appealing and widely used for this purpose. This test is 

designed to measure the maximum difference between the empirical distribution and the unimodal 

distribution functions that minimizes this difference. It is calculated in 𝑛𝑛 operations for 𝑛𝑛 observations 

and its null is that the empirical distribution function is unimodal. In Hartigan and Hartigan (1985), 

the p-values are computed by matching the dip statistic obtained with those for repeated samples of 

the same size from a uniform distribution. This procedure also reports extraneous statistics such as the 

low, high and mean of the modal interval for the best-fitting uniform distribution corresponding to the 

data, see Hartigan and Hartigan (1985). 
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In table A.2.1, we report dip test statistics for the average product of capital for all firms in each year 

and corresponding p-values. The dip test shows insignificant statistics every year; hence, failing to 

reject a unimodal empirical distribution of the average product of capital. Similarly, the average 

product of labour is tested in Table 2.2 and, again, the dip test results refute any presence of 

bimodality in the empirical distribution function. 

Table 2.2: The Dip Test of the Average Product of Labour 

 

 
Clearly, graphical and statistical investigations of bimodal empirical distributions of average products 

of inputs in manufacturing during the period under study produce distributions characterized by a 

missing “missing middle”. 

2.3.3 Stylized Facts 

The descriptive analysis produced several stylized facts about firm-size distribution and the missing 

middle hypothesis in the manufacturing sector. These are: 

2.3.3.1 Large Firms are Born Large in Swaziland 

The firm size distribution shows that small firms constitutes over 66 percent of the sample population 

in manufacturing sector. An analysis of the probability of firms transitioning across size boundaries 

indicates that 98.02 percent of firms born small remain small in the entire period while 98.28 percent 

of firms born large remain large for the whole period. Thus, the cross-over of incumbent firms from 

one size category to another through employment adjustments was non-existing. 

2.3.3.2 Large Firms in Key Industries Experienced a Jump in 2001 and 2002 Employment. 

The net entry of large producers was 8 firms in 2001 and 6 firms in 2002, increasing jobs by 58.15 

percent and 12.16 percent, respectively. Significant changes in firm turnover occurred in the Food, 

Textile and Apparel industries potentially because of their high export propensity.  

2.3.3.3 Firm Size Dynamics Exhibit a Lognormal Density Distribution  

Year Firms Dip p-Value Low High Mean 
1994 100 0.04 0.26 2.46 4.33 3.41 
1995 109 0.04 0.16 3.22 4.09 3.65 
1996 117 0.02 0.83 3.69 4.09 3.88 
1997 129 0.02 0.80 3.63 4.08 3.84 
1998 147 0.02 0.89 4.72 5.20 4.98 
1999 152 0.02 0.84 4.50 5.05 4.80 
2000 162 0.01 0.99 4.74 5.10 4.93 
2001 177 0.01 0.98 4.93 5.09 5.01 
2002 185 0.01 0.98 4.07 5.41 4.75 
2003 157 0.02 0.49 4.23 5.39 4.82 
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The cross-sectional firm size lognormal distributions covering the 10-year period shifted towards the 

left.  This distribution evolves overtime to a state where it initially declines rapidly after its modal 

level, then slows down as if to form a ‘dip’ before accelerating again. The pattern of distributional 

change does not form two modes at any one year. That is, there is no prima facie evidence of the 

industrial missing middle phenomenon in Swaziland. 

2.3.3.4 The “Missing Middle” is Missing in Swaziland 

The analysis begins by looking at correlations between the average product of capital and firm-size 

for each year. A flat distribution of the average product of capital in relation to employment is 

observed from the data. This may be due to the high degree of capital irreversibility and adjustment 

cost of the plant and machinery component across establishments and over time. The observed 

empirical distribution suggests that;  ceteris paribus, the marginal cost of capital is largely insensitive 

to firm size. Therefore, the evidence here shows that the return to capital is not scale dependent. 

The investigation proceeds to plots nonparametric correlations between the average product of labour 

and firm size, and the relationship proves negative. This implies marginal costs of labour are declining 

with employment growth. A potential explanation here is that larger firms charge lower mark-ups due 

to scale economies in the domestic market compared to smaller firms. Another explanation relates to 

capital credit schemes provided by the State to small enterprises such as the Export Credit Guarantee 

Scheme that produce a mass of constrained firms which declines with firm size growth as access to 

capital credit diminishes. The more technical investigation of the average product of primary inputs 

using the dip-test established the absence of a bimodal distribution in both proxies of the marginal 

product of primary inputs.  

2.4 Job Turnover and Measurement  

2.4.1 Theoretical Measurement of Firm Turnover 

This section describes and defines measurement concepts associated with job flows as applied to each 

size category of firms in the manufacturing sector in Swaziland. Drawing from Davis et al. (1996), the 

first index to consider for aggregating employment across firms is the weight,ωit, presented as Eq. 1 

in Table 2.6. It generalizes ℰjt to refer to the set of plants in group 𝑗𝑗 at time 𝑡𝑡 or 𝑡𝑡 − 1, which includes 

drop-out and new firms. Here, a ‘group’ 𝑗𝑗 may represent a region, a sector, plant-size category, or any 

other characteristics associated with firms.  

Firms are also characterized in terms of entry-exit dynamics. Entrants are those establishments that 

have Nit−1 = 0,  Nit > 0 and git = 2, where  Nit refers to the number of workers for firm 𝑖𝑖 at time 𝑡𝑡. 

Firms that are exiting the industry are identified by Nit−1 > 0, Nit = 0, and git = −2. At the firm-

level, the firm growth index,𝑔𝑔𝑖𝑖𝑖𝑖 , refers to the rate of employment change between times 𝑡𝑡 and 𝑡𝑡 − 1, 
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where the denominator is calculated as average employment. In the case of continuing and expanding 

plants, the characterization of firms requires that Nit > Nit−1 > 0 and, git > 0, while those that are 

continuing, but contracting, are characterized by Nit < Nit−1 and git < 0. As a general principle, 

therefore,𝑔𝑔𝑖𝑖𝑖𝑖 ∈ [−2, 2] and symmetric around zero, in contrast to the standard growth measure, 𝐺𝐺, 

that divides the lagged and current employment difference by the lagged employment level. The two 

measures are related by 𝐺𝐺= 2𝑔𝑔
2−𝑔𝑔

, see Davis et al. (1996a, p. 190). 

On the basis of employment changes over time, job creation (JC) in Eq. 9 is defined as the 

combination of the sum of employment gains over all plants whose current employment level is 

greater than the previous period’s level and the sum of employment gains from new plants. The new 

entrants are characterized by  Nit−1 = 0 and Nit > 0. Continuing and expanding firms include both 

young and mature firms identified by Nit > Nit−1. Conditional on survival, young plants are known to 

be smaller but grow faster through innovation and business entrepreneurship than the larger and more 

mature firms, see Neumark, Wall and Zhang (2011), Haltiwanger et al. (2013) and Decker et al. 

(2016).  

Similarly, job destruction (JD) in Eq. 12 is associated with the contraction and closure of firms. It is 

essentially the sum of job losses over all firms whose current employment level is smaller than the 

previous period’s level. Since exiting firms are defined as those with zero employment at time 𝑡𝑡, 

therefore JD captures both job decline at contracting establishments and job loss due to exiting 

establishments.  

Net job reallocation (NR) or, simply put, net employment growth in Eq. 13 is the most preferred 

measure of job flows when interest is in the growth of the number of jobs. It is the difference between 

JC and JD. As illustrated in Davis et al. (1996a), this means that JC and JD decompose the net change 

of aggregate employment into a component related to expanding firms and a component connected 

with shrinking ones. For a given net employment growth, higher JC suggests the ease with which 

displaced workers and new labour market entrants find new jobs. Similarly, higher JD implies 

reduced job security for labour market participants.   

Table 2.6: Measurement of Firm Turnover Indexes 

INDEX DEFINITION EQUATION  
Firm-Level Growth Rate 𝑔𝑔𝑖𝑖𝑖𝑖 = (Nit − Nit−1) (1 2⁄ )(Nit + Nit−1) ⁄  (1) 
Firm-Level Weight ωit = (Nit + Nit−1) Σi∊ℰjt(Nit + Nit−1)�  (2) 
Entry Nit−1 = 0,  Nit > 0, and 𝑔𝑔𝑖𝑖𝑖𝑖 = 2 (3) 
Exit Nit−1 > 0, Nit = 0, and 𝑔𝑔𝑖𝑖𝑖𝑖 = −2. (4) 
Continuing and Expanding Nit > Nit−1 > 0; hence,𝑔𝑔𝑖𝑖𝑖𝑖 > 0 (5) 
Continuing and Contracting Nit < Nit−1; hence,𝑔𝑔𝑖𝑖𝑖𝑖 < 0 (6) 
Gross Job Creation (𝐽𝐽𝐽𝐽𝑡𝑡):   
 𝐽𝐽𝐽𝐽Expandingt = ∑ ωitmax{𝑔𝑔𝑖𝑖𝑖𝑖 , 0}i ; (7) 
 𝐽𝐽𝐽𝐽Entry t = ∑ ωitmax{𝑔𝑔𝑖𝑖𝑖𝑖 , 0}I{𝑔𝑔𝑖𝑖𝑖𝑖 = 2}i ,  (8) 
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 𝐽𝐽𝐽𝐽t = 𝐽𝐽𝐽𝐽Expandingt +  𝐽𝐽𝐽𝐽𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 (9) 
Gross Job Destruction (𝐽𝐽𝐽𝐽𝑡𝑡):   
 𝐽𝐽𝐽𝐽Contractingt = ∑ ωitmin{−𝑔𝑔𝑖𝑖𝑖𝑖 , 0}i   (10) 
 𝐽𝐽𝐽𝐽Exitt = ∑ ωitmin{−𝑔𝑔𝑖𝑖𝑖𝑖 , 0}I{𝑔𝑔𝑖𝑖𝑖𝑖 = −2}i  (11)  
 𝐽𝐽𝐽𝐽t = 𝐽𝐽𝐽𝐽Contractingt  + 𝐽𝐽𝐽𝐽Exit t (12) 
Net Reallocation Rate (𝑁𝑁𝑁𝑁𝑡𝑡) 𝑁𝑁𝑁𝑁t = 𝐽𝐽𝐽𝐽t − 𝐽𝐽𝐽𝐽t (13) 
Gross Reallocation Rate (𝐽𝐽𝐽𝐽𝑡𝑡) 𝐽𝐽𝐽𝐽t = 𝐽𝐽𝐽𝐽t + 𝐽𝐽𝐽𝐽t (14) 
Excess Reallocation Rate (𝑋𝑋𝑋𝑋𝑡𝑡) 𝑋𝑋𝑋𝑋t = 𝐽𝐽𝐽𝐽t − |𝑁𝑁𝑁𝑁t| (15) 

(Gross) job reallocation rate (JR) in Eq. 14 is defined as the sum of JC and JD. In terms of Hijzen et al. 

(2010), the JR concept can alternatively be viewed as the highest number of worker movements 

required for adjustment to changes in job prospects across firms. This measure essentially counts 

workers both when they lose their jobs as a result of job destruction and also when they move to 

newly created jobs. That is, it consists of job gains from expanding plants and job losses from 

contracting ones. As observed by Davis et al. (1996a), other crucial characteristics of the labour 

market behaviour and performance may of course potentially vary with measures of job creation and 

destruction. For example, higher rates of JC and JD suggest greater heterogeneity in the reallocation 

of employment positions or jobs across firms. Such rates also mean larger numbers of workers are 

forced to reshuffle between jobs and also add to unemployment. 

Finally, excess reallocation rate (XR) in Eq. 15 denotes the measure of the number of job changes in 

excess of those required to accommodate employment growth. The index XR can be calculated as the 

difference between JR and the absolute value of net employment change. This is an index of 

simultaneous JC and JD; see Davis and Haltiwanger (1999). The practical value of XR as a measure 

of job flow arises largely from its suitability for decomposition into two important components; 

namely, one that accounts for between-sector employment movements and another that accounts for 

excess JR within sectors, see Davis et al. (1996a: p.13) and Davis and Haltiwanger (1999: p.2717). 

2.4.2 Industry, Employer Size and Job Flows: Empirical Findings 

2.4.2.1 Job Creation, Destruction and Reallocation In Manufacturing  

This section lays out the behaviour of job flows in the manufacturing sector in Swaziland relying on 

the size classification methodology developed by Davis and Haltiwanger (1992). The definitions 

presented in Table 2.6 on the basis of standard job flow nomenclature are used to measure industrial 

job flows in Swaziland.  

The relationship between the gross job flows measures analysed in this chapter and size-weighted 

density distributions of firm growth observed in the literature (see, for example, Davis and 

Haltiwanger, 1992), is simple. It allows for the calculation of the sector-wide gross job creation by 

summing up employment gains arising from expanding incumbent firms and new entrants. The gross 

job destruction is calculated by summing up employment losses at contracting incumbent firms and 
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quitters. In Table 2.7, an analysis of job flows for the sector is conducted. We discuss the magnitudes 

together with the variation of job flows by firm size using the relations built up in section 4.1. The 

first and second columns report annual and cross-industry averages of job flows for plants employing 

at most 50 workers and plants with more than 50 workers. Columns 3 and 4 present annual and cross-

industry averages of job destruction rates by firm-size category. Columns 5-10 respectively report 

similar information on net, gross and excess reallocation rates by firm size. A deeper analysis based 

on this table is conducted in the subsequent sections below. 
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Table 2.7: Rates of Job Creation, Destruction and Reallocation (1994-2003) 

 Job Creation Rate Job Destruction Rate Net Job Reallocation Rate  Job Reallocation Rate Excess Reallocation Rate 
Year Firms≤50  Firms>50  Firms ≤50  Firms >50  Firms≤50  Firms>50  Firms ≤50  Firms >50  Firms ≤50  Firms >50  
 Column 1 Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 Column 9 Column 10 
1995 0.0076 0.0203 −0.0908 −0.1876 −0.0832 −0.1673 0.0984 0.2080 0.0152 0.0407 
1996 0.0178 0.0202 −0.0161 −0.0330 0.0017 −0.0128 0.0338 0.0532 0.0321 0.0404 
1997 0.0097 0.0205 −0.0315 −0.1101 −0.0219 −0.0895 0.0412 0.1306 0.0193 0.0411 
1998 0.0066 0.0202 −0.0169 −0.0117 −0.0104 0.0085 0.0235 0.0318 0.0131 0.0233 
1999 0.0119 0.0353 −0.0127 −0.2407 −0.0008 −0.2055 0.0246 0.2760 0.0238 0.0705 
2000 0.0104 0.0154 −0.0220 −0.0713 −0.0116 −0.0559 0.0325 0.0867 0.0209 0.0308 
2001 0.0044 0.0205 −0.0112 −0.0359 −0.0068 −0.0155 0.0156 0.0564 0.0088 0.0409 
2002 0.0065 0.0214 −0.0506 −0.1562 −0.0441 −0.1347 0.0571 0.1776 0.0130 0.0429 
2003 0.0092 0.0534 −0.0714 −0.2127 −0.0621 −0.1593 0.0806 0.2661 0.0185 0.1068 
Industry Firms≤50  Firms>50  Firms ≤50  Firms >50  Firms≤50  Firms>50  Firms ≤50  Firms >50  Firms ≤50  Firms >50  
Food (15) 0.0004 0.0087 −0.0012 −0.0232 −0.0012 −0.0145 0.0016 0.0319 0.0004 0.0174 
Textile (17) 0.0021 0.0386 −0.0077 −0.2579 −0.0077 −0.2193 0.0098 0.2965 0.0021 0.0772 
Apparel (18) 0.0273 0.0388 −0.0739 −0.0605 −0.0739 −0.0217 0.1012 0.0993 0.0273 0.0776 
Wood (20) 0.0039 0.0152 −0.0173 −0.1654 −0.0173 −0.1502 0.0212 0.1806 0.0039 0.0304 
Pulp & Paper (21) . 0.0127 −0.0011 −0.2014 −0.0011 −0.1887 0.0011 0.2141 0.0000 0.0254 
Printing & Publishing (22) 0.0089 0.0518 −0.0256 −0.0302 −0.0256 0.0216 0.0345 0.0820 0.0089 0.0604 
Chemicals (24) 0.0051 0.0307 −0.0169 −0.2482 −0.0169 −0.2175 0.0220 0.2789 0.0051 0.0614 
Rubber (25) 0.0315 0.0552 −0.0902 −0.0110 −0.0902 0.0442 0.1217 0.0662 0.0315 0.0220 
Non-Metallic Mineral (26) 0.0124 0.0132 −0.0611 −0.1023 −0.0611 −0.0891 0.0735 0.1155 0.0124 0.0264 
Basic Metals (27) 0.0923 . −0.3508 −0.8185 −0.3508 −0.8185 0.4431 0.8185 0.0923 0.0000 
Fabricated Metal (28) 0.0077 0.0272 −0.0286 −0.1035 −0.0286 −0.0763 0.0363 0.1307 0.0077 0.0544 
Furniture (29) 0.0090 0.0698 −0.0516 −0.4514 −0.0516 −0.3816 0.0606 0.5212 0.0090 0.1396 
Other Manufacturing (36) 0.0029 0.0280 −0.0107 −0.2147 −0.0107 −0.1867 0.0136 0.2427 0.0029 0.0560 
TOTAL 0.2035 0.3899 −0.7367 −2.6882 −0.7367 −2.2983 0.9402 3.0781 0.2035 0.6482 
MEAN 0.0170 0.0325 −0.0567 −0.2068 −0.0567 −0.1768 0.0723 0.2368 0.0157 0.0499 
MEDIAN 0.0083 0.0294 −0.0256 −0.1654 −0.0256 −0.1502 0.0345 0.1806 0.0077 0.0544 
STD DEV 0.0256 0.0192 0.0929 0.2211 0.0929 0.2263 0.1177 0.2176 0.0250 0.0362 
Source: Author’s calculations from data compiled by the CSO 
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A. Magnitude and Time Variation of Job Flows by Firm Size 

The analysis begins with time-series patterns of job flows in the manufacturing sector. Using columns 

1-4 in Table 2.7, Figure 2.5 plots the sum of employment gains from new entrants and expanding 

incumbents as well as the sum of employment losses from plants exiting and contracting. The 

simultaneity of job creation, 𝐽𝐽𝐽𝐽t, and destruction, 𝐽𝐽𝐽𝐽t, features throughout the period of analysis for 

each employer size category. However,  𝐽𝐽𝐽𝐽t significantly dominates 𝐽𝐽𝐽𝐽t in all plant sizes. That is, 

regardless of size, firms destroyed more jobs than they created. The high rates of average yearly job 

flows represent a persistent churning of job opportunities that characterizes the Swazi manufacturing 

labour market, cf. Davis and Haltiwanger (1999, Table 2) and Kerr et al. (2013).    

Figure 2.5: Patterns of Job Creation and Destruction in Manufacturing (1994-2003) 

 

Looking at time series patterns in more detail, we find that the 𝐽𝐽𝐽𝐽t ability of small firms through 

expansion and turnover remained constrained for the entire period. Instead, small firms destroyed 

more jobs than they created. The contraction and exit of small firms peaked in 1995 and 2002/2003. 

Similarly, while large establishments portray no marked swings in 𝐽𝐽𝐽𝐽t, the average pattern shows 

positive shocks in 1999 and 2003. In contrast, there is rather significant activity concerning the 

contraction and exit of firms employing more than 50 workers. The 𝐽𝐽𝐽𝐽t process for large plants 

experienced during the reform period was pronounced in 1995, 1999 and 2003, and this coincides 

with specific events in the Customs Union; namely, the firm response to the South African political 

dispensation of 1994, mergers and acquisitions in the Pulp and Wood industry in 1998/1999 involving 

large firms, and the build-up to the end of the Multi-Fibre Agreement in January 2005.  
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A couple of remarks are helpful in thinking about the trends portrayed by job creation and destruction 

in the manufacturing sector in Swaziland. Large firms create and destroy more jobs than small 

establishments. In particular, Table 2.5 shows that small plants create only 0.9 percent jobs yearly 

while large plants create 3.5 times more new jobs every year. Job destruction by large firms shows 

sharp volatility throughout the period of analysis and it also exceeds the job destruction by small 

plants. Although small firms destroy an annual average of 3.59 percent jobs; large firms destroy 

approximately as much as 1 in 9 (or 11.77 percent) manufacturing jobs every year.17 Thus, the 

manufacturing sector has been destroying more jobs than creating them as in Kerr et al. (2013) for 

South Africa’s case. 

The large-scale job reallocation activity observed in the manufacturing sector reveals a sense in which 

employment opportunities involving large plants change locations. This suggests consideration of a 

measure of simultaneity in the occurrence of job creation and destruction by firm size. By definition, 

excess reallocation is the gross job reallocation less the minimum amount required to accommodate 

the net change in manufacturing employment (see Davis et al., 1996). Figure 2.6 plots excess 

reallocation for both firm-size categories.  

 

Figure 2.6: Patterns of Excess Job Reallocation in Manufacturing (1994-2003) 

 

 
 

The relative dynamism in the large firm-size category finds full expression in excess job reallocation 

that dominates small establishments. 

 

                                                           
17 The U.S. manufacturing sector created 1 in 10 jobs and also destroyed 1 in 10 jobs every year during the 
period 1973-1993 (Davis & Haltiwanger, 1999). 
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B. Cross Industry Variation of Job Flows by Firm Size 

The cross-sectional presentation of job flows in the manufacturing sector allows us to assess their 

behavioural patterns across industries. Figure 2.7 reports the magnitude and variation of gross job 

flows by employer size and two-digit ISIC industry. The annual job flows exhibit higher average and 

median volatility for large plants. A notable result concerns the identification of industries that 

destroyed most jobs in the reference period. Focusing on industries generating more than 10 percent 

gross job destruction, we count nine out of 13 industries as high job destroyers by large plants and 

count 1 out of 13 industries as a high job destroyer by small firms.  

Figure 2.7: Patterns of Job Creation and Destruction Rates in Manufacturing by Industry 

 

Job creation and destruction is also the basis for calculating the quantity that occurs beyond the 

measure that is required to bring about net sectoral contraction and expansion, that is to say excess job 

reallocation, Davis et al. (1996, p. 38). Figure 2.8 plots excess job reallocation by two-digit ISIC 

industries and it ranges from zero percent in the Pulp and Paper (21) to 3.15 percent in the Rubber 

(25) industries for small firms. This measure ranges from zero percent in the Basic Metals (27) to 

13.96 percent in the Furniture (29) industries for large firms. The behaviour of small enterprises in job 

creation and destruction is in sharp contrast to that of larger plants. On the one hand, the uniformly 

low rates of excess reallocation for small plants suggest that every two-digit industry displays limited 

heterogeneity in the direction of employment growth. On the other hand, the highly dispersed excess 
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reallocation for larger firms indicates that a sizeable number of industries exhibit considerable 

heterogeneity in the employment growth. The interpretation for these results based on this industry 

classification scheme for large enterprises is that firm-level demand contains a substantial degree of 

uncertainty that is idiosyncratic to the individual firm [cf. Davis et al. (1996) for the U.S. case]. 

Figure 2.8: Patterns of Excess Job Reallocation in Manufacturing by Industry 

 

The rapid pace in the job reallocation in industries allows inference that a large proportion of gross 

job flows is induced by within-sector reallocation activity instead of by between-sector employment 

shifts.18 Such results provide limited support for the view that high job reallocation rates are 

essentially caused by sectoral or economy-wide shocks.19  

Evidence on job flows in developing countries is gaining momentum due to the increasing, though 

slow-paced, availability of micro-level data. In the African context, Shiferaw and Bedi (2009) 

examine gross job flows in the Ethiopian manufacturing firms, and find job creation and destruction 

patterns similar to those in developed and emerging markets. These results show higher job 

reallocation rates in industries dominated by young plants and start-ups. The same results obtain in 

other developing countries such as Cote d’Ivoire; see Klapper and Richmond (2011), who found that 

new entrants contribute disproportionately to gross job flows. Furthermore, both Klapper and 

Richmond (2011) and Shiferaw and Bedi (2009) find small and young firms more dominant in job 

                                                           
18 Davis and Haltiwanger (1999) decompose the excess reallocation rate into two parts; namely, the within-
sector reallocation and between-sector components. Empirical estimates of the decomposition overwhelmingly 
supports the within-sector reallocation hypothesis, see Hamermesh, Hassink and Ours (1996, Table 2) for 
Netherlands, and Doms, Dunne and Troske (1997, Table 5) for U.S. 

19 Cf. Acemoglu et al. (2012) and Gabaix (2011). 
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creation than large ones. Kerr, Wittenberg and Arrow (2013) examine the job creation and destruction 

patterns in the South African economy, and in the manufacturing sector in isolation. The incidence of 

job destruction was higher than that of job creation in 15 out of 24 waves; hence, the manufacturing 

sector was shedding employment rather than creating more jobs. Table 2.9 presents comparisons 

involving other countries. The manufacturing sector in Swaziland created only 2.5 percent new jobs 

while destroying 13.72 percent, consequently producing the worst net employment growth of -11.2 

percent in the group. Although Swaziland destroyed the same percentage of jobs as the United 

Kingdom, the latter created and reallocated four times more jobs during period of global economic 

crisis than Swaziland during a period of trade liberalization. 

Table 2.9: Comparative Job Flow Aggregates in the Manufacturing Sector across Countries 

Country Period Business 
Unit 

Job 
Creation 

Job 
Destruction 

Net 
Growth 

Job 
Reallocation 

Source 

U.S. 1973-1993 Establishment 8.8 10.2 −1.3 19.0 Davis and Haltiwanger (1999) 
U,K. 1997-2008 Enterprise 10.0 13.7 −3.7 23.8 Hijzen et al. (2010) 
RSA Wave 5-28 Enterprise 8.9 9.8 −0.9 18.7 Kerr et al. (2013) 
Ethiopia 1997-2007 Firm 17.3 10.3 6.7 27.6 Shiferaw and Bedi (2009) 
Swaziland 1994-2003 Firm 2.5 13.7 −11.2 16.2 Author’s Calculation 
Poland 1994-1997 Firm 3.3 5.0 −1.7 8.3 Faggio and Konings (2001) 
Estonia 1994-1997 Firm 5.0 7.9 −2.9 12.9 Faggio and Konings (2001) 
Slovenia 1994-1997 Firm 3.4 4.8 −1.4 8.2 Faggio and Konings (2001) 
Bulgaria 1994-1997 Firm 2.4 5.6 −3.2 8.0 Faggio and Konings (2001) 
Romania 1994-1997 Firm 3.0 8.1 −5.1 11.2 Faggio and Konings (2001) 

In the South African manufacturing sector, Kerr et al. (2013) do not distinguish their industrial 

analysis according to job flow performance by small and large plants. However, they find that firms 

created nearly 9 percent jobs and destroyed 10 percent every year. Looking at the two-digit SIC level, 

the results remained robust. Job creation was still dominated by job destruction, except in the Food 

and Beverages, and Electrical Machinery industries.  The study concludes that there was a general 

decline of about 7 percent in manufacturing employment between 2006 and 2011. 

The cross-sectional heterogeneity in the magnitude of establishment-level employment adjustment has 

received a variety of explanations in the literature. First, as noted by Davis and Haltiwanger (1999); 

sector-specific shocks with differential effects among industries, cohorts of firm birth and firm size 

categories are potential drivers of gross job flows. Although the bulk of existing evidence suggests 

that sectoral shocks account for a small portion of gross job flows, Konings, Lehmann and Schaffer 

(1996) find that state-owned enterprises in Poland destroyed more jobs since the beginning of the 

transition to a market economy and job creation was dominated by the private sector. Second, the 

within-sector magnitude of heterogeneity indicates that idiosyncratic influences dominate the 

determination of which firms destroy and create jobs, which establishments achieve productivity 

growth and which ones suffer productivity declines. One reason advanced for such patterns involves 

the tremendous uncertainty about development, adoption, distribution, marketing and regulation of 
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new products and production techniques; see Davis and Haltiwanger (1999). Uncertainty concerning 

demand for new products or the cost efficiency of alternative production technologies encourages 

plants to experiment. Third, another reason put forward as a determinant of the observed 

heterogeneity in job flows involves differences in entrepreneurial and managerial ability that produce 

differences in net employment and productivity growth among firms.  

2.4.3 Job Turnover and Labour Productivity Growth 

This section is a very concise presentation of issues that are developed comprehensively in the next 

chapter. It focuses on job turnover that has proven to play a significant role in recent studies of 

aggregate labour productivity growth (ALP), see Hijzen, Upward and Wright (2010) and Brown and 

Earle (2002). Thus, the manufacturing sector in Swaziland is investigated to determine the extent of 

inter-industry productivity differences and the differential impact of decomposed components on 

aggregate labour productivity growth. We have defined firm size in terms of the number of workers 

employed. The productivity index is measured as a ratio of real value added (𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖) to employment 

(𝐿𝐿𝑖𝑖𝑖𝑖) for each establishment. Changes in productivity can be decomposed into within-firm effects, 

between-firm effects, and entry and exit effects, see De Loecker and Konings (2006) for an 

application to post-Socialist economies. Although there are a variety of different decompositions for 

productivity available in the literature, our choice is Forster et al. (2001). Armed with 𝑉𝑉𝑉𝑉𝑖𝑖𝑡𝑡 and 𝐿𝐿𝑖𝑖𝑖𝑖 , it 

is straightforward to calculate the ALP growth index. Thus, plant i's labour productivity at time t is 

represented by 𝝋𝝋𝑖𝑖𝑖𝑖=
𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖
𝐿𝐿𝑖𝑖𝑖𝑖

, the sector average ALP  (𝝋𝝋𝑡𝑡) at time t and can then be expressed as 

𝝋𝝋𝑡𝑡=
∑ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑉𝑉𝑉𝑉𝑡𝑡
𝐿𝐿𝑡𝑡

 while the employment share of plant i at time t is 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖
𝐿𝐿𝑡𝑡

. Movements in 𝝋𝝋𝑡𝑡may 

reflect changes in embodied and disembodied technology as well as changes in technical efficiency 

𝝋𝝋𝑗𝑗𝑗𝑗 = �𝑠𝑠𝑖𝑖𝑖𝑖𝝋𝝋𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑗𝑗

, 

where 𝑠𝑠𝑖𝑖𝑖𝑖 denotes the share of plant 𝑖𝑖 in industry 𝑗𝑗 and 𝝋𝝋𝑖𝑖𝑖𝑖 is the establishment-level measure of 

productivity. The change in 𝝋𝝋𝑗𝑗𝑗𝑗 is decomposed as follows 

∆𝝋𝝋𝑗𝑗𝑗𝑗 = �� 𝑠𝑠𝑖𝑖𝑖𝑖−1∆𝝋𝝋𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐶𝐶𝑡𝑡

���������
𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖

�+ ��∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ (𝝋𝝋𝑖𝑖𝑖𝑖−1 −
𝑖𝑖∈𝐶𝐶𝑡𝑡

𝝋𝝋𝑡𝑡−1)
�����������������

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

�+ ��∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ ∆𝝋𝝋𝑖𝑖𝑖𝑖
𝑖𝑖∈𝐶𝐶𝑡𝑡

���������
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

�

+ � � 𝑠𝑠𝑖𝑖𝑖𝑖 ∗ (𝝋𝝋𝑖𝑖𝑖𝑖 −
𝑖𝑖∈𝐸𝐸𝐸𝐸𝑡𝑡

𝝋𝝋𝑡𝑡−1)− � 𝑠𝑠𝑖𝑖𝑖𝑖 ∗ (𝝋𝝋𝑖𝑖𝑖𝑖−1 −
𝑖𝑖∈𝐸𝐸𝐸𝐸𝑡𝑡

𝝋𝝋𝑡𝑡−1)
���������������������������������

𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

� 

In this equation, 𝐶𝐶𝑡𝑡 represents the set of continuing firms existing in two consecutive periods, 𝐸𝐸𝐸𝐸𝑡𝑡 is 

the set of start-up firms that are absent at t-1 but enter the market at t and 𝐸𝐸𝐸𝐸𝑡𝑡 denotes the set of firms 
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that exit the market. The first term in the expression represents the component of aggregate labour 

productivity caused by efficiency improvements within establishments to produce more value added 

without an equivalent increase in labour input. The second component measures the between-firm 

differences in employment shares weighted by productivity at t-1. The third term is the cross-term 

measuring the product of changes in employment and productivity shares. The Net Entry component 

measures the combined effect of firm entry and exit on ALP. 

In order to calculate the different components of ALP, we adopt the approach proposed by Petrin and 

Levinsohn (2012) and define ALP as the change in aggregate final demand minus the change in 

aggregate expenditures on primary inputs, see Nishida et al. (2014). This allows us to aggregate all 

establishment-level growth components to aggregate final demand. Data handling for achieving this 

involves double deflation of the value-added series following Bruno (1978) and Nishida et al. (2014) 

by using the manufacturing value-added deflator. We then calculate the different terms in the ALP 

growth expression for each four-digit industry and report results in Table 2.9 aggregated over two-

digit ISIC industries. 

Table 2.8: ALP Growth in Swazi Manufacturing Based on Foster et al. (2001) Decomposition 
(1994–2003). 

ISIC2 

Value-
Added 

Growth 

Labour 
productivity 

growth (0) 
Within 

(1) 
Between 

(2) 
Cross 

(3) 
Net Entry 

(4) 
Food (15)    47.64 10.12 -4.99 4.41 -5.13 15.83 
Textile (17)  47.72 11.24 -5.37 3.85 -4.27 17.02 
Apparel (18)  56,15 16.42 -7.09 4.08 -3.60 23.04 
Wood (20)  63.99 22.50 -5.02 3.98 -1.92 25.46 
Pulp & Paper (21)  31.76 2.72 -7.36 5.26 -7.32 12.14 
Printing & Publishing (22)  63.41 20.43 -3.92 2.52 -1.45 23.28 
Chemicals (24)  51.70 10.67 -4.56 2.89 -3.51 15.85 
Rubber (25)  70.41 20.85 -3.05 1.65 -0.79 23.04 
Non-Metallic Minerals (26)  40.68 5.48 -5.03 4.21 -5.72 12.02 
Basic Metals (27) 35.95 3.16 -6.35 5.67 -6.28 10.12 
Fabricated Metal (28) 67.70 21.04 -3.19 2.30 -1.25 23.17 
Furniture (29)  70.61 24.83 -3.44 2.31 -0.63 26.60 
Other Manufacturing (36)  61.95 19.11 -4.07 2.78 -2.06 22.46 
Mean 54.59 14.51 -4.88 3.53 -3.38 19.23 
Median 56.15 16.42 -4.99 3.85 -3.51 22.46 
Standard Deviation 13.13 7.68 1.40 1.22 2.23 5.61 

Notes: The “Labour productivity growth” column depicts the ALP growth with entry and exit, and the “Value-
added growth” column represents the aggregate real value-added growth rate.  The plant-level real value added 
is summed and annualized across plants. As in Nishida et al. (2014), numbers are percentage growth rates. We 
define labour productivity as the amount of real value added relative to unit labour. Δ𝝋𝝋𝑡𝑡 is decomposed into four 
components: (1) within, (2) between, (3) cross, (4) Net Entry term for the Foster et al. (2001) procedure. We use 
employment share as share weight, and both “within” and “between” terms use the base-period share for the 
weights. 

The first column in Table 2.8 presents real value-added growth over the 10-year period. In the second 

column, we estimate the aggregate labour productivity growth which is then decomposed into the (1)-

(5) components. We particularly focus our attention on the terms that combine to produce the 
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observed ALP growth, but begin with the generalizations presented using measures of central 

tendency at the bottom of the table. The deterioration of ALP growth comes from the firm-level 

inefficiency that negatively works to reduce the overall performance in the sector. As a result, the 

productivity effect of “Within-Firm” dynamics was on a typical year as low as -4.88 percent during 

the period of analysis. Since this average measure is higher than the median, it suggests the 

productivity distribution is left heavy-tailed with volatility estimated at 1.4. The lowest firm-level 

productivity growth is found in the Pulp and Paper industry at -7.36 percent followed by the Apparel 

industry at -7.09 percent, and the highest is in the Rubber industry at -3.05 percent. This can be 

interpreted as a reflection of a high level of unskilled workers in manufacturing with limited ability to 

convert technology into real output. The result is also consistent with the findings by Bloom et al. 

(2014) and Tybout (2000) that there is a prevalence of plant-level inefficiency and limited structural 

transformation in developing country manufacturing sectors.  

The labour reallocation from low to high productivity firms presented by the “Between-Firm” column 

is on average 3.53 percent and positively skewed with volatility estimated at 1.22 which signifies a 

right heavy-tailed distribution. The Basic Metals and the Pulp and Paper industries recorded the 

highest level of ALP growth at 5.67 percent and 5.26 percent, respectively. However, the entry-exit 

dynamics produce the highest average productivity contribution to ALP growth at the net entry of 

19.23 percent. The higher average productivity growth exhibited by the entrants’ component indicates 

that there are extreme positive outliers pulling the mean over time. The resource reallocation and net 

entry dynamics reported here support the claim by Gelb et al. (2014) of the existence of productivity 

enclaves in a sea of small and lower productivity firms in Sub-Saharan Africa. As a whole, the labour 

productivity growth in the manufacturing sector in Swaziland is driven by resource reallocation across 

firms and firm turnover. The pattern of innovation and technological advancement works to reduce 

aggregate labour productivity growth. The latter suggests a deterioration of skill in the labour input 

and in managerial efficiency in this sector. 

The magnitude of productivity differentials within and across sectors and economies, together with 

potential drivers of these, has recently received extensive attention. In Foster, Haltiwanger and 

Syverson (2008), U.S. industries manufacturing homogenous products such as oak flooring and 

cement exhibit 100 percent productivity spreads. Cross-country comparisons in the developing world 

seem to show magnified productivity differentials, with Hsieh and Klenow (2009) documenting the 

ratio of the 90th to 10th percentile of total factor productivity at 5 percent for Indian and 4.9 percent for 

Chinese firms, see Bloom et al. (2013). In a comprehensive study of 732 medium-sized firms in the 

U.S., France, Germany and the U.K., Bloom, Lemos, Sadun, Scur and Van Reenen (2014) collected 

managerial practice details and report a strong association of these with firm-level productivity and 

other outcomes. Bloom, Eifert, Mahajan, McKenzie and Roberts (2013) conducted a field experiment 

on large Indian textile firms to investigate the role of managerial practices in productivity and found 
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that management change raises productivity by 17 percent. Management practices are estimated by 

Bloom et al. (2014) to account for 25 percent of cross-country and within-country productivity gaps. 

2.5 Discussion of the Results 

 As industrial demand conditions, technological developments and trade policy evolved in Swaziland 

since the early 1990s, the microeconomic characteristics of the manufacturing sector responded 

cautiously in several dimensions. At the descriptive level, and looking at the firm size dynamics; the 

share of small firms remained approximately 2
3
 rds of the entire population survey of firms throughout 

the ten-year period. The related growth patterns conveyed through transition probabilities revealed a 

high degree of timidity of firms in terms of crossing thresholds of growth between the two size 

categories. That is, 98.02 percent of small firms remained small in the entire period while 98.28 

percent of large firms remained large. This is in sharp contrast to the conventional wisdom that this 

firm growth dynamic is principally scale-dependent: small firms grow faster than large firms, 

conditional on survival; see Rossi-Hansberg and Wright (2007) and Decker et al. (2016). Thus, large 

firms in the manufacturing sector in Swaziland are effectively born large instead of emerging from 

transformational and fast growing small firms. 

Turning to the entry/exit dimension of industrial characteristics provides an insight into plant-level 

churning and survival rates during the trade reforms. On average, 9.73 percent of firms entered the 

sector every year while failed establishments accounted for 8.04 percent. Firm survival in the sector 

was on average at least 90.27 percent, depending on whether survival is defined in terms of firms 

active either at 𝑡𝑡 − 1 and 𝑡𝑡 or at 𝑡𝑡 and 𝑡𝑡 + 1. The variability of these rates is quite pronounced, 

reflecting significant changes in the market structure precipitated by new import competition driving 

inefficient firms out of business while competitive ones entered the industry. Some firms ceased 

production for reasons other than weak productivity, but instead disinvested resources because of 

attractive larger markets presented by the reintegration of South Africa back into the world economy.  

As an export-led economy, industrialization in Swaziland is largely driven by the extent of 

preferential foreign market access for its commodity products, see Edwards et al. (2013). The key 

export commodities that receive guaranteed non-reciprocal access to foreign markets include sugar, 

textile and apparel clothing traded in the European Union and the US. Beef exports are destined for 

Norway under the SACU-EFTA Trade Agreement have increased while larger volumes are traded 

locally and in Mozambique. The timing and occurrence of trade in foreign markets translated into 

increased and growing employment in these narrowly defined industries. At the aggregate two-digit 

industry level, Food is persistently the top employer in manufacturing. If the 2003 component of the 

data set is discounted as an outlier, the industry experienced an average employment growth of 8.38 
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percent and volatility of 7.91. It is followed by the Textile and Clothing industries, which are sensitive 

to foreign market access. 

The preponderance of these firm dynamics during trade reforms, together with the associated labour 

demand, shaped the industrial structure in Swaziland. If the sector operated under dense regulatory 

conditions that increased fixed costs for large firms or under imperfect financial markets inaccessible 

to small firms, the expected outcome of the distribution of the marginal product of inputs would be 

the production of the ‘Missing Middle’ phenomenon. However, because of the non-observability of 

marginal products of primary inputs, and if the average product is proportional to the marginal 

product of inputs, the average product of inputs was analysed graphically and statistically. Firstly, the 

cross-sectional firm size lognormal distributions covering the 10-year period shifted towards the left.  

Secondly, this distribution evolves overtime to a state where it initially declines rapidly after its modal 

level, then slows down as if to form a ‘dip’ before accelerating again. The pattern of distributional 

change does not form two modes in any one year. Using a statistical approach following Hsieh and 

Olken (2014), we rely on Fan’s (1992) design-adaptive nonparametric regression to determine the 

correlation between firm size and the average product of primary inputs. We regress the average 

product of capital and labour on firm size defined in terms of the log of employment. The dip-test 

statistic for both proxies of the marginal product of inputs strongly rejects the presence of bimodality 

in the ten annual cross-sections of the relevant data set. 

Taking the data to a more rigorous analysis of longitudinal and cross-sectional job flows and firm size 

dynamics helps in our understanding of the labour market behaviour in each firm size category. This 

is important because of the tremendous churning that occurs in the Swazi industrial sector. Hundreds 

of jobs are created and destroyed every year as firms expand and prosper or old ones contract and shut 

down or as new plants enter the market. One key finding is that the job creating prowess of small 

industrial producers fails in the Swazi manufacturing sector. Instead, small firms destroy more jobs 

through the exit dynamic than they engage in job creation, with significant job description episodes 

experienced in 1995 and 2002-2003. In contrast, large firms created more jobs relative to small 

producers, they also experienced significant job destruction. More specifically, nine out of the 13 

industries experienced job destruction in excess of 10 percent. This microeconomic churning process 

altered the industrial structure in Swaziland that obtained at the beginning of trade liberalization. The 

Basic Metals industry started shrinking abruptly from 1996, the Textile and Clothing industries 

expanded considerably in 2001 and the Pulp and Paper industry experienced gradual contraction since 

1996. Are these industrial changes a reflection of firm-level responses to import competition or 

resource consolidation by South African global firms to intensify participation in the international 

economy along multiple margins to increase shares of global trade as suggested by Bernard et al. 

(2016)? 
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The cross-sectional decomposition of aggregate labour productivity identifies industries with the 

propensity of firm-level contraction and exit as a result of inefficient performance, and expansion and 

growth induced by higher productivity. The longitudinal dimension of the decomposition, or ‘within-

effects’, shows the Pulp and Paper as the worst performer than the average industry, and that all 

industries have negative productivity. On the other hand, the reallocation effect of resources from 

inefficient to efficient uses is dominant; that is, it is persistently positive. Looking at both columns 

simultaneously, it is apparent that there is correlation between ‘within-effects’ and ‘between-effects’ 

of incumbent firms’ productivity growth. The highest resource reallocation comes from the most 

inefficient industry and vice versa. This suggests that it is the less innovative firms that shed workers 

to high productivity innovative plants. Furthermore, firm turnover is consistently positive across all 

industries. This means that under-performing firms closed down operations and shifted labour shares 

to the new entrants with higher productivity growth. 

A reconciliation of the results from gross job flow analyses with turnover effects shows that job 

destruction is scale-dependent: large firms account for most of the industrial gross job destruction. 

This gross job destruction is induced by inefficient large firms driven out of business by the more 

productive large entrants. In the Furniture industry, employment declines by 137 percent due to the 

exit of large low productivity firms in 2000 while the Metal Industry lost 139 percent in employment 

in 1996 for the same reasons. The general impact of firm turnover on aggregate labour productivity 

remains pronounced than growth effects from other growth components while large firms account for 

most job destruction through the exit margin. Some industries experience gradual contraction while 

others appear hit by transitory shocks at employment levels. Two potential explanations exist for this: 

first, large establishments engage in mergers and acquisitions occurring in a given year like in the 

Pulp and Paper industry. Second, a decision to disinvest may be taken at time 𝑡𝑡 but because of high 

adjustment costs due to capital irreversibility and high hiring costs, it may take a while to exit the 

market. 

2.6 Conclusion 

Industrial firm size dynamics are scale-independent in Swaziland. Even if small firms survive, they do 

not grow faster than large firms. Transition probabilities show 98.02 percent of firms born small 

remain small after 10 years and 98.28 percent of firms born large remain large after the same period. 

Since the establishment turnover analysis shows a positive net entry of firms, the observed industrial 

employment growth does not come from incumbent firms increasing workers but rather from entry of 

new firms.  

The notion that the distribution of firm size in developing African countries is characterized by a 

bimodal distribution with a missing middle is investigated graphically and statistically in the industrial 
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sector. The annual firm-size lognormal distributions shifted towards the left demonstrating a general 

economic deterioration during the 10-year period. This distribution evolves overtime to a state where 

it initially declines rapidly after its modal level, then slows down as if to form a ‘dip’ before 

accelerating again.  The pattern of distributional change does not form two modes at any one year. 

Using a statistical approach, we regress the average product of primary inputs on firm size. The dip-

test statistic for both proxies of the marginal product of inputs strongly rejects the presence of a 

missing middle in the ten annual cross-sections of the data. Thus, the missing ‘missing middle’ found 

in Hsieh and Olken (2014) for the cases of India, Indonesia and Mexico is confirmed for the case of 

Swaziland. 

In the study of job flows, the manufacturing sector produces results that are consistent with findings in 

other countries. The simultaneity of gross job creation and destruction features throughout the period 

of analysis for each establishment size category. However, job destruction significantly dominates job 

creation in all plant sizes. Looking at longitudinal patterns in detail, the industry experienced a 

systematic failure of the job creating prowess of small firms in Swaziland. Small firms destroyed 

more jobs than they created them and large firms created more jobs than small plants. That is, while 

small plants create an annual average of 0.9 percent jobs, large plants create 3.5 times more new jobs 

every year. Although small firms destroy an annual average of 3.59 percent jobs; large firms destroy 

approximately as much as 1 in 9 manufacturing jobs every year. Thus, the manufacturing sector 

generally destroyed more jobs than it created them.  

Interesting results are produced when job turnover is linked to productivity growth. The productivity 

effect of “Within-Firm” productivity was on a typical year as low as −4.88 percent during the period 

of analysis. This means that productivity growth coming from incumbent firms had growth-reducing 

effects on the overall productivity growth. Labour reallocation from low to high productivity firms 

presented by the “Between-Firm” column is on average 3.53 percent. This means that larger firms 

dominate the process of input resource reallocation to more efficient larger firms. However, entry-exit 

dynamics produce the highest average productivity contribution to ALP growth at the net entry of 

19.23 percent.  
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Figure A.2.1: Average Product of Capital by Employment (1994-2003) 

 

Table A.2.1: The Dip Test of the Average Product of Real Capital Stock 

Year Firms Dip p-Value Low High Mean 
1994 79 0.05 0.12 1.46 1.62 1.59 
1995 85 0.03 0.44 1.53 1.64 1.59 
1996 96 0.03 0.69 1.62 1.70 1.66 
1997 99 0.03 0.44 1.66 1.86 1.76 
1998 118 0.02 0.92 1.76 1.85 1.85 
1999 139 0.03 0.35 1.47 1.55 1.51 
2000 152 0.01 0.98 1.45 1.46 1.46 
2001 165 0.02 0.80 1.48 1.49 1.49 
2002 179 0.01 0.97 1.49 1.56 1.53 
2003 151 0.02 0.86 1.49 1.55 1.52 
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CHAPTER 3: Does Technical Efficiency Dominate Resource Reallocation in Aggregate 
Productivity Growth?  

3 . 
3.1 Introduction 

Recent research spurred by the increasing availability of longitudinal plant-level data, links 

microeconomic dynamics to aggregate outcomes. One area of focus for this research is the 

identification of establishment-level drivers and relative dominance of sources of aggregate 

productivity growth. A robust finding is that structural change effects of resource reallocation across 

plants are subordinate to within-plant productivity arising from learning-by-doing and learning-by-

watching. For example, in nine of the 25 countries studied by Bartelsman, Haltiwanger and Scarpetta 

(2004) (or BHS) and Paǵes, Pierre and Scarpetta (2008) (or PPS), resource reallocation between 

plants was negative and weakly positive in only four countries. Similarly, in the analysis of job 

creation and productivity growth for the Slovenian manufacturing sector, De Loecker and Konings 

(2006) find dominance of technical efficiency over the reallocation of market-share of labour from 

low- to high-productivity incumbents as well as over firm turnover in driving aggregate productivity. 

In a comprehensive survey of the literature, Isaksson (2010) confirms for several countries at different 

stages of development that within-firm effects contribute more than inter-sectoral reallocation effects 

to aggregate labour productivity growth.  

Another strand of the literature using enterprise-level micro-data also finds overwhelming evidence 

that within-industry reallocation of resources shape changes in industry aggregates; see Foster et al. 

(2008). This churning process and its effects on aggregate productivity have received special 

theoretical and empirical attention. As observed by Foster et al. (2008), models of selection 

mechanisms depict industries as assortments of producers characterized by heterogeneous 

productivity which link a firm’s productivity level to its performance and survival in the industry. Key 

contributions in this area include Jovanovic (1982), Ericson and Pakes (1995), Melitz (2003), and 

Asplund and Nocke (2006). The main mechanism that causes change in these models is the 

reallocation of market-shares from either inefficient to efficient incumbent producers or from entry 

and exit of firms. Low-productivity establishments are less likely to survive and prosper relative to 

high-productivity incumbents which create selection-driven increases in industry productivity (Foster 

et al., 2008). 

The common approach used to generate these results is largely based on the work of Baily, Hulton 

and Campbell (1992) and its derivatives such as Foster et al. (2001), Griliches and Regev (1995) and 

Olley and Pakes (1996). The Baily et al. (1992) method defines industry productivity growth as 

resource-share weighted changes in the distribution of the Solow-type technical efficiency (Solow, 

1957). It derives its foundations from the decomposition and aggregation of plant-level residuals into 

Stellenbosch University  https://scholar.sun.ac.za



44 
 

productivity growth components. The sources of this growth include changes in a plant’s continuous 

innovation and adaptation to technological advances in the sense of learning-by-doing/watching as in 

Jovanovic (1982) and Pakes and Ericson (1998), movement in resource-share changes from low- to 

high-activity plants and turnover of firms. One question this method seeks to answer relates to the 

height of barriers to input reallocation in an economy, as in Bartelsman et al. (2004) and Paǵes et al. 

(2008). 

The Petrin and Levinsohn (2012) method presents an alternative framework which introduces an 

environment with imperfect competition that creates a wedge in the marginal product−reward mix of 

inputs. It also creates a friction that induces heterogeneity in production technology and productivity 

levels, entry and exit of goods, costs of adjusting outputs and inputs, sunk and fixed costs, and 

markup-pricing. This is consistent with the recent work by Hsieh and Klenow (2009) and Petrin and 

Sivadasan (2013), who find significant heterogeneity between inputs’ marginal products across 

establishments suggesting the presence of prohibitive distortions in input reallocation. Restuccia and 

Rogerson (2008) also calibrate a growth model with establishment-level heterogeneity arising from 

idiosyncratic policies and regulations, and institutional behaviour. This allows them to analyse the 

distortionary effects of such idiosyncrasies on the reallocation of resources across producers. Policies 

creating price heterogeneity among producers are found to reduce output and aggregate productivity 

by a range of 30 to 50 percent (see Restuccia and Rogerson, 2008). 

The proposition by Petrin and Levinsohn (2012) has been applied by Nishida et al. (2014) to Chile, 

Colombia, and Slovenia; Ho, Huynh, Jacho-Ch´avez and Cubas (2014) to Ecuador, Petrin et al. 

(2011) to the U.S., and Kwon, Narita and Narita (2009) to Japan. This measurement approach defines 

aggregate productivity growth (hereafter referred to as APG) “as the change in aggregate final 

demand minus the change in aggregate expenditure on capital and labour” in the presence of imperfect 

competition and other distortions or frictions. Crucially, the APG decomposition has a term per 

establishment linked to technical efficiency and one for each primary input at each plant.20 The term 

associated with either capital or labour is a function of the wedge between the value of the marginal 

product (VMP) and the relevant input price.   

The purpose of this chapter is two-fold. First, it seeks to compare the individual drivers of aggregate 

labour productivity for the Swazi manufacturing sector with similar drivers for other countries. This 

exercise has never been done before for a Southern African country using a relatively long panel 

dataset compiled by a state agency.21  Second, it estimates the components of industry productivity 

over time using both the Baily et al. (1992)/Foster et al. (2001) and Petrin and Levinsohn (2012) 
                                                           
20 The phrase ‘primary inputs’ is used interchangeably with ‘factor inputs’. 

21 Van Biesebroeck (2005) undertakes a similar analysis but has access only to RPED surveys, which have a 
short time dimension. 
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methods. In essence, the chapter examines the robustness of the overwhelming findings of the meta-

analyses that productivity arising from learning-by-doing and learning-by-watching dominates 

productivity from market-share reallocation across incumbent firms and from net-entry of firms?22,23 

This question is examined across several dimensions using a rich and unique dataset for the 

manufacturing sector in a small developing African country- Swaziland.  

This chapter makes three contributions to the literature. First, it applies the Baily et al. (1992)/Foster 

et al. (2001) approach to compare the drivers of industry productivity in Swazi manufacturing with 

similar growth drivers in Sub-Saharan economies, economies in transition and developed countries. 

Second, it uses the traditional approach and Petrin and Levinsohn (2012)/Nishida et al. (2014) to 

estimate ALP and APG over time. Third, it estimates the impact of confounding effects of plant 

turnover on the Baily et al. (1992) reallocation in the Swazi manufacturing data. 

In the next section, we present an overview of the manufacturing sector in Swaziland for a period 

which coincides with trade liberalization and the political transition in South Africa. Section 3 

undertakes descriptive analyses of key indicators and the behaviour of aggregate productivity for 

capital and labour. This is followed by a formal presentation of the Baily et al. (1992)/Foster et al. 

(2001) methodology for ALP decomposition in Section 4. Section 5 calculates ALP growth and its 

component drivers using the traditional method. In Section 6, we recast the Petrin and Levinsohn 

(2012)/Nishida et al. (2014) framework of APG decomposition, demonstrating how the Wooldridge 

(2009) modification of Levinsohn and Petrin (2003) is implemented in the dataset. Finally, we 

perform a direct estimation of APG and its component parts to determine the differential roles of 

technical efficiency and input reallocation on growth.  

3.2 Overview of the Manufacturing Sector in Swaziland 

The latter part of the 1980s was a period of unprecedented economic growth in the Swazi 

manufacturing sector. This was in response to economic sanctions on South Africa imposed by 

influential world economies (Edward et al. (2013)) and the relocation of some South African firms to 

neighbouring countries like Swaziland to circumvent these sanctions. The relocation decision enabled 

them to access foreign markets and/or to export intermediate inputs back to the home country. These 

foreign affiliates gained access to relatively cheap labour and material inputs in Swaziland, which 

reduced production costs. The domestic effect of this foreign presence in the sector came in the form 

of transfer of technical knowledge to local labour and to upstream suppliers. The resulting learning-

                                                           
22 Resource reallocation refers to reallocation of resources across incumbent firms and reallocation of resources 
in response to firm turnover, where firms/plants/establishments are used interchangeably. 

23 Levinsohn and Petrin (1999) refer to the learning-by-doing and learning-by-watching effects as the real 
productivity case. 
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by-doing increased both the efficiency of primary inputs and the quality of intermediate inputs from 

suppliers. Consequently, Hammouda,  Karingi, Njuguna and Jallab (2010) found that Swaziland 

experienced 11.15 percent growth in real gross domestic product during the period 1985−1990 in 

which capital and total factor productivity accounted for 3.13 percent and 6.34 percent, respectively.  

However, the period spanning the 1990s and 2000s was characterized by a marked deterioration in 

economic growth. This was due largely to the lifting of sanctions and re-integration of South Africa 

into the world economy (Hammouda et al., 2010). In particular, trade liberalization that took place in 

the second half of the 1990s made South Africa appear as a more attractive investment destination. 

The response of South African multinational enterprises was to recall their foreign affiliates to 

improve their own scale economies, see Jonsson and Subramanian (2001). As international 

competition intensified, domestic industries that were characterized by oligopolistic markup pricing 

behaviour were forced to behave competitively. According to Jonsson and Subramanian (2001), the 

consequence of a freer market environment was the exit of some of the inefficient firms which, in 

turn, reallocated market shares to continuing ones and also to industry entrants. They also argue that, 

despite the presence of such import discipline mechanism, the limited domestic market size still 

enabled a portion of inefficient plants to survive and also allowed new low-productivity 

manufacturers to enter the market.  

During this period the Swaziland Government responded with an attempt to address the issue of 

missing markets in the economy. One critical area for industrial policy intervention involved 

institutional reforms and infrastructure development to attract FDI, see Masuku and Dlamini (2009). 

As a result, the Swaziland Industrial Development Corporation (SIDC) was commissioned to design 

and implement a factory shell development programme to reduce sunk investment costs for producers, 

particularly in the textile and apparel industries. The Swaziland Investment Promotion Authority 

(SIPA) was also established in 1998 as a one-stop shop to serve mainly foreign investors. The 

objective of SIPA’s existence was to market the country abroad as an investment destination and also 

to serve as an information desk when the foreign firm was ready to invest in Swaziland. In addition to 

these efforts to lure foreign investment, the state was also an active participant in the domestic 

economy. Direct state presence through Tibiyo TakaNgwane sought, inter alia, to increase formal 

sector employment and earn foreign exchange.24 The presence of this state-owned enterprise is found 

in key sectors of the economy, and is perceived by the Federation of Swaziland Employers and 

Chamber of Commerce as having undesirable crowding-out effects on private investment, see Tibiyo 

TakaNgwane’s Annual Report (2010). 

 

                                                           
24 Tibiyo TakaNgwane is a state-owned enterprise whose purpose is to actively pursue commercially viable 
projects in all sectors of the economy (Tibiyo TakaNgwane Annual Report, 2012). 
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3.3 Descriptive Analysis of the Panel Data Series 

3.3.1 Data Description and Summary Statistics 

Although a detailed account of the source and structure of the dataset is presented in the overview 

chapter, the investigation of aggregate productivity growth requires a more direct description of 

relevant data series. Firm dynamics in the 1990s and early 2000s were driven by an average entry rate 

of 9.72 percent and exit rate of 8.03 percent per year. In the same period, the aggregate labour series 

oscillated around an average of 21 500 employees as shown in Table 3.1. In particular, aggregate 

labour changes exhibit relatively erratic patterns of weakening over the entire period. At the same 

time, the real value-added series in column four was largely static, except for a sharp drop in 1997. 

Table 3.1: Summary Statistics   

Year No. of Firms Employment  Total Amount in E’ Million* 
 Real Value-Added Real Capital Real Wages 

1994 100 17 260  1 241.28 2 221.8 2 267.2 
1995 109 18 216  1 033.25 1 445.7 2 144.4 
1996 117 17 837  1 132.92 1 085.7 2 271.0 
1997 130 18 513  1 164.43 1 287.2 1 433.3 
1998 150 20 296  1 087.23 2 928.2 1 605.6 
1999 153 19 760  2 568.00 5 344.3 2 042.5 
2000 164 19 036  2 291.59 5 477.6 2 705.8 
2001 177 28 861  2 697.51 5 482.2 2 685.7 
2002 188 32 219  2 143.96 6 879.5 2 830.7 
2003 160 23 499  1 919.77 6 557.2 2 852.9 
Mean 144.8 21 550  1 727.99 3 871.9 2 283.9 

Note: * These figures were transformed using double-deflation of value-added, capital and the wage series as 
required by Bruno (1978) and applied by Nishida et al. (2014) for the case of Chile, Colombia and Slovenia. 

The events that characterize the churning process of firms included the deepening pressure for higher 

wage increases by unions, and the resulting worker unrest necessitated restructuring of businesses 

through retrenchments.25 Industrial action was however more visible in some sectors than in others. 

Moreover, the increase in aggregate capital was rather rapid from 1996 and levelled off somewhat in 

1999. Since capital measurement is based on the plant, machinery and equipment (PME) series, which 

excludes the cost of repairs and replacement, its years of upward trend is a reflection of generally 

lumpy investment in fixed capital by a few large firms.26 

 
                                                           
25 See the Central Bank of Swaziland Reports (1995-2003) on industrial unrests and IMF Staff Report (2000:13) 
on the need to review the Industrial Relations Act. 

26 The intermittence and lumpiness of capital projects as well as indivisibility contribute to the non-smoothness 
in the adjustment path of capital stock; see Nielsen and Schiantarelli (2003). Indivisibility ensures that 
investment occurs only in discrete increments. 
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3.3.2 Aggregate Input Productivity Movements 

Aggregate input productivity changes in manufacturing during the trade liberalization period show a 

general decline as shown in Figure 3.1. The aggregate labour productivity index mimics aggregate 

labour input trends examined above. This suggests a high level of co-movement between value-added 

output and aggregate labour productivity. It is therefore not surprising to see a rapid decline in 

aggregate capital productivity from a point in time when the capital series begins an increase. 

Furthermore, the capital-labour ratio shows an increase after the first three years. This reflects a 

general increase in capital-intensity in production during the period under analysis without 

corresponding growth in real value added. 

Figure 3.1: Output-Input and Capital-Labour Ratios by Year 

 

Figure 3.2: Output-Input and Capital-Labour Ratios by Industry (1994-2003) 
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In general, the descriptive analysis is consistent with an explanation where a significant proportion of 

larger firms shed labour and keeps capital adjustment levels largely unchanged. This pattern of firm 

behaviour aligns with an economic environment which favours shifting most of the production by 

South African affiliates in Swaziland back to South Africa. Given that capital is mostly irreversible in 

nature, these firms could not recoup the fixed costs of capital but simply operated to cover their 

variable costs to remain in business.  

This evidence sheds light on average patterns of aggregate factor input productivity across time and 

industry but cannot reveal much, if anything at all, about its cross-sectional distribution at a given 

point in time. Looking at aggregate labour productivity (ALP), Figure 3.2 shows a persistent shift of 

ALP towards the left with growing fat-tails in both directions. These patterns remain unaltered even 

when the value-added series is subject just to single deflation, except that the whole distribution 

moves more to the left, see Appendix A3.2. This is in sharp contrast to conventional wisdom, which 

holds that market reforms increase productivity within and across firms to drive aggregate growth.27 

Normally, trade liberalization has been shown to increase firms’ incentives to invest in innovative 

technologies, and weak firms to lose market share to efficient ones, thereby boosting productivity, see 

Lileeva (2008).     

Figure 3.3: ALP Distribution for Selected Years (1994, 1997, 2000, 2003) 

 

                                                           
27 See; for example, Lileeva (2008, Fig.1) for the case of Canada within NAFTA where the evolution of growth 
generated from the ‘Between’ and ‘Within’ terms continuously shift towards the right. Escribano and Stucchi 
(2014, Fig.1) find productivity improvement for Spanish manufacturing firms during a recession. 
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Note: ALP is measured as a ratio of double-deflated value added to aggregate employment in a year; see 
Appendix A3.2 for a single-deflated ratio of real value added to annual total employment. 

In Table 3.2, we report patterns of productivity index movements by industry, and measure their 

central tendencies and dispersion. This allows us to document the relative performance of industries in 

relation to the chosen base year. Our first year of the sample period −1994− is normalized to one and 

the productivity index for the subsequent years is measured relative to this base year. On average, 

there is at best stagnation in 1998-1999 and at worst a loss of about 3 percent in productivity by 2003. 

This is contrary to De Loecker and Konings (2006) who use Olley and Pakes (1996) to find an 

average increase of 63 percent in the productivity index for Slovenia covering the period 1994-2000. 

The presence of heterogeneity is starkly reflected by a 2 percent growth in the ‘Wearing Apparel’ 

industry, while the ‘Basic Metals’ industry declines by 9 percent in the final year. Again, De Loecker 

and Konings (2006) found increases of 7 and 77 percent in the respective industries. However, the 

Pulp and Paper industry remains the dominant driver of ALP growth in the trade reform period in 

Swaziland. 

Table 3.2: Evolution of the Average ALP by Industry (1994-2003) 

Industry 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 
Food and Food Products 1.00 0.97 0.97 0.98 0.99 0.98 0.98 0.98 0.97 0.96 
Textile  1.00 0.98 0.98 0.98 1.00 1.00 0.97 1.00 0.97 0.96 
Wearing Apparel  1.00 0.99 1.03 1.01 1.03 1.01 1.01 0.88 1.00 1.02 
Wood and Wood Products  1.00 0.97 0.96 0.96 0.99 0.98 1.00 0.97 0.98 0.95 
Pulp and Paper Products  1.00 1.01 1.03 1.05 1.05 1.05 1.05 1.01 1.02 0.97 
Printing, Publishing  1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99 
Chemicals Products  1.00 0.99 1.00 1.01 0.98 0.99 1.00 1.01 1.00 0.98 
Rubber and Plastic Products  1.00 0.99 0.99 0.97 0.99 0.98 0.97 0.98 0.96 0.94 
Other non-metallic Minerals  1.00 0.99 0.96 0.94 0.96 0.97 0.98 0.96 0.98 0.97 
Basic Metals  1.00 0.99 1.01 1.02 1.01 1.02 0.98 0.98 0.99 0.91 
Fabricated Metal Products  1.00 0.99 1.01 0.98 0.99 0.99 0.97 0.97 0.98 0.99 
Machinery and Equipment  1.00 0.99 0.99 0.99 0.99 0.99 0.97 0.99 1.00 0.99 
Furniture  1.00 1.02 1.00 0.98 0.98 1.02 0.98 0.99 0.98 0.98 
Sector Mean 1.00 0.99 0.99 0.99 1.00 1.00 0.99 0.98 0.99 0.97 
Sector Median 1.00 0.99 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.97 
Std Dev (𝛔𝛔𝑨𝑨𝑨𝑨𝑨𝑨) 0.00 0.01 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 

Source: Author’s calculations. 

It also seems natural to perform an analysis of ALP behavioural patterns at the tails of its distribution. 

For example, the 25th percentile in the ALP distribution shows more volatility than either the average 

situation or the upper 75th tail. That is, the standard deviation of the 25th percentile was 𝛔𝛔𝑨𝑨𝑨𝑨𝑨𝑨 ∈

[1.05, 6.68] whereas the 75th percentile was characterized by 𝛔𝛔𝑨𝑨𝑨𝑨𝑨𝑨 ∈ [0.11, 0.26] as shown in 

Appendices A3.3 and A3.4, respectively. This suggests that a firm in the 25th percentile ALP 

distribution was more sensitive to productivity shocks than either an average or a third-quartile firm. 

As a result of these industrial productivity swings, the bottom and 75th percentile firms experienced an 

ALP decline of 8 and 5 percent, respectively. 
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The emerging ALP trends and heterogeneity suggest the need for a deeper understanding of 

microeconomic causes and foundations for productivity growth, or in Swaziland’s case stagnation and 

decline. It is therefore necessary to disentangle the roles of real productivity, intensive margins of 

share-shift effects, and extensive margins of turnover in productivity growth across industries. We 

achieve this in the next section by formally presenting a framework that outlines the relationship 

between resource shares and the productivity index in calculating each component of the ALP 

decomposition.  

3.4 Measurement and Decomposition of Aggregate Labour Productivity 

3.4.1 Definition and Measurement of ALP Growth 

The quantity of labour (𝐿𝐿𝑖𝑖𝑖𝑖) as a primary input in production at firm 𝑖𝑖 is measured by the head-count 

of paid workers and working proprietors.28 Nominal value-added output is measured as gross output 

minus intermediate inputs; that is, material and energy. Following Nishida et al. (2014) and Petrin et 

al. (2011), the quantity index of real value added (𝑉𝑉𝑉𝑉) is then constructed by using the double-

deflation approach to nominal value added proposed by Bruno (1978) as 

𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖
𝑃𝑃𝑡𝑡
𝑄𝑄 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖

𝑃𝑃𝑡𝑡𝑀𝑀
− 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖

𝑃𝑃𝑡𝑡𝐸𝐸
         (1) 

        ≅ 𝑃𝑃𝑖𝑖𝑖𝑖𝑄𝑄𝑖𝑖𝑖𝑖−𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖−𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖
𝑃𝑃𝑡𝑡

 

where 𝑄𝑄𝑖𝑖𝑖𝑖 , 𝑀𝑀𝑖𝑖𝑖𝑖 and 𝐸𝐸𝑖𝑖𝑖𝑖  are nominal gross output and inputs of material and energy with their 

respective price indices. The double-deflation expression in the first line of Eq.1 represents the 

relevant price index for gross output and intermediate input quantities, see Petrin et al. (2014, 

Appendix 3) for Chile. The second line of Eq.1 presents the expression of a single-deflation method 

approximated with a common industry price deflator for both the output quantity and intermediate 

inputs, see Petrin et al. (2014, Appendix 3) for Colombia and Slovenia. The single-deflation approach 

is useful whenever intermediate deflators are not available. 

Armed with information on 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 and 𝐿𝐿𝑖𝑖𝑖𝑖 , it is straightforward to calculate the ALP growth index. 

Thus, plant i's labour productivity at time t is represented by 𝝋𝝋𝑖𝑖𝑖𝑖=
𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖
𝐿𝐿𝑖𝑖𝑖𝑖

 and aggregate labour 

                                                           
28 The best measure of labour input according to OECD (2001) is hours worked. Although the legal length of a 
work-day is 8 hours and public holidays are known for the Swazi manufacturing sector, there is no information 
on worker absenteeism, variation in overtime, evolution of part-time work, sick leave and employee slack time 
due to ill-health. Furthermore, in the absence of the total number of hours worked that can be divided by the 
average annual number of hours actually worked in full-time jobs, the use of full-time equivalent employment is 
not feasible for the labour input definition contained in Doraszelski and Jaumandreu (2013, Appendix A) and 
OECD (2001).  
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productivity  (𝝋𝝋𝑡𝑡) at time t can then be expressed as 𝝋𝝋𝑡𝑡=
∑ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑉𝑉𝑉𝑉𝑡𝑡
𝐿𝐿𝑡𝑡

 while the employment share of 

plant i at time t is 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖
𝐿𝐿𝑡𝑡

. Movements in 𝝋𝝋𝑡𝑡may reflect changes in embodied and disembodied 

technology as well as changes in technical efficiency.29 These changes may also reflect shifts in scale 

economies and degrees of capacity utilization. For the decomposition of aggregate labour productivity 

growth, Δ𝝋𝝋𝑡𝑡, the literature relies largely on the tradition of Baily et al. (1992)/Foster et al. (2001) in 

defining the effects of its sources. Specifically,  

Δ𝛗𝛗t = Within Effects + Between Effects + Cross Effects + Net Entry Effects 

= Δ𝝋𝝋𝑊𝑊𝑊𝑊𝑊𝑊 + Δ𝝋𝝋𝐵𝐵𝐵𝐵𝐵𝐵 + Δ𝝋𝝋𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + Δ𝝋𝝋𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.       (2) 

Eq. 2 means that aggregate labour productivity growth, Δ𝛗𝛗t, increases when firms use innovative 

production methods to produce more output through the ‘Within-Firm’ effects term Δ𝝋𝝋𝑊𝑊𝑊𝑊𝑊𝑊, holding 

factor inputs constant. The Δ𝛗𝛗t index can also increase when inefficient incumbent firms reallocate 

resources to more efficient ones through the term Δ𝝋𝝋𝐵𝐵𝐵𝐵𝐵𝐵. Haltiwanger (1997) adds a component that 

allows for the interaction between the change in resources and the change in ALP growth, and calls it 

the ‘cross’ or the ‘covariance’ term. The cross term increases when the changes in both components 

move in the same direction; that is, when the market share and ALP growth jointly increase and vice 

versa. Lastly, if new business methods including capital deepening that lead to improvements in 

industry productivity can only be adopted by new plants, then the net-entry term, Δ𝝋𝝋𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 

should dominate. 

Motivated by PPS and BHS, Nishida et al. (2014) perform a theoretical and empirical analysis of ALP 

growth and APG using traditional methods and Petrin and Levinsohn (2012), respectively. We 

replicate Nishida et al. (2014) for the case of the manufacturing sector in Swaziland by decomposing 

ALP on the basis of Baily et al. (1992)/Foster et al. (2001) and APG using the marginal product of 

factor inputs. 

3.4.2 The ALP Growth Decomposition Using the Baily et al. (1992) Method 

The traditional method of Δ𝝋𝝋𝑡𝑡 decomposition is associated with the Baily et al. (1992) approach and 

its derivatives such as Griliches and Regev (1995), Foster et al. (2001) and Olley and Pakes (1996). In 

this context, Δ𝝋𝝋𝑡𝑡 is traditionally defined as input-share weighted changes in the distribution of plant-

level technical efficiency, covariance and resource reallocation by incumbents and net entrants into 

the market. The Baily et al. (1992) decomposition additively isolates Δ𝝋𝝋𝑡𝑡 gains arising only from 

                                                           
29 Embodied technology refers to advances in the design and quality of new vintages of capital goods and 
intermediate inputs, and disembodied technology refers to new blueprints, scientific results and new 
organizational techniques, see OECD (2001). 
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technical efficiency and resource reallocation. The Baily et al. (1992) (or 𝐵𝐵𝐵𝐵𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴) procedure 

decomposes Δ𝝋𝝋𝑡𝑡 as  

𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴 = �∑ 𝑠𝑠𝑖𝑖𝑖𝑖−1∆𝝋𝝋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐶𝐶𝑡𝑡
�����������

𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖

�+ �∑ ∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ 𝝋𝝋𝑖𝑖𝑖𝑖−1𝑖𝑖∈𝐶𝐶𝑡𝑡
�����������

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

�+ �∑ ∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ ∆𝝋𝝋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐶𝐶𝑡𝑡
�����������

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

�+ 

�∑ 𝑠𝑠𝑖𝑖𝑖𝑖 ∗ 𝝋𝝋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐸𝐸𝐸𝐸𝑡𝑡 − ∑ 𝑠𝑠𝑖𝑖𝑖𝑖−1 ∗ 𝝋𝝋𝑖𝑖𝑖𝑖−1𝑖𝑖∈𝐸𝐸𝐸𝐸𝑡𝑡
�������������������������

𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

   �       (3) 

where ∆𝝋𝝋𝑖𝑖𝑖𝑖 = 𝝋𝝋𝑖𝑖𝑖𝑖 − 𝝋𝝋𝑖𝑖𝑖𝑖−1 and ∆𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑖𝑖𝑖𝑖−1, and 𝐸𝐸𝐸𝐸𝑡𝑡  and 𝐸𝐸𝐸𝐸𝑡𝑡  represent firm entry and exit at 

time t, respectively. The different sources of Δ𝝋𝝋𝑡𝑡 are defined as 

Within-plant effects: ∑ 𝑠𝑠𝑖𝑖𝑖𝑖−1∆𝝋𝝋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐶𝐶𝑡𝑡  is the sum of changes in plant-level labour productivity 

weighted by t−1 base-period labour share for continuing plants. It measures a plant’s gains in 

productivity induced by continuous improvement in production methods without an increase in its 

labour share. This growth component is referred to as real-productivity effects in Levinsohn and 

Petrin (1999).  

Between-plant effects: ∑ ∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ 𝝋𝝋𝑖𝑖𝑖𝑖−1𝑖𝑖∈𝐶𝐶𝑡𝑡  in Baily et al. (1992) is the sum of changes in plant-level 

employment shares multiplied by the t−1 labour productivity for continuing plants. This growth effect 

measures the extent of labour share reshuffling across plants where the labour input is reallocated to 

more efficient plants. This term is also viewed as ‘clean’ because it holds real productivity constant; 

see Nishida et al. (2014).  

Covariance effects: ∑ ∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ ∆𝝋𝝋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐶𝐶𝑡𝑡  is the sum of plant-level contemporaneous changes in the 

labour share and labour productivity. As Nishida et al. (2014) point out, this term increases when 

plants with increasing labour productivity are also plants with increasing labour shares.  

Net-entry effects: An entering plant is identified when it first appears at time t, and an exiting plant is 

identified when it last appeared at time t−1. Thus, for ∑ 𝑠𝑠𝑖𝑖𝑖𝑖 ∗ 𝝋𝝋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐸𝐸𝐸𝐸𝑡𝑡 − ∑ 𝑠𝑠𝑖𝑖𝑖𝑖−1 ∗ 𝝋𝝋𝑖𝑖𝑖𝑖−1𝑖𝑖∈𝐸𝐸𝐸𝐸𝑡𝑡 , where 

𝝋𝝋𝑖𝑖𝑖𝑖  enters the equation as raw data for firm 𝑖𝑖 at time 𝑡𝑡, positive contributions to ALP growth arise 

from the entry of high productivity firms and exit of inefficient ones. Net-entry effects therefore refer 

to the difference between productivity growth contributions by entering and exiting plants. 

In the 𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴 formulation of resource movement between  plants in Eq. 2, as Forster et al. (2001) 

and Nishida et al. (2014) point out, even if all plants have the same level of productivity for both the 

beginning and end period, the between component and net-entry component will in general be 

nonzero. Moreover, previous studies such as Syverson (2004) have estimated high dispersion in 

measured productivity, which translates to large and volatile (Baily et al, 1992) ‘Between’ effects. 
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The standard remedy for this is to ‘normalize’ each industry’s ‘Between’ and ‘Within’ terms by the 

industry’s ALP and use the industry’s revenue shares as weights to aggregate across industries, see 

Petrin and Levinsohn (2012). As in Petrin and Levinsohn (2012) and Nishida et al. (2014), no 

normalization is carried out here in order to avoid losing the potential link between the actual ALP 

and 𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴, although the nature of such a link prior to normalization is unknown30.  

3.4.3 The ALP Growth Decomposition Using the Foster et al. (2001) Method  

The decomposition of ALP using Foster et al. (2001) (or 𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴) is given as  

𝐹𝐹𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴 = �∑ 𝑠𝑠𝑖𝑖𝑖𝑖−1∆𝝋𝝋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐶𝐶𝑡𝑡
�����������

𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖

�+ �∑ ∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ (𝝋𝝋𝑖𝑖𝑖𝑖−1 −𝑖𝑖∈𝐶𝐶𝑡𝑡 𝝋𝝋𝑡𝑡−1)�������������������
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

� + �∑ ∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ ∆𝝋𝝋𝑖𝑖𝑖𝑖𝑖𝑖∈𝐶𝐶𝑡𝑡
�����������

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

�+

�∑ 𝑠𝑠𝑖𝑖𝑖𝑖 ∗ (𝝋𝝋𝑖𝑖𝑖𝑖 −𝑖𝑖∈𝐸𝐸𝐸𝐸𝑡𝑡 𝝋𝝋𝑡𝑡−1)− ∑ 𝑠𝑠𝑖𝑖𝑖𝑖 ∗ (𝝋𝝋𝑖𝑖𝑖𝑖−1 −𝑖𝑖∈𝐸𝐸𝐸𝐸𝑡𝑡 𝝋𝝋𝑡𝑡−1)�������������������������������������
𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

�,     (4) 

where the ‘Within’ and ‘Covariance’ terms are identical to those calculated using the Baily et al. 

(1992) method. The rest of the other ALP growth components calculated using Foster et al. (2001) are 

described as 

Between-plant effects: ∑ ∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ (𝝋𝝋𝑖𝑖𝑖𝑖−1 −𝑖𝑖∈𝐶𝐶𝑡𝑡 𝝋𝝋𝑡𝑡−1) is the sum of the changing labour shares 

weighted by the deviation of initial plant-level productivity from initial industry productivity index. 

An increase in a continuing plant’s labour share makes a positive contribution to the ‘Between’ 

component only if its initial productivity exceeds the average initial industry productivity. 

Net-entry effects: The ‘Entry’ term, {𝑠𝑠𝑖𝑖𝑖𝑖(𝝋𝝋𝑖𝑖𝑖𝑖 − 𝝋𝝋𝑡𝑡−1)}, reflects the deviation of current firm-level 

productivity from average initial industry productivity index weighted by current labour shares. First, 

a new firm contributes positively to growth if its productivity level exceeds the average initial 

industry productivity index; i.e., 𝝋𝝋𝑖𝑖𝑖𝑖 > 𝝋𝝋𝑡𝑡−1. Second, the ‘Exit’ component is calculated similarly to 

the ‘Between’ term, except that it is weighted by the un-differenced labour shares. Thus, a shutting 

down plant contributes positively to ALP growth only if it has lower productivity than the average 

initial industry productivity index; i.e., (𝝋𝝋𝑖𝑖𝑖𝑖−1 < 𝝋𝝋𝑡𝑡−1).   

3.4.4 The Relationship Between the Baily et al. (1992) and Forster et al. (2001) Methods 

The last two sections have outlined and discussed methods of decomposing the ALP index based on 

Baily et al. (1992) and Forster et al. (2001) but do not address their differences in calculating and 

                                                           
30 King and Nielson (2016) argue in the context of propensity score matching that standardization of variables 
makes the analysis invariant to the substance. 
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interpreting the ‘Between’ and ‘Net-Entry’ components. In the examination of these methods, the 

scrutiny of the first and third terms in Eqs.3-4 is not undertaken because these terms are not model 

dependent. That is, these components are identical regardless of the model used to compute 

productivity gains. Therefore this sub-section considers the relationship between these methods and 

offers an explanation of the meaning of results thus generated. 

 

The discussion of how the Baily et al. (1992) and Forster et al. (2001) approaches are related is best 

expressed mathematically as 

𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

The left-hand side of the expression relates the 𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 to the 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  quantity for continuing plants. 

The latter is just a change in labour shares, weighted by an initial firm-level productivity that is 

always positive. This is a between-firm index measuring the productivity-weighted share shifting 

effects of a change in labour. The between-effects of the Baily et al. (1992) method can in principle 

either be positive due to labour growth, zero due to firm size stagnation or negative due to a producer 

scaling down operations. However, as noted by Haltiwanger (1997), the absence of a relationship 

between the initial firm-level productivity and initial industry average productivity does not guarantee 

a zero outcome in the between-firm effects index, even if all plants have the same productivity levels 

across the 𝑡𝑡 − 1 and 𝑡𝑡 periods. In the case of the first term on the left-hand side, the weighting is 

based on deviations between the initial firm-level and average initial industry-level productivities. 

Unlike the Baily et al. (1992), the Forster et al. (2001) method therefore allows the weighting index to 

be positive if the initial firm-level productivity is lower than the industry average, zero if the initial 

firm-level and initial industry average are equal or negative if the initial firm-level productivity is 

lower than the industry average product.  

 

Since the labour change across methods can take any sign while the productivity weight in 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is 

always positive, 𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 can have opposite signs and differing orders of magnitude for at 

least two reasons. First, assume a firm is hit by a negative exogenous shock and is forced to scale 

down operations by reducing its industry share of employment; i.e., 𝐿𝐿𝑖𝑖𝑖𝑖−1
𝐿𝐿𝑡𝑡

→ 𝐿𝐿𝑖𝑖𝑖𝑖
𝐿𝐿𝑡𝑡

, holding 𝐿𝐿𝑡𝑡 constant in 

both periods. Since 𝐿𝐿𝑖𝑖𝑖𝑖−1 > 𝐿𝐿𝑖𝑖𝑖𝑖, then the change in the firm’s labour share at time 𝑡𝑡 is ∆𝑠𝑠𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖
𝐿𝐿𝑡𝑡
−

𝐿𝐿𝑖𝑖𝑖𝑖−1
𝐿𝐿𝑡𝑡

< 0. Given that the ratio of real value-added to labour, 𝝋𝝋𝑖𝑖𝑖𝑖−1, is always positive, then firm i's 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ 𝝋𝝋𝑖𝑖𝑖𝑖−1 is negative, suggesting a movement of labour from the downsizing firm to 

other producers. If the same firm operated at lower efficiency levels than the initial average industry 

productivity index; that is, 𝝋𝝋𝑖𝑖𝑖𝑖−1 < 𝝋𝝋𝑡𝑡−1, then the firm’s 𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 = ∆𝑠𝑠𝑖𝑖𝑖𝑖(𝝋𝝋𝑖𝑖𝑖𝑖−1 − 𝝋𝝋𝑡𝑡−1) is positive. 

Only if 𝝋𝝋𝑖𝑖𝑡𝑡−1 > 𝝋𝝋𝑡𝑡−1 does 𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 become negative for this type of firm. Both measures of 
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‘Between’ effects jointly suggest that labour resources in inefficient downsizing firms reallocate to 

initially more productive firms relative to the initial industry average productivity.  

 

Second, firm 𝑖𝑖 may experience a large positive demand shock and raise its employment at time 𝑡𝑡 by 

drawing workers (i.e., ∆𝑠𝑠𝑖𝑖𝑖𝑖 > 0) from firm 𝑖𝑖′ to increase its production. Although the Baily et al. 

(1992) ‘Between’ effects will be positive, the Forster et al. (2001) ‘Between’ effects will either be 

positive, zero or negative, depending on whether 𝝋𝝋𝑖𝑖𝑖𝑖−1 > 𝝋𝝋𝑡𝑡−1, 𝝋𝝋𝑖𝑖𝑖𝑖−1 = 𝝋𝝋𝑡𝑡−1 or 𝝋𝝋𝑖𝑖𝑖𝑖−1 < 𝝋𝝋𝑡𝑡−1 

which indicates the direction of resource flows. That is, if 𝝋𝝋𝑖𝑖𝑖𝑖−1 > 𝝋𝝋𝑡𝑡−1, for example, labour is 

moving an initially high efficient firm to an initially inefficient industry average of firms. Otherwise, 

if 𝝋𝝋𝑖𝑖𝑖𝑖−1 < 𝝋𝝋𝑡𝑡−1, labour resources reallocate to initially more productive firms. 

 

On the right-hand side, the expression relates net-entry effects computed from 𝐵𝐵𝐵𝐵𝐵𝐵𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 and 

from 𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 indices. In the Bailey et al. (1992) approach, the net effect of entrants and exiting 

producers reflects any differences in the levels of productivity between firm birth and death, and any 

differences in labour shares. In particular, and holding labour shares of the entrant and exiting plants 

constant, the net-entry productivity index is negative if the existing firm is more productive than the 

new born. Again, the index can also be negative if the quitting firm has a larger share of labour in the 

industry than does the entrant, holding firm-level productivity constant. This productivity measure is 

positive if the existing firm is less productive than the new born, holding labour shares of the entrant 

and exiting plants constant. It can also be positive if the quitting firm has a lower share of labour in 

the industry than does the entrant, holding firm-level productivity constant. In the case of the Forster 

et al. (2001), net-entry effects of productivity are driven by weighted deviations of the firm-level 

productivity from the initial industry average productivity instead of just the firm-level ratio of real 

value-added to labour. Thus, net-entry is positive if the productivity contribution from entry is greater 

than the productivity contribution from exit. This can happen only if the entrant is more productive 

than the initial industry average productivity and the exiting plant is less productive than the initial 

industry average productivity. Otherwise, net-entry is either negative or zero. 

 

3.4.5 A Detailed ALP Decomposition for the Swazi Manufacturing Sector  

The previous sections have outlined and discussed the two traditional methods of aggregate labour 

productivity decomposition, highlighting the impact of specific firm-level patterns of resource shares 

and productivity either in isolation or relative to the industry average. That enquiry does not clarify 

with precision how the identified micro-factors interact to dominate in a broadly defined industry. 

This section is concerned with a detailed analysis of the Swazi manufacturing sector to gain insight 

into the annual patterns of productivity variation represented by cross-plant movement of resources, 

technical change as well as net-entry dynamics. It achieves this by using an unbalanced dataset of 
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heterogeneous producers across 13 two-digit ISIC industries in the period 1994−2003. The estimation 

of ALP and its component parts is based on the Baily et al. (1992)/Foster et al. (2001) decomposition 

in Eq. 3 and 4 and reported in Table 3.3. 

Table 3.3: ALP growth rate in Swazi manufacturing 1994–2003: Baily et al. (1992)/Foster et al. 
(2001) Decomposition Using Eq. 3 and Eq. 4 for Columns 3−7. 

year 
Value-
Added 

Growth 

Labour 
productivity 

growth (0) 

Baily et al. (1992) and Foster et al. (2001) ALP decomposition: 
(0) = (1) + (2) + (3) + (4) 
Within 

(1) 
Between (2) Cross 

(3) 
Net Entry (4) 

BHC-RE FHK-RE BHC FHK 
1995 7.76 -26.03 -12.34 -27.06 0.67 3.60 9.51 -17.83 
1996 23.10 -1.33 -7.93 -6.92 0.08 0.23 13.37 6.28 
1997 -44.35 -2.79 2.93 32.90 -8.51 4.09 -42.71 -1.31 
1998 265.55 119.30 1.32 -36.46 0.40 -0.90 155.33 118.47 
1999 275.57 102.21 9.89 -35.03 5.11 -3.86 134.79 91.46 
2000 -16.28 -17.27 -17.10 -1.39 -3.20 0.11 0.05 3.67 
2001 37.42 -1.02 31.79 -28.89 -0.42 -8.90 4.97 -23.50 
2002 -20.74 -39.18 -25.93 -21.55 -3.62 5.60 2.71 -15.22 
2003 -36.71 -3.33 -26.55 73.21 41.25 -29.12 -20.88 11.09 
Mean 54.59 14.51 -4.88 -5.69 3.53 -3.24 28.57 19.23 
Median 7.76 -2.79 -7.93 -21.55 0.08 0.11 4.97 3.67 
Std Dev 125.32 56.26 18.67 36.72 14.63 10.66 68.48 50.43 

Notes: The “Labour productivity growth” column depicts the ALP growth with entry and exit, and the “Value-
added growth’ column represents the aggregate real value added growth rate.  The plant-level real value added 
is summed and annualized across plants. As in Nishida et al. (2014), numbers are percentage growth rates. We 
define labour productivity as the amount of real value added relative to unit labour. Δ𝝋𝝋𝑡𝑡 is decomposed into 
four components: (1) within, (2) between, (3) cross, and (4) net-entry term, using Eq. 1 in text for Baily et al. 
(1992) and Eq. 2 in text for Foster et al. (2001). We use employment share for the share weights, and both 
“within” and “between” terms use the base-period share for the weights. 

Source: Author’s own calculations. 

The second and third columns report annualized growth rates in real value-added and ALP, 

respectively. The annual average (median) growth rate in real value-added is 54.59 percent (7.76 

percent) with the measured standard deviation of 125.32 percent. Although real value-added growth is 

largely positive, particularly in 1998 and 1999, the incidence of negative growth is non-negligible. 

ALP, on the other hand, had an annual average (median) growth rate of 14.51 percent (−2.79 

percent). Again, the years 1998 and 1999 stand out as outliers.31 In seven out of nine years, we 

observe negative ALP values in column three.  

                                                           
31 We made an attempt to remove any potential outliers as in Nishida et al. (2014) by applying the Stata 
“Winsor” command to the plant-level labour productivity at p(0.01), which specifies the proportion of 
observations to be modified in each tail. This creates too many missing values and therefore we abandoned the 
procedure. Another approach involves identifying outliers and removing them sequentially, beginning with the 
largest. When the very first outlier where 𝝋𝝋𝑖𝑖𝑖𝑖 = 1.6 is removed, decompositions for both 1998 and 1999 
disappear. Again, this procedure is abandoned. However, it is considered not fatal to use the data ‘as is’ given 
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In columns four through nine, we present the Baily et al. (1992) and Foster et al. (2001) 

decompositions. The annual average ‘within-effect' in column four is −4.88 percent  compared to the 

Baily et al. (1992) between-plants term of −5.69 percent and Foster et al. (2001) between-plants term 

of 3.53 percent. Clearly, real productivity dominates the Baily et al. (1992) share-shift component of 

aggregate productivity, yet it is subordinate to the Foster et al. (2001) between-plants term. However, 

if the potentially profound confounding effects of entry−exit dynamics in the measured “Between” 

term calculated using the Baily et al. (1992) approach is accounted for, then net-entry and the 

“Between” effects dominate the measured “Within” effects. Both Baily et al. (1992) and Foster et al. 

(2001) decompositions make significant net-entry contributions to ALP growth by contributing 28.57 

percent and 19.23 percent, respectively. The entry of more productive firms than the average initial 

industry productivity and the exit of lower productivity firms than the average initial industry 

productivity are the main drivers of ALP. 

Looking at firm-level production efficiency in isolation, we find evidence of progressive weakening 

of technical change in manufacturing potentially induced by increasing competition in the Customs 

Union, save for the 31.79 percent productivity increase in 2001 which was consistent with the start of 

AGOA. Judging from the size of the standard deviation, there was marked heterogeneity in plant-level 

technical efficiency around a declining average productivity trend. 

In a closer examination of incumbents, entrants and exiting firms, we find evidence of significant 

heterogeneity as in Liu and Tybout (1996) represented by the standard deviations of 68.48 percent and 

50.43 percent in the Baily et al. (1992 and the Foster et al. (2001) approaches, respectively. We also 

find that, on average, exiting plants are 28.97 percent and 19.23 percent lower than incumbents in 

terms of productivity contribution to ALP when using the respective methods. Hence, their 

disappearance improves sectoral productivity. However, the occasional exit of relatively more 

efficient firms has the consequence of inducing a negative turnover effect on aggregate labour 

productivity. In this context, Liu and Tybout (1996) note that while productivity of exiting firms may 

drop, surviving entrants may raise their productivity such that the snowballing effects of this cleansing 

process are probably substantial over a longer time horizon. According to Caballero and Hammour 

(1994), it is this continuous process of creation and destruction of business units resulting from 

product and process innovation that is essential for understanding growth. 

A further isolation of incumbents shows that productivity heterogeneity remains important, regardless 

of the approach used. Using the Forster et al. (2001) approach, we find the portion of change in 

sectoral productivity that is due to the labour market share reallocation accounts for 3.53 percent, on 

                                                                                                                                                                                     
the large similarities between our results and the results found in the literature, and the fact that the Swazi 
manufacturing sector is highly concentrated and these are real and important firms. 

Stellenbosch University  https://scholar.sun.ac.za



59 
 

average. As in Nishida et al. (2014), it is instructive to determine the impact of an expanding or 

shrinking economy on the Baily et al. (1992) share-shift component. The direction of change in the 

number of firms can work to reduce or increase this component of productivity, as shown in the next 

section.  

3.4.6 Confounding Effects of Firm Turnover on the Baily et al. (1992) Reallocation  

The Baily et al. (1992) reallocation component can be further decomposed into two more constituent 

parts: one related to reallocation and another related to the number of plants as in Nishida et al. 

(2014). Suppose there are 𝑁𝑁𝑡𝑡 plants in manufacturing at time t and the plant-level average share of 

employment is 𝑠𝑠𝑡𝑡 = ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑡𝑡

= 1
𝑁𝑁𝑡𝑡

. Then, the relative labour share in the ith plant is defined as 𝑠̃𝑠𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖 −

𝑠𝑠𝑡𝑡, and the change in the relative labour share from time t-1 to t is ∆𝑠̃𝑠𝑖𝑖𝑖𝑖 = 𝑠̃𝑠𝑖𝑖𝑖𝑖 − 𝑠̃𝑠𝑡𝑡. Hence, the 

“Between” term for incumbent firms can be decomposed as follows:  

𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅 = ��∆𝑠𝑠𝑖𝑖𝑖𝑖 ∗ 𝝋𝝋𝑖𝑖𝑖𝑖−1
𝑖𝑖∈𝐶𝐶𝑡𝑡

� 

= ��{(𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑡𝑡)− (𝑠𝑠𝑖𝑖𝑖𝑖−1 − 𝑠𝑠𝑡𝑡−1)} ∗ 𝝋𝝋𝑖𝑖𝑖𝑖−1
𝑖𝑖∈𝐶𝐶𝑡𝑡

�+ ��(
𝑖𝑖∈𝐶𝐶𝑡𝑡

𝑠𝑠𝑡𝑡 − 𝑠𝑠𝑡𝑡−1)�𝝋𝝋𝑖𝑖𝑖𝑖−1
𝑖𝑖∈𝐶𝐶𝑡𝑡

� 

= �∑ ∆𝑠𝑠𝚤𝚤𝚤𝚤� ∗ 𝝋𝝋𝑖𝑖𝑖𝑖−1𝑖𝑖∈𝐶𝐶𝑡𝑡
�����������
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

�+ ��1
𝑁𝑁𝑡𝑡
− 1

𝑁𝑁𝑡𝑡−1
�∑ 𝝋𝝋𝑖𝑖𝑖𝑖−1𝑖𝑖∈𝐶𝐶𝑡𝑡

���������������
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

�       (5) 

where 𝐶𝐶𝑡𝑡 refers to continuing plants at time t. The first component represents labour reallocation and 

the second component is related to patterns of creative destruction. An increase in the number of firms 

over time confounds the first component by �1
𝑁𝑁𝑡𝑡
− 1

𝑁𝑁𝑡𝑡−1
� in the negative direction, since  𝝋𝝋𝑖𝑖𝑖𝑖−1 can 

never be negative. The reverse effect obtains in case of a persistent fall in the number of firms. The 

second component also gets smaller and smaller as the number of firms gets smaller and smaller, 

which happens if firm exit rate is persistently higher than the entry rate. If there is no change in the 

number of firms in the adjacent periods, the second component falls away. That is, the entry-exit 

dynamics have a spurious influence on the Baily et al. (1992) labour reallocation effect. Table 3.4 

presents a quantitative decomposition of 𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅 for the Swazi manufacturing sector. 
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Table 3.4: The ALP Growth Rate for the Swazi Manufacturing Sector (1994–2003): Baily et al. 
(1992) Between Term Decomposition. 

Year 
BHC (0): 
Between 

 

Baily et al. (1992) between term 
decomposition: (0) = (1) + (2) Percentage 

Growth of firms 
(1) First component (2) Second component 

1995 -27.06 -16.93 -10.13 11.11 
1996 -6.92 4.71 -11.63 13.75 
1997 32.90 30.89 2.00 -2.20 
1998 -36.46 -13.21 -23.25 25.84 
1999 -35.03 -24.83 -10.20 23.21 
2000 -1.39 4.08 -5.47 7.97 
2001 -28.89 -21.39 -7.50 10.07 
2002 -21.55 -14.49 -7.06 8.54 
2003 73.21 54.59 18.62 -15.17 
Mean -5.69 0.38 -6.07 9.24 
Median -21.55 -13.21 -7.50 10.07 
Std Dev 36.72 26.73 11.39 12.37 

Notes Percentage growth rates. The Baily et al. (1992) ‘between’ term is decomposed into 
two terms using Eq. 5 in the text. 

 Source: Author’s own calculations. 

The second column is identical to the 𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅 column in Table 3.3 in the previous section. The third 

and fourth columns are the respective first and second components of Eq. 5, and the last column is the 

percentage growth of firms per year. In seven out of nine years, the manufacturing sector experienced 

growth in the number of firms, and in these years the confounding effect of plant expansion was 

negative on the ‘Between’ term. The comparison of the first term to the overall average of the Baily et 

al. (1992) ‘Between’ term shows that on average it is 6.07 percent higher over the sample period due 

to the downward confounding effects of plant turnover on the labour reallocation component. These 

results mimic the findings by Nishida et al. (2014) for Chile and Slovenia, and they cast doubt on the 

validity of the share-shifting effects of the Baily et al. (1992) approach. This confirms the conclusion 

by Nishida et al. (2014) that the Baily et al. (1992) reallocation can be negatively correlated, 

positively correlated or simply uncorrelated with the actual reallocation of inputs. A crucial argument 

in that paper, also corroborated by our results, is that the Baily et al. (1992) indices can erroneously 

equate reallocation growth to productivity growth, yet output per labour ratio is neither a perfect 

proxy for marginal products nor plant-level productivity. 

This dilemma opens a door to the application of one of the promising approaches to estimating the 

decomposition of APG based on parametric aggregation of plant-level productivity. In his study of the 

robustness of productivity estimates, Van Biesebroeck (2007) demonstrates with Monte Carlo 

techniques the circumstances in which each of the methodologies works well. Among the six 

approaches analysed, two parametric methods appear suited to investigating productivity growth; 

namely, the systems generalized method of moments’ estimator (SYS-GMM) and the semiparametric 

Olley and Pakes (1996)/Levinsohn and Petrin (2003)-type models.  
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The next sections draw heavily on the theoretical foundations of Petrin and Levinsohn (2012) as 

applied in Nishida et al. (2014) for measuring APG using plant-level data. Our purpose is to estimate 

and contrast the APG sources with those found when using traditional methods. It begins by 

determining a suitable proxy for the unobserved firm-level productivity. The actual semiparametric 

model estimation follows immediately.  

3.4.7 Country Comparison of Evidence on Drivers of ALP Growth  

In this section, the empirical decomposition of Δ𝝋𝝋𝑡𝑡 into its component sources of growth is reviewed 

for other countries for comparative examination. Two meta-analyses by BHS and by PPS together 

analyse 25 countries across Europe, the Americas and East Asia. Isaksson (2010) also surveys sources 

of Δ𝝋𝝋𝑡𝑡 in 33 advanced and developing countries as well as economies in transition, which include 

many of the countries covered in the BHS/PPS meta-analyses. A number of these countries have 

undergone economic reforms to facilitate freer movement of inputs across firms in order to trigger 

productivity growth from resource reallocation. A consistent finding is that there has been significant 

ALP growth, measured as growth in 𝝋𝝋𝑡𝑡=
∑ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖

, for these economies.  

In order to examine the sources of ALP growth, the BHS/PPS meta-studies decompose this index into 

real productivity and reallocation terms using the Baily et al. (1992) and Foster et al. (2001) methods. 

The survey by Isaksson (2010) adds Haltiwanger (1997) in its arsenal of techniques of productivity 

decomposition.32 A key finding is that most of the growth in aggregate labour productivity comes 

from longitudinal firm-level efficiency gains; that is, ‘Within’ dominate ‘Between’ effects. 

Specifically, nine of the 25 countries experienced negative growth from resource reallocation and 

only four had a weak ‘Between’ term. Furthermore, 23 of the 25 countries had a negative covariance 

term. 

Table 3.5 presents empirical decompositions of Δ𝝋𝝋𝑡𝑡 for the manufacturing sector covering a sample 

of 13 countries from the survey by Isaksson (2010), plus Swaziland, based on either the Foster et al. 

(2001) or Haltiwanger (1997) methods. This allows us to compare the results from Swaziland with 

evidence from market economies, economies in transition and Sub-Saharan Africa (SSA). Following 

the example of Van Biesebroeck (2005) for the Sub-Saharan results, we estimate a value-added 

production function which enables comparison of our results with those of other Sub-Saharan 

economies. Unlike Van Biesebroeck (2005), however, we also calculate productivity contributions 

                                                           
32 The difference between Baily et al. (1992) and Haltiwanger (1997) is that the latter introduces the covariance 
term.  
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coming from entry and exit of firms, which now enables comparison with results from advanced 

nations and economies in transition.33  

The average industry productivity for non-SSA countries, excluding Russia, is 101.83 percent and for 

SSA excluding Swaziland is 102.07 percent. This compares with 100.90 percent for Swazi 

manufacturing. The ‘Within’ effects generate more growth than ‘Between’ effects across all countries 

except Swaziland. In 12 of 14 countries, results show dominance of real productivity over both 

resource reallocation among incumbents and turnover effects. Sub-Saharan ‘Within’ effects also 

dominate share-shift effects in the rest of the other economies surveyed in the table. This suggests that 

the Sub-Saharan manufacturing sectors generate incredibly more productivity growth from innovation 

and technological progress than do the more technologically advanced economies. The highest 

beneficiary from technological advancement is, for example, Kenya with 445 percent ‘Within’ effects 

followed by Zambia with 357 percent. On the other hand, looking at the ‘Between’ term alone shows 

that only the U.S. and Cameroon had negative growth. Contrary to normally functioning market 

economies, this suggests that the U.S. manufacturing sector reallocated resources from high- to low-

productivity plants between 1992 and 1997; and Cameroon did the same in the period 1990 to 1995.  

Finally, while all countries reporting on turnover have positive growth from firm exit, only Swaziland, 

Slovenia and the UK report positive entry contributions to growth. The 16.33 percent for Swaziland 

                                                           
33 Van Biesebroeck (2005) uses data from the RPED surveys of the World Bank spanning a maximum of five 
years for each country. 

Table 3.5: ALP Growth, Δ𝝋𝝋𝑡𝑡, Decomposition for the Manufacturing Sector in Industrialized Countries, 
Economies in Transition and in Developing Countries (Percentage) using Eq. 4. 
Method Country Period Output/Share/ 

Productivity 
Within Between Cross Entry Exit Total 

FHK (2001) USA 1992 & 1997 GO/Labour/LP 109.00 -3.00 -24.00 -29.00 49.00 102.00 
FHK (2001) UK 2000-2001 GO/Labour/LP 48.00 19.00 -17.00 35.00 12.00 97.00 
FHK (2001) Germany 1993-2003 GO/Labour/LP 118.60 11.50 -30.10 − − 100.00 
FHK (2001) Russia 1992-2004 GO/Labour/LP -590.40 359.60 61.61 -223.70 292.93 -99.96 
FHK (2001) Slovenia 1997-2001 GO/Labour/LP 68.00 18.00 -2.00 15.00 13.00 112.00 
FHK (2001) Chile 1985-1999 GO/Labour/LP 95.00 25.00 -50.00 -35.00 65.00 100.00 
FHK (2001) Colombia 1987-1998 GO/Labour/LP 105.00 20.00 -45.00 -20.00 40.00 100.00 
FHK (2001) Swaziland 1994-2003 VA/Labour/LP -33.63 24.33 -22.33 116.20 16.33 100.90 
Halti (1997) Cameron 1990-1995 VA/Labour/LP 144.94 -25.84 -13.48 − − 105.62 
Halti (1997) Ghana 1990-1995 VA/Labour/LP 78.97 66.15 -43.59 − − 101.53 
Halti (1997) Kenya 1990-1995 VA/Labour/LP 445.45 282.80 -629.09 − − 99.16 
Halti (1997) Tanzania 1990-1995 VA/Labour/LP 122.00 13.00 -36.00 − − 99.00 
Halti (1997) Zambia 1990-1995 VA/Labour/LP 357.14 28.57 -278.57 − − 107.14 
Halti (1997) Zimbabwe 1990-1995 VA/Labour/LP 163.33 33.33 -96.67 − − 99.99 

Notes: Methods are described in the text. LP = Labour Productivity, GO = Gross Output, VA= Value Added, and Halti (1997) 
= Haltiwanger (1997). Information sources include Isaksson (2010), “Structural Change and Productivity Growth: A Review 
with Implications for Developing Countries”, United Nations Industrial Development Organization, Tables 1-3; Van 
Biesebroeck (2005), “Firm Size Matters: Growth and Productivity Growth in African Manufacturing”, Economic Development 
and Cultural Change, Vol. 53(3), pp. 543-83; and the author’s calculation of ALP growth components for Swaziland. 
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means that the country experienced the exit of lower productivity firms than the average initial 

industry productivity index. At the same time, Swaziland also experienced firm entry with higher 

average productivity of 116.2 percent than the average initial industry productivity. It can be shown 

that an un-normalized entry−exit rationalization effect of firms has a pronounced impact of 19.23 

percent on ALP growth in Swaziland. 

Moreover, the stylized fact from BHS/PPS and Isaksson (2010) is that real productivity dominates 

both the share-shift effects and turnover terms in studies that use Baily et al. (1992) or its derivatives 

such as Foster et al. (2001) and Haltiwanger (1997).34 Contrary to conventional wisdom, however, the 

Swazi results show superiority of resource reallocation among incumbents and firm entry-exit 

dynamics over real productivity. This suggests that the Swazi manufacturing sector is unique in 

delivering dominance of reallocation and rationalization effects over innovation and technological 

advancement during a period of trade reforms.  

3.5 The Petrin-Levinsohn (2012) Approach to Aggregate Productivity Growth 

Decomposition 

3.5.1 Production Function Specification 

The estimation of production functions in economics has been a fundamental activity in applied 

economics since the 1800s, and the early econometric problems inhibiting efficient estimation of the 

coefficients of capital and labour are still a concern even today. Perhaps the most recurring 

econometric issue is the likelihood of the presence of output determinants that are unobserved to the 

analyst but observed by the producer. If that is the case, and if capital and labour are chosen as a 

function of these output determinants, then there exists an endogeneity problem. In such situations, 

the OLS procedure generates biased parameters for the observed production inputs; see Ackerberg et 

al. (2015). 

The semiparametric method of estimating production functions initiated by Olley and Pakes (1996) 

addresses problems of endogeneity in inputs and the unobserved productivity shocks. Instead of using 

                                                           
34 What also stands out as a stylized fact from this analysis is that the sources of growth for ALP differ by 
country, period in a country and methodology applied to the sector in question. For example, in their analysis of 
the manufacturing sector in 1995−2000 as opposed to 1997−2001 above, De Loecker and Konings (2006) use 
the Foster et al. (2001) decomposition of ALP and find ‘within’ firm productivity growth of 123.4 percent and 
reallocation growth of -11.7 percent compared to 68 percent and 18 percent above, respectively. Simply by 
discarding the first two years and the last year of study, significantly different results are produced; see note 5 in 
Nishida et al. (2014) for the case of Chile, Colombia and Slovenia.  
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lumpy investment as a proxy for productivity like Olley and Pakes (1996), the Levinsohn and Petrin 

(2003) approach uses the intermediate input to estimate the gross output production function 35  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖   +  𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑚𝑚𝑚𝑚𝑖𝑖𝑡𝑡 + 𝜔𝜔𝑖𝑖𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖,     (6) 

where all variables are in natural logarithms. The variable 𝑦𝑦𝑖𝑖𝑖𝑖 is real output, 𝛽𝛽0 is the constant term, 

the coefficients (𝛽𝛽𝑙𝑙 ,𝛽𝛽𝑘𝑘) are 𝑦𝑦𝑖𝑖𝑖𝑖 elasticities with respect to labour and capital inputs.36 𝑙𝑙𝑖𝑖𝑖𝑖  is variable 

labour input for firm 𝑖𝑖 at time t, 𝑘𝑘𝑖𝑖𝑖𝑖 is fixed and/or quasi-fixed capital input. The last two components 

are the unobservable productivity, 𝜔𝜔𝑖𝑖𝑖𝑖, which is known to the firm but unknown to the 

econometrician, and 𝜈𝜈𝑖𝑖𝑖𝑖 is a sequence of independent and identically distributed (i.i.d.) shocks. 

Demand for intermediate inputs, 𝑚𝑚𝑖𝑖𝑖𝑖 , is a function of state variables 𝑘𝑘𝑖𝑖𝑖𝑖 and 𝜔𝜔𝑖𝑖𝑖𝑖 and is assumed 

monotonically increasing in 𝜔𝜔𝑖𝑖𝑖𝑖 . Therefore, this function is invertible to express 𝜔𝜔𝑖𝑖𝑖𝑖  as a function of 

𝑘𝑘𝑖𝑖𝑖𝑖 and 𝑚𝑚𝑖𝑖𝑖𝑖 . In turn, 𝜔𝜔𝑖𝑖𝑖𝑖 is governed by a first-order Markov process with an additional innovation 

that is uncorrelated with 𝑘𝑘𝑖𝑖𝑖𝑖 , but not necessarily with 𝑙𝑙𝑖𝑖𝑖𝑖 .  

In the first stage, Levinsohn and Petrin (2003) transform (6) into a function of labour input and an 

unknown function 𝑔𝑔(𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖), where 𝑔𝑔(. ) is approximated with a third-degree polynomial in 𝑘𝑘𝑖𝑖𝑖𝑖 

and 𝑚𝑚𝑖𝑖𝑖𝑖, and 𝛽𝛽𝑙𝑙 is estimated using O.L.S., see Eqs. 1.6 − 1.8 in Appendix A3.1. Ackerberg et al. 

(2015) (hereafter referred to as ACF) demonstrate how 𝛽𝛽𝑙𝑙 is unidentified because 𝑙𝑙𝑖𝑖𝑖𝑖 is correlated 

with 𝑔𝑔(. ), and propose an alternative but still two-stage approach. The second stage in Levinsohn and 

Petrin (2003) involves nonparametric estimation of the value of 𝜙𝜙�𝑖𝑖𝑖𝑖 = 𝑦𝑦�𝑖𝑖𝑖𝑖 − 𝛽̂𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖, and estimating the 

productivity series using 𝜔𝜔�𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑖𝑖𝑖𝑖 − 𝛽𝛽𝑘𝑘∗𝑘𝑘𝑖𝑖𝑖𝑖  . A consistent nonparametric approximation 

to 𝐸𝐸(𝜔𝜔𝑖𝑖𝑖𝑖|𝜔𝜔𝑖𝑖𝑖𝑖−1) is then given by predicted values from a nonlinear regression shown by Eq. 1.21 in 

Appendix A3.1. Given 𝐸𝐸(𝜔𝜔𝚤𝚤𝚤𝚤|𝜔𝜔𝚤𝚤𝚤𝚤−1� ), 𝛽̂𝛽𝑙𝑙 and 𝛽𝛽𝑘𝑘∗, the estimate of 𝛽𝛽𝑘𝑘 , solves the minimization of the 

squared regression residuals 

min
𝛽𝛽𝑘𝑘
∗ ∑ �𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛽̂𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 − 𝛽𝛽𝑘𝑘∗�𝑘𝑘𝑖𝑖𝑖𝑖 − 𝐸𝐸(𝜔𝜔𝚤𝚤𝚤𝚤|𝜔𝜔𝚤𝚤𝚤𝚤−1� )�

2
𝑖𝑖 .        (7) 

Instead of a two-step approach, Wooldridge (2009) proposes to simultaneously estimate (𝛽𝛽𝑙𝑙 ,𝛽𝛽𝑘𝑘) by 

making a Conditional Mean Independence (CMI) assumption about the error term in respect of 

current and past values of 𝑙𝑙𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖 . This allows him to express the third-degree polynomial in 

single-period lags of capital and intermediate inputs as in (8)  

                                                           
35 Appendix A3.2 shows 100 percent of non-zero intermediate observations compared to an average of only 34 
percent for investment. Therefore, choosing investment as a proxy in this case would truncate 66 percent of the 
observations in the panel dataset. 

36 A detailed exposition of the Wooldridge-Levinsohn-Petrin estimation of the production parameters is found in 
Appendix A3.1.  
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𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜑𝜑0∗ + 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖   +  𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑔𝑔(𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1) + 𝑢𝑢𝑖𝑖𝑖𝑖      (8) 

or 

𝑦𝑦𝑖𝑖𝑖𝑖 ≅ 𝜑𝜑0∗ + 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖   +  𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∑ ∑ 𝛿𝛿𝑝𝑝𝑝𝑝𝑘𝑘𝑖𝑖𝑖𝑖−1
𝑝𝑝 𝑚𝑚𝑖𝑖𝑖𝑖−1

𝑞𝑞3−𝑝𝑝
𝑞𝑞

3
𝑝𝑝 + 𝑢𝑢𝑖𝑖𝑖𝑖.     (9) 

Following Petrin and Levinsohn (2012), Petrin et al. (2011) and Nishida et al. (2014), Eq. 9 can be 

estimated using a pooled IV, with 𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖−1, 𝑙𝑙𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1 and third-order polynomial approximation of 

𝑔𝑔(. ) with 𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1 as instruments for 𝑙𝑙𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑙𝑙𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊, 𝑙𝑙𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃), where 𝑙𝑙𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊denotes Working Proprietors 

and 𝑙𝑙𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃 denotes Paid Workers. CMI II in the Appendix renders this approach robust to the ACF 

critique and it does not require bootstrapping to obtain robust standard errors for (𝛽𝛽𝑙𝑙 ,𝛽𝛽𝑘𝑘).  

3.5.2 Parametric Estimation of the Production Function 

It is essential to show in a practical sense how to efficiently estimate the parameters (𝛽𝛽𝑙𝑙 ,𝛽𝛽𝑘𝑘) using 

firm-level datasets. Eq. 9 can be estimated either by gross output production functions as in Petrin et 

al. (2011) or a value-added production technology as in Nishida et al. (2014). The latter is adopted 

here. Table 3.6 presents the characteristics of the empirical model. 

Table 3.6: Specification of the Empirical Model 

Panel A: Variables for the Levinsohn and Petrin (2003) or the LP Models 
Dependent variable:  Double-deflated value-added (𝒓𝒓𝒓𝒓𝒓𝒓𝒊𝒊𝒊𝒊) 
Freely variable inputs:  𝒍𝒍𝒊𝒊𝒊𝒊𝑾𝑾𝑾𝑾, 𝒍𝒍𝒊𝒊𝒊𝒊𝑷𝑷𝑷𝑷   
Proxy: Intermediate Inputs  𝒎𝒎𝒊𝒊𝒊𝒊 
Capital:  𝒌𝒌𝒊𝒊𝒊𝒊 
value-added:  𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒊𝒊𝒊𝒊 
Reps (#):  Number of bootstrap replications to be performed 
Panel B: Variables for the Wooldridge (2009) and Levinsohn and Petrin (2003) or the WLP Models 
Dependent variable:  Double-deflated real value-added (𝒓𝒓𝒓𝒓𝒓𝒓𝒕𝒕) 
Included Instruments:  𝒌𝒌𝒊𝒊𝒊𝒊, 𝒌𝒌𝒊𝒊𝒊𝒊−𝟏𝟏, 𝒎𝒎𝒊𝒊𝒊𝒊−𝟏𝟏, 𝒌𝒌𝒊𝒊𝒊𝒊−𝟏𝟏𝒎𝒎𝒊𝒊𝒊𝒊−𝟏𝟏,𝒌𝒌𝒕𝒕−𝟏𝟏𝟐𝟐 , 𝒎𝒎𝒕𝒕−𝟏𝟏

𝟐𝟐 , 𝒌𝒌𝒕𝒕−𝟏𝟏𝟐𝟐 𝒎𝒎𝒊𝒊𝒊𝒊−𝟏𝟏, 𝒌𝒌𝒊𝒊𝒊𝒊−𝟏𝟏𝒎𝒎𝒕𝒕−𝟏𝟏
𝟐𝟐 , 𝒌𝒌𝒕𝒕−𝟏𝟏𝟑𝟑 ,𝒎𝒎𝒕𝒕−𝟏𝟏

𝟑𝟑  
Endogenous variables:  𝒍𝒍𝒊𝒊𝒊𝒊𝑾𝑾𝑾𝑾, 𝒍𝒍𝒊𝒊𝒊𝒊𝑷𝑷𝑷𝑷 
Excluded Instruments: 𝒍𝒍𝒊𝒊𝒊𝒊−𝟏𝟏𝑾𝑾𝑾𝑾 , 𝒍𝒍𝒊𝒊𝒊𝒊−𝟏𝟏𝑷𝑷𝑷𝑷  

Notes: 
• Consistent with order conditions for identification in Hayashi (2000), the number of predetermined 

variables excluded from the equation �𝒍𝒍𝒊𝒊𝒊𝒊−𝟏𝟏𝑾𝑾𝑾𝑾 , 𝒍𝒍𝒊𝒊𝒊𝒊−𝟏𝟏𝑷𝑷𝑷𝑷 � = the number of endogenous variables (𝒍𝒍𝒊𝒊𝒊𝒊𝑾𝑾𝑾𝑾, 𝒍𝒍𝒊𝒊𝒊𝒊𝑷𝑷𝑷𝑷) or the 
number of instruments = the number of regressors. 

• The test for weak instruments (Z variables) is 𝐻𝐻0: Z∈ 𝒲𝒲𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 against 𝐻𝐻1: Z∉ 𝒲𝒲𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. The test 
procedure is, Reject 𝐻𝐻0 if the Cragg-Donald (1993) 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 statistic ≥ 𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(b;𝐾𝐾2,𝑛𝑛, 𝛿𝛿), where 
𝑑𝑑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 denotes the Stock and Yogo (2005) critical value based on the Two Stage Least Squares (TSLS) 
bias, 𝐾𝐾2 the number of instruments, and 𝑛𝑛 is the number of included endogenous regressors. 

Panel A is the LP Model which includes freely variable inputs (𝒍𝒍𝒊𝒊𝒊𝒊𝑾𝑾𝑾𝑾, 𝒍𝒍𝒊𝒊𝒊𝒊𝑷𝑷𝑷𝑷) and excludes the proxy 

variable 𝒎𝒎𝒊𝒊𝒊𝒊. ACF have however shown that the LP Model suffers from parametric identification 

problems arising from firms’ optimization of variable labour, yet labour is also a deterministic 

function of unobservable productivity and capital. In Panel B, Wooldridge (2009) therefore modifies 
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Levinsohn and Petrin (2003) to correct for this endogeneity problem. In this Model, endogenous 

variables (𝒍𝒍𝒊𝒊𝒊𝒊𝑾𝑾𝑾𝑾, 𝒍𝒍𝒊𝒊𝒊𝒊𝑷𝑷𝑷𝑷) are instrumented with capital and the polynomial approximation of the unknown 

expression 𝑔𝑔(. ).37  

Table 3.7: Estimates of Production Functions with Third Order Polynomial  

Variable WLP LP FEa. FE-Intb. O.L.S.                                  O.L.S.lab     
𝑙𝑙𝑡𝑡𝑊𝑊𝑊𝑊 -0.162 -0.118 -0.069 -0.028 -0.070  
𝑙𝑙𝑡𝑡𝑃𝑃𝑃𝑃   0.892*** 0.794*** 0.796*** 0.793*** 0.811***                    
𝑙𝑙𝑡𝑡      0.863***   
𝑘𝑘𝑡𝑡 0.224*** 0.181*** 0.216*** 0.222*** 0.193***               0.158***   
𝑚𝑚𝑡𝑡   0.325*** 0.321*** 0.306***          0.356***   
𝑘𝑘𝑡𝑡−1 7.074*  

  
                                  

𝑚𝑚𝑡𝑡−1 0.663  
  

                                  
𝑘𝑘𝑡𝑡−1𝑚𝑚𝑡𝑡−1 -0.682**  

  
                                  

𝑘𝑘𝑡𝑡−12  -0.162  
  

                                  
𝑚𝑚𝑡𝑡−1
2  0.293**  

  
                                  

𝑘𝑘𝑡𝑡−12 𝑚𝑚𝑡𝑡−1 0.010  
  

                                  
𝑘𝑘𝑡𝑡−1𝑚𝑚𝑡𝑡−1

2  0.014*  
  

                                  
𝑘𝑘𝑡𝑡−13  0.001  

  
                                  

𝑚𝑚𝑡𝑡−1
3  -0.011***  

  
                                  

cons -25.021  8.413*** 8.397*** 8.810***     8.367***   
N 757 1021 1021 1021 1021                         1257 
R2 0.839  0.811 0.827 0.796                 0.824 
R2_a 0.837  0.806 0.803 0.795                   0.824 
Diagnostic Tests for the WLP Model 
Endog Varsc    Shea Partial R2 Partial R2 F(2,744) p-value   
𝑙𝑙𝑡𝑡𝑊𝑊𝑊𝑊 0.3080 0.3219 41.69 0.0000   
𝑙𝑙𝑡𝑡𝑃𝑃𝑃𝑃 0.8921 0.9324 3663.48 0.0000   
d.Anderson-Rubin (AR) Test F(2,744)=172.86 0.0000   
Anderson-Rubin (AR) Test 𝜒𝜒2 = 351.77 0.0000   
Stock-Write s Statistic 𝜒𝜒2 = 57.64 0.0000   
e.Cragg-Donald (N-L)*CDEV/L1                                  F-Statistic  =               165.59  

Legend: * p<0.05; ** p<0.01; *** p<0.001. 
 
Notes:  
a. Represents a fixed effects’ model that controls for both time and industry effects. 
b. Represents a fixed effects’ model that interacts time with industry effects. 
c. The Shea (1997) partial R2 provides evidence for the presence of significant correlation between excluded 
variables �𝒍𝒍𝒊𝒊𝒊𝒊−𝟏𝟏𝑾𝑾𝑾𝑾 , 𝒍𝒍𝒊𝒊𝒊𝒊−𝟏𝟏𝑷𝑷𝑷𝑷 � and  endogenous regressors �𝒍𝒍𝒊𝒊𝒊𝒊𝑾𝑾𝑾𝑾, 𝒍𝒍𝒊𝒊𝒊𝒊𝑷𝑷𝑷𝑷�.  
d. 𝐻𝐻0: 𝐵𝐵1 = 0 and overidentifying restrictions are valid. The null is strongly rejected by AR F- and 𝜒𝜒2- tests as 
well as by Stock and Write (2000) 𝜒𝜒2-test, where B1=0 tests the joint significance of coefficients of endogenous 
variables. See Stock and Yogo (2005) for a detailed and fairly accessible discussion. 
e. 𝐻𝐻0: instruments are weak, even though parameters are identified. The null is strongly rejected at 95% 
confidence when the statistic 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 =165.59 is compared with the TSLS critical value of 7.03 produced by 
K2=13, n=2 and the desired maximum level of bias of the IV estimator relative to OLS bias (b)=10% as in 
Stock and Yogo (2005, table 5.1).  
 
Table 3.7 presents estimation results from the WLP Model, Levinsohn and Petrin (2003), Fixed 

Effects and O.L.S. methods with separate and combined labour components. Our preferred production 

                                                           
37 A full derivation of the empirical LP Model and its transformation into WLP Model is presented in Appendix 
A3.5. 
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function specification is the WLP version of Eq.9 as outlined in Appendix A3.5.38 While ln𝑊𝑊𝑊𝑊 is 

negative and insignificant across specifications, ln𝑃𝑃𝑃𝑃 and ln𝐾𝐾 are consistently positive and highly 

significant. The model is well-behaved and its primary input parameters are comparable to ACF input 

coefficients in Gandhi et al. (2016, table 1) for the cases of Colombia and Chile. 

One important finding from our preferred the IV−GMM estimator presented as the WLP Model is 

that primary inputs in manufacturing deliver increasing returns to scale. This is potentially associated 

with import-competing industries whose output is likely to decline due to intensified foreign 

competition during the trade liberalization episode in the Customs Union.39 The low value of the 

capital coefficient is typical in the literature and the cited cause for this is measurement error; see 

Levinsohn and Petrin (2003).40 The IV−GMM labour coefficient shows an improvement of 10 

percent compared to the other estimation methods. This can be attributed to efficiency gains in the 

GMM routine induced by the removal of selection and simultaneity biases. Industry effects on real 

value-added movements show a significant degree of heterogeneity whereby five of the 13 industries 

made insignificant contributions to output and the Apparel industry suffered a marked decline, 

particularly in 2001. Furthermore, there is no evidence of time effects in the first seven years and a 

significant decline began persistently in 2000 with marked negative effects in 2001 and 2003. The 

economic performance in the latter years coincides with heightened firm exit and the near-conclusion 

of progressive tariff-cuts in SACU. 

3.5.3 General Set-Up, APG Decomposition and Estimation 

There is already a growing view noted by Banerjee and Moll (2010), among others, that countries’ 

underdevelopment may not only be an outcome of resource inadequacy, such as capital, skilled 

labour, entrepreneurship, or ideas, but also a result of the misuse or misallocation of available 

resources. Specifically, Banerjee and Duflo (2005); Jeong and Townsend (2007); Restuccia and 

Rogerson (2008, 2012); Hsieh and Klenow (2009); Bartelsman et al. (2004); and Alfaro, Charlton, 

and Kanczuk (2008) all argue that the scope of resource misallocation in developing economies is 

large enough to explain a significant gap in the aggregate productivity growth between advanced and 

                                                           
38 The ivreg2 Stata command with the GMM continuously updated estimator (cue) and cluster for each firm in 
order to generate efficient IV-GMM parametric estimates of the WLP functional specification was used  

39 The constant returns to scale in the other estimation methods is potentially induced by simultaneity and 
selection problems explained in detail in Wooldridge (2001). 

40 Galuščák and Lizal (2011) correct for measurement error in the capital series by running an O.L.S. on 𝑘𝑘𝑖𝑖𝑖𝑖 =
𝛾𝛾0 + 𝛾𝛾1𝑧𝑧1𝑡𝑡 + ⋯+ 𝛾𝛾𝑁𝑁𝑧𝑧𝑁𝑁𝑁𝑁 + 𝑒𝑒𝑁𝑁𝑁𝑁, where 𝑒𝑒𝑁𝑁𝑁𝑁 is the i.i.d. measurement error, 𝑧𝑧𝑖𝑖𝑖𝑖  are instruments and the predicted 
values of capital are 𝑘𝑘�𝑡𝑡 = 𝑘𝑘𝑡𝑡 − 𝑒𝑒𝑡𝑡. The estimation proceeds with linear approximation of the unknown function 
for consistency, and coefficient standard errors are derived non-parametrically through bootstrapping that 
reflects uncertainty in capital adjustment. Improvement in the capital input measurement to investigate 
industries’ scale economies is left for future work. 
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poor countries. A similar argument is relevant if trade reforms identify industries that still need 

protection while trade liberalization in other industries deepens, as demonstrated by Edwards (2006) 

in the case of South Africa and, by extension, the rest of SACU. 

Furthermore, there are also factors that move an economy away from the perfect competition setting 

such as input adjustment costs, hiring, firing and search costs, holdup and other contracting problems, 

taxes and subsidies, and markups. Examples of empirical evidence include Kambourov (2009) for 

firing costs in the case of Chile and Mexico, Aghion, Brown and Fedderke (2007) and Fedderke, 

Kularatne and Mariotti (2005) for markups in South Africa, and Petrin and Sivadasan (2013) for 

marginal product-marginal cost gaps in Chile. The finding of input misallocation suggests the 

presence of barriers to the movement of resources across heterogeneous production units. Similarly, 

firm-level heterogeneity in marginal products of inputs within industries in a country is also 

pronounced; see, for example Hsieh and Klenow (2009) for the case of India and China, Petrin and 

Sivadasan (2013) for Chile and Ho et al. (2014) for Ecuador. Ho et al. (2014), Petrin et al. (2011) and 

Nishida et al. (2014) rely on Petrin and Levinsohn (2012) to identify the relative role of technical 

efficiency improvement, the intensive and extensive margins. In response to the non-neoclassical 

frictions in developing economies, we also implement the Petrin and Levinsohn (2012) approach to 

estimate the extent of technical efficiency improvement and both margins of reallocation.  

3.5.4 The General Set-Up 

In this section we focus on the reallocation of primary inputs across, and the patterns of technical 

efficiency within, firms. The characterization of aggregate productivity growth in the absence of 

intermediate inputs takes the form  

�∑ ∑ �𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

−𝑊𝑊𝑖𝑖𝑖𝑖�𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖 � + �∑ 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜔𝜔𝑘𝑘

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 �       (10) 

where 𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

 is the partial derivative of output with respect to capital. We denote the price of output 

𝑄𝑄𝑖𝑖  in establishment i as 𝑃𝑃𝑖𝑖, and 𝑊𝑊𝑖𝑖 denotes the cost of labour. The change in the use of kth input 

quantity 𝑋𝑋𝑖𝑖𝑖𝑖  by firm i is 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖. The ‘net output’ remaining after deducting contributions by factor 

inputs to 𝑑𝑑𝑑𝑑𝑖𝑖  is 𝑑𝑑𝑑𝑑𝑖𝑖. Therefore, ∑ 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜔𝜔𝑘𝑘

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  represents gains from total technical efficiency 

changes, given 𝑑𝑑𝑑𝑑𝑖𝑖. In Petrin and Levinsohn (2012, Lemma 1) and Petrin et al. (2011, Eq. 7), the 
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impact of a change in the kth input on a change in output is normalized as 𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜔𝜔𝑘𝑘

= 1 to transform the 

total technical efficiency changes into ∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖.𝑖𝑖 41 

Thus, Eq. 12 shows that the primary input reallocation is zero if 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖=0. This occurs if distortions or 

adjustment costs are so prohibitively high that inputs do not adjust and consequently do not reallocate 

across firms. Furthermore, under a perfectly operating factor input market, the VMP of each input is 

equal to its reward,𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

= 𝑊𝑊𝑖𝑖𝑖𝑖. This means that factor inputs are continuously reallocated across 

plants in response to changes in economic conditions to maintain the VMP-price equality and no extra 

output gains can be realized from this reallocation; see Petrin and Levinsohn (2012).  

3.5.5 APG Decomposition and Estimation 

The decomposition of APG based on a double-deflation procedure for the value-added function, if it 

exists, is shown by Petrin and Levinsohn (2012) to be  

APG = ∑ 𝐷𝐷𝑖𝑖𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑(𝑉𝑉𝑉𝑉𝑖𝑖)𝑖𝑖 − ∑ ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖        (11) 

where the Domar-weight �𝐷𝐷𝑖𝑖𝑣𝑣 = 𝑉𝑉𝑉𝑉𝑖𝑖
∑ 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖

� is plant i's real value-added share. The two classes of labour 

are defined as 𝑋𝑋𝑃𝑃𝑃𝑃 = 𝐿𝐿𝑃𝑃𝑃𝑃 and 𝑋𝑋𝑊𝑊𝑊𝑊 = 𝐿𝐿𝑊𝑊𝑊𝑊 , where 𝐿𝐿𝑃𝑃𝑃𝑃 refers to Paid Employees and 𝐿𝐿𝑊𝑊𝑊𝑊 refers to 

Working Proprietors (or Nonproduction Workers in Levinsohn and Petrin (2003)). The real value-

added production function can then be written as 

𝑙𝑙𝑙𝑙(𝑉𝑉𝑉𝑉𝑖𝑖) = ∑ 𝜖𝜖𝑖𝑖𝑖𝑖𝑣𝑣 𝑋𝑋𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
𝑣𝑣.         (12) 

Eq. 12 can be translated into APG as 

                                                           
41 The definition of APG allows for the classification of firms into entrants and exits, and exporters and 
nonexporters. It is also flexible to account for the impact of growth of both firm-level fixed and sunk costs (𝐹𝐹𝑖𝑖𝑣𝑣) 
and input (Capital, Labour, Energy, Material) reallocation contributions, see Bruno (1978, Section 3), Petrin 
and Levinsohn (2012:706) and Petrin et al. (2011, Eq. 10). This means Eq. 9 can be fully decomposed into the 
expression  
 �∑ ∑ �𝑃𝑃𝑖𝑖

𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

−𝑊𝑊𝑖𝑖𝑖𝑖� 𝑑𝑑𝑘𝑘𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖� + �∑ ∑ �𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

− 𝑃𝑃𝑖𝑖𝑖𝑖� 𝑑𝑑𝑘𝑘𝑖𝑖 𝑀𝑀𝑖𝑖𝑖𝑖� + {∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 } − {∑ 𝑃𝑃𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 }  

where 𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜔𝜔𝑘𝑘

 in the third term is normalized to one and the expression is translated into an augmented version of 
APG in (12) as  

� ∑ 𝐷𝐷𝑖𝑖𝑣𝑣 ∑ (𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 )∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖
�����������������
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� + �   ∑ 𝐷𝐷𝑖𝑖𝑣𝑣 ∑ �𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 �∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑗𝑗𝑖𝑖
�����������������
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

� + � ∑ 𝐷𝐷𝑖𝑖𝑣𝑣𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
𝑣𝑣���������

𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

� −

� ∑ 𝐷𝐷𝑖𝑖𝑣𝑣𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑣𝑣���������
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

�. 
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𝐴𝐴𝐴𝐴𝐴𝐴 = � ∑ 𝐷𝐷𝑖𝑖𝑣𝑣 ∑ �𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 �∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖
�����������������
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

�+ � ∑ 𝐷𝐷𝑖𝑖𝑣𝑣𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑣𝑣���������
𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

�       (13) 

where the first-difference operator is ∆𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖−1 and 𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖
𝑉𝑉𝑉𝑉𝑖𝑖

 is the 𝑘𝑘𝑡𝑡ℎ input revenue 

ratio to the plant’s real value added. The real value-added elasticity with respect to the 𝑘𝑘𝑡𝑡ℎ  input 

is 𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 = 𝜀𝜀𝑖𝑖𝑖𝑖
1−𝑠𝑠𝑖𝑖𝑖𝑖

. The gaps in Eq. 13 are measured by the difference between the plant-level value-added 

elasticities ( 𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 ) and its input revenue share (𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 ) to value added. The aggregate input reallocation is 

therefore given by ∑ 𝐷𝐷𝑖𝑖𝑣𝑣 ∑ (𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 )∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖  and aggregate technical efficiency is ∑ 𝐷𝐷𝑖𝑖𝑣𝑣𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
𝑣𝑣. The 

APG approach has been applied to the US manufacturing data by Petrin et al. (2011), to Chile, 

Colombia and Slovenia by Nishida et al. (2014), to Chile by Petrin and Sivadasan (2013) and to 

Ecuador by Ho et al. (2014).  

Using index number theory, it is possible to estimate Eq. 10 directly from the discrete data using the 

Törnqvist−Divisia methods. As in Nishida et al. (2014), the prices in the Domar-weights are annually 

chain-weighted and updated. The Törnqvist−Divisia method can be used in Eq. 12 for each of the two 

APG components; namely, the reallocation of primary inputs and technical efficiency – the respective 

analogues to the ‘Between’ and ‘Within’ terms from ALP in the traditional approach. The estimated 

aggregate productivity growth can then be expressed as 

 𝐴𝐴𝐴𝐴𝐴𝐴������𝑖𝑖𝑖𝑖  = ∑ 𝐷𝐷�𝑖𝑖𝑖𝑖𝑣𝑣∆𝑙𝑙𝑙𝑙(𝑉𝑉𝑉𝑉𝑖𝑖𝑡𝑡)𝑖𝑖 − ∑ 𝐷𝐷�𝑖𝑖𝑖𝑖𝑣𝑣 ∑ 𝑠̅𝑠𝑖𝑖𝑖𝑖𝑣𝑣 ∆𝑙𝑙𝑙𝑙 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖 ,       (14) 

which translates to  

𝐴𝐴𝐴𝐴𝐴𝐴������𝑖𝑖𝑖𝑖  = {∑ 𝐷𝐷�𝑖𝑖𝑖𝑖𝑣𝑣 ∑ (𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑠̅𝑠𝑖𝑖𝑖𝑖𝑣𝑣 )∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 𝑘𝑘𝑖𝑖 } + {∑ 𝐷𝐷�𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖 ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖
𝑣𝑣 }.      (15) 

The 𝐷𝐷�𝑖𝑖𝑖𝑖𝑣𝑣  denotes plant i’s average value-added share weight from year t−1 to t, ∆ the first difference 

operator as before, and 𝑠̅𝑠𝑖𝑖𝑖𝑖𝑣𝑣 is the two-period average of plant i's expenditure for the kth primary input as 

a share of firm-level value added. In summary, the definitions of the APG components are 

Technical Efficiency: ∑ 𝐷𝐷𝑖𝑖𝑣𝑣𝑖𝑖 ∆𝑙𝑙𝑛𝑛𝑛𝑛𝑖𝑖𝑣𝑣is the value-added production function sum of the Domar-

weighted changes in the Solow residuals, the APG analogue of the ALP “Within” term in Baily et al. 

(1992)/Foster et al. (2001). Technical efficiency increases when a plant continuously innovates and 

adapts to technological advances through learning-by-doing/watching and other means.  

Reallocation: ∑ ∑ �𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

−𝑊𝑊𝑖𝑖𝑖𝑖� 𝑑𝑑𝑘𝑘𝑖𝑖 𝑋𝑋𝑖𝑖𝑖𝑖
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯� ∑ 𝐷𝐷𝑖𝑖𝑣𝑣 ∑ (𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 )∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑘𝑘 .𝑖𝑖  According to Petrin and 

Levinsohn (2012), Petrin et al. (2011), Petrin and Sivadasan (2013, p. 288) and Nishida et al. (2013, 

Eqs. 6 and 8), plants produce at the output level where 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

> 𝑊𝑊𝑖𝑖𝑖𝑖, under imperfect factor market 
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conditions. Therefore, there are three potential instances for input reallocation growth. First, if 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖  is 

the change in the kth factor input that was previously idle, but now reallocates to plant i, then the value 

of aggregate output changes by 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

−𝑊𝑊𝑘𝑘. Second, when a small amount of primary inputs 

reallocates from j to i so that 𝑑𝑑𝑑𝑑𝑖𝑖 = −𝑑𝑑𝑑𝑑𝑗𝑗, then aggregate output changes by 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

− 𝑃𝑃𝑗𝑗
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

. Third, in 

the event factor inputs reallocate across firms but the total amount of these inputs is held constant, the 

change in aggregate output induced by reallocation is given by 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 . 

Entry and Exit: Entry in this set-up includes the development of a new product, the replication of an 

existing product by a new firm or a reintroduction of a good back into the market after exiting 

previously (see Petrin and Levinsohn, 2012: Appendix). 

In order to separately estimate firm-level technical efficiency in Eq. 12 for each ISIC2-digit industry 

code in Swazi manufacturing, Eq. 6 can be re-written as 

𝑙𝑙𝑙𝑙𝑙𝑙𝚤𝚤𝚤𝚤𝑣𝑣� = {𝑙𝑙𝑙𝑙(𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖)} − �𝛽𝛽𝑣𝑣� + 𝜖𝜖𝚥𝚥𝚥𝚥𝚥𝚥𝑣𝑣� 𝑙𝑙𝑙𝑙𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃 + 𝜖𝜖𝚥𝚥𝚥𝚥𝚥𝚥
𝑣𝑣�𝑙𝑙𝑙𝑙𝐿𝐿𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊 + 𝜖𝜖𝚥𝚥𝚥𝚥𝚥𝚥

𝑣𝑣�𝑙𝑙𝑙𝑙𝐾𝐾𝑖𝑖𝑖𝑖�    (16) 

and estimated using the proxy method of Wooldridge (2009) that modifies Levinsohn and Petrin 

(2003) to address the simultaneity problem in the determination of inputs and productivity. In Eq. 14, 

we use three factor inputs as regressors: non-production (Working Proprietors) 𝐿𝐿𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊, production (Paid 

Employees) 𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃  and capital 𝐾𝐾𝑖𝑖𝑖𝑖 . Unlike Nishida et al. (2014), we do not report only aggregate labour 

reallocation in our results, we also report reallocation of 𝐿𝐿𝑖𝑖𝑖𝑖𝑊𝑊𝑊𝑊 and 𝐿𝐿𝑖𝑖𝑖𝑖𝑃𝑃𝑃𝑃separately. 

Table 3.8 quantitatively decomposes APG into technical efficiency, primary input reallocation and net 

entry estimated using Eq. 14. The relationship between APG and its component sources of growth is 

that APG(0) equals ‘Technical Efficiency (1)’ plus ‘Total Reallocation (2)’ plus ‘Net-Entry (3)’. In 

turn, ‘Labour Reallocation (2)’ decomposes to ‘Working Proprietors Reallocation’ plus ‘Paid 

Employees Reallocation’ while ‘Total Reallocation’ refers to all primary input reallocation across 

plants. In considering the results sequentially, the second and third columns show changes in real 

value added and aggregate productivity, respectively. It is striking to observe such a high correlation 

between aggregate productivity growth and the growth of value added. This reflects the fact that most 

of the fluctuations in aggregate productivity are predominantly linked to fluctuations in value added. 

Similar results are found in the case of Chile, Colombia or Slovenia in Nishida et al. (2014) or for the 

case of Japan in Kwon et al. (2009). For example, the Swazi manufacturing sector reports an 

estimated average real value added of 54.59 percent and average APG of 54.54 percent, or the median 

real value added of 7.76 percent and the median APG of 7.71 percent per year, respectively.  
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Table 3.8: Aggregate multifactor productivity growth rate, Swaziland manufacturing 1994–
2003: APG decomposition, manufacturing value-added index double-deflator. 
Estimates of ∑ 𝑫𝑫�𝒊𝒊𝒊𝒊𝒗𝒗 ∆𝒍𝒍𝒍𝒍(𝑽𝑽𝑽𝑽𝒊𝒊𝒊𝒊)𝒊𝒊  and 𝑨𝑨𝑨𝑨𝑨𝑨������ = ∑ ∑ 𝑫𝑫�𝒊𝒊𝒊𝒊𝒗𝒗 (𝜺𝜺𝒊𝒊𝒊𝒊𝒗𝒗 − 𝒔𝒔�𝒊𝒊𝒊𝒊𝒗𝒗 )∆𝒍𝒍𝒍𝒍𝒍𝒍𝒊𝒊𝒊𝒊𝒌𝒌𝒊𝒊 +∑ 𝑫𝑫�𝒊𝒊𝒊𝒊𝒗𝒗𝒊𝒊 ∆𝒍𝒍𝒍𝒍𝒍𝒍𝒊𝒊

𝒗𝒗. 

Year 
 
 

Value-
Added 
Growth 
 
 

APG 
(0) 
 
 

APG Decomposition: (0)= (1) + (2) + (3) 
Technical 
Efficiency 

(1) 
 

Reallocation Net 
Entry (3) 
 
 

Total 
Reallocation 

(2)  

Labour 
Reallocation 

 

Working 
Proprietors’ 

Reallocation 

Paid 
Employees’ 

Reallocation 
1995 7.76 7.71 -4.43 -4.31 8.76 5.61 3.15 16.45 
1996 23.10 23.03 2.27 -6.98 1.21 -0.30 1.51 27.75 
1997 -44.35 -44.25 -2.69 18.13 9.84 -0.08 9.92 -59.69 
1998 265.55 265.30 2.31 -2.38 0.10 0.02 0.07 265.37 
1999 275.57 275.42 0.64 9.81 3.01 -0.01 3.03 264.97 
2000 -16.28 -16.27 -15.30 -5.16 0.61 -0.13 0.74 4.18 
2001 37.42 37.39 9.03 20.10 -0.08 -0.11 0.03 8.25 
2002 -20.74 -20.75 -3.56 -29.01 -1.36 -1.66 0.30 11.82 
2003 -36.71 -36.67 -20.74 1.12 7.14 -2.61 9.75 -17.05 
Mean 54.59 54.54 -3.61 0.15 3.25 0.08 3.17 58.01 
Median 7.76 7.71 -2.69 -2.38 1.21 -0.11 1.51 11.82 
Std Dev 125.32 125.23 9.21 14.88 4.22 2.27 3.96 120.14 

Notes: As in Nishida et al. (2014), numbers are percentage growth rates. The plant-level multifactor productivity is 
calculated by using production function parameters that vary across 2-digit ISIC. We obtain the estimates by using 
Wooldridge (2009). APG represents the aggregate productivity growth with entry and exit, which is defined as 
aggregate change in final demand minus aggregate change in expenditure in inputs, holding input constant. We use 
value-added share (Domar) for weights. APG is decomposed into four components: (1) technical efficiency, (2) 
reallocation, and (3) net-entry term, using Eq. 17 in text. 

These trends are characterized by high firm-level heterogeneity in the change of value added and 

APG. For example, the measure of dispersion for APG is over twice its average size. One channel 

explaining this is found in Syverson (2004), which states that trade liberalization creates a competitive 

market environment and snowballing of product variety. This enables consumers to switch between 

products and/or producers such that high-cost producers’ profitability is diminished. Thus, a high 

substitutability industry is likely to have less productivity dispersion and a high aggregate productivity 

level. 

The contribution of technical efficiency to APG is on average (median) −3.61 percent (−2.69 

percent) per year, compared to an average of 0.95 percent for Chile, 0.25 percent for Colombia and 

2.17 percent for Slovenia (see Nishida et al. (2014)). This component of APG is positive in only four 

out of nine years. However, the most interesting case is the combined input reallocation in the fourth 

column reflecting simultaneous cross-plant movements in capital and components of labour inputs. 

The average total reallocation is 0.15 percent per year and consists of input reallocation from low to 

high productivity plants, from idle state to productive uses and reallocation that is not accompanied by 

changes in input amounts. Clearly, the average reallocation compares with 1.60 percent for Chile, 

3.63 percent for Colombia and 3.42 percent for Slovenia as reported in Nishida et al. (2014).  
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However, our ultimate focus is the behaviour of the paid labour resource in response to shifts in 

economic factors that cause movements in the manufacturing sector. We first isolate labour 

reallocation from the contribution of all inputs put together. This produces 3.25 percent as the average 

annual rate of labour reallocation, and we report only two instances of negative reallocation out of the 

nine years studied. A further decomposition of labour reallocation into that which is accounted for by 

the reshuffling of working proprietors and paid employees produces sharper results. Paid employment 

shows positive growth in every year and accounts for an average of about 98 percent [3.17 

percent÷3.25 percent] of all labour reallocated per year. Again, paid labour reallocated from low to 

high VMP plants, new paid labour entered the labour market and some paid labour reallocated 

without increasing the number of workers. This is consistent with the wave of downsizing in the 

manufacturing sector during the period of trade liberalization. Our results are robust to the use of 

‘single-deflation’ by the manufacturing value-added deflator in Appendix A3.3 and ‘double-deflation’ 

by the consumer price index in Appendix A3.4. Another robustness check applied, but not reported 

here, involved ‘single-deflation’ by the consumer price index which also sustained the basic results.  

Thus, the analysis reveals that the contribution by the labour reallocation growth to APG decisively 

dominates technical efficiency in the manufacturing sector in Swaziland. Firms were not investing 

more in improving production efficiency through innovation and adoption of new technologies than 

they were moving labour to higher activity producers. This conclusion remains robust regardless of 

the deflation procedure used in the estimation of the value-added production function. However, 

based on our robustness checks, the combined input reallocation versus technical efficiency is 

inconclusive because the outcome depends on whether we use the mean or the median as a standard 

for comparison.  

On the other hand, the extensive margin accounts for most of the change in APG. The annual average 

of net entry contribution to APG is 58.01 percent and is driven by the dramatic increase of APG in 

1998 and 1999. This pattern of high contribution by net entry is consistent with extensive margin 

effects of trade liberalization which increases opportunities for mergers and acquisitions as well as 

business restructuring and retrenchments.  

3.6 Discussion of Results 

In the previous sections, different decomposition approaches for aggregate productivity growth are 

described, estimated and results compared. It is evident that the joint use of the Bailey et al. (1992) 

and Forster et al. (2001) methods to measure contributions made by individual determinants of the 

aggregate labour productivity growth produces significant insights. More specifically, while these 

methods identically define the longitudinal effects of productivity changes and the covariance effects, 

their conceptualization of resource-shift effects and the entry-exit dynamics differs only in terms of 
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whether or not firm-level productivity deviations from the initial industry average productivity is 

considered. That is, the Bailey et al. (1992) technique does not consider these deviations while Forster 

et al. (2001) does. 

The present study of industrial aggregate productivity growth in Swaziland coincides with a period of 

progressive trade liberalization and deregulation in the customs union. Trade reforms typically create 

competitive markets by inducing domestic price reduction, forcing inefficient producers out of 

business thereby reallocating resources and market shares to more productive plants, see Pavcnik 

(2002). However, the standard absence of well-functioning markets due to other forms of protection 

in developing economies may account for the observed poor industrial performance in Swaziland. In 

table 3.3; for instance, the average year-on-year within-firm effects is negative. In five out of nine 

instances, within-effects report large negative productivity growth, suggesting that the manufacturing 

sector in was dominated by continuing low productivity firms. This productivity growth component is 

only positive in 1997-1999 and in 2001, suggesting the manufacturing sector in Swaziland 

experienced some productivity growth in these years. That is, the annual orders of magnitude in these 

specific years indicate that plant-level improvements in production efficiency only marginally 

dominated industrial activity. In an efficient market environment, the weak performance of the sector 

in technological advancements would feature prominently in heightened exit rates of poor performers 

and entry of efficient firms.  

The labour share-shift effect computed from the traditional methods produces interesting results. On a 

year-to-year average basis, the Bailey et al. (1992) between-effect is -5.69 percent and the Forster et 

al. (2001) between-effect is 3.53 percent. Such patterns of negative Bailey et al. (1992) between-

effects and positive Forster et al. (2001) between-effects occur in four out of nine instances. 

Interpreting these results collectively, it means most industrial firms downsized their operations and 

this affected mostly plants with initial productivity level that exceeded the initial industry average 

productivity. The observed apparent inefficient reshuffling of resources away from productive to less 

productive producers can be explained in terms of the newly reforming industrial sector in the 

customs union. These are likely South African owned subsidiaries that moved to Swaziland during the 

period of economic sanctions prior to the mid-1990s to access cheaper intermediate and primary 

inputs as well as foreign markets. The new trade policy regime was incentive enough for these plants 

to relocate back into the larger South African market to enjoy scale economies in an increasingly 

competitive market environment. 

However, section 3.4.6 demonstrates that the traditional methods suffer from confounding effects of 

firm turnover. Purging these effects from the producer-level labour share merely reduced the 

magnitude of the share-shift effect in absolute terms without altering its sign and only converted this 
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effect from negative to positive in 1996. Therefore, our results generally remain robust to the 

confounding effects of changes in the number of firms over time. 

The entry-exit dynamics that characterize the manufacturing sector in Swaziland tell an interesting 

story about the behavioural patterns of establishments when using the Bailey et al. (1992)/Forster et 

al. (2001) techniques during the 10-year period. Although both methods yield large positive net-entry 

effects of productivity growth on a year-to-year average basis, table 3.3 reports four out of nine 

instances of positive Bailey et al. (1992) net-entry effects associated with positive Forster et al. (2001) 

net-entry effects. Again, a joint interpretation of this result from the two methods is that new firms 

were generally more productive relative to both their exiting counterparts and initial industry average 

productivity. In turn, exiting plant productivity levels were predominantly lower than the initial 

industry average productivity. This pattern is more pronounced in 1998-1999, a period of significant 

shake up in one industry where a large investment asset was sold to another and this was recorded as 

firm entry. The results also show three out of nine instances of positive Bailey et al. (1992) net-entry 

effects associated with negative Forster et al. (2001) net-entry effects. This is evidence of more 

productive entrants than quitters, and more productive quitters than the initial industry average 

productivity. 

The Bailey et al. (1992) approach and its associated derivatives has been fiercely criticised by 

Levinsohn and Petrin (1999), Petrin and Levinsohn (2012) and Petrin et al. (2014) for decomposing 

aggregate labour productivity growth using firm-level output per labour,𝝋𝝋𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖
𝐿𝐿𝑖𝑖𝑖𝑖

, as a proxy for the 

marginal product of labour. This literature also questions the use of changes in output/labour, ∆𝝋𝝋𝑖𝑖𝑖𝑖, as 

a proxy for plant-level changes in productivity. Petrin et al. (2014) demonstrate a priori and in a firm-

level panel data application to the cases of Chile, Colombia and Slovenia how plant specific technical 

efficiency, input reallocation and turnover effects influence changes in APG. Following this 

alternative line of enquiry into the behaviour of industrial determinants of APG in Swaziland, two 

technical activities are carried out. First, an analytical framework for estimating a robust production 

function for the thirteen two-digit ISIC industries is developed and implemented to understand the 

behaviour of capital and labour inputs in relation to real value-added. This exercise turned out crucial 

in the estimation of the Solow-residual for use in the subsequent analysis. Second, a conceptual 

framework based on Petrin and Levinsohn (2012) for estimating the impact of plant-level technical 

efficiency and resource reallocation across firms is outlined in full and applied to the manufacturing 

sector in Swaziland. 

Table 3.8 presents results based on the Petrin and Levinsohn (2012)/Nishida et al. (2014) procedure 

for measuring technical efficiency, input reallocation and plant turnover effects on aggregate 

productivity growth. These results broadly mimic those generated from using the Bailey et al. 
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(1992)/Forster et al. (2001) methods. In Swaziland, the manufacturing sector is highly concentrated 

even within broadly defined industries. Hence, a major movement of resources between a few firms 

translates into significant output changes as observed in 1998-1999 of the second column. Since 

aggregate productivity growth is defined here as the change in aggregate final demand less the change 

in the aggregate expenditure in primary inputs, the measured aggregate productivity growth matches 

the industrial value-added growth very closely over time. 

Technical efficiency is on average negative and annually traces the ALP within-firm effects produced 

by conventional methods closely, although the APG orders of magnitude are much lower in absolute 

terms. This confirms the earlier view that the degree of firm-level and industrial innovation and 

entrepreneurial transformation remains negligible at best in the period under study. The direct effect 

of the generally negative real productivity in Swaziland reverses any positive impact arising from 

other sources of AGP despite the unboundedness of learning and ingenuity opportunities available to 

firms as discussed in Levinhson and Petrin (1999).  Such preponderance of poor producer 

performance in a trade liberalization period associated with intensified import competition is hard to 

explain without thinking about a possible existence of protective industrial regulations, high costs of 

adjustment of primary inputs or managerial incapacity. Capital irreversibility and protective policies 

are a crucial barrier to firm exit. Evidence by Bloom et al. (2013) shows that the adoption of 

appropriate managerial practices in large Indian textile firms raised productivity by 17 percent in the 

first year.  

The most important input of production to national policymakers, Bretton Woods institutions and 

development organizations in the context of Swaziland is paid labour employment. During the period 

of trade reforms, there was an average paid labour reallocation productivity growth of 3.17 percent 

every year. Looking at paid employee productivity that is in excess of one percent, this is observed 

only in five out of the 10 years. Three of these years experienced paid labour productivity that is at 

most 0.07 percent. Nonetheless, positive industrial paid labour reallocation characterized every single 

year. There are at least four explanations based on 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑘𝑘

, value-added elasticities and input 

shares that shed some light into these patterns of growth. First, the reallocation of paid labour input 

from plant 𝑗𝑗 to plant 𝑖𝑖 leads to 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 = 1 and 𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗 = −1. This increases the amount of real value-

added by 

𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖

 −𝑃𝑃𝑗𝑗
𝜕𝜕𝜕𝜕𝑗𝑗
𝜕𝜕𝜕𝜕𝑗𝑗𝑗𝑗𝑗𝑗

 , 

assuming common wages across firms and holding total labour input constant. Hence, when paid 

labour moves from low to high 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖, aggregate final demand increases without any increase in 

technical efficiency or aggregate input use, see Petrin and Levinsohn (2012).  
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Second, market distortions arising from markups and taxes, and the impact of adjustment costs of paid 

labour, find full expression in the resource reallocation component of APG. The markup is by 

definition the wedge between the price and marginal cost of the product in question, and APG 

increases when paid labour moves from low to high markup firms. On the other hand, a tax of 𝜏𝜏 on a 

product induces a reduction in the marginal revenue of paid employees from 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

 to 1
1+𝜏𝜏

𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖

 

such that establishments produce at 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖

> 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖, where 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 denotes firm i's wage rate for paid 

workers. 

Third, in the presence of adjustment costs of paid employees, the s-S-type modelling becomes 

suitable. In that case, there exists ranges of product demand or technical efficiency shocks such that 

the plant does not necessarily adjust paid employees every year.  Even when paid employment is 

adjusted, firms do not use first-order conditions to determine employment. Thus, whether the 

concerned labour input is adjusted or not, the process does not lead to 𝑃𝑃𝑖𝑖
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖. 

Fourth, since reallocation growth of paid employment is consistently positive every year, then the 

manufacturing sector is dominated by firms with either ∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > 0 and (𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 ) > 0 or 

∆𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 < 0 and (𝜀𝜀𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 ) < 0 in Eq.15. Producers of manufactured goods with value-added 

elasticity with respect to paid labour greater than the revenue share of paid employment for growing 

incumbent firms contributes positively to APG. Similarly, producers of goods with value-added 

elasticity less than the revenue share of paid labour for contracting firms contributes positively to 

APG as well.  

Overall, consideration of resource shuffling across plants based on the microfoundations approach 

produces results similar to those generated by Bailey et al. (1992)/Forster et al. (2001).This process 

led us to separate out the reallocation of total labour, paid workers, and working proprietors from total 

input reallocation. The finding is that, on a year-to-year basis, all input reallocation has a positive 

impact on APG. More importantly, the component of labour that is widely used by the IMF in country 

reports for Swaziland; that is, paid employees, is significantly positive every year. It dominates labour 

reallocation and accounts for 98 percent of all labour shuffled from low to high VMP producers. 

However, the annual average productivity for primary input reallocation, though still positive, is much 

lower due to the inclusion of real capital stock. This is due to high capital irreversibility characterizing 

the manufacturing sector and is likely to constrain entry-exit dynamics while also promoting 

coexistence of both efficient and inefficient plants. 

In the case of net-entry, mergers and acquisitions involving two large firms had a large effect on APG 

due to the high level of concentration in most industrial sectors. That is, in 1998 a division of a large 

company was taken over by another firm in the same sector but this was recorded as entry of a new 
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firm. In the following year the acquiring firm took over the rest of the company and engaged in 

extensive retrenchments which raised labour productivity in this sector. This behaviour accounted for 

approximately 265 percent productivity growth in these two years. 

3.7 Summary and Conclusion 

This chapter investigates primary input trends, aggregate productivity and factor-intensities in Swazi 

manufacturing firms over a period of trade liberalisation in the Southern African Customs’ Union. It 

begins with descriptive analyses and then investigates the drivers of aggregate productivity growth 

over time and across industries. A cross-country comparison of drivers of aggregate labour 

productivity growth with those of the Swazi manufacturing sector is also undertaken. The chapter then 

deepens the analysis to focus on Swaziland by decomposing aggregate labour productivity growth 

over time using traditional methods and also relying on Petrin and Levinsohn (2012) as applied by 

Nishida et al. (2014). It concludes with an analysis of seemingly outlying aggregate labour 

productivity growth in 1998 and 1999 to determine the characteristics of entrants associated with it.  

The descriptive evidence shows a decline in both aggregate labour and capital productivities and an 

increase in the capital−labour ratio. It also shows a leftward distribution of ALP and increasing 

heaviness of both tails. There are three potential explanations for this. First, firms shed more labour 

relative to capital due to capital irreversibility and to South African companies shifting production 

back to South Africa as a response to the lifting of economic sanctions whilst keeping Swazi plants in 

operation to cover their variable costs. Second, lower productivity firms are growing faster relative to 

higher productivity plants. Third, there is entry of lower ALP firms.  

An in-depth analysis using the conventional approach found that the ALP growth is driven largely by 

net entry, then by cross-firm market share shift and negatively by within-firm technical change. This 

result is robust to controlling for confounding effects of plant turnover in the Baily et al. (1992) 

method. Using the Petrin and Levinsohn (2012) approach also produces the same order of importance 

for APG components. That is, the net-entry contribution explains most of the changes in APG 

followed by input reallocation, while technical efficiency remains negative per year.  

However, the most interesting case is the combined input reallocation reflecting cross-plant 

movements. The average reallocation of the input bundle from low- to high-productivity incumbent 

plants is 0.15 percent per year. However, isolating the average annual rate of labour reallocation from 

the contribution of all inputs put together produces 3.25 percent. Furthermore, paid employment 

shows positive growth in every year and accounts for an average of about 98 percent of all labour 

reallocated per year. These results are robust to ‘single-deflation’ by the manufacturing value-added 

deflator and ‘double-deflation’ by consumer price index. Furthermore, the annual average of net-entry 
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contribution to APG is 58.01 percent and is mainly accounted for by the dramatic increase of APG in 

1998 and 1999 due to firm entry.  

Finally, the analysis reveals that individual contributions by the extensive and intensive margins of 

resource reallocation to APG decisively dominate technical efficiency in the manufacturing sector in 

Swaziland. Firms were not investing more in improving production efficiency through innovation and 

adoption of new technologies than they were moving labour to higher activity producers. This 

conclusion remained robust regardless of the deflation procedure used in the estimation of the real 

value-added production function. The novelty of our results lies in the use of micro-foundations to 

define aggregate productivity growth.  

Our future research will focus on separating the contribution of each factor and intermediate input to 

APG. Given that the APG framework nests many situations around the development and introduction 

of new goods, this enquiry should also estimate fixed costs and the “gap” terms in Eq. 15 to further 

understand the productivity dynamics during a period of market reforms. Petrin et al. (2011) estimate 

the impact of primary and intermediate inputs on productivity growth and estimate the orders of 

magnitude and potential volatility of input gaps. Petrin and Sivadasan (2013) use input gaps to 

estimate output losses due to allocative inefficiency. 
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APPENDICES 

Appendix A3.1: Manufacturing and Survey ALP (1994−2003) 

Note: S-productivity denotes ALP measured by the natural logarithm of real value added/labour ratio calculated 
from survey data and the equivalent M-productivity calculated from real value added sourced from the World 
Bank Indicators and paid labour sourced from IMF Country Reports for Swaziland (1999, 2000, 2003, and 
2008). 

Appendix A3.1: ALP Distribution for Selected Years (1994, 1997, 2000, 2003) 

 

Note: Single deflation of the ratio of real value added to aggregate annual employment. 
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Appendix A3.2: Evolution of the 25th Percentile of ALP by Industry (1994-2003) 

 
EVOLUTION OF FIRST QUARTILE ALP BY INDUSTRY 

isic2 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 
Food (15)    1.00 0.70 0.83 0.88 0.91 0.81 0.73 0.74 0.68 0.52 
Textile (17)  1.00 0.61 0.58 0.73 1.37 0.72 0.47 0.65 0.17 0.34 
Apparel (18)  1.00 -16.15 16.46 10.99 13.17 9.77 11.50 -23.31 7.47 3.95 
Wood (20)  1.00 0.66 0.68 0.64 0.61 0.55 0.81 0.80 0.58 0.25 
Pulp & Paper (21)  1.00 1.27 1.55 1.51 1.60 1.63 1.49 0.73 1.55 -0.11 
Printing & Publishing (22)  1.00 0.93 0.92 0.83 0.79 0.86 0.93 0.69 0.74 0.62 
Chemicals (24)  1.00 1.11 0.82 1.08 0.80 0.99 1.03 0.80 0.89 0.95 
Rubber (25)  1.00 1.02 0.93 0.77 0.87 0.81 0.90 0.95 0.70 0.51 
Non-Metallic Minerals (26)  1.00 0.96 0.61 0.40 0.43 0.47 0.62 0.22 0.41 0.59 
Basic Metals (27) 1.00 -0.05 3.13 3.25 3.13 3.16 1.49 1.18 0.17 2.00 
Fabricated Metal (28) 1.00 0.84 1.23 0.92 1.10 1.30 0.94 0.80 0.74 1.02 
Furniture (29)  1.00 0.94 0.90 1.10 1.07 0.96 0.86 1.02 1.07 0.27 
Other Manufacturing (36)  1.00 1.75 0.95 1.03 0.85 1.24 1.20 0.59 0.82 1.02 
Sector Mean 1.00 -0.42 2.28 1.86 2.05 1.79 1.77 -1.09 1.23 0.92 
Sector Median 1.00 0.93 0.92 0.92 0.91 0.96 0.93 0.74 0.74 0.59 
Std Dev (𝛔𝛔𝑨𝑨𝑨𝑨𝑨𝑨) 0.00 4.75 4.31 2.83 3.41 2.50 2.94 6.68 1.91 1.05 

Source: Author’s calculations. 

 

Appendix A3.3: Evolution of the 75th Percentile of ALP by Industry (1994-2003) 

  
EVOLUTION OF THIRD QUARTILE ALP BY INDUSTRY 

isic2 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 
Food (15)    1.00 0.88 0.94 0.94 1.05 1.06 1.07 1.00 0.95 0.92 
Textile (17)  1.00 0.63 0.81 0.97 0.94 1.13 0.66 0.83 0.50 0.77 
Apparel (18)  1.00 1.11 1.12 0.70 1.38 0.92 0.73 0.62 0.64 1.54 
Wood (20)  1.00 0.84 0.66 0.79 0.99 1.17 1.06 0.73 0.77 0.69 
Pulp & Paper (21)  1.00 1.00 1.01 1.25 1.20 1.22 1.42 1.34 1.14 1.09 
Printing & Publishing (22)  1.00 0.82 0.87 0.87 1.00 1.03 1.08 1.08 0.97 1.01 
Chemicals (24)  1.00 0.95 0.95 1.29 0.96 1.04 1.13 1.20 1.33 0.95 
Rubber (25)  1.00 0.85 0.93 0.70 0.87 0.88 0.76 0.65 0.62 0.58 
Non-Metallic Minerals (26)  1.00 0.83 0.80 0.65 0.84 0.91 0.82 0.87 0.98 0.90 
Basic Metals (27) 1.00 0.99 0.70 0.73 0.70 0.71 0.55 0.53 1.00 0.96 
Fabricated Metal (28) 1.00 0.84 0.92 0.75 0.76 0.89 0.83 0.84 0.90 0.83 
Furniture (29)  1.00 0.91 0.87 0.78 0.78 0.78 0.74 0.82 0.87 1.34 
Other Manufacturing (36)  1.00 0.86 0.84 0.54 0.71 1.12 0.88 0.85 0.73 0.74 
Sector Mean 1.00 0.89 0.88 0.84 0.94 0.99 0.90 0.87 0.88 0.95 
Sector Median 1.00 0.86 0.87 0.78 0.94 1.03 0.83 0.84 0.90 0.92 
Std Dev (𝛔𝛔𝑨𝑨𝑨𝑨𝑨𝑨) 0.00 0.11 0.12 0.22 0.19 0.15 0.24 0.23 0.23 0.26 

Source: Author’s calculations. 
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Appendix A3.4: Estimation of the Wooldridge-Petrin-Levinsohn Production Function 

This Appendix relies on Petrin, Poi and Levinsohn (2004), Galuščák and Lizal (2011) and 

Wooldridge (2009). The value-added function is specified as in Levinsohn and Petrin (2003): 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖   +  𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖  ,       (1.1) 

where all variables are expressed in the natural logarithm. 𝛽𝛽0 is a constant term, the coefficients 

(𝛽𝛽𝑙𝑙 ,𝛽𝛽𝑘𝑘) are output elasticities with respect to labour and capital, in that order. The unobserved 

productivity is 𝜔𝜔𝑖𝑖𝑖𝑖 and 𝜈𝜈𝑖𝑖𝑖𝑖 is a sequence of shocks that is assumed to be conditionally mean 

independent (CMI) of current and past inputs.  

The demand for intermediate inputs is assumed to be a function of capital and the unobserved 

productivity  

𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑘𝑘𝑖𝑖𝑖𝑖 ,𝜔𝜔𝑖𝑖𝑖𝑖).         (1.2) 

Levinsohn and Petrin (2003) demonstrate the monotonicity property of the demand function for 

intermediates under mild assumptions which allow for the inversion of Eq. 1.2 as 

𝜔𝜔𝑖𝑖𝑖𝑖 = 𝑔𝑔(𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖)         (1.3) 

and productivity adjusts according to a Markov process as  

𝜔𝜔𝑖𝑖𝑖𝑖 = 𝐸𝐸(𝜔𝜔𝑖𝑖𝑖𝑖|𝜔𝜔𝑖𝑖𝑖𝑖−1) + 𝜉𝜉𝑖𝑖𝑖𝑖        (1.4) 

where 𝜉𝜉𝑖𝑖𝑖𝑖 is productivity innovation.  

Then, (1.1) can be expressed as either 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖   +  𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑔𝑔(𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖) + 𝜈𝜈𝑖𝑖𝑖𝑖      (1.5) 

or 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖   +  𝜙𝜙(𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖) + 𝜈𝜈𝑖𝑖𝑖𝑖        (1.6) 

where  

𝐸𝐸(𝜈𝜈𝑖𝑖𝑖𝑖|𝑙𝑙𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖) = 0         (1.7) 

and 

𝜙𝜙(𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑔𝑔(𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖).      (1.8) 

To complete the first stage, the function 𝜙𝜙 in Eq. 1.6 is approximated with a third-degree polynomial 

in 𝑘𝑘𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑖𝑖𝑖𝑖, and 𝛽𝛽𝑙𝑙 is estimated using O.L.S. 

The final stage sets out to identify 𝛽𝛽𝑘𝑘. First, the values of Eq. 1.6 are estimated as  

𝜙𝜙�𝑖𝑖𝑖𝑖 = 𝑦𝑦�𝑖𝑖𝑖𝑖 − 𝛽̂𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 .         (1.9) 

Then, using a potential estimate for  𝛽𝛽𝑘𝑘 , say 𝛽𝛽𝑘𝑘∗ , it is possible to estimate the productivity series as 

𝜔𝜔�𝑖𝑖𝑖𝑖 = 𝜙𝜙�𝑖𝑖𝑖𝑖 − 𝛽𝛽𝑘𝑘∗𝑘𝑘𝑖𝑖𝑖𝑖.         (1.20) 

In terms of Levinson and Petrin (2003), a consistent nonparametric approximation to 𝐸𝐸(𝜔𝜔𝑖𝑖𝑖𝑖|𝜔𝜔𝑖𝑖𝑖𝑖−1) is 

given by the predicted values from the nonlinear regression 

𝐸𝐸(𝜔𝜔𝚤𝚤𝚤𝚤|𝜔𝜔𝚤𝚤𝚤𝚤−1� ) = 𝜔𝜔�𝑖𝑖𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝜔𝜔𝑖𝑖𝑖𝑖 + 𝛾𝛾2𝜔𝜔𝑖𝑖𝑖𝑖
2 + 𝛾𝛾3𝜔𝜔𝑖𝑖𝑖𝑖

3 + 𝜗𝜗𝑖𝑖𝑖𝑖    (1.21) 

Thus, given 𝐸𝐸(𝜔𝜔𝑖𝑖𝑖𝑖|𝜔𝜔𝑖𝑖𝑖𝑖−1), 𝛽̂𝛽𝑙𝑙 and 𝛽𝛽𝑘𝑘∗, the estimate of 𝛽𝛽𝑘𝑘 solves the minimization of the squared 

regression residuals 
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min
𝛽𝛽𝑘𝑘
∗ ∑ �𝑦𝑦�𝑖𝑖𝑖𝑖 − 𝛽̂𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 − 𝛽𝛽𝑘𝑘∗�𝑘𝑘𝑖𝑖𝑖𝑖 − 𝐸𝐸(𝜔𝜔𝚤𝚤𝚤𝚤|𝜔𝜔𝚤𝚤𝚤𝚤−1� )�

2
𝑖𝑖 .      (1.22) 

  

This procedure closes with a bootstrap based on random sampling from observations to construct 

standard errors of the capital and labour coefficient estimates as in Horowitz (2001). 

In stark contrast to the two-step approach, Wooldridge (2009) proposes to simultaneously estimate the 

capital and labour coefficients by assuming CMI of the i.i.d. error term with respect to current and 

past values of 𝑙𝑙𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖,𝑚𝑚𝑖𝑖𝑖𝑖 . 

CMI Assumption I: 

𝐸𝐸(𝜈𝜈𝑖𝑖𝑖𝑖|𝑙𝑙𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖 , 𝑙𝑙𝑖𝑖𝑖𝑖−1,𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1 , … , 𝑙𝑙1𝑡𝑡 ,𝑘𝑘1𝑡𝑡,𝑚𝑚1𝑡𝑡 ) = 0. This means the error term is conditional 

mean independent of, or uncorrelated with, the present and past production inputs. ■ 

Wooldridge (2009) restricts the dynamics of the unobserved productivity shocks and writes 

𝐸𝐸(𝜔𝜔𝑖𝑖𝑖𝑖|𝑙𝑙𝑖𝑖𝑖𝑖 ,𝑘𝑘𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑖𝑖𝑖𝑖 , 𝑙𝑙𝑖𝑖𝑖𝑖−1,𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1 , … , 𝑙𝑙1𝑡𝑡,𝑘𝑘1𝑡𝑡,𝑚𝑚1𝑡𝑡 )     

= 𝐸𝐸(𝜔𝜔𝑖𝑖𝑖𝑖|𝜔𝜔𝑖𝑖𝑖𝑖−1) 

= 𝑗𝑗(𝑔𝑔(𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1 )         (1.23)  

where 𝜔𝜔𝑖𝑖𝑖𝑖−1 = 𝑔𝑔(𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1 )  and the productivity innovation 𝑎𝑎𝑖𝑖𝑖𝑖 can be written as 

𝜔𝜔𝑖𝑖𝑖𝑖 = 𝑗𝑗(𝜔𝜔𝑖𝑖𝑖𝑖−1) + 𝑎𝑎𝑖𝑖𝑖𝑖.         (1.24) 

The innovation in Eq 1.24 may reflect heterogeneity and persistence in firm-level managerial ability, 

labour quality, etc.; see Gebreeyesus (2008).    

CMI Assumption II: 

𝐸𝐸(𝑎𝑎𝑖𝑖𝑖𝑖|𝑘𝑘𝑖𝑖𝑖𝑖 , 𝑙𝑙𝑖𝑖𝑖𝑖−1,𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1 , … , 𝑙𝑙1𝑡𝑡,𝑘𝑘1𝑡𝑡,𝑚𝑚1𝑡𝑡 ) = 0. Given the quasi-fixed nature of capital in firms 

due to irreversibility (see, for example, Caballero and Engel, 1999 and Bertola and Caballero, 1994), 

the productivity innovation 𝑎𝑎𝑖𝑖𝑖𝑖 is uncorrelated with the state variable 𝑘𝑘𝑖𝑖𝑖𝑖  and all past inputs and their 

functions, but correlated with 𝑙𝑙𝑖𝑖𝑖𝑖 and 𝑚𝑚𝑖𝑖𝑖𝑖 .■ 

Substitution of Eq. 1.23 and Eq. 1.24 into Eq. 1.1 yields  

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖   +  𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑗𝑗(𝑔𝑔(𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1)) + 𝑢𝑢𝑖𝑖𝑖𝑖     (1.25) 

where 𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖. Notably, the arguments in the j(g(𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1)) function are now lagged 

capital and intermediate inputs which can be approximated with low-order polynomials as in 

Levinsohn and Petrin (2003).  

CMI Assumption III: 

𝐸𝐸�𝑢𝑢𝑖𝑖𝑖𝑖�𝑘𝑘𝑖𝑖𝑖𝑖 , 𝑙𝑙𝑖𝑖𝑖𝑖−1,𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1 , … , 𝑙𝑙1𝑡𝑡,𝑘𝑘1𝑡𝑡,𝑚𝑚1𝑡𝑡,� = 0. The error 𝑢𝑢𝑖𝑖𝑖𝑖 is conditional mean independent of 

current capital and past values of all production inputs. In the presence of the productivity innovation 

in 𝑢𝑢𝑖𝑖𝑖𝑖 , this condition is identical to Conditional Mean Independence Assumption II above. ■ 

Therefore, Eq 1.1 becomes 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜑𝜑0∗ + 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖   +  𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + 𝑔𝑔(𝑘𝑘𝑖𝑖𝑖𝑖−1,𝑚𝑚𝑖𝑖𝑖𝑖−1) + 𝑢𝑢𝑖𝑖𝑖𝑖     (1.26) 
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or 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜑𝜑0∗ + 𝛽𝛽𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖   +  𝛽𝛽𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 + ∑ ∑ 𝛿𝛿𝑝𝑝𝑝𝑝𝑘𝑘𝑖𝑖𝑖𝑖−1
𝑝𝑝 𝑚𝑚𝑖𝑖𝑖𝑖−1

𝑞𝑞3−𝑝𝑝
𝑞𝑞

3
𝑝𝑝 + 𝑢𝑢𝑖𝑖𝑖𝑖. ■■■   (1.27) 

Appendix A3.5: Proportion of Non-Zero Input Observations   

Industry (ISIC) Investment Material Energy 
Food and Food Products(15) 45.39 100.00 94.09 
Textile (17) 30.51 100.00 99.44 
Apparel (18) 20.31 100.00 100.00 
Wood and Wood Products (20) 35.51 100.00 90.65 
Paper and Paper Products (21) 61.82 100.00 89.09 
Printing, Publishing (22) 23.12 100.00 96.48 
Chemicals and Chemical Products (24) 26.36 100.00 90.70 
Rubber and Plastic Products (25) 49.09 100.00 98.18 
Other non-metallic Minerals (26) 29.45 100.00 93.25 
Basic Metals (27) 9.68 100.00 100.00 
Fabricated Metal Products (28) 33.16 100.00 91.98 
Machinery and Equipment (29) 46.00 100.00 100.00 
Furniture and Other Manufacturing (36) 32.32 100.00 97.98 
Average 34.06 100.00 95.53 
Source: Author’s calculations from Data Compiled by the CSO 

 

Appendix A3.6: Aggregate Multifactor Productivity Growth Rate, Swaziland Manufacturing 
1994–2003: LP APG Decomposition, Manufacturing Value-added Index Single-deflator. 

Year 
 
 

Value-
Added 
Growth 
 
 

APG 
(0) 
 
 

APG Decomposition: (0)= (1) + (2) + (3) 
Technical 
Efficiency 

(1) 
 

Reallocation Net 
Entry 
(3) 
 

Total 
Reallocation 
(2) 

Labour 
Reallocation 
 

Working 
Proprietors 
Reallocation 

Paid 
Employees 
Reallocation 

1995 7.76 2.51 0.91 -9.65 1.39 -1.48 2.87 11.25 
1996 23.10 16.03 3.17 -7.89 0.92 -0.16 1.08 20.74 
1997 -44.35 -34.12 -3.08 18.52 9.31 -0.06 9.37 -49.56 
1998 265.55 240.84 1.67 -1.74 0.69 0.02 0.67 240.91 
1999 275.57 261.04 1.23 9.22 2.94 -0.02 2.95 250.59 
2000 -16.28 -16.07 -14.97 -5.48 0.42 -0.14 0.56 4.38 
2001 37.42 34.85 8.71 20.43 0.42 0.43 -0.01 5.72 
2002 -20.74 -21.81 -3.04 -29.53 -1.15 -1.21 0.06 10.76 
2003 -36.71 -33.05 -22.31 2.69 8.35 -1.62 9.97 -13.43 
Mean 54.59 50.02 -2.77 -0.38 2.33 -0.42 2.75 53.48 
Median 7.76 2.51 0.91 -1.74 0.92 -0.14 1.08 10.76 
Std Dev 125.32 116.24 9.66 15.46 3.70 0.75 3.90 110.93 

Note: As in Nishida et al. (2014), numbers are percentage growth rates. The plant-level multifactor productivity 
is calculated by using production function parameters that vary across 2-digit ISIC. We obtain the estimates by 
using Wooldridge (2009). APG represents the aggregate productivity growth with entry and exit, which is 
defined as aggregate change in final demand minus aggregate expenditure in inputs, holding input constant. We 
use value-added share (Domar) for weights. APG is decomposed into four components: (1) technical efficiency, 
(2) reallocation, and (3) net entry term, using Eq. 17 in text. 
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Appendix A3.8: Aggregate Multifactor Productivity Growth Rate, Swaziland Manufacturing 
1994–2003: LP APG Decomposition, Consumer Price Index Double-deflator. 

Year 
 
 

Value-
Added 
Growth 
 

APG 
(0) 
 
 

APG Decomposition: (0)= (1) + (2) + (3) 
Technical 
Efficiency 

(1) 
 

Reallocation Net 
Entry 
(3) 
 

Total 
Reallocation 
(2) 

Labour 
Reallocation 
 

Working 
Proprietors 
Reallocation8 

Paid 
Employees 
Reallocation 

1995 27.96 19.22 7.23 -0.95 2.53 -0.89 3.41 12.94 
1996 21.85 11.94 1.63 -7.17 1.40 -0.30 1.71 17.48 
1997 -41.95 -27.47 -1.81 20.30 10.07 -0.05 10.11 -45.96 
1998 268.72 235.19 1.93 -1.48 -0.04 0.01 -0.05 234.74 
1999 270.96 251.41 0.97 8.69 3.01 -0.01 3.01 241.75 
2000 -17.72 -17.44 -16.14 -6.01 0.61 -0.18 0.79 4.72 
2001 42.77 39.22 9.56 23.23 0.53 0.44 0.09 6.44 
2002 -23.53 -24.96 -4.76 -31.25 -1.23 -1.28 0.05 11.06 
2003 -36.51 -31.45 -22.93 3.59 9.67 -0.43 10.10 -12.10 
Mean 56.95 50.63 -2.43 0.99 2.65 -0.27 2.92 52.34 
Median 21.85 11.94 0.97 -0.95 1.40 -0.18 1.71 11.06 
Std Dev 124.24 111.90 10.59 16.20 4.12 0.52 4.09 107.13 

Note: As in Nishida et al. (2014), numbers are percentage growth rates. The plant-level multifactor productivity 
is calculated by using production function parameters that vary across 2-digit ISIC. We obtain the estimates by 
using Wooldridge (2009). APG represents the aggregate productivity growth with entry and exit, which is 
defined as aggregate change in final demand minus aggregate expenditure in inputs, holding input constant. We 
use value-added share (Domar) for weights. APG is decomposed into four components: (1) technical efficiency, 
(2) reallocation, and (3) net entry term, using Eq. 17 in text. 
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CHAPTER 4: Investment Dynamics, Unobserved Heterogeneity and Endogenous 

Investment Switching Regime in Manufacturing 

4.1 Introduction 

The purpose of this chapter is to estimate a dynamic structural model of industrial investment in 

Swaziland for 1994-2003: a period of trade liberalization in the Southern African Customs Union. 

This is an interesting period in its own right because of observed micro churning dynamics and 

industrial reorganization induced by the trade reforms. It is also interesting because it uses an 

unbalanced firm-level panel data set that has never been used before to identify determinants of 

investment decisions in the manufacturing sector. The achievement of this goal is important for both 

policymakers and economic practitioners working in the field who face the task of investigating 

investment patterns in plant, machinery and equipment in the presence of a high incidence of zero 

investments. 

Typically, the model relates the investment rate at time 𝑡𝑡 to its own 𝑡𝑡 − 1 realizations aka structural 

state dependence, the marginal q and control variables as explanatory regressors. Structural state 

dependence is a relationship between the current and the probability of future investment. With 

structural state dependence, the conditional probability of positive investment in capital goods is a 

function of past capital investments, see Heckman (1981b). One explanation for this offered in the 

literature is that preferences, prices and constraints that are fundamental to future investment choices 

can be directly altered. Another explanation is that firms may differ in certain unobserved firm-

specific characteristics underlying their propensity to invest in capital goods. If unobserved 

heterogeneity is correlated over time, and is not controlled for, past investment may appear to be a 

genuine cause of future investment simply because it is a proxy for persistent unobservables. In a 

structural model of investment, it is important to distinguish between the two explanations in order to 

design appropriate industrial policies that promote firm-level investment. 

Tobin’s assertion that investment is a function of marginal q and that it is also equivalent to the firm’s 

optimal capital accumulation problem with adjustment costs is now widely recognized, see Hayashi 

(1982), Caballero and Engel (1999), and Cooper and Haltiwanger (2006). The variation in the 

structural model of investment is therefore explained by the variation in the shadow price of capital, 

or marginal q. Although marginal q is a priori appropriate for characterizing the relationship between 

movements in the shadow price of capital with investment variation, its unobservability makes it only 

indirectly applicable in empirical work, see Caballero and Leahy (1996).42 An alternative candidate is 

the ratio of the firm’s stock market value to its capital replacement cost; that is, Tobin’s average q. 
                                                           
42 One exception is Gala (2015) who abstracts away from the counterfactual capital adjustment cost assumptions 
to develop a state-space measure of marginal q that is anchored on the joint measurability of the market value of 
the firm and its underlying state variables. 
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Caballero and Leahy (1996) argue that Tobin’s q is potentially a better covariate in investment 

regression analyses than marginal q in the presence of fixed costs of capital adjustment. They also 

provide conditions for it to be a sufficient statistic of capital. However, most industrial firms in 

Swaziland are not traded in the stock exchange and therefore one cannot use the market value of the 

firm in constructing a proxy for marginal q. Furthermore, as in Nielson and Schiantarelli (2003), the 

fact that the data set does not distinguish between multi-plant and single-plant firms, it is not clear 

how firm-level stock valuations need to be used.  

Under the same conditions; nonetheless, the ratio of sales-to-capital is a sufficient statistic of 

investment. Eberly, Rebelo and Vincent (2012) suggest that simultaneous inclusion of both the sales-

to-capital and Tobin’s q as regressors might constitute informational redundancy, on condition there is 

no measurement error in q (also see Erickson and Whited, 2000 for a detailed discussion of 

measurement error in q). In a structural model of investment, Letterie and Pfann (2007) use the sales-

to-capital ratio, average profit of capital and the profit rate as proxies for marginal q.  

An extension of this framework is provided by Abel and Eberly (1994) who rely on the theory of 

investment under uncertainty. In this case, non-convexity, a wedge between the procurement and sale 

price of capital as well as potential investment irreversibility are key ingredients of their exposition. 

As is typical, investment is a non-decreasing function of the shadow price of installed capital. This 

permits identification of firms that sort into a high or low investment regime under conditions of ex 

ante known or unknown sample separation (see Nabi, 1989 and Hu and Schiantarelli, 1998).  

The purpose of this chapter is to estimate a structural model of investment to determine the impact of 

the lagged response, the proxy of marginal q and unobserved heterogeneity in manufacturing in 

Swaziland. A good understanding of the driving forces of investment dynamics is crucial for 

designing well-functioning incentives for industrial development. It requires a distinction between 

true state dependence of investment and its spurious form. The presence of state dependence in firm-

level investment data means that industrial policy that encourages current investment improves the 

probability of future investment43.  

The empirical distinction between longitudinal or within-firm dependence induced by previous 

realizations and the dependence caused by unobserved heterogeneity is important in studies of 

dynamic panel data (DPD). In such cases, when investment is treated as a continuous dependent 

variable, methods for solving initial conditions problems are now standard in DPD models in 

econometrics, see Anderson and Hsiao (1981, 1982), Arellano and Bond (1991), Blundell and Bond 
                                                           
43 For example, Christiano, Eichenbaum and Evans (2005) predict joint presence of lagged investment effects 
together with cash-flow and q effects in an investment model. In a study by Eberly et al. (2012) based on the 
same framework, the lagged investment rate variable has a stronger effect on the current investment rate than 
the effects of q and cash-flow combined. 
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(1998) and Bun and Windmeijer (2010). Corresponding methods for handling the initial conditions 

problem in discrete response settings are less well developed and are scattered all over the literature. 

In the binary case, Heckman (1981a) models the initial dependent variable jointly with its subsequent 

response while Wooldridge (2005) conditions on the initial response. In Skrondal and Rabe-Hesketh 

(2014), these pieces are put together in a multilevel modelling setting to handle initial conditions and 

covariate endogeneity for dynamic models of binary decisions under unobserved heterogeneity.44 This 

approach is applied by Drakos and Konstantinou (2013) to a Greek manufacturing panel dataset. 

Our empirical strategy implements the Generalized Method of Moments (GMM) approach to estimate 

the impact of the previous investment response and other covariates on the current level of 

investment. Explanatory variables include the proxy for marginal q and control variables, in this case 

the logarithm of employment level. This also allows us to determine the impact of primary input 

substitutability during episodes of economic reforms and heightened uncertainty. We also use two 

competing modelling approaches. The first one is a joint model of initial conditions and subsequent 

response based on the factor modelling approach, see Bock and Lieberman (1970) and Aitkin and 

Alfo (2003). This approach allows us to distinguish between exogeneity and endogeneity of 

explanatory variables. The second one models the distribution of the random intercept conditional on 

initial conditions and covariates. In order to relax the normality assumption of the random intercept, 

we also use nonparametric methods to estimate the conditional model, see Heckman and Singer 

(1984) and Rabe-Hesketh et al. (2003) for details. We finally extend the GMM and multilevel 

investigations to endogenous switching regime regressions in order to establish whether or not firms 

switch between high and low investment regimes, see Maddala (1983), Dutoit (2007), Hu and 

Schiantarelli (1998), Nielson and Schiantarelli (2003). 

Our findings are that true state dependence and unobserved heterogeneity in the structural model of 

investment for the manufacturing sector during the trade liberalization period have insignificant 

effects on investment. The results are consistent with firms exercising their option to wait until 

uncertainty is resolved, leading to significant substitution of capital for labour. Specifically, firms 

concentrated more on maintaining and repairing existing machinery and equipment rather than 

investing in new physical capital. This implies a generally high rate of obsolescence in capital assets 

and therefore low capital productivity. At the same time, the missing values of investment substituted 

investment for employment by up to 0.55 percent and reduced the likelihood for future investment by 

5.56 percent. 

Our contribution to the investment body of knowledge lies in three areas. Firstly, the high incidence 

of missing values of the response variable means that purging fixed effects using first-differences 

                                                           
44 The specific Skrondal−Rabe-Hesketh model is designed for the human health sciences applied to children’s 
wheezing. 
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magnifies the gaps in the transformed unbalanced panel. However, the comparative strength of this 

transform is that longer lags of regressors remain orthogonal to the noise and available as instruments, 

see Roodman (2009a). Nonetheless, in order to minimize data losses arising from the first-difference 

transform, we use instead the Helmert’s transformation to implement the forward orthogonal 

deviations, see Arellano and Bover (1995) and Roodman (2009a). Secondly, the untransformed data 

structure also means that the Heckman (1981a) and Wooldridge (2005) methods for estimating 

dynamic random effects models are faced with an insufficient observations problem when estimating 

state dependence and random-intercept effects. We overcome this hurdle, to our knowledge for the 

first time in investment analysis, by reverting to novel techniques proposed by Skrondal and Rabe-

Hesketh (2014) which do not insist on balanced panel data to efficiently deal with initial conditions 

and endogenous regressors. Finally, a range of multilevel dynamic random-effects probit model 

estimators is performed for comparison with the GMM results and also for extensive comparison of 

results among the random-effects estimators. Like Stewart (2007), we use normal heterogeneity in the 

joint and conditional models to handle initial conditions and endogeneity problems. In addition, we 

also use nonparametric maximum likelihood (NPMLE) methods to estimate the random-effects 

models.   

This chapter is organized as follows: The next section describes the panel dataset and performs 

descriptive analyses of investment rates for the manufacturing sector. In Section 4.3, the shape of the 

empirical hazard and fixed adjustment costs are investigated while Section 4.4 discusses econometric 

models and estimators for the structural model of investment, emphasising the General Method of 

Moments’ approach. Section 4.5 considers alternative methods based on nonlinear dynamic random 

effects techniques in the estimation of binary structural models. The characteristics of endogenous 

investment switching by firms in manufacturing are addressed in Section 4.6. Empirical results are 

presented in Sections 4.7-4.8 and Section 4.9 concludes the analysis.  

4.2 Data And Descriptive Analysis 

This section focuses on the diagnosis of the data set by describing a few features that are suggestive of 

the relevance of the organizing framework outlined in the introduction. The dataset consists of an 

unbalanced census panel of manufacturing firms collected by the Central Statistical Office (CSO) in 

Swaziland for the period 1994-2003. Although this is referred to as a census because the data 

collection instrument is administered to all respondents in the sector, the response rate falls short of 

100 percent. A total of 227 firms and 1 448 plant−year observations populate the dataset. However, 

although there is nonresponse by some firms, missing responses from those that contribute 

significantly to sectoral GDP are followed up until they return the data collection instruments. In the 

case of investment variable response, expenditure in and sales of PME are reported either with 

missing values or with real numbers. In structural equations, movement in investment rates is a 
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function of variation in the sufficient statistics of capital identified by Caballero and Leahy (1996) and 

Letterie and Pfann (2007). The sufficient statistics are capital ratios of cash flow [ 𝐶𝐶𝐶𝐶𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄ ] , sales 

revenue [𝑆𝑆𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄ ] and operating profits [𝑃𝑃𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄ ], all measured in constant values and expressed in 

natural logarithms. It is now standard to consider such statistics as proxies of the marginal q, see 

Gilchrist and Himmelberg (1998) and Letterie and Pfann (2007). The unique feature of our dataset 

relative to other case studies is that it has disaggregated information on expenditure and sales of 

capital assets and thus these sufficient statistics can be calculated.45  

Table 4.1 presents summary statistics for selected variables of interest in the sample. All the variables 

are mesokurtic; that is, the mean is always greater than the median, except for real capital stock (𝐾𝐾𝑡𝑡). 

Investment rates (𝐼𝐼𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄ ) and the associated proxies for the shadow price of capital are positively 

skewed, suggesting a small fraction of larger firms are distributed along the right fat tails. The 

variability of a typical proxy of marginal q is approximately 1 1
3
  times higher than that of the 

investment rate. The longitudinal investment rate of variation measured by the standard deviation is 

relatively low at 0.29, with an average investment rate of 0.24 and (Min, Max) = (−0.83, 1.58). 46
P It is 

striking that the investment rate and all proxies reveal no marked patterns of heterogeneity across 

firms. That is, the behaviour of each proxy over time is insignificantly different from the orders of 

magnitude of other proxies. Hence, a choice to use one of the proxies to study the behaviour of 

investment rates is likely to suffice. 

There are at least two explanations for the patterns observed in Table 4.1. First, the Swaziland 

Government initiated a programme of factory-shell construction in the 1990s to promote foreign 

direct investment in manufacturing. Specifically, the Textile as well as the Clothing and Wearing 

Apparel industries were the main beneficiaries of the factory-shell programme due to the AGOA 

arrangements. This had the effect of reducing private sector capital expenditure on building 

construction in the sector. Thus, the composition of firms’ portfolios of capital goods mostly included 

machinery and equipment. Second, the low investment level in PME may be a reflection of risk 

aversion translating into firms’ decisions to exercise the option to wait until the uncertainty induced 

by economic reforms declined to acceptable levels.  

  

                                                           
45 Whenever capital retirement is available in datasets in the literature, it includes the scrap value of capital 
disposals as a result of obsolescence and sale of capital, see in Cooper and Haltiwanger (2006). In Nielsen and 
Schiantarelli (2003), net investment is defined as expenditure minus sales of fixed capital. 

46 Cooper and Haltiwanger (2006) report an average rate of investment of 12.2 and a standard deviation of 33.7 
for NT=100,000 covering large plants that were in continual operation during 1972-1988. 
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Table 4.1:  Summary Moments of Key Variables  
 Key Variables  Proxies of Marginal q  
Statistics 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 𝐼𝐼𝑡𝑡  𝐾𝐾𝑡𝑡 𝐾𝐾𝑡𝑡−1 𝐼𝐼𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄  𝑆𝑆𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄  𝐶𝐶𝐶𝐶𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄  𝑃𝑃𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄  
Mean 3.55 12.46 9.54 0.11 0.24 1.29 1.29 1.18 
Median 3.22 12.34 9.61 0.10 0.20 1.23 1.23 1.11 
Std Dev 1.54 2.70 1.51 0.03 0.29 0.36 0.36 0.34 
Std Mean⁄  0.43 0.22 0.16 0.27 1.21 0.28 0.28 0.29 
Skewness 0.69 −0.10 −0.47 8.29 1.15 8.47 8.49 7.89 
kurtosis 3.11 4.08 5.28 124.42 6.72 116.26 116.55 102.48 
IQR 1.96 3.69 1.79 0.02 0.33 0.22 0.22 0.20 
Observations 1288 533 1267 1267 401 911 911 907 

Key: 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 denotes the log of 𝑡𝑡 − 1 stock of employment, 𝐼𝐼𝑡𝑡 is the log of net investment in plant, machinery 
and equipment, 𝐾𝐾𝑡𝑡 represents the log of capital stock at time 𝑡𝑡, 𝑆𝑆𝑡𝑡 is time 𝑡𝑡 log of real sales revenue from firm 
output, 𝐶𝐶𝐶𝐶𝑡𝑡 is the log of cash-flow at time 𝑡𝑡 and 𝑃𝑃𝑡𝑡 refers to time 𝑡𝑡 log of profits. 

Table 4.2 presents a correlation matrix of investment rates and proxies of marginal q. The first 

moment is first-order serial correlation of investment and is estimated at 0.61. A relationship between 

the current investment and its lagged level suggests a potential presence of state dependence. 

Similarly, corporate financial performance in the manufacturing sector in Swaziland is almost scale-

invariant; i.e., the correlation coefficient between all marginal q proxies and the inverse of capital 

stock,𝐾𝐾𝑡𝑡−1, is at most 0.03.  

Table 4.2:  The Correlation Matrix of the Main Variables  

 

𝐼𝐼𝑡𝑡
𝐾𝐾𝑡𝑡−1

 
𝐼𝐼𝑡𝑡−1
𝐾𝐾𝑡𝑡−2

 
𝐼𝐼𝑡𝑡−2
𝐾𝐾𝑡𝑡−3

 
𝐼𝐼𝑡𝑡−3
𝐾𝐾𝑡𝑡−4

 
𝐼𝐼𝑡𝑡−4
𝐾𝐾𝑡𝑡−5

 
 
𝐾𝐾𝑡𝑡−1 

 
𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 

𝑆𝑆𝑡𝑡
𝐾𝐾𝑡𝑡−1

 
𝐶𝐶𝐶𝐶𝑡𝑡
𝐾𝐾𝑡𝑡−1

 
𝑃𝑃𝑡𝑡
𝐾𝐾𝑡𝑡−1

 

𝐼𝐼𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄  1.00 
         𝐼𝐼𝑡𝑡−1 𝐾𝐾𝑡𝑡−2⁄  0.61 1.00 

        𝐼𝐼𝑡𝑡−2 𝐾𝐾𝑡𝑡−3⁄  0.42 0.52 1.00 
       𝐼𝐼𝑡𝑡−3 𝐾𝐾𝑡𝑡−4⁄  0.45 0.60 0.66 1.00 

      𝐼𝐼𝑡𝑡−4 𝐾𝐾𝑡𝑡−5⁄  0.45 0.53 0.62 0.75 1.00 
     𝐾𝐾𝑡𝑡−1 0.43 0.21 0.04 0.12 0.05 1.00 

    𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 0.40 0.38 0.47 0.62 0.80 0.18 1.00 
   𝑆𝑆𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄  0.26 0.71 0.33 0.33 0.33 0.03 0.13 1.00 

  𝐶𝐶𝐶𝐶𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄  0.26 0.72 0.33 0.33 0.33 0.03 0.13 1.00 1.00 
 𝑃𝑃𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄  0.33 0.76 0.33 0.37 0.38 0.02 0.13 0.96 0.97 1.00 

Key: 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 denotes the log of 𝑡𝑡 − 1 stock of employment, 𝐼𝐼𝑡𝑡 is the log of net investment in plant, machinery 
and equipment, 𝐾𝐾𝑡𝑡 represents the log of capital stock at time 𝑡𝑡, 𝑆𝑆𝑡𝑡 is time 𝑡𝑡 log of real sales revenue from firm 
output, 𝐶𝐶𝐶𝐶𝑡𝑡 is the log of cash-flow at time 𝑡𝑡 and 𝑃𝑃𝑡𝑡 refers to time 𝑡𝑡 log of profits. 

In the correlation matrix, there is low correlation between contemporaneous investment rates and each 

proxy measure of marginal q. However, the relationship increases significantly over 0.71 if we look at 

𝑡𝑡 − 1 investment rates and proxies. This suggests that establishments make sales first and then assess 

the business capital needs before making investments. Thus, there are high investment rates during 

periods of high sales revenue, high cash flows and high profitability in the sector. As expected, the 

correlation among marginal q proxies is at least 96 percent. From this point forward, our discussion 

focuses only on the relationship between investment rates and sales revenue as in Letterie and Pfann 

(2007) for the Dutch case. Similarly, Figure 4.2 also reports relatively high fourth-order serial 
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correlation in the plant-level investment rate series. This is consistent with the commonly held 

perception of high autocorrelation of shocks to demand and productivity47.    

A further characterization of patterns of investment (𝐼𝐼𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄ )-marginal q relation based on 𝑆𝑆𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄  is 

graphically presented in Figure 4.1. In the first panel, a local polynomial smooth of investment rates 

plotted against the real sales/capital ratio shows a high frequency distribution around an average of 

 1.29 with a standard deviation of  0.28. This panel considers all observations, including outliers. The 

right panel considers the distribution of plant-year observations for 𝑆𝑆𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄ < 2, where the clustering 

of observations becomes more sparsely populated. The distribution in this case shows the majority of 

firms that are consistent with the property that 𝐼𝐼𝑡𝑡 𝐾𝐾𝑡𝑡−1⁄ ∈ [−1, 1.2].  

Figure 4.1: Investment Rate Relationship with the Sales/Capital Ratio 

 

As in Cooper, Haltiwanger and Power (1999) and Cooper and Haltiwanger (2006), the rest of this 

chapter defines net investment in terms of real gross expenditure (𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖) on PME and real sales 

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖) for firm i at time t for the class of capital goods concerned. One striking feature of the 

expenditure series is that it isolates the cost of maintenance and repairs, permitting a sharper 

investigation of non-smoothness of (dis)investments. Hence 

𝐼𝐼𝑡𝑡 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡     (1) 

and 

𝐾𝐾𝑡𝑡+1 = (1 − 𝛿𝛿𝑡𝑡)𝐾𝐾𝑡𝑡 + 𝐼𝐼𝑡𝑡,    (2) 

                                                           
47 See Cooper and Haltiwanger (2006:614). 
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which is the perpetual inventory method (PIM) of estimating capital stock, where 𝐾𝐾𝑡𝑡 is the measure of 

real capital stock, 𝛿𝛿𝑡𝑡  is the in-use depreciation rate. In Figure 4.2, the data set is sliced into two non-

normal histograms of investment rate with and without maintenance and repairs in panels (a) and (b), 

respectively. It is characterized by significant mass around zero, fat tails, considerable skewness to the 

right and high kurtosis.48 That is, there is a high incidence of zero investments with only a few 

occasions of lumpy net expenses on capital goods whether or not the cost of maintenance and repairs 

is included. This exact pattern of investment rate distribution remains unchanged even if the data set is 

sliced to remove outliers as observed in Figure 4.1a, which reduces the observations by 50 percent. 

Furthermore, Table 4.1 reports a skewness of 1.15 and a kurtosis of 6.72 while the investment rate 

distribution for the sample of outlying observations reports skewness and kurtosis of 2.11 and 8.48, 

respectively. The characteristic skewness and kurtosis of the investment rate distribution without the 

cost of maintenance and repairs remains valid in Figure 4.2a. These investment distributional patterns 

have been found in the literature to characterize investment behaviour even at the aggregate level, see 

Caballero et al. (1995), and Doms and Dunne (1998). The pronounced level of skewness and high 

kurtosis in the distribution of investment rates is indicative of the presence of nonconvexities in the 

capital adjustment technologies and a presence. Fat tails to the right suggest the presence of a large 

fraction of large capital adjustments. 

Figure 4.2: Distribution of Investment Rates of PME. 

    

In summary, the analysis thus far provides several lessons. It reveals that there is low propensity to 

invest in capital goods and that the observed heterogeneity in the rate of investment is just as low. As 

is typical in the literature, investment inactivity dominates the distribution of investment rates, 

whether or not maintenance and repairs (M&R) are accounted for. The cross-sectional distribution of 

investment rate is characterized by skewness and high kurtosis suggest the presence on 

nonconvexities in the capital adjustment costs. Firm-level investment behaviour, including financially 

unconstrained firms, is also consistent with increased focus on M&R. These patterns imply the 

                                                           
48 Standard tests of normality yield strong evidence of skewness and kurtosis at 𝑝𝑝 < 0.0000. 
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presence of low costs of capital adjustment in manufacturing and a high rate of obsolescence in 

machinery and equipment needed for use in production.  

4.3 The Shape of the Hazard and Fixed Adjustment Costs 

This section investigates patterns of investments in PME to determine spells of inactivity prior to an 

investment spike. We follow Kalbefleisch and Prentice (2002) and Cameron and Trivedi (2005) who 

define the cumulative distribution function representing the probability of a spell length of inactivity 

as 

𝐹𝐹(𝑡𝑡) = 𝑃𝑃𝑃𝑃(𝑇𝑇 ≤ 𝑡𝑡) 

The sample survivor function, 𝑆𝑆(𝑡𝑡) = 𝑃𝑃𝑃𝑃(𝑇𝑇 > 𝑡𝑡) = 1 − 𝐹𝐹(𝑡𝑡), is a step function that decreases by 𝑛𝑛−1 

at each observed time 𝑡𝑡, where 𝑛𝑛 is the number of firms at risk of experiencing an investment spike. It 

is useful to express the probability of a firm staying in the zone of inaction until time 𝑡𝑡𝑗𝑗 using the 

nonparametric Kaplan-Meier estimator of the survivor function , 𝑆̂𝑆(𝑡𝑡) 

𝑆̂𝑆(𝑡𝑡) = �
𝑛𝑛𝑗𝑗 − 𝑑𝑑𝑗𝑗
𝑛𝑛𝑗𝑗𝑗𝑗|𝑡𝑡𝑗𝑗<𝑡𝑡

 

where 𝑑𝑑𝑗𝑗 is the number of firms experiencing an investment spike. The Kaplan-Meier estimator, or 

product limit estimate, calculates the probability of investment inactivity past time 𝑡𝑡, or the 

probability of a lumpy investment after time 𝑡𝑡. This measure precisely aligns with the observed 

proportion �𝑑𝑑𝑗𝑗 𝑛𝑛𝑗𝑗⁄ � of the 𝑛𝑛𝑗𝑗 firms at risk of experiencing a spike, see Kalbefleisch and Prentice 

(2002:16).  

In order to estimate this model, it is pertinent to define an investment spike and what constitutes the 

zone of investment inactivity. Economic theory provides no guidance concerning the definition of a 

lumpy investment episode. However, Cooper et al. (1999) use gross investment rate in excess of 

20 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 to represent an investment spike. There are some exceptions to this rule. These include 

Bigsten, Collier, Dercon, Fafchamps, Gauthier, Gunning, Oostendorp, Pattillo, Soderbom and Teal 

(2005) who define a spiky investment as gross investment rate in excess of 10 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Studies by 

Cooper et al. (1995) and McClelland (1997) argue and demonstrate that the shape of the hazard rate is 

robust to any choice of an ad hoc definition of a spiky threshold. In this paper, we adopt the definition 

provided by Cooper et al. (1999). Additionally, we define the zone of inaction in terms of investment 

rate that is bounded as 𝐼𝐼𝑖𝑖𝑖𝑖
𝐾𝐾𝑖𝑖𝑖𝑖−1

∈ [−0.049,   0.049], rather than the standard restriction of 𝐼𝐼𝑖𝑖𝑖𝑖
𝐾𝐾𝑖𝑖𝑖𝑖−1

= 0. 49  

                                                           
49 However, using zero as a cut-off point for investment rates does not alter our results. 
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In spite of definitional modifications, it is possible to ask whether firm-level investment lumpiness is 

the same across firm sizes during this period. It is of interest to compare the empirical distributions of 

the survival patterns of large versus small firms’ lumpy investment episodes to determine if both 

samples arose from identical survivor functions. In the left panel of Figure 4.3, firm scale-

independence means the null hypothesis 𝐻𝐻0: SurvivorLarge = SurvivorSmall is not true, where large 

firms employ more than 50 workers. The Peto-Peto-Prentice test does not support the null hypothesis 

at the 1percent level.50  This means the distributions of survival rates for larger (size=1) and smaller 

(size=0) firms past time t are significantly different to each other. It can be concluded that larger firms 

experience lumpy investments relatively more often than their smaller counterparts.51 Put differently, 

the probability of smaller firms staying in the zone of investment inaction is higher than that for larger 

firms. This suggests that the frequency of investment spikes is scale-dependent in the Swazi 

manufacturing sector. 

Another important area of duration analysis for firm-level investments involves the shape of the 

hazard estimate. For example, Cooper et al. (1999) allow for several characteristics of investment in 

their machine replacement model to identify three specific patterns of the hazard. First, when 

exogenous shocks to plants’ profitability are serially correlated and some additional assumptions hold, 

the likelihood of capital asset replacement increases with the time since the last replacement. Second, 

adding convex adjustment costs to the autocorrelation assumption ensures the presence of serial 

correlation in investments and therefore a downward sloping hazard. Third, a combination of 

autocorrelation in exogenous shocks and the absence of adjustment costs produce a flat hazard.  

In order to investigate the shape of the hazard in the Swazi data, we first define the probability of 

experiencing a spike, conditional on remaining in the zone of inaction until time 𝑡𝑡, as  

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑝𝑝[𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡|𝑇𝑇𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡, 𝑡𝑡 − �𝑇𝑇𝑖𝑖𝑖𝑖−1 + 1�],   (4) 

where 𝑡𝑡 − �𝑇𝑇𝑖𝑖𝑖𝑖−1 + 1� represents the interval since the last spike, while t denotes calendar time. We 

then define discrete time as 𝑇𝑇𝑖𝑖𝑖𝑖 at which plant i exits the state of inactivity to have an investment spike 

at the jth spell. For completeness and more clarity, our investment spike is defined as investment rates 

in excess of 20 percent. The model is estimated for investment in PME and plotted below by 

establishment size (size < 50 workers or size = 0) and large (size ≥ 50 workers or size =1). 

  

                                                           
50 Hypothesis tests based on the Log-Rank (or Generalized Savage), the Generalized Wilcoxon-Breslow and the 
Tarone-Ware confirm the results. 

51 Using the exponentially extended function does not alter the survival patterns in the zone of inactivity. 
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Figure 4.3: Kaplan-Meier Survival and Hazard Estimates of Investment 

 

The right panel in Figure 4.3 plots the empirical hazard expressed in Eq. 4 against the time since the 

last investment. It shows that the probability of having a lumpy investment episode is scale-

dependent, where larger firms have a relatively higher probability of an investment spike compared to 

smaller firms. The hazard is increasing in the time since the last investment spike. Specifically, the 

hazard distribution is relatively flat initially and its slope becomes steeper soon thereafter reflecting 

increasing expenditure in M&R. Note that its shape is independent of whether the threshold 

investment spike used is 20 percent or 10 percent. The most striking result though is that the highest 

probability of a PME investment spike is less than 0.07 in the time elapsed since the last spike episode 

in Swaziland.52 

This pattern of investment is consistent with an initially timid manufacturing sector seeking to wait 

until the uncertainty brought about by trade liberalization and entry/exit dynamics settles. In the 

process, depreciation and obsolescence of capital assets prevailed while their M&R increasingly 

became necessary during this period. Thus, and consistent with Cooper et al. (1999), this pattern of 

the hazard was primarily driven by the dominance of the within-firm effects rather than between-firm 

effects in PME investments. 

                                                           
52 This may appear to compare unfavourably with the probability of an investment spike of 0.66 for the USA in 
the year immediately succeeding an investment spike, 0.40 for Norway, 0.55 for Mexico and 0.60 for Colombia, 
(see Cooper et al., 1999; Nielson and Schiantarelli, 2003; and Gelos and Isgut, 2001). All these studies consider 
only investment in equipment. Otherwise, the probability of plant acquisitions is likely to be lower than the 
probability of machinery procurement, while equipment purchasing is likely to occur more frequently than 
either plant or machinery transactions due to varying degrees of irreversibility. Thus, the probability of a spiky 
investment in all three asset classes combined will be reduced by the infrequent occurrence of investment in new 
physical plant. 
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4.4 Econometric Models and Estimators 

The purpose of this section is to present models and associated estimators that are useful in 

determining the probability of investing in durable capital goods. It distinguishes between methods 

based on continuous and discrete responses according to how they handle initial conditions and 

endogeneity problems. It also makes a distinction between longitudinal dependence caused by the 

effects of preceding responses on succeeding responses and dependence arising from unobserved 

heterogeneity. In each of the modelling approaches, any setbacks related to estimation and potential 

solutions are discussed. 

For continuous responses, the long tradition of GMM approaches in estimating dynamic panel data 

models dominates empirical research in continuous response environments, see Arellano and Bond 

(1991) and Blundell and Bond (1998). In the case of binary response models of investment, a 

distinction between true state dependence and unobserved heterogeneity is normally achieved through 

dynamic modelling that includes a lagged response and a random intercept. The multilevel framework 

of analysis can also be used to investigate the problem of these responses by constructing a joint 

model of the initial response with subsequent responses (e.g. Heckman, 1981a) and a model that 

conditions on the initial response (e.g. Wooldridge, 2005). In both continuous and binary models of 

investment, the assumption is that firms do not sort according to whether a firm belongs in a high or 

low investment regime. The final model therefore closes this gap by distinguishing between firms in 

high and low investment regimes, see Lee and Frost (1978), Maddala (1983) and Lokshin and Sajaia 

(2004).  

4.4.1 The GMM Approach 

The linear dynamic panel data (DPD) model to be estimated is of the form 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜶𝜶𝑦𝑦𝑖𝑖𝑖𝑖−1 + 𝜷𝜷𝜷𝜷 + 𝜂𝜂𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖,         (5) 

for 𝑖𝑖 = 1, … ,𝑁𝑁, and 𝑡𝑡 = 2, … ,𝑇𝑇, 𝜷𝜷 a vector coefficients and 𝒙𝒙 a vector of covariates, where a large N, 

small T DPD structure is assumed. The measure of state dependence |𝜶𝜶| < 153 ensures convergence 

of the system, where 𝜂𝜂𝑖𝑖  denotes individual-specific effects and 𝜈𝜈𝑖𝑖𝑖𝑖 is the random error term. Arellano 

and Bond (1991) start with a first-order autoregressive – AR(1) − version of Eq. 5 that excludes the 

vector of strictly exogenous variables, 𝒙𝒙𝑖𝑖𝑖𝑖 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜶𝜶𝑦𝑦𝑖𝑖𝑖𝑖−1 + 𝑢𝑢𝑖𝑖𝑖𝑖         (6) 

                                                           
53 See Hayakawa (2009, 2014) for a large N and large T DPD model. 
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where 𝑢𝑢𝑖𝑖𝑖𝑖 = 𝜂𝜂𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖  is the standard one-way error component structure representing fixed effects and 

random noise. The expected values of 𝜂𝜂𝑖𝑖 and 𝜈𝜈𝑖𝑖𝑖𝑖 are assumed equal to zero and 𝐸𝐸(𝜂𝜂𝑖𝑖𝜈𝜈𝑖𝑖𝑖𝑖) = 0 for  𝑖𝑖 =

1, … ,𝑁𝑁 and 𝑡𝑡 = 2, … ,𝑇𝑇. It is also assumed that 𝐸𝐸(𝜈𝜈𝑖𝑖𝑖𝑖𝜈𝜈𝑖𝑖𝑖𝑖) = 0 for 𝑡𝑡 ≠ 𝑠𝑠 and initial conditions 

satisfy (𝑦𝑦𝑖𝑖1𝜈𝜈𝑖𝑖𝑖𝑖) = 0. Taking first-differences (FD) of Eq. 6 yields 

∆𝑦𝑦𝑖𝑖𝑖𝑖 =   𝜶𝜶∆𝑦𝑦𝑖𝑖𝑖𝑖−1 + ∆𝑢𝑢𝑖𝑖𝑖𝑖.       (7) 

The 𝜶𝜶-coefficient of the lagged response, 𝑦𝑦𝑖𝑖𝑖𝑖−1, is the parameter of interest and measures the influence 

of the lagged response on the current behaviour of the dependent variable. 

4.4.1.1 The Difference−GMM  

The moment restrictions above are associated with 1
2

(𝑇𝑇 − 2)(𝑇𝑇 − 1) linear orthogonality conditions 

in parameters for the GMM estimator; see Arellano and Bond (1991), Blundell and Bond (1998), and 

Bun and Windmeijer (2010). Using the notation of Bun and Windmeijer (2010) and Hayakawa and 

Pesaran (2015), it is assumed that  

𝐸𝐸�𝑦𝑦𝑖𝑖𝑡𝑡−2∆𝑢𝑢𝑖𝑖𝑖𝑖� = 0 for 𝑡𝑡 = 3, … ,𝑇𝑇, where 𝑦𝑦𝑖𝑖𝑡𝑡−2 = (𝑦𝑦𝑖𝑖1,𝑦𝑦𝑖𝑖2, … ,𝑦𝑦𝑖𝑖𝑖𝑖−2)′ and ∆𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖−1 =

∆𝑦𝑦𝑖𝑖𝑖𝑖 −  𝜶𝜶∆𝑦𝑦𝑖𝑖𝑖𝑖−1. 

The resultant sparse instrument matrix for the ith firm,𝒁𝒁𝐷𝐷,𝑖𝑖, is then constructed as 

𝒁𝒁𝐷𝐷,𝑖𝑖 =

⎝

⎜⎜
⎛

𝑦𝑦𝑖𝑖1       0         0           0            0           0       0   …   0 …   0
0         𝑦𝑦𝑖𝑖1      𝑦𝑦𝑖𝑖2        0            0           0        0 …    0 …    0
 0         0         0        𝑦𝑦𝑖𝑖1        𝑦𝑦𝑖𝑖2     𝑦𝑦𝑖𝑖3     0 …   0 …   0

    .          .           .          .           .           .          0 …   0  …   0
             0          0         0        0        0         0         0  … 𝑦𝑦𝑖𝑖1 … 𝑦𝑦𝑖𝑖𝑖𝑖−2  ⎠

⎟⎟
⎞

    

where the set of linear moment conditions gives rise to an asymptotically efficient GMM that 

minimizes the following GMM criterion function, which is in turn based on Hansen (1982): 

𝐽𝐽(𝛼𝛼�) = ��∆𝑢𝑢𝑖𝑖′𝑍𝑍𝐷𝐷,𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�𝑊𝑊𝑁𝑁 ��𝑍𝑍𝐷𝐷,𝑖𝑖
′ ∆𝑢𝑢𝑖𝑖

𝑁𝑁

𝑖𝑖=1

� 

The associated GMM estimator for 𝛼𝛼 is given by Arellano and Bond (1991) and presented here as 

𝛼𝛼�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
∆𝑦𝑦−1′ 𝒁𝒁𝐷𝐷,𝑖𝑖𝑊𝑊𝑁𝑁

′ 𝒁𝒁𝐷𝐷,𝑖𝑖
′ ∆𝑦𝑦

∆𝑦𝑦−1′ 𝒁𝒁𝐷𝐷,𝑖𝑖𝑊𝑊𝑁𝑁
′𝒁𝒁𝐷𝐷,𝑖𝑖

′ ∆𝑦𝑦−1
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where ∆𝑦𝑦 = (∆𝑦𝑦1′ ,∆𝑦𝑦2′ , … ,∆𝑦𝑦𝑁𝑁′  )′, ∆𝑦𝑦𝑖𝑖 = ∆𝑦𝑦𝑖𝑖3,∆𝑦𝑦𝑖𝑖4, … ,∆𝑦𝑦𝑖𝑖𝑖𝑖 and 𝒁𝒁𝑑𝑑 = (𝑍𝑍𝑑𝑑1′ ,𝑍𝑍𝑑𝑑2′ , … ,𝑍𝑍𝑑𝑑𝑑𝑑′ )′ and 𝑊𝑊𝑁𝑁 is 

a two-step weighting matrix assuring validity of efficiency properties for the GMM estimator. The 

matrix is defined as 

𝑊𝑊𝑁𝑁 = 𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
1
𝑁𝑁
�𝒁𝒁𝐷𝐷,𝑖𝑖

′ ∆𝑢𝑢�𝑖𝑖

𝑁𝑁

𝑖𝑖=1

∆𝑢𝑢�𝑖𝑖′𝒁𝒁𝐷𝐷,𝑖𝑖�

−1

 

Similarly, the one-step weighting matrix is given by 

𝑊𝑊𝑂𝑂𝑂𝑂𝑂𝑂−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
1
𝑁𝑁
�(𝑍𝑍𝑖𝑖′𝐻𝐻𝑍𝑍𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

�

−1

 

and does not depend on estimated parameters. The square matrix H is of a (𝑇𝑇 − 2)(𝑇𝑇 − 2) dimension 

with 2s on the main diagonal, -1s on the immediate off-diagonal and zeroes elsewhere (see Bond, 

2002).  

A few observations concerning the GMM DIFF estimator,𝛼𝛼�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , need to be made. First, notice that 

𝑊𝑊𝑁𝑁 depends on parameter estimates through ∆𝑢𝑢�𝑖𝑖 = ∆𝑦𝑦𝑖𝑖𝑖𝑖 −  𝜶𝜶�∆𝑦𝑦𝑖𝑖𝑖𝑖−1 and causes a downward bias on 

the estimated asymptotic standard errors of the two-step 𝛼𝛼� 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , see Alonso-Borrego and Arellano 

(1999), Ziliak (1997) and Altonji and Segal (1996). Using the Taylor series expansion, Windmeijer 

(2005) identifies the source of bias and provides corrected asymptotic standard errors for the two-step 

GMM estimator. Second, as 𝑇𝑇 → ∞, the number of orthogonality conditions increases. Since growth 

in the number of moment conditions is quadratic in 𝑇𝑇, this leads to an explosion of instrument count. 

The standard solution to this in empirical studies involves collapsing the instrument set and/or 

curtailing its lag depth. Thirdly, in applications with persistent series where 𝛼𝛼 � is near unity, for which 

the System GMM is more suitable, the process takes long to decay (see Roodman, 2009b and Han and 

Philips, 2010). It might also be the case that �𝜎𝜎𝜂𝜂𝜂𝜂 𝜎𝜎𝜈𝜈𝜈𝜈⁄ � → ∞, implying a random walk with firm-

specific drifts, creating weak correlations between first differences and lagged levels, or the weak 

instruments problem (see Blundell and Bond, 2000:325).  

4.4.1.2 The System GMM 

The unsatisfactory performance of the two-step differenced GMM estimator prompted Blundell and 

Bond (1998) to develop an estimator initially proposed by Arellano and Bover (1995). These authors 

proposed a System GMM estimator in which the moment conditions allow for the joint use of DIFF 

and LEV to circumvent the weak instruments problem and enhance the efficiency of the estimator. 

This required restrictions on the initial conditions and the assumption that  
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𝐸𝐸(𝜂𝜂𝑖𝑖∆𝑦𝑦𝑖𝑖2) = 0 

which holds when the process is mean-stationary (see Bun and Windmeijer, 2010) as 

𝑦𝑦𝑖𝑖1 =
𝜂𝜂𝑖𝑖

1 − 𝛼𝛼
+ 𝜀𝜀𝑖𝑖 

where 𝐸𝐸(𝜀𝜀𝑖𝑖) = 𝐸𝐸(𝜂𝜂𝑖𝑖𝜀𝜀𝑖𝑖) = 0. If the regularity conditions above hold, then 1
2

(𝑇𝑇 − 1)(𝑇𝑇 − 2) moment 

conditions below are valid 

𝐸𝐸�𝑢𝑢𝑖𝑖𝑖𝑖∆𝑦𝑦𝑖𝑖𝑡𝑡−1� = 0 

where ∆𝑦𝑦𝑖𝑖𝑡𝑡−1 = (∆𝑦𝑦𝑖𝑖2,∆𝑦𝑦𝑖𝑖3, … ,∆𝑦𝑦𝑖𝑖𝑖𝑖−1)′. With these moment conditions, it is possible to define a 

level’s instrumental matrix as  

𝒁𝒁𝐿𝐿,𝑖𝑖 =

⎝

⎜
⎛

∆𝑦𝑦𝑖𝑖2    0                0             0          0           0          0     …     0   …     0
0        ∆𝑦𝑦𝑖𝑖3         ∆𝑦𝑦𝑖𝑖2          0          0           0          0    …      0   …     0

   .          .                 .             .          .           .            .     …    .      …    .   
       0        0               0           0          0         0           0 … ∆𝑦𝑦𝑖𝑖𝑖𝑖−1 …  ∆𝑦𝑦𝑖𝑖2

  ⎠

⎟
⎞

  

together with 𝑢𝑢𝑖𝑖 =

⎝

⎜⎜
⎛

𝑢𝑢𝑖𝑖3
𝑢𝑢𝑖𝑖4

.

.

.
𝑢𝑢𝑖𝑖𝑖𝑖⎠

⎟⎟
⎞

.  

Following Bun and Windmeijer (2010), it is also true that 

𝐸𝐸�𝑢𝑢𝑖𝑖𝑖𝑖∆𝑦𝑦𝑖𝑖𝑡𝑡−1� = 𝑍𝑍𝐿𝐿𝐿𝐿′ 𝑢𝑢𝑖𝑖 = 0 

Therefore, the levels−GMM estimator constructed from these moment conditions and 𝒁𝒁𝐿𝐿 is 

𝜶𝜶�𝐿𝐿𝐿𝐿𝐿𝐿 =
𝑦𝑦−1′ 𝒁𝒁𝐿𝐿𝑊𝑊𝑁𝑁

−1𝑍𝑍𝐿𝐿′𝑦𝑦
𝑦𝑦−1′ 𝒁𝒁𝐿𝐿𝑊𝑊𝑁𝑁

−1𝒁𝒁𝐿𝐿′ 𝑦𝑦−1
 

Finally, the full set of moment conditions as supplied by Bun and Windmeijer (2010) based on the 

assumptions above can summarized as  

�
𝐸𝐸�𝑦𝑦𝑖𝑖𝑡𝑡−2∆𝑢𝑢𝑖𝑖𝑖𝑖� = 0
𝐸𝐸�𝑢𝑢𝑖𝑖𝑖𝑖∆𝑦𝑦𝑖𝑖𝑡𝑡−1� = 0

 

or 
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𝐸𝐸(𝑍𝑍𝑠𝑠𝑠𝑠′ 𝑝𝑝𝑖𝑖) = 0 

and the instrumental matrix for calculating the system GMM is given by 

𝒁𝒁𝑆𝑆𝑆𝑆𝑆𝑆,𝑖𝑖 =

⎝

⎜⎜
⎛

𝑍𝑍𝐷𝐷,𝑖𝑖         0                0    …      0
0           𝑦𝑦𝑖𝑖2               0     …     0
0            0             𝑦𝑦𝑖𝑖3    …    0

       .             .                  .    …      0      
         0            0               0   …      𝑦𝑦𝑖𝑖𝑖𝑖−2 ⎠

⎟⎟
⎞

= �
 𝒁𝒁𝐷𝐷,𝑖𝑖              0     
 0                 𝒁𝒁𝐿𝐿,𝑖𝑖

� 

and  𝑝𝑝𝑖𝑖 = �∆𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖
�. 

The systems−GMM estimator based on the full set of moment conditions is given by 

𝛼𝛼�𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑞𝑞−1′ 𝒁𝒁𝑠𝑠𝑊𝑊𝑁𝑁𝑁𝑁

−1𝑍𝑍𝑠𝑠′𝑞𝑞
𝑞𝑞−1′ 𝒁𝒁𝑠𝑠𝑊𝑊𝑁𝑁𝑁𝑁

−1𝒁𝒁𝑠𝑠′ 𝑞𝑞−1
 

where 𝑞𝑞𝑖𝑖 = (∆𝑦𝑦𝑖𝑖′,𝑦𝑦𝑖𝑖′)′. In this case, the weighting matrix is given by 

𝑊𝑊𝑁𝑁𝑁𝑁 = �
1
𝑁𝑁
�𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆′ 𝑀𝑀𝑍𝑍𝑆𝑆𝑆𝑆𝑆𝑆

𝑁𝑁

𝑖𝑖=1

�

−1

 

where 𝑀𝑀 = �𝐻𝐻           0
0       𝐼𝐼𝑇𝑇−1

� or, as in Blundell and Bond (1998), 𝑀𝑀 = �𝐼𝐼𝑇𝑇−1        0
0        𝐼𝐼𝑇𝑇−1

� = 𝐼𝐼2𝑇𝑇−2 with 𝐼𝐼𝑇𝑇−1 

representing an identity matrix.  

When these conditions are met, the system GMM estimator has better finite sample properties than the 

differenced GMM estimator in terms of bias and root mean squared error (RMSE), see Blundell and 

Bond (1998) and Blundell, Bond and Windmeijer (2000).54  

4.4.2 Forward Orthogonality Deviations, First Differences Transform and Instrument Proliferation 

The first-difference transform has a specific weakness in that data gaps are magnified, especially in 

unbalanced panels. For example, suppose 𝑦𝑦𝑖𝑖𝑖𝑖 is missing, then ∆𝑦𝑦𝑖𝑖𝑖𝑖 and ∆𝑦𝑦𝑖𝑖𝑖𝑖+1 are missing as well. 

This problem was first motivated by Arellano and Bover (1995) who developed a forward orthogonal 

deviations’ operator that subtracts the average of all future values of the variable of interest. As an 

                                                           
54 The problem of high autoregressive parameter; 𝜶𝜶� → 1 and �𝜎𝜎𝜂𝜂𝜂𝜂 𝜎𝜎𝜈𝜈𝜈𝜈⁄ � → ∞, leading to the weak instruments 
problem also characterizes the SYS GMM estimator (see Bun and Windmeijer, 2010 and Han and Philips, 
2010). Econometric theorists making propositions for optimizing the parametric efficiency of the SYS GMM 
include Bun and Windmeijer (2010), Han and Philips (2010), Youssef et al. (2014), and Youssef and Abonazel 
(2015). 
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alternative to the FD routine, the orthogonal deviations transform is usefully applicable in models 

with predetermined regressors. The construction of the transform is explained in Arellano and Bover 

(1995:41) and simplified in Roodman (2009a). It relies on the Helmert’s transformation for the 

variable 𝜔𝜔 formulated as 

𝜔𝜔𝑖𝑖,𝑡𝑡+1
⟘ = 𝑐𝑐𝑖𝑖𝑖𝑖 �𝜔𝜔𝑖𝑖𝑖𝑖 −

1
𝑇𝑇𝑖𝑖𝑖𝑖

�𝜔𝜔𝑖𝑖𝑖𝑖
𝑠𝑠>𝑡𝑡

� 

where the scale factor, 𝑐𝑐𝑖𝑖𝑖𝑖, is chosen such that 𝑐𝑐𝑖𝑖𝑖𝑖 = � 𝑇𝑇𝑖𝑖𝑖𝑖
(𝑇𝑇𝑖𝑖𝑖𝑖+1) . 55 The term in brackets measures the 

deviations of each 𝜔𝜔𝑖𝑖𝑖𝑖  from the mean of its 𝑇𝑇 − 1 remaining future values. For an unbalanced dataset, 

the forward deviations operator is 

𝐴𝐴 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �
𝑇𝑇 − 1
𝑇𝑇

 , … ,
1
2�

1 2⁄

𝑥𝑥 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 − (𝑇𝑇 − 1)−1   − (𝑇𝑇 − 1)−1  …  − (𝑇𝑇 − 1)−1    − (𝑇𝑇 − 1)−1    − (𝑇𝑇 − 1)−1

0         − 1           − (𝑇𝑇 − 2)−1  …  − (𝑇𝑇 − 2)−1    − (𝑇𝑇 − 2)−1    − (𝑇𝑇 − 2)−1
.             .                        .           …             .                       .                        .          
.             .                        .           …             .                       .                        .          
.             .                        .           …             .                       .                        .          

         0           0                       0         …              1                    − 1
2                − 1

2                 
0            0                          0         …                0                           1                 − 1         

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

In the case of a balanced dataset, for example, Roodman (2009a) provides an operator for the forward 

orthogonal transform typically expressed as 𝐼𝐼𝑁𝑁 ⊗𝑀𝑀┴, where 

𝑀𝑀┴ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧�(𝑇𝑇 − 1)

𝑇𝑇
     

1
�𝑇𝑇(𝑇𝑇 − 1)−         

1
�𝑇𝑇(𝑇𝑇 − 1)−           …

                      �
(𝑇𝑇 − 2)
(𝑇𝑇 − 1)           

1
�(𝑇𝑇 − 1)(𝑇𝑇 − 2)−   …

                                                 �
(𝑇𝑇 − 3)
(𝑇𝑇 − 2)            …

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

In this transformation, the rows of 𝑀𝑀┴ are orthogonal to each other. This means that 𝜔𝜔𝑖𝑖𝑖𝑖 remains 

independently distributed even after the transformation. The choice of 𝑐𝑐𝑖𝑖𝑖𝑖  ensures that 𝜔𝜔𝑖𝑖𝑖𝑖  is also i.i.d.; 

i.e. 𝑀𝑀┴𝑀𝑀┴
′ = I. This is an expression portraying the assumption of homoscedasticity carried out in 

Arellano and Bond (1991).  

                                                           
55 Demeaning the data prior to the Helmert transformation has no effect on the final results, see Appendix A4.2 
for details.  
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It remains a concern that the GMM approach suffers from instrument proliferation arising from the 

increase in moment conditions as T increases, see Tauchen (1986), Ziliak (1997), Altonji and Segal 

(1996) and Bowsher (2002). In the discussion by Roodman (2009b), the excessive number of 

instruments over-fit endogenous variables, produce imprecise estimates of the optimal weighting 

matrix, bias the two-step standard errors downward and weaken the Hansen Test of instrument 

validity. When instrument explosion characterizes the analysis, there are three standard methods for 

reducing the instrument count: (1) truncation of the lag depth of endogenous explanatory variables, 

(2) collapsing the instrument matrix (see Roodman, 2009a) and (3) both truncation of lag length and 

collapsing of instrument matrix. A new technique based on the principal component analysis has been 

theoretically analysed by Kapetanios and Marcellino (2007), Bai and Ng (2010) and Mehrhoff (2009) 

and has been empirically developed by Bontempi and Mammi (2015).  

4.5 Nonlinear Dynamic Random-Effects Models and Estimators 

4.5.1 The Multilevel Model 

The GMM approach relies on continuous responses when treating state dependence and initial 

conditions in DPD models. In order to distinguish between the effects of true state dependence and 

unobserved heterogeneity on investment rates, we use a dichotomous dynamic response model that 

incorporates a lagged response and a firm-specific random-intercept. Three approaches to treating the 

initial conditions problem are adopted: (1) joint modelling of initial and subsequent responses using 

the one-factor model of Aitkin and Alfo (2003), (2) conditional modelling of subsequent responses 

given initial conditions and (3) the nonparametric maximum likelihood estimation (NPMLE). 

Specifically, we draw heavily from Skrondal and Rabe-Hesketh (2014) who provide extensions of 

joint and conditional approaches. This method presents the probability of an outcome of the response 

variable using the standard assumption of normally distributed idiosyncratic shocks and the random-

intercept term as 

�
𝑃𝑃𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1|𝑦𝑦𝑖𝑖−1,𝑗𝑗,𝒛𝒛𝑗𝑗,𝒙𝒙𝑖𝑖𝑖𝑖, 𝜁𝜁𝑗𝑗� = ℎ−1�𝒛𝒛𝑗𝑗′𝜸𝜸𝒛𝒛 + 𝒙𝒙𝑖𝑖𝑖𝑖′ 𝜸𝜸𝒙𝒙 + 𝜶𝜶𝑦𝑦𝑖𝑖−1,𝑗𝑗 + 𝜁𝜁𝑗𝑗�

𝑃𝑃𝑃𝑃�𝑦𝑦0𝑗𝑗 = 1|𝒛𝒛𝑗𝑗,𝒙𝒙𝑗𝑗, 𝜁𝜁𝑗𝑗� = ℎ−1�𝒛𝒛𝑗𝑗′𝒈𝒈𝒛𝒛 + 𝒙𝒙0𝑗𝑗′ 𝒈𝒈𝒙𝒙 + 𝜆𝜆0𝜁𝜁𝑗𝑗�
,   𝑖𝑖 = 1, 2, … ,𝑇𝑇 − 1  (8) 

𝒚𝒚𝒊𝒊𝒊𝒊∗ = 𝒛𝒛𝑗𝑗′𝜸𝜸𝒛𝒛 + 𝒙𝒙𝑖𝑖𝑖𝑖′ 𝜸𝜸𝒙𝒙 + 𝜶𝜶𝑦𝑦𝑖𝑖−1,𝑗𝑗 + ζ𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖        (8)′ 

where 𝜁𝜁𝑗𝑗~ℕ(0,𝜓𝜓), j=1, …, N, and 𝜸𝜸𝒛𝒛 and 𝜸𝜸𝒙𝒙 are the coefficient vectors for the time-invariant 𝒛𝒛𝑗𝑗 and 

time-varying 𝒙𝒙𝑖𝑖𝑖𝑖  covariates, respectively. The link function h(∙) is a probit function linking the 

conditional expectation of 𝑦𝑦𝑖𝑖𝑖𝑖  to the linear predictor on the right-hand side; that is, ℎ�𝑝𝑝𝑖𝑖𝑖𝑖� =

Φ−1�𝑝𝑝𝑖𝑖𝑖𝑖�,  where 𝑝𝑝𝑖𝑖𝑖𝑖 = pr�𝑦𝑦𝑖𝑖𝑖𝑖 = 1|𝑦𝑦𝑖𝑖−1,𝑗𝑗,𝒛𝒛𝑗𝑗,𝒙𝒙𝑖𝑖𝑖𝑖, ζ𝑗𝑗�. Eq. 8 can be expressed in latent form as in 

Eq. (8)′. Here the threshold model connects observed responses to latent responses as 𝑦𝑦𝑖𝑖𝑖𝑖 =

Stellenbosch University  https://scholar.sun.ac.za



104 
 

𝐼𝐼(𝐲𝐲𝐢𝐢𝐢𝐢∗ > 0) and 𝑦𝑦𝑖𝑖1 = 𝐼𝐼(𝐲𝐲𝐢𝐢𝐢𝐢∗ > 0). The indicator function, 𝐼𝐼(∙), takes the value of 1 if the expression in 

the bracket holds and 0 otherwise. In this case, the firm-specific random-effects specification used 

here implies that the correlation between the total error component,𝑢𝑢𝑖𝑖𝑖𝑖 = ζ𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖 , in any two different 

occasions is constant: 𝜓𝜓
𝜓𝜓+1

. 

In Skrondal and Rabe-Hesketh (2014), a one-factor component with occasion-specific factor loading 

λ𝑖𝑖 is introduced to the right-hand side of Eq. 8. This factor model for binary responses is naturally 

restricted to have one free factor loading λ0 for the initial response and λ𝑖𝑖 = 1 for the subsequent 

responses. In order to control for level 2 endogeneity of  𝑥𝑥𝑗𝑗 in the one-factor model, we follow the 

standard practice due to Mundlak (1978) and Chamberlain (1984) by using the auxiliary model  

ζ𝑗𝑗 = 𝛿𝛿𝑥̅𝑥.𝑗𝑗𝑥̅𝑥.𝑗𝑗 + 𝑢𝑢𝑗𝑗 

where 𝑢𝑢𝑗𝑗~𝑁𝑁(0,1) is independent of 𝑥̅𝑥.𝑗𝑗. Chamberlain (1984) observes that in nonlinear random-

intercept models, the auxiliary equation represents a proper statistical model which must be correctly 

specified. Thus the use of 𝑥̅𝑥.𝑗𝑗 instead of  𝑥𝑥𝑗𝑗 restricts the correlations between the random-intercept and 

the time-varying covariates to be constant over time. 

When  𝑥𝑥𝑖𝑖𝑖𝑖 has missing values, using longitudinal means is usually the only viable option in practice, 

see Rabe-Hesketh and Skrondal (2012). In that case, the calculation of 𝑥̅𝑥.𝑗𝑗 is based on only those 

occasions for which the response variable y𝑖𝑖𝑖𝑖  contributes to the analysis. Substituting the auxiliary 

equation in Eq. 8, the linear model of latent responses becomes  

�
Pr�𝑦𝑦𝑖𝑖𝑖𝑖 = 1|𝑦𝑦𝑖𝑖−1,𝑗𝑗, 𝒛𝒛𝑗𝑗,𝒙𝒙𝑖𝑖𝑖𝑖 , ζ𝑗𝑗� = ℎ−1�𝒛𝒛𝑗𝑗′𝜸𝜸𝒛𝒛 + 𝒙𝒙𝑖𝑖𝑖𝑖′ 𝜸𝜸𝒙𝒙 + 𝒙𝒙�.𝑗𝑗

′ 𝜹𝜹𝒙𝒙� + 𝜶𝜶𝑦𝑦𝑖𝑖−1,𝑗𝑗 + u𝑗𝑗�
Pr�𝑦𝑦0𝑗𝑗 = 1|𝒛𝒛𝑗𝑗,𝒙𝒙𝑗𝑗, ζ𝑗𝑗� = ℎ−1�𝒛𝒛𝑗𝑗′𝒈𝒈𝒛𝒛 + 𝒙𝒙0𝑗𝑗′ 𝒈𝒈𝒙𝒙 + 𝒙𝒙�.𝑗𝑗

′ 𝜆𝜆0𝜹𝜹𝒙𝒙� + 𝜆𝜆0u𝑗𝑗�
, i=1, …, T-1 (9) 

Again, in order to handle level 2 endogeneity, the conditional modelling approach used is  

ζ𝑗𝑗 = 𝛿𝛿𝑦𝑦𝑦𝑦0𝑗𝑗 + 𝒛𝒛𝑗𝑗′𝛿𝛿𝑧𝑧 + 𝒙𝒙0𝑗𝑗′ 𝛿𝛿𝑥𝑥0 + 𝒙𝒙�.𝑗𝑗
′ 𝜹𝜹𝒙𝒙� + 𝑢𝑢𝑗𝑗       (10) 

where the longitudinal averages can be calculated according to Rabe-Hesketh and Skrondal (2013) as 

𝑥̅𝑥𝑖𝑖 =
1

𝑇𝑇 − 1
�𝑥𝑥𝑖𝑖𝑖𝑖

𝑇𝑇

1

 

and a probit link in Eq. 9 is maintained.  

4.5.2 The Nonparametric Maximum Likelihood Estimator 
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In Heckman and Singer (1984), a nonparametric maximum likelihood estimation (NPMLE) procedure 

that avoids ad hoc functional specifications for the unobserved scalar heterogeneity 𝜃𝜃 is proposed. 

The nonparametric characterization of the marginal density of investment 𝑓𝑓(𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖) becomes 

𝑓𝑓(𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖) = ∑ 𝑔𝑔�𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖,𝜃𝜃𝑗𝑗�𝑝𝑝𝑗𝑗𝑘𝑘
𝑗𝑗=1         

where ∑𝑝𝑝𝑗𝑗 = 1, 𝑝𝑝𝑗𝑗 ≥ 0, 𝑗𝑗 = 1, … ,𝑘𝑘, 𝑘𝑘 is the number of points of support, 𝑝𝑝𝑗𝑗 is probability mass point, 

𝜃𝜃𝑗𝑗 is a locator of 𝑝𝑝𝑗𝑗  such that 𝑝𝑝𝑗𝑗 = prob�𝜃𝜃 = 𝜃𝜃𝑗𝑗�. Under random sampling, the log-likelihood for 

investment rates is given by 

𝐿𝐿𝐿𝐿 = ∑ 𝑙𝑙𝑙𝑙∑ 𝑔𝑔(𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝜃𝜃𝑖𝑖)𝑘𝑘
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 𝑝𝑝𝑗𝑗        

Lindsay (1983) provides conditions for global solution to the maximization of LL using the Gateaux 

variation. The Gateaux derivative of the log-likelihood function with respect to 𝜃𝜃 is defined as 

𝐷𝐷(𝜃𝜃, 𝜇𝜇) = ��
𝑔𝑔�𝑦𝑦𝑖𝑖|𝑋𝑋,𝜃𝜃𝑗𝑗�
𝑓𝑓�𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖�

− 1 �
𝑀𝑀

𝑖𝑖=1

 

The log-likelihood function is maximized if and only if 𝐷𝐷(𝜃𝜃, 𝜇𝜇) ≤ 0 for all 𝜃𝜃𝑗𝑗 ∈ 𝛩𝛩, see the Mass Point 

Method section in Huh and Sickles (1994). Heckman and Singer (1984) derive 𝜃𝜃 ∈ [𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚,𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚] over 

which 𝑔𝑔�𝑦𝑦𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝜃𝜃𝑖𝑖� is supported. The Heckman-Singer estimator has been found consistent for mixing 

distributions with a small number of points of support.  

4.6 Endogenous Switching Regression Model of Investment 

DPD models of investment estimated using the GMM approach or multilevel methods assume that an 

optimal rate of investment is characterized by a single investment regime. For example, Abel and 

Eberly (1994) and Abel (2014) demonstrate that the optimal rate of investment can be located in more 

than one regime. In such environments, micro investment decisions concern not only whether a firm 

invests, but also how much it invests in the different regimes. The goal here is to estimate the 

switching regression model specified in Eq. 11  

⎩
⎨

⎧
𝐼𝐼𝑖𝑖𝑖𝑖

𝐾𝐾𝑖𝑖𝑖𝑖−1
= 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 + 𝜀𝜀1𝑖𝑖𝑖𝑖                     iff           𝑍𝑍𝑖𝑖𝑖𝑖𝛾𝛾 + 𝑢𝑢𝑖𝑖𝑖𝑖 < 0

𝐼𝐼𝑖𝑖𝑖𝑖
𝐾𝐾𝑖𝑖𝑖𝑖−1

= 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻ℎ + 𝜀𝜀2𝑖𝑖𝑖𝑖                      iff           𝑍𝑍𝑖𝑖𝑖𝑖𝛾𝛾 + 𝑢𝑢𝑖𝑖𝑡𝑡 ≥ 0
    (11) 

and 

�
𝑢𝑢1
𝑢𝑢2
ε
�   ~  𝕀𝕀ℕ(𝟎𝟎,𝚺𝚺),    with    𝚺𝚺 =  �

𝜎𝜎112    𝜎𝜎12   𝜎𝜎1𝜀𝜀
𝜎𝜎21  𝜎𝜎222    𝜎𝜎2𝜀𝜀
𝜎𝜎𝜀𝜀1  𝜎𝜎𝜀𝜀2     1

�  
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where the 𝑍𝑍𝑖𝑖𝑖𝑖 vector includes variables in the switching regression function and an additional variable 

to operate as an exclusion restriction to correct for selection bias, see Cameron and Trivedi (2009).  

The non-zero covariance between investment shocks ε1𝑖𝑖𝑖𝑖, ε2𝑖𝑖𝑖𝑖   and  𝑢𝑢𝑖𝑖𝑖𝑖 in Eq. 16 is correlated with 

other firms’ characteristics. Since the conditions that either 𝜀𝜀1𝑖𝑖𝑖𝑖 ≠ 0 or 𝜀𝜀2𝑖𝑖𝑖𝑖 ≠ 0 or both are assumed 

to hold, then Eq. 16 is an endogenous switching regression model. Investment rates observed in each 

period t for each firm i are generated from either the High-q or Low-q regime, but never in both at any 

one time. As a consequence, the covariance between ε1𝑖𝑖𝑖𝑖 and ε2𝑖𝑖𝑖𝑖  does not exist, see Maddala (1983). 

By definition, the vector 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝑞𝑞𝑖𝑖𝑖𝑖) is a set of observable exogenous explanatory variables. As in 

Lee and Porter (1984) and Hu and Schiantarelli (1998), it is unknown ex ante whether the observed 

investment rate is generated from the High-q or Low-q regime. That is, unlike Nabi (1989), we have a 

case of unknown sample separation in the model.  

4.7 Empirical Results 

We now take our GMM estimators, dynamic nonlinear random effects models and endogenous 

regime switching models to the Swazi manufacturing panel data. As argued earlier, our preferred 

sufficient statistic that measures or poses as a proxy for marginal q is the sales-to-capital ratio. 

Another covariate is the time 𝑡𝑡 − 1 investment rate accommodating the conditional probability of a 

positive investment in the future as a function of previous investment that captures investment 

dynamics; see Heckman (1981b). It is also standard practice in state dependence research to control 

for unobserved heterogeneity. We therefore control for individual characteristics underlying the firm’s 

decision to either invest or exercise its option to wait. In view of the argument presented by Hsiao 

(2003) and Chrysanthou (2008) that state dependence and unobserved heterogeneity have opposite 

effects on firms’ investment decisions, it is necessary to determine the relative importance of each one 

of them. Finally, the empirical estimation strategy takes into account the likelihood of capital/labour 

substitutability in production by introducing employment as a control variable. 

The linear DPD in Eq. 5 can therefore be specified as a structural empirical model of investment in 

the form shown in Eq. 12 

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝒊𝒊𝒊𝒊
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊−𝟏𝟏

= 𝜶𝜶�𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝒊𝒊𝒊𝒊−𝟏𝟏
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊−𝟐𝟐

� + 𝜷𝜷𝟏𝟏 �
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒊𝒊𝒊𝒊

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊−𝟏𝟏
� + 𝜷𝜷𝟐𝟐 �

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝒊𝒊𝒊𝒊−𝟏𝟏
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒊𝒊𝒊𝒊−𝟐𝟐

� + 𝜷𝜷𝟑𝟑(Emp𝒊𝒊𝒊𝒊) + 𝜷𝜷𝟒𝟒(Emp𝒊𝒊𝒊𝒊−𝟏𝟏) + 𝒖𝒖𝒊𝒊𝒊𝒊  (12) 

where the two-way error structure is defined as 𝒖𝒖𝒊𝒊𝒊𝒊 = 𝝁𝝁𝒊𝒊 + 𝝉𝝉𝒕𝒕 + 𝜺𝜺𝒊𝒊𝒊𝒊, for 𝑡𝑡 = 2, … ,𝑇𝑇,  𝝁𝝁𝒊𝒊 and 𝝉𝝉𝒕𝒕 are the 

unobservable firm-specific effect and time effects, respectively; while 𝜺𝜺𝒊𝒊𝒊𝒊 is the random error term. The 

dependant variable is the rate of investment in PME in the manufacturing sector. Its lagged regressor 

measures the state dependence of investment on the producer’s previous decisions to invest. The 

contemporaneous sales-to-capital ratio and its lag is included as a proxy for marginal q, while the 

employment regressor controls for primary input substitution effects. Eq.12 is estimated using the 
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Generalized Method of Moments (GMM), the random effects approach and the endogenous 

investment regime switching method. 

4.7.1 The GMM Estimates 

4.7.1.1 The Difference and System GMM Results 

Judson and Owen (1999) propose that when 𝑇𝑇 = 10 and 𝑁𝑁 > 100, Difference and System GMM 

should be used in estimating DPD models. However, the added advantage of the System GMM is that 

it performs better than the Difference GMM in applications with near unit-root time series data. In 

such cases, lagged levels of variables are weak instruments for subsequent variations – see Roodman 

(2009b), Blundell and Bond (1998, 2000), Blundell, Bond and Windmeijer (2000). 

Table 4.3 summarizes the empirical anatomy of section 4.4. The first column characterizes the GMM 

parameters, 𝛽𝛽 ∈ �𝛼𝛼�, 𝛽̂𝛽1, 𝛽̂𝛽2, 𝛽̂𝛽3, 𝛽̂𝛽4�. These are estimated using the One-Step and Two-Step approaches 

of the Difference and System GMM. The parameter estimate 𝛼𝛼�  denotes the estimated lagged response 

coefficient and the rest are coefficients of other explanatory variables that may be assumed 

endogenous, predetermined or strictly exogenous.56 However, moment conditions by Arellano and 

Bond (1991) for Difference GMM and by Blundell and Bond (1998) for System GMM ensure 

asymptotic consistency of parameters. 

Table 4.3: Schema for the Empirical GMM Analysis Using Arellano and Bond (1991) for 
𝜶𝜶�𝑮𝑮𝑮𝑮𝑮𝑮 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 and Blundell and Bond (1998) for 𝜶𝜶�𝑺𝑺𝑺𝑺𝑺𝑺 

 
Parameter 𝜶𝜶�𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 =

∆𝑦𝑦−1′ 𝒁𝒁𝐷𝐷,𝑖𝑖𝑊𝑊𝑁𝑁
′𝒁𝒁𝐷𝐷,𝑖𝑖

′ ∆𝑦𝑦
∆𝑦𝑦−1′ 𝒁𝒁𝐷𝐷,𝑖𝑖𝑊𝑊𝑁𝑁

′𝒁𝒁𝐷𝐷,𝑖𝑖
′ ∆𝑦𝑦−1

 𝜶𝜶�𝑺𝑺𝑺𝑺𝑺𝑺 =
𝑞𝑞−1′ 𝒁𝒁𝑠𝑠𝑊𝑊𝑁𝑁𝑁𝑁

−1𝑍𝑍𝑠𝑠′𝑞𝑞
𝑞𝑞−1′ 𝒁𝒁𝑠𝑠𝑊𝑊𝑁𝑁𝑁𝑁

−1𝒁𝒁𝑠𝑠′ 𝑞𝑞−1
 

One−Step Two−Step One−Step Two−Step 
𝛼𝛼� 𝛼𝛼�1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛼𝛼�2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛼𝛼�1𝑆𝑆𝑆𝑆𝑆𝑆 𝛼𝛼�2𝑆𝑆𝑆𝑆𝑆𝑆 
𝛽̂𝛽1 𝛽̂𝛽1.1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛽̂𝛽1.2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛽̂𝛽1.1𝑆𝑆𝑆𝑆𝑆𝑆 𝛽̂𝛽1.2𝑆𝑆𝑆𝑆𝑆𝑆 
𝛽̂𝛽2 𝛽̂𝛽2.1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛽̂𝛽2.2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛽̂𝛽2.1𝑆𝑆𝑆𝑆𝑆𝑆 𝛽̂𝛽2.2𝑆𝑆𝑆𝑆𝑆𝑆 
𝛽̂𝛽3 𝛽̂𝛽3.1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛽̂𝛽3.2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛽̂𝛽3.1𝑆𝑆𝑆𝑆𝑆𝑆 𝛽̂𝛽3.2𝑆𝑆𝑆𝑆𝑆𝑆 
𝛽̂𝛽4 𝛽̂𝛽4.1𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛽̂𝛽4.2𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝛽̂𝛽4.1𝑆𝑆𝑆𝑆𝑆𝑆 𝛽̂𝛽4.2𝑆𝑆𝑆𝑆𝑆𝑆 

Constant − − 𝛽̂𝛽0 𝛽̂𝛽0 

The schema in Table 4.3 treats the model as a system of equations, one for each time period, as in 

Bontempi and Golinelli (2014). First, the predetermined and endogenous variables in first-differences 

are instrumented with suitable lags of their own levels. Second, predetermined and endogenous 

variables in levels are instrumented with suitable lags of their own first-differences. Lastly, strictly 

exogenous and any other instruments enter the instrument matrix with one column per instrument. 

Table 4.4 estimates Eq.12 to produce baseline results based on a priori considerations that investment 

is a function of previous period’s investment decisions and marginal q; that is, it is state dependent. 
                                                           
56 See definitions in Appendix A4.1. 
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Theory argues that although marginal q is a sufficient statistic for investment rates, the sales/capital 

ratio is also a sufficient statistic for investment rates as discussed, see Caballero and Leahy (1996). 

This means that, since marginal q is unobservable, the sales/capital variable can be used as a regressor 

instead. Therefore the empirical equation expresses the investment rate as a function of its 𝑡𝑡 − 1 lag, 

the contemporaneous sales/capital ratio and its 𝑡𝑡 − 1 lag.  

Table 4.4: GMM Estimation of Investment Rate Dynamics using an Instrument Reduction 
Technique and the Helmert’s Transform57  
 GMM DIFF (COLL) GMM SYS (COLL) 

 
One−Step Two−Step One−Step Two−Step 

𝐼𝐼𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 0.872* 0.584 1.044** 0.855 
(0.4173) (0.5609) (0.4042) (0.4367) 

𝑠𝑠𝑡𝑡
𝑘𝑘𝑡𝑡−1

 −0.774* −0.607 −0.853* −0.794*   
(0.3366) (0.4079) (0.3508) (0.3917) 

𝑠𝑠𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 0.106 0.09 0.239 0.074 
(0.1572) (0.2265) (0.1717) (0.1838) 

Constant − − 0.702 0.853 

 
− − (0.3922) (0.4386) 

NT 103 103 172 172 
N 44 44 69 69 
AR(1)−p-value 0.035 0.205 0.037 0.082 
AR(2)−p-value 0.105 0.227 0.12 0.128 
Sargan −p-value 0.1306 0.1306 0.029 0.029 
Hansen −p-value 0.1395 0.1395 0.233 0.233 
#Z 18 18 21 21 
#X 10 10 10 10 
Wald χ2 −Test 42.97 47.54 39.52 37.06 
χ𝑝𝑝2  0 0 0 0.0001 
h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 
Notes:  
1. All models include Year Dummies. 

The table reports estimates of true state dependence of real investment rates �𝐼𝐼𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

� as well as 𝑡𝑡 and 

𝑡𝑡 − 1 sales/capital ratio. To achieve this, the one-step and two-step GMM parameters for 𝜶𝜶�𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 

and 𝜶𝜶�𝑺𝑺𝑺𝑺𝑺𝑺 are respectively presented. The first-order autoregressive parameter is high; that is, 𝜶𝜶� → 1, 

[and it might also be the case that �𝜎𝜎𝜂𝜂𝜂𝜂 𝜎𝜎𝜈𝜈𝜈𝜈⁄ � → ∞], implying a random walk with firm-specific drift, 

creating weak correlations between first differences and lagged levels, or the weak instruments 

problem (see Blundell and Bond, 2000:325, and Han and Phillips (2010)). This may be a reflection of 

an imprecisely measured parameter due to high correlation between the sales/capital variable and 

omitted variables and other factors. This is the natural characteristic of the GMM DIFF estimator 

while the GMM SYS estimator circumvents this problem. The one-step GMM SYS estimator has the 

autoregressive parameter 𝜶𝜶� > 1, rendering the system non-convergent. The two-step GMM estimator 

                                                           
57 A robustness check based on Bontempi and Mammi’s (2015) principal component analysis technique presents 
similar results in Appendix A4.1. 
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barely passes the AR(1) restriction and Roodman (2009a) suggests that the validity of the model need 

not be readily accepted in such cases. Furthermore, standard errors are Windmeijer (2005) robust 

bias-corrected.  

Moreover, these results are an outcome of instrument proliferation that is controlled for by first 

collapsing the instrument count and secondly by using instrument collapsing together with truncation 

of lag depth to 𝑡𝑡 − 2. Our results are invariant to either of the choices. Instrument explosion curtailed 

by both mechanisms reduces proliferation from 79 to 18 instruments for Difference GMM and from 

100 to 21 instruments for System GMM. Furthermore, the a priori estimates of the variance-

covariance of the transformed errors given by the blocks of H were used alternately between h(2) and 

h(3). By design, this has no effect on the 𝜶𝜶�𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 results, but h(3) has the effect of slightly increasing 

the size of 𝜶𝜶�𝑺𝑺𝑺𝑺𝑺𝑺 as evident on the table. Among the existing methods for expunging fixed effects, the 

method of forward orthogonal deviations is preferred due to its resilience to the gaps’ problem. Such 

problems might be exacerbated, for example, by the use of the standard first difference deviations 

transform, given the high incidence of missing values in the investment data.  

The diagnostic tests are consistent with a persistent investment rate series and render the two-step 

System GMM our preferred specification. The principal assumption in the System-GMM estimator is 

𝐸𝐸(𝑍𝑍𝑠𝑠𝑠𝑠′ 𝑝𝑝𝑖𝑖) = 0, where 𝑝𝑝𝑖𝑖 is a measure of the combined orthogonal firm-specific effects and 

idiosyncratic disturbances. Thus, the Two−Step System GMM parameter means that the unobserved 

group effects among firms are uncorrelated with first-order differences in instrumental variables. Put 

differently, as in Bontempi and Golinelli (2014), the covariance between firm-specific effects and 

instruments is constant over time.  

It is therefore not possible to draw sound conclusions on whether or not there exists true state 

dependence in Swazi manufacturing investments based on these results. Since micro level investment 

is shown in the survival rate section to differ by firm size, estimating the same structural model by 

controlling for firm-level employment alters the results somewhat. In Table 4.5, the empirical model 

is estimated in full with employment as a control variable for primary input substitutability. Although 

the size of the AR(1) parameter is substantially reduced across all estimators, it remains insignificant. 

However, only the two-step GMM SYS (COLL) estimator passes all the Arellano-Bond (1991) 

diagnostic tests while the rest do not. That is, it satisfies the AR(1) and AR(2) conditions as well as 

the Sargan and Hansen tests of over-identifying restrictions and instrument validity, respectively. All 

explanatory variables in this estimator are statistically insignificant at standard levels. 
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Table 4.5: GMM Estimation of Investment Rate Dynamics with the Control Variable using an 

Instrument Reduction Technique and the Helmert’s Transform  

Variables 
GMM DIFF (COLL) GMM SYS (COLL) 
One−Step Two−Step One−Step Two−Step 

𝐼𝐼𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 0.329 0.198 0.338 0.144 
(0.3041) (0.4454) (0.3509) (0.4684) 

𝑠𝑠𝑡𝑡
𝑘𝑘𝑡𝑡−1

 −0.279 −0.121 −0.26 −0.073 
(0.2722) (0.4135) (0.3378) (0.5149) 

𝑠𝑠𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 0.086 0.099 0.068 0.118 
(0.1341) (0.2337) (0.1253) (0.2168) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 
 

−0.02 0.083 −0.147 −0.147 
(0.2592) (0.3723) (0.158) (0.2343) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 
 

0.349* 0.386 0.297 0.273 
(0.1696) (0.2002) (0.1728) (0.2152) 

Constant − − −0.36 −0.475 

 
− − (0.4997) (0.6846) 

NT 103 103 171 171 
N 44 44 68 68 
AR(1)−p-value 0.035 0.097 0.023 0.08 
AR(2)−p-value 0.041 0.094 0.021 0.134 
Sargan −p-value 0.1477 0.1477 0.2006 0.2006 
Hansen −p-value 0.1939 0.1939 0.3242 0.3242 
#Z 25 25 29 29 
#X 12 12 12 12 
Wald χ2 −Test 106.53 76.23 93.57 71.21 
χ𝑝𝑝2  0 0 0 0 
h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 
Notes: 
1. All models include Year Dummies. 
 
A strict interpretation of these results partly suggests the absence of persistence in investments due; 

inter alia, to the over 70% incidence of investment inactivity during the period of trade reforms 

gleaned in Figure 4.2. The dominant zone of inactivity in the data is modelled to respond to the 

previous period’s inactivity and the sale/capital variable as a theoretical sufficient statistic of 

investment. Remember, the correlation between 𝑡𝑡 − 1 investment rate and 𝑡𝑡 sales/capital ratio in 

Table 4.2 is 0.71 while the correlation between the current investment rate and its lag is 0.61. Firstly, 

the introduction of the 𝑡𝑡 − 1 investment rate and the 𝑡𝑡 sales/capital ratio as explanatory variables 

causes collinearity and imprecision in the parametric estimation of the structural model. Secondly, 

turning to the use of only the 𝑡𝑡 − 1 explanatory variables without controls worsens the precision of 

the estimates potentially due to the impact of serial correlation since the 𝑡𝑡 − 1 sales/capital ratio is 

correlated with the 𝑡𝑡 − 2 investment rate. This 𝑡𝑡 − 2 investment rate is in turn correlated with its 

subsequent level.  Again, the coefficients are measured with significant imprecision.  

Nonetheless, although insignificant, the measure of state dependence is consistent with the findings in 

the literature in terms of its sign and order of magnitude; see Eberly et al. (2012) and Drakos and 

Konstantinou (2013). Taken at face value, an increase in the ratio of investment/capital stock at 𝑡𝑡 − 1 
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in the two-step GMM SYS (COLL) estimator, ceteris paribus, is more likely to have a positive effect 

on the probability of investing at time 𝑡𝑡 than otherwise. Both contemporaneous control covariates; that 

is, the proxy for marginal q and the employment variable, might have negative effects on current 

investment rates while the 𝑡𝑡 − 1 individual lags might positively affect the time 𝑡𝑡 investment rate.58  

As discussed; however, this framework of analysis ignores the potential effect of serial correlation in 

the time-varying errors much against the objection advanced by Honoré and Kyriazidou (2000).  

In general, one explanation of the apparent industrial lacklustre performance in Swaziland is that 

capital irreversibility due to market failures acted as an investment deterrent in the uncertain business 

environment during the two decades since the 1990s in the customs union.59 Most firms in the active 

group chose to exercise their option to wait for uncertainty to come down while maintaining and 

repairing existing plant, machinery and equipment. Only a few of the active firms engaged in lumpy 

investments after spells on inactivity. In this sense, investment decisions could not significantly 

respond to changes in the ratio of sales/capital and to changes in employment. The next section 

performs robustness checks to the estimation of the theoretical model and the model with controls 

using a different deviations transform to the data set to answer this question.  

4.7.1.2 Sensitivity Analysis of the GMM Results 

This section estimates the empirical model allowing for the impact of gaps in the dataset created by 

missing investment values. In order to check the robustness of the results obtained using the forward 

deviations orthogonality transform in the previous section, we implement the same model but this 

time using the first-difference deviations transform. In the absence of controls as shown in Table 4.6, 

the coefficient of the lagged investment rate variable increases as expected, and weakly significant in 

three out of four cases. The magnification effect of the first-difference deviations transform in the 

estimation of GMM parameters is evident and marginally raises the coefficients above those estimated 

with our preferred forward orthogonality transform. 

  

                                                           
58 It is possible that the time 𝑡𝑡 covariates are correlated with firm-specific effects in the one-way error structure, 
thereby generating simultaneity problems. However, their exclusion in favour of retaining the 𝑡𝑡 − 1 covariates 
does not alter our results. 
59 Market failures in this case may be driven by ‘lemon effects’ and capital specificity, see Abel, Dixit, Eberly 
and Pindyck (1996). 
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Table 4.6: GMM Estimation of Investment Dynamics using the Roodman (2009b) Method of 
Instrument Reduction with Standard First Difference Deviations Transform without Controls 
 GMM DIFF GMM SYS 
Variables One−Step Two−Step One−Step Two−Step 
𝐼𝐼𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 1.014* 0.692 1.237** 0.972**  
(0.4244) (0.5766) (0.4494) (0.3308) 

𝑠𝑠𝑡𝑡
𝑘𝑘𝑡𝑡−1

 −0.955* −0.74 −1.127* −0.963**  
(0.4234) (0.4959) (0.4755) (0.3739) 

𝑠𝑠𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 0.106 0.106 0.207 0.054 
(0.1749) (0.2331) (0.2033) (0.1418) 

Constant − − 1.055 1.080*   

 
− − (0.6158) (0.4368) 

NT 100 100 172 172 
N 43 43 69 69 
AR(1)−p-value 0.033 0.218 0.052 0.076 
AR(2)−p-value 0.126 0.257 0.164 0.148 
Sargan −p-value 0.172 0.172 0.1213 0.1213 
Hansen −p-value 0.2414 0.2414 0.4336 0.4336 
#Z 18 18 21 21 
#X 10 10 10 10 
Wald χ2 −Test 33.61 31.25 30.6 28.37 
χ𝑝𝑝2  0.0002 0.0005 0.0007 0.0016 
h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 
Notes:  
All models include Year Dummies. 

As a robustness check, Table 4.6 applies the first-difference transform to estimate the empirical 

structural equation with controls. Here we control for employment size but continue with the standard 

first-difference deviations transform to estimate the model. Although it is substantially reduced in 

absolute terms, the true state dependence coefficient is still insignificant at any level. Although the 

autoregressive coefficient remains statistically insignificant and positive, its increase might also 

increase the probability of investing at time 𝑡𝑡 by the order of approximately 0.30. Both the sales-to-

capital ratio and employment behave similarly to the preferred specification.60 The orders of 

magnitude and signs of these results mimic the findings of Drakos and Constantinou (2013) for the 

Greek manufacturing sector, whose estimated state dependence according to the research by these 

authors is found to lie between 0.19 and 0.33 for a similar period of analysis. 

  

                                                           
60 These results are robust to using the average profit of capital defined by Abel and Blanchard (1986) as 
�𝑉𝑉𝑉𝑉𝑡𝑡−1−𝑊𝑊𝑡𝑡−1

𝐾𝐾𝑡𝑡−2
�, to using cash-flow to capital ratio �𝐶𝐶𝐶𝐶𝑡𝑡−1

𝐾𝐾𝑡𝑡−2
� and operating profit to capital ratio  �𝜋𝜋𝑡𝑡−1

𝐾𝐾𝑡𝑡−2
� defined by 

Letterie and Pfann (2007). All three are considered as proxies for the shadow price of capital. 
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Table 4.7: GMM Estimation of Investment Dynamics using the Roodman (2009b) Method of 
Instrument Reduction with Standard First Difference Deviations Transform with Controls 
 GMM DIFF GMM SYS 
Variables One−Step Two−Step One−Step Two−Step 
𝐼𝐼𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 0.482 0.336 0.455 0.301 
(0.2904) (0.3532) (0.3752) (0.532) 

𝑠𝑠𝑡𝑡
𝑘𝑘𝑡𝑡−1

 −0.416 −0.193 −0.377 −0.26 
(0.2992) (0.4574) (0.3532) (0.5876) 

𝑠𝑠𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 0.077 0.087 0.069 0.116 
(0.1353) (0.2029) (0.12) (0.1923) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 
 

0.111 0.249 −0.136 −0.161 
(0.3511) (0.3596) (0.1994) (0.2282) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 
 

0.523* 0.644* 0.271 0.252 
(0.2371) (0.2932) (0.2148) (0.23) 

Constant − − −0.166 −0.124 

 
− − (0.5313) (0.8102) 

NT 100 100 171 171 
N 44 44 68 68 
AR(1)−p-value 0.042 0.093 0.025 0.091 
AR(2)−p-value 0.057 0.05 0.033 0.116 
Sargan −p-value 0.1991 0.1991 0.1246 0.1246 
Hansen −p-value 0.1722 0.1722 0.2605 0.2605 
#Z 25 25 29 29 
#X 12 12 12 12 
Wald χ2 −Test 55.74 43.29 56.3 37.8 
χ𝑝𝑝2  0 0 0 0.0002 
h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 
Notes:  
All models include Year Dummies. 
 

Overall, the GMM results predict that micro investment rates in Swazi manufacturing insignificantly 

influence their own levels positively in the next period, and remain insignificant even when 

employment is controlled for. This is robust to the choice of deviations transform used. The results 

further reveal that the impact of contemporaneous sale-to-capital ratio is negative and insignificant 

while its 𝑡𝑡 − 1 coefficient is positive although still insignificant. This same pattern of parametric 

behaviour obtains in the case of the control variable. Thus, investment performance is invariant to the 

choice of a deviations’ transform applied to the treatment of missing values. Are these conclusions 

sensitive to the treatment method applied to missing values of investment? Does an interaction 

between missingness patterns of values and employment variations has an effect on the rate of 

investment? 

In this framework, the impact of firms’ investment inactivity on industrial investment patterns can 

potentially be indirectly accounted for through variations in the orthogonality conditions assumed. 

The purging of individual fixed effects in the GMM approach removes information about plant-level 

heterogeneity in investment decisions. Browning and Carro (2010) and Skrondal and Rabe-Hesketh 

(2014) develop binary discrete choice models with heterogeneity as an important factor to take into 
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account in inference analysis based on microdata. In the next section, we depart from modelling 

continuous responses of investment and introduce a binary method to estimating dynamic nonlinear 

random effects models of unbalanced panels of firms in a multilevel setting of investment.  

4.8 Dynamic Random-Effects Estimates 

4.8.1 Empirical Multilevel Analysis of Investment Decisions  

The empirical version of the dynamic random-effects model follows directly from the theoretical 

specification and can be concisely summarized as  

probit ��
𝑰𝑰𝒊𝒊𝒊𝒊

𝑲𝑲𝒊𝒊−𝟏𝟏.𝒋𝒋
= 1�

𝑰𝑰𝒊𝒊−𝟏𝟏.𝒋𝒋
𝑲𝑲𝒊𝒊−𝟐𝟐.𝒋𝒋

, 𝒛𝒛𝒋𝒋,𝒙𝒙𝒊𝒊𝒊𝒊, 𝜻𝜻𝒋𝒋�� = 𝛾𝛾𝑧𝑧0 + 𝛼𝛼�
𝑰𝑰𝒊𝒊−𝟏𝟏.𝒋𝒋

𝑲𝑲𝒊𝒊−𝟐𝟐.𝒋𝒋
� + 𝛾𝛾𝑥𝑥1 �

𝑺𝑺𝒊𝒊𝒊𝒊
𝒌𝒌𝒊𝒊−𝟏𝟏.𝒋𝒋

� + 𝛾𝛾𝑥𝑥2�𝐄𝐄𝐄𝐄𝐄𝐄𝒊𝒊𝒊𝒊� + 𝜻𝜻𝒋𝒋 

where 𝒙𝒙𝒊𝒊𝒊𝒊 ∈ �
𝑺𝑺𝒊𝒊𝒊𝒊

𝒌𝒌𝒊𝒊−𝟏𝟏.𝒋𝒋
, Emp𝒊𝒊−𝟏𝟏,𝒋𝒋� and there are no time-invariant, 𝒛𝒛𝒋𝒋, covariates. In this setting, 𝑰𝑰𝒊𝒊𝒊𝒊

𝑲𝑲𝒊𝒊−𝟏𝟏.𝒋𝒋
 is 

still a binary response variable taking the value of 1 if firm 𝑗𝑗 invests at occasion 𝑖𝑖 and 0 otherwise. 

The associated component of the joint model is as before where the initial response is modelled at 𝑖𝑖 =

0 

probit �� 𝑰𝑰𝟎𝟎𝟎𝟎
𝑲𝑲𝟎𝟎.𝒋𝒋

= 1�𝒛𝒛𝒋𝒋,𝒙𝒙𝟎𝟎𝟎𝟎, 𝜻𝜻𝒋𝒋�� = 𝑔𝑔𝑧𝑧0 + 𝑔𝑔𝑥𝑥1 �
𝑺𝑺𝒊𝒊𝒊𝒊

𝒌𝒌𝒊𝒊−𝟏𝟏.𝒋𝒋
� + 𝑔𝑔𝑥𝑥2�𝐄𝐄𝐄𝐄𝐄𝐄𝒊𝒊𝒊𝒊� + 𝛼𝛼�𝑰𝑰𝒊𝒊−𝟏𝟏.𝒋𝒋

𝑲𝑲𝒊𝒊−𝟐𝟐.𝒋𝒋
� + 𝜆𝜆0𝜻𝜻𝒋𝒋. 

The empirical auxiliary model of within-means is constructed as follows 

𝜻𝜻𝒋𝒋 = 𝛿𝛿𝑥̅𝑥1 �
𝒔𝒔.𝒋𝒋

𝒌𝒌𝟏𝟏.

�
𝒋𝒋
�+ 𝛿𝛿𝑥̅𝑥2 �𝑬𝑬𝑬𝑬𝑬𝑬�

𝟐𝟐.𝒋𝒋�+ 𝑢𝑢𝑗𝑗.    

In the case of the conditional model, we implement the following auxiliary model  

𝜻𝜻𝒋𝒋 = 𝛿𝛿𝑦𝑦0𝑗𝑗 �
𝑰𝑰𝟎𝟎𝟎𝟎
𝑲𝑲𝟎𝟎.𝒋𝒋
� + 𝛿𝛿𝑥𝑥10 �

𝑺𝑺𝟏𝟏𝟏𝟏
𝒌𝒌𝟏𝟏.𝒋𝒋
� + 𝛿𝛿𝑥𝑥20 �𝐄𝐄𝐄𝐄𝐄𝐄𝟐𝟐.𝒋𝒋� + 𝛿𝛿𝑥̅𝑥1 �

𝑺𝑺𝟏𝟏𝟏𝟏
𝒌𝒌𝟏𝟏.𝒋𝒋

���� + 𝛿𝛿𝑥̅𝑥2 �𝐄𝐄𝐄𝐄𝐄𝐄𝟐𝟐.𝒋𝒋
��������� + 𝑢𝑢𝑗𝑗.  

4.8.2 Patterns of Investment Decisions and Estimates of the Structural Investment Model  

The descriptive analysis covered in this section presents low patterns of participation of firms in 

capital investments. With missing data, it is possible to analyse all survey waves for which the 

investment rate  𝑦𝑦𝑖𝑖𝑖𝑖 and associated explanatory variables  𝑥𝑥𝑖𝑖𝑖𝑖 are not missing for a subject. It is also 

useful to consider each occasion that precedes an occasion with missing data as an initial occasion and 

assume that the second line of Eq. 9 holds for all initial responses. As in Hyslop (1999) and Chay and 

Hyslop (2000), in order to improve our understanding of the fit of the models estimated, we first 

present frequencies of a firm’s discrete choice to invest in a given occasion as shown in Table 4.9. 

Stellenbosch University  https://scholar.sun.ac.za



115 
 

For each sequence in Table 4.8, a “1” in the ith position denotes an observed positive investment in the 

ith period, whereas a “0” indicates a missing value of investment. For example, the pattern of 

missingness characterized by the sequence ‘0000000000’ in Panel A indicates that 100 out of 227 

firms have no responses for investment in any of the 10 years from 1994-2003, while ‘0111111111’ in 

Panel C means only one out of the same number of firms invested consecutively after the first year of 

inaction in the sample. However, isolated observations that follow sequences like ‘0101010101’ 

cannot be used because only initial values are supplied rather than the required consecutive sequences. 

Nonetheless, several sequence types of non-missing values of investment participation by a firm can 

be used, e.g. ‘1101100100’. In this case, the initial response is  𝑦𝑦0𝑗𝑗 for the first sequence and  𝑦𝑦3𝑗𝑗 for 

the second sequence and so on. The parameters of the auxiliary model can then vary according to the 

location of the initial occasion. Another practical matter is to analyse only contiguous sequences of 

non-missing data that start at occasion 0 and discard firms with patterns of the form ‘0101000000’. In 

such ad hoc approaches, the missing values of  𝑥𝑥𝑖𝑖𝑖𝑖 are implicitly imputed by 𝑥𝑥.𝑗𝑗 and  𝑦𝑦𝑖𝑖𝑖𝑖  is assumed to 

be missing at random (MAR). 

Analysing relationships between the response variable and covariates based on either contiguous 

investments or investments with non-missing patterns ensures accurate estimation of the likelihood 

function and unbiased parameter estimates, see Skrondal and Rabe-Hesketh (2014) and Seaman 

Galati, Jackson and Carlin  (2013)61. However, this might present us with the technical problem of 

‘not enough observations’ prevalent in finite samples with short T, see Akay (2012) and Albarran et 

al. (2015).  

                                                           
61 See Seaman et al. (2013) on handling “Missing at Random” and “Missing Completely at Random” datasets as 
well as potential implications for the likelihood function.  
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Table 4.8: Manufacturing Patterns of Missing Values and Investment Participation �𝒚𝒚𝒊𝒊𝒊𝒊 = 𝐼𝐼𝑖𝑖𝑖𝑖
𝐾𝐾𝑖𝑖𝑖𝑖−1

� in Swaziland (1994-2003) 

Panel A Panel B Panel C 
Missing Values’ 

Patterns Freq. Percent Cum. 
Missing Values’ 

Patterns Freq. Percent Cum. 
Missing Values’ 

Patterns Freq. Percent Cum. 
0000000000 100 44.05 44.05 0000101000 1 0.44 72.25 0011101111 1 0.44 87.22 
0000000001 10 4.41 48.46 0000101111 1 0.44 72.69 0011111010 1 0.44 87.67 
0000000010 7 3.08 51.54 0000110001 1 0.44 73.13 0011111101 1 0.44 88.11 
0000000011 5 2.20 53.74 0000110010 1 0.44 73.57 0011111111 2 0.88 88.99 
0000000100 4 1.76 55.51 0000111000 2 0.88 74.45 0100000000 3 1.32 90.31 
0000000101 1 0.44 55.95 0000111110 2 0.88 75.33 0100001110 1 0.44 90.75 
0000000110 2 0.88 56.83 0000111111 1 0.44 75.77 0100011110 1 0.44 91.19 
0000000111 4 1.76 58.59 0001000000 2 0.88 76.65 0100011111 2 0.88 92.07 
0000001000 4 1.76 60.35 0001001100 2 0.88 77.53 0100100000 1 0.44 92.51 
0000001001 2 0.88 61.23 0001001110 2 0.88 78.41 0100100011 1 0.44 92.95 
0000001010 2 0.88 62.11 0001010111 1 0.44 78.85 0100101110 1 0.44 93.39 
0000001011 1 0.44 62.56 0001011110 2 0.88 79.74 0100111110 1 0.44 93.83 
0000001100 1 0.44 63.00 0001100000 2 0.88 80.62 0101111101 1 0.44 94.27 
0000001110 5 2.20 65.20 0001100100 1 0.44 81.06 0110000000 1 0.44 94.71 
0000001111 2 0.88 66.08 0001101111 1 0.44 81.50 0110000010 1 0.44 95.15 
0000010000 2 0.88 66.96 0001111011 1 0.44 81.94 0110000111 1 0.44 95.59 
0000010001 1 0.44 67.40 0001111110 2 0.88 82.82 0110101000 1 0.44 96.04 
0000010110 1 0.44 67.84 0001111111 1 0.44 83.26 0110110000 1 0.44 96.48 
0000011000 1 0.44 68.28 0010000001 1 0.44 83.70 0110111000 1 0.44 96.92 
0000011001 1 0.44 68.72 0010000011 1 0.44 84.14 0110111111 1 0.44 97.36 
0000011011 1 0.44 69.16 0010011010 1 0.44 84.58 0111000000 2 0.88 98.24 
0000011100 1 0.44 69.60 0010011111 1 0.44 85.02 0111000110 1 0.44 98.68 
0000011110 2 0.88 70.48 0010100000 1 0.44 85.46 0111110000 1 0.44 99.12 
0000100000 1 0.44 70.93 0010100100 1 0.44 85.90 0111111110 1 0.44 99.56 
0000100010 1 0.44 71.37 0010100111 1 0.44 86.34 0111111111 1 0.44 100.00 
0000100011 1 0.44 71.81 0011000000 1 0.44 86.78 Total 227 100.00  

A total of 82 out of 227 observations in the sample have at least 2 consecutive non-missing sequences, implying that only 36.12 percent of the firms provide 
descriptive evidence of some serial persistence. Viewed with the high incidence of inaction, this suggests the possibility that the underlying process is largely 
independent over time. These investment transitions point to adopting a model that includes: a first-order Markov chain to capture any degree of true state 
dependence, and/or serially correlated errors as well as unobserved heterogeneity in order to fit the sequences, see Rabe-Hesketh and Skrondal (2014). 
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Table 4.9: Multilevel Parameter Estimates and Robust Standard Errors for Dynamic Random Effects 
Probit Models of Investment. 

Structural  
Parameters 
 

Naïve  
 

Estimates for Joint Models  
 

Estimates for Conditional 
Maximum Likelihood Model  

Exogenous 
𝒙𝒙𝒊𝒊𝒊𝒊  

Endogenous 
𝒙𝒙𝒊𝒊𝒊𝒊  

Conditional 
Estimator 

NPMLE 
(Mass Point Method) 

�
𝑰𝑰𝒊𝒊−𝟏𝟏.𝒋𝒋

𝑲𝑲𝒊𝒊−𝟐𝟐.𝒋𝒋
� 

2.0634** 0.2189 0.5556 0.9143 0.7327 
(0.6817) (0.7428) (0.6900) (0.6566) (0.6166) 

�
𝑺𝑺𝒊𝒊𝒊𝒊
𝒌𝒌𝒊𝒊−𝟏𝟏.𝒋𝒋

� 
−0.7291 0.2655 0.1574 1.0331 1.2758 
(0.3892) (0.5596) (0.4487) (0.7938) (0.7857) 

�𝐄𝐄𝐄𝐄𝐄𝐄𝒊𝒊𝒊𝒊� 
 

0.2341* 0.0928 0.0526 0.2921 0.7240 
(0.1003) (0.1054) (0.4742) (0.4443) (0.5415) 

𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 
  

−5.5564*** −4.9138** 
  

 
(1.5658) (1.5898) 

  
�
𝑺𝑺𝒊𝒊𝒊𝒊
𝒌𝒌𝒊𝒊−𝟏𝟏.𝒋𝒋

� 𝑿𝑿 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍  
1.8706 2.0390 

  
 

(1.1988) (1.1943) 
  �𝐄𝐄𝐄𝐄𝐄𝐄𝒊𝒊𝒊𝒊�𝑿𝑿 𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 

  
0.5516** 0.4258* 

  
 

(0.2081) (0.2084) 
  

�
𝑺𝑺𝒊𝒊𝒊𝒊
𝒌𝒌𝒊𝒊−𝟏𝟏.𝒋𝒋

�
𝑂𝑂

    
−2.8371* −2.5949 

   
(1.2537) (1.4484) 

�𝐄𝐄𝐄𝐄𝐄𝐄𝒊𝒊𝒊𝒊�
𝑂𝑂

    
−0.7460 −1.3585 

   
(0.5493) (0.7236) 

�
𝑺𝑺.𝒋𝒋

𝒌𝒌𝟏𝟏.𝒋𝒋

����
�    

0.7728 0.1701 

   
(1.0795) (0.7960) 

�𝐄𝐄𝐄𝐄𝐄𝐄𝟐𝟐.𝒋𝒋
��������� 

   0.8757 1.2089 
   (0.6294) (0.7561) 

Constant 
 

1.0008 1.5484* 0.7161 0.6352 0.9435 
(0.6159) (0.7167) (0.6804) (0.9313) (1.6922) 

cbri1 
     𝜓𝜓 

 
0 

  
0.3770* 

 0 
  

(0.1761) 
 cbr1_1l 

     𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍 
  

−0.2818 0.1866 
  

 
(0.3313) (0.6448) 

  cbr1_1 
     One 

  
0.8661*** 0.5763** 

  
 

(0.2040) (0.2081) 
  f1: 

     
�
𝒔𝒔.𝒋𝒋

𝒌𝒌𝟏𝟏.

�

𝒋𝒋
�   

−0.139 
  

  
(0.2169) 

  �𝑬𝑬𝑬𝑬𝑬𝑬�𝟐𝟐.𝒋𝒋� 
   

0.1995 
  

  
(0.4335) 

  z2_1_1 
     Constant 

     
−0.9755 

    
(1.4523) 

p2_1 
     Constant 

     
0.8836 

    
(0.4512) 

Number of Firms 350 911 626 480 480 
Log-likelihood −95.3007 −184.086 −166.715 −133.386 −130.03 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

Table 4.9 presents estimates of the empirical model and distinguishes each model on the basis of 

various assumptions about the initial conditions problem and endogeneity of covariates. The Naïve 

results are presented in Model 1. The joint distribution model coefficients are presented in Model 2 
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and Model 3. Model 4 presents results for the conditional model while Model 5 presents results for 

the same model using the NPMLE methods based on the mass point procedure. 

The Naïve specification uses all the available observations for the dependent variable. The model is 

estimated with Stata’s xtprobit command to produce biased standard errors, but correct parameters 

(see Skrondal and Rabe-Hesketh, 2014). The routine achieves this by performing a sensitivity 

evaluation of the results using quadrature checks, and we keep adding an integration point until the 

log-likelihood remains unchanged. However, since the standard errors are biased upward, we also use 

the gllamm command and adaptive quadrature for accurate point estimates and robust standard errors. 

In this model, as shown in column (1), longitudinal dependence is almost completely due to state 

dependence as a result of ignoring initial conditions and endogeneity of covariates. As expected, the 

coefficient of investment rate at 𝑡𝑡 − 1 is significant and large at 2.06 percent, spuriously suggesting 

significant persistence of true state dependence of investment rates. The estimated variance of the 

random-intercept is 0.00. 

In estimating the joint distribution model with exogeneity assumption, all available data, including the 

missing investment rate lag, are used. The approach adopted allows for different coefficients for 

initial responses. Although still positive, the coefficient on lagged investment rate is greatly reduced 

in absolute terms to 0.22 percent and is insignificant at conventional levels. A dummy variable, 

Nolag, represents all observations with missing data on investment rates at time 𝑡𝑡 − 1 and enters the 

model significantly at 1 percent level. It is not surprising that the dummy is negative and significant, 

given the high incidence of single investment rates that are sandwiched between missing values in 

Swazi manufacturing reflected in Table 4.8. This means a unit percentage point increase in net PME 

investment inactivity at 𝑡𝑡 − 1 reduces the probability of investment by [−5.56, −4.91] percent at 

time 𝑡𝑡. When Nolag is interacted with 𝐄𝐄𝐄𝐄𝐄𝐄𝒊𝒊𝒊𝒊, it produces a positive and significant coefficient at the 

10 percent level. This is consistent with larger firms, measured in terms of employment size, not 

investing at 𝑡𝑡 − 1. The larger firms’ reasons for this might be related to the potential substitution of 

capital adjustment plans for increased (possibly fixed contract) labour at time 𝑡𝑡.62 Such decisions 

would continue until the uncertainty about the Southern African economic outlook brought about by 

trade reforms in the 1990s was resolved, see similar arguments by Bloom (2009) for the U.S. case. 

The endogeneity assumption concerning covariates in the joint distribution model also uses all 

available data. However, in contrast to the exogeneity model, it relies on different coefficients for all 

initial responses. Its longitudinal means needed to obtain an appropriate linear predictor for consistent 

estimation are based on occasions where the investment rate variable is not missing. Notably, the 

estimated factor loading for the linear predictor multiplying the random-intercept enters the auxiliary 

                                                           
62 Capital irreversibility and the relative ease of employment termination for contract workers are assumed. 
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model insignificantly at all conventional levels.63 Furthermore, Skrondal and Rabe-Hesketh (2014) 

suggest that a test of 𝐻𝐻0: 𝑥̅𝑥
�
𝒔𝒔.𝒋𝒋
𝒌𝒌𝟏𝟏.

�
𝒋𝒋
�

= 𝑥̅𝑥�𝑬𝑬𝑬𝑬𝑬𝑬�𝟐𝟐.𝒋𝒋�
= 0 is equivalent to a level 2 test of exogeneity. Since 

both statistics are insignificant, the exogeneity hypothesis cannot be rejected. Thus, there is no 

material difference between the results of the two joint distribution models and therefore the key 

predictions of the model under exogeneity assumptions are maintained.  

An alternative to the joint distribution models used in this analysis is the conditional model that 

conditions on initial responses and explanatory covariates. Instead of using all available data, the 

method is designed to rely on consecutive sequences of at least two non-missing values of investment 

rates in order to analyse contiguous sequences only. However, the change in the definition of the 

response variable poses a barrier to the estimation of the model when the dataset is awash with 

missing values in the investment series as shown in the descriptive analysis of Section 4.2.64 When 

erratic investments are excluded in the analysis, only about two firms have at least two consecutive 

sequences of investment in each of the patterns of missing values during the ten-year period.  

As a consequence of this difficulty, the estimation of the conditional model is now based on all the 

data and the coefficients for initial period explanatory variables are unfortunately constrained to be 

equal to coefficients of subsequent periods. For a critique on using the entire sample and initial 

conditions to compute within-firm means, see Rabe-Hesketh and Skrondal (2013). The model is 

therefore estimated just to provide upper bounds for coefficients of the joint distribution models. 

Thus, the estimated random-error variance is 0.377 and the associated intraclass correlation of the 

latent variable,𝑦𝑦𝑖𝑖𝑖𝑖∗ , in Eq. 9,  given the observed sales/capital ratio and labour, is 𝜓𝜓
𝜓𝜓+1

= 0.27. That is, 

approximately 27 percent of the variance in real investment rates that is not explained by the observed 

covariates is produced by unobserved time-invariant firm-specific characteristics. Similarly, the 

suitability of the restricted one-factor model is measured by the statistical insignificance from unity of 

𝜆𝜆𝑖𝑖, that is, 𝜆𝜆𝑖𝑖 = 1. This is estimated to range between [0.58,   0.87]. 

We also use the NPMLE approach to replicate the conditional model results by using the Rabe-Hesketh 

et al. (2005) adaptive quadrature to maximize the likelihood function and determine the optimal mass-point 

based on the Gâteaux derivative method. This technique avoids making any assumptions about the 
                                                           
63 This indicates that the random-intercept regressed on longitudinal means based on non-missing investment 

rates in the auxiliary equation, �𝒔𝒔.𝒋𝒋

𝒌𝒌𝟏𝟏.

�
𝒋𝒋
� and �𝑬𝑬𝑬𝑬𝑬𝑬�𝟐𝟐.𝒋𝒋�, can be used in the generalized linear latent and mixed 

modelling approach embedded in f1: a. b, where a and b represent a one-factor probit model described in 
Arulampalam and Stewart (2009). These are averages representing the extent to which item 𝑖𝑖, in an item 
response setting, discriminates between firms of different propensities to invest thereby allowing the analyst to 
extract unobserved heterogeneity. 

64 An experiment conducted using the Heckman (1981a) estimator for serially independent idiosyncratic shocks 
using Stewart (2006) failed to estimate the probit model for 𝑡𝑡 = 1 due to insufficient observations. 
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distribution of the random-intercept; see Heckman and Singer (1984) and Rabe-Hesketh et al. (2003) 

for details on this method. It produces structural coefficients that are similar to those of the 

conditional model and are indeed systematically greater in absolute terms than those produced by the 

joint models. 

4.8.3 Estimation of an Endogenous Regime Switching Model 

The analysis thus far has focussed largely on the properties and estimation of true state dependence as 

well as individual firm-specific heterogeneity underlying firms’ investment choices. It is of interest 

therefore to also study the parametric patterns of the proxy of marginal q to determine if there is any 

switching of investments across different regimes as implied by Abel and Eberly (1994) and recently 

Abel (2014). Firms may sort their investments in terms of either high or low regimes as in Drakos and 

Konstantinou (2013) for the case of Greece. The next sections concentrate on this task. 

In this section we present estimates of the structural investment equation using full information 

maximum likelihood (FIML) methods. This efficient method for estimating the endogenous regime 

switching regression model was first proposed by Lee and Frost (1978), and described for Stata by 

Lokshin and Sajaia (2004).  

This method simultaneously estimates the discrete probit criterion or selection equation and the 

continuous model to produce consistent standard errors. It sorts out investment rates according to two 

different states and simultaneously estimates the binary and continuous components of the empirical 

model. Firstly, the two sets of parameters of interest are  𝛽𝛽𝐻𝐻 and 𝛽𝛽𝐿𝐿 representing the high and low 

investment regimes respectively, which measure the effects of the 𝑡𝑡 − 1 covariates that determine 

investment rates. The second parameter vector is 𝛾𝛾 which measures the effects of 𝑡𝑡 − 1 covariates 

included in the switching function. Thirdly, the standard deviations of 𝜀𝜀𝑖𝑖𝑖𝑖𝐻𝐻 and 𝜀𝜀𝑖𝑖𝑖𝑖𝐿𝐿 ; namely, 𝜎𝜎𝐻𝐻𝐻𝐻 and 𝜎𝜎𝐿𝐿𝐿𝐿 , 

can be estimated. Lastly, the correlation coefficients 𝜌𝜌𝐻𝐻𝐻𝐻 and 𝜌𝜌𝐿𝐿𝐿𝐿 in both investment regimes are easy to 

estimate. Thus, the endogenous switching regression model of investment is suitable for estimating this 

model. 

It is common practice in selection models like ours to introduce a variable(s) that can produce nontrivial 

variation in the selection part of the model while not affecting the outcome variable directly. Although 

three variables; namely, material input, energy and the inverse of firm-size measure are available, the 

latter is adopted here because it affects only the extensive margin of investment in the switching 

function rather than the intensive margin (see Letterie and Pfann, 2007).65 This implies three scenarios: 

                                                           
65 However, the exclusion restriction may cause global concavity failure in some settings, in which case the 
model may be identified by nonlinearities thereby causing the selection equation to contain only the regressors 
in the continuous equations. 
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(1) that if larger firms are more likely to locate in the higher investment regime, the firm-size 

measure, (𝐾𝐾𝑖𝑖𝑖𝑖)−1, will produce a negative sign. (2) In contrast, the sign will be positive if smaller firms 

have a higher propensity to locate in the high investment regime. (3) If firm selection into the high 

investment regime is scale-independent, then the exclusion restriction imposed by the introduction of 

the inverse of capital stock will be insignificantly different from zero in the switching function. 

Table 4.10 presents results of a structural endogenous switching regression model which reveal some 

form of existence and differences in high and low investment expenditures in PME at the firm level in 

Swaziland.66 In order to make inferences about investment behaviour between regimes, two tests are 

conducted principally for Model 1 and Model 4 because of their central role in the GMM approach in 

the previous section. This exercise is also performed for the other components of fundamentals; that is, 

the squares, averages and squares of averages of each model to determine their individual behaviour 

across regimes.  

In the case of the investment response to movements in the 𝑡𝑡 − 1 employment and its components, we 

find insignificant coefficients in the high regime and highly significant and negative coefficients in the 

low regime. More specifically, firms in the high investment regime category of Models 1-3 substitute 

investment expenditure in PME for employment insignificantly while low investment regime firms 

chose a relatively higher capital-labour substitution pattern. In all three cases, the single regime 

hypothesis 𝐻𝐻0: 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻ℎ = 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 is not supported by the χ2–distribution of the Wald-test statistic at the 1 

percent level.67 For example, this is χ2 (1) = 269.67 with 𝑝𝑝-value=0.0000 for the linear relationship 

expressed in Model 1. In this model, given the strong empirical evidence that the data generating 

process is consistent with two significantly different regimes, it is instructive to discuss the variables 

influencing the likelihood that an observation belongs to the high or low investment regime. Since the 

coefficient of the investors of the capital stock, (𝐾𝐾𝑖𝑖𝑖𝑖)−1, is insignificant, the location of an observation in 

the high regime is not a function of firm size.  Therefore, the endogenous switching regression results 

confirm visually and technically that the dataset is generated by two investment regimes in the capital 

adjustment-employment nexus, in contrast to the single regime structure presented through the 

systems−GMM approach. 

                                                           
66 Convergence difficulties of the likelihood function, even after changing starting values, required a slight 
adjustment in the presentation of the empirical model results, in contrast to Letterie and Pfann (2007). This 
allowed us to analyse each component of the structural model separately as Hu and Schiantarelli (1998) for the 
U.S. case. 

67 Hu and Schiantarelli (1998), Nielsen and Schiantarelli (2003) and Letterie and Pfann (2007) note the 
difficulty computing the degrees of freedom if the null hypothesis holds because the parameters in the switching 
function are unidentified, and the likelihood ratio (LR) test might not even have a χ2–distribution. Goldfeld and 
Quandt (1973) also show that the use of a χ2–distribution for the LR−test with degrees of freedom equal to the 
number of constraints plus the number of unidentified parameters yields a test that favours non-rejection of the 
restrictions. 
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Table 4.10: FIML Estimation of Endogenous Switching Regression Models: 1994-2003  

𝑍𝑍𝑖𝑖𝑖𝑖= �𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1,𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1
2 ,𝐸𝐸𝐸𝐸𝐸𝐸������, 𝑆𝑆𝑖𝑖𝑖𝑖−1

𝐾𝐾𝑖𝑖𝑖𝑖−2
, 𝑆𝑆𝑖𝑖𝑖𝑖−2

𝐾𝐾𝑖𝑖𝑖𝑖−3
, �𝑆𝑆

𝐾𝐾
��

2
, (𝐾𝐾𝑡𝑡−1)−1, YD, ID � 

Regime Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 

 
−0.132 

    
                

 (0.0776) 
    

                
 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−12  

  
−0.009 

   
                

 
 

(0.0086) 
   

                
 𝐸𝐸𝐸𝐸𝐸𝐸������ 

   
−0.106 

  
                

 
  

(0.0819) 
  

                

�
𝐼𝐼𝑖𝑖𝑖𝑖
𝐾𝐾𝑖𝑖𝑖𝑖−1

�
𝐻𝐻𝐻𝐻𝐻𝐻ℎ

 

 

𝑆𝑆𝑖𝑖𝑖𝑖−1
𝐾𝐾𝑖𝑖𝑖𝑖−2

    
−0.001* 

 
                

   
(0.0003) 

 
                

�
𝑆𝑆
𝐾𝐾
�
�

������
     

−0.003***                 

    
(0.0005)                 

 
�
𝑆𝑆
𝐾𝐾
�
�
2

      
0.000*** 

 

     
(0.0000) 

 Constant 7.803*** 7.396*** 7.715*** 7.203*** 7.208*** 7.186*** 
 

 
(0.368) (0.2298) (0.3942) (0.4299) (0.333) (0.3276) 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 
 

−0.821*** 
    

                
 (0.1829) 

    
                

 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−12  
  

−0.110*** 
   

                
 

 
(0.023) 

   
                

 𝐸𝐸𝐸𝐸𝐸𝐸������ 
   

−0.962*** 
  

                
 

  
(0.1956) 

  
                

�
𝐼𝐼𝑖𝑖𝑖𝑖
𝐾𝐾𝑖𝑖𝑖𝑖−1

�
𝐿𝐿𝐿𝐿𝐿𝐿

 

 

𝑆𝑆𝑖𝑖𝑖𝑖−1
𝐾𝐾𝑖𝑖𝑖𝑖−2

    
−0.451** 

 
                

   
(0.1652) 

 
                

�
𝑆𝑆
𝐾𝐾
�
�

������
     

−0.439***                 

    
(0.092)                 

 
�
𝑆𝑆
𝐾𝐾
�
�
2

      
−0.026*** 

 

     
(0.0043) 

 Constant 5.854*** 4.553*** 6.058*** 3.373 4.281*** 3.904*** 
 

 
(0.4943) (0.4837) (0.497) (3.0102) (1.089) (1.0567) 

 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 
 

0.386*** 
    

                
 (0.068) 

    
                

 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−12  
  

0.049*** 
   

                
 

 
(0.0096) 

   
                

 𝐸𝐸𝐸𝐸𝐸𝐸������ 
   

0.398*** 
  

                
 

  
(0.068) 

  
                

Switching 
Function 

𝑆𝑆𝑖𝑖𝑖𝑖−1
𝐾𝐾𝑖𝑖𝑖𝑖−2

    
0.076 

 
                

   
(0.0618) 

 
                

 
�
𝑆𝑆
𝐾𝐾
�
�

������
     

0.040*                 
 

    
(0.0176)                 

 
�
𝑆𝑆
𝐾𝐾
�
�
2

      
0.002 

 

     
(0.005) 

 𝐾𝐾−1 
 

−0.154 −0.187 −0.073 0.785 1.384 1.846 
 (0.1491) (0.1673) (0.3839) (3.1523) (1.1185) (1.301) 
 Constant −0.147 0.566 −0.523* 0.479 0.568 0.56 
 

 
(0.4144) (0.3813) (0.2622) (0.5853) (0.4119) (0.4331) 

Statistics 𝜎𝜎𝐻𝐻𝜀𝜀 1.8183 1.7881 1.8476 1.6548 1.7930 1.7846 
  (0.0947) (0.0958) (0.1003) (0.4094) (0.3629) (0.3649) 
 𝜎𝜎𝐿𝐿𝜀𝜀 1.3066 1.2785 1.3626 1.6008 1.3316 1.2839 
  (0.2412) (0.2265) (0.2534) (1.4987) (0.2741) (0.1474) 
 𝜌𝜌�𝐻𝐻𝐻𝐻 −0.9167 −0.8810 −0.9066 −0.8816 −0.8833 −0.874 
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  (0.06) (0.0819) (0.0631) (0.4736) (0.4027) (0.4304) 
 𝜌𝜌�𝐿𝐿𝐿𝐿 −0.6075 −0.5779 −0.6723 −0.7911 −0.48047 −0.2744 
  (0.2886) (0.2976) (0.2270) (0.9093) (0.6104) (0.6129) 
 NT 378 378 378 252 358 358 
 Log Likelihood −820.14 −820.188 −830.692 −540.799 −790.234 −791.973 
𝐻𝐻0: 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻ℎ = 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 for Model 1:                                              χ2 (1) = 269.67, Prob > χ2 = 0.0000 
𝐻𝐻0: 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻ℎ = 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 for Model 4:                                              χ2 (1) = 0.75, Prob > χ2 = 0.3868 
Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

The adopted proxy for the shadow price of capital and related components in Models 3-4 produced 

significant and negative results in both regimes, but more so in the low investment regime. That is, the 

coefficients for the sale/capital ratio in the high and low investment regimes are 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻ℎ =

−0.001 and 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 = −0.439, respectively. The standard levels of significance suggest that 𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻ℎ ≠

𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿 in the statistical sense. However, the χ2–distribution of the Wald-test statistic supports the equality 

null hypothesis for Model 4 coefficients at χ2 (1) = 0.75 with 𝑝𝑝-value=0.3868. These results are robust 

to chosen transformations of the proxy variable for the shadow price of capital. This means that the 

investment function can be expressed as a single investment regime problem and therefore the 

parameters of the switching function are not identified and validates the conclusions drawn from the 

systems−GMM approach. 

Finally, the correlation coefficients,𝜌𝜌�𝐻𝐻𝐻𝐻 and 𝜌𝜌�𝐿𝐿𝐿𝐿, measure the relationships between the error terms in 

the high and low investment regimes and the error term in the switching function. As in Nielson and 

Schiantarelli (2003, footnote 26) and Letterie and Pfann (2007, p. 810), the statistic 𝜌𝜌�𝐻𝐻𝐻𝐻 → 1 in 

absolute terms, which is typical of switching models.68 Our results mimic those of Hu and 

Schiantarelli (1998) for the U.S., Nielsen and Schiantarelli (2003) for Norway and Letterie and 

Pfann (2007) for the Netherlands.  

4.9 Discussion of Results 

In the analysis of the dynamic structural model of investment, the descriptive statistics show patterns 

of significant microeconomic lumpiness and discontinuous investment in plant, machinery and 

equipment (PME). The data is awash with zero investment rates and this stylized fact is distribution 

free. Even if the data is divided into investments with or without expenditure on maintenance and 

repair (M&R), it still produces a high incidence of zeros at 44 percent and 73 percent, respectively. 

For ease of comparison with other country studies, the analysis subsequently focuses on the data with 

investment cost of M&R. As a result, only 36.12 percent of observations have a sequence of at least 

two consecutive non-missing values of investment. Considering the ten-year span of investment 

                                                           
68 See Goldfeld and Quandt, (1973). Hu and Schiantarelli (1998) break their sample into two samples to 
minimize endogeneity problems induced by the correlation between the error terms in the investment functions 
and the switching equation. However, this creates new problems by imposing restrictions on the nature of the 
firm-specific effects.  
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inactivity for a significant number of establishments in manufacturing, the sector was characterized by 

deepening capital obsolescence and a potential decline in capital productivity. Investments also 

feature a mesokurtic; that is, skewness and high kurtosis in investment distribution. These preliminary 

empirical regularities already suggest that the microeconomic industrial capital adjustment costs in 

Swaziland are nonconvex, and can translate to similar aggregate patterns as in Cooper et al. (1995) 

and Khan and Thomas (2008).  

Looking at industrial investment hazard functions, slicing the data into groups of small and large 

plants produces interesting results. A firm’s discrete choice to invest in PME appears to be scale 

dependent. Large firms’ propensity to invest in excess of 20 percent is significantly higher than that of 

small firms at standard statistical levels. This story remains unchanged when the definition of an 

investment spike is reduced to 10 percent. However, the probability of an industrial spike for either 

group of plants is less than seven percent during the period under study. This re-enforces the earlier 

conclusion about a general investment passivity among Swazi firms during the entire period of trade 

liberalization. Our conjecture is that this period ushered in new market competition that forced 

inefficient establishments out of business while foreign plants relocated back in home markets to 

experience economies of scale. For remaining firms, the re-integration of South Africa back to the 

world economy brought substantial business uncertainty in the customs union which required Swazi 

firms to monitor their own market share dynamics and hold back on major new capital investments. 

The data is further taken to rigorous analysis using a structural model of investment to establish the 

impact of state dependence of investment decisions and the sales/capital ratio, controlling for plant 

size. We begin with generalized method of moments (GMM) estimators that exploit orthogonality 

conditions applied to the theoretical model. This effort produces imprecise coefficients of previous 

investment, sales/capital ratio and employment. One obvious source of imprecision in the estimation 

of model parameters is the small sample size of firms and high investment heterogeneity. This 

obscures any potential persistence in the investment rate series. Another likely explanation involves 

omitted variables that may be correlated with included regressors and this has confounding effects on 

parameters. Nonetheless, the orders of magnitude and the signs of the coefficients remain consistent 

with findings in the larger literature; see for example, Drakos and Konstantinou (2013) for the case of 

Greece. 

This approach is subsequently extended to a multilevel discrete choice binary data analysis that allows 

for both longitudinal within-firm dependence and unobserved heterogeneity. It further makes 

provision for the direct analysis of the impact of a firm’s option to exercise its option to wait-and-see 

in an uncertain environment and the associated interaction with sales/capital ratio and firm-size. The 

method we use to handle initial conditions and endogenous explanatory variables in the model of 

binary data with unobserved heterogeneity confirms the GMM results. That is, the theoretical model’s 

Stellenbosch University  https://scholar.sun.ac.za



116 
 

parameters are still imprecisely measured. However, when firms defer investment by a single lag, the 

cost of exercising this option is 5.56 percent or 4.91 percent depending on whether covariates are 

assumed exogenous or endogenous, respectively. Although interacting investment lags with the 

sales/capital ratio remains insignificant, the results change when the 𝑡𝑡 − 1 investment lag is interacted 

with firm-size. When a large firm begins investment after a single period of inactivity, this increases 

investments by 0.55 percent or 0.42 percent in the manufacturing sector depending on exogeneity-

endogeneity assumptions made about the covariates, respectively. 

The scale-dependence of industrial investment patterns in Swaziland is further subjected to a 

framework that provides for endogenous switching of firms between high and low investment 

regimes, 𝛽𝛽𝐻𝐻 and 𝛽𝛽𝐿𝐿; respectively. This helps in our understanding of the behaviour of investment 

patterns by small and large firms in periods of uncertainty in a small member of a customs union. This 

procedure reports a valid switch of investments between the high and low regimes. The high regime 

coefficients, 𝛽𝛽𝐻𝐻, are either insignificant or persistently zero but negatively charged. On the other 

hand, the low investment regime switchers report significantly negative coefficients, 𝛽𝛽𝐿𝐿. However, 

these results fail to corroborate the validity of scale-dependence in investments if the definition of 

firm size changes from employment to the inverse of real capital stock as in Letterie and Pfan (2007). 

That is, (𝐾𝐾𝑖𝑖𝑖𝑖)−1 is insignificant. 

4.10 Summary and Conclusion  

This chapter investigates the presence of state dependence, unobserved heterogeneity and the impact 

of real sales/capital ratio on investment rates for the manufacturing sector in Swaziland. It begins with 

a descriptive analysis of a panel dataset for 13 industries and finds that the rate of investment is as low 

as 0.24 percent every year, with the observed investment heterogeneity measured by the standard 

deviation just as low at 0.29.  

As is typical, investment inactivity dominates the distribution of investment rates, with or without 

M&R exclusions. Under conditions of new and M&R investment in PME, 44.05 percent of firm-year 

observations experienced zero investment in the 10-year period. About 14.53 percent and 11.44 

percent of these observations experienced a single and two investments in the same period, 

respectively. Only 36.12 percent of firm-year observations have at least two consecutive, non-missing 

investment sequences. There is generally a positive correlation between missingness patterns of 

investment and the likelihood of firms experiencing them.  

The analysis of the microeconomic investment spike hazard confirms the lacklustre investment 

patterns of the manufacturing sector during the period of trade liberalization in the Customs Union. 

Using the definition of an investment spike presented by Cooper et al. (1999), which is investment 
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rate in excess of 20 percent, the probability distribution of spiky events is less than 0.07. The fact that 

the empirical hazard is upward-sloping is taken as evidence of within-plant effects instead of 

between-plant effects. These lumpy investments are scale-dependent in that they are dominated by 

firms employing more than 50 workers.  

Such behavioural patterns of investment are consistent with relatively more focus on industrial M&R 

for machinery and equipment, and much less on new investment in, or replacement of, PME. This 

implies that the manufacturing sector in Swaziland experienced limited capital adjustment costs of 

installation and worker re-training. It also experienced marked obsolescence in machinery and 

equipment due potentially to heightened economic uncertainty. 

Using a structural model of investment, we investigated the effects of past investments, unobserved 

heterogeneity and real sales/capital ratio on investment rates by relying on three methods. These were 

the GMM approach, multilevel random-effects and the switching regression regime methods. We find 

that the impact of true state dependence is insignificant in all models. That is, previous investment has 

no influence on the current decision to invest in the Swazi manufacturing sector. However, this is not 

an indictment of the conventional wisdom that the best predictor of current investment is its lagged 

levels as discussed in the descriptive analysis section. It is simply a reflection of a non-investing 

sector because of high uncertainty and associated firm-level entry/exit dynamics. The ratio of real 

sales/capital also has insignificant effects on investment rates across model specifications. 

Furthermore, the impact of unobserved individual firm characteristics underlying the discrete choice 

to invest in PME had insignificant effects on investment rates. This suggests that technological change 

does not translate into transformational and entrepreneurial investment. Therefore, unobserved 

heterogeneity and investment dynamics confer insignificant effects in the structural model. 

However, allowing for self-selection of firms into high and low investment regimes, the endogenous 

regime switching model adds more clarity on the results obtained in the GMM and multilevel random 

intercept models. While the empirical hazard function displays large firm dominance in spiky 

investment episodes, the endogenous investment regime switching model produces scale-independent 

results. That is, the inverse of capital stock remains insignificant in all model specifications. Thus, 

both firm sizes locate in either regime in the manufacturing sector. More specifically, high regime 

investors are largely in the zone of inaction while those in the low investment regime are accountable 

for observed disinvestments. A Wald-test of model independence in the switching regression model is 

generally confirmed. Firms are subject to common exogenous shocks of trade liberalization, and 

investment decisions are characterized by herd behaviour leading to a dominant response of 

exercising the option to withholding 𝑡𝑡 − 1 investment until period 𝑡𝑡.  

Stellenbosch University  https://scholar.sun.ac.za



118 
 

Our structural model only included time-variant covariates. The variation in investment rates that is 

not explained by changes in marginal q, investment dynamics and employment is captured through 

the intraclass correlation of 27 percent. That is, omitted time-constant regressors might also be 

important in the model. 

For the first time as far as we are aware, we obtain the most interesting results when the impact of 

missing values of net PME expenditure on the investment rate is investigated in more depth. This 

involves identifying firm-level consecutive sequences of positive investments, along with instances of 

non-response to capture cases with no 𝑡𝑡 − 1 investment values. The impact of such missing values 

significantly reduces the decision to invest by [4.91, 5.56] percent. This means that the cost of 

delaying investment in the sector by one period is a reduction of investment in the next period by a 

significant percentage in Swaziland. An increase in the lag depth of firms’ exercising of the option to 

wait before investing generates an increase in the industrial investment cost. However, when the 

incidence of missing values is interacted with employment, the probability of investment substitution 

by employment is significantly increased by [0.43,   0.55 ] percent in the sector. This means that the 

lack of robust investment in capital goods in the sector was compensated for by increasing 

employment, at the margin. 

As a whole, this means that the manufacturing sector in Swaziland experienced a high incidence of 

zero investment in plant, machinery and equipment in the period 1994-2003. More specifically, firms 

refrained from large capital investments for the establishment of new plants but maintained and 

repaired the machinery and equipment to keep business operations running. This was complemented 

with some capital substitution for employment. A consequence of this investment behaviour by Swazi 

manufacturers was a deterioration and becoming obsolete of capital goods in the sector, leading to a 

general decline in technological advancement. Another effect involved the loss of predictive power of 

current investment concerning future investments. The timidity and herd behaviour observed among 

firms also dampened any impact of unobserved industrial heterogeneity. That is, firms’ capital 

adjustment plans were largely similar among producers and insignificant across industries. 

Since the conditional model in this paper conditions on initial responses and explanatory covariates, 

and uses consecutive sequences of at least two non-missing values of investment rates to analyse 

contiguous sequences, it fails in datasets with limited successive sequences. Therefore, the next 

research agenda involves nonlinear methods of estimation that directly account for the unbalanced 

nature of investment data. Such methods need to allow for the use of all available observations while 

relaxing the assumption that observations are completely missing at random. A similar idea is 

conceptualized by Albarran et al. (2015) who develop some dynamic nonlinear random effects 

models with unbalanced panels based on all available information. Wooldridge (2010) also presents 

useful correlated random effects models with unbalanced panels. 
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The structural model studied here can be extended in other directions. One such extension would 

involve relaxing the first-order Markov structure by considering an increased lag depth of the 

investment rate or by specifying models where the lagged investment has time-varying parameters, 

see Skrondal and Rabe-Hesketh (2014). Second, Francis, Stott and Davies (1996) and Albert and 

Follmann (2003) construct models which allow covariate parameters and the impact of the random 

intercept to depend on own previous states. Third, a direct extension of this work can also entail 

nominal, ordinal or censored responses or counts, including the conditional approach discussed in 

Wooldridge (2005) for various response types. Fourth, investment dynamics can be expressed in 

terms of latent Markov models; that is, in terms of 𝑦𝑦𝑖𝑖−1,𝑗𝑗
∗  as in Pudney (2008). Alternatively, we could 

follow Heckman (1981a) who generalizes a transition model of binary responses that incorporates 

lags for both observed and latent responses. Fifth, we could relax the longitudinal independence 

assumption concerning the level 1 error as in Hyslop (1999), Stewart (2006) and Hajivassiliou and 

Ioannides (2007). Sixth, the use of a random intercept to specify unobserved heterogeneity could be 

replaced with more general specifications involving several random coefficients or common factors as 

in Heckman (1981a), Bollen and Curran (2004) and Skrondal and Rabe-Hesketh (2014).  
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APPENDICES 

Appendix A4.1: Definition of Terms for the GMM Estimation 

Endogeneity: when 𝑥𝑥𝑖𝑖𝑖𝑖 is endogenous, it is correlated with current and deeper lags of shocks; i.e. 

𝐸𝐸(𝜀𝜀𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖) = 0 ∀ 𝑡𝑡 > 𝑠𝑠 and 𝐸𝐸(𝜀𝜀𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖) ≠ 0 ∀ 𝑡𝑡 ≤ 𝑠𝑠, ∀ 𝑖𝑖 = 1, … ,𝑁𝑁, ∀ 𝑡𝑡, 𝑠𝑠 = 1, … ,𝑇𝑇. Lagged values 

dated t−2 and earlier are therefore valid instruments; hence, variables in first differences are 

instrumented with suitable lags of their own levels. 

Predetermined: when 𝑥𝑥𝑖𝑖𝑖𝑖 is predetermined, it is uncorrelated with future shocks but is correlated with 

their lags; i.e. 𝐸𝐸(𝜀𝜀𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖) = 0 ∀ 𝑡𝑡 ≥ 𝑠𝑠 and 𝐸𝐸(𝜀𝜀𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖) ≠ 0 ∀ 𝑡𝑡 < 𝑠𝑠, ∀ 𝑖𝑖 = 1, … ,𝑁𝑁, ∀ 𝑡𝑡, 𝑠𝑠 = 1, … ,𝑇𝑇. The 

first differenced equation has t−1 and earlier valid instruments. 

Exogeneity: strict exogeneity of 𝑥𝑥𝑖𝑖𝑖𝑖  means the entire time series is a valid set of instruments in each of 

the first differenced equations in addition to the response variable t−2 and earlier. In this 

case, 𝐸𝐸(𝜀𝜀𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖) = 0 ∀ 𝑖𝑖 = 1, … ,𝑁𝑁, ∀ 𝑡𝑡, 𝑠𝑠 = 1, … ,𝑇𝑇 together with any other instrument, can enter the 

instrument matrix, Z, in FD, with one column per instrument. 

Appendix A4.2: Equality of Results from Helmert Transformation of Raw and Demeaned Data 

Arellano and Bover (1995) formerly developed a data transformation approach based on the Helmert 

technique that does not suffer from the gap problem experienced when using the first-difference 

method. Love and Zicchino (2006) then developed a panel vector autoregression code for stata 

(pvar2), see also Ryan Decker’s Note on the Helmert’s transformation. This Appendix proves the 

equivalence between the results generated from either raw or demeaned data when using the Forward 

Orthogonal Deviations Transform.  

Definitions: Suppose 𝑥𝑥𝑖𝑖𝑖𝑖𝐻𝐻 denotes the Helmert-transformed version of raw data for, say, sector i over 
time 𝑡𝑡. Then  

𝑥𝑥𝑖𝑖𝑖𝑖𝐻𝐻 = � 𝑇𝑇 − 1
𝑇𝑇 − 𝑡𝑡 + 1

�𝑥𝑥𝑖𝑖𝑖𝑖 −
1

𝑇𝑇 − 1
� 𝑥𝑥𝑖𝑖𝑖𝑖

𝑇𝑇

𝑛𝑛=𝑡𝑡+1

� 

where 𝑡𝑡 ∈ (1,2, … ,𝑇𝑇). Notice that 𝑥𝑥𝑖𝑖𝑖𝑖𝐻𝐻 for time 𝑡𝑡 is the average of all future observations from time 
𝑡𝑡 + 1 through 𝑇𝑇. Observe also that this expression weighs heavily for observations closer to the 
beginning of the time series.  

Now consider 𝑥𝑥𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻 to be a time-demeaned Helmert-transformation so that 

𝑥𝑥𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻 = � 𝑇𝑇 − 1
𝑇𝑇 − 𝑡𝑡 + 1

�𝑥̈𝑥𝑖𝑖𝑖𝑖 −
1

𝑇𝑇 − 1
� 𝑥̈𝑥𝑖𝑖𝑖𝑖

𝑇𝑇

𝑛𝑛=𝑡𝑡+1

� 
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where  𝑥̈𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖 and 𝑥̅𝑥𝑖𝑖 = 1
𝑇𝑇
∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑡𝑡=1 . 

Proposition:  𝑥𝑥𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻 = 𝑥𝑥𝑖𝑖𝑖𝑖𝐻𝐻 

Proof:  

𝑥𝑥𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻 = � 𝑇𝑇 − 1
𝑇𝑇 − 𝑡𝑡 + 1

�𝑥̈𝑥𝑖𝑖𝑖𝑖 −
1

𝑇𝑇 − 1
� 𝑥̈𝑥𝑖𝑖𝑖𝑖

𝑇𝑇

𝑛𝑛=𝑡𝑡+1

� 

= � 𝑇𝑇 − 1
𝑇𝑇 − 𝑡𝑡 + 1

�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖 −
1

𝑇𝑇 − 1
� (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖)
𝑇𝑇

𝑛𝑛=𝑡𝑡+1

� 

= � 𝑇𝑇 − 1
𝑇𝑇 − 𝑡𝑡 + 1

�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖 −
1

𝑇𝑇 − 1
� 𝑥𝑥𝑖𝑖𝑖𝑖 +

1
𝑇𝑇 − 1

� 𝑥̅𝑥𝑖𝑖

𝑇𝑇

𝑛𝑛=𝑡𝑡+1

𝑇𝑇

𝑛𝑛=𝑡𝑡+1

� 

= � 𝑇𝑇 − 1
𝑇𝑇 − 𝑡𝑡 + 1

�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖 −
1

𝑇𝑇 − 1
� 𝑥𝑥𝑖𝑖𝑖𝑖 +

1
𝑇𝑇 − 1

(𝑇𝑇 − 1)𝑥̅𝑥𝑖𝑖

𝑇𝑇

𝑛𝑛=𝑡𝑡+1

� 

= � 𝑇𝑇 − 1
𝑇𝑇 − 𝑡𝑡 + 1

�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖 −
1

𝑇𝑇 − 1
� 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥̅𝑥𝑖𝑖

𝑇𝑇

𝑛𝑛=𝑡𝑡+1

� 

= � 𝑇𝑇 − 1
𝑇𝑇 − 𝑡𝑡 + 1

�𝑥𝑥𝑖𝑖𝑖𝑖 −
1

𝑇𝑇 − 1
� 𝑥𝑥𝑖𝑖𝑖𝑖

𝑇𝑇

𝑛𝑛=𝑡𝑡+1

� 

= 𝑥𝑥𝑖𝑖𝑖𝑖𝐻𝐻 

Q.E.D. 
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Appendix A4.3: GMM Estimation of the Structural Equation of Investment using the Principal 
Component Analysis (PCA) for Reduction of Instrument Proliferation 

Variable 
GMM DIFF−PCA GMM SYS−PCA 

One−Step Two−Step One−Step Two−Step 
𝐼𝐼𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 −0.014 0.025 0.358 0.358*   
(0.2536) (0.2817) (0.1839) (0.1665) 

𝑠𝑠𝑡𝑡
𝑘𝑘𝑡𝑡−1

 −0.187 −0.244 −0.163 −0.162 
(0.1801) (0.199) (0.1692) (0.1584) 

𝑠𝑠𝑡𝑡−1
𝑘𝑘𝑡𝑡−2

 −0.051 −0.059 0.215* 0.225*   
(0.1026) (0.0845) (0.0969) (0.1053) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 
 

−0.01 −0.006 −0.128 −0.146 
(0.1411) (0.1642) (0.1315) (0.1419) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 
 

0.16 0.185 0.181 0.199 
(0.1385) (0.1527) (0.1305) (0.1389) 

Constant − − −0.221 −0.232 

 
− − (0.2193) (0.2047) 

NT 100 100 171 171 
N 43 43 68 68 
AR(1)−p-value 0.062 0.17 0.024 0.069 
AR(2)−p-value 0.033 0.13 0.047 0.145 
Sargan −p-value 0.0499 0.0499 0.0348 0.0348 
Hansen −p-value 0.9992 0.9992 0.967 0.967 
#Z 76 76 78 78 
#X 12 12 12 12 
Wald χ2 −Test 77.9 47.85 279.87 166.22 
χ𝑝𝑝2  0 0 0 0 
h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 
Note: The high Hansen p-value suggests that high instrument proliferation caused over-fitting of endogenous 
variables, see Roodman (2009a, p. 98). The covariate estimates can therefore serve as upper bounds.  
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CHAPTER 5: Conclusion  

This dissertation has two but related purposes. First, it exploits a unique firm-level panel dataset of 

manufacturing firms in Swaziland to extract evidence on micro activities that culminate in macro 

outcomes during a very interesting period in the history of the Customs Union. Second, it answers the 

following very specific questions:  

a) What is the general nature of structural change in the Swazi economy? How has firm-size 

distribution in the manufacturing sector evolved? Is the popular belief about the job creating 

prowess of small firms a valid proposition for the manufacturing sector in Swaziland?  

b) What impact does firm-level technical efficiency and primary input reallocation across firms 

have on aggregate productivity growth in manufacturing? As an auxiliary question, how much 

impact does firm turnover have on APG in the sector? 

c) What are the characteristic patterns of industrial investment in plant, machinery and 

equipment in Swaziland? What effects do state dependence and unobserved heterogeneity 

have on investment decisions in manufacturing? Is a structural investment model best 

explained in terms of an investment regime switching model in the manufacturing sector? 

How can the cost of exercising the investment option to wait be measured in an economic 

environment replete with uncertainty? 

The manufacturing sector in many African economies is characterized by positive growth driven 

mostly by structural change since the last decade and a half prior to the 21st Century. Reallocation of 

labour inputs across sectors contributes relatively more than within-firm technical change to aggregate 

productivity growth. As a result, some leading development economists have dubbed this an ‘African 

Growth Miracle’. It replaces the traditional pessimism of growth prospects with notions of expanded 

Chinese investment and positive commodity price movements. However, this over-dependence on the 

external environment, the low levels of productivity and constrained private sector investment in 

globally competitive industries are conducive to an unsustainable growth path for African economies. 

An analysis of structural change focussing on Swaziland showed a persistent weakening of the 

manufacturing sector in terms of its share of economic activity and employment relative to the 

services sector. The manufacturing sector’s share of GDP trended downwards while the agricultural 

share of output was mostly fixed at the same level throughout the period of analysis. During the same 

period, the services sector’s share only marginally trended upwards. Therefore, the size of the 

manufacturing sector in Swaziland, the lack of robust industrialization and the limited diversification 

into globally competitive industrial investments are potential constraints to structural change. In the 

large and growing literature, the observation is that economic development in Africa is not likely to 

come from the manufacturing sector, but rather from either agriculture or services. However, given 

Swaziland’s level of development, economic development driven by the services sector would 
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constitute premature de-industrialization that might render the country’s economic growth trajectory 

unsustainable at best or divergent at worst.  

At a micro level, the character of firm-level data was evaluated to establish its quality in relation to 

published macro data. The annual census data for the manufacturing sector in Swaziland closely 

resembles similar datasets collected by other statistical agencies. In order to analyse the panel dataset 

directly, the entry-exit dynamics were measured on the basis of a plant’s identity code appearing for 

the first time rather than on firm registration or the last date of existence in the database, respectively. 

On the whole, the dataset was at least of as good a quality as any other compiled by a government 

statistical agency. 

Analyses of the data by two-digit ISIC industry show the sector’s overdependence on a few primary 

commodities for export to preferential markets. This exposes producers, upstream suppliers of inputs, 

and downstream customers to the potential risk of preferential treatment erosion. For example, a loss 

of market access for sugar in the EU and U.S. would cause the sugar industry to trade in the volatile 

world market where sugar prices are generally depressed. Export revenue would decline significantly 

forcing sugar producers to scale down operations. Likewise, upstream sugarcane farmers would 

receive reduced revenue such that the scale of production would also need scaling down. Again, 

downstream manufacturers of soft drink concentrates and other users of sugar would have inadequate 

supplies of this critical input and may have to import it and incur significant transport costs. The 

effect on the whole value chain would be a loss in revenues and employment. 

The notion that the distribution of firm size in developing African countries is characterized by a 

bimodal distribution with a missing middle is investigated graphically and statistically in the industrial 

sector. The annual firm-size lognormal distributions shifted towards the left demonstrating a general 

economic deterioration during the 10-year period. This distribution evolves overtime to a state where 

it initially declines rapidly after its modal level, then slows down as if to form a ‘dip’ before 

accelerating again.  The pattern of distributional change does not form two modes at any one year. 

Using a statistical approach, we regress the average product of primary inputs on firm size. The dip-

test statistic for both proxies of the marginal product of inputs strongly rejects the presence of a 

missing middle in the ten annual cross-sections of the data. Thus, the missing ‘missing middle’ found 

in Hsieh and Olken (2014) for the cases of India, Indonesia and Mexico is confirmed for the case of 

Swaziland. 

In the study of job flows, the manufacturing sector produces results that are consistent with findings in 

other countries. The simultaneity of job creation and destruction features throughout the period of 

analysis for each establishment size category. However, job destruction significantly dominates job 

creation in all plant sizes. Looking at longitudinal patterns in detail, small firms destroyed more jobs 
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than they created and large firms created more jobs than small plants. While small plants create an 

annual average of 0.9 percent jobs, large plants create 3.5 times more new jobs every year. Job 

destruction by large firms shows sharp volatility throughout the period of analysis and it also exceeds 

the job destruction by small plants. Although small firms destroy an annual average of 3.59 percent 

jobs, large firms destroy approximately as much as 1 in 9 manufacturing jobs every year. Thus, the 

manufacturing sector was destroying more jobs than creating them as in Kerr et al. (2013) for South 

Africa’s case.  

Interesting results are produced when job turnover is linked to productivity growth. The longitudinal 

productivity effect was on average as low as −5.93 percent during the decade of economic reforms in 

the Customs Union. This means that productivity growth within incumbent firms had a negative 

impact on the overall productivity growth. Since this average metric is higher than the median, it 

suggests that the productivity distribution is left heavy-tailed with volatility estimated at 1.7. This 

accords well with literature that there is prevalence of firm-level inefficiency and limited structural 

transformation in developing country manufacturing sectors. Labour reallocation is on average 4.63 

percent and positively skewed with volatility estimated at 1.6, signifying a right heavy-tailed 

distribution. Again, this means that larger firms dominate the process of input resource reallocation to 

more efficient larger firms. In contrast, entry-exit dynamics produce the highest average productivity 

contribution to ALP growth at the net entry of 8.78 percent. The higher average productivity growth 

exhibited by the entrants’ component indicates that there are extreme positive outliers pulling the 

mean over time 

However, the standard definition of aggregate productivity growth used so far is based exclusively on 

establishment-level technical efficiency residuals. The literature defines this index as input-share 

weighted changes in the distribution of firm-level technical efficiency, decomposed into technical 

efficiency and technical efficiency reallocation. The latter is defined as the product between the 

change in the share of labour and the averaged log-level of productivity aggregated across all firms. In 

this thesis, we appeal to the microfoundations of aggregate productivity growth that allows for the use 

of labour changes weighted by the marginal product of labour to estimate labour reallocation across 

firms. 

Therefore, the investigation began with determining primary input trends, aggregate productivity and 

factor-intensities in Swazi manufacturing firms over a period of trade liberalization. It proceeded with 

descriptive analyses and then investigated the drivers of aggregate productivity growth over time and 

across industries. A cross-country comparison of drivers of aggregate labour productivity growth with 

those of the Swazi manufacturing sector was also undertaken. We then deepened the analysis to focus 

on Swaziland by decomposing aggregate labour productivity growth over time using traditional 

methods and also relying on Petrin and Levinsohn (2012) as applied by Nishida et al. (2014). We 
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concluded with an analysis of seemingly outlying aggregate labour productivity growth in 1998 and 

1999 to determine the characteristics of entrants associated with it.  

The descriptive evidence showed a decline in both aggregate labour and capital productivities and an 

increase in the capital−labour ratio. It also showed a leftward distribution of ALP and increasing 

heaviness of both tails. Three potential explanations for this were identified. First, firms shed more 

labour relative to capital due to capital irreversibility and to South African companies shifting 

production back to South Africa as a response to the lifting of economic sanctions, while keeping 

Swazi plants in operation to cover their variable costs. Second, there was entry of lower ALP firms.  

An in-depth analysis using the conventional approach found that the ALP growth was driven largely 

by net entry, then by cross-firm share-shift and negatively by within-firm technical change. This result 

was robust to controlling for confounding effects of plant turnover in the Baily et al. (1992) method. 

Using the Petrin and Levinsohn (2012) approach produced the same order of importance for APG 

components. That is, the net-entry contribution explained most of the changes in APG followed by 

input reallocation, while technical efficiency remained negative every year.  

However, the most interesting case was the combined input reallocation reflecting cross-plant 

movements. The average reallocation of the input bundle from low to high productivity incumbent 

plants was 0.15 percent per year. However, isolating the average annual rate of labour reallocation 

from the contribution of all inputs put together produced 3.25 percent. Furthermore, paid employment 

showed positive growth in every year and accounted for an average of about 98 percent of all labour 

reallocated per year. These results are robust to ‘single-deflation’ by the manufacturing value-added 

deflator and ‘double-deflation’ by consumer price index. Furthermore, the annual average of net-entry 

contribution to APG was 58.01 percent and was mainly accounted for by the dramatic increase of 

APG in 1998 and 1999 due to firm entry. Thus, the analysis reveals that individual contributions by 

the extensive and intensive margins of resource reallocation to APG decisively dominate technical 

efficiency in the manufacturing sector in Swaziland. Firms were not investing more in improving 

production efficiency through innovation and adoption of new technologies than they were moving 

labour to higher activity producers. This conclusion remained robust regardless of the deflation 

procedure used in the estimation of the real value-added production function. The novelty of our 

results lies in the use of microfoundations to define aggregate productivity growth.  

The investigation concludes with determining the presence of state dependence, unobserved 

heterogeneity and the impact of real sales/capital ratio on investment rate in the Swazi manufacturing. 

It began with descriptive analyses of a panel dataset for 13 industries and found that the rate of 

investment was as low as 0.24 percent every year, with the observed investment heterogeneity 

measured by the standard deviation just as low at 0.29.  
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As is typical, investment inactivity dominates the distribution of investment rates, with or without 

maintenance and repairs exclusions. Under conditions of new as well as maintenance and repairs 

investment in PME, 44.05 percent of firm-year observations experienced zero investment in the 10-

year period. About 14.53 percent and 11.44 percent of these observations experienced a single and 

two investments in the same period, respectively. Only 36.12 percent of firm-year observations have 

at least two consecutive, non-missing investment sequences. There is generally a positive correlation 

between missingness patterns of investment and the likelihood of firms experiencing them.  

The analysis of the empirical hazard function of microeconomic investment spikes confirms the 

lacklustre investment patterns of the manufacturing sector during the period of trade liberalization. 

Using the definition of an investment spike presented by Cooper et al. (1999), which is investment 

rate in excess of 20 percent, the probability distribution of spiky events is less than 0.07. The fact that 

the empirical hazard is upward-sloping is taken as evidence of within-plant effects instead of 

between-plant effects. These lumpy investments are scale-dependent in that they are dominated by 

firms employing more than 50 workers. Such behavioural patterns of investment are consistent with 

relatively more focus on industrial M&R for machinery and equipment, and much less on new PME 

investment and/or replacement. This implies that the manufacturing sector in Swaziland experienced 

limited capital adjustment costs of installation and worker re-training. It also experienced marked 

obsolescence in machinery and equipment due potentially to heightened economic uncertainty. 

Using a structural model of investment, we investigated the effects of past investments, unobserved 

heterogeneity and the real sales/capital ratio on investment rates by relying on three methods. These 

were the GMM approach, multilevel random-effects and the switching regression regime methods. 

We found that the impact of true state dependence is insignificant in all models. That is, previous 

investment has no influence on the current decision to invest in the Swazi manufacturing sector. 

However, this is not an indictment of the conventional wisdom that the best predictor of current 

investment is its lagged levels as discussed in the descriptive analysis section. It is simply a reflection 

of a non-investing sector because of high uncertainty and associated firm-level entry/exit dynamics. 

The ratio of real sales/capital also has insignificant effects on investment rates across model 

specifications. Furthermore, the unobserved individual firm characteristics underlying the discrete 

choice to invest in PME have an insignificant effect on investment rates. This suggests that 

technological change does not translate into transformational and entrepreneurial investment. 

Consequently, unobserved heterogeneity and investment dynamics confer insignificant effects in the 

structural model. 

However, allowing for self-selection of firms into high and low investment regimes, the endogenous 

regime switching model adds more clarity to the results obtained in the GMM and multilevel random 

intercept models. While the empirical hazard function displays large firm dominance in spiky 
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investment episodes, the endogenous investment regime switching model produces scale-independent 

results. That is, the inverse of capital stock remains insignificant in all model specifications. Thus, 

both firm sizes locate in either regime in the manufacturing sector. More specifically, high regime 

investors are largely in the zone of inaction while those in the low investment regime are accountable 

for observed disinvestments. A Wald-test of model independence in the switching regression model is 

generally confirmed, unless employment is controlled for. Firms are subject to common exogenous 

shocks of trade liberalization, and investment decisions are characterized by herd behaviour leading to 

a dominant response of exercising the option to withhold 𝑡𝑡 − 1 investment until period 𝑡𝑡.  

Furthermore, our structural model only included time-variant covariates. The variation in investment 

rates that is not explained by changes in marginal q, investment dynamics and employment is 

captured through the intraclass correlation of 27 percent. That is, omitted time-constant regressors 

might also be important in the model. 

We obtain the most interesting results when the impact of missing values of net PME expenditure on 

the investment rate are investigated in detail, for the first time as far as we are aware. This involves 

identifying firm-level consecutive sequences of positive investments, along with instances of non-

response to capture cases with no 𝑡𝑡 − 1 investment values. The impact of such missing values 

significantly reduces the decision to invest by [4.91, 5.56] percent. This means that the cost of 

delaying investment in the sector by one period leads to a reduction in the probability of investment in 

the next period by a significant percentage in Swaziland. An increase in the lag depth of firms’ 

exercising of the option to wait before investing generates an increase in the industrial investment 

cost. However, when the incidence of missing values is interacted with employment, the probability 

of investment substitution by employment is significantly increased by [0.43,   0.55 ] percent in the 

sector. This means that the lack of robust investment in capital goods in the sector was compensated 

for by increasing employment, at the margin. 

Since the conditional model conditions on initial responses and explanatory covariates, and uses 

consecutive sequences of at least two non-missing values of investment rates to analyse contiguous 

sequences, it fails in datasets with limited successive sequences. Therefore, the next research agenda 

involves nonlinear methods of estimation that directly account for the unbalanced nature of 

investment data. Such methods need to allow for the use of all available observations while relaxing 

the assumption that observations are completely missing at random. A similar idea is conceptualized 

by Albarran et al. (2015) who develop some dynamic nonlinear random effects models with 

unbalanced panels based on all available information. Wooldridge (2010) also presents useful 

correlated random effects models with unbalanced panels. 
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The structural model studied here can be extended in different directions. One such extension would 

involve relaxing the first-order Markov structure by considering an increased lag depth of the 

investment rate or by specifying models where the lagged investment has time-varying parameters, 

see Skrondal and Rabe-Hesketh (2014). Second, Francis et al. (1996) and Albert and Follmann (2003) 

construct models which allow covariate parameters and the impact of the random intercept to depend 

on own previous states. Third, a direct extension of this work can also entail nominal, ordinal or 

censored responses or counts, including the conditional approach discussed in Wooldridge (2005) for 

various response types. Fourth, investment dynamics can be expressed in terms of latent Markov 

models; that is, in terms of 𝑦𝑦𝑖𝑖−1,𝑗𝑗
∗  as in Pudney (2008). Alternatively, we could follow Heckman 

(1981c) who generalizes a transition model of binary responses that incorporates lags for both 

observed and latent responses. Fifth, we could also relax the longitudinal independence assumption 

concerning the level 1 error as in Hyslop (1999), Stewart (2006) and Hajivassiliou and Ioannides 

(2007). Sixth, the use of a random intercept to specify unobserved heterogeneity could be replaced 

with more general specifications involving several random coefficients or common factors as in 

Heckman (1981c), Bollen and Curran (2004) and Skrondal and Rabe-Hesketh (2014). Other 

possibilities include nonlinear state space models of longitudinal data, see Gala (2015), Fahrmeir and 

Tutz (2001, Section 4), Bayesian inference (Hasegawa, 2009) and generalized structural model 

equations (Skrondal and Rabe-Hesketh, 2004). 

In summary, the main findings of this dissertation are that the Swazi economy experienced a 

deterioration of structural change and a decline in industrial aggregate productivity growth during the 

trade liberalization episode of the 1990s. Economic activity was characterized by a decade-long 

stagnation with a high probability of hollowing out in the manufacturing sector. The firm-size 

distribution itself in this sector evolved leftwards to a cross-sectional “missing middle” form by 2003, 

which is a common feature of underdevelopment in developing economies. Furthermore, there has 

been a complete failure of the industrial job creating prowess of small firms in Swaziland. This 

suggests an absence of plant-level transition channels from subsistence to transformational 

entrepreneurship in the Swazi manufacturing sector. At the same time, while job destruction generally 

dominated job creation, most of the churning involved larger firms. In the decomposition of APG, the 

sector revealed three sources of growth or decline. First, firm-level innovation and technical 

advancement; that is, technical efficiency, was APG-reducing. Second, a positive productivity growth 

contribution was generated by the large firm-entry margin. Third, labour reallocation from low to high 

productivity firms was persistently APG-enhancing. Finally, the manufacturing sector in Swaziland 

experienced depressed capital adjustment activities during this period of economic reforms in the 

Customs Union. That is, there was coexistence of both high incidence of zero and rare lumpy capital 

investment in PME in the manufacturing sector. 
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