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SUMMARY 

Clinical gait analysis has been proven to greatly improve treatment planning and 

monitoring of patients suffering from neuromuscular disorders. Despite this fact, it 

was found that gait analysis is still largely underutilised in general patient-care due to 

limitations of gait measurement equipment. Inertial motion capture (IMC) is able to 

overcome many of these limitations, but this technology is relatively untested and is 

therefore viewed as adolescent.  

 

This study addresses this problem by evaluating the validity and repeatability of gait 

parameters measured with a commercially available, full-body IMC system by 

comparing the results to those obtained with alternative methods of motion capture. 

The IMC system’s results were compared to a trusted optical motion capture (OMC) 

system’s results to evaluate validity. The results show that the measurements for the 

hip and knee obtained with IMC compares well with those obtained using OMC – 

with coefficient-of-correlation (R) values as high as 0.99. Some discrepancies were 

identified in the ankle-joint validity results. These were attributed to differences 

between the two systems with regard to the definition of ankle joint and to non-ideal 

IMC system foot-sensor design.  

 

The repeatability, using the IMC system, was quantified using the coefficient of 

variance (CV), the coefficient of multiple determination (CMD) and the coefficient of 

multiple correlation (CMC). Results show that IMC-recorded gait patterns have high 

repeatability for within-day tests (CMD: 0.786-0.984; CMC: 0.881-0.992) and 

between-day tests (CMD: 0.771-0.991; CMC: 0.872-0.995). These results compare 

well with those from similar studies done using OMC and electromagnetic motion 

capture (EMC), especially when comparing between-day results.  

 

Finally, to evaluate the measurements from the IMC system in a clinically useful 

application, a neural network was employed to distinguish between gait strides of 

stroke patients and those of able-bodied controls. The network proved to be very 

successful with a repeatable accuracy of 99.4% (1/166 misclassified). The study 

concluded that the full-body IMC system produces sufficiently valid and repeatable 

gait data to be used in clinical gait analysis, but that further refinement of the ankle-

joint definition and improvements to the foot sensor are required. 
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OPSOMMING 

Dit is bewys dat kliniese gang-analise tot groot verbeterings lei in die 

versorgingsbeplanning en monitering van pasiënte wat aan neuromuskulêre siektes ly. 

Ten spyte hiervan word daar gevind dat gang-analise steeds onderbenut word in 

algemene pasiëntesorg vanweë tekortkominge in gang-opnametoerusting. Inersie-

bewegingsopname (IBO) bied oplossings vir vele van hierdie tekortkominge, maar 

die tegnologie is steeds relatief ongetoets en word dus as onvolwasse beskou.  

 

In hierdie studie word dié probleem aangespreek deur die geldigheid en 

herhaalbaarheid van gang-parameters, wat met behulp van ’n kommersieel beskikbare 

IBO-stelsel gemeet is, te ondersoek deur die resultate met alternatiewe 

bewegingsopnamemetodes te vergelyk. Die IBO-stelsel is vergelyk met ’n betroubare 

optiese bewegingsopname (OBO)-stelsel om die geldigheid te bepaal. Resultate toon 

dat IBO-opnames goed vergelyk met dié van OBO wat geneem is van die heup en 

knie met waardes van koëffisiënt van korrelasie (R) wat strek tot 0.99. 

Geldigheidsresultate van die enkelgewrig toon swakker waardes. Die probleme word 

toegeskryf aan verskille in die definisie van die enkelgewrig en die nie-ideale 

ontwerp van die IBO-stelsel se voetsensor.  

 

Die herhaalbaarheid van die IBO-resultate is gekwantifiseer met behulp van die 

koëffisiënt van variasie (KV), koëffisiënt van veelvoudige determinasie (KVD) en die 

koëffisiënt van veelvoudige korrelasie (KVK). Resultate het getoon dat gang-

opnames met behulp van die IBO-stelsel goeie herhaalbaarheid toon vir sowel 

dieselfde-dag-toetse (KVD: 0.786-0.984; KVK: 0.881-0.992) en verskillende-dag-

toetse (KVD: 0.771-0.991 ; KVK: 0.872-0.995). Resultate vergelyk goed met dié van 

soortgelyke studies wat gedoen is met behulp van OBO en elektromagnetiese 

bewegingsopname (EBO), veral vir verskillende-dag resultate.  

 

Om gang-opnames van die IBO-stelsel in ’n nuttige kliniese toepassing te ondersoek, 

is ’n neurale netwerk ingespan om te onderskei tussen gang-opnames van pasiënte 

met beroerte en gang-opnames van ’n kontrolegroep. Die netwerk het goeie resultate 

getoon met ’n herhaalbare akkuraatheid van 99.4% (1/166 vals geklassifiseer). Die 

gevolgtrekking van hierdie studie is dus dat die IBO-stelsel voldoende geldigheid en 

herhaalbaarheid toon om van nut te wees vir kliniese gang-analise. Verdere verfyning 

van die enkelgewrig-definisie en verbetering van die voetsensors is egter nodig.              
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1. INTRODUCTION 

1.1. Introduction 

The analysis of human motion has progressed leaps and bounds from its origin in the 

times of Aristotle and Borelli (Baker, 2007). Gait analysis is used to quantify the 

mobility state of a person (Simon, 2004). This biomechanical information is useful in 

several fields and applications, including: the ongoing pursuit for improved 

performance and reduced injuries in athletes, the quest to make more believable 

humanoid characters in computer graphics and virtual reality, the planning of 

treatment protocols such as effective surgical intervention or orthopaedic prescription 

(Roetenberg, 2006, Steinwender et al., 2000). Gait analysis also offers insight into the 

development of motor learning skills in children, training development, rehabilitation 

monitoring and the effect of neuromuscular injuries on a patient’s daily living 

(Bronner, undated). The clinical applications mentioned are of greatest importance to 

this study.  

 

Current diagnostic observations of posture and movement made by physicians are 

subjective and dependent on their judgment and experience (Lee et al., 2000, Mackey 

et al., 2005). With the backing of several examples, Simon (2004) found that gait 

analysis supplies a confidence not provided by regular clinical examination, that the 

correct number and selection of surgical procedures can be chosen in patients with 

cerebral palsy. This is also the case for patients with other neuromuscular disorders. 

In spite of obvious advantages, gait analysis has nevertheless seen hampered 

popularity and is still rarely used as a means of clinical diagnosis (Simon, 2004). The 

limited utilization has been attributed to factors such as ineffective application of 

current technologies and poor lab organization, test procedure, result interpretation 

and report generation as well as the high cost associated with most gait studies. There 

is often a need for gait analysis to be conducted outside of a laboratory environment 

as in-lab walking differs from everyday walking (Simon, 2004). This attribute is also 

a requirement in the field of telemedicine where doctors are unable to meet the 

demand of patients in rural areas. Most gait labs are however unequipped to satisfy 

this requirement. 

      

In recent decades improvements in the field of photography have allowed researchers 

to conduct frame-by-frame analyses of the mechanics of human motion. Ever-

increasing revelation of the clinical potential of gait analysis has united the medical 

and engineering communities in efforts to fashion more efficient, accurate and 

versatile ways of capturing and analysing human motion. Although originating from 

clinical studies, the industry of motion capture (Mocap) has seen noticeable growth 

with the more recent popularity of life-like computer animations in television and 

computer gaming. This has birthed a variety of methods of Mocap, each with their 

own advantages and limitations (as discussed in Section 2.1.3.2). The most common 
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limitation in Mocap systems is their high cost and spatial restrictions. In almost all 

cases Mocap is conducted indoors and within limited spatial boundaries (Vlasic et al., 

2007). Only recently has technology allowed for the development of untethered 

Mocap such as magnetic and inertial motion capture (IMC). This is largely because of 

recent advances in Micro Electro Mechanical System (MEMS) technologies 

encouraging the development of small and inexpensive sensors such as 

accelerometers, gyroscopes and magnetometers which form the key components of 

inertial motion sensor units.  These sensors allow researchers to determine orientation 

based on passive measurements of physical quantities directly related to the motion 

and orientation of rigid bodies to which the sensors are attached (Bachmann, 2000). 

These, along with powerful microcontrollers, small batteries and high storage 

capacities directly facilitate long term, portable recordings of ambulatory 

measurements (Dejnabadi et al., 2005).     

 

With evident versatility and cost advantages over alternative, laboratory-based 

optical, acoustic and mechanical systems, it would seem that IMC offers solutions to 

several of the before-mentioned hampering factors. It is thus applicable to ask why 

IMC is still largely underutilized for clinical gait analysis. A possible answer lies in 

the adolescence of the technology in practice, and therefore the lack of confidence in 

its measurement accuracy. This study aims to address this hindrance by investigating 

the validity and repeatability of results obtained from a commercially available, full-

body IMC system, by comparing them to results obtained from a proven and 

commonly used optical motion capture (OMC) system. Various studies have been 

conducted to compare these technologies (Dejnabadi et al., 2005, Dejnabadi et al., 

2006, Favre et al., 2006, Roetenberg, 2006, Simon, 2004), however the author has 

found no evidence of such a comparison done during a routine ambulatory gait 

analysis.  

1.2. Problem statement 

Mocap methods currently used for clinical gait analysis are sufficiently accurate and 

well accepted among professionals in the field. However, these Mocap systems often 

lack spatial versatility and are relatively costly. Cheaper, more flexible methods of 

recording motion have emerged in recent years, but these are relatively untested in 

relevant applications and therefore invoke uncertainties among physicians.         

1.3. Motivation 

As mentioned above, there are several factors which limit the widespread utilization 

of gait analysis as an everyday clinical tool. These are summarized below: 
 

i. Gait analysis is primarily considered by most physicians to be a research 

tool rather than an aid to clinical decision-making. This view is often 
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supported by the fact that medical insurance companies do not cover gait 

analysis in their policies (Simon, 2004).  
 

ii. Gait laboratories are viewed as inefficient, unproductive and 

uneconomical because: 

 

o The laboratory setup and calibration procedures vary from test-to-test 

and patient-to-patient, making the procedure time consuming and 

therefore limiting the daily patient throughput. 

o In most cases trained professionals are employed to acquire process 

and interpret gait data. Associated labour costs are considered as the 

major contributor to the relatively high cost of gait tests. 

o Gait test reports, generated for physicians, are often tardy and contain 

vast amounts of unnecessary data (Simon, 2004). 
 

iii. Gait parameters are calculated using assumptions of skin movement and 

anatomical parameters to estimate joint angle centres rather than actual 

measured data (Simon, 2004). According to White et al. (1989) there are 

inherent errors associated with anatomical variability in bony contours and 

muscle attachment (White et al., 1989). This forces physicians to question 

the validity of measured gait parameters. 
  

iv. Most gait analyses are conducted within laboratories which limits both the 

range of motion and duration of tests. In several applications, including 

rehabilitation and sports performance analysis, it may be necessary that 

gait recordings be done in larger and more versatile locations. Long term 

gait assessments are often required for patients with neuromuscular 

disorders and ideally in the patient’s everyday home environments (refer 

to Section 2.1.1).  
 

v. Economic as well as logistical reasons cause trained physicians to be 

predominantly based in urban areas. This relates to hampered health care 

(such as gait analysis) for patients restricted to rural areas.     
 

vi. Current methods of recording the 3D kinematics suffer from several 

problems which cause uncertainty about their validity. According to 

Bachmann (2000) these include: Marginal accuracy, user encumbrance, 

range restrictions, susceptibility to interference, noise, poor registration, 

occlusion difficulties and high latency. These limitations in Mocap 

technologies are further discussed in Section 2.1.3.2      

1.4. Objectives 

In order to address the listed factors which have curbed gait analysis from becoming a 

commonly used diagnostic tool, the following objectives can be suggested: 
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i. To identify the most significant limitations to current means of conducting 

3D kinematic gait analysis. 
 

ii. To identify and define the requirements of a full-body motion capture 

system necessary for accurate and reliable gait analysis.   

 

iii. To both qualitatively and quantitatively test whether IMC offers a solution 

to the above-mentioned limitations. 
 

iv. To test the use of IMC in a clinical application through implementing a 

neural network, using IMC collected gait data, to distinguish between able-

bodied subjects and stroke patients.  
 

v. To discuss the aptness of IMC as a telemedicine tool. 
 

vi. To suggest possible improvements to current methods of Mocap and 

subsequent gait data acquisition and analysis.    

1.5. Scope of work 

This study consists of four major sections, namely: 1) A literature review in which 

the current state of the art in motion capture methods are compared to the current 

requirements of clinical gait analysis. 2) A validity study in which inertial motion 

capture is compared to a generally accepted “gold standard” Mocap system on the 

grounds of statistical accuracy and precision. 3) A repeatability study in which the 

within-day and between test day repeatability is evaluated for both able-bodied and 

gait impaired ambulators. 4) The application of a neural network to test IMC 

collected gait data in a clinical application. This thesis represents the study findings 

and is organized as follows: 

 

Chapter 2 defines and describes gait analysis and its historical background and 

continues with a look at its application in the diagnosis, assessment and treatment of 

patients with pathological (abnormal) gait. In Section 2.1.3.2, a qualitative 

comparison is drawn between the advantages and shortcomings of the most popular 

methods of Mocap. This includes an investigation into the ways in which gait 

parameters are acquired, calculated and represented. Finally, Section 2.2 contains a 

discussion of the procedures and findings of other studies related to this one. 

 

Chapter 3 and 4 include the objectives, procedure, statistical approach and post-

processing of the validity and repeatability studies respectively, as well as discussions 

on their findings with reference to related literature. 

 

Chapter 5 discusses the planning, implementation, analysis and results of the neural 

network. 
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Chapter 6 examines IMC in everyday activities and considers its usefulness in 

telemedicine. The chapter then concludes the thesis by holistically discussing the 

results with reference to the objectives listed in Section 1.4 and, with these in mind, 

provides recommendations for future studies.                        
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2. LITERATURE REVIEW 

2.1. What is gait analysis? 

Ambulation in humans can be defined as upright, bipedal locomotion, or gait 

(Whiting and Rugg, 2006). According to Whiting and Rugg (2006), gait analysis is 

the study of a particular form of human or animal
1
 locomotion. Gait is typically used 

to describe a walking or running movement. Han, et al. (2006) describes gait as a 

cyclic movement of the feet in which one or the other alternate in contact with the 

ground. Gait analysis forms part of the field of biomechanics which includes statics 

and dynamics, the latter comprising of kinetic and kinematic parameter (Bronner, 

undated). Kinematic parameters may be further sub-divided into temporal-spatial and 

3D joint angles. A human stride can be quantified by what is commonly referred to as 

the gait cycle. Phases of the gait cycle are shown in Figure 1:  

 

 
Figure 1: Gait cycle 

Source: Whiting (2006) 

 

Here LTO and RTO refers to left and right toe-off phases (terminal contact) and 

LHC and RHC refer to left and right heel-contact or heel-strike phases (initial 

contact).     

 

In Figure 2 the gait cycle is represented by gait periods, tasks and phases. The 

temporal and spatial characteristics are obtained by measuring the distances and 

velocities between the feet at different phases of the gait cycle. These are then studied 

to provide clinical and scientific insight into both normal and pathological gait 

(Whiting and Rugg, 2006).  Temporal (time dependant) measures include step time, 

                                                 
1
 From this point onwards, the word “gait” will refer to human gait only. 
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stride time, cadence and swing and stance phase durations. Spatial (distance 

dependant) measures include step length, stride length and step width. In addition 

clinicians also study the 2D or 3D joint angles in the sagittal, frontal or transverse 

planes when assessing subject gait (Favre et al., 2006, Bronner, undated). These are 

sometimes referred to as gait patterns. The complexity of human walking is reflected 

by an abundance of gait studies related to sports, rehabilitation and orthopaedic 

surgery which has lead to a variety of parameters characterizing gait (Vardaxis et al., 

1998). A complete list of gait characteristics is given in Appendix A.  

 

The main reason for studying human gait is to identify irregularities or changes in the 

gait patterns of patients or athletes. Gait is often evaluated over time to monitor 

rehabilitative treatments or the extent of gait deterioration. Neural control of gait 

(organization and control of the activation of skeletal muscle and maintains balance 

by the nervous system) is very complex and is presently not completely understood 

(Molson Medical Informatics, 1999). Complex sensory, motor and central nervous 

systems are involved using muscles, tendons, ligaments, and skeletal structure as 

effectors. According to Molson Medical Informatics (1999) basic gait rhythm does 

not require input from the periphery.  

 

An important element of studying gait abnormalities is the definition of able-bodied 

or normal gait (Vardaxis et al., 1998). However, this is not a trivial exercise since 

vast amounts of gait data collected over several years from different labs and by 

different researchers show great variability, even when great efforts were made to 

maintain consistency (Vardaxis et al., 1998).    

2.1.1. Pathological gait 

Two essential characteristics in human gait are equilibrium and locomotion, both of 

which are impaired during abnormal (pathological) gait (Han et al., 2006). According 

to Ephanov and Hurmuzlu (2001) humans adapt their gait when affected by 

 

 

 

 

 

 

 

 

Figure 2: Division of gait cycle  

Source: Whiting, 2006 
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pathological conditions to preserve their locomotive functionality. This is usually on 

a subconscious level. Adaptive mechanisms such as reduced stride length and gait 

cycle period are used by patients to reduce pain caused by joint moments (Gök et al., 

2002). This is exhibited by patients with Parkinson’s disease (PD) who tend to walk 

slowly with short shuffling steps, reduced arm swing, stooped posture (Salarian et al., 

2004).  

 

Stroke is a localized loss of brain function caused by a sudden lack of blood supply to 

an area in the brain. Stroke may occur as a result of an embolism or haemorrhage. 

Hemiparetic-stroke ambulation is characterised by asymmetry of temporal-spatial 

parameters and joint angles between the paretic and non-paretic sides. One example 

may be a lower hip extension measured on the paretic side compared to the 

unaffected side. Other factors such as muscle or tendon infection, disease, paralysis, 

injury and anatomical defects may also lead to abnormal gait. Gait disorders with 

varying severity and blatancy have been extensively studied, but despite this, gait 

analysis is rarely used to diagnose gait disorders (Simon, 2004). A list of structural 

and neurological gait disturbances is given in Appendix B. 

 

In recent years healthcare systems have promoted the idea of patient monitoring in 

their own home environments (Roetenberg, 2006). This is particularly advantageous 

when monitoring patients with Parkinson’s disease whose gait measurements are 

significantly affected by the amount of medication in their bodies at the time (Han et 

al., 2006). Several studies have emerged focusing on portable, comfortable and user-

friendly monitoring systems for stroke patients and patients suffering from 

Parkinson’s disease and cerebral palsy (von Acht et al., 2007, Zhou and Hu, 2004, 

Aminian et al., 2001, Han et al., 2006, Salarian et al., 2004). These, along with 

statistical diagnostic algorithms could see future patient monitoring become both 

simple and affordable. Simon (2004) suggested the use of advanced semi-automated-

diagnosis tools such as neural networks to assist in making gait analysis a part of a 

physician’s referral process. With this in mind the focus must turn to optimizing 

current methods of gait measurement and analysis. 

2.1.2. History of kinematic gait measurement  

The earliest recorded comments of human walking characteristics can be dated back 

to Aristotle, who lived 384-322 BC. He stated that:  

 

“If a man were to walk on the ground alongside a wall with a reed dipped in ink 

attached to his head the line traced by the reed would not be straight but zig-zag, 

because it goes lower when he bends and higher when he stands upright and raises 

himself” (Baker, 2007). 

 

Further progress only continued with experiments by Giovanni Borelli (1608–1679). 

Several scientists wrote about walking through the enlightenment period, but it was 
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the brothers Willhelm (1804–1891) and Eduard (1806–1871) Weber who made the 

next significant contribution based on very simple measurements. Advancements in 

gait measuring technologies were made in the early 1900s by Eadweard Muybridge in 

California and Étienne-Jules Marey in Paris using still cameras. Refer to Figure 3 

below.  

 

Otto Fischer (1861–1917), in collaboration with Wilhelm Braune (1831–1892) 

further developed these methods using a calibrated mesh frame, shown in Figure 4. 

Their work on the effect of age and height variance on gait is still seen as definitive 

work on the subject (Baker, 2007). Before the recent advances in modern computers 

gait calculations were very tedious, containing up to 14000 numerical calculations, 72 

curves plotted and 24 curves subject to graphical differentiation, all for a single 

stride. This required up to about 500 man hours. With some experience this could be 

reduced to about 250 man hours (Baker, 2007). Only in the late 1970s early 1980s a 

quicker and easier gait analysis system was designed using television cameras 

feeding data directly into a computer (Whittle, 1996). 

             

 

Figure 3: "The Human Figure in Motion" by Muybridge (1878) 

Source: Roetenberg (2006) 
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Figure 4: Braune and Fischer’s subject wearing the experimental suit 

Source: Baker (2007) 

 

The last decade has seen substantial advancements in gait measuring (motion capture) 

technologies because of increased computational capabilities and sensor component 

size reduction. Current technologies include optical, acoustic and inertial motion 

capture and advanced software packages which reduces the level of expertise required 

to collect movement data. The most popular motion capture technologies are 

described in Section 2.1.3.2.  

2.1.3. Methods of quantifying human gait    

2.1.3.1. Requirements  

Motion capture has seen significant advancement in the last two decades primarily 

because of the introduction of MEMS sensors and progress in computer technology 

(Roetenberg, 2006). Applications span the fields of medicine, television, computer 

gaming, engineering and more. Several surveys have been done on the subject 

(Meyer et al., 1992, Frey, 1996, Hightower and Borriello, 2001, Welch and Foxlin, 

2002) which emphasize the arsenal of systems currently available or being brought 

into production (Vlasic et al., 2007). All these systems have unique advantages and 

limitations. It is therefore important to define the requirements of a Mocap system 

with reference to clinical gait measurement. Miller et al. (2004) listed cost, 

equipment size, communication and reliability as primary factors for choosing a 

system. Bachmann (2000) added resolution, registration, responsiveness, robustness 

and sociability as requirements. He quantified these characteristic in the context of 

human motion analysis as follows: 
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o The hand is viewed as the part of the body that experiences the greatest 

motion and therefore governs the speed, force, frequency and precision 

requirements. 
 

o Fast hand motions occur at an average frequency of approximately 5 Hz. 

Based on the Nyquist sampling theorem a 10 Hz sampling frequency should 

be sufficient. However with the addition of noise from low cost sensors, and 

thus applying a low pass filter and a rule of thumb of 20 times over-sampling, 

the required sampling frequency is 100 Hz. 
 

o Under normal circumstances the hand reaches a velocity of 3 m/s, but under 

extreme conditions (such as throwing a baseball) it can reach up to 37 m/s. 
 

o  Normal hand movements generate accelerations of between 5 and 6 g, but 

this may reach up to 25 g. 
 

o The minimum changes in rotation angles perceivable to humans are 

approximately 2.5°, 2° and 0.8° for the fingers, wrist and shoulders 

respectively. An angular precision of 0.5° should therefore suffice. 
 

o In applications where real-time movements are required (such as for patient 

feedback) it was found that a lag of greater than 100 ms will degrade response 

performance. 

 

Sociability refers to the ability of the Mocap system to be used with other applicable 

equipment. This could include physiological measurement devices such as EMG 

force plates, or it may refer to equipment, such as a treadmill, sometimes necessary to 

fully analyse a person’s gait.  Frey et al. (1996) stated that a minimum of 15 body 

segments have to be tracked to achieve full-body tracking. Untracked segments may 

be added, but the kinematics of these would have to be calculated using reverse 

kinematics which is computationally demanding (Frey et al., 1996). 

2.1.3.2. Motion capture technologies 

Some of the most popular Mocap technologies along with their relevant advantages 

and limitations are described below: 

a. Mechanical (Electro-mechanical) 

In the context of full-body Mocap, mechanical Mocap systems are rigidly mounted, 

body-based exoskeletons which make use of goniometers and potentiometers to sense 

relative joint angles. Figure 5b shows the Gypsy
TM

 system by Meta Motion. Because 

these tracking devices are rigidly mounted to the body, they are relatively 

cumbersome, but well-suited for measuring forces applied by segments when force-

feedback devices are used (Frey et al., 1996, Vlasic et al., 2007).  
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These systems are low in cost, and because no trigonometric calculations are 

required, they are able to track the body segment orientation in real time (Bronner, 

undated). These systems do not suffer from shadowing or interference problems 

associated with other methods. On the downside, mechanical Mocap systems are 

sensitive to soft-tissue artefacts and need a supplementary system to determine 

segment position in a global coordinate system (GCS) (Roetenberg et al., 2007, 

Bronner, undated).  

b. Electromagnetic  

Electromagnetic systems are popular and relatively inexpensive. In a survey by Frey 

et al. (1996) he labelled this Mocap technique as “the most widely used tracking 

method”. These systems are fairly compact and wireless models are readily available. 

A magnetic field transmitter produces three orthogonal magnetic fields. Body-worn 

trackers (receivers) then produce voltages proportional to the segment orientation 

using three orthogonal coils.  

 

Two types of electromagnetic tracking systems are commercially available. These are 

direct current (DC) and alternating current (AC) systems. DC systems, in which DC 

excited magnetic fields are pulsed, boast a higher immunity to external electro-

magnetic interferences associated with ferromagnetic materials. Nevertheless, this 

factor is still one of the most prominent limitations of electromagnetic Mocap 

(Bachmann, 2000). The strength of the tracking signal degrades with the distance 

between the transmitter and receivers which significantly limits the range of these 

systems (Roetenberg, 2006, Bachmann, 2000). Selling points include small user-worn 

receivers (Figure 6), the absence of line-of-sight requirements, multiple-segment 

tracking using a single transmitter and overall technology maturity (Welch and 

Foxlin, 2002).    

 

a)           b)  

Figure 5: Mechanical motion capture devices 

Source: (a) MIE Medical Research Ltd.;  (b) www.metamotion.com 
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a)    b)   
Figure 6: Electromagnetic motion capture system 

Source: Ascension Technology Corporation (2007) 

c. Acoustic 

Two methods of acoustic tracking are commonly in practice. The first employs the 

time-of-flight (TOF) of sound waves where the body or segment is tracked by 

measuring the distance between an acoustic pulse transmitter and a receiver at 

different intervals in time. The speed of sonic or ultrasonic sound waves is used to 

compute relative distances.  Triangulation is used to track a relative position of a 

segment. Where the position of more than one segment needs to be tracked 

simultaneously, either a separate transmitter and receiver are required for every 

segment or multiple frequency acoustics are used. To track the orientation of a 

segment, two tracked points are required for each segment.  

 

The second acoustic tracking technique uses the phase difference between incident 

and returning sound waves to determine the position and orientation of the segment. 

This technique is more accurate than TOF tracking, but is limited to calculating only 

relative positions between points in contrast to full 3D position in the GCS which 

TOF tracking is able to do (Frey et al., 1996), (Welch and Foxlin, 2002).  

 

Acoustic tracking demonstrate superior range to electromagnetic tracking, but 

requires a line-of-sight between emitters and receivers. Interference from echoing and 

environmental noise deteriorates measurement quality.  

d. Optical 

A multitude of Mocap techniques exist which utilize some method of sensing light. 

These include image based methods which use a combination of videography and 

image processing as well as opto-electric methods which sense TOF light intensity 

(Bronner, undated).  
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a)   b)  

Figure 7: Optical motion capture - Vicon Oxford Metrics Ltd. 

Source: (a) www.bbc.co.uk; (b) www.rehabtrials.org  

 

Image-based methods may be markerless or employ active or passive markers. Active 

markers (usually infrared light-emitting diodes) are excited at unique frequencies to 

ensure differentiation from each other when sensed in multiple camera views. Passive 

markers (usually reflective balls) rely on variable sizing or software and accurate 

calibration procedures to distinguish one from another. Sensing may be outside-in or 

inside-out. With outside-in systems the sensors (light sensors or cameras) are placed 

on the ground and track markers on the body. Inside-out systems on the other hand 

employ sensors on the tracked body itself. The latter is hardly ever used for clinical 

applications due to the associated user encumbrance. Optical Mocap has achieved 

great popularity and commercial systems such as the Vicon (Oxford Metrics Ltd.) 

and Optotrak® are often viewed as the “golden standard” in the field human motion 

analysis (Roetenberg, 2006). These systems boast high accuracies and are able to 

sense full 6-DOF orientation and position. Optical Mocap systems are unfortunately 

relatively expensive, limited to laboratory use and suffer from shadowing. They also 

require substantial computing power.  

 

As with most of the other Mocap techniques, surface markers move relative to the 

underlying bone because of soft-tissue artefacts. This leads to error propagation in 

position and orientation calculations (Lucchetti et al., 1998). Many researchers feel 

that the final solution in human Mocap is markerless tracking (Bachmann, 2000). 

Boulgouris et al. (2000) foresaw the use of markerless optical gait measurements as a 

means of personal identification in the security sector. Markerless tracking is 

motivated by unreliable anatomical landmark identification, noisy data caused by 

soft-tissue artefacts, and marker inertia and marker loss, all common attributes of 

marker-based systems (Zhou and Hu, 2004). In recent work at Stanford University, 

accuracies of between 1° and 2° were found in sagittal and frontal joint knee angles 

using their eight camera markerless system shown in Figure 8 (Corazza et al., 2006). 
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However, this type of system inherently relies on highly controlled laboratory 

conditions.   

    

 
Figure 8: Markerless optical Mocap 

Source: Corazza et al. (2006) 

 

Opto-electric systems are less popular for full-body 3D motion tracing because of the 

difficulties experienced in distinguishing between markers. 

e. Inertial  

As stated earlier, the last few decades have spawned affordable micro-machined 

sensors which have lead to the feasibility of portable inertial sensors. According to 

Frey et al. (1996), this technique of tracking, “has the potential to become the 

primary means of body tracking within the next few years”. Inertial motion capture 

sensor units generally use the integral of angular velocity, measured by tri-axial 

gyroscopes, to give the angular orientation of a tracked segment (Roetenberg, 2006). 

However, gyroscopes suffer from drift and therefore require continuous correction 

compensation. Tri-axial accelerometers can accurately sense inclination with respect 

to the Earth’s gravitational force when accelerations are negligibly low, but this 

ability diminishes as accelerations become higher.  

 

Accelerometers are also unable to sense rotations around the vertical axis and can 

therefore not be used alone to sense segment orientation (Luinge and Veltink, 2005). 

The solution is to fuse the useful attributes of these components using sensor fusion 

techniques such as a Kalman filter. In most cases accelerometer data is used to correct 

gyroscope drift. This is illustrated in Figure 9 (Luinge, 2002).  
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Figure 9: Structure of Kalman filter estimation. 

Both the accelerometer and the gyroscope system are used to make an estimate of the 

global vertical unit vector (Z). The difference between the two estimates is written as a 

function of orientation error (θε) and offset error (bε ). A Kalman filter estimates θε and 

bε using this function, together with the error covariances of the orientation (Qθ), offset 

(Qb) and inclination estimation (QZG and QZA). These estimated errors are used to 

correct the estimated orientation 

Source: Luinge (2002) 

 

Anatomical constraints can also be used to link different segments and enhance 

orientation estimates (Roetenberg et al., 2007a). Position in the GCS (relative to an 

initial reference position) can also be calculated through double integration of 

acceleration values. Drift compensation can then be done by fusing accelerometer and 

magnetometer values to correct position and heading calculations with reference to 

the measured magnetic field of the Earth (Roetenberg, 2006). Figure 10a shows an 

Xsens inertial sensor which contains tri-axial accelerometers, tri-axial gyroscopes and 

tri-axial magnetometers. The Philips IMC sensor in Figure 10b, using the same 

technology as the one in Figure 10a, is fully untethered making these even less 

obtrusive.     
 

a)  b)  

Figure 10: Inertial motion sensors  

Source: (a) Xsens Technologies (2007); (b) von Acht et al. (2007) 

 

Unlike electromagnetic systems, inertial systems use the Earth’s magnetic field for 

orientation reference. This phenomenon affords IMC systems a definite 
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measurement-area advantage over other systems. Magnetometers are inherently 

sensitive to the presence of local magnetic disturbances caused by ferromagnetic 

metals. Roetenberg et al. (2007a) proposed fusion algorithms to compensate for this 

effect by sensing the local magnetic field and lowering the weighting of 

magnetometer heading correction whenever significant disturbances are measured.  

 

Inertial sensors are larger than those used in magnetic, acoustic and optical Mocap, 

however only one sensor is required per tracked segment. Inertial sensors are 

relatively expensive, but less expensive than optical systems. Inertial tracking has a 

virtually unbound range and do not suffer from any occlusion or interference 

problems experienced by other techniques (Bachmann, 2000). IMC is very useful for 

sensing joint range of motion, but there is currently no method which is able to 

exactly define the neutral posture which corresponds to the zero-value of joint angles 

as defined by the ISB (International Society of Biomechanics, Favre et al., 2006). 

Another major limitation is the fact that inertial tracking is still largely under-

researched in certain applications and thus viewed as an adolescent technology. In 

this context this study proposes to investigate whether results from IMC are both 

valid and repeatable enough to be used in clinical gait analysis.    

f. Hybrid systems 

Welch and Foxlin (2002) stated that there is no “silver bullet” Mocap system capable 

of satisfying the needs of every application. Hybrid systems employ complementary 

features of two or more Mocap techniques to overcome their individual limitations 

(Vlasic et al., 2007). A recent example of such a system combines inertial motion 

sensors with the TOF feature of acoustic tracking to avoid unbound sensor drift. This 

system eliminates the need for magnetometers which thus permits unbound motion 

capture even near ferromagnetic metals such as in treadmills or gymnasium 

equipment (often used in gait studies) (Vlasic et al., 2007). Bachmann (2000) and 

Roetenberg (2006) both proposed hybrids of inertial and magnetic Mocap. 

Roetenberg also found improved tracking results by combining optical and inertial 

motion tracking.    
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g. Summary 

To summarize, a comparison is drawn in Table 1 between the above-listed Mocap 

techniques: 
 

Table 1: Summary of motion capture technologies 
      

 Mechanical Electromagnetic Acoustic Optical Inertial 

Accuracy / 

registration 
Very accurate Good Good Very good Good 

Resolution Very good Good Good Very good Good 

Shadowing None None Sensitive Very sensitive None 

Interference Immune 
Ferromagnetic 

materials 
Ambient noise Light sources 

Ferromagnetic 

materials 

Range Unbound Small Small (In-lab only) Small (In-lab only) Unbound 

Drift None Low Low None Moderate 

Encumbrance Obtrusive Comfortable  Comfortable  Comfortable  Comfortable 

Sociability Good Medium Medium Medium Good 

Cost Low High Moderate Very high High 

Equipment size Small Very small Require lab Require lab Very small 

Kinematic Model Limited Good Good Very good Good 

Other 
Accurate force 

measurement 

Widely used and 

proven 

Several 

transmitters 

required 

Requires high 

computing power 

Technology not 

adequately 

proven 

2.1.3.3. Force plate and electromyography 

Additional equipment commonly used for gait analysis includes pressure sensing 

force plates and electromyography (EMG) measuring systems. Ground reaction 

forces are used to calculate the moment and forces acting on joints. Force plates are 

usually imbedded into laboratory floors to avoid test subjects from trying to 

purposely step on them and thereby alter their gait patterns. Most commercial force 

plates require specific setup conditions and thus are not very mobile. EMG systems 

measure the muscle activity during locomotion. This is then used to calculate the 

amount of energy required to accomplish the analysed movement. The near future 

may dawn the development of a single self-contained suit which measures motion, 

ground reaction forces and EMG signals. This is possible because of a wide range of 

complimentary sensors and software packages currently available. These include in-

shoe pressure sensor units, miniature EMG sensors and effective signal amplification 

and noise reduction software (Simon, 2004).  
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2.2. Related research 

2.2.1. Using motion capture for clinical gait analysis  

The utilization of gait analysis in patient care was questioned by Simon (2004) who 

cited findings by DeLuca, et al. (1997) showing that in a test of 91 children with 

cerebral palsy, experienced clinicians changed their initial opinions in 52% of cases 

after viewing quantitative gait analysis results. He still found gait analysis to lack 

popularity.   

 

According to measurements by Salarian et al. (2004) gait phases in PD patients 

deviate significantly from able-bodied gait. They found that patients exhibit 52% 

slower step velocity, 60% shorter step length, 40% longer gait cycle and 59% longer 

double-stance than those with able-bodies. Han et al. (2006) found difficulty in 

detecting gait in patients with PD. They also used only able-bodied subjects during 

data acquisition. Lackovic et al. (2000) went further by using simplified gait cycle 

analyses in distinguishing between able-bodied subjects and those with gait disorders. 

In other studies such as those by Ebersbach et al. (1999) and Stolze et al. (2001), 

attempts were made to use gait patterns to diagnose and/or distinguish between 

certain movement disorders. Salarian et al. (2004) viewed the effect of deterioration 

of gait patterns with increased progression of Parkinson’s disease. Finally, Lee et al. 

(2000) went as far as to use a neural network combined with video analysis to 

diagnose the presence of movement disorders. They employed only simple spatial 

parameters and attained accurate diagnoses of between 82.5% and 85% for the patient 

group. This study is still limited to only distinguishing between able-bodied persons 

and those with movement abnormalities. Studies such as those by Han et al. (2006) 

and Aminian et al. (2001) investigated autonomous gait cycle detection methods but 

these studies do not give sufficient gait information for detecting more complex gait 

abnormalities.  

2.2.2. Verification of inertial motion capture 

From studies conducted in the last decade it is apparent that IMC is continuously 

evolving. Some researchers made use of gyroscopes alone to determine temporal and 

spatial parameters (Aminian et al., 2001, Salarian et al., 2004). Salarian et al. (2004) 

used their own peak detection algorithm to identify toe-off and heel-strike gait cycle 

stages and a double pendulum anatomical model to determine the stride and step 

lengths. Aminian et al. (2001) were only interested in temporal parameters and used 

footswitches to correlate their results. They tested ten able-bodies subjects and ten 

subjects with PD. Spatial parameters were normalized to height to test inter subject 

variation. Han et al. (2006) found temporal parameters in PD patients using tri-axial 

accelerometers. They achieved automated gait disorder detection accuracies in excess 

of 90%.  
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Accelerometers and gyroscopes were combined by Dejnabadi et al. (2005), Favre 

(2006) and Luinge and Veltink (2005). Dejnabadi et al. (2005) proposed a new 

method of estimating flexion angles. They created algorithms which eliminated the 

need for integration in finding absolute joint angles in real time. Their results required 

no filtering, were free from drift and made no cyclic assumptions. Compared to an 

ultrasonic reference system (Zebris), their results showed excellent accuracy. 

However, they only considered 2D sagittal plane knee angles which are the most 

repeatable and easily measured of the nine lower-body joint angles. They furthered 

their research by developing an algorithm in which accelerometer inclination 

measurements were used to compensate for drift (Dejnabadi et al., 2006). As stated in 

Section 2.1.3.2, accelerometers only sense inclination accurately when accelerations 

are infinitesimal. For this reason they created a means of compensation correction 

during the stance phase when accelerations are lowest and interpolation of the 

compensation function during other gait cycle phases. They also found excellent 

correlation with the ultrasonic reference system, but again only assessed knee flexion-

extension angles. Favre et al. (2006) went further by looking at 3D joint angles of the 

knee. They used an electromagnetic Mocap system as reference (Polhemus Liberty®) 

and found differences ranging from 1.2° to 12°. Again sagittal plane knee angles 

showed the least difference. Luinge and Veltink (2005) used a Kalman filter to fuse 

sensor types and compared their results with those obtained from using gyroscopes 

alone. As expected, the Kalman filter significantly reduced the drift error found in 

gyroscope readings. They used an optical Mocap system (Vicon) as baseline and 

concluded that achieved accuracies were inadequate for applications where heading is 

important.   

 

Thies et al. (2007) investigated linear acceleration measurements from inertial 

sensors during “reach and grasp” movements of two different manufacturers 

compared to a Vicon (Oxford Metrics Ltd.) optical Mocap system. They found 

exceptional correlations between all three systems which prove the repeatability and 

validity of acceleration measurements. They also confirmed the existence of bias 

errors due to misalignment of sensors and differences in calibration procedures. In 

2000 Bachmann proposed a filter which used magnetometers and accelerometers to 

determine orientation when movement frequency is low and gyroscopes for higher 

frequency motion. It was tested for 2D motion and proved robust and accurate with 

reference to results obtained using a Vicon system (Bachmann, 2000). Inertial sensors 

have thus evolved to a point where drift-free tracking is possible using accelerometers 

gyroscopes and magnetometers. As gait analysis is often conducted near 

ferromagnetic materials such as in a gymnasium, it was necessary to come up with 

solutions for subsequent drift errors. Roetenberg et al. (2007a) proposed a filter 

which lowered such errors from 50° to 3.6°. They achieved this by lowering the 

compensation weighting from magnetometers whenever the measured local magnetic 

disturbances became significant. However this approach only remains valid for short 

periods. Long term magnetic disturbances, such as those present when driving in a 
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car, requires another solution. Vlasic et al. (2007) eliminated the need for 

magnetometers by using ultrasonic sensors. These sensors use the measured absolute 

distance between sensors to reduce orientation drift. This method showed great 

promise but is still relatively untested.      

2.2.3. Repeatability in gait patterns 

Repeatability is one of the most important attributes of gait analysis equipment. In the 

case of rehabilitation monitoring or intervention evaluation, a physician often looks at 

relative gait parameter ranges as opposed to absolute angles, times or distances. Here 

it is of paramount importance that an identical parameter, measured using an identical 

test procedure, reflects the actual changes in that parameter without a significant 

equipment measurement variability error. Several studies have looked at the 

repeatability of gait patterns measure using an OMC system: (Yavuzer et al., 2006, 

Besier et al., 2003, Mackey et al., 2005, Kadaba et al., 1989).  

 

Mills et al. (2007) tested the within- and between-day repeatability and the inter- and 

intra-tester repeatability of ten able-bodied adults using an electromagnetic Mocap 

(EMC) system. Most of the above-mentioned studies used the approach presented by 

Kadaba et al. (1989) to quantify temporal-spatial and joint angle repeatability. 

Mackey et al. (2005) investigated the difference in gait repeatability between ten 

able-bodied children and ten children with cerebral palsy. He used an optical Mocap 

system and found acceptable and comparable and repeatability. In Section 4, 

repeatability values obtained using the IMC system are compared to results obtained 

by Kadaba et al. (1989) and Mills et al. (2005).   
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3. VALIDITY STUDY  

According to Favre, et al. (2006), no existing Mocap system produces sensor or 

marker orientation measurements which exactly reflect the underlying bone 

orientation. It is however important that the results from the chosen system 

adequately exceeds the measuring error (Yavuzer et al., 2006). This concept is 

evaluated in this section by comparing of results obtained by the IMC system gait 

recording with those measured using a trusted OMC system.    

3.1. Test participation 

3.1.1. Inclusion criteria  

Routine gait assessments were conducted on 14 able-bodied male subjects. Test 

subjects were chosen under the condition that they do not suffer from any 

neurological pathology and/or have not experienced any injury which may affect gait 

function. Subjects were male and aged between 20 and 27 years. All the subjects 

were fairly fit. This reduced the prevalence of sensor movement which was the main 

concern when concurrently comparing the two systems.     

3.1.2. Ethical approval / Protocol 

Test subjects were used as controls in a separate study by Dr. Regan Arendse of the 

faculty of Health Sciences at the University of Stellenbosch. Ethical approval was 

obtained for this study. All subjects gave informed consent before being tested.  

3.2. Apparatus 

3.2.1. Vicon – Optical motion capture system 

The Vicon OMC system (Oxford Metrics Ltd.) has been used for clinical gait analysis 

for many years. It uses high-resolution, high-speed CMOS VICON cameras specially 

designed for motion tracking. These cameras boast a resolution of up to 1280 × 1024 

pixels and sampling rates of between 200 and 1000 Hz. Reflective markers are placed 

on the objects (segments) to be tracked. Vicon Tracker software automatically 

calculates the centres of each marker and reconstructs their position in the GCS. 

Markers are combined to model the 3D spatial orientation and position of body 

segments. This is usually accomplished in less than 7 ms. (Zhou and Hu, 2004) 

 

In this study eight Vicon cameras were set up and calibrated within a 6 × 11 m 

laboratory space. Reflective markers, of diameter 10 mm were used.  
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3.2.2. Moven – Inertial motion capture system 

3.2.2.1. Description 

The Moven system (Xsens Technologies) is a full-body inertial motion capture suit 

that utilizes 16 tracking sensors, each comprising of tri-axial gyroscopes, tri-axial 

accelerometers, tri-axial magnetometers as well as a temperature sensor. Sensors, 

wireless data transmitters and cables are enclosed within a Lycra suit that weighs 1.9 

kg in total. Sensors are located as is shown in Figure 11. Movement data is sampled 

at up to 120 Hz and is sent via wireless communication to a computer. Data include 

sensor orientation and position in the GCS as well as absolute sensor velocity, 

acceleration, angular velocity and angular acceleration. The Moven Studio software 

uses this data to construct a 23 segment body model in quasi-real time. Model 

segment dimensions are calculated using either user defined measurements or uses 

entered subject height and foot size to estimate anthropometric dimensions. The 

software allows for the estimation of foot clearance during walking which is not 

possible with orientation only driven Mocap systems. Sections 3.2.2.2 and 3.2.2.3. 

give a more detailed account of the operation principles of the Moven system 

(Roetenberg et al., 2007c) 

 

 
Figure 11: Moven motion capture system  

Source: (Xsens Technologies, 2007) 

 

After an initial pilot study, it was postulated that greater repeatability could be 

achieved if the sensors are removed from the Lycra suit and adhered directly onto the 

skin of the subject. For this purpose double-sided adhesive tape was used along with 

covering elastic straps which secured the sensors in place (refer to Figure 13b). 
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3.2.2.2. Position and orientation calculation 

The following two sections offer a short description of the working principals of the 

Moven (Xsens Technologies) full-body IMC system. For a more in-depth explanation 

refer to Roetenberg et al. (2007a), Roetenberg (2006) and Roetenberg et al. (2007c).   

a. Sensor orientation  

Angular velocity ω of the IMC sensor, measured using tri-axial gyroscopes, is 

integrated over time to give the change in angle from an initially known angle. This is 

done using Equation (1): 

  

 (1) 

where 
GS

qt is the quaternion describing the rotation of the sensor in the GCS at 

time t and Ωt = (0,ωx, ωy, ωz)
T 

is the quaternion which represents ωt. (Roetenberg 

et al., 2007c) 

b. Definition of Moven Studio v2.1 body model segment axes 

a) b)    
Figure 12: Body segment coordinate system in global coordinate system 

Source: (Roetenberg et al., 2007c) 
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As shown in Figure 12, Moven Studio software defines the x-axis in the anterior-

posterior direction (anterior as positive), the y-axis in the medial-lateral direction (left 

as positive) and the z-axis as vertically (up as positive). This is similar to the joint 

coordinate system (described in Section 3.4.1) except that the x- and y-axes are 

switched.       

c. Sensor position 

The position of the IMC sensor in the GCS (with reference to a calibrated starting 

point) is calculated with the help of recordings from both linear accelerometers and 

the gyroscopes used in orientation calculation. After removing the gravitational 

component from acceleration signals using Equation (2) the sensor position in the 

GCS is calculated by Equation (3).   

 

 (2) 

 (3) 

where 
G
at and 

G
g are the linear acceleration and gravity vectors in the GCS 

respectively and pt is the position vector. (Roetenberg et al., 2007c)  

d. Segment orientation and position 

The body model, of which the lower body is depicted in Figure 12b, is comprised of 

23 segments each considered as rigid bodies linked by joints. The sensors are 

assumed to be rigidly attached to these segments.  

 

The orientation of each segment is therefore assumed to be that of the corresponding 

sensor with the exception of the spine, torso and toes which use a biomechanical 

model to determine their orientation. Moven Studio defines contact points between 

the body and the xy-plane of the GCS. These are used to determine the toe segment 

orientations 

 

Finding the position of each segment requires a bit more work. Because of sensor 

drift it is necessary to limit the freedom of movement of each sensor relative to their 

original calibration position. To accomplish this, segments are assumed to be joined 

in a kinematic chain with the pelvis defined as the primary reference position. The 

joint centres between proximal and distal segments now form the new reference 

position for the distal segment. This joint centre position is calculated from the 

proximal segment reference position, the segment (sensor) orientation and the 

segment length (user-defined or anthropometrically calculated). This is achieved by 

using Equation (4) below. 
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 (4) 

where 
G
pU1 and 

G
pU0 are the reference positions of the distal and proximal 

segments at time t = 0. Here the orientation 
GB

qU and length sU of the proximal 

segment U are known. 

 

Because the segments considered are not in fact rigid bodies as is assumed by the 

body model, statistical constraints are applied to avoid unlikely joint motions (e.g. 

large varus-valgus of the knee). Each joint is constrained using its own characteristic 

properties. (Roetenberg et al., 2007c)     

3.2.2.3. Drift and magnetic interference compensation 

The Moven IMC system uses complimentary sensor components and a Kalman filter 

approach to correct propagating errors caused by sensor drift and/or magnetic field 

interference. Using a Kalman filter update, joint position uncertainties are reduced by 

correcting the drift. The sensor-noise, as well as statistical information about the joint 

constraints is used to determine the Kalman gain. (Roetenberg et al., 2007c)  

 

The segment orientation error is corrected by entering information about the heading 

and gravitational vector components from magnetometers and accelerometers into a 

Kalman filter. This is similar to the one illustrated in Figure 9 (refer to Section 

2.1.3.2) which uses accelerometer measurements to correct orientation values. 

 

According to Roetenberg et al. (2007c), local magnetic interferences from metallic 

objects easily disturb the Earth’s magnetic field which in turn causes inaccurate 

magnetometer readings. A compensation algorithm is therefore employed to reduce 

these errors. This algorithm uses measurements of local magnetic disturbances to 

reduce the weighting of the magnetometer component of the drift compensation filter. 

This naturally increases the uncertainty of segment orientation calculations, but 

according to a study by Roetenberg et al. (2007a), this method practically eliminated 

the error caused by short term magnetic interferences.    

3.3. Data acquisition and processing  

3.3.1. Test protocol 

Validity tests were conducted in a Mocap laboratory at the University of Cape Town, 

in their Department of Sport Science. The following section discusses the procedure 

followed during each gait assessment. 

3.3.1.1. Sensor and marker application 

Moven sensors were worn in a Lycra suit (Figure 13a) by 8 of the 14 test subjects. 

For the remaining six subjects, sensors were applied using double-sided adhesive tape 
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and secured using elastic straps (Figure 13b) as proposed by Dejnabadi et al. (2005). 

Markers were positioned according to manufacturer specifications (Xsens 

Technologies, 2008) as shown on Figure 13b. To ensure inter-tester repeatability, 

sensors placement was done by the same researcher for each test.  

 

a) b)  
Figure 13: Marker and sensor placement 

Using: a) Lycra suit, b) Elastic straps 

 

When straps were used, the IMC wireless receivers were fastened in a harness over 

the shoulders. Special care was taken to avoid the receivers from interfering with the 

pelvic sensor located on the sacrum.  

 

Vicon markers were positioned according to the Helen Hayes marker set (Richards, 

2008). Appropriate placement of upper and lower leg wands minimized their 

interference with the Moven sensors or cables. In this study only lower limb markers 

were considered.    

3.3.1.2. Calibration 

Figure 14 illustrates the static and dynamic calibration of the OMC laboratory 

performed on each new test day (as described by Richards, 2008) as well as the 

subject specific calibration shown in Figure 14b.  

 



 

 

BENCHMARKING FULL-BODY INERTIAL MOTION CAPTURE FOR CLINICAL GAIT ANALYSIS  

 TEUNIS CLOETE - 29 JANUARY 2009 

DEPARTMENT OF MECHANICAL AND MECHATRONIC ENGINEERING - STELLENBOSCH UNIVERSITY  

 

- 28 - 

a)  b)  
Figure 14: OMC calibration procedures 

Source: a) Richards (2008) 

 

Calibration of the IMC involved two five-second poses as represented in Figure 15. 

These calibration poses define the zero positions from which changes in segment 

orientation and position are calculated. Moven Studio software calibrates to an initial 

10° anterior pelvic tilt. This detail is important when analysing the absolute hip and 

pelvic motion.         

     

a)  b)  
Figure 15: IMC calibration procedures  

a) T pose, b) Neutral pose 

Source: Xsens Technologies (2008) 
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3.3.1.3. Procedure 

Each gait assessment included the following steps: 

1. Static calibration of the OMC system (Vicon) 

2. Dynamic calibration of the OMC system 

3. IMC (Moven) sensors applied to the subject (refer to 3.3.1.1)  

4. Wires secured to avoid interference with OMC markers 

5. OMC markers applied  

6. Subject calibration of the OMC system 

7. Subject calibration of the IMC system 

8. Two unrecorded runs at a self-selected speed 

9. Two runs recorded at a fast walking speed 

10. Two runs recorded at a slow walking speed 

11. Two runs recorded at a normal walking speed 

12. Sensors and markers removed 

Steps 3 to 12 were repeated for all test subjects tested on a single test day. 

3.3.2. File format 

IMC data was recorded in a proprietary *.MVN file format and converted to *.MVNx 

file format which contains position and orientation data in ASCII format.  

 

All kinematic data in the *.MVNx file is expressed in the global coordinates system 

with the positive Z-axis defined as vertically up. The file contains calibration, 

anthropometric scaling and recording setting information followed by a data matrix 

which contains the orientation and position data of each segment for each sample 

frame. This is illustrated on the abstract below taken from the Moven user manual:  

     

 
 

Here 
GB

qseg is the quaternion vector (q0, q1, q2, q3) describing the rotation of the 

segment in the global frame and 
G
posseg is the position vector (x,y,z) of the 

segment from the origin in the global frame (Xsens Technologies, 2008). 

 

OMC data was recorded in the more widely used *.C3D format. Gait data was 

calculated within the Vicon software and exported in *.TXT format. 

 

 

Sample 1 <F v=" GBqseg1 Gposseg1 GBqseg2 
Gposseg2  … 

GBqseg23
 Gposseg23 " /> 

Sample 2 <F v=" GBqseg1 Gposseg1 GBqseg2 
Gposseg2  … 

GBqseg23
 Gposseg23 " /> 

… 
Sample n <F v=" GBqseg1 Gposseg1 GBqseg2 

Gposseg2  … 
GBqseg23

 Gposseg23 " /> 
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3.4. Data analysis 

3.4.1. Gait data representation 

Kinematic data may be evaluated with the help of a variety of parameters. These 

include primary parameters such as segment orientation, position and linear and 

angular velocities and accelerations, which may be used to extract secondary 

parameters such as temporal and spatial gait parameters as well as kinematic joint 

angle.  

 

For evaluating IMC performance in a gait analysis environment, the following 

temporal and spatial parameters were considered: Step length (SL), stride length 

(STL), velocity and cadence. Appendix A contains a description of these and other 

temporal-spatial gait parameters.   

 

Joint angles are typically described by Euler orientation angles, namely the roll (φ), 

elevation (θ) and azimuth (ψ) about the x, y and z axes in the GCS respectively 

(Bachmann, 2000, Frey et al., 1996). Angle calculations may be done using 

trigonometric manipulations of these angles, however, a singularity or “gimbal lock” 

may occur because of trigonometric discontinuities. For this reason, angle 

calculations are often made using quaternion mathematics. Quaternions are an 

extension of complex numbers which create a fourth dimension, effectively 

eliminating the singularity. Quaternions describe a four dimensional space by means 

of one real component r and three imaginary components x, y and z as presented by q 

= r + xi + yj + zk or as shown in Equation (5) below (Miller et al., 2004).     
 

 
(5) 

 

In this study lower body kinematic joint angles in the BCS  were found by 

calculating the joint orientation of the distal L segment with respect to the proximal 

segment U in the GCS (refer to Figure 12a). This is achieved by means of a 

quaternion multiplication  of the complex conjugate of the proximal segment 

quaternion, ,
 

and the distal segment quaternion, . (See Equation (6)) 

(Roetenberg et al., 2007c)  

 

 (6) 

When compared to Euler angles, quaternions are difficult to visualize. For this reason 

the joint angle quaternions were converted back to Euler angles. This was achieved 

with the help of Cardan sequences. Cardan sequences are series of three orthogonal 

rotations around the three major axes in a strictly specific order. The most popular of 
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these sequences is the Joint Coordinate System (JCS) proposed by Grood and Suntay 

(1983) and used in the majority of gait research publications. If the axes are chosen 

as: x – medial-lateral, y – anterior and z – up, then the JCS is defined as the sequence 

xyz. Richards (2008) reported significant errors occurring when these sequences are 

interchanged. It was therefore important to ensure that the same Cardan sequence was 

used in IMC calculations as was employed by the OMC software. 

 

The joint angles of the IMC system were therefore calculated using the JCS 

(employed by the OMC software) with the aid of Equation (7) below as proposed by 

Diebel (2006). These angles, representing rotations in the sagittal, frontal and 

transverse planes, are used by most physicians or researchers to describe the gait of a 

subject. 

   

 
(7) 

 

Here atan2 and asin are MATLAB (Mathworks, Natick, MA) commands for the 

four quadrant inverse tangent and the inverse sine respectively.  

 

Because of the difference in x- and y-axis definition between the JCS and that of the 

IMC software, φ and ψ are then simply interchanged. The following joint angles 

(Table 2) were calculated and used for both the validity and repeatability studies as 

well as in training and testing a diagnostic neural network presented in Section 5. 

Note the symbols in the first column as these are used in the result tables in later 

sections: 
Table 2: Joint angles evaluated 

Symbol Description Proximal segment Distal segment 

φh 

θh 

ψh 

Hip abduction-adduction  

Hip flexion-extension 

Hip internal-external rotation 

Pelvis 

(Sacral sensor) 

Femur 

(upper leg sensor) 

φk 

θk 

ψk 

Knee varus-valgus  

Knee flexion-extension 

Knee internal-external rotation 

Femur 

(upper leg sensor) 

Tibia 

(lower leg sensor) 

φa 

θa 

ψa 

Ankle eversion-inversion 

Ankle plantar-dorsiflexion  

Ankle supination-pronation 

Tibia 

(lower leg sensor) 

Calcaneus and Metatarsal 

(foot sensor) 

φ, θ and ψ in Table 2 represent Euler angles in the frontal, sagittal and transverse 

planes, respectively. 
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Appendix A contains a more complete list of parameters commonly measured during 

a gait study along with anatomical illustrations of joint angles
2
. Figure 16 

chronologically depicts how the temporal-spatial and joint angle gait parameters were 

calculated. Appendix C explains the function and structure of the MATLAB 

subfunctions (e.g. gaitpar.m) referred to in the figure. 

 

 
Figure 16: Schematic of gait parameter calculation script 

3.4.2. Graphical user interface 

To simplify IMC data processing a graphical user interface (GUI) was created within 

MATLAB. The GUI allowed researchers to view a variety of gait parameter of a 

recorded *.MVNx file. These include any of the joint angles of the hip, knee or ankle, 

                                                 
2
 Gait analysis may be applied to the entire body, but this study focussed on the lower body only. 
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medial-lateral and anterior-posterior pelvic tilt and average values of velocity, 

cadence step length and stride length. The layout and operation of the GUI are 

explained below.  

 

Figure 17 shows the main graphical user interface created to simplify data handling 

and to visually verify calculated gait patterns.  

 

 
Figure 17: Graphical user interface 

 

The user may start by entering the filename of a recorded *.MVNx file in an edit box 

at the top of the GUI window and clicking on the “RUN” button. Calculations, as 

described in Appendix C, are done from the raw data. When these calculations are 

complete, a “RUN COMPLETE!!” message will display in the status bar to the right of 

the “RUN” button. At the same time the sagittal plane angles of the right knee, hip 

and ankle will be plotted. Tick-boxes above the main plot window allow the user to 

plot the heel-strike incidence (yellow vertical lines above) and the value of the 

specific angle at a selected slider position. 

  

The number of strides displayed may be selected by setting the time limits in the edit 

boxes at the top right of the main plot window. Drop-down bars above each of the 

three plot windows allow the user to view any of the nine major joint angles as well 

as the anterior-posterior or medial-lateral pelvic tilt. Front and/or side view video 
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files (in .AVI format) may be created using Moven Studio. After being uncompressed 

using alternative software, they may be copied to the active directory and their 

filenames entered with the corresponding *.MVNx file. This allows for a frame-by-

frame analysis of gait patterns.  

 

The window at the bottom right of the GUI displays the sampling frequency along 

with average values of step and stride length as well as the velocity and cadence for 

the run. It is important that the *.MVNx file only contains walking data (no jumping, 

squatting, etc) if these values are to be valid. The “EXPORT DATA” button may be 

used to export all the calculated kinematic and temporal-spatial gait data to a 

Microsoft EXCEL file with the same name as the evaluated *.MVNx file. The 

“PRINT” button creates a new figure which displays the parameter which is plotted 

on the main plot window along with the heel-strike instances (if the user ticks the 

“SHOW HEELSTRIKE” tick-box). A printer selection window is opened from which 

the figure may be printed. The “SAVE” button also creates a new figure and saves it 

in the form of a .JPG file in the current directory. The filename of the *.JPG file is a 

combination of the *.MVNx filename and the selected gait parameter.   

3.4.3. Synchronizing IMC and OMC data 

In order to accurately compare IMC and OMC gait parameters, it was important to 

synchronise the data acquired from these systems. This was achieved during post 

processing by using a basic least squares fit of the OMC data onto the IMC data. A 

single OMC recorded stride was isolated by identifying consecutive heel-strike 

instances. Here heel-strike was defined as the local minima of the z-axis displacement 

of the foot. This is illustrated in Figure 18.  

 

Because sagittal plane angle comparison of the knee showed the greatest inter-system 

correlation, this parameter was used to pinpoint matching stride start-times. The 

OMC stride data was superimposed onto the IMC data and the sum of the least 

squares was calculated over all the time samples. The OMC stride was incrementally 

shifted across the timeline of the IMC data until a minimum summed difference was 

found. A visual confirmation was done in each case to ensure that corresponding 

strides were compared. All the remaining joint angles were then compared for the 

determined starting timeframe.  
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Figure 18: Heel-strike identification 

 

Bias errors are common in gait analysis measurement because of differences in 

marker placement with reference to the BCS (Besier et al., 2003), irrespective of the 

Mocap system used. This bias error was removed by applying another least squares 

fit along the y-axis (joint angle magnitude) of the parameter curves. The relative 

differences in angle waveforms could then be compared. Difference calculations were 

done with and without the y-axis bias error correction and both cases reported in 

Section 3.5.          

3.4.4. Statistical approach 

Two statistical quantifiers were used to describe the correlation between the IMC and 

OMC collected data. Namely, the Root Mean Square difference (ERMS) and the 

Correlation Coefficient (R):  

3.4.4.1. Root mean square (RMS) difference 

The first method used to compare data is the RMS value which is calculated by taking 

the square root of the mean squared difference between the data sets at each 

timeframe (Equation 8).       
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where xt and yt are the joint angle values (in degrees) of the IMC and OMC at time 

frame t, respectively. 

3.4.4.2. Coefficient of correlation  

Weisstein (2008), proposed the use of a correlation coefficient (also called the cross-

correlation coefficient), R, in comparing the correlation between two datasets. This 

coefficient is a quantity which describes the quality of a least-squares fitting to the 

original data and is given by (9).    
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If R approaches 1, the correlation between the data sets is strong whereas for 

dissimilar data sets, R approaches 0. This coefficient is also unaffected by the bias 

error commonly found in joint angle measurements.  

3.5. Results   

3.5.1. Temporal-spatial comparison  

Average temporal and spatial parameters measured during the validity study are 

given in Table 3 below.  

 
Table 3: Temporal-spatial results - Normal walk 

 
Avg. results (straps)  Difference  Avg. results (suit)  Difference 

 
IMC  OMC  

 
 IMC  OMC   

 
Mean ± SD Mean ± SD  ERMS # Mean ± SD Mean ± SD  ERMS # 

Stride length# 1.38 ± 0.12 1.41 ± 0.13 
 

0.045 1.50 ± 0.14 1.49 ± 0.13 
 

0.046 

Step length 0.685 ± 0.06 0.713 ± 0.07 
 

0.051 0.759 ± 0.08 0.751 ± 0.07 
 

0.067 

Velocity 1.281 ± 0.17 1.297 ± 0.18 
 

0.037 1.329 ± 0.14 1.315 ± 0.12 
 

0.060 

Cadence 111.9 ± 7.5 109.1 ± 10.1 
 

5.749 105.1 ± 5.15 105.0 ± 4.00 
 

5.670 

# Units for gait parameters are as follows: Stride length [m], step length [m], velocity [m/s] and cadence [steps/min] 

 

Values of step and stride length calculated using IMC data vary slightly from those 

calculated by the OMC software. The average differences between the compared step 

lengths are 67 mm (8.9%) and 51 mm (7.3%) when using the suit and straps, 

respectively. Values calculated for stride length are found to be more accurate with an 

average difference of 46 mm when using the suit. Cadence values vary in the order of 

5.7 steps per minute (5.3%). The best results were obtained for velocity using the 

straps, with an average difference of 0.037 m/s (2.9%).  

3.5.2. Joint angle comparison 

Table 4 and Table 5 below show the RMS difference and correlation coefficient 

obtained when comparing joint angle waveforms at a self-selected (normal) walking 

speed. 
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Table 4: Joint angle validity results - Normal walk (Straps) 

 

 

ERMS [°] 
(Mean ± SD) 

ERMS (bias corrected) [°] 
(Mean ± SD) 

R  
(Mean ± SD) 

 
Right  Left Right Left Right Left 

φh 3.27 ± 1.71 3.12 ± 0.65 2.05 ± 0.47 2.29 ± 0.27 0.91 ± 0.08# 0.86 ± 0.06 

θh 17.82 ± 7.23 17.26 ± 5.69 3.84 ± 1.73 3.46 ± 1.01 0.97 ± 0.03 0.98 ± 0.02 

ψh 9.68 ± 4.70 10.65 ± 3.83 4.51 ± 2.51 5.55 ± 1.89 0.50 ± 0.24 0.44 ± 0.27 

φk 8.86 ± 1.01 8.09 ± 0.89 5.56 ± 2.62 6.69 ± 0.75 0.49 ± 0.28 0.39 ± 0.29 

θk 7.76 ± 4.51 7.90 ± 3.29 3.41 ± 0.86 3.04 ± 0.83 0.99 ± 0.00 0.99 ± 0.01 

ψk 10.48 ± 5.16 15.61 ± 7.93 3.95 ± 0.96 4.40 ± 1.27 0.78 ± 0.15 0.57 ± 0.29 

φa 6.12 ± 2.31 8.66 ± 3.17 5.35 ± 1.04 7.50 ± 1.94 0.28 ± 0.16 0.23 ± 0.18 

θa 25.57 ± 5.07 22.57 ± 2.23 21.42 ± 2.78 20.65 ± 2.23 0.25 ± 0.11 0.28 ± 0.07 

ψa 6.64 ± 2.13 15.33 ± 7.09 4.86 ± 2.42 6.80 ± 1.32 0.41 ± 0.30 0.13 ± 0.13 

# Values in bold and colour are those with correlation coefficient > 0.5 
 
 

  
Table 5: Joint angle validity results - Normal walk (Suit) 

 

 

ERMS [°] 
(Mean ± SD) 

ERMS (bias corrected) [°] 
(Mean ± SD) 

R 
(Mean ± SD) 

 
Right  Left Right Left Right Left 

φh 5.83 ± 2.48 5.28 ± 4.30 4.86 ± 1.96 2.11 ± 0.39 0.83 ± 0.12# 0.84 ± 0.04 

θh 13.62 ± 6.71 11.78 ± 4.74 2.80 ± 0.98 3.40 ± 1.07 0.99 ± 0.00 0.99 ± 0.01 

ψh 10.42 ± 4.54 14.43 ± 11.58 5.61 ± 0.72 6.26 ± 2.74 0.56 ± 0.21 0.42 ± 0.27 

φk 7.48 ± 5.82 8.94 ± 3.49 5.02 ± 3.23 7.25 ± 2.80 0.59 ± 0.34 0.49 ± 0.31 

θk 6.92 ± 3.64 8.99 ± 9.12 3.02 ± 1.07 4.83 ± 2.42 0.99 ± 0.01 0.99 ± 0.01 

ψk 10.45 ± 4.43 11.94 ± 7.82 5.39 ± 2.84 5.02 ± 1.03 0.36 ± 0.23 0.58 ± 0.23 

φa 6.81 ± 3.23 7.36 ± 4.53 5.84 ± 2.21 6.78 ± 4.41 0.52 ± 0.22 0.37 ± 0.26 

θa 26.55 ± 4.70 27.89 ± 2.32 22.61 ± 2.68 24.89 ± 2.79 0.14 ± 0.11 0.31 ± 0.27 

ψa 11.21 ± 7.42 14.34 ± 10.89 3.53 ± 0.94 6.79 ± 5.31 0.49 ± 0.33 0.43 ± 0.27 

# Values in bold and colour are those with correlation coefficient > 0.5 

 

As expected, the sagittal plain angles of the hip and knee, θh and θk, display high 

correlation coefficients with average hip flexion-extension correlation slightly higher 

when using the suit (R = ±0.99). Hip abduction-adduction figures also display 

acceptable results. Abduction-adduction results in the knee show moderate validity 

with R values between 0.39 and 0.59. During normal walking, ψh has R values of 

between 0.42 and 0.56. These however go up to 0.71 for slow walking. The results of 

slow and fast walking trials are given in Appendix D.         

 

Differences found by comparing results of the ankle joint are far more significant 

with an R value as low as 0.13 during internal-external rotation. An irregularity was 

found however when using the Lycra suit. Here R for ψa during slow walking is 0.63 

on the right ankle while the left ankle only obtained a value of 0.49. The same 
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phenomenon was observed during fast walking with right and left values 0.56 and 

0.27, respectively.  

 

Table 6 gives a comparison between average results obtained using the Lycra suit or 

the elastic straps at a normal walking speed. The table shows that there is on average 

little advantage when using straps instead of the Lycra suit. This difference increases 

slightly at a fast walking speed (Table 7) which confirms the significance of an error 

caused by sensor movement relative to the skin.     

 
Table 6: Difference between joint angle validity results of suit and straps - Normal walk 

 

 

   ∆ERMS [°] ∆ERMS (bias corrected) [°]      ∆ER 

Right Left Right Left Right Left 

φh 2.567# 2.155 2.800 0.179 0.080 0.024 

θh 4.198 5.479 1.040 0.057 0.024 0.006 

ψh 0.740 3.783 1.098 0.706 0.059 0.016 

φk 1.381 0.844 0.535 0.558 0.096 0.096 

θk 0.835 1.092 0.392 1.787 0.003 0.003 

ψk 0.027 3.673 1.448 0.619 0.414 0.009 

φa 0.694 1.307 0.489 0.722 0.243 0.142 

θa 0.981 5.327 1.189 4.233 0.112 0.032 

ψa 4.566 0.994 1.330 0.012 0.076 0.298 

#Values in bold and colour is where straps showed higher correlation than the suit 

 
Table 7: Difference between joint angle validity results of suit and straps - Fast walk 

 

 

   ∆ERMS [°] ∆ERMS (bias corrected) [°]       ∆ER 

Right  Left Right Left Right Left 

φh 4.014# 4.821 4.310 0.244 0.221 0.092 

θh 3.889 3.389 0.799 0.488 0.009 0.004 

ψh 2.984 1.923 4.730 2.372 0.174 0.137 

φk 3.582 2.721 1.412 2.991 0.201 0.099 

θk 1.009 0.241 1.290 0.950 0.017 0.016 

ψk 4.116 0.150 0.765 2.359 0.382 0.059 

φa 0.385 1.703 0.325 2.302 0.001 0.113 

θa 0.903 8.663 1.456 9.649 0.161 0.233 

ψa 4.077 0.347 0.701 0.961 0.070 0.128 

#Values in bold and colour is where straps showed higher correlation than the suit 

 

Figure 19 and Figure 20 show the joint angle comparison of a representative test 

subject. The figures also better illustrate the effect of removing the bias error. A good 

correlation is again observed between IMC and OMC recorded joint angles of the 

hips and knees. Bias errors are significant in the rotation angles of these joints with 

constant offsets in the order of 10°. This was also the case for hip flexion-extension 
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values. Ranges and maxima of ankle plantar-dorsiflexion calculated from IMC data 

are noticeably higher than those produced by OMC software. Also at toe-off (±66% 

of gait cycle) a phenomenon was observed where localized peaks in results from the 

two systems deviate in opposite directions (e.g. in the left foot of the representative 

subject, IMC calculations suggest pronation in contrast to supination as reported by 

the OMC system).        
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Figure 19: Comparative data validity for the left side of a representative subject 
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Figure 20: Comparative data validity for the right side of a representative subject 

3.6. Discussion 

One attribute of the full-body IMC that sets it apart from other acceleration or strictly 

orientation based systems, is its ability to determine 3D segment position in the GCS. 

As stated earlier, this is achieved through double integration of acceleration values 

and drift compensation from complementary component outputs. The validity of 

temporal-spatial parameters is therefore dependent on two factors: the accuracy of 

foot position calculations by Moven Studio software, and the correct identification of 

heel-strike instances, as calculated by the author of this study.  

 

The position measurements of the OMC are very accurate due to the use of several 

pre-calibrated, high resolution cameras and the subsequent absence of measurement 

drift. The differences between OMC and IMC results are therefore assumed to be 

fully attributed to operational errors of IMC such as drift, magnetic interference, 

calibration and joint centre calculation.  
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Velocity was calculated using the total distance displaced by the pelvic sensor 

divided by the time between consecutive heel-strike instances of one side (over one 

stride). This value therefore indicates the average velocity between two positional 

points in time and is therefore considered good indication of the position validity of 

Moven Studio results.  

 

As discussed in Appendix C, step and stride length calculations relied upon the 

definition of a direction vector. Step lengths were calculated as the vector 

components parallel to the direction vector, whereas stride length utilized the absolute 

distance between foot coordinates at consecutive heel-strike instances. Lower average 

differences of stride length (Straps: 3.2%, Suit: 4.5%) to step length (Straps: 8.9%, 

Suit: 7.3%) indicate that position calculations are acceptable and that the directional 

vector approach of calculating step length requires refinement. Even with the current 

software, however, the temporal-spatial parameters show acceptable validity.     

 

Besier et al. (2003) cited Della Croce et al. (1999) in saying that the errors associated 

with the imprecise location of anatomical landforms (ALs) are noted to be the 

greatest source of error in motion analysis compared to instrument error and skin 

artefacts. Whether it is the inaccurate positioning of markers or the miscalculation of 

joint centres, this is the case for all motion analysis systems. Besier et al. (2003) went 

on to state that the greatest error in AL location occurs in the foot. This was 

confirmed by the validity results in Section 3.5.2. Unlike with temporal-spatial 

parameters, the OMC values also suffer from errors such as marker vibration and 

inertia (especially in the wands). Keeping this in mind, the OMC was still considered 

as the “golden standard” because of its widespread use and acceptance.  

 

High correlation values in sagittal joint angles were found in the hips and knees. This 

suggests that the validity of joint angles, calculated from IMC data, may be affected 

by the rotational freedom of the joint around non-primary rotation axes and/or the 

range of motion around the primary axis, as both these characteristics are more 

prevalent in sagittal plane angles. Acceptable correlation values were recorded for hip 

and knee abduction-adduction. Differences may stem from a misalignment of IMC 

sensors or inaccurate positioning of OMC markers leading to mismatched rotation 

centres or axes.  A higher R value for knee rotation during slow walking suggests that 

sensor or marker movement relative to the BCS adds to errors in this plane.         

 

Low correlation values in the ankle joints could be as a result of the following 

factors:  

o Incorrect allocation or calculation of angle axes (e.g. the OMC software uses a 

marker on the lateral malleoli and an estimation based on a measured ankle 

width to calculate the sagittal plane angle of the ankle, while the IMC 

software uses an axis defined during static calibration).  

o Movement of the IMC sensor on the soft tissue on top of the foot.  
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o A small area of contact between the sensor and the foot due to the flat base of 

the sensor.  

o Interference of the IMC sensor cable with the lower tip of the tibia. This is 

illustrated in Figure 21 below in which the arrow points to the position of 

possible interference at maximum dorsiflexion.  

 

 
Figure 21: Foot sensor position 

 

The last two factors are most likely responsible for the discrepancies observed 

between left and right ψa values as well as the pronation-supination phenomenon at 

toe-off described in Section 3.5. These differences may be reduced through better 

sensor design or placement. Unfortunately there is no means of determining the 

weighting that each of the above-mentioned factors had on the total difference. Upon 

studying Table 6 and Table 7, the initial hypothesis of using double-sided tape and 

straps in instead of the Lycra suit was confirmed by the slight improvements in 

validity during fast walking trials. The highest achievable accuracy and repeatability 

is obligatory in clinical gait applications. It was for this reason that the Lycra suit was 

not used in the repeatability study described in Section 4.  

 

A relatively constant bias difference of approximately 10° in the hip joint may be a 

result of the initial anterior pelvic tilt defined by Moven Studio software. The 

removal of this bias difference is a valid step as this difference is purely due to 

varying sensor or marker positioning which is a common problem in all Mocap 

systems.  

 

In conclusion the IMC produced temporal-spatial and joint angle parameters (except 

for ankle joint angles) are sufficiently valid for clinical gait analysis. However, 

improvements are required in spatial parameter calculation and in foot sensor design.      
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4. REPEATABILITY STUDY  

Several studies have been conducted to investigate the repeatability of recorded gait 

parameters using the Vicon OMC system. These include measurements on able-

bodied controls as well as subjects with gait pathologies (Kadaba et al., 1989, 

Mackey et al., 2005, Steinwender et al., 2000, Yavuzer et al., 2006).  Mills et al. 

(2007) evaluated the repeatability of ten able-bodied subjects using an 

electromagnetic Mocap system. However, no studies were found which investigate 

the repeatability of gait parameters measured using full-body IMC.  

4.1. Test participation 

30 young, healthy men were used in the study. Their physical characteristics were as 

follows: 

 
Table 8: Test subject characteristics (repeatability study) 

 

 Mean ± SD Max Min 

Age [years] 22.6 ± 1.9 25 19 

Height [cm] 180.6 ± 5.7 196 168 

Weight [kg] 81.4 ± 10.1 110 64 

 

Subjects were selected under the condition that they had no prior history of 

musculoskeletal problems. Subjects were also questioned before every trial to ensure 

that they were not experiencing any muscle stiffness or fatigue possibly caused by 

sporting activities. Kadaba et al. (2007) did not use any female subjects in their study. 

It was therefore also decided to omit female subjects from this study to provide a 

more accurate comparison of results.    

4.2. Apparatus 

For this study the Moven IMC system was used with double-sided adhesive tape and 

elastic straps. Refer to Section 3.2.2.   

4.3. Data acquisition and processing 

This study evaluated the within-day and between-day repeatability of 30 able-bodied 

subjects. Each subject was tested three times on each of three test days. The test days 

were at least one week apart to simulate an entirely new experience on each test day.  

 

Sensor placement and calibration procedures were identical to those performed for 

the IMC in Sections 3.3.1.1 and 3.3.1.2. Subjects were asked to walk at a self-
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selected speed along a 12 m walkway. The first two runs were not recorded. This 

allowed the subject to become comfortable with the surroundings and procedure. 

Seven runs were recorded in the same direction for each subject on each test day.  A 

tape line was made on the walkway, 5 m from the start position. Using the Moven 

Studio software a time marker was inserted when the subject passed over this line. At 

this point the subject would have achieved a uniform walking pattern and velocity. 

Three strides were isolated after the time marker and from these; the middle stride on 

each side was used in calculating gait repeatability.     

4.4. Data analysis 

4.4.1. Gait data representation 

As in Section 3.4.1, SL, STL, velocity, cadence and the same nine joint angles were 

analysed for repeatability.  

4.4.2. Statistical approach 

All of the abovementioned studies done on gait parameters repeatability (Besier et al., 

2003, Mackey et al., 2005, Yavuzer et al., 2006, Mills et al., 2007, Steinwender et 

al., 2000, Kadaba et al., 1989), use repeatability quantifiers as proposed by Kadaba, 

et al. (1989). They employed the coefficient of variance (CV) for temporal-spatial 

parameters and either the coefficient of multiple determination (CMD) or the 

coefficient of multiple correlation (CMC) for evaluating joint angle kinematics. The 

coefficient of variance is defined as the ratio of standard deviation (SD) to the mean, 

expressed as a percentage. CV will approach zero as values of SD decrease, thus 

implying repeatability between values. The CMC, or also sometimes written as r, is 

the positive square root of the adjusted R-squared ( 2

aR ) statistic also called the CMD 

(Besier et al., 2003). Equation (10) shows the calculation of the adjusted R-squared 

for within-day repeatability while Equation (13) is used for between-day repeatability 

(Kadaba et al., 1989). Here M is the total number of days, N is the total number of 

runs (strides) and T is the total stride-time of a specific stride.        
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Here ijtY  is the t
th

 time point of the j
th

 run on the i
th

 test day, itY  is the average at 

time point t on the i
th

 test day given by Equation (11) 
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and iY  is the grand mean on the i
th

 day and given by Equation (12)   
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(12) 

 

For between-day repeatability, mean values of gait parameters were calculated for 

each subject for each of the three test days.  
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Here tY , given by (14), is the average at time point t over NM gait cycles andY , 

given by (15), is the grand mean over time. 
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The CMCs of these values were then calculated by taking the positive square root of 

Equations (10) and (13). Another quantifier often used to analyse repeatability is the 

interclass correlation coefficient which presents increasing repeatability on a scale 

from of 0 to 1. The CMC value was preferred in this study because (unlike the ICC) it 

allowed the author to compare more than two data sets or joint angle curves.   

4.5. Results 

4.5.1. Temporal-spatial repeatability 

Table 9 contains the temporal and special gait parameter repeatability results for the 

IMC system along with results obtained by Kadaba et al. (1989) using the Vicon 

OMC system. Results show that the OMC system produces more repeatable results in 

all but one of the calculated parameters. The within-day coefficient of variance for 

the IMC recorded velocity is almost double what was presented by Kadaba et al. 

(1989) Between-day repeatability of cadence is slightly better than that of the OMC 

system.  
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Table 9: Comparison of intra-subject repeatability of temporal-spatial parameters 

 

Figure 22 present the within-day and between-day variation in SL, STL, velocity and 

cadence for a representative subject.  

   

      
 

     

Figure 22: Mean and standard deviation of temporal-spatial parameter repeatability 

for a representative subject 
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Average results 

(Mean ± SD) 
 CV% (within-day) 

(Mean ± SD)  
CV% (between-day) 

(Mean ± SD) 

 
IMC OMC  IMC OMC  IMC OMC 

Stride length# 1.33 ± 0.11 1.36 ± 0.12 
 

2.0 ± 0.42 1.7 ± 0.6 
 

3.6 ± 1.2 3.0 ± 1.3 

Step length 0.66 ± 0.53 -  - 
 

5.5 ± 1.8 -  - 
 

6.6 ± 1.9 -  - 

Velocity 1.183 ± 0.12 1.306 ± 0.05 
 

5.4 ± 1.7 2.9 ± 3.3 
 

7.5 ± 2.4 6.1 ± 7.1 

Cadence 107.1 ± 6.21 111.6 ± 8.3 
 

2.2 ± 0.6 1.9 ± 0.8 
 

3.2 ± 1.3* 3.4 ± 1.8 

# Units for gait parameters are as follows: Stride length [m], step length [m], velocity [m/s] and cadence [steps/min] 

* Values in bold and colour are those in which the IMC show a higher degree of repeatability than the OMC 



 

 

BENCHMARKING FULL-BODY INERTIAL MOTION CAPTURE FOR CLINICAL GAIT ANALYSIS  

 TEUNIS CLOETE - 29 JANUARY 2009 

DEPARTMENT OF MECHANICAL AND MECHATRONIC ENGINEERING - STELLENBOSCH UNIVERSITY  

 

- 49 - 

4.5.2. Joint angle repeatability  

4.5.2.1. Within-day repeatability 

Table 10 and Table 11 contain the average joint angle repeatability results and 

corresponding standard deviations obtained between different trials within test days 

for the 30 able-bodied subjects. 

 
Table 10: Within-day repeatability of joint angles – IMC vs. OMC  

 
CMC ( 2

aR
 
Mean ± SD)  

Inertial 

 CMC ( 2

aR
 
Mean ± SD) 

Optical (Kadaba et al. 1989) 

  Right Left  Right Left 

φh 0.981 ± 0.009* 0.981 ± 0.008  0.964 ± 0.030 0.957 ± 0.088 

θh 0.992 ± 0.005 0.991 ± 0.004  0.996 ± 0.003 0.995 ± 0.005 

ψh 0.881 ± 0.079 0.889 ± 0.068  0.893 ± 0.064 0.893 ± 0.072 

φk 0.958 ± 0.041 0.970 ± 0.016  0.942 ± 0.044 0.962 ± 0.029 

θk 0.992 ± 0.004 0.990 ± 0.004  0.994 ± 0.005 0.994 ± 0.003 

ψk 0.919 ± 0.045 0.935 ± 0.047  0.911 ± 0.090 0.918 ± 0.053 

φa 0.913 ± 0.046 0.967 ± 0.017  - - - - 

θa 0.981 ± 0.012 0.966 ± 0.032  0.975 ± 0.018 0.978 ± 0.010 

ψa 0.910 ± 0.042 0.952 ± 0.025  0.853 ± 0.080 0.885 ± 0.053 

* Values in bold and colour are those in which the IMC show higher values of repeatability than the OMC 

 
Table 11: Within-day repeatability of joint angles – IMC vs. EMC  

 

CMD ( 2

aR
 
Mean ± SD)  

Inertial 

 CMD ( 2

aR
 
Mean ± SD) 

Electromagnetic  
(Mills et al. 2007) 

  Right Left  Right Left 

φh 0.963 ± 0.017 0.962 ± 0.015  0.977 ± 0.013 0.980 ± 0.010 

θh 0.984 ± 0.011 0.983 ± 0.008  0.994 ± 0.003 0.995 ± 0.002 

ψh 0.786 ± 0.131 0.799 ± 0.111  0.932 ± 0.023 0.938 ± 0.024 

φk 0.921 ± 0.072* 0.942 ± 0.030  0.901 ± 0.074 0.903 ± 0.087 

θk 0.983 ± 0.008 0.981 ± 0.008  0.989 ± 0.007 0.992 ± 0.005 

ψk 0.848 ± 0.080 0.876 ± 0.081  0.956± 0.017 0.947 ± 0.027 

φa 0.840 ± 0.078 0.936 ± 0.032  0.932 ± 0.032 0.819 ± 0.081 

θa 0.962 ± 0.023 0.935 ± 0.055  0.967 ± 0.023 0.972 ± 0.014 

ψa 0.832 ± 0.072 0.908 ± 0.045  0.888 ± 0.041 0.872 ± 0.081 

* Values in bold and colour are those in which the IMC show higher values of repeatability than the EMC 

 

Within-day repeatability of IMC calculated joint angles are high across the board. 

Sagittal plane angles of the hips and knees are especially high with CMD = ±0.983 

and CMC = ±0.991. Ankle plantar-dorsiflexion display excellent repeatability despite 

the extrinsic factors named in Section 3.6. Here right-side CMD and CMC values of 
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0.962 and 0.981 were achieved, respectively. Interestingly, the IMC system 

outperforms the OMC system for ankle joint repeatability. Repeatability values 

reported by Mills et al. (2007) are in most cases higher than those produced by the 

IMC system. Reported values for transverse plane angles ψh and ψk of the hips and 

knees were significantly higher in the EMC results than in the IMC results. Except 

for these divergences, all the results show a high degree of repeatability and are in the 

same order of magnitude as reported EMC and OMC results.            

4.5.2.2. Between-day repeatability 

Table 12 shows the between-day repeatability results obtained without removing the 

mean of each day (bias difference).   

 
Table 12: Between-day repeatability of joint angles – IMC vs. OMC  

 
CMC ( 2

aR
 
Mean ± SD)  

Inertial 

 CMC ( 2

aR
 
Mean ± SD) 

Optical (Kadaba et al. 1989) 

  Right Left  Right Left 

φh 0.934 ± 0.034* 0.933 ± 0.039  0.885 ± 0.067 0.882 ± 0.101 

θh 0.980 ± 0.014 0.983 ± 0.009  0.983 ± 0.012 0.978 ± 0.019 

ψh 0.911 ± 0.115 0.866 ± 0.088  0.410 ± 0.210 0.483 ± 0.236 

φk 0.839 ± 0.223 0.905 ± 0.066  0.611 ± 0.172 0.783 ± 0.159 

θk 0.991 ± 0.007 0.991 ± 0.006  0.981 ± 0.014 0.985 ± 0.009 

ψk 0.831 ± 0.140 0.854 ± 0.105  0.490 ± 0.191 0.534 ± 0.221 

φa 0.832 ± 0.121 0.942 ± 0.038  - - - - 

θa 0.969 ± 0.019 0.954 ± 0.030  0.937 ± 0.030 0.933 ± 0.034 

ψa 0.789 ± 0.080 0.913 ± 0.048  0.582 ± 0.176 0.612 ± 0.200 

* Values in bold and colour are those in which the IMC show higher values of repeatability than the OMC 

 

All but one of the calculated CMC values calculated for the analysed joint angles are 

higher for IMC than OMC. The exception being θh for the right side, in which the 

difference is 0.003˚. IMC results for ψh, ψk and ψa significantly outperforms OMC 

results reported by Kadaba et al. (1989). Between-day, sagittal plane CMC values for 

the knees are in the same order as those calculated between trials, within test days. As 

expected, however, the CMCs of trials measured between test days are virtually all 

slightly lower than those measured within test days. Only ψh for the right side 

deviates from this trend.  

 

The following two tables provide the between-day repeatability results for the case in 

which the bias difference for each day was removed. All the joint angle curves 

measured on a particular day were normalized by subtracting the mean curves of that 

day from each of the curves. These mean curves were calculated by summing the 

angle at a specific time frame and dividing the answer by the number of runs of that 

day. The CMC and CMD values therefore indicate the relative repeatability of nine 
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measured trial strides (three trials on each of three test days) each with the mean of 

the specific test day removed.   

 
Table 13: Between-day repeatability of joint angles with mean of each day removed – 

IMC vs. OMC 

 
CMC ( 2

aR ) 

Inertial 

 CMC ( 2

aR ) 

Optical (Kadaba et al. 1989) 

  Right Left  Right Left 

φh 0.964 ± 0.028* 0.958 ± 0.023  0.943 ± 0.035 0.948 ± 0.062 

θh 0.992 ± 0.003 0.991 ± 0.004  0.994± 0.003 0.994 ± 0.004 

ψh 0.975 ± 0.020 0.950 ± 0.037  0.820 ± 0.100 0.841 ± 0.084 

φk 0.875 ± 0.200 0.934 ± 0.040  0.737 ± 0.197 0.858 ± 0.106 

θk 0.995 ± 0.002 0.995 ± 0.002  0.990 ± 0.009 0.991 ± 0.004 

ψk 0.906 ± 0.084 0.910 ± 0.056  0.844 ± 0.086 0.849 ± 0.091 

φa 0.872 ± 0.103 0.960 ± 0.025  - - - - 

θa 0.976 ± 0.017 0.964± 0.027  0.964 ± 0.018 0.967 ± 0.013 

ψa 0.950 ± 0.021 0.965 ± 0.015  0.834 ± 0.074 0.858 ± 0.055 

* Values in bold and colour are those in which the IMC show higher values of repeatability than the OMC 

 
Table 14: Between-day repeatability of joint angles with mean of each day removed – 

IMC vs. EMC  

 

CMD ( 2

aR
 
Mean ± SD)  

Inertial 

 CMD ( 2

aR
 
Mean ± SD) 

Electromagnetic  
(Mills et al. 2007) 

  Right Left  Right Left 

φh 0.930 ± 0.053* 0.919 ± 0.043  0.929 ± 0.052 0.871 ± 0.093 

θh 0.984 ± 0.007 0.992 ± 0.007  0.969 ± 0.021 0.970 ± 0.019 

ψh 0.951 ± 0.038 0.903 ± 0.068  0.839 ± 0.126 0.806 ± 0.112 

φk 0.804 ± 0.265 0.874 ± 0.073  0.598 ± 0.220 0.659 ± 0.260 

θk 0.991 ± 0.004 0.990 ± 0.004  0.988 ± 0.012 0.978 ± 0.036 

ψk 0.827 ± 0.135 0.832 ± 0.099  0.877± 0.108 0.849 ± 0.112 

φa 0.771 ± 0.164 0.921 ± 0.048  0.863 ± 0.102 0.722 ± 0.273 

θa 0.953 ± 0.033 0.930± 0.051  0.967 ± 0.027 0.946 ± 0.080 

ψa 0.903 ± 0.039 0.932 ± 0.029  0.731 ± 0.255 0.719 ± 0.273 

* Values in bold and colour are those in which the IMC show higher values of repeatability than the EMC 

 

With the bias difference removed, CMC and CMD values recorded indicate excellent 

between-day repeatability. When compared to the studied OMC and EMC systems, 

results show that angle measurement from all three joints are highly repeatable with 

CMC values ranging from 0.872 ± 0.103 to 0.995 ± 0.002 and CMD values ranging 

from 0.771 ± 0.164 to 0.992 ± 0.007. Sagittal plane angles of the knees show 

particularly good repeatability (CMC: ±0.995, CMD: ±0.991). Unlike the 

phenomenon noted for within-day testing, the results for transverse plane angles ψh 
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and ψk of the hips and knees recorded using EMC are not found to be significantly 

higher than those of the IMC system. These values seem to exhibit a contrary trend, 

especially when comparing results with the findings of Kadaba et al. (1989).     
 

Figure 23 and Figure 24 illustrate the means and corresponding variance of CMC 

results for the right and left side joint angles of a representative subject.     
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Figure 23: Mean and variance of joint angle motion of the right side for the 

representative subject over nine runs (three runs on each of the three days) 
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Figure 24: Mean and variance of joint angle motion of the left side for the 

representative subject over nine runs (three runs on each of the three days) 

 

Again the general trend of higher repeatability in the knee and hip joints was 

observed, especially in the sagittal plane.  

4.6. Discussion 

According to Yavuzer et al. (2007), errors in repeatability may be as a result of two 
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and cannot be reduced through improvements of measuring techniques but should be 

measured as a baseline for analysis. On the other hand, extrinsic errors such as those 

caused by skin movement, calibration, anthropometric measurements and the 

definition of gait cycle phases (such as heel-strike and toe-off phases), may be 

minimized by careful and meticulous testing procedure and improvements in tracking 

equipment (Yavuzer et al., 2006). When compared to OMC and EMC systems, the 

-30

-20

-10

0

10

20

0 25 50 75 100

Jo
in

t 
a

n
g

le
 [

°]

Gait cycle [%]

Ankle inversion-eversion

CMC (w) = 0.965
CMC (b) =  0.950

-20

-10

0

10

20

30

0 25 50 75 100

Jo
in

t 
a

n
g

le
 [

°]

Gait cycle [%]

Ankle plantar-dorsiflexion

CMC (w) = 0.966
CMC (b) =  0.959

-40

-30

-20

-10

0

10

20

0 25 50 75 100

Jo
in

t 
a

n
g

le
 [

°]

Gait cycle [%]

Ankle rotation

CMC (w) = 0.956
CMC (b) =  0.893

 Average joint angle  Variance over nine runs 
 



 

 

BENCHMARKING FULL-BODY INERTIAL MOTION CAPTURE FOR CLINICAL GAIT ANALYSIS  

 TEUNIS CLOETE - 29 JANUARY 2009 

DEPARTMENT OF MECHANICAL AND MECHATRONIC ENGINEERING - STELLENBOSCH UNIVERSITY  

 

- 56 - 

IMC sensors are quite large (38 × 53 × 21 mm, 0.030 kg). This causes more sensor 

inertia and subsequent increased skin artefacts, especially during faster ambulation. 

On the other hand, a greater area of contact between the sensors and skin was 

possible which ensured negligible sensor-to-skin movement. Heel-strike and toe-off 

identification differences played a definite role, and further refinement of these 

calculations is still required. Finally, calibration and anthropometric measurement 

errors were minimized by using a single trained researcher to conduct segment 

measurement and calibration for all the tests. Tester-tester effects were studied by 

Besier et al. (2003) and Mills et al. (2007). Besier et al. concluded that the 

repeatability results were fairly independent of the examiner.           

 

Variation in marker reapplication also leads to an extrinsic bias error (Kadaba et al., 

1989). According to Mackey et al. (2005), small changes in marker positioning of 

knee and ankle markers lead to noticeable differences in transverse plane kinematics. 

This is consistent with findings by other researchers and apparent in the 

comparatively lower between-day repeatability. In general however the between-day 

repeatability results were high for both bias-uncorrected (CMC: 0.789 – 0.991) and 

bias-corrected (CMC: 0.872 – 0.995) cases and comparable to those by Kadaba et al. 

(1989) (CMC: 0.410 – 0.985 and 0.737 – 0.994) and Mills et al. (2005) (CMD:  0.598 

– 0.988). This implies that marker reapplication errors were acceptably low.   

 

Kadaba et al. (1989) stated that lower repeatability in the pelvic tilt was as a result of 

both small range of motion (ROM) and the lack of a well defined pattern of 

movement. This statement is true for most joint angles which display these 

characteristics. Sagittal plane angles have higher ranges of motion and well defined 

motion patterns (refer to Figure 23 and Figure 24). As expected these angles show the 

highest CMCs. This is true for other studies (Kadaba et al., 1989, Mills et al., 2007). 

Since the study conducted by Kadaba et al. (1989) OMC systems may have 

improved, hence their reported values of repeatability may be slightly lower than 

those achievable by present OMC systems, but to the knowledge of the author, no 

such results have been reported.      

 

Based on repeatability results obtained, this study has proven that researchers and/or 

physicians can base diagnosis about the gait of a test subject or patient on a single 

IMC-recorded gait analysis. Kadaba et al. (1989) however aptly stated that the 

repeatability of pathological gait patient may decrease from those recorded from able-

bodied subjects, particularly because of greater skin looseness and a higher average 

body-fat index often found in stroke and Parkinson’s disease sufferers.          
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5. NEURAL NETWORK  

5.1. Introduction 

The aim, in earlier sections, was to show that IMC (more specifically full-body IMC) 

exhibits sufficient accuracy and repeatability to be utilized for clinical gait analysis. 

The results obtained in Sections 3 and 4 indicate that this is indeed the case. This 

section aims to compliment these findings by employing and evaluating IMC in a 

clinical application namely to train and test a neural network using IMC collected 

data, to distinguish between stroke patients and able-bodied controls. Although a 

seemingly trivial problem, human gait is observed to be very complex and variable, 

even within an able-bodied group. Subjects from one group may display 

characteristics common to the other group.  

 

The use of semi-automated-diagnosis tools such as neural networks has seen a 

continual growth in popularity because of their clinical potential and diagnostic 

success. As will be shown in later sections, it is often very difficult to provide 

accurate diagnoses by looking at only a few parameters at a time. However, a neural 

network is able to perform a weighted comparison of several input parameters 

simultaneously to distinguish between known output groups. This aids medical 

professionals with patient assessment by supplying a primary diagnosis, which may 

provide both an increase in the number of patients that a doctor is able to treat as well 

as improve the choice and quality of treatment.  

5.2. Objectives 

In this section the author aims to prove, through the use a neural network in a specific 

clinical application, the usefulness of employing a neural network for gait analysis 

over the use of conventional qualitative or quantitative statistical methods. This 

section also aims to highlight the present and future advantages of combining IMC 

and semi-automated-diagnosis tools (e.g. neural networks or fuzzy logic) in gait 

analysis. Such advantages may be especially useful in telemedicine.              

5.3. Procedure 

5.3.1. Data collection 

5.3.1.1. Inclusion criteria 

Sufficient pathologic and normal gait data was required to train and test a chosen 

neural network. Data from the 30 able-bodied subjects used in the repeatability study 

(Section 4) was re-used for the required normal input data. Stroke patient data was 

recorded in a collaborative study done in cooperation with Mr Wasim Labban from 
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the Department of Physiotherapy of the University of Stellenbosch. Ethical approval 

for this study was obtained from the Committee for Human Research of the 

University of Stellenbosch, Faculty of Life Sciences. Written informed consent was 

obtained from each patient prior to their participation in the study. Routine gait 

analysis was conducted on 28 hemiparetic stroke patients with varying degrees of 

locomotive dysfunction. The stoke-patient group were aged between 25 and 64 years 

with a mean (STD) of 51.2 (±10.1) compared to the control group who were aged 

between 19 and 25 with a mean of 22.6 (±1.9). Also, the stroke-patient group 

contained 40 % female subjects compared to the control group who were exclusively 

male.   

5.3.1.2. Gait assessment  

Tests were conducted with the aid of Mr Labban at the Western Cape Rehabilitation 

Centre. All test subjects were asked to walk at a self-selected speed along a 10 m 

walkway. Measurements were recorded in one direction only. Stroke patients were 

given sufficient opportunity to rest between trials. This minimized the effect of 

fatigue on gait recordings. At least five trials, each with at least four full strides, were 

recorded for each subject.  375 strides
3
 from 25 of the able-bodied subjects and 327 

strides
3
 from 22 of the stroke patients were isolated as train data and 73 strides

3
 from 

the remaining five able-bodied subjects and 66 strides
3
 from the remaining five stroke 

patients were used as test data for the neural network. All strides were re-sampled to 

100 data points which represent 100% of the gait cycle.       

5.3.2. Network input parameters 

This section deals with the selection of input parameters with which the neural 

network was trained. The first step was to calculate the Statistical Overlap Factor 

(SOF) as proposed by Mdlanzi et al. (2007). The SOF between two variable 

distributions is a calculation of the ratio of the distance between the averages of the 

two distributions, to the mean of the two standard deviations. This is represented by 

Equation (16) below:     

2/)( 21

21 xx
SOF  

(16) 

 

where 1x  and 2x are the averages of the distributions and 1  and 2 are their 

respective standard deviations (Mdlanzi et al., 2007).  
 

High SOF values indicate a greater degree of separation between the respective 

distributions. This is indicated in Figure 25 which shows the stroke-patient and able-

bodied control group distributions for the input parameters having the ten highest 

calculated SOF values.  

                                                 
3
 In this context, the term “strides”, refers to a combination of concurrent left and right-side strides. 

This was necessary to calculate parameters such as SL and double-stance and swing phases. 



 

 

BENCHMARKING FULL-BODY INERTIAL MOTION CAPTURE FOR CLINICAL GAIT ANALYSIS  

 TEUNIS CLOETE - 29 JANUARY 2009 

DEPARTMENT OF MECHANICAL AND MECHATRONIC ENGINEERING - STELLENBOSCH UNIVERSITY  

 

- 59 - 

a) b)  

c) d)  

e) f)  

g) h)  

i) j)  

Figure 25: Scatter plots of neural network input variables 

(Arranged from 1
st
 (a) to 10

th
 (j) highest SOF value) 
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These plots also allow for a visual confirmation that the two groups cannot simply be 

distinguished by comparing average values or standard deviations of subject 

parameters. Most of the input variables in Figure 25 display a greater variance for 

stroke patient values than in the normal group (e.g. Figure 25h). Even so, several of 

the stroke patient values lie in the same range as normal subject values and vice 

versa. Conventional statistical methods would thus cause a false classification of 

several of the studied test subjects.  

 

In this study, 24 input parameters were identified with which to train and test the 

network. These are arranged, in Table 15, from highest to lowest value of SOF.  

 
Table 15: Neural network input parameters 

 
Input parameters SOF 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 
 

Correlation coefficient - Ankle rotation 

Correlation coefficient - Ankle flexion-extension 

L/R Range of motion - Knee flexion-extension 

L/R swing ratio 

Correlation coefficient - Hip abduction-adduction 

Correlation coefficient - Hip rotation 

L/R Range of motion - Hip flexion-extension 

Correlation coefficient - Knee flexion-extension 

L/R Range of motion - Ankle flexion-extension 

Double support duration 

Correlation coefficient - Hip flexion-extension 

L/R step length ratio 

L/R Range of motion - Ankle rotation 

Correlation coefficient - Knee rotation 

Minimum step length (normalized to velocity) 

L/R Range of motion - Hip abduction-adduction 

L/R  stride length ratio 

L/R Range of motion -  Ankle abduction-adduction 

L/R Range of motion - Knee abduction-adduction 

Minimum peak hip flexion 

L/R Range of motion -  Hip rotation 

L/R Range of motion - Knee rotation 

Correlation coefficient - Knee abduction-adduction 

Correlation coefficient - Ankle abduction-adduction 
 

2.422 

1.788 

1.599 

1.528 

1.358 

1.342 

1.185 

1.175 

1.086 

1.073 

0.872 

0.816 

0.698 

0.576 

0.572 

0.483 

0.387 

0.330 

0.291 

0.250 

0.246 

0.175 

0.086 

0.050 
 

L/R refers to the ratio between left and right side values.   

 

The choice of parameters were made based on findings by Kim and Eng (2004), Chen 

et al. (2005), Olney and Richards (1996) and Den Otter et al. (2007) who studied a 

variety of differences in gait patterns between able-bodied individuals and those who 

had suffered a hemiparetic stroke. Chen et al. (2005) studied the gait differences 

between six subjects with post-stroke hemiparesis and six able-bodied controls at 
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matched speeds and found a noticeable distinction between swing-time and step-

length asymmetry of the left and right sides. Asymmetry of swing-time in post-stroke 

subjects was found to be more than 40% higher than the average value calculated for 

the able-bodied group (Chen et al., 2005). Otter et al. (2007) analysed temporal gait 

in 24 hemiparetic stroke patients and 14 able-bodied controls and found significant 

differences in double-stance and single-stance values. Olney and Richards (1996) 

stated that only 23 - 37% of persons having suffered hemiparetic stroke are able to 

walk independently within the first week. This value increases to between 50 - 80% 

after 3 weeks.  

 

Notice that the asymmetry between the left and right side ankle joint angles in the 

transverse and sagittal planes produce the highest values of SOF. The asymmetry was 

calculated by taking the correlation coefficient of the left and right side joint-angle 

curves. Other input parameters include: the ratio between the left and right side 

maximum range of motion (ROM) for all nine joint angles, the ratio of left and right 

swing phase to gait cycle, the double-support duration, the minimum step length, the 

minimum peak hip flexion-extension and the ratio of left to right step and stride 

lengths. The ROM was calculated from the displacement between the minimum and 

maximum joint angles measured during a single gait cycle for a specific side. The 

ratio of left to right side ROMs were then taken as input parameters. The term L/R in 

Table 15 refers to the ratio between the left and right side values. However, since 

different stroke patients exhibit hemiparesis in different sides of the body, the ratio of 

L/R was corrected to represent the ratio of the lower of the two values to the higher. 

These values are therefore always equal to, or lower than one, where a value of one 

implies perfect symmetry between the left and right sides. Figure 25 clearly illustrates 

this feature. The swing phase for a specific side is the time period between the toe-off 

instance and the following heel-strike instance. This parameter was chosen because 

stroke patients tend to display a shorter swing phase in their unaffected side than on 

their affected side. Similarly stroke patients tend to exhibit a prolonged double-

support to aid in their stability. The double-support phase is calculated as the period 

between the heel-strike instance of one side and the toe-off instance of the other side. 

During this phase both feet are in contact with the ground.  

 

Stroke patients have a tendency to walk at a lower average velocity than able-bodied 

subjects. Although this attribute is significant and fairly consistent, a possibility is 

there that an able-bodied subject walks at a slow speed or that a stroke patient walks 

at a near normal speed. It was therefore decided to eliminate the effect of velocity by 

normalizing the step length and evaluating the minimum normalized step length. 

Stroke patients demonstrate a significantly reduced hip extension. To compensate for 

this they often exhibit a decrease in hip flexion on the affected side. This 

characteristic was employed by comparing the minimum peak hip flexion of the two 

sides. Finally the asymmetries of the step and stride lengths were assessed by taking 

the ratio between the left and right side lengths.                   
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5.3.3. Training and testing the model  

Neural network training and testing parameter matrices were prepared as instructed 

by the MATLAB2007b neural network toolbox. To achieve the best possible 

diagnostic performance, network variables such as the goal function (tolerance), the 

number of hidden-layer neurons and the number of input parameters were optimized. 

This was accomplished by varying these values within pilot-test-determined ranges 

and comparing the number of misclassified strides. The goal function was varied 

between 0.025 and 0.2 in increments of 0.025. The number of input parameters was 

incrementally decreased from 24 to 4. The parameter with the lowest SOF value was 

eliminated after each iteration. A rule-of-thumb is that the number of hidden-layer 

neurons be twice the number of input parameters. This was taken as a reference point 

around which the number of neurons was varied from seven less to seven more than 

this point. This is illustrated in the tables shown in Section 5.4.    

 

It was found that the network was unstable at certain combinations of these 

parameters. It was therefore necessary to test the repeatability of the network at 

different input scenarios. This was achieved by running the same optimization 

procedure, mentioned above, 15 times. By doing so, the mean and standard deviation 

of each scenario could be evaluated over 15 identical runs in order to find the 

optimum combination of neural network input variables. Optimization results are 

shown in Section 5.4.       

5.3.4. Network training function selection 

The MATLAB 2007b neural network toolbox contains several network training 

functions to choose from. To select the most apt of these functions for the gait data 

used, three functions were tested using the optimization technique described above. 

Results were then tabulated as shown in Appendix E. This section will provide a 

short description of each of the tested training functions followed by a discussion of 

the selection process used to identify the most apt function for gait data:     

5.3.4.1. TRAINLM 

The network training function, trainlm.m, uses Levenberg-Marquardt 

optimization to update weight and bias values. This function can train any network 

provided its net input, weight, and transfer functions have derivative functions. 

According to the MATLAB Help-menu, this train function assumes that the network 

has the mse performance function which is a basic assumption of the Levenberg-

Marquardt algorithm. 

 

The Jacobian (jX) of performance (perf) is calculated using back-propagation with 

respect to the weight and bias variables (X) and each variable is adjusted according to 

the Levenberg-Marquardt optimization as shown below: 
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Here E is all errors and I is the identity matrix. (according to MATLAB2007b 

Help menu)  

5.3.4.2. TRAINGDM 

The postfix gdm in traingdm.m is an acronym for “gradient descent with 

momentum back-propagation” which is the method used by this function to update 

weight and bias values. Again traingdm.m can train any network under the 

condition that its weight, net input, and transfer functions have derivative functions. 

However, in this case each variable is adjusted according to gradient descent with 

momentum in appose to the Levenberg-Marquardt optimization used above. 

 

  

 

where, according to MATLAB2007b Help menu, dXprev is the previous change to 

the weight or bias and dperf/dX is the derivative of the performance.  

5.3.4.3. TRAINGDX    

As with traingdm.m, each weight and bias variable is adjusted according to 

gradient descent with momentum, however, this function builds on traingdm.m in 

that it employs an adaptive learning rate. The derivative function is shown below: 

 

  

5.3.4.4. Selection process  

The functions described above were compared for stability and performance using the 

method explained in Section 5.3.3. A choice had to be made on how to select the 

optimal combination of these criteria since the input-variable combination producing 

the best network performance did not match the input combination producing 

network stability. This was the main argument behind using a visual based 

optimization procedure. The tables in Section 5.4 and Appendix E depict areas with 

lower misclassifications using darker shadings. This allowed for a visual 

investigation of network performance vs. input variable scenario. Conventional 

methods of optimization does not allow for such a comparison.      
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5.4. Results 

Table 16: Average misclassifications in neural network results over 15 identical runs 

  
Number of hidden layer neurons (2j+i) 

  
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

N
u

m
b

e
r 

o
f 

in
p

u
t 

p
a

ra
m

e
te

rs
 u

se
d

 (
j)

 

23 0.6 0.6 0.3 1.1 0.9 1.2 1.1 0.9 0.5 1.1 0.5 1.2 0.6 0.8 0.5 

22 0.6 0.7 0.7 0.7 0.5 0.7 0.7 0.8 0.8 0.5 0.6 0.7 0.6 1.2 1.0 

21 0.2 0.3 0.2 0.9 0.5 0.7 0.3 0.7 0.8 0.9 0.9 0.5 0.5 0.6 0.6 

20 0.5 0.5 0.9 0.8 1.1 0.9 0.7 0.9 0.9 0.9 1.2 1.3 0.6 0.7 1.1 

19 2.0 1.5 1.7 1.1 2.0 1.4 1.9 1.7 1.7 1.8 1.9 2.1 1.7 2.0 1.5 

18 1.3 1.4 1.2 1.2 1.1 1.4 1.1 1.1 1.2 1.1 1.3 1.5 1.5 1.6 1.5 

17 1.6 1.8 1.5 1.5 1.7 1.1 1.1 1.3 1.4 1.0 1.5 1.1 0.7 0.9 1.5 

16 1.3 1.3 1.4 1.7 1.1 1.7 1.3 1.5 1.5 1.4 1.3 1.3 1.1 1.2 1.5 

15 1.4 1.6 1.0 1.7 1.7 1.3 1.3 1.5 1.5 0.8 1.4 1.1 1.3 1.5 1.3 

14 1.8 1.5 1.9 1.9 1.3 1.7 1.7 1.6 1.6 1.7 1.5 1.5 1.3 1.1 1.7 

13 1.1 1.1 1.0 1.1 1.0 1.1 1.1 0.9 1.0 1.0 1.1 1.1 1.1 0.9 1.1 

12 0.9 1.0 0.9 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

11 0.9 1.0 0.9 0.9 1.0 1.0 1.0 0.9 0.8 1.0 0.9 1.0 1.0 1.0 1.0 

10 0.9 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 0.9 1.0 0.9 0.9 0.9 1.0 

9 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

8 1.0 1.0 0.9 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 0.9 1.0 0.9 0.9 

7 1.4 1.1 1.2 1.3 0.9 1.2 1.1 0.9 1.3 1.0 1.1 1.1 1.0 1.1 1.0 

6 1.1 1.1 1.0 0.9 1.0 1.0 1.0 1.1 1.0 1.0 0.9 0.9 1.0 0.9 1.0 

5 0.9 0.9 1.0 0.9 0.9 1.0 0.8 0.9 0.9 0.9 1.1 0.9 1.1 0.8 0.9 

4 1.0 1.0 0.9 0.7 0.8 0.7 0.7 0.7 0.9 0.9 0.8 0.8 0.7 0.5 0.7 

Low misclassification  High misclassification 

 
Table 17: Standard deviation in neural network results over 15 identical runs 

  
Number of hidden layer neurons (2j+i) 

  
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
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 23 1.1 0.8 0.5 1.0 1.0 1.5 1.4 0.6 0.7 0.8 0.8 1.4 1.3 0.9 0.6 
22 0.9 1.0 0.8 0.7 0.6 0.8 0.9 0.9 0.8 0.7 0.7 1.2 0.6 1.1 0.9 
21 0.4 0.8 0.4 1.2 0.7 1.0 0.5 0.9 0.9 0.7 1.2 0.7 0.6 0.7 0.7 
20 1.1 0.6 0.8 0.9 1.0 0.7 0.7 0.9 0.7 0.7 1.2 0.8 0.7 0.7 1.1 
19 0.5 0.6 0.8 1.0 0.8 0.6 0.8 0.9 0.7 0.7 1.0 1.0 0.5 1.3 1.4 
18 0.6 0.9 0.8 0.9 0.6 0.6 0.6 0.8 0.9 0.8 0.7 0.5 0.6 0.7 1.0 
17 0.6 0.9 0.7 0.6 1.0 0.8 0.5 0.7 0.6 0.8 0.8 0.7 0.6 0.5 0.8 
16 0.6 0.9 0.5 0.9 0.5 0.6 0.6 0.6 0.8 0.5 0.5 0.9 1.1 0.8 0.5 
15 0.7 0.7 1.1 1.1 0.8 0.5 0.6 0.6 0.6 0.6 0.5 0.7 0.8 0.5 0.8 
14 0.7 0.8 0.8 0.9 0.7 0.8 0.6 0.6 0.8 0.7 0.6 0.6 0.6 0.7 0.5 
13 0.3 0.3 0.0 0.3 0.0 0.4 0.5 0.4 0.0 0.0 0.4 0.4 0.5 0.5 0.3 
12 0.3 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
11 0.4 0.0 0.4 0.3 0.0 0.0 0.0 0.3 0.4 0.0 0.3 0.0 0.0 0.0 0.0 
10 0.3 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.3 0.4 0.3 0.0 
9 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
8 0.0 0.0 0.3 0.0 0.0 0.0 0.4 0.3 0.0 0.0 0.0 0.3 0.0 0.3 0.3 
7 0.6 0.3 0.4 0.5 0.4 0.6 0.4 0.3 0.6 0.0 0.5 0.3 0.0 0.3 0.0 
6 0.4 0.3 0.0 0.3 0.0 0.0 0.0 0.5 0.0 0.0 0.3 0.3 0.0 0.3 0.4 
5 0.4 0.3 0.0 0.3 0.5 0.0 0.4 0.3 0.5 0.5 0.3 0.3 0.5 0.4 0.3 
4 0.0 0.0 0.3 0.5 0.4 0.5 0.5 0.5 0.3 0.3 0.4 0.4 0.5 0.5 0.5 

Low standard deviation  High standard deviation 
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Table 18: Average goal tolerance in neural network results over 15 identical runs 

  
Number of hidden layer neurons (2j+i) 

  
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

N
u

m
b

e
r 

o
f 

in
p

u
t 

p
a

ra
m

e
te

rs
 u

se
d

 (
j)

 23 0.09 0.09 0.06 0.10 0.07 0.08 0.10 0.11 0.09 0.08 0.09 0.11 0.10 0.11 0.09 

22 0.09 0.07 0.07 0.09 0.08 0.05 0.08 0.08 0.09 0.08 0.07 0.11 0.10 0.10 0.08 

21 0.10 0.09 0.09 0.06 0.10 0.09 0.09 0.09 0.07 0.10 0.08 0.11 0.10 0.10 0.11 

20 0.11 0.09 0.08 0.10 0.10 0.11 0.12 0.09 0.11 0.11 0.11 0.10 0.08 0.12 0.10 

19 0.09 0.11 0.06 0.14 0.07 0.09 0.11 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.14 

18 0.10 0.07 0.10 0.13 0.10 0.08 0.09 0.10 0.12 0.09 0.10 0.10 0.10 0.08 0.11 

17 0.11 0.10 0.09 0.12 0.10 0.10 0.12 0.11 0.12 0.12 0.10 0.10 0.11 0.11 0.12 

16 0.12 0.12 0.11 0.10 0.10 0.08 0.11 0.09 0.10 0.09 0.12 0.11 0.12 0.10 0.09 

15 0.11 0.10 0.11 0.09 0.10 0.12 0.12 0.10 0.08 0.10 0.09 0.12 0.10 0.12 0.09 

14 0.10 0.11 0.10 0.10 0.11 0.12 0.12 0.12 0.10 0.09 0.10 0.12 0.10 0.14 0.10 

13 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.09 0.06 0.06 0.06 0.06 0.07 0.10 0.04 

12 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.06 0.04 

11 0.06 0.04 0.06 0.05 0.04 0.05 0.04 0.05 0.07 0.04 0.05 0.04 0.04 0.04 0.04 

10 0.03 0.04 0.03 0.04 0.04 0.05 0.03 0.04 0.04 0.04 0.03 0.04 0.05 0.04 0.04 

9 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.05 0.03 0.03 0.03 0.04 0.05 0.04 0.04 

8 0.04 0.04 0.05 0.03 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.05 

7 0.10 0.10 0.11 0.11 0.10 0.10 0.10 0.12 0.09 0.11 0.10 0.08 0.08 0.10 0.09 

6 0.10 0.10 0.10 0.11 0.09 0.09 0.10 0.11 0.11 0.11 0.11 0.12 0.09 0.11 0.09 

5 0.07 0.07 0.08 0.09 0.10 0.08 0.09 0.09 0.08 0.07 0.08 0.10 0.10 0.07 0.09 

4 0.03 0.05 0.08 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.08 

Low standard deviation  High standard deviation 

 

 
Table 19: Standard deviation in goal tolerance in neural network results over 15 

identical runs 

  
Number of hidden layer neurons (2j+i) 

  
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

N
u

m
b

e
r 

o
f 

in
p

u
t 

p
a

ra
m

e
te

rs
 u

se
d

 (
j)

 23 0.05 0.05 0.04 0.06 0.04 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 

22 0.05 0.04 0.05 0.05 0.05 0.02 0.06 0.05 0.04 0.04 0.04 0.05 0.06 0.04 0.04 

21 0.05 0.05 0.06 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.04 0.07 0.05 0.05 0.06 

20 0.06 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.06 0.06 0.07 0.06 0.05 0.05 0.06 

19 0.06 0.06 0.04 0.06 0.04 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.07 0.05 0.06 

18 0.06 0.05 0.04 0.06 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.06 0.05 0.04 0.06 

17 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.07 0.05 0.04 

16 0.06 0.04 0.05 0.05 0.05 0.06 0.04 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 

15 0.04 0.06 0.06 0.05 0.05 0.06 0.04 0.05 0.04 0.06 0.05 0.07 0.04 0.06 0.05 

14 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.03 0.04 0.04 0.03 0.04 0.04 

13 0.02 0.04 0.02 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.02 0.04 0.06 0.02 

12 0.04 0.02 0.03 0.01 0.02 0.01 0.04 0.01 0.03 0.02 0.02 0.02 0.01 0.03 0.01 

11 0.05 0.01 0.05 0.04 0.02 0.02 0.01 0.04 0.05 0.01 0.04 0.01 0.02 0.01 0.01 

10 0.01 0.02 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.03 0.01 0.03 0.03 0.03 0.01 

9 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.02 

8 0.01 0.01 0.04 0.01 0.01 0.01 0.04 0.04 0.01 0.01 0.01 0.04 0.01 0.04 0.04 

7 0.04 0.05 0.05 0.04 0.05 0.05 0.03 0.06 0.04 0.05 0.05 0.04 0.03 0.04 0.05 

6 0.02 0.02 0.03 0.02 0.02 0.02 0.04 0.02 0.03 0.03 0.04 0.04 0.03 0.02 0.03 

5 0.04 0.04 0.05 0.05 0.04 0.03 0.05 0.03 0.02 0.03 0.02 0.04 0.04 0.02 0.04 

4 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.02 

Low average tolerance  High average tolerance 

 

Table 16 to Table 19 show the results obtained from running the specified neural 

network 15 identical times. The results above are obtained using the trainlm.m 

network training function. This function displayed the best combination of 
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performance and repeatability. The results for the other tested training functions are 

given in Appendix E.  

 

Table 17 to Table 19 clearly indicates that at least eight input parameters are to be 

considered in order to produce a satisfactory network performance. The network 

seems to show the highest degree of stability between 8 and 13 input parameters but 

the highest classification performance between 20 and 23 input parameters. The best 

performance occurred when using 21 input parameters and either 35 or 33 hidden-

layer neurons. Here 12 out of the 15 runs produced 100% correct-classification. 

However, the goal function at these points showed some variance leading to a 

reasonable degree of uncertainty. The number of hidden-layer neurons does not seem 

to play a significant role on either performance or repeatability.  

5.5. Discussion 

The results showed that at certain combinations of input parameter and hidden-layer-

node numbers, the network produced a 100% correct classification of the 166 test 

strides. At these combinations however, the goal function value varied. At other 

combinations the network was stable, producing a repeatable accuracy of 99.4% (1 

misclassified stroke patient stride in 166 test strides). Upon visual investigation of the 

misclassified stride (using MOVEN Studio software) it was found that that particular 

patient displayed very little deviation from those of a typical control group stride. 

This patient has therefore recovered to a point of quasi-normal gait. This occurrence 

acts as further motivation for the use of a neural network in this type of application. 

In a case such as this it might be worth analysing the upper-body gait patterns as 

these may aid in the classification.  

 

Due to limited numbers of suitable stroke patients and limited time to source and test 

matching able-bodied subjects, an error could have occurred due to differences in the 

age and sex demographic between the two subject groups. However, only further 

testing would reveal if these differences in fact plays a significant role in the accuracy 

of the network results.   

 

As mentioned earlier, one of the main factors hampering the use of IMC in gait 

analysis is the lack of confidence in its accuracy only because of the relative 

adolescence of the technology. Physicians require a tested and trusted system with 

minimal subjectivity in results. With this in mind, it was decided to place a higher 

worth on network stability which would imply a greater confidence in results. The 

combination of network and input variables were therefore selected as in Table 20.  
 

The selected network training function and input variables produced a stable 

diagnostic accuracy of 99.4%. In a study by Lee et al. (2000) an accuracy of between 

82.5% and 85% was achieved by their neural network. They used a general 
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regression neural network and joint angles and spatial parameters from still images as 

input parameters. The high accuracy achieved is most likely due to the use of angles 

in all three dimensions compared to the one dimensional images used by Lee et al. 

(2000). 

 
Table 20: Selection of neural network input variable 

Variable Selection 
Training function Trainlm 

Nr of input parameters 
9   

(top nine in Table 15) 

Goal function 0.03 

Nr of hidden-layer neurons 19 

Number of epochs* 500 

* See MATLAB2007b Help menu for more information 

 

The neural network is limited in the fact that it only distinguishes between stroke 

patients and normal subjects. It may be that some of the gait abnormalities displayed 

by stroke patients are also exhibited by patients with other neuromuscular disorders 

such as Parkinson’s disease or cerebral palsy. There is therefore a definite need to 

increase the complexity of the network output. This may be achieved by adequately 

training the network with gait data from several patient groups. There are also 

subcategories within the specific disorder classes. The presented neural network thus 

serves mainly as a proof of concept and a basis for further development. What the 

study aims to prove is that the IMC system allows researchers to gather greater 

amounts of gait data in a shorter amount of time and independent of the available 

laboratory facilities. And that these capabilities allow for the implementation of semi-

automated-diagnosis tools such as the neural network above.               
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6. CONCLUSION 

6.1. Using full-body IMC in everyday activities 

From Section 2.1.3.2 and Appendix C it is apparent that the IMC system is slightly 

sensitive to local magnetic disturbances. Built-in algorithms are only able to 

compensate for these disturbances for short periods of time by reducing the work of 

the magnetometer readings in the correction filter. It is therefore essential to ask what 

effect this limitation has on the use of IMC in clinical gait analysis.    

 

Firstly, the environments in which clinical gait analysis is employed and the 

associated equipment were considered. In most cases gait studies are performed 

within laboratories, hospitals or clinics. Gait laboratories often contain specially 

adapted walkways in which force-plates are housed. These housings may be 

constructed using ferrous metal which will lead to EMI. Force plates may also affect 

readings. These problems can however be eliminated by employing wooden floor 

mountings and special non interfering force-plates. Most hospitals and clinics contain 

equipment which may cause EMI. Wires, metal water pipes and steel construction 

material inside floors are also cause for concern. In both the validity and repeatability 

studies conducted with the IMC system, steps were taken to avoid the presence of 

magnetic disturbances. This included removing any metal and electrical objects 

within a 3 m radius of the test area. Before testing commenced the area was tested for 

EMI using the IMC system which displays a red dot on the screen if there are 

significant magnetic disturbances.   

 

The evaluated IMC system also compensates for magnetic interference for periods of 

up to 30 seconds. In a normal gait analysis this would be sufficient. It must however 

be stated that the calibration procedure should be done in an EMI-free area. Also 

between trials, uncompensated orientation drift may diminish the accuracy of the 

system calibration which would lead to reduced between-trial repeatability. These 

errors were avoided by frequent recalibration of the IMC system. 

 

Another consideration is that of the gait analysis itself. Clinicians often require the 

use of stairs, chairs and treadmills to assess the gait of a patient. The latter is of most 

concern as they make use of electric motors to drive the belt. These motors use 

electromagnetic fields to drive the motors which lead to definite disturbances in local 

magnetic fields. Mills et al. (2007) conducted gait analysis on ten subjects using a 

treadmill and EMC which is more sensitive to magnetic disturbances than IMC. They 

used a specially designed treadmill with non-metallic rollers and with the motor 

located away from the walking surface.  

 

In all the above-mentioned scenarios, careful planning of the measuring environment 

and appropriate selection of apparatus could eliminate the limitations associated with 
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IMC. Force-plates and EMG equipment exist, which could easily be combined with 

the IMC system.  

 

 What sets IMC apart from other technologies however, is its ability to measure 

patients in any environment, inside and outside. This opens the door for its usefulness 

in the patient’s everyday living environment as well as in telemedicine applications 

which are discussed in the next section.   

6.2. Telemedicine 

Telemedicine is a term which describes the idea of taking medical services to areas 

and communities who are unable to travel to urban areas. This concept is of special 

importance to a country such as South Africa in which this study was conducted. The 

use of IMC in clinical gait analysis would mean that persons who were previously 

unable to afford the use of gait laboratories can now be analysed in their local clinic 

or even at home. The IMC system used is compact, lightweight and relatively 

affordable. A physician is therefore able to go to a specific area and conduct gait 

studies on several patients in a relatively short period of time. Alternatively, rural 

clinics may acquire an IMC system with which unskilled clinicians may make gait 

recordings and send these via internet streaming or email to a qualified physician.         

6.3. Inertial motion capture for clinical gait analysis 

To conclude, the objectives of this study were to investigate the validity and 

repeatability of IMC in the context of clinical gait analysis. This is motivated by the 

fact that this technology is still largely untested and therefore underutilized in clinical 

applications. It was found that currently used kinematic gait measuring systems are 

mostly bound to laboratory use and therefore relatively costly and time consuming. 

They lack versatility and mobility which is increasingly required from such a system. 

In order to gain the trust in IMC from physicians and researchers, research studies 

such as this one is required which quantitatively compare IMC to proven and mature 

technologies.  

 

To this end, validity and repeatability studies were conducted using a commercially 

available full-body IMC system. Validity study results showed good correlation 

between kinematic joint angles in the sagittal and frontal planes for the knees and 

hips and acceptable comparison in the transverse planes of these joints. The ankle 

joint angles proved less comparable with average validly results. Discrepancies were 

accounted to a combination of factors including a misalignment of rotation axes and 

non-ideal design of the IMC system foot sensor.  

 

Repeatability study results on the other hand were excellent when compared to 

similar studies using OMC and EMC. Within-day repeatability of IMC measured 
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results was higher than that recorded using OMC for both frontal and transverse plane 

angles of all three joint pairs. The sagital plane repeatability performed slightly better 

in OMC tests. Within-day values recorded using EMC were in most cases slightly 

higher than those recoded for the IMC system, however the within-day repeatability 

using IMC was high across the board. Between-day repeatability seems to be where 

the strength of the IMC system lies. Results show that the IMC system has, for most 

of the analysed joint angles, superior between-day repeatability when compared to 

both the OMC and EMC systems. It may therefore be concluded that the IMC system 

produces repeatable kinematic joint angles patterns from one test day to the next. This 

is of greater use in rehabilitation studies where changes in gait patterns due to 

improvements in locomotion are generally small.   

 

Temporal-spatial repeatability was not as good as that of the joint kinematics because 

of limitations in gait phase identification algorithms, however repeatability values 

were acceptable for use in clinical gait analysis. Again, a greater degree of 

repeatability was found in between-day tests than in within-day tests.  

 

Finally an ealuation was made in Section 5 of the diagnostic potential of IMC in a 

clinical application. Here a neural network was trained and tested using gait 

parameters from stroke patients and able-bodied subjects in an attempt to 

automatically distinguish between these two groups. The selected network was tested 

for repeatability and based on this the network input variables were selected. The 

result section was a neural network that was 99.4% accurate in determining whether a 

measured stride came from an able-bodied subject or a stroke patient.  

 

It is therefore concluded that the commercially available, full-body IMC system is 

suited for use in clinical gait assessments, not only in conventional laboratory tests 

but also in adverse and rural environments. The tested system is user-friendly, 

requires little time for calibration and testing, is relatively inexpensive and can easily 

be combined with semi-automatic diagnosis methods. These aspects address 

limitations stated by Simon (2004) which have lead to the under-utilization of gait 

analysis in general patient care.   

6.4. Recommendations 

Further analysis into the definition of the ankle joint axis is required for both the 

OMC and IMC systems to determine the root of this difference. In the same context, 

refinement of the spatial gait phase identification algorithm should be done to better 

match the heel-strike and toe-off instances found with real values. This may also lead 

to improved step length calculation.  
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Improvements of the IMC system foot sensor may include: reducing the sensor size, 

creating a rounded sensor base adapted to the shape of the foot, or placing the sensor 

cable attachment on another side of the sensor.    

6.5. Future work 

The IMC system allows for relatively quick and simple collection of vast amounts of 

gait data. This includes data from patients and controls. With this in mind a study 

may be conducted in which a neural network may be trained and tested for a wider 

variety of gait pathologies. The network could for example distinguish between 

patients with CP, PD or stroke. A network such as that would be of great use in 

telemedicine to determine the treatment required for patients without them having to 

incur the costs involved in travelling to urban areas and seeing a specialist face-to-

face.      

 

Another study may combine motion capture with the measure of other physiological 

parameters in a self-contained bio-measurement suit. The applications of such a suit 

are endless, especially in sports, medicine and ergonomic studies.       
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8. APPENDICES 

8.1. Appendix A: Gait parameters  

8.1.1. Temporal parameters 

 

Figure 26: Temporal gait parameters 

 

Parameter Location/Description 

Step Time  The time elapsed from the first contact of one foot to the first contact of the opposite foot 

Stride Time (Gait Cycle)   The elapsed time between the first contact of two consecutive footfalls of the same foot 

Cadence 
The step rate, measured in steps per minute, usually calculated as an average for a full walking 

measurement 

Ambulation Time  The time elapsed between the first contacts of the first and the last footfalls 

Velocity  Obtained by dividing the Distance by the Ambulation time. Also step length multiplied by cadence 

Mean Normalized Velocity  
Obtained by dividing the Velocity by the Average Leg Length and it is expressed in leg length per 

second (LL/sec). The average Leg Length is computed (left leg length + right leg length)/2 

Single Support time [SS] 
The time elapsed between the Last Contact of the current footfall to the First Contact of the next 

footfall of the same foot. This is equal to the Swing Time of the opposite foot 

Double Support [DS] 

The time elapsed between First Contact of the current footfall and the Last Contact of the previous 

footfall, added to the time elapsed between the Last Contact of the current footfall and the First 

Contact of the next footfall 

Stance Time  
The time elapsed between the First Contact and the Last Contact of two consecutive footfalls on 

the same foot. It is also presented as a percentage of the Gait Cycle of the same foot 

Swing Time  

The time elapsed between the Last Contact of the current footfall to the First Contact of the next 

footfall on the same foot. It is also presented as a percentage of the Gait Cycle of the same foot. The 

Swing Time is equal to the Single Support time of the opposite foot 
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8.1.2. Spatial parameters 

 

  

 

Figure 27: Spatial gait parameters 

Source: Richards, 2008 

 

Parameter Location/Description 

Step Length  

Measured on the horizontal axis of the walkway from the heel point of the current footfall 

to the heel point of the previous footfall on the opposite foot. The step length can be a 

negative value if the patient fails to bring the landing foot heel point forward of the 

stationary foot heel point 

Stride Length  
Measured on the line of progression between the heel points of two consecutive footfalls 

of the same foot (left to left, right to right) 

Step/Extremity Ratio  Step Length divided by the Leg Length of the same leg 

Step width (Base width) 
The measured distance between an equivalent point on the right and left heels for one 

step  (May also be averaged over several steps)  

Vertical foot clearance Vertical distance between the lowest part of the foot and the walking surface  

Toe In / Toe Out  (Foot angle) 

The angle between the line of progression and the line connecting the heel point to the 

forward point of the footfall. This angle is reported positive for toe out and negative for 

toe in 

H-H Base of Support  
The perpendicular distance from heel point of one footfall to the line of progression of the 

opposite foot 

Distance  
Measured on the horizontal axis from the heel point of the first footfall to the heel point of 

the last footfall 
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8.1.3. Joint angles 
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8.2. Appendix B: Pathological gait 

Gait abnormalities can generally be divided in structural and neurological gait 

although these overlap significantly. The table below shows the most common gait 

disturbances: (Garg, 2007) 

 
 Disturbance Location/Description 

S
tr

u
ct

u
ra

l 
g

a
it

 d
is

tu
rb

a
n

ce
s 

Limp 

A jerky, uneven gait that may be caused by pain, weakness or deformity.  

Antalgic gait, a type of limp, is the most common gait disturbance. It is caused by pain and 

compensates for that pain by keeping weight off of a painful part as much as possible 

Spastic gait 
A stiff gait where the toes catch and drag, the legs are held together and the hips and knees 

are kept in a slightly bent position 

Hemiplegic gait 

This gait is characteristic of paralysis or weakness in one leg and is common after a stroke. 

The patient swings the paralyzed leg around to bring the foot in front. This gait avoids 

placing weight on the affected leg 

Senile gait 

This gait is usually seen in the elderly. It is associated with a stooped posture, with knees 

and hips bent. Arm swinging is lessened and there is stiffness in turning. Steps are small and 

broad-based 

Waddling gait 
The feet are held wide apart and the patient walks somewhat like a duck. This is a common 

gait disturbance in late pregnancy 

N
e
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 d
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n
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Festinating gait 

In this gait disturbance, the patient walks on the toes as if being pushed. Steps start slowly 

and increase in speed. Often, the patient cannot stop until grasping or running into 

something 

Parkinson’s gait 

This is a form of festinating gait characteristic of Parkinson’s disease. Steps are short and 

shuffling, with feet scrapping the ground. They start slow and build up speed. The patient’s 

upper body is bent forward, head down, and arms, elbows, hips and knees are bent 

Magnetic gait 

Also called glue-footed gait. The patient seems to have difficulty taking the first step, as 

though the feet had been glued to the ground. Once the first step is made, subsequent steps 

are small and shuffling 

Double-step gait 
In this gait disturbance, alternating steps are made of different length or rate. The stride of 

one side does not match the other 

Helicopod gait The patient swings one or both feet in a half circle with each step 

Scissor gait 
In this gait, the legs cross in walking. The left leg moves too far to the right and the right leg 

moves too far to the left 
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Ataxic gait 

A staggering, unsteady and uncoordinated gait typically caused by abnormalities of the 

nervous system. A variation of this is the tabetic gait, a high-stepping ataxic gait where the 

feet slap the ground 

Toe-walking gait 
This is a common gait disturbance in which the patient walks on the toes. A variation on this 

is the equine gait, which is a high-stepping toe-walking gait 

Steppage gait 

Commonly seen with foot drop, where the foot appears to hang limp at the ankle. The foot is 

lifted high so that the toes do not drag on the ground and the toes touch ground first. The hip 

and knee are typically bent more than normal in order to clear the toes from the ground 
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8.3. Appendix C: Gait parameter calculation script 

Since the IMC manufacturer software does not include the functionality of 

calculating gait parameters, these calculations had to be done with the aid of custom 

software. MATLAB 2007b was used to manipulate position and orientation data into 

useful temporal-spatial and joint angle values. The diagram below systematically 

describes the data processing and calculations used and is followed by a short 

description of each of the functions used (e.g. gaitpar.m).       

 

  

 sort_text.m 

markers.m 

Lower body sorted 
data  

gaitpar.m 

heelstrike.m 

toeoff.m qMultiply.m 

q2Euler.m 
Joint angles 

[quaternions] 

Position data  
[GCS coordinates] 

repcycle.m 

Perpstep.m 

Joint angles as %gait cycle 
 [Euler angles]  

 

Sample time and sample 
number of HS and TO 

Orientation data 
[quaternions] 

 

Step length Stride length 

TeSp.m 

Step length, stride length, 
velocity and cadence for a 

specific stride 

 

Validity study Repeatability study Neural network 

Raw data 
.MVNx file 

Joint angles 
[Euler angles] 

Figure 28: Schematic of gait parameter calculation script 
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gaitpar.m 

This function was used in each of the three main sections to calculate the required 

gait parameters from a specific *.MVNx file. The function controls several sub-

functions as shown in Figure 28. These are described below. Some calculations such 

as those for step and stride lengths are completed within this function.   

sort_text.m  

 The Xsens proprietary MVNx file described in Appendix C contains several lines of 

initialization parameters as well as miscellaneous data such as the date of recording. 

Following these lines of information is a large matrix containing position and 

orientation data of each of the 23 body model segments. This function reads this 

matrix along with the number of recorded frames and the recording frame-rate.  

markers.m 

 To simplify orientation and position data handling, these values were sorted into 

manageable variables named according to the specific segment and a hyphenated p or 

q for position and orientation respectively (e.g. the left-foot-segment position and 

orientation variables are LF_p and LF_q. Here position variables are three-column 

matrices with each row containing the segment position components in the GCS for 

each time frame. Orientation variables consist of four-column matrices with each row 

consisting of four unit quaternions also in the GCS). As this study focused only on 

the lower body gait parameters, only these were sorted for further use.  

heelstrike.m 

This function uses the position vectors of the feet to calculate the heel-strike 

instances. x- and y-plane coordinates are differentiated over time to show when the 

respective foot is in motion at a specific time frame. These values of  and  are 

multiplied to produce a plot of velocity vs. time. Values are then forced into binary 

form by taking the twelfth power of velocity and then applying a threshold filter. The 

exponential multiplication was done to force low values to zero and higher values to 

very high values. A threshold was applied with the aid of the peakdet.m built-in 

MATLAB function. After this step a running loop was created to find the rising edges 

which were taken as the points of heel-strike. This is similar to the approach followed 

by Han et al. (2006). 

toeoff.m 

This function is identical to heelstrike.m except that the falling edges are found and 

taken as the points of toe-off.  

 

 



 

 

BENCHMARKING FULL-BODY INERTIAL MOTION CAPTURE FOR CLINICAL GAIT ANALYSIS  

 TEUNIS CLOETE - 29 JANUARY 2009 

DEPARTMENT OF MECHANICAL AND MECHATRONIC ENGINEERING - STELLENBOSCH UNIVERSITY  

 

- A7 - 

PerpStep.m 

The Vicon OMC calibrates its spatial test volume in such a way that the subject walks 

parallel to the y-axis. This simplifies step length calculations as the x-coordinates can 

be employed directly. The Moven IMC calibrates to a pose which faces in the 

direction of magnetic north. For this reason, a direction vector (simulating the y-axis 

of the Vicon) had to be determined. The step and stride lengths were then found by 

taking the component of foot displacement parallel to the direction vector.   

TeSp.m 

As mentioned above, step and stride lengths are calculated within PerpStep.m. 

These lengths are calculated for the entire recording. From these values TeSp.m 

isolates the step and stride length for a specific studied stride. It also calculates the 

velocity and cadence for that specific stride. Velocity is taken as the absolute 

displacement of the pelvis from one heel-strike to the next divided by the time 

between these consecutive instances. From this cadence is calculated by Cadence = 

(Velocity x 60) / Step length.  

qMultiply.m 

In order to find the segment orientation, the formula, as proposed by Roetenberg, 

Luinge and Slycke (2007), was used. In this formula the quaternion multiplication of 

the complex conjugate of the proximal segment and the distal segments are calculated 

producing the BCS joint angle in quaternion form.     

q2Euler.m 

Most commercial gait packages represent measured parameters by means of Euler 

angles as discussed in Section 3.4.1. This function was therefore employed to convert 

joint angles from quaternions to Euler angles using the formula given in Section 3.4.1 

by Diebel (2006). The formula was derived for the xyz Cardan sequence also known 

as the JCS as proposed by Grood and Suntay (1983). 

repcycle.m 

Finally a function was required to normalize the joint angles of any given isolated 

stride to a percentage of the gait cycle. The function repcycle.m uses the 

MATLAB function resample to resample the isolated stride to 100 data point, each 

representing 1% of the gait cycle.  
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8.4. Appendix D: Validity study results 

8.4.1. Temporal-spatial validity results  

 
Table 21: Temporal-spatial validity results - Slow walk (Suit) 

 
Gait parameters  

 
Difference 

 
IMC OMC   

 

 
Mean ± SD Mean ± SD   ERMS # 

Stride length# 0.839 ± 0.21 0.862 ± 0.07   0.067 

Step length 0.444 ± 0.05 0.433 ± 0.05   0.194 

Velocity 0.474 ± 0.06 0.469 ± 0.04   0.045 

Cadence 64.44 ± 8.19 65.87 ± 10.0   12.357 

# Units for gait parameters are as follows: Stride length [m], step length [m], velocity [m/s] and cadence [steps/min] 

 
Table 22: Temporal-spatial validity results - Normal walk (Suit) 

 
Gait parameters  

 
Difference 

 
IMC OMC   

 

 
Mean ± SD Mean ± SD   ERMS # 

Stride length# 1.50 ± 0.14 1.49 ± 0.13   0.046 

Step length 0.759 ± 0.08 0.751 ± 0.07   0.067 

Velocity 1.329 ± 0.14 1.315 ± 0.12   0.060 

Cadence 105.1 ± 5.15 105.0 ± 4.0   5.670 

# Units for gait parameters are as follows: Stride length [m], step length [m], velocity [m/s] and cadence [steps/min] 

 

Table 23: Temporal-spatial validity results - Slow walk (Straps) 

 
Gait parameters  

 
Difference 

 
IMC OMC   

 

 
Mean ± SD Mean ± SD   ERMS # 

Stride length# 1.070 ± 0.27 0.981 ± 0.11   0.028 

Step length 0.534 ± 0.06 0.536 ± 0.06   0.300 

Velocity 0.657 ± 0.10 0.659 ± 0.11   0.020 

Cadence 74.46 ± 13.08 74.45 ± 13.48   4.091 

# Units for gait parameters are as follows: Stride length [m], step length [m], velocity [m/s] and cadence [steps/min] 

 
Table 24: Temporal-spatial validity results - Normal walk (Straps) 

 
Gait parameters  

 
Difference 

 
IMC OMC   

 

 
Mean ± SD Mean ± SD   ERMS # 

Stride length# 1.38 ± 0.12 1.41 ± 0.13   0.045 

Step length 0.685 ± 0.06 0.713 ± 0.07   0.051 

Velocity 1.281 ± 0.17 1.297 ± 0.18   0.037 

Cadence 111.9 ± 7.5 109.1 ± 10.1   5.749 

# Units for gait parameters are as follows: Stride length [m], step length [m], velocity [m/s] and cadence [steps/min] 
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8.4.2. Joint angle validity results  

 
Table 25: Slow walk joint angle validity results (Suit) 

 
ERMS [°] ERMS (adjusted) [°] R 

 

Right  
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

φh 5.146 ± 2.106 2.706 ± 1.494 4.530 ± 1.924 1.306 ± 0.782 0.740 ± 0.103 0.771 ± 0.355 

θh 12.770 ± 6.071 34.170 ± 64.003 1.761 ± 0.395 23.045 ± 55.876 0.994 ± 0.004 0.990 ± 0.007 

ψh 9.459 ± 4.475 8.151 ± 5.297 4.247 ± 2.256 3.528 ± 1.119 0.712 ± 0.193 0.672 ± 0.212 

φk 4.045 ± 3.251 6.135 ± 2.380 2.446 ± 1.573 3.968 ± 1.481 0.658 ± 0.277 0.541 ± 0.309 

θk 7.569 ± 4.238 19.002 ± 39.711 2.081 ± 0.512 13.672 ± 29.378 0.993 ± 0.004 0.940 ± 0.144 

ψk 7.757 ± 4.824 13.778 ± 8.689 3.439 ± 1.880 4.287 ± 4.667 0.356 ± 0.259 0.484 ± 0.338 

φa 6.124 ± 4.071 5.545 ± 0.862 5.322 ± 3.444 4.616 ± 1.490 0.335 ± 0.216 0.316 ± 0.096 

θa 16.716 ± 4.335 16.073 ± 4.171 15.101 ± 4.048 15.099 ± 4.150 0.565 ± 0.188 0.403 ± 0.199 

ψa 8.532 ± 5.577 12.735 ± 6.677 3.003 ± 1.085 4.006 ± 2.873 0.629 ± 0.127 0.493 ± 0.158 

# Values in bold and colour are those with correlation coefficient > 0.5 

 
Table 26: Normal walk joint angle validity results (Suit) 

 
ERMS [°] ERMS (adjusted) [°] R 

 

Right  
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

φh 5.835 ± 2.475 5.278 ± 4.297 4.855 ± 1.963 2.112 ± 0.389 0.831 ± 0.121 0.840 ± 0.037 

θh 13.621 ± 6.709 11.778 ± 4.736 2.800 ± 0.985 3.405 ± 1.071 0.995 ± 0.003 0.988 ± 0.013 

ψh 10.418 ± 4.543 14.433 ± 11.580 5.613 ± 0.715 6.260 ± 2.741 0.561 ± 0.210 0.422 ± 0.269 

φk 7.477 ± 5.821 8.938 ± 3.489 5.023 ± 3.229 7.246 ± 2.797 0.588 ± 0.345 0.490 ± 0.305 

θk 6.924 ± 3.636 8.989 ± 9.118 3.020 ± 1.070 4.830 ± 2.423 0.990 ± 0.009 0.986 ± 0.008 

ψk 10.451 ± 4.426 11.936 ± 7.825 5.395 ± 2.842 5.023 ± 1.028 0.365 ± 0.225 0.582 ± 0.229 

φa 6.813 ± 3.227 7.357 ± 4.529 5.837 ± 2.213 6.782 ± 4.409 0.525 ± 0.222 0.371 ± 0.256 

θa 26.551 ± 4.700 27.895 ± 2.320 22.611 ± 2.684 24.885 ± 2.791 0.142 ± 0.111 0.312 ± 0.271 

ψa 11.210 ± 7.424 14.336 ± 10.894 3.530 ± 0.942 6.790 ± 5.314 0.488 ± 0.330 0.427 ± 0.265 

# Values in bold and colour are those with correlation coefficient > 0.5 

 
Table 27: Fast walk joint angle validity results (Suit) 

 
ERMS [°] ERMS (adjusted) [°] R 

 

Right  
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

φh 9.238 ± 2.314 8.431 ± 6.194 8.184 ± 2.565 3.050 ± 1.040 0.633 ± 0.257 0.803 ± 0.126 

θh 13.487 ± 4.138 10.859 ± 3.915 5.181 ± 2.482 4.806 ± 2.134 0.977 ± 0.030 0.977 ± 0.023 

ψh 11.889 ± 1.931 13.455 ± 12.152 10.011 ± 2.027 8.871 ± 3.600 0.422 ± 0.217 0.297 ± 0.196 

φk 4.465 ± 1.474 12.517 ± 7.450 3.273 ± 0.639 10.969 ± 7.790 0.599 ± 0.273 0.482 ± 0.100 

θk 10.420 ± 6.741 7.603 ± 7.699 4.769 ± 2.827 4.120 ± 1.522 0.972 ± 0.031 0.975 ± 0.038 

ψk 7.473 ± 2.576 14.180 ± 10.832 5.947 ± 1.725 8.006 ± 6.367 0.382 ± 0.178 0.614 ± 0.175 

φa 5.781 ± 1.950 7.054 ± 5.072 5.235 ± 1.576 6.071 ± 4.239 0.392 ± 0.288 0.354 ± 0.156 

θa 29.257 ± 4.034 32.941 ± 3.566 27.977 ± 4.486 31.707 ± 4.416 0.140 ± 0.077 0.421 ± 0.240 

ψa 10.691 ± 4.097 13.530 ± 12.688 5.192 ± 1.867 7.116 ± 5.919 0.555 ± 0.287 0.270 ± 0.261 

# Values in bold and colour are those with correlation coefficient > 0.5 
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Table 28: Slow walk joint angle validity results (Straps) 

 
ERMS [°] ERMS (adjusted) [°] R 

 

Right  
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

φh 2.655 ± 1.558 2.115 ± 1.065 1.490 ± 0.468 1.616 ± 0.622 0.949 ± 0.041 0.891 ± 0.087 

θh 14.918 ± 7.059 14.981 ± 6.717 2.498 ± 0.948 2.777 ± 0.703 0.984 ± 0.013 0.983 ± 0.011 

ψh 8.256 ± 3.892 8.851 ± 2.833 3.581 ± 1.759 4.258 ± 1.642 0.528 ± 0.252 0.559 ± 0.192 

φk 7.249 ± 1.035 6.362 ± 1.133 4.326 ± 1.305 4.862 ± 1.132 0.561 ± 0.299 0.615 ± 0.177 

θk 8.912 ± 3.783 7.773 ± 5.225 2.515 ± 1.029 3.413 ± 1.877 0.990 ± 0.007 0.978 ± 0.023 

ψk 12.243 ± 6.100 15.865 ± 6.755 3.231 ± 1.164 3.385 ± 1.421 0.700 ± 0.250 0.522 ± 0.275 

φa 6.083 ± 1.173 7.636 ± 1.741 5.329 ± 0.748 7.157 ± 1.270 0.191 ± 0.206 0.271 ± 0.131 

θa 21.734 ± 3.100 19.255 ± 1.524 19.158 ± 3.089 17.497 ± 0.855 0.283 ± 0.086 0.330 ± 0.154 

ψa 5.760 ± 1.404 16.050 ± 8.308 3.864 ± 1.045 4.916 ± 0.671 0.442 ± 0.153 0.367 ± 0.142 

# Values in bold and colour are those with correlation coefficient > 0.5 

 
Table 29: Normal walk joint angle validity results (Straps) 

 
ERMS [°] ERMS (adjusted) [°] R 

 

Right  
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

φh 3.268 ± 1.711 3.123 ± 0.645 2.055 ± 0.475 2.291 ± 0.271 0.911 ± 0.078 0.864 ± 0.056 

θh 17.819 ± 7.228 17.258 ± 5.694 3.839 ± 1.731 3.462 ± 1.007 0.971 ± 0.028 0.982 ± 0.020 

ψh 9.678 ± 4.702 10.650 ± 3.830 4.515 ± 2.513 5.553 ± 1.890 0.503 ± 0.245 0.438 ± 0.270 

φk 8.859 ± 1.011 8.094 ± 0.890 5.558 ± 2.621 6.688 ± 0.749 0.492 ± 0.281 0.394 ± 0.287 

θk 7.760 ± 4.507 7.897 ± 3.287 3.412 ± 0.858 3.043 ± 0.833 0.986 ± 0.003 0.988 ± 0.007 

ψk 10.479 ± 5.161 15.609 ± 7.929 3.947 ± 0.963 4.404 ± 1.271 0.779 ± 0.154 0.572 ± 0.290 

φa 6.119 ± 2.312 8.664 ± 3.168 5.348 ± 1.042 7.504 ± 1.937 0.282 ± 0.161 0.229 ± 0.179 

θa 25.570 ± 5.069 22.567 ± 2.230 21.422 ± 2.783 20.653 ± 2.234 0.253 ± 0.109 0.280 ± 0.072 

ψa 6.644 ± 2.129 15.330 ± 7.092 4.860 ± 2.420 6.802 ± 1.322 0.412 ± 0.295 0.129 ± 0.128 

# Values in bold and colour are those with correlation coefficient > 0.5 

 
Table 30: Fast walk joint angle validity results (Straps) 

 
ERMS [°] ERMS (adjusted) [°] R 

 

Right  
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

Right 
Mean ± SD 

Left 
Mean ± SD 

φh 5.224 ± 2.265 3.609 ± 1.023 3.874 ± 1.926 2.805 ± 0.349 0.855 ± 0.088 0.895 ± 0.034 

θh 17.376 ± 6.714 14.248 ± 7.849 4.382 ± 1.074 4.318 ± 1.211 0.987 ± 0.007 0.981 ± 0.017 

ψh 8.905 ± 5.198 11.532 ± 2.398 5.281 ± 2.238 6.499 ± 2.411 0.596 ± 0.181 0.433 ± 0.322 

φk 8.047 ± 1.433 9.796 ± 1.929 4.684 ± 2.366 7.978 ± 0.876 0.398 ± 0.361 0.383 ± 0.127 

θk 11.430 ± 5.494 7.844 ± 4.411 3.479 ± 0.724 3.169 ± 0.520 0.989 ± 0.006 0.991 ± 0.004 

ψk 11.589 ± 5.318 14.030 ± 3.624 5.182 ± 1.307 5.647 ± 1.972 0.764 ± 0.191 0.555 ± 0.198 

φa 5.396 ± 1.761 8.757 ± 5.051 4.910 ± 1.602 8.373 ± 4.496 0.391 ± 0.120 0.240 ± 0.080 

θa 28.354 ± 4.618 24.277 ± 1.720 26.521 ± 5.691 22.058 ± 1.289 0.300 ± 0.028 0.188 ± 0.073 

ψa 6.614 ± 0.800 13.184 ± 7.669 5.893 ± 0.861 6.155 ± 1.137 0.485 ± 0.151 0.397 ± 0.250 

# Values in bold and colour are those with correlation coefficient > 0.5 
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8.4.3. Joint angle validity results - Suit vs. straps 

The difference values given in the tables below simply display the difference between 

the average results obtained from tests using first the suit and then the straps. Values 

in bold indicate those in which the results obtained using straps showed higher 

correlation than those measured using the Lycra suit. The results show that the straps 

have a significant advantage over the suit only during fast walk trials.  

    
Table 31: Difference between joint angle validity results of suit and straps - Slow walk 

 

∆ERMS [°] ∆ERMS (adjusted) [°] ∆ER 

Right  Left Right Left Right Left 

φh 2.491# 0.591 3.040 0.310 0.210 0.120 

θh 2.147 19.189 0.736 20.268 0.010 0.008 

ψh 1.203 0.700 0.666 0.730 0.184 0.113 

φk 3.204 0.227 1.879 0.893 0.097 0.074 

θk 1.344 11.229 0.433 10.260 0.003 0.038 

ψk 4.486 2.088 0.208 0.902 0.344 0.039 

φa 0.042 2.091 0.006 2.541 0.144 0.044 

θa 5.019 3.182 4.057 2.398 0.282 0.073 

ψa 2.771 3.315 0.862 0.910 0.187 0.126 

#Values in bold and colour is where straps showed higher correlation than the suit 

 
Table 32: Difference between joint angle validity results of suit and straps - Normal walk 

 

∆ERMS [°] ∆ERMS (adjusted) [°] ∆ER 

Right  Left Right Left Right Left 

φh 2.567 2.155 2.800 0.179 0.080 0.024 

θh 4.198 5.479 1.040 0.057 0.024 0.006 

ψh 0.740 3.783 1.098 0.706 0.059 0.016 

φk 1.381 0.844 0.535 0.558 0.096 0.096 

θk 0.835 1.092 0.392 1.787 0.003 0.003 

ψk 0.027 3.673 1.448 0.619 0.414 0.009 

φa 0.694 1.307 0.489 0.722 0.243 0.142 

θa 0.981 5.327 1.189 4.233 0.112 0.032 

ψa 4.566 0.994 1.330 0.012 0.076 0.298 

#Values in bold and colour is where straps showed higher correlation than the suit 

 
Table 33: Difference between joint angle validity results of suit and straps - Fast walk 

 

∆ERMS [°] ∆ERMS (adjusted) [°] ∆ER 

Right  Left Right Left Right Left 

φh 4.014 4.821 4.310 0.244 0.221 0.092 

θh 3.889 3.389 0.799 0.488 0.009 0.004 

ψh 2.984 1.923 4.730 2.372 0.174 0.137 

φk 3.582 2.721 1.412 2.991 0.201 0.099 

θk 1.009 0.241 1.290 0.950 0.017 0.016 

ψk 4.116 0.150 0.765 2.359 0.382 0.059 

φa 0.385 1.703 0.325 2.302 0.001 0.113 

θa 0.903 8.663 1.456 9.649 0.161 0.233 

ψa 4.077 0.347 0.701 0.961 0.070 0.128 

#Values in bold and colour is where straps showed higher correlation than the suit 
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8.5. Appendix E: Neural network results 

8.5.1. TRAINLM  
Table 34: Average misclassifications in neural network results over 15 identical runs 

  
Number of hidden layer neurons (2j+i) 

  
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

N
u

m
b

e
r 

o
f 

in
p

u
t 

p
a

ra
m

e
te

rs
 u

se
d

 (
j)

 

23 0.6 0.6 0.3 1.1 0.9 1.2 1.1 0.9 0.5 1.1 0.5 1.2 0.6 0.8 0.5 

22 0.6 0.7 0.7 0.7 0.5 0.7 0.7 0.8 0.8 0.5 0.6 0.7 0.6 1.2 1.0 

21 0.2 0.3 0.2 0.9 0.5 0.7 0.3 0.7 0.8 0.9 0.9 0.5 0.5 0.6 0.6 

20 0.5 0.5 0.9 0.8 1.1 0.9 0.7 0.9 0.9 0.9 1.2 1.3 0.6 0.7 1.1 

19 2.0 1.5 1.7 1.1 2.0 1.4 1.9 1.7 1.7 1.8 1.9 2.1 1.7 2.0 1.5 

18 1.3 1.4 1.2 1.2 1.1 1.4 1.1 1.1 1.2 1.1 1.3 1.5 1.5 1.6 1.5 

17 1.6 1.8 1.5 1.5 1.7 1.1 1.1 1.3 1.4 1.0 1.5 1.1 0.7 0.9 1.5 

16 1.3 1.3 1.4 1.7 1.1 1.7 1.3 1.5 1.5 1.4 1.3 1.3 1.1 1.2 1.5 

15 1.4 1.6 1.0 1.7 1.7 1.3 1.3 1.5 1.5 0.8 1.4 1.1 1.3 1.5 1.3 

14 1.8 1.5 1.9 1.9 1.3 1.7 1.7 1.6 1.6 1.7 1.5 1.5 1.3 1.1 1.7 

13 1.1 1.1 1.0 1.1 1.0 1.1 1.1 0.9 1.0 1.0 1.1 1.1 1.1 0.9 1.1 

12 0.9 1.0 0.9 1.0 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

11 0.9 1.0 0.9 0.9 1.0 1.0 1.0 0.9 0.8 1.0 0.9 1.0 1.0 1.0 1.0 

10 0.9 1.0 1.0 1.0 1.0 0.9 1.0 1.0 1.0 0.9 1.0 0.9 0.9 0.9 1.0 

9 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

8 1.0 1.0 0.9 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 0.9 1.0 0.9 0.9 

7 1.4 1.1 1.2 1.3 0.9 1.2 1.1 0.9 1.3 1.0 1.1 1.1 1.0 1.1 1.0 

6 1.1 1.1 1.0 0.9 1.0 1.0 1.0 1.1 1.0 1.0 0.9 0.9 1.0 0.9 1.0 

5 0.9 0.9 1.0 0.9 0.9 1.0 0.8 0.9 0.9 0.9 1.1 0.9 1.1 0.8 0.9 

4 1.0 1.0 0.9 0.7 0.8 0.7 0.7 0.7 0.9 0.9 0.8 0.8 0.7 0.5 0.7 

Low misclassification  High misclassification 

 

 

 
Table 35: Standard deviation in neural network results over 15 identical runs 

  
Number of hidden layer neurons (2j+i) 

  
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

N
u
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t 
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m

e
te
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 u

se
d

 (
j)

 23 1.1 0.8 0.5 1.0 1.0 1.5 1.4 0.6 0.7 0.8 0.8 1.4 1.3 0.9 0.6 
22 0.9 1.0 0.8 0.7 0.6 0.8 0.9 0.9 0.8 0.7 0.7 1.2 0.6 1.1 0.9 
21 0.4 0.8 0.4 1.2 0.7 1.0 0.5 0.9 0.9 0.7 1.2 0.7 0.6 0.7 0.7 
20 1.1 0.6 0.8 0.9 1.0 0.7 0.7 0.9 0.7 0.7 1.2 0.8 0.7 0.7 1.1 
19 0.5 0.6 0.8 1.0 0.8 0.6 0.8 0.9 0.7 0.7 1.0 1.0 0.5 1.3 1.4 
18 0.6 0.9 0.8 0.9 0.6 0.6 0.6 0.8 0.9 0.8 0.7 0.5 0.6 0.7 1.0 
17 0.6 0.9 0.7 0.6 1.0 0.8 0.5 0.7 0.6 0.8 0.8 0.7 0.6 0.5 0.8 
16 0.6 0.9 0.5 0.9 0.5 0.6 0.6 0.6 0.8 0.5 0.5 0.9 1.1 0.8 0.5 
15 0.7 0.7 1.1 1.1 0.8 0.5 0.6 0.6 0.6 0.6 0.5 0.7 0.8 0.5 0.8 
14 0.7 0.8 0.8 0.9 0.7 0.8 0.6 0.6 0.8 0.7 0.6 0.6 0.6 0.7 0.5 
13 0.3 0.3 0.0 0.3 0.0 0.4 0.5 0.4 0.0 0.0 0.4 0.4 0.5 0.5 0.3 
12 0.3 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
11 0.4 0.0 0.4 0.3 0.0 0.0 0.0 0.3 0.4 0.0 0.3 0.0 0.0 0.0 0.0 
10 0.3 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.3 0.4 0.3 0.0 
9 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
8 0.0 0.0 0.3 0.0 0.0 0.0 0.4 0.3 0.0 0.0 0.0 0.3 0.0 0.3 0.3 
7 0.6 0.3 0.4 0.5 0.4 0.6 0.4 0.3 0.6 0.0 0.5 0.3 0.0 0.3 0.0 
6 0.4 0.3 0.0 0.3 0.0 0.0 0.0 0.5 0.0 0.0 0.3 0.3 0.0 0.3 0.4 
5 0.4 0.3 0.0 0.3 0.5 0.0 0.4 0.3 0.5 0.5 0.3 0.3 0.5 0.4 0.3 
4 0.0 0.0 0.3 0.5 0.4 0.5 0.5 0.5 0.3 0.3 0.4 0.4 0.5 0.5 0.5 

Low standard deviation  High standard deviation 
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Table 36: Average goal tolerance in neural network results over 15 identical runs 

  
Number of hidden layer neurons (2j+i) 

  
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
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j)

 23 0.05 0.05 0.04 0.06 0.04 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 
22 0.05 0.04 0.05 0.05 0.05 0.02 0.06 0.05 0.04 0.04 0.04 0.05 0.06 0.04 0.04 
21 0.05 0.05 0.06 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.04 0.07 0.05 0.05 0.06 
20 0.06 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.06 0.06 0.07 0.06 0.05 0.05 0.06 
19 0.06 0.06 0.04 0.06 0.04 0.05 0.05 0.06 0.05 0.06 0.05 0.05 0.07 0.05 0.06 
18 0.06 0.05 0.04 0.06 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.06 0.05 0.04 0.06 
17 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.07 0.05 0.04 
16 0.06 0.04 0.05 0.05 0.05 0.06 0.04 0.05 0.06 0.05 0.05 0.05 0.04 0.04 0.04 
15 0.04 0.06 0.06 0.05 0.05 0.06 0.04 0.05 0.04 0.06 0.05 0.07 0.04 0.06 0.05 
14 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.03 0.04 0.04 0.03 0.04 0.04 
13 0.02 0.04 0.02 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.02 0.04 0.06 0.02 
12 0.04 0.02 0.03 0.01 0.02 0.01 0.04 0.01 0.03 0.02 0.02 0.02 0.01 0.03 0.01 
11 0.05 0.01 0.05 0.04 0.02 0.02 0.01 0.04 0.05 0.01 0.04 0.01 0.02 0.01 0.01 
10 0.01 0.02 0.01 0.01 0.01 0.04 0.01 0.01 0.01 0.03 0.01 0.03 0.03 0.03 0.01 
9 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.02 
8 0.01 0.01 0.04 0.01 0.01 0.01 0.04 0.04 0.01 0.01 0.01 0.04 0.01 0.04 0.04 
7 0.04 0.05 0.05 0.04 0.05 0.05 0.03 0.06 0.04 0.05 0.05 0.04 0.03 0.04 0.05 
6 0.02 0.02 0.03 0.02 0.02 0.02 0.04 0.02 0.03 0.03 0.04 0.04 0.03 0.02 0.03 
5 0.04 0.04 0.05 0.05 0.04 0.03 0.05 0.03 0.02 0.03 0.02 0.04 0.04 0.02 0.04 
4 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.03 0.03 0.02 

Low average tolerance  High average tolerance 

 
 

 
Table 37: Standard deviation in goal tolerance in neural network results over 15 

identical runs 

  
Number of hidden layer neurons (2j+i) 

  
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
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 23 0.09 0.09 0.06 0.10 0.07 0.08 0.10 0.11 0.09 0.08 0.09 0.11 0.10 0.11 0.09 
22 0.09 0.07 0.07 0.09 0.08 0.05 0.08 0.08 0.09 0.08 0.07 0.11 0.10 0.10 0.08 
21 0.10 0.09 0.09 0.06 0.10 0.09 0.09 0.09 0.07 0.10 0.08 0.11 0.10 0.10 0.11 
20 0.11 0.09 0.08 0.10 0.10 0.11 0.12 0.09 0.11 0.11 0.11 0.10 0.08 0.12 0.10 
19 0.09 0.11 0.06 0.14 0.07 0.09 0.11 0.10 0.10 0.09 0.09 0.10 0.10 0.09 0.14 
18 0.10 0.07 0.10 0.13 0.10 0.08 0.09 0.10 0.12 0.09 0.10 0.10 0.10 0.08 0.11 
17 0.11 0.10 0.09 0.12 0.10 0.10 0.12 0.11 0.12 0.12 0.10 0.10 0.11 0.11 0.12 
16 0.12 0.12 0.11 0.10 0.10 0.08 0.11 0.09 0.10 0.09 0.12 0.11 0.12 0.10 0.09 
15 0.11 0.10 0.11 0.09 0.10 0.12 0.12 0.10 0.08 0.10 0.09 0.12 0.10 0.12 0.09 
14 0.10 0.11 0.10 0.10 0.11 0.12 0.12 0.12 0.10 0.09 0.10 0.12 0.10 0.14 0.10 
13 0.05 0.06 0.05 0.05 0.05 0.06 0.05 0.09 0.06 0.06 0.06 0.06 0.07 0.10 0.04 
12 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.06 0.04 
11 0.06 0.04 0.06 0.05 0.04 0.05 0.04 0.05 0.07 0.04 0.05 0.04 0.04 0.04 0.04 
10 0.03 0.04 0.03 0.04 0.04 0.05 0.03 0.04 0.04 0.04 0.03 0.04 0.05 0.04 0.04 
9 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.05 0.03 0.03 0.03 0.04 0.05 0.04 0.04 
8 0.04 0.04 0.05 0.03 0.04 0.04 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.05 
7 0.10 0.10 0.11 0.11 0.10 0.10 0.10 0.12 0.09 0.11 0.10 0.08 0.08 0.10 0.09 
6 0.10 0.10 0.10 0.11 0.09 0.09 0.10 0.11 0.11 0.11 0.11 0.12 0.09 0.11 0.09 

5 0.07 0.07 0.08 0.09 0.10 0.08 0.09 0.09 0.08 0.07 0.08 0.10 0.10 0.07 0.09 
4 0.03 0.05 0.08 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.08 

Low standard deviation  High standard deviation 
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8.5.2. TRAINGDM  
Table 38: Average misclassifications in neural network results over 15 identical runs 

    Number of hidden layer neurons (2j+i) 

     -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

 

N
u

m
b

e
r 

o
f 

in
p

u
t 

p
a

ra
m

e
te

rs
 u

se
d

 (
j)

 

23 4.13 4.47 5.33 4.33 4.73 4.40 4.60 3.93 4.20 3.87 4.53 5.00 4.27 3.60 4.13 

 22 3.33 3.93 2.73 2.47 3.87 2.73 3.27 2.80 3.20 3.73 3.80 3.80 3.13 3.33 3.20 

 21 2.80 2.80 2.60 2.33 2.80 3.13 2.53 2.93 2.60 2.60 2.60 3.00 2.20 2.07 2.67 

 20 2.53 2.53 2.07 2.27 2.07 2.67 2.53 2.20 2.40 2.80 2.20 2.67 2.20 2.53 2.60 

 19 4.40 4.13 4.33 4.00 3.87 4.20 4.07 4.07 4.67 4.67 3.87 4.67 3.47 4.40 4.20 

 18 3.00 3.00 3.53 3.33 3.40 3.33 3.33 3.33 3.27 3.40 3.20 2.80 3.40 3.00 2.87 

 17 3.47 3.20 3.07 2.93 2.93 3.67 3.40 2.87 3.20 3.53 3.87 3.67 3.67 2.67 2.87 

 16 3.00 2.80 3.73 3.47 3.07 3.60 3.47 3.27 3.20 3.60 3.60 3.20 3.07 3.27 3.20 

 15 2.73 3.20 2.73 2.40 2.40 3.27 3.07 3.00 3.00 3.33 2.73 3.07 3.53 2.53 3.33 

 14 2.53 3.73 2.87 3.20 3.33 3.20 3.80 3.33 3.13 2.73 3.60 3.33 3.33 3.20 3.07 

 13 3.00 2.80 3.27 2.40 2.87 3.00 3.73 3.20 2.93 2.87 3.33 2.73 2.47 2.67 2.80 

 12 3.07 3.33 3.20 2.93 2.53 3.00 2.93 3.13 3.20 2.80 3.20 3.13 2.67 3.00 2.73 

 11 2.53 2.93 2.60 3.20 3.00 2.80 3.13 3.20 3.00 2.67 3.13 3.00 3.13 2.60 2.27 

 10 3.07 2.40 2.73 2.20 3.00 3.53 2.87 2.20 2.67 3.00 2.87 3.07 2.73 3.07 2.53 

 9 3.13 3.53 3.73 3.00 3.27 3.53 3.13 3.07 3.93 2.73 3.07 3.07 2.87 2.93 3.13 

 8 3.47 2.93 3.33 3.00 2.87 2.87 2.67 2.87 2.53 1.67 2.73 2.40 2.87 2.67 2.80 

 7 2.67 3.40 3.13 2.87 3.07 2.73 2.60 2.60 3.67 2.73 2.73 3.13 2.73 1.87 2.47 

 6 3.53 3.13 3.20 2.60 2.53 2.80 2.40 2.40 3.00 2.73 2.47 2.60 2.67 2.73 3.00 

 5 4.33 4.47 4.47 4.13 4.00 3.33 3.13 3.47 3.00 3.53 3.47 3.00 2.53 2.53 2.33 

 4 5.00 4.53 3.40 3.27 3.80 3.40 3.07 3.33 3.13 3.60 2.87 2.93 3.27 2.93 2.93 

 Low misclassification  High misclassification 

  
Table 39: Standard deviation in neural network results over 15 identical runs 

    Number of hidden layer neurons (2j+i) 

     -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

 

N
u

m
b

e
r 

o
f 

in
p

u
t 

p
a

ra
m

e
te

rs
 u

se
d

 (
j)

 

23 1.36 1.88 1.68 1.63 1.62 1.64 2.06 1.39 1.37 2.20 1.88 2.17 2.66 1.64 1.19 

 22 1.80 2.05 1.28 1.41 1.77 0.88 2.05 1.47 1.52 1.62 1.37 0.94 2.20 1.45 1.70 

 21 1.21 1.32 1.12 1.45 1.78 1.19 0.83 1.62 1.50 1.18 1.30 1.96 1.42 1.28 0.90 

 20 1.13 1.36 1.16 1.16 1.22 1.72 1.36 1.26 1.18 1.01 1.82 1.11 1.15 1.06 1.12 

 19 1.30 2.03 1.23 1.36 1.46 2.40 1.44 1.44 1.11 1.88 1.60 1.35 1.51 1.45 1.47 

 18 1.00 1.36 0.92 1.05 0.91 1.18 0.90 0.82 1.22 0.99 1.47 1.32 1.50 0.93 0.83 

 17 0.83 0.68 0.80 0.96 0.70 1.35 0.91 0.99 0.86 0.83 0.64 0.90 1.45 0.98 1.13 

 16 1.00 1.08 0.59 1.06 1.16 1.18 1.46 0.70 1.21 1.45 0.91 0.77 0.88 0.96 1.15 

 15 1.16 1.01 1.22 1.30 1.45 0.88 0.80 1.07 0.76 1.68 1.10 1.22 0.99 0.83 1.23 

 14 1.13 1.10 1.06 1.32 1.72 1.08 1.52 1.35 1.30 1.10 0.91 0.98 0.72 1.26 1.16 

 13 1.20 0.94 0.88 0.63 1.51 1.25 1.16 1.32 1.22 0.64 1.18 0.96 1.06 0.82 1.15 

 12 1.58 1.45 1.61 1.39 0.99 1.13 1.62 1.36 1.32 0.56 0.94 0.99 0.90 1.20 1.28 

 11 1.46 1.33 1.45 1.37 1.36 1.26 0.74 1.21 0.85 1.18 1.30 0.93 1.30 1.24 1.10 

 10 1.28 0.99 1.44 1.21 1.51 1.96 1.13 1.42 1.50 0.93 1.06 1.16 0.96 1.10 1.55 

 9 1.13 1.51 1.44 1.56 1.28 1.46 1.41 0.96 2.05 0.96 1.33 0.96 0.99 1.39 0.92 

 8 1.85 1.71 1.80 1.46 1.30 1.55 1.18 1.41 1.06 0.98 0.96 1.12 1.46 0.90 1.15 

 7 1.45 1.35 1.19 1.85 1.53 1.39 1.45 1.35 1.63 1.58 1.10 1.13 1.39 1.30 1.13 

 6 2.13 2.10 1.21 1.35 1.13 0.94 1.18 1.12 1.36 1.10 1.13 1.45 1.35 0.88 1.51 

 5 1.63 1.30 1.64 0.83 1.41 1.11 0.83 0.92 1.20 1.13 0.74 1.00 0.83 0.92 0.90 

 4 1.07 2.13 0.99 1.16 1.21 0.83 0.80 0.98 0.83 0.91 0.99 0.96 0.88 0.88 0.80 

 Low average tolerance  High average tolerance 
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Table 40: Average goal tolerance in neural network results over 15 identical runs 

    Number of hidden layer neurons (2j+i) 

    -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
N

u
m

b
e

r 
o

f 
in

p
u

t 
p

a
ra

m
e

te
rs

 u
se

d
 (

j)
 

23 0.09 0.11 0.13 0.14 0.10 0.11 0.11 0.11 0.10 0.10 0.10 0.11 0.09 0.11 0.08 

22 0.12 0.11 0.07 0.10 0.13 0.09 0.10 0.13 0.10 0.08 0.08 0.10 0.13 0.12 0.10 

21 0.08 0.10 0.10 0.12 0.10 0.11 0.08 0.08 0.11 0.11 0.10 0.12 0.10 0.12 0.12 

20 0.08 0.08 0.12 0.08 0.11 0.07 0.09 0.10 0.11 0.12 0.09 0.09 0.09 0.09 0.12 

19 0.09 0.11 0.11 0.15 0.11 0.12 0.10 0.09 0.11 0.10 0.09 0.12 0.13 0.07 0.13 

18 0.08 0.10 0.10 0.09 0.10 0.11 0.10 0.12 0.11 0.09 0.10 0.10 0.09 0.10 0.10 

17 0.09 0.09 0.12 0.08 0.10 0.11 0.12 0.11 0.12 0.09 0.08 0.08 0.09 0.09 0.11 

16 0.11 0.12 0.10 0.12 0.10 0.12 0.10 0.10 0.11 0.10 0.10 0.10 0.11 0.10 0.11 

15 0.10 0.11 0.12 0.10 0.10 0.09 0.10 0.12 0.10 0.08 0.10 0.10 0.08 0.11 0.10 

14 0.14 0.11 0.09 0.08 0.07 0.06 0.09 0.10 0.09 0.08 0.09 0.09 0.10 0.10 0.08 

13 0.07 0.10 0.11 0.11 0.10 0.09 0.09 0.08 0.10 0.11 0.10 0.09 0.09 0.10 0.12 

12 0.10 0.11 0.12 0.11 0.10 0.10 0.10 0.11 0.09 0.12 0.11 0.09 0.07 0.10 0.12 

11 0.12 0.12 0.10 0.09 0.10 0.11 0.11 0.09 0.08 0.14 0.07 0.08 0.09 0.12 0.13 

10 0.12 0.11 0.10 0.10 0.09 0.11 0.11 0.11 0.12 0.12 0.10 0.08 0.09 0.11 0.11 

9 0.10 0.11 0.11 0.09 0.11 0.07 0.11 0.11 0.10 0.09 0.11 0.12 0.10 0.12 0.12 

8 0.09 0.09 0.09 0.09 0.11 0.11 0.08 0.10 0.12 0.10 0.10 0.11 0.09 0.12 0.09 

7 0.13 0.11 0.11 0.10 0.12 0.11 0.11 0.07 0.09 0.12 0.10 0.09 0.12 0.10 0.12 

6 0.09 0.09 0.09 0.11 0.12 0.11 0.08 0.12 0.09 0.10 0.11 0.10 0.09 0.12 0.10 

5 0.09 0.10 0.08 0.10 0.06 0.11 0.09 0.11 0.08 0.08 0.13 0.09 0.10 0.10 0.07 

4 0.11 0.09 0.11 0.12 0.10 0.11 0.12 0.11 0.09 0.11 0.10 0.10 0.11 0.08 0.10 

Low average tolerance  High average tolerance 

                  

Table 41: Standard deviation in goal tolerance in neural network results over 15 

identical runs 

    Number of hidden layer neurons (2j+i) 

    -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

N
u

m
b

e
r 

o
f 

in
p

u
t 

p
a

ra
m

e
te

rs
 u

se
d

 (
j)

 

23 0.04 0.06 0.05 0.05 0.06 0.04 0.05 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.06 

22 0.06 0.08 0.05 0.06 0.06 0.07 0.06 0.06 0.06 0.05 0.06 0.05 0.06 0.06 0.06 

21 0.04 0.06 0.05 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 

20 0.04 0.04 0.06 0.06 0.06 0.04 0.06 0.07 0.06 0.06 0.06 0.05 0.05 0.06 0.05 

19 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.04 0.05 0.06 0.04 0.06 0.04 0.06 0.06 

18 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.07 0.06 0.06 0.06 0.04 0.04 0.06 0.05 

17 0.05 0.06 0.05 0.05 0.06 0.06 0.07 0.06 0.06 0.06 0.05 0.07 0.06 0.06 0.06 

16 0.06 0.05 0.06 0.06 0.05 0.07 0.07 0.07 0.06 0.06 0.07 0.05 0.05 0.05 0.07 

15 0.05 0.07 0.06 0.07 0.05 0.06 0.06 0.07 0.06 0.04 0.05 0.06 0.04 0.07 0.05 

14 0.06 0.06 0.06 0.05 0.06 0.04 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.06 0.06 

13 0.06 0.05 0.05 0.07 0.06 0.06 0.06 0.04 0.06 0.04 0.07 0.05 0.04 0.06 0.06 

12 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.07 0.05 0.05 0.05 0.06 

11 0.07 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.03 0.05 0.06 0.06 0.06 

10 0.07 0.05 0.06 0.06 0.05 0.06 0.06 0.07 0.06 0.06 0.04 0.05 0.04 0.06 0.06 

9 0.06 0.06 0.05 0.05 0.06 0.04 0.05 0.06 0.06 0.04 0.05 0.06 0.06 0.06 0.07 

8 0.05 0.07 0.05 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.07 0.07 0.05 0.06 0.05 

7 0.06 0.06 0.05 0.05 0.06 0.06 0.06 0.04 0.06 0.06 0.06 0.06 0.06 0.04 0.04 

6 0.05 0.06 0.06 0.05 0.06 0.07 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.06 

5 0.06 0.06 0.04 0.05 0.05 0.06 0.05 0.04 0.05 0.05 0.06 0.06 0.06 0.05 0.04 

4 0.06 0.05 0.07 0.04 0.05 0.06 0.06 0.05 0.04 0.06 0.05 0.06 0.06 0.06 0.04 

Low standard deviation  High standard deviation 
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8.5.3. TRAINGDX  
Table 42: Average misclassifications in neural network results over 15 identical runs 

    Number of hidden layer neurons (2j+i) 

    -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

N
u

m
b

e
r 

o
f 

in
p

u
t 

p
a

ra
m

e
te

rs
 u

se
d

 (
j)

 

23 1.20 1.93 1.47 1.07 1.47 1.80 1.73 1.40 1.87 1.53 2.07 1.27 1.73 1.33 1.87 

22 1.13 1.20 1.07 1.20 1.67 0.93 1.07 1.53 1.20 1.73 1.27 1.33 1.73 2.00 1.67 

21 0.60 0.67 0.93 1.13 0.60 0.93 0.93 0.87 1.00 0.93 1.47 0.73 1.00 1.53 1.40 

20 0.73 0.87 1.00 1.20 1.13 0.67 1.00 1.40 0.87 1.27 0.73 0.93 0.60 1.00 0.93 

19 2.80 2.73 2.47 2.93 3.07 2.60 3.00 3.00 2.67 2.53 2.80 3.13 2.93 3.27 3.47 

18 1.73 1.60 1.13 1.53 1.73 1.60 1.73 1.93 1.67 1.40 1.53 1.73 1.73 0.87 1.67 

17 2.07 1.93 1.73 2.53 2.07 2.27 2.07 2.07 2.33 1.80 1.80 1.87 2.07 1.40 1.60 

16 2.00 1.80 2.07 2.00 2.13 2.07 1.87 1.53 2.33 1.80 1.60 1.40 2.13 2.27 2.13 

15 2.53 2.47 2.13 1.73 1.93 1.60 1.93 2.07 2.07 1.87 1.40 1.87 2.07 1.60 1.80 

14 2.33 2.33 2.67 2.07 1.73 2.13 1.93 1.80 1.87 1.93 1.93 2.00 1.93 2.13 2.07 

13 1.87 1.73 1.87 1.60 1.60 1.60 1.53 1.33 1.47 1.20 1.33 1.40 1.73 1.20 1.33 

12 1.33 1.87 1.80 1.33 1.40 1.47 1.40 1.60 1.00 1.47 1.40 1.13 0.87 1.13 1.00 

11 2.13 1.47 1.33 1.47 1.47 1.07 1.33 1.20 1.20 1.13 1.07 1.20 0.93 1.00 1.13 

10 2.27 2.13 1.67 1.73 1.93 1.67 1.33 1.27 1.07 1.20 1.20 1.20 1.27 1.00 0.87 

9 2.33 1.87 1.60 2.07 1.53 1.40 1.47 1.27 1.13 1.20 1.07 1.53 1.13 1.47 0.87 

8 1.87 1.93 1.00 1.40 1.40 1.27 1.20 1.00 1.00 1.00 1.20 0.93 0.93 0.87 1.00 

7 2.40 1.80 1.60 1.87 1.67 1.27 1.53 1.53 1.20 1.07 1.33 1.00 1.00 1.00 1.07 

6 1.87 1.47 1.47 1.53 1.53 1.33 1.07 1.13 0.93 1.13 1.27 1.07 1.07 1.07 1.00 

5 2.40 2.33 1.60 1.80 1.73 1.93 1.40 1.27 1.27 1.40 1.27 1.27 1.40 1.60 1.20 

4 2.00 1.80 1.60 1.67 1.73 1.80 1.47 1.53 1.40 1.47 1.47 1.60 1.67 1.47 1.40 

Low misclassification  High misclassification 

                 Table 43: Standard deviation in neural network results over 15 identical runs 

    Number of hidden layer neurons (2j+i) 

    -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

N
u

m
b

e
r 

o
f 

in
p

u
t 

p
a

ra
m

e
te

rs
 u

se
d

 (
j)

 

23 1.01 0.88 0.99 0.96 0.99 1.08 1.16 0.63 1.36 1.25 1.10 0.88 0.96 1.18 1.46 

22 0.83 0.86 0.88 1.21 1.18 0.96 1.39 1.25 1.08 1.58 1.16 1.18 1.16 1.56 1.29 

21 0.74 0.49 0.70 0.92 0.51 0.96 0.70 0.92 1.00 0.96 0.92 0.70 1.00 0.52 1.50 

20 0.70 0.64 0.93 0.77 0.74 0.72 1.20 0.83 0.92 0.80 0.80 0.70 0.83 1.00 0.88 

19 1.15 0.88 1.13 1.16 0.96 0.99 1.25 1.20 0.82 1.41 1.32 0.83 0.96 1.39 0.92 

18 0.70 0.63 1.06 0.83 0.80 0.83 0.80 0.80 0.98 0.74 0.92 1.03 0.59 0.74 0.49 

17 0.80 1.10 0.70 0.92 0.80 0.80 0.80 0.80 0.82 0.94 0.77 0.83 0.70 0.83 0.83 

16 0.76 0.77 0.70 0.65 0.83 0.70 0.64 0.83 1.11 0.68 0.74 0.74 0.64 0.80 0.83 

15 0.74 0.52 0.92 0.80 0.80 0.83 0.88 0.70 0.59 0.99 0.91 0.74 0.59 0.91 0.56 

14 0.82 0.82 0.72 0.46 0.96 0.64 0.80 0.56 0.64 0.88 0.70 0.76 0.80 0.92 0.59 

13 0.74 0.46 0.64 0.83 0.51 0.83 0.64 0.72 0.74 0.56 0.62 0.51 0.70 0.56 0.72 

12 0.82 0.83 0.56 0.62 0.63 0.52 0.83 0.74 0.53 0.52 0.51 0.35 0.64 0.64 0.38 

11 0.83 0.52 0.90 0.74 0.52 0.59 0.72 0.56 0.56 0.52 0.26 0.77 0.70 0.53 0.52 

10 0.70 0.83 0.90 0.88 0.46 0.72 0.49 0.59 0.26 0.68 0.41 0.77 0.59 0.38 0.64 

9 0.62 0.83 0.51 0.80 0.74 0.51 0.64 0.70 0.52 0.68 0.59 1.06 0.52 0.74 0.35 

8 0.83 0.70 0.38 0.74 0.63 0.46 0.41 0.00 0.38 0.00 0.56 0.26 0.26 0.35 0.00 

7 0.91 0.77 0.63 0.74 0.82 0.80 0.64 0.83 0.56 0.26 0.72 0.00 0.38 0.53 0.26 

6 0.74 0.64 0.74 0.74 0.74 0.62 0.26 0.35 0.26 0.35 0.46 0.26 0.26 0.26 0.00 

5 0.63 0.49 0.63 0.77 0.59 0.59 0.51 0.46 0.46 0.51 0.46 0.46 0.51 0.74 0.41 

4 0.38 0.68 0.63 0.62 0.70 0.68 0.64 0.64 0.51 0.64 0.52 0.74 0.72 0.74 0.51 

Low standard deviation  High standard deviation 
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Table 44: Average goal tolerance in neural network results over 15 identical runs 

    Number of hidden layer neurons (2j+i) 

    -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
N

u
m

b
e

r 
o

f 
in

p
u

t 
p

a
ra

m
e

te
rs

 u
se

d
 (

j)
 

23 0.09 0.08 0.09 0.10 0.08 0.09 0.08 0.09 0.07 0.07 0.07 0.09 0.07 0.09 0.08 

22 0.08 0.08 0.09 0.09 0.10 0.08 0.10 0.08 0.08 0.08 0.09 0.11 0.12 0.11 0.11 

21 0.07 0.08 0.08 0.06 0.07 0.07 0.09 0.09 0.09 0.09 0.06 0.11 0.07 0.05 0.07 

20 0.06 0.06 0.08 0.08 0.10 0.10 0.08 0.09 0.07 0.06 0.09 0.09 0.09 0.08 0.07 

19 0.07 0.08 0.08 0.09 0.10 0.12 0.09 0.09 0.08 0.06 0.08 0.10 0.09 0.11 0.12 

18 0.07 0.11 0.10 0.11 0.07 0.09 0.08 0.06 0.07 0.10 0.08 0.07 0.09 0.08 0.07 

17 0.07 0.07 0.10 0.08 0.09 0.07 0.07 0.07 0.08 0.07 0.08 0.08 0.08 0.10 0.09 

16 0.07 0.11 0.12 0.10 0.06 0.09 0.10 0.07 0.07 0.09 0.09 0.11 0.07 0.10 0.08 

15 0.05 0.07 0.08 0.11 0.08 0.08 0.07 0.11 0.07 0.07 0.08 0.08 0.07 0.06 0.07 

14 0.08 0.09 0.06 0.09 0.09 0.09 0.07 0.09 0.06 0.08 0.08 0.05 0.07 0.08 0.09 

13 0.10 0.07 0.08 0.12 0.08 0.08 0.08 0.06 0.09 0.07 0.09 0.06 0.07 0.08 0.07 

12 0.10 0.06 0.08 0.09 0.09 0.05 0.07 0.09 0.08 0.07 0.10 0.07 0.07 0.09 0.10 

11 0.06 0.09 0.09 0.08 0.07 0.12 0.09 0.09 0.10 0.08 0.06 0.07 0.08 0.08 0.09 

10 0.06 0.08 0.08 0.06 0.10 0.08 0.09 0.07 0.08 0.11 0.09 0.08 0.07 0.10 0.08 

9 0.09 0.08 0.10 0.08 0.09 0.08 0.07 0.08 0.06 0.09 0.11 0.08 0.08 0.06 0.07 

8 0.07 0.09 0.13 0.10 0.08 0.08 0.08 0.06 0.06 0.07 0.06 0.08 0.08 0.06 0.07 

7 0.07 0.10 0.14 0.08 0.08 0.11 0.09 0.07 0.05 0.08 0.08 0.07 0.07 0.06 0.07 

6 0.09 0.10 0.09 0.09 0.08 0.10 0.07 0.08 0.09 0.06 0.05 0.07 0.08 0.06 0.08 

5 0.05 0.05 0.08 0.08 0.07 0.08 0.08 0.06 0.08 0.07 0.08 0.05 0.09 0.08 0.08 

4 0.05 0.06 0.08 0.07 0.06 0.07 0.06 0.07 0.08 0.06 0.09 0.08 0.05 0.11 0.06 

Low average tolerance  High average tolerance 

                 Table 45: Standard deviation in goal tolerance in neural network results over 15 

identical runs 

    Number of hidden layer neurons (2j+i) 

    -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
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23 0.04 0.04 0.04 0.05 0.06 0.04 0.04 0.06 0.04 0.05 0.05 0.04 0.06 0.05 0.06 

22 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.06 0.04 0.04 0.05 0.06 0.07 0.06 0.04 

21 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.06 0.03 0.05 0.04 0.05 0.04 

20 0.04 0.03 0.05 0.05 0.05 0.03 0.05 0.06 0.05 0.05 0.06 0.04 0.05 0.05 0.04 

19 0.05 0.06 0.05 0.06 0.05 0.06 0.04 0.05 0.05 0.04 0.04 0.07 0.05 0.07 0.06 

18 0.04 0.06 0.06 0.06 0.04 0.05 0.05 0.04 0.05 0.06 0.04 0.04 0.06 0.06 0.05 

17 0.04 0.06 0.07 0.07 0.05 0.06 0.04 0.04 0.05 0.05 0.06 0.04 0.05 0.05 0.06 

16 0.05 0.05 0.06 0.06 0.05 0.06 0.05 0.05 0.03 0.06 0.05 0.05 0.04 0.06 0.05 

15 0.04 0.06 0.04 0.06 0.06 0.05 0.04 0.06 0.04 0.06 0.06 0.04 0.05 0.04 0.04 

14 0.05 0.06 0.02 0.04 0.05 0.05 0.05 0.05 0.03 0.05 0.05 0.03 0.06 0.05 0.04 

13 0.06 0.07 0.04 0.05 0.05 0.05 0.04 0.05 0.06 0.04 0.04 0.03 0.05 0.05 0.04 

12 0.06 0.06 0.05 0.06 0.05 0.03 0.03 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.05 

11 0.03 0.05 0.06 0.05 0.05 0.06 0.06 0.05 0.06 0.07 0.03 0.05 0.05 0.06 0.04 

10 0.05 0.06 0.05 0.04 0.06 0.06 0.04 0.04 0.05 0.06 0.06 0.04 0.05 0.07 0.06 

9 0.07 0.06 0.05 0.05 0.06 0.06 0.04 0.05 0.05 0.06 0.05 0.04 0.04 0.04 0.05 

8 0.05 0.07 0.05 0.06 0.04 0.04 0.05 0.03 0.04 0.05 0.03 0.04 0.05 0.06 0.05 

7 0.05 0.06 0.05 0.06 0.06 0.06 0.05 0.06 0.04 0.04 0.06 0.04 0.05 0.05 0.06 

6 0.06 0.05 0.05 0.06 0.04 0.05 0.04 0.05 0.05 0.03 0.03 0.05 0.04 0.06 0.06 

5 0.05 0.02 0.03 0.04 0.04 0.06 0.06 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.04 

4 0.03 0.04 0.05 0.04 0.04 0.05 0.04 0.03 0.05 0.04 0.04 0.05 0.04 0.06 0.04 

Low standard deviation  High standard deviation 
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