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SUMMARY 

Accurate and up-to-date agricultural monitoring systems are critical for forecasting crop yield, 

planning resources and assessing the impact of threats to production (such as droughts or floods). 

The spatial extent and location of agricultural fields greatly influence these systems. Conventional 

methods of delineating agricultural fields, such as in situ field surveys and manual interpretation 

of imagery, are costly and time-consuming and are thus not suitable in an operational context. 

Automated earth observation techniques offer a cost-effective alternative as they can be used to 

execute frequent and highly detailed investigations of large areas. However, there are currently no 

well-established and transferable techniques to automatically delineate agricultural field 

boundaries. The most promising techniques found in literature include object-based image analysis 

(OBIA) and edge detection algorithms. This study consequently compared and evaluated multiple 

OBIA approaches for delineating agricultural field boundaries with multi-temporal Sentinel-2 

imagery.  

Two sets of experiments were carried out. The first set of experiments compared and evaluated six 

multi-temporal OBIA approaches with which active agricultural fields in a large irrigation scheme 

were delineated and identified. These approaches combined two edge enhancement algorithms 

(Canny and Scharr) and three image segmentation techniques (watershed, multi-threshold and 

multi-resolution) to create six scenarios. Results showed that the watershed segmentation scenarios 

outperformed the multi-threshold and multi-resolution segmentation algorithms. In addition, the 

Canny edge detection algorithm, in conjunction with a segmentation technique, was found to 

produce higher boundary accuracies than its counterpart, Scharr. 

In the second set of experiments the best performing scenario from the first set of experiments, 

namely Canny edge detection in conjunction with watershed segmentation (CEWS), was modified 

slightly and applied to five regions in South Africa. The purpose of this investigation was to assess 

the robustness (transferability) of the methodology. A standard per-pixel supervised classification 

was performed to serve as a benchmark against which the CEWS approach was compared. Results 

showed that CEWS outperformed the supervised per-pixel classification in all experiments. 

CEWS’ robustness in different agricultural landscapes was furthermore highlighted by its creation 

of closed field boundaries, independence from training data and transferability.  

The quantitative experiments carried out in this study lay the foundation for the implementation 

of an operational workflow for delineating agricultural fields with the use of multi-temporal 
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Sentinel-2 imagery. The extracted field boundaries will likely aid agricultural monitoring 

systems in estimating crop yield and improve resource planning and food security assessments. 

KEY WORDS 

Earth observation, field boundaries, object-based image analysis, edge detection, image 

segmentation, multi-temporal, agricultural monitoring systems 

Stellenbosch University https://scholar.sun.ac.za



v 

OPSOMMING 

Akkurate en bygewerkte landboumoniteringstelsels is van kritieke belang vir die voorspelling van 

oesopbrengs, die beplanning van hulpbronne en die assessering van die impak van bedreigings vir 

produksie (soos droogtes of vloede). Die ruimtelike omvang en ligging van landboulande 

beïnvloed hierdie stelsels tot ŉ groot mate. Konvensionele metodes om lande af te baken, soos in 

situ veldopnames en die visuele interpretasie van beelde, is duur en tydrowend en is dus nie geskik 

in ŉ operasionele konteks nie. Outomatiese aardwaarnemingstegnieke bied ŉ koste-effektiewe 

alternatief, aangesien dit gebruik kan word om gereelde en hoogs gedetailleerde ondersoeke van 

groot gebiede uit te voer. Daar is egter tans geen gevestigde en oordraagbare tegnieke om 

landbougrondgrense outomaties af te baken nie. Die mees belowende tegnieke wat in die literatuur 

voorkom, sluit in objek-gebaseerde-beeldanalise (OGBA) en randdeteksie-algoritmes. Hierdie 

studie het gevolglik verskeie OGBA-benaderings om landbougrondgrense af te baken met multi-

temporale Sentinel-2 beelde, vergelyk en geëvalueer. Twee stelle eksperimente is uitgevoer. 

Die eerste stel eksperimente het ses multi-temporale OGBA-benaderings waarmee aktiewe 

landbouvelde in ŉ groot besproeiingskema afgebaken en geïdentifiseer is, vergelyk en geëvalueer. 

Hierdie benaderings kombineer twee randverbeteringsalgoritmes (Canny en Scharr) en drie 

beeldsegmenteringstegnieke (waterskeiding, multi-drempel en multi-resolusie) om ses scenario’s 

te skep. Resultate het getoon dat die waterskeidingskenario’s beter presteer as die multi-drempel- 

en multi-resolusie-segmenteringsalgoritmes. Daarbenewens is bevind dat die Canny-randdeteksie-

algoritme, in samewerking met ŉ segmenteringstegniek, hoër grensakkuraathede as sy eweknie, 

Scharr, produseer. 

Die tweede stel eksperimente het die beste presterende scenario van die eerste stel eksperimente, 

naamlik die Canny-randdeteksie-algoritme in samewerking met waterskeidingsegmentasie 

(CRSW), op vyf streke in Suid-Afrika toegepas. Die doel van hierdie ondersoek was om die 

robuustheid (oordraagbaarheid) van die metodologie te evalueer. ŉ Standaard per-piksel gerigte 

klassifikasie is uitgevoer om te dien as ŉ maatstaf waarteen die voorgestelde benadering vergelyk 

is. Resultate het getoon dat CRSW in alle eksperimente beter as die per-piksel gerigte klassifikasie 

presteer het. CRSW se robuustheid in verskillende landboulandskappe is verder beklemtoon deur 

sy skepping van geslote veldgrense, onafhanklikheid van opleidingsdata en oordraagbaarheid.  

Die kwantitatiewe eksperimente wat in hierdie studie uitgevoer is, het die basis gelê vir die 

implementering van ŉ operasionele werkvloei vir die afbakening van landbouvelde met behulp 

van multi-temporale Sentinel-2-beelde. Die onttrekte veldgrense sal waarskynlik 
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landboumoniteringstelsels help om oesopbrengs te beraam en hulpbronbeplanning en 

voedselsekuriteitsevaluerings te verbeter. 

SLEUTELWOORDE 

Aardwaarneming, veldgrense, objekgebaseerde-beeldanalise, randdeteksie, beeldsegmentering, 

multi-temporale, landbou-moniteringstelsels 
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CHAPTER 1:  INTRODUCTION 

In recent years, agricultural land has increased in many parts of the world (Lambin & Meyfroidt 

2011). This can be attributed to the ever-increasing global population which recently exceeded 

seven billion people (Tollefson 2012). With this growth in population, the increased food 

production demand has become a major global challenge (Fritz et al. 2015). Furthermore, factors 

such as urban expansion and climate change have added pressure on the development of 

agricultural land (Inglada et al. 2015; Waldner & Defourny 2015). These negative effects on crop 

production can have dire impacts on food security across the world, especially in countries where 

food security is an existing problem. For example, Africa has the highest fertility and population 

growth and many countries still have food security concerns. This makes agricultural monitoring 

systems vital in extracting cropland areas, forecasting crop yield, and assessing the impact of 

threats to production such as floods, droughts, disease or human conflict (Matton et al. 2015). 

Agricultural monitoring systems need to be practical, sustainable and able to provide timely 

information to aid countries in achieving food security. Crop field extents is a fundamental dataset 

in most agricultural monitoring systems as it can be used to isolate crop fields from other land uses 

and assess factors such as crop growth, stress and potential yield estimates (Waldner & Defourny 

2015). 

1.1 REMOTE SENSING IN AGRICULTURE 

Earth observation (EO) techniques have been widely exploited in agriculture and are viable 

methods for long-term analysis of large areas (Villa et al. 2015). EO can provide spatially 

continuous and frequent observations that result in large datasets of varying spatial and temporal 

resolutions (Mulianga et al. 2015). These datasets can potentially be used to assess agricultural 

vegetation growth, maturity and harvests (Ozdogan et al. 2010). The extent and characteristics of 

agricultural land follows clear seasonal patterns that correlate positively to the phenology of the 

crops being grown (Atzberger 2013).  

Data collection using remote sensing has the advantage of being less time-consuming and costly 

than traditional statistical surveys (Ozdogan et al. 2010; Peña et al. 2014). Traditional crop surveys 

typically involve the collection of in situ field data or the manual digitisation of aerial or satellite 

imagery. However, these processes are labour intensive and susceptible to human error (Alemu 

2016). Human errors often occur due to bias of the surveyor and is influenced by their knowledge, 

perception and ability to delineate fields (Lucas et al. 2007). Furthermore, surveyors in the field 

are limited to their direct line of sight and can consequently miss the spatial variability within the 
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mapped fields, which is compounded in large and complex environments. Remote sensing is a 

viable alternative for creating cropland inventories due to its ability to capture imagery in large 

swaths in an automated and unbiased way. It is even more valuable in developing countries where 

resources are limited and data is scarce (Ozdogan et al. 2010).  

1.2 AGRICULTURAL FIELD BOUNDARIES 

The spatial distribution, extent and location of agricultural field boundaries plays an important role 

in yield predictions, resource allocation and economic planning (Yan & Roy 2014). However, 

there are many different interpretations of “field boundaries” and they generally differ according 

to the interpreter (Davidse 2015). The definitions of “field” and “boundary”, according to the 

Oxford Dictionary, can aid in the clarification of these terms. “Field” is defined as “an area of open 

land, especially one with crops or pasture, typically bounded by hedges or fences”, while 

“boundary” is defined as a “line which marks the limits of an area; a dividing line”. In this study, 

“fields” relate to agricultural land-use, while “boundary” relates to whether there is a change in 

crop type or a natural/man-made disruption in the landscape between fields, for example a road or 

hedge (Rydberg & Borgefors 2001). Therefore, a farmer can have a physical field broken up into 

smaller parts, each with their own crop type being grown. This is important for the distinction 

between crop types in a multi-crop classification. However, edges between crop fields are not 

always easily discernible as some crops have similar spectral and structural properties at certain 

phases of growth (Pittman et al. 2010). This necessitates the need for multi-temporal imagery and 

the capturing of data throughout the growing season.  

1.3 COMMON TECHNIQUES IN REMOTE SENSING FOR AGRICULTURAL 

FIELD BOUNDARY DELINEATION 

Conventional methods for field boundary delineation such as in situ field surveys and visual 

interpretation of satellite imagery are costly, time-consuming and susceptible to human error 

(Alemu 2016). Furthermore, the monitoring of crops is complicated by their dynamic nature 

(McNairn et al. 2002). Crop types can vary from one field to the next and from season to season. 

This necessitates an alternative approach, such as the use of remotely sensed data acquired by 

satellite sensors (Lucas et al. 2007). 

One of the most important steps in defining field boundaries is the detection of the edges that make 

up those boundaries. An edge can be defined as a spectral discontinuity between pixel values in 

an image (Rydberg & Borgefors 2001). Two common techniques identified in literature to 

delineate agricultural field boundaries are object-based image analysis (OBIA) and edge detection 
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techniques (Butenuth, Straub & Heipke 2004; Davidse 2015; Rydberg & Borgefors 2001; Schultz 

et al. 2015). 

OBIA aims to group pixels into meaningful image objects (Blaschke et al. 2000). This is 

differentiated from traditional per-pixel classification procedures that aim to classify individual 

pixels (Wuest & Zhang 2009). The major advantage of OBIA over per-pixel methods is that image 

objects are able to make use of their spatial neighbourhood and additional spectral information that 

single pixels lack, such as mean, median, minimum, maximum and variance values (Blaschke et 

al. 2000). Furthermore, the impact of noise is reduced as grouping pixels reduces variation and the 

so-called “salt-and-pepper” effect (Schultz et al. 2015). 

Edge detection is a method of determining significant local change in an image (Ramadevi et al. 

2010). Common edge detection algorithms make use of two-dimensional filters to determine the 

magnitude and strength of an edge pixel (Shrivakshan & Chandrasekar 2012). There are a number 

of edge detection algorithms available, which each has a different purpose. The most commonly 

used are the Sobel, Prewitt, Robert cross, Scharr and Canny algorithms. 

The combination of edge detection and segmentation has proven to yield better results than that of 

a single method (Rydberg & Borgefors 2001). For example, Alemu (2016) made use of a line 

segment detection (LSD) algorithm to extract linear features on VHR (2 m) Worldview-2 imagery. 

The changes in x and y direction of each band are combined using a vector sum. A line-support 

region representing potential candidates for a segment was formed using a region growing 

technique. The Helmholtz principle, based on the number of false alarms (NFA), was calculated 

to assess the results. The methodology was found to omit many field boundaries, which was 

attributed to weak contrast between neighbouring fields. Davidse (2015) performed Lambda 

Schedule (FLS) segmentation on the normalised difference vegetation index (NDVI) and soil-

adjusted vegetation index (SAVI). However, the method delivered poor results due to the 

complexity of the landscape. It was suggested that the method would likely produce better results 

in a more homogeneous landscape. Rydberg & Borgefors (2001) developed a hybrid approach by 

integrating a gradient-based edge detector with a segmentation algorithm. In this approach, all 

multispectral information was used by adding the magnitudes and direction of the edges for each 

band. The resulting edge image is combined with a segmentation method based on a simple 

ISODATA algorithm. This method allows for the integration of information from multiple spectral 

bands in the delineation of agricultural field boundaries. A high boundary accuracy (87%) was 

attributed to the method’s ability to exploit information from multiple bands. 
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1.4 PROBLEM FORMULATION 

Conventional methods for delineating field boundaries include the manual digitisation of 

aerial/satellite imagery and in situ field surveys. These methods are not practical for continuous 

monitoring systems, as they are costly and time-consuming. EO has shown potential for crop 

boundary delineation by providing medium to high resolution imagery over extensive periods at 

relatively low cost. Currently there are no well-established and transferable models or techniques 

to automatically extract crop field boundaries from remotely sensed imagery. However, the most 

promising techniques identified in literature are based on OBIA and edge detection algorithms 

(Butenuth, Straub & Heipke 2004; Davidse 2015; Rydberg & Borgefors 2001). But most OBIA 

approaches require fine-tuning of segmentation parameters, which can be time-consuming and are 

often only applicable to a certain area (Duro, Franklin & Dube 2012; Schultz et al. 2015). Several 

edge detection algorithms have been developed, including the Sobel, Prewitt, Roberts cross, Scharr 

and Canny algorithms. The Canny edge detection algorithm has been shown to outperform other 

algorithms in many applications. However, for delineating crop field boundaries, it is still unclear 

which algorithm is most accurate.   

The low temporal resolution of existing high spatial resolution remotely sensed data has been cited 

in literature as a limitation of the use of EO techniques for field boundary delineation (Gumma et 

al. 2014; Pittman et al. 2010) and many previous attempts have made use of only one image date 

(Alemu 2016; Butenuth, Straub & Heipke 2004; Rydberg & Borgefors 2001). However, 

agricultural land follows strong seasonal patterns that are strongly related to the phenology of the 

crops being grown (Atzberger 2013). Many of these phenological stages can change within very 

short periods, necessitating a multi-temporal approach. The increased availability of higher spatial 

and temporal resolution data through the Copernicus programme of the European Space Agency 

(ESA) opens up many opportunities for implementing and evaluating a multi-temporal approach 

to crop field boundary delineation. In particular, the Sentinel-2 constellation offers 10 m resolution 

imagery at a five-day interval, which may be ideal for agricultural field boundary delineation. To 

date, this data has not yet been evaluated for this purpose.  

The following research questions have been set: 

1. Is the spatial and temporal resolution of Sentinel-2 imagery sufficient for delineating crop 

field boundaries? 

2. Which edge detection and segmentation algorithms are most effective for delineating field 

boundaries from Sentinel-2 imagery? 

3. What segmentation parameters are best suited for the task of identifying field edges? 
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4. How can edge detection, image segmentation and classification be combined to 

differentiate (delineate and label) active fields from other land covers in an accurate and 

robust manner? 

1.5 AIM AND OBJECTIVES 

This research aims to develop and evaluate a technique for delineating actively growing 

agricultural fields using multi-temporal, high resolution Sentinel-2 imagery.  

The following objectives were set: 

1. Review literature pertaining to multi-temporal crop type mapping and field boundary 

delineation; 

2. Obtain suitable Sentinel-2 satellite imagery for different agricultural regions across South 

Africa; 

3. Assess the effectiveness of multiple edge detection algorithms for delineating field 

boundaries in conjunction with various segmentation algorithms; 

4. Determine which segmentation algorithms and parameters produce the most accurate field 

boundaries; 

5. Develop and demonstrate a knowledge-based OBIA approach for delineating field 

boundaries; and 

6. Evaluate the accuracy and robustness (transferability) of the developed methodology 

across different agricultural regions in South Africa. 

1.6 RESEARCH METHODOLOGY 

This research was empirical and quantitative in nature. Analytical techniques such as edge 

detection, image segmentation and knowledge-based crop classification were employed to 

delineate agricultural field boundaries from multi-temporal Sentinel-2 imagery. The extracted field 

boundaries were quantitatively assessed using both area and edge-based metrics. 

Figure 1-1 shows the research design and structure of the thesis. Chapter 1 describes the research 

problem along with the aim and objectives for this study. Chapter 2 provides a review of remote 

sensing (RS) techniques for agricultural field boundary delineation and crop mapping followed by 

an overview of relevant studies carried out previously. 

Chapter 3 (experiment 1) evaluates several OBIA techniques for delineating agricultural field 

boundaries in a large irrigation scheme. The aim of the experiment is to determine which 

combination of edge detection and segmentation algorithms best delineates field boundaries using 
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multi-temporal Sentinel-2 imagery. The extracted field boundaries are quantitatively evaluated 

using a combination of area and edge-based metrics. 

Chapter 4 (experiment 2) utilises the best approach determined in Chapter 3 (with some minor 

modifications) and applies it to five agricultural regions. The aim of the experiment is to determine 

the method’s robustness in context of finding an operational solution to agricultural field boundary 

delineation with Sentinel-2 imagery. The extracted field boundaries were quantitatively evaluated 

using a combination of area and edge-based metrics. 

Chapter 5 provides a summary of the research and offers some conclusions based on the findings 

of this research. It critically evaluates the success of the research by reflecting on the research aim 

and objectives, while discussing the key findings of the various experiments undertaken. 

Recommendations for further research are also provided. 
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Figure 1-1   Research design and thesis structure 
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CHAPTER 2:  LITERATURE REVIEW 

2.1 AGRICULTURE IN SOUTH AFRICA  

Food accessibility is a basic human right that is enshrined in the constitution of the Republic of 

South Africa (Lehohla 2012). This makes it the responsibility of the state to ensure that residents 

can meet their basic nutritional needs. This is in essence food security, which is said to exist when 

people in a society can acquire good quality and nutritious food in a socially acceptable way, for 

example without having to steal, scavenge or acquire emergency food supplies from outside 

sources (Labadarios et al. 2011). Although South Africa has been able to keep its food production 

within the national food requirements, large-scale inequality and poverty has led to many 

households being unable to enjoy food security or adequate access to food. This leaves poor 

households vulnerable to hunger and nutritional deficiencies.  

Agricultural production is at the heart of ensuring food security but is hampered by a constantly 

growing population and climate change (Duveiller & Defourny 2010). Climate change poses a 

grave threat to South Africa’s infrastructure, water sources and food security (Ziervogel et al. 

2014). Climate change could modify crop production in two main ways, namely a reduction in 

precipitation and a modification of temperatures. Precipitation is the leading source of freshwater 

and impacts the soil moisture level, while temperature determines the length of the growing season 

and controls crop development and water requirements (Calzadilla et al. 2014). Between 1997 and 

2006, South Africa became approximately 2% hotter and 6% drier, a trend that is likely to continue. 

It is predicted that with every 1% decrease in rainfall, there is likely to be a 1.2% and 0.5% decline 

in maize and wheat production respectively. The observed climate changes are, therefore expected 

to lead to a net decline in income for the most productive agricultural regions in South Africa 

(Blignaut, Ueckermann & Aronson 2009).  

Traditionally, irrigation farming has been proposed as a strategy for developing the agricultural 

sector (Wheeler et al. 2017). Furthermore, rain-fed crop production is becoming increasingly risky 

due to unreliable rainfall and an increase in drought periods (Cousins & Walker 2015; Sinyolo, 

Mudhara & Wale 2014). However, many irrigation schemes struggle to succeed due to a lack of 

communication between stakeholders, a lack of investment return and a shortage of information 

flow (e.g. water management and market intelligence), which leads to low productivity and an 

eventual breakdown of the irrigation system (Van Rooyen et al. 2017). Therefore, there is an 

increasingly strong demand for improved methods in agricultural practices and management 

systems to combat the negative effects of climate change and to ensure food security for future 

generations. Efficient agricultural management and monitoring can provide valuable information 
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regarding crop yield and crop health, but such systems require timely and accurate data on the 

extent of agricultural land. 

2.2 REMOTE SENSING FOR MONITORING AGRICULTURE 

RS techniques have been proven to be effective in agricultural applications and are widely 

exploited for their ability to provide long-term analysis of large areas (Villa et al. 2015). RS 

provides continuous and frequent observations, which result in large datasets with varying 

temporal and spatial resolutions (Mulianga et al. 2015; Valero et al. 2016). The spatial and 

temporal resolutions of RS imagery are key characteristics in its ability to provide sufficient 

information to agricultural monitoring systems.  

2.2.1 Characteristics of optical imagery 

The spatial resolution of an image refers to the smallest object discernible on the ground surface 

and is commonly equivalent to the imagery’s pixel size (Muller & Van Niekerk 2016). The spatial 

resolution of satellite imagery can vary from kilometres (low spatial resolution) to centimetres 

(very high spatial resolution), depending on the satellite sensor utilised. It is important to consider 

the pixel size in agricultural applications such as cropland mapping. For example, when the pixel 

size is too large, individual crop fields cannot be mapped out to their proper extent (Schultz et al. 

2015). Low spatial resolution imagery, such as those acquired by MODIS, has proven to provide 

sufficient information to be used as a generic cropland indicator for major crop classes (Lunetta et 

al. 2010; Pittman et al. 2010). For example, the 250 m MODIS 16-day NDVI time series product 

was successfully used to separate cropland from non-cropland at a national scale in the fragmented 

agricultural landscape of Mali, West Africa (Vintrou et al. 2012). However, higher spatial 

resolution imagery is required for the separation and delineation of individual crop fields due to 

the finer detail provided by such imagery (Mueller, Segl & Kaufmann 2004).  

The temporal resolution of remotely sensed imagery can be defined as the frequency at which 

images are acquired of the same region. The temporal resolution can vary from multiple revisits a 

day (high temporal resolution) to only a few visits a year (low temporal resolution). Agricultural 

land follows seasonal patterns that are strongly linked to the phenological cycles of the crops being 

grown in a region (Atzberger 2013). The phenology of crop fields changes every few days during 

the growing season, which affects the spectral and structural responses collected by the sensor at 

the time of observation (Ozdogan et al. 2010). In addition, the spectral response of a given crop 

type can vary from region to region, depending on climate, soil conditions and different farming 

practices such as the use of fertilizer (Valero et al. 2016). Therefore, when RS data is used to 
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monitor crops it is critical that precise and timely information on the phenological status and 

growth of cultivated vegetation is taken into account throughout a growing season (Veloso et al. 

2017).  

2.2.2 Vegetation indices 

Understanding the distribution, biophysical and structural properties and temporal/spatial 

variations of vegetation is vital in understanding the role of these factors in large-scale global 

processes such as agriculture (Huete et al. 2002). Spectral vegetation indices (VIs) are popular and 

widely used in disciplines interested in the evaluation of plant stress, health, biomass and growth 

(Jackson & Huete 1991). VIs are simple spectral transformations designed to combine two or more 

wavelengths to enhance certain vegetation properties (Huete et al. 2002). Some of the most 

commonly tested VIs include: normalised difference vegetation index (NDVI), enhanced 

vegetation index (EVI), soil-adjusted vegetation index (SAVI), green normalised difference 

vegetation index (GNDVI) and normalised difference water index (NDWI).  

NDVI has been used extensively in cropland mapping and has shown to provide high accuracies 

when used alone or in conjunction with other spectral features (Aguilar et al. 2015; Lambert, 

Waldner & Defourny 2015; Matton et al. 2015; Peña-Barragán et al. 2011; Wardlow, Egbert & 

Kastens 2007; Wu et al. 2015). NDVI compares the NIR and red bands (Wardlow, Egbert & 

Kastens 2007) and is defined as: 

 

 𝑁𝐷𝑉𝐼 =
NIR − 𝑅𝐸𝐷

NIR + 𝑅𝐸𝐷
          Equation 2.1 

 

Where  NIR is the near-infrared image band; and 

RED is the red image band.  

 

The main strength of NDVI lies in its ratio concept, which reduces certain forms of noise (cloud 

shadows, topographic variations and atmospheric attenuation) inherent in individual bands (Huete 

et al. 2002). This allows NDVI to provide meaningful comparisons of change in vegetation growth. 

Most other VIs listed above are based on the same principles as NDVI. For a comprehensive 

overview of other VIs, the reader is referred to Gamon & Surfus (1999); Gitelson, Gritz & 

Merzlyak (2003); Huete (1988); Jiang et al. (2008); and Peña-Barragán et al. (2011). 
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2.2.3 Image classification 

Image classification in the context of RS is based on the principle that geographical features on 

the Earth’s surface contain different reflectance properties and can be identified through an image 

classification process (Al-doski et al. 2013). One method of image classification is the visual 

interpretation of features by an analyst. However, manual interpretation is tedious, subjective and 

relies heavily on the skill of the analyst (Rozenstein & Karnieli 2011). Furthermore, this approach 

is not practical for image classification on a regional or global scale. 

Computer-based algorithms have been developed to overcome the limitations of manual 

interpretation of RS imagery. Computer-based algorithms (called classifiers) vary in complexity 

and can perform classifications involving two or more classes of interest. Traditional computer-

based methods involve per-pixel unsupervised and supervised approaches. However, object-

orientated and knowledge-based approaches have recently become popular alternatives. Each of 

these approaches are discussed in the following subsections.  

2.2.3.1 Unsupervised classification 

Unsupervised classification can be defined as the identification and grouping of natural structures 

in multidimensional space (Campbell & Wynne 2013). This approach is popular as it does not 

require a priori knowledge (Eva et al. 2004). However, despite the attractiveness of the automatic 

clustering of features, informational class labels have to be manually assigned to the final grouping 

of spectral clusters by an analyst. This process is challenging and prone to human subjectivity and 

error (Gomez, White & Wulder 2016). These problems are compounded when there are ambiguous 

linkages between the spectral and informational classes (Campbell & Wynne 2013). Some of the 

most common unsupervised classification algorithms include k-means, ISODATA, agglomerative 

hierarchical grouping and histogram-based clustering.  

2.2.3.2 Supervised classification 

Supervised classification is the process of using pre-determined samples of known identity (i.e. 

pixels/objects already assigned to an informational class) to classify pixels/objects of unknown 

identity (Campbell & Wynne 2013). These samples of known identity (training samples) are 

created by an analyst who has knowledge of the target informational classes, providing the analyst 

control over the classification. This is an advantage that the unsupervised classification approach 

does not have. However, the selection of training data is critical as poorly defined or 

inappropriately selected training data can negatively affect the classification accuracy (Gomez, 
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White & Wulder 2016). In addition, the collection of training data can be time-consuming, 

expensive and is often prone to human error (Lucas et al. 2007).  

Although the appropriate selection of classifier and training samples is critical, the addition of 

extra image features (such as transformations, textures and ancillary data) can also impact the 

accuracy of image classifications (Heinl et al. 2009). However, an increase in feature 

dimensionality can sometimes have a negative effect on classification accuracy owing to the 

Hughes phenomenon. This phenomenon (also referred to as the “curse of dimensionality”) states 

that classification accuracy will begin to decrease when the number of input features increase 

unless the number of training samples is also proportionally increased (Hughes 1968; Myburgh & 

Van Niekerk 2013). Belgiu & Drăgut (2016) list four requirements that samples need to meet in 

order to successfully train a classifier: (1) training and validation samples must be independent; 

(2) there must be an even number of samples per class; (3) training samples must accurately 

represent the target class; and (4) to mitigate the Hughes phenomenon, the number of training 

samples must be proportionate to the dimensionality of the data. A variety of supervised 

classification algorithms has been used in agricultural applications, including maximum likelihood 

(El-Magd & Tanton 2003), k-nearest neighbour (Samaniego & Schulz 2009), neural network 

(Shao et al. 2010), decision tree (Aguilar et al. 2015), support vector machine (Lambert, Waldner 

& Defourny 2016; Peña et al. 2014; Zheng et al. 2015) and random forest (Belgiu & Csillik 2018; 

Crnojevic et al. 2014; Inglada et al. 2015; Schultz et al. 2015; Waldner et al. 2017). 

The random forest (RF) algorithm is a popular ensemble classifier. An ensemble classification 

algorithm uses multiple classifiers and aggregates the results (Liaw & Wiener 2002). In the case 

of RF, several decision trees are used in either a boosting or bagging approach for image 

classification or regression (Breiman 2001). Decision trees are generated using a subset of the 

training samples with replacement (bagging approach) (Belgiu & Drăgut 2016). A typical 

approach uses two thirds of the samples (in-bag samples) for training, with the remaining one third 

(out-of bag samples) being used in a cross validation technique to determine the algorithm’s 

performance (Belgiu & Drăgut 2016). RF contains two adjustable parameters, namely mtry and 

ntree. The mtry parameter determines the number of randomly sampled features used to split each 

node in the decision trees, while the ntree variable dictates the number of generated trees (Breiman 

2001). The advantages of RF include computational efficiency, robustness to high dimensional 

data and the ability to rank feature importance for classification. A weakness of the RF algorithm 

is the overfitting of results when encountering noisy datasets (Liaw & Wiener 2002). However, 

the RF classifier has been found to be less prone to overfitting compared to many other machine 

learning classifiers (Belgiu & Drăgut 2016).  
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The RF algorithm is one of the most commonly used algorithms in remote sensing applications 

and has become widely accepted as an efficient tool in cropland classification (Crnojevic et al. 

2014). Inglada et al. (2015) compared RF to support vector machine (SVM) for crop type mapping 

across 12 agricultural regions around the globe. A quantitative assessment found the RF classifier 

to outperform the SVM classifier in most cases. Schultz et al. (2015) used RF for crop type 

mapping, employing multi-temporal Landsat-8 imagery. They achieved an OA of 86%, 

demonstrating its effectiveness for this application. Waldner et al. (2017) showed the efficacy of 

the RF algorithm in generating a national scale cropland map of South Africa with an OA of 92%. 

Furthermore, the Gini index used by RF assists in determining feature importance for cropland 

mapping. Belgiu & Csillik (2018) compared RF to a time-weighted dynamic time warping 

(TWDTW) classification for crop type mapping. The RF algorithm was found to provide superior 

accuracies compared to TWDTW. However, when the number of training samples was reduced, 

TWDTW resulted in higher accuracies. This confirmed previous studies that showed that RF 

achieves lower accuracies with a reduced number of training samples (Valero et al. 2016). 

2.2.3.3 Knowledge-based classification 

Knowledge-based (rule-based) classification systems use expert knowledge to develop a sequence 

of rules that can differentiate between unique geographical features in an image. The rules are 

often ordered in a DT style structure similar to some machine learning classifiers; however, these 

DTs are developed by analysts and not by algorithms. A rule-based classification (expert) system 

typically consists of three components, namely the knowledge base, inference engine and a 

database. The knowledge base stores the set of rules as if-then statements, while the inference 

engine stores the protocols for the application of the rules. Finally, the database stores the raw or 

transformed datasets. The advantage of a rule-based classification system lies in its potential to be 

applied to multiple dates and regions.  

Lucas et al. (2007) followed a rule-based object-orientated approach to map habitat and 

agricultural land cover using multi-temporal Landsat-7 imagery. An overall accuracy of 85% 

confirmed the viability of this approach and the authors concluded that it could potentially be 

employed in an operational system. Thenkabail & Wu (2012) developed a rule-based automated 

cropland classification algorithm (ACCA) for Tajikistan by combining Landsat, MODIS and 

secondary data. The ACCA was applied for the year 2005 and 2010, with overall accuracies of 

99% and 96% respectively. The reported results demonstrated the ability of a rule-based ACCA 

to accurately produce a national cropland layer over multiple years. However, it must be noted that 

the ACCA is only applicable in the area (country/region) for which it was developed. The need to 
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modify rule-sets to suit different regions and landscapes is a potential disadvantage of a rule-based 

expert system.  

2.2.3.4 Classification accuracy metrics 

A commonly used method to assess the accuracy of image classification is the confusion matrix 

(error matrix). The rows in the confusion matrix represent instances of the actual class (reference 

class), whereas the columns represent instances of the predicted class or vice-versa. Four accuracy 

metrics, namely the overall accuracy (OA), producers accuracy (PA), users accuracy (UA) and 

Kappa index can be derived from the matrix (Congalton 1991). The Kappa index is a measure of 

agreement or accuracy and illustrates how a specific classification compares to how a random 

classification would have performed (Congalton 1991). In addition, the McNemar’s test can be 

employed to determine the statistical significance of the difference between two classification 

results. The test performs a two-by-two cross tabulation of dichotomous data in a non-parametric 

procedure (McNemar 1974). The chi-square statistic is calculated using the correctly and 

incorrectly classified samples as input and produces a P-value as output. The procedure has been 

used in multiple remote sensing studies to compare classifications (Duro, Franklin & Dube 2012; 

Yan et al. 2006). 

2.2.4 Object-based vs per-pixel image analysis 

Most image analysis techniques developed in the early years of RS dealt with the spectral analysis 

of individual pixels in an image (Addink, Van Coillie & De Jong 2012; Blaschke et al. 2014). This 

led to the development of well-established and effective methods for classifying remote sensing 

imagery (Blaschke et al. 2014). Per-pixel-based image analysis (PBIA) methods assign each 

individual pixel to an informational class based on its spectral properties. However, these methods 

do not take into account the contextual or spatial information of the neighbouring pixels (Weih & 

Riggan 2010). With the continued increase in spatial resolution of RS imagery, the number of 

pixels of the target geographical features have increased (Blaschke et al. 2014). Furthermore, due 

to the spectral variability within classes, the “salt-and-pepper” effect has become common in per-

pixel classifications. This phenomenon has a negative effect on classification accuracy (De Jong, 

Hornstra & Maas 2001). These limitations, along with the increased computing power available 

for image analysis, have led to the awareness that PBIA techniques are not optimal under certain 

conditions (Addink, Van Coillie & De Jong 2012), which in turn led to the development of OBIA.  

The intention of OBIA is to mimic the higher order logic employed by human interpreters to group 

features based on their shape, size, texture and spectral characteristics (Campbell & Wynne 2013). 
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Image objects were traditionally created through visual interpretation; however, more recently 

image segmentation has been widely adopted for this purpose (Castilla, Hay & Ruiz-Gallardo 

2008). With image segmentation, pixels are grouped into useable objects based on their spectral 

and contextual information. These objects then become the minimum mapping units in the 

classification step. Segmentation algorithms are commonly based on two properties of a pixel’s 

grey level values, namely similarity and discontinuity (Addink, Van Coillie & De Jong 2012). In 

the similarity approach, pixels are grouped based on the homogeneity between them, with methods 

such as region growing and thresholding being commonly applied. In contrast, the discontinuity 

approach partitions an image into non-overlapping objects based on the abrupt changes in pixel 

values. Objects hold advantages over pixels in their capacity to obtain a significantly larger number 

of spectral variables (mean, median, maximum, minimum and standard deviation, etc.) and spatial 

features (distances, neighbourhood and topologies, etc.) (Addink, Van Coillie & De Jong 2012; 

Blaschke 2010). Furthermore, the availability of topological information in object-based methods 

allow the integration of raster and vector data, providing a more GIS-like functionality in 

classification (Blaschke et al. 2014). However, the creation of meaningful objects that accurately 

represent features of interest is challenging as the parameters and thresholds used in segmentation 

need to be correctly tuned (Blaschke 2010). This highlighted the need for more research into 

automating the segmentation step in OBIA (Castilla, Hay & Ruiz-Gallardo 2008). 

Castillejo-González et al. (2009) demonstrated the superior performance of OBIA against PBIA 

for crop type mapping with Quickbird imagery. Similar findings were made by Yan et al. (2006), 

where the OBIA approach outperformed PBIA by 36.8%. However, contrary to most studies, 

Duro, Franklin & Dube (2012) reported no significant difference between OBIA and PBIA for 

classifying agricultural landscapes using a single SPOT-5 image. A more recent study by Belgiu 

& Csillik (2018) compared OBIA and PBIA in a multi-temporal approach for cropland mapping 

with Sentinel-2 imagery. The OBIA approach was found to produce more accurate results. 

Gilbertson, Kemp & Van Niekerk (2017) demonstrated the success with which OBIA can be used 

for crop classification using medium resolution Landsat-8 imagery. It was also reported that 

accurate segmentation is crucial for image classification, which highlights the unique ability of 

OBIA to deal with agricultural fields due to their relative homogeneity compared to other land 

cover types. 

2.3 BOUNDARY CONCEPTS 

Three important distinctions need to be made when undertaking RS studies of agricultural 

landscapes, namely cropland mapping, crop type mapping and field boundary delineation. 
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Cropland mapping studies the dynamics of agricultural land at regional/national scales and is 

commonly performed using low resolution (250 m – 1 km) imagery from sensors such as MODIS 

(Khan et al. 2010). Although these studies provide datasets covering large areas, they can only 

provide generalised statistics, are prone to error and do not offer field level information. 

Conversely, crop type mapping identifies different crop types and makes distinctions between 

them. This line of research has attracted much attention in recent years and generally employs 

medium resolution imagery such as 30 m (15 m pansharpened) Landsat data (Gilbertson & Van 

Niekerk 2017). The final distinction between agricultural RS studies concerns the identification 

and delineation of individual field boundaries regardless of the crops being grown. Therefore, even 

if two adjacent fields are planted with the same crop type, a boundary will be identified and 

delineated between them. Field boundary datasets are vital for agricultural monitoring systems that 

aid in precision agriculture and resource management. 

2.3.1 Defining boundaries 

The delineation of accurate agricultural field boundaries has become increasingly important, 

largely due to the role they play in key areas such as precision farming and agricultural economics 

(Butenuth, Straub & Heipke 2004; Yan & Roy 2014). However, there are many interpretations of 

“field boundaries” (Davidse 2015). Ji (1996) defines the term “field” as the basic unit used to 

represent a specific land-use feature, while “boundary” can be defined as the linear edge features 

that are characterised by abrupt changes to the grey level values in a particular direction. 

Williamson & Ting (2001) characterise the term “boundary” as the physical objects, imaginary 

line or surface that mark the limit of a parcel of land. A similar definition is used by Jing (2011), 

where a boundary is considered as the imaginary line denoting the borders of two adjacent portions 

of land. However, according to the Oxford Dictionary, the definitions of “field” and “boundary” 

are as follows: A “field” is “an open area of land, specifically with crops or pastures and commonly 

bounded by hedges or fences”. “Boundary” is defined as a “line which marks the limits of an area; 

a dividing line”. In an agricultural context, a “field” very specifically has an agricultural land-use, 

while a “boundary” relates to where a change in crop type occurs or where there is the presence of 

a natural/man-made disruption between adjacent fields, for example a hedge or wall (Alemu 2016; 

Rydberg & Borgefors 2001). An important distinction is, therefore that, even if clear disruptions 

are absent, adjacent crops of different types are considered separate production units. Using remote 

sensing techniques for separating such production units from one another can be challenging as 

many crops can have similar spectral and structural characteristics at certain stages of the growing 

season (Pittman et al. 2010).  
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2.3.2 Boundary accuracy metrics 

The increased availability of high spatial resolution imagery and computing power for image 

analysis has led to a growing interest in OBIA (Meyer & Van Niekerk 2015), but poor 

segmentation can adversely affect classifications (Baatz, Hoffmann & Willhauck 2008). Robust 

validation tools that can assess whether the results of a segmentation accurately represent the actual 

features of interest (such as field boundaries) or artefacts of the segmentation algorithm have been 

a research priority for many years (Möller, Lymburner & Volk 2007). Several measures have been 

proposed, but none are definitive (Clinton et al. 2010; Meyer & Van Niekerk 2015). The three 

most common aspects to consider in segmentation quality are over-segmentation (OS), under-

segmentation (US) and object boundary delineation. Consequently, one accuracy measure is not 

sufficient to provide accurate validations of segmentation algorithms (Weidner 2008).  

There are a variety of area-based accuracy metrics that have been proposed to calculate OS and 

US (Clinton et al. 2010; Weidner 2008). Möller, Lymburner & Volk (2007) proposed the relative 

area (RA) metric to calculate RAsub and RAsuper. Using topological relationships of containment 

and overlap, the over-segmentation (RAsub) and under-segmentation (RAsuper) could be 

evaluated to determine the effectiveness of a segmentation. Ortiz & Oliver (2006) developed the 

empirical discrepancy method and proposed a set of new performance measures. Three metrics 

were calculated by means of an overlapping area matrix that evaluates the degree of fragmentation 

for segmented objects: (1) percentage of correctly grouped pixels (CG); (2) percentage of under-

segmentation (US); and (3) percentage of over-segmentation (OS). However, area-based metrics 

do not take into account the positional accuracy of the delineated object boundaries. Esfahani 

(2014) adopted a confusion matrix approach for the assessment of delineated agricultural field 

boundaries. Accuracy elements such as OA, UA, PA and the Kappa index were computed using a 

sample of 500 random points generated along the field boundaries. The approach was reported to 

be successful in indicating the accuracy of their methodology. However, the measure only 

considers the boundaries along the reference fields and does not account for over-segmentation 

(i.e. boundaries within and outside fields). Zhan et al. (2005) proposed a distance-based metric to 

assess the positional accuracy of segmented objects. The Euclidean distance is calculated between 

the centroids of the extracted and reference objects. The mean and standard deviation were taken 

as measures of segmentation quality. Delves et al. (1992) proposed an edge metric to evaluate the 

positional accuracy of object boundaries. The edge matric calculates the average distance error 

from the reference objects to the nearest extracted objects. Although this metric provides a good 

indication of the object boundary delineation, it does not judge the goodness of fit between objects. 

Meyer & Van Niekerk (2015) assessed the use of both an area and edge metric to quantify the 
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accuracy of a segmentation algorithm to delineate objects. They concluded that using them in 

conjunction can account for the various facets in segmentation accuracy, whether it is boundary 

delineation or area overlap. 

2.4 REMOTE SENSING TECHNIQUES FOR AGRICULTURAL FIELD BOUNDARY 

DELINEATION 

With the advancement in the spatial and temporal resolution of satellite imaging systems, along 

with the increase in computer power, image segmentation has become a major field of interest in 

many applications because of its ability to reduce variability within classes. This has led to the 

development of numerous segmentation algorithms. The algorithms used in RS are commonly 

grouped into either point-based, edge-based, region-based or hybrid segmentation (Chen et al. 

2015). 

2.4.1 Point-based segmentation 

Point-based segmentation algorithms generally apply global thresholds to group pixels without 

consideration of the surrounding neighbourhood (Schiewe 2002). Histogram thresholding 

segmentation is one of the most commonly applied algorithms. It uses the shape of image 

histograms to differentiate between classes (Chen et al. 2015). A typical threshold segmentation 

procedure comprises three main steps: 1) identify histogram modes (peaks); 2) determine valleys 

between modes; and 3) calculate and apply the threshold that best separates the modes (Gonçalves, 

Gonçalves & Corte-Real 2011). Point-based techniques are quick and effective for segmenting 

images based on their histogram distribution (Carleer, Debeir & Wolff 2005). However, for the 

technique to be successful, it requires the informational classes to have evidently different spectral 

values. This is problematic when dealing with large remotely sensed imagery as informational 

classes often exhibit inter-class spectral similarity and intra-class heterogeneity, which deforms 

the histogram (Chen et al. 2015). Therefore, the application of point-based segmentation is 

commonly only applied to local object delineation or for informational classes that have very 

distinct spectral properties, such as water (Gonçalves, Gonçalves & Corte-Real 2011). 

2.4.2 Edge-based segmentation 

Edge-based segmentation algorithms are designed to detect and locate sharp discontinuities within 

an image (Maini & Aggarwal 2009). Discontinuities can be defined as pixels that represent a local 

change in image intensity (edges between objects) and are consequently used as candidate pixels 

for object boundaries (Yang, He & Caspersen 2017). Edge detection is an important part of the 

segmentation procedure as it filters out unnecessary information, thus conserving the structural 
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properties of features (Batra et al. 2016). Edge detection commonly involves three main steps, 

namely: 

1. filtering, to remove random variations in intensity (i.e. noise);   

2. enhancement, to emphasise pixels with a significant change in local intensity (commonly 

performed by computing the gradient magnitude); and 

3. detection, to determine the final edge points, frequently performed using a threshold value. 

Image filtering (step 1) is often challenging, as there is a trade-off between reducing noise and 

losing edge strength. There are a variety of edge detection algorithms that have been developed, 

from simple algorithms such as the Sobel, Scharr and Prewitt operators, to more complex 

techniques such as the Canny operator (Muthukrishnan & Radha 2011; Shrivakshan & 

Chandrasekar 2012). These operators are described in the following subsections. 

2.4.2.1 Sobel edge detection 

The Sobel operator uses a 3x3 pair of convolution kernels to compute the gradient magnitude in 

an image (Maini & Aggarwal 2009). The pixel weighting provides smoothing while also 

enhancing the edges in the original image (Batra et al. 2016). The edge masks are shown in Figure 

2-1. 

 
Figure 2-1   Horizontal and vertical edge masks used by the Sobel edge detection algorithm 

2.4.2.2 Canny edge detection 

The Canny edge detector was designed with the intention of outperforming various other edge 

detectors (Maini & Aggarwal 2009). The method proved to be highly successful in many studies. 

Consequently, the algorithm is commonly used as a benchmark against which newly developed 

edge detection algorithms is compared (Juneja & Sandhu 2009; Maini & Aggarwal 2009; 

Ramadevi et al. 2010; Sharma & Mahajan 2017; Shrivakshan & Chandrasekar 2012). Canny 

attempts to optimise the product of signal-to-noise ratio and localisation in an image by executing 

the following three steps: 

1. a Gaussian filter is employed to smooth the image and reduce unwanted noise; 

2. the gradient magnitude and orientation is computed using the Sobel operator; and 

3. non-maxima suppression is applied to the gradient magnitude, followed by a double 

threshold to determine the final edge pixels. 
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2.4.2.3 Scharr edge detection 

The Scharr edge detection algorithm was developed as an improvement on the Sobel operator 

(Sharma & Mahajan 2017). An improved derivative kernel was created for better rotational 

invariance, thereby improving the detection of object edges and reducing noise (Kroon 2009; 

Scharr 2007). The improved kernel consists of the horizontal and vertical edge masks in Figure 

2-2. 

 
Figure 2-2   Horizontal and vertical edge masks used by the Scharr edge detection algorithm 

These three algorithms can rapidly partition an image into edges and non-edges and are highly 

accurate for features with obvious edges. However, image features do not always have obvious 

edges/boundaries, which can lead to the creation of gaps along object borders. Furthermore, as 

both edges and noisy images contain high intensity content, edge detection algorithms are not very 

effective with noisy images (Maini & Aggarwal 2009). In addition, because most edge detectors 

are based on local contrasts they become particularly sensitive to noise, which often leads to the 

over-segmentation of real-world objects or detection of false edges (Chen et al. 2015). Although 

there are post-processing procedures (such as edge tracking and gap-filling) to correct some of 

these errors, they can be very time-consuming and add complexities to workflows (Fan et al. 2001).  

2.4.3 Region-based segmentation 

Region-based segmentation groups pixels with similar spectral or textural properties (Fan et al. 

2001). A major advantage of region-based methods is the formation of closed objects, although 

the positional accuracy of the object boundaries are often not as accurate as those created by edge-

based techniques (Zhou, Starkey & Mansinha 2004). Boundary errors often occur when the image 

objects stop growing before the actual feature boundary is reached (Chen et al. 2015). This is 

caused by feature boundaries’ formation of their own regions of homogeneity, which consequently 

leads to the creation of sliver polygons along the boundaries and causes the resulting object border 

to shift inwards (towards the centre of the feature). Two popular region-based methods are the 

multi-resolution segmentation (MRS), as described in Baatz & Schäpe (2000), and the watershed 

segmentation algorithm (WS) (Roerdink & Meijster 2000). 
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2.4.3.1 Multi-resolution segmentation 

MRS is a bottom-up region merging algorithm that can be applied to both the pixel and object 

domains (Blaschke 2010). The algorithm was developed to merge objects in a way that would 

minimise the average heterogeneity between objects, while maximising the homogeneity within 

objects (Benz et al. 2004). It employs a mutual best-fitting approach, starting with image objects 

of one pixel and iteratively merging them based on user-defined homogeneity parameters. The 

segmentation requires a scale factor and heterogeneity criterion – the average size of objects are 

controlled by the scale, whereas the heterogeneity criterion comprises two properties, namely 

colour and shape (Li et al. 2015). While colour refers to the spectral homogeneity, the shape 

considers geometric properties of the objects and is further sub-divided into smoothness and 

compactness (Baatz & Schäpe 2000). 

MRS has been applied in numerous studies for crop mapping. Vieira et al. (2012) employed it in 

an OBIA paradigm to map sugarcane using time series Landsat-5 imagery. The overall accuracy 

of 94% showed the potential of this approach. Peña et al. (2014) applied the MRS algorithm to 

multi-temporal ASTER data for classifying nine major summer crops in California, USA. The 

empirical discrepancy method (see Section 2.3.2) was used to quantify the performance of the 

segmentation. An accuracy of 94% was reported between the segmented and reference fields. Li 

et al. (2015) investigated the synergistic use of feature selection, OBIA and a decision tree 

classifier to map cropland using multi-temporal fused Landsat-MODIS data. The OBIA 

classification achieved good results with an OA of 91%. However, it was noted that errors in the 

segmentation of crop fields can cause uncertainties in the final classification. This highlights the 

importance of parameter selection in segmentation algorithms. The risks associated with 

inappropriate parameter selection in MRS has been echoed in many studies (Belgiu & Csillik 2018; 

Castillejo-González et al. 2009; Gilbertson, Kemp & Van Niekerk 2017; Peña-Barragán et al. 

2011). 

2.4.3.2 Watershed segmentation 

The WS algorithm, as described in Roerdink & Meijster (2000), is commonly applied to a gradient 

image. The objective of the algorithm is to extract high magnitude edges (watersheds) that divide 

regions of local minima (basins) (Salman 2006). Initial seed objects are created in regions of local 

minima. The seed objects are then expanded outwards with rising intensity levels. An object will 

cease to expand after coming into contact with a neighbouring object. Although many watershed 

algorithms have been devised, the application of WS to a gradient image is often suboptimal as 

the image is commonly over-segmented into a significantly large number of small objects (Bleau 

Stellenbosch University https://scholar.sun.ac.za



 
22 

& Leon 2000). Over-segmentation is largely caused by noise in gradient images. Common noise 

removal techniques, such as image smoothing, could potentially reduce noise, but this is often at 

the expense of loss in definition of actual boundary edges and is therefore not always a suitable 

solution (Gaetano et al. 2015). The marker-based WS method was developed as an improvement 

on the traditional algorithm (Gao et al. 2006). The segmentation is guided with markers drawn by 

the user, and all segments that border the marker will be merged, thereby reducing over-

segmentation (Gaetano et al. 2015). However, the manual selection of appropriate markers requires 

a priori knowledge, which is often considered to be the hardest task (Bleau & Leon 2000). Sun & 

He (2008) performed marker-based WS on high resolution Quickbird imagery. Although the 

algorithm worked well in a diverse landscape, they noted the need for automated and adaptive 

techniques for threshold determination should the technique be applied to large areas.  

A common post-segmentation technique, with a long history in image processing, is region 

merging (Castilla, Hay & Ruiz-Gallardo 2008). In WS, an elevation threshold can be used to merge 

segments (basins) if the height difference (from seed to saddle) is less than a specified threshold. 

While this global threshold technique is effective for dealing with the level of over- or under-

segmentation, it is limited in that the same value must be used for each segment, regardless of the 

homogeneity of its neighbouring objects (Yang, He & Caspersen 2017). Local thresholding 

methods have thus been developed in an attempt to adjust the threshold per object (Chen et al. 

2014; Johnson & Xie 2011). However, the implementation of local thresholding techniques can 

become quite complex and limits its applicability to an operational context (Yang, He & Caspersen 

2017). 

2.4.4 Hybrid segmentation approaches 

Hybrid segmentation approaches attempt to combine the advantages of edge-based (accurate 

boundary edges) and region-based (closed boundary objects) segmentation techniques (Rydberg 

& Borgefors 2001). A variety of hybrid approaches have been developed for various applications. 

Rydberg & Borgefors (2001) developed a hybrid segmentation method to delineate agricultural 

fields using multispectral SPOT (20 m) and Landsat (30 m) single-date imagery. Edge layers, 

extracted from a gradient edge detector, were aggregated using a weighted vector addition, 

followed by an unsupervised segmentation method based on the ISODATA algorithm. The 

relatively high accuracy of 87% was reportedly due to the ability of the method to combine 

information from multiple bands. Castilla, Hay & Ruiz-Gallardo (2008) devised a hybrid method 

for three different types of satellite data (Landsat-7, SPOT5 and Quickbird) in three agricultural 

regions. WS was carried out on a filtered gradient image to create initial segments, followed by 
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region merging using a specified minimum size criterion. They reported good segmentation quality 

based on a qualitative assessment; however, the algorithm required intuitive user parameters to 

dictate the size of output regions. A similar split-and-merge segmentation strategy using very high 

resolution (2.4 m) Quickbird images was considered by Wuest & Zhang (2009). The framework 

comprised three steps in which (i) the image is first split into a set of initial objects; (ii) the resulting 

objects are merged based on a merge importance criterion; and (iii) the final objects are refined 

using localised border measures. The strategy was able to successfully merge objects in rough land 

cover classes such as vegetation, forests and urban environments. However, the authors noted that 

parameter selection was vital and a more dynamic method should be developed. 

Li et al. (2010) employed the marker-based WS algorithm on multiple Quickbird images in 

suburban landscapes. Edge detection was performed using the edge detection with embedded 

confidence method (Meer 2001). Three commonly used edge detection steps, namely gradient 

estimation, non-maxima suppression and hysteresis thresholding were used; however, an 

independent confidence measure was employed in the gradient estimation and thresholding steps 

to assist the detection of weak edges and increase the positional accuracy of object boundaries. 

The authors reported an accuracy of 78% and observed little over-segmentation. A similar hybrid 

approach by Gaetano et al. (2015) applied a marker-based WS to IKONOS (1 m) panchromatic 

and multispectral imagery for segmenting different land cover types. This study automated the 

generation of markers for use in the WS algorithm. It was compared with a standard MRS 

segmentation and showed a higher segmentation accuracy in terms of over- and under-

segmentation.  

Alemu (2016) also used a hybrid approach by implementing a line segment detection (LSD) 

algorithm to extract linear features from high resolution (2 m) Worldview-2 imagery for crop field 

identification. The gradient information from all bands was aggregated by taking the vector sum 

of the changes in the x and y directions for all bands. A region growing technique was performed 

on the aggregated image to form line-support regions (potential candidates for segmentation). The 

validation of results used two metrics based on the distance and orientation of boundaries, namely 

ratio of false detection and ratio of missing detections.  High accuracies were obtained; however, 

these could be attributed to the over detection of boundaries (false positives) as the algorithm did 

not distinguish between field boundaries and other edges (e.g. tree edges). Furthermore, the 

method had difficulty in delineating many field boundaries, which was attributed to weak contrast 

between fields within a heterogeneous landscape. Yang, He & Caspersen (2017) attempted to 

develop a hybrid region merging method using local spectral angle thresholds with Landsat-5 

imagery in a large agricultural area. Initial segments were created using the watershed 
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transformation. A region adjacency graph (RAG) was then applied to determine neighbouring 

objects, which was followed by a spectral difference calculation between adjacent objects. 

Segments were merged if their spectral difference was below the local heterogeneity threshold 

specified. The method provided more accurate segmentation results than when a global threshold 

was applied. However, the calculation of the local threshold required manual selection of input 

parameters, which limits the value of the technique for operational implementations. 

2.5 LITERATURE SUMMARY 

This chapter provided an overview of the literature relating to crop field boundary delineation.  A 

summary was given of the three main activities in agricultural RS studies, namely (1) cropland 

mapping, which was identified as a method that provides an estimation of land used for agricultural 

purposes; (2) crop type mapping, which distinguishes between different crop types; and (3) field 

boundary delineation, which identifies and delineates individual fields regardless of the crop type 

being grown within or adjacent to a cultivated field. Accurate and up-to-date agricultural field 

boundaries are critical in agricultural monitoring systems as agricultural statistics are commonly 

calculated per-field. These monitoring systems are used for the implementation of precision 

agriculture, food security evaluations and resource planning. 

According to literature, a hybrid segmentation approach works best for delineating agricultural 

field boundaries as it combines the advantages of edge- and region-based methods. However, as 

with edge- and region-based methods, the automation of segmentation parameters is still a difficult 

task and needs further investigation. Although the tuning of segmentation parameters can be 

difficult, the advantages of OBIA over per-pixel analysis are compelling. This includes the 

reduction in noise (e.g. “salt-and-pepper effect”), generation of closed field boundaries, and a 

general improvement in cropland classification accuracies. Regarding segmentation accuracy: a 

wide range of evaluation techniques have been proposed, but it has been noted that no single 

measure can fully assess a segmentation output in terms of over-segmentation, under-segmentation 

and boundary accuracy. Therefore, different measures have to be considered to get a true sense of 

segmentation output quality. It is clear from the literature that different crop types can have similar 

spectral and structural properties at certain stages of growth. Determining the edges of fields using 

single-date imagery can thus become challenging. Therefore, it is essential to use imagery from 

multiple dates in a growing season to detect the spatial transition (edges) between crops of different 

types as well as crops of the same type. 

The next chapter (Chapter 3) evaluates several combinations of edge detection and segmentation 

techniques for delineating crop field boundaries in a large irrigation scheme. The main purpose of 
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the chapter is to determine which combinations of techniques produce the most accurate field 

boundaries when multi-temporal Sentinel-2 imagery is used as the data source. This leads directly 

to Chapter 4, which describes the implementation of the best combination of techniques (identified 

in Chapter 3) across five different agricultural landscapes to determine the robustness and 

flexibility of the proposed technique. Chapters 3 and 4 are structured as research articles (at the 

time of writing, Chapter 3 has been published and Chapter 4 has been submitted for review). 

Consequently, some degree of overlap (duplication) between these two chapters can be expected. 

Chapter 5 provides a synthesis of the research. Some conclusions are also drawn and 

recommendations for operational implementation are made. 
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CHAPTER 3:  A COMPARISON OF OBJECT-BASED IMAGE 

ANALYSIS APPROACHES FOR FIELD BOUNDARY DELINEATION 

USING SENTINEL-2 IMAGERY * 

3.1 ABSTRACT 

In this study we evaluated several Earth observation methodologies for automatically delineating 

crop field boundaries from multi-temporal Sentinel-2 imagery. The methodology makes use of 

edge detection that is applied to multiple images acquired during a growing season and image 

segmentation to delimit agricultural fields, orchards and vineyards. Two edge detection operators 

(Canny and Scharr) and three image segmentation algorithms (watershed, multi-threshold and 

multi-resolution) were combined and evaluated, resulting in six experiments (scenarios). A rule-

based (knowledge-based) classification was applied to the extracted image objects to discard 

uncultivated areas. Reference field boundaries, manually digitised from very high (10 cm) 

resolution aerial imagery, were used for quantitative accuracy assessments and qualitative 

comparisons. The quantitative accuracy assessment consisted of both area- and edge-based 

metrics. The results showed that the watershed segmentation, combined with Canny edge 

detection, produced the most accurate field boundaries with an OA of 92.9% and combined MAE 

of 24.5 m. The Scharr algorithm produced thicker edges, causing positional errors along the 

boundaries. The multi-resolution and multi-threshold segmentation algorithms produced boundary 

inaccuracies ranging from 1 to 3 pixels, largely due to the creation of thick boundary objects, 

which caused offsets of the extracted borders on both sides of the reference boundaries. The 

combination of Canny edge detection (performed on multiple Sentinel-2 images acquired during 

the growing season) and watershed segmentation is thus recommended for operational field 

boundary delineation. 

3.2 INTRODUCTION 

The spatial extent and location of agricultural fields is critical for the implementation of precision 

agriculture, crop yield estimations, food security assessments and resource planning (Alemu 2016; 

Johnson 2013; Yan & Roy 2014). Agricultural statistics are commonly calculated per-field, and 

results are negatively affected by inaccurate or outdated field boundaries (Rydberg & Borgefors 

2001; Turker & Kok 2013). Classifying crops using a per-field (object-based) approach is known 

 

* This chapter was published in Computers and Electronics in Agriculture and consequently conforms to the structure 

of the prescribed journal. 
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to produce better results than a per-pixel method (Blaschke et al. 2014; Peña et al. 2014; Schultz 

et al. 2015). However despite the advantages of such object-based methods, robust techniques to 

automatically delineate agricultural field boundaries remain elusive (Belgiu & Csillik 2018). 

A number of remote sensing approaches for determining cropland extent have been explored. 

Many of these approaches are applied at regional or global scale, using low to medium resolution 

satellite imagery (Lunetta et al. 2010; Wardlow, Egbert & Kastens 2007). Pittman et al. (2010) 

showed the benefits of using multi-temporal MODIS (250 m spatial resolution) imagery for 

generating a global cropland probability layer. Roumenina et al. (2015) assessed the crop mapping 

performance of multi-temporal PROBA-V (100 m spatial resolution) against PROBA-V (300 m 

spatial resolution) imagery in a test site in Bulgaria. Their findings demonstrated an increase in 

crop mapping accuracy (by 5.8% to 14.8%) when the higher (100 m) spatial resolution imagery 

was used. Gilbertson, Kemp & Van Niekerk (2017) showed that pansharpening Landsat-8 imagery 

from 30 m to 15 m spatial resolution improved crop type classification accuracies by up to 15%, 

but noted that the use of multi-temporal imagery is critical for achieving good results. From these 

studies it would seem that both high spatial and high temporal resolution imagery is required for 

accurate field boundary delineation (Alemu 2016; Mueller, Segl & Kaufmann 2004).  

The Copernicus programme is an Earth observation initiative that will provide unprecedented 

levels of observational capabilities, mainly through the operations of recently launched satellites 

(called Sentinels). The Sentinel-2 satellite constellation provides a significant increase in 

observational capacity compared to other satellites such as Landsat, thanks to its large number (13) 

of spectral bands, high (10 m – 60 m) spatial resolutions and short (five-day) revisit times 

(Lebourgeois et al. 2017). This data allows for more timely estimates of crop area extents, crop 

types and crop conditions, which are all major indicators of a region’s agricultural activity 

(Bontemps et al. 2015). Although the resolution of Sentinel-2 images is not as high as many 

commercial very high resolution (VHR) satellites (e.g. WorldView 2 – 4), its short revisit periods, 

wide spectral range (including narrow red edge bands) and free access hold much potential for 

operational (automated) field boundary delineation.  

Field boundary delineation using remotely sensed imagery can generally be categorised into edge-

based and region-based techniques (Rydberg & Borgefors 1999; Turker & Kok 2013; Wuest & 

Zhang 2009). Edge-based methods focus on detecting the edges (discontinuities between pixel 

values) in images that are used as candidate pixels for region boundaries. There are a range of edge 

detectors; from simple algorithms such as the Sobel or Scharr operators, to more complex 

techniques such as the Canny operator (Shrivakshan & Chandrasekar 2012). These algorithms 
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rapidly partition images into edges and non-edges. However, boundaries between objects are not 

always well defined, which can lead to gaps in the boundaries. Furthermore, most edge detectors 

are sensitive to noise as they often exploit local contrasts, which may lead to errors such as false 

edges (Chen et al. 2015). These errors require post-processing procedures such as gap-filling, edge 

tracking and smoothing in order to create well defined boundaries (Fan et al. 2001). Rydberg & 

Borgefors (1999) presented a multispectral edge detection method to delineate agricultural fields 

using single-date Landsat (30 m) imagery. A gradient edge detector was used to generate the edge 

magnitude and direction. Weighted addition, based on the edge direction, was applied to enhance 

edges and reduce noise. The resulting edge image was thinned using edge direction and magnitude, 

followed by hysteresis thresholding to produce the field boundaries. A qualitative assessment 

showed accurate field boundary delineation, but the method did not produce closed boundaries. 

Turker & Kok (2013) devised a method for detecting sub-boundaries by employing Canny edge 

detection on single-date SPOT4 (20 m) and SPOT5 (10 m) multispectral imagery covering an 

agricultural area in Turkey. Line segments were created from edge chains, followed by the 

elimination of spurious line segments through a geometrical simplification process. Lastly, 

perceptual grouping of the line segments was performed using Gestalt laws. The study reported 

matching percentages between the reference data and extracted segments of 82.6% and 76.2% for 

the SPOT5 and SPOT4 images respectively.  

In contrast to edge-based methods that exploit variations in the image, region-based methods group 

pixels into objects based on some homogeneity criterion (Alemu 2016; Mueller, Segl & Kaufmann 

2004). Multi-resolution segmentation (MRS), as detailed in Baatz & Schäpe (2000), is a popular 

region-based segmentation algorithm used for field boundary delineation. MRS begins with a set 

of seed pixels that are iteratively merged according to some heterogeneity/homogeneity criterion 

(Schultz et al. 2015). Belgiu & Csillik (2018) performed MRS on multi-temporal Sentinel-2 

imagery for cropland mapping. Segmentation of crop fields proved difficult as fields with high 

internal variation were found to be over-segmented, while small adjacent fields were under-

segmented. Watershed segmentation (WS), another popular region-based segmentation algorithm, 

is applied to a single gradient image with the objective of finding regions of high intensity 

(watersheds) that divide regions of local minima (basins) (Salman 2006). Butenuth, Straub & 

Heipke (2004) employed the WS algorithm to delineate agricultural fields from aerial imagery. 

GIS knowledge of existing field boundaries were used to support the segmentation. The results 

displayed the potential of the technique to delineate agricultural fields. Multi-threshold 

segmentation (MTS) is another simple and effective segmentation algorithm that can quickly 

partition an image based on the image histogram (Carleer, Debeir & Wolff 2005). A disadvantage 
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of region-based algorithms is that errors often occur along field boundaries when objects stop 

growing before the actual boundary is reached (Chen et al. 2015). Field boundaries consequently 

form a separate region of homogeneity, which can lead to the creation of sliver polygons along 

field edges. In effect, this causes the extracted field boundary to shift inwards (towards the centre 

of the field). 

A hybrid approach, that integrates both edge-based and region-based methods has been proposed 

to exploit the advantages of each (Rydberg & Borgefors 2001). For instance, Mueller, Segl & 

Kaufmann (2004) demonstrated the value of object-based image analysis (OBIA) for extracting 

agricultural fields from very high resolution single-date panchromatic imagery. Edge detection 

was performed at different spatial resolutions (4.5 m, 5.8 m and 1 m) to detect pertinent edges. 

This was followed by an edge-guided smoothing and region growing segmentation to produce 

field boundaries. Similarly, Rydberg & Borgefors (2001) segmented single-date high resolution 

(20 m SPOT4 and 30 m Landsat-7) multispectral images to delineate agricultural field boundaries. 

A gradient edge detector was utilised to extract edge images from each band, which were then 

aggregated using weighted vector addition. The resulting edge image was combined with a 

segmentation algorithm based on an ISODATA algorithm. The high (87%) overall accuracy (OA) 

achieved was attributed to the method’s ability to exploit edges from several bands. Li et al. (2010) 

also followed a hybrid approach by employing the WS algorithm on multiple Quickbird images. 

Edge detection with an embedded confidence measure was first performed to amplify weak edges. 

This was followed by a marker-based watershed algorithm to delineate the object boundaries. The 

procedure was reported to provide satisfactory results with little over-segmentation and a boundary 

accuracy of approximately 78%. In another hybrid approach, Alemu (2016) made use of a line 

segment detection algorithm to extract linear features on very high resolution (2 m) Worldview-2 

imagery. Changes in the x and y directions of each band were combined using a vector sum. A 

line-support region representing potential candidates for a segment was formed using a region 

growing technique. Two metrics based on the distance and orientation of boundaries, namely ratio 

of missing detections (RM) and ratio of false detections (RFD), were used to validate the results. 

The results obtained for RM and RFD were 0.78 and 0.73 respectively (where values closer to one 

represent higher accuracies). However, the accuracy measures did not distinguish between field 

boundary edges and other edges (e.g. edges formed by tree shadows), thus leading to the false 

detection of edges and overestimation of RM and RFD values. Upon visual inspection of the 

results, the developed methodology tended to omit many field boundaries, which was attributed to 

the heterogeneous landscape and weak contrast between neighbouring fields.  
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One common limitation of the field boundary delineation methods mentioned above is the use of 

single-date imagery. Finding the edge of a field is challenging when different crop types have 

similar spectral and structural properties at certain stages of their phenological growth cycle 

(Esfahani 2014; Pittman et al. 2010). This is compounded when a single crop is grown on adjacent 

fields. Therefore, it is necessary to use multiple images throughout the growing season to 

accurately detect spatial transitions (edges) between different crop types as well as crops of the 

same type (Inglada et al. 2015). Sentinel-2 imagery (Drusch et al. 2012), available at 10 m spatial 

resolution and at unprecedentedly short intervals (five-day revisit time), has opened up new 

possibilities for operational (automated) crop field boundary delineation using Earth observation 

methods.  

The primary aim of this study is to compare and evaluate several OBIA techniques for 

automatically delineating agricultural field boundaries from multi-temporal Sentinel-2 imagery. 

Two edge detection and three image segmentation algorithms are configured in different 

combinations to construct six experiments. The results of the experiments are compared and 

assessed against reference field boundaries in Vaalharts, the largest irrigation scheme of South 

Africa. The results of the experiments are interpreted in the context of finding an operational 

methodology for identifying agricultural field boundaries in complex and dynamic irrigation 

schemes.  

3.3 METHODS 

3.3.1 Study area 

The Vaalharts irrigation scheme (Figure 3-1) is located at the border of the Northern Cape, North 

West and Free State provinces of South Africa, near the towns of Warrenton and Hartswater. The 

area is approximately 369.5 square kilometres in size and has a semi-arid climate with cold, dry 

winters and long warm summers (Maisela 2007). The annual rainfall is approximately 450 mm, 

with around 89% of precipitation falling during summer (October–April), peaking from January 

to April (Maisela 2007). The main crops grown in the area are maize, barley, groundnuts, pecan 

nuts and lucerne. Wheat, barley and lucerne are grown during the dry winter months. 
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Figure 3-1   Extent and location of the study area within South Africa 

3.3.2 Image collection 

In this study, focus was placed on the summer growing season when the diversity of crops is at its 

greatest. Seven cloud-free Sentinel-2 images were acquired for the months of November 2016 to 

April 2017. The Sentinel-2 satellite constellation offers spatial resolutions of 10 m, 20 m and 60 

m across 12 bands with a revisit time of five days (Table 3-1). The Sentinel-2 imagery was acquired 

in Level-1C format, which is radiometrically and geometrically corrected to top of atmosphere 

(TOA) reflectance.  
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Table 3-1   Sentinel-2 satellites characteristics including band names, wavelength and spatial resolution 

Sentinel-2 bands Central wavelength (µm) Resolution (m) 

Band 1 – Coastal aerosol 0.443 60 

Band 2 – Blue 0.490 10 

Band 3 – Green 0.560 10 

Band 4 – Red 0.665 10 

Band 5 – Vegetation red edge 0.705 20 

Band 6 – Vegetation red edge 0.740 20 

Band 7 – Vegetation red edge 0.783 20 

Band 8 – Near-infrared (NIR) 0.842 10 

Band 8A – Vegetation red edge 0.865 20 

Band 9 – Water vapour 0.945 60 

Band 10 – SWIR – cirrus 1.375 60 

Band 11 – SWIR 1.610 20 

Band 12 – SWIR 2.190 20 

3.3.3 Experimental overview 

The OBIA experiments evaluated in this study consisted of five main processing steps: 

1. Edge detection, performed on all individual images; 

2. Aggregation of edge layers generated in Step 1; 

3. Image segmentation, carried out on the aggregated edge image produced in Step 2; 

4. Discarding of uncultivated image objects; and 

5. Removal of noise. 

The following subsections expand on each of these steps. 

3.3.3.1 Step 1: Edge detection 

Two edge detection algorithms were considered in Step 1, namely the Scharr and Canny operators 

(Table 3-2). An edge in an image can be defined as a sharp change or discontinuity in the grey 

level values (Christe, Vignesh & Kandaswamy 2011; Ramadevi et al. 2010; Rydberg & Borgefors 

2001; Shrivakshan & Chandrasekar 2012). Edge detection is a very common operation performed 

in image analysis, and many algorithms have been developed for detecting and enhancing edges 

(Christe, Vignesh & Kandaswamy 2011). Examples include Sobel, Prewitt, Robert, Scharr and 

Canny. The edge detection algorithm generates an edge layer, which can be described as a grey 

Stellenbosch University https://scholar.sun.ac.za



 
33 

level image representing object edges. High grey level values indicate a sharp discontinuity with 

the adjacent pixels. The Canny and Scharr operators were used in this study due to their superior 

performance in comparison to other edge detection algorithms (Batra et al. 2016; Muthukrishnan 

& Radha 2011; Sharma & Mahajan 2017). 

Table 3-2   Description of the different algorithm scenarios 

Scenario Edge detection algorithm Segmentation method 

MTS_C Canny MTS 

MTS_S Scharr MTS 

MRS_C Canny MRS 

MRS_S Scharr MRS 

WS_C Canny WS 

WS_S Scharr WS 

Canny edge detection 

The Canny edge detector is generally considered to provide better results than other edge detectors 

and is often used as a benchmark against which other edge operators are compared (Canny 1986). 

The Canny operator involves a multistage process that can be summarized as follows: the image 

is first smoothed with a Gaussian filter, followed by gradient computation, non-maxima 

suppression and hysteresis thresholding (Juneja & Sandhu 2009). The Trimble eCognition 

Developer (version 9) implementation of the Canny algorithm was used in this study. 

Scharr edge detection 

The Scharr operator was developed to alleviate the rotational invariance inherent in operators such 

as Sobel and Prewitt (Kroon 2009; Scharr 2007). This is achieved by using differently weighted 

horizontal and vertical edge masks, as shown in Figure 3-2. These edge masks help to suppress 

noise that is inherent in the Sobel operator (Christe, Vignesh & Kandaswamy 2011). 

 

 

Figure 3-2   Horizontal and vertical Scharr edge masks 

The Scharr edge detection algorithm was implemented in Python using the Scikit image library 

(version 0.13.1). The algorithm requires no input parameters, apart from the input image. 
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The Canny and Scharr algorithms were applied on all seven cloud-free Sentinel-2 images collected 

from November 2016 to April 2017. The red, blue, green and NIR bands were used as input to the 

edge detection algorithms due to their relatively high (10 m) spatial resolution. This resulted in 

four 10 m resolution edge layers per image per operator. 

3.3.3.2 Step 2: Edge layer aggregation 

Step 2 of the workflow involved the aggregation of the 28 (4 bands x 7 acquisition dates) multi-

temporal edge layers generated by each edge operator. A simple equal weight summation of the 

edge layers was used to combine the images into one composite, multi-temporal edge image per 

operator. 

3.3.3.3 Step 3: Image segmentation 

In the image segmentation step (Step 3), the aggregated edge images (one for Canny and one for 

the Scharr operator) were used as input to three selected image segmentation algorithms, namely 

MRS, WS and MTS. The MRS and WS algorithms were chosen due to their frequent use in 

agricultural applications (Butenuth, Straub & Heipke 2004; Conrad et al. 2010; Lebourgeois et al. 

2017; Li et al. 2010; Peña et al. 2014; Schultz et al. 2015). The MTS algorithm was selected as it 

is an effective technique to rapidly segment images based on the distribution of the input image’s 

histogram (Carleer, Debeir & Wolff 2005).  

Watershed segmentation 

WS is a region-based algorithm that is applied to a single gradient image (Li et al. 2010). The 

objective of the algorithm is to find the high gradient magnitudes (watersheds) that divide regions 

of local minima (basins) (Salman 2006). The algorithm uses local minima as seed points and 

expands objects outward with rising intensity levels. Objects cease to expand after they reach the 

borders of another object. The WS algorithm is prone to over -segmentation and often produces a 

large number of small objects, thereby making it necessary to perform some form of region 

merging during or after the execution (Bleau & Leon 2000). 

The WS algorithm, as implemented in Trimble eCognition Developer 9, has four parameters for 

region merging, namely area, height, depth and volume. The height parameter is used to control 

when adjacent objects should be merged (i.e. when an object’s maximum pixel value is below the 

specified height threshold). Given that the ultimate aim is to develop an automated system for field 

boundary delineation, Jenks’ (Jenks 1967) natural breaks (JNB) algorithm, as implemented in 

ArcMap (version 10.4.1), was used to automatically find a suitable threshold. The JNB algorithm 

minimises intra-class variance while maximising inter-class variance. The algorithm was used to 
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sequentially group the pixel values into two, three, four and five classes to find the most suitable 

thresholds. Through experimentation it was determined that grouping pixels into three classes and 

using the threshold separating the first and second class produced the best merging threshold for 

the WS algorithm. The final threshold values were 0.1214 and 0.0812 for the Canny and Scharr 

edge layers respectively. 

Multi-resolution segmentation 

MRS, as implemented in Trimble eCognition Developer 9, is a region-based procedure that 

maximises the homogeneity within objects while minimising the average heterogeneity between 

objects (Baatz & Schäpe 2000). The MRS procedure follows a mutual best-fitting approach by 

starting with image objects of one pixel and repeatedly merging them based on a user-defined 

homogeneity criterion. MRS parameters were chosen using a trial and error approach where 

individual parameters were systematically increased and the resulting segmentations evaluated 

against reference field boundaries (see Section 3.3.4). The parameters that produced the most 

meaningful (slightly over-segmented) segmentation results were 60 (scale), 0.8 (compactness) and 

0.5 (shape). 

Multi-threshold segmentation 

MTS classifies an image into subsets based on pre-defined threshold values (Trimble 2016). For 

example, a single threshold will group the image pixels into two classes. The first class contains 

pixels with values below the defined threshold, while the second class contains pixels with values 

above the threshold. MTS was used in this study to group pixels into two classes, namely edge and 

not-edge. The edge pixels were then discarded, leaving only homogenous areas (objects) such as 

fields. The threshold values for the Canny and Scharr edge layers were identical to the WS 

thresholds (0.1214 and 0.0812 respectively).  

3.3.3.4 Step 4: Uncultivated area exclusion 

Expert rules were used in Step 4 to automatically discard uncultivated areas from further 

consideration. The rule-set was designed to be reproducible and fully automatic. Normalised 

difference vegetation index (NDVI) time series have been shown to correlate strongly with the 

phenology of crops during the growing season (Huete 1988; Maselli & Rembold 2001; Zheng et 

al. 2015). Four NDVI-based features, namely maximum, minimum, range and standard deviation 

were consequently extracted per-pixel from the seven Sentinel-2 images considered. These 

features were used as input to a classification and regression tree (CART) algorithm to generate a 

decision tree for separating (classifying) cultivated and uncultivated objects. Manually selected 

Stellenbosch University https://scholar.sun.ac.za



 
36 

sample points were used to train the CART algorithm. The resulting rule-set was implemented in 

Trimble eCognition Developer (version 9) software and used in all experiments. An additional 

threshold-based rule was added to the MRS workflow to remove sliver polygons (i.e. high 

magnitude edges) along the field boundaries that were erroneously classified by the decision tree 

as crop fields. The rule makes use of the Scharr and Canny edge layers to identify and discard 

objects (segments) with high edge values. The threshold values for the Scharr (0.0812) and Canny 

(0.1214) edge layers that were determined using the JNB algorithm and applied to the WS and 

MTS implementations were used for this purpose. 

3.3.3.5 Step 5: Noise removal 

Although OBIA approaches are not prone to the so-called “salt-and-pepper” effect of per-pixel 

classifications, noisy imagery can cause the formation of small (< 40 pixels) objects during 

segmentation. In this study, some small objects related to infrastructure (e.g. pivot irrigation) or 

small areas affected by soil conditions (e.g. salt accumulation and waterlogging) were present in 

some of the fields. A simple rule to identify and discard small objects that were completely 

surrounded by cultivated areas was used in the final step (Step 4) of the workflow to remove such 

anomalies. 

3.3.4 Accuracy assessment 

A reference field boundary dataset, consisting of 400 fields, was manually digitised from very high 

resolution (10 cm) aerial imagery acquired in February and March 2016. Given that the aerial 

imagery was captured a year prior to the Sentinel-2 imagery used in the experiments, the digitised 

field boundaries were overlaid onto red, green and blue composites of the Sentinel-2 images 

acquired in the 2016-2017 growing season to remove inconsistent reference boundaries (i.e. 

boundaries that changed between March 2016 and the 2016-2017 growing season were discarded 

from the reference field boundary dataset). 

Despite the popularity of image segmentation algorithms, effective and efficient methods to 

evaluate the ability of a segmentation algorithm to accurately delineate boundaries of the objects 

of interest remain elusive (Clinton et al. 2010; Meyer & Van Niekerk 2015). Over-segmentation 

(OS), under-segmentation (US) and boundary offset are the most common causes of poor or 

inappropriate image segmentations, and no single accuracy measure can sufficiently quantify all 

of these errors in combination (Weidner 2008). OS and US is commonly measured using 

topological (area) relationships, while boundary offsets are calculated using geometrical (edge) 

metrics (Zhan et al. 2005). Several area-based metrics have been proposed to calculate OS and US 
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(Clinton et al. 2010; Möller, Lymburner & Volk 2007; Weidner 2008), but these measures do not 

take the accuracy of delineated boundaries into account. A common edge metric, such as proposed 

by Delves et al. (1992), calculates the average distance error between reference and extracted 

object boundaries and has proven to be successful in determining the accuracy of segmented 

boundaries (Meyer & Van Niekerk 2015). A similar edge metric, namely the mean absolute error 

(MAE) distance metric, was implemented in this study. 

MAE considers the Euclidean distance (ED) between the centres of two cells representing the 

reference and extracted boundary respectively (Figure 3-3). Two different instances of MAE were 

calculated to evaluate how closely the extracted field boundaries matched those in the reference 

database. MAEi measures the distance from each reference boundary cell to the nearest extracted 

boundary cell, which provides an indication of how close in geographical space the extracted 

boundaries are to the actual boundary. Conversely, MAEj measures the distance from each 

extracted boundary cell to the nearest reference boundary cells and is an indicator of boundaries 

within a field (caused by OS). The formulae to calculate both instances of MAE are defined as: 

MAEi = 
∑ 𝐸𝐷𝑖

𝑁
          Equation 3.1 

where EDi refers to the ED measured from the centre of the reference cell to the centre of the 

extracted cell, while N is the total number of boundary cells in the reference dataset. 

MAEj = 
∑ 𝐸𝐷𝑗

𝑁
          Equation 3.2 

where EDj refers to the ED measured from the centre of the extracted cell to the centre of the 

reference cell. MAEi and MAEj were summed to get a sense of overall agreement between the 

reference boundaries and those that were extracted, with low values indicating a high agreement. 

MAE = MAEi + MAEj         Equation 3.3 

The blue arrows in Figure 3-3b illustrate the increased distance calculated from the extracted field 

boundaries to the reference boundaries when OS occurs.  
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Figure 3-3   Conceptual illustration of ED calculations, where a) MAEi is depicting the accuracy along the boundary 

and b) MAEj represents the level of OS. 

A confusion matrix was used to calculate several area-based metrics. The matrix consisted of 10 

000 samples, with 5000 “boundary” samples selected randomly within 10 m of the reference 

boundaries and another 5000 “not-boundary” samples randomly selected more than 10 m away 

from the reference boundaries. The accuracy metrics obtained from the confusion matrix included 

the overall accuracy (OA), Kappa index (K), commission error (CE) and omission error (OE). The 

OE provides an indication of extracted boundaries accuracy along the reference field boundaries, 

where a high error suggests that the segmentation did not delineate the field boundaries well. CE 

gives an indication of false boundaries within a field, often caused by OS within the fields. 

Additionally, the McNemar’s test was used to test for statistical significance, with p-values of 0.05 

(or lower) taken as being significant. 

3.4 RESULTS 

The results in Table 3-3 show that the combination of WS and the Canny edge detection algorithm 

(experiment WS_C) produce the best OA (92.9%). This OA is, however, not significantly higher 

than the OA (92.7%) when the Scharr algorithm was combined with WS (i.e. experiment WS_S). 

In contrast, the OAs of these two experiments (WS_C and WS_S) are significantly higher (p = 

0.0001) than the third best combination of algorithms, namely experiment MRS_C (80.5%). The 

lowest OA (70.3%) for any experiment was recorded for the MRS and Scharr combinations 

(MRS_S). Although the OA of MTS_S (71.9%) is only 1.6% higher than MRS_S, the McNemar’s 

test show a significant difference (p = 0.0001) between these two results. When the OEs are 

considered, the two WS experiments (WS_C and WS_S) performed on par with one another, with 

OEs ranging from 10.1% to 12.8%. In contrast, the OEs for the MTS and MRS experiments are 

significantly higher than the WS-based techniques and range from 35.6% to 54.9%. This clearly 

demonstrates that the WS-based techniques identify field boundaries much more accurately than 

the experiments involving MRS and MTS. Regarding CE, the WS_S experiment produced the 

lowest error (1.8%), and the highest CE was recorded by MTS_C (8.5%). The consistent superior 

a

a 

b 
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performance of the WS-based experiments is underscored by the significantly (p < 0.0001) higher 

mean OA of 92.8%, compared to the mean OAs of 73.4% and 75.4% of the MTS and MRS 

respectively. 

Table 3-3   Area- and edge-based metric results for the six experiments 

 Area-based metrics Edge-based metrics 

Experiment name OA % OE % CE % K 
Mean OA 

% 
MAEi 
(m) 

MAEj 
(m) 

Combined 
MAE 

Mean 
combined 

MAE 

MTS_C 74.8 41.9 8.5 0.5 

73.4 

15.2 28.3 33.5 

35.5 

MTS_S 71.9 51.9 4.3 0.44 17.9 19.5 37.4 

MRS_C 80.5 35.6 3.5 0.61 

75.4 

15.1 19.2 34.3 

40.1 

MRS_S 70.3 54.9 4.4 0.41 22.9 22.9 45.8 

WS_C 92.9 10.1 4.1 0.86 

92.8 

7.6 16.9 24.5 

26.1 

WS_S 92.7 12.8 1.8 0.9 16.5 11.3 27.8 

In contrast to the area-based metrics that show the WS_S and WS_C experiments to be on par with 

each other, the edge-based metrics reveal that the field boundaries of the WS_C experiments match 

the reference boundaries more closely than those of the WS_S experiment. Specifically, the MAEi 

of the WS_C experiment is 7.6 m, which is significantly (p = 0.0028) lower than any of the other 

techniques evaluated, including WS_S. The MAEi of 7.6 m is remarkable as it means that the 

technique generated boundaries that are, on average, less than one pixel (10 m) displaced from the 

reference boundaries. This low MAEi, however, came at the cost of a slightly elevated (16.9 m) 

MAEj compared to the 11.3 m MAEj of the WS_S experiment, which suggests that the level of OS 

is higher in WS_C compared to WS_S. Nevertheless, when the combined MAE of these two 

methods are compared, it seems that WS_C was substantially more accurate. Similarly, based on 

the edge metrics, the WS_C approach significantly outperformed the other edge and segmentation 

algorithm combinations. 

Figure 3-4 demonstrates the compositing of edge images. The edge layer for each individual date 

is the aggregation of four edge layers, generated from the red, green, blue and NIR bands. This 

example qualitatively illustrates how multi-temporal compositing of edge layers captures and 

accentuates persistent field boundaries. Some field boundaries that are faint (have low intensities) 

on specific dates become more pronounced as images of different dates are combined. One can 

also see that the Scharr algorithm tends to be more sensitive to variations (noise) within fields, 

which might have contributed to the WS_C experiment’s superior accuracies. 
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Figure 3-4   Illustration of how the aggregation of multiple edge layers for the Canny and Scharr edge operators 

reinforce persistent edges 

Figure 3-5 visualises the outputs of the six experiments in a small test site. Gaps between adjacent 

fields are clearly noticeable in the MTS and MRS approaches (Figure 3-5c–f). These gaps 

represent edge objects that were removed in Step 4. Effectively, these edge objects offset the 

resulting boundaries by approximately one to three pixels towards the centre of the fields. This 

had a substantial effect on both the area and edge-based measures in Table 3-3. 

 
Figure 3-5   Detailed area showing the field boundaries extracted by experiments (a) WS_C, (b) WS_S, (c) MRS_C, 

(d) MRS_S, (e) MTS_C and (f) MTS_S 
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3.5 DISCUSSION  

Both the area- and edge-based metrics show that the WS workflows significantly outperform those 

involving MRS and MTS. Although no other studies have directly compared the WS, MRS and 

MTS algorithms for field boundary delineation, Gaetano et al. (2015) found that a marker-based 

WS algorithm generated more accurate image objects than MRS using a 1 m resolution IKONOS 

image as input. However, this disagrees with Kavzoglu & Tonbul (2017) who found that MRS 

outperformed WS when using a 2 m resolution Worldview-2 image. A likely explanation for the 

improved performance of WS in our study is the multi-temporal approach used. Employing multi-

temporal imagery reinforces object edges (in this case field boundaries), while potentially reducing 

the noise within a field as noise is unlikely to be present in the same location over multiple dates 

(as illustrated in Figure 3-4). In addition, the WS method created sharper boundaries along the 

high magnitude edges, which resulted in more defined object borders. This is a conceptual 

difference between WS and the other segmentation techniques evaluated. WS attempts to create 

boundaries where the values are highest (i.e. at points of discontinuity), while MRS groups values 

together based on their homogeneity. High values (edges) are consequently often grouped together, 

which results in objects being formed along the boundaries of image features, in our case crop 

fields. The edge objects formed along the boundary cause the field edges to be shifted towards the 

centre, resulting in an offset between the reference and segmented field boundaries. This is evident 

in the lower accuracies obtained by the MRS and MTS workflows. It is likely that the MRS and 

MTS approaches can be improved by implementing additional rules (e.g. object thinning or centre 

line extraction), but this will substantially increase the complexity of the workflow, which will 

likely reduce its robustness. Given the excellent performance and suitability of WS for the task at 

hand, an attempt to add rules to improve the MRS and MTS results seemed pointless (especially 

within the context of finding a technique that can be operationalised). However, it is acknowledged 

that the MRS and MTS may perform better with such rules. 

The results obtained from the area- and edge-based metrics show that the WS_C experiment 

provides far more accurate and consistent results than the WS_S experiment, thus illustrating the 

superior performance of the Canny edge detection algorithm. This is consistent with findings of 

Juneja & Sandhu (2009) and Maini & Aggarwal (2009) who also found that the Canny edge 

detector produces better overall results. A likely explanation is the improved signal-to-noise ratio 

established by the non-maxima suppression method used by the Canny operator (Shrivakshan & 

Chandrasekar 2012). The non-maxima suppression results in magnitude edges with a width of one 

pixel, which allows WS to more accurately delineate the boundaries. In contrast, the Scharr 

algorithm does not use non-maxima suppression and thus creates thicker edges, which can cause 
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uncertainties and reduce the WS’s ability to find sharp boundaries (i.e. the boundaries become 

erratic). The slightly higher OS observed for the Canny edge detector (Table 3-3) agrees with Batra 

et al. (2016), who showed that the improved capability of the Canny algorithm to detect weak 

edges can cause the generation of false edges within fields, which in turn leads to too many objects 

being created during segmentation.   

Our results show that multi-temporal Sentinel-2 imagery holds much potential for delineating field 

boundaries. The 10 m spatial resolution of the Sentinel-2 images seems sufficient in most cases, 

although not ideal for small and narrow fields. Similar observations were made by Lebourgeois et 

al. (2017) who used Landsat-8 and SPOT-5 imagery to simulate Sentinel-2 time series imagery for 

mapping smallholder fields. They found that the spatial resolution of Sentinel-2 is potentially too 

low to map some of the smaller and irregularly shaped fields. Although the spectral resolution of 

Sentinel-2 imagery is higher than those of many other EO satellites (e.g. Landsat-8, SPOT-6/7, 

RapidEye), only four of the bands are at 10 m resolutions. The other bands, such as red edge and 

SWIR bands, will likely improve discrimination between agricultural land covers, but owing to 

their relatively low (20–60 m) spatial resolutions, they have little value for field boundary 

delineations (Valero et al. 2016). Despite these shortcomings, the boundaries produced in this 

study were generally highly accurate. This is mainly attributed to the use of a time series of images 

in the edge detection process, as illustrated in Figure 3-4. Although the increased temporal 

frequency of Sentinel-2 imagery has significant advantages, the selection of cloud-free imagery is 

critical. A limitation of this study was the manual selection of cloud-free imagery. However, image 

compositing techniques such as rule-based compositing and linear temporal resampling have been 

proposed as possible solutions for creating cloudless and artefact-free imagery (Inglada et al. 2015; 

Lück & Van Niekerk 2016). 

A wide range of annual crops are grown in Vaalharts and as such it was an ideal testing site. 

However, it is unclear whether the recommended WS_C method will perform equally well in other 

agricultural areas and under different conditions. For instance, the phenology of perennial crops 

(e.g. vineyards and fruit trees) grown in the Mediterranean climate of the Western Cape Province 

are very different to the annuals grown in Vaalharts. More work is therefore needed to investigate 

the transferability and robustness of the methods evaluated in this study. Given their demonstrated 

superiority, future efforts should focus on the WS-based methods.  

3.6 CONCLUSION 

This study compared and evaluated six multi-temporal OBIA approaches for identifying and 

delineating active crop field boundaries. The approach combined two edge enhancement (Canny 
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and Scharr) and three image segmentation (WS, MRS and MTS) techniques. The key findings and 

conclusions of the study are: 

1. Canny edge detection provides finer field boundary edges compared to the Scharr 

algorithm and is consequently better suited for enhancing field boundaries.  

2. WS is more suitable than MRS and MTS for delineating agricultural field boundaries when 

edge layers are used as input to the algorithms. 

3. The relatively low spatial resolution of Sentinel-2 imagery limits the delineation of small, 

narrow or irregularly shaped fields, but was sufficient for the majority of fields in the study 

area. 

4. Due to the dynamic nature of field crops (especially annuals), a multi-temporal approach 

to field boundary delineation is essential.  

5. More work is needed to evaluate the Canny edge detection and WS segmentation approach 

in other agricultural environments. 

Given the results obtained in this study, the Canny edge detection algorithm, in conjunction with 

WS, is effective in a multi-temporal approach to delineate active crop fields. The WS experiments 

show good potential for use in an operational workflow, although future research should focus on 

applying it on a regional or national scale. Nevertheless, the high accuracy suggests that the WS 

workflow can provide valuable information about the extent and location of agricultural field 

boundaries. These boundaries can be subsequently used in agricultural monitoring systems to aid 

the implementation of precision agriculture, crop yield estimations, food security assessments and 

resource planning. 
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CHAPTER 4:  A MODIFIED OBIA APPROACH FOR FIELD 

BOUNDARY DELINEATION IN SELECTED SOUTH AFRICAN 

AGRICULTURAL LANDSCAPES USING MULTI-TEMPORAL 

SENTINEL-2 IMAGERY* 

4.1 ABSTRACT 

Knowledge of the extent and location of cultivated fields are critical for agricultural monitoring, 

food security planning and commodity trading. The increased observational capacity of remotely 

sensed data, such as Sentinel-2 imagery, constitutes a major advantage over in situ methods, 

particularly for agricultural applications that require frequent updates. However, the development 

of fully automated cultivated field delineation methods remains a challenge. In this study an 

existing object-based image analysis (OBIA) methodology, called Canny edge detection in 

conjunction with watershed segmentation (CEWS), was modified to automatically identify and 

delineate agricultural fields from multi-temporal Sentinel-2 imagery in five diverse agricultural 

landscapes. The robustness of the technique was evaluated by comparing its outputs to those of 

standard per-pixel, supervised classifications. Reference field boundaries were manually digitised 

and used for quantitative accuracy assessments. Area and edge metrics were used to evaluate the 

accuracy of the extracted boundaries. Results show that, on average, CEWS produced significantly 

higher field boundary accuracies than the supervised per-pixel approach in terms of both mean 

absolute error (MAE) (~31 m lower) and overall accuracy (~13.8% higher). The closed field 

boundaries produced by CEWS, as well as its capability to operate without any a priori knowledge, 

was found to be its main strengths for integration into operational workflows. However, in 

complex landscapes (e.g. Swartland and Mooketsi) it was found that some fields had weak 

boundaries due to the homogeneity between adjacent fields, making edge detection problematic. 

The incorporation of higher resolution imagery into the edge detection process is proposed, 

particularly in agricultural areas with very small and irregularly shaped fields. Despite these 

challenges, it was concluded that the multi-temporal CEWS approach will perform well in most 

agricultural areas and is suitable for operational implementation. 

Keywords: Sentinel-2 imagery, Edge detection, Watershed segmentation, Object-based image 

analysis, Agricultural field boundary delineation 

 

* This chapter is structured as an article and has been submitted to Computers and Electronics in Agriculture for 

publication.  
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4.2 INTRODUCTION 

With the global population exceeding seven billion, food production has become a global concern 

(Fritz, See, Mccallum, et al. 2015; Tollefson 2012). Factors such as urban expansion and climate 

change are placing enormous pressure on agricultural land (Inglada et al. 2015). Conversely, 

agriculture is cited as one of the driving forces of climate change, contributing 30 – 35% to global 

greenhouse gas emissions. This poses a significant global challenge: to maintain food security 

while reducing the carbon footprint of agricultural activities (Karamura et al. 2013). Effective and 

responsive decisions on agricultural matters are needed to address these challenges 

simultaneously. It calls for the development of timely and accurate agricultural monitoring systems 

that can provide up-to-date insights into crop conditions, generate accurate estimations of crop 

yields and inform decision-making relating to hazards such as floods, droughts and civilian 

conflicts (Matton et al. 2015).  

The extent and location of agricultural fields are fundamental data requirements of agricultural 

monitoring systems. Remote sensing (RS) techniques can provide datasets that cover extensive 

areas at high spatial and temporal resolution and are thus well suited for collecting agricultural 

data (Valero et al. 2016). However, remotely sensed imagery with high temporal resolution is 

critical as the seasonal patterns of agricultural fields are strongly related to the phenology of crops 

being grown (Atzberger 2013). Changes in the phenological stages of crops, which can happen 

within short periods, lead to changes in the spectral and structural properties of the crops. It has 

been shown that RS data acquired at short temporal intervals have the ability to capture crop 

properties throughout the growing season (Ozdogan et al. 2010; Pittman et al. 2010).  

A number of techniques using low to high spatial resolution imagery have been developed to 

identify cultivated field extent (Matton et al. 2015). Low (250 m) resolution imagery provided by 

sensors such as MODIS have proved to be appropriate for quantifying cultivated extents (acreage) 

over very large areas (Lunetta et al. 2010; Pittman et al. 2010; Roumenina et al. 2015). However, 

such imagery is unsuitable for agricultural monitoring in heterogeneous landscapes where fields 

are smaller than the pixel size (Duveiller & Defourny 2010). Conversely, very high resolution 

(VHR) imagery provides finer detail and allows for more accurate delineation of individual 

cultivated fields but is often only available at low temporal frequency and can be expensive to 

acquire (Mueller, Segl & Kaufmann 2004). The recently launched Sentinel-2 satellite constellation 

can provide both relatively high spatial and temporal resolution imagery at no cost, thus offering 

a potential alternative to VHR imagery. Compared to Landsat-type sensors, the observational 

capacity of the Sentinel-2 satellite system offers significant improvements with its high number of 
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spectral bands (13), five-day revisit time, 10 m – 60 m spatial resolutions and wide swath of 290 

km. This allows for more timely estimates of crop extent, crop condition and crop type, which are 

fundamental indicators of a region’s agricultural activities (Bontemps et al. 2015). From this 

perspective, the development of operational field boundary delineation methods that can be 

implemented for large areas and are transferable from one agricultural region to the next have 

become a priority (Matton et al. 2015). 

A number of RS techniques to identify and delineate cultivated fields have been explored. The 

most commonly used technique is supervised classification (Peña et al. 2014). Supervised 

classification algorithms such as support vector machine (SVM) and random forest (RF) use in 

situ data, or a priori knowledge, to differentiate between crop type and land cover classes (Matton 

et al. 2015). However, the collection of in situ data is often expensive, time-consuming and prone 

to human error (Lucas et al. 2007). Furthermore, expert interaction is a prerequisite for successful 

implementation and consistent and accurate results (Thenkabail & Wu 2012). An alternative is the 

knowledge-based approach, which uses expert knowledge to develop a sequence of rules for 

differentiating between classes. The main advantage of the knowledge-based approach is that the 

same model can potentially be used for multiple dates and regions. This makes it very attractive 

for operational systems as it can be fully automated. However, the creation of rules that are robust 

(i.e. will work in a variety of conditions) has been cited as the main limitation of a knowledge-

based approach (Belgiu & Csillik 2018). 

Another differentiating aspect of cultivated field mapping methods relates to the spatial unit 

(minimum mapping unit) used in the classification step (Matton et al. 2015). Per-pixel 

classification assigns a class label to individual pixels based on their spectral signatures. However, 

this method does not take contextual information (surrounding the pixel of interest) into account, 

which tends to produce noisy maps (the so-called salt-and-pepper effect) (Blaschke et al. 2000; 

Schultz et al. 2015). In contrast to per-pixel techniques, OBIA groups pixels based on a 

homogeneity criterion (Blaschke 2010). Each object represents a homogenous region, and in the 

case of cultivated field mapping, individual fields are the objects of interest. In contrast to per-

pixel classifications, entire objects are handled as minimum mapping units and are assigned labels 

according to a classification scheme (Lebourgeois et al. 2017). OBIA techniques often produce 

higher accuracies than per-pixel approaches (Belgiu & Csillik 2018; Duro, Franklin & Dube 2012), 

but the implementation of transferable OBIA techniques for individual field boundary delineation 

remains a research gap (Yan & Roy 2016).  
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Few examples of RS studies in which field boundaries were extracted exist. Those that are 

available have typically been carried out in small, localised areas or make use of visual 

interpretation to manually digitise field boundaries (Yan & Roy 2016). A number of semi-

automated techniques have been investigated, often involving either edge- or region-based 

methods (Ramadevi et al. 2010; Rydberg & Borgefors 1999; Turker & Kok 2013; Wuest & Zhang 

2009). Edge-based methods (or edge detection) focus on detecting object boundaries in an image. 

These boundaries are found by measuring the differences in grey level values between pixels 

(Kaganami & Beiji 2009). Conversely, region-based methods group pixels together based on their 

grey level similarity (Li et al. 2010). Typical errors produced by edge-based techniques (e.g. gaps 

between edges) and region-based techniques (e.g. boundary errors) have limited their successful 

implementation for operational purposes (Chen et al. 2015; Fan et al. 2001). Hybrid methods that 

combine these techniques and exploit the strengths of each have consequently been proposed 

(Alemu 2016; Butenuth, Straub & Heipke 2004; Li et al. 2010; Mueller, Segl & Kaufmann 2004; 

Rydberg & Borgefors 2001). For instance, Li et al. (2010) proposed a hybrid approach to segment 

single-date Quickbird imagery in both an urban and agricultural landscape. Edge detection was 

performed to improve the positional accuracy of object borders and to emphasise weak edges. This 

was followed by a marker-based watershed algorithm to delineate the targeted object boundaries. 

A satisfactory boundary accuracy (78%) was achieved and the method reportedly performed well 

in reducing over-segmentation and retaining weak boundaries. In another hybrid approach, Chen 

et al. (2015) adopted a three-step strategy. First, the image was over-segmented into small objects. 

Second, the objects were merged in a global mutual best-fitting strategy using edge penalty and 

constrained spectral variance difference as merging criteria. The final step removed noise by 

merging very small objects with their nearest neighbour. The hybrid technique was quantitatively 

compared to a method based on the multi-resolution segmentation (MRS) algorithm using three 

measures, namely the rate of under-, over- and well-segmented objects. The hybrid method 

achieved a much higher rate of well-segmented objects (2.04/2.5) compared to MRS (1.07/2.5), 

highlighting its advantage over the traditional region-based approach. However, reliance on the 

manual selection of segmentation parameters was noted as a significant weakness of both 

approaches. 

One limitation of the hybrid segmentation methods overviewed above is the use of single-date 

imagery. Delineating agricultural fields from such imagery can be challenging, as different crops 

can have similar spectral and structural characteristics during certain stages of the growing season 

(Esfahani 2014). This is compounded when identical crops are planted on adjacent fields. 

Therefore, the acquisition of multi-temporal imagery throughout the growing season is necessary 
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for consistent and accurate field boundary delineation. Watkins & Van Niekerk (2019) showed the 

advantage of using a multi-temporal OBIA approach for field boundary delineation. Edge 

detection was performed on multiple Sentinel-2 images in the Vaalharts irrigation scheme, South 

Africa. The multi-temporal edge layers were aggregated to enhance field edges while reducing 

within-field heterogeneity. Three segmentation algorithms, namely watershed, multi-resolution 

and multi-threshold, were compared for segmenting the aggregated edge layer. Canny edge 

detection in conjunction with watershed segmentation (CEWS) was identified as the best method 

for mapping field boundaries (92.9%). The 10 m spatial resolution of the Sentinel-2 imagery was 

found to be too low for delineating small and irregular fields, but it produced satisfactory results 

in most cases. A major limitation of their study was that the evaluations were carried out in a 

single, relatively small area. No attempt was made to evaluate the robustness and transferability 

of the technique to other areas and in diverse agricultural systems (e.g. irrigated vs rain-fed).   

This article evaluates the robustness of the CEWS approach to identify and delineate agricultural 

fields using multi-temporal Sentinel-2 imagery. The methodology is evaluated in five study sites 

representing different climatic regions and agricultural practices, as well as a range of crop types. 

The paper also presents a number of proposed modifications to the CEWS technique to make it 

more transferable and robust. A per-pixel supervised classification was performed as a benchmark 

against which the CEWS approach was compared. The results are interpreted in the context of 

finding an operational solution for the identification and delineation of individual agricultural 

fields in complex and dynamic agricultural landscapes. 

4.3 METHODS 

4.3.1 Study area 

Five study sites in South Africa, each with different environmental and agricultural conditions, 

were selected (Figure 4-1). Two of the study areas (Swartland and Grabouw) have a Mediterranean 

climate (i.e. winter rainfall), two (Loskop and Mooketsi) receive rainfall predominantly during the 

summer and the fifth area (Patensie) receives rainfall throughout the year. These sites constitute a 

large variety of crops ranging from annuals (e.g. wheat, canola and tobacco) to perennial crops 

(e.g. vineyards and fruit trees). Irrigated and rain-fed crops were also represented, thus providing 

a large variation with which to test the robustness of the proposed methodology. Table 4-1 

summarizes the chosen study areas. 
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Figure 4-1   (a) Location and extent of the five selected study sites in South Africa, (b) Patensie, (c) Swartland, (d) 

Grabouw, (e) Loskop, and (f) Mooketsi 

Table 4-1   Summary of region characteristics for the five study sites 

Study site Size Rainfall regime Mean annual rainfall Common crops 

Swartland 150 km2 

Winter 

550 mm Grapes, wheat and canola 

Grabouw 100 km2 950 mm Horticulture and viticulture 

Loskop 180 km2 

Summer 

680 mm Citrus, wheat, cotton, tobacco and groundnuts 

Mooketsi 100 km2 650 mm Horticulture and wheat 

Patensie 80 km2 All-year round 487 mm Citrus, tobacco and vegetables 
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4.3.1.1 Image collection 

Multiple cloud-free Sentinel-2 images were acquired from April 2017 to April 2018. The imagery 

was acquired in Level-1C format, which is geometrically corrected and radiometrically calibrated 

to top of atmosphere (TOA) reflectance. Table 4-2 lists the number of cloud-free images used per 

study site. 

Table 4-2   Number of cloud-free Sentinel-2 images per study area 

Study area Number of image dates 

Swartland 58 

Patensie 24 

Grabouw 20 

Loskop 31 

Mooketsi 19 

4.3.2 CEWS workflow 

4.3.2.1 Original CEWS workflow 

The original CEWS workflow, developed by Watkins & Van Niekerk (2019), comprised five main 

processing steps: 

1. Edge detection, executed on all individual images; 

2. Aggregation of edge layers obtained in Step 1; 

3. Image segmentation, performed on the aggregated edge layer created in Step 2; 

4. Cultivated field extraction; and 

5. Noise removal.  

However, Watkins & Van Niekerk (2019) indicated that certain elements of this workflow might 

not be effective for application in multiple areas. For example, the watershed segmentation 

parameter was calculated using the Jenks natural breaks algorithm, which had to be manually 

adjusted. It is thus unlikely that the same parameter will work in all regions. This was confirmed 

when the original CEWS method was applied to the five selected sites. It was also noted that the 

rules used to differentiate crops from other land covers need to be adjusted to account for crop 

variations caused by environmental conditions. For instance, annual crops grown in the Loskop 

study site (summer rainfall regime) have different spectral signatures and temporal characteristics 

compared to the perennial crops (e.g. fruit trees and vineyards) grown in the Grabouw study site 
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(winter rainfall regime). It was thus clear that the CEWS method would require modification for 

it to be transferable.   

4.3.2.2 Modified CEWS workflow 

Modifications were made to the original CEWS workflow to overcome some of the limitations 

described in the previous section. The objective of the modifications was to improve the 

transferability of the workflow so that it can be applied to diverse agricultural landscapes. The 

following subsections overview the alterations performed. 

Step 1: Edge detection 

Step 1 of the CEWS workflow required no major modifications, except that the Canny algorithm 

was implemented in Python using the Scikit image Library (version 0.13.1). The red, blue, green 

and NIR bands were retained as input to the edge detection algorithm due to their higher (10 m) 

spatial resolution, which resulted in four edge images per Sentinel-2 image capture date (Table 

4-2).  

Step 2: Edge layer aggregation 

The modified CEWS uses the mean value per-pixel to aggregate the multi-temporal edge layers, 

which results in a single composite image per study area. The Z-score algorithm, followed by a 

linear scaling (from 0 to 1), was employed to standardize the composite edge layer and aid in the 

automation of the WS parameter selection (see next section).  

Step 3: Image segmentation 

CEWS makes use of the WS algorithm, as implemented in Trimble eCognition Developer 9, to 

segment the aggregated edge layer. As input, WS requires a height parameter for region merging. 

This parameter is used to compensate for the over-segmentation inherent in the WS algorithm and 

controls when adjacent objects can be merged (i.e. if an objects’ maximum pixel value is below 

the specified height threshold). To make CEWS more robust, the Jenk’s algorithm was substituted 

with a local thresholding procedure, as applied in the Scikit image Python package, to 

automatically find the most appropriate height threshold. The procedure applies a Gaussian filter 

to the aggregated edge image (in an 11 x 11-pixel window) and calculates the weighted mean per-

pixel, resulting in a generalised edge image. The height value is found by taking the standard 

deviation of the generalised image. Using this threshold in WS results in a set of image objects 

(segments) with boundaries coinciding with spectral transitions (edges).   
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Step 4: Cultivated field extraction 

The original CEWS method employed a single rule-set to differentiate between actively cultivated 

fields and other land covers (non-cultivated). This was substituted by a rule-set per rainfall regime. 

The rule-sets were designed to be fully automated and reproducible, and replaces the commonly 

used supervised classification approach that requires a priori data. Based on the work by Huete 

(1988), Maselli & Rembold (2001), and Zheng et al. (2015), four normalised difference vegetation 

index (NDVI)-based features, namely maximum (max), minimum (min), range (ran) and standard 

deviation (std) were derived from the Sentinel-2 images acquired per area. These features were 

used as input for a classification and regression tree (CART) algorithm, as implemented in Salford 

Predictive Modeler software, to generate a decision tree, from which the values that best separate 

(classify) actively cultivated fields from other land uses could be determined. To train the CART 

algorithm, randomly sampled points (1 250) were generated and manually labelled (using visual 

interpretation) as either cultivated or non-cultivated fields.  

Table 4-3 lists the rules per rainfall region. Image objects that did not satisfy the conditions of the 

rules were excluded from further consideration.  

Table 4-3   Rule-sets per study area 

 Winter rainfall All-year rainfall Summer rainfall 

Rule 

set 
Swartland Grabouw Patensie Loskop Mooketsi 

#1 
min NDVI > 0.51 & 

std NDVI > 0.05 
max NDVI > 0.63 

max NDVI > 0.48 & 

min NDVI <= 0.17 

#2 - - 

max NDVI > 0.53 & 

min NDVI > 0.17 & 

std NDVI <= 0.12 

The all-year round and winter rainfall regions required one or two rules, while the summer rainfall 

region required five. A commonality among the regions is the use of the max NDVI feature.  The 

summer rainfall region rule-set made use of three features, namely max, std and min NDVI.  

Step 5: OBIA noise removal 

Although the salt-and-pepper effect is not common in OBIA approaches, small irrelevant objects 

can occur. These can be the result of infrastructure (e.g. pivot irrigation) or small areas affected by 

salt accumulation or waterlogging. Therefore, a simple rule to identify and discard small objects 

that are completely surrounded by cultivated areas, was employed in the final step (Step 5). The 

rule was identical to that of the original CEWS method. 
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4.3.3 Supervised per-pixel classification workflow for mapping cultivated areas 

A semi-automated supervised per-pixel (PP) classification was performed to serve as a benchmark 

for the autonomous knowledge-based results. The RF algorithm was chosen for this purpose, as it 

has been shown to provide good accuracies for crop type differentiations (Belgiu & Csillik 2018; 

Forkuor et al. 2017). Scikit-learn’s RF package version 0.18.2 was used for the implementation. 

All features used by CEWS were used as input for the RF algorithm and trained with the identical 

sets of training samples used in the CART analysis (see Step 4 of the CEWS workflow). A majority 

filter (3 x 3 pixels) was used as a post classification step to remove some of the salt-and-pepper 

effect inherent in PP approaches (Quynh Trang et al. 2016). The subsequent raster classifications 

(cultivated vs. non-cultivated) were converted to a vector format. The resulting polygons thus 

represented contiguous areas covered by actively growing crops. 

4.3.4 Accuracy assessment 

Despite the popularity of image segmentation algorithms, methods to evaluate the effectiveness of 

a segmentation output remain elusive (Clinton et al. 2010; Meyer & Van Niekerk 2015). Ideally, 

an image segmentation output should result in object delineations (boundaries) that match those 

of the targeted real-world features (e.g. agricultural fields). The most common causes of poor 

image segmentations are over-segmentation (OS), under-segmentation (US) and boundary offsets. 

OS occurs when the segmented objects are smaller than the target features, whereas US causes 

objects to be larger. Boundary offsets occur when there is a consistent spatial shift in the extracted 

boundaries.  

No single accuracy measure can adequately assess the combined three types of segmentation errors 

(Weidner 2008). While OS and US are commonly calculated using topological (area) relationships, 

boundary offsets are measured using geometrical (edge) metrics (Zhan et al. 2005). A number of 

area-based metrics have been proposed to calculate US and OS (Clinton et al. 2010; Möller, 

Lymburner & Volk 2007; Weidner 2008); however, these metrics do not evaluate the accuracy of 

the delineated object boundaries. Delves et al. (1992) proposed an edge metric that calculates the 

average distance error between reference boundaries and the extracted boundaries. This method 

has been shown to be successful in assessing the accuracy of segmented object boundaries (Meyer 

& Van Niekerk 2015). A similar metric, namely the MAE distance metric, was applied in this 

study. 

MAE calculates the Euclidean distance (ED) between the centres of two cells representing the 

extracted and reference boundary respectively (Figure 4-2). To assess the accuracy of the extracted 

boundaries, two measures of MAE were calculated. MAEi measures the distance from the centre 
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of a reference boundary cell to the centre of the nearest extracted boundary cell, thereby providing 

an indication of how closely the extracted boundaries represent the reference boundaries in 

geographical space. Conversely, MAEj measures the distance from each extracted boundary cell 

to the nearest reference boundary cell, thus providing an indication of boundaries within a field 

(i.e. providing an indication of OS). Both instances of MAE were calculated by the following 

formulae: 

MAEi = 
∑ 𝐸𝐷𝑖

𝑁
          Equation 4.1 

where EDi represents the ED measured from the centre of the reference cell to the centre of the 

extracted cell, while N is the total number of boundary cells in the reference dataset. 

MAEj = 
∑ 𝐸𝐷𝑗

𝑁
          Equation 4.2 

where EDj refers to the ED measured from the centre of the extracted cell to the centre of the 

reference cell. MAEi and MAEj were summed to get a sense of overall agreement between the 

extracted and reference boundaries, where low values indicate high agreement. 

MAE = MAEi + MAEj         Equation 4.3 

The blue arrows in Figure 4-2b illustrate the increased distance calculated from the extracted field 

boundaries to the reference boundaries when OS occurs.  

 
Figure 4-2   Conceptual illustration of ED calculations, where (a) MAEi depicts the accuracy along the boundary and 

(b) MAEj represents the level of OS 

Reference field boundary datasets consisting of 100 active fields per study site were manually 

digitised using a combination of Sentinel-2 (10 m) imagery acquired from April 2017 to April 

2018 and very high resolution (50 cm to 30 cm) satellite imagery from the ArcMap (version 10.4) 

base layer. 

A confusion matrix approach was devised to calculate several area-based metrics. The matrix 

consisted of 10 000 samples, with 5 000 “boundary” samples selected randomly along the 

reference boundaries and another 5 000 “not-boundary” samples randomly selected more than 
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10 m away from the reference boundaries. The overall accuracy (OA), Kappa index (K), 

commission error (CE) and omission error (OE) were calculated from the confusion matrix. The 

OE quantifies the accuracy of the extracted boundaries along the reference boundaries, where a 

high value suggests that the extracted field boundaries were not delineated well. CE indicates false 

boundaries within a field, often due to OS. The McNemar’s test was employed as an additional 

measure to test for significance of differences among accuracy measures, with p-values of 0.05 (or 

lower) regarded as significant. 

4.4 RESULTS 

The results in Table 4-4 show that the two highest OAs (82.9% and 83.6%) of the CEWS 

methodology are recorded in the Patensie and Grabouw regions (Experiments 5 and 2). The lowest 

OA (61.3%) was obtained when the PP approach was applied in Mooketsi (Experiment 3). In 

addition, the PP approach also produced the second lowest OA (69%) in Swartland (Experiment 

1). When OEs are considered, the CEWS scenarios recorded errors ranging from 27.1% to 38%. 

In contrast, the OEs for the PP scenarios are significantly (p < 0.0001) higher and range from 

44.3% to 54%. Regarding CE, the CEWS scenarios in Experiments 4 and 5 (Loskop and Patensie) 

produced the lowest errors (1.3% and 1.4% respectively), and the highest CE (31.2%) was 

recorded by the PP scenario in Mooketsi (Experiment 3). CEWS recorded a significantly (p < 

0.0001) higher mean OA (82.0%) than the OA (69%) of the PP approach. In addition, the lower 

standard deviation produced by the OBIA method for OA (1.4%) suggests a higher consistency. 

Similarly, the mean and standard deviation for the OE and CE of CEWS were lower (with the 

exception of the standard deviation for the OE). 
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Table 4-4   Area- and edge-based metric results  

    Area-based metrics Edge-based metrics 

Rainfall 
regime 

Region Experiment Method OA (%) OE (%) CE (%) K 
MAEi 
(m) 

MAEj 
(m) 

Combined 
MAE 

Winter 

Swartland Experiment 1 

CEWS 82.0 31.4 2.5 0.7 22.1 19.5 41.6 

PP 69.0 54.0 7.5 0.4 35.3 79.7 115 

Grabouw Experiment 2 

CEWS 83.6 27.1 8.2 0.7 6.9 7.8 14.7 

PP 72.0 44.3 9.0 0.4 14.2 15.3 29.5 

Summer 

Mooketsi Experiment 3 

CEWS 79.7 38.0 2.9 0.6 10.0 16.3 26.3 

PP 61.3 47.2 31.2 0.3 14.0 52.1 66.1 

Loskop Experiment 4 

CEWS 81.8 35.0 1.3 0.6 7.8 14.1 21.9 

PP 72.9 49.1 5.2 0.5 14.9 16.4 31.3 

All-year 
round 

Patensie Experiment 5 

CEWS 82.9 32.8 1.4 0.7 9.2 11.4 20.6 

PP 69.9 45.0 16.5 0.4 13.0 27.8 40.8 

  Mean 

CEWS 

82.0 32.9 3.3 0.7 11.2 13.9 25.0 

 
 

Standard 
deviation 

1.4 3.6 2.5 0.05 5.6 4.0 9.1 

  Mean 

PP 

69.0 47.9 13.9 0.4 18.3 38.3 56.5 

 
 

Standard 
deviation 

4.1 3.5 9.5 0.06 8.5 24.6 32.0 

Figure 4-3 visually compares the CEWS and PP results in a detailed area in Patensie (Experiment 

5). In this area, CEWS was 13% more accurate than the PP method. In addition, CEWS has the 

benefit of producing closed individual field boundaries while reducing the salt-and-pepper effect 

common in PP classification outputs. The red circles in Figure 4-3b highlight some examples of 

this salt-and-pepper effect, whereas the red circles in Figure 4-3c illustrate the closed field 

boundaries created by CEWS. 

 
Figure 4-3   Cultivated field extraction results for an area in Patensie showing an a) RGB composite of Sentinel-2 

imagery acquired in June 2017, along with the b) PP and c) CEWS outputs 
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The edge-based metrics reveal that the field boundaries created by CEWS match the reference 

fields more closely than those produced by the PP method. The MAEsi for the CEWS scenarios 

show a low mean of 11.2 m (with the exception of Experiment 1, which recorded an MAEi of 

22.1 m). Generally, the MAEsi of the PP experiments are substantially higher, with a mean of 

18.3 m. The 11.2 m mean MAEi of CEWS is notable as it means that the technique produced field 

boundaries that are, on average, approximately one pixel (10 m) displaced from the reference 

boundaries. However, this low MAEi comes at the cost of a slightly higher MAEj, which suggests 

some level of OS. A similar observation is made for the PP scenarios. When the combined MAE 

is considered, it is clear that the CEWS boundaries are substantially more accurate than those 

generated by the PP approach. 

Figure 4-4 demonstrates the qualitative advantage of the automated CEWS approach. The red 

circles in Figure 4-4b and Figure 4-4c outline where the PP approach was unable to delineate 

individual fields (they are regarded as one field). In contrast, CEWS produces clear divisions 

between the fields. 

 
Figure 4-4   Cultivated field extraction results for an area in Loskop displaying an a) RGB composite of Sentinel-2 

imagery acquired in January 2018, compared to the b) PP and c) CEWS outputs. 

Figure 4-5 illustrates a limitation of both the CEWS and PP approaches. The techniques fail in 

areas with a high degree of homogeneity between adjacent fields (typical in areas such as 

Swartland and Mooketsi). The red circles in Figure 4-5 indicate where the CEWS and PP 

experiments were unable to delineate the individual adjacent fields. However, the larger areas 

making up those individual fields were successfully identified and delineated. The agriculture in 

these regions comprise largely annual rain-fed crops (e.g. wheat, canola, medics). The blue circles 

indicate individual fields that were not successfully identified and delineated by CEWS. This 

contributed to the slightly larger combined MAE values obtained in Swartland (41.6 m) and 

Mooketsi (26.3 m) compared to Grabouw (14.7 m), Patensie (20.6 m) and Loskop (21.9 m).  
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Figure 4-5   Cultivated field extraction results for an area in Mooketsi (a – c) and Swartland (d – f) displaying an a) 

RGB composite of Sentinel-2 imagery acquired in March 2018, as well as the related b) PP and c) CEWS outputs; 

and d) an RGB composite of Sentinel-2 imagery acquired during August 2017, accompanied by e) the PP and f) 

CEWS results. The highlighted areas show where both methods failed to identify field boundaries due to low 

contrast between fields.    

Figure 4-6 illustrates the inability of the Sentinel-2 (10 m) imagery to effectively delineate small 

and irregular fields in a detailed area of Grabouw (red circles). However, the high mean OA 

(83.6%) and low mean combined MAE (14.7 m) of the CEWS workflow suggests that it works 

well for most of the fields included in the reference set. 

 
Figure 4-6   Cultivated area feature extraction results for an area in Grabouw showing a) an RGB composite of 

Sentinel-2 imagery acquired during September 2017, compared to the b) PP and c) CEWS outputs. The highlighted 

areas show where both methods struggled to accurately delineate small and irregularly shaped fields.  

4.5 DISCUSSION 

Agricultural monitoring systems are becoming increasingly important in addressing challenges 

relating to climate change and food security. Accurate and up-to-date field boundary information 

is vital for developing efficient and effective agricultural monitoring systems, and the development 

of operational field boundary delineation methods have become a priority. An OBIA field 
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boundary delineation procedure, originally developed by Watkins & Van Niekerk (2019), was 

modified in this study to make it more universally applicable. Firstly, the selection of the WS 

height parameter, which was originally manually selected from the output of the Jenks natural 

breaks algorithm, was substituted for an automated process using a thresholding method available 

in the Scikit image python package. Secondly, five study sites located throughout South Africa 

were selected to represent various environmental and agricultural regions. The sites were grouped 

into three different rainfall regimes and a knowledge-based rule-set was developed for each regime 

to eliminate non-cultivated areas from further consideration. 

Results show that the modified CEWS approach produces superior results when compared to the 

conventional PP supervised classifications. CEWS produced objects with reduced within-field 

heterogeneity (salt-and-pepper effect) (Figure 4-3b). This finding is in agreement with Belgiu & 

Csillik (2018) who compared PP and OBIA techniques to classify various crop types using multi-

temporal Sentinel-2 imagery. They found that the OBIA techniques outperformed the PP 

approaches in three study sites. Another advantage of an OBIA approach is that individual 

cultivated fields are delineated with closed boundaries (Figure 4-3c). Closed field boundaries 

provide a significant advantage and allow agricultural statistics to be calculated per-field, which 

is highly beneficial in agricultural monitoring systems. 

The low standard deviations of the CEWS outputs suggest consistency across different agricultural 

landscapes. However, some patterns in accuracy were observed. Lower accuracies were noted in 

areas made up of largely annual rain-fed crops. Waldner et al. (2017) found that annual 

precipitation and field density were important factors in cropland identification. These factors were 

also the likely drivers of the lower accuracies (Table 4-4) recorded in Swartland and Mooketsi, as 

both sites have relatively low annual precipitation (Table 4-1). The fields in both sites are also 

generally irregular in shape and the same crops are often grown in adjacent fields, with minimal 

separating features (e.g. roads or hedges) that can be utilised by the segmentation algorithm. 

Therefore, some fields were not effectively delineated or identified (Figure 4-5). In contrast, higher 

accuracies were recorded in areas containing predominantly irrigated or perennial crops. For 

instance, both Loskop and Grabouw have high levels of annual precipitation and more defined 

boundaries (e.g. roads or hedges) and were thus more easily identified and delineated. 

A major advantage of CEWS is that the requirement for training data (of supervised classification) 

was circumvented by implementing a knowledge-based (rule-set) technique for excluding non-

cultivated areas. The collection of training samples relies on human interpretation, making the 

process time-consuming, expensive and difficult to apply on a large-scale (Thenkabail & Wu 
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2012). In addition, samples will likely have to be collected for each season due to the dynamic 

nature of crops (e.g. crop rotations), thus making a supervised approach impractical in the context 

of operational systems. CART’s selection of the maximum NDVI feature for the decision trees of 

all three of the rainfall regimes suggests that it is a robust multi-temporal variable for 

discriminating agricultural fields from other land covers across varying climatic regions. This 

agrees with Waldner et al. (2017), who found that maximum NDVI was the most important 

variable in developing a national cropland map for South Africa. In contrast, Lambert, Waldner & 

Defourny (2016) found that minimum NDVI was more important for cultivated field 

identification.  Our findings support those of Jia et al. (2014) who also noted the benefits of using 

multi-temporal NDVI features (maximum, minimum and standard deviation) for land cover 

differentiation (including cultivated fields). They also found that higher temporal resolution 

imagery improved the efficiency of the NDVI features. 

Our results show that multi-temporal Sentinel-2 imagery can be used to identify and delineate 

agricultural field boundaries using an OBIA approach. The relatively high temporal frequency 

(five days) of the imagery allowed for a large number of observations spanning an entire year (e.g. 

58 observation dates for the Swartland site). This relatively high temporal frequency increases the 

chance of cloud-free observations during the growing season. However, the manual selection of 

cloud-free imagery (as undertaken in this study) should be avoided and an automated technique, 

such as image compositing, should rather be used for operational implementations. Regarding the 

spatial resolution of the Sentinel-2 imagery used, the 10 m resolution was sufficient in most cases, 

but was less effective in areas containing small and irregularly shaped fields (such as those in the 

Grabouw and Mooketsi study sites). A potential advantage of Sentinel-2 imagery, compared to 

other EO satellites (e.g. Landsat-8, SPOT-6/7 and RapidEye) is the higher spectral resolution 

(number of available bands). However, while the red edge and SWIR bands could potentially aid 

in the better discrimination between agricultural land covers (e.g. crop type classification), their 

use for agricultural field boundary delineation is of less value as their spatial resolutions are 

significantly lower (20 – 60 m) (Valero et al. 2016). This observation is in agreement with 

Immitzer, Vuolo & Atzberger (2016) who mapped crop and tree species in Central Europe using 

single-date Sentinel-2 imagery. They noted a potential limitation of the spatial resolution of 

Sentinel-2 imagery (particularly the 20 m bands) to map highly fragmented landscapes. A potential 

solution would be to incorporate VHR imagery (e.g. SPOT 6/7, WorldView 2/3) into the edge 

detection phase to enhance the field boundaries more finely. This could prove to be advantageous 

for areas with high homogeneity between fields (e.g. Swartland). It is likely that a single VHR 
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image might be sufficient for identifying permanent field divisions (e.g. hedges or narrow roads), 

but more work is needed to investigate such an approach.  

The five sites selected in this study covered a range of agricultural landscapes with varying 

environmental conditions. Although the evaluated automated OBIA methodology showed great 

promise for agricultural field boundary delineation under diverse conditions, it is still unclear 

whether the developed methodology will perform consistently well when applied to a larger (e.g. 

national) scale. It is recommended that the modified CEWS is implemented in an operational 

workflow and evaluated at national or at least regional (provincial) levels. 

4.6 CONCLUSION 

This study evaluated the robustness of a modified OBIA method, called CEWS, to identify and 

delineate agricultural fields in five agricultural landscapes. The original CEWS method was only 

implemented in a single, relatively small area with similar conditions, therefore an evaluation and 

subsequent modification was required to test its efficacy in different agricultural and 

environmental conditions. The CEWS technique was modified in this study and was implemented 

to delineate agricultural field boundaries in five very diverse agricultural landscapes. A supervised 

per-pixel classification was performed to serve as a benchmark for comparison purposes. The key 

findings of the study are: 

1. Compared to the supervised per-pixel approach, the knowledge-based CEWS method 

provided statistically significant and superior results when delineating agricultural fields; 

2. The spatial resolution (10 m) of Sentinel-2 imagery is well suited to field boundary 

delineation in most cases; however, it is less effective in regions containing small and 

irregular fields; 

3. The high temporal resolution (five-day interval) of Sentinel-2 imagery can adequately 

represent crop phenology throughout the growing season (at least in the selected sites 

representing South African conditions); and 

4. The robustness and transferability of the region-specific rule-sets for excluding uncultivated 

areas are very encouraging and suggest that an automated knowledge-based approach is 

feasible for incorporation into an operational multi-temporal OBIA workflow to delineate 

agricultural fields. 

Given the results obtained in this study, the modified CEWS methodology shows great potential 

for automatically delineating agricultural field boundaries at regional scales. CEWS is 

recommended for integration into an operational workflow. It is suggested that further research is 
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conducted in which the workflow is applied to a larger scale (i.e. regional or national). The 

resulting field boundaries can subsequently be integrated into agricultural monitoring systems and 

aid in the implementation of precision agriculture, crop yield estimates and resource planning. 
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CHAPTER 5:  DISCUSSION AND CONCLUSIONS 

This chapter summarises and evaluates the results of this research. The aim and objectives are 

revisited in the first section, followed by an evaluation of the findings from Chapters 3 and 4. 

Limitations and recommendations for further research are also discussed, while the final section 

draws conclusions from this study. 

5.1 REVISITING THE AIMS AND OBJECTIVES 

This research aimed to evaluate Earth observation methods for automatically delineating 

agricultural field boundaries using multi-temporal Sentinel-2 imagery. Effective agricultural 

monitoring systems are vital as they provide key information regarding crop yield estimations, 

food security assessments and resource planning. Therefore, this research was completed in the 

context of finding an operational solution for field boundary delineation, with the ultimate goal of 

supporting agricultural monitoring. 

Several studies have evaluated remote sensing methods for field boundary delineation; however, 

a number of gaps in the research were identified in Chapter 1. For instance, edge detection 

algorithms have been shown to be effective at enhancing the borders of image features, but little 

is known about which algorithm is best suited for crop field boundary delineation. Furthermore, 

existing research on the integration of multi-temporal edge layers is very limited. In segmentation 

algorithms, multi-resolution segmentation (MRS) and watershed segmentation (WS) have both 

been successfully implemented in OBIA, but a direct comparison has not yet been made for field 

boundary delineation.  

The literature review (Objective 1) exposed a range of remote sensing approaches for field 

boundary delineation. Existing knowledge suggests that a multi-temporal approach is needed to 

achieve consistent and accurate results. Furthermore, previous studies showed that hybrid 

segmentation approaches more accurately delineate field boundaries than a single edge- or region-

based method. The literature review assisted in formulating the research questions and in 

conceptualising the experiments carried out in this study. 

The launch of the Sentinel-2 satellite constellation has opened up new opportunities for crop field 

boundary delineation using remote sensing methods. Thus, Sentinel-2 imagery was acquired for 

six agricultural regions in South Africa (Objective 2). The Vaalharts irrigation scheme was 

selected for the initial experiments (Chapter 3), with a focus on the summer growing season 

(November 2016 to April 2017). In Chapter 4, five study sites were selected and grouped into three 
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regions based on their rainfall regimes, namely winter, summer and all-year round precipitation. 

Imagery for each study site was acquired from April 2017 to April 2018. 

Objective 3 related to the first set of experiments and was devised to compare two edge detection 

algorithms (Canny and Scharr) for delineating agricultural fields, in conjunction with various 

segmentation algorithms. Results from Chapter 3 showed that the Canny edge detection algorithm 

produced boundaries that were consistently more accurate than those that were generated with the 

Scharr algorithm.  

A comparison of three common segmentation algorithms was performed in Chapter 3 to satisfy 

Objective 4. The MRS, WS and MTS algorithms were applied to composite Canny and Scharr 

edge layers, resulting in six experiments. Overall, the WS algorithm provided the most consistent 

and accurate field boundaries, with a highest OA of 92.9% (using the Canny layer as input) and 

combined MAE of 24.5 m. It was concluded that the WS algorithm is best suited for accurately 

delineating field boundaries. Subsequently, the MRS and MTS algorithms were not considered 

further. 

In Chapter 4, the knowledge-based OBIA methodology developed in Chapter 3 was compared to 

a standard supervised per-pixel classification (Objective 5). Although the methods (per-pixel vs 

OBIA and supervised- vs knowledge-based) differ, the favourable results obtained by the proposed 

CEWS approach illustrate its potential for automated crop field boundary extraction. Furthermore, 

the closed field boundaries obtained using CEWS provide a significant advantage and are more 

useful for agricultural monitoring. In addition, the proposed knowledge-based approach does not 

rely on manually selected training samples and is thus better suited for integration into an 

operational workflow. 

To evaluate the transferability of the proposed methodology (Objective 6), the CEWS was 

implemented across three climatic regions with varying agricultural landscapes. Due to the 

likelihood that a single rule-set would not accurately extract crop fields on a national scale, a 

unique rule-set was developed per rainfall regime region to account for similar growing seasons 

and environmental conditions. The relatively high and consistent results obtained demonstrate that 

the proposed approach will be robust enough to be successfully applied over a range of agricultural 

regions. 

5.2 SYNTHESIS 

The experiments performed in this research showed that the WS workflows significantly 

outperformed those of MRS and MTS. This is attributed to WS’ creation of sharper borders along 
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high magnitude edges, which result in higher accuracies along object boundaries. Furthermore, the 

MRS and MTS experiments create boundary objects (due to boundary edges forming their own 

homogenous regions), which offset the resulting boundaries and shift them towards the centre of 

fields. Consequently, a greater distance is created between the reference field boundaries and the 

extracted field boundaries. Although it is possible for the MRS and MTS procedures to be 

improved through additional rules (e.g. object thinning or centre line extraction), it would 

substantially increase the complexity of the workflow, thus making it less suitable for 

implementation into an operational methodology. 

The area- and edge-based metrics showed that the Canny experiments provided far more consistent 

and accurate field boundaries, thus illustrating the superior performance of the Canny edge 

detection algorithm at enhancing field edges. This is due to the non-maxima suppression 

performed in the Canny algorithm, which results in magnitude edges with a width of one pixel. 

Subsequently, this enables WS to more accurately delineate field boundaries.  

The temporal and spatial resolution of Sentinel-2 imagery showed much potential for field 

boundary delineation. Although the 10 m spatial resolution was less effective for delineating small 

and irregular fields, the boundaries generated in this study were generally of high enough accuracy 

for most applications. This was also in part due to the aggregation of time series edge layers 

throughout the growing season, which helped to reduce some of the within-field noise and enhance 

field boundary edges. 

Findings from Chapter 4 illustrated that a knowledge-based CEWS approach produces superior 

field boundaries compared to a conventional per-pixel supervised classification approach. In 

addition, the CEWS approach has the advantage of creating closed field boundaries and lower 

within-field heterogeneity (i.e. salt-and-pepper effect). The often time-consuming and subjective 

task of manually fine-tuning segmentation parameters was circumvented by developing an 

automated process, which adds significant practical value to the implementation of an operational 

workflow. 

Despite applying a median filter to the per-pixel classification outputs, the salt-and-pepper effect 

was still prevalent in some areas. Furthermore, the manual collection of training samples to train 

the supervised classification algorithms is time-consuming, expensive and prone to human error. 

This is compounded by the likelihood that samples will have to be collected each season due to 

the dynamic nature of crops, thus making it impractical for implementation in an operational 

workflow, especially at regional scales.  
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An assessment of the rule-sets used in the proposed automated procedure revealed the importance 

of using maximum NDVI (NDVI_max) for extracting actively cultivated fields. Furthermore, the 

consistent results obtained from applying the rule-sets within the respective rainfall regions 

illustrate the potential of using environmental conditions (variables) to aid knowledge-based crop 

field extractions. 

Findings from both Chapter 3 and Chapter 4 illustrate the potential of using Sentinel-2 imagery 

for identifying and delineating cultivated fields. The high temporal frequency (five-day revisit 

time) allows for the acquisition of a large number of images, which substantially increases the 

chances of obtaining observations that are not contaminated by clouds. Furthermore, as noted 

above, the 10 m spatial resolution produced satisfactory results in most cases, but was too low to 

delineate small and irregular fields.  

5.3 STUDY LIMITATIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Although the WS workflow was successfully implemented and evaluated in five different 

agricultural landscapes (Chapter 4), they represented relatively small localised areas. It is 

recommended that the WS workflow is applied to larger areas (e.g. at regional or national scales) 

to more thoroughly evaluate its performance. 

This study found that the spatial resolution (10 m) of Sentinel-2 imagery was too low to generate 

consistent and accurate boundaries for small and narrow fields. More research is needed to 

investigate the combination of higher spatial resolution imagery (such as WorldView-2/3) with 

Sentinel-2 imagery to overcome this limitation.  

The high temporal frequency (five-day revisit time) of the Sentinel-2 constellation allowed for the 

collection of a large number of cloud-free images. However, these images were manually chosen, 

which is a time-consuming process and is not viable in the context of an operational methodology. 

Therefore, it is recommended that image compositing techniques (Lück & Van Niekerk 2016) are 

investigated and implemented in future studies. 

5.4 CONCLUSIONS 

The spatial extent and location of agricultural field boundaries play an important role in 

agricultural monitoring systems. A timely and accurate delineation of agricultural fields is needed 

for operational workflows. This study evaluated several multi-temporal OBIA approaches, 

combining edge enhancement and segmentation techniques, to identify and delineate the 

boundaries of actively growing crops using Sentinel-2 imagery. 
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The combination of edge detection and image segmentation seems to be the most viable approach 

to automatic field boundary delineation. The Canny edge detection algorithm, in conjunction with 

a watershed segmentation procedure, is suggested. In addition, knowledge-based crop field 

extraction can be integrated into an operational workflow.  

The techniques developed in this study laid the foundation for the development of an operational 

workflow to delineate agricultural field boundaries. Once operationalised, the resulting boundaries 

can be integrated into agricultural monitoring systems to aid resource planning, crop yield 

estimations and food security assessments. 
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