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( i ) 

"VEllXLARING 

Ek die onder9etekende verklaar hiermee dat die werk in hierdie 
te~is vervat, my eie oorspronklike werk is wat no9 nie vantevore 
ir. die qeheel of gedeeltelik by enige ander universiteit ter 
varkry9inq van 'n 9raad voorgel6 is nie. 

Haii~tekeninq Datum 
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samevattin.q 

nxa STIU11tTVllEL"B EN STRATIGRAl'IESB PLASING VAN DIE ROSH PIDK 
aI~~-~oon Al'SETTING IN DIB GAAIEl' 'l'ROG. 

'n Geologiese ondersoek in die Rosh Pinah, Obib . Pickelhaube en 

Namuskluft-Dreiqratl:>erq omqewinqs het rtie strukturele en 

stratiqrafiese plasinq van die Rosh Pinah lood-sinkatsetting in nie 
Gariep Troq aanqedui. Die sedimentere evolusie van die Pan-Afrika 
Gariepqordel het begin met wydverspreide vorming van slenkdale, en 

die oopmaak van 'n oseaan (die Adamastoroseacn) met die skepping V3.ll 

'n kontinE>ntale rand. Afsetting van die basale klastiese 

Stinkfonteinopeen\iol.qing as breti alluviale waaiers en kuslynsedimE.nte 

het plaasgevind in 'n transgressiewe see . 

Daarna is die Kaigas diamikticte en vulkanoklastiese gesteentes van 
die Formasie Rosh .Pinah as tru3.st:tav1.oe.L-afsettings gevor111 in ~okaal 

ontwi kkelde grabens. Gedurende die fi nale fases van transgressie is 

sinsedimentere ertslae in stiller waters neerqel~ terwyl rifkarbonate 

langs die kuslyn gevorm het. Hi~rdie seaimeut~ i; uitcindelik bP.dck 

deur mariene klastiese en k::..rbonaat fasies wat afgeset is in 'n 

~arginale see. Na dle opheffing van die kraton het wydverspreide 
ba$lese qange en plate al hi~~die seaimente geintrudeer. Hulle worj 

·.tar c;~gro~peer in die Formasie Ros.~1 Pf: ~~ . 

tied , , !n:ie die ~eevloeruitbreiciingsfase van kontinentale evol1.1.:-{ 9 is 

die k l t.."' t i.ese en karbonatiese gesteentes van die Rildaopeenvol~ in•) 

afgeset in water ·ro.n vlak tot intennediere diepte. Die bas&•·~ 

Wallo~raalko~;lomerato is as lokale waaiers met o~derg~skikte 

puin.:;tortinas uee• Jele en word onderle d&ur die karbona . ~ ··an die 

Formasie Dabierlv-~~. 

Hierna vind re<Jressie plaas en is gestreepte ysterklip forma.~ i : ., 

afgeset in vlak depressies terwyl die glasioqene Numeesopeenvolgir.~ 
se diamiktiete onkonform oor die Hilda en die ysterklip neerqele is . . 
Hulle word opgevolq deur die klastiese diepseegesteentes van die 
Holgatopeenvolginq. Die Witputsopeenvolging oorle die 

Numeesopeenvolqing onkonform lanqs die kontak met vloerqesteentes in 
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die ooste, en word gesien as 'n afgelee vlakT.1ater ekwiva1ent van die 
Holgatopeenvolginq. 

Gravitasietektoniek het 'n belangrike rol gespeel in die aanvanklike 

strukturele ontwik.keling van die Gariepgordel. Massavloeie en 
versakkingsstrukture vertoon prominent in half-grabenstrukture 

gedurende die slenkdalvormingsfase. Die sluiting van die Pan-Afrika 

Adamastoroseaan as gevolg van kontine~tale botsinq het eqte.r gelei 

tot 'n periode van intense en uitgerekte SE-gerigte transpressie wat 
meeste gravitasiestrukture uitg~~is het. 

Die 01 transpressiewe fase het NNW-strekkende vloeroorskuiwings 

gedurende 'n SE-gerigte tektoniese hoof-gebeurtenis veroorsaak. Oit 
het uitinq gevind in 'n aantal tektoniese pulse om boogvormige 

nappe-strukture te vorm (bv. die Marmora-, Schakalsberg- en moontlik 
ook die Rosh Pinah-nappe) wat as s1mbbe oormekaac op die 

dekqesteentes ingeplaas is. Oorskuiwings het gepaard gegaan met 

oo!:-noorr'-ios vergerende F' 1 ploole met asse wat subparallel aan die 

0 1 vervoerrigtinq asook aan die strekkinq van 'n deurdringende en 
weshellende S1 transposisie kliewing g~rig is. 

GedL:rende die 0 1 .-transpressiewe fase het d:.e Schakalsberg oorskuiwing 

wat nou in die Schakalsberge nagsoom, 'n iik laag v~n digte besiese 

gesteentes met ofiolitiese eienskappe op 'n voorland oorgeskuif. 

Gravitasionele onstabilitiet het gevol~l;.Y: ln die kors ontstaan en 

'n waaier van listriese takverskuiwinqs is gevorm aan die 
voorlandkant van die oorliggende en uit~reidende massa. 

Soos die komplekse tektoniet vervolgens verde.t;" ontwikkel kon dit 

verskeie vervormingspaaie gevolg het. Orie gedeeltelik nie-kolineere 

fases van vervorming sluit in: skuins opritte, terugskuiwing en 

terugplooiing. 

Die Annisfontein antiklinoriu.m kon gevorm het as 'n o,, vloer 

oorskuiwing wat oor ~ opr~tte geplooi is as gevolg van voortgesette 

druk vanuit die weste. Gedurende hierdie puls is ander 01 strukture 
ook s1l.b-ko-aksiaal herplooi deur nie-sillindriese WSW vergerende F2 

skuifskeurplooie as gevolg van oos-gerigte druk oor NNW strekkende 

opritte. Sulke strukture is blootgestel as teruqplooie in die 
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Namuskluft-Dreigratberg omgewing en word ook .afgelei vir die diepe~ 
vlakke van die westelike gebied. 

Die semi-allochtone Foanasie Rosh Pinah met die Rosh Pinah 
ertsliggame in die tipe gebied is herplooi qedurende o2 in 'n 

hinterland verg~r~~de antiklinorium as gevolg van sy nabyheid aan die 
groot skuinsoprit'Ce. Dit was ook veralltwoordelik vir die steil 

opskuiwings in die Rosh Pinah-Namuskluft-Oreigratberg gebied, wat 
waarskynlik omgekeerde, hoogs vervormde graben en horst strukture 

verteenwoorcdg. 

Op die oostelike flank van die 'rmisfontein antiklinorium het 'n 
hintarland-hellende dupleks uit opeenqestapelde strukturele waaiers 
ontstaan bo-op die vervormde en oorgeskuifde sedimente (die 
Pickelhaube duplekstruktuur). Dit is die gevolg van die vasdruk en 
versteiling van opritte teen die vloergesteentes. Voortdurende 
opwaartsbogqeling ~an die Annisfontein antjklin~rium, of as gevolg 
van opstapeling van oorskuiwing, of as gevolg van veelvuldige opritte 
gevorm langs 'n oorspronklike vloerongelykheid, veroorsaak dat die 
oos-hellende dele van die Rosh Pinah-nappe gede-aktiveer is. 

In die ooste mag beperkte laat (post-kompressie) qravitasionele gly 

van die oorgeskuifde sedimente in die dak van die Rosh Pinah-nappe 
die terugplooiing van oorgeskuifde Hildalitologiee aangehelp het. 

Die feit dat litologiee skuins opgery het teen die kratoniese rand 

en dalk ook teen dieper gesetelde opritte, verk.laar heel moontlik die 
~ stru.k.ture. As gevolg van differensieele beweging is hierdie F3 

plooie soms effens oorgeplooi na die suid-ooste. Sodoende het gly 
plaasgevind langs kliewingsvlakke om klein3kaalse oorskuiwing met 'n 
NE-SW strekking skuins tot die ouer strukture te vorm. Die 
interferensie van hierdie plooifase met die ouer strukture is 

verantwoordelik vir die noord-suid golwing van alle sigbare strukture 
en daarmee die landskap as sulks, soos gesien vanuit die ooste • 

. 
Die laat, laterale transtensiewe fases D~-D.s het gevolg op die 
intrusie van die Kuboos-Swartbank plutone en is nie goed 

verteenwoodig in hierdie studie area nie. 
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Die Gariepgordel was onderhewiq aan 'n verlengde periode van laer 

qroenskisfasies metamorfose (M1) , gevolg deur 'n tweede en lokale 

kontakmetamorfe episode (M2) wat veroorsaak is deur die intrusie van 

die Kuboos en Swartbank plutone in die Richtersveld. 
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ABSTRACT 

THg STRUCTURAL AND STRATIGRAPHIC SETTING OF THE ROSH PIMAll Z!NC­
LEAD DEPOSIT WITHIN THE GARIEP TROUGH 

A geological investigation in the Rosh Pinah, Obib and 

Pickelhaube Peaks and Namuskluft-Dreigratberg areas has 

established the structural and stratigraphic setting of the Rosh 

Finah zinc-lead deposits within the Gariep Trough. The 

sedimentary evolution of the Pan-African Gariep Belt was 

initiated by widespread rifting and opening of an ocean (the 

Adamastor Ocean) along a continental margin. Deposition of the 

basal elastic Stinkfontein Sequence as broad alluyial fans and 

strandline sediments took place in the transgressive sea. 

The mass flow Kaigas Formation diamictites and volcaniclastics 

of the Rosh Pinah Formation were subsequently deposited in 

locally developed grabens. Syn-sedi11 . :ary ore beds of 

hydrothermal origin (including Rosh :!-' ·.ndt orebodies) were 

precipitated on the sea floor while reef c arbonates formed along 

the coast line durinq the final stages ~f transgression. These 
sediments were eventually co1:~red by a marginal marine elastic 
and carbonate facies with widespread intrusion of basic sills and 
dykes following uplift of the craton. These rocks are here 

grouped within th.e Rosh Pinah Formation. 

During the sea floor spreading stage of continental evolution the 

elastic-carbonates of the Hilda Sequence were deposited in ~ 

shallow to moderately deep-water environment. The Wallekraal 

conglomerates were deposited as local submarJ~e fans with minor 

debris flows and are overlain by the Dabie River Formation 

carbonates. 

During regression banded iron formations were deposited in 

shallow depres&ions and the glaciogenic ~um2es Sequen~e 

diamicti tes were deposited unconformably above the Hilda Sequence 

and iron formations. These in turn are overlain by the deep­

water elastics of the Hol9at Sequence.. The Witputs Sequence, 

which unconformably overlies the Numees Sequence along the 

basement in the east is seen as a proximal shallow water 

equivalent of the distal Holgat Sequence. 

Stellenbosch University  https://scholar.sun.ac.za



( vii ) 

Gravity tectonics played an important role during the early 
st~uctural evolution of the Gariep Belt. Mass flow and slump 

Etructures featured prominently in half graben structures f ocmed 

uring th~ r lfting stage. tlo\lever, the closing of the Pan­
Afri can li.damastor Ocean as a res•.ilt of subduction and continental 
colli&ion led to a 5ingle~ very intensive and protracted period 
of SE directed transpre.s&ion, which largely obliterated all 

gravity deformation characteristics. 

The D1 t _-anspressive phase produced NNW-trendinq basement­

involved ob) ique ramps durin'1 a major SE-directed tectonic event .. 

which c•tlmin;•ted in several deformation pulses. Arcuate nappe 
structur"s we ·e tormed, e.g. the Marmora, Sch~kalsner9 and 
possibly t ile Rc>su Pinah Nappes as a result of the oblique 
emplacement of thrut.t slices over the cover rocks. Thrusting was 
accompanied by ~~st-n,~thea~t-ver9in9 F1 tolds with axes r~ta~ed 

sub-parallel co the 0 1 tl'ansport direction, and a penetrative 
westerly dipping s, tran,position cle~vage. 

The master Schaketlsberg Thr·•st emplacE"d a thick slice of denue 

basic r-ock with o{J!liol.\ti~ a"t'finitie!'; cnto a foreland situated 
in the Schakalsberg n1?untains t.a:uring t he 01 tr.:inspressive phase. 
Gravitational instab?..1 it~· wa& t hereby caused i n the c rust, and 

an imbricate fan of li~r...rie :ipJ a y faults !'ormed in fro nt 'lf the 
overlying spreading mass . 

several detormation paths for the complicated tectonit£ 

containing three partly non-colinear phases of deformation can 
be envisaged from here which includes obli que ramping, 

backthrusting and backfolding. The Annisfontein anticlinorium 

may have tormed as a 01 basement thrust ruped u~, secti~>n and 

folded d'le to continued pressure from the 'ii. Duri .1g this k ulse 
D1 structures were sub-ce>a.icially refolded by non~ cylindrJcal wsw­
verginq F2 Shear folds because of E-directed compression aoroca 

NNW trending ramps. This is displayed in the Namusklurt­
Dreigratberg area and is also i nferred for th~ deepe~ levels ot 

the western areas, and leads to backfolding ~v~r most or the 

area. 

Th.e semi-allocbthonous Rosh Pinah Formation containing the Rosh 

Pinah orebodies !1. the type area WO."> refolded during 01 into a 

hinterland··ver9ir<9 ant ~c;. inorlum because of its proxim.\:y to the 
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mQjor oblique ramps, which are also responsible for the steeply 
dipping thrusts in the Rosh Pinah-Namuskluft-Drei9ratber9 area, 
and which probably represent highly deformed earlier graben and 
horst structures. 

o~ the eastern limb of the Annisfontein anticlinorium, a 
hinte1·land-dipping duplex of im;,,ricate fan sheets developed on 
the defoniaed and overthrust sedime~ts (the Pickelhaube Duplex 
Structuce) as a result of ramping and steepening against the 
basem~nt. Continued up~ard bulging of the Annisfontein 
antic)inorium due to either antiformal thrust stacking or 
multiple ramping along an initial basement irregularity on the 
footwall resulted in east-dippi.ng parts of the Rosh Pinah Nappe 
Thrust b~ing inactivated. 

Late : limited q~avitational gliding of the overthrust sediments 
alonq the Rosh Pinah Nappe Thrust to~ards the east may have 
followed contracti ooal defor111ation t o enhance backil"lldin9 of 
thrust slices of Hilda lithologies i the dup lex zone . The 
oblique ramplnq of l ithologies a~ainst t~e cratonic margin and 
poB~i~ e deaper seated ramps finally also accounts for DJ 

structureG . 

Due to cd fferen . ial movement these F1 folds may be slightly 
overturned c warc\s the southeast, with slip occurring alonq 
cleavage p to outline minor thrustinq oblique to the 
previous and trending NE-SW. This foldi~q phase resulted 
i n th• pt.e" 

the lan sc 
1 y north-sout~ undulation of tho structures and 

The late lateral transter.sive phaseli 04-D) resulted from the 
emplacement of the Kuboos-S«artbank plutons and are not well 
represented in this are~. 

The Gariep Belt has been subject to a protracted period of lower 
qreenschiat fa.cl•• metamorphism (M1), followed by a second local 
contact-thermal event (M2) which resulted from the e111placement of 
the Kuboos and swartbank plutons in the Richtersveld. 
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texture (uncrossed nichols; scale lcm ~250 µm) 

R~ndomly orientated biotite porphyroblasts overgrowing the 

internal (Sa) fabric. 

synoptic cross-sectional sketch to illustrate the tectono­
stratigraphic sequence near the Orange River. 
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Fig. 16 

Fig. 17 

F'ig. 18 

Fiq. 19 

Fig. 20 

Fig. 21 

Fig. 22 

Fig. 23 

Fiq. 24 

Fig. 25 

Fig 26 

xvii ) 

Composite field sketch to illustrate the tectono-
stratigraphic sequence in the: 

a) central parts of the Namuskluft syncline 
b) along the basement contact further north. 

Conglomerate with carbonate clasts which occurs as a marker 
within the WitputJ Sequence in the central Namuskluft 
syncline (P/10, Annexure 1). 

Photogeological map of Dreigratberg syncline. 

Schematic sketches to illustrate the stratigraphic sequence 
and structure of Dreigratberg. 

Synsedimentary breccia of dolomite with tabular clasts 
floating in a sandstone matrix. Eastern limb of Dreigratberg 
(P/11, Annexure 1). 

Field sketches (looking north) of various east-verging F1 

meso-folds (left column) or F1 sheath folds (right column) 
located in the Witputs Sequence and along the Orange River 

Group contact (P/7, Annexure 1). 

The contact zone of the overlying Pickelbaube carbonate with 
the Wallekraal schists with F2 kink folds. 

Macro-F2 backfold just overturned towards the west (right) in 
Wallekraal conglomerates and grits. 

Near symmetrical F2 folds in Wallekraal schists. s1 , prominent 
S2 axial planar cleavage and S3/S1 intersection lineations are 
also recognized. 

Open F1 fold with east-dipping (left) S2 axial planar 
cleava9e. 

Field sketches of meso-F1/F2/F> interference folds in the 
study area as seen in profile looking north. 

Varved shales within the Numees Sequence (looking north) with 
steeply east-dippinq 52 spaced cleavage. 
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Fiq. 28 

Fig. 29 

Fiq. 30 
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Open, near symm~tric FJ fold with plunge towards the west. 

Asymmetric F3 kink fold with SE-dipping axial planes (kink 

planes) in diamictites of the Sendelingsdrif Formation. 

Part of a zone of shearing and cataclasis of quartz veins 
along the thrust contact of the hasement and cover sequence 
(N/4, Annexure 1). 

The orlentation of long axes of clasts in the: 

a) the Wallekraal conglomerates 
b) Numees diamictites in study area 

(See Annexure 1). 

Fig. Jla Map of the northwestern Richtersveld and southwestern 
Namibia showing the variation in orientation of the X-axis 
of the strain ellipsoid. 

Fig. Jlb Projection of the attitude ot the X/Y strain ellipsoid onto 
a NNW to NNE near vertical plane along the eastern contact 

to the basement. X/Z strain ratios as well as possible 
changing uJ/u2 stress trajectories are also shown. 

Fig. J2 Carbonate breccia zone with rnudflow characteristics. 

Fig. JJ Fabric data tr om domain l 

Fig. 34 Fabric data from domain 2 

Fig. J5 Thrust imbrication (overstep thrust sequence) along 

cover/basement contact on Namusklu!t (P/8, Annexure 1) • 

Fi9. 36 Fabric data from domain 3 

Fiq. 37 Fabric data from domain 4 

Fig. 38 Fabric data from domain 5 

Fiq. 39 Fabric data from domain 6 

Fig. 40 Fabric data from domain 7 
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Fig. 42 

Fiq. 43 

Fig. 44 

Fig. 45 

Fig. 46 

Fig. 47 

Fig. 48 

Fig. 49 

Fig. 50 

Fig. 51 

Fig. 52 

Fiq. 5J 

Fig. 54 

Fig. 55 

Fig. 56 

xix 

Fabric data trom domain 8 

Fabric data from domain 9 

Fabric data from domain 10 

Fabric data from domain 11 

Fabric data from: {a) the Wallekraal schists, and (b} the 
overlying Pickelhaube carbonates to illustrate discordance 
in structures. 

Planai.· crossbedded sequence in Gumchavip quartzites 
approximately J km to the north of Obib Peak. 

Cross-sectional sketch to illustrate the tecton~­

stratigraphic sequence in the vicinity of Obib 
Peak. 

Quartz veined zone typical of the SOm wide thrust f.ault 
exposure approximat9ly 2km to the east of Obib Peak. (Valley 
Thrust). 

Lithostratigraphic profile of the Northern Orefield No. l 

orebody, Rosh Pinah Mine (domain 16, Annexure J). 

Obib Peak with thrust contact in the east. 

Fabric data from domain 12 

East-verginq macro-F1 fold in l ne proximity of the Valley 
Thrust. 

Fabric data from domain lJ 

Fabric data f rcro domain 14 

Intratolial F1 !old in quartzite, trunc t ed by a 0 1 thrust at 
the base. 

Fabric data trom doaain 15 
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Fig. 57 

Fig. 58 

Fig. 59 

Fig. 60 

Fig. 61 

Fig. 62 

Fig. 63 

Fig. 64 

Fig. 65 

Fig. 66 

Fiq. 67 

Fig. 68 

Fig. 69 

( xx ) 

Fabric data from domain 16 

Fabric data from domain 16 

\l'abric data from two areas north-west of the mine in domain 
16 

Distribution of major orebodies relative to F2 and Fl regional 
fold trends within Rosh Pinah Mine Grant Area. 

Fabric data from the vicinity of B-mine in domain 16 

Fabric data from domain 16 

Fabric data from the Mountain Orebody area in domain 16 

Fabric data from domain 17 

Cl ) 

b) 

Opening of the Adamastor Ocean with subsequent 
transgression over the Congo and Kalahari Craton&. 
Formation of the fault controlled Khomas Sea with 
subsequent closure an~ collision (after Stanistreet et 
al., 1991). 

Orientation of movement axes displayed on: a) equal area 
lower hemisphere stereoplot and b) rose diagram. 

Flexural model to illustrate lithosphe.•::e response to 
2upracrustal loading, e.9. through overthrustin9. 

Sequential development of different thrust sequences 
a) in-sequence thrusting 
b) out-of-sequence thrustin9 

The geometry of a single thrust sheet, outlining three types 
of folds, which commonly occur: 

a) ramp anticline (fault-bend fold) 
b) intraplate fold (fault-propagation fola~) 

c) tight folds at leading edge (after Boyer,1986). 

Fig 70(a) F, folds with 03 thrusting along the base. 
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Fig 70(b) o, thrust contact in Wallekraal grits. 

Fig. 71 

Fig. 72 

FiCJ. 73 

Fig. 74 

Fiq. 75 

Fi9. 76 

Table 1 

Table 2 

A north-south profile from north ot Rosh Pinah to south ot 
Guachavib Peak outlini~9 major open F1 folds and thrusts. 

The pitch angle of a horizontal slip vector on an oblique 
ramp depends on the strike of the ramp relative to the slip 
direction. 

The sedimentary history of the Gariep &elt aa dispicted in 
five episodes. 

The tectono9enesis Episodes 6,7,8 and 
9. 

The tectonoqenesis of the Gariep Belt. Episodes 7a,8a and 
9a. 

The tectono9enesis of the Gariep Belt. Episodes Bb,9b and 
10. 

LIST or TULIS 

Stratigraphic classification of the Gariep Belt (Post 1980). 

Results of Strain Analysis 
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LIIT or rICfVBll 

Pig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

The strain ellipsoid (after Ramsay and Huber, 1983) . 

A graph to illustrate the method to determine the principal 
strain ratio i n the tv~ diaensions from deformed circular 
objects (after Ramsay and Huber, 1983) 

Deteraininq the principal strain ratio in two dimentiions by 
using the centre to centre method. 

A ~/I plot of Nuaees diamictite clasts of an area east of 
Drei9ratber9 beacon (Q/19, Annexure 1) 

A standard R;/B chart of Lisle (1985) . 

A diagram to establish the estimated R. from the harmonic 
mean (after Lisle, 1985). 

LIST or TAILIS 

Table 1 Critical values at Inw used in the Symmetry Test (after 
Lisle, 1985). Values qiven are the 5\ (10\) percentage 
points of the 1 ...... distribution. 
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1. INTROQUCTIOtl, 

1. 1 Qbjectiye of Study 

Mapping by Von Veh (1988) has indicated t he complex 
stratigraphic and structural relationships of the Gariep Belt 
rocks south of the Orange River, which re~ulted from 
extensive regional thrusting. 

Against this background the stratigraphic and structural 
relationships in the Rosh Pinah area (Fig. 1) were studied 
along two traverses, and the basement/cover relationships 
were al~o examined in the Namuskluft-Dreigr~tberg area (Fig. 
2) • 

-zs• 

.lo• o 

~· • Wmiihoek 10• 

BOTSWANA 

l uderitz 

Oran1e111uod 
Altnnder 81y 

zoo It• 

NAMIBIA 

Spnngbok 

SOUTH AFRICA 
' • 10• 

• 

Fig. l Locality plan of study area. 

JO•-

Apart from a structural tectonic anc.lysis to expand and 
amplify on the work ~f Von Veh (1988), the ultimate aim of 
the study was to try to clarify the stratigraphic and 
structural position of the economically important aosh Pinah 
Formation within the broader Gariep ~rough. These results 
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have implications tor further explo~ation ot the area but are 
not discussed in this study. 

l.2 Location and Physiography 

Detailed geological mappit.g iwovered 290 square kilometres 
along specific traverses in the area south and west ot Roah 

Pinah and in parts or Diamond Area No 1 (Fig. 2). 

A larqe sandy plain extending N-S forms thP. central part of 

tnu region, and is bounded by Gariep rocks forming the Obib 
and part of the Namuskluft mountains. Elevations vary from 
a maximum of 902m at Obib Peak, to 5Gm at the a.range River. 
The ain acceGs to the area is via a gravel road leading 
froll\ Rosh Pinah to the St~.ce Water Scheme (F.i.g. 2) at the 

Orange River. Several tracks give adequate access to the 
outcrops on Namuskluft, ~~ile valleys between the hills in 
the Sperrgebiet can comfortably be negotiated by four wheel 
drive vehicle. 

The climate is arid with dD average annual rainfall of only 

72mm and sparsely distributed xerophytic shrubs and hardy 
grass grow along dry watercourses. The well-known Kokerboom 
(Aloe dichotoma) and the characteristic Halfmens (Pachypodium 
namaquensis) are prominent on many of the koppies and hills. 
Patt of this area has been proclaimed as a nature and 
recreational reserve. 

1.J Proyious research 

While extensive jnvestigations have been undertaken on the 
South Afri~an side of the o~anqe River (the barren 
Rich~ersveld), th~ area in southwestern Namibia has received 
less attention as it is partially covared by the prohibited 
diamond area (Sperrgebiet) . 

The !irst reconnaissance survey on the South African side of 
the Orange River was undertaken during 1915 by Dr A.W. 
Rogers, and was followed by an extensive mapping program by 
De Villiers and S8hnge during 1959. Since 196J the 
Precambrian Research Unit ot the University of Cape Town has 
been studying the crustal evolution in the southwestern part 
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of the African continent (Martin, 1965). Several mapping 
projects have been undertaken, the most recent being the 
research of Von Veh (1988). 

The discovery of the Rosh Pinah orezone in southern Namibia 
during regional mapping by McMillan in 1963 generated 
interest in this area. Mining and prospecting activities 
{Page and Watson, 1976; Page and Kindl, 1978; Van Vuuren, 
1986; Siegfried, 1990) broadened the local geological 
knowledge. 

The geology of the Western R1chtersveld and adjacent coastal 
areas was revised by A. Kroner in 1969-1970, . and several 
researchers worked in the area dur lng this period (Kroner and 
Germs, 1971.; Kroner and Rankama, 1972; Kroner, 1972, 1974, 
1977a, 1977; Kroner and WAlin, 1973; Kroner and Jackson, 
1974; Kroner and Blignault, 1976; Kroner and Hawkesworth, 
1977; Kroner et al. I 1980, Von Veh, 1988). 

1.4 Present research 

Kroner {1974), differed from McMillan's (1968) regional 
geological interpretation and set out to remap the Rosh 
Pinah-Obib hills area but never completed the project. This 
and the general lack of a modern tectonic analysis served as 
a stimulus to study the area more closely. 

This study combined photogeological mapping with st~uctural, 
s ratigra~ric and minor sedimentological data gathering and 
int -rpre~atlon. The method used in this polyphase deformed 
area wa~ to carefully document and analyze all large and 
small scale structures and try to relate them to each other 
as far as style and attitude were concerned, and as far as 
possible over areas homogeneous at least with respect to ~n~ 
major structural element. 

Special attention was paid to the following features: 

a) varying bedding attitudes 

b) fold interference patterns 
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c) deformation of older p~anar and linear structures 

In the field a Breithaupt Coclar structural compass was used 
and fabric elgments were plotted as poles on equal area lower 
hemisphere stereographic projections (Schmid~ net) by 

utilizing the Pascal computer program written by c. Stowe 
(1988) of the Precambrian Research Unit, University of Cape 
Town. The direction and dngle of dip or plunge of planar or 
linear fabric elements respectively are indicated. 

Finite strain analysis of certain rocks in the area was 
undertaken by measuring deformed particles within the Numees 
diamictite, and conglomerate pebbles ~ithin the Wallekraal 
Formation. The Rf/8 method of Ramsay (1967) was applied 
using the standard theta graphs of Lisle (1985). 

Petrographic examinations were undertaken on thin sections 
to record metamorphic minerals and paragenesis, and to study 
their relationships to micrcstructures. Twenty rock samples 
were also analyzed by X-ray diffraction to define the 
mineralogy. Fourteen thin sections were stained with a 
solution of Alizarin ~ed and potassium f~rricyanide to 
differentiate between calcite and dolomite. 

1.5 Regional Setting 

The Gariep Belt is an arcuate north-south trending tectonic 
unit straddling the orange River and stretching from south 
of Kleinzee in the north-western cape to due south of 
Luderitz Bay in south-western Namibia. 

The Gariep sediments were originally deposited in a coastal 
geosyncline, whi;h includes the Saldanian, Garlep, Damaran, 
and West Congo fold-thrust belts, all of which were formed 
during the upper Proterozoic/lower P l t •v ~\c Pan-African 
event (Clifford, 1967; Stowe et al., ::. ti • : Fig. J). 

The Gariep Trough has a strike length in t he order of 400 km 
with an inland extension of up to 80km, and the sediments lie 
uncon!ormably on the melavolcanics (De Hoop and Haib 
Subgroups) and metasediments (Rosyntjieberg Formation) of the 
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early Proterozoic (Kibaran-age} orange River Group of the 
Richtersveld Subprovince (De Villiers and Sohnge 1959). 

The metavolcanics have been intruded on a 
cogenetic ~ 1900-1730 Ma Vioolsdrif 
(Blignault, 1977; Reid, 1977, 1979, 

large scale by the 
Granitoid Suite 
1982) . Highly 

metamorphosed and deformed suites ot granites and gneisses 
of the Bushmanland and Gordonia Subprovince of the Namaqua 
Province lie in contact with the Richtersveld Subprovince. 

Previously th£ Gariep cover rocks were seen as a geosynclinal 
assemblage containing an eastern "miogeosyncl inal" and a 
western "eugeosynclinal" unit. (Martin, 1965; McMillan, 
1968; Kroner, 1972, 1974, 1975). Currently it is 
interpreted as a tectonostratigraphic sequence and has been 
named the "Gariep Complex" (South African Committee for 
Stratigraphy, (S~CS, 1980), "Gariep Arc" (Davies and coward, 
1982), "Cariep Province" (Tankard et al., 1982) and "Gariep 
Belt" (Von Veh, 1988). 

The belt can be divided into two structural entities, viz. 
an eactern "Port Nolloth Zone" and a western "Marmora 
Terrane" which are separated by the Schakalsberg thrust fault 
(Stowe et al., 1984; Hartnady et al., 1985). The Port 
Nolloth Assemblage (Von Veh, 1988) is considered a para­
autochthonous uriit located on the western edge of the 
Kalahari Craton, while the Marmora Terrane is seen as an 
allochthonous ophiolite terrane. 

The late Precambrian-Cambrian elastic-carbonate lithologies 
of the Nama Group have been deposited within a torel~nd basin 
to the east. Major units of the group are the lower Kuibis, 
overlain by the Schwarzrand and finally the Fish River 
Subgroups (Germs 1972, 1974). Germs (1983) relates the 
deposition of the Nama above the Gariep to a single major 
geotectonic cycle with the deposition of the upper 
Schwarzran' and Fish River Subgroups occurring during uplift 
associated with the Damaran oroqeny. 

A number of pre-, syn-, and post-tectonic intrusions provide 
age limits for the Gariep Belt. The largest of the 
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TECTONIC PROVINCES OF SOUTHERN AFRICA 

PROVINCES 

I}~ ·g DAMARA 

[OJ HAl1AtlUA 

IMOOIF'EO AFTER STOWE ET AL.1984) 

-.r-

KAAPVAAL 
PROW~Cf 

25 

~ '" ?" ~" \ff h 
• I • • -35• 

lS• JO• 

Tectonic provinces of Southern Africa (modified after Stowe 
et al., 1984). 

intrusions consists of a large batholith (the Kuboos pluton) 
and two smaller plutons of granite and leucoqranite !Van 
Biljon, 1939; Sohnge and De Villigrs, 1948), and the 

Gannakouriep dyke swarm defined by northeast trending mafic 
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rocks (De Villiers & 

Kroner· & Bli9nault, 1976; 

Sohnge, 1959; 

Reid, 1979). 

A late set of aplite, ~ranite porphyry, basic and bostonita 
dykes of early Phanerozoic age cut the plutons (Kroner & 
Hawkesworth, 1977). 

The Namib desert dunes cover most of the western part of the 
Gariep Belt over a considerable area and no detailed mapping 
has been undertaken here. 

1.6 Geochronology 

Dating of the Gariep Belt rocks has been very unsuccessful 
up to the present as radiometric ages obtained cannot be 

interpreted with certai~ty as primary ages. The presence 
however, of several syntectonic and post-tectonic intrusives 
have yielded primary radiometric ages, which can be 
correlated with episodes of the lat9r Gariep history (Tankard 
et dl., 1982). 

Fig. 4 is modified after Von Veh (1988) ~nd summarizes dates 
and tectonic events. The s:?din.cmtation stage of the Gariep 
Belt rocks can oe placed in t he period 6J0-900 Ma as 
confi:-rned by scvet·al age measurer•cnts e.g. the intrusion of 

pre-Gariep alkali qrafi1tes and syenites of the Richt~rsveld 
Igneous r.uite at 1: 900 Me;; !Allscpp et al., 1979) which marks 
the lower limit. 

The Gannakouriep Jy.k.•?S intr1..<a'9 the Richtersveld Igneous suite 
as well as the lower part of tne Stinkfontein Sequence and 
define a minimum age of 717:!:;11 Ma for the base of the Gar i et• 
Belt (Reid et al., 1991). Other age limits for 
Gariep intrusive Gannakouriep Dyke Suite, e.g. 40A 
falling in the range 500-550 Ma (Reid, 1977; 

s 

similar ages of 543 ± 15 Ma as stated in De Villiers, - J), 

and 542 ± 4 Ma in Onstott et al. ( 1986), are thought to be 

reset ages. 

The minimvm age of the Gariep Belt is confirmed by the age 
of the post-tectonic KubooR-Bremen line of plutonic 
intrusives with Rb-Sr dates of 500-550 Ma (Nicholayson and 
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Burger, 1965). This age can be compared to the age or Damara 

deformation at 650-550 Ha, (Kroner, 1982; Downing and 
Coward, 1981), and the Gariep and Damara Belt1; are therefore 
interpreted to form part of the widespread Pan-African 
tectono-thermal event (Kennedy, 1964). 

In the Rosh Pinah area felsites have been dated by Rb-Sr 
methods at 719 ± 28 Ma by Welke (in De Villiers, 1968) and 
683 ± 32 Ha by Allsopp at al., (1979). Koppel (1987) 

established model J01pb/lOIPb ages for Rosh Pinah lead ores but 
concluded that the values of 1065 to 1145 Ma appeared to be 
too old. 

The minimum age for the basement rocks to the Gariep Belt 
(the Orange River Group) is defined by the iadiometric age 
for the intrusive Vioolsdrif Sui~e at 1731-1900 Ma (Reid, 
1979), which are co9enetic and temporally closely related. 

REGIONAL STBATIGBAPHX 

The most recent stratigraphic classification (modified after 
Von Veh, 1938) is outlined in Table 1. Minor adjustments and 
extensions to the lithostratigraphy and some rearranging of 
certain formations, e.g. the Rosh Pinah Formation are made 
here. 

Basement Complex 

Distribution and stratigraphy 

The Richtersveld Subprovince is underlain by the volcano­
sedimentary sequence of the Orange River Group (ORG) and the 
co-genetic intrusive Vioolsdrif Suite, which form the 
basement to the rocks of the Gariep Belt. The orange River 
Group appears as steeply dipping, NNW-strikin9 wedges of 
volcanic rocks, in contrast to the Namaqua Mobile Belt 
pegmatite belts and shear zones, which generally strike 
oblique to this direction towards the NW. 
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Blignault (1977) has divided the ORG into three units as 
follows: 

Orange River Group 

Haib Subgroup 
(Wilgenhoutdrif Series) 

Rosynebos Formation 
(Kaaien Series) 

De HovL Subgroup 
(Marydale series) 

He recognized three volcanic units within the De Hoop 
Subgroup, which forms the lowermost exposed portion of the 
basement rocks. 
feldspar porphyry, 

These units are a leucocratic quartz 
which structurally overlieo a darker 

feldspar porphyry, which in turn is overlain by a mesocratic 
mafic aphanite. On the farm Aussenkjer the mafic De Hoop 
volcanics were recognized with intercalated lenses of 
volcanic breccia. These volcanic rocks are unconformably 
overlain by the Rosyntjieberg Formation (formerly the 
Rosynebos Formati~n), which is a very distinct unit 
constituti ng all the sediments in the ORG. 

The main members of the unit are ortho­
quartzites, ripple marked iron formation 
psammites and pelites (Shimron, 198 l). 

and feldspattd.c 

and iron rich 
The upper Ha ib 

Subgroup can be divided into a maf ic Nous Formation and a 
felsic Tsams Formation (Blignault, 1977). 

The orange River .-;:t"oup rocks h'1ve been subjectee. to the 

almandine-amphibolite facies of metamorphism. No basement 
to the ORG has ever been recognised. 

Lithology 

In the study area only the De Hoop subgroup is exposed and 
consists dominantly of dark green chlorite-bio~ ~~e schists 
containing quartz and feldspar phenocrysts. The~e rocks are 
fine-grained and well-foliated and are intercalated with 
fine-grained grey quartz.-sericite schists containing feldspar 

phenocrysts. 
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The intrusive Vioolsdrif Suite (grey gneissic granite of De 
Villiers & Sohnge, 1959) is a general name for numerous types 
ot intrusions including basic-ultrabasic complexes, diorites, 
tonalites, granodiorites, adamellites, l~ucogranites and 
minor amounts of mineralized porphyritic intrusives (Minnit, 
1992). In the Resh Pinah area prominent outcrops of this 
suite underlie low hills dua east of the Gariep Belt (Fig. 
2) • 

The granodi~rite rocks are grey-brown, mP.socratic and medium 
to coarse-gra!ned with occasional lenticular ma fie 
inclusions. They co.1sist of quartz, plagioclase, K-feldspar 
and mafic minerals, which include hornblence ·and biotite. 
Accessory amounts of sphene, rutilP., leucoxene, zircon and 
opaque minerals are also present (Minnit, 1992). 

Depositional environment 

Blignault (1977) has established that the De Hoop Subgroup 
is composed m~stly of dacite, although the full range trom 
andesitic to rhyolitic lavas are present. The orange Rive~ 
Group therefore constitutes a differentiated lava suite with 
a predominant dacite and andesite charactc~. These rocks 
form part o! a calc-alkaline series (Reid, 1974). 

Due to intense deformation the volcanic breccias and tuffs 

of the Haib Subgroup lack primary structures, which could 
indicate subaqueous deposition. No pillow ctructures have 
been iclehtitied, and Bligr~~lt (1977) uses this as evidence 
for a RUbdreal environment. 

2.2 The ~tinktontein s~nuon~ 

Distribution ~nd strati~ lphy 

Von Veh (1988), groups the lithologies immediately overlying 
the b~sement in the Annisfontein anticlinorium (Annexure J) 

within the Stinkfontein Sequence and names them the Gumchavib 
Formation o ~ter a prominent peak . 1 .km ne"rth of the Or<"nge 
Rivnr. He strati9raphically places this formadon a\: the to:­

ut the Stinkfontein Sequence above the Lckkersing Formation. 
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TABLE 1: STRATIGRAPHIC CLASSIFICATION OF THE GABIEP BELT (POST 1980) 
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Observations of Haughton (1961, 1963), indicate th~t 

Gannakouriep dykes intrude only stinkfontein beds but not 
other Gariep lithologies and that membtrs ot the latter are 
absent in places where b~sement and Stinkfontein rocks are 
in proximity to one another. A similar situation occurs in 
the Obib mountains. 

The Stinkfontein Sequence was originally subdivided into 4 

members by Van Biljon (1939) fro1.- the top to the base: 

Vetborg quartzites and schists 
Klein Owarsberg quartzites 
Gelykwerf grits, quartzites. and ti1in conglomerates 
Dwarsberg group of quartzites with alternating schists 

Joubert & Kroner (1972, p.48), however propo~c:.d a i •. ·~ ld. 

sub-division based on lithological differences: 

Upper Stinkfontein Formation 
Lower stinkfonte1n Formation 

These two formati ons were changed to the Lekkersing and 
Vredefontein Members by SACS (1980) . 

The Vredefontein Member (Lower Stinkfonte in Formation) ~as 

an intercedded relationship with an upper diamictite-dolomite 
unit, the Kaigas Member (Kroner, 1974) • Von Veh ( 1988) 

interprets this member as consisting of all the diamictite-
9rit units immediately overlying the Lekkersing and 
Vrede!ontein Member.s as well as the basement complex. 

According to Von Veh (1988) the Numees Prospect diarnictite 
(the original t1pe locality of the Numees Formation) is thus 
interbedded in the Kaigas. This redefinition does away with 
the enigmatic multiple repetitions of diamictite-dolomite 
units of previous authors, e.9. Kroner (1974), leaving only 
two horizons viz. the Kaigas and Numees diamict~tes. 

The major part of the diarnicti t es occurring nortn of 
Dreigratbarg are therefore interpreted by Von Veh (1988) as 
the Kodas beds of the Kaigas Formation. The relationship 
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with the overlying dolomites of the Drelgrat.berg and Five 

Sisters is described as interfingering. 

The Stinkfontein lithologieF in the study area (the Rosh 
Pinah and Gumchavib Formations) occur along an elongated zone 
striking from south of the Orange River to due west of Rosh 
Pinah, forming parts of the Obib and Gurnchavib mountains, and 

in the Rosh Pinah area. These rocks were oriqinally grouped 

within the Hilda Sequence (McMillan, 1968). 

Evidence fol:' a meaningful correlation of the Rosh Pinah 
Formation {previously the Kapok Formation) is scarce. It has 

been correlated by the Geo log teal Survey {Dr. P. Hugo, pers. 
com. to SACS, 1978) with the upper Stinkfontein Formation of 

the Richtersveld. Structural considerations obtained during 
the cu~rent study confirm this interpretation and correlate 
the Rosh Pinah Formation with the central to upper parts of 
the Gumchavib Formation of the Stinkfontein Sequence. 

The correlation is also favoured for the following reason:­
both formations contain similar lithologies e.g. the 
feldspathic quartzites/arkoses and felsic volcanics. The 
latter are however , more prevalent in the Rosh Pinah 
Formati on. Outcrops of felsite occur due east of the Valley 
Thrus~ near Obib Peak (Annexl!re J) in the Gurnohavib 
Formation, and thin horizons of quartz-sericite schists may 

also be interpreted as felsites. 

Other speculative correlations have been with the Wallekraal 
Formation (Von veh, 1988, and Hoffmann, 1989), who see the 

Rosh Pinah Formation as either a local turbid.ite facies 
occurring at the base of the Hilda S~quence, or as a facies 
of the middle Wallekraal Formation. 

A correlation of the Rosh Pinah and Wallekraal Formations is 
rejected because lithologies such as felsic volcanics, basic 
and/or amphibolitic dykes, and continuous dolomite bands a.re 
not found in the Wallekraal Formation. No conti nuous 
outcrops between the two formations can be found. On the 
southern boundary of the farm Zebrafontein to the northeast 
of the study area the Rosh Pinah Formation lmconformably 
overlies the Vioolsdrif Suite along a basal conglomerate. 
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Lithology 

The Gumchavib rocks consists of a mono-r..onous sequence of 
mass ive or cross-bedded grits, arkoses and calcareous 
quartzites, which unconformably overlie the basement. North­
south trendinq amphibolite dykes and sills are intrusive in 
t be sequer.ce and could po11.: i bly be correlated with the 

Gannakouri ep Dyke Swann. S ~rr.L .r amphibolite dykes are also 
present within the Rosh Pinah for~ation. 

McMillan (1968), recognized twc. ;.ith _ units with a 

gradational contact with i n ,.'l"? Hi.i Seq1,ence !hen! 
interpreted as Stinkfontel . !A t h, l ogies) north of the orange 
River !the G2Qcl and G2Qc2 LU_ tq , . The upper unit consists 
of blue-grey elastic carbcnate beds with intercalated 
calcareous quartzite beds up to 50rn thick. This upper unit 
is here placed in the Rosh Pinah Formation. The lower 
quartzite unit may be up to lOOOm thick, but h~s suffered 
thrust duplication and is placed within thu Gumchavib 
Formation. 

In the Rosh Pinah area the Rosh Pinah Formation consi5ts 
mainly of a thick sequence of arkosic to feldspathic 
quartzite with intercalated ar9illites, amphibolite, 
porphyritic felsite, limestone and minor conglomerate 
horizons as well as local carbonate mudflow deposits in the 
upper parts. 

Depositional environment 

Deposition of the sedimentary rocks took place during the 
Pan-African cycle of geosynclinal filling and deformation, 
and is thought to be related to a rifting phase. Most 
previous workers agree that the Stinkfontein sediments have 
been deposited as an alluvial fan or as several broad 
coalescing fans in a proximal to distal braid plain 
environment (Middlemost, 1966; De Villi~rs & Sohnge, 1959; 
Tankard et al., 1982, Von Veh, 1988). Sediments were eroded 
trom an uplifted region to the east. 

The Gumchavib arenites wer1~ deposited under quieter .;;ubmerged 
conditions (Von Veh, 1988) as conglomerates G're virtually 
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absent, crossbedding is scarce and beds are thin. 
Intercalated calcareous quartzites confirm these conditions. 

~nese types of alluvial fans prograde across the basin axis, 
away from the faulted or uplifted basin margin. A possible 
analogue may be drawn with parts of the Newark bas~n (Arguden 
& Rudolfo, 1986), jn which the following deposits were 
identified; debris flow deposits {matrix-supported 
conglomerates), streamtlood deposits (clast - supported 
conglomerates), braided stream strata (coarse pebbly 
sandstones), sheetflood deposits (medium-to fine-grained 
oandstone) and a waning-flood facies (thin mudstones) . 
~owards the final phases of filling of the b~sin, several 
thin dolomite hvrizons were formed. 

Within the Rosh Pinah Formation the presence of widespread 
extrusions of felsic lavas together with basic lavas are 
evidence of a very unstable crust weakened through rep~ated 
stretching. These weak zones eventually ruptured and f.ormed 
elongated conduits for voluminous outpouring of lavas. Rapid 
deposition of immature feldspathic sedimencs preceded as well 
as postdated the volcanic extrusio~s, anrt deposition seems 
to have ended when the rift sediments were cover~d by the so­
na 1 tcd drift sediments (Hilda sequence). 

~ome relev~nt Stinkfontein outcrops in the Gariep Belt (Von 
Veh, 1988) which have a stratigraphic relationship to 
outcrops north of the Orange River will be discussed briefly. 

Nuaees Prospect beds 

This locality was the original type area for the Numees 
Group, and a correla~ion with the Stinkfontein Sequence {Von 
Yeh, 1988) therefor~ merits a discussion. 

De Villiers & Sohnge (1959) 
subdivision in the Numees beds: 

recognized a four-fold 

Upper Stage 

Lower stage 

Upper dolomites 
Arkoses, grits etc. 
Lower dolomites 

Tillite 
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Van Veh (1988) claims that a correlation of +;hese Numees 
Prospect diamictites with the Sendelingsdrif diamictites 
(Numees Sequence) is incorrect for the following reasons: 

1. The Numees Prospect beds rest on base~ent rocks and 
Stinkfontein quartzites, whereas the Sendelingsdrif 
beds are underlain by Hilda sediments. 

2. The Numees Prospect beds are inter.bedded with grit, 
arenite and phyllite, while the SendelinqDdrif Numees 
is unbedded and massive. 

J. The Numees Prospect beds do no~ contain a near basal 
iron formation or ferruginous zone (the Jakkalsbcrg 
Formation). 

4. Carbonate erratics are conspicuously absent in the 
Numees Prospect beds, but are present in the 
Sendelingsdrif diamictite. 

5. The overlying beds do not resemble each other. 

Von Veh (op. cit.) therefore assigns the Numees Prospect beds 
to the older Stinkfontein Sequence as the Kaigas diamictite. 

The distribution of the Kaigas diamictic beds are attributed 
to a debris flow deposition mechanism (Von Veh, 1988) as 
ir.ferred from: 

a) limited geographic distribution 
b) sharp upper and lower bedding contacts 
c) massive internal structure 
d) correlation between clast sizes and bedding thickness 
e) rapid westward decrease in clast sizes. 

The diamictites near Dreigratberg north (Fig. 2) which 
overlie the basement contain varved beds (Fig. 5) and 
quartzites at their base (Fig. 6) together with carbonate 
clasts suggesting a correlation with the Sendelingsdrif 
Formation of the Numees Sequence rather than the debris flow 
deposited Kaigas Formation. Large scale bedding features are 
also present (Fig. 7). 
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Varved ripple- marked siltstone or the Sendelingsdrit 
Formation with some prominent dropstones. The locality is 

0,5 km southwest of Lorelei Mine. Photo lens for scale. 

The Hilda Sequence 

Distribution and stratigraphy 

The Hilda rocks were initially described as the Kaigas Series 
by Rogers {1915). Kroner (1974) however, established that 
the Hilda rocks are younger than the stinkfontein Formation 
and considered them equivalent to the Holgat Formation. 

The Hilda rocks were redefined by Von Veh {1988) and their 
distribution reduced as compared with the classification of 
previous authors (Kroner, 1982). They u~conformably overlie 
the Stinkfontein Sequence and consist of a mixed sequence of 
limestones, dolomites, schists, quartzites, grits and 
conglomerates. 
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Ripple - laminated quartzite at the base of the Numees 

diamictite o! the Sendelingsdrit Formation (at same locality 

as abov~). Geological hammer for scale. 

The relationship of the Hilda Sequence t.o the Resh Pinah 
Formation has been interpreted as a facies char.gc (Davis & 
Coward, 1982), and Von Veh (1988), but McMillan (1968 p.64) 
interprets the contact as unconformable as he has located a 
thin talns conglomerate containing felsite pebbles, 
limestone, grit and dolomite overlying cwo small hills of 
felsite along his major Hamuskluft Fault (Jakkalsberg •rhrust, 
F iq. 2) • 

A threPfol 1i subdivision of the Jii lda rocks based on 
lithological characteristics (Von Veh, 1988) hds he~n made 

as follows: 
Lower carbonate unit (Pickelhaube) 
Mixed rudite-argillite unit (Wa!lekraal) 
Upper dolomite unit (Dabie River) 

Von Veh (1988) limits the Hilda to four exposures in the 
Ri.chtersveld: 

l.Anniskop beds of the AranisfC'ntein C\nticlinor ium 
2.Knubus beds 
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3.The Helskloof Pass beds 
4.The Hakiesdoring beds 

Large scale bedding within the Sendelingsdrif Formation 
diamictites near Namusklutt synclinorium. The thickness or 
the near 'ertical darker coloured unit is approximately 30m 
(Locality P/11, Annexure 1). 

The beds relevant to this study a r e briefly discussed below. 

AnJ)!slcop bed~ 

Th~ Anniskop be:ds are found in the Annisfcntein anticlinorium 
where these dolomitic limestone beds of the Pickelba1.1be 
Formation rest coni.ormably on and interfinger with the 
Gumchavib arenite. In the study area these rocks are grouped 
within the Rosh Pinah Formation as they contain numerous 
amphibolite sills and dykes. 

The overl}ing Wallekraal Formation is a 1400m thick sequence 
of areni~e and rudi~e, alternating with mica schists and 
phyllite with only poorly developed carbonate. 
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Jthubus beds 

In the Ricntersveld the Pickelhaube Formation is represented 
by a thin matble on the eastern limb of the Scndelingsdrif 
synclinorium (Von Ven, 1988). 

In the study area Hilda beds occur in the southern Namuskluft 
syncline, and along the eastern limb of the Annisfontein 
anticlinorium (Fig. 2). 

Lithology 

The Pickelhaube dolomitic limestone in the st~dy area is a 
fine-grained, blue-grey rock containing thin laminations, 
which are here mostly interpreted as an intense bedding 
parallel tectonic fabri~. The thin lenses of grey to reddish 
brow11 arkoses and grey-white phyllite, which are uccasionally 
interbedded south of the Orange River (Von Veh, 1988) are 
here regarded as the upper part of the Rosh Pinah Formation. 
Quartz and calcite veins are abundant in the dclomitic 
limestone. 

The 1najor rock types of the Wallekraal Formation north of the 
Orange River are light-brown to blue-grey quartzites and 
arkosic grits with numerou~ intercalated lenses of 
conglomerates. The conglomerates are made up of a variety 
of boulders, cobbles and pebbles in a light-coloured gritty 
or quaxtzitic 9roundmass. 

The clasts range from well-rounded to angular and have been 
fla~tened tectonically The texture is clast-supp~rted and 
the constituents consist essentially of vein-quartz and 
quartzite, with lesser amounts of gneissic granite, 
granodiorite, quartzitic sandstone, grit, micaschist, 
phyllite and minor dolomite. Intercalated feldspathic grits 
anti arenites 1·ange in colour from beige-brown or reddish-blue 
in the south to dark-grey in the northern outcrop: . 

Isolated irregular to subrounded and angular masses of 
dolomite up to several tens of metres in diameter are found 
throughout the Wallekraal Forrn~t:ion. These bod.i.es are 
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usually very dark - coloured anJ unbedded and probably 
represent biohenns. 

The Wallekraal li~hologies are poorly sorted, with both 
normal and inverse grading. In certain instances the inverse 
bedding was found to occur on the overtur11ed limbs of east­
verging isoclinal F1 folds (Fig. ~). 

East-verging isoclinal F1 fold in lo/allekraal conglomerates 

truncated by 01 thrust. The locality is approximately 4km to 
the east of Pickelhaub~ Peak. 

Different clast s.i..ze ranges are present withln r'_ •. ferent 
lenses but the largest clasts are always dolomitic and were 
subject to the most intense tector.ic deformaticn. Numerous 
rip-up fragments of the Wallekraal schists .:ire present in the 
conglomeratic units. 

The conglomerates and grits form sharp contacts with green­
grey fine-grained schists (the Wallekraal schistsl or may 
grade into this rock with some large feldspar grains alo~g 
the contact. The schists are fine to medium-grained, silvery 
blue-grey to greenish-grey laminated rocks. In thin section 
(specimen NT 128) the schists consist essentially o 11\ .z 
and muscovite, with accessory biotite, chlorite, fela~ -~ ·nd 
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opaque minerals. 
graphitic. 

The well-cleaved rocks are often also 

Shearing within the schists is sho~m by small brown-coloured 
sandstone urits, which have been attenuated to form strin9s 
of ev~-like lenses up to 20cm in length and 5cm thick. 

Depositional environment 

The Pickelhaube Formation 
relatively ~hallow water to 
shelf pal~v-environment. 

calcitic co~position of 

was probably deposited in a 
moderately deep water carbonate 
Von Veh (1988) ascribes the 

the carbonates, the l~teral 

persistence of beds, presence of parallel laminations, 
absence of stromatolites, and relatively high argillaceous 
and graphitic content to a moderately deep water environment. 
The presence of graded beds may be added to this list. 

The better rounded clasts of mainly quartzitic rocks indicate 
a high energy Jepositional environment for the Wallekraal 
Formation in what could have been a submarine fan 
environment. The presence of angular clasts of e.g. 
dolomites suggest a contribution by local slumping from 
bioherms. 

The lateral discontinuity of the conglomerate and quartzite 
units suggests deposition in channels in the upper fan or in 
suprafan lobes in the .midfan region (Von Veh, 1998). A 
moderate to deep water euxinic environment is inferred as 
suggested by the presence of fine-grained carbonaceous 
sediments. The presence of near shore biogenic structures 
within the Oabie River carbonates suggest deposition as a 
barrier bar or shelf lagoon within a shallow water carbonate 
platform environment (Von Veh, 1988). 

The complex Pickelhaube dolomite contact relationship with 
the underlying Stinkfontein Sequence (as seen in the 
int.erfingering with the Kaigas diamictite at Five Sisters and 
at Drei9ratber9 by Von Veh, 1988) cannot be confirmed here. 
The oreigratber~ dolomites are here grouped within the much 
younger Witputs Sequence, which is correlated with the Holgat 
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Sequence, as they strati9raphically overlie the Numees 
diamictites (Table 1). 

2.4 Th~ Numecs Segu'nce 

2.4.1 

2.4.2 

Distribut and stratigraphy 

The non-genetic term diamictite will be used here in 
preference to mixtite, tillite etc. All diamictitic rock 
types north of the Orange River, which fill two thoroughly 
deformed north-westerly trending synclinoria that line up 
over a strike distance of some 120 km have been grouped 
together as the Numees Formation (SACS 1980). These rocks 
conformably overlie the Hilda Sequence (Kre>ner, 1974 p.24) 

in the Richtersveld. 

Kroner (1974) described a highly ferruginous zone along the 
contact of the Hilda Sequence with the Numees Sequence, which 
Von Veh (1988) subsequently named the Jakkalsberg Formation. 

Von Veh (1988) has subdivided the diamictiti1; r.ocks to the 
south of the orange River into an older Xa!gas Group within 
the Dreigratberg syncline and the younger Numees Sequence 
within the Sendelingsdrif synclinoriJm {Anncxure 1). The 
redefined Numees Sequence of Von Veh (1981'), would then 
consist only of the main sendelingsdrif diamictites and the 
Bloeddrif beds around the hinge ot the Annlsfontein 
anticlinorium. 

Within the Witputs Trough the Numees is paraconformably 
overlain by Nama beds and the two formations locally show 
concordant folding. 

Lithology 

Previous researchers have grouped an upper dolomitic unit 
within the Numees sequence (McMillan, 1968) in the Namuskluft 
and Witputs areas, buc Van Veh (1988) found evidence that 
these rocks belong to the dolomitic Holgat Sequence. This 
study confirms a younger age for the upper dolomitic unit and 
defines them as the Witputs Sequence (Table 1). 
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In the s~udy area thu Numees sequence consists of interbeds 
of :ma9n~t .ite-quartzites, iron rich- and iron poor-schists, 
arkoses and diamictitcs. The schists are usually dark-green, 

well-cloavod chlorite bearing rocks forming rharp contacts 
with the other litholo9ies and are interpreted as original 
submarine muds. Numerous dropped-in pebbles and boulders, 
mostly of granitic origin dre present in the latter (Fig. 9). 

Grc.nitic: drvp"'ono wit:hJ 1 dark groall chlorltii.; diamlctito oL 
tl>e Jakkalsber-g Formatic.m. Tho locality :is near the we ·ter11 

slope of DrGi9ratbl'l1:g (Q/17, Mnexure l) . 

Banded ma9netite-quart2itcs (iron tormations) arc prominent 
near the eastern limb o! the Dreigratberg syncline in the 
study a1·ea "'1here they are duplicated by thrustin9. The 
overlying diamictitic unit has been n~med the Sendolinqsdrif 
Formation by Von Veh (1988), who subdivided it into the Nabab 
River and the Bloeddrif beds respectively in the 
Richtersveld. 

The 700tn thick Nabab River beds have a markedly 
dlsconforrnable basal contact along the western limb of the 
Sendelingsdrif synclinorium (Fig. 2) • This disconformity may 
have an entirely tectonic oriqln as the basal contact is 
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paraconformable where it is unfaulted north of Khubus (Von 
Veh, 1988). 

North of the Oranqe River the contact is also taulted {Fi9. 
2). The Jakkalsber9 banded ironstone and iron-ri.ch quartzite 
and schist beds are located a few metres above the 
unconformity. 

The Bloeddrif b~ds in the Richtersveld lie along the western 
limb of the AnnisfonteJn auticlinorium, and have a thickness 
of only lOOm. These beds are para-conformable with the 
underlying beds, but become extensively imbrlcated towards 
the north with the overlying dolomites. In th~ ~tudy area 
they crop out in the area o! the upthrust granites in the 
vicinity of Gumchavib Peak (Annexure 2) wbere they 
unccn~orr . bly overlie the Wallekraal Formation. 

Oepos1tional environment 

OepCisi tion of the Numees Sequence took p .. ace on im u 1evan 

terrain as several small basins are still preserved over a 
wide area. Most of the previous rcsearche·:s fa ·:our a glacial 
origin (Rogers, 1915; De Villiers & s&~r.~~ 1959; Martin, 
1965; McMillan, 1968; and Von Veh, 1988) although 
alternative depositional models hav~ bee~ proposed. 

Kr~ner & Rankama (1972, p.14) proposed a subaqueous setting 
whereby glaciogenic material became partly ircorporatod into 
turbiditea through processes of reworking. Davies & coward 
(1982) favour a model with the diamictite forming as a 
mol1u.1se-type deposit 1n a roreland basin during regional 
overthrusting. If the latter applies more clasts of Gariep 
lithologies would be expected. 

Certdin features, e.g. the occurrence ot dolomites and banded 
iron rormations within the sequence are incompatible with a 
qlacial or i9in, but have been explained by the alternate 
nrecipitation ot iron and silica through the admixture o! 
co~ :ot o>:y9enated water or as a result of convective overturn 
relat.::t d to tldowater glaciers (Young, 1982, p. 7JJ) . The 
laminateci (varved) siltatones or shales with dropped-in 
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pebbles and unso4ted boulder and pebble beds are taken as 
evidence of a glacial deposition. 

The extensive lateral distribution and relative textural 
homogeneity of c: lasts implies a widespread source area rather 
than point source,,; (Hoffman, 1983). The presence of outsia:ed 

extrabasinal lonestones and clusters of clasts of particular 
litholoqies in groups can be taken as evidence of ice-:-afting 
processes (Von Veh, 1988). Glacial deposition was preceded 
by a period of f luvial depositic. s indicated by cross­

bedded sandstone and grit lenses. During the waning period 
o! glaciation till material bound in large ice rafts melted 
and was deposited in glacial lakes. 

The periods of glaciation culminated in brief warmer periods 
during which limestone and do1omite beds were formed e.g. the 
lenticular dolomite units north of the Drei9ratber9 (Fig. 2). 

As granitic lithologies dominate ill the eastern Richtersveld, 
a source region in this area a eems likely but minor 
llthologies of the underlying Hilda Sequence suggest that 
these rocks were already lithified at the time of Numees 
glaciation and that glacial movement took place over the 
basin ~d9e. The basin shoaled towards the east and north as 
indicated by widespread varved shales, e.g. forming the base 
of the Numees diamictite on Namuskluft (N/6, Annexure 1). 

The Witputs Sequence 

Distribution and strati9~aphy 

A sequence of elastic and carbonate rocks are exposed along 
the escarpment in the stud~, ara a trending from northea .... t of 
the Namuskluft farmstead to the Orange River. This sequence 
unconformably overlies the Numees along the escarpment and 
in the Witputs graben (McMillan, 1968). 

These lithologies were originally grouped within the Numees 
Formation (Mc.M.lllan, 1968). but they are clasbified here as 
the Witputs sequence following Hoffman (1989) who proposed 
the name Witputs Group. The term 11 sequence11 is preferred as 
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it is used to define rock units bounded by major faults or 
unconformities. 

Kroner (1974) observed that the top of the Numees in the 
above .mentioned area is always composed of cream-yellow 
dolomite followed by greenish siltstone, which is similar to 
the stratigraphy on Drei9ratberg (Fiq. 10) and which is here 
correlated with the Witputs Sequence. 

Dolomitic rocks of the r'litputs sequence within the 
Dreigratbarg forming a sharp contact with the Sendalingsdrit 
dlamictitcs (darker coloured) . 

The rocks have suffered extensive thrusting and may represent 
more than one sequence. Their correlation with other Gariep 
rocks is not always clear. An alternative stratigraphic 
placing of these rocks has been given by Kr6ner (1982), who 
suggested that they may form part of the basal Rosh Pinah 
Formation with the diamictite forming a lower member of the 
sequence. Hoffman {1989) states that the group consists of 
four as yet informal units but does not elaborate. As the 
Sendelingsdrif diamictites form a continuous sequence south 
and north of the Orange River, these rocks are excluded from 
the Witputs Sequence. 
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Stratigraphic relationships observed in the Namuskluft area 
(Annexure l) indicate that the rocks of the Witputs Sequence 
unconformably overlie the Numees diarnictites. These 
lithologies have also been thrust over the underlying 
Precambrian volcanic and granitic basement rocks of the 

orange River Group and Vioolsdrif Suite respectively 
(Annexure 1). 

Lithology 

The sequence consists of a variety of light-grey, cream­
coloured, pinkish to blue-grey dolomites and limestones with 
intercalated argillites and conglomerates. F~om the base 

upwards a blue-grey limestone is conformably ov·· 'lain by a 

cream-coloured dolomite. This is followed b} ' · c::hloritic 
schist, which is ogain overlain by cream-colouJ ~ J dolomite. 
on this follows a carbonate mudflow bed f 11 lowed by a 
pinkish limestone sequence, which is finally overlain by an 
intermittent quartzite/arkose unit. 

A pisolitic dolomite occurs near the orange River. The 
lowest cream-coloured dolomite has lenses of a light-yellow 
to brown and dark-grey banded to conglorneratic limestone at 
its base. Banding is present on a 5-lOom scale and elongated 
clasts of yellowish carbonate are enclosed in a snow-white 
carbonate matrix. The overlying chlorite schist (originally 
a siltstone) is similar to the Wallekraal schists ~nd is 
characterized by the presence of small sheared grit bands. 
A sliver of tectonised carbonaceous shale along the contact 
~o the basement may represent remnants of an older sequence 
that contains pre-tectonic amphibolite dykes. 

Depositional environment 

A shallow to modet·ate deep water euxinic platform type 
environment of deposit 'c.n is inferred for the Witputs 
Sequence as indicated by the presence of pisolitic and 
dolomitic carbonates with possible stromatolitic structures, 
carbonaceous schists and tabular crossbedded sandstones. 'l'he 
wi. tputs Sequence is regarded as a proximal bas in edge 
equivalent of the distal Holqat Sequence. 
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Distrii,ution and stratigraphy 

A group of poorly exposed and intensely deformed clastic­
carbonate beds occur on the western side of the Gariep Belt. 
These rocks have a diachronous contact with the other 
formations of the Gariep Belt, &nd Vvn Veh (1988) places this 
Holgat Sequenc~ strat~ gcaphically above the Numees Sequence. 
He has discover"lu a tt.ln iior1zon of Numees diamictite with 
its characteristjc near-t.~1:>al terru9inous quartzite that 
underlies the Holga~ beds in the area east of the Goms and 
Omkeer trigonometri~~l beacon• . 

Hoffmann ( 1989) correlates the Holgat Formation with the 
'Upper Dolomite' of the. ~u;nees Sequence (here redefined as 
the Witputs Sequence). This is uncor.~ormably ove.r:lain by the 
... - ~al Oabis Formation quartzj te of tho Kui..,is Surgroup of t 11e 

Nama Group in the Witputs escaromen~. 

The characteristic pink or cr~a1.1-col0Hred dolorr.ite ()f the 
Holgat Sequence could be similar to the pink dolomites 
located on Namuskluft (P/ 10, Annexure 1) along the track 
leading to the old Lorelei Mine. Therefore, and because it 
is in a similar stratigraphic position, the Witputs sequence 
is correlated with the Holgat Sequence. 

Lithology 

The Holgat lithologies consist of a thick sequence ol 
arkoses, schists and greywackes, which are usual:.y either 
blue-grey to brown-grey in colour. Blue-grey dolomitic and 
calcitic Marbles are intercalated and the roe).-: are 
characterized by an intense deformational lamination, wt•ic:h 
commonly obliterates tt.e original bedding trace. 

Depositional environment 

The greywackes wera prob,b1 y deposited by turbidity currents 
in a deep water eiw i .. orame?&t as i 11d1cated by the presence of 
a very thick sequencr of fine-grained quactzites and schists, 
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with minor intercalated carbonates and coarse cl~stics (Von 
Veh, 1988). 

J. THE GANNAKQURIEP PYKE SUITE 

3.1 Distrib_ytion and geology 

The Gannakouriep Dyke Suite comp~ise intrus~ons of Na~ihian 
age, consisting of various swarms of mafic and ultramafic 
dykes and sills. 

•rhey outline a distinct evolutionary event of the Late 

Precambrilm geosynctir.e (Kroner, 1974) and a-e.sc2n as the 

final episode in the Richtersveld lgneou3 Province (Kroner 
& Blignault, 1976) ~ These roc~s are ~ ntruslve into the 
stinkfontein as well aa the basemont complex to the eaEt as 
either concordant. sills er form crot.s-cuttin9 dykes (Kroner, 
1974). Thny follow the arcuate shape of the l.tte Precambrian 
Belt and the.i.r strike is almost ever~ ·here parallel to the 
intruded seJiments, 

Basic dykea withi n t he Vioolsdrif Granitoid Suite in the 
Lorelel Mine , . a (S/ 14, Annexure 1) and the numerous 
amphibolite d 1 and sills within tt,e Rosn Pir.ah ''"d 
cu chavib Fe r n (Annexure J) i11 the present area of 

investigation .o t1ssibly correlated with this s•iite. Alon9 
the baset:L; 1t C"'ltact (P/10, Annexure 1) and in \:he oib 

mountain..: the basic sills a.'\d dykes are pre-\.ectonic in age. 

They usually havn tine-grained chill zones. 

A swarm of vertical diorite dykes regionally pervade the Ai­

A.' s area in southern Namibia and continue south into the 
Richtersveld (Bli9nault, 1974). These dykes are usually 
:11elvnocratio and medium rather tharl fine-grained. South-east 
·J! R~sh Pinah the dykes trend in a NNE direction but change 
~owards N-S in the Richtersveld, being commonly associated 

•·· th faulting and sheari;19. 

T main Gannakouriep dyke has a strike length of at least 
90 .. Jll and forms a layere<l complex along the Fish Rive~. The 
oth r G~nnakouriep dykes usually consist of a single diorite 
ph~} ._? 
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Petrographically the matic rocks consist essentially of 

plagioclaee + clinopyroxene + ore + ohlorite + hornl>len4• + 
epidote. Pyrite is often an accessory mineral while chlorite 
is formed by the breakdown of the clinopyroxene. The 
plagioclase is essentially andesine with rare labradorite 
(Blignaul~, 1977). 

Krl'ner (1974) states that all these intrusions occurred prior 

to the final phase of the deformation within the Gariep Group 

and are thus older than the post-tectonic Kuboos granite 

pluton dated at between 585 and 550 Ma, which cuts them. 

4. STRUCTURAL SYNOPSIS 

4.1 Introduction 

The followinq structural nomenclature is used throughout this 
study and is defined as follows; 

o, .. = deformation phases 

F, .• = .Jld phases 

s, .• = planar elements 

L,.., = linear elements. 

Numerous conspicuous structural features are e~posed in the 
mountainous terrain of the Richtersveld and southern Namibia. 

Major structures were originally outlined in detail by De 
Villiers & Sohnge (1959). 

Joubert & Kroner (1972) defined four deformational phases 
with distinct folding styles during their study of the 
Stinkfont.ein succession east and south-east of Port Nolloth. 

The oldest structures (F1) were identified as small westward 
plunging qravity induced folds, while the main phase of 

folding (F,} is characterized by two slightly di verging 
trends of lint'!a "'!' structures ranging from NNE to NNW. These 
folds are largely symmetric with a penetrative axial planar 
cleavage. The mild north-south trendin9 open and mainly 
monoclinal folds (fl) with related faults are assigned to a 
period of cataclastic deformation. The final phase of 

deformation is related tJ the emplacement of the J<uboos 
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pluton and is expressed as ubiquitous east-west or SE­
striking fractures, which are sometimes accompanied by small 
brittle faulte. Small crenulations and kink folding (F,) are 
also present. 

Kroner (1974) did a comprehensive structural investigat .on 
of the western JUchtersveld. Ke recognised two major 
tectonic domains in which the eastern miogeosynclinal domain 
was subjected to continuous vertical movement in the 
basement, which resulted in mild gravity induced folding. 

The western eugeosynclinal domain was characterized by 

intense compressional deformation, and both these events he 
related to only one regional orogenic event. 

A detailed structural analysis of the area between 

Sendelingsdrif and Annisfontein was undertaken by Von Veh 
(1988}. He recognizes five deformational phases, t he first 
(01) of which is related to major south-east directed 
overthrusting accompanied by open to asymmetric eastward 
verging folds. 

The second phase (01) is characteriz~c! by abundant closed 
non-cylindrical F2 folds trending in a NNW direction and 

verqing towards the west. Minor NNW-SSE trending norua l 
faults with rare open small scale F3 gravity folds define the 
third deformational phase (DJ} . The intrusion of the Kuboos 
pluton outlines the fourth deformation phase (D4 ) and is 
accompanied by reverse faults, conjugate and box folds with 
E-W and WNW trending axes. The final deformation phase (01 ) 

has formed ESE-WNW striking normal faults, dykes, veins, 
fractures and joints. 

Gresse (1993} investigated strain partitioning in the 
southern Gariep Arc. He concluded that F1 strain is 
partitioned between the outer and inner arc. F1 folds and 
thrusts reflect sinistral transpression caused by 
southeasterly transport in the nortnern inner and east­
verging outer arc, while in the southern outer arc frontal 
ramp conditions resulted in south-east vergent folds and 
thrusts. 
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In the area north of the Orange River no detailed structural 
analysis has so far been undertaken. Although many 
structural features were noted by McMillan (1968), e.g. major 
thrusts in the Obib Peak area, he did not relate all these 
structures to specific deformation episodes. Davies ' Coward 
(1982), confirmed McMillan's (op. cit.) findings from 
structural studies in the Chamais Bay and Witputs-Rosh Pinah 
area, and identified two major nappes , viz. the Marmora Nappe 
and the Schakalsi>erg Nappe. 

Several detailed structural studies were undertaken over 
small areas around the Rosh Pinah mine by students of. Cape 
Town and Stellenbosch Universities (I'ons and Light, 1971; 
Hodgson et al., 1972; Halbich, 1971, 1972, 1973). 

4.2 Discussion 

The current investigation shows that a major phase or 
spreading t:tfctt:tnics coupled with minor gravity tectonics 
produced the structures of this area. Certain distinct 
characteristics (Fig. 11) of each phase have been listed by 
Shack Pedersen (1987). 

Gravity tectonics have: 

l. listric normal 
illlhrication 

faults and extensional fault 

2. !lat-lying coherent thrust sheets disturbed by 

extensional graben faulting 

3. diverticulation phenomena whereby upper stratigraphic 
units are displaced further than the lower units 

4. exposure of a peel off regime in the rear part of the 

thrust fault region 

For spreading tectonics 

1. an imbricate f~:: formed by listric splay faults in 
front of the overlying spreading ~ass 

Stellenbosch University  https://scholar.sun.ac.za



1 

2 

3 

4 

Fig. 11 

- 36 -

GLIDING SPREADING 

1 

2 

~ . . . . 

.I!: ,,, 

3 

4 

Char&cteristic features of gravity gliding and gravity 

spreading tectonics (after Schack Pedersen; 1987) . See text 

bel~· Ior description of features. 

2. a duplex of imbricate fan sheets developed on the 
deforaed and overthrust sediments. Due to loadin9, 
boudins may be formed beneath the spreading unit 

J. in the frontal part of the gravity-spreadin9 
def onaation system, syn-tectonic basins are f onaed 
with proqressively younger sedim"!nts away from the 
spreading wass 

4. due to increasing fluid dynamic overpressure on the 
decolleaent unit water escape structures and mud 
diapirs occur in the frontal region of the gravity 
spreading aystea. 
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Wet, unconsolidated sediment deformation is also present e '.!· 

slump folding in the Rosh Pinah Mine argillites and syli -

sedimentary brecciated sediments in Dreigratberq. Th es -.. 
structural features oc ~r without definite hard rock micro­
and meso-structures such as vein arrays, slickensided 
surfaces, recrystallization cleavages and kink bands. 

Some important characteristic features of sediment slumping 
(Pickering, 1987) can be described as follows: 

l. Sediments fold without a related cleavage. 

2. Curvilinear fold hinges are present. 

3. Continuous layers/beds laterally becoming totally 
disrupted and chaotic over distances of centimetres to 

decimeters. 

4. Layers of chaotic brecciated sediments occur. 

5. Detached fold binges are present with liquefied 
sediment flow structures, both within hinge zones and 
attenuated fold limbs. 

Bryant et al., (1969j have undertaken a study on the 

significance of lineati ons and minor folds near major thrust 
faults in the southern Appalachians and the British and 

Norwegian Caledonides. 

Near the sole ot the thrust sheet around the Grandfather 
Mountain window in North Alllerica numerous small tight or 

isoclinal !olds are found with told axes subparallel to an 
intense penetrative cataclastic 'a' lineation and axial 
planes parallel to foliation in the thrust sheet. These 
tolds seem to have formed by tighteninq, flattening and 

passjve rotation of earlier more open folds originally formed 

perpendicular to the direction of transport. A prominently 
developed penetrative cataclastic lineation is defined by 

parallel alignment of mineral aggregates, sometimes 
elongated, detrital quartz grains, and by streaking and 

grooving. The lineation decreases in prominence away from 
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the sole ot t.he thrust P. 1d is parallel to the regional 
directicn ot tectonic transport, the 'a' direction. 

A similar pattJrn was observed in the Moine thrust belt of 
Scotland by Lindstroa (1961) where an alignaent of mineral 
lineation and axaa of tight told• are present. 

This study i nc ludes in•1estigationa on the orientation of told 
axes and elongation linaationa, which have bean rotat111d 
parallel or subparallel to the tectonic transport direction. 

METAMORPHJ:SM 

The process of metamorphisa can be defined as the structural 
and mineralogical adjustaents ot solid rocks to physical and 
chemical conditions, which differ from those under which the 
different rock types were ori9lnally deposited or emplaced. 

5.1 Introduction 

various types ot metamorphis~ have been recognised which can 
be r~latad to temperature, confining pressure, deformation 
or direct~d stress, and metamorphic fluid com~~sition. The 
physical and chemical adjustments in rocks may either lead 
to the formation of an assemblage of higher temperature 
minerals (prograde metamorphis11) or me y form lower grade 
minerals (retr09rade metamorphism). 

In the Gariep Belt reeks an early or 51 fabric is present 
which gives rise to a marked mechanical and chemical 
aniaotropl' in the rocks. Mimetic CJrowth ot minerals alon9 
the pre-existing anisotropy may take place (TUrnar ' Waiaa, 
1963; Etheridge' Hobbs, 1974). 

During the evolution of an oro9anic province there may be 

s"veral episodes or periods or matamorphiam. The 
relationship between mineral growth and deformation may be 

established. For this purpose the microstructure or texture, 
which defines the size ot the component grains, their shape, 
distribution and orientation in a meta•orphic rock is 
studied. These studies also establish the metamorphic 
mineral assemblage, and facilitate comparisons of the 
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microstructure in thin section to the meso-structures 
observed in the field. 

The study of inclusion trails in porphyroblasts (Si) and the 
external fabric (S.) helps to clarify whether mineral growth 
has been pre-, syn-, or post-tectonic with regard to that 
particular deformational everit (Whitten, 1966, Spry, 1969). 

In the study area the Gariep rocks have been subject to the 
~ 550-500 Ma Pan African tectonotherrnal events. 

5.2 Ill~ determination of metamorphic grade 

A limitP;d stqdy of thin sections was undertaken to determine 
the Jl'etamorphic grade and to establish whether medium-grade 
metarnorphism has or has not been attained locally within this 
low-grade metamorphic zone. 

Metapelites from the low - grade zone, which consists of 
phengitc ("muscovite") / quartz, and chlorite ± chloritoid are 
the lest indicators to show the change from low-grade to 
medium-grade metamorphism. Valuable positive indicators 
outlining a change to medium grade are the first appearance 
of cordierite and/or staurol i te (Winkler, 1976). 

The negative indicator 'chloritoid-out', oan only be used if 
the phyllites in the low-grade zone contain this mineral and 
it is likely that rocks of the same bulk coMposition continue 
into tho medium-grade metamorphic terrain. Winkler (1976), 
lists the other negative indicators aG 'no chlorite touching 
muscovite' which could be po~cntially of much more use a& 
most pelitic rocks, greywackes, and most igneous rocks of low 
metamorphic grade contain chlorite and muscovite. Chlorite 
which is not in contact with muscovite may persist to 
considerably higher temperatures. The muscovite and chlorite 
assemblage disappears in medium grade rocks i! the chlorite 
is not too rich in Mg. 

The formation of zoisite or clinozoisite characterizes the 
beginning of low-grade metamorphism and the assemblage 
zoisite/clinozoisite + chlorite + muscovite is diagnostic of 
the complete range o! low-grade metamorphism. Unfortunately, 
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chlorite may easily form as a secondary product from biotite 
or hornblende e.g. in the Orange River Group volcanics, but 
the nature of the chlorite can be established if it can be 
observed under th~ micrcscope to be an alteration product of 
the host mineral. 

The study of selected thin sections along the traverse lines 
indicate that only mineral assembla9es of t~e lower 
greenschist facies are present within pelitic zones. Mineral 
assemblages of the classic Barrovian chlorite and biotite 
zones a~e located in two areas. 

Along the basement contact o~ Namuskluft (Annexure 1) the 

chlorite zone assemblages are defined by the presence of 
chlorite-muscovite schists (specimens N~ 2). Assemblages o! 

the bioti te zone seem to be confined to the Stinkfontein 
rocks, e.g. in the Rosh Pinah and Obib Peak areas, or in the 
northern Numees diamictites. These biotite- chlorite­
muscovite assemblages are b~st defined in spP-cimen NT 111. 

A sample of the greenschist below Obib Peak has been analyzed 
for this study by H. Frimmel of the University of Cape Town. 
A representative analysis is as follows: 

Si02 - 42,48, 

Ti02 ... 0,22\ 

Al20 1 - 14,00t 

CrlOJ - 0,00.\ 

Phi - 17,SSt 

MnO - o, 17t 

M90 - 9,76% 

cao - ll,65t 

Na1o - 1,79.\ 

x,o - Q.iHil 
TOTAL az,211 

The hi9h Al- and high ca-content indicates that the amphibole 
present is hornblende, and not actinolite as originally 
optically determined. This indicates that a metamorphic 
grade in the upper greenschist facies, or albite-epidote 
hornblende f acies (ff. Frimmel, personal comm. ) bas been 
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obtained. 
500°C. 

The temperature reached here would be dround 

No chloritoid or staurolite has been identified in the study 
area and chlorite lies persistently in contact with 
musco~ite, and these criteria can be used to indicate that 
mediwn-grade metamorphism has not been attained. 

This study con.firms the presence of a hydrothermal phase 
(McMillan, 1968 p.162) as indicated by the presence of 
tourmaline, barite, hort\blende, chlorite and epidote 

(especially in the area surrounding Obib Peak, and Rosh 
Pinah). In thin section quartz replaces skeletal grains of 
magnetite and feldspar and the silicification of the Rosh 
Pinah Formation quartzites and arkoses are evidently related 
to the mineralizing event. The presence of numerous quartzo­
feldspathio veins can also be grouped within this phase. 

Only one regional proqrade metamorphic event, M1 js outlined 
by the biotite-chlorite-muscovite mineral assemblages 
established above. It a t tained 9reenschist tacies grade 
(Kr~ner, 1974; Von Veh, l9d~, and this study) and culminated 
in the growth of syn- to post-o1 biotite porphyroblasts. 
Retrograde effects occurred at a later stage e.g. the 
formation of retrograde chlorite. 

5.3 The first regional metamorphic event CM1l 

a) Microstructural characteristics 

i) Quartz fabric 

Sedimentary quartz grains are major constituents of the 
metasediinents of the Gariep Belt, but well-rounded grains are 
virtually no longer recognizable, except within certain rocks 
of the Witputs Sequence. 

During the first metamorphic event grains have been annealed 
and recrystallized. They now have concavo-convex, straight 
or serrated boundaries and overgrowths and indentations can 
be observed. Later deformational events have elongated and 
s.trained the quartz grains into lens shaped blades or 
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ribbons. Undulatory extinction and mica beards are present. 
A late phase of silicification is evident whete silica 
replacement of various other mineral grains, e.g. feldspar 
can be observed. 

ii) Microstructures of sheet silicates 

A strong preferred orientation of sheet silicates is observed 
especially in the micaceous rocks (e.g. Wallekraal schistJ 
ot the Gariep Belt. 'l'hey !orm a distinct, penetrative S1 

foliation with mica (001) parallel to the various s-planes 
in the rock and parallel to the axial planes of F1 isoclinal 
folds. 

Chlorite, biotite and muscovite are the most common sheet 
silicates to crystallize along a mimetic cleavage parallel 
to bedding and to a local S1 cleavage as a result of load 
and/or prograde syntectonic metamorphism. Bending, shearing 
and rupturing of the S1 cleavage has occurred to outline a 
secondary cleavage, s1 • 

ldioblastic biotite porphyroblasts truncate the older aligned 
micas and confirm that favourable conditions were present 
towards the end of the first deformation event for the growth 
of the latter (Specimen NT 161, NT 162). These idioblasts 
have a prismatic habit wlth a typical poikiloblastic texture, 
with quartz and feldspar inclusions dominating. They may 
easily be confused with staurolite as twinned biotite 
crystals may have a typical hour glass texture (Fig. 12). 

A distinct mineral elongation lineation is formed by the 
growth ot hornblende, biotite and muscovite needles along low 
pressure zones. These structures are prominent below the 
Obib Peak Thrust (Annexure 3). 

Muscovite and biot1te fish probably form when larger massive 
grains are boudinaged by a combination of brittle and plastic 
processes acting on the rock (Eisenbacher, 1970). The 
presence ot these shear-sense indicators reveal the extensive 
tectonic deformation the rocks have suffered. 
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Twinned bioti te porphyroblas ts with typical hour glass 

texture (uncrossed nichols; scala lcm ~250 µm) 

b) Mineral Paragenesis 

The M1 mineral assemblages in the Gariep lithologies of the 
study area cover the low to irtermediate range (chlorite to 
bioti te zone) of the green• ::hist facies. In pelitic 
lithologies a mineral paragenc .. is of musco\rite-chlorite­
quartz-albite ± biotite ± calcit~ ± epidote is present . The 
chlorite may be either of a ~·rogr ~~ or retrograde origin, 
while accessory minerals are ~l') ·, t j 'c-::, zircon, sphene and 
oxide minerals. Albite and epi~ -~ form minor constituents 
in th~ paragenesis. 

( i) The paragenesis in the arenaceou·t. rocks 

The assemblage in the arenaceous rocks cvnsists of quartz­
muacovite ±feldspar± biotite ±dolomite e.g. NT J9, NT 53, 
NT 67. The feldspars are mostly of detr :c.dl origin and 
include plagioclase, microcline and microp~r ~hitc. 
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(ii) The paragenesis in other Gariep Group lithologies 

In dolomitic marbles west of Obib Peak (specimen NT 90) the 
tollowin9 para9enesis has been established: 
dolomite-calcite + quarts + biotite ± talc. 

The marble is usually very pure, and consists almost entirely 
ot calcite and dolomite. The para9enesis mentioned above 
remains unaffected at very low-grade metamorphism (Winkler, 
1976) i.e. the lower greenschist facies. 

Von Veh (1988) established the follow tng mineral paraqenesis 
tor the area south of the Orange River: 

oalcite-doloait• ± quartz ± talc ± muscovite ± ~hlorite. 

The paraqenesi~ in the qreenschist (Grootderm volcanics and 
Stinkfontein lavas), which are absent from the study area was 

established as follows by Von Veh (op. cit.): 

albite-chlorite-calcite-actinolite-epidote-opaquea ± biotite. 

The paragenesis present in the amphibole-chlorite schists 
below Obib Peak (NT 139) are constituted as follows: 

al.bite-hornbl•n4e-quart.s-biotite-opaques ±calcite± epidote. 

These rocks are therefore interpreted as an altered dyke or 
sill. 

Temperature 

Von Veh ( 1988) has found no evidence to verify Kroner' s 
(1974, p.101) assertion of a westward increase in temperature 
from the quarts-albite-auacovite-cblorit• subfacies to the 
quarts-albite-epidote-biotite subfacies of the greenschist 

facies. 

In the Rosh Pinah area biot : te is ubiqui t ous in argillites 
of the Rosh Pinah Formation as well as in rocks near Obib 
Peak. This may indica.t: ~ that dynometamorphism largely 
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influences the distribution of metamorphic grades in these 
rocks. 

Von Veh (1988) interprets the blue-green hornblende, 
plagioclase with an oligoclase-andesine composition and the 
presence ot almandine garnet reported by McMillan {1968) to 
have probably been present ln specimens collected in basement 
gneisses aud. schist. The present study however, verifies the 
presence of garnets in the cnuntry rocks along the contacts 
of some amphibolite sills. These garnets can be related to 
contact metamorphism as a fine-grained chill zone is present. 
Tremolite needles are presen~ in some Pickelhaube carbonates 
northeast of Pickelhaube Peak. 

For the Rosh Pinah area only low grade minerals have been 
described (Page and Kindl, 1978; Watson, 1980) but it should 
be noted tJ)at there is a sharp increase in the presence of 

biotite and pyrrhotite in coexistence with pyrite. 

Mineral paragenesis indicates that the higher temperature 
range of the greenscnist facies has not been reached, 
therefore the M1 temperatures probably did not exceed 450°C, 
except for amphibole schists .below Obib Peak where the 
temperature range is soo0 c. 

d) Pressure 

In contrast to the temperature the pressure regime was found 
to be quite high (Von Veh, 1988) and to have increased in a 
westerly direction. Both Beetz (1926, p.199 1 202) and Kroner 
(1974, p.101) ha"~e reported high pressure minerals 
(qlaucophane and other Na-amphiboles) from the central parts 
of the Gariep Belt in the proximity of or on the contact 
betwetsn the Grootderm volcanics and the underlying qreywacke. 

The presence of these minerals would represent strong 
evidence for the presence of a major plate collision event 
(Frinunel & Hartnady, 1992). Their presence could, however 
not be verified by the latter researchers, who est:i.blished 

that the blue sodic amphiboles rscorded previously, can be 
classi!ied as magnesio-riebeckites. 
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Ritter (1980, p.202) reports a mean b0-value of 9,04664 for 
white micas for his Gariep samples, which is a typical value 
for intermediate pressure Barrovian-type metamorphism (Sassi 
and Scolari, 1974) as quoted by Von Veh (1988). 

Estimates of pressur~ conditions between z 6-7kb. (Hartmann 
et al., 1983) f~r the Southern Marginal Zone of the Damara 
orogen is accepted by Von Veh (1988) and seems a reasonable 
value. 

The relationship of porphyroblast to 01 

Porphyroblasts often contain inclusions with ~ preferred 
alignment representing the trend of a pre-existing foliation. 
Temporal relationships are elucidated from the relationship 
between the internal (S1) and external (Sc) s-surfaces, and 
between porphyroblast margins and Sc. 

In the study area M1 biotite porphyroblast (specimen NT 161, 
NT 162) can be seen to overgrow the internal (51) and 
external (S&) s-surfaces (Fig. lJ). 

Biotite porphyroblast 

Randomly orientated biotite porphyroblasts overgrowing the 

internal (51) fabric. (Sample NT 161). 

The long axes of the bl:ast;.s are randomly orientated and the 
internal trails are continuous with 51 of the matrix. Von 
Veh (1988, p.llJ) outlines textural evidence to indicate that 
the H1 bioti te porphyroblast grew after 01, but before 02 e. 9. 
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as seen in the overgrowing of the S1 cleavage, and defl~ction 
of 5 2 cleavaqe etc. 

5.4 The contact metamorphic event (HzL 

6. 

6.1 

6.1.1 

6.1. 2 

The second metamorphic event M1 , is associated with the o_. 
emplacement of the Kuboos-Swartbank plutons (Von Veh, 1988) 

ar.d i . very localised. contact metamorphic minerals can be 

observed in the contact aureole of the i::::soo Ma Kuboos pluton. 
No effects of this recrystalli~ation event were observed in 

any thin sections of the study area, which can be explained 
by the distance from the pluton. 

THE GEOLOGY ANO STRUCTURE OF THE NAHUSKLUFT-PREIGRATBERG AREA 

Bas~ment Complex 

Distr.ibution and strati9raphy 

The De Hoop volcanics of the Orange River Group (ORG) in the 
vicinity of the old Lorelei Mine have a ccmplex relationship 
with ~he surrounding rocks. They are here underlain by a 

large gr~nodiorite batholith. sandwiched between these two 
units there is a distinct ripple-marked quartz arenite of 
Gariep affinity, which grades into a diamict i te unit. This 

anomalous stratigraphic relationship can be explaine<l by 

thrusting of the basement volcanics ov~r the much younger 
diamictite, which originally overlay the latter (Annexure 1). 

Lithologies and petrography 

A petrographic examination (NT 70) indicates that along the 
higher part of this volcanic formation there are rocks of 
possible sedimentary orir/in. The rock consists of rhythmic 
alternating sericite and quartz bands, sericite with 
disseminated garn("t grains, followed by a garnet bearing 
chlorite zone, anc.. finally quartz-magnetite bands. Some 
sericitized feldspar porphyroblasts are also present (NT 74) 
while a fault gouge and a flattening fabric indicates 
extensive tectonic disturbance. Th" rock can be described 
as a banded quartz-ma9netite-garne~ -~n1orite schist (banded 

iron formation). 
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The mineralogy ot these r<>cks suggest that they are either 
thrust-in slivers of the basal rocks of the Numees Sequence 

(the Jakkalsberq Formation) which t:.as attained a higher 
metamorphic grade (almandine-amphibolite facies), or form 
remnants of the Rosyntjieber9 Formation unconformably 
overlying the Haib Subgroup. 

I.ocally some rocks which look similar to arkoses are present 
within the ORG (NT 55, NT ll). They consist mostly of 
quartz, feldspar and calcice gr~jns with minor amounts of 
strongly aligned amphibole needles. ThQ feldspars are 
extensively sericitized and saussuritizec, and the rock is 
interpreted as altered and sheared granodior i te .. 

Other rocks in this group are tine-grained grey to greenish 
feldspar and quartz-sericite schists. The sericitic matrix 

constitutes up to 90\ of these rocks, which are interpreted 
as original felsic volcanics. Some brown, slightly gossano1Js 
calc-silicate material is incorporated in the volcanic rocks 
and consists esser ' ialiy of fine- to coarse-grained dolomite 
with 11inor qu~rtz . Accessory calcite and muscovite are also 
present and thin acicular textured amphibole needles have 
been identified as actinolite-~remolite (NT 69). 

Near the granite contac.~t in the Lorelei Mine area pervasive 
epidotizaticn is present as a result of the breakdown of 
hornblendes to form bioti te and epidote. Numerous 
concordantly cmplaced quartz veins also host widespread 
epidotization features which are largely absent in the 
younger Gariep rocks. 

The youngest intrusive phase of the Vi:>olsdrif Suite is 
present as leucogranites near Lorelei Mine. In thin section 

(~T 75) the rock is a medium-grained massive unit containing 
quartz grains with polygonal contacts. Accessory minerals 
include minor microperthite, biotite and some sericite. 
Plaqioclase, and K-feldspar together with minQr chlorite may 
also be present. 

These leucogranites can be grouped within the Li-type 
leucoqranites (Minnit, 1992) and occur as sinuous veins or 
elongate bodies. small lenticular inclusions of the ORG 
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volcanics are inc\Jrporated within the granite, indicating the 
intrusive nature of the latter. 

A dark green amphibolite dyke intrudes the granodiorite at 
this locality (S/14, Annexure l) and is correlatej with the 
Gannakouriep Dyke Suite. In thin section this rock consists 
largely of biotite and aegirine augite, together with minor 
quartz, rutile and opaque mineralB (NT 76). No preferred 
orientation of any minerals is preser.t. 

A major unconformity separates the ORG from the Gariep Belt, 
and is defined by a thin basal conglomerate preserved locally 
on the farm Namuskluft (P/11, Annexure 1) . It i$ a polymict 
matrix supported unit with approximately 90\ of the clasts 
consisting of well-rounded to subrounded pebbles of 
quartzite. hinor granodiorite and Orange River Group 
volcanics make up the remainder of the clasts but carbonates 
are notably absent. The matrix of the conglomerate is dark­
grey, quartzitic to arkosic. Along the major part ot the 
contact, however, the cover rocks have been thrust over the 

older basement volcanics. 

~be Stinkfontein Sequence 

Distribution, stratigraphy and lithology. 

A possible Stin~fontein lithology that outcrops in this area 
is a thin sliver of argillitic and carbonatic rocks occurring 
along the basement ccntact on Namuskluft from M/4 up to 0/8, 

Annexure 1). The other dia~ictite beds in this study area 
are here interpreted aG thri.ast imbricates of the Numees 
Sequence and the older Kaigf\s diamictites are therefore (with 
the possible single exceptio~ mentioned below:) absert from 
the area north of th1:! Orange ~~i ver. 

A dark-grey to black and massive dol;)mite unconformably 
overl.l.es the basement, and form a sheared and brecC'!iated 
contact with the basement granites (M/4, Annexure 1) as 
indicated by their lP.nticuiar and intercalated nature 
(samples NT 1 1 NT 11, NT 24). The mineral paragenesis is 
calcite-dolomite ± quartw ± talc ± muscovite ± ~hlorit• ± 
biotitc. Quartz vein stockworks occur throughout. The 

Stellenbosch University  https://scholar.sun.ac.za



- 50 -

contact 1 etween the Orange River Group volcanics and the 
dolomite i -. .~1arked by e thin basal conglomerate ( e.g. P/10, 

Annexure 1). 

The overlying incompt::ter11: t.J.ack to dark- qrey argillitic unit· 
is partly calcareous and st ·ong l v foliated It consists 
mainly of calcite and quartz grains (NT 5) with 1unc.,r 
muscovite and accessory chlorite. Near the Namuskluft 
farmstead dolomite and calcite dominate the rock with quartz 
and chlor i te as accessory miner a ls. Some th in ca!"oona te 
bands within the unit consist of a banded quartz and dolomite 
sequence (NT 6). Accessory actinoli te is also observed. 
Further towards the south (P/7, Ann~xure l) the argillite 
unit consists almost enti rely of k.inkbancf.(;!d chlorlte, with 
minor intercali\ted len::.icular qciar'.'tz grains lNT 19). Calc1te 
and dolomite are ~inor constituents here. Deformed q~artz 
veins, otten isoclindlly folded and e~cesGive~y attenu&t~d 
form a tectonic melange in several zones in the argillite 
near the basement contact. 

Locally a sandy, blue-grey carbonate lSi~ilar tG the 
Pickelhaube) lies in contact with the black argillite. The 
latter (NT 12) is intensely altered with chlorite, muscovi~E : 

biotite and sericite forming the cleavage planes surrounding 
calcite grains and has been subject to some silici!ication. 
The presence of pre-tectonic amphibolite sills (P/9, Annexure 
1) leads to a correlation with the older sequences e.g. the 
upper Stinkfontein in this study. 

In area S/14, S/15 (Annexure 1) intensely folded diamictite 
non-conformably overlying the granite grades upwards into a 
ripple-marked arenite unit with a sheared upper contact. 
This ~ntact with the overlying ORG is interpreted as a 
thrust boundary. 

The Kaigas diamictite has a similar lithology to that of the 
Numees diamictites. H~wever, Von Veh (1988) points out the 
absence of carbonate clasts and banded ferruginous quartzite 
or schists as a distinguishing criterium. 

Although the iron formation or ferruginous beds are absent 
at S/14,15, Annexure 1, single carbonate clasts are 
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conspicuous in these rocks. This occurrence is therefore 
interpreted as a thrust inlier of transgressive Numees 
diamictite over which a stack of ORG volcanics has been 
thrust {see also section EF, Annexure 1). 

The Hilda Sequence 

Distribution and stratigraphy 

A marked change in stratigraphy is evident towards the south 
along the Namuskluft synclinorium, which is sliced obliquely 
by the Namuskluft Thrust (Nl<T) and the Rosh Pinah Nappe 
Thrust (RPNT), (R/15, Annexure 1). Arenaceous and rudaceous 
lithologies absent from the Namuskluft area are exposed near 
the Orange River in the Namuskluft Valley (Fig. 2). 

These lithologies together with boudined dolomite zones are 
interpreted as tectonised remnants of the Hilda Sequence as 
they are similar to the rocks of the Wallekraal and 03bie 
River Formations. They locally interfinger with the Numees 
diamictites. 

In the Jakkalsberg area south of the orange River, Von Veh 
(1988) describes similar interf ingering of conglomerates and 
grits with pebbly schists and diamictites. Kroner ( 1974, 
p.23) interprets this lnterfingering as a large scale facies 

change. 

Lithology and petrography 

The Hilda Sequence here consists of a thick series of 
quartzites and grits with several intercalated conglomerates 
lenses. The lenses are generally not thicker than Sm, and 
are clast supported with originally well-rounded and sorted 
clasts of mainly vein qu~rtz and a minor component of 
carbonate. At the Orange River the clasts have an average 
diameter of approximately 3cm and are tectonically 
flattened. Locally the matrix is ferruginous and clasts of 
ferruginized material were also recorded. 

A band of light-brown weathering dark-grey to black dolomite 
is intercalated and grades into a typical blue-grey 
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Wallekraal schist unit. The dolomites are characterized by 

extensive brecciation and large scale boudinage. Shearing 
is extensive and is manifested by ubiquitous quartz v~ins 
with a right lateral sense of displacement and interspersed 
lenses o! diamictite. These rocks are here correlated with 
the Dabie River Formation. 

LE GENO 

~ Oolonutlc limutont } 
c:::J Sandstone/0.uartzitt 

~ Pisolitic dolo111te Witputs Sequence 
~ Shilt 

6 Oi1mlctitt } Numus Sequence 

@Z;J Conglom11 de/Cirit 

} 00 Oolo1111te (brewaltdl Hild• Sequence 

rm Volcanics } Or1nge Rivrr Gr.iup 

Horizr:lloil Sult " Vertical Scale 

EE FF 

Fig. 14 synoptic cross-sectional sketch to illusti·ate the tectono­
stratigraphic sequence near the Orange River (EE-FF,R/16, 

Annexure l) • 

In the sketch (Fig. 
lithologic units are 
sequence with other 

carbonates. The 

14) it can be seen that ~cctain 

duplicated several times in v r.'j ! ri : 
lit logies e.g. the k·l...aP ·']rP'j 

sandstone unit contains singular 
granodiorite lonestones, probably representj ng c,..opped-in 
clasts. In thin section (N 16) the grit zones, which are 
intercalated in the diamictites consist of clasts of quartz, 
microcline and dolomitic carbonate within a muscovite, 
biotite and cblorite rich matrix. The rock~ are also 
slightly calcareous. The sheet silicates form ~ prominent 

cleavage, while the streaks of dark opaque minerals (heavy 

minerals) might indicate the bedding or cross-bedding trace. 

E 
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A light-grey quartzite of the Hilda sequence forms a thrust 
contact with the Numees dia.nictite in the east (R/ 16, 

Annexure 1). The unit is about lOm metres thick, and 
contains numerous stretched and !olded quartz veins. All the 
veins dip steeply towards the west but the isoclinal fold 
axes plunge steeply north at angles gr~ater than 50° . 

The Numees Sequence 

Distribution and stratigraphy 

It is suggested here that the Numees sequence has been 
duplicated in the Dreigratberg and the Seodelingsdrif 
synclinorium as a result of thrusting (Annexure 2). It forms 
a thrust contact with the Hilda and Witputs strata in the 
Namuskluft synclinorium (Fig. 2). 

Lithology and petrography 

The Numees Formation is composed essentially of massive, dark 
rudaceous rocks with a distinct glaciogenic appearance on 
surface outcrops, and contains various intra- and 
extrabasinal clasts. Some ripple-lamin~ted shale interbeds 
become prominent on the farm Namuskluft and grade into clast­
bearing beds both on the upper as well as lower contacts. 

The diamictite is largely matrix supported with pnlymodal 
clasta of basement qranodiorite, leucogranite, gneiss and 
pegmatite. Intrabasinal quartzite, schist, and carbonate 
clasts an. subordinate, althougt- locally carbonate clast 
concentrations are evident e.g. on the southwestern slope of 
the Ore~gratberg. Granitic r.ocks of ~he Vioolsdrif Suite 
dominate, and the typical bluo <: : e -:1 ;. .J.ckelhaube limestones 
are noticeably absent. 

The clasts are distributed throughot1t the rock and may 
constitute from lOt to over 50\ of t~e rock mass, with sizes 
varying from as little as 2mm to over lOm. They are usunlly 
subrounded but well-rounded clasts were observed near the 
Orange River. Most clasts are tectonically elongated wita 
the long axes of the pebbles and boulders all plunging in a 
NW direction, generally at angles of between 30 and 40 
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degrees. The matrix of the rock can vary from dark 

ar9illaceous material to light or grey-brown quartzitic 

material, and is made up of muscovite, quartz, feldspar, 
biotite, and iron oxides. 

Primary sedimentary structures within the diamictites are 

poorly preserved, being generally obliterated by a 
penetrative Si/S1 cleavage. Several turbiditic features 
however, are present in the Dreigratberg and Namuskluft areas 
e.g. normal grading, rip-up clasts, load and flute casts and 

sinuous ripple marks. 

Locally some interdigitated blue-grey grits, arkoses or 

feldspathic quartzites form well-bedded sequences. Thin gr.it 

and sandstone units contain local heavy mineral zones 

outlining bedding as well as rare cross-bedding features. 

In thin section (sample N 14) bedding is indicated by banded 

quartz and granular magnetite domains in a succession, which 

could be described as a poorly developed iron formation. 

Chlorite increases towards the base of the Nurnees as the 

matrix becomes ar9illitic to form a mudstone. Prominent 

dropstones with i n the chloritic schists confirm that the 
stratigraphy i s facing upwards. 

In samples N 11 and N 13 large hexagonal to tetrahedral 

grains of magnetite, some of which are oxidized to hematite, 

are placed within a fine-grained chloritic matrix with 

accessory biotite and muscovite. Minor dolomite and quartz 

is also present wi~~in the matrix. Biotite porphyroblasts 

have formed during the culmination stages of 0 1 and are 

aiigned oblique to the s 1 cleavage formed by the other sheet 
silicates. 

Positive evidence for the reworked nature of the diamictite 

is the presence of a large composite boulder contai11in9 

several smaller clasts (N/11, annexure 1). The clasts 

consist of subrounded to angular pebbles and boulders mostly 

of granodiorite and Orange River Group volcanics. 

West of Drei9ratber9 two prominent bands of magnetite­

quartzi te form intermittent outcrops (O/ 18, Annexure l). 
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They trend in a north-south direction and continue along 
strike south of the orange River. On surface the rocks 
consist of finely laminated wind polished black ~ilica and 
magnetite-rich bands. A petrographic examination \NT 136) 
indicates the presence of alternating quartz and magnetite 
bands with minor grunerite. Oxidation is present along grain 
boundaries. These rocks are typical Rapitan-type iron 
formations. 

Outcrop widths vary between 1-15m and dips are steeply 
towards the west or often slightly overturned towards the 
east. These bands are always located within the dark 
chloritic diamictite. The iron formation~ were not 
corn_>letely solidified at the time of diamictite deposition 
as they contain numerous dropped in clasts. 

These rocks bear similarities to the iron-rich, usually 
magnetic, quartzitic rocks occurring within the Chuos 
Formation diamictites (Henry et al., 198S). Although the 
banded magnetite quartzites of the Chuos Formation are not 
as continuous as those within the Numees diamictite the two 
formations could possibly be correlated. 

carbonates occur either as clasts or as distinct lenticular 
boudined pods within the Numees diamictites. They are 
dolomitic, varying from 2m to several tens of metres thick 
and pods may extend for cp to a kilometre along strike (P/17, 
Annexure l) . l<roner ( 1974) interprets these clasts as 
disintegrations of dolomite layers or algal reefs by wave 
action or gravitational slumping. This seems to be the best 
interpretation. 

In the north (P/10, Annexure 1) the Numees diamictites form 
a gradational contact with an underlying phyllitic unit. 
Clast-bearing beds near the contact grade into sandstones at 
the base. Similar lithologies are present in the Lorelei 
Mine area {S/15, Annexure 1) which suggest a correlation 
between these diamictites as belonging to the Numees. The 
varved arenites at the base consist essentially of quartz and 
plagioclase 'llith accessory biotite and chlorite. The 
feldspars are extensively sericitized and talc may also be 
present. They contain several dropped-in pebbles, some of 
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which could be either felsite or weathered orange River Group 
volcanics. 

In the Sendelingsdrif synclinorium (Q/23, Annexure 1) only 
the light-grey Numees diarnictites are present. A prominent 
fault is indicated by extensive quartz veins, brecciation and 
some pronounced gossans on the western limb of the syncline. 
This fault has been mapped by McMillan (1968) as the 
Namuskluft Fault and he extends it along strike past Rosh 
Pinah (Fig. 2). The fault runs along the edge of the 
Schakalsberg and has been mapped as the Jakkalsberg Fault by 
Von Veh (1988). This name is also used here for its 
continuation north of the Orange River. Small. outcrops of 
blue-grey schists and blue dolomite (possibly Hilda 
lithologies) are exposed on the upthrown western block of 
this major interpreted thrust fault. 

The Witputs Sequence 

Oistribution and stratigraphy 

A sequence ot elastic and carbonat~ rocks are exposed along 
the est:a~pn1e .t trending f rom due east of the Namuskluft 
farmstead t;;OUthwards uo to P/ll (Annex•_ire 1) in the 
Namusi<luft s ync.L :.noriUlll ard from P/16 southwards in the 
Dreigratberg syncltno almcct up to the Orange River. 

Lithology and petrog~aphy 

Within the Witputs Sequence four 11nits (some poc~.bly of 
tectonic origin), can be recognized which 8 rouped 
in the Namuskluft Formation. Each unit begi cldstic 
sequence and is terminated by limestone or rocks. 

The stratigraphic relationships in the central Narouskluft 

synclinorium (0/9, Annexure 1) are outlined in a composite 
field sketch (Fig. 15). 

The cream-coloured massive streaky dolomite (light-grey in 
fresh specimen) is a fine-grained rock (NT 3, NT 9, NT 51) 
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composite tield sketch to 
stratigraphic sequence in the: 

illustrate the 

a) central parts ot the Namuskluft syncline 

} OrWtft ~ .. "'-

tectono-

b) along the basement contact further north 

(looking south). 
(See Annexure l tor section localities AA-BB and CC­
DD) 

with vague grain boundaries, consisting largely of dolomite 
with minor quartz and calcite, accessory albite, chlorite 
and muscovite. 

The muscovite-chlorite schists are similar to tho Wallekraal 
schists and are characterized by the presence of small 
sheared grit bands. Near the thrust exposure on Namuskluft 
(M/4, Annexure 1) the rock consists of quartz and muscovite 
with accessory chlorite (NT 2). Magnetite occurs in specific 
bands as euhedral octahedra, and are sometimes oxidized to 
euhedral hematite. Grains have vague boundaries and are in 
a state of alteration, while quartz grains are aligned along 
the S1 cleavage. 

Near the Namuskluft fold closure the schists grade into 
feldspathic sandstones (NT 44) consisting of quartz and 
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feldspar (plagioclase and microperthite) within a muscovite, 
biotite and chlorite rich matrix. The schist is interpreted 
as a fine-grained sediment, which has been deposited within 
moderutely deep water. 

The overlying cream-coloured dolomite has intercalated thin 
(3-Scm) schist lenses ~t the base and contains elongated rip­
up fragments of argillite as well as clasts of other 
dolomitic rocks. The pink-coloured dolomitic limestone (the 
upper Dolomite unit of the Numees, McMillan, 1968) is a meso­
laminated rock, which ~onsjsts essentially of medium-grained 
dolomite (sample NT 52) with minor quartz clusters, while 
chlorite replaces opaque mineral grains. Here a11d there some 
large quartz grains are embedded within a coarse- to fine­
grained dolomitic matrix. Minor muscovite and biotite are 
also present. This unit is correlated with the Holgat 
S<?quence as it is absent from the general strati']rapbic 
oequ~~r.~ of the Obib hills north of the Orange River and east 
of the Rosh Pinah valley. 

Small lenses of a steel-grey arkose overlie the pink 
dolomitic limestone intermittently. The arkose (samples NT 
17, NT 53) is mainly coarse- grained with large serrated 
grains of quartz, sericitised anorthoclase and rnicrocline. 
Original boundaries of quartz are no longer discernable. The 
matrix of this rock is made up of fine-grained quartz, with 
minor interstitial muscovite or may occasionally be dolomitic 
(NT 17). Some graphite and detr!.tal tourmaline are also 
present. 

The cream-coloured dolomite contains a conglomerate zone 
with 99' of the clasts composed of mainly cream-coloured 
dolomite and some pink limestone {Fig. 16). Subrounded to 
angular sandstone and grit clasts occasionally drift in the 
dolomitic matrix. 

North of the area outlined on Fig. 14 a sharp thrust contact 
zone is present between a pisolitic dolomite and the Numees 
diamictite. The dolomite (NT J9a) is dark-grey to black with 
elliptical pisoliths. Banding in the pisoliths is revealed 
by alternating fine-grained light and dark-grey zones. 
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Conglomerate with carbonate clasts which occurs as a marker 
within the Wi tputs Sequence in tlie central Namusklutt 

syncline (P/10, Annexure l). Note the well dev~loped 

elongation ot clasts along 51 

Accessory quartz, chlorite and muscovite are also present in 
the matrix. 

From P/8 to Q/11 and between the Namuskluft Thrust and the 
RPNT {Annexure 1) the synclinally infolded Witputs strata 
rest via the dark carbonate on volcanics of the ORG on the 
eastern limb of the syncline but on diamictites of the Numees 
Sequence along the western limb. 

Still further south at R/15, R/16-Annexure l, a blue-grey 
diamictite unconformably overlies the Orange River Group 
volcanics a.id the dark dolomite is absent. All this evidence 
is regarded as a good indication for a thrust .:ontact between 
basement and cover rocks, {viz .. the Namuskluft Thrust) . The 
thrust planes are deformed into open asymmetrical folds 
affecting both basement and Gariep cover strata. 

The dolom. i~ sequence of the Dreigratberg (Fig. 17) is 
located within a prominent F2 syncline, striking 
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app1·e1ximately NNW -SSE (Q-R/ 16-20, Annexu~e 1) . Two welJ. 

defined massive cream-coloured dolomite beds 30me tens of 

metres thick form the three sharp peaks. The contact between 

the Dreigratberg succession (Annexure l) 

diamicti te in the east is marked by a 

and the Numees 

l-2m thick black 

massive dolomite (see l, Fi9. 17) which is similar to the one 

present along che basement in Namuskluft (N/5, Annexure 1). 

A thick (lOOm) sequence consisting of various shales, 

phyllites, ~hloritic and calcareour schists (pelites) with 

a bed conformably overlies the black 

2, Fig. 17 and Fiq. 18). Numerous sheath fo.ds 
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Photogeoloqical map of Dreigrat~org syncline. See text for 
description of reter~nce poin• ~nd geology. 
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and quartz veins along the contact of the shale with the 
overlying 

shearing. 
cream-coloured dol.Jmite outlines prominent 

The dolomite sequence contains a lenticular lm thick arenite 

with carbonate shqrds at the base, which is overlain by a Sm 

thick syn-sedimentary dolomi te breccia, (See J, Fig. 17). 

The original bedding has been broken into ~abular clasts, 

probably by sliding and rotation. These now float in a fine­

gra)ned sandstone matrix (Fig. 19). 

Synsodimentary breccla of dolomi t.e wi tll tabular cl as ts 

floating in a sandstone matrix. Eastern limb of Dreigratberg 

(P/11, Annexuro land Fig. 17). 

Petrographically (specimen NT 39) the slumped bed consists 

mainly of dolomite laths surrounded by large quartz grains 

with minor microcl~nc. The matrix is finc-grainP~ quartz and 

even finer-grained dolomite . Minor muscovite, microcline, 

biotite and opaque minerals are present in the matrix. 

The quartz was originally well-rounded, but nuw has sutured 

boundaries. The overlying cream-coloured dolomite is 
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extensively brecciated and contains sandstone clasts over a 
metre ir. diameter. 

The upper dolomitic unit forming the eastern peak (Q/19, 
Annexure 1, and Fig. 18b) contains angular, matrix supported, 
unsorted clasts dominated by sandstones with less abundant 
dolomites and rare granites of variable sizes (see 4, Fig. 
17). The rock may grade northwards to the fold closure from 
conglomerate to calcareous arenite and eventually to 
dolomite. 

The stratigraphic top at locality 5 (Fig. 17) consists of an 
alternating sequenc~ of various blue-grey finely laminated 
limestones with fine-grained brown mesobands of limestone, 
buff-brown weathering limestones, and an upper zone of 
intercalated blue-grey to cream-coloured carbonates with 
light-yellow bands. 

The laminations are formed by thin calcite bands, which are 

extensively crinkled and fol~ed and may be interpreted as of 
alqal origin . The dolomitic rock (specimens NT 61, NT 62) 

consists mainly of medium-grained interlocking grains of 
dolomi~e with minor muscovite and biotite orientated along 
a poorly duv~loped cleavage. 

Along the western limb of the Dreigiatberg syncline a sharp 
contact is present between the dark-green, ferruginous and 
chlorit"ic Numees diamictites and the Dreigratberg succession, 
(see 6, Fig. 17 and Fig. 10). QL'artz veins and 
ferruginization indicate the faulted nature of the contact. 

The chloritic schist is approximately 75m thick here and 

contains single small cobbles of subrouuded carbonate and 
granodiorite, to9ether with a boudined dark dolomite lens, 
whjch could be a remnant of the undisturbed dark dolomite bed 
on the eastern limb. Orthogonal quartz filled joints trend 
in all directions and seem to define chocolate-tablet 
boudins. 

Towards the 

stratigraphy 

west and south of Oreigratberg Peak the 

changes to a sequence of brown weathering 
dolomite bands, which are intercalated with grey chloritic 
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schist units (20-40cm) thick (see 7, Fig. 17). These 
intercalated units consist primarily of tine-grained 
chlorit~, with minor quartz blebs prominently ali~ned along 
the west-dipping s, cleavage. A later s2 crcnulation cleavage 
dipping steeply ea•;t deforms the latter and intersects it at 
approximately right .•nq.:es (NT 41) . 

The intensity of banding l until the rock forms a 
sharp contact (se~ P, P1~. • i ~h a black argillite unit. 
The latter is in (··"- ""'r' t, :1 as a fault zone because i.t contains . 
stretched quartz ~-~n~ and is extensivPly ferruginized. In 
turn the light-grev d.i.amictite forms a sharp contact with a 
ferruginous dark-green chloritic diamictite, which is taken 
as the base of the Nurr~es. 

eastern limb. 
This unit is absent from the 

6.6 Structut:g 

6.6.1 

Fabric elements of the various deformation phases are 
outlined below and then described for each separate area. 

Fabric elements of the Garie p Cover rocks 

a) The first deformation phase 

The polyphase sequence of structures are interpreted as being 
related to a single progressive Pan-African deformational 
phase in which structurEs were differentiated on the lines 
of fold style and orientation. 

i) F1 folds 

The F1 phase of folding is manif"?sted by the earliest 
recognizable near cylindrical and tight structures in 50 with 
axial planes parallel to the regional penetrative s, 
foliation. Tt c\ latter ii; outlined by the growth and 
preferred orientation of metamorphic minerals. 'l'heir average 
trend is NW to NNW. !he tole style ~anges from cla~s le 
tl'1r\lugh 2 to 3 {Ramsay, 1967), which is l11dicat.iv1? uf a 

ductile shear mechanisru. 
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10 an 

Field sketches (looking north) of various east- verging F1 

meso-folds (left column) or F1 sheath !olds (right column) 
located ln the Witputs Sequence and along the orange River 
Group contact (P/7, Annexure 1). 

Fig. 20 shows field sketches of various mesoscopic F1 folds. 
During prog~essive deforreation many of these meso-folds have 
become detached and redef ormed to now appear as sheath folds 
and rootless structures. Other F1 structures are manifested 
as tight isoclinal to recumbent folds, which are overturned 
towards the east or northeast. The short limbs have often 
acted as shear (thrust) planes along which bedding parallel 
slip has occurred. The folds display both "S" and "Z" shapes 
with strongly asymmetric forms, ranging from class lb 
(parallel) , via le to 2 (similar) according to Ramsay's 
(1967) classification. 

The type of folds which form in a sequence depend to a large 
extent on competency contrast and the thickness of successive 
layers of varying rock types. Conditions seem to benefit the 

preferential developmer.i:. "'! these folds in the less competent 

Pickelhaube lirr.estones and dolomites. curvilinear and sheath 
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fold axes trend NW-SE to NNW-SSE and are conspicuous in areas 
of intense shearing, e.g. near the cover-basement contact. 

The F1 folds have formed during the first intense phase of 
contractional deformation, which is also characterised by NNW 
to NW orientated thrust faults. An intense bedding parallel 
fabric has developed near large scale thrusts, which 
destroyed most folds in the shear zone. MJnor F1 folds were 
only preserved during the culmination of this episode and 
occur in greater numbers in areas distal to intense shear 
zones. 

ii) 8 1 cleavaqe 

A penetrative axial planar cleavage is related to the first 
phase of folding. This cleavage strikes in a NNW direction 
and follows bedding planes or cuts across the latter at low 
angles. Dips range from shallow to very steep towards the 
wes~ , with the steepening controlled by imbricate zones and 
the attitude of the basement contact. 

In rocks rich in sheet silicates a slaty cleavage develops 
e.g. the Wallekraal schists, but as grain sizes increase the 
cleavage becomes disjunctive and spaced. In arenites and 
rudites, boulders, pebbles and grains may be aligned to help 
define 5 1 • 

The strongly develop~d bedding parallel planar fabric wi~hin 
the dolomitic Pickelhaube limestones are taken as evidence 
of a penetrative 5 1 shear cleavage, because intrafolial sheat 
folds and rootless folds are commonly seen in this rock. 

iii) L 1 linaation 

A prominent mineral growth lineation (L1) in the form of 
elongated mica flakes, hornblende, feldspar and 
micLoscopically aligned quartz grains along the S1 cleavage 
planes, is associated with the first deformation phase. 
Elongated deformed pebbles and boulders within the Numees 
diamictite and Wallekraal conglomerates also define the L1 

lineation, as does the maximum of the 81 fold axes. 
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Slip directions on mylonitic zones and quart~ veins are 
present as fine striations with biotite coatings or parallel 
corrugations plunging NW. 

Pure shear (irrotational strain) was responsible for the 
flattening of F1 folds, and conjugate shearing symmetric to 
the cleavage of some of the larger clasts in the Numees 
diamictite. Progressive simple shear rotated the axes of 
sheath folds into the shear direction (Ramsay, 1967). F1 and 
F2 folds are commonly coaxial although the F2 folds may also 
have shallower t:~!t'nges. 

iv) Faults and planar discontinuities 

NW to NNW trending reverse faults and/or folded thrusts 

record major displacements during the 0 1 deformational event. 
These faults follow the arcuate shape of the Gariep Belt and 
have been folded by subsequent 01 and 01 deformational events. 

Thrust planes steepen towards the granitic foreland and/or 
as a result of the development of the Pickelhaube Duplex 
structure (Annexure 2). They are identified by schist zones 
with quartz melange in outcrop and extensive flattening 
fabrlcs, which are especially conspicuous in conglomeratic 
horizons. Tectonically intercalated basement granite slivers 
also often de~arcate these zones (Annexures 1 and 2). 

Although thrusts often obliquely truncate F1 folds (Fig. a, 
and along tectonically defined boundaries of the Namuskluft 

synclinorium, Annexure 1), they are interpreted to be related 
to a single deformational episode more or less co-eval with 
the final stages of 01 • 

b) The second phase of deformation 

i) F1 folds 

Folds of the second generation are reco9nized by their open, 
slightly ~symmetric forms and slight overturning towards the 
west. They also form minor to major mildly plunging 

structures, ranging from open rounded buckle folds within the 

more competent units to sharp hinged kink folds in less 

Stellenbosch University  https://scholar.sun.ac.za



Fig. 21 

- 68 -

The contact zone of the overlying Pickelhaube carbonate with 
the Wallekraal schists with F1 kink folds. Hammer handle 
indic:ates contact. An ~ast-dippiny S1 axial planar cleavage 
is prominent ~n the s hists below. The locali~y is 
approximately 1 km to the northeast of Pickelhaube Peak. 

compet:.ent units at or near lithological bound:"lries 1·ith high 
ductil i'i:y contrast (Fig. 21),, Several .major bac)(folded F1 

structures occur in the Pickelhaube Peak area (Fig. 22). 

'l'he fold mechanism varies from flexural slip in competent 

uraits to ductile flow in the incompetent uni ts. Often t.wo 

interbedded lithologi~s seem to have been ~olded 

alternatively ~cc:ording o classes le and class 3 1 thus 
propagai:ing thro~gh relatively great thickn~sses of beds. 
These structures are often conical and plunge northwest as 
well as southeast (Fig. 23, 24). 

The fold mechan lsm responsible for the S.?COnd phase of 
deformation is mainly due to simple ~hear acting d4cectly ~n 

F1-fabric where this is planar. 

The most common interference patterns noted between F1 and F1 

structures (Fiq. 25) are t.ype J patterna ~Ramsay, 1967) whic!l 
a4e produced by coaxial refolding whera the second folds have 

a~ial planes making a large angle with those ot the first 
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Macro- F~ backfold just overturned towards the west (right) 

in Wallckraal conglomerates and grits. The locality is 

approximately 3 km to the northeast o f Pickclhaubc Peak. 

Neer symmctdcal F1 folds in ival lck1:aal schists. s,, prominent 

s~ axial planar cleavage and SdS1 intcr!;cci;ion 1 incations ;u:(~ 

also recognized. ~'/le lor:ali t.y is approximately l km to tlie 

southeast. of Pi..:kt!lhaube Peak. 

generation. Whcr~ the folds are non-coaxial the less common 
typical mushroom type folds occur (Type 2 interference 
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Optm F1 fold with east-dipping (left) 51 ax al planar 

cleavage. The locality is apprc.;.i!l'lately l km east of 

Pickelhaube Peak. Camera lens cap for scale. 

patterns). A possible reason for the presence of two styles 

of interference may be due to differential movement within 

the thrust nappe, causing F1 folds to be rotated into the 

plane of transport to variable degrees. 

ii) SJ cleav&qe 

The second most prominent cleavage is a NW-SE trending 

crenulation cleavage, which dips towards the northeast,· 

mostly at steep angles. 

This structure is axial planar to the seconu phase of folding 

and commonly cuts the slaty S1 cleavage in the Wallckraal 

schists at high angles. In the Numees diamictite outcrop£ 

S2 appears to have developed mainly parallel to 5 1 or it has 

largely obliterated bedding and S1 • Locally, however, .. 

spaced S1 shear cleavage displaces varve laminae in Nurr.ees 

di~mictites (Fig. 26), and S0 in Wallekraal schists. 
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Field sketches of meso-F1/F1/FJ interference folds in t/- ~ 

study area as seen in profile looking north. 

iii) L2 lineation 

The La lineation is a crenulation lineation, wh~ 1 :- formed 
by the 82 axis of small crenulation folds, whic... Jrm the 
earlier S1 cleavage. Thesti lineations are very prc..~inent in 
the valley at the tiOUthern foot of Pickelhaut !. Pea)~. 

Stellenbosch University  https://scholar.sun.ac.za



Fig. 26 

- 72 -

Varved shales within the Numees Sequence (looking north) with 
steeply east dipping S 2 spac_,d cleavage. The locality ls 

500m north of Namusklutt farmstead. 

A pencil cleavage lineation structure is also formed locally 
where the 52 cleavage i ntersects laminated bedding planes 
and/or S1 (Fig. 2J). Lineations plunge at shallow angles 
towards the NNW as well as SSE, and a r e similar tc patterns 
described by Von Veh (1988). 

iv) Faults and planar discontinuities 

Quartz and calcite-fillP.d brittle faults occur approximaeely 
1 km to the west of Rosh Pinah near the Rosh Pinah Nappe 
Tr rust (Annexure J), to the east of Pickelhaube Peak and on 
th~ eastern limb of the Rosh Pinah anticlinorium. The fault 
breccias range from less than one to several metres thick. 

Minor displacements seen along mark~rs in carbonates of the 
Pickelhaube Formation suggest that these are normal faults. 
They are interpreted as listric extensional structures, which 
have formed during gravity gliding of sediments into the 
Sendelingsdrif synclinorium off the bordering Annisfontein 
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anticlinorium. This happened because of amplification of 

the latter during thrust stacking in its core. 

Displacements of ~-backfolds of the Rosh Pinah orezone on 

the eastern limb of the Rosh Pinah anticlinoriurn indicate 

that these faults mark the termination of 01 in the Rosh 

Pinah Napoe. 

Open, m~ar symmetric F1 fold wi tl1 plunr;P. towards tl,.. west. 

The locality is l km to the soutllWc.,t of basement granites 
along Gumchavib Thrust (domair. 8, Annexuro Z). 

c) The third phase of deformation. 

i) F3 !olds 

~he third deformation phase is characterized by open, 

symmetric (Fig . 27) or asymmetric to slightly overturned WSW 

trending folds, which verge towards the south or southeast. 

Plunges are westerly or south-westerly, and the folds are 

non-cylindrical, concentric structures. 

F3 kink folds are prominent in Numecs outcrops (Fig. 28). 

and they may vecge either SE or NW in conjugate fashion . 
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A.c;ymmetric FJ kink told with NIJ-dlpping axial planes (kink 

planes) ln dlamict:i. tes ot the Sondolingsdr it Format ion. Tile 

locality is domain JD, llnnexuro 2. 

F, megafolds are responsible for t11e undulation of the strata 
~~ seen in a N-S section, e.9. when looking towards the west 
f:ro~ Ror-h Pinah. Their fold axea. arc "early normal to those 
c, F1 antt F~ folds. 

A eouthe~"'1t or nor. .hwest-dipping axial planar cleava9c J.G 
rP.l:ited to tlu~ F1 phase of folding. This clea\ age .is a 

crenulation fea ture, which may be sinuous or anastomosing 
locally contains r~ Jcite v~ins. 

iii) L3 lineation 

' •• I 

The LJ lincations are mainly defined by the B1 fold axes, 
which plunge dominantly towards the southwest, but also to 
the east or north-east. Below Obib Peak (Annexure 2), an L, 
mineral lineation was observed, which overprints the older 
L1 minerftl lineation. 
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iv) Faults and planar diacontinuitiea 

A NNE-SSW trending set of faults can be recognized and field 
evidences e.g. displacement of F1 folds indicates that they 
are related to the third phase of deformation (Annexure 4). 

d) The fourth chase of deformation 

The final phase of deformation (04 ) may be related to the 
emplacement of the Kuboos pluton. This phase seems to be 
only poorly expressed in the study area north of the Orange 
River due to the distance from the pluton. 

The ubiquitous east-west and SE-striking often quartz-filled 
near-vertical fractures and joints are accompanied by small 
crenulations and kink folds within tho Numees diamlctites. 

6.7 Structural domains 

The study area has been divided into several structural 
domains, which are bounded by either structural and/or 
lithological discontinuities to obtain stati& ioally 
homogeneous domains, which are d1\flned by: constant 
orientation of a specifJ.c generatio l of .foli!ltion planes, 
lineationn, fold axes ':)r of axial pla .1cs e.9. fold vergonces. 

6.8 Tbe Structure of the Narnuskluft-Dreigr3tberq area 

The structural style along the dissected escarpment in the 
Namuskluft-Dreigratberg area is largely that of a fold-thrust 
imbricate that steepens up against the foreland ramp. The 
Sendelingsdrif synclinorium is described as a 9raben by 

several authors, (De Villiers & Sohn~e 1959, Martin, 1965), 

but is here interpreted as a thrust-fold slice (imbricate) 
(Annexure 2 b). 

The Namusklutt sync4inorium generally has open folds with a 
varying shallow plunge north or south. However, tight folds 
appear on the eastern limb close to the Rosh Pinah Nappe 
Th.·ust. A steep east-dipping S1/S2 axial planar cleavage 
obliterates most of the bedding traces within the Numees 
Sequence. Where bedding is visible e.g. within varved shales 
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or aR thick units, they dip west at approximately 55° . 
Within the Numees diamictites extensive shearing is indicated 
by pinching and swelling of disrupted quartz veins. The 
cleavage steepens towards the east. 

Fl folds d~-<'rm the S,/S2 axial planar cleavage (Annexure l, 
domains 3 & 5) with F1 (51 ) axes plunging steeply east to 
northeast. F2 folds deform isoclinal quartz veins (Fig. 29). 
along the basement contact (N/4, Annexure 1) into open folds 
with no~th to north-east dipping axial planes often marked 
by a calcite-filled spaced cleavage that dips at angles of 

10-25°towards the NE. 

Part of a zone oL shearing and catacl~sis of quartz veins 
along the thrust contact of the basement and aover sequence 
(N/4, Annexure l). Isoclinal F1 shear folds with axial 
planes dipping steeply west are so1m. Tliey aie refolded by 
open F1 Iolds with calcite filled S1 cloavagas dipping east 
~t low angles. Tho locality is 2 km north of Namusklurt 
farmstead. 

A conspicuous northwest-dipping L1 mineral lineation (domains 
J, 5, Annexure 1) is defined by black streaks of biotite on 
s1/S1 cleavage planes in pelites. It parallels the long axes 
of clasts within the diamictite that llc within the foliation 
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and plunge towards the north at varying angles. This defines 
the Li/Lz lineation and Dif D2 transport direction (Fig. Joa, 
b) • 

These rocks have been subject to intense deformation as 
indicated by the undulose extinction of quartz grains and the 

presence o! shear related en-echelon quartz veins. Several 
NNW-SSE trending quartz veins dip steeply towards the ENE, 
while less prominent veins trend NE-SW and dip towards the 
NW. 

A local north-trending lineation (not shown) is !ormed by the 
intersection of a local shallow dipping fracture cleavage 
with the steep easterly-dipping 52 cleavage. This lineation 
plunges at shallow angles towards the north. 

Later fractures and faults with an east-west trend and 
occasional small scale kink folding of the same orientation 
as found in the Numees Formation can be ascribed to the final 
phase of Gariep deformation ( O") as outlined by Kroner, 
(1974). 

The structural importance ot the Sendelingsdrlf synclinorium 
i~ indicated by the emplacement of one of the largest post­
tectonic, post-Nama intru$~ons, the Kuboos pluton near \ts 
centre and a 80km Gannakourlep dyke following the strike of 
the synclinorium in the Richtersveld. 

6.9 Results of Strain Analysis 

The methods and assumptions are outlined in the appendix and 
will not be repeated here. Strain estimates of orientated 
clasts in the Numees diamictites should be :regarded as 
minimum values as the assumptions outlined in the index are 
not applicable throughout. Care was taken to take 
measurements in areas where the matrix of the rock is largely 
quartzitio or gritty, with present competencies often similar 
to those of the dominantly granitic clasts. Mudstone matrix 
was avoided. The results of the strain measurements a.re 
summarized in 'l'able 2. 
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Table 2 STRAIN DATA G~RERED ALONG XX P[,ANU OF THE STRAIN ELLIPSOIP 

AREA N ARITH:-!ETIC CEmlETRIC 8;\R!iOSIC t VALuE I ., .. ~EA~ LOSG STRAIN R.:\TIO 

MEAS ~EA:i MEA.-; AXIS 

1. ~arnuskluft 48 2,71 :?,91 2,70 0,70 0,80 001•/35• 5,91: ~.l~; 1 

Farmstead 

2. Central Area 47 :?,H 2,36 2,23 2,10 0, !16 003•121· 4,59: 2' 06; l 
-

3. Dreigratberg 15 :? , 6 2 2,68 2,51 2,55 0,84 3n•;_,s .. 5,12: 2, 0-l: 1 

STRAIN DATA GATHERED ALONG XZ EL?,~ES Of TBE STBAIN ~L4IPSOID 

--
-~-~ ARE.; !\ ARITH~lETIC GE0~1ETRI ".:' i HAR110~IC • v·.1.cE I .,.. MEA~ LO~G STRAH RATIO 

!'1EAX !'IE.~~ I ME.:\ • AXIS 
----

l. ~at:luskluft -., =>- 2, 33 2,19 . 1C - - - -
farmstead 

') . Central Area - ') ., - 2,17 2.06 1,90 - - - -

3. Dreigratberg 51 2.19 2.04 '.!, 00 - - - -
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Because there could be a positive relationship between size 
and shape of clasts as a result of crystal plastic 
deformation, the markers in the Dreigratberg area were 
grouped into clasts smaller and greater than 4cm and values 
recalculated along 52/51 cleavage planes (XY planes) . 

The results are as follows; 

Harmonic mean tor peobles < 4cm 
Harmoni c mean for pebbles > 4cm 

- 2, 38 

= 2,26 

There is a fair correspondence, which indicates that valu~s 

given for the three areas ar~ reasonable minimum estimates 
of t he str ain. 

The fol l owing re~u lts are indicated by these measureltlents; 

i) The flattening of clao~s acros'° t he S 1/ S7 c l eavage 
planes \the XY p lane nf the strain e ll ipsoid) contirma 
.:;i.9nif1cam:. contractional deformation of lithologies 
against t he basement as also s.1own by tight folding of 
the Sen~eling. drif s ynclinorium and by the steep 
att i .ude o f t hrust planes . 

ii} As j· 1 

S1 r: 
Send 

.u 1"2 f olds a r e approximately co-axial and 5 1 and 
raqes follo~ the s ame tren~s 3.g. in the 

drif synclino~ium i t is not always possible 
t c> di arentiate between the latter in t he s t•1epened 
imbric_ ta zone. Here we therefore study the co.nbir.ed 
effect . 

i i i) The exact reason f or the change in the axial ratios ot 
the strain ellipsoid as well as the orientation of the 
long axes (X) can possibly be related to: 

a) the change in direction of the original floor 
unconformity as well as its composition. This 
in turn influences the attitude and dip ot the 
ramps along which co~er rocks are imbricated. 
Depending on the angle between the ramp and the 
tectonic transport direction the dip and strikn 
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slip components will change from place to 
place. 

b) The effect of the third phase or deformation, 
which can clearly be seen in the deformation of 
the s.;s2 fabric of domain J. 

The combination of Von Veh's 
results of this study (Fig. 
following: 

(1988) data toge~her with 
Jla and b) ind1cate the 

i) the relationship of X/Z to X indicates that clast:J 
with steeper plunging long axes are no~mally more 
deformed than shallower plunging ones 

ii) this indicates that flattening of cl as ts increases 
towards Namus~ '·•ft, whir.h implies higher strain in 
this area 

iii) the m~ar parallelism of fold axes to X, north and 
south of the Orange River, as well as sheath fold axes 
which plunge to the NNW indicate transformation of 
fold axes into the transport direction 

iv) a NW to SE to WNW-ESE transport direction is indicated 
by all analyses of deformed markers near the basement 
contact. The reduction in the vertical component 
southwards may indicate that the basement contact may 
dip considerably flatter towards the west, or that its 
orientation changes from NNW in the north to NW in the 
south. 

From the structural analysis of the Drei9ratber9-Namuskluft 
areas it is evident that; 

i) transpressional shear dominated the area 

ii) the XY pLane is parallel to the fold axial planes, the 
S1/S2 cls~va9e planes and is slightly oblique to major 
dislocations 
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KUBOOS PlUTON 

NAtfld!A 

l 
j 

Rl(HT[RSVElO 
SOUTH AFRICA 

Fig. Jla Hap ot the northwestern Richtersveld and southwestern 
Namibia showing the variation in 'orientation ot th~ X-axis 
of the strain ellipsoid. Richtersveld data aiter Von Veh 
(1988). 

Subdivisions on the map is based on main lithological 
bounda.ries. 
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iii) X112 (axis of elongation in . the 5 1/Sz plane) is 

therefore the transport direction and is moderately 
inclined to the NNW, as shown by analysis of strain 
markers. 

iv) minor sheath folds are parallel to X1n 

v) the tectonite is explained as an imbricate zone of 
oblique F1/F2 ramps formed in a transpressional r~gi~e 
which transformed and translated F1 folds and thrusts. 

Where 50 is absent (as in diamictites) an S1/S2 cleavage is 
the dominant structural element. All folds and dislocations 
have been steepened as the south-east~rly directed trar.sport 
vector develops a vertical and a horizontal component during 
multiple oblique ramping. 

The next step is to investigate the structural nature of the 
Gariep tectonite further away fr~m and west of the 
imbrication zone to be able to tell how this imbricate zone 
was formed. This was done by study lng the structure alo119 
two E-W traverses. 

THE GEOLOG¥ AND STRUCTURE OF AH EA~r-WEST TRAVERSE IN THE 

PICKELHAUBE PEAK AREA 

The Basement Complex 

Distribution and Stratigraphy 

Basement granites and gneisses are exposed along the 
Gumchavib Thrust in the western part of the traverse 
northwest of Gumchavib Peak (Annexure 2a) . These rocks have 
been the subject of much controversy and were originally 
interpreted to have formed through a process or granitization 
(McMillan, 1968). 

The controversy was only resolved atter Rb/Sr dating carried 
out by Welke et al. (1979) confirmed a metamorphic Namaqua 
age of 1100 Ma for these rocks. Hence they must be 
correlated with the older V._oolsdrit Granitoid suite and form 
a basement inlier. 
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Fig. 3lb Proje~tion of the attitude of the X/Y strain ellipsoid onto 
a NNW to NNE near vertical plane along the eastexn contact 

7 .1. 2 

to the basement • X/Z strain ratios as well as possible 

changing o3/o2 stress trajectories are also shown. 

Llthology and petrography 

The 9ranitic sequence consists largely of thick zones of 

elongated leucoqranite bodies orientated parallel to the 

reqional SW-dipping 51 cleavage ;oomain 8). Thinner lenses 
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of extensively sheared 
intercalated locally. 

blue-grey augen-gneiss are 

The augen-gneisses contain large feldspar and quartz 
porphyroblasts, often > lcm in diameter. Along the eastern 
boundary the granites form a thrust contact with sediment~ 
(the Gumchavib Thrust) an• are accofl'panied by pervasive 
ferruginization and epidotiz.ation. The granite is also 
enriched in biotite and chlorite here. 

A petrographic study of the granites (NT 154, NT 155, and 

NT 156) indicates that they consist ess~ntially of quartz and 
feldspar (plaqioclase) and hornblendes as major cQnstituents, 
while chlorite, muscovite and epidot~ form minor components. 
Accessory zircon is present in all the samples. The sheet 
silicates are aligned along the penetrative cleavage, and 
feldspars have been extensively altered and sericitized. 

The Stinkf ontein Segqence 

Distribution and stratigrapr.y 

Quartzitic lithologies of the Stinkfontein Sequence 
unconformably overlie the upthrust basement lithologies in 
the west. The Sequence has been duplicated by the Gumchavib 
Thrust. Li~hologies grouped within the Rosh Pinah Formation 
underlie the granites, while quartzitic lithologies of the 
Gumchavib Formation uncon!ormably overlie the basement 
9ranites. The presence of an intensified cleavage however, 
suggests some shearing along the upper granite contact. 

Lithology and petrography 

Lithologies directly overlying the basement inlier consist 
of fine-grained Gurnchavib Formation quartzites commonly 
alternating with thin pelites with parallel laminations 
apparently representing shear planes. Several thin (3-5m) 
light or medium-grey dolomitic bands ~re intercalated in the 
stratigrapi1ically higher pctrts of the succession and at the 
top form a thrust contact (the Valley Thrust) with the Rosh 
Pinah Formation. The contact zone displays numerous bedding 
parallel quartz veins over a width of several metres. 
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Similar dolomite bands occur in the same stratigraphic 
position along the Obib Peak traverse (Fig. 47). 

In the hanging wall of the Valley ' 1rust a sequence of light­
brown, medium-grained quartzites with intercalated blue-grey, 

tine- to medium-grained and laminated limestones occurs. A 

thin, black dolonite band is also found locally in these 
rocks, which a r e grouped within the Rosh Pinah Formation. 

The stinktontein lithologies, which tectonically overlie the 
Nurnees diamiotite nlong the Obib Waterhole Thrust (Domain 11, 
Annexure 2) are coarse-grained, blue-grey or li9ht-9rey 
dolomites with minor intercalated light-brown quartzite beds, 
which are also grouped within the Rosh Pinah Formation. The 
dolomitic marble, (NT 149), of this thrust sheet consists 

entirely of a matrix of small int~rlocking dolcmite qrains 
with clusters of large calcite grains drifting in it. 
Towards the west the$e rocks disappear under the dune cover. 

The Hilda seguence 

Distribution and stratigraphy 

The Pi ckelhaube carbonates are duplicated in the Pickelhaube 

Duplex Structure and are wel l developed bel ow Pi ckelhaube 
Peak (Fig. 2). The Hilda Sequence is represented by a thin 
slice ot Pickelhaube carbonate rocks followed by a thin zone 
of Wallekraal Formation grits and conglomerates fr the 
southwestern part of domain 10, Annexure 2. 'i'he latter is 
conformably overlain by a som thick diumictite unit, which 
is thought to belong to the Numees sequence. 

In the central parts of the Annisfontein anticlinorium the 
Pickelhaube carbonates have been eroded away. Along the 
eastern limb of the Annisfontei.n anticlinorium the Wallekraal 
Formation is prominently developed. 

East of Pickelhaube Peak (lJomain 6, Annexure 2), the 
Wallekradl schists locally abut against an east-dipping 
thrust, the RPNT. Above this sole thrust and to the east the 
sequence of conglomerates and arenites is repeated at least 
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three times by hinterland-dipping duplexes steepening up trorn 
B to W. 

'l'hE" Wallekraal Formation liea unconformably above the 

Pickelhaube Formation in the Rlchtersveld (Von Veh, 1988). 
In the study area this situation is reversed and can only 
be explained by thrustinq or the Pickelhaube Formation over 
the latter along the RPNT, or by major recumbent folding. 

The ~reience ot the RPNT is physically evident in the tield 
as a slightly east-d~pping, siliclfied contact zone between 
overlying Pi~kclhaube carbonates and the underlying 
Wallckra.11 lithologies. 

Li tholOCJ}' and petrography 

The litholoqies of the Pickelhaube dolomitic limestones have 
been described previously. However, the central Pickelhaube 
unit within the duplex zone contains a zone of angular often 
pisoliti c dolomite clasts within a dolomitic matrix, which 
seems to represent a sedimentary breccia. In places this 
zone consists of several clearly distinguishable units with 
ui,.iwards !ini.ng clasts (Fig. J2}. Subrounded to rounded 
quartzite c..1.asts similar to those of the Wallekraal Formation 
are also present. 

This unit may have ¢riqinated as a gr~vitationally triggered 
debris or mudflow deposit, derived largely from ~arbonate 
reefs in higher, marginal parts of the basin. Strnti9raphic 
thinning seems to occur westwards whi~h points to an easterly 
source. 

In the steeply west-dipping imbricate zone (Domain 6, 
Annexure 2) intercalated grits of the Wallekraal Formation 
often have a reddish colour, locally grading into arkoses 
with prominent feldspar clasts. The t:iequence is upward 
fining. Small quartz pebble conglo~erate lenses contain up 
to sot rounded, subrounded or angular feldspar clasts ~ith 
diameters up to lcm. 

These grits are similar to lithologies found at Obib Peak 
(Annexure J) and indicate very rapid transport and burial, 
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carbonate breccia zone with mudflow characteristics. The 
locality is approximately 2 km to the NE ot Pickelhaube Peak. 

probably at low average annual temperatures and a semi-arid 
climate. 

Huge isolated dolomite boulders, blocks or lenses drift in 
the grits and schists and their frequency increases towards 
the b:se of the Wallekraal Formation. They may measure up 
to am x Sm actoss. These features have been interpreted as 
bioherms (Kr8ner, 1980), but they may even represent 
extremely boudined carbonate bands or deformed, slumped 
carbonate blocks. Tha Wallekraal Formation schists form a 
sharp apparently conformable but prominently sheared contact 
with the overlying Picklehaube dolomite at the top of each 
thrust slice. 

In domain 7 Wallekraal lithologies underlie most of the 

Annisfontein anticlinorium southeast of the Rosh Pinah Nappe 
Thrust along which they have been transported over t~e Rosh 
Pinah Formation because the RPNT is cutting stratigraphically 

downwards (see section, Annexure 2). Micaceous conglomeratt:! 
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and grit lenses abound, with biotite porphyroblasts aligned 
oblique to the 51 cleavage. 

Generally conglomerate lenses increase towards the top of the 
formation concurrently with an increase in the percentage of 
Wallekraal schist fragments in them. The intercalated 
quartzites contain several thin quartz pebble conglomerate 
layers with feldspar clasts. These quartzites may grade 
upwards into blue-grey arkose. 

Alternating normal as well as inverse grading sequences 
confirm local duplication of units because of isoclinal 
folding. considerable thinning of beds has occurred along 
the limbs. 

Neer the base of the lower Wallekraal schists below 
Pickalhaube Peak, disorientated fragments of quartz veins 
occur in a cataclaslte. This is interpreted as a sole thrust 
to the exposed sequence. The contact of this schist zone 
with the overlying conglomerate is knife sharp. 

A petrographic examination of scme of the gritty rocks 
(specimen NT 83) outline a mine~alogy consisting mainly of 
rounded to s ubrounded quartz ~rains with a poly9onal-
9ranoblastic texture. Large brown porphyroblastic biotite 
flakes as well as brown ferruginous fillings ot cracks are 
present. The matrix is made up of chlorite and biotite. The 
medium-grained pebble conglomerates (NT 84} have a similar 
mineralogy except that feldspar becomes a major phase. Most 
feldspar grains ar.e sericitiz~d. 

The Numees Seguence 

Distribution and stratigraphy 

A Som thick lens of blue-grey diamicti te unconformably 
overlies the Wallekraal conglomerates and grits in the 
southwestern part of domain 10. S!n1ilar out ~rops are found 
along strike intermittently north ot tho st•Jdy strip of 
Annexure 2. The stratigraphic · position of these rocks 
indicate that they belong to the Numees Formation. They have 
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also been mapped as such south of the Orange River by Von Veh 
(1988). 

A dolomitic limestone-quartzite unit (here J rrelated with 
the Rosh Pinah Formation) over li es these rocks alon9 ~thrust 
contact (the OWT). 

Litholo9y 

The Numees diamictite is a severely deformed grey-green rock 
with unsorted clasts of dolomite, Wallekraal 9rit, 
leucogranite, 9ranodiorite and quartzite within a green 
chloritic matrix. McMillan (1968) also noted some red 
granite clasts probably of basemenL granite derivation in 
similar diamictites outcropping along strike towards the 
north. 

The rest of the lithology and stratigraphy of the strip map 
east of the Rosh Pinah valley (the Dreigratberg-Namuskluft 
area) has been described on pages 47-56. 

7.5 The Structure vf an east-west traverse in the Pic~haube 
Peak area 

The stratigraphy, major structures and subdomains with fabric 
analyses are shown on Annexure 2(a). The main structural 
features of this traverse are indicative of southeasterly 
directed thrusting, thrust stacking, thrust steepening and 
backfoldin9 against anticlinoria, and basement ramps. 

Towards the east the Pickelhaube and Wallekraal Formations 
have been duplicated in the Pickelhaube Duplex structure, 
which lies within the Rosh Pinah Nappe. Several macro west­
verging F1 backfolds can be outlined here (Annexure 4). 

These and the younger Numees rocks in the Sendelingsdrif 
synclinorium have probably been duplicated as a result of 
gravity gliding along the Rosh Pinah Nappe Thrust, which was 
a consequence of late rising of the Annisf ontein 
anticlinorium because of an antiformal thrui ; stack 
developing in its core (Von Veh, 1988). A normal 
stratigraphic sequence is present along the escarpment where 
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the Witputs lithologies unconformably overlie the Numees 
diaroictites. However, thrusts are well exposed along and 

west of the basement contact where several thin sli~ ~rs of 
granite crop out. 

The latter are remnants of basement granite in the roof of 
the Rosh Pinah Nappe Thrust and appear wedged in between the 
upper limestone and diamictite unit of younqer format! ,s, 
possibly the Namuskluft Formation (N/4, N/5, Annexure 1). 

Domains along this traverse are numbered 1 to 11 from E to 
w. Contoured fabric diagrams are given in Annexures 1, 2 and 
J and point distribution diagrams in the text. Only the mo1'it 
prominent structural features are outlined on fabric diagrams 
on Annexures 1, 2, and J. 

The east-west section in the Pickelhaube Peak area is 

discussed first because it is closest to the profiles drawn 
south of the Orange River by Von Veh, (1985}. 

i) Domain 1 

Domain l includes the older basement rocks, which are 
separated from the Gariep cover rocks over long distances by 

a major thrust zone. Just north of the Orange River however, 
(R/5,14,15, Annexure 1) an unconformable contact has been 
preserved. 

Litholo9ies include the mafic Or~lge River Group volcanics 
with less felsic volcanics, intrude-: on a large scale by the 
co-9enetic Vioolsdrif Granitoid Suit~ {See chapter 2.1.2). 

south of Lorelei Mine (14/R +s, • -,;~ ,·1:tre 1) the volcanics 
have been thrust: over the Vioolsdr. f \; ·anitG., and defonned 
together with the cover rocks. These rocJt:s have been 
affected by the following tectonic even~ s· 

a) D1b (After Von Veh, 1988) 

The first recognized tectonic event is the (>lSOO Ma) orange 
River orogeny outlined by Bertrand (1976) i'nd Ritter (1978, 
1980). This event is only indicated by local t e~nants of a 
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folded schistosity. In the Orange River Group two prominent 
cleavages have been measured, with the west-dipping 
discontinuity interpreted as 5 11 possible remnants of an 
earlier basement cleavage. 

The S1 basement cleavage poles (Fig. 3Ja), however, follow a 
partially developed great circle girdle distribution, with 
a ff-axis at 292°/66°. They are obviously deformed 
(curviplanar refracted cleavage) and probably had an original 
orientation dipping steeply to the SW or w. 

Fold axes with a north-westerly orientation are 
characteristic of the F1 phase o! folding i11 the cover 
sequence. The vague delineation of a wide S1 n-girdle may be 
due to the effect of the still younger F3 folding in the 
cover rocks. 
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The second cleav~ge is an east-dipping crenulation cleavage 
(Fiq. JJb). It seerns related to the s2 cover cleavage 
overprinting the 5 1 cleavage of the basement. 5 2-basement 
cleavages define a "-axis trending 086°/7J0 possibly related 
to a younger deformation producing NE-SW trending F1-folds in 
the cover rocks. S, is also deformed or fanning and seems to 
have had an original orientation dipping steeply to the E or 
ENE. This agrees with attitudes of similar s, and 51 

cleavages in domain 2 and 5 (Annexure 1). 

A poorly developed 51 cleavage is o :-aly found sporadically and 
generally dips at low to moder~te angJes to the SSE (Fig. 
33c). Locally a set of prominbnt NNW plungin~ asymmetric 
kinks, which verge towards the ease (F1 of the cover rocks) 
deform the older basement s 1 cleavage to define an L1 

lineation {Fig. JJd) in the chloritic mafic rocks near the 

cover/basement contact. Shearing along cleavage planes is 
common here. 

b) D1n (After Von Veh, 1988) 

A major shearing episode along the northeastern and southern 
margins of the Richtersveld Subprovince can be related to the 
~1200 Ma Namaqua Orogeny (D1n) (Blignault, 1974, 1977; 
Bertrand 1976; Theart, 1980; Booth 1987). 

The grano1ioritic rocks commonly contain pre-Gariep shear 
zones several metres in width with limited strike length, 
which commonly abut against the younger Gariep rocks. The 

dominant trend of these features is towards the NW and NNW, 
but dips may be either steeply towards the SW or shallow 
towards the NE. Some of them · are possibly react.i vated 
structures, which were formed during a backthrusting event 

(Von Veh, 1988) of the Namaqua tectogenesis. 

ii) Domain 2 

Domain 2 includes lithologies of the Witputs, and underlying 
Numees and Hilda Sequences (Fig. 2). These rocks form 
thrust-fold slices embracing several mega-F1 anticline-· 
syncline pairs in the Namuskluft synclinorium. 
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Thi3 domain is demarcated by the Rosh Pinah Nappe Thrust in 

the west along which upthrust slivers of granite are found 

(N/4, N/5, Annexure 1), and the Namuskluft Thrust in the east 

along the contact to basement. > conspicuous quartz vein 

melange zone is present along this contact north of 

Namuskluft farmstead (N/ 4, Annexure 1). 
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Fig. 34 Fabric data from domain 2 

Peles to s0 define a somewhat vaque 12"-axis plunging at low tc 

moderately high angles into the NE-quadrant (Fig. 34a), and 
parallel to the F1 fold axis maximum (Fig. 34f) 
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West-dippi~g fold limbs are more prominent than steeper east­
dipping lhrabs and indicate an easterly verqence, which is 
related to the first deformation phase. No obviou.s Fz 

backfolding has been observed in this doMain, but the fact 
that the S0 distribution is so dispersed means that some 
later deformation has affected bedding. 

This is also confirmed by the diffuse maxima of S1 and s 2 as 
well as thf'• bipolar distribution of L1 and F1 , which confirms 
F1 cross folding. The 5 1 cleavage is an almost bedding 
parallel feature that either mimics bedding or cuts slightly 
across it. It distributes on a great circle girdle with a 

rr-axis at 266°/60°, which approximates the Fl fol.P trend, and 
is on average slightly shallower than bedding (Fig. 34b). 

A well detined S1 crenulation cleavage dips steeply towards 
the east (60° - 80°, Fig. 34c) and is especially prevalent 
within the diamictite unit, while 5 3 cleavages either dip 
shallowly towards the NW or SE (Fig. J4d). 

L1 (Fig. 34e) is an intersection lineation formed by 5 1 and 
S0, which is paralleled by F1 fold axes (Fig. 34f). F 1 folds 
outline a NNW trending girdle with submaxima, which indicates 
the influence of o, deformation. The steeper cluster of NNW 

plunging F1 axes were measured in the southern part of the 
Namuskluft synclinorium towards the Orange River (Annexure 
1) • 

Open F1 folds have a vector mean on 331° with a plunge of Jl0 

towards the northwest, which is similar to that ot possible 
50 , n-pole positions and L1 as well as F1 fold axis maxima. Shear 
planes follow the NNW trending axial planes of prevalent 
folds and dip either steeply to the SW or NE. Sheath folds 
are preferentially developed within zones of shearing along 
the basement contact e.g (P/B . Annexure 1), and their axes 
have attitudes near the attitudes of f 1 fold-axis maximum 
(Fig. 34 f) • 

Due east of the Narnuskluft farmstead (N/6, Annexure Jl some 
prominent foliation-dominated shear indicators (the s-c 
fabrics) which are controlled by the rela ~ ·- slip rate along 
surfaces (Bjornerud, 1989) are located in p1nk limestones of 
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the Wi tputs Sequence. Tht!y indicate a sense of contractional 
shearing acros~ a west-dipping s-plane. Several examples of 
minor thrust irnbricates are present along the basement 
contact (Fig. 35) • 

., • .... 
- ~ 

Thrust imbrication (overstep thrust sequence) along 

cover/basement contact on NamusklulL (P/B, Annexure l). 
Looking soutJJ. Hammer on lowest imbricate tor scale. 

At this ~ocality there are two distinct lineations in the 
rock. with the older NNW trending lineation (L1) (Fig. J4e) 

truncated by the younger lineation trending 317.. (Li) • An 
asymmetric mega-F2 fold indicates a sinistral sense or 
movement in a SSE direction along the basement contact (0/8, 

Annexu1 e l) . 

The structural analysis of this domain allows a clear 
distinction between ttree deformation phases, the first two 

of which are v~ry nearly co-axial and almost co-planar, but 
their vergences differ and F1 deformation intcnsi ties are 
generally much higher. 

L1 and F1 and sheath folds plunge to the NW at angles very 
comparable to those of X11J-axes derived in chapter 7. 9 for 
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domain J and 4 (J\nnexurc 1 and 2) . This indicates that 
stretching and re-orienta~ion occurred along fold axes F1 and 
F1 , and where shear was concentrated. Some F1 (and F2?) 

folds, which were oblique to the shear direction, developed 
into sheath folds, which eventually trend almost parallel to 
the re-oriented ones. 

iii) Doaain l 

This domain includes a thi~k sequence of 
d1amictites with minor varved shales 

monotonous Nurnees 
ar.d grits. These 

lithologi cs form a prominent anticlinal ridge trending from 
due north of the Namuskluft farmstead southwards, to the 
Orange River (Annexure 1). The structure is interpreted as 
an F1 ramp anticline steepened by imbrication and backfolded 
during F2 (sae Annexure 1, profile A-B). 

A major dolerite dyke apparently forming two branches has 
intruded the eastern limb along the entire length of the 
exposure. Bedding features are scarce ~ut are recognizable 
in the banded iron formations or as large scale structures 
within the diamictites (Fig. 7). As 51 cleavages (Fig. 36a) 
seem to be subparallel to 52 very few of these planes were 
recognized. 

The most prominent structural feature is a penetrative east­
dippin9 S1/S1 cleavage with attitude 337° /68°E (Fig. 36b). 
The cleavage poles distribute along a great circle girdle 
with a rr-axis on 062° /72° ,. which defines the F1 fold axis 
direction. Occasionally the cleavage (51/Sl) may also dip 
towards the t.1est. Locally in the central parts of the 
Sendelingsdrif synclinorium the 51 cleavage is subparallel to 
51 and deformation of this cleavage indicates shallow single 
NNW or SSE plunging F1 folds. 

Conspicuous E-W strlking master joints dip either steeply 
north or south and of\·en forn erosion gullies. Meso-F2 folds 
are scarce and havE· an azimuth of 160° with either shallow or 
steep plunges towards the southeast. Shears and faults 
generally strika parallel to the axial planes of the NNW 
trending folds, although a single NE-SW (F3 ) trending shear 
was also measured (Fi9. 36d). 
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i v ) Domain 4 

Domain 4 includes the Dr eigratterg syncl ine (Fi g . 2) 
containing lithologies of the Witputs Sequence and underl ying 
diamictites of the Numees Sequence . The syncline is faul t 
bounded on the western limb (Fig . 10) . 

This domain was singled out as it contains dolomitic and 
~chist lithologies within a thick sequence of diamictites . 
S0 fabric data define the steep limbs of a major syncline 
with near horizontal axis (Fig. 37a). The S1 cleavage can be 
seen as a deformed slaty cleavage within the intercalated 
schist units (Fig. 37b). 

The pronounced steeply east-dipping axial planar (S2) 

cleavage (&' iq. 37c). confirm;;; that this is a mega-F2 fold 
(See Sections GG-HH and II-JJ, Figure 18). The cleavage has 
a mean attitude of 343°/67° N. A poorly cev~loped shallow 
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Fig. 37 Fabric data from domain 4 

north-west dipping cleavage can be related to the third phase 
of deformation. 

The Li intersection lineations define the F2 fold axes (Pig. 
J7d), plunging at low to intermediate angles to the NNW as 
well as SSE probably because of some F3 cross-folding. 

v) Domain s (see Annexure 1 and 2) 

Domain 5 consist exclusively of diamictite rocks of the 
Sendelingsdrif synclinorium and lithologies towards the west 
of Dreigratberg and should therefor~ be compared with domain 
3. 

A few available s0 measurements seem to indicate a SSW-NNE 
trending F1 fold axes within a sequence of massive, unbedded 
diamictites (Fig. 38a). However, lineaments on aerial 
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photographs seem to outline the fold closure of a 
synclinorium (Annexure 1) wjth a NNW trend. 
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Remnants of s, cleavages with varying dips towards the west 
are rare and approximately follow S0 (Fig. 38b). S0 and S 1 

data however, are too few to be of significance in 
determining the orientation of F1• 

Abundantly available S1 data lie on a great circle gi~dle, 
indicating that it has been modified );:~ :l later folding 
episode (F1), t r ding almost E-W (Fig. J S<:}. L!° • .:.s could 
also have affect.t!C the S0 and s, planes. Trie .01dn:ant steeply 
east-dipping s1 cleavage has a mean trend of 006° with a dip 
of 64° to the east. Relative to domains 2 and 3, it seems to 
have been rotated towards the NNE. F2 folds plunge towards 
the NNW. 
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In the field it is apparent that master Q-joints (cros 
joints or a-c joints) as well as L-joints (longitudinal 
joints) follow the clockwise rotation of about 20° of s 2 

cleavages towards the NNE in this domain. 

This change in the general strike direction of the 
Sendelingsdrit synclinorium could be F} related (See Fig 2 
for a similar deformation of the axial plane of the 
Annisfontein anticlinorium). The Jakkalsberg fault splay 
forms the roof thrust of the Pickelhaube Duplex Structure. 

vi) Domain 6 (See Annexure 2) 

Do111ain 6 is underlain entirely by conglomerates, grits, 
schists and carbonate rocks of the Hilda Sequence. A zone 
of obtruQive imbrication duplicates Wallekraal and 
Pickelhaube lithologies several times along the eastern limb 
of the Annisfontcin anticlino.r ium forming the Pickelhaube 
Duplex Structure within the Rosh Pinah Nappe. 

The S0 data are widely scattered but define two possible 

great circle girdles, with rr-axes trending 340° / 07° and 
302°/44° xespectively (Fiq. 39a). The 51 slaty cleavage 
mimics bedding and strikes 166° with an average dip of 49° SW 
(Fig. J9b) subparallel to west-dipping strata. 51 is 
overprinted by a prominent s 2 spaced crenulation cleavage 
with a strike of 166° and dip of 6a0 NE (Fig. 39c). Bedding 
transposition occurs locally along 52 cleavage pl~nes. 

Sporadic westward dip reversals of the east-dipping 52 

cleavage can be observed below Pickelhaube lithologies in the 
zone between folds of opposing vergence (see also section cc­
OD, Annexure ~), and is related to the open, near symmetrical 
F2 :olds below Pickelhaube beacon, which are occasionally 
slightl~r overturned towards the west. The overturning is 
coupled with back-folding f (' -.i ·ly induced by gravity gliding 

of sediments into the SencJ · ~ -''-J drif synclinorium. 

Few s3 cleavages were ob.::ervcd and indicate that F~ folds 
could plunge into the NE-quadrant in agreement with their 
measured trends from elsewhere (Fig. J9d). L1 intersection 
lineations (Fig. 39e) and Li intersection lineations (Fig. 
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l9f) are subparallel and have shallow plunges towards the SSE 
and NNW respectively. 
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Fig. 39 Fabric data Lrom domain 6 

\ 

The L1 maximum indicates that it is possible to draw a S0/S1 

great circle qirdle (see Fig. J9b) which could explain the 
east-verging F1 folds in the western part of the Rosh Pinah 
Nappe. Similarly the 11-axis on 340°/07° can be explained by 
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the distribution of the Lz maximum and S0 great circle girdle, 
which fall on the maximum S2 distribution. 

The partial great circle distributions of S 1 and S0 indicate 
the increased complexity of deformation in the area. The 
synclinal parts of F1 folds are often truncated by thrust 
planes (see eastern part of cc-oo, Annexure 1). 

Several major backfolds can be observed in lithologies at the 
edge of the Rosh Pinah valley (Fig. 2), with open F2 folds 
having prominent S1/S2 intersection lineations (L2) (Fig. 23). 

The intersecting planes often form pencil structures below 
Pickelhaube Peak (EE-FF, Annexure 4). These F2 folds have a 
plunge of 343°/27°, which approximates NNW plunging "-axes on 
the s" diagram. 

Up to lm thick quartz veins in the Wallekraal schists are 
abruptly terminated along the contact with the overlying 
Pickelhaube car bonates suggesting structural discordance. 
Major brittle faults can be followed on aerial photographs 

and trend in a NW to NNW direction, although a less prominent 
SW-trending direction is also present. These faults are 
interpreted as listric extensional faults, which are related 
to the gravity gliding effect (see Annexure 2) along the 
RPNT. 

Quartz veins show wide diverging trends, but a conspicuous 
NW trend with steep dips can be related to shearing along the 
axial planes and limbs of F2 folds. Boudin long axes 
measured in qu1rtz veins mainly along the Wallekraal schist­
Pickelhaube carbonate contact trend 246°, which might 
indicat.e stretching normal to the F1/F2 tectonic transport 
towards the SE. Minor intraforrnational backthrusts are 
scarce but have been recognized within the Pickelhaube 
carbonates. 

vii) Domain 7 

Domain 7 covers the central dome of the Annisfontein 
anticlinorium and includes lithologies of the Wallekraal and 
Pickelhaube Formations. It is bounded by the uumchavib 

Thrust (GT) in the west. 
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A shallow dippin9 5 0 (Fi9. 40a) defines the domal structure 
of the Rosh Pinah Formation of the central anticline. s 1 is 
semiparallel to the latter in these rocks but only a few 
readln9s were qathered. 
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Fig. 40 Fabric data from domain 7 

The s2 cre.1ulation cleavage is prominent in Wallekraal 
s c hists and usually intersects the 5 1 cleava9e at a lar9e 
angle (Fig. 40b). 

The Li lineations plunge at shallow )Wards the NNW or 
SSE (Fig. 40c), but only very few ~ .nq F2 fold axes 
could be measured. Some minor westwa~ - 'Erturned F3 folds 
are also occasionally seen. 

viii)Doaain I 

Domain 8 consists entirely of upthrust granites and gneisses 
within the Gumchavib fault block. Bedding features are 
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absent and the most prevalent fabric is a pervasive shear 
cleavage (S1) which has dev~loped parallel to the thrust 
plane. The 51 cleavage on average strikes 136° with a dip of 
29° towards the sotlthwest (Fig. 4la) . 

The cleavage dip reve .~als only noted towards the east in the 
region of the aplitic granites indicate dragfoldlng against 
the Gumchavib Thrust plane (Fig. 4lb), where the rock becomes 
a quartz-sericite schist. 
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Fig. 41 Fabric data trom domain 8 

An L1 mineral lireation (Fig. 4lc) is formed by biotite 
streaks on S1 cleavage planes near the eastern boundary and 
lies in the 01 thrust planes. A NW-SE slip or transport 
direction is indicated. 

This is subparallel to all lineations and fold axes of the 
first two generations in domains 6,7 and 8. 
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ix) Domain 9 

Domain 9 includes litholoqies of the Gumchavib Formation 
(Stinkfontein Sequence) which are bounded by the basement 

granites in the hanging wall of t~e Gumchavib Thrust in the 

east and the Valley Thrust in the west. Althou~h distinct 

thrust criteria are scarce along the latter, a definite 

change in stratigr-1phy across this boundary is evident. 

Bedding dips somewhat shallow towards the west with a mean 

strike of 140° and dip of 39° towards the SW (Fig. 42a) . 

Smal l scale ramping and shearing occurs above the granite 

contact. 
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Fig. 42 Fabric data from domain 9 

Slickenside striations on bedding-parallel quartz veins 

indicate two directions of movement, one trending in a NW-SE 

direction and the other from the SW to NE. These are 

comparable to regional transport directions. 
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Lz intersection lineations of Si/So and s 1 (Fig. 42b) follow 

the axes of !>f"?minant SW-ward overturned F2 folds, which 

plunge 6° in a direction 139° (Fig. 42c). 
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Domain 10 

Domain 10 is bounded by the Obib Waterho~c Thrust : , the west 
and the Valley Thr\.lst in the east. It is undet-lain by a 
stratig~wphic succession consisting of the Rosh Pinah 
Formation at the base overlain by a thin band of Pickelhaube 
carbonate. 

Grits and conglcmerates of the Wallekraal Formation overlie 
the carbonates, which in turn are unconformably overlain by 
an approximate SOm thick diamictite succession, which is here 
considered to be the Sendelingsdrif Formation. 

Bedding planes strike 148° and dip moderately west at 49° 

(Fig. 43a) and are mimicked by the S 1 cleavage. Trends foe 
5 1 , S3 and Li intersection lineations are outlined on Fig. 
4:Jb, c and d respectively. An S2 cleavage is poor.ly 
developed in the quartzites ~verlying the upthrust basement 
granites (Domain 10, Annexure 2). Minor SSE plunging F2 

folds (Fig. 43e) are present. 

The most prominent folds are asymmetric to slightly 

overturned toward s the south or south-east. They are 

re i dted to the third phase of deformation and have b mean 

azimuth of 2 61° ~ith a plunge at 46° towards the SW (Fig. 

43!) . Tnese folds have modified the plunge of the earlier 

r 2 fold as well as the I..q lineacions and are themsP.lves not 

following a very constant di~~ction. 

Domain ll 

Domain 11 co\'ers l \ 'th1'l1"'gies of the Rosn Pinah Formation 
west of the Obib Water~ole Thrust to the dune cover. They 
consist of a thick seque:nce of blue-grey limestone with 
intercalated reel-brown arkosC?s and quartzite..:; with minor 

basic intrusions. 

There rocks overlie the Numees diamictites along the west­
Jipping Obib Waterh~l~ Thrust. The flat dipping Obib Peak 
successio"l and thrust (Annexu.ce 3) have been removed by 

erosion. 
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The S0 data confirm a moderately SW-dipping succassion with 
a near bedding parallel S1 cleavage (Fig. 44a, h). S 2 

cleavr.ges (fig. 44c) follow trends similar to other areas. 
Li line~tion& (Fi;. 44d) have been deformed by ~ folds. ~ 
folds plunge dominantly towards the southeast (Fig. 44e). 
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The mos~ prominent feature here, however, are nll!Ilerous SW 

plunging F3 folds (Fig. 44 f) , but very few s3 cleavages 

(not shown) have been measured with dips towards the NW. 

Numerous steep or minor fault zones trend in a NNW 

direction. 

7.6 The Pickelhaube Duplex Structure 

The Pickelhaube Formation in the Richtersveld is interpreted 
as the oldest unit within the Hilda Sequence (Von Veh, 1988) 
and iG overlain by the Wallekraal Formation (see legend, 
Annexure l) . In the study area both formatiQns underlie 
large parts of the mountainous area west cf the Rosh Pinah 
valley (Fig. 2). In the ?ickelhaube Duplex Structure the 
Pickelhaube and the Wallekraal Formations or pa~ ~~ thereof 
are structurally duplicated several times. 

The general fabric and interrelationships of l~thologies to 
each other were given special attention in an effort to 

explain the structural peculiarities in the duplex. Results 

are outlined on detailed field sketches of profiles .i.n 
Annexure 4. The position of the profiles AA-BB, CC-DD and 
EE-FF are given on Fig. 2. They occur in the vicinity of the 
stri p map of Annexure 2. 

At least six thrust planes, some of which truncate local 
isoclinal F1 macro-Colds have been mapped within the frontal 
irnbricate zone, hut several more minor imbricates may be 
prese~t. Lithological units can be observed to wedge out or 

abut along thrust planes, and fold detachments are present 
on various scales (Annexure 4a). 

Four west-verging mega-backfolds can be defined which 
terminate in the west near Pickelhaube Peak in Pickelhaube 
carbonates where fold vergences apparently change to easter.ly 

(Annexure \c) . 
deformat i on. 

Thiz may be a remnant of the earlier 01 

The backfolding is tight and 52 cleavages dip steeply towa-Js 
the east at approximately 70.,. Evidence for inversion on 
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thrusts occurs in some places to form smal 1 .::intithetic 

thrusts to the east of Pickelhaube Peak (Annexure 4c). 

The structural s~tting changes to the east of Pickelhaube 

Peak (Annexure 4b) where S2 cleavage dips become shallower 

towards the east and folds are more open. However, s, 
cleavages in the imbricate zone continue to dip steeply 

towards the east. 

The sole thrust to the Rosh Pinah Nappe is interpreted as the 

contact of the Pickelhaube carbonate with the underlying Rosh 

Pinah Formation (Fig. 2) . Thrust stacking of stinkfontein 

lithologies took place over the structural high possibly 

caused by fault-bend folding (ramping) during the development 

of the Annisfontein anticlinorium (Annexure 2) . 

Continued pressure from the SW or W eventually resulted in 

tightening of the sendelingsdrif synclinorium above the sole 

and basement. As the ramps steepen towards the hinterland 

they eventually become backfolded and cascade towards the 

southwest. 

structures in the upper Pickelhaube unit and the underlying 

Wallekraal Formation i.e. above and below the F1 deformed 

upper duplex ramp {l in Annexurc 4b and c), just east of 

Pickelhaube Peak are compared below (Fig. 45a, b). 

a) Bedding dips at shallow angles in all directions, and 

forms ill defined basin and dome structures as a 

result. of F2 and F3 fold interference. 

b) A pervasive spaced cleavage (S2) is well developed in 

Wallekraal schists but is less obvious in the leGs 

competent Pickelhaube carbonates . 

c) Minor F1 folds plunge primarily towards the SSE, with 

Li intersection lineations (b-lineations) plun9ing in 

this direction as well at"J towarcls the NNW or NW 

bec~use of F1 fold interference. 

d) Joints trend semi-parallel to major faults. 
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Fabric data from: (a) the Wallekraal schists, and (b) the 

overlying PicF.elhaube c~rbonates to illustrate discordance 
in structures. 

e) The S1 cleavage is a bedding parallel shear fabric 

related to the 0 1 phase of de formation. Recumbent, 

isoclinal F1 fold closures are only occ~sionally found 
as intrJfolial structurer. on a decimeter and metre 
scale. 

t) An important feature of the Pic~elhaube limPston~~ is 
the presence, especially against the basdl thrust ~f 
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each ramp, of extr~mely attenuated and sheared quartz 
veins and lenses. The long axes of lenses plunge 
towards the east. 

g) In cross-section the internal structure and shape of 
lenses may reveal righthanded as well as lefthanded 
rotation, indicating that they probably originated by 

reorientation of earlier quartz vein folds into the 
slip direction of the slip plane. 

h) Li lineations in the Pickelhaube Formation trend 
somewnat more SSE than in the Wallekraal lithologies. 

From this it may be concluded that slip occurred along S0/S1 

in an ESE-WNW direction with some flow across this direction 
dur ! ng 01 • Ductile conditions prevailed as wide shear zones 
developed. 

7.7 Strain analysis 

Strain data were also gathered in clast-supported Wallekraal 
conglomerates on the eastern limb of the Annisfontein 
anticlinorium. In this area (about 2-3 km south of 
Pickelhaube Peak - Fig. 2 and Annexure 2) the clasts consist 
mainly of quartz vein and quartzite clasts with less granite. 

fil:fil! Pirithmetic Geometric f::!armonic Q - Value 
mean mean mean 

1. 2,40 2,J7 2,J2 2,20 

South of 
rickelhaube 
Peak (N=54) 

2. 3,15 2,83 2 , 72 2,85 

south of 
Pickelhaube 
Peak (N=l7) 

The first dat~ sets were measured along bedding planes (the 
51 cleavage is semiparallel to the S0 plane), which very 
nearly represents the X1Y1 plane. Results using the H.r/ 0 
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method are outlined above (see l. above) . 

collected along crossjoints. 
No data were 

These results are comparable to those obtained for the Numees 

along the same · ~ 1Y 1 plane of the strain ellipsoid in the 

Namuskluft-Dreigratberg area, where the X1Y1 plane is near 

vertical. 

one of the probl~ms of this loca l ity has been to ascertain 

the competencies of the quartzitic rock matrix relative to 

the constituents. For this purpose deformation of granite 

clasts are compared with shale clasts. The ratio for shale 

clasts in the same area and with the same matri~ is outlined 

under 2. above. 

The values for the 0- Distribution Test is 2,85 and these 

results confirm that values found here are a minimum for 

granite pebbles but shale pebbles probably give X1Y1 ratios 

that are close to that of the matrix even if the latter is 

more sandy. 

The centre to centre method was also used for some 

conglomerates that are matrix supported. Several sine curves 

of varying amplitudes and wave lengths were found, which 

might either indicate incorrect sampling, or inhomogeneous 

strain on the scale of observation. The maximum amplitude 

gives a strain ratio of 2,76 (N=Jl) which is very close to 

the harmonic mean of the shale clasts, and shows that within 

the assumptions that apply to both these techniques, the 

ratio of about 2,7 for X1/Y 1 is a fair estimate. 

The average orientation of long axes for the Numees varied 

from 001° to J47° , with L, lineations and calcite anc quartz 

eyes lying transverse on this direction on an E-W trend. The 

latter indicates transpressive movement oblique to major 

basement faults . 

The fairly constant X1/Y 1 ratios, whether derived for the 

matrix in the horizontal Pickelhaube Nappe zone or for the 

Xin/Yin in the steeply upturned escarpment zones, seem to 

indicate that F1 backfolding had little if any homogenous 

strain effect. 
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All internal strains seem to have oc:c11rred durinq F1 , whereas 

F, was only responsible for upcurnin9 and backfolding the 

strata. In the near horizontal nappe sequence at ound 

Pickelhaube Peak transport directions were mainly ESE as 

indicated by L1 mineral llneations (Fig. 45a, b) 

THE GEOLOGY ANO STRUCTURE Of A TRAVERSE FROM OBIB PEAK TO 

EAST Of ROSH PINAH 

The Stinkfontein Sequence 

Distribution and stratigraphy 

The Gumchavib Format . on forms a distinct lithological 

sequence, which has been thrust over the Rosh Pinah Formation 

along the Gumchavib Thrust. East of this thrust a unit 

(Domain 15, Annexure J) which consists of gradati.:rial or 

inter! ingering blue-grey limestones, dolomites, light to 

reddish-brown quartzites and arkoses crops out between the 

Gumchavib Formation in the west and the Pickelhaube Formation 

in the east. 

These rocks somewhat resemble those of the Pickelhaube 

Formation as defined by Von Veh (1988) . However, amphibolite 

dykes and sills (which are absent from the Pickelhaube 

Formation in the type area) suggest that these rocks belong 

to the older fort'lations and should therefore be Rlaced in the 

Stinkfontein and correlated with .the Rosh Pinah Formation. 

Similar volumes of carbonates occur in the Rosh Pinah 

Forrndtion type area (around Rosh Pinah mine). 

Lithology and petrography 

The Gumchavib Formation consists of a monotonous sequence of 

light-brown quartzites, arkoses, with minor grits and 

conglomerate lenses. Thin dolomite bands occur towards the 

top of the sequence. Some weathered felsites crop out in the 

sandy plain east of Obib Peak. 

Small lenticular zones of biotite and quartz-sericite schists 

and thin carbonaceous shale bands are intercalated locally. 
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The sericite schist zones seem to be related to shear zones 
rather than representing felsic volcanic rocks. 
sediments are graded and planar cross-bedded sequences 
46) indicate major sediment transport towards the w. 

The 

(Fig. 

Planar crossbedded sequanca in Gumchavib quartzi tes 

approxim~tsly 3 km to the north cf Obib Peak. 

The unit may be duplicated, bJ internal folding and/or 
thrusting be~ause a blue-grey carbonate marker band recurs 
in the local s~ratigraphy due cast of Obib Peak (Annexur~ 3) 
as well as a phyllitic biotite schist zone. 

The t~ctr)no-stratigraphic relationships a!.ong an east-~est 
traverse from Obib Peak to the Valley Thrust are shown in 

Fig. 47. The lithologies, which directi.y ov.:.:rlie the Valley 
'l'hrust (Dcr:tain 12, An111;!xure J J are here correlated with the 
~pper parts of ~he Rosh Pinah Formation. Those below the 
thrust bP-long to the Gumchavi~ Formation. 

The carbonate beets above and below the Valley Thrust are 
Picltelhaube-type blue-grey limestones. Just above th~ thrust 

a carbcnate unit contains a sulphide-bearing zone ~ith 
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Fig. 47 Cross-soctional sketch to illustrate the tectono­

stratigraphic sequence in the vicinity of Obib Peak. 

disseminations of pyri t~ and galena \ n a boxwork gossan. 
These rocks seem similar to those surrounding the Rosh Pinah 

ore beds. 

Dipping b~neath the first doJ.omite band above the Valley 
Thrust (Fig. 47 ) there is a thin matrix supported polynict 

conglomerate with a light-brown quartz1tic matrix that 

contains unsorted and rounded quartz boulders and 
tectonically stretched dolomite boulders. 
light-brown quartzite. 

The matrix is a 

The next higher dolomite unit contains thick bedding parallel 

quartz veins dippir.1 west at 27° (Fig. 48). It has acted as 
a thrust zone, (the Valley Thrust) as indicated by strong 

silicific.ation, ferruqinization and brecciation of the unit 
and underlying arkoses . The thrust zone has a thickness of 

at least 50 m. Prominent northwest plunging slickenside 

striations on movement planes in the quartz veins indicate 

south-easterly directed slip (see Fig. 66). 
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Quartz veined zone typical of the Som w icle thrust .taul t 
exposure approximately 2km to tile aast of Obib Peak. (valley 

Thrust). The vein zone is l, 5-2m tliick. 

Intercalated gritty and thin carbonaceous sandstone layers 
prove the elastic origin for these dolomitic rocks. In thin 
section (NT 143) the rock consists of fine-grained dolomitic 
marble with epidote and muscovite platelets subparallel to 
bedding. Accessory quartz is also present. 

The intercalated "biotite schist" lenses consist of 

subparallel blotite, chlorite and quartz alternating with 
bands of quartz and biotite. Quartz displays a well 
developed preferred shape orientation (speci~en NT 102, NT 

105, NT lli). The quartz scricite schists (specimen NT 100, 

NT 101) , microscopically consist almost entirely of flattened 
quartz grains within a sericitic rnatr ix that bends around the 

quartz grains. The rock is rnesoscopically strongly lineated 
mainly because of the preferred orientation of the quartz 

g:-ains. 

A later crenulation cleavage (S2) is evident in specimen NT 

91 of tha same schists. "ccasionally quartz grains with 
perfectly h~xagondl shapes may be present. 
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A rare purplish isotropic mineral has been microscopically 
identified as fluorite, whi~n possibly together with post­
metamorphic (post-Fa) crosscutting quartz veins may point to 
local hydroti1ermal activity. The fl ~urite may, however, also 
precipitate at low temperatures in 9roundwbter. A pre­
metamorphic and pre-tect~nic hydrothermal silicification 
event (relative to gravity gliding and F2 back!0lding) 
accompanies the Rosh Pinah ores. A similar and possibly 
contemporaneous history of mineralization may be inferred. 

The fine- to medium-grained ~uartzites commonly have tabular 
crossbeds dnd ~re intercalated with thin grit bands. A steel 
blue-grey arkose or feldspathic quartzite simila~ to th~ Rosh 
Pinah hanging wall rocks is usually present towards the base 
of the unit. 

Some localized spotted ~uartzites' (specimen NT 113) consist 
essentially of quartz, with accessory plagioclase, 
microperthi te and anorthoclase, whereas minor muscovite , 
hiotite and chlor ite are present as interst itial material. 
Large porphyroblasts of unorientated biotite and chlorite 
represent the spots. The rocks c<ln be classified as 

micaceous feldspathic quartzites (specimen NT 94) with niilor 
calcareous quartzites (NT 116) and arkoses. Some quartzites 
bear traces of epidote (NT 95) and single detrital tourmaline 
grains are occasionally noted. 

The ruost wescerly unit of the Rosh Pinah Formation consists 
of micaceous light-brown quartzites with cvnglomerate lenses 
containing thin cream-coloured sericitic dolomite hands 
towards the top of the sequence. Thesa rocks have a sheared 

contact with the overlying amphibole-chlorite schists. 

A 50 cm thick blue-grey ruptured and sheared limestone bed 
fou:id along the contact of the Wallekraal areni tes underlying 
Obiu Peak, with the amphibole schist, outlines the Obib Peak 
Thrust. Pinching and swelling of quartz veins confirm the 
sheared nature of this contact. 

The amphibole-chlorite schists are fine-9rainc. ..... 1tensely 

cleaved racks with prominent kinks, which "\re defined by 

trains of amphibole or bioti te. A conspicuous mineral 
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elongation lineation (L1), trending SSE, is defined along thr 
schistosity by dark green amphibole needles. Needles may 
sometimes also be radially arranged during post-tectonic 
growth. 

Specimen NT 139 reveals that the rock consists largely of 
bladed hornb!ende grains, with biotite and chlorit~ 

interspersed within quartz and albite. The typical mineral 
paragenesis here is green horN>lende + quart~ + biotit• + 
albite. The rocks are interpreted as mafic meta-volcanics, 
dynamo-metamorphosed to the intermediate greenschist facies. 
Hornblende grains grow in the two cleavage planes, whereas 
isolated zircon grains are widely dispersed. Calcite may be 
prominent in clusters. 

To the west of Obib Peak and below the Obib Veak Thrust 
(Domain 12, Annexure 3) the 1ithologies consists of bands of 
brown carbonatic saradstone, which vary from less than lm to 
several metres thick, interspersed with thicker blue-grey 
laminated limestone beds. eiotite schist lenses and 
amphibolite sills are present and lithologies are similar to 

those previously described for th~ area east of Obib Peak. 

The dolomitic limestone beds (NT 90) consist mainly of 
crystalline dolomite and calcite and have a mineral 
parag~nesis of dolomite + calcite + quartz + biotite. This 
paragenesis remains only •1naf fected at very low grade 
metamorphism (Winkler, 1976). Some of the quartz crystals 
qrow into perfect hexagons. Thin brown sandy beds, which are 
.... 1tercalated in the dolomitic sequence consist of quartz, 
minor plagioclase and anorthoclase with a biotite, chlorite 
and muscovite matrix. Alternatively the matrix may be 
dolomitic (NT 77, NT 82, NT 88, NT 92). The latter 
paraqenesis indicates a lower greenschist metamorphic facies. 

Where arkosic (sample NT 86), these rocks .::ontain a fair 
amount ot plagioclase and microperthite feldspar with quartz. 
Some post-kinematic biotite porhyroblasts can be seen to 
overgrow these minerals. Possible post-tectonic plagioclase 
blasts (specimen NT 92) are retrograded to sericite. 
Replacement of several opaque minerals by quartz is visible. 
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There is a general increase in sandstone beds towards the 
stratigraphic top of the dolomitic sandstone-limestone unit. 
These beds are extensively boudinaged, with boudin long axes 
plunging towards the southedst ( F1) • 

The lowest volcanoclastic unit of the Rosh Pinah Formation 
in the Rosh Pi .ah Mine area unconformably overlies the 
basement ~ · ~ a basal conglomerate on the farm Zebrafontein 
and consis, ~t a thick accumulation of rhyolites, felsites 
and felsic agglomerates (McMillan, 1968). 

The felsic lithologies within the allochthone surrounding the 
Rosh Pinah Mine have been described in detail by Watson 
(1980). He recognized several textures including 
porphyritic, glomeroporphyritic, spherulitic and 
hypidiomorphic types. 

The massive felsites consist essentially of equi9ranular 
grains of feldspar and quartz with a felsitic texture. 
Porphyritic felsites are characterized by large single grains 
and composite phenocrysts consisting of quartz, perthite, 
orthoclase and albite drifting ln the matrix. Clusters ot 
ql•artz and feldspar grains define a glomeroporphyritic 
texture, while the spherulitic type cont4ins s~~ll to large 
spherulites. The hypidiomorphic "fcls1tes" have no typical 
felsitic texture, and in the felsitic tuft and agglomerate 
spherical to angular particles of felsitt:! are set in a 
felsltic matrix. Despite shearing, textur s are often well 
preserved. Sericite is common but biotite and chlorite have 
also developed. Petrochemically the analysis of these roc~s 
agrees with that ot felsites and rhyolites of var·ous 
formations in south Africa (McMillan, 1968). 

Nwnerous interbedded lenses of hematite appear within the 
felGitic sequence and are associated with impure, ferruginous 
dolomite. This association can be interpreted as of possible 
fumarolic vent origin. 

The upper part of the Rosh Pinah Formation in the Rosh Pinah 
Mine area (domain 16) consists of a ± 900m thick succession 
of dirty-grey, well-bedded, but poorly sorted feldspathic 
quartzites or arkoses with numerous thin intercalated 
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argillite bands. The bands vary from less than a centimetre 
to several metres thick. Contorted fragments and rip-up 

argilllte clasts occur intermittently near the bQ~e or 
coarser v. :iits. 

Recrystallhed quartzites have polygonal-granoblastic or foam 
textures and secondary overgrowths on feldspar clasts are 
common. The latter are usually orthoclase, microcline and 
perthite, with microcline dominating. Albite is onl}' present 
in very subordinate quantities. Where quartzltes become 
calcareous, dolomit~ occurs as interlocking gralns between 
quartz and fcld&par, and are very similar to the calc~reous 
quartzitcs of tnf. Gumchavib Formatlon. 

Limestones and dolomitic limeston~s are fine-grained qrey to 
dark-grey rocks, which usu ... Uy occur together with 
carbonaceous, dolomitic quartzite. The sulphide-bearing 
carbonates of the ore zone are com:>J dr.red to have been 

primary dolomitic limestones (WtJt::..on, 1980), and are commonly 
overlain oy barytic carbonates (Fig. 49). 

Ar~illites are typically dark-coloured, well-laminated, 
carbonaceous rocks composed essentially of dispersed 9rainA 
CJf q1uu·'-z and feldspar, with accessory sericite, muscovite 
anu ch lorlt(l. The microquartzite rocks r'lt>1·.u.ent silicit:ied 
arqi l!~ ·~ 1 . Small lenticular flows or sills of felsite are 
restri~ ~ · ' \o the hanging wall rocks, and intrusive bodies 

o! quart~ ~01 ~hyry are present towards the base. 

Angular ~ nd t"OU.d'"d dolo111te clasts set within a dolomitic 

to sandy matri)I' are ~.:esent in the upper parts of the Rosh 
Pinah Formation and .~uld be interpreted as disintegrated 
near shore carbonate reel& (Krijner, 1974 p.7), or as local 
mudtlow deposits. Thin lenticular quartz-clast bearing 
conglomerate horizons are exposed towards the top of the Rosh 
Pinah Formation. 

Within the Rosh Pinah Mine the sulphide mineralization is 
hosted mainly in dolomitic carbonate rocks, or may also be 
present in silicified argillites, ar9illites or in zones ot 
silicttication (sugary quartzite). Lithologies of a typical 
ore ~one profile for the No~thern Orefield No 1 orebody are 
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The arkosic to feldspathic quartzite& underlying the 
01•bodies are extensively fractured and brecciated and 

co~t~ :n ubiquitou3 mineralised carbonate veins and veinlets. 
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Dark green am,hibollte sills occur to the north and in the 
proximity of the mine workings as fine-grained lenticular 
bodies. These can either be interpreted as altered basic 
lavas or as dyke dnd/or sill intrusions, and bear resemblance 
to the numerous amphibolite dykes and. sills within the 
Gumchavib Forme. '" ion. They may point to a Stinkfontein 
correlation. 

The Hilda Sequence 

Distributi~n and stratigraphy 

Von Veh (1988, p.36,) has round .. t the Pick~lhaube beds 
rest contormably on and interf ingar with the Gumchavib 
Formation arenites in the Richtersveld. In the study area 
the Pickelhaube Formation ia thrust ovor the Gumchavib 
Formation along the Rosh Pinah Nap~e Thrust (Annexure 3) in 
the Gumchavib hills. The gritty obib Peak unlt overlies the 
Rosh Pinah Formation along the shallow west-dipping Obib Peak 
Thrust. This unit is correlated with the Wallekraal 
Fot:mation. 

Lithology and petrography 

The Pickelhaube Formation comprises essentially a thick 
sequence ot elastic blue-grey, finely-laminated dolomitic 
limestones. Along this traverse they are well deve loped some 
kilometres SW ot Rosh Pinah Hine as a range of low hills on 
the western aide of the Rosh Pinah valley. Locally some 
light to dark-brown layers 01 chert have developed parallel 
to bedding. 

A petrographic examination (sample NT 85) indicates that the 
rock is constituted dominantly o! interlocking grains of 
dolomite. Occasionally quartz veins and minor amounts ot 
slightly orientated muscovite f lakes are present. A single, 
10 m thick white limestone bed occurs towards the top o! the 
sequence. It consists primarily of recrystallised calcite, 
minor biotite flakes, some opaque minerals and very 
subordinate quartz (sample NT 93). Some alignment of the 

biotite and muscovite flakes parallel to the S1 cleavage ls 
observed. 
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The Wallekraal Formation is a largely rudaceous unit with 
extensive areas of conglomerates on the eastern limb of the 
Annisfontein anticlinoriurn and crops out here in a small 

hill SE of Rosh Pinah town (Annexure 3). 

The Obib Peak unit consists of' feldspathic and arkosic 

arenites and grits (Fig. SO). Small (<lm) scour channels are 
occasionally developed and indicate stratigraphic younging 
towards the top of the hill. This is confirmed by graded 
bedding showing fining in the same direction. Fine 
laminations are present but no cross-bedding features were 
noted. 

.. 

. 
• 

Obib Peak witt1 thrust contact in the east. Looking north. 

These arenites also occur on an isolated outlier 

approximatflly 1 JC.ll\ towards the north ot Annexure 3, as we.J.l 
as in the region of the Obib waterhole (Fig. 2). A 
characteristic of the rocks are thin lenticular intercalated 
feldspar-rich grit and conglomerate beds containing quartz, 
granite as well as slightly deformed crearn-coloured carbonate 
clasts. The rock is also characterized by a honey-comb 

weathering surface. 
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Both grits and conglomerates are usually clast supportetl, 
with well sorted subrounded to angular pebbles averaging 4-
Smm in size. The pebbles are normally constituted mainly of 
quartz and anorthoclase with a matrix of accessory muscovite, 
calcite and epidote (Specimen NT 141). 

Feldspar clasts (often pinkish) m~y constitute up to so' of 
li thic fragments and have often been ser ici ti zed to the 
extent that only relict grain boundaries are still 
discernable. They are generally poorly orientated. Average 
pebble sizes at the Obib Waterhole commonly exceed lcm in 
diameter. In contrast dolomite clasts have been tectonically 
stretched and have developed a preferred . long axis 
orient.ition trending northwest. Locally the arenites are 
also calcareous with a dolomitic and calcitic matrix. 

On close inspection the rocks reveal small tightly folded 
east-verging isoclines within finer-grained zone• Bedding­
parallel shears near the base are intersectec. '·Y .. 1 set of 
younger near vertical quartz veins. Spec imen NT 103 
indicates a strong alignment of sheeted musco i te to form a 
pervasive 51 cleavage anastomosing around sericitized 
plagioclase and quartz grains with secondary overgrowths. 

8.3 The Structure along a profile f r om Obib Peak to east of Rosh 
Pin ah 

This northern structural profile covers a traverse from Obib 
Peak to east of Rosh Pinah Mine and includes domains 12 to 

17. 

1) Domain 12 

Domain 12 incorporates all lithologies of the Rosh Pinah 
Formation west of the Obib Waterhole Thrust (Annexure J and 
Fig. 2) up to the dune cover. The Obib Peak unit of 
Wallekraal affinity overlies these lithologies as a klippe 
along the shallow dipping Obib P~ak Thrust and is included 
here. Granites are expo~ed north of this traverse along the 
steeper Obib Waterhole rhrust and are surrounded by an 
biotite schist horizon. 
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Fig. Sl Fabric data from domain 12 

The bedding data define two p~rtial gr eat circle gil ci l . s, one 
with a 11-axis attitude of 348°/05° (Fig. Sla), the other with 
south-west plun9in9 11-axi s at 203/30° (F1). Structurzl Jata 
tor s,, S21 J.i, F1 and F3 a re given on Fig. Slb, c, d, e, nd 
indicate patterns sinilar to other domains, with the f 1 and 
F1 told directions being confirmed by the S0 diagram. 
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Two mineral elongation lineations (not shown in Fig. 51) are 
prominent in arnphibole schists below the Obib Peak Thrust. 
The oldest and most prominent lineation (possibly Li) is near 
horizontal with a trend of 165° , while the later ill-defined 
lineation (Possibly I.3 ) trends 192n and plungP.s at moderate 
angles to the SW. Both lineations decrease in prominence 
away frOln the thrust contact. 

The long axis of quartz eyes follow the FJ trend (Fig. Slf), 
while shears trend dominantly to~nrds the NNW but a dis tinct 
NE-SW direction is also present. 

East-verging macro-F1 fold in the proximity of' tho Valley 

Thrust. The locaJ.i ty is 3 Jcm northcas t of Obib Peale, looking 

west (domain 13, Annexure 3) . 

. : i) Domain 13 

r ' main 13 incorporates all lithologies between the Obib 
w •. ~erhole Thrust and the Valley Thrust (Annexure 3) and are 
c~1:elated with the Rosh Pinah Formation. 
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Fig. 53 Fabric data from domain 13 

Other than the prominent Valley Thrust exposure there are 
also macro-P1 folds (Fig. 52), accompanied by prominent meso­
sheath folds in zones of shearing. Both indicate the degree 
of structural distur~ance here. 

These closed ta ~soclinal and eastward 
structure~ dominate the 50 distribution (Fig. 

overturned F1 

SJa) and ~re 
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prominently developed just above the Valley Thrust plane. 

Axial planar 5 1 cleavages (Fig. 53b) fall on the 50 great 

circle and dip west at moderate angles. 51 (Fig. JJc) and S3 

cleavages (Fig. 3Jd) are only seen occasionally. 

L 1 (Fig. 5Je) and Lz follow F1 and F2 trends. 1"2 folds are 
generally symmetric open structures which gently refold F1 

structures and plunge domina~1tly to the NW (Fi9. SJf). The 

two structures are almost co-axial which is also evident from 

the sinqle "-girdle in fig. 59a. occasional ~ folds plunge 

towards the south-west. 

iii) Domain 14 

A thick sequence of quartzites, calcareous quartzites and 

arkosi c rocks underlie domain 14 between the Valley and 

Gumchavib Thrusts. These rocks are correlated with the 

Gumchavih Formation. 

Poles to 5 0 indicate a mainly westward-dipping sequence (Fig. 

54a) having a parti~l great circle girdle with a n-pole 

trending 349° /05° (F1). 

Poles to S1 are subparallel to bedding with a mean cleavage 

strike of 356° and dip of 35° towards the west, slightly 

steeper than bedding (Fig. 54b) , but nearly parallel to the 

west-dipping limb of F1 folds 1 and probably subparallel to 

the Gumchavib Thrust. 

open F2 meso-folds contain a prominent s2 cleavage, which 

on average strikes 335° and dips 64° towards the NE (Fig. 

54c) • Rare north-dipping cleavages are related to th~ 

third phase of folding. Quartz vein boudins (LAB, F5g. 

54d) lie parallel to the F3 fold direction (being related 

tc, extension accross F1/F2 ) , but also to the F1 , Fz fold 

Qirection and indicate extension in two directions 

(chocolate tablet boudinage). 

Isoclinal recumbent F1 folds are seen in less competent 

folds within the 

They plunge 
dolomite beds, or sometimes as intrafolial 

planar fabric in the quartzites (Fig. 55). 
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Fig. 54 Fabric data from domain 14 

towards the SE and NW at low to moderate angles, and although 
difficult to recognize in the thick quartzitic sequence might 
represent the dominant phase of folding. 

Most of the joints can be described as quartz-filled 
dilatational, mainly NE-SW trending a-c joints of the first 
and second deformation phase (01/02) but b-c joints are also 
present. 

iv) Doaain 15 

A sequence of intercalated arenaceous and carbonate 
litholoqies of the Rosh Pinah Formatiou with minor basic 
sills underlies this area. 
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Intrafolial F1 fold in quartzite, truncated by a U1 thrust at 

the base. The loc~lity is 2 km NE of Obib Peak. 

The S0 data for~ a broad E-W girdle and reelect some doming 
and basining because of FJF'·. and F1 interference (Fig. 56a). 

Tight east-verging meso-F1 isoclinal folds with steeply 
dipping s, cleava9es ar1." stll l present within the 
lithological units, but have been· reorientated on the limos 
of near symmetric F1 macro-folds. 5 1 cleavages have also been 
at~ecteo but still generally dip west {Fig. 56b). S1 

cleavages mainly vary from steeply to shallow east-dipping 
but are occasionally also rotated to dip west (Fig. 56c). 

This is related to the backfolding ct units just above the 
Rosh Pinah Nappe Thrust and may indicate that backfolds 

formed by gravit~tional sliding or some other triggering 

mechanism possibly rotated the early formed s 1 cleavage in 
these folds. 

The latest structures are north to north-westerly dipping 
cleavages, which may be related to the third phase of 

deformation (Fig. 56d). F1 (Fig. 56e) and F2 (Fig. 56f) 
structures are approximately c~-axial and near horizontal. 
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Fig. 56 Fabric data from domain lS 

Prominent joint sets trend towards the ENE-WSW, (extensional 

a-c joints for t'1 and F1 folds) while less common sets lie 

parallel to these fold axes. Qu.r\rtz veins follow all 
di~ections of joint sets. Major t~ults are conspicuous in 

the field along the eastern-most outcrops in this domain. 

Faults dip steeply towards the west or east which may be 
related to the attitudes of thrust imbrlcates within the 

Pickelhaube Duplex Structure. 

Stellenbosch University  https://scholar.sun.ac.za



V) 

- 134 -

Doaain 16 

This domain includes all the backfolded lithologies of the 
Rosh Pinah, Pickelhaube, as we t as Wallekraal Formations, 
which lie above the Rosh Pinah Nappe Thrust. The structure 
differs considerably from that o{ domain 15 (Annexure 3). 

Structural readings from the Pickelhaube formation indicate 
a wide range of bedding dips (Fi9. S7a). rr-Poles on 334°/15° 

and 212° / 40° cou .d represent the F1 and F, fold axes 
respectively. A !,•w doubtful 5 1 readings were recorded (Fig. 
57b). 

S1 data indicate that F2 folds may be overturned towards the 
west (Fig. 57c). A fanning s, fracture cleavages is widely 
spaced (Fig. S7d). Li and F1 data are outlined on Fig. 57e 
and Fig. 57f respei;tively. The F1 fold axes have been 
refolded by NE-SW trending F1 !olds (Fig. 57f). 

Other structural data ware mostly collected by students from 
the University of Cape ~own (I'ons and Light, 1971; Hodgson 
et al., 1972) and the University of Stellenbosch (HKlbich, 
1971, 1972, 1973) on the western limb of the Rosh Pinah 

anticlinorium. Their results are here partly re-interpreted 
in the light ot the current study. 

Bedding data of I'ons and Light (1971) of the University of 

Cape Town for an area south-east of the Rosh Pinah Hine 
outline a great circle girdle with a well-defined ~-pole at 
121°/45° (Fig. 58a). The structure is defined as an Fl 

anticlinal told with a prominent north-easterly dipping 
cleavage aubparallel to the axial· plane (S2) • 

Faults are parallel to SJ cleavage (Fig. 58b) with 
displacement of the eastern block described as upwards 
relative to the western block. These are therefore 
backthrusts that originate during the 02 phase but have not 
been confirmed during current mining operations. 

Data for two areas north-west of the mine (Halbich, 1972) are 
given to illustrate the structural resemblance of different 

areas hara. 50 data are given in Fig. 59a+b. Fig. 59a 
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Fig. 57 Fabric data from domain 16 

.. 

defines an F2 told axis with an azimuth ~f 157°/35°. on Fig. 
59b only a single straight limb or ~arallel limbs of an 

iaoclinal told is defined. Thia is not incompatible with 
Fig. 59a but depends on the size of domain chosen. 
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Fabric data from domain 16 (After I'ons and Light, 1971) 

The prominent cleavage {S2) trends 350° and dips 62° towards 
the northeast (Fig. 59c) but differs slightly in Fig. 59d. 

The Lz lineations (Fig. 59e+f) follow a great circle through 
F1 with maxima at or near F1 and are therefore deformed by NE­
sw trending younger Fl fold axis. This FJ effect is also 
seen in Fig 59a where some bedding poles spread out across 
the 1f-girdle. 

Another set of S0, s2 and Li data (Annexure Ja) from a small 
area in proximity to those from Fig. 59; also reveals the 
reorienting effect of a o, deformation. The westerly 
ver9ence of these F1 folds confirm a phase of backfoldin9. 

The general plunge o! Rosh Pinah orebodies ls towards the 
south-eastand therefore in the general direction of F1 told 
nxea here. The interference effect of the third phase of 
deformation is clearly seen as u~dulatinq rolls across this 
south-easterly trend. 

Th• present study relate& locAl thickening of orebodies to 
interference between F1 open and F) cross folds (Fig. 60). The 
F> folds are actually exposed by the attitude of the footwall 
brecoia ln the B-rnine open pit area. 
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Fabric data from two areas north-west of the mine in domain 
16 (After Hilblch et al., 1972) 

Structural studies in the A- and B-mine areas (Annexure 3) 
(HKlbich, 1971, 1972), also reveals that north-south trending 
shears have a dextral sense o! movement with the north­
eastern block having moved obliquely upwards in a 

south-easterly direction, which is related to the direction 
of backthrustinq. 
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These areas are complexly folded · (Fig. 61a), and neither a 
single great circle nor a small circle girdle fits all data. 
The single somewhat dispersed cleavage set (Fig. 6! b) has a 
maximum lying on the intersection of two possible 5 0 great 
circles from Fig. 6lc and d (data from two n-aarby areas) 
respectively. The azimuth of this cleavage is 168° and it 
dipa 48° towards the east-north-east still very nearly 
parallel to the 52 cleavage planes of figures 58 and 59. 

Hodgson et al. (1972) outline a vague "-pole on 304°/16° for 
50 data for an area near the Rosh Pinah Mine (Fig. 62a). The 
cleavage is axial planar to the defined folds and is 
interpreted as~ (Fig. 62b~. 

Here again it is apparent that both cleavage and bedding are 

also deformed. 52 are deformed about a n-axis near tc the 
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Fabric data trom the vicinity ot B-mine ln domain 16 

(Annexure 3) (Alter Hilbich et al., 1973) 

La/L,, stretching lineation and F1 o~ fig. 62a. This indicates 
that Fiq. 62b has components of S1 L ~ well as 51 , whereas the 
maximum indicates the 52 position ba «Use the maximu• great 
circle, 51 , passes throu9h 304°/16• a~ · 326°/35° 

Lineations were measured on el on~ ,t,, U ;aoni te spots and 
quartz pebbles and detine a atretchi1 · J~~eation (Lt, and/or 
L,,, Fig. 62c} with an attitude ot 326°/ ~-~ . 

Joint data collected by Frankland (1975) i n the Rosh Pinah 
B-min• indicate a atron9 NNW set, which dips ·owards the NE 
and lie• parallel to major shearing. A complimentary set has 
very steep dips both north as well as south and the trend 
varies between 085° and 077°. 
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(The locality is towards the west of B-Mine, Annexure 
Ja} 

Data collecced by the author in the area ot the Mountain 
Orebody 470 level adit, outlines bedding data (Fiq. 63a) with 
a near vertical axial plan~ as well as axial planar cleavage 
trending NW-SE (Fig. 6Jb). 

In the Pickelhaube Formation ot the western part of domain 
16 south-ellsterly striking brittle faults abound. These 
~aults have near-vertical dips and are interpreted as late 
listric extensional faults that also transect the Rosh Pin~h 
Nappe Thruats (Annexure 3). 

vi} Doaain 17 

Domain 17 is defined as shown on Annexure J to comprise the 
area just east of the RPNT and west of the Numees Thrust. 
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The structural data gathered by Hoffmann (1972) in proximity 
to the Rosh Pinah Nappe thrust are summarized and interpreted 
in relation to the current study. Th.is domain includes 
intercalatea quartzite and carbonate litl:ologies, which are 

correlated with the Rosh Pinah Formation and which lie 
between the Rosh Pinah Nappe Thrust and the Nwnees Thrust 
(Annexure Jc). 

The "-pole great circle girdle of S0 poles (Fig. 64b) in sub­
area B some distance away from the RPNT defines an axis 
plunging at 147°/25°. In sub-area c, closer to the RPNT a 
similar axis is defined at 145°/58° (n~t shown). If the pole 
distributions are interpreted as belonging to slightly 
conically folded surfaces (Fig. 64b), a cone axes lies at 

152°/51° for sub-area B. 

The steepening ot the fold axes can be explained by shear 
along the steeply dipping RPNT. The facl that these folds 
become more steeply plunging in sub-area c, i.e. closer to 
the thrust and the f~ct that they are somewhat conical (Fig. 
64b) al~~ suggest reorientation of these axes alon9 the fault 
with a steep dip. The reorientation may be enhanced by the 
beginning of backfolding. 

Lineations measured here as well as some in sub-area D of 
domain 17 (Fig. 64a) indicate that the fold axes h~ve been 
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Fabric data from domain 17 (Alter Holtman, 1972). 
(The data were gathered .i.n the proximity of the Rosh 
Pinah Nappe Thrust). 

rotated around a kappa axis (axis ot rotation) 

070°/05°, which indicates a phase of cross-folding. 
lying on 

The slip 
axis (Fig. 64a) has been derived from th~ ~rientation of lonq 

axes o! Nu.mees diamictite clasts near Namuskluft farmstead 
S0 data for sub-area D outline a qreat circle girdle with a 
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"-axis on 145°/40° (Fig. 64c) which compare clo~ely with data 
from sub-area B. 

The south-east plunging open folds are interpreted as F1 

folds with steep axial planar cleavages (Fig. 64b) which have 
been slightly rotated off the ff-girdle. All these axes lie 
on a girdle (Fig. 64e) the pole of rotation of which at 
057°/02° is close to a kappa rotational axes derived in Fig. 
64a for b-lineations at 070°/05° for areas A,B,C and o. 

The effect of a third cross folding phase of deformation is 
shown bi tte steepening of the b-lineations towards the fold 
closure in the southwest. 

In the field a steepening of the s2 cleavages towards the 
east can be observed and the change from cylindrical to 
conical folds (Fig. 64d) is possibly explained by the 
presence of a major fault, or as a result of Fl fold 
interference, with refolding of the originally cylindrical 
F2 folds. 

Hoffman (1972) observed two major faults in the area 
(Annexure Ja), with brecciation in the eastern fault, and 
mentions that there is a downthrow towards the west along 
both faults. In this study these faults are rather related 
to an episode of thrusting of cover rocks over the basement. 
This is based on the following observations combining the 
data obtained by Hoffmann (1972) on sub-areas A to E situated 
west and east of the RPNT. 

i) all axes of folds, whether conical or cylindrical, 
plot on a great circle girdle with a rotational axis 
at 057°/02°. This could be interpreted as an F1-axis or 
as the pole of the RPNT along which all F2 folds are 
rotated towards the slip direction on the fault. 

ii) B1 lineations do the same thing (Fig. 64a) converging 
onto the slip direction. 

iii) Refolding along F3 axes could lead to a very similar 
result and the question yet to be answered is: 
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Do F1 folds actually represent the strain on bedding 
resulting fro~ forces exerted during slip along the 
thrust planes? 

In the Rosh Pi~ah Mine, orebodies south of a-mine (Annexure 
J) a.re tightly foldQd and steeply inclined e.g the Southern 
And Western Orefield orebodies, whereas north of B-mine they 
form open don;al structures e.g. the c-mine and Mountain 
Orebodies (Fig. 60). An explanation for this feature may be 
the possible presence of a major F1-structure towards the 
south of the Rosh Pinah Mine (Fig. 2 and Fig. 75). 

SUMMARY OF THE GA8IEPIAN HISTQRX 

Von Veh (1988) interprets the evolution of the Pan-African 
Gariep Belt to have taken place on an Atlantic-type passive 
continental margin, as a progression from an early coarse 
terrigenou~ elastic phase of deposition (Stinkfontein 
Sequenr:e) to a platform carbonate and continental shelf 
elastic phase (Hilda Sequence), to a deep water elastic phase 
(Hol9Qt Sequence). 

Davies & coward (1982) see the distribution of the 
sedimentary facies variations across the Gariep Arc as proof 
ot a plate margin. Further evidence for a plate tectonic 
origin are comparable sedimentation and deformation patterns 
(Kraner, 19"/4) and the association of high-grade metamorphism 
with large volumes of basic and ultrabaslc igneous rocks. 

The Gariep Belt evolved during a prolonged period of 
stretching and thinning of the earth's crust with resultant 
epeirogenic s~•bsidence. Early listr ic and block faults 
formed and rifting was accompanied by large dextral 
transtensional NW-NNW trending shears con in the basement 
(Von Veh, 1988), of which remnants are still seen. Gravity 
gliding featured prominently in the subsiding half graben 
basins. 

Sedimentary tilling of basins was rapid and immature 
sediments were deposited as westward tapering wedges (the 
Rosh Pinah and Gumchavib Formations of the Stinkfontein 
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Sequence). Mass-flaw and fluvial deposits are represented 
by lenticular conqlomerate units. 

In the Trekpoort mountains north of Posh Pinah, large volumes 
of alkaline acid volcanics extruded through major basement 
faults, and ore-bearing hydrothermal fluids were exhalated. 
Subaereal extrusion formed p~ominent tuff and agglomeratic 
horizons especially around Spitskop to the north of Rosh 
Pinah. 

Rifting was followed by the opening of the Adamastor Ocean 
(Hartnady et al., 1985), with widespread outpouring of 

basaltic lavas on the seafloor during seafloor spreading. 

Following upl iftment and erosion of the stinkfontein sequence 
the continental margin cooled and eventually subsided as it 
moved away from a spreading centre. 

Stable contin~ntal shelf conditions followed during which the 
elastic Hilda Sequence was deposited, followed by a period 
of worldwide atmospheric and continental insta~ility. The 
glaciogenic Numees diamictite and accompanylng ferruglnous 

lithologies wer.e deposited on a continentdl slope environment 

during this period. Finally the fine-grained elasti c Holgat 
quart:zites, schists and carbonates were deposited in the 
deeper parts of the basin while the Witputs Sequence was 
deposited in shallow water and is time equivalent to the 
Holgat. 

The Adamastor Ocean event,lally transgressed over the Congo 
and the Kalahari Craton (Sta~istreet et al., 1991) (Fig. 65a) 
and the Khomas sea opened. Glacio-marine and pelagic 

sediments were deposited in this sea (Stanistreet op. cit.), 
which subsequent!; closed during the collision of the Congo 
and Kalahari ere.tons (Fig. 65b). The remnant outlines of the 
p~esent Gariep basi~ were established when the Gariep rocks 
were uplifted durit CJ regi:ession and eroded a.Hay. During 
subsequent renewed tran9ression the shallow water platform 
deposits of the lower Narna Croup overlapped onto the 
basement. 

According to Stanistreet et al. ( 1991), closure of the 
Adamastor Ocean followed on the collision of the Kalahari and 
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F . 65 ) openi'ng of the Adamastor Ocean with subsequent transgression ig. a 
over the Congo and Kalahari cratons. 

b) Formation ot the .taul t controlled Khomas Sea with 
subsequent closure and collision (aiter Stanistreet et 

al., 1991). 

Congo Cratons and led to amalgamat~on of the Southern African 
and south American cratons. 

The Gariepian orogcny resulted from the oblique southward 
closure of the NNW-SSE trending proto-Atlantic or Adamastor 
Ocean as 3een in the southeast directed transport vectors 
along parts of the Pan-African Belt system along the west 
coast o! Southern Africa (Halbich et al., 1987) . Early 
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gravitational deformation effects were largely obliterated 
by the subsequent regional contractional tectonic event. 

Von Veh (1988) proposes that the rate of southward migration 
in the Gariep Belt exceeded the rate of closure of the Damara 
Belt, with the Kalahari Craton arriving at the consuming arc 
while the main deformation pulse 1-1as still proceeding in the 
central parts of the Damara Belt. The leading edge of the 
subduction zone consisting of ophiolitic material from an 
accretlonary pr ism (the Grootderm Suite) and part of a 

Chilean-type fore-arc basin (the oranjemund su~ce) was 

abducted in a SE to SSE direction onto the passive margin of 
the craton. 

The Pan-African evolution of the region climaxed with tho 

emplacement of the Kuboos-Bremen line of plutons at about the 
same time as final closure occu1·red in the Damara Belt. 

10. THE GEOLOGICAL HISTORY OF TUE STUO'i AREA. 

10.1 THE EVOLUTJON OF MAJOR STRUCTURES 

The structural evolution of the Pickelhaube Peak, Obib Peak, 
Rosh Pinah and Namusklutt areas was initiated during 
collision of the African foreland with the obducting tuctonic 
prism of the South American continent. 

The master Schakalsberg Thrust emplaced a thick slice (up to 
5 km) of dense basic rocks with ophio!itic atf inities (see 
Figs. 7J to 76) onto a foreland situated in the Schakalsberq 
mountains west of th£ Obib Mountains during the D1 

transpressive phase (Von Veh, 1988). Gravitational 
instability was caused ir. the crust, and an imbricate fan 
formed by listric splay faults in front of the overlyin9 
spreading mass (Fig. 75 episode 7a +Sa). 

Transport vectors towards the SE are indicated (Fig. 66). 

This was accompanied by east-northeast verging F1 folds with 
axes aligned parallel or nearly parallel to 0 1 thrusts, and 
a penetrative s1 shear cleavage dipping SW at moderate to 

steep angles. 
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A possible model for the release of bending stress due to 
loading could have been according to the visco- elastic 
flexural model of Quinlan and Beaumont (1984), whereby a load 
emplaced on an originally flat lithosphere would deform the 
plate as indicated by curve l (Fig. 67). If the lithosphere 
responds elastically, the shape will be maintained although 
the surface load changes. During loading the flexural 
prolile changes with time according to curves 2 and 3 (Fig. 
67) if the bending stresses aro released by creep, even if 
the load remains the same. In the case of the Gariep Belt, 
however, it is envisaged that bending stresses due to 

relative fast emplacement of the Grootderm suite over cover 
rocks were released by the formation of listric ~play faults 
in front of the overlying mass of high density rocks as the 
elasticity boundary with regards to shearing was passed. 

N 

·. 
-1-

N I 

\ 
I 

\ F1 fulJ lr1ndl 

Orientation of movement axes displayed on: a) equal area 
lower hemisphere stereoplot and b) rose diagram. The data 
consists oL striations and corrugations on rault planes in 
the study area. 

The Gumchavib .1d Rosh Pinah Formation; °" ' ! ~ 61lpl .i.i::a ted by 

the Obib Waterholie, Valley and Gumc11avib ~play thrusts 
emerging off the footwall of the overly i rg schakalsberg Nappe 
according to Fig. 68a. 

The Annisfontein anticlinorium star t ed to form as a ramp 
structure on the 01 sole thrust dut:> to continued pressure 
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Loadmg 

Fig. 67 Flexural model to illustrate lithosphere response to 

supracrustal loading, e.g. through overthrusting. 

(Visco-elastic model aiter Quinlan and Beaumont, 

Fig. 68 

198-4) • 

b) ~ ~17. . 0 ~ .. :;,=··(/. ..... ......... // ...... '"// . // .. . 
~ : . . ~. :· . : . ~:.: . : : : : . . . . . : : : : . 

Sequential development ol different thrust sequences 

a) in-sequence thrusting 

b) out-of-sequence thrusting 

The thr•Jsts are numbered 1-3 in order of development. 

from the SW. The tl.~usted unit may have acted as a single 
thrust sheet (Fig. 69 } , f r~i ng a set of intraplate folds 
(the Sendelingsdrif .. _ 1.. l 1orillm and th~ Rosh Pinah 
anticlinorium) evolvin~ rQm f ult propagation folding. The 
Orange River anticline i n ~he Numees diamictite {east of the 
Sendelingsdrif synclinorium, Annexure 1) may be interpreted 
as a minor ramp. 
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The geometry of a single thrust sheet, outljning three types 

or folds which commonly occur: 

a) ramp anticline (fault-bend fold) 

b) intraplate told (fault-propagation folds) 

c) tight folds at leading edge (after Boyer,1986). 

At this stage or just before the initiation of the 
Annisfontei n anticlinorium, one of the splay thrusts 
developed into the Rosh Pinah Nappe, overriding the other 
splays and possibly even the already initiated Annisfontein 
anticlinorium. All along the eastern limb of the 
Annisfontein anticlinorium a hinterland·dipping duplex (the 
Pickelhaube Duplex structure) of imbricate fan sheets 
developed in the overthrust sediments as a result of oblique 
ramping and sequential steepening of faults against the 
basement of the foreland. 

The Annisfontein anticlinorium w~s then accentuated, 
possibly by multiple in-sequence ramping along the footwall. 
As a result of this part of the RPNT became inactivated where 
the thrust plane was tilted eastwards. Limited gravitational 
gliding of the overthrust sediments towards the east into the 
Sendelingsdrif synclinorium followed contractional 
deformation and enhanced Fi backfolding of thrust slices in 
the duplex zone during 02 as the units were compressed and 
steepened against the basement. At this stage the Rosh Pinah 
anticlinorium may also have formed as a fold/fault controlled 
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pop-up structure, re-activating and accentua-::.ing older graben 
and horst faults. 

Drag according to oblique slip along the various ramps 

trending NW to NNW is thought to be responsible for conical 
Fl folding. 

• 

Fig 70(a) F1 folds 1dth DJ thrusting along the base . Tne locality is 

2 km north of the Orange River to:.:ards Gumchavib Peak (Fig. 
2). 

Due to differential movement these F3 folds may be slightly 

overturned towarc..s the southeast, with slip occurring along 

cleavage planes to outline minor local thrusting oblique to 
the previous events (Fia. 70a, b) and trending NE-SW. This 
folding phase resulted in the present day undulation of the 

structures and landscape as seen in a N-S section (Fig. 71). 

The late lateral transtensive phase D,-DJ (Von Veh, 1988) that 

resulted .from t.he emplacement of the Kuboos-Swartbank plutons 

is only of very minor and local importance in the present 

st~dy area. Some small kinks and kinkfolds and E-W trending 

Joints and fractures especially in the Numees synclinoriurn, 
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which were not analyzed in detail, represent structures, 

which are probably related to this event that marks the 

termination of the Pre-Nama Pan-African orogeny. 

Fig 70 (b) D1 thrust contact in Wallekraal grits. Tho locality is 
approxima tely 1, 5 km nortl1oast of Pickelhaube Peak. 

An attempt i s made here to e xplain the tectonic and 

s~dinentary evol c c lun of the Gariep Belt from observaticns 

made in th~ stuay a4ea . The model however, does not explain 

a l l ~ne i 11cricac1~s and many question~ remain unanswered. 

It is ~lso s trLssed that geological sections have been drawn 

ob 1 iql' f'! to tll£ transport direction, but more or less in the 

direct on o f compression, i.e. ENE - WSW . 
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A north-south profile from north of Rosh Pinah to south ot 
Gumchavib Peak outlining major open F1 folds and thrusts (See 

Fig. 2 for profile line). 
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F fold ui•l traces 
3 pro ject~d onto rarnp 

The pitch angle of a borizcntal slip vector on an oblique 
ramp depends on the strike of the . ramp relative to the slip 
direction. 

The geometry of a transpressive thrust vector on a foreland 
is outlined on Fig. 72. A compressional force vector of a 
transpressional force field produces F1 overfolds and thrusts 
during 01 which verge towards the foreland. The folds axes 
are finally rotated approximately parallel to NW-SE slip 
lineations and stretching directions (the migration 
directions). F2 folds originate as backfolds co-axial with 
original F1 because ramps are frontal ramps for this 

Stellenbosch University  https://scholar.sun.ac.za



11.2 

11. 2. l 

- 155 -

compressional vector. Intensive shear zones 

reorientate F1 and F2 to coni.cal and/or sheath 

refolding and/or oblique shear respectively. 

on ramps 

folds by 

For unit slip 'd' (as at A, B and C in Fig. 72) the force 
component at right angles to the strike of the ramp iG 

respectively largest in the middle section (pitch•B), 

smallest in th~ southern section (pitch=l) and intermediate 

in th northetn section {pttch =a). A situation of B>a>l 
applies to this area a. i ndicated by X of the pebble markers 

(Fig. Jlb). This explains the variations of pitch along the 

northern, middle and southern sections of the eastern 
boundary faults (or faults close to that boundar~) which have 
trends comparable to the various ramp strikes if the 
slipvector in the horizontal trends ± Jl5° (NW-SE) as shown 
in Fig. Jla and 3lb. 

As a crustal segment moves up the oblique ramp it undergoes 
local compression such chat folds may develop with axis 

trending almost at 90° to the pitching slip vector as shown 

en Fig. 72. These folds would trend more or less (and 
somewnat varyingly) NE-SW and would probably be conical, 
verging SE and plunging at varying angles depending on which 
limb of an earlier fold they_develop. These would be the F1 

folds, which will develop at or near and above every ramp and 
their intensity would dP-pend on the steepnes~ of t~e ramp and 

its strike. 

PHASES OF EVOLUTION 

SEQUlENTATION 

This is depicted in five episodes (sections approximately 90° 

to strand line and 0 1-DJ structures, i.e. NE - SW (Fig . 73). 

i) Episode 1 

Thinning of the crust takes place as an ocean (Adamastor 
Ocean) opens. This is followed by htep faulting and half­
graben formation with the Stinkfontein Seql..le1.::e (Gumchavib 

Formation) being deposited as f luvial and strandline 

sediments in a transgressive sea. 
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This is followed by sandst.ones, grits '\nd conglomerates 

(elastic deposition) and acid lavas and tuffs of the Rosh 

Pinah Formation (volcanism) with contemporaneous depositi~n 

of fumarolic precipitated hydrothermal orebea~i!"q flui' ;. 

These rocks were finally i~truded by basic dykes and sills. 

Reef carbonates develop along t.ne coast dur in9 the f i11a l 

stages of transgression. 

ii) Episode 2 

Uplift of the craton and erosion of t!le craton and early 

shelf carbonates follow. A period of regression follows. 

The Hilda Sequence is deposited un~onformably Qn the shelf 

on cop 01. tne tilted Stinkfontein as clas .ic carbonates, 

{ Pickelhaube Formation) followed by deposition of shales, 

grits and conglomerates of the Wallekraal formation. 

All these rocks are inverted erosion products of the 

Stinkfontein Sequeuce and the baseme.1t rocks (first elastic 

carbonates then siliceous elastics) . Hilda sedimentary 

breccias chinning rapidly westwards across fault steps are 

proof of such features on subbasins parallel to main 

structures. 

iii) Episo.:le J 

F..irther regression follows because ot. widespread e·1enly 

distributed uplift of the shelf with some further horizont~l 

extension. Finally er~sion of the Hilda occurs and coward3 

th2 end of this episode dep~sition of banded i~on !ormdtions 

takes place in shal.i.o\~ depressions of a marginal 

epicontinental sea or h~ ckish to fresh water lake 

environment sulijected to evaporation cycles and some 

differential basining alon~ !~~l~ bounded long shore basins . 

The BIF deposition is a world wide f aature related to global 

tectonics (Rapitan-type iron .cormnt.ions) and varying 
thicknesses of the latter overlie different faulc blocks, 

because old lineaments are briefly reactivated as syn­

sediment:ar.. faults extending upwards through the Hilda 

Sequ-nce. 
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Adoam.aslor Ocun 
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EPISODE 

\ 

\ 

EPISODE 2 

v v 
''''""" ... •" .. ,,.,.;,~,.,,_,~::.:hi~.,.: .. , 

~/----:t-_ + EPISODE 3 rs 6·· ,, o --
Uniform Widuprud Uplift 

Oo1111whor p 
Rifting - Numeu Bnin1 

0 
EPISODE 4 

y 

v 

Wltputs Basin 

I- EPISODE 5 

The sedirr>entary history of the Gariep Belt as dispicted in 

rive episodes. 

iv) Episode 4 

Ri fting, horst and graben formation takes place. 

G lacif-1 activity leads to f i.lU.ng of grabens with mainly 

basement ttatJri~l ocr i ved from the east, while horsts are 
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partly eroded to provide minor clasts of Gariep lithologies. 

Numees sediments transgress over graben edges and thin 

rapidly. 

The three graben~ and two horsts are schematic. 

width and trend considerably influence th~ 

present) distribution of basement thrust slices 

sediments during the final episoje, 

v) Episode 5 

Their exact 

final (and 

between cover 

The Witputs graben forms closest to the crat.on edge or 

between the easternmost faults. The Holgat Formation (not 

shown) which is possibly contemporaneous is deposited west 

of the westernmost horst above the Numees diamictite shown 

in episode 4 of Fig. 73. 

TECTOGENESIB PROPER (Subduction on South American SlU2 

i) Episode 6 

Beginning of U1 compressional phase. Oecoupting and 

overfolding {F1) takes place with thrusting to the east, and 

deformation and slip of horst-graben blocks over each other. 

Merging of toes of thrusts towards a common sole takes place. 

Blocks may plunge into and out of section because of 

differential upward gliding across their trend, and 

influenced by SE-directed migration somewhat oblique to the 

section. 

From here on several deformation histories can be envisaged. 

Three different paths are treated and an attempt is made to 

cons eve volume from here. 

a) PATH l (Fig. 7') 

i) Episode 7 

01 intensified, with much nea~ surface gliding, naprn 
thrusting and recumbent folding. Upthru.>ts first steepen and 

then shallow out in depth to coalcsco at the Moho into a 

single sole thrust. Overthrusting onto a rigid continental 
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Giriep T ectonite 

Gr11ben 

C. Crust 

+ EPISODE 6 ----
Oc1on1c hlhosphere 

Fil}. 74 

v v 

v v 

first rilmping, obdudion fin11lised 
o, 

v 

v 

l11rger displacement 

, , 

Second rilmping (st11ckin~I. backfoldinQ (f2) 

v 
'L__~L-__.a:......,,:.__;)l'L..<_..::;lt.::-.-"-~-~ 

L<1r9er d1spl11tement and botkl hru!ollfl9 

EPISODE 7 

EPISODE 8 

EPISODE 9 

The tactonogcnesis of the Gariep Belt. Episodes 6, 7, B and 

9 ou L ines Lhe first of t/Jrce possible dato rm.1tion paths 

envisaged. 

block that wa5 never thinned dur ~nq the sedimentation phase, 

takes place. Except for bound.'.lry fuul t s of blocks, all 
structures are near horizontal far 
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from the craton block but flattening is dominant near the 
craton. 

Fo11r blocks are numbered to coincide more or less with the 
two yrabens and two horsts formed during episode 4. This 
part is very schematic because no exact boundaries of blocks 
are known. Obduction has no~ started. 

ii) Epi:;ode 8 

Ramping occur£ above the sole and· obd , finalized. 

iii) Episode 9 

A second ramp has develop~d with stacking at depth. 
Backfolding (F1 ) takes place in the eastern parts mainly 
above but also below a backthrusl verging west. Original 
thrusts steepen against the undeformed craton and become 
backfoldcd too. Relaxation is not considered hire. 

An erosion surface shows that certain features are 
reminiscent of the surface geology in Annexures l to 4. 
However, the RPNT is a backthrust here and the Annisfontein 
anticlinorium is not recognisable as such. 

This model (Path 1) is fairly deficient in many respects. 
Note that no details of lithologies inside blocks l-4 are 
given, because backfolding is highlighted in episode 9 of the 
figure. 

The amount of sliding during t~o rarup episodes is here also 
assumed to be large relative to the spacing between the floor 
ramp and the craton ramp. 

b) PATH 2 (Fiq. 75) 

i) r:pisode 7a 
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Loading 

~· EPISODE 7a 

v v 

Load relaxation 
EPISODE Sa 

---~ --v-:- v v iv'-:. v ----~ 
+-- ~ 

Extension 
v 

Fig. 75 

back folding 
EPISODE 9a 

Present surface 

The tectonogenesis of the Garicp Belt. The second possible 
deformation path is outlined in episodes 7a,Ba and 9a. 

Following episode 6, there is assumed to have been a much 
farthe~ eastward ob<luction of the oceanic crustal slab. 

ii) Episode Ba 

Relaxation occurs after loading according to the visco­
elastic flexural model of Quinlan and Beaumont (1984). The 
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tectonite extends horizontally away from the craton, but new 
foreland directed thrusts develop, slicing the 4 "locks. 

Some gravitative back folding and .thrusting takes place near 
the top of the column. Underthrusting develops to the west 
below the load. 

iiiJ Episode 9a 

Gravitational collapsing of the cover below the load. An 

antiformal stack (or a multiple ramp) develops on the 
foreland side of the collapse structure and steepened 
foreland directed upthrusts (the Gurnchavib, Obip Waterhole 
and Valley Thrusts) occur overriding the antiformal stack. 

Gravitative gliding towards the foreland develops the RPNT, 
the sharp Rosh Pinah anticllnorium, the eastern synclinoria 
and backfolds (F2). Steep thrusts slice some of these 
structures. 

The Annisfontein anticlinorium is distinctly developed and 

has F 1 recumbents and Fi backfolds. The Pickelhaube Duplex 
is not shown but it is possible to visualise. 

The major problem with path 2 is that the model will not 
develop enough shortening to produce the ant~formal stack (or 
the multiple ramp) as well as the steep thrusts closer to the 

craton together with the gravitational slide on the RPNT. 
It is also difficult to visualise how an F3 can develop west 
of the RPNT ~ n such a model where the steep thrusts close to 
t he craton are decoupled from the RPNT, which has mainly a 
gravitat:onal origin . 

c ) PATH 3 (Fig . 76) 

i) Episode Sb 

After episode 7 th~ first ramp occurs above the sole. s:ock 
one thrusts over block two but the displacement is much less 
than in model a. Note that th~ abduction pile is not as 

thick as in a. 

Stellenbosch University  https://scholar.sun.ac.za



- 163 -

ii) Episode 9b 

A second ramp develops in foreland propagating fashion (i.e. 
in sequence - Fig. 68). Again the displacement is taken to 
be small relative to the spacing of the two ramps. All the 
various lithologies are shown. 

iii) Episode 10 

After some backthrusting and F1 backfolding, an erosion 
surface exposing the Witputs strata close to the craton 
reveals granites clos~ to surface on both sides of a possible 
Annisfontein anticlinorium which, however, is .not in the 
correct position relative t ) ~ther structures. 

The Pickelhaube Duplex structure is not a gravitational 
feature but part of the D1 phase deformed by back.folding. 
Steepened thrusts near the craton have been flattened above 
the backthrust. Backfolding is possible here. A deeper 
erosion profile exposes too much granite near the surface, 
but this is very much a consequence of the assumptions made 
initially in episode 4 where overschematization fouls the 
picture. 

11.3 A FINAL MODEL l 

The above exercise shows that various possibilities exist. 
In general too many unknowns occur to be able to reconstruct 
a balanced cross section for such a complicated tectonite 
with three partly non-colinear phases of deforr.1ation and 
compression across1 as well as slip along, oblique ramps. 

A model combining overfolding and thrusting with obduction, 
relaYation and renewed compression in that order to develop 
an antiformal stack (or multiple ramp) above the sole is 
probably the best one. The obliquity of the transport 
direction (migration direction) to the cratonic margin 
accounts for the varying pitch of stretches and different 
slip directions along craton ramps as well as for variation 
in the direction and plunge of Fl tolds. 
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FIRST RAMPING 

EPISODE 8b 
v v 

v v 

Small displacement 

SECOND RAMPING (STACKING) 

EPISODE 9b 
v v v 

v v 

Small displacement 

F2 BACr< FOLDING AND BACK THRUSTING 

EPISODE 10 

\' v v 
v v v 

~ 1 + 
___ __._ __ v~.....___...""'"'---=:"'--_....,_--'<---'-"----- ---

After s11tall displacements 

Fig. 76 Ti:= tdctonogene::.is or the Gariep Eelt. A third possible 

deformation path is outlin~d in epi~odes Bb,9b and 10. 
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The RPNT probably has a complex history which is closely 

associated with the origin of the Rosh Pinah anticlinorium 

and the Sendelingsdrif synclinoriurn. Gravity gliding of 

sediments towards the foreland followed by hinterland 

directed backfolding are feasible. compressional back thrusts 

of F:z age are indeed found in \'l'!e :. ... eld (Annexure 4) t.:> 

affect the Pickelhaube Duplex Stru~ture. 
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APPEBDll 

1. FINITE STP.AIN ANALYSIS 

1.1. Introduction to techniques used 

One of the objects of this study· has been to quantify the 
pervasive finite strain of the area. To achieve this the 
magnitudes and orientations of the three principal axes of 
the strain ellipsoid had to be established. 

Three basic methods have been devised to quantify strain and 

are described by Park (1989): 

a) individual strain ellipsoids can be measured using 
various "strain markers" and an average result 
obtained 

b) total shortening or elongation is estimated by 

scanning the geometry of folds or faults 

c) a regional homogeneous strain is ai:sumed and it is 

inferred that the statistical arrangements of all 

planar and linear structural elements throughout the 
ar~a reflect both the orientation as well as size of 

the bulk finite strain axes. 

The principal strain axes of the strain ellipsoid (Fig. l) 

car. be located if the rock possesses a new planar or linear 

fabric which reflects the finite strain geometry. A planar 

flattening fabric (slaty cleavage, schistosity or 

gneissosity) will lie in the XY plane of the strain 

e1lipsoid, enabling the z strain axis to be found. If a 
"stretching direction" (i.e. an elongation lineation) is 

present the orientation of the X-axis can also be obtained. 

Strain data measurements have been obtained by measuring 

initially spherical objects, but certain reservations as 

summed up by Park (1989), have to be taken into account: 
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1) a more sophisticated technique has to be employed if 
a non-random variation in initial shape is suspected, 
e.g. controlled by bedding 

2) the degree of homogeneity of strain has to be taken 
into account 

3) strain markers may have different competencies than 
their matrix. 

Measurements may be made directly in the field, or from thin 
sections, polished slabs or on enlarged photographs. 

The lengths of the long axes are plotted against the lengths 
of the short axes on graphs, and the slope of the best-fit 
str~ight line through the origin gives the mean value of the 
strain ratio Y'/X', in that plane (Fig. 2). 

The straln elllpsold (after Ramsay and Huber, 1983). 
Prlnclpal stralns are given by eJ, c , and e', 
prlnclpal strain directions by X, Y, and Z, and the 
principal planes by XY, YZ, and XZ. Tllo. principal 
plain strain ratios are glven by RXY,RYZ and RZX. 
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If there is a large differ~nce in ductility between the 
measured objects and the matrix, the measured strain will not 
apply to the whole rock, as in the case of the Wallekraal 
conglomerates, where quartz and quartzite pebbles are located 
within a sandstone or mudsto~e matrix. Y.uch higher strain 
would occur in the matrix as compared to the pebbles. 

The centre to centre method avoidn t~is problem. It relies 
on the fact that originally randomly ;irranged spheres arc 

15 
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. ,, .. 
VJ 

>< 
ro 
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A graph to lllustrate the method to determine the 
principal strain ratio in two dimensions .Cromdeformcrl 
circular objects. The slope of the line gl ves the 
Y'IX' (after Ramsay and Huber, 1903). 

systematically altered during strain in such a way that the 
changes are related ; ~ the distance between them. The ratio 
between the minimur.· and maximum mean distances is equal to 
the strain tatio Y'/X'. 

To determine the ratio, a plot is made of the distances 
between adjacent centres against the orientation of the line 
between tt'.e centres. An m1 + m2 value (minimum ard maximum 
mean di&tance) is obtained for the distance, which is 
subsequently used to ccllculate the strain ratio and two 
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corresponding values ut a (ay ~ ax) for the orientation of 
Y' and X' (Fig. 3) • 
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Determlnlng t~e prlnclpal strain ratlo ln two 
dlmanslons by using the centre to contra method: 
A. measurements of distances and angles between 

adjacent centraa 
D. Plots of d and« to determine X' and Y'. 
Sketch after Park (1989) F.ig 8.2 

The centre to centre method can be applied to any rock with 
randomly distributed particles as the respective ductilities 
play no role. The method is however, only applicable if the 
particles are matrix supported and tno distribution of 
pebbles not too heterogeneous. However, it is not an easy 
task to accurately determine the centres of the particles. 

Deformed clasts within the Numees. sequence were measured in 
several areas to o~tain a large number of approximate results 
rather than measure a single pebble bed that may be atypical 
for the area. The use of pebbles rests on the assumption 
that they originally possessed an elliptical shape, and the 
final shape which is measured is a compromise between two 
ellipses with regard to both direction and axial ratio. 
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1.2. Strain measurements using elliptical deformed objects (The 
Rt/ 0 technique) 

Ramsay (1967 p. 202-211) has indicated that a set of 
elliptical markers with identical initial eccentricity but 
variable orientation will show a characteristic pattern if 
their deformed axial ratios ('Rt) and orientations ( 0) are 
plotted qraphically. This method has become known as the 

Rt/0 technique and allows the effects of the initial shape of 
the markers to be distinguished from those due to tectonic 
strain. 

Lisle (1977) describes a method to define a the~a curve on 
the 'ftt/0 diagram. With varying initial orientations a whole 
set of theta-cu~ves are produced which radiate from the point 
(8•0, R,=R,). They are drawn by substituting the appropriate 
value£. of R. and 0 into the equation. 

When the family o! 0 and R; curves are plotted together, they 
form a net on the ~/0 diagram. Lisle (1~85) has compiled a 
range of such marker deformation nets, which if placed on a 
R,/0 data set, allows us to read off the axial ratios and 
orientations we would obtain by de-straining the rock by an 
amount corresponding to the R, value of the grid. 

The method n·.akes use of elliptical, i:;ub-elliptical or 
parallelogram shaped inclusions but caution should be 
exercis~u to see that the boundaries have not migrate.d i.e. 
significant boundary slip of pebbles has not occurred during 
me~amorphiam or pressure solution phenomena are not present. 
Such pebbles should be avoided. 

Measureroents have been taken on planar surfaces e.q. joints 
?r oedding planes and their geographical orientation 
carefully recordoJ. The ~ value was obtained by measuring 
the dimensions of the long and short axes ot inclusions and 
the ratio calculated. The 0 angles are obtained by measuring 
the orientation of the lonq a>eis. witn respec·~ to a chosen 
reference line. These angles will therefore fall in the 
range +90~, to -90° with respect to the reference line. 
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Markers were carefully inspected to 
heterogeneously deformed specimens, which 
wide~y vary inq long axis orientations. 

avojd sa~pling 

are indicated by 
Fifty to eighty 

readings wel'.'e collec~ed at one c;ite wt-ich, aci=ording to 
experiments, give the best results (B~rradaille, 1984). 

Measurements on individual markers ware then plotted as 
points on a transparent overlay on a graph of Rt against O. 
The data point distributions are then compared to the 
standard curves of Lisle (1985) and re~ults are evaluated by 

means of seve~al tests. Results ~re verified by subjecting 
them to a number of criteria. 

The degree of symmetry of markers is evaluated \Iii th the 
Symmetry Test (Lisle, 1985), dS randomly orientated markers 
will tend to show a symmetrical Rrf 0 pattern after straining. 
The vector mean 0, and the harmonic mean, H are calculated 
from the following equations: 

Vector mean 0 or 0- m ~ ar~tan ({ESin 20}/{~cos 20}) 

Harmonic mean H =N/ CRt1"
1 +an·• +Rri 1 

••••••••• R,n·'> 

The means are plotted and they divide the graph into four 
areas labelled A, e, c, o, and the number of points occurring 
in each area are oubsequently counted. A typical plot of 
data from near Dreigratberg illustrates the distribution of 
markers (Fig. 4). 
The symmetry of the marker& can then be esta~lished using 
the tollowing equation: 

where nA, n8, nc, n0, are the number of points in areas A, B, 
C, D and N is the total number of data points. 

High values of Is~M outline a highly symmetrical pattern of 
data points while low values may i"dlcate that an initial 
fabric has been present. 
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20 35 c.o 100 200 

o. J O.!il 0.60 o. 7•1 O.U:! 
l. s 

(O. 4) (0.6J) to. 117l (O. '/U) IO.U'.'JI 

o.5 o. GJ Q •• , ) o.uo u.UCI 
2 .o 

(0.!1) (0. {i)) (O. 77) (0. U~) (0.UU) 

o.:; O.Gl o. 7.1 o.uo o.:n 
ll:J J.o 

(O.G) iO.G)) (O. 77) (0. U::!) (0.UU) 

o.~ O.GJ o. 7J 0.02 o.u1 
s.o 

(0. C.) (0.6)) (('. "/7) (O.U.2) (O.OU) 

O.G O.GJ o. 7J o.u.z o.u., 
lO.O 

(0. G) (0.C.J) (0. 77) (0.6•1) (O.U~) 

Crltical valt.es of 141,, used in tho Syrm1atry Test (after 
Lisle, 1985). Values glven a.ro tlw .5t (lOi) percentage 

points of the Isnc dlstrlbution. 

Lisle (1985) has established a range of critical values for 
the test, and it IsvM is lower than the appropriate criti~al 
values (Table l) we can conclude that the markers did not 
come trom an uniform orientation distribution (however, there 
is a 1 in 20 chance of being wrong). 

The symmetry test, however, cannot be used to differentiate 
between a rock without an initial ~obric and one in which the 
strain has been symmetrically superimposed on an initial 
fabric. A symmetrical R,/0 plot could be interpreted either 
way. 
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Tbe 0 distribution Test 

It the IavM test values indicate a symmetric pattern, the data 
points are compared to the shape of the R,/ 0 curves on the 
standard charts of Lisle (1985). The chart where the O 
points are most evenly distributed gives us the strain rate 
value R,, which is the best P.stimate of the strain ratio 
(r' ig. 5) • 

A 

( 

. ... 

Al SO 

Si I 
., I 
.. 10 .. _.. 
0 

~ r .. 
> 

I !» 

I • 

I ., 
... • . 

• • ·:i • 
• •• I • - - - - .. -- . . 

•• '• I 

I•• .·• ·~ i. '• 
I.-;-· 
.·1 

I I 

8 

0 

1 ... • 1-117)+(51 J/75 

a !-ll:?l/75 

• 0.04 

~-.----~~--.~~~----'----r--~~~~.------.--

· IO .u -20 • JO 40 'O ao 

A R,10 plot of Nwooes dlamictlte clasts of an area east 
of Drelgratberg beacon (Q/19, Anne.xure l). Tiie I•r­
tast value lndlcates a highly synmetrlcal pattern fc~ 
orlglnally unorlentated clasts. 

The approximate values of the strain ratio can also be 
established by several other methods, the first of which uses 
the harmonic mean also used in the symmetry test (Lisle, 
1977, and 1979). This value may approximate or slightly 

overestimate the strain ratio. Fig. 6 (Lisle, 1985) can be 
used to establish the estimated R, from the harmonic mean. 
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Rs-2.00 

"'' 

Flg. 5 A standard R1/8 chart of Lisle (1985). 

Further estimates can be made by usinq the R, ma• and R, -· 

values or the orientation and axial ratios of markers with 
extreme orientations. The statistical X1 test allows an 
objectiv~ assessment of the goodness of fit to be made. The 
equatiei,1 for the test is as follows: 

X1 {(O-E) 2/E 

Where () is ·ha observed number of points occupying a cell 
bounded ~V '·1c the~a curves and Eis the number expected in 
the cell. 

The results of these measurements are discussed under 6.9 and 
7.7. 
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STRAIN RATIO, RS 

A dlagrain to establish the estimated R. from the harmonic 
mean (ofter Lisle, 1985). 
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SHORT OISCRIPTION OF SAMPLES IN THESIS 

5AM"i1LENO fAppffoxJ.ot'J~iJfy - ··--1oe"scRIPTtON··- --·. ·---· .. -~ 
N~11·~ ·,... 1 Km SW.or NanmklUf(Fannstead · - N1Jnecs darnlclile •• • ... 
N 13 1 Km SW or Namusklurt Farmstead Ntniees damlcfilo 
N 1it __ t _KmSW_orNarrusklUfl__r:_ermsteod Do11<s11ndslone(IJIF) __ 
N 16 __ _ 1 Km SW of NamtJsl<kJrl Farmstead llrovm git 
NT 2 2 l<m NE of Nomusklurt r=ormslcad IGrel/-!J'ecn chlontc schist 
NT 5 2 l<m NE of Narruskk.rfl Farmstead CalcercOlr.> aroi""lll""'lc,_:--:----:--:-:--:--:-----:-:-------1 
NT 6___ 2 Km NE of Namusklull FaJm~leatl DiJl1<-brown corbonnl~ l>and_ln lJluck ergiUHa 
NT_ 7 __ _ _ 2 Kni NE or Namuskk.Jrt Farms!c_ad Dark f!CY dolorntc _ 
NT 9 2 Km NE or Namusklull Farmstead Crcam-colotrcd mete 
NT 10 2 Km NE or-Nell'IJSJ(k.rft WhilecartiOnate · .c=:-~-----------1 

NT 1_1 _ _ - .1L8 Km NE of NarnuskkJfl i:armst~ad _ Dilf1<..11cy_d0tornltc 
f:IT_!_2 _ _ 1,8 ~ NE_ol N;i~sldu!l lj1!!!15lcad _ Blu<!1Ycy cnrbonato _ _ _ _ 
NT 17 2 Km SE or Namuskl.lrt M<oslc !llil 

NT 19 2 Km SE or Namusklurt Fanrn>!ead Dar1<-grey to bla_ck_sc_h_s __ I ----------1 
N r_24__ 5,t Km SE_ol.Nnnysklur~ connsJ~d • _ l)ark-g-ey dOlolnito.(broc~tolt!d) __ 
N_T_39a ____ Ner.rOrongc~lvcr __ _ __ P!solllc~la _ 

!!!.:1P Orcltjt_!'~!I : ~mentury curbonoto brncda _______ -1 
N r II 1 Drc.l<TUlbc.tq Ouartz-chlorllP. schli;t 
NT_4'1 _ _ 6 Km SE C'I NornJSl<lull • _______ Clllqflto_schlsl --- _ 
NT 51 3.5 Km S'..: ul Noln.Jsiduft Crcam-colol.l'cd curbooutc 
NT-52 _ __ 3 Km c;c or Namusklult - -- - .. Pink dolommc Mmcslono 

·~~~-'------~-----1 NT 53 £,,§ i<tT1 SE of Nollllt'lklull Ferrnsleod Li- , "'T - ortzile 
N_I 55 _ _ ___ QrL'OgC Rtvl.?I' _ ·-- _ _ Ntat:.cd gre~grcy granodlontc 
r:-i:r 6~-- _ Q1:.ct11:all>cf9_ ___ _ Crea~o_!Ot.l'ed d<>lomlte _ _ 
NT 62 Drelcra1~.?19--- Crcam-colo1..-ed doloolle 
NT 67 3 3 Km NC or lamusklun F annstead Pink OJartzila 
NT 69 ___ Orange River _ _ _ _ . l!rown gossanous ~--le rock enc~!cd In O_R? _ 
NT _70 _ _ Orongo Rlvnr _ ~~le-schist (ORG) 
NT 71 Orel'ICJI: River Coarsc.g-o1ned shcorcdvolcuric rock 
NT 74 OronQC River ChlOrlte-schist IORG) 
NI_75 __ ~Qfelel_ Mlnc_ _ _ Ltohl~own loucogrenitc ____ --·---
NJ]~-- ~orelcl Mine _________ Oa!k-grccnaTPhlboltc _ _ _ _ __ 
NT 77 3 Km wost or Ro5h Plnah Drown !l~~"'_r_ll_ilo __ ~~-------i 
NT H2 3 5 Km wosl ol Rosh Pcnah Fioo-quined nwcacP.OIJs QUar llita 
NT 63 _ • __ 6 Km SW or Hosh Plnoh Ukl&-grcy gn! - ---------i 
NT M 6 Km SW or Rosh Plnuh Pebble conglotncralt! 
NT 65 - 3 5 t<m west olffosh l'o 1Uh lllu«Hlfcy dolomi.c..c-Lc ___ _________ --1 

NT 86 5 Km west or Rosh Plnoh Mlcoccous rnkJsoalhrc auaru11c 
NT 88 5 Km wost or Rosh Pirmh __ _ _ A~u1ncd, iglll-brown culcorcou:; quurllllc _ 
Jff90___ 5KmwcstofRosh"1o.:ih . _ 111ue=grcydolomllc • 
NT 91 - - · !fl<m-wc~t or Rosh Plrn:ih Ouora-~ -~~~-' _ 
NT 92 5 Km west or Ro--..h Pinah fillCjlllfncd, lght-1.>rown colcaroous quar1111c 
NT 93 '1 Km or Aosh Plnoh _ _ _ Wh'tc Dmeslono _ 
NT 94 ~ =- i,5 SW or Hosh Plnoh _ • _ M1caccous h:kbpalhc quarllllcs _ 
Nf 95 5 K/\1 E or Ol>lb. -- liJi!!:!lr-~own~~qua'"""''-'rtll=-l""c---- -·--------.. 
NT 97 6 Km wosl of Rosh Pinah Ulack !.hair. 
NT100 3 Km NI: or OlJlb Quorlz-s<mctle schli.1 
NT101 ___ ~Km NE of Oblb Quertz-sertcrlc schlsl 
NTto2-- 3-Kin NE orot>1b - - -- - Olotlto-quortz schist 
NT103 3 l<m NE of OOb Fl11CHJrnl,...rlCd

0

-"'--"-e11.Jn-,rl7-i-tc-------------r 

NT105 3 Km NE of Obib lllotile-qoortz schist _ 
Nf 111-=: 2~5 Km NE_or Oblb---:~ =----=- B1oii1e-chlonti>-qllortt schist 
NT113 2 Km E or Oblb ~lliMHQh_l-g~ey,_gu...__o._rlz1~l_o _________ -1 

NT116 5 Km west or Hosh Pineh C_.a_lc~=or_..eous--...._guu_.._._.rtzi""'. te-'"---,----:----,----r 
NT_128 _ __ 3,5 Km SW ol Pickclhnube Pcmk Wadekrool schist- silVcry bluo ~cy. larlln&tc:d rock 
NJJ36 _ _ 2.5 J5m NW ~r Dr~1!1Elber9_ _ Unndcd Iron rorma~lon _ . 
NT139 Obib Peak Homblcndc-chlofitc i;d'list 
NT 141 Obib Peak Smal oebblc ~~tc'-----------1 
N!)43 __ __ Valey 1!trusl::1km wc~t of 0.1>11>_ _ __ Ane:-ga1rn?d. bluc-gey dolomllu 
NT1_:49_ 500lrl _wosl OI ~~ - Ught olue-groy dok>mllo 
Nf100 Oblb reuk Ooartz-bloblc-muscovite schlsl 
NT154 Gumchavtb !TOnlle lnlcr EP!_do_u_r._c"'"ct,..grc.;;;oy.._.ar.a_n1_tc._. ·------------1 
NT~5.5 __ Guncl)avlb granllo Inlier ____ M1caceous gr anHe_ __ 
NJ)56___ ~b grnn1le inltir _ ___ , U~grcy gr!Jrv!o .. 
NT161 2,5 Km SW or Pickchuubc rr .. ak Ot.mrt7-muscovilc-lllolllo...;s;.;;ci..,li.s~t _________ 

1 
NT162 2 5 Km Sw of PlckeiialbA Peak Ouarfz-n'IJSCOV!lo-bloblc schist 
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