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Abstract 
Globalisation, shorter product life cycles, and increasing product varieties have led to complex 

supply chains. At the same time, there is a growing interest by customers and governments in 

having a greater transparency of brands, manufacturers, and producers throughout the supply 

chain. Due to the complex structure of collaborative manufacturing networks, the increase in 

supply chain transparency is a challenge for manufacturing companies. Distributed ledger 

technologies offer an innovative solution to increase the transparency, security, authenticity, 

and auditability of products. However, there are still uncertainties when applying the 

distributed ledger technology to manufacturing scenarios and thus enable all stakeholders to 

trace the audit history of each component of an assembled product. This research work 

proposes a framework to increase the transparency and auditability of products in collaborative 

manufacturing networks by adopting the distributed ledger technology. The framework 

considers the challenges of manufacturing supply chains with the opportunities of distributed 

ledger technologies and combines them in a conceptual implementation process of supply chain 

management systems. In this context, each component of a product is represented by a unique 

virtual identity generated by distributed ledger-based smart contracts. These virtual identities 

can only be sent and merged if defined conditions specified in smart contracts are met. This 

enables all physical processes and their dependencies to be mapped in the distributed ledger. 

The results, based on a practical implementation of the framework, show that a transparent 

auditability of assembled products and all the components they consist of can be achieved. 

Applications based on the proposed framework can currently only enable real-time tracking 

reliably in permissioned networks. The implementation on a permissionless network provides 

full transparency for all stakeholders including the customer, while the implementation on a 

permissioned network only provides a restricted transparency for the customers.   

Keywords: Manufacturing Supply Chain; Distributed Ledger Technology; Tracking; 
Transparency 
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Opsomming 
Globalisering, korter produklewensiklusse en toenemende variëteite het gelei na komplekse 

voorsieningskettings. Terselfdertyd is daar 'n toenemende belangstelling van kliënte en 

regerings vir groter deursigtigheid van handelsmerke, vervaardigers en produsente in die hele 

verskaffingsketting. As gevolg van die ingewikkelde struktuur van samewerkende 

vervaardigingsnetwerke, is die toename van voorsieningsketting deursigtigheid 'n uitdaging vir 

vervaardigingsondernemings. Verspreide grootboek tegnologieë bied 'n innoverende oplossing 

om die deursigtigheid, sekuriteit, egtheid en ouditeerbaarheid van produkte te verhoog. Daar is 

egter steeds onduidelikhede oor die toepassing van die verspreide grootboektegnologie op 

vervaardiging prosesse en stel alle betrokke partye in staat om die ouditgeskiedenis van elke 

komponent van 'n saamgestelde produk op te spoor. Hierdie navorsing stel 'n raamwerk voor 

wat die deursigtigheid en ouditeerbaarheid van produkte in samewerkende 

vervaardigingsnetwerke te verhoog deur die verspreide grootboektegnologie te gebruik. Die 

raamwerk oorweeg die uitdagings van die vervaardiging van voorsieningskettings met die 

geleenthede van verspreide grootboektegnologieë en verbind dit in 'n konseptuele 

implementeringsproses van voorsieningskettingbestuurstelsels. In hierdie konteks word elke 

komponent van 'n produk voorgestel deur 'n unieke virtuele identiteit wat gegenereer word deur 

verspreide grootboek-gebaseerde “smart contracts”. Hierdie virtuele identiteite kan slegs 

gestuur en saamgevoeg word as die voorwaardes wat in “smart contracts” gespesifiseer is, 

nagekom word. Dit stel alle fisiese prosesse en hul afhanklikhede in die verspreide grootboek 

in staat om gealokeer te word. Die resultate, gebaseer op 'n praktiese implementering van die 

raamwerk, toon aan dat 'n deursigtige auditering van saamgestelde produkte en al die 

komponente waaruit hulle bestaan, bereik kan word. Aansoeke wat op die voorgestelde 

raamwerk gebaseer is, kan tans slegs “real time-tracking” betroubaarheid verseker in 

toestemmingsnetwerke. Die implementering op 'n toestemmingslose netwerk bied volledige 

deursigtigheid vir alle betrokke partye, insluitende die kliënt, terwyl die implementering op 'n 

toegelate netwerk slegs 'n beperkte deursigtigheid vir die kliënte bied. 

Sleutelwoorde: Vervaardiging verskaffingsketting; Verspreide Grootboektegnologie; Volging; 

Deursigtigheid  
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1  Introduction 
Globalisation has an impact on every country regardless of its economic, political or social 

situation and it is not slowing down. In fact, globalisation has initiated an innovation-driven 

era that is mainly characterised by intense competition, shorter product life cycles, and high 

product varieties (Ernst & Haar, 2019). The rapid changes due to globalisation and the 

increasing complexity of supply chains also influence the manufacturing landscape (Mourtzis 

& Doukas, 2012; Ueda, Takenaka, Vancza, & Monostori, 2009). Thus, properly configured 

and easily adaptable manufacturing networks are required, which are capable of handling the 

complexity and magnitude of the supply chain structures. These qualities represent a critical 

factor for companies in order to maintain their viability (Mourtzis, Doukas, & Psarommatis, 

2015, p. 274).  

In addition to the structural complexity of global supply chains, companies have to 

deal with the growing interest of customers, governments, and non-governmental 

organisations (NGOs) in having a greater transparency of brands, manufacturers, and 

producers throughout the supply chain. For manufacturers, social and environmental 

sustainability issues have become increasingly important in order to maintain a flawless brand 

reputation. However, as supply chains become more global, many suppliers in the network 

may be located in developing countries where governments have only a limited ability and 

willingness to enforce their own laws. Therefore, the distributed nature of today’s supply 

chains creates increasing levels of risk for multinational businesses, making transparency of 

supply chains both critical and complex (Chen, Zhang, & Zhou, 2018; Linich, 2014; New, 

2010). Especially for organisations operating in complex and dispersed supply chains, the 

expansion of measures to increase supply chain visibility can be of great advantage in reducing 

these risks (Brandon-Jones, Squire, Autry, & Pertersen, 2014; Linich, 2014). 

Figure 1 shows the results of a survey conducted by SCDigest and JDA in 2016 to 

point out which aspects of digitalisation can drive the most value. According to 203 industry 

experts, supply chain visibility with a rating of 59% is the aspect that drives the most value. 

This emphasises the high importance of visibility for organisations and their supply chains.  
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Figure 1: Aspects of digitalisation that can drive the most value (SCDigest & jda, 2016)

Figure 1 shows the results of a survey conducted by SCDigest and JDA in 2016 to point out 

which aspects of digitalisation can drive the most value. According to 203 industry experts, 

supply chain visibility with a rating of 59% is the aspect that drives the most value. This 

emphasises the high importance of visibility for organisations and their supply chains.  

 In October 2008, the pseudonym Satoshi Nakamoto published the famous Bitcoin 

white paper and thus described the blockchain technology for the first time. By the help of this 

technology and Bitcoin as a cryptocurrency, the paper clearly aims to change the traditional 

financial sector and to make trusted third parties superfluous (Nakamoto, 2008). As a result of 

bitcoin’s success in the year 2009, the blockchain technology was mainly associated with 

financial applications at this time (Grinberg, 2011; Kaplanov, 2012; Sorge & Krohn-

Grimberghe, 2012). In 2013, Vitalik Buterin extended the idea behind Bitcoin and introduced 

the white paper of Ethereum. Compared to Bitcoin, the Ethereum protocol moves far beyond 

using the blockchain technology just as a currency. It is a decentralised platform that allows 

users to theoretically create any type of application (Buterin, 2013). The possibility to run 

decentralised applications on blockchain platforms initiated a hype around the technology with 

inflated expectations. Figure 2 shows the hype cycle for emerging technologies according to 

Gartner (2018).  
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Figure 2: Hype cycle for emerging technologies (based on Gartner, 2018) 

Gartner’s yearly published hype cycles exemplify the development of the blockchain 

technology from cryptocurrencies and financial applications to decentralised application 

platforms with several fields of application. In 2015, Gartner specifically listed 

cryptocurrencies and arranged them sliding right into the trough of disillusionment phase 

(Gartner, 2015). In the hype cycle of 2016, however, the term cryptocurrencies was replaced 

by the term blockchain, which was done even before the peak of inflated expectations. The 

new potential of the blockchain technology to become a decentralised application platform 

has been elucidated through this expansion (Gartner, 2016). Especially when applying the 

blockchain technology to supply chain management, companies have high expectations to 

solve the transparency and auditability issues of complex collaborative supply chains 

(Gentemann, 2019; Iansiti & Lakhani, 2017; Panetta, 2018).    

1.1 Background and rationale of the research 
A lack of supply chain transparency can result in various vulnerabilities of manufacturing 

supply chains. For example, in the automotive industry, counterfeit parts are increasingly 

putting consumer’s safety at risk. Automotive parts that are frequently counterfeited in huge 

volumes are, for example, airbags, engine and drivetrain components, brake pads, automotive 

body parts, electrical components, wheels, and windscreens (Peresson, 2019). In particular, 
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the counterfeiting of electronic parts causes potential risks including safety and loss of profits 

to companies, as well as maligning the reputation of manufacturers and distributors.  Due to 

the complexity of global supply chains, it becomes increasingly difficult to maintain the 

traceability of all components even from very reputable authorised distributers. This increases 

the probability of counterfeit components being introduced into a supply chain (Collier, 

Hassler, Lambert, DiMase, & Linkov, 2019; DiMase, Collier, Carlson, Gray, & Linkov, 2016; 

Pecht, 2013).  

Besides the complexity of supply chains, the storage of component-related data in 

central systems or the existence of paper-based certificates also increases the probability of 

counterfeit parts entering the supply chain. For example, in the aviation industry, organisations 

file paper documentation of parts such as certificates of conformance, packing lists, and test 

documentation in archives and store the data in central systems according to their own records 

information policy. Typically, the certificates are not directly linked with the physical 

batch/shipment of parts. After a certain record retention period has elapsed, organisations are 

allowed to destroy the paperwork, while the physical product may still be in circulation 

(DiMase et al., 2016). This results in a confusing number of suspected unapproved parts 

(SUBs), which are aircraft parts that do not qualify to meet the provisions of an approved part 

and do not meet the quality constraints of the industry. Thus, SUBs are seriously violating the 

strict aircraft security standards. (Acharjya & Geetha, 2017, p. 263) 

An important method to avoid the incorporation of tampered counterfeit parts in 

assemblies is to gain complete traceability of all parts and therefore to increase the 

transparency throughout the whole supply chain. However, achieving full transparency and 

detecting counterfeit components is extremely complex and can be a costly undertaking. 

(Collier et al., 2019; Guin et al., 2014; Machado, Paiva, & da Silva, 2018). In addition, this 

turns out to be even more challenging, since counterfeit parts often originate in developing 

countries where governments have only limited abilities to enforce laws (Chen et al., 2018; 

Domon, 2018).  

To improve avoidance and detection of overproduced, cloned, and tampered 

counterfeit types represents a present research gap. Specifically, the problem of incorporating 
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tampered counterfeit parts in assemblies introduces a vulnerability that must be prevented 

(Collier et al., 2019, p. 450).  

1.2 Research problem statement and questions 
The purpose of this work is to investigate how manufacturing networks can increase the 

transparency for all stakeholders. In that respect, this work focuses on the problem of complex 

manufacturing supply chains creating products consisting of several components. The 

incorporating of parts with different origins into assembly lines complicates the auditability 

of each part after the assembly process. This leads to vulnerabilities in manufacturing networks 

allowing counterfeit parts to enter the supply chain. These vulnerabilities not only jeopardise 

the reputation of manufacturers because of products consisting of counterfeit parts, but also 

because of the increased risk of components being unwittingly produced under reprehensible 

social or environmental circumstances. Distributed ledger technologies such as the blockchain 

technology are frequently associated as promising technologies to increase supply chain 

transparency. The primary research question (Table 1), aims to investigate how distributed 

ledger technologies can be adopted to solve the auditability problems of manufacturing 

networks.  

Table 1: Primary research question 

The following secondary research questions shown in Table 2 must be considered in order to 

answer the primary research questions adequately. Answering the secondary research 

questions leads to findings that serve to clarify the primary research questions.   
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Table 2: Secondary research questions 

1.3 Research objectives and contribution 
In order to achieve the aim of the study, nine main objectives are developed. These objectives 

serve to guide the study in the intended direction and to keep the focus on the aim of this 

research work. The following objectives are defined to support the research: 

i. Critically review definitions of manufacturing supply chains and supply chain 

transparency (Section 2.1.1 + Section 2.1.3) 

ii. Examine critically the structures and existing literature of manufacturing supply chains 

(Section 2.1)   

iii. Examine critically the structure and existing literature of distributed ledger 

technologies (Section 2.2) 

iv. Investigate existing projects combining distributed ledger technologies and supply 

chains (Section 2.3) 

v. Analyse the relevance of the topic in terms of the country-specific circumstances of 

South Africa and Germany (Section 3.2) 
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vi. Develop a framework for manufacturing networks to increase the supply chain 

transparency by adopting distributed ledger technologies (Chapter 4) 

vii. Develop a solution to create unique smart contract-based virtual identities  

(Section 4.2.1) 

viii. Develop a decentralised application based on the outcome of the framework and 

implement it in the research environment (Chapter 5)    

ix. Verify and validate the feasibility of the proposed framework (Chapter 6) 

1.4 Research methodology and design overview 
The methodology for this thesis is the development of a conceptual framework. Jabareen 

(2009, p. 51) defines a conceptual framework as a “network, or ‘a plane’, of interlinked 

concepts that together provide a comprehensive understanding of a phenomenon or 

phenomena”. A conceptual framework is arranged in a logical structure to display how ideas 

in a study relate to one another (Grant & Osanloo, 2014). It is the researcher’s own constructed 

model to explain the relationship between the main variables in the study (Adom, Hussein, & 

Joe, 2018, p. 440). Jabareen (2009) suggests to build a conceptual framework from existing 

multidisciplinary literature since it is a process of theorisation, which “uses grounded theory 

methodology rather than a description of the data and the targeted phenomenon”. The aim of 

this research is to combine the requirements of manufacturing networks with the possibilities 

of distributed ledger technologies. Therefore, the respective areas are first examined in an 

extensive literature review. This literature review serves as a basis for the subsequent 

framework development. Leavy (2017) states that qualitative approaches, in particular, are 

suitable for exploring complex contexts in cases where only little literature is available. In this 

context, inter alia, experiments are important data collection options. Since no similar 

approach exists in literature, this research verifies and validates the feasibility of the 

framework based on a practical implementation in the manufacturing network of Reutlingen 

University and Stellenbosch University.   
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Figure 3: Methodology and design of the research 
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1.5 Dissertation outline   

Figure 4: Structure of the thesis 
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2  Literature Review 
The literature review is divided into three main parts. First, the chapter provides fundamental 

knowledge about manufacturing supply chains and distributed ledger technologies. At the end, 

the chapter describes existing projects that are already working on distributed ledger 

technologies in conjunction with supply chains.  

2.1 Fundamentals: manufacturing supply chain 
This section of the literature review focuses on the fundamental characteristics of 

manufacturing supply chains.  First, the general structure of manufacturing supply chains and 

important definitions are introduced. Subsequently, the section reviews the main complexity 

drivers of manufacturing supply chains and the difference between supply chain transparency 

and visibility. In conclusion, the section describes the structure of supply chain management 

systems and their components.      

2.1.1 General structure of manufacturing supply chains 

Rapid changes due to globalisation and the increasing complexity of supply chains have a 

direct influence on the manufacturing landscape (Mourtzis & Doukas, 2012; Ueda et al., 

2009). Over the last two decades product life cycles have become more than 30% shorter in 

some industries. Simultaneously, the variety of products has multiplied and ‘mass 

customisation’ has become much more scalable (Ernst & Haar, 2019).  

According to Rudberg & Olhager (2003, p. 29), the vast majority of manufacturing is 

carried out in so-called ‘value’ networks, which are defined as networks of facilities, possibly 

owned by different organisations, where time, place or shape utility is added to goods in 

various stages such that the value for the ultimate customer is increased. Camarinha-Matos & 

Afsarmanesh (2006, p. 4) define a similar type of network as a ‘collaborative’ network. 

Therefore, collaborative networks consist of a variety of entities (e.g. organisations and 

people) that are largely autonomous, geographically distributed, and heterogeneous in terms 

of their operating environment, culture, social capital and goals, but that collaborate to better 

achieve common or compatible goals, and whose interactions are supported by computer 

networks. Based on these two definitions, this study considers manufacturing networks as 

collaborative value networks.  
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The typical structure of manufacturing supply chains usually consists of a network defined by 

a focal company, its suppliers, and the customers. In manufacturing supply chains such as the 

automotive industry, the focal company is also referred to as Original Equipment 

Manufacturer (OEM). The OEM and the suppliers provide all capabilities required to create 

and support the end products, which then can be purchased by the customers. When 

manufacturing operations become more and more specialised and complex, the OEM relies 

heavily on its suppliers, who are again relying on their own suppliers (National Research 

Council (U.S.), 2000, p. 23). Figure 5 shows a traditional manufacturing supply chain network 

structure.  

Figure 5: Network structure of a typical manufacturing supply chain (based on D. M. 
Lambert, Cooper, & Pagh, 1998, p. 3)

For a long time, global supply chains were characterised by the trade of finished products. Due 

to globalisation and the so-called ‘network trade’, global supply chains have become more and 

more fragmented. In addition, the degree of diversification in terms of the procurement of raw 

materials and components has increased. The distribution of procurement among different 

suppliers brings various advantages such as a wider choice, cost advantages and better risk 

diversification. At the same time, this strategy introduces completely new and significantly 

expanded requirements when planning, coordinating, managing, and controlling global supply 
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chains (Lehmacher, 2016, pp. 22–24). These changes have led to a shift from traditional non-

modular manufacturing supply chains to an increased use of modular manufacturing supply 

chains. While in the non-modular configuration the final assembler does all the assembly work 

by itself, in the modular configuration the final assembler apportions product modules to 

intermediate sub-assemblers (S. J. Hu, Zhu, Wang, & Koren, 2008, p. 45). A comparison 

between the two configurations is shown in Figure 6.  

Figure 6: a.) Non-modular assembly; b.) Modular assembly (S. J. Hu et al., 2008, p. 46) 

2.1.2 Complexity drivers of manufacturing supply chains  

This section is mainly based on the results of a study conducted by Bozarth, Warsing, Flynn, 

and Flynn (2009), with the aim to determine the main complexity drivers of manufacturing 

supply chains in order to analyse their impact on the performance of manufacturing plants. 

For this work, the determination of variables impacting the supply chain’s complexity is of 

special importance.   

 Bozarth et al. (2009) contrast two complexity types: detail complexity and dynamic 

complexity, whilst mixed forms of both types can also occur. Furthermore, they separate the 

complexity drivers into three main categories: Downstream complexity, internal 

manufacturing complexity, and upstream complexity. The definition of each type and category 

is listed below:  

1. Detail complexity. The distinct number of components or parts that make up a system 

(Bozarth et al., 2009, p. 79). 
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2. Dynamic complexity. The unpredictability of a system’s response to a given set of 

inputs, driven in part by the interconnectedness of the many parts that make up the 

system (Bozarth et al., 2009, p. 79). 

3. Downstream complexity. The level of detail and dynamic complexity originating in the 

downstream markets of manufacturing supply chains (Bozarth et al., 2009, p. 81).  

4. Upstream complexity. The level of detail and dynamic complexity originating the 

supply base of manufacturing supply chains (Bozarth et al., 2009, p. 81).  

5. Internal manufacturing complexity. The level of detail and dynamic complexity found 

within the products, processes, and planning and control systems of the manufacturing 

supply chain (Bozarth et al., 2009, p. 80). 

Table 3 summarises the results of Bozarth et al. (2009) according to the determination of key 

drivers of manufacturing supply chains’ complexity.  
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Table 3: Main complexity drivers of manufacturing supply chains (based on Bozarth et al., 
2009, p. 82) 

2.1.3 Supply chain transparency 

Besides the structural complexity of global manufacturing supply chains, companies have to 

deal with the growing interest of all stakeholders in having a greater transparency of brands, 

manufacturers, and producers throughout the supply chain. Social and environmental 

sustainability issues in particular, have become increasingly important for manufacturers in 

order to maintain a flawless brand reputation. Meeting the transparency expectations of 

stakeholders is further complicated because supply chains spread across developing countries, 

where governments have only a limited ability and willingness to enforce their own laws. 

Therefore, the distributed nature of today’s supply chains creates increasing levels of risk for 

multinational businesses, making transparency of supply chains both critical and complex 

(Chen, Zhang, & Zhou, 2018; Linich, 2014; New, 2010).  
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For Francis (2008, p. 182), supply chain visibility (SCV) is the identity, location and status of 

entities transiting the supply chain, captured in timely messages about events, along with the 

planned and actual dates/times for these events. Doorey (2011) extends the traceability aspect 

of supply chain visibility with a transparency aspect by the disclosure of all information of a 

product’s flow throughout the production process and its supply chain to all stakeholders, 

especially the customers. Duckworth (2018) points out that in this context the terms visibility 

and transparency are frequently used interchangeably. In general, the term visibility focuses 

more on the data sharing within the supply chain to make a collaboration between the network 

partners more efficient. Transparency, however, often refers to the disclosure of information 

to all stakeholders, including the customer.  

A lack of supply chain visibility not only puts the reputation of manufacturing 

companies at risk, but also poses a direct problem for the quality of the products itself. Due to 

the complexity of global supply chains, it becomes increasingly difficult to maintain the 

traceability of all components even from very reputable authorised distributers. This increases 

the probability of counterfeit components being introduced into a supply chain (Collier et al., 

2019; DiMase et al., 2016; Pecht, 2013). In addition, transparency problems in the supply 

chain can have an impact on all business areas of manufacturing companies, particularly 

because such visibility problems create uncertainties, which in turn often result in stock 

buffers. These again can result in over-ordering, long lead times, and delivery delays 

(Christopher & Lee, 2004). Notably, for organisations operating in complex and dispersed 

supply chains such as manufacturing supply chains, the expansion of measures to increase the 

supply chain visibility can be of great advantage to reduce these risks (Brandon-Jones, Squire, 

Autry, & Pertersen, 2014; Linich, 2014). 

2.1.4 Supply chain management systems 

The management of global supply chains is more complex and dynamic nowadays than ever 

before. Therefore it requires properly configured and adaptable systems to facilitate the supply 

chain management (Ernst & Haar, 2019; Lehmacher, 2016, pp. 22–24).   

For Kovacs & Paganelli (2003, p. 165), supply chain management (SCM) focuses on 

globalisation and information management tools, which integrate procurement, operations, 

and logistics from raw materials to customer satisfaction. For Serdarasan (2013, p. 533), the 
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increasingly complex nature of global supply chains adds to the difficulty of managing them 

to such an extent, that it almost becomes common sense to say that supply chain management 

is about managing the complexity of the supply chains. Christopher (2016, p. 3) defines supply 

chain management as the management of upstream and downstream relationships with 

suppliers and customers in order to deliver superior customer value at less cost to the supply 

chain as a whole. Christopher (2016, p. 3) also points out, that even supply chain management 

is a commonly used term, ‘demand chain management’ would be more appropriate, since it 

reflects the market-driven aspect of supply chains. Equally, the word ‘chain’ can be replaced 

by ‘network’ as there will normally be multiple suppliers as well as multiple customers to be 

included in the total system. 

SCM software systems play a decisive role in the SCM. The task model of SCM 

software systems can be divided into three main levels: supply chain design, supply chain 

planning, and supply chain execution (Werner, 2017, pp. 86–93). Figure 7 visualises the 

simplified structure of the individual levels. In the following subsections, the levels and their 

components, which are of importance for this work, are described in more detail.  

Figure 7: Task model of supply chain management software systems (based on Werner, 2017, 
p. 87
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2.1.4.1 Supply chain design 

The supply chain design determines fundamental strategical investment decisions. On this 

basis, serious changes in terms of costs can occur within the entire supply chain. For example, 

the selection of a supply chain management software solution depends on the number of 

plants, suppliers, trading partners, distribution centres, or carriers involved (Werner, 2017, 

pp. 87–88). The decision-making during the supply chain design can be centralised or 

decentralised. In a centralised decision-making scenario, one decision-maker makes all 

decisions affecting the other entities in the supply chain. This scenario can be suitable for 

globally distributed networks. In a decentralised decision-making scenario, each entity can 

make its own decisions, which results in further challenges in both modelling and computation 

(Garcia & You, 2015, p. 163). It is also important during this phase, that a clear goal is already 

defined and recognised in the supply chain design. This presupposes that the kind of 

contribution each component of the system can make to the firm be analysed and that the 

investment then be planned as per the particular requirements of the organisation and the 

industry demand. Examples could be, for example, an increase in supply chain transparency, 

but also purely strategic approaches such as making the supply chain more sustainable 

(Eskandarpour, Dejax, Miemczyk, & Péton, 2015; Khan & Yu, 2019, pp. 255–256). 

2.1.4.2 Supply chain planning 

The second main level of the model is based on collaborative planning decisions within the 

supply chain which takes place after the strategic considerations of the supply chain design 

have been fixed. In the course of the supply chain planning, the planning of the tactical and 

operative implementation begins. In this respect, requirements, inventories, capacities or 

capacity allocations of all entities involved in the process must be aligned. One of the key 

components of the planning level is the network planning, where the coordination of individual 

actors in a supply chain takes place. Within the scope of internal planning, for example, the 

production and logistics centres of business areas must be defined worldwide. For distributed 

cross-company networks, procurement, production and distribution planning along the entire 

logistic chain in the collaborative network are clarified. Dominant entities occupy a special 

position in this respect because they have the most comprehensive information for planning, 

controlling and monitoring of the entire value chain (Werner, 2017, pp. 88–92). 
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In particular, in collaborative networks, it is important to define the scope of shared 

information among the supply chain members such as sales data, inventory, forecast and 

demand, production product planning, order status, transportation (Khan & Yu, 2019, p. 27). 

The information sharing among supply chain members can be divided into three main 

categories (Khan & Yu, 2019, pp. 27–29):    

1.) Product information. This category includes the exchange and sharing of product-

related information.  

2.) Transaction information. This category includes the exchange and sharing of 

transaction information taking place in the network. This information can serve as a 

critical source in order to determine future trends but also to facilitate planning 

processes.  

3.) Information of inventory. This category includes the exchange and sharing of inventory 

information including quantity, decision models, requirements, and all information 

affecting order processes. For many companies, this information is even more sensitive 

than transaction information. For example, full inventory transparency can have a 

strong impact on price negotiations among collaborative network partners.       

2.1.4.3 Supply chain execution 

After the planning activities have been completed, executing logistical activities is initiated. 

Important tools for executing logistical activities include, for example, alert management, 

workflow management and tracking and tracing systems (Werner, 2017, pp. 92–94): 

1.) Alert management. Alert management is used to identify deviations between actual 

and target processes as early as possible. In particular, monitoring systems are ideal 

for alert management, which can react on predefined tolerance profiles.  

2.) Workflow management. Workflow management is used to understand the electronic 

monitoring of work processes. The respective activities in workflow management are 

dependent on each other. A follow-up activity is controlled directly by the output of 
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the previous activity. If deviations occur, the information flow will automatically be 

interrupted. 

3.) Tracking and tracing. Tracking and tracing describes the tracking and tracing of 

products and shipments. Customers are increasingly demanding to be integrated into 

the process of service provision. Therefore, one approach of the SCM is to integrate 

the customers into the tracking and tracing systems of companies (Werner, 2017, 

p. 160). 

2.1.4.4 Tracking and tracing systems to increase transparency 

Tracking and tracing describes the monitoring (tracking) and data archiving (tracing) of 

products or shipments (Werner, 2017, p. 513). Tracking and tracing systems depict an 

important component when increasing the supply chain transparency. Such systems are mostly 

applied for detection purposes. Devices attached to the goods send information about their 

status in pre-defined time intervals to allow various technologies to detect irregularities of 

processes (Eßig, Hülsmann, Kern, & Klein-Schmeink, 2013, p. 161). Two technologies play 

a significant role in order to provide tracking and tracing systems with information. 

1.) Barcode technology. A barcode is a series of different width lines that can be presented 

in a vertical order (ladder orientation) or horizontal order (picket fence orientation). 

Barcodes developed from one to two dimensions and then to the latest QR codes 

(Quick Response codes). This standardised form makes barcodes appropriate for 

reading through computerised machines such as optical scanners. Barcodes represent 

an inexpensive and easy method to label products. Since barcodes can only be 

evaluated by reading devices, they are referred to as passive information carriers and 

thus do not have the ability to provide systems with real-time information (Khan & Yu, 

2019, p. 250; Pundir, Jagannath, & Ganapathy, 2019, p. 158; Werner, 2017, p. 335).  

2.) RFID technology. RFID (Radio Frequency Identification), is an automatic non-contact 

identification and communication technology. RFID tags can save and manage 

information about objects using a radio-frequency signal. The size of RFID tags 

depends on how many data strings can be stored and on the distance from which it can 

be read. Similar to barcodes, also RFID tags require RFID readers in order to evaluate 

the stored information. But unlike barcodes, the readers don’t have to be in visual 
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contact with the tag. RFID tags can be divided into passive and active tags. Passive 

tags do not have their own power supply and thus have a lower reading range. Active 

RFID utilises tags with inbuilt batteries and they therefore have a higher reading range. 

This high reading range enables real-time information sharing as long as the power 

supply of the tag is guaranteed. Unlike barcodes, RFID represents a cost-intensive 

approach to solve the tracking problems of supply chains. (Feng, 2016, p. 2; Pundir et 

al., 2019, p. 158; Werner, 2017, p. 335). 

Usually, the tracking of goods is mainly carried out by satellite-controlled tools such as GPS 

(Global Positioning System) and AEI (Automatic Equipment Identification). Barcodes and 

RFID are an important source of information in terms of informing the tracking systems about 

the goods’ current status. This combination results in a holistic system with several 

advantages. For example, the administrative effort involved in data management decreases 

significantly. Furthermore, apart from warehousing, the fleet management of competitors is 

improving (Werner, 2017, p. 240).  

The information from all components of supply chain tracking systems is usually sent 

to a central storage facility where they can be stored and evaluated. In doing so, companies 

are increasingly focusing on the use of ‘cloud computing’ (Vogel-Heuser, Bauernhansl, & 

Hompel, 2017; Werner, 2017, p. 240). The term cloud computing is used to describe 

information and data processing services provided over the Internet (Lehmacher, 2016, 

p. 186). Ideally, a global supply chain has its own cloud storage available to allow visibility 

and to ensure the authenticity and quality of what is captured. This allows for central storage 

of data, its evaluation, and finally access to distributed components, for example to import 

software updates or to make configuration changes. Cloud infrastructures include physically 

distributed systems to store and process data which are managed by a central cloud 

management. Therefore, the stored data and the services provided by the cloud can be stored 

distributed within the cloud infrastructure, but externally the cloud presents itself as a central 

service with a single entry point (Fallenbeck & Eckert, 2017, pp. 134–169; Lehmacher, 2016, 

p. 188). This structure of a centralised system results inter alia in less stability due to a central 

point of failure and hence in less security of the system (Singhal, Dhameja, & Panda, 2018, 

pp. 14–15).  
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2.2 Fundamentals: Distributed ledger technology  
This section describes fundamental elements of distributed ledger technologies. Initially, the 

differences between centralised and decentralised are clarified. Following this, the blockchain 

technology, a special version of a distributed ledger technology, is described in more detail. 

Hashing, the transaction logic, consensus algorithms, and smart contracts represent essential 

components of this technology.  

2.2.1 From centralised to decentralised systems 

Decentralised systems represent the counterpart of conventional central systems. However, 

the terms decentralised and centralised are poorly defined and misleading in many places. That 

is mainly because there are hardly any systems that are purely centralised or decentralised.  

Additionally, centralised and decentralised systems can both be seen as be seen as distributed 

systems. Figure 8 shows an example of a physically distributed system with centralised control 

(such as clouds described in Section 2.1.4.4). Therefore, a centralised distributed system 

consists of a master node that is responsible for breaking down the tasks or data and 

distributing them across the nodes. A decentralised system on the other hand, gets along 

without a central master node and the system itself may distribute the required computation 

(Singhal et al., 2018, pp. 11–17). A node in general, is an individual player in a distributed 

system. All nodes are capable of sending and receiving messages to and from each other. 

Nodes have a memory and a processor and can be honest, faulty, or malicious (Bashir, 2018, 

p. 12).     

Figure 8: A physically distributed system with centralised control (based on Singhal et al., 
2018, p. 12) 
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A centralised system (Figure 9) is characterised by the existence of a centralised control with 

all administrative authority. Such systems have benefits in terms of designing, maintaining, 

governing, and imposing of trust. At the same time, the structure of centralised systems results 

in the following inherent limitations (Singhal et al., 2018, pp. 14–15):  

a) Less stability of the system due to the existence of a central point of failure;  

b) Higher attack vulnerability and hence less security; 

c) Centralisation of power can lead to unethical operations; 

d) Usually the scalability is a difficulty.  

Figure 9: Typical structure of a centralised system (based on Berentsen & Schär, 2017, p. 96) 

A decentralised system does not have a centralised control and every node has equal authority. 

This results in difficulties in terms of designing, maintaining, governing, and imposing of trust. 

However, the structure of decentralised systems offers the following advantages (Singhal et 

al., 2018, pp. 15–16):   

a) More stability and fault tolerance because there is no central point of failure; 

b) Higher attack resistance and thus more security;  

c) Symmetric system with equal authority to all, so less scope of unethical operations and 

usually democratic in nature. 
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Figure 10: Structure of a decentralised system (based on Singhal et al., 2018, p. 16) 

A special form of decentralised systems are peer-to-peer systems. Peer-to-peer (P2P) systems 

and applications are distributed systems without any centralised control or hierarchical 

organisations, where the software running at each node is not only equivalent in authority, but 

also in functionality. The contributing nodes work not only on a portion of the work, rather 

the interested nodes (or the randomly chosen ones) perform the entire work (Singhal et al., 

2018, p. 16; Stoica et al., p. 1) . Decentralised P2P systems as shown in Figure 11, are the 

foundation for distributed ledger technologies such as the blockchain technology (Nakamoto, 

2008).  

Figure 11: A decentralised peer-to-peer system (based on Singhal et al., 2018, p. 17) 
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Such peer-to-peer networks form the basis for so-called distributed ledger technologies 

(DLTs). In general a distributed ledger simply means that a ledger is spread across the network 

among all peers in the network, and each peer holds a copy of the ledger (Bashir, 2018, p. 17). 

When discussing DLTs, it is important to distinguish between different levels of distributed 

ledgers (Bott & Milkau, 2016, p. 157).  

a) First level: Technological synchronisation within distributed databases in a network. 

b) Second level: A unique (logical) ledger with bookkeeping of transactions and a replica 

at all participants. 

c) Third level: Contractual relations between the participants of the system.  

d) Fourth level: An overall perspective of ‘trust’ between participants (with the different 

points of view of anonymous participants, honourable merchants, legislation and 

enforcement, and of regulation). 

Because of this wide spectrum of possible deployments of DLTs, this work will refer to the 

technology as combination of the fourth level and components including “peer-to-peer 

networking, distributed data storage, and cryptography that, among other things, can 

potentially change the way in which the storage, recordkeeping, and transfer of a digital asset 

is done” (Mills et al., 2016, p. 3).  

 The uniqueness of the DLT comes from two main characteristics. Firstly, the 

distributed nature and secondly because of the possibility for users to ‘deposit’ assets on the 

ledger digital (e.g. records, acts, and states). To ensure these properties, an agreement about 

the state of the ledger must be achieved by a consensus mechanism. This allows the network 

users to remove the need for a trusted third-party (socially constructed and sometimes flawed) 

intermediaries and replace it with ‘trust in the algorithm’.  At the same time, using the 

distributed foundation of DLTs and the use of cryptographic algorithms, the record is rendered 

immutable, transparent, and auditable yet resistant to censorship and manipulation. In addition 

to the immutable recorded transactions, the system can provide a high level of anonymity or 

pseudonymity for transaction partners. Data records are visible at meta-level and remain 

tamper-resistant, but nevertheless, the identification of individual parties may be rendered 

difficult or impossible (Maull, Godsiff, Mulligan, Brown, & Kewell, 2017, pp. 483–484). 
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At its extreme, the architecture of DLTs is in contrast to conventional central systems (Section 

2.2.1), allowing any entity (such as end users or financial institutions) to become a node in the 

network and share database management responsibilities directly with each other on a peer-

to-peer basis. Figure 12 shows two example of peer-to-peer connectivity. In both examples, 

each entity maintains a copy of a common ledger. Although the connectivity of the nodes is 

the same in both examples, the ownership and housing of the nodes is different. In example 

a.) all nodes are hosted within a single entity, while in example b.) multiple entities are in the 

arrangement and each of them hosts a node. The ability of an entity to participate in a DLT 

arrangement, depends not only on the computing resources of the entity, but on whether the 

arrangement is designed to be an open or closed system. Open systems accept all interested 

entities with the technical ability to participate. Closed systems, however, have additional 

membership criteria that must be met in order for an entity to be permitted to operate a node 

(Mills et al., 2016).  

Figure 12: a.) Distributed ledger technology arrangement with nodes hosted within a single 
entity; b.) Distributed ledger technology arrangement with multiple entities, each hosting a 
node (Mills et al., 2016, p. 11) 

DLT arrangements in which the participants are allowed to perform all activities are called 

‘permissionless’ networks. Those that restrict participants’ activities are referred to as 

‘permissioned’ networks. Combined with the design of open and closed systems shown in 

Figure 12, this generally results in three categories of DLTs: Permissionless public DLT; 

permissioned consortium DLT; and permissioned private DLT. In a public DLT, all records 

are visible to the public and everyone could take part at the consensus process. In a consortium 

DLT, only a group of preselected nodes would participate at the consensus process. As for a 

private DLT, only nodes coming from one specific organisation would be allowed to 
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participate in the consensus process (Buterin, 2015; Mills et al., 2016; Zheng, Xie, Dai, Chen, 

& Wang, 2017). The characteristics of each category is listed in Table 4. 

Table 4: Comparisons among public, consortium, and private distributed ledgers (based on 
Zheng et al., 2017, p. 559) 

Before the breakthrough of blockchain technology in 2009, several approaches to reach 

consensus in P2P networks existed, particularly to prevent the so called ‘double-spending’ 

problem in distributed electronic payment schemes (Hoepman, 2007; Osipktov, Vasserman, 

& Hopper, 2007). Hoepman (2007) even proposed several mathematical approaches to 

achieve a reasonable level of double-spending prevention to refute the commonly held belief 

that a prevention of double-spending is fundamentally impossible in P2P networks.  

The ‘double-spending’ problem is the main security problem that DLTs have to deal 

with. Unlike physical currencies, where the physical money is hard to copy and once it has 

been spent it passes effectively to the recipients’ hands, digital currency tokens can be easily 

copied and double-spent if security mechanisms are not properly applied (Perez-Sola, 

Delgado-Segura, Navarro-Arribas, & Herrera-Joancomarti, 2018, p. 451). Since the release of 

the Bitcoin, a famous example of the blockchain technology, the prevention of the double-

spending problem has been the foundation for many other token-based projects based on 

distributed ledger technologies such as IOTA, Byteball or Nano (Churyumov, 2016; 

LeMahieu, 2017; Nakamoto, 2008; Popov, 2018b).  

2.2.2 Blockchain technology 

The blockchain is defined as a technology to process and verify data transactions based on a 

distributed peer-to-peer network. The blockchain technology (BCT) is part of the distributed 
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ledger family. It uses cryptographic procedures, consensus algorithms, and back-linked blocks 

to make transactions practically unchangeable (Gentemann, 2019, p. 15).  

 In recent years, many blockchain-based projects or initiatives have experimented with   

new ways of raising funds through the issuance and sale of blockchain-based tokens. This 

procedure is also known as Initial Coin Offerings (ICOs) and still represents the most popular 

way to raise funds for blockchain-based projects (Hahn & Wons, 2018, p. 3; Primavera de 

Filippi et al., 2019). The approach of ICOs can be compared to an Initial Public Offering 

(IPO). The purely digital sale of tokens enables potential interested parties to participate at the 

project and its products (‘utilities’) at an early stage without establishing a direct (legal) 

relationship with the company itself (Hahn & Wons, 2018, p. 3). In literature, blockchain-

based tokens can be divided into five different types (Hahn & Wons, 2018, pp. 8–15; 

Primavera de Filippi et al., 2019, pp. 9–12):  

1.) Digital Currencies. A token of the type ‘digital currency’ or also known as 

cryptocurrency, is a purely digital store of value. Cryptocurrencies are integral to most 

public blockchains. Unlike government-issued ‘fiat’ currencies, cryptocurrencies are 

generally created in a decentralised fashion independently of any governments or 

central banks.  

2.) Utility Token. As opposed to cryptocurrencies, utility tokens are issued on top of an 

existing blockchain infrastructure. A utility token has a certain functionality within a 

blockchain-based network or platform. The utility token is the most frequently used 

form of ICO. Most of these tokens are created on the Ethereum blockchain platform. 

Furthermore, as an integral component of the platform, the token itself has a direct 

functionality for the products and/or services offered there, and thus generates 

recognisable added value, for example in the form of software licences or access rights 

for decentralised applications.  

3.) Equity Token. Unlike utility tokens, which are used or spent within an online platform, 

equity tokens are comparable to a share or an equity investment. Thus, the equity token 

is an investment in the company itself, often combined with profit-sharing and 

participation rights within the company.    



28

4.) Profit-share Token. Unlike equity tokens, which confer the right to receive share 

capital or other forms of equity in the company, profit-share tokens confer the right to 

receive a payment only in the form of a dividend. Therefore profit-share tokens can be 

compared to a dividend payment on ordinary shares. 

5.) Asset-backed Token. Asset-backed tokens represent physical assets and embody a 

‘claim’ on the whole asset (for example gold, a painting, real estates) or a portion of 

such. Issuers could legally structure such a token in several ways. 

In addition to the classification under a certain blockchain-based token type, hybrid tokens are 

also possible that meet two or more of the criteria listed above (Hahn & Wons, 2018, p. 12; 

Primavera de Filippi et al., 2019, p. 136).  

 As described at the end of Section 2.2.1, the double-spending problem is the main 

security problem DLTs have to deal with. In case of the BCT, this problem refers to the double-

spending of tokens. To accomplish a solution without a trusted third party, the BCT uses a 

system for participants to agree on a single history of the order in which the transactions were 

received. Therefore it needs proof that the time of each transaction with the majority of nodes 

agreeing it was the first received (Nakamoto, 2008). As the name blockchain emphasises, the 

transaction history is arranged in blocks. Each block consists of a collection of data and 

references the block preceding it (Elrom, 2019, p. 9). This connection between the blocks 

results in a chain-like arrangement shown in Figure 13.  

Figure 13: Linked blocks by reference to the previous block header hash (based on Dinh et 
al., 2018, p. 1367) 
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Figure 13 exemplifies that the first block generated on the blockchain, the genesis block, has 

an impact on all following blocks. Nevertheless, it only represents a simplified illustration of 

blocks in BCTs. In more detail, blocks of BCTs consist of a header of the current block, the 

header of the previous block, the content of the block summarised in the form of merkle-trees, 

and a so called ‘nonce’ value (Dinh et al., 2018, p. 1367). In order to understand the structure 

of BCT entirely and to create an important foundation for the following chapters, the basic 

function of BCTs is clarified in the following subsections. At the end, a summary presents a 

holistic picture of the structure of common BCTs.  

2.2.2.1 Hashing in BCTs 

In general, a hash is the outcome of an input by conducting a computation with regards to a 

mathematical hash function. Typically, hash functions use deterministic algorithms, meaning 

that the same input always creates the same output. Hash functions map a bit of string of 

arbitrary length to a fixed length string. It is statistically impossible to reverse this process in 

order to determine the input (Brennan & Lunn, 2016, pp. 19–20; Dang, 2012, p. 4). Famous 

BCTs such as Bitcoin usually refer to the Secure Hash Algorithm with a 256-bit length (SHA-

256) consisting of 64 hexadecimal characters, designed by the National Security Agency 

(NSA) (Dang, 2012, pp. 6–7). The SHA-256 is a so-called cryptographic hash function, with 

different types of functions depending on the used mathematics. These algorithms make it not 

only harder to recreate data from a hash, but also even minor changes of the input alter the 

output in a much more significant way (Anton Badev & Matthew Chen, 2014, p. 9). Table 5 

shows how minor changes of the input result in totally different SHA-256 hashes.  

Table 5: Minor changes of the input result in totally different hashes 

In order to outline the cryptographic capabilities of the SHA-256 and to illustrate the statistical 

impossibility to reverse the hashing process to determine the input, Brennan & Lunn (2016) 

simulate a brute force attack of the Bitcoin network. For this test it is assumed that the system 

is able to operate with the processing power of the entire Bitcoin network. The brute force 

approach simulates a fraud attempt by exchanging input data without any effect on the value 
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of the block header. As a result, the calculation would take almost 1.33*1051 years to find an 

appropriate hash value. In other words, it would take almost 9,672,989,162 trillion times the 

age of the universe to successfully manipulate one single block.    

 The Ethereum platform uses a combination of two different hashing algorithms, which 

are based on very similar operating principles to the SHA-256. On the one hand, Ethereum 

uses the own Ethash algorithm and on the other the Keccak-256 algorithm. Ethereum hashes 

can be easily distinguished from hashes of other platforms because they always begin with 

‘0x’ to quickly identify them as hexadecimal numbers (Wood, 2019).  

2.2.2.2 Transaction logic 

Besides the immutability of data, the BCT offers further dynamic components to guarantee a 

high level of integrity for transactions. As described in Section 2.2.2, BCTs are particularly 

suitable for carrying out transactions of different tokens. In the case of cryptocurrency tokens, 

such transfers can be compared with online money transfers. So the transfer includes all 

relevant data to initiate the shared ledger to update the accounts of the users involved. On one 

side the balance is reduced to the number of tokens sent, on the other it is raised to the number 

of tokens received (Brennan & Lunn, 2016, pp. 20–23). Depending on the platform, 

transactions can also be executed by messages between users or simply by users interacting 

with the network. In a figurative sense, any change in the state of the distributed ledger results 

in a transaction that can either be accepted or denied by the network (Wood, 2019, pp. 4–5). 

In order to ensure the accuracy of these interactions, digital signatures between unknown 

participants are used. Therefore, BCT require the embedding of three necessary algorithms: 

1.) Key generation algorithm. This algorithm creates two keys that inhere in a 

mathematical relationship; a private one for encryption and a public one for decryption 

of hashes. Based on advanced cryptography, they cannot be derived from each other 

(Brennan & Lunn, 2016, p. 20).  

a.) The public key is a publicly known alphanumeric string that is hashed with another, 

privately held, string to sign a digital transaction. In case of BCT, the public key 

can also be seen as the address of an account (Olleros & Zhegu, 2016, p. 253).  



31

b.) The private key is an alphanumeric string kept secret by the user and is designed 

to sign a digital transaction when hashed with a public key. In case of BCT, only 

the owner of an account’s private key is able to initiate transfers with this account 

(Olleros & Zhegu, 2016, p. 253).  

2.) Signing algorithm: This algorithm initiates a computation that hashes the original 

message. By using this hash as an input, a digital signature is created by the sending 

party applying a private key for encryption (Brennan & Lunn, 2016, p. 20). 

3.) Verification algorithm: By decrypting the signature through a public key and hashing 

the original message at the receiving side once more, a comparison between the two 

hashes takes place to verify if the transfer has been successful or not (Brennan & Lunn, 

2016, p. 20). 

In order to be able to execute transactions on a blockchain network, a user must have access 

to a ‘wallet’. A blockchain wallet is a piece of software that enables users to have access to 

the blockchain platform. By connecting the wallet with the public and private key, users have 

the opportunity to execute transactions on the platform (Bruehl, 2017, p. 136).  

 Figure 14 shows a possible embedding of these algorithms to execute transactions on 

blockchain networks, as first described by Nakamoto (2008). As a first step, the key generation 

algorithm creates a pair of keys (public key and private key) for the sender. To execute a 

transaction, the sender needs the public key (address) of the receiver. As a second step, the 

sender generates a transaction according to the platform’s transaction format. The signing 

algorithm then creates a signature of the data with the private key of the sender. These 

encrypted data can be sent to the public key of the receiver. Finally, the verification algorithm 

allows the receiver to verify the transaction, because the signature can only be generated by 

the owner of the private key that matches the public key of the sender.   
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 Figure 14: Workflow of blockchain transactions (based on Bruehl, 2017, p. 136)  

To determine the accurate time of each transaction, each transaction is marked with a 

timestamp on the blockchain network (Zheng et al., 2017, p. 558). A timestamp in general, is 

a sequence of characters or encoded information identifying exactly when a certain event 

occurred. Trusted timestamping is the process of securely keeping track of the creation and 

modification of an event, which means that no one should be able to change it once it has been 

recorded. Especially concerning the decentralised BCT, it is important that the integrity of 

timestamps is never compromised (Lee & Deng, 2018, p. 168). 

Transactions are grouped within the blocks of a blockchain into so-called ‘merkle-

root-hashes’. In this way, each transaction on the blockchain is hashed according to the 

hashing procedure described in Section 2.2.2.1. For this purpose, the individual hashes of the 

transactions are bundled in pairs until no further pair can be bundled, the so-called merkle-tree 

is created (Figure 15). The last bundle represents the merkle-root-hash. This linkage of 

transactions leads to incontrovertible evidence of every transaction that has occurred on the 

network (Rosenberger, 2018, pp. 67–68). 
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Figure 15: Transactions (TX) hashed in a merkle-tree (based on Wang et al., 2019, p. 22332) 

The problem of the transaction verification process is that receivers of blockchain transactions 

are only able to verify if transactions come from valid senders or not. However, receivers 

cannot verify if the received transaction is actually double-spent. Due to the lack of a trusted 

third party in BCTs, it requires an alternative system to reach consensus about a single history 

of all transactions on the network in order to avoid the double-spending problem (Nakamoto, 

2008). 

2.2.2.3 Consensus algorithm  

Consensus algorithms are algorithms used to maintain data consistency in distributed 

networks. They represent an essential function of the BCT in furtherance of achieving 

decentralised networks and to replace trusted third parties (Zheng et al., 2017, p. 558). A 

blockchain updating protocol is said to achieve consensus if the following properties are 

satisfied (Bano et al., 2017): 

1.) Validity. All nodes activated on a common blockchain state propose to expand the 

blockchain by the same block. Additionally, and node transiting to a new local replica 

state of the blockchain, adopts the blockchain headed by that block. 

2.) Agreement. When a node confirms a new block, then any other node updating its local 

blockchain will update it with the new block. 
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3.) Liveness. All transactions executed by nodes will eventually be confirmed. 

4.) Total order.  All nodes accept the same order of transactions as long as they are 

confirmed in their local blockchain.  

The consensus algorithms vary with different blockchain platforms. In the following 

subsections, the most relevant approaches to reach consensus on blockchain networks are 

presented. 

2.2.2.3.1Proof-of-Work (PoW) 
To add blocks to the blockchain, a node has to prove that it has performed some computational 

work, also known as Proof-of-Work (PoW). The core idea of this algorithm is to allocate the 

accounting rights and rewards through a hashing power competition among the nodes. Based 

on the information of the previous block, the different nodes calculate the specific solution of 

a mathematical problem. This mathematical problem is often referred to as mathematical 

puzzle. The first node solving this mathematical problem can create the next block (Baliga, 

2017, p. 6; Mingxiao, Xiaofeng, Zhe, Xiangwei, & Qijun, 2017, p. 2568; Nguyen & Kim, 

2018, p. 106). The PoW consensus algorithm is inter alia used by the blockchain platforms 

with the highest market capitalisation, Bitcoin and Ethereum (Buterin, 2014a; Nakamoto, 

2008), and is therefore occasionally referred to as the original blockchain consensus algorithm 

(Nguyen & Kim, 2018, p. 106).  

 An important component of the PoW is the so-called ‘difficulty’. The difficulty level 

is dynamically tuned by the blockchain platform’s protocol depending on the computational 

power of the network to ensure that average production time of a block (block time) remains 

the same. The difficulty regulates how difficult it is for the nodes, to find a solution for the 

mathematical problem (Baliga, 2017, p. 6; Mingxiao et al., 2017, p. 2568). The simplified 

calculation steps are as follows: 

1.) Get the difficulty. First, all nodes participating at the mathematical problem solving 

process, also known as ‘miners’ (Kiayias, Koutsoupias, Kyropoulou, & Tselekounis, 

2016; Liu, Wang, Niyato, Zhao, & Wang, 2018), request the current difficulty of the 

platform’s protocol. As described in Section 2.2.2.1, hashes usually consist of 64 

characters representing a hexadecimal number. In fact, the difficulty determines how 
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much smaller the value of the target hash must be compared to the hash value of the 

previous block (Mingxiao et al., 2017, p. 2568).   

2.) Collect transactions. As the second step, the mining nodes collect all pending 

transactions on the network. Those transactions are summarised in a merkle-tree to 

define the merkle-root according to Figure 15 (Section 2.2.2.2). This leads to two fixed 

hash values in a block: the previous block header and the root merkle-root. Moreover, 

a variable ‘nonce’ value is added to these hashes (Mingxiao et al., 2017, p. 2568).  

3.) Calculating. In this step, the computation work takes place. The miners change the 

variable nonce value until the hash value of the new block hash is less than or equal to 

the target value. If this is the case, the miner who found a ‘winning’ block, can 

broadcast it to the network (Baliga, 2017, p. 6; Mingxiao et al., 2017, p. 2568).  

4.) Restarting. If a node can't work out the target hash value at a certain time, it repeats 

the process from step two. If any other node completes the calculation, then all nodes 

restart from step 1 (Mingxiao et al., 2017, p. 2568). 

Due to the distributed, concurrent nature of this process, there is the possibility of two nodes 

finding a winning hash at the same time. In this case, each winning node adds its own proposed 

block to the blockchain and broadcasts this over the peer-to-peer network. Therefore, this 

results in a temporary fork in the blockchain, where some nodes can add blocks to the one 

branch, while other nodes are adding blocks to other branches. However, as more blocks are 

added to these forks, the platform’s protocol ensures that at some point the longest branch will 

get included in the main chain and others will be discarded (Baliga, 2017, p. 6). 

The structure of the PoW makes this algorithm vulnerable to the so called ‘51% 

attacks’, where a miner controls more than 50% of the network’s computation power. In this 

way, the attacker can ensure to always be the first one creating the latest block and therefore 

can selectively include or reject the transactions which are processed into a block. However, 

due to the huge amount of computation power required to successfully execute such an attack, 

the PoW can be seen as an effective guarantee for the safety of blockchain networks  (Baliga, 

2017, p. 6; Mingxiao et al., 2017, p. 2568).  
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2.2.2.3.2Proof-of-Stake (PoS) 
The PoW consensus algorithm helped the BCT to reach a major breakthrough, however the 

nature of PoW also results in significant energy consumption (Baliga, 2017, p. 6). This 

problem resulted in the idea of an alternative algorithm called Proof-of-Stake (PoS), firstly 

introduced by Sunny King and Scott Nadal (2012). According to their approach, the main 

intention of the PoS is to reduce the energy consumption significantly while retaining the 

decentralised characteristics of the PoW. The PoS is used by various blockchain platforms 

such as EOS, Cordaono, Nebilo and PIVX (EOS Whitepaper, 2018; Jakiman, 2017; Kiayias, 

Russell, David, & Oliynykov, 2017; Nebilo Whitepaper, 2017). Due to the drastic reduction 

in energy consumption, Ethereum is also considering switching their network from the 

currently used PoW to a PoS algorithm in the future (Buterin, 2014b). 

 In literature several variants of PoS algorithms exist. The basic idea behind each PoS 

approach remains the same: PoS replaces the mining operation by involving a user’s stake or 

ownership of virtual currency on the blockchain platform (Nguyen & Kim, 2018, pp. 110–

111). Depending on the stake of a user, the PoS algorithm pseudo-randomly selects validators 

for the creation of a new block. Thus it is important to ensure that no validator can predict its 

turn in advance (Baliga, 2017, p. 8).  Every miner stores a certain amount of tokens (stake) on 

the blockchain. The more stake a user owns, the higher probability they have to become the 

validator for the next block. Once a miner has successfully confirmed a new block, the 

validator receives the transaction fees as a reward. Conversely, a validator trying to defraud 

the network, will be   penalised by losing part of their stake (Bentov, Gabizon, & Mizrahi, 

2016).  

Even though this PoS algorithm leads to great advantages in terms of energy 

consumption, they still suffer from other vulnerabilities. Since the amount of the stake is 

decisive for the probability of being selected as a block validator, ‘rich’ miners have better 

chances to create new blocks and receive the transaction fees. These transaction fees can then 

be reinvested into their stake, which in return further increases the chance of being selected to 

validate the next block. In addition to the moral aspect of PoS promoting ‘rich’ miners, this 

aspect can also cause technical problems known as ‘nothing-at-stake’. Thus, it may happen 

that in a PoS blockchain two valid blocks are created at exactly the same time, which results 

in a temporary fork of the blockchain. The PoS algorithm allows miners to vote on multiple 
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forked versions of the blockchain, without splitting up the resources required to take part at 

the vote. For the miners, such a course of action is not combined with any financial risk. 

Therefore the miners have ‘nothing-at-stake’ while voting on multiple versions of the 

blockchain in order to maximise their chances of winning the transaction fees (Baliga, 2017, 

p. 8).  

Similarly to the PoW, the PoS can also be affected by the 51% attack. In order to 

successfully complete an attack on the blockchain, an attacker has to control more than 50% 

of the network’s resources. In PoW approaches, the key resource allowing users to take over 

the system is the total computational power. In PoS approaches however, the key resource is 

the currency itself. Whoever owns over 50% of the total tokens available on the network, is 

able to manipulate the blockchain (Watanabe et al., 2016, p. 467).  

2.2.2.3.3Practical Byzantine fault tolerance  
The Practical Byzantine Fault Tolerance (PBFT) mechanism is an effective approach to reach 

consensus in distributed systems, proposed firstly by Castro and Liskov (1999).  Later, this 

mechanism was adapted to the BCT and today finds its use for example in the permissioned 

platform Hyperledger (Sukhwani, Martinez, Chang, Trivedi, & Rindos, 2017). A modified 

version of the PBFT, the so-called Delegated Byzantine Fault Tolerance (DBFT) algorithm, 

is used inter alia on the permissionless platform named NEO (NEO Whitepaper, 2019). The 

original PBFT consists of five stages (Castro & Liskov, 1999; Mingxiao et al., 2017, pp. 2568–

2569): 

1.) Request. The client sends a request to a master server node which marks the request 

with a timestamp.   

2.) Pre-prepare. The master server node records the request messages and puts them 

into an order. Then the master node broadcasts a pre-prepare message to the other 

following server nodes, which initially determine whether to accept the request or 

not. 

3.) Prepare. If a server node accepts a request, it broadcasts a prepare message to all 

the other server nodes and simultaneously receives the prepare messages from 
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other nodes. After collecting a determined number of messages the server node 

enters the commit state, if a most of the nodes accepted the request.  

4.) Commit. Each node being in the commit state sends a commit message to all the 

other nodes in the server. At the same time, if a server node receives a determined 

number of commit messages, it is likely to believe that most nodes reach a 

consensus to accept the request. Then the node executes the instructions in the 

request message. 

5.) Reply. The server nodes reply to the client. If the client does not receive a reply 

due to a network delay, the request is resent to the server nodes. If the request has 

been executed, the server nodes only need to send the reply message repeatedly. 

When applying the original PBFT to the BCT, PBFT algorithms differentiate between leader 

nodes and validating nodes. The procedure, however, remains very similar. First, the clients 

send their requests for transactions to validating nodes. Then the receiving nodes validate the 

transactions and broadcast them to other nodes, including the leader node. After a determined 

number of transactions, or a certain time interval, is reached, the leader node puts the 

transactions into an order according to their created time and puts them into a block. 

Afterwards, three stages pre-prepare, commit, and prepare are executed. In the Pre-prepare 

phase, the leader broadcasts his proposed block to other nodes. These nodes will receive and 

store the proposed block locally. In order to make sure that the received block from the leader 

is the same, they execute a double-check by broadcasting the proposed block in the prepare 

stage and commit stage. If more than 2/3 of all the nodes receive the same block, which they 

have already stored locally, they will execute the commit stage. After the commit stage is 

reached, the same procedure is repeated, which at the same time is the requirement for any 

node to execute the transactions in the proposed block in order to append them to their current 

blockchains (Nguyen & Kim, 2018, p. 117; Sukhwani et al., 2017). 

PBFT assumes that node identities are known, therefore it can only work reliably in 

the permissioned networks.  Furthermore, distinction between two different types of node does 

not reflect the basic idea of decentralised permissionless networks, in which all nodes have 

the same rights. Additionally, PBFT is unlikely to be able to scale to the network size of 

Ethereum, because of its high communication expense (Dinh et al., 2017, p. 1088).  
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2.2.2.4 Smart contracts 

In 1994, Nick Szabo introduced the concept of smart contracts and described a smart contract 

as “a computerized transaction protocol that executes the terms of a contract. The general 

objectives of smart contract design are to satisfy common contractual conditions (such as 

payment terms, liens, confidentiality, and even enforcement), minimize exceptions both 

malicious and accidental, and minimize the need for trusted intermediaries” (Szabo, 1994). 

Szabo (1997) suggested to utilise protocols and user interfaces to translate contractual clauses 

into code and to embed them into hardware and software to facilitate all steps of the 

contracting process.  

In 2013, Vitalik Buterin published the Ethereum white paper titled “A next generation 

smart contract & decentralized application platform” and therefore embedded Turing 

Completeness into the BCT (Buterin, 2013). Turing Completeness is a mathematical concept 

and is a measure of the computability of a programming language. Therefore, the language 

design includes complex constructs such as loops and conditions which enable it to create all 

types of general purpose programs (Lee & Deng, 2018, p. 155). Thus, Buterin (2013) coined 

the term smart contract with blockchain-based applications. 

The code of each smart contract is stored on the blockchain and can be identified by a 

unique address. Users can interact with a smart contract in present cryptocurrencies by sending 

transactions to the contract address. When a user causes a valid new transaction with a smart 

contract address as recipient, all participants on the mining network execute the contract’s 

code with the current state of the blockchain and the transaction’s content as inputs. The 

network then agrees on the output and the next state of the contract by participating in a 

consensus protocol (Luu, Chu, Olickel, Saxena, & Hobor, 2016, p. 254).  

Public blockchains ease all users to deploy ‘public smart contracts’, which has 

attracted a wide variety of commercial applications. Smart contracts on a permissioned 

blockchain or ‘permissioned smart contracts’, are more often used in collaborative business 

processes since they have the potential to prevent unwanted updates, improve efficiency and 

save costs. (Y. Hu et al., 2018, p. 3). The characteristics of public and permissioned smart 

contracts are shown in Table 6.   
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Table 6: Characteristics of public and permissioned smart contracts (Y. Hu et al., 2018, p. 3) 

It is possible to expand smart contracts to decentralised applications (dApps). A dApp is an 

application with graphical user interface (GUI), which uses smart contracts on the back end, 

in lieu of a conventional database and web application-hosting provider (Dannen, 2017, p. 77). 

DApps differ from smart contracts in two ways. First, a dApp has an unbounded number of 

participants on all sides of the market. Second, a dApp is not necessarily a financial application 

(Buterin, 2014a). In general, one can differentiate between three different types of smart 

contract applications (Buterin, 2013): 

1.) Financial applications. Financial applications provide users with powerful ways of 

managing and entering into contracts using their money. Examples for financial 

applications are sub-currencies, financial derivatives, hedging contracts, savings 

wallets, wills, and ultimately even some classes of full-scale employment contracts.  

2.) Semi-financial applications. Semi-financial applications are applications where money 

is involved but the application also comprises a significant non-monetary side. An 

example for semi-financial applications are contracts that reward users financially for 

solving mathematical problems.  

3.) Non-financial applications. Non-financial application do not include any financial 

aspects. Typical examples for non-financial applications are online votes and decentral 

governances.  
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A typical dApp consists of three elements: Contracts and logic on the blockchain, user 

interface, and backend resources such as off-blockchain storage. The user interface is the only 

component loaded on a user device. The interface makes back-end calls to the blockchain to 

execute a particular contract and to the back-end resources if external storage is needed or in 

case the application needs to communicate with other apps. Figure 16 shows the typical 

structure of a dApp.   

Figure 16: Structure of a decentralised application (Dhillon, Metcalf, & Hooper, 2017, p. 42) 

Especially on public blockchain networks, dApps unfold their full effects and differ the most 

from traditional central applications. Therefore, dApps pertaining on a public blockchain 

should meet the following three criteria (Chohan, 2019): 

1.) Open Source. The code of dApps must be completely open-source in order to reside 

on the decentralised blockchain architecture 

2.) Autonomy. It is necessary that dApps are operating autonomously and no entity can 

control the majority of their tokens and thus monopolise their value or function. 

However, a dApp can still adjust its protocol if a consensus-based decision is made. 

3.) Cryptography: A dApp must store its data and records cryptographically on a 

decentralised public blockchain. The token of the dApp must also be cryptographic, 

but not necessarily a native token. The cryptographic token ensures access to the dApp 

and serves as a reward to token miners, while also acting as a proof of value. 

Depending on the platform, smart contracts can be programmed in several programming 

languages. Gavin Wood (2014) invented the object-oriented contract language Solidity, a 
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language that is specifically designed to target the smart contract development on the 

Ethereum Virtual Machine (EVM). The private blockchain platform Hyperledger Fabric refers 

to smart contracts as chaincodes, written in Go, node,js, or Java (Blummer et al., 2018). 

Independent of the programming language, usually program codes of smart contracts roughly 

follow the scheme “if x, then y” (Cuccuru, 2017, p. 185). Figure 17 illustrates the deployment 

and working of Ethereum smart dApps. To simplify the procedure, the figure does not include 

the illustration of the mining process.  

Figure 17: Mechanism of Ethereum smart contracts (based on Y. Hu et al., 2018, p. 5) 

First, Client 1 creates a smart contract in a high-level language. Since this figure shows the 

deployment procedure of the Ethereum blockchain, Client 1 likely uses solidity for this. The 

smart contract is compiled into machine-level byte code where each byte represents an 

operation, and is then uploaded to the blockchain in the form of a transaction by EVM 1. A 

miner picks this transaction up and confirms it in Block #i+1. Once Client 2 has interacted via 

a web interface with the smart contract, the EVM 2 queries the data from the web and embeds 

it into the transaction TX and deploys it to the blockchain. After the confirmation of the 

transaction TX, the new state of the contract is updated in Block #i+2. Client 3 has to 

synchronise at least to Block #i+2, to see the changes caused by transaction TX.  
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The most extensive variation of a decentralised application is the so-called decentralised 

autonomous organisation (DAO). The ideal DAO is “an entity that lives on the internet and 

exists autonomously, but also relies heavily on hiring individuals to perform certain tasks that 

automation itself cannot do” (Buterin, 2014a). The most famous attempt to create a DAO on 

the Ethereum network was the organisation with the name ‘The DAO’. On June 17, 2016, a 

mistake in the complex program code of The DAO, enabled hackers to capture Ether worth of 

$50 million. This attack had an enormous impact on the Ethereum blockchain and resulted in 

a hard fork that led to the creation of Ethereum Classic. At the same time, this case also 

represents the challenges and difficulties when implementing smart contracts on blockchain 

platforms. Once a contract is deployed on the blockchain, the immutability makes subsequent 

modifications and the correction of errors in the program code practically impossible (Mehar 

et al., 2019; Tosovic, 2016).  

2.3 Existing use cases combining distributed ledger 
technologies and supply chains 

In this section existing use cases are presented, where the distributed ledger technology and 

supply chains are already combined. All presented use cases adopt the BCT. Existing supply 

chain applications using any other DLT technology are not known to the author at the time of 

writing this work. In addition, it turns out that all use cases refer only to the tracking of certain 

assets. Although they can change their state, they always retain their composition throughout 

the supply chain.   

2.3.1 Blockchain technology for tracking goods 

The American multinational retail corporations Walmart, and Sam’s Club, are currently 

working on a pilot project to improve the traceability of their leaf vegetable supply chains. 

Therefore, Walmart is working with IBM and 11 other food companies to develop a 

blockchain-based food traceability network. First results of the pilot project have shown, that 

retailers were able to reduce the required time to trace an item from seven days to just 2.2 

seconds. The target of this implementation is on the one hand to guarantee food safety for the 

customers and on the other hand to reduce losses of retailers and suppliers (Blakeman, 2019). 

  A similar approach is currently being adopted by the Finnish retail cooperative S-

Group and is named ‘the Pike-perch radar solution’. In this solution, each participant in the 
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permissioned platform Hyperledger Fabrics, is able to record based on a blockchain, each 

participant records information, which can then be utilised by the other participants. By 

scanning a QR code on the package of the fish, the customers can trace the content back to the 

home water of the fish. The aim of this blockchain project is to provide the customers with 

more information about the food route all the way from the source to the stores and therefore 

increase the transparency of the food supply chain (Lehikoinen, 2018).  

 A further example is the tracking of diamonds by the De Beers Group, an international 

corporation specialised in the mining, retailing, and trading of diamonds. In this project, the 

BCT is used to guarantee trust by ensuring provenance, authenticity, and traceability of 

diamonds. The aim of the De Beers Group is to provide true traceability for the stakeholders 

due to the tracking of diamonds from mine to retail in order to prove that a diamond does not 

contain undisclosed synthetics or was involved in unethical practices (De Beers Group, 2018).  

2.3.2 Blockchain technology for tracking carriers  

In 2018, the German company GS1 (Global Standart One), which designs global standards to 

improve value chains, initiated a blockchain-based pilot project to improve the Euro-pallet 

exchange process. The core of this project was the pallet certificate. In the traditional process, 

this paper certificate belongs to the daily business of every truck driver and often causes 

inefficiency and lack of transparency in logistics. The certificate documents number, type and 

quality of the charge carried by the pallet. With the aim to digitise this process, GS1 

established a decentralised blockchain network consisting of 13 external nodes belonging to 

different projects participants. In total, 17 participants with 20 different warehouse locations 

took part in order to map the pallet exchange process on the blockchain under realistic 

circumstances. As a result, this project proved that the blockchain is a suitable technology to 

improve the pallet exchange process. The blockchain not only improved the efficiency in the 

back office, but also simplified loading bay operations and everyday tasks (GS1 Germany, 

2018).  

 Another example for carrier tracking by adopting the BCT is the ‘TradeLens 

Blockchain Shipping Solution’ by Maersk and IBM. The TradeLens ecosystem includes more 

than 20 port and terminal operators across the globe. In addition, two global container carriers, 

Pacific International Lines and Hamburg Sued, are participating on TradeLens. On the 
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blockchain, shippers, shipping lines, freight forwarders, port and terminal operators, inland 

transportation and customs authorities can interact efficiently and have real-time access to 

shipping data and documents. By the help of blockchain-based smart contracts, TradeLens 

enables all participants of the network to collaborate and increases the transparency for 

customs brokers, trusted third parties such as customs, other government agencies, and NGOs. 

Through better visibility, this system facilitates the container tracking process and enables the 

reduction of the process to find a container from 10 steps and five people to only one step and 

one person (Linnet & Wagner, 2018).    
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3  Research environment   
This chapter describes the research environment and explains the constituents of the 

Reutlingen University and Stellenbosch University manufacturing network. Based on this 

environment, the chapter explains country-specific circumstances and the importance of this 

research for both Germany and South Africa. 

3.1 The manufacturing network of Werk150  
In the summer of 2019, the ESB Business School department of Reutlingen University opened 

a new application-oriented research fabric with the name Werk150. Werk150 offers students 

and companies a three-dimensional development environment with modular assembly 

systems, innovative conveyor technologies, collaborative robots, visual assistance systems, 

and modern communication technologies. Therefore, Werk150 provides an innovative 

infrastructure for the development and validation of application-oriented solutions in the 

context of Industry 4.0.  

Figure 18: a) Main parts of the handlebar stem; b) Main parts of the substructure 

In this learning environment various own products are manufactured, with a scooter 

representing the main product. The scooter exists in five different model variants, which are 

almost identical in their basic construction, but differ in their colour and the materials used. 

Depending on the model, a scooter consists of 40 individual parts, which are assembled in 

110-130 steps to form the final product. The 40 individual parts can be grouped into seven 

main parts, which in turn can be divided into the two main assemblies, handlebar stem and 

substructure. The scooter’s main assemblies and their main parts are shown in Figure 18. So 
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far the production of scooters at Werk150, as well as the supplier network has been very local 

and mainly limited to Germany. In the future, more and more learning factories from partner 

universities will be included in the manufacturing process in order to be able to manufacture 

more cost-effective and individualised products. These new international manufacturing 

networks, however, also extend delivery routes and require new solutions for tracking the 

individual components. In particular, for components that are of high importance for the 

product’s safety, the traceability of each component and its parts is of importance to clarify 

responsibilities and to ensure the product’s quality. Therefore, traditional tracking solutions 

are to be expanded to ensure that all stakeholders can trace back each component and all parts 

it consists of at any stage of the supply chain to increase the product and network transparency. 

This ensures that despite the outsourcing of production processes and the involvement of 

international suppliers, the high quality standards for the university’s own products are still 

met. The cooperation between Stellenbosch University and Reutlingen University will be the 

first step towards establishing an international manufacturing network. 

 The assembly consisting of footboard and rear fork is an important component of the 

substructure. During braking processes, high forces can act on the connection between these 

two parts. Since the rear wheel brake is the only integrated possibility for the user to stop the 

scooter, this component is important to guarantee the safety of the product. Even small 

inaccuracies, for example the position of the drilled holes in the footboard, can affect the safety 

of the scooter in the long term. The production of individual footboards may be taken over by 

the learning factory of Stellenbosch University in the future.  

Figure 19: Assembly Structure 
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The assembly, whose basic structure is shown in Figure 19, consists of the two main 

components footboard and rear fork. Both components are produced by different suppliers, 

whereby the footboard will be produced at Stellenbosch University, and the rear fork will 

come from a German company. Only the final assembly takes place at Werk150 in Reutlingen. 

Since this assembly is a certified product of the ESB Business School, both suppliers must 

first be certificated by the ESB Business School to be able to produce the corresponding parts. 

In this way the quality standards can be checked and enforced at any time. This also applies 

to the manufacturing process itself, which must also be certified by ESB Business School.  

Due to the complexity of developing a solution, which in particular must include the virtual 

‘merging’ of the two individual parts into a new assembly, this work will only confine itself 

to this simple assembly. In future projects, the findings of this work can then be transferred to 

the entire product portfolio of Werk150.          

3.2 Country-specific circumstances 
In 2018, Germany exported $1.56T worth of goods, which makes Germany the most powerful 

economy in Europe, and the second largest exporting country in the world after China. 

Machinery including computers ($272B), Vehicles ($264B), and electrical machinery 

equipment ($164B) represent the top three categories in terms of overall exports (Workman, 

2019a). Germany’s high variety of different goods and the diverse number of trading partners, 

make the country the third most complex economy in the world according to the Economic 

Complexity Index (OEC, 2017a).  

Since the early 1990s, German manufacturers and their supply chains have been 

undergoing a fast globalisation process. This led to an expansion to locations in new major 

regions and emerging economies. The globalisation of the suppliers took place at the same 

time, under considerable pressure from the original equipment manufacturers (OEMs). On the 

one hand, these require their suppliers to be present in all important world markets close to 

their factories and on the other hand to have a price level that can only be achieved in low-

wage countries (Schwarz-Kocher, Krzywdzinski, & Korflür, 2019, pp. 10–11). This 

development resulted inter alia in well-known German manufacturers and suppliers such as 

Daimler, Volkswagen, BMW, and Bosch operating production plants in South Africa (BMW 

Group, 2019; Bosch, 2019; Daimler, 2019; Volkswagen, 2019).   
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South Africa shipped $94B worth of products around the globe in 2017. With a total of $7.1B, 

Germany is its second most important trading partner after China with $9.2B (Workman, 

2019b). In addition to the extraction and trade of precious metals, the manufacturing industry 

is the most significant segment of the South African economy (OEC, 2017b). The vehicle 

manufacturing industry, along with the automotive component manufacturing industry, 

represent the leading sectors of the manufacturing industry, responsible for exports amounting 

to a value of $12B, representing 14,3% of the total South African exports in 2018 (Lambrecht, 

2019).  The South African manufacturing industry benefited greatly through globalisation, but 

also faces increasing pressure from challenges caused by an increasing operational complexity 

and increasing competition, especially against China and India (N. Lambert & Tolmay, 2017; 

Naude & Badenhorst-Weiss, 2011, p. 71).   

 Figure 20 shows a ranking of the world’s most respected ‘Made in’ labels, whereby 

South Africa is ranked 38th. The label ‘Made in Germany’ however, is considered to be the 

most respected label in the world. Accordingly, South African products have only a low 

customer reputation, even though quality components of South African origin are involved in 

several prestigious German products. Car manufacturers such as BMW, Daimler, and 

Volkswagen even produce complete model series in South Africa (Lambrecht, 2019, p. 15). 

In this context, an increased transparency within the supply chain and the auditability of each 

product and every involved component, may be beneficial for both countries. German 

companies can maintain quality standards through increased transparency in complex 

manufacturing networks, and can increasingly include verified and eligible South African 

partners in their supply chains. Through the increased transparency, customers can realise to 

what extent components of South African origin are involved in complex manufacturing 

supply chains, which in turn may lead to an increase in terms of customer reputation. The 

exact interaction between transparency and reputation can be further analysed and validated 

in future studies. 
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Figure 20: The world’s most respected ‘Made in’ labels (based on Statista, 2017) 

Schwarz-Kocher et al. (2019, pp. 10–11) remark that particularly in the case of German 

suppliers, the innovative strength of companies is based to a large extent on long, historically 

grown network relationships, cooperation and knowledge exchange between research and 

development sites in Germany, and regional universities and research institutions. The 

geographical closeness between production and R&D made it possible to include production 

knowledge in the development processes at an early stage. In this context Schwarz-Kocher et 

al. question whether the extent of globalisation will weaken the innovativeness of the suppliers 

due to the relocation of production abroad.     

 This research work at the Reutlingen University in Germany together with the South 

African Stellenbosch University aims to show that intercultural cooperation in international 

networks, in particular, enables the development of innovative solutions from which all sides 

can profit.  
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4  Framework development 
This chapter contains the development of a framework for tracking goods in manufacturing 

networks by using a distributed ledger technology. First, a conceptual process is developed, 

based on the main stages of a SCM system framework consisting of a network design stage, 

network planning stage, and an execution stage (Werner, 2017). This process is then related 

to the properties of manufacturing networks and their implications for the properties of DLTs. 

Finally, a conceptual framework is proposed, combining the vertical process flow with the 

horizontal influences of physical and virtual complexity drivers.  

4.1 Network design stage 
According to the task model of supply chain management software systems (Werner, 2017, 

p. 87), the first main level is the supply chain design. Therefore, fundamental strategical 

decisions must be determined at this stage. The aim of this framework is to increase the 

transparency for all stakeholders and to enable traceability for a product and its components. 

Thus, all stakeholders directly involved in the manufacturing process must first be identified. 

Subsequently, all stakeholders must be assigned a network authority.  The procedure shown 

in Figure 21 summarises the considered steps during the network design stage.  

Figure 21: Considered steps during the network design stage



52

4.1.1 Identification of all stakeholders  

As a first step, the identification of all stakeholders takes place. According to Bozarth et al. 

(2009), the number of suppliers in a complex supply chain and the globalisation of the supply 

base, can impact the complexity of this process. Companies which already have very detailed 

documentation of all entities involved in the manufacturing process of a product have an 

advantage when identifying and enlisting all participants. For this purpose, the stakeholders 

are divided into stakeholders directly involved in the manufacturing process and stakeholders 

indirectly involved in the manufacturing process.  

 According to S. J. Hu et al. (2008, p.46), the manufacturer, intermediate sub-

assemblers, and suppliers are typical examples for entities directly involved in manufacturing 

processes. In the context of this work, the stakeholders directly involved in the manufacturing 

process are additionally expanded with the role of a certifier. Since various products can 

legally only be manufactured with the permission of the respective certifier, this role also has 

a direct influence on the manufacturing process itself. These stakeholders are then 

supplemented with all the entities who are indirectly involved in the manufacturing process. 

Typical examples for entities indirectly involved in the manufacturing process are logistics 

companies. The roles considered for this framework are explained in more detail below.      

1.) Manufacturer. The manufacturer is seen as the final assembler in order to create the 

product. 

2.) Supplier. The suppliers supply the manufacturer with components required to produce 

the final product.    

3.) Certifier. The certifier provides non-physical assets such as certificates, licences, and 

patents necessary to legally produce the components of the suppliers and/or 

manufacture the final product. Depending on the characteristics of the supply chain, 

the role of the certifier can be taken over by the manufacturer itself, but also by other 

independent organisations such as governmental or non-governmental organisations. 
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4.) Logistics companies. Logistics are required to transport the components from the 

suppliers to the manufacturer or to deliver the final product to the customer. Logistics 

companies do not have a direct impact on the manufacturing process.   

5.) Customers. Customers ultimately receive the final products and therefore represents a 

special peculiarity. If a high number of customers is involved in the supply chain, it 

will automatically result in an unknown number of network participants. They are not 

only unknown in terms of quantity, but also in terms of their identity. Although it 

requires an interface for customers in the network, they cannot be involved as active 

participants in the development process. However, they may be represented by 

organisations.     

4.1.2 Assignment of network access authorisation 

Once the identification of all stakeholders has been completed, they must be listed together 

with their respective roles. This list, together with all roles, must then be connected to the 

composition of DLTs and therefore with the network access authorisation. As described in 

Section 2.2, DLTs on a peer-to-peer basis consist of several nodes which can have different 

access possibilities to the network. In general, there are two main node types that can be 

distinguished (Reyna, Martín, Chen, Soler, & Díaz, 2018):  

1.) Full-node. A node that can store the full ledger and fully validate transactions on the 

network.  

2.) Light-node. Light-nodes do not have a complete copy of the ledger. They only keep 

crucial parts of the ledger sufficient for checking the validity of current transactions. 

In addition, in this framework the theoretical possibility can also be considered that one or 

more participants of the network do not operate any node in the DLT. These participants can 

be given access to the network via other nodes, so that they can make transactions on the 

network as well. This approach could be used, for example, for logistics companies, as they 

may not be interested in the process of validating the transactions themselves, but still do not 

want to cause gaps in the tracking process. Thus they could provide their service to the network 

without making extensive investments in terms of a distributed network infrastructure. A node 



54

that gives access to other entities or devices can be called a ‘supernode’ (also called overlays 

or gateways) in this context (Zorzo, Nunes, Lunardi, Michelin, & Kanhere, 2018, p. 3). A 

possible structure of such a supernode and its integration into a distributed network is shown 

in Figure 22.  

Figure 22: Peer-to-peer architecture using a supernode (based on Zorzo et al., 2018, p. 4)

As a high number of customers represents an unknown number of entities, it must be decided 

during the design phase whether customers are allowed to operate nodes, or only get access 

via supernodes. Therefore the number of customers represents a further physical complexity 

driver of this step. This decision, in particular, has a significant impact on the later course of 

this framework. Changes at any later stage, can cause a significant additional effort and 

therefore can greatly delay the implementation of a DLT into the SCM. For the same reason, 

gaps in the supply chain such as unknown suppliers, must be filled in at this phase, as they can 

still be fitted into the construct with relatively low effort at this point. Accordingly, every 

stakeholder can potentially represent a node in the network, which in turn influences the 

network composition. Therefore, the assignment of network access authorisation results in 

new virtual complexity drivers. These are characterised once by considering the number of 

known nodes including the customer and furthermore by considering the number of unknown 

nodes.  
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4.2 Network planning stage 
The network planning is a fundamental stage when combining manufacturing networks with 

the use of a DLT. First, this stage analyses the impact of a product’s composition on the use 

of DLT platform. In this case, a possibility is proposed which enables a connection between 

the physical world and the virtual world by creating for each asset a virtual identity on the 

distributed ledger. Secondly, a logic model is presented to enable a mapping of the product 

composition in smart contracts. Based on this logic, initial predictions can already be made 

about the prospective transaction per second, triggered by the manufacturing network on DLT 

networks. As a conclusion, this section exemplifies the impact of all previous considerations 

on the DLT platform decision. The procedure and all considered steps during the network 

planning stage are illustrated in Figure 23.   

Figure 23: Considered steps during the network planning stage   
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4.2.1 Definition of product composition 

Since the aim of this framework is to enable the auditability of a product and all its 

components, the entities directly involved in the manufacturing process are of great 

importance when defining the product composition. Figure 24 illustrates the relationship of 

entities directly involved in the manufacturing process based on the use case described in 

Chapter 3. Of course, the respective roles can be distributed arbitrarily and adapted to the 

needs of many different manufacturing supply chains. This figure merely serves as a 

foundation to illustrate the next steps of the framework planning stage.  

Figure 24: Relationship of all entities directly involved in the manufacturing process. 

The simplified manufacturing process shown in Figure 24 involves the production of a product 

P1 consisting of the two different components Ca and Cb. In order to constitute a collaborative 

manufacturing network, the components and the product are produced by the independent 

entities Supplier A, Supplier B, and Manufacturer 1. All products can only be produced when 

each entity owns a certain certificate Z provided by a Certifier. This exemplifies that non-

physical assets such as licences, patents, or certificates can be mapped on the DLT. As 

mentioned in Section 4.1.1, the role of the Certifier can be taken over by the manufacturer 

itself, or otherwise by other independent organisations depending on the characteristics of the 

respective supply chain. The relationships between the assets and entities shows that the 

complexity of a product impacts the complexity of the definition the most. In this context, the 

term complexity refers to the number of individual parts of a product and entities involved in 

the manufacturing process. In addition, the batch size also influences the complexity of the 

production processes (Bozarth et al., 2009) and therefore complicates the definition of a 
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product’s composition. A product which is manufactured in many different and individual 

variations, can differ considerably in its product composition and the entities involved. Thus 

a concrete determination of the composition is more complicated than with products which 

are produced in high and constant lot sizes.   

 Once all relations of the product and its components have been defined, they must be 

transferred to the logical structure of DLTs. Grossman (2015) describes DLTs such as the 

BCT as “public database of timestamps”. In traditional models, each system kept its own 

notion of time. In DLTs however, all nodes of the network agree on a common time by 

implementing a consensus algorithm. As a result, the immutability of the network guarantees 

that a certain event on the network happened at a certain time. For illustrative purposes, this 

comparison between the traditional model and the DLT-based model is shown in Figure 25. 

Figure 25: Distributed ledger technologies as verified public timestamps (based on Grossman, 
2015) 

Based on this insight, the immutability of DLTs also requires the products and components of 

manufacturing supply chains to be structured in a temporal sequence. Essentially, all 

requirements of the physical supply chain must be transferred to the virtual supply chain. In 

the physical world, the time relationships between processes are usually very clear. For 

example it is not possible to assemble a certain product without having the required parts on 

hand. This relationship must exactly be considered when connecting all components logically 
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on the distributed ledger. In principle, a distinction can be made between two different types 

of assets.  

1.) Assets without dependencies. Those are assets that can be created without depending 

on previous actions. Assets without dependencies could be for example raw materials 

or certificates. The number of assets without dependencies depends largely on the 

characteristics of the respective manufacturing supply chain. In case of the model of 

the manufacturing process (Figure 24), this type of asset is only represented by the 

certificates, since the creation of certificates does not depend on any previous asset or 

action.  

2.) Assets with dependencies. Those are assets that can only be created when previous 

actions have been successfully conducted. In case of the model manufacturing process 

for example, the creation of the components Ca and Cb depends on the receipt of the 

respective certificates Z1. The manufacturing of P1 even requires the receipt of the 

components Ca , Cb and a manufacturing certificate Z2.  Again, the number of assets 

with dependencies depends greatly on the characteristics of the respective 

manufacturing supply chain.   

An essential aspect of the product composition is also to determine in which way and to what 

extent the involved assets are mapped on the DLT. As mentioned in Section 2.1.4.2, the 

information sharing among supply chain members can be divided into the sharing of product 

information, transaction information and inventory information (Khan & Yu, 2019, pp. 27–

29). To enable sharing of information on a DLT, the physical asset’s properties must first be 

logically mapped to the distributed ledger. Such a logical link on a decentralised network is 

considered as decentralised application (dApp). Buterin (2013) differs between financial, 

semi-financial, and non-financial applications. Accordingly, a manufacturing process can be 

considered as a non-financial application since it does not include any financial aspects. If the 

manufacturing process were additionally linked with financial transactions, this would result 

in semi-financial applications. Since this framework, however, deals with the problem of 

components that are grouped into assemblies or products, the non-financial aspect of 

manufacturing supply chains is paramount to this work. This characterisation of 

manufacturing supply chains thus requires a logic that allows traceability of assets and their 
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status changes such as the merging of components to assemblies, and at the same time it 

requires a tracking of ownership changes of these assets. In order to solve this issue, this work 

proposes the creation of virtual identities representing the physical assets on the DLT.  

4.2.1.1 Determination of virtual identities  

To ensure traceability by using a DLT, a link between the DLT network and the physical asset 

must be established. Therefore this framework proposes a system whereby each asset is 

represented by a unique virtual identity on the distributed ledger. Accordingly, this approach 

assumes that all virtual identities can refer to an asset itself. Above all, the uniqueness of each 

number is of great importance. Only in this way can it be ensured that any asset is 

unmistakably represented by its virtual identity on the network, which then enables the 

auditability of this asset.  

 With hashing algorithms, most DLTs such as the BCT already have the ability to 

generate unique hexadecimal numbers embedded in the technology (Section 2.2.2.1). For this 

reason, this approach uses these hashing algorithms in order to create the unique identification 

numbers (IDs) to connect physical assets with their virtual identities. These IDs are generated 

by the respective algorithm of the DLT by hashing the information they refer to. In this work, 

numbers resulting from such a procedure are therefore called Hash IDs. In the case of a product 

of a manufacturing supply chain, for example, the product information can be used to create 

the Hash ID of the product. The extent of information used for this process depends on the 

network design and is closely linked to the objectives of the respective network. If the focus 

is on increasing the visibility of the supply chain, this information can contain detailed 

information for use within the manufacturing supply chain.  If, however, the focus is more on 

increasing transparency, it makes more sense to use information relevant for the customer. 

As mentioned in Section 2.2.2.1, hash functions use typically deterministic algorithms, 

which means that the same input always creates the same output (Brennan & Lunn, 2016, 

pp. 19–20; Dang, 2012, p. 4). This leads to the fact, that hashing algorithms alone do not make 

Hash IDs unique. For example, the hashing of the same product information always results in 

the same Hash ID, which counteracts a differentiation of products of the same type. 

Consequently, the product information must be supplemented with a variable input, which can 

guarantee uniqueness when creating Hash IDs. To guarantee uniqueness, this approach 
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proposes to involve the timestamp function of DLTs at the moment of creating new Hash IDs, 

since the integrity of timestamps in DLTs makes a reactive change impossible (Lee & Deng, 

2018, p. 168). The product information together with the timestamp is thus ‘condensed’ to a 

unique hexadecimal hash. 

Hash IDs work similarly to primary keys in traditional relational central databases and 

are unique identifiers for a set of information. A double assignment of primary keys in 

traditional relational databases is obviated by the central system itself. Additionally, the 

primary keys are chosen by the system or the user without any direct connection to the set of 

data they refer to (Rolland, 2003). Hash IDs however, are generated by an algorithm by 

hashing the information they refer to. Therefore, Hash IDs are a logical result of their input 

data and provide initial information about the origin, composition, and time of creation of the 

asset they refer to. Accordingly, Hash IDs can also be referred to as new and decentralised 

versions of primary keys. A comparison between the characteristics of traditional primary keys 

and Hash IDs is shown in Table 7.  

Table 7: Comparison between primary keys in relational central databases and Hash IDs 

Within the distributed ledger, these Hash IDs represent a unique virtual identity of their 

physical counterparts. In order to map a manufacturing process, the unique virtual identities 

must have the same ownership and conversion characteristics as their physical counterparts. 

In this aspect they differ fundamentally from conventional primary keys in central systems. 

Therefore, virtual identities must always be clearly assigned to an owner and must be able to 

change their owners, for example, when the physical product is sold. In this context, smart 

contract-based Hash IDs have combine the characteristics of asset-backed tokens (Section 

2.2.2) with the characteristics of conventional central database systems.  
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Furthermore, the virtual identities must be able to be summarised, for example when 

combining individual components to a new product. Since virtual identities can represent 

assets with dependencies and assets without dependencies, their creation on the distributed 

ledger must be linked to logical dependencies. In order to map such a logic, it requires the 

modelling, planning, and definition of further various smart contract functions. 

4.2.2 Definition of a smart contract logic 

When all processes in the supply chain are logically linked and the time relationships are 

created, this logic must then be reflected on the DLT together with the possibility to move, 

merge, and trace the created virtual identities. The so-called smart contracts are the essential 

component for mapping the logic of the supply chain and to enable the creation of virtual 

identities.  Even the term ‘smart contract’ as coined by Buterin (2014) with blockchain-based 

applications, this term is used in this work as a generic term for program codes in order to 

program decentralised apps (dApp) of any DLT. A typical dApp consists of smart contracts 

on the distributed network, user interface, and backend resources such as off-network storage 

(Dhillon et al., 2017, p. 42). In order to enable a programming of such smart contracts, basic 

models of the logical relationships must first be created. To do this, this step links the functions 

of the smart contracts of each asset to the entity which is responsible for its initial creation. 

This means that only the entity which ‘owns’ the process of creating a certain asset in the 

physical world, is able to have access to the smart contract to create the virtual identity of the 

part. For this purpose, addresses are created on the distributed ledger for each entity, which 

are then linked to the respective functions of the smart contracts. In the case of BCT, a 

connection is established between the public key and the smart contracts on the blockchain. 

Only the owner of the appropriate private key is then able to trigger the respective actions of 

the smart contract (Dhillon et al., 2017, p. 42).   

First, the logic model is described using the assets without dependencies described in 

the previous section. The model shown in Figure 26 enables the creation of virtual identities 

for assets without dependencies. When the possession of the smart contract is clearly assigned, 

information for creating a new virtual identity can be entered into the user interface. In case 

the proposed Hash IDs are used, the information stored behind each Hash ID at the time of 

creation, can for example come from conventional central systems owned by the entity 

creating the Hash ID. This also creates an interface between conventional systems and the 



62

blockchain. As described by Dhillon et al. (2017, p. 42), triggering smart contract functions 

always results in transactions on the distributed network. At the moment of this transaction, 

the timestamp of the network is added to this transaction to guarantee the uniqueness of each 

Hash ID. The new state of the smart contract, together with the owner’s address of the virtual 

identity is then stored on the network.  

Figure 26: Model to create virtual identities for assets without dependencies 

Assets with dependencies are based on the fulfilment of predefined conditions. Before a user 

is able to create a new virtual identity of this type, the smart contact executes a query function 

to check whether all conditions for creating the new virtual identity are fulfilled. In 

manufacturing networks for example, this query function checks the possession of all required 

components for producing a product. After the query function has been executed successfully, 

the information on the asset will be added as for the assets without dependencies. At the 

moment of the transaction trigger, the virtual identity required for creation are additionally 

marked as ‘used up’, since the DLT does not allow the deletion of information. This prevents 

assets from being used more than once to create new virtual identities. The model to create 

virtual identities for assets with dependencies is shown in Figure 27.   
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Figure 27: Model to create virtual identities for assets with dependencies 

The creation of assets with and without dependencies must additionally be supplemented with 

a model allowing ownership changes of each virtual identity. The creation of assets is firmly 

bound to the address of the responsible entity. This means that only a selected authorised entity 

is able to create the respective virtual identity. The sending function, however, is variably 

accessible to the current owner of the asset. After creating a new virtual identity, it is first in 

the possession of the creator itself. The address of the creator is then authorised to send this 

virtual identity to a new owner. As soon as the resulting transaction has been successfully 

confirmed by the network, the creator no longer has the rights to cause further actions related 

to the sent virtual identity. Only the address of the recipient can trigger further actions 

regarding the received virtual identity. As with the creation of assets with dependencies, the 

sending process is therefore preceded by a query of ownership. The model to send virtual 

identity of assets is presented in Figure 28. 
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Figure 28: Model to send virtual identities of assets 

In manufacturing supply chains which include, for example, modular assembly processes, an 

alternating sequence of creation and transmission processes takes place (S. J. Hu et al., 2008, 

p. 46). Figure 29 shows the smart contract models structured in an alternating sequence. This 

sequence first includes the creation of a new virtual identity representing an asset without 

dependencies. This identity is then sent to a new owner, which in turn allows the new owners 

to create a new virtual identity representing an asset with dependencies. After the creation, 

this virtual identity can be sent to a new owner as well. The horizontal arrangement of such 

alternating sequence of actions as shown in Figure 29, results in a very similar structure as 

described by Grossman (2015) and presented in Figure 25 on page 57. All actions are 

immutably recorded in their chronological order by the DLT. Even though central systems are 

linked to the DLT, it represents only a static connection. This means that only at the time when 

a transaction on the DLT is triggered, an image of the central system’s status at the time of the 

transaction is created on the distributed network. This record is invariable according to the 

characteristics of the DLT. Therefore, changes of data records in the central systems can only 

be taken into account in all transactions taking place after the change has been made.  
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Figure 29: Smart contract models arranged in an alternating sequence  

Figure 29 illustrates that every action triggers a transaction on the distributed ledger. When 

transferring this to manufacturing supply chains, every change of state of a product or 

component results in a transaction on the distributed ledger. This affects the change of state in 

terms of ownership as well as the change of state in terms of product composition. Based on 

this, it is possible to predict an initial number of caused transactions.  

4.2.2.1 Prediction of transactions per second  

As mentioned in the previous section, the number of transactions caused in order to produce 

one product depends on the number of state changes and ownership changes. In this context, 

state changes refer to the changes of a product, for example in production processes, where 

two components are assembled to create one new product. When transferring this knowledge 

to manufacturing supply chains, it shows that products consisting of large numbers of 

components and parts, cause more transactions than products consisting of few parts and 

components. At the same time, the ownership changes of the product impact the transaction 

rate. This relationship between changes of state and changes of ownership and their impact on 

the number of transactions is illustrated in Figure 30.  
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Figure 30: Correlation between manufacturing processes and total number of transactions  

The total number of ownership changes depends on the one hand on the total number of entities 

involved to produce a certain product, and on the other, the design of the tracking process. 

Figure 31 shows two different designs of the tracking process. Process (a) shows a tracking 

process where each entity owns only one address. In such a process, it is only possible to know 

that an asset is currently owned by a certain entity. In process (b), Entity A owns three 

addresses representing incoming warehouse, production, and dispatch warehouse. In such a 

design, the tracking process is more detailed and allows access to more detailed information 

about the current state of the product.     

Figure 31: a.) Tracking process with each entity owing one address; b.) Detailed tracking 
process where Entity A owns many addresses 

The number of total transactions caused by one product, is therefore the sum all its changes of 

state sn and all its changes of ownership on. Additionally, it is not only important to calculate 
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the total number of transactions, but also in which period of time these transactions take place. 

This does not only apply to one production process, but to all parallel concurrent processes 

taking place in the same time interval	∆ݐ. Equation (1) below shows this mathematical 

relationship between a number of n concurrent processes in a certain time interval to calculate 

the predicted transactions per second PTPS.  

PTPS		 :	Predicted transactions per secondsn		 :	Changes of state of assetnon		 :	Changes of ownership of assetn∆ݐ		 :	Time interval in seconds  

ܲܶܲܵ ൌ ௦భା ௢భ∆௧ ൅ ௦మା ௢మ∆௧ ൅ ⋯൅ ௦೙ା ௢೙∆௧   =  ∑ ሺ௦೔ା௢೔೙೔సభ ሻ		∆௧        (1) 

The calculated prediction is an important component needed for the platform decision. In 

particular, critical intervals must be checked with small time intervals in order to identify 

bottlenecks with a high number of transactions per second. Accordingly, the predicted number 

of transactions per second results in a virtual complexity driver, which influences the process 

in the later course of the conceptual sequence. 

4.2.3 Platform decision 

As the final step of the planning phase, a suitable platform for implementation must be found. 

Due to the properties of DLTs, different technologies can be considered, since the properties 

required for the implementation of this framework are not technology specific, but strongly 

platform dependent. For example Bitcoin and Ethereum are both based on the BCT. 

Nevertheless, the two platforms differ significantly (Vujicic, Jagodic, & Randic, 2018). 

Therefore, the decision of where to implement the models and findings of the previous 

sections, depends more on the platform and its characteristics than on the DLT.  

 The term ‘platform’ in the context of DLTs, is not clearly defined in literature. 

Software platforms are generally described as “operating environments upon which 

applications can execute and which provide reusable capabilities such as file systems and 

security” (Bottcher, 2018). Related to DLTs, platforms define basic properties such as 
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consensus algorithm, data and transaction format, support of smart contracts, and network 

composition. These properties have a significant impact on the scalability and network size of 

the platform (Pahl, Ioini, & Helmer, 2018, p. 5).   

 The findings of the previous sections are used as a prespecified foundation for the 

platform decision and are therefore summarised below:  

1.) All relationships can be logically mapped (Section 4.2.). All relationships of the 

manufacturing supply chain can be logically mapped and connections can be created. 

This affects ownership relationships as well as the logical dependencies of the product 

or component composition.  

2.) Data refer to an asset itself (Section 4.2.1.1). The data can refer to an asset itself in 

order to enable an identification of each asset. Therefore, a virtual identity representing 

the asset on the distributed ledger is necessary. This framework proposes the creation 

of a unique identifier in the form of Hash IDs as a possible solution.    

3.) Data history can be logically linked (Section 4.2.2.). The data history can be logically 

linked and put in a chronological sequence. This enables a transparent tracking and 

auditability of each asset’s history.  

To map such extensive relationships and complex logical links on a DLT platform requires a 

platform that supports Turing Completeness. Turing Completeness is a mathematical concept 

and is a measure of the computability of a programming language. Therefore, the language 

design includes complex constructs such as loops and conditions which enable the creation of 

all types of general purpose programs (Lee & Deng, 2018, p. 155). In particular, the 

categorisation of manufacturing supply chains as non-financial applications, requires 

extensive programming possibilities in any aspect and not from a financial application point 

of view. These programming possibilities must be available to the smart contracts on the 

platform, which are needed to create, send and merge virtual identities. In case the proposed 

Hash IDs are used to create virtual identities, the smart contracts also require the inclusion of 

hashing algorithms and timestamps. This first part of the platform decision flow is illustrated 

in Figure 32.   
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Figure 32: Part 1 of the platform decision flow 

4.2.3.1 Permissionless or permissioned platform 

One main aspect of the platform decision is the decision between a permissionless and a 

permissioned DLT platform. Essential prerequisites for this decision were already defined 

during the design phase. Basically, the decision depends on whether at the time of network 

creation and in the future, all network participants can be regarded as known entities. In this 

context, especially the network access categorisation of customers described in Section 4.1.1 

is significant. According to Section 4.1.1 a high number of customers involved in the 

manufacturing supply chain always results in an unknown number of network participants. In 

case it is requested to give the customers full access to the platform and the ability to operate 

nodes on the network, only a permissionless network is feasible. Conversely, restricted 

customer access, for example via supernodes, can only take place on permissioned platforms.   

 According to an analysis by Iansiti and Lakhani (2017), the adoption of foundational 

technologies typically happens in four phases. Each phase is defined by the novelty of the 

application and the complexity of coordination efforts needed to make them workable. 

Applications low in novelty and complexity gain acceptance first, while it can take decades to 

evolve applications high in novelty and complexity. As shown in Figure 33, Iansiti and 

Lakhani (2017) categorise self-execution smart contracts, such as those used in order to map 

supply chain scenarios, as high in both complexity and novelty.   
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Figure 33: Adoption of foundational technologies (Iansiti & Lakhani, 2017, p. 7) 

According to this analysis, it is also possible to start in on a private platform before opening 

the platform to the public in the future, mainly because manufacturing supply chains are very 

complex networks high in novelty. In such an approach, however, it should be noted that not 

every platform is capable of being used both as a permissioned and a permissionless platform. 

The concrete aspects which need to be considered are explained in more detail in the next 

chapter. Additionally, the choice between permissioned and permissionless platforms is not 

only related to the factors mentioned above. The scalability of DLTs currently represents a 

bottleneck when implementing decentralised applications (Zheng et al., 2017). Therefore, 

scalability and the relationship with the properties of manufacturing supply chains are 

considered in more detail in the following chapter. 

4.2.3.1.1Scalability analysis  
The scalability represents a current limitation of DLTs. In this context the term scalability 

refers mainly to the number of transactions a platform can process per second (Zheng et al., 

2017). These scalability issues result in an inherent bottleneck of DLTs, in particular of current 

blockchain-based platforms (Mueller, 2019). Table 8 exemplifies the scalability differences 

of DLT platforms.  

As shown in Table 8, the permissionless blockchain platform Ethereum is only able to 

process 15-25 TPS (Njui, 2018). The permissionless platform EOS, however, can scale almost 

up to 4,000 TPS (Fadilpasic, 2019). The permissioned blockchain Hyperledger Fabrics can 
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reach a transaction throughput of at least around 3,500 TPS (IBM Research Editorial Staff, 

2018). Also the DLT platform IOTA based on the tangle-technology only reached 183 TPS in 

2017 (Schiener, 2017). NANO, a platform based on the Block-lattice architecture technology 

reaches 306 TPS (Pugh, 2018). As a comparison, Visa conducted a stress test in 2013 where 

the central system reached 47,000 TPS (Trillo, 2013).   

Table 8: Scalability comparison between DLT platforms

The table also shows, that although Ethereum and EOS, for example, are based on the same 

technology, they still show significant differences in terms of their scalability. A closer 

comparison between the two platforms shows that they have a different design in terms of 

decentralisation and security. On the Ethereum platform, the majority of the entire network 

must agree to the validation of transactions (Buterin, 2013). On the EOS platform however, 

new transaction blocks are produced by a selected group of only 21 block producers (EOS 

Authority, 2019). This relationship between decentralisation, scalability and security is also 

known as the scalability trilemma. This trilemma refers to the current impossibility to create 

a system that is at the same time highly decentralised, secure, and scalable (Viswanathan & 

Shah, 2018). This correlation is shown in Figure 34.   

Figure 34: The scalability trilemma (based on Viswanathan & Shah, 2018) 
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The required number of transactions depends individually on the respective manufacturing 

supply chains. The calculation conducted in Section 4.2.2.1, provides an initial indication of 

how scalable the platform must be. In particular, the consensus mechanisms of DLT platforms 

are the bottleneck of scalability issues (David Im, p. 14). In this context, permissionless 

platforms with low scalability on public networks should not be excluded in advance for the 

use as permissioned networks. Consensus mechanisms that exist on permissionless networks 

can always be used for permissioned networks as well. Consensus mechanisms which were 

created especially for permissioned networks, however, cannot insist on public permissionless 

networks (Dinh et al., 2017, p. 1088). This is especially important because, as described by 

(Iansiti & Lakhani, 2017), a slow development from private networks to public networks can 

be considered as a realistic scenario. To avoid misunderstandings, the next section analyses 

the difference in the properties of permissionless consensus mechanisms used in a 

permissioned environment.  

Pemissionless public DLT platforms, especially of the BCT, are often associated with 

a low scalability (Chauhan, Malviya, Verma, & Mor, 2018; Zheng et al., 2017) and high 

energy consumption (Truby, 2018). In addition, there are false statements caused by a lack of 

knowledge about DLTs, which could make companies insecure to use permissionless 

platforms in a permissioned environment. For example Baumann and Supe (2018, p. 14) state, 

that with increasing length of the blockchain, for example with an increasing number of 

transactions, the degree of difficulty of the blockchain calculations increases drastically. As a 

result, more computing power, energy and time is required to complete the transactions, which 

is neither sustainable nor suitable for the current use in SCM.  

Figure 35: Energy consumption by country including Ethereum (digiconomist, 2019) 
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The chart shown in Figure 35 shows the energy consumption by country, including the 

Ethereum main network. This illustrates that Ethereum requires as much energy as small 

countries in order to maintain the stability of the network. However, the energy consumption 

is not in any way related to the number of transactions as stated by Baumann and Supe (2018, 

p. 14). Therefore, a short analysis of the PoW algorithm is intended to eliminate ambiguity in 

terms of energy consumption in order to facilitate the platform decision for companies and the 

use of DLTs in the SCM. Even though the PoW algorithm is mainly a blockchain-based 

algorithm, it clarifies the key element of DLTs in terms of energy consumption and is 

representative of other algorithms and their differences between a permissionless and 

permissioned network. The necessary background to fully understand the following simplified 

scenario is provided in Section 2.2.2.3.    

Figure 36: Simplified proof-of-work in a permissioned network with a fixed difficulty and a 
fixed number of participants

In a simplified PoW scenario it is assumed that a BCT requires a fixed average block time in 

order to validate transactions correctly. Therefore, the platform defines a so-called difficulty, 

which statistically guarantees that this average block time is adhered to by the network (Wood, 

2014). A simplified procedure to validate transactions and create new blocks, is presented in 

Figure 36. The PoW algorithm is thereby simplified illustrated by nodes which resemble a 

rolling dice. The node which is rolling a six first, can add the next block to the chain. This dice 

game represents the required computation to solve the arithmetic problem, which is normally 

carried out by nodes on PoW-based platforms (Baliga, 2017, p. 6; Mingxiao et al., 2017, 
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p. 2568; Nguyen & Kim, 2018, p. 106). Since Figure 36 represents a network with a fixed 

number of participants, the difficulty can also be determined as a fixed value. Thus, the energy 

consumption required to ‘roll the dice’ can be considered as constant. 

On a permissionless network another picture emerges. By opening the network to the 

public, any number of participants can join the network and participate in the ‘dice game’. 

Due to the fact that now a higher number of participants ‘rolls the dice’ at the same time, it 

statistically decreases the required time until one participant successfully throws a six. 

However, as described above, the platform needs a fixed time to confirm transactions without 

any errors. In order to counterbalance this fixed time, the platform sets the difficulty to a 

variable value. In the figurative sense, the difficulty of the game is increased until the specified 

block time is reached again. This effect is further enhanced when the winners of the game are 

financially rewarded in public networks (Baliga, 2017, p. 6; Mingxiao et al., 2017, p. 2568). 

As a result, nodes join the network, which specifically try to increase their chances by using 

more computing power. Conversely, this again increases the difficulty of the platform. This 

effect can swing up until the profit is no longer in equilibrium with the costs required for the 

energy consumption or hardware and therefore the validation of blocks is considered 

uneconomical.  

This comparison illustrates that the energy consumption is not related in any way to 

the chain length. It is an interaction between a large number of network users that use a high 

amount of computing power and a platform which has a variable difficulty in order to keep 

the block time constantly on the same level. In a permissioned network, this interaction can 

be counteracted by adapting the required computing power to the number of network 

participants. Accordingly, PoW-based platforms can also be considered in the platform 

decision for permissioned networks without the disadvantage of high energy consumption, but 

with the advantages in terms of security and decentralisation.  

 Although the transactions per second supported by the platform cannot be increased 

when using an originally permissionless platform as a permissioned platform, the whole 

capacity of the network can be used for one’s own application. In case of a permissionless 

network, the application of the manufacturing supply chain has to share the capacity with other 

network participants or applications.  
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The holistic platform decision process is illustrated in the platform decision flow shown in 

Figure 37. As illustrated in the decision flow, all virtual complexity drivers have an impact on 

the platform decision itself. Since in this work supply chain transparency refers to the 

disclosure of information to all stakeholders, only the results of the decision flow including 

the customer are further considered during the practical implementation and validation of the 

framework. 

Figure 37: Platform decision flow 
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4.3 Execution stage 
During this stage the practical implementation and the vertical and horizontal integration of 

the platform takes place. The supply chain and all its logical interrelationships must be 

completely mapped in the blockchain network in order to ensure a complete traceability, 

authenticity, and auditability of each product and its components. This happens first on a 

software level, whereby the selected platform is integrated into the manufacturing network. 

Subsequently, all supply chain processes must be adapted to the new network and components 

such as the Hash ID must be firmly integrated into the production processes. In doing so, this 

approach does not differ between permissionless and permissioned networks. However, the 

result and the degree of transparency for the customer vary. The steps which are considered 

during the execution phase are shown in Figure 38.  

Figure 38: Considered steps during the execution stage 

4.3.1 DApp implementation 

During the implementation of the decentralised application, the transfer of the created logic 

model to the selected DLT platform takes place. There are no differences between 

permissionless and permissioned network types when transferring the logic model. By 

applying the smart contract logic described in Section 4.2.2, the chronological sequence of the 

physical process can be mapped virtually on the DLT. The implementation takes place in the 

respective programming language of the platform. The Ethereum platform, for example, uses 

‘Solidity’, its own object-oriented programming language to create smart contracts on the 

EVM. The permissioned platform Hyperledger Fabrics refers to smart contracts as so called 

‘chaincodes’, which can be created in the languages Go, node.js, or Java (Blummer et al., 

2018). Since the Turing Completeness is a component of the platform decision process, only 
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platforms that can reliably implement the programming of smart contracts are considered for 

this step. Additionally, each smart contract needs a suitable user interface, which allows the 

users to interact with the code. Even though the program code differs depending on the 

programming language, the logic of the code remains the same. As an example, the format of 

the Hash IDs depends on the embedded hashing algorithms of the platform. The format of 

Hash IDs is more or less similar, since most of the hashing algorithms used by DLTs are based 

on the SHA-256 algorithm, resulting in 64 hexadecimal characters (Dang, 2012, pp. 6–7). For 

example Ethereum smart contracts use the Keccak-256 algorithm, which also results in 64 

hexadecimal characters, only differing in that they always begin with a ‘0x’ (Wood, 2019).   

 The new DLT network can be integrated into the supply chain network software 

environment. Depending on the extent of the DLT use, the DLT network can either supplement 

existing tracking systems or even replace them completely. As described in Section 4.2.1.1, 

central systems can also be integrated as part of the platform to store important information 

about a certain asset at the moment of creating its digital identity. In particular, the main actors 

of the supply chain network must provide the computing power to run the respective 

decentralised platform. Additionally, an address represents each supply chain participant on 

the network. Furthermore, each participant needs an account to trigger transactions. This 

account is also referred to as a wallet, consisting of a public key and private key (Bruehl, 2017, 

p. 136). These addresses linked to the smart contracts allow the participants to create inputs 

via their user interface. In a permissionless network any user is able to create a pair of public 

and private keys. In a permissioned network, on the other hand, the creation of a key pair can 

only be done by a user operating a node. If all these conditions are met, the creation and 

sending of virtual identities on the network can be performed and tested.  

Figure 39 shows a permissionless platform implementation scheme according to the 

model of the manufacturing supply chain. First, the certifier is creating certificate Hash IDs 

and assigning them to the addresses of the suppliers and the manufacturer. The introduction 

of a number of ‘n’ suppliers in this scheme, elucidates the scalability and the possibility of 

continuous extension of this scheme. After receiving the certificate, the suppliers are able to 

create their respective components and submit them to the manufacturer. The manufacturer is 

only able to create the virtual identity of product 1, if the manufacturer’s account owns all the 

required Hash IDs of all components and certificates. All Hash IDs can change ownership as 
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often as desired and, for example, be assigned to the addresses of different distributors, 

retailers or in case of the end product, also to the customer. Due to the immutability of the 

DLT, tracing the history of each virtual asset is possible at any point of the supply chain. Since 

Figure 39 represents a permissionless network, the customer is able to take part in the process 

as a full node. Therefore, customers are able to receive and own parts on the network and to 

have them at their disposal. As illustrated, the customer does not have any access to a smart 

contract and is therefore not able to actively take part in production processes and change the 

product’s composition. It still allows customers to be the verified owner of Hash IDs on the 

network, representing the virtual identity of a physical product.  

Figure 39: Permissionless platform implementation scheme  
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In contrast, Figure 40 shows the implementation scheme of a permissioned platform. The 

entire process to produce a product is the same as on the permissionless network. However, 

the customer has no opportunity to join the network as a node. In this case, the customers only 

get access to a supernode, which is represented by the manufacturer in this example. This 

access can, for example, take place via an internet application. The differences between the 

two implementation schemes, particularly in terms of customer transparency, must be verified 

and validated based on a practical implementation.  

Figure 40: Permissioned platform implementation scheme 
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4.3.2 Shop floor implementation 

As a final step, the network structure must be linked to the physical processes and integrated 

into the shop floor environment. This particularly concerns the embedding of Hash IDs into 

the production process. Hash IDs represent the virtual identity of an asset on the distributed 

network. Therefore, the Hash IDs must be attached to the asset itself. Section 2.1.4.4 already 

introduces the common use of the barcode technology and the RFID technology in tracking 

systems. Both technologies are promising solutions for attaching Hash IDs to physical 

components or products. Which technology is better suited, depends mainly on the nature of 

the asset itself. It is important, above all, that the attached tags can survive the entire life cycle 

of the respective asset. Only then can a product and its components be traced back to their 

origins even years after production.   

1.) Barcode technology. Barcodes or QR represent a cheap and easy method to tag 

products with Hash ID. They are easy to create and are characterised by their longevity. 

Depending on the product they, the size of the code can be adapted. However, too 

small codes cannot be read well by reading devices. This makes this solution 

particularly unsuitable for tiny components.  

2.) RFID technology. When adopting the RFID technology only the use of passive RFID 

chips for attaching Hash IDs makes sense to consider, since active RFID chips do not 

meet the aspect of longevity. Hash IDs usually are of 256-bit lengths, which represents 

a very small data string (Dang, 2012, pp. 6–7). This enables the use of micro RFID 

chips to tag tiny products or components. RFID chips also offer advantages in the 

identification of components which are assembled in such a way that there is no visual 

contact with the reading device.  

Hash IDs remain unchanged throughout their entire lifetime. This also allows you to consider 

engraving this number onto the components or products. This can also be done in the course 

of an adaptive manufacturing process. Thus the product is already provided with the Hash ID 

during the production process and linked to its virtual identity. This approach can be 

particularly advantageous for assembly processes carried out by humans. The Hash ID can be 

recognised with the naked eye and the hands remain free, because no reader has to be used.   
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It is not necessary to commit to one approach or technology for tagging the physical assets. 

The different approaches and technologies can also be mixed within the supply chain. The 

most important aspect is the coordination of the involved participants to enable the planning 

and standardising of production processes. For example, the appropriate reading devices must 

be integrated into the respective production processes to ensure that the right components are 

always selected. In order to guarantee complete traceability of a product and its components, 

it is no longer possible to assemble any arbitrary components. It must be ensured that the same 

components that are assembled on the DLT platform are also assembled in the physical world. 

For this to be possible, components must be clearly identified before each production step. 

Due to the immunity of DLTs, the decentralised application does not allow retroactive 

changes.  

4.4 Proposed framework 
The framework combines a vertical conceptual SCM system implementation process with 

horizontal influencing complexity drivers in order to enable the tracking of manufactured 

goods and all components they consist of by adopting a DLT. This results in a conceptual 

framework consisting of a network design stage, a network planning stage, and an execution 

stage.  

In the network design stage, the framework suggests to identify and categorise all 

stakeholders involved in the manufacturing supply chain. As Figure 41 shows, the complexity 

of the identification process depends on the globalisation of the supply base and the number 

of stakeholders. The identified stakeholders are categorised according to their roles within the 

supply chain, to which the respective network authorities are subsequently assigned. As stated 

in the course of the framework development process, a high number of customers represents 

an unknown number of entities, which in turn results in an unknown number of network nodes. 

Therefore, this stage results in two virtual complexity drivers; the number of nodes and the 

number of unknown nodes. Finally, the stage results in an initial design of the network’s 

structure and all its associated nodes and their respective authorities.    
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Figure 41: Complexity drivers influencing the network design stage 

Based on the network design, the framework recommends defining the respective asset 

compositions in the network planning stage. The complexity of the products and the batch 

sizes influence the complexity of these steps. The definition of the asset composition results 

in logical dependencies between the respective assets, which must be mapped virtually. 

Therefore, with the logical dependencies a further virtual complexity driver is formed. 

Fundamentally, the framework distinguishes between assets with dependencies and assets 

without dependencies. In order to track and trace a product by using a distributed ledger 

technology, each asset must obtain a virtual identity on the distributed ledger which must have 

the same ownership and conversion characteristics as their physical counterparts. To meet 

these requirements the author developed the approach of smart contract-based Hash IDs. The 

framework proposes to define a smart contract logic consisting of models, which determine 

the dependencies for creating and linking the virtual identities logically. Depending on these 

models, it is possible to analyse the number of state changes and ownership changes of each 

asset. Based on this analysis and the number of concurrent processes, it is possible to predict 

the number of transactions per second. The complexity of the platform decisions is impacted 

by all virtual complexity drivers, since a platform must be able to meet all these requirements. 

The complex logical dependencies require the platform to support a Turing Complete 

programming language to enable a mapping of these on a distributed ledger. The scalability 

of distributed ledger technology platforms is currently a limiting factor for decentralised 

applications with high transaction density. Additionally, the platform and in particular its 

consensus mechanism must therefore have sufficient capacity in terms of scalability to support 



83

complex supply chain applications. Depending on the number of known nodes and the number 

of unknown nodes, the platform decision can result in a permissionless platform or a 

permissioned platform. 

Figure 42: Complexity drivers influencing the network planning stage 

In the final stage, the execution stage, the framework describes the holistic implementation 

and integration of the smart contract-based decentralised application. Therefore, the smart 

contract logic models are implemented on the selected distributed ledger technology platform 

and can subsequently be integrated into all production and logistics processes. The 

implementation process itself does not differ between using a permissionless or permissioned 

network. However, it influences the provided customer transparency. The exact impact on the 

customer transparency needs to be verified and validated based on a practical implementation. 

Figure 43 shows the holistic conceptual framework for tracking goods in manufacturing 

networks by using a distributed ledger technology.  
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Figure 43: Conceptual framework for tracking goods in manufacturing networks using a 
distributed ledger technology 
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5  Practical implementation and dApp 
development 

The manufacturing supply chain scenario described in Chapter 3 serves as the basis for the 

practical implementation. All processes of the practical implementation take place according 

to the developed conceptual framework. Since no similar DLT-based solution to solve the 

tracking and transparency problems described in Section 1.2 exists, the practical 

implementation is an essential part in order to validate and verify the feasibility of the 

framework. According to the framework, the practical implementation is divided into the 

network design stage, network planning stage, and execution stage. 

5.1 Implementation of the network design stage 
The stakeholders involved in the manufacturing process are Stellenbosch University, 

Werk150, ESB Business School, and an anonymous German supplier, who will be referred to 

as Supplier B in the course of this implementation process. Stellenbosch University is 

responsible of the footboard production and the German supplier for the rear fork production. 

Together, they represent the suppliers of the two components needed to create the assembly at 

the manufacturer represented by Werk150. The ESB Business School serves as a 

superordinate control unit, which is needed for quality assurance within the supply chain and 

must therefore certify each product of the suppliers and the manufacturer. In order to enable 

an initial implementation, the production of the footboard and the rear fork are first simulated 

within Werk150. The otherwise necessary intermediate delivery processes can therefore be 

postponed at first and the focus can be completely put on the complex virtual mapping of the 

physical assembly processes.  

 As the next step, authorisations in the network will be assigned to individual 

stakeholders. Here, the practical implementation distinguishes between two different 

scenarios. In a permissioned scenario, the customer only gets restricted access via a supernode. 

In a permissionless scenario, the customer gets full access to the network and is also able to 

operate a full node. In the permissioned scenario, the assignment of authorities is an essential 

element. Since the manufacturer and the certifier are essential roles within the manufacturing 

supply chain, these two entities operate a full node. Thus, these entities have access to the 
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whole distributed ledger and are able to verify transactions and network changes. In order to 

avoid having a central decision-maker, the network of the simplified supply chain should also 

consist of at least two full nodes. This guarantees a fair network stability, when the embedding 

of a consensus mechanism can take place. For the suppliers, on the other hand, a light node 

for checking the network transactions is sufficient. In the permissionless scenario, however, 

each stakeholder is able to operate a full node because there no participation restrictions exist. 

Therefore, an assignment of network authorisation can be dispensed with in this scenario. The 

roles of the respective stakeholders and their network authorisations in the different scenarios 

are listed in Table 9. 

Table 9: Enlistment of all stakeholders, their roles, and their assigned network authorisations  

5.2 Implementation of the network planning stage 
According to the conceptual framework, the planning stage starts off with the definition of the 

asset’s composition. The product is represented by the assembly consisting of the footboard 

and rear fork. For this compilation, non-financial assets in the form of certificates are 

necessary. A distinction is made between two different types of certificates; a certificate for 

the production of components and a certificate for the final assembly. Both certificates are 

issued by the same certifier. According to the asset categorisation described in Section 4.2.1, 

the certificates can only be assigned to the category of assets without dependencies, since they 

can be created without depending on any previous actions. The creation of the footboard, the 

rear fork, and the final assembly depend on successfully conducting previous actions and they 

are therefore categorised as assets with dependencies. The creation of the footboard and the 
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rear fork depend on the receipt of the respective certificates Z1. The manufacturing of the final 

assembly requires three assets, the receipt of the footboard, rear fork, and a manufacturing 

certificate Z2. These dependencies are shown in Figure 44.   

Figure 44: Dependencies of all included assets

These dependencies allow the definition of first smart contract models, which are linked to the 

responsible entity. The models are intended to define the logic required to create a virtual 

identity of assets in the form of Hash IDs on the distributed ledger. For example the ESB 

Business School is responsible for the creation of certificates. Therefore, the address of the 

ESB Business School must be linked to the smart contract model of creating the virtual identity 

of the certificates. After the platform decision, the real address will be created on the respective 

DLT platform. For the logic model itself, however, only a clear process assignment is 

necessary. According to the example of the certifier represented by the ESB business school, 

each initial asset creation of the assets shown in Figure 44 is assigned to its process owner. At 

the same time, these models define a first set of shared information to be stored in the Hash 

IDs on the network. As described in Section 4.2.1.1, these can, for example, come from already 

existing central systems. In this example implementation, the focus is only on the essential 

information of the individual assets. Thus, only the ID of the ERP system serves as the 

interface to the central systems. This ID is additionally supplemented with information for 

clear typification, such as manufacturer name and asset name. In order to guarantee the 
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uniqueness of each Hash ID, the timestamp of the DLT is also included during the asset 

creation process. A list of the assets together with all information included is shown in Table 

10.    

Table 10: Assets with their respective shared information 

The asset creation models are supplemented by a model for sending the assets. This allows the 

assets to be sent in a logical sequence that always alternates between creating processes and 

sending processes (Section 4.2.2). Thus, manufacturing processes can be realistically mapped 

on the distributed ledger. While the creation models are clearly assigned to the respective 

entity, the sending models are variably accessible to the current owner of the asset. First, the 

ownership of an asset is assigned to the asset’s creator and is authorised to send this asset, 

represented by a Hash ID, to a new owner. Accordingly, only the address of the new owner 

can trigger further actions regarding the received Hash ID. In the example of the 

manufacturing supply chain, the certificates are non-physical assets, which are assigned to the 

suppliers and the manufacturer. Therefore, in this example the creation and sending of these 

assets can be combined into one model. Conversely, this also means that certificates can only 

be created specifically for the respective entity. Figure 45 shows the holistic smart contract 

model of the example supply chain in the vertically depicted chronological sequence and the 

alternating interrelations of creation and dispatch processes.   
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Figure 45: Holistic smart contract logic models of the manufacturing supply chain 
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According to Section 4.2.2.1, based on the smart contract logic, first predictions about the 

number of transactions per second can be made. As the logic model of Figure 45 demonstrates, 

every virtual asset can experience both changes of state and changes of ownership. Only the 

smart contract logic of creating and sending the certificates summarises the changes of state 

and changes of ownership in one transaction. Therefore, the holistic logical process is as 

follows: The certifier (ESB Business School) creates certificates and assigns their ownership 

directly to the suppliers (Stellenbosch University and Supplier B) and the manufacturer 

(Werk150). After receiving the certificates, the suppliers create the corresponding parts for the 

footboard and rear fork. According to the smart contract logic, the creation of these two 

components results in a change of state transaction on the distributed network. After a 

successful creation, the two components are sent to the manufacturer, which results in a change 

of ownership transaction. After the manufacturer Werk150 successfully receives the two 

components, Werk150 is able to create the final assembly, which again causes a change of 

state transaction. This assembly can then also be sent to a new owner. On this basis, a test 

scenario can be simulated with all possible concurrent processes. Based on this simulated 

scenario the maximum number of transactions per second of the application can be predicted. 

In this scenario, all functions of the smart contract logic are triggered simultaneously. This 

means that all entities will simultaneously create one asset and send one asset within the same 

time interval of one second. Therefore, the equation introduced on page 67 to calculate the 

prediction of transactions per seconds is used.  

PTPS		 :	Predicted transactions per secondsn		 :	Changes of state of assetnon		 :	Changes of ownership of assetn∆ݐ		 :	Time interval in seconds  

ܲܶܲܵ ൌ ௦భା ௢భ∆௧ ൅ ௦మା ௢మ∆௧ ൅ ⋯൅ ௦೙ା ௢೙∆௧   =  ∑ ሺ௦೔ା௢೔೙೔సభ ሻ∆௧                (1) 

An adaption equation (1) results in the calculation below. Thereby, asset1 refers to the 

certificate, where the changes of state and the changes of ownership have been summarised to 

one transaction. Figure 45 shows, all other entities have access to interfaces which allow the 

triggering of transactions caused either by a change of state or by a change of ownership. 

Accordingly, Asset2 refers to all changes that affecting the component footboard. Asset3
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designates the all changes of the rear fork. Finally, asset4 designates all changes of the final 

assembly within the time interval of one second.  

7	ܲܶܲܵ ൌ ଵభଵ௦ ൅ ଵమାଵమଵ௦ ൅ ଵయାଵయଵ௦ ൅ ଵరାଵరଵ௦                  (2) 

As equation (2) shows, the triggering of all modelled smart contract functions at the same time 

result in 7 transactions per second. Accordingly, this value can be used to select a suitable 

platform in the later course of the practical framework implementation.   

5.2.1 Implementation of the platform decision 

As described in Section 4.2.3, a fundamental aspect of the platform decision is the Turing 

Completeness of the platforms to be considered. The enables the mapping of the logical links 

and extensive relationships of manufacturing supply chains. Therefore, platforms are first 

preselected according to this criterion. The BCT in particular represents the most advanced 

DLT in this aspect. Other DLT technologies, such as Tangle or the Block-lattice architecture, 

do not yet provide the embedding of smart contracts for the creation of dApps at the time of 

writing this work.  

 IOTA, a cryptocurrency based on the DLT called Tangle, targets specifically meeting 

the need of the Internet of Things (IoT) by adapting the DLT (Popov, 2018a). IOTA as a 

solution for tracking goods of global supply chains is a fundamental part of the IOTA business 

model (IOTA, 2019). However, at the time of writing this work, the platform IOTA does not 

include any tools to implement such complex applications on the platform and is only 

restricted to the use of IOTA as a cryptocurrency. Even though the developer team of IOTA 

is currently working on a solution named ‘Qubic’, a protocol that will inter alia include smart 

contracts, their website still states that “there are no hard dates yet” (qubic.iota.org, 2019). A 

similar picture can be seen at the platform Nano, a representative of block-lattice architecture 

technology. This platform is also limited to use as a cryptocurrency at the time of writing this 

work and does not provide any information about embedding smart contracts in the future 

(LeMahieu, 2017).    

 Based on the BCT, there are several platforms with embedded smart contracts 

supporting Turing Completeness. The largest platforms with the most comprehensive 
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capabilities for creating dApps are the permissionless platforms Ethereum and EOS, and the 

permissioned platform Hyperledger by the Linux foundation. According to the financial rating 

agency, Weiss Ratings, the EOS and Ethereum are currently the leading cryptocurrencies. 

Especially due to the scalability problems of Ethereum, EOS is more and more challenging 

Ethereum to become the best smart contract platform (Barclay, 2019). Linux Foundation’s 

Hyperledger is the permissioned opponent of permissionless BCT platforms. The Hyperledger 

project itself, is a combination of codebase from IBM, Digital Asset Holdings, and 

Blockstream to create a modular design which is capable of supporting different 

implementations of distributed ledger-based solutions for enterprises. One aspect central to 

the Hyperledger design is the strong support for complex identity management with built-in 

certificate authority systems (Lee & Deng, 2018, p. 173). As described in Section 2.3, most of 

the current pilot projects combining the BCT and supply chain management are based on 

Hyperledger Fabrics. 

 To choose a suitable platform in order to practically validate and verify the feasibility 

of the conceptual framework, a utility analysis of the three platforms Ethereum, EOS, and 

Hyperledger Fabrics is conducted.  

5.2.1.1 Methodology of the platform selection  

The utility analysis serves as methodology to select a suitable platform. In general, utility 

analyses are used to make complex decisions, which require the consideration of many 

different aspects. Therefore utility analyses use the principle ‘fragmentation’, where the 

overall problem to be decided is broken down into subproblems. Thus, the emotional 

attachment to a spontaneous preference for a desired solution is dissolved and the respective 

partial solutions can be discussed rationally (Kuehnapfel, 2019, pp. 1–4).  

 For the utility analysis, white papers and technical descriptions of the concerned 

platforms serve as the main sources. Furthermore, previous research papers are considered 

which have already dealt with a property comparison between the different platforms. These 

data are finally supplemented with different online sources to generate a recent data situation, 

especially regarding the scalability of the different platforms. Table 11 enlists all considered 

sources for the utility analysis.  
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Table 11: Sources used for the platform selection 

Before the decision-making process begins, a selection of the different decision alternatives is 

made (Kuehnapfel, 2019, p. 8). In the case the practical implementations of the framework, 

the platforms Ethereum, EOS, and Hyperledger Fabrics are considered. Table 12 shows a first 
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comparison between the basic parameters of the considered decision alternatives based on the 

sources shown in Table 11. 

Table 12: Basic parameter comparison between the platforms Ethereum, EOS, and 
Hyperledger Fabrics   

After defining the decision alternatives, the approach of the utility analysis defines relevant 

decision criteria. To find suitable criteria is both an analytical and a creative process, which 

results in a list of criteria facilitating the decision process. Once all criteria relevant for the 

evaluation of the alternatives have been found, the significance of each individual criterion for 

the final decision must be determined. The significance is expressed by means of a ratio which 

measures the relative significance of each individual criterion for the problem. The sum of all 

ratios is 100%. Although the concrete determination of the significance can be subjective, it 

is always comprehensible and can be justified at any time (Kuehnapfel, 2019, pp. 8–18). For 

the selection of a suitable platform, the criteria can be derived from the conceptual framework. 

In this context, it is important to mention that the selection of a platform aims to practically 

validate and verify all aspects of the conceptual framework. The chosen platform should 

ensure this as holistically as possible, resulting in a more comprehensive fulfilment of criteria. 

The list of the criteria and their weightings are explained below. The number in brackets 

represents the respective ratio in percent. Since all three platforms are open source, the price 

does not have to be considered as a decision criterion. 



95

1.) Suitability of programming languages (30%). According to the platform decision flow 

(p. 75), the Turing Completeness represents an essential aspect when implementing 

complex smart contract-based applications. The programming languages accepted by 

the respective platform must therefore also be able to map non-financial applications. 

Since the implementation of the framework is a completely new application without 

any existing comparable programs, the knowledge of the programming language and 

its functions should be as easily accessible. Since the success of the implementation 

depends significantly on this criterion, the ratio is set at 30%. 

2.) Scalability (30%). The platform decision flow shows that the scalability of the platform 

has a major impact on the platform’s chosen operation mode. At the same time, 

insufficient scalability leads to complications in the temporal sequence of the triggered 

transactions. To ensure a smooth implementation, the platform should be able to 

process at least the predicted number of transactions per second. Since a too low 

scalability can lead to significant disruptions in the process, the ratio is also set to 30%. 

3.) Decentralisation/Security (20%). As described in Section 4.2.3.1, the decentralisation 

of a platform is directly related to the architecture of its consensus mechanism. When 

only a low number of nodes is involved in the transaction validation process, these 

nodes provide critical vulnerabilities to the network’s security. Although such 

weaknesses have no direct influence to prove the practical feasibility of the framework 

itself, it questions the security in terms of the repeatedly mentioned immutability when 

tracking goods by adopting a BCT. Therefore, this criterion is weighted at 20%.  

4.) Use as a permissionless platform (10%). The framework proposes two possible 

different operation modes. Therefore, the practical implementation must either be 

tested and validated based on the implementation of a permissionless platform, or on 

the implementation of a permissioned platform. In the best case scenario, one platform 

can be operated in both modes. If the advantages of the previous criteria predominate 

to such an extent even though a platform can only be operated in one of the two 

operation modes, an implementation of two different platforms can be considered; one 

platform for permissionless implementation and one for permissioned implementation. 
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Since such a decision depends strongly on the score of the previous criteria, this 

criterion receives a ratio of 10%.   

5.) Use as a permissioned platform (10%). The considerations of the previous criterion 

also apply to the use of a platform in a permissioned operation mode. If the advantages 

of the first three criteria predominate to such an extent even though a platform can only 

be operated in a permissioned operation mode, an implementation of a permissioned 

platform can be considered to specifically verify and validate this aspect of the 

framework. Therefore, the ratio of this criterion is also set to 10%.

In the utility analysis, the individual criteria are evaluated according to a defined evaluation 

scale (Kuehnapfel, 2019, pp. 16–20; Schlink, 2019, pp. 428–441). For the utility analysis to 

select a suitable platform, a five-point rating scale was chosen, with 0 representing the worst 

rating and 5 representing the best rating. The exact rating scale and the specific meanings of 

each score are listed in Table 13.  

Table 13: Rating scale used for utility analysis 

As the final step of the utility analysis, each score for each criterion is multiplied by the ratio 

of the respective criterion. The sum of all evaluated criteria results in the final score of the 

respective decision alternative. The decision alternative with the highest score represents the 

solution that meets the requirements to the greatest extent (Kuehnapfel, 2019, pp. 16–20; 

Schlink, 2019, pp. 428–441). The final result of the utility analysis is presented in Table 14.   
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Table 14: Result of the utility analysis in order to select a suitable platform 

As the result shown in Table 14 shows, the Ethereum platform with a total score of 4.6 is the 

preferred solution in order to practically implement the conceptual framework. In the first 

criterion, the suitability of the programming language, Ethereum is the only platform that 

receives a score of 5 points. Ethereum is the only platform in this comparison, that supports 

with ‘Solidity’ a programming language specifically designed to develop smart contracts [1,7]. 

Additionally, this programming language is also the most popular programming language for 

blockchain developers according to an analysis of the ‘StackOverflow’ software development 

platform [13]. Hyperledger Fabrics supports several programming languages, whereby 

JavaScript is the second most popular programming language among software developers 

[3,13]. As a result, Hyperledger Fabrics receives a score of 4 points in this category. EOS only 

allows users to program smart contracts in C++, which is considered to be a cumbersome 

programming language by blockchain developers [5,13]. Therefore EOS gets only 3 points in 

this category.  

In terms of scalability, all platforms are capable of processing the predicted 

transactions per second of the model supply chain.  However, the Ethereum platform with its 

25 TPS, is already quite close to calculated 7 TPS. Even the supply chain for the application 

has deliberately been simplified. With 4,000 TPS (EOS) and 3,500 TPS (Hyperledger Fabrics), 

the other two platforms are well above the requirements [2,11,12]. Therefore, only Ethereum 

with a score of 4 points, does not get the maximum score in the Scalability criterion. 
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The PoW consensus algorithm of Ethereum represents the most decentralised consensus 

mechanism among the compared platforms [1]. A ‘51% attack’ (described in Section 2.2.2.3), 

at the Ethereum network actually means a simultaneous manipulation of 51% of all nodes 

participating at network. As a conclusion, this mechanism can be considered as extremely 

secure. EOS uses the delegated PoS algorithm, which also represents a decentralised 

consensus algorithm. Unlike Ethereum, this does not involve the entire network, but only a 

selected group of 21 nodes in the block creation process [6]. Consequently, Ethereum receives 

a score of 5 points and EOS a score of 4 points in this criterion. In Hyperledger Fabrics, 

particularly PBFT-based consensus mechanisms are involved. PBFT mechanisms assume that 

all identities of the participating nodes are known, which leads to some reservations, especially 

in terms of decentralisation [9]. Therefore Hyperledger Fabrics receives 3 points in this 

criterion.  

 The evaluation of the use as a permissionless network is relatively straightforward. 

Since Ethereum and EOS are both Platforms that were originally designed to be open to the 

public, these two platforms are perfectly suitable for the use as permissionless networks [1,4]. 

Hyperledger Fabrics however, can only work reliably in a permissioned set up, due to its 

PBFT-based consensus mechanism [9]. Accordingly, this criterion cannot be met by 

Hyperledger Fabrics. Conversely, Hyperledger Fabrics is ideally suited for use as a 

permissioned platform. This also applies to the EOS and Ethereum platforms, since public 

networks are also suitable for use as permissioned networks [8,10]. Additionally, as described 

in Section 4.2.3.1, the consensus algorithm PoW can be executed efficiently by standardising 

the ‘difficulty’ value of the algorithm in permissioned networks.  

 In summary, the Ethereum platform with its own programming language, Solidity, 

offers an excellent possibility for the practical implementation of the framework. The platform 

compensates for the low scalability through a high degree of decentralisation and security. In 

addition, the platform is suitable for use as a permissionless as well as a permissioned 

platform. Consequently, in this research the practical verification and validation of the 

proposed framework will be based on the Ethereum platform. The public Rinkeby network 

serves as a permissionless environment. In order to have a permissioned environment 

available, an own permissioned Ethereum network is set up. 
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5.2.2 Set up of a permissioned Ethereum network 

Based on the outcome of the network design stage and network planning stage a private 

Ethereum network will be set up. First of all, the appropriate hardware is selected in order to 

guarantee a network structure as described on page 86. As described during the design stage, 

the manufacturer and the certifier are essential roles within the manufacturing supply chain 

and are therefore represented on the network by operating full nodes. Due to the higher 

processor performance of full nodes, the full nodes in the permissioned network consist of 

desktop computers with an Intel Core i7 (2.90 GHz) processor and 16 GB RAM. The 

manufacturer's node (Werk150) is used as a supernode to give customers access to the 

blockchain data. For the suppliers a light node for checking the network transactions is 

sufficient. The light nodes of the network each consist of Raspberry Pi 3 with a processing 

speed of 1.40 GHz and 1 GB RAM. On all systems the Ethereum client called ‘Geth’ is 

installed.    

1. {  
2. "nonce": "0x0000000000000042",  
3. "mixhash": "0x0000000000000000000000000000000000000000000000000000000000000000",  
4. "difficulty": "0x400",  
5. "alloc": {},   
6. "coinbase": "0x0000000000000000000000000000000000000000",  
7. "timestamp": "0x00",  
8. "parentHash": "0x0000000000000000000000000000000000000000000000000000000000000000",  
9. "extraData": "0x436861696e536b696c6c732047656e6573697320426c6f636b",  
10. "gasLimit": "0xffffffff",  
11. "config": {  
12. "chainId": 42,  
13. "homesteadBlock": 0,  
14. "eip155Block": 0,  
15. "eip158Block": 0  
16.  }  
17. } 

Listing 1: Source code of the genesis file 

To generate the first block of blockchain, a ‘genesis.json’ file is created. This file defines all 

important characteristics of the network. The analysis conducted in Section 4.2.3.1.1, 

concludes that the determination of a fixed ‘difficulty’ can reduce the required processor speed 

in permissioned PoW-based blockchain networks. Listing 1 shows the source code of the 

genesis file. As line 4 states, the difficulty of the network is set to a value of “0x400”. This 

low value enables the 2.90 GHz processors a fast transaction validation with low energy 

consumption at the same time. In line 12, the genesis file defines the ID, which allows other 
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nodes to connect to the network. The ID “1” for example, is already used by the Ethereum 

main network. The permissioned network for this work uses the network ID “42”.      

The difference from a permissionless network is, that other nodes can only join the 

network, when their address is added to a ‘static-nodes.json’ file. This file is shared among all 

network participants with a list of all participating nodes. Only if all nodes have the same 

‘static-nodes.json’ file stored locally in their Ethereum blockchain folder, will they be able to 

connect to the platform. This ensures that only selected nodes are able to join the network. 

Each node of the network is able to create accounts consisting of a pair of public and private 

keys.  A list of all entities, their roles, and the corresponding Ethereum address is shown in 

Table 15.  

Table 15: Roles and their corresponding Ethereum addresses  

5.3 Implementation of the network execution stage 
This section describes the programming and implementation of the dApp, as well as the 

implementation in the shop floor. The source codes are attached to the Appendix of this work. 

This section only focuses on the most essential elements of the source code and their functions. 

Finally, the description of the operational process is presented.   

5.3.1 Development of the dApp 

The smart contract forms the basis of the dApp and is programmed in Solidity programming 

language. The defined roles must be connected to their addresses when deploying the smart 

contract on the network. This enables all entities to later have access to their functions such as 
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creating assets. As Listing 2 shows, the roles Certifier, Supplier A, Supplier B and the 

Manufacturer are defined in this smart contract. To enable that, the manufacturer is, for 

example, represented by Werk150 in the application, their address shown in Table 15 must be 

linked to this role ‘manufacturer’ at the moment of the smart contract deployment. This is an 

essential part of the smart contract, since it defines that an entity only has access to functions 

intended for specifically that entity. To manage the public and the private key of each entity, 

this approach uses the open source ‘Metamask’ Ethereum wallet.   

1. pragma solidity >=0.5.8;  
2. contract SupplyChain{   
3.     address certifier;  
4.     address supplierA;  
5.     address supplierB;  
6.     address manufacturer;  

Listing 2: Source code for defining the roles at the moment of smart contract deployment 

In order to be able to trace logical dependencies within the smart contract, Solidity offers the 

so-called ‘mapping’ reference type. Mappings can be seen as hash tables which are virtually 

initialised. Therefore, the key data is not stored in a mapping, only its hash to look up the 

value. Since Ethereum uses the Keccak-256 hashing algorithm, this hash is formatted 

according to the algorithm’s specific format. This makes the ‘mapping’ reference type suitable 

for managing the Hash IDs and their history. In addition, a memory is created for each role, 

which is used to store the Hash IDs owned by the respective role. With a simple ‘get’ query 

function, any entity can have access to the status of the owned Hash IDs at any time. This 

connection is shown in the following source code. In this context, Listing 3 shows as an 

example the memory of all certificates owned by Supplier A and the corresponding ‘get’ 

function.  

1. bytes32[]  govtToSupplierACertificates;     
2.
3. function getSupplierACert() public view returns (bytes32[] memory){  
4. return govtToSupplierACertificates;  

Listing 3: Connection between memory and ‘get’ function in the source code 

Based on this architecture, the product compositions can be transferred to the smart contract.  

Listing 4 shows the source code of the final assembly’s product composition, which was 

defined in the smart contract logic model (Section 5.2). Lines 7-9 define that the product 
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consists of a Component A from Supplier A, a Component B from Supplier B, and a Certificate 

from the Certifier.  

1. struct Product{  
2.     string nameOfProducer;  
3.     string typeOfProduct;  
4.     string serialId;  
5.     string date;  
6.     bytes32 certificateHash_p;  
7.     bytes32 certificateHash_sup_a;  
8.     bytes32 certificateHash_sup_b;  
9.     bytes32 certificateHash_govt;  
10. }  

Listing 4: Source code of the assembly’s products composition 

The Hash IDs are also created by the Keccak-256 hashing algorithm. To guarantee the 

uniqueness of each Hash ID, the blockchain’s timestamp as a variable is included when 

hashing all information. This is shown in Listing 5 at the example of Component A, 

representing the footboard. The source code was simplified to illustrate the essential aspects 

of the procedure. The product information has been summarised and is therefore written in 

italics. The whole source code can be found in Appendix B. Line 2 shows the involvement of 

the timestamp function when hashing the information with the Keccak-256 algorithm. Line 3 

specifies that only the address of Supplier A has access to the function. In Line 4, the status of 

the involved certificate is set to ‘used’. This guarantees that the same certificate cannot be 

used twice. Finally, in Line 5 the new Hash ID is added to the memory of the parts owned by 

Supplier A.  

1. function CreateComponetA(Product Information)   
2. public{bytes32 certHash = keccak256(abi.encodePacked(Product Information,block.timestamp));  
3. if(_address == supplierA){  
4.          govtToSupplierAHistory[_certHash].used = true;  
5.          supplierAParts.push(certHash);  
6.      }  
7. }  

Listing 5: Simplified source code for the creation of the Hash ID of Component A 

The history of the assembly’s Hash ID to enable tracking and auditability of all involved assets 

can be checked with a function summarising the ownership history of each component (Listing 

6).  
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1. function getCertificateHistory(bytes32 _certHash) public view returns (bytes32,bytes32,bytes32,bytes32){  
2. return(productDetails[_certHash].certificateHash_p,  
3.     productDetails[_certHash].certificateHash_sup_a,  
4.     productDetails[_certHash].certificateHash_sup_b,  
5.     productDetails[_certHash].certificateHash_govt); 

Listing 6: Source code to receive the history of the assembly 

In order for users to have access to the smart contract and its functions, a GUI must be set up. 

In this approach, the interface ‘ReactJS’, a JavaScript library for building user interfaces was 

selected. To connect the ReactJS GUI with the smart contract and to enable an interaction, the 

Ethereum platform requires a specific Contract Application Binary Interface (ABI) stored in 

JSON format. Therefore, the encoding is carried out according to the schema of the Ethereum 

Revision (2019). According to this scheme, for example the Solidity source code shown in 

Listing 6, results in the JSON source code ABI of Listing 7.  

1. "name": "productDetails",  
2. "outputs": [  
3.               {  
4. "name": "nameOfProducer",  
5. "type": "string"
6.               },{  
7. "name": "typeOfProduct",  
8. "type": "string"
9.               },{  
10. "name": "serialId",  
11. "type": "string"
12.               },{  
13. "name": "date",  
14. "type": "string"
15.               },{  
16. "name": "certificateHash_p",  
17. "type": "bytes32"
18.               },{  
19. "name": "certificateHash_sup_a",  
20. "type": "bytes32"
21.               },{  
22. "name": "certificateHash_sup_b",  
23. "type": "bytes32"
24.               },{  
25. "name": "certificateHash_govt",  
26. "type": "bytes32"

Listing 7: JSON ABI resulting from the history function of the assembly 

The source codes of the smart contract and the respective ABI can be found in the Appendix 

of this work. 
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5.3.2 Operational process description 

The operative process starts with the preparation of certificates. Since the certificates represent 

non-physical assets, the creation takes place only virtually. Figure 46 illustrates the sequence 

of all necessary steps in order to create valid certificates on the Ethereum blockchain. As the 

first step (1), the Certifier represented by the ESB Business School, fills in all information 

required to specify the certificate. Next (2), the Certifier chooses the type of certificate. Either 

it is a certificate for the suppliers, or a certificate for the manufacturer. As described in Section 

5.2, the certificate creation and the certificate sending process, are put together into one 

transaction. Therefore, the address of the receiver must be selected as the third step (3). Finally 

(4) the certificate can be created and sent to the selected receiver. Pressing this button results 

in a transaction on the blockchain network. The certificate creation is performed until each 

entity is provided with at least one certificate.  

Figure 46: Process sequence of the certificate creation 

After the suppliers have received their certificates, they can start the production of their 

components. The process is illustrated in Figure 47 using the example of the footboard 

producer represented by Stellenbosch University. The procedure for the supplier of the rear 
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fork is very similar, since both suppliers use the same interface. First the physical component, 

the footboard, is produced. After the production process has been successfully completed and 

the quality has been checked, the virtual identity of the footboard can be created on the 

blockchain. For this purpose, the information specifying the footboard is filled in on the 

interface (5). The entered ID corresponds to the footboard’s ID from the ERP system. In order 

to be able to create the Hash ID of the footboard, first the previously received certificate must 

be selected (6). Afterwards, the creation of the Hash ID can be initiated (7). After its creation, 

the Hash ID is located in the ‘virtual inventory’ of the supplier, which is connected to the 

wallet of the supplier. By attaching this Hash ID to the physical component, the component 

can be linked to its virtual identity. For the attachment of the Hash IDs to the components and 

the assembly, the QR Code technology was chosen. On the one hand, both the footboard and 

the rear fork have large areas with enough space to attach readable QR codes and on the other 

hand, QR code printers can easily be integrated into the production process. Furthermore, the 

camera of almost every smartphone can be used as a QR code reading device. The QR code 

stores only the Hash ID, which enables clear identification of each component (8). The 

component can now be sent to the manufacturer simultaneously in both ‘worlds’, physical and 

virtual, on the blockchain. In order to send the Hash ID virtually, the address of the 

manufacturer must be typed in as receiving address (9), which corresponds to the address of 

Werk150 in Table 15 on page 100.  

Figure 47: Process sequence of the component production  
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The manufacturer can start to assemble the two components if a certificate, the footboard, and 

the rear fork are in his physical inventory as well as in his virtual inventory. This process 

sequence is illustrated in Figure 48. Before each step, it is essential to clearly the identify of 

each component to avoid mistakes and to ensure a smooth virtual mapping of the process. 

Therefore, the Hash ID of each component must first be verified with a reading device (10). 

After the identification, the two parts can be assembled physically and virtually. As with all 

previous assets, the assembly’s specifying information must first be filled in (11). 

Additionally, the Hash IDs of all used components must be selected (12). Since this process 

is not reversible, the used components should be checked carefully, to guarantee a matching 

of the physical and virtual process. Lastly, the newly created Hash ID must be converted to a 

QR code and attached to the assembly (13).    

Figure 48: Process sequence of the assembly manufacturing   

All information about every assembly can be retrieved via a user interface. As Figure 49 

shows, the interface provides the user with information about the ownership, producer identity, 

and composition of the assembly. Although all values are given in the Ethereum typical 

hexadecimal format, it illustrates the correspondence of the data. For example the address of 

the producer corresponds exactly to the address of Werk150 shown in Table 15 on page 100. 

Also, the Hash ID of the involved footboard matches the Hash ID of the footboard created in 

Figure 47. The components are thus fused in a ‘virtual assembling’ process to form a new 
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identity, which represents the identity of a new product. At the same time, this new identity 

contains the information of all involved assets and entities, which enables not only a tracking 

but also the immutable auditability of every single component on the blockchain.     

Figure 49: User interface to retrieve all information about the composition and the history of 
an assembly 

The access to the interface shown in Figure 49, represents the main difference between running 

the dApp on a permissionless or permissioned network. On a permissionless blockchain, any 

address can access this interface and track the composition of the individual assets. In a 

permissioned environment however, only the entities with permission can access the interface. 

Nevertheless, the information can be processed for all entities that do not participate at the 

network and made accessible, for example, via another application. As described in Section 

4.1.2, this function can be taken over by a supernode. However, it must be noted that this data 

can no longer have the immutability characteristics of DLTs. Accordingly, the data can be 

manipulated by the supernode. Therefore, the transparency guaranteed with such a construct 

can only be regarded as restricted transparency for a customer or other entities that are not 

participating in the network.  
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6  Verification and validation of the 
framework 

The framework combines a vertical conceptual SCM system implementation process with 

horizontal influencing complexity drivers. As a result, the framework proposes an adoption of 

the DLT in order to enable the tracking of manufactured goods and all components they consist 

of. Since the framework proposes an entirely new approach by adopting the DLT, its feasibility 

is verified and validated based on the results of the practical implementation. A central element 

of this framework is represented by the implementation of smart contracts. These serve as a 

foundation for creating dApps, which are able to map complex relationships and logical 

dependencies of manufacturing supply chains. Therefore, the immutability and security of the 

smart contract will first be verified and validated. Subsequently, it is verified and validated to 

what extent the practical blockchain-based implementation enables the tracking of 

manufactured goods. Finally, the achieved customer transparency is verified and validated.   

6.1 Smart contract immutability and security  
From the moment of smart contract deployment, the source code of the whole dApp is 

unchangeable. In this context, no differences between permissioned and permissionless 

networks were to be found. On both networks, smart contracts receive a unique address when 

deploying them on the network, which allows the interaction with the smart contract. 

Therefore, all users accessing to the same smart contract address always use exactly the same 

source code. Retroactive changes or manipulations can be considered impossible, because the 

deployment of a modified source code inevitably results in a completely new smart contract 

on the network, represented by an entirely different and new address. This makes a secret 

changing or updating of the source code impossible.  

Due to the immutability of the source code, security mechanisms must be defined 

within the source code itself. Therefore it is necessary to firmly link the address of each 

respective entity to the functions specifically intended for a certain entity. Since only the 

respective entity has the appropriate private key, this entity is the one capable of triggering 

actions linked to its address. This mechanism could not be circumvented in the practical 

implementation of the framework.  Any attempt to access the functions intended for a certain 
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entity with the address of a wrong entity is immediately interrupted by an error message. The 

error resulting from such an attempt is shown in Figure 50.   

Figure 50: Attempting to access a functions with an unauthorised address results in an 
indispensable error of the system     

Another protective mechanism is the precise specification of dependencies within the source 

code of the smart contract. The different certificate types of the certifier provide a suitable 

example of this. The certifier is on the one hand entitled to create certificates for the suppliers 

and on the other hand to create certificates for the manufacturer. The source code excludes the 

possibility of the certifier providing a supplier with manufacturing certificates. Accordingly, 

such an attempt will result in an error message and the prevention of such transaction. Thus, 

by defining clear dependencies within the source code, inconsistencies can be prevented and 

excluded in advance. At the same time this also shows the enormous importance of the 

accuracy during the network design stage and the network planning stage of the framework. 

Due to the immutability of smart contracts, unnoticed dependencies can lead to significant 

security vulnerabilities which cannot be easily removed in the stage of execution.   

The practical implementation of the framework proves that the immutability can be 

seen as a given component of DLT-based smart contracts with a significant benefit in the 

security of such applications. In order to guarantee a secure operation, the structure of the 

smart contract’s source code itself is of importance. In this code, all processes must be clearly 

linked with the responsible entities to create clear ownerships of the smart contract functions. 

Additionally, clearly defined dependencies help to avoid errors and discrepancies within the 

application. This requires a detailed network design and network planning because retroactive 

changes to the smart contract are complex due to its immutability after having been deployed 

on the network. In order to minimise this problem, it is possible to develop mechanisms within 

the source code, which allow retroactive changes without questioning the decentrality of the 
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application. An example for this could be the use of complex decentralised voting mechanisms 

embedded into the source code of the smart contract, which would give every participant the 

opportunity to vote on possible changes or updates.  

6.2 Tracking manufactured goods by using a distributed 
ledger technology  

To enable the tracking of manufactured goods by using a distributed ledger technology the 

framework proposes the establishment of a virtual identity representing assets on the 

distributed ledger. In doing so, the transactions resulting from an asset change of ownership 

and change of status can be recorded on the distributed ledger to verify its position and status. 

As a virtual identity the framework elaborates the approach of creating Hash IDs, which 

logically result from hashing input data in order to provide initial information about the origin, 

the composition, and the time of creation of the asset they refer to. The respective hashing 

algorithm of the selected platform is used for creating the Hash IDs. Including the timestamp 

when creating a Hash ID guarantees its uniqueness which results in each asset having a unique 

virtual identity.  

 As the practical implementation is demonstrating, this approach enables the successful 

creation of unique virtual identities. Since the Ethereum platform was chosen for the 

implementation, the hashing algorithm Keccak-256 is used to create the Hash IDs, consisting 

of 64 hexadecimal characters. The uniqueness is guaranteed by the hashing algorithm itself. 

This allows the theoretical creation of 2128 different virtual identities (Bertoni et al., 2013). 

Accordingly, the chance of two identical Hash IDs can be considered as practically impossible. 

In the practical implementation, the barcode technology in form of QR codes was chosen to 

link the Hash ID with the physical asset. This solution effectively implements the linking of 

physical components to their virtual identities. Especially due to the fast creation of QR codes 

and the availability of reading devices, this technology can easily be integrated into production 

operations. The practical implementation shows that the identification of each component 

before every assembly step is important. During the validation process, the identification of 

components was carried out by the employees. However, this also slows down operational 

processes. The use of robots could speed up this process. Robots could identify components 

and pre-sort them before handing them over to the employee.  
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Similar to financial transactions, the Hash IDs can be sent in order to change their authorised 

owners on the distributed ledger. Each change of ownership is carried out in the form of a 

transaction on the network. The information about the virtual owner of the Hash ID thus 

provides information about the current location of the asset. In addition, Hash IDs can be 

merged virtually, for example, when components are assembled. This status change also 

results in a transaction on the network. Thus not only the location and the owner of an asset, 

but also the status and composition can be identified. As the practical implementation of the 

framework proves, a DLT-based supply chain application goes beyond the traditional use of 

tracking solutions. Since all transactions can be traced at any time, the entire history of an 

assembly is verifiable for all network participants. The result is a database-like structure that 

logically links the virtual identities in the course of time. Every new identity is a logical result 

of all virtual identities it consists of. This allows tracking of the history of all manufactured 

goods and all components they consist of. This relationship is shown in Figure 51.  

Figure 51: Database structure linking the virtual identities in a course of time

Not only can every component be traced virtually but also it also can be checked for 

consistency with the physical components. In practice this interaction between the virtual 

identity and their physical counterpart proves to be effective and precise. During the validation 

process, 100 assets were created on a permissioned and a permissionless network. All assets 

and their composition could be traced back error-free via the interface. However, there were 

still differences between the permissioned and permissionless applications in terms of 

temporal accuracy.  
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6.2.1 Time accuracy differences between a permissioned and 

permissionless application 

To verify the accuracy of DLT-based tracking processes, 100 assets are created on both the 

permissionless and permissioned network. As described before, the creation of virtual assets 

results in transactions on the distributed network. For the verification, the time between the 

triggering of a transaction and its confirmation is measured. This is particularly interesting as 

the blockchain is often connected with the possibility of enabling real-time tracking within 

supply chains (Frost & Sullivan, 2019, p. 12).  

As a test environment for the permissionless network the application is put on the 

Ethereum Rinkeby test network (Section 5.2.1). As test environment for the permissioned 

network, their own Ethereum network described in Section 5.2.2 is used. On the Rinkeby test 

network free test Ether can be used. The 100 transactions on the Ethereum main network, 

however, would have caused transaction fees of about $0.4. On the own permissioned 

network, there are no transaction fees for all network participants. 

Figure 52: Transaction confirmation times of the Ethereum Rinkeby network 

Figure 52 shows the distribution of the transaction confirmation times in a permissionless 

environment. As the figure shows, the state of an asset and its location on the Rinkeby network, 

can be tracked with a mean accuracy of 15.05 seconds. The shortest confirmation took 6 

seconds and the longest confirmation 28 seconds. In the case of the practical implementation 

these values do not lead to bottlenecks, as there is significantly more time between the 
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individual processes. But as stated in Section 6.2.1, the framework also considers the 

possibility of a more detailed tracking for example with each machine within a production line 

having its own address on the network. If a component changes its position between two 

machines in the physical world, the component also passes into virtual possession from one 

machine to the other. Thus the exact location of an asset can be tracked within the production 

line by tracking the virtual possessions. However, as the test results show, this can only be 

done on a permissionless network if there is enough time between each process for the network 

to confirm the transactions. For example, it is not possible for an asset to change the owner if 

the creation of this asset has not yet been confirmed by the network. Since the virtual and 

physical processes must run simultaneously, such a delay would cause disruption of the entire 

production process. Therefore the time intervals between the processes cannot be based on the 

mean transaction confirmation time. The time intervals between the processes must at least be 

as high as the maximum confirmation time in order to avoid conflicts. In case of the tested 

example manufacturing supply chain, the time intervals between each process must therefore 

be at least 28 seconds on the permissionless Rinkeby network. This is the only reliable way to 

avoid procedure bottlenecks caused by delayed transaction confirmations.  

In the permissioned network, the entire capacity of the network is available to the 

decentralised tracking application. At the same time, a low and fixed level of difficulty is 

defined in the genesis block of the blockchain. This allows the mining nodes to confirm 

transactions within a second or less, which allows a very accurate tracking of the status and 

location of each asset. Accordingly, the scalability of the permissioned Ethereum platform 

does not limit the usage of the application.  

The result illustrates how strongly the scalability of the DLT - in this case especially 

of the blockchain technology – limits the realisation of real time tracking. Applications based 

on the proposed framework can currently only enable real-time tracking reliably in 

permissioned networks. Therefore, the time intervals between processes depends on the 

maximum time a network needs to confirm transactions.   
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6.3 Preventing counterfeit parts entering the supply 
chain 

Regarding physical assets, the introduction of virtual identities, for example Hash IDs, can be 

seen as a new definition of ownership. The ownership of a physical asset can only be 

considered as complete if an entity owns both the physical asset and its virtual identity. Only 

this combination allows an entity to further perform valid actions with this asset, such as 

sending or merging it with other assets. This twofold security alone makes it considerably 

more difficult for counterfeit parts to enter the supply chain. As the practical implementation 

shows, the possession of the virtual identity in the form of the Hash ID is decisive for a valid 

continuation of actions. If, for example, a manufacturer receives a component on the 

distributed ledger whose virtual identity is invalid, the smart contract prevents the 

manufacturer from assembling this component with other valid components. Thus the 

manufacturer cannot proceed in creating an identity representing a valid final product or 

assembly. Due to the immutability of DLTs, the virtual merging of counterfeit parts can be 

considered impossible as long as the source code excludes such actions.   

 Even a scenario, with a valid Hash ID on an invalid physical component can be 

identified by checking the coincidence between the physical and virtual history. Since the 

entire history of an asset is stored on the distributed ledger, this history must match the 

circumstances in the physical world. For example if a customer wants to buy a certain part at 

a retailer, the address of the current owner of an asset must match the address of the retailer. 

In case Customer A receives an asset of Retailer B, but according to history on the distributed 

leger Retailer C is the current owner of the asset, the data integrity is violated and the asset 

can be considered invalid and potentially counterfeit.  

To identify assets that are exchanged with a counterfeit component in the course of the 

supply chain is most difficult. This is especially the case if the fraudster actually owned the 

valid virtual identity of an asset at some point of the supply chain. The actually valid physical 

component is separated from its virtual identity and it thus becomes worthless, since it can no 

longer meet the new definition of ownership if the framework is consistently enforced by the 

entire manufacturing supply chain. In addition, such fraud can only be carried out by a 

participant of the supply chain. This shows, that as long as there is a transition between the 

physical world and the virtual world, fraud can never be completely excluded. If, however, 
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this fraud occurs at any point, the history of each component can be traced back until the 

fraudster has been identified. If a fraudster's identity is successfully identified, it can be 

determined in a short time how far-reaching his participation in the supply chain is and which 

assemblies are potentially affected.   

During the practical implementation the problem has occurred, that components can 

be assembled incorrectly or get damaged during the manufacturing process. The immutability 

of the DLT does not allow the deletion of virtual identities. Therefore, official methods of 

dealing with defective parts must be embedded in the source code of the smart contract, to 

prevent faulty parts from remaining in circulation and then leading to inconsistencies. Several 

solutions can be considered to prevent such problems. For example the affected Hash IDs can 

be marked as such by a mechanism blocking this asset for any further actions. This creates a 

blacklist for defective components. Another possibility is to send the incorrect identities to an 

address for which no private key is known. This creates a kind of ‘virtual scrap yard’, which 

makes it impossible for any entity to have access to those identities.  

IBM states in their container tracking solution, that the adopting of the blockchain 

technology facilitates the tracking process to such an extent, that the effort to find a container 

can be reduced from 10 steps and five people to only one step and one person (Linnet 

& Wagner, 2018). Since the presented framework not only enables the tracking of individual 

goods, but also the tracing of every single component involved, similar time and resource 

cutbacks can also be regarded as realistic for complex manufacturing networks, especially 

when it comes to identifying parts which show inconsistencies. This applies to counterfeit 

parts as well as to unintentional occurrences of faulty components or batches, which can 

potentially trigger recalls. Even though the embedding of DLT cannot entirely exclude the 

possibility of counterfeit parts entering the supply chain, it can make a significant contribution 

when determining to what extent the inconsistent components and entities affect the entire 

supply chain.  

6.4 Customer transparency 
In the permissionless implementation, a user interface which is linked to a smart contract 

function is created to gather the information about the exact composition and history of an 

assembly. This function is not linked to a specific address and can therefore be considered as 
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a public function. This makes it possible for every network participant to check the current 

content of the smart contract. Since the network is permissionless any user can retrieve the 

current content of the smart contract and use it to check the composition and history of each 

component within the smart contract. Even if such a function is not accessible to the public 

the practical implementation shows, that users still have the possibility to evaluate the 

metadata of the distributed network. Metadata in the World Wide Web can be technically 

defined as data about data, “which can include activities, events, persons, places, structures, 

transactions, relationships, execution directions, and programmatic applications” (Greenberg, 

2003, p. 1876). For example, in traditional chat applications these metadata are centrally 

stored and are only accessible to the application provider (Gerber et al., 2018). In DLTs, 

however, these metadata are accessible and transparent to all network participants. With regard 

to DLT-based smart contracts, metadata can provide information about the entities involved, 

the time of transaction, and the type of smart contract interaction. These metadata can serve 

as a basis of information for independent comparison portals on the distributed ledger in order 

to analyse transaction characteristics and can therefore increase the transparency for 

customers.  

 In the permissioned implementation the user interface is only accessible for a selected 

group of participants. Such an environment has the advantage that the networks can focus on 

increasing the supply chain visibility. Therefore the shared information can be more detailed 

and also contain information without any customer relevance but being of importance for the 

manufacturing network. Customer transparency can be created with the establishment of a 

supernode, which passes the network data to an application to which customers have access. 

However, this does not exclude the possibility of data being changed by the application. In 

addition, the customer only has access to a selected and filtered set of information. This results 

in restricted transparency for the customer because the customer has to trust the entity that 

provides the data.  

As a result, the proposed framework distinguishes between two different levels of 

customer transparency. A permissionless platform gives the customer or other stakeholders 

outside the supply chain the opportunity to ensure complete transparency of all processes 

within the supply chain. On a permissioned platform, on the other hand, the customers can 

only obtain restricted transparency because they cannot actively participate at the distributed 
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ledger. Thus, on such platforms, the information must be provided by a node within the 

network. The verification based on the practical implementation of the framework shows that 

the high transparency provided on a permissionless platform can be generated via two 

channels: The transparency of the smart contract content and the transparency of the network. 

The validation of these two different possibilities for generating customer transparency shows 

that the smart contract-based solution proposed by the framework also makes possible a 

further new and complex solution. This new approach could be structured as follows:   

As a first step the smart contract-based supply chain application can be encrypted and 

all its functions connected to entities, which are directly involved in the supply chain. All 

query functions of smart contract must be encrypted in such a way that only authorised 

participants can decrypt them and have access to the information stored in the smart contract. 

This construct allows the smart contract to contain detailed information about the supply chain 

and thus increase the visibility of the manufacturing network. As a next step, such a smart 

contract can be deployed on a permissionless distributed ledger network. Thus, the network 

participants who are not directly involved in the supply chain do not have the possibility to 

access the encrypted contents of the smart contract. However, they can still evaluate the 

metadata which are generated when authorised entities interact with the smart contract. Such 

new approach would result in a kind of ‘intranet’ on a permissionless distributed ledger, but 

with the metadata still available to the whole network. If, for example, an entity is involved in 

unethical machinations the network can analyse the metadata to determine the involvement of 

this entity in any supply chains. Therefore, this completely new approach would combine the 

advantages of the permissioned and permissionless approach based on the proposed 

framework. However, such a complex encrypted smart contract implementation is 

representing a new field of research and must be explored in a more detailed manner in further 

research activities.  
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7  Summary, conclusions, and 
recommendations 

This chapter gives a brief overview of the work discussed in this thesis. The first section 

provides a summary of the individual chapters in terms of research content and approach. A 

description of how the research questions defined in Section 1.2 were approached and 

answered in the course of the research project follows. The chapter concludes with limitations 

and recommendations for future research projects. 

7.1 Research summary 
The thesis is divided into seven chapters, namely; (1) Introduction, (2) Literature review, (3) 

Research environment, (4) Framework development, (5) Practical implementation and dApp 

development, (6) Verification and validation of the framework, (7) Summary, conclusions and 

recommendations.  

 Chapter 1 introduces the research project and gives initial background information on 

distributed ledger technologies and manufacturing supply chains. Furthermore, the chapter 

describes the rationale of the research and states the problem and the research questions, as 

well as the research objectives. Finally, the chapter addresses the research methodology, the 

research design, and the outline of the thesis.  

 The literature review in Chapter 2 provides the reader with fundamental knowledge 

about manufacturing networks and distributed ledger technologies. In this context, the chapter 

explains important definitions and basic components that represent the knowledge base for the 

framework development. Finally, the chapter describes existing projects that are already 

testing distributed ledger technologies in conjunction with supply chains.  

 Chapter 3 illustrates the research environment and explains the constituents of the 

Reutlingen University and Stellenbosch University manufacturing network. Based on this 

environment, the chapter explains country-specific circumstances and the importance of 

research for the both Germany and South Africa. 
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In Chapter 4 the framework development takes place. The conceptual process consists of a 

network design stage, network planning stage, and an execution stage. This process is 

influenced by several physical complexity drivers and virtual complexity drivers. Taking these 

complexity drivers into account, the chapter proposes a framework with a possible procedure 

to increase the transparency through a tracking and tracing system by adopting the distributed 

ledger technology.  

 Chapter 5 describes the practical implementation of the framework and the 

programming of the decentralised application. The procedure corresponds to the procedure 

proposed by the framework. The example of a manufacturing supply chain described in 

Chapter 3 serves as implementation environment. A utility analysis results in Ethereum as a 

suitable platform for the practical implementation. Subsequently, the chapter explains the set-

up of a permissioned Ethereum network and the main components of the smart contract’s 

source code.  

 Chapter 6 verifies and validates the feasibility of the framework based on the results 

of the practical implementation. First, the chapter thematises the verification and validation of 

the smart contract’s immunity and security. Subsequently, the chapter verifies and validates 

to what extent the practical blockchain-based implementation enables the tracking of 

manufactured goods. The chapter ends with the verification and validation of the customer 

transparency, which is enabled by the practical implementation of the framework.   
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7.2 Research conclusion and contribution  
The results of the primary and secondary research questions are summarised below. The 

purpose is to present the key findings and conclusions to be drawn based on the research work. 

Table 16: Primary research question 1 

This elaboration proposes a framework to adopt the distributed ledger technology in a 

manufacturing network. The framework is divided into three main stages based on the general 

structure of supply chain management systems. First, in the network design stage, the 

framework suggests to identify and categorise all stakeholders involved in the manufacturing 

supply chain. The complexity of this stage depends on the globalisation of the supply base and 

the number of involved stakeholders. Additionally, this stage determines the extent to which 

customers have access to the network, which subsequently increases the complexity of the 

network planning stage. Finally, the network design stage results in an initial design of the 

network structure and all its associated nodes and their respective authorities.  

 Based on the network design the framework recommends in a network planning stage 

to define the respective asset compositions and a basic supply chain logic. The complexity of 

the products, the batch sizes, and the number of concurrent production processes influence the 

complexity of this stage. In order to track and trace a product by using a distributed ledger 

technology each asset must obtain a virtual identity on the distributed ledger. This virtual 

identity must have the same ownership and conversion characteristics as their physical 

counterpart. To meet these requirements the author has developed the approach of smart 

contract-based Hash IDs. The framework proposes the creation of models determining the 

dependencies for creating and linking the virtual identities logically. By means of this logic it 

is possible to derive fundamental requirements that are put to a platform necessary to enable 

a practical implementation of the framework. Depending on these requirements, the platform 

decision can result in both a permissionless platform and a permissioned platform.  
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In the final execution stage the framework describes the holistic implementation and 

integration of the smart contract-based decentralised application. Therefore, the smart contract 

logic models are implemented on the selected distributed ledger technology platform and they 

can subsequently be integrated into all production and logistics processes. An implementation 

based on a permissionless platform provides full transparency for all stakeholders, including 

the customer, while an implementation on a permissioned platform provides only restricted 

transparency for the customer. Distributed ledger technologies combined with smart contract-

based virtual identities which are linked to their physical counterparts and which depend 

logically on their respective physical supply chain processes, make tracking of all 

manufactured goods possible. Additionally, distributed ledger technologies provide an 

immutable transaction history which enables the auditability of all manufactured goods as well 

as all components they consist of. To the knowledge of the author, Dr. Daniel Palm, and Dr. 

Louis Louw there no similar smart contract-based approach exists in research at the moment 

of submitting this thesis.   

Table 17: Secondary research question 1 

The virtual identity of an asset represents the asset on the distributed ledger. In order to ensure 

a consistent flow of physical and virtual processes, it must be guaranteed that the state of 

ownership and state of status of an asset in the physical world always matches the state of the 

virtual identity on the distributed ledger. To enable a clear identification of each asset, the 

framework recommends the establishment of a unique identification number which does not 

change over the entire life cycle of an asset. For this purpose the framework uses smart 

contract-based Hash IDs. A Hash ID is a unique identifier for a set of information on the 

distributed ledger representing an asset’s virtual identity. The barcode technology and RFID 

technology are suitable for connecting the identifier of the virtual identities to the physical 

assets. As these identification numbers do not change over the entire life cycle, the engraving 

of parts is considered a suitable solution as well. In a practical implementation, QR codes have 

proved to be an effective solution for linking physical assets to their virtual identities.   
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Table 18: Secondary research question 2 

The introduction of virtual identities can be seen as a new definition of ownership. The 

ownership of a physical asset can only be considered as complete if an entity owns both the 

physical asset and its virtual identity. Only this combination allows an entity to perform further 

valid actions with this asset, such as sending it or merging it with other assets. The 

immutability of a smart contract source code prevents any actions with invalid virtual 

identities. At the same time, the state and ownership of a virtual identity can always be 

compared to the state and ownership of the physical asset. For example if a customer wants to 

buy a certain asset at a retailer, the address of the current owner of the asset on the distributed 

ledger must match the address of the retailer. If this is not the case, the asset is invalid and 

potentially counterfeit. It is most difficult to identify assets that are exchanged with a 

counterfeit component in the course of the supply chain. Especially if the fraudster actually 

owned the valid virtual identity of an asset at some point of the supply chain. Therefore, fraud 

can never be completely excluded, as long as there is a transition between the physical world 

and the virtual world.  

Even though fraud cannot be completely excluded, the immutability of each asset’s 

history allows a fast identification of all entities and assets involved after a fraud has 

successfully been identified. The supply chain mapped on a distributed ledger technology 

provides a complete information base to identify how far-reaching a problem is, including all 

potentially affected parts and all entities involved. This applies to both cases of fraud and 

unintentionally caused defects that can occur, for example, in production processes.  

Table 19: Secondary research question 3 

The framework proposes an approach, which intends to create all virtual identities as well as 

their logical dependencies based on programmable smart contracts. Manufacturing supply 
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chains represent complex interrelationships. Therefore they require the platform to support a 

Turing Complete programming language to enable a mapping of these on a distributed ledger. 

At the time of writing this thesis the blockchain technology in particular is substituting the 

distributed ledger technology with the most advanced platforms supporting Turing Complete 

smart contracts.  

 The scalability of distributed ledger technology platforms is currently a limiting factor 

for decentralised applications with high transaction density. The platform and in particular its 

consensus mechanism must therefore have sufficient capacity in terms of scalability to support 

complex supply chain applications. The required scalability of the application depends on the 

properties of the respective manufacturing supply chain and can be predicted according to the 

defined logic models.  

 Depending on the objective of the supply chain application, the platform must be able 

to support either the permissionless use or the permissioned use. This depends mainly on the 

consensus mechanism of a platform. Consensus algorithms designed for the permissionless 

use can also work in permissioned networks. Consensus algorithms especially designed for 

permissioned environments, however, are not suitable for use in permissionless networks. 

Table 20: Secondary research question 4 

In a permissioned environment the whole capacity of the network is available for the 

decentralised tracking application. This leads to a considerably faster and more reliable 

confirmation of transactions. Tests showed that on a permissioned Ethereum network all 

transactions were confirmed within one second, while on the public Rinkeby Ethereum 

network the transaction confirmation took an average of 15.05 seconds. The shortest 

confirmation took 6 seconds and the longest confirmation 28 seconds. The speed of the 

transaction confirmation influences how detailed a tracking process can be designed. The time 

intervals between processes depends on the maximum time the network needs to confirm 

transactions in order to avoid conflicts and bottlenecks. Therefore, real-time tracking is only 
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possible if the network offers enough capacity in terms of scalability, which currently is only 

reliably possible on permissioned networks.     

 In addition, the implementation differs in the nature and scope of the shared 

information. Since in a permissionless environment any network participant has access to all 

data of the supply chain, the shared information consist likely on data with customer-

relevance. In return, customers and other stakeholders who are not directly involved in the 

supply chain have the opportunity to gain unrestricted network transparency about the supply 

chain, either by a concrete evaluation of the smart contract contents or by an evaluation of the 

metadata of the network. In a permissioned network, however, only selected participants have 

access to the information. Accordingly, the shared information on permissioned networks can 

be more extensive and also include sensitive data. This can increase the supply chain visibility 

but at the expense of supply chain transparency for outside parties. For example with 

supernodes permissioned networks can still provide restricted transparency for customers. But 

that shared information no longer possesses the immutable properties of distributed ledger 

technologies.   

Table 21: Secondary research question 5 

For this elaboration, Ethereum is selected as the implementation platform. For the 

implementation on a permissionless network the Ethereum Rinkeby test network is used. For 

the implementation on a permissioned network, an own Ethereum network is set up. For this 

network the full nodes are operated by desktop computers with windows as operating system, 

an Intel Core i7 (2.90 GHz) processor, and 16 GB RAM. The light nodes of the network each 

consist of a Raspberry Pi 3 with a processing speed of 1.40 GHz and 1 GB RAM. The smart 

contracts are programmed with Ethereum’s programming language ‘Solidity’. The graphic 

user interface is created with ‘ReactJS’.  

 The operative process starts with the creation of virtual identities. In case the virtual 

identity refers to a physical asset, a QR code containing the Hash ID is attached to the physical 

asset. When an entity sends a physical asset to a new owner, the Hash ID of the asset must 
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simultaneously be sent to the blockchain address of the new owner. If an entity assembles two 

or more components in the physical world, the entity must select the respective Hash IDs of 

the components and trigger an assembling transaction to merge the two components on the 

blockchain. This will result in a new Hash ID, which must be attached to a newly assembled 

asset in the physical world. The source code of the smart contract ensures that only valid assets 

can be sent and merged by their valid owners on the blockchain. The whole transaction history 

of each asset is stored on the blockchain. All information about the current state and owner of 

every asset can be retrieved via the user interface.   

7.3 Limitations and recommendations for further 
research 

First, the basic limitations of the framework and the practical implementation are taken into 

account. Additionally, new further fields of research based on the results of this work are 

introduced.  

The purpose of the framework is to propose a possible solution of how manufacturing 

networks can adopt the distributed ledger technology to solve current vulnerabilities in their 

supply chains. Since no comparable approach exists, the practical implementation was 

conducted in a relatively small research environment to prove the technical feasibility of such 

solution. Further research is necessary to investigate the feasibility of larger implementations, 

especially in terms of scalability, required storage and costs. Additionally it must be 

investigated, how this approach can be combined with existing tracking solutions such as GPS-

tracking.  From an economic point of view, it appears that the economic benefit for a company 

is only apparent if the introduction of such smart contract-based application generates added 

value. This can be expressed in different ways, such as reduced production costs or shortened 

production times. Therefore, research about specific products or industries that can drive the 

maximum value of such an approach represent an important next step for further research 

projects.      

The framework is a platform independent approach and its practical implementation 

was based on existing platforms. As the validation shows, the scalability of distributed ledger 

technologies is severely limiting the realisation of decentralised tracking applications, 

particularly when trying to enable real-time tracking by adopting a distributed ledger 
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technology. Therefore, further research is necessary to invent more efficient consensus 

mechanisms in order to solve the current scalability problem of distributed ledger 

technologies.   

In the proposed solution every asset receives a unique virtual identity, which is offering 

a promising foundation for further Internet-of-Things-based research activities. In this thesis, 

the virtual identities were only used for non-financial purposes. Nevertheless, distributed 

ledger technologies offer a suitable environment to connect virtual identities with financial 

applications. Further research is necessary to investigate how smart contract-based virtual 

identities can be combined with complex negotiation mechanisms and financial applications.  

Based on the verification and validation of the proposed framework, there is also the 

possibility for a completely new approach of deploying a smart contract with encrypted 

content on a permissionless network. In this way, the participants of the manufacturing 

network could still store sensitive data in the smart contract resulting in a kind of ‘intranet’ on 

a permissionless distributed ledger, but with the metadata still available to the whole network. 

However, the feasibility of such a complex encrypted smart contract implementation 

represents a new field of research and must be explored in a more detailed manner in further 

research activities. 

(eosio.cdt, 2019) (Valenta & Sandner, 2017) (Sajana, Sindhu, & Sethumadhavan, 2019) (TNW, 2019) 
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Appendix A: 
 Smart contract 

A1: Smart contract Solidity source code 
1. pragma solidity >=0.5.8;  
2. contract SupplyChain{  
3.
4.     address certifier;  
5.     address supplierA;  
6.     address supplierB;  
7.     address manufacturer;  
8.
9.     mapping(bytes32 => Certificate) public govtToManufacturerHistory;  
10.     mapping(bytes32 => Certificate) public govtToSupplierAHistory;  
11.     mapping(bytes32 => Certificate) public govtToSupplierBHistory;  
12.     mapping(bytes32 => Certificate) public supplierAToManufacturerHistory;  
13.     mapping(bytes32 => Certificate) public supplierBToManufacturerHistory;  
14.     mapping(bytes32 => Certificate) public productsOwnedByManufacturer;  
15.
16.     mapping(bytes32 => Supplier) public supplierDetails;  
17.     mapping(bytes32 => Manufacturer) public manufacturerDetails;  
18.     mapping(bytes32 => Product) public productDetails;  
19.
20.     bytes32[]  govtToManufacturerCertificates;  
21.     bytes32[]  govtToSupplierACertificates;  
22.     bytes32[]  govtToSupplierBCertificates;  
23.     bytes32[]  supplierBToManufacturerCertificates;  
24.     bytes32[]  supplierAToManufacturerCertificates;  
25.     bytes32[]  productCertificates;  
26.
27.
28. struct Supplier{  
29.         string name;  
30.         string nameOfCertificates;  
31.         string date;  
32.         bytes32 certificateHash;  
33.     }  
34.
35. struct Manufacturer{  
36.         string name;  
37.         string nameOfCertificates;  
38.         string date;  
39.         bytes32 certificateHash;  
40.     }  
41.
42.
43. struct Product{  
44.         string nameOfProducer;  
45.         string typeOfProduct;  
46.         string serialId;  
47.         string date;  
48.         bytes32 certificateHash_p;  
49.         bytes32 certificateHash_sup_a;  
50.         bytes32 certificateHash_sup_b;  
51.         bytes32 certificateHash_govt;  
52.     }  
53.
54.
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55. struct Certificate{  
56.         bytes32 hash;  
57. bool used;  
58.     }  
59.
60.     constructor(address _addressA, address _addressB, address _addressM, address _c

certifier) public{  
61.         supplierA = _addressA;  
62.         supplierB = _addressB;  
63.         manufacturer = _addressM;  
64.         government = _certifier;  
65.     }  
66.
67.
68. //used by certifier
69. function createAndSendCertificate(address _address, string memory _name, string

 memory _nameOfCertificate, string memory _date, uint256 _role) public{  
70. if(_role == 0){  
71. if(_address == supplierA){  
72.                 bytes32 certHash = keccak256(abi.encodePacked(_name,_nameOfCertific

ate,_date,"A",block.timestamp));  
73.                 Certificate memory cert = Certificate(certHash,false);  
74.                 govtToSupplierAHistory[certHash] = cert;  
75.                 govtToSupplierACertificates.push(certHash);  
76.                 supplierDetails[certHash] = Supplier(_name,_nameOfCertificate,_date

,certHash);  
77.             }else if(_address ==  supplierB){  
78.                 bytes32 certHash = keccak256(abi.encodePacked(_name,_nameOfCertific

ate,_date,"B",block.timestamp));  
79.                 Certificate memory cert = Certificate(certHash,false);  
80.                 govtToSupplierBHistory[certHash] = cert;  
81.                 govtToSupplierBCertificates.push(certHash);  
82.                 supplierDetails[certHash] = Supplier(_name,_nameOfCertificate,_date

,certHash);  
83.             }  
84.
85.         }else{  
86.             require(_address == manufacturer,"Manufacturer address not correct");  
87.             bytes32 certHash = keccak256(abi.encodePacked(_name,_nameOfCertificate,

_date,"M"));  
88.             Certificate memory cert = Certificate(certHash,false);  
89.             govtToManufacturerHistory[certHash] = cert;  
90.             govtToManufacturerCertificates.push(certHash);  
91.             manufacturerDetails[certHash] = Manufacturer(_name,_nameOfCertificate,_

date,certHash);  
92.
93.         }  
94.
95.     }  
96.
97.
98. //used by suppliers
99. function createCertificateForManufacturer(address _address,string memory _nameO

fProducer, string memory _typeOfProduct,   
100.     string memory _serialId, string memory _date,bytes32  _certHash) public

{  
101.          bytes32 certHash = keccak256(abi.encodePacked(_nameOfProducer,_typ

eOfProduct,_serialId,_date,block.timestamp));  
102. if(_address == supplierA){  
103.              govtToSupplierAHistory[_certHash].used = true;  
104.              supplierAToManufacturerCertificates.push(certHash);  
105.          }else if(_address == supplierB){  
106.              govtToSupplierBHistory[_certHash].used = true;  
107.              supplierBToManufacturerCertificates.push(certHash);  
108.          }  
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109.     }  
110.
111. //used by suppliers
112. function sendCertificateToManufacturer(address _address,bytes32  _certH

ash) public {  
113. if(_address == supplierA){  
114.              supplierAToManufacturerHistory[_certHash]=Certificate(_certHas

h,false);  
115.
116.         }else if(_address == supplierB){  
117.              supplierBToManufacturerHistory[_certHash]=Certificate(_certHas

h,false);  
118.
119.         }  
120.     }  
121.
122.
123. //used by manufacturer
124. function createProduct(address _address,string memory _nameOfProducer, 

string memory _typeOfProduct,   
125.     string memory _serialId, string memory _date,bytes32  _certHashM, bytes

32 _cerhHashA, bytes32 _cerhHashB) public {  
126.         require (_address == manufacturer);  
127.         bytes32 certHash = keccak256(abi.encodePacked(_nameOfProducer,_type

OfProduct,_serialId,_date,_certHashM,_cerhHashA,_cerhHashB,block.timestamp));  
128.         productCertificates.push(certHash);  
129.         productsOwnedByManufacturer[certHash] = Certificate(certHash,false)

;  
130.         govtToManufacturerHistory[_certHashM].used = true;  
131.         supplierAToManufacturerHistory[_cerhHashA].used = true;  
132.         supplierBToManufacturerHistory[_cerhHashB].used = true;  
133.         productDetails[certHash] = Product(_nameOfProducer,_typeOfProduct,_

serialId,_date,certHash,_cerhHashA,_cerhHashB,_certHashM);  
134.
135.     }  
136.
137.
138. //used by user
139. function getCertificateHistory(bytes32 _certHash) public view returns (

bytes32,bytes32,bytes32,bytes32){  
140. return(productDetails[_certHash].certificateHash_p,  
141.         productDetails[_certHash].certificateHash_sup_a,  
142.         productDetails[_certHash].certificateHash_sup_b,  
143.         productDetails[_certHash].certificateHash_govt);  
144.     }  
145.
146.
147. function getSupplierACert() public view returns (bytes32[] memory){  
148. return govtToSupplierACertificates;  
149.     }  
150.
151. function getSupplierBCert() public view returns (bytes32[] memory){  
152. return govtToSupplierBCertificates;  
153.     }  
154.
155. function getManufacturerCertA() public view returns (bytes32[] memory){

156. return supplierAToManufacturerCertificates;  
157.     }  
158.
159. function getManufacturerCertB() public view returns (bytes32[] memory){

160. return supplierBToManufacturerCertificates;  
161.     }  
162.
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163. function getManufacturereCertG() public view returns (bytes32[] memory)
{  

164. return govtToManufacturerCertificates;  
165.     }  
166.
167. function getProductCert() public view returns (bytes32[] memory){  
168. return productCertificates;  
169.     }  
170.
171. function getSupplierAAddress() public view returns (address){  
172. return supplierA;  
173.     }  
174.
175. function getSupplierBAddress() public view returns (address){  
176. return supplierB;  
177.     }  
178.
179. function getManufacturerAddress() public view returns (address){  
180. return manufacturer;  
181.     }  
182.
183.     function getGovtAddress() public view returns (address){  
184. return certifier;  
185.     }  
186. }

Listing 8: Solidity source code of the smart contract 
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A2: Smart contract ABI source code 
1. const  contractAddress=  'Input contract address' ;  
2.
3. const ABI=  
4.
5. [  
6.     {  
7. "constant": true,  
8. "inputs": [],  
9. "name": "getSupplierACert",  
10. "outputs": [  
11.             {  
12. "name": "",  
13. "type": "bytes32[]"
14.             }  
15.         ],  
16. "payable": false,  
17. "stateMutability": "view",  
18. "type": "function"
19.     },  
20.     {  
21. "constant": false,  
22. "inputs": [  
23.             {  
24. "name": "_address",  
25. "type": "address"
26.             },  
27.             {  
28. "name": "_name",  
29. "type": "string"
30.             },  
31.             {  
32. "name": "_nameOfCertificate",  
33. "type": "string"
34.             },  
35.             {  
36. "name": "_date",  
37. "type": "string"
38.             },  
39.             {  
40. "name": "_role",  
41. "type": "uint256"
42.             }  
43.         ],  
44. "name": "createAndSendCertificate",  
45. "outputs": [],  
46. "payable": false,  
47. "stateMutability": "nonpayable",  
48. "type": "function"
49.     },  
50.     {  
51. "constant": true,  
52. "inputs": [  
53.             {  
54. "name": "",  
55. "type": "bytes32"
56.             }  
57.         ],  
58. "name": "supplierDetails",  
59. "outputs": [  
60.             {  
61. "name": "name",  
62. "type": "string"



145

63.             },  
64.             {  
65. "name": "nameOfCertificates",  
66. "type": "string"
67.             },  
68.             {  
69. "name": "date",  
70. "type": "string"
71.             },  
72.             {  
73. "name": "certificateHash",  
74. "type": "bytes32"
75.             }  
76.         ],  
77. "payable": false,  
78. "stateMutability": "view",  
79. "type": "function"
80.     },  
81.     {  
82. "constant": true,  
83. "inputs": [  
84.             {  
85. "name": "_certHash",  
86. "type": "bytes32"
87.             }  
88.         ],  
89. "name": "getCertificateHistory",  
90. "outputs": [  
91.             {  
92. "name": "",  
93. "type": "bytes32"
94.             },  
95.             {  
96. "name": "",  
97. "type": "bytes32"
98.             },  
99.             {  
100. "name": "",  
101. "type": "bytes32"
102.             },  
103.             {  
104. "name": "",  
105. "type": "bytes32"
106.             }  
107.         ],  
108. "payable": false,  
109. "stateMutability": "view",  
110. "type": "function"
111.     },  
112.     {  
113. "constant": true,  
114. "inputs": [  
115.             {  
116. "name": "",  
117. "type": "bytes32"
118.             }  
119.         ],  
120. "name": "supplierBToManufacturerHistory",  
121. "outputs": [  
122.             {  
123. "name": "hash",  
124. "type": "bytes32"
125.             },  
126.             {  
127. "name": "used",  
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128. "type": "bool"
129.             }  
130.         ],  
131. "payable": false,  
132. "stateMutability": "view",  
133. "type": "function"
134.     },  
135.     {  
136. "constant": true,  
137. "inputs": [],  
138. "name": "getManufacturerCertA",  
139. "outputs": [  
140.             {  
141. "name": "",  
142. "type": "bytes32[]"
143.             }  
144.         ],  
145. "payable": false,  
146. "stateMutability": "view",  
147. "type": "function"
148.     },  
149.     {  
150. "constant": true,  
151. "inputs": [  
152.             {  
153. "name": "",  
154. "type": "bytes32"
155.             }  
156.         ],  
157. "name": "govtToSupplierBHistory",  
158. "outputs": [  
159.             {  
160. "name": "hash",  
161. "type": "bytes32"
162.             },  
163.             {  
164. "name": "used",  
165. "type": "bool"
166.             }  
167.         ],  
168. "payable": false,  
169. "stateMutability": "view",  
170. "type": "function"
171.     },  
172.     {  
173. "constant": true,  
174. "inputs": [  
175.             {  
176. "name": "",  
177. "type": "bytes32"
178.             }  
179.         ],  
180. "name": "govtToManufacturerHistory",  
181. "outputs": [  
182.             {  
183. "name": "hash",  
184. "type": "bytes32"
185.             },  
186.             {  
187. "name": "used",  
188. "type": "bool"
189.             }  
190.         ],  
191. "payable": false,  
192. "stateMutability": "view",  
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193. "type": "function"
194.     },  
195.     {  
196. "constant": true,  
197. "inputs": [  
198.             {  
199. "name": "",  
200. "type": "bytes32"
201.             }  
202.         ],  
203. "name": "govtToSupplierAHistory",  
204. "outputs": [  
205.             {  
206. "name": "hash",  
207. "type": "bytes32"
208.             },  
209.             {  
210. "name": "used",  
211. "type": "bool"
212.             }  
213.         ],  
214. "payable": false,  
215. "stateMutability": "view",  
216. "type": "function"
217.     },  
218.     {  
219. "constant": true,  
220. "inputs": [],  
221. "name": "getGovtAddress",  
222. "outputs": [  
223.             {  
224. "name": "",  
225. "type": "address"
226.             }  
227.         ],  
228. "payable": false,  
229. "stateMutability": "view",  
230. "type": "function"
231.     },  
232.     {  
233. "constant": true,  
234. "inputs": [],  
235. "name": "getSupplierAAddress",  
236. "outputs": [  
237.             {  
238. "name": "",  
239. "type": "address"
240.             }  
241.         ],  
242. "payable": false,  
243. "stateMutability": "view",  
244. "type": "function"
245.     },  
246.     {  
247. "constant": true,  
248. "inputs": [],  
249. "name": "getSupplierBCert",  
250. "outputs": [  
251.             {  
252. "name": "",  
253. "type": "bytes32[]"
254.             }  
255.         ],  
256. "payable": false,  
257. "stateMutability": "view",  
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258. "type": "function"
259.     },  
260.     {  
261. "constant": true,  
262. "inputs": [  
263.             {  
264. "name": "",  
265. "type": "bytes32"
266.             }  
267.         ],  
268. "name": "productsOwnedByManufacturer",  
269. "outputs": [  
270.             {  
271. "name": "hash",  
272. "type": "bytes32"
273.             },  
274.             {  
275. "name": "used",  
276. "type": "bool"
277.             }  
278.         ],  
279. "payable": false,  
280. "stateMutability": "view",  
281. "type": "function"
282.     },  
283.     {  
284. "constant": true,  
285. "inputs": [  
286.             {  
287. "name": "",  
288. "type": "bytes32"
289.             }  
290.         ],  
291. "name": "manufacturerDetails",  
292. "outputs": [  
293.             {  
294. "name": "name",  
295. "type": "string"
296.             },  
297.             {  
298. "name": "nameOfCertificates",  
299. "type": "string"
300.             },  
301.             {  
302. "name": "date",  
303. "type": "string"
304.             },  
305.             {  
306. "name": "certificateHash",  
307. "type": "bytes32"
308.             }  
309.         ],  
310. "payable": false,  
311. "stateMutability": "view",  
312. "type": "function"
313.     },  
314.     {  
315. "constant": true,  
316. "inputs": [],  
317. "name": "getProductCert",  
318. "outputs": [  
319.             {  
320. "name": "",  
321. "type": "bytes32[]"
322.             }  
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323.         ],  
324. "payable": false,  
325. "stateMutability": "view",  
326. "type": "function"
327.     },  
328.     {  
329. "constant": true,  
330. "inputs": [  
331.             {  
332. "name": "",  
333. "type": "bytes32"
334.             }  
335.         ],  
336. "name": "supplierAToManufacturerHistory",  
337. "outputs": [  
338.             {  
339. "name": "hash",  
340. "type": "bytes32"
341.             },  
342.             {  
343. "name": "used",  
344. "type": "bool"
345.             }  
346.         ],  
347. "payable": false,  
348. "stateMutability": "view",  
349. "type": "function"
350.     },  
351.     {  
352. "constant": false,  
353. "inputs": [  
354.             {  
355. "name": "_address",  
356. "type": "address"
357.             },  
358.             {  
359. "name": "_nameOfProducer",  
360. "type": "string"
361.             },  
362.             {  
363. "name": "_typeOfProduct",  
364. "type": "string"
365.             },  
366.             {  
367. "name": "_serialId",  
368. "type": "string"
369.             },  
370.             {  
371. "name": "_date",  
372. "type": "string"
373.             },  
374.             {  
375. "name": "_certHash",  
376. "type": "bytes32"
377.             }  
378.         ],  
379. "name": "createCertificateForManufacturer",  
380. "outputs": [],  
381. "payable": false,  
382. "stateMutability": "nonpayable",  
383. "type": "function"
384.     },  
385.     {  
386. "constant": true,  
387. "inputs": [],  
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388. "name": "getManufacturerAddress",  
389. "outputs": [  
390.             {  
391. "name": "",  
392. "type": "address"
393.             }  
394.         ],  
395. "payable": false,  
396. "stateMutability": "view",  
397. "type": "function"
398.     },  
399.     {  
400. "constant": true,  
401. "inputs": [],  
402. "name": "getSupplierBAddress",  
403. "outputs": [  
404.             {  
405. "name": "",  
406. "type": "address"
407.             }  
408.         ],  
409. "payable": false,  
410. "stateMutability": "view",  
411. "type": "function"
412.     },  
413.     {  
414. "constant": true,  
415. "inputs": [  
416.             {  
417. "name": "",  
418. "type": "bytes32"
419.             }  
420.         ],  
421. "name": "productDetails",  
422. "outputs": [  
423.             {  
424. "name": "nameOfProducer",  
425. "type": "string"
426.             },  
427.             {  
428. "name": "typeOfProduct",  
429. "type": "string"
430.             },  
431.             {  
432. "name": "serialId",  
433. "type": "string"
434.             },  
435.             {  
436. "name": "date",  
437. "type": "string"
438.             },  
439.             {  
440. "name": "certificateHash_p",  
441. "type": "bytes32"
442.             },  
443.             {  
444. "name": "certificateHash_sup_a",  
445. "type": "bytes32"
446.             },  
447.             {  
448. "name": "certificateHash_sup_b",  
449. "type": "bytes32"
450.             },  
451.             {  
452. "name": "certificateHash_govt",  
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453. "type": "bytes32"
454.             }  
455.         ],  
456. "payable": false,  
457. "stateMutability": "view",  
458. "type": "function"
459.     },  
460.     {  
461. "constant": true,  
462. "inputs": [],  
463. "name": "getManufacturereCertG",  
464. "outputs": [  
465.             {  
466. "name": "",  
467. "type": "bytes32[]"
468.             }  
469.         ],  
470. "payable": false,  
471. "stateMutability": "view",  
472. "type": "function"
473.     },  
474.     {  
475. "constant": true,  
476. "inputs": [],  
477. "name": "getManufacturerCertB",  
478. "outputs": [  
479.             {  
480. "name": "",  
481. "type": "bytes32[]"
482.             }  
483.         ],  
484. "payable": false,  
485. "stateMutability": "view",  
486. "type": "function"
487.     },  
488.     {  
489. "constant": false,  
490. "inputs": [  
491.             {  
492. "name": "_address",  
493. "type": "address"
494.             },  
495.             {  
496. "name": "_certHash",  
497. "type": "bytes32"
498.             }  
499.         ],  
500. "name": "sendCertificateToManufacturer",  
501. "outputs": [],  
502. "payable": false,  
503. "stateMutability": "nonpayable",  
504. "type": "function"
505.     },  
506.     {  
507. "constant": false,  
508. "inputs": [  
509.             {  
510. "name": "_address",  
511. "type": "address"
512.             },  
513.             {  
514. "name": "_nameOfProducer",  
515. "type": "string"
516.             },  
517.             {  
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518. "name": "_typeOfProduct",  
519. "type": "string"
520.             },  
521.             {  
522. "name": "_serialId",  
523. "type": "string"
524.             },  
525.             {  
526. "name": "_date",  
527. "type": "string"
528.             },  
529.             {  
530. "name": "_certHashM",  
531. "type": "bytes32"
532.             },  
533.             {  
534. "name": "_cerhHashA",  
535. "type": "bytes32"
536.             },  
537.             {  
538. "name": "_cerhHashB",  
539. "type": "bytes32"
540.             }  
541.         ],  
542. "name": "createProduct",  
543. "outputs": [],  
544. "payable": false,  
545. "stateMutability": "nonpayable",  
546. "type": "function"
547.     },  
548.     {  
549. "inputs": [  
550.             {  
551. "name": "_addressA",  
552. "type": "address"
553.             },  
554.             {  
555. "name": "_addressB",  
556. "type": "address"
557.             },  
558.             {  
559. "name": "_addressM",  
560. "type": "address"
561.             },  
562.             {  
563. "name": "_government",  
564. "type": "address"
565.             }  
566.         ],  
567. "payable": false,  
568. "stateMutability": "nonpayable",  
569. "type": "constructor"
570.     }  
571. ]  
572.  export {  
573.      contractAddress,  
574.      ABI,  
575.  }

Listing 9: Smart contract ABI source code 
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Appendix B: 
 Graphical user interfaces 

B1: User interface source code 
The source code of the user interface collects all important information about all created virtual 

identities in order to display them for the users. All other interfaces use a structure which is 

based on the source code shown below (Listing 10). Therefore, all other interfaces are only 

illustrated in their final graphic layout.    

1. import React, { Component } from 'react';  
2. import {  
3.   Card,  
4.   CardBody,  
5.   Table,  
6.   Button, Modal, ModalHeader, ModalBody, ModalFooter, FormGroup, Label, Input,  
7. } from 'reactstrap';  
8. import { contractAddress, ABI } from './Constants';  
9.
10. const isEthereumAddress = require('is­ethereum­address');  
11. const Web3 = require('web3');  
12.
13.
14. export default class Certificate extends Component {  
15.
16.   constructor(props) {  
17. super(props);  
18. this.state = {  
19.       modal: false,  
20.       orgName: '',  
21.       certName: '',  
22.       date: '',  
23.       role: '0',  
24.       pubKey: '',  
25.       isKey: false,  
26.       selectedHash: '',  
27.       getProductArr: [],  
28.       productsArr: [],  
29.       pbKey:String  
30.
31.
32.     };  
33.
34. this.toggle = this.toggle.bind(this);  
35.   }  
36.
37.   componentDidMount() {  
38. this.getAllProducts();  
39.   }  
40.
41.
42.   async getAllProducts() {  
43.
44.
45.     var web3;  



154

46.     let ethereum = window.ethereum;  
47.     console.log('ethereum', window.ethereum);  
48.
49.     web3 = new Web3(window.web3.currentProvider);  
50.
51. const account = await ethereum.enable();  
52. const MyContract = new web3.eth.Contract(ABI, contractAddress);  
53.
54.     console.log(MyContract.methods);  
55. const accounts = await web3.eth.getAccounts();  
56.
57. try {  
58.       MyContract.methods.getProductCert().call({ from: accounts[0] })  
59.         .then((result) => {  
60.           console.log(result);  
61. this.setState({ getProductArr: [...result] });  
62.
63.
64.         });  
65.
66.       MyContract.methods.getManufacturerAddress().call({from:accounts[0]})  
67.         .then((res)=>{  
68.           console.log(res)  
69. this.setState({pbKey:res})  
70.         })  
71.     } catch (e) {  
72.       console.log(e.message);  
73.     }  
74.
75.   }  
76.
77.
78.   async getProductDetails(e) {  
79.
80.
81.     var web3;  
82.     let ethereum = window.ethereum;  
83.     console.log('ethereum', window.ethereum);  
84.
85.     web3 = new Web3(window.web3.currentProvider);  
86.
87. const account = await ethereum.enable();  
88. const MyContract = new web3.eth.Contract(ABI, contractAddress);  
89.
90.     console.log(MyContract.methods);  
91. const accounts = await web3.eth.getAccounts();  
92.
93. try {  
94.       MyContract.methods.getCertificateHistory(e).call({ from: accounts[0] })  
95.         .then((result) => {  
96.           console.log(result['0']);  
97. for (var key in result) {  
98. this.state.productsArr.push(result[key]);  
99.           }  
100. this.setState({ productsArr: this.state.productsArr });  
101.           console.log('Details Obj', this.state.productsArr);  
102. // console.log(this.state.getProductDetails['0'])
103.
104.
105.         });  
106.     } catch (e) {  
107.       console.log(e.message);  
108.     }  
109.
110.   }  



155

111.
112.   selectRow(e) {  
113.     console.log('Target Value', typeof (e), e);  
114.
115.
116. this.getProductDetails(e);  
117. this.setState({ pubKey: e, modal: true });  
118.
119.
120.   }  
121.
122.   toggle() {  
123.
124. this.setState(prevState => ({  
125.       modal: !prevState.modal,  
126.       productsArr: [],  
127.
128.     }));  
129.   }  
130.
131.   render() {    
132. return (  
133.       <div>  
134.         <Card>  
135.           <CardBody style={{ display: 'flex', alignItems: 'flex­

end', justifyContent: 'flex­end' }}>  
136.             {/* <Button color="primary" onClick={this.toggle}  >Send Part A

</Button> */}  
137.             <Modal isOpen={this.state.modal} toggle={this.toggle} style={{ 

marginTop: '180px' }}>  
138.               <ModalHeader toggle={this.toggle}>Hash ID Information 

</ModalHeader>  
139.               <ModalBody>  
140.                 <FormGroup>  
141.                   <Label for="name">Address of producer</Label>  
142.                   <Input type="text" name="name" id="name" value={this.stat

e.pbKey}  
143.                          placeholder="Enter publc key here ... "/>  
144.
145.                   <Label for="name">Product ­ Hash ID</Label>  
146.                   <Input type="text" name="name" id="name" value={this.stat

e.productsArr[0]}  
147.                          placeholder="Enter publc key here ... "/>  
148.
149.                   <Label for="name">Rear Fork ­ Hash ID</Label>  
150.                   <Input type="text" name="name" id="name" value={this.stat

e.productsArr[1]}  
151.                          placeholder="Enter publc key here ... "/>  
152.
153.                   <Label for="name">Footboard ­ Hash ID</Label>  
154.                   <Input type="text" name="name" id="name" value={this.stat

e.productsArr[2]}  
155.                          placeholder="Enter publc key here ... "/>  
156.
157.                   <Label for="name">Certificate ­ Hash ID</Label>  
158.                   <Input type="text" name="name" id="name" value={this.stat

e.productsArr[3]}  
159.                          placeholder="Enter publc key here ... "/>  
160.
161.                 </FormGroup>  
162.               </ModalBody>  
163.               <ModalFooter>  
164.                 <Button color="primary" onClick={this.toggle}>Send</Button>

{' '}  
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165.                 <Button color="secondary" onClick={this.toggle}>Cancel</But
ton>  

166.               </ModalFooter>  
167.             </Modal>  
168.           </CardBody>  
169.         </Card>  
170.
171.
172.         <Card>  
173.           <CardBody>  
174.
175.             <Table hover>  
176.               <thead>  
177.               <tr>  
178.                 <th style={{ fontWeight: 'bold' }}>#</th>  
179.                 <th style={{ fontWeight: 'bold' }}>Hash ID</th>  
180.
181.               </tr>  
182.               </thead>  
183.               <tbody>  
184.               {  
185. this.state.getProductArr.map((val, inx) => {  
186. return (  
187.
188.
189.                     <tr>  
190.                       <td>{inx}</td>  
191.                       <td onClick={() => this.selectRow(val)}>{val} </td>  
192.                     </tr>  
193.                   );  
194.
195.                 })  
196.               }  
197.
198.               </tbody>  
199.             </Table>  
200.           </CardBody>  
201.         </Card>  
202.
203.       </div>  
204.     );  
205.   }  
206. }  

Listing 10: React user interface source code 
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B2: User interface layout  

Figure 53: User interface layout 
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B3: Certifier interface layout 

Figure 54: Certifier interface layout 
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B4: Supplier interface layout 

Figure 55: Supplier interface layout 
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B5: Manufacturer interface layout 

Figure 56: Manufacturer interface layout 
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