
Design and Implementation of Model
Predictive Control on Pixhawk Flight

Controller

by
Chinedu Amata Amadi

December 2018

Thesis presented in partial fulfilment of the requirements for the degree
of Master of Engineering (Mechatronic) in the Faculty of Engineering at

Stellenbosch University

Supervisor: Dr. Willie. J. Smit

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any qualification.

Date: December 2018

Copyright © 2018 Stellenbosch University
All rights reserved.

ii

Stellenbosch University https://scholar.sun.ac.za

Plagiarism Declaration

1. Plagiarism is the use of ideas, material and other intellectual property
of another’s work and to present it as my own.

2. I agree that plagiarism is a punishable offence because it constitutes
theft.

3. I also understand that direct translations are plagiarism.

4. Accordingly all quotations and contributions from any source whatsoever
(including the internet) have been cited fully. I understand that the
reproduction of text without quotation marks (even when the source is
cited) is plagiarism.

5. I declare that the work contained in this assignment, except where oth-
erwise stated, is my original work and that I have not previously (in its
entirety or in part) submitted it for grading in this module/assignment
or another module/assignment.

18899293

Student number Signature
CA. Amadi 6/09/2018

Initials and surname Date

iii

Stellenbosch University https://scholar.sun.ac.za

Abstract

Quadcopters have undergone a steady rise in popularity in the last decade.
They have been adopted in the military, fire and rescue missions, security sys-
tems and photography, just to list a few. The rate of adoption of quadcopters
is on the rise as more applications for their use are discovered. At the Solar
Thermal Energy Research Group (STERG), Stellenbosch University, quad-
copters are used in the calibration and inspection of heliostats and to improve
point focusing of the heliostats. Therefore, it is necessary to use quadcopters
with excellent performance to achieve these objectives.

STERG uses the Pixhawk autopilot, one of the most popular open source
flight controllers available, for quadcopter research. The Pixhawk runs on
the PX4 firmware comprised of modules used for state estimation, position-
and angular control and others. A Proportional Derivative (PD) controller
is implemented on the PX4 firmware to control the angular rates of a quad-
copter. However, previous studies show that this controller is inadequate and
necessitates a need for an alternative. Model Predictive Control (MPC) was
chosen as the alternative, due to its ability to generate a sequence of inputs
needed to control a system by minimising the error between reference values
and predicted outputs and also its ability to handle constraints. Nevertheless,
MPC has not been implemented on the PX4 firmware before, as it requires a
mathematical model of the specific quadcopter to be used. Thus, the aim of
this thesis is to evaluate the feasibility of implementing MPC on the Pixhawk,
running the PX4 firmware, to control the angular rates of a quadcopter.

The MPC angular rates controller was designed and implemented in MAT-
LAB. The controller was then programmed in C++ for compatible inclusion
in the relevant PX4 module. A multicopter simulator was used to run the
modified PX4 firmware on a simulated quadcopter to control its angular rates.
Subsequently, the PX4 firmware was uploaded onto the Pixhawk. Several chal-
lenges were encountered in this stage, with the most prominent, being the size
of the memory on the Pixhawk. Measures such as code optimisation, stack
size adjustment and disabling unused modules were necessary to ensure a suc-
cessful firmware upload. A quadcopter running the modified PX4 firmware on
the Pixhawk was flight tested and thereafter, the angular rates flight data was
plotted and analysed. The plots show that the MPC angular rates controller
is able to achieve close reference tracking of angular rates.

iv

Stellenbosch University https://scholar.sun.ac.za

ABSTRACT v

The findings from this novel approach demonstrate the feasibility of im-
plementing model predictive control on the PX4 firmware, and proposes using
a Pixhawk with a larger memory in order to integrate MPC into other PX4
control modules.

Stellenbosch University https://scholar.sun.ac.za

Uittreksel

Hommeltuie het die afgelope dekade meer gewildheid geraak. Hulle word ge-
bruik in die weermag, brand- en reddingsmissies, sekuriteitsisteme en fotogra-
fie, om net ’n paar te noem. Hommeltuie word al meer gebruik soos meer
toepassings vir hul gebruik ontdek word. By die Son Termiese Energie Navor-
singsgroep (STERG), Universiteit Stellenbosch, word hommeltuie gebruik in
die kalibrasie en inspeksie van heliostate en om die puntfokus van die heliostate
te verbeter. Daarom is dit nodig om hommeltuie te gebruik met uitnemende
prestasie om hierdie doelwitte te bereik.

STERG gebruik die Pixhawk outoloots, een van die gewildste oopbron vlug-
beheerders beskikbaar vir hommeltuignavorsing. Die Pixhawk gebruik die PX4
fermatuur wat bestaan uit modules vir toestandafskatting, posisie- en hoekbe-
heer en ander. ’n Proporsionele afgeleide (PD) beheerder is gé’implementeer
op die PX4-fermatuur om die hoektempo’s van die hommeltuig te beheer. Vo-
rige studies toon egter dat hierdie beheerder ontoereikend is en ’n alternative
beheerder noodsaak. Modelvoorspellende beheer (MVB) is gekies as ’n alter-
natief, omdat dit ’n reeks intree-waardes kan genereer om ’n stelsel te beheer
deur die fout tussen die verwysingswaardes en die voorspelde uitree te mini-
meer, asook omdat dit die vermoë het om begrensings te hanteer. Nietemin
is die MVB nog nie voorheen op die PX4-fermatuur geïmplementeer nie, aan-
gesien dit ’n wiskundige model benodig van die spesifieke hommeltuig wat
gebruik word. Dus, die doel van hierdie proefskrif is om die uitvoerbaarheid
van MVB wat uitvoer op ’n Pixhawk met PX4-fermatuur te evalueer, waar die
MVB die hoektempo van ’n hommeltuig beheer.

Die MBV-hoektempo beheerder is ontwerp en geïmplementeer in MAT-
LAB. Die beheerder is in C++ geprogrammeer vir aanpasbare insluiting in die
betrokke PX4-module. ’n Hommeltuig-simulator is gebruik om die gewysigde
PX4-fermatuur op ’n gesimuleerde hommeltuig uit te voer en so die hoektempo
te beheer. Daarna is die PX4-fermatuur op die Pixhawk gelaai. Verskeie uitda-
gings is in hierdie stadium ondervind, die mees prominente was die grootte van
Pixhawk se geheue. Maatreëls soos kodeoptimering, stapelgrootte aanpassing
en om ongebruikte modules af te skakel was nodig om ’n suksesvolle fermatuur-
oplaai te verseker. ’n Hommeltuig wat die gewysigde PX4-fermatuur op die
Pixhawk uitvoer, is in vlug getoets en daarna is die hoektempo vlugdata ge-
teken en ontleed. Die plotte toon dat die MVB-hoektempo beheerder in staat

vi

Stellenbosch University https://scholar.sun.ac.za

UITTREKSEL vii

is om die verwysing vir hoektempo’s goed te volg.
Die bevindinge van hierdie nuwe benadering demonstreer die haalbaarheid

om modelvoorspellende beheer op die PX4 fermatuur te ïmplementeer, en stel
voor dat ’n Pixhawk met ’n groter geheue gebruik moet word om MVB te
integreer met ander PX4 beheer modules.

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like to express my sincerest gratitude to my supervisor Dr. Willie Smit
for his guidance and support during my research. Our meetings were always
productive and either resulted in suggestions towards my research, advice on
my personal affairs or just general discussions that I found uplifting. He is an
amazing mentor.

I would also like to thank the Solar Thermal Energy Research Group
(STERG) for the research office space and other facilities and resources that
aided me in my research.

I want to acknowledge the Centre for Renewable and Sustainable Energy
Studies (CRSES) for their financial support during the second half of the
second year of my programme.

My smooth adoption of LATEXwould not have been possible without the
guidance of Abbas M. Sherif (PhD in Mathematics candidate at University
of Kwazulu-Natal, Master of Science in Theoretical Physics from Stellenbosch
University). His advice on research and general encouragement were invaluable
during this journey.

Finally, but by no means the least, I want to thank my family and friends for
their unwavering support — emotionally, spiritually and financially — during
the course of my programme. I am grateful for being blessed which such
incredible people in my life.

viii

Stellenbosch University https://scholar.sun.ac.za

To Amata and Chiaka Amadi

ix

Stellenbosch University https://scholar.sun.ac.za

Contents

Declaration ii

Abstract iv

Uittreksel vi

Acknowledgements viii

Contents x

List of Figures xii

List of Tables xiv

Nomenclature xv

1 Introduction 1
1.1 Background . 1
1.2 Research Problem . 4
1.3 Aim of Thesis . 4
1.4 Objectives . 4
1.5 Thesis Outline . 5

2 Literature Review 7
2.1 Quadcopter Structure . 7
2.2 Coordinate Frames . 11
2.3 Quadcopter Dynamics . 13
2.4 State Space Representation . 15
2.5 Model Predictive Control . 16
2.6 State Observer . 32
2.7 Pixhawk Autopilot . 35

3 Controller Design and Implementation 37
3.1 PX4 Architecture . 37
3.2 Model Predictive Controller . 39

x

Stellenbosch University https://scholar.sun.ac.za

CONTENTS xi

3.3 MATLAB Implementation . 47
3.4 SITL Implementation . 51
3.5 Flight Testing . 57

4 Simulation and Experiments 62
4.1 MATLAB Simulations . 62
4.2 Software-in-the-loop (SITL) . 65
4.3 Flight Tests . 68

5 Conclusion 71

Appendices 74

A Optimisation example 75

B Pixhawk Autopilot Specifications 78

C Parameter Determination 80
C.1 Mass . 80
C.2 Moment Arm . 80
C.3 Moments of Inertia . 81
C.4 Drag Coefficient . 84
C.5 Thrust Coefficient . 85

D MATLAB Code 86
D.1 Main Program . 86
D.2 Augment State Space Matrices 91
D.3 Constraint Matrices and Vectors 91
D.4 Hildreth’s Quadratic Programming Function 93

E C++ Code 95
E.1 Includes . 95
E.2 Multicopter Attitude Control Class 95
E.3 Constructor . 96
E.4 Hildreth’s Quadratic Programming Function 99
E.5 Inside Attitude Control Rates Function 100

F jMAVSim 103

G Additional Results 104
G.1 MATLAB Simulations . 104
G.2 Software-in-the-loop Simulations 109
G.3 Flight Tests . 111

List of References 113

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 (a) Convertawing Quadrotor, 1956 (b) Quadcopter 1
1.2 (a) Arducopter (b) Openpilot (c) Paparazzi (d) Pixhawk autopilot . 2
1.3 Methodology . 5

2.1 Quadcopter configuration . 8
2.2 Six degrees of freedom of a rigid body 8
2.3 (a) MPU6050 Inertial Measurement Unit (IMU) (b) MEAS barometer 9
2.4 Quadcopter movements . 10
2.5 Quadcopter mode of operation . 10
2.6 Earth-fixed and body-fixed coordinate frames 11
2.7 Quadcopter euler angles . 12
2.8 Motor labels . 14
2.9 Principle of MPC . 18
2.10 Prediction horizon . 19
2.11 Flow diagram of Kalman filter . 34
2.12 Software structure . 35
2.13 Micro object request broker, µORB 36

3.1 PX4 flight stack . 38
3.2 PX4 control block diagram . 38
3.3 PX4 attitude controller flow chart 39
3.4 Modified MPC block diagram . 40
3.5 Flow chart of MATLAB Implementation 48
3.6 Quadcopter in jMAVSim environment 56
3.7 QGroundControl homescreen . 57
3.8 Indoor flight testing . 60

4.1 MATLAB roll rates for nu = 3, ny = 6 63
4.2 MATLAB pitch rates for nu = 3, ny = 6 63
4.3 MATLAB yaw rates for nu = 3, ny = 6 64
4.4 MATLAB roll torque for nu = 3, ny = 6 64
4.5 MATLAB pitch torque for nu = 3, ny = 6 64
4.6 MATLAB yaw torque for nu = 3, ny = 6 65

xii

Stellenbosch University https://scholar.sun.ac.za

LIST OF FIGURES xiii

4.7 Left panel: Quadcopter in jMAVSim, right panel: Flight mission
waypoints in QGC . 66

4.8 SITL roll rates for nu = 2, ny = 4 67
4.9 SITL pitch rates for nu = 2, ny = 4 67
4.10 SITL yaw rates for nu = 2, ny = 4 67
4.11 SITL PWM values for nu = 2, ny = 4 68
4.12 Flight roll rates for nu = 2, ny = 2 69
4.13 Flight pitch rates for nu = 2, ny = 2 69
4.14 Flight yaw rates for nu = 2, ny = 2 69
4.15 Flight PWM values for nu = 2, ny = 2 70

5.1 Methodology . 72

A.1 Contour plot of objective function without constraints 76
A.2 Contour plot of objective function with constraints 77

B.1 Top view of Pixhawk hardware with labeled ports 78
B.2 Labeled side view of Pixhawk . 78

C.1 Moment arm of quadcopter . 80
C.2 (a) Rotation about x-axis (b) Rotation about y-axis (c) Rotation

about z-axis . 81

G.1 MATLAB roll rates for nu = 2, ny = 2 104
G.2 MATLAB pitch rates for nu = 2, ny = 2 105
G.3 MATLAB yaw rates for nu = 2, ny = 2 105
G.4 MATLAB roll torque for nu = 2, ny = 2 105
G.5 MATLAB pitch torque for nu = 2, ny = 2 106
G.6 MATLAB yaw torque for nu = 2, ny = 2 106
G.7 MATLAB roll rates for nu = 2, ny = 4 107
G.8 MATLAB pitch rates for nu = 2, ny = 4 107
G.9 MATLAB yaw rates for nu = 2, ny = 4 107
G.10 MATLAB roll torque for nu = 2, ny = 4 108
G.11 MATLAB pitch torque for nu = 2, ny = 4 108
G.12 MATLAB yaw torque for nu = 2, ny = 4 108
G.13 SITL roll rates for nu = 2, ny = 2 109
G.14 SITL pitch rates for nu = 2, ny = 2 109
G.15 SITL yaw rates for nu = 2, ny = 2 110
G.16 SITL PWM values for nu = 2, ny = 2 110
G.17 Flight roll rates for nu = 2, ny = 5 111
G.18 Flight pitch rates for nu = 2, ny = 5 111
G.19 Flight yaw rates for nu = 2, ny = 5 111
G.20 Flight PWM values for nu = 2, ny = 5 112

Stellenbosch University https://scholar.sun.ac.za

List of Tables

2.1 Illustration of receding horizon . 19
2.2 Comparison of control methods with constraint handling as a criteria 20

3.1 Quadcopter parameters . 41
3.2 Summary of quadcopter hardware 61

4.1 MATLAB MPC simulation parameters for nu = 3, ny = 6 63

C.1 Time for oscillations about X-axis 82
C.2 Time for oscillations about Y-axis 82
C.3 Time for oscillations about Z-axis 82

G.1 MATLAB MPC simulation parameters for nu = 2, ny = 2 104
G.2 MATLAB MPC simulation parameters for nu = 2, ny = 4 106

xiv

Stellenbosch University https://scholar.sun.ac.za

Nomenclature

Roman Letters
A State matrix
B Input matrix
b Thrust coefficient
C Output matrix
D Feedforward matrix
d Moment arm
g Acceleration due to gravity
I Moment of inertia matrix
Ixx Moment of inertia about x-axis
Iyy Moment of inertia about y-axis
Izz Moment of inertia about z-axis
k Aerodrag coefficient
m Mass
n Number of states
nu Control horizon
ny Prediction horizon
R Rotation matrix
u Input vector
W Earth-fixed frame
x State vector
y Output vector

Greek Letters
B Body-fixed frame
η Angular velocity vector about earth-fixed axis
θ Pitch angle about y body axis
θ̇ Angular velocity about y body-fixed axis

xv

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xvi

θ̈ Angular acceleration about y body-fixed axis
ν Angular velocity vector about body-fixed axis
τ Torque acting in body-fixed frame
φ Roll angle about x body-fixed axis
φ̇ Angular velocity about x body-fixed axis
φ̈ Angular acceleration about x body axis
ψ Yaw angle about z body-fixed axis
ψ̇ Angular velocity about z body-fixed axis
ψ̈ Angular acceleration about z body-fixed axis
ωi Motor speed for each motor

Subscripts
m Model
p Prediction
xx X axis
yy Y axis
zz Z axis

Abbreviations
ASM Active Set Method
ESC Electronic Speed Controller
EKF Extended Kalman Filter
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
FPU Floating Point Units
FTDI Future Technology Devices International
GCS Ground Control Station
IDE Integrated Development Environment
IMU Inertial Measurement Unit
IPM Interior Point Method
KKT Karush Kuhn and Tucker
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
MATLAB Matrix Laboratory
MIMO Multiple Input Multiple Output
MPC Model Predictive Control
NED North East Down

Stellenbosch University https://scholar.sun.ac.za

NOMENCLATURE xvii

PCM Pulse Control Modulation
PD Proportional Derivative
PI Proportional Integral
PID Proportial Integral Derivative
PPM Pulse Position Modulation
PWM Pulse Width Modulation
QP Quadratic Program
RC Remote Control
SBUS Serial Bus
SISO Single Input Single Output
SITL Software In The Loop
STERG Solar Thermal Energy Research Group
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
VTOL Vertical Take Off and Landing

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Background
In the last three decades, significant advancements in miniaturisation of me-
chanical and electronic devices (Hsu, 2002) have led to the reemergence of
multicopters. The preceding multicopters were large, complex, unstable and
required a highly skilled pilot to operate them. The modern multicopters
are significantly smaller, simpler, more reliable and maneuvarable (Villbrandt,
2011). Multicopters are classified as Unmanned Aerial Vehicles (UAVs) be-
cause they are either controlled remotely by a radio transmitter or from a com-
puter ground station. Multicopters equipped with four rotors are called quad-
copters or quadrotors. Figure 1.1 shows the 1956 Convetawing Quadrotor
in the left panel and a typical modern quadcopter in the right panel.

Figure 1.1: (a) Convertawing Quadrotor, 1956 (San Diego Air and Space Museum
Archives) (b) Quadcopter (STERG, Stellenbosch University)

Currently quadcopters are being used in the military and defence industries,
search and rescue operations, power plant inspections, logistics and freight,
transportation, surveillance, livestock monitoring, aerial imagery, wild fire
monitoring, and photography to list a few (Luukkonen, 2011). This rise in

1

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 2

potential sectors for the application of quadcopters motivates research inter-
ests to improve and address current challenges quadcopters encounter. Some
of these challenges include obstacle avoidance for autonomous navigation, in-
creasing quadcopter flight time and improving the control system to reject
disturbances and track reference commands.

There are two main components required in controlling a quadcopter: a mi-
crocontroller, also termed as the flight controller, and sensors connected to the
microcontroller. The microcontroller runs a control algorithm that uses data
from the sensors and commands sent from a radio transmitter or groundstation
to control the quadcopter by varying the speed of the motors (Leong et al.,
2012). The microcontroller has to compute control commands very quickly in
order to keep the quadcopter airborne; consequently, the algorithm running
on the microcontroller has to be fast.

There are various flight controllers commercially available that differ ac-
cording to the specific use of the quadcopter. All flight controllers fall under
two categories: closed and open source flight controllers. Open source flight
controllers enable the user to make modifications to both the hardware and
software of the flight controller, while closed source flight controllers do not.
This freedom of controller customisation is one of the main reasons open source
flight controllers are used. Some of the popular open source flight controllers
are the Arducopter, Openpilot, Paparazzi, Pixhawk, Mikrokopter, Kkmulti-
copter, Multiwii and Aerocopter (Lim et al., 2012). Figure 1.2 below only
shows the Arducopter, Openpilot, Paparazzi and Pixhawk flight controllers.

(a) (b)

(c) (d)

Figure 1.2: (a) Arducopter (b) Openpilot (c) Paparazzi (d) Pixhawk autopilot
(Adapted from Lim et al. (2012))

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 3

On this list, the Pixhawk flight controller is considered to be one of the
most versatile and advanced flight controllers. In addition to being used as a
flight controller for quadcopter control, the Pixhawk can be utilised in control-
ling other multicopters, fixed-winged aircraft and Unmanned Ground Vehicles
(UGVs) like rovers. Autonomous control of a marine vehicle was realised by
Risqi et al. using the Pixhawk. With a large community of developers and
users, the PX4 firmware that runs on the Pixhawk is constantly being improved
upon to release more stable versions for the respective vehicles.

At the Solar Thermal Energy Research Group (STERG) at Stellenbosch
University, the Pixhawk autopilot is used in quadcopter research. Quadcopters
are used in the calibration and inspection of heliostats, and to improve point fo-
cusing of the heliostats. Currently the group utilises the default PX4 firmware
running on the Pixhawk to control position and attitude. The attitude con-
troller incorporates a P controller for angular error and Proportional Derivative
(PD) controller for angular rate error.

The use of Proportional Integral Derivative (PID) controllers and its vari-
ants (such as a Proportional Integral (PI), PD or proportional controllers)
ensures simplicity and flexibilty in control. Thus, a solid background in con-
trol theory is not essential for users of the Pixhawk. However, the results
obtained from quadcopter research at STERG strongly indicate that these
methods prove to be inadequate especially in controlling the angular rates (or
velocity) of the quadcopter. Therefore, a more advanced control method is
required.

Advanced control techniques have been implemented on quadcopters, and
there have been a number of quadcopter controller comparisons between more
advanced controllers and the PID controller. These advanced controllers are
either implemented on a quadcopter, or simulated, and have proven to perform
better than the PID controller or any of its variants. In Bhatkhande and
Havens (2014), a Fuzzy logic controller is implemented to control a quadcopter.
The controller is compared with a PD and it was confirmed that the Fuzzy
logic controller performed better. Tosun et al. (2015) achieved better attitude
control using Linear Quadratic Regulator (LQR) controller in comparison to
a PID controller. Adaptive control is implemented by Palunko and Fierro
(2011) in investigating stability when there are dynamic changes in the center
of gravity of the quadcopter. A PD controller failed to achieve stability under
such conditions whereas the adaptive controller did. In Ganga and Dharmana
(2017), a PID controller is used as a benchmark to assess its trajectory tracking
ability in comparison with a Model Predictive Controller (MPC). Simulations
were run which demonstrated that the MPC performed better than the PID
controller. Other controllers that have been implemented on a quadcopter but
only these ones have been considered for brevity.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 4

1.2 Research Problem
As established in the previous section, the necessity for an enhanced con-
trol method to control the angular rates of the quadcopter is beneficial to
researchers at STERG in calibrating and inspecting heliostats and improving
the point focusing of the heliostats. The control method chosen as the replace-
ment to the default PX4 angular rates controller is Model Predictive Control
(MPC).

Model predictive control uses a mathematical model of a system to predict
its output (response) over a prediction horizon. A cost function comprised of
the error between these predicted outputs and reference values and a weighted
control input term are minimised to generate a sequence of control inputs to
be sent to the system to track the reference. The length of the sequence is
equivalent to a predetermined parameter known as the control horizon, how-
ever only the first element in this sequence is implemented on the system, as
reference and sensors data are updated in subsequent sample times.

Model predictive control has yet to be implemented on the PX4 firmware
as it requires a mathematical model of the quadcopter, as the Pixhawk can be
used on vehicles of different types and sizes.

1.3 Aim of Thesis
The aim of this thesis is to evaluate the feasibility of implementing a model
predictive controller on the Pixhawk flight controller to control the angular
rates of a quadcopter.

1.4 Objectives
The objectives of this thesis are:

1. To design and simulate a model predictive controller in MATLAB.

2. To program the controller in C++ and simulate its performance with a
software-in-the-loop (SITL) simulator compatible with the Pixhawk.

3. To assess the feasibility of running the controller on the Pixhawk hard-
ware.

4. To conduct flight tests if implementing the MPC controller on the Pix-
hawk was realised.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 5

1.5 Thesis Outline
Chapter 2 is the literature review which introduces the quadcopter structure
and its working principle. Coordinate frames required in mathematical mod-
elling are covered in a section. Quadcopter dynamics and mathematical mod-
elling are reviewed in the subsequent section. A state space representation
of the quadcopter mathematical model is presented subsequently. In the fol-
lowing section, MPC is introduced and explained in detail. The section that
follows briefly explains the state observer used in determining the states of
the quadcopter that are needed for rates control of the quadcopter. A concise
discussion on the history of the Pixhawk hardware and a description of its
firmware architecture concludes this chapter.

Chapter 3 covers the methodology of designing and implementing the MPC
angular rates controller first in MATLAB, then for SITL and finally on the
Pixhawk autopilot for flight testing. The steps carried out in the methodology
are visualised in the figure below.

Formulate mathematical model

MPC controller design

MATLAB implementation

Software-in-the-loop (SITL)
implementation

Flight testing

Figure 1.3: Methodology

The simulations obtained from running the MPC angular rates controller
in MATLAB and SITL are presented and discussed in chapter 4. This chapter
concludes with the presenting and analysing the results obtained from the
implementing the controller on the Pixhawk for outdoor flight testing.

Chapter 5 concludes the thesis with a discussion of the significance of the
results obtained, challenges faced and recommendations for future work.

In the Appendices, appendix A presents an example to better explain parts
of the model predictive controller. The Pixhawk specifications are listed in ap-
pendix B. Appendix C details the procedures employed in determining the

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 1. INTRODUCTION 6

physical parameters of the quadcopter such as its mass, mass moment of in-
ertias for each cartesian axis and the thrust and drag motor coefficients. Ap-
pendix D shows the MATLAB code used in designing an MPC controller. The
C++ code used in SITL and flight testing is provided in appendix E. In ap-
pendix F, the commands used in setting up the the simulator used for SITL
implementation are outlined. Finally, additional results obtained from MATLAB

and SITL simulations, and flight testing are presented in appendix G.

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Literature Review

A detailed description of the quadcopter, its structure, its mode of operation
and onboard sensors are presented in section 2.1. Section 2.2 defines the coor-
dinate frames required to describe the translational and rotational motion of
the quadcopter. Section 2.3 covers the derivation of the equations of motion
that describe the rotational dynamics of the quadcopter and its mathematical
model. The derived mathematical model of the quadcopter is represented in
state-space form in section 2.4. In section 2.5, a brief history of Model Predic-
tive Control (MPC) is given, followed by the principle of MPC and a detailed
description of its components. This section is concluded with the motivation
for choosing this control method. Section 2.6 presents the state observer used
by the Pixhawk to estimate the states of the quadcopter. Finally in section
2.7, the brief history of the Pixhawk autopilot and a description of its software
architecture are presented.

2.1 Quadcopter Structure
A quadcopter is a multirotor Unmanned Aerial Vehicle (UAV) with four rotors,
which are varied in speed to change the altitude and/or angular position of
the vehicle (Thorat, 2015).

Quadcopters are configured with propellers that are connected either in an
"X" or "+" configuration (Giernacki et al., 2017) as shown in figure 2.1 below;
each propeller is powered by an electric motor. The propellers are connected
in counter-rotating pairs in order to cancel out the torques created by a set of
propellers rotating in one direction (Patel and Barve, 2014). In figure 2.1, the
propellers labeled 1 and 2 rotate in a counter-clockwise direction, while the
propellers labeled 3 and 4 rotate in a clockwise direction.

With each component of the quadcopter securely fastened, ensuring that
no component moves relative to another, the quadcopter can be classified as
a rigid body which has six degrees of freedom (Greenwood, 2003). Three
of the degrees of freedom are transitional, typically represented by cartesian

7

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 8

Figure 2.1: Quadcopter configuration (Ardupilot, 2016)

coordinates, the other three are rotational and are typically represented by
euler angles.

The six degrees of freedom are illustrated in fig 2.2 below.

Figure 2.2: Six degrees of freedom of a rigid body (Voise et al., 2011)

The quadcopter is underactuated as it possesses only four motors for a six
degree of freedom rigid body (Magnussen and Skjønhaug, 2011). This necessi-
tates the need for a control system to compensate for this underactuation, in
order to stabilize the quadcopter when it is airborne.

As stated in the introductory chapter, the microcontroller to be used to
implement the MPC angular rates controller is the Pixhawk autopilot. The
Pixhawk is embedded with an accelerometer, gyroscope, barometer and mag-
netometer.

A gyroscope is a device that senses and measures the angular velocity of
a body or system. There are gyroscopes that measure angular velocity in
one, two or three orthogonal axes. The gyroscope on the Pixhawk is a 3-axis

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 9

gyroscope measuring the angular velocity of the quadcopter in the x (roll), y
(pitch) and z (yaw) axes.

Accelerometers are electromechanical devices that measure acceleration.
Similar to the gyroscope, the acceleration of a body or system can be measured
in either one, two or three orthogonal axes.

A 3-axis gyroscope can be coupled with a 3-axis accelerometer to provide
a full six degree of freedom motion tracking system. This coupled device is
known as an Inertial Measurement Unit (IMU) (Kim and Golnaraghi,
2004). The IMU embedded in the Pixhawk is the MPU6050 and is shown in
figure 2.3(a) below.

A barometer is a device used to measure atmospheric pressure. Atmo-
spheric pressure decreases with increasing altitude (Cavcar, 2000). This rela-
tion is used to determine the altitude of the body or system equipped with a
barometer. The MEAS barometer is used in the Pixhawk and is displayed in
figure 2.3(b) below.

(a) (b)

Figure 2.3: (a) MPU6050 Inertial Measurement Unit (IMU) (b) MEAS barometer

Magnetometers are devices used to measure the ambient magnetic field
surrounding them. Magnetometers are used in quadcopters to determine its
spatial orientation by providing readings in three orthogonal axes.

The sensors above provide the microcontroller with data about the current
position and rotational orientation of the quadcopter. A radio transmitter (or
remote controller) is used to send desired position and orientation commands
to the microcontroller via a radio receiver. The error between the desired and
current position and orientation is sent as an input to a control algorithm
running on the microcontroller. The control algorithm outputs motor pulse
width signals that are sent to the four electronic speed controllers (ESCs) which
convert these signals to power settings to control the speed of each motor in
order to drive the current position and orientation of the quadcopter to what
is desired (Quan, 2017).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 10

Figure 2.4 displays the different movements that can be achieved by varying
the speed of specific motors on the quadcopter, where the thickness of the
arrows around the propeller corresponds to the speed of the respective motor.
The mode of operation of the quadcopter is shown in figure 2.5.

Figure 2.4: Quadcopter movements (Adapted from Grujic and Nilsson (2016))

Microcontroller
(Pixhawk autopilot)

ESC

Remote control
Receiver

GPS Receiver

Ground Control
Station

Altitude sensor
(Ultrasonic/
barometric)

ESC

ESC

ESC

Gyroscope/accelerometer

Motors and propellers

Remote control
(radio)

Figure 2.5: Quadcopter mode of operation (Adapted from Santoro, 2014)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 11

2.2 Coordinate Frames
Coordinate frames are needed to describe the motions of the quadcopter before
the quadcopter is mathematically modeled. Two coordinate frames are used
to achieve this purpose and these are the earth-fixed frame, W , and body-
fixed frame, B . With two coordinate frames, parameters that are measured
or observed in the earth-fixed frame can be related in the body-fixed frame
and vice versa. These coordinate frames are illustrated in figure 2.6 with the
quadcopter in the body-fixed frame.

Figure 2.6: Earth-fixed and body-fixed coordinate frames (Adapted from Grujic
and Nilsson (2016))

The earth-fixed frame is taken as the reference frame using the NED (North
East Down) convention where the x-axis of the frame is pointed to the north,
y-axis pointed to the east and the z-axis pointed down (Nebylov and Watson,
2016). The body-fixed frame, B , has its origin at the center of mass of the
quadcopter. The orientation of the quadcopter, known as its attitude, is
expressed in the body-fixed frame by euler angles φφφ, θθθ and ψψψ which correspond
to the roll, pitch and yaw angles. The angles are also referred to as the angular
positions of the quadcopter and are shown in fig 2.7 below.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 12

Figure 2.7: Quadcopter euler angles (Adapted from Grujic and Nilsson (2016))

In order to relate the orientation of the quadcopter in the earth-fixed frame,
a rotation matrix, R, is required. The rotation matrix, R from the body-fixed
frame to the earth-fixed frame is given as:

R =

CψCθ CψSθSφ − SψCφ CψSθCφ + SψSφ
SψCθ SψSθSφ + CψCφ SψSθCφ − CψSφ
−Sθ CθSφ CθCφ

 (2.2.1)

where Sφ = sin(φ) and Cφ = cos(φ). Equation 2.2.1 was obtained from
(Carrillo et al., 2013) by taking the rotation order roll, pitch then yaw.

The IMU on the Pixhawk is used to obtain the angular velocity of the
quadcopter in the body-fixed frame. A transformation is needed to relate
euler rates, ν =

[
φ̇ θ̇ ψ̇

]T
, that are measured in the earth-fixed frame and

the angular body-fixed rates, η =
[
p q r

]T . The transformation is obtained
from Luukkonen (2011) and is as follows,

η = W−1
η ν,

φ̇θ̇
ψ̇

 =

1 SφTθ CφTθ
0 Cφ −Sφ
0 Sφ/Cθ Cφ/Cθ

pq
r

 (2.2.2)

where Wη is the transformation matrix and Tx = tan(x)
Subsequently transforming angular velocities in the body-fixed frame to

the earth-fixed frame is achieved by the equation below,

ν = Wηη,

pq
r

 =

1 0 −Sθ
0 Cφ SφCθ
0 −Sφ CφCθ

φ̇θ̇
ψ̇

 (2.2.3)

The relations in equations 2.2.2 and 2.2.3 are obtained from Alderete
(1995).

Taking small angle assumptions, the transformation matrix can be reduced
to an identity matrix (Nagaty et al., 2013). Therefore,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 13

ν = η (2.2.4)

2.3 Quadcopter Dynamics
This thesis is focused on designing and implementing a model predictive con-
troller on a Pixhawk, running the PX4 firmware, to control the angular rates
of a quadcopter. Therefore, only the rotational dynamics of the quadcopter
are taken into consideration. The following assumptions were made before
a mathematical model was derived from the quadcopter’s dynamics (Habib
et al., 2014):

• The rotational motion of the quadcopter is independent of its transla-
tional motion.

• The centre of gravity coincides with the origin of the body-fixed frame.

• The structure of the quadcopter is rigid and symmetrical with the four
arms coinciding with the body x- and y-axes.

• Drag and thrust forces are proportional to the square of the propeller’s
speed.

• The propellers are rigid.

2.3.1 Rotational Equations of Motion

The rotational motion of the quadcopter is described by Euler’s equation of
rotation in the equation 2.3.1 below.

Iν̇ + ν × Iν = τ (2.3.1)

where,
I - inertia matrix of quadcopter
ν - angular velocity vector in body-fixed frame
τ - torque/moment vector acting on the quadcopter in the body-fixed frame

The angular velocites in the body-fixed frame are put into vector ν as
shown below,

ν =
[
φ̇ θ̇ ψ̇

]T
(2.3.2)

The symmetrical structure of the quadcopter reduces the inertia matrix, I,
to a diagonal matrix where the diagonal elements correspond to the mass mo-
ment of inertia for each cartesian axis; the off-diagonal elements are products
of inertia. The inertia matrix is shown below,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 14

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (2.3.3)

The elements of the torque vector, τ , represent the torques about the
respective body-fixed frame axes and is expressed in equation 2.3.4 below
(Luukkonen, 2011).

τ =

 db(ω2
4 − ω2

2)
db(ω2

1 − ω2
3)

k(ω2
1 + ω2

3 − ω2
2 − ω2

4)

 (2.3.4)

where,
b - thrust coefficient
k - aerodrag coefficient
d - moment arm
ω - motor speed

The torque τφ, results in a rolling torque or moment about the x-axis by
varying the speeds of the second and fourth motors labeled in the figure 2.8.

Similarly a pitch torque τθ , moment about the y-axis, is achieved by vary-
ing the speeds of the first and third motors. In achieving a yaw torque τψ,
the first and third motor are paired together while the second and fourth are
paired together. Varying the speeds for each motor pair results in rotation
about the z-axis.

Figure 2.8: Motor labels (Adapted from Grujic and Nilsson (2016))

Substituting equations 2.3.3 and 2.3.4 into equation 2.3.1,Ixx 0 0
0 Iyy 0
0 0 Izz

φ̈θ̈
ψ̈

+

φ̇θ̇
ψ̇

×
Ixx 0 0

0 Iyy 0
0 0 Izz

φ̇θ̇
ψ̇

 =

 db(ω2
4 − ω2

2)
db(ω2

1 − ω2
3)

k(ω2
1 + ω2

3 − ω2
2 − ω2

4)



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 15

let,
U1 = db(ω2

4 − ω2
2)

U2 = db(ω2
1 − ω2

3), and
U3 = k(ω2

1 + ω2
3 − ω2

2 − ω2
4)

Now, Ixxφ̈Iyyθ̈

Izzψ̈

+

φ̇θ̇
ψ̇

×
Ixxφ̇Iyyθ̇

Izzψ̇

 =

U1

U2

U3


Ixxφ̈Iyyθ̈

Izzψ̈

+

 Izz θ̇ψ̇ − Iyyθ̇ψ̇
−Izzφ̇ψ̇ + Ixxφ̇ψ̇

Iyyφ̇θ̇ − Ixxφ̇θ̇

 =

U1

U2

U3


Next, make

[
φ̈ θ̈ ψ̈

]T
the subject of the formula,Ixxφ̈Iyyθ̈

Izzψ̈

 =

Iyyθ̇ψ̇ − Izz θ̇ψ̇Izzφ̇ψ̇ − Ixxφ̇ψ̇
Ixxφ̇θ̇ − Iyyφ̇θ̇

+

U1

U2

U3


φ̈θ̈
ψ̈

 =


(Iyy−Izz)θ̇ψ̇+U1

Ixx
(Izz−Ixx)φ̇ψ̇+U2

Iyy
(Ixx−Iyy)φ̇θ̇+U3

Izz


This can be written out as,

φ̈ =
(Iyy − Izz)θ̇ψ̇

Ixx
+
U1

Ixx
(2.3.5)

θ̈ =
(Izz − Ixx)φ̇ψ̇

Iyy
+
U2

Iyy
(2.3.6)

ψ̈ =
(Ixx − Iyy)φ̇θ̇

Izz
+
U3

Izz
(2.3.7)

2.4 State Space Representation
In this thesis, a linear time invariant (LTI) state space model will be used in
representing the rotational motion of the quadcopter. Other linear model types
include transfer function models and Finite Impulse Response (FIR) models
(Rossiter, 2003). State space models are preferred as they are best suited
for Multi-input Multi-output (MIMO) systems, model analysis and numerical
calculations (Rossiter, 2003).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 16

The state space model for the rotational motion of the quadcopter is derived
from equations 2.3.5, 2.3.6 and 2.3.7. The state space matrices A, B and C
are given in the equation 2.4.1 below,

A =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 , B =



0 0 0
1
Ixx

0 0

0 0 0
0 1

Iyy
0

0 0 0
0 0 1

Izz

 , C =

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


(2.4.1)

The state vector x, and the input vector u, obtained from equation 2.3.4
are shown below,

x =



φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈


, u =

u1

u2

u3

 =

 db(ω2
4 − ω2

2)
db(ω2

1 − ω2
3)

k(ω2
1 + ω2

3 − ω2
2 − ω2

4)

 (2.4.2)

In order to design the MPC angular rates controller, the state space model
is linearised and then discretised. The motivation for discretisation is to enable
the model to be implemented digitally at a specified sample rate (Grujic and
Nilsson, 2016). The linear discrete model utilised in this thesis is obtained
from Grujic and Nilsson (2016) in which Taylor series expansion is used to
linearise the model about the hover position of the quadcopter.

The state vector, state matrices and input vector are represented compactly
in the equations below where the subscript m stands for model.

xm(k + 1) = Amxm(k) +Bmu(k) (2.4.3)

y(k) = Cmxm(k) (2.4.4)

There is no direct feedthrough signal from the input to the output therefore
the state matrix D is excluded from equation 2.4.4.

The next section introduces model predictive control.

2.5 Model Predictive Control
This section begins with an overview of the history behind Model Predictive
Control (MPC). The principle of MPC is discussed in full in subsection 2.5.2.
Subsection 2.5.3 motivates the reasons for choosing MPC as the alternative
to the current Pixhawk angular rates controller. A linear discrete state space

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 17

model is augmented for integral control in subsection. The controllability of
the LMPC model is discussed in subsection 2.5.5. Output predictions, con-
straints, optimization and quadratic programming formulation are covered in
subsections 2.5.6, 2.5.7, 2.5.8 and 2.5.9 respectively.

2.5.1 Historical background

Model predictive control was introduced by Richalet et al. (1978) in their pa-
per, ‘Model Predictive Heuristic Control - Application to Industrial Processes’
in which the effectiveness of this digital control method was attributed to its
ease of implementation and robustness to structural perturbations.

In 1980, at the Joint Automatic Control Conference (JACC), C.R. Cutler
and B.L.Ramaker presented their paper on ‘Dynamic Matrix Control (DMC)
- a Computer Control Algorithm’ (Cutler and Ramaker, 1980). Their research
illustrates how the dynamics of a process are incorporated into the design
of DMC, which integrates both feedforward and multivariable control. DMC
was successfully implemented in process computer applications at Shell Oil
Company Texas, USA, six years prior to the publication of this paper.

The following years saw further research in variations of MPC, applications
of MPC and characteristics of MPC such as its robustness and stability. The
evolution of MPC is outlined and discussed in Holkar and Waghmare (2010).
In 2015, M.G. Forbes et al presented their paper, ‘Model Predictive Control
in Industry: Challenges and Opportunities’ in which they examined indus-
trial practices and emerging research trends towards providing sustained MPC
performance (Forbes et al., 2015).

Advancements in processing power and microelectronics have enabled the
MPC algorithm, that was mainly utilised in industries on processes with slow
transient response, to be implemented on microcontrollers for processes with
fast transient responses. Commercialisation and research in the UAV sector
benefited significantly from this progression. Bemporad et al. (2009) proposed
a hierarchal hybrid MPC approach for stabilisation and autonomous navi-
gation of quadcopters. Mueller and D’Andrea (2013) published a paper on
‘Model Predictive Control for Quadrocopter State Interception’. Bangura and
Mahony (2014) implemented an unconstrained MPC algorithm on a Pixhawk
for position and trajectory tracking. Wang et al. (2017) presented a paper on
‘Nonlinear Model Predictive Control with Constraint Satisfaction for a Quad-
copter’. These are just a few research papers involving MPC implemented on
UAVs.

2.5.2 Principle of model predictive control

In model predictive control, a mathematical model of the process to be con-
trolled is used to predict the model output, ym(k + i), of the process over

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 18

a horizon known as the prediction horizon, ny (Rossiter, 2003). The cho-
sen sample time is i for each prediction step, where the number of steps is
equivalent to the size of the prediction horizon.

A sequence of control inputs is obtained by minimising a cost function of
the error between the predicted outputs and the reference or set point values
r(k + i), and a weighted control input term u(k + i) over a control horizon,
nu (Kwon and Han, 2006). The number of control inputs in this sequence is
equivalent to the size of the control horizon. These sequence of control inputs
are the control actions needed to drive the model and process to the reference
values. Only the first element of the control input sequence is implemented,
both in the model and the process, as the process measurement and reference
values are constantly being updated in subsequent sampling instants.

This procedure of minimisation and implementation is repeated in succes-
sive sampling instants, and at each instant, it is assumed that the reference
value remains constant over the prediction horizon (Rossiter, 2003). The block
diagram in figure 2.9 provides a visual representation of the principle of MPC,
and figure 2.10 illustrates the prediction horizon in MPC with a sample time
of one.

Model

Optimiser

+
-

Cost
Function

Constraints

MPC

Reference trajectory,
r(k+i)

Predicted output,
ym(k+i)

Process output,
y(k+i)

Process

Input,
u(k)

Figure 2.9: Principle of MPC

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 19

Figure 2.10: Prediction horizon (Adapted from Moradzadeh et al. (2014))

The current measured states or the outputs of the process are used in up-
dating the future predictions to ensure that a more accurate model of the
process is in use. The terminology receding horizon is often applied to pre-
dictive control because the prediction horizon is constantly moving away at
subsequent sampling instants (Rossiter, 2003). At the current sample time,
points that were previously beyond the prediction horizon are taken into ac-
count (Rossiter, 2003). Table 2.1 illustrates the receding horizon concept.

Table 2.1: Illustration of receding horizon (Rossiter, 2003)

Sampling instant Horizon window

0 1 2 3 4 5 6 7 8

0
1
2
3
⁞ ⁞

One of the main attractions of MPC is its ability to systematically satisfy
physical constraints on control inputs, rate of input change and/or outputs
(Rossiter, 2003). These constraints are handled directly in the optimisation
process. The optimisation process is captured in figure 2.9 in the optimiser
block, which takes in constraints and cost function as its inputs.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 20

2.5.3 Motivation for MPC

As briefly stated in the introductory chapter, there are different control meth-
ods that can be implemented on a quadcopter. MPC and PID were considered
as replacements for the current angular rates controller on the Pixhawk.

The previous subsection established that MPC uses a model to predict the
response of the system over a chosen prediction horizon, and the minimisation
of the error between the output predictions and reference generates a control
trajectory needed to drive the current states of the model to the reference
states; but only the first element of the trajectory is applied on the system.
Constraints on the system are taken into account in the controller formulation
to ensure that control actions do not violate these constraints.

PID runs the risk of actuator saturation (Hu and Lin, 2001) as the phys-
ical limits of the system are not explicitly taken into account in determining
control actions. Integral desaturation is one of the techniques employed to
deal with these limits (or constraints). Control actions are assigned the max-
imum or minimum control values for controller demands that exceed that of
the constraints on the system (Rossiter, 2003). With prediction and system-
atic constraint handling, MPC is better equipped to dealing with actuator
saturation.

The current states of the system are typically used as the initial states
in MPC. Predictions are made using these states and this introduces feed-
back into the MPC controller while concurrently compensating for modelling
assumptions, uncertainties and disturbances (Dani et al., 2017).

Model predictive control is also well suited for Multiple-Input Multiple-
Output (MIMO) systems; the quadcopter constitutes as one. This is another
advantage as MPC is able to systematically incorporate a model, constraints
and cost function with relative ease (Wang, 2009).

In spite the benefits MPC has over PID, MPC is more computationally
intensive as it involves a lot of matrix and vector operations. PID does not
require a model of the system and there are no matrix and vector operations
to be executed. However, the benefits MPC offers motivate the reason to
investigate the feasibility of implementing the method on the PX4 firmware,
for quadcopter angular rates control.

The table below shows a comparison of the different control methods.

Table 2.2: Comparison of control methods with constraint handling as a criteria

Control method Model requirement Constraint handling Manual tuning
PID No No Yes
MPC Yes Yes Yes

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 21

2.5.4 Augmented state space matrices

The linear discrete state space model defined at the end of subsection 2.4 is
used in formulating a linear MPC controller. The state space equations are
listed again below for ease of reference.

xm(k + 1) = Amxm(k) +Bmu(k) (2.5.1)

y(k) = Cmxm(k) (2.5.2)

where the subscript m stands for model.

In order to achieve off-set free tracking, integral action needs to be em-
bedded by modifying the quadcopter model in equation 2.5.1 and 2.5.2. The
model is augmented using the formulation described in Wang (2009).

Taking a difference operation on equations 2.5.1 and 2.5.2,

xm(k + 1)− xm(k) = Am(xm(k)− xm(k − 1)) +Bm(u(k)− u(k − 1)) (2.5.3)

y(k + 1)− y(k) = Cm(xm(k + 1)− xm(k)) (2.5.4)

y(k + 1) = Cm(xm(k + 1)− xm(k)) + y(k) (2.5.5)

Let,
∆xm(k + 1) = xm(k + 1)− xm(k) (2.5.6)

∆u(k) = u(k)− u(k − 1) (2.5.7)

∆xm(k) = xm(k)− xm(k − 1) (2.5.8)

Make these substitutions into equations 2.5.3 and 2.5.5,

∆xm(k + 1) = Am∆xm +Bm∆u(k) (2.5.9)

y(k + 1) = Cm(Am∆xm +Bm∆u(k)) + y(k)

y(k + 1) = CmAm∆xm + CmBm∆u(k) + y(k) (2.5.10)

∆u(k) is now the input to the state space model. A new state variable
vector that relates ∆xm and y(k) is chosen to be

x(k) = [∆xm(k)Ty(k)]T (2.5.11)

where the subscript T indicates the matrix transpose.
The augmented state space model, after putting equations 2.5.9, 2.5.10 and

2.5.11 together, is

[
∆xm(k + 1)
y(k + 1)

]
=

[
Am OT

q×n
CmAm Iq×q

] [
∆xm(k)
y(k)

]
+

[
Bm

CmBm

]
∆u(k) (2.5.12)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 22

y(k) =
[
Oq×n Iq×q

] [∆xm(k)
y(k)

]
(2.5.13)

where Iq×q is the identity matrix with dimensions q × q, where q is the
number of outputs. Oq×n is zero matrix with dimensions q×n, where n is the
number of states of the system or the state space dimensions.

Equations 2.5.12 and 2.5.13 can be simplified as follows:

x(k + 1) = Ax(k) +B∆u(k) (2.5.14)

y(k) = Cx(k) (2.5.15)

with A, B and C corresponding to the augmented state matrices in the
equation above.

2.5.5 Controllability

With the modification of the initial discrete state space model to an augmented
one, it is necessary to check the controllability of the augmented state space
model. A system is controllable if there exists a control input that transfers
any state of the system to zero in finite time (Kalman et al., 1960). An LTI
system is shown to be controllable if and only if its controllability matrix, CO,
has full rank, that is rank(CO) = n, where rank is a MATLAB command and
n is the number of states (Golnaraghi and Kuo, 2010).

The controllability matrix, CO, is as follows:

CO =
[
B AB A2B...An−1B

]
(2.5.16)

where A and B are the state space matrices.

2.5.6 Output predictions

The previous subsection established the controllability of the augmented quad-
copter model. The next step in designing the model predictive controller is
to calculate the predicted plant output with the future control signal as the
adjustable variable(s). This prediction is described within a preselected pre-
diction horizon (Wang, 2009).

Taking k as the current sample time, the future control trajectory is de-
noted by,

∆U =
[
∆u(k), ∆u(k + 1), ∆u(k + 2), · · · , ∆u(k + nu − 1)

]T (2.5.17)

The control horizon is chosen to be less than or equal to prediction horizon.
The future state variables are required in order to calculate the predicted

plant output. The future state variables are denoted as

x(k + 1), x(k + 2), x(k + 3), · · · , x(k + ny) (2.5.18)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 23

The process used in calculating the future state and output predictions
is as described by Rossiter (2003). Using the augmented quadcopter model
in equations 2.5.14 and 2.5.15, the future state and output predictions are
calculated recursively as follows,

at k+1,
x(k + 1) = Ax(k) +B∆u(k) (2.5.19)

y(k + 1) = Cx(k + 1) (2.5.20)

at k+2,
x(k + 2) = Ax(k + 1) +B∆u(k + 1) (2.5.21)

y(k + 2) = Cx(k + 2) (2.5.22)

Substituting equations 2.5.19 and 2.5.20 into 2.5.21 and 2.5.22 to eliminate
x(k+1) results in

x(k + 2) = A2x(k) + AB∆u(k) +B∆u(k + 1) (2.5.23)

y(k + 2) = C(A2x(k) + AB∆u(k) +B∆u(k + 1)) (2.5.24)

at k+3,
x(k + 3) = Ax(k + 2) +B∆u(k + 2) (2.5.25)

y(k + 3) = Cx(k + 3) (2.5.26)

Substituting equations 2.5.23 and 2.5.24 into equations 2.5.25 and 2.5.26,

x(k + 3) = A2x(k + 1) + AB∆u(k + 1) +B∆u(k + 2) (2.5.27)

y(k + 3) = C(A2x(k + 1) + AB∆u(k + 1) +B∆u(k + 2)) (2.5.28)

Similarly, equations 2.5.19 and 2.5.20 are substituted into equations 2.5.27
and 2.5.28 in order to eliminate x(k+1),

x(k + 3) = A3x(k) + A2B∆u(k) + AB∆u(k + 1) +B∆u(k + 2) (2.5.29)

y(k + 3) = C(A3x(k) + A2B∆u(k) + AB∆u(k + 1) +B∆u(k + 2)) (2.5.30)

This process continues recursively to give ny-step ahead predictions. Hence,
the output for ny-step ahead predictions can be expressed as,

y(k+ny) = C[Anyx(k)+Any−1B∆u(k)+Any−2B∆u(k+2)+· · ·+B∆u(k+ny−1)]
(2.5.31)

The future output predictions is denoted in vector form below,

Y =
[
y(k + 1), y(k + 2), y(k + 3), · · · , y(k + ny)

]T (2.5.32)

This vector of output predictions is expressed compactly as follows,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 24


y(k + 1)
y(k + 2)
y(k + 3)

...
y(k + ny)

 =


CA
CA2

CA3

...
CAny

x(k)+


CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
...

...
...

...
CAny−1B CAny−2B CAny−3B · · · CAny−nuB

∆U

This is further simplified as

Y = Px(k) +H∆U (2.5.33)

where,

P =


CA
CA2

CA3

...
CAny

 ;H =


CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
...

...
...

...
CAny−1B CAny−2B CAny−3B · · · CAny−nuB


and ∆U is as defined in equation 2.5.17.

2.5.7 Constraints

The final step before setting up the cost function is to define the system con-
straints. In practice, all systems are subject to operational constraints such as
restricted dimensions and limited control capacity. In many situations, these
constraints are purposely imposed and are intended to be made as tight as
possible in order to reduce energy consumption, to minimise the utilisation of
resources or to merely reduce the size of a certain device (Hu and Lin, 2003).

Constraints can be imposed on the control variable (also known as the
input), u(k), rate of input change variable, ∆u(k) and also the output, y(k) or
state variables, x(k). Considering the case of the quadcopter, which achieves
control by varying the angular speeds, ω, of each motor, the speeds vary from
a minimum value of zero to a maximum value that is dependent on the motor
specification.

0 < ωi < ωmax (2.5.34)

where i = 1, ..., 4; for each motor.

Only constraints on the control variables, u(k) and their rates of change
∆u(k) will be considered in the MPC design. The constraints formulations
used in this subsection are derived from Wang (2009). Constraints on the
control variable are of the form,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 25

umin ≤ u(k) ≤ umax (2.5.35)

As there are three control variables necessary to control the rotational
motion of the quadcopter, each control variable is subjected to constraints as
shown below,

umin1 ≤ u1(k) ≤ umax1

umin2 ≤ u2(k) ≤ umax2 (2.5.36)

umin3 ≤ u3(k) ≤ umax3

This procedure is also applicable to the rates of input change. The rate of
change constraints are as follows,

∆umin1 ≤ ∆u1(k) ≤ ∆umax1

∆umin2 ≤ ∆u2(k) ≤ ∆umax2 (2.5.37)

∆umin3 ≤ ∆u3(k) ≤ ∆umax3

The constraints on the rates of input change can be grouped into one
variable, ∆U in order to take subsequent sample times into consideration.
Therefore at sample time, k,

∆U(k)min ≤ ∆U(k) ≤ ∆U(k)max

where,

∆U(k)min =

∆umin1

∆umin2

∆umin3

 ,∆U(k) =

∆u1

∆u2

∆u3

 ,∆U(k)max =

∆umax1

∆umax2

∆umax3


Furthermore, these constraints can be split into separate inequalities. Tak-

ing sample times into consideration, the following expression is used to repre-
sent maximum rate of input change,

∆U(k) ≤ ∆Umax

∆U(k + 1) ≤ ∆Umax

...
∆U(k + nu − 1) ≤ ∆Umax


For minimum rate of input change,

−∆U(k) ≤ −∆Umin

−∆U(k + 1) ≤ −∆Umin

...
−∆U(k + nu − 1) ≤ −∆Umin



Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 26

These constraints are generalised in the following equation,[
−∆U ≤ −∆Umin

∆U ≤ ∆Umax

]
(2.5.38)

where ∆U , ∆Umin, ∆Umax are vectors with the number of elements cor-
responding to the size of the control horizon, nu × number of rate of input
change constraints.

In matrix form, [
−I
I

]
∆U ≤

[
−∆Umin

∆Umax

]
The input constraints can be written in a form that incorporates the rates

of input change. This is shown in equation 2.5.39 below.


u(k)

u(k + 1)
...

u(k + nu − 1)

 =


I
I
...
I

u(k − 1) +


I 0 0 . . . 0
I I 0 . . . 0
...
I I . . . I I




∆u(k)
∆u(k + 1)

...
∆u(k + nu − 1)


(2.5.39)

Equation 2.5.39 is expressed compactly below,

−(C1u(k − 1) + C2∆U) ≤ −Umin

(C1u(k − 1) + C2∆U) ≤ −Umax

where,

C1 =


I
I
...
I

 , C2 =


I 0 0 . . . 0
I I 0 . . . 0
...
I I . . . I I


The control input and rates of input change can be grouped as follows,[

Cu
C∆u

]
∆U ≤

[
du
d∆u

]
(2.5.40)

where,

Cu =

[
−C2

C2

]
; du =

[
−Umin + C1u(k − 1)
Umax − C1u(k − 1)

]
;C∆u =

[
−I
I

]
; d∆u =

[
−∆Umin

∆Umax

]

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 27

Equation 2.5.40 is compacted further in the equation below,

CC∆U ≤ d (2.5.41)

where,

CC =

[
C∆u

Cu

]
, d =

[
d∆u

du

]

2.5.8 Optimisation

As stated in subsection 2.5.2, the goal of model predictive control is to drive
the predicted outputs to the desired reference values. This goal is achieved by
minimising a cost function that is comprised of the error between predicted
outputs and reference values, subjected to constraints on the system. The re-
sult from this optimisation is a series of inputs, ∆U , used to drive the predicted
outputs to the reference.

At sample time, k, output predictions are generated according to the size
of the prediction horizon (Wang, 2009). For instance, for a system with a
prediction horizon of eight, a series of output predictions totalling eight in
number is generated. Given that at any sample time, only one set of reference
values, r(k), are available and the cost function relates the errors between the
reference values and predicted outputs, it is assumed that for each optimisation
window, the reference values are constant (Wang, 2009).

This is represented in the equation 2.5.42 below, obtained from Wang
(2009), where I is an identity matrix with dimensions corresponding to the
number of outputs. The number of identity matrices is equivalent to size of
the prediction horizon.

Rs =


I
I
...
I

 r(k) (2.5.42)

At sample time, k, the reference value(s), r(k), is transformed to a reference
matrix Rs, before being used in the cost function in equation 2.5.43 below.

J = (Rs − Y)T (Rs − Y) + ∆UTW∆U (2.5.43)

The cost (or objective) function is obtained from Wang (2009). The first
term in the cost function minimises the errors between the predicted output
and the reference value while the second term is linked with minimising the
size of ∆U .

W is the diagonal weight matrix for control inputs. A weight matrix with
low values signifies that the focus of minimising the cost function above is on
the error between the reference and the predicted output values. This results

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 28

in large magnitude in the ∆U values and this equates to rapid control as the
∆U values diminish rapidly. But a weight matrix with high diagonal values
places the importance on minimising the values of ∆U , and this results in
slower control as the ∆U values decrease more slowly (Wang, 2009).

Substituting Y = P (x) +H∆U from equation 2.5.33 into equation 2.5.43,

J = (Rs−Px(k))T (Rs−Px(k))−2∆UTHT (Rs−Px(k))+∆UT (HTH+W)∆U
(2.5.44)

2.5.9 Quadratic programming formulation

Taking the first derivative of the cost function in equation 2.5.44, the following
equation is obtained,

J =
1

2
∆UTE∆U + ∆UTF (2.5.45)

with constraints CC∆U ≤ d

where E = 2(HTH+W), F = −2HT (RS−Px(k)) and RS is the reference
matrix

Taking the number of matrix and vector operations to be carried out in
MPC into consideration, it is important to choose an efficient method to solve
the quadratic programming problem in equation 2.5.45, to maximise the lim-
ited computational resources on the microcontroller.

Linear MPC generally leads to structured convex quadratic programs to
be solved (Diehl, 2015). The convexity of the quadratic program ensures that
a global solution to the problem is obtainable. Two methods are commonly
used in solving quadratic programming problems (Lau et al., 2009) — Interior
Point Method (IPM) and Active Set Method (ASM).

These methods differ in their approach in handling linear inequalities,
(Diehl, 2015) which in this case are the constraints. Before elaborating on
these methods, the necessary conditions that must be satisfied in minimising
objective functions with inequality constraints (Snyman, 2005) will be listed.
These conditions are known as the Karush Kuhn and Tucker (KKT) con-
ditions. For notational simplicity, the following objective function in equation
2.5.46 will be used.

J =
1

2
xTEx+ xTF (2.5.46)

such that Mx ≤ γ
The KKT conditions are as follows,

Ex+ F +MTλ = 0

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 29

Mx− γ ≤ 0

λT (Mx− γ) = 0

λ ≥ 0 (2.5.47)

where λ is a vector of Lagrange multipliers. Taking Sact to denote the index
set of active constraints (Wang, 2009), the conditions are now expressed as

Ex+ F +
∑
i∈Sact

λiM
T
i = 0 (2.5.48)

Mix− γi = 0 i ∈ Sact (2.5.49)

Mix− γi < 0 i /∈ Sact (2.5.50)

λi ≥ 0 i ∈ Sact (2.5.51)

λi = 0 i /∈ Sact (2.5.52)

where Mi is the ith row of the M matrix. Mixi − γi = 0 is an equality
constraint and signifies that the constraint is active. However, a constraint
Mixi − γi < 0 indicates that the constraint is satisfied (Wang, 2009). If a
Lagrange multiplier is zero, the constraint is inactive whereas a non-negative
Lagrange multiplier signifies that the constraint is active (Wang, 2009).

Interior point methods approach the KKT conditions for the quadratic
program inequality problem using successive descent steps (Lau et al., 2009).
Each descent step is obtained by the Newton’s method for optimisation, which
constitutes a linear system to be factored and solved — these iterations are
expensive to compute (Diehl, 2015). Lau et al. (2009) performed a compari-
son of interior point method and active set methods for Field Programmable
Gate Array (FPGA) implementation of MPC. In this paper, they compared
computational complexity, storage, speed of convergence and some issues in
practical implementation of these methods on the FPGA.

They discovered that ASM performs better than IPM when the number
of variables and constraints are small. This validates Nocedal and Wright
(2006) where they stated that IPM was well suited for larger problems. With
the concentration on rates control in this thesis, the number of variables and
constraints is considered small. Therefore, the active set method was chosen
to solve the linear MPC quadratic programming problem.

Active set methods define a set of constraints called the working set, that
is taken as the active set. The working set is a subset of the constraints that
are active at the current point. The current point is a local solution to the
original main problem if all the Lagrange multipliers, λi ≥ 0. Otherwise, if
there exists λi < 0, the corresponding constraint is deleted from the constraint
equation (Wang, 2009).

Active set methods belong to a group of methods known as primal meth-
ods. As active set methods require active constraints to be identified, this

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 30

can constitute a large computational load if the constraints are a lot (Wang,
2009). Wang (2009) suggests tackling this problem by using a dual method to
systematically eliminate constraints; the derivation of this method is outlined
below.

The dual problem derivation of the original primal problem is given below,

max
λ≥0

min
x

[
1

2
xTEx+ xTF + λT (Mx− γ)] (2.5.53)

Minimisation of x is obtained by

x = −E−1(F +MTλ) (2.5.54)

Substituting this into equation 2.5.53 results in

max
λ≥0

(−1

2
λTTλ− λTK − 1

2
γTE−1γ) (2.5.55)

where the matrices T and K are

T = ME−1MT (2.5.56)

K = γ +ME−1F (2.5.57)

Maximising an objective function is equivalent to minimising the negative
of that objective function. Thus equation 2.5.55 becomes,

min
λ≥0

(
1

2
λTTλ+ λTK +

1

2
γTE−1γ) (2.5.58)

An algorithm known as the Hildreth’s quadratic programming proce-
dure is used in solving the dual programming problem in equation 2.5.58. The
steps of the algorithm are as outlined in (Wang, 2009) and are shown below
using MATLAB syntax.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 31

Algorithm 1: Hildreth’s quadratic programming procedure
% Initialisation
[rowM, colM] = size(M);
x = −E \ F ;
j = 0;
for i = 1 : rowM do
% Constraint violation check
if M(i, :)× x > γ(i) then
j = j + 1;

else
j = j + 0;

end if
end for
if j == 0 then
return

end if
% Setup matrices for dual quadratic programming
T = M(E \MT);
K = γ + (ME \ F);
[rowK, colK] = size(K);
% Initialise lambda
λ = zeros(rowK, colK);
al = 10;
for y = 1 : 40 do
λprev = λ;
for i = 1 : rowK do
w = T (i, :) ∗ λ− T (i, i) ∗ λ(i, 1);
w = w +K(i, 1);
la = −w/T (i, i);
λ(i, 1) = max(0, la);

end for
al = (λ− λprev)T (λ− λprev);
if al < 10−4 then
break;

end if
end for
x = −E \ F − E \MT ∗ λ;

The Hildreth’s quadratic programming algorithm does not require matrix
inversion, it is based on an element-by-element search, therefore there will not
be any interruption in computation (Wang, 2009). Another advantage of this
approach is its ability to recover from an ill-conditioned constrained problem,
ensuring safe operation of the plant as observed by Wang (2009).

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 32

An example is solved in appendix A to give a better understanding of
objective function, constraints and optimisation.

2.6 State Observer
Information on the current states of the quadcopter is needed in order to con-
trol the angular rates of the quadcopter. A state observer is used to estimate
the required states of the quadcopter from the sensor measurements. The
sensors onboard the Pixhawk were described in subsection 2.1. The state ob-
server implemented on the Pixhawk is the Extended Kalman Filter (EKF). The
structure of the EKF is described in subsection 2.6.1 and its implementation
is detailed in subsection 2.6.2.

2.6.1 EKF structure

AKalman filter is an iterative mathematical process that uses a set of equations
and consecutive data inputs to quickly estimate the true value of the states of
a system being measured; which contain random error or uncertainty (Julier
and Uhlmann, 1997).

A linear Kalman filter is used to estimate states of a linear system. An
extended Kalman filter extends this estimation ability to non-linear systems
(Wan and Van Der Merwe, 2000). The linear Kalman filter and EKF approach
state estimation in a similar way (Henriques, 2011). The difference lies in
the formulation of certain equations. Therefore, the structure of the linear
Kalman filter will be considered in this subsection. The equations required for
estimation by EKF are outlined subsequently.

The linear Kalman filter requires a model of the system that has the states
to be estimated. Taking the quadcopter as an example of a system, the linear
discrete state space model in the equation below is used.

x(k + 1) = Adx(k) +Bdu(k) + ω(k) (2.6.1)
y(k) = Cdx(k) + ν(k) (2.6.2)

where ω(k) and ν(k) are the process or system and measurement noise
respectively. It is assumed that there is no feedthrough signal in this model,
therefore state matrix D is omitted in equation 2.6.2.

The Kalman filter formulation outlined in this section is obtained from
Choset (2005), with modification of variables to ensure consistency with the
state space matrix variables used hitherto in this thesis. To commence the
linear Kalman filtering process, an initial state vector, xo(k) and error covari-
ance matrix, Po(k) are declared. The error covariance matrix represents the
error in the system or state estimates. xo(k) and Po(k) become the past pre-
dicted state, xp(k − 1) and past predicted error covariance matrix, Pp(k − 1)
respectively.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 33

Equation 2.6.3 is used to predict the new state vector and equation 2.6.4
is used to predict the new error covariance matrix.

xp(k) = Adxp(k − 1) +Bdu(k) + ω(k) (2.6.3)

Pp(k) = AdPp(k − 1)ATd +Q(k) (2.6.4)

where Qk denotes the noise covariance matrix and the subscript p indicates
a prediction of the accompanying variable.

Next the Kalman gain, Kal(k), is computed. The Kalman gain weighs
the error between predictions and the measurements obtained from sensor
readings. The Kalman gain is computed using the equation below,

Kal(k) =
Pp(k)H

HPp(k)HT +R(k)
(2.6.5)

where R(k) is the measurement noise covariance error. H is an identity
matrix used to ensure equivalence of matrix dimensions between two or more
matrices; in this instance, equivalence between matrices Pp(k) and R(k).

The next step is to compute the estimated state vector and error covari-
ance matrix. These variables are computed using equations 2.6.6 and 2.6.7
respectively.

x̂(k) = xp(k) +Kal[y(k)−Hxp(k)] (2.6.6)

where y(k) is the measurement obtained from the sensor(s).

P̂ (k) = (I −KalH)Pp(k) (2.6.7)

ˆ signifies that the corresponding variable is an estimate.

The obtained estimates of the state vector and error covariance matrix
become the past predicted state vector, xp(k − 1) and past predicted error
covariance matrix, Pp(k − 1) for the next iteration of the Kalman filter. This
estimation procedure is carried out for each time step. With each iteration,
the Kalman filter output states that are closer to their actual value. Figure
2.11 illustrates the linear Kalman filter estimation process.

EKF linearises a non-linear system about the current state estimate, x̂
(Henriques, 2011). As stated earlier, EKF differs from the linear Kalman filter
in particular equation formulations. Equations 2.6.1 and 2.6.2 are replaced by
equations 2.6.8 and 2.6.9 respectively below.

x(k) = f(x(k − 1), ω(k)) (2.6.8)

y(k) = h(x(k), ν(k)) (2.6.9)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 34

Figure 2.11: Flow diagram of Kalman filter

The partial derivates of functions f and h, with respect to the state vector,
x(k), and noise vectors ω(k) and ν(k), are derived by computing the Jacobian
as shown in the equations below. EKF proceeds as a linear Kalman filter after
effecting these changes.

F (k − 1) =
∂f

∂x
|x̂(k−1) (2.6.10)

H(k) =
∂h

∂x
|x̂(k) (2.6.11)

2.6.2 EKF implementation

As the focus of this thesis is on the quadcopter rates control, state estimation
is achieved using the default EKF algorithm programmed on the Pixhawk
software. The EKF on the Pixhawk uses an IMU, magnetometer and GPS to
estimate the following states:

• Quaternion defining rotation from North, East, Down world-fixed frame
to x, y, and z body-fixed frame.

• Velocity at the IMU - North, East, Down (m/s)

• Position at the IMU - North, East, Down (m)

• IMU delta velocity bias estimates - x, y, and z (m/s)

• Earth magnetic components - North, East, Down (gauss)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 35

• Vehicle body frame magnetic field bias - x, y and z (gauss)

• Wind velocity - North, East (m/s)

The EKF has different modes of operation that enables a variation of com-
binations of sensor measurements. The sensors listed above provide the min-
imum data required for all the different modes to run. Further information
about the EKF implemented on the Pixhawk is available on the Pixhawk de-
veloper website.

2.7 Pixhawk Autopilot
The Pixhawk autopilot is an independent, open-hardware project aimed at
providing high-end autopilot hardware to academics, hobbyists and industries
at low cost and high availability (Pixhawk, 2013). The project originated
from the Pixhawk Project of the Computer Vision and Geometry Lab of ETH
Zurich (Swiss Federal Institute of Technology) and Autonomous Systems Lab
(Meier et al., 2015).

The Pixhawk autopilot runs on the PX4 open source software. The struc-
ture outlined in this section is a summary of research paper from Meier et al.
(2015). The software structure is illustrated in figure 2.12 below. The software
structure is divided into two halves with two layers each, with the NuttX RTOS
layer serving as the divider. The lower half manages device drivers required
for a particular microcontroller or bus type. In addition, this half includes a
simulation layer that enables the PX4 flight code to run on a desktop operat-
ing system and control a computer modeled vehicle in a simulated world. This
simulation procedure is known as software-in-the-loop (SITL).

1st Layer

2nd Layer

3rd Layer

4th Layer

Figure 2.12: Software structure (Adapted from Meier et al. (2015))

The third layer, in the upper half, is the micro object request broker, µORB.
µORB provides a data structure that handles data distribution between appli-
cations. Examples of some applications on the PX4 are the position controller,
attitude controller and state estimator. The broker uses a publish-subscribe

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 2. LITERATURE REVIEW 36

data protocol. A publisher advertises a topic which contains information to be
shared (Meier et al., 2015). Topics are communication messages that contain
structured data.

For example, the estimator application advertises state estimates as a topic
and publishes it to µORB for other applications. Applications subscribe to this
topic via µORB to access the state estimate data. Once subscription to this
topic is established, the relevant state estimate data is copied into a variable to
be used directly in the application. Applications can be both a publisher and
subscriber. An application that subscribes to a topic can modify data within
that topic, then advertise the topic with modified data for other applications
to subscribe and copy. A subscriber can request new data from a topic at its
own pace with a polling function or receive new data the instant it is available
(Meier et al., 2015).

Figure 2.13 below illustrates how inter-application messaging is handled
by the micro object request broker, where the labeled lines are the functions
required to execute the respective topic actions.

Publisher Subscriber

uORB

orb_advertise()

orb_publish() orb_subscribe()

orb_copy()

Figure 2.13: Micro object request broker, µORB

The fourth layer in the software structure are the PX4 applications, such
as state estimators, controllers and more. These applications are executed as
independently (Meier et al., 2015). In the PX4 software, all the applications
are classified as modules.

The specifications of the Pixhawk are listed in appendix B.

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

Controller Design and
Implementation

This chapter commences by expanding on the PX4 code architecture and how
the attitude module is structured in the PX4 firmware. The matrices and
vectors required to design and set up the MPC controller are formulated in
section 3.2. In section 3.3, the MPC controller is implemented in MATLAB.
In section 3.4, the MPC controller is implemented in C++ in a software-
in-the-loop (SITL) simulator. Finally, section 3.5 details the procedure for
implementing the MPC controller on the Pixhawk hardware for flight testing.

3.1 PX4 Architecture
The PX4 software is divided into two main layers: the flight stack and the mid-
dleware. The middleware consists of drivers for the embedded sensors, com-
munication with the external world (computer, ground control station (GCS)
et cetera), the uORB publish-subscribe message bus and the simulation layer.
The flight stack is elaborated on in the following subsection.

3.1.1 PX4 flight stack

The PX4 flight stack is a collection of guidance, navigation and control algo-
rithms for autonomous drones. The flight stack includes controllers for mul-
tirotor, fixed wing and Vertical Take Off and Landing (VTOL) vehicles in
addition to attitude and position estimators. Figure 3.1 provides a visual rep-
resentation of the PX4 flight stack where each block is a module or application.

37

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 38

Sensor
Position &
Attitude
Estimator

Navigator MixerAttitude & Rate
Controller

Position
Controller Actuator

RC Input

Figure 3.1: PX4 flight stack

The estimators receive sensor readings, combine them and use an algorithm
— the extended kalman filter (EKF) — to estimate the vehicle states. These
estimated states are used by the navigator, an algorithm for autonomous flight
control, the position controller and the attitude and rates controller. The po-
sition and attitude (and rates) controllers receive remote control (RC) input
of the vehicle position and/or orientation desired by the user, via the radio
receiver connected to the Pixhawk. The RC and the receiver are connected
wirelessly through radio protocols at a particular radio frequency. The rates
controller outputs commands, like turning left, to the mixer block which con-
verts them into motor commands for each motor. Finally, these motor com-
mands are sent to the ESCs to regulate the speed of each motor (actuator) as
needed.

3.1.2 PX4 attitude control module

Before designing the MPC controller for angular rates control, it is necessary
to understand how the current attitude module on the Pixhawk is structured.
The attitude module is comprised of two loops: Proportional (P) controller
loop for angular error and a Proportional Derivative (PD) controller loop for
angular rate error; at the time of writing this thesis, the angular rate error was
controlled by a PD controller. In figure 3.2 below, the P controller and PD
controllers are used in the attitude and rates controller blocks respectively.

Figure 3.2: PX4 control block diagram

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 39

where,
curr - current
mc - motor commands
Pos - position
sp - set point
T - thrust

The mc_att_control module on the PX4 flight stack is responsible for
attitude and rates control of the quadcopter. The flow chart in fig 3.3 shows
the function call hierarchy and conditionals of the mc_att_control module
where the rectangular symbols represent program functions.

Start

task_main

while
attitude control needed

if
control_attitude enabled

control_attitude

Advertise and publish
attitude rates setpoint to

uORB

control_attitude_rates

Advertise and publish
actuators_id to uORB

if
control_attitude_rates

enabled

else

else

Figure 3.3: PX4 attitude controller flow chart

3.2 Model Predictive Controller
The proposed model predictive controller to control the angular rates of the
quadcopter is represented in the block diagram in figure 3.4 below. In the MPC
block, the current angular rates are augmented with the quadcopter state space
model before the start of each optimisation loop. This is done to acquire more

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 40

accurate quadcopter state predictions to be used in the optimiser. Employing
this approach ensures that model uncertainties and assumptions, made in the
modelling process, are compensated for.

Rate setpoints are sent to the optimiser block from the attitude controller.
The optimiser also receives the cost function and system constraints. The
Hildreth’s quadratic programming procedure is used in the optimiser block to
minimise the cost function subject to predefined quadcopter constraints.

The output of the MPC controller is the control or input vector, u. This
vector is scaled between -1 and 1 before being advertised and published to
uORB; scaling in this form is a requirement of the PX4 control architecture.
The scaled input vector is then sent to the mixer module to generate motor
commands for quadcopter.

Figure 3.4: Modified MPC block diagram

In designing the model predictive controller, particular physical proper-
ties of the quadcopter were required. A summary of the physical properties
obtained by experimentation or instrumentation are presented in the table
3.1 below. Appendix C provides the full details of how these properties were
obtained.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 41

Table 3.1: Quadcopter parameters

Quadcopter Parameters
Mass, m 1.587 kg

Moment arm, d 0.243 m
Thrust coefficient, b 4.0687 ×10−7N/rpm2

Drag coefficient, k 8.4367 ×10−9Nm/rpm2

Moment of inertia about x-axis, Ixx 0.0213 kgm2

Moment of inertia about y-axis, Iyy 0.02217 kgm2

Moment of inertia about z-axis, Izz 0.0282 kgm2

In the following subsections, the matrix and vector parameters used in the
MPC controller were formulated.

3.2.1 State matrices and vectors

As mentioned in subsection 2.5.4, the MPC controller makes use of a linear
discrete state space model. The MATLAB function cd2m() was used to convert
the continuous state space model into a discrete one. This procedure is shown
below,

[A_m, B_m, C_m, D_m] = c2dm(A, B, C, D, ts);

The function takes the continuous state matrices and sample time as argu-
ments and returns discrete state space matrices.

As described in subsection 2.5.4, the Wang (2009) approach was used to
formulate the augmented state space matrices.

Equations 3.2.1, 3.2.2 and 3.2.3 show the linear discrete model state space
model and equations 3.2.4, 3.2.5 and 3.2.6 show the augmented state space
model matrices. A sample time of 0.2 seconds was used in obtaining these
equations, with the values of the moments of inertia from table 3.1 substituted
in.

Am =


1 0.2 0 0 0 0
0 1 0 0 0 0
0 0 1 0.2 0 0
0 0 0 1 0 0
0 0 0 0 1 0.2
0 0 0 0 0 1

 (3.2.1)

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 42

Bm =


0.9390 0 0
9.3897 0 0

0 0.9021 0
0 9.0212 0
0 0 0.7092
0 0 7.0922

 (3.2.2)

Cm =

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 (3.2.3)

The augmented state space matrices of the quadcopter are given below:

A =



1 0.2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0.2 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0.2 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 1


(3.2.4)

B =



0.9390 0 0
9.3897 0 0

0 0.9021 0
0 9.0212 0
0 0 0.7092
0 0 7.0922

9.3897 0 0
0 9.0212
0 0 7.0922


(3.2.5)

C =

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 (3.2.6)

The state and input/control vectors used were defined in section 2.5.4.
These vectors are presented again in equation 3.2.7 below.

x =

[
∆xm
y

]
,∆u =

∆u1

∆u2

∆u3

 (3.2.7)

where
∆xm =

[
∆φ ∆φ̇ ∆θ ∆θ̇ ∆ψ ∆ψ̇

]T

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 43

The augmented state space equations are placed in compact form in equa-
tions 3.2.8 and 3.2.9 below.

x(k + 1) = Ax(k) +B∆U(k) (3.2.8)

y(k) = Cx(k) (3.2.9)

3.2.2 Constraints

The constraints on the quadcopter system are the maximum speeds of the
motors. The quadcopter used in this thesis is fitted with four brushless EMAX
MT3506 650 kv motors.

The maximum speed rating of the motors was obtained from the EMAX
website by cross-referencing the propeller type, propeller size, voltage and
current of the battery used in the quadcopter with the data available on the
website. The maximum speed rating was found to be 4720 rpm.

The constraints employed in the MPC formulation were constraints on the
input and the rate of input change. In order to determine these constraints,
the total thrust generated the motors needed to be calculated. The mass of
the quadcopter (battery included) was read from a mass scale to be 1.587 kg.

Taking acceleration due to gravity to be 9.81 m/s2,

weight = 1.587× 9.81 = 15.57 N

Thrust of the quadcopter was calculated as follows,

Thrust = b
4∑
i=1

ω2
i (3.2.10)

where,

b - thrust coefficient, N/rpm2

ωi - speed for each motor, rpm

From table 3.1, the thrust coefficient is 4.0687 × 10−7N/rpm2. The speed
for each quadcopter motor was calculated as follows,

15.57 = b
4∑
i=1

ω2
i

ωi =

√
15.57

4× 4.0687× 10−7

≈ 3093 rpm

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 44

As established in subsection 2.3.1 of the literature review, the input for
the rotational motion of the quadcopter are torques in the roll, pitch and yaw
axes. These torque equations are listed below,U1

U2

U3

 =

 db(ω2
4 − ω2

2)
db(ω2

1 − ω2
3)

k(ω2
1 + ω2

3 − ω2
2 − ω2

4)

 (3.2.11)

where U1, U2 and U3 are torques τφ, τθ and τψ respectively.

The input constraints are the maximum and minimum torques and are
calculated below. For instance, in calculating the maximum rolling torque,
τφmax , the maximum motor speed was substituted into ω4 and the minimum
motor speed substituted into ω2. The maximum and minimum motor speeds
are 4720 rpm and 3093 rpm respectively.
The maximum torques are calculated below,

τφmax = 0.243× 4.0687× 10−7(47202 − 30932) = 1.257 (3.2.12)

τθmax = 0.243× 4.0687× 10−7(47202 − 30932) = 1.257 (3.2.13)

τψmax = 8.4367× 10−9(47202 + 47202 − 30932 − 30932) = 0.2145 (3.2.14)

These are expressed in vector form as follows,

Umax =
[
1.257 1.257 0.2145

]T (3.2.15)

The minimum torques were obtained by replacing the motor speed values
of ω4 with ω2 in equation 3.2.12, replacing ω1 with ω3 in equation 3.2.13 and
replacing motor speed values ω1 and ω3 with ω2 and ω4 respectively in equation
3.2.14. This results in negated values of equation 3.2.15.

Therefore the vector of minimum input constraints is as follows,

Umin =
[
−1.257 −1.257 −0.2145

]T (3.2.16)

The rate of input change was obtained iteratively in the MATLAB simulations
run in section 3.3. A rate of input change of 60% of the input was found to
guarantee stable performance.

Therefore the maximum rate of input change is,

∆Umax =
[
0.7542 0.7542 0.1287

]T (3.2.17)

The minimum rate of input change, ∆Umin are the negated values of the
maximum rate of input change.

At a particular sample instant, k, the current rate of input change, ∆u(ki)
of each input variable was bounded by the maximum and minimum rates of
input change as shown in the equations below,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 45

∆umin1 ≤ ∆u1(k) ≤ ∆umax1 (3.2.18)

∆umin2 ≤ ∆u2(k) ≤ ∆umax2 (3.2.19)

∆umin3 ≤ ∆u3(k) ≤ ∆umax3 (3.2.20)

Equation 3.2.21 expresses the above equations in a compact form.

∆umini ≤ ∆ui(k) ≤ ∆umaxi (3.2.21)

where i = 1, ..., total number of inputs.
For instance, choosing a control horizon of three, the future control trajec-

tory at sample instant, k, is denoted by[
∆U(k) ∆U(k + 1) ∆U(k + 2)

]T
Each element of this control trajectory is comprised of three rates of input

change variables and each of them are bound in a similar way to equations
3.2.18 - 3.2.20 above. Therefore, the constraints on the control trajectory were
imposed as follows,

∆umini ≤ ∆ui(k) ≤ ∆umaxi (3.2.22)

∆umini ≤ ∆ui(k + 1) ≤ ∆umaxi (3.2.23)

∆umini ≤ ∆ui(k + 2) ≤ ∆umaxi (3.2.24)

The equations above are expressed compactly as

∆Umin ≤ ∆U ≤ ∆Umax (3.2.25)

In subsection 2.5.7, the compact inequality in equation 3.2.26 was defined
to represent the rate of input change constraints.

C∆u∆U ≤ d∆u (3.2.26)

where
C∆u =

[
−I
I

]
, d∆u =

[
−∆Umin

∆Umax

]
where the identity matrix, I is a diagonal square matrix with dimension

equivalent to the product of nu × number of inputs.
Using a control horizon of two, in the MPC model, the dimension of the

identity matrix, I is six. With the constraints defined earlier in this subsection,
equation 3.2.26 is expanded below,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 46



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




∆u1(k)
∆u2(k)
∆u3(k)

∆u1(k + 1)
∆u2(k + 1)
∆u3(k + 1)

 ≤



0.7542
0.7542
0.1287
0.7542
0.7542
0.1287
−0.7542
−0.7542
−0.1287
−0.7542
−0.7542
−0.1287


Similarly, the input constraints expressed in subsection 2.5.7 is presented

in equation 3.2.27 below,

Cu∆U ≤ du (3.2.27)

where,

Cu =

[
−C2

C2

]
, du =

[
−Umin + C1u(k − 1)
Umax − C1u(k − 1)

]
With a control horizon of two, matrices C1 and C2 become,

C1 =

[
I
I

]
, C2 =

[
I 0
I I

]
Substituting the constraints obtained in equations 3.2.15 and 3.2.16, the

input constraint in equation 3.2.27 was expanded as follows,



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
−1 0 0 −1 0 0
0 −1 0 0 −1 0
0 0 −1 0 0 −1




∆u1(k)
∆u2(k)
∆u3(k)

∆u1(k + 1)
∆u2(k + 1)
∆u3(k + 1)

 ≤



1.257− u1(k − 1)
1.257− u3(k − 1)
0.2145− u3(k − 1)
1.257− u1(k − 1)
1.257− u2(k − 1)
0.2145− u3(k − 1)
−1.257 + u1(k − 1)
−1.257 + u2(k − 1)
−0.2145 + u3(k − 1)
−1.257 + u1(k − 1)
−1.257 + u2(k − 1)
−0.2145 + u3(k − 1)


Putting input and rate of input change equations 3.2.26 and 3.2.27 into

one inequality, the equation below was obtained,

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 47

CC∆U ≤ d (3.2.28)

where

CC =

[
C∆u

Cu

]
, d =

[
d∆u

du

]

3.2.3 Quadratic programming parameters

The quadratic programming problem to be minimised is

J =
1

2
∆UTE∆U + ∆UTF (3.2.29)

subject to CC∆U ≤ d

where E = 2(HTH +W), F = −2HT (Rs − Px(k)).

The H, P and Rs matrices are all dependent on the size of the prediction
horizon. The formulation of these matrices are elaborated on in the following
section.

3.3 MATLAB Implementation
The MATLAB simulation started with initialising parameters required in the
continuous state space model and the controller. These include the moments
of inertia for each axis, quadcopter thrust b and drag coefficients k, maximum
and minimum motor speeds, control horizon nu, prediction horizon ny, number
of inputs, number of outputs, number of states, initial state x, initial output y,
reference to be tracked, adjusted reference matrix Rs, disturbance and number
of simulations Nsim.

A flow chart of the MATLAB implementation is shown on the following page.
The processes (or steps) in the flow chart are explained in the subsequent
subsections.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 48

Start

Convert continuous state space model to discrete
time

Augment discrete state space model

Formulate prediction matrices, constraint
matrices, weights on control input, cost function

and simulation loop parameters

i = 1

i <= number of simulations

Define/update quadratic programming variables

Minimize quadratic programming formulation

Update variables for the next iteration

i = i + 1

Parameter declarations

false

true

end

Figure 3.5: Flow chart of MATLAB Implementation

3.3.1 Continuous to discrete time conversion

The MATLAB function cd2m() was used to convert the continuous state space
model into a discrete one. The use of this function is shown below,

[A_d, B_d, C_d, D_d] = c2dm(A, B, C, D, ts);

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 49

The function takes the continuous state matrices and sample time as argu-
ments and returns discrete state matrices. Matrix D is a zero square matrix.

3.3.2 Augmented state space model

The next step was augmenting the discrete state space model. A custom func-
tion, augment_mimo(), was written to perform this conversion. The function
arguments and return values are shown in the equation below.

[A_aug, B_aug, C_aug]= augment_mimo(A_d, B_d, C_d, no_of_states,
no_of_inputs, no_of_outputs);

Afterwards, the controllability of the augmented model was confirmed.

3.3.3 Prediction matrices and constraints

The prediction matrices were obtained by using another custom MATLAB func-
tion, mpc_predictions_output(). It takes the augmented state space ma-
trices, control and prediction horizon as arguments. The function returns the
output matrices H and P as defined in subsection 2.5.6.

[H, P] = mpc_predictions_output(A_aug, B_aug, C_aug, ny, nu);

The constraints umax, umin and dumax were calculated as done in sub-
section 3.2.2. The constraint matrices and vectors were formulated using the
function below,

[CC, dd, dupast] = constraints_mimo(Dumax,umax,umin,
no_of_inputs,nu);

3.3.4 Input weights and simulation loop parameters

Recall the quadratic programming problem to be minimised is,

J =
1

2
∆UTE∆U + ∆UTF

subject to CC∆U ≤ d

where E = 2(HTH +W), F = −2HT (Rs − Px(k)).
The input weight W is a square diagonal matrix with its dimension in

correspondence with the size of the control horizon. For example, with three
inputs and a control horizon of two, W will be a 6 × 6 matrix with the last
three diagonal elements being a repetition of the first three.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 50

E and F were the final parameters required to perform the quadratic pro-
gramming minimisation. E is defined before the minimisation loop while ma-
trix F is in the loop as it is updated at the start of each loop iteration.

The augmented state vector Xf, defined in subsection 2.5.4, was also ini-
tialised before the minimisation loop as a zero vector with the number of rows
equivalent to the number of rows of either augmented the state matrix A_aug

or B_aug.

3.3.5 Minimisation loop

The for loop variable, i, was initialised with the value of 1. Thereafter, the
quadratic programming variable F and the constraint vector d were updated
before being passed into the Hildreth’s programming function QPhild() de-
fined below.

[DeltaU, Unconst] = QPhild(E, F, CC, d);

DeltaU was the solution to the quadratic programming problem. Unconst
was the unconstrained solution to the problem — this was added for compar-
ison purposes. DeltaU was the control trajectory of input actions where the
number of columns of this matrix is equivalent to the size of the control hori-
zon; only the first column of input values is implemented on the system.

After extracting the first column from DeltaU, the next step was to update
the model for the next loop iteration. This was executed in the following lines,

xh(:,i+1) = A_aug*xh(:,i) + B_aug*deltau';
yh(:,i) = C_aug*xh(:,i+1) + dist(:,i);
Xf = xh(:,i+1);

where deltau was the first column of input values and xh was a state vector
with the same dimensions as the Xf, and dist was a disturbance added to the
output yh.

In order to obtain the current input vector to be sent to the quadcopter,
deltau is added to the previous input vector as shown below,

u = u + deltau';

The variables needed to plot the graphs were updated as well. This process
was repeated until the loop condition was false. The graphs of the simulation
are presented in the next chapter. The full MATLAB code is included in appendix
D.

The software-in-the-loop (SITL) implementation is discussed in the follow-
ing section.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 51

3.4 SITL Implementation

3.4.1 Microsoft Visual Studio

Before the MPC controller was implemented on a simulated quadcopter, the
controller had to be programmed in C++; the programming language that the
PX4 firmware is written in.

The C++ code was written from scratch, opting against using the MATLAB
coder toolbox to convert the MATLAB code into C++. This approach offers
better comprehension and flexibility in code debugging. To verify that both
the MATLAB and C++ MPC controllers were functionally identical, both con-
trollers were initialised with the same variables: state space matrices, vectors,
references, constraints and disturbances. After obtaining the same output with
the MATLAB controller — giving tolerance for differences in the number of sig-
nificant figures — the C++ MPC controller was moved onto the PX4 firmware
to make it compatible to run the SITL simulation.

The Microsoft Visual Studio 2015 Integrated Development Environment
(IDE) was used in programming, running and testing the controller in C++.

3.4.2 Eigen C++ library

From the subsections 2.5.4 and 3.2, it is evident that the model predictive
controller is matrix based. The Visual Studio IDE does not have an inbuilt
matrix library to perform matrix and vector definitions and computations fun-
damental to MPC, therefore an external library had to be included.

Two linear algebra C++ libraries were considered for this purpose: Ar-
madillo C++ library and Eigen C++ library. Eigen was chosen over Armadillo
because of its compatibility with the PX4 firmware.

The PX4 developers implemented a basic matrix library that does not
extend to defining large matrices (and vectors) and performing complex matrix
decompositions; this further strengthens the motivation for including eigen.
The Eigen C++ library is a header only library which implies that the user is
only required to download the eigen source files and ensure that these files are
discoverable by the compiler.

Eigen version 3.3.4 was used in this thesis.

3.4.3 Matrix and vector definitions

The Visual Studio IDE was installed on a 64-bit Dell Latitude E640 that runs
on an Intel Core i5 CPU M520 at 2.40 GHz × 4 with 4GB RAM. There
were no memory issues implementing the MPC angular rates controller on
the Visual Studio IDE, but with controller target being the Pixhawk — with
256kb RAM/2mb Flash memory — it was necessary to take steps to optimise
the C++ MPC controller code before implementation on the Pixhawk.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 52

The following subheadings discuss these steps.

3.4.3.1 Float vs double precision

The Pixhawk autopilot runs on a 32-bit ARM Cortex M4 core processor with
FPU. FPU stands for Floating Point Unit and it is the part of the processor
used for performing floating point calculations. This FPU is used for single
precision floating point values and not double precision floating point opera-
tions. Therefore all the floating point operations used in the controller were
declared as type float and not double. The code snippet below shows how
matrices (and vectors) other than the default two, three or four dimensional
matrices were defined. This snippet defines a 10 × 5 float matrix.

Matrix<float, 10, 5> A;

3.4.3.2 Fixed vs dynamic matrix and vector sizes

In Eigen, matrices and vectors are classified to either have a dynamic or fixed
size. An example of how these types are defined in eigen is shown below,

Matrix3d A;
VectorXf B;

Matrix A is of type double with a fixed size as the 3 stands for a dimension
of 3 × 3. Meanwhile vector B is float dynamic sized vector where the dimension
is unknown until runtime. Using fixed sizes is very beneficial to performance,
as it enables the Eigen library to avoid dynamic memory allocation and to
unroll loops. Dynamic memory allocation entails reserving memory as needed
at program runtime as opposed to reserving a fixed amount of memory ahead of
time. Loop unrolling is a loop transformation technique that aims to optimise
the execution time of a program (Carminati et al., 2017).

All the matrices and vectors used in the controller were declared as float
and fixed.

3.4.3.3 Passing matrices and vectors by reference

Due to the potentially large matrices and vectors that are used in MPC, the
preferable approach of passing arguments to a C++ function was by reference.
Employing this approach ensures greater time and memory efficiency compared
to passing arguments by value. Because these arguments are not copied, their
values were used and altered directly.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 53

3.4.3.4 Optimisation flags

Visual studio has optimisation flags that can be added to inform the compiler
to optimise the respective code for minimum size, maximum speed, general
optimization and more. As computation time is important, the -02 flag, used
to optimise the code for maximum speed, was added.

The C++ code snippet below demonstrates how a matrix is declared, ini-
tialised and how a matrix element is accessed in Eigen. This procedure is also
applicable to vector declarations and initialisations.

#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>

using namespace std;

int main()
{

Matrix3f m;
m << 1, 2, 3,

4, 5, 6,
7, 8, 9;

/* Displaying the matrix element on the
second row and third column on the
console */

cout << m(1,2);

return 0;
}

3.4.4 Building the PX4 firmware

On successfully implementing the MPC angular rates controller in C++, in
Microsoft Visual Studio, the next step was to move the relevant variables,
matrices, vectors and functions to the attitude control module on the PX4
firmware.

This phase of the controller implementation was done in a Linux environ-
ment using the Ubuntu 16.04 LTS operating system dual booted with Windows
10 on the same laptop.

The default firmware was cloned from the PX4 firmware GitHub repository
to a directory on the laptop. Qt Creator was the IDE used in editing the source
file of the attitude module in order to include the matrices, vectors, functions
and other variables needed to run the MPC angular rates controller. These

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 54

parameters were declared in the appropriate class to ensure their accessibility
within the file.

As established earlier in this chapter, the PX4 firmware is made up of
various modules which are integrated together. CMake is an open-source,
cross-platform family of tools used to generate definition files (CMake) for
each module which are built by a toolchain — a set of tools used in compiling,
building, debugging (and more) a project — into the PX4 firmware. Each
module folder contains its source code and a cmake definition file that informs
the toolchain on how to build the module; the cmake definition file is always
saved as CMakeLists.txt. The code snippet below is an example of the contents
of a cmake file for creating a PX4 firmware module.

px4_add_module(
MODULE modules_test_app
MAIN test_app
STACK_MAIN 2000
STACK_MAX
COMPILER_FLAGS
SRCS

test_app.cpp
DEPENDS

platforms_common
)

where,
MODULE - unique name of the module
MAIN - entry point of the module on the flight stack, if not given it is assumed
to be library
STACK_MAIN - size of stack for main function
STACK_MAX - maximum stack size of any frame
COMPILE_FLAGS - compile flags for compiler
SRCS - module source files
DEPENDS - targets which the module depends on

If no STACK_MAX is defined, the STACK_MAX is set as STACK_MAIN.

Building the PX4 firmware was done from the Ubuntu terminal window. The
following commands were executed in the order shown below to build the
firmware:

cd Firmware
make px4fmu-v2_default

The first command was used to navigate to the directory where the firmware
folder is located. The second command built the firmware. px4fmu-v2_default

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 55

is the build target for the type of Pixhawk board in use. The terminal window
outputted error messages if the build was unsuccessful.

The next step was to run the PX4 firmware on a simulated quadcopter.

3.4.5 jMAVSim

jMAVSim is an open-source java based multicopter simulator, that enables a
user to fly a vehicle running the PX4 firmware in a simulated environment.

The setup procedure for using jMAVSim is explained in appendix F. Af-
ter jMAVSim was successfully setup, the termimal running the simulator was
closed. A new terminal was reopened and directory commands were used to
navigate to the directory containing the firmware folder. The following com-
mand was executed in the terminal to run SITL using jMAVSim:

make posix_sitl_default jmavsim

On successful run, the PX4 shell console was opened which enables the user
to type in commands to take off and land the simulated quadcopter. Specific
keys on the keyboard were used to steer and control the airborne quadcopter.
The command below was entered into the console to take off the quadcopter:

pxh> commander takeoff

The ground station software, QGroundControl (QGC), was connected to
jMAVSim to fly a mission with the quadcopter or use a joystick instead of the
keyboard to control the quadcopter.

These flight missions in QGC were waypoints that were setup for the sim-
ulated quadcopter to fly through to monitor the controller performance as the
quadcopter flies through each point. QGroundControl is discussed in more
detail in the following subsection.

Figure 3.6 shows a quadcopter in the jMAVSim simulator environment.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 56

Figure 3.6: Quadcopter in jMAVSim environment

3.4.6 QGroundControl (QGC)

QGroundControl is a cross-platform application — supported on Windows,
Linux, Mac OS, Android, iOS — that provides full flight control and mission
planning for drones that communicate using the MAVLink protocol. It is also
used to setup vehicles powered by PX4 or ArduPilot firmwares (QGround-
Control). Setting up includes uploading firmware to the board, choosing the
vehicle configuration (airframe), calibrating onboard sensors, establishing a
connection between the radio transmitter and receiver, and more. The QGC
homescreen is shown below.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 57

Figure 3.7: QGroundControl homescreen

The SITL simulation of the PX4 firmware with the MPC angular con-
troller was carried out using jMAVSim, to simulate the quadcopter running
the firmware, and QGC to create waypoints for the simulated quadcopter to fly
through. The flight logs from the SITL simulation were logged and downloaded
using QGC.

jMAVSim and QGC were both setup and used in Ubuntu 16.04 LTS oper-
ating system on the same laptop - Dell Latitude E640. The MPC C++ code
for the SITL implementation is available in appendix E.

3.5 Flight Testing
After successful SITL simulations, the next step was to upload the modified
PX4 firmware onto the Pixhawk for flight testing. The Pixhawk was con-
nected to the computer via a USB cable. A terminal window was opened and
the directory containing the PX4 firmware is navigated to. Finally, the follow-
ing command was executed in order to build and upload the firmware to the
Pixhawk:

make px4fmu-v2_default upload

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 58

Running this command in the Ubuntu terminal immediately resulted in an
error message stating that the stack had overflowed by a certain number of
bytes and a subsequent crash of the Pixhawk. Stack overflow occurs when a
program tries to use more memory space than is available on the call stack.
In this scenario, overflow occured when a function or variables in the attitude
control module tried to use more memory than was allocated in its CMake-
Lists.txt file.

The following subsections explain the steps taken to rectify this error.

3.5.1 FTDI cable

The Pixhawk has a system console that grants low-level access for debugging
output and analysis of the system boot process (Console). Connection to the
system console is achieved using a Future Technology Devices International
(FTDI) cable where one end of the cable is connected to the serial port on the
Pixhawk and the other to a USB port on the computer.

The FTDI cable enables the user to view details of the modules running on
the flight stack, on the system console in the Ubuntu terminal. These details
include respective stack sizes of each module and their usage, in addition to
displaying the available memory on the Pixhawk.

The FTDI cable was mainly used to reboot the Pixhawk after crashing from
an attempted firmware upload. Reboot was achieved by typing reboot in the
terminal and pressing the enter key. The errors encountered in uploading the
firmware were also visible on the terminal screen after executing:

make px4fmu-v2_default upload

3.5.2 Stack size

The intuitive first step in addressing the stack overflow error message was to
increase the stack size of the module causing the error. The stack size was
increased by incrementing the size of the STACK_MAIN variable in the attitude
control CMakeLists.txt file. Memory is limited, therefore there is a constraint
on how much memory can be allocated to the attitude control module. It was
noticed that the error persisited even after an increase in the stack size. There-
fore, attention was shifted from stack size to speed of module compilation and
code efficiency. These approaches are discussed in the following subsections.

3.5.3 Optimisation flags

Similar to the visual studio IDE, the compiler on the Pixhawk has provisions
for certain flags to be added to maximise speed, minimise code size, general

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 59

optimisation and more. The -03 flag, used to maximise speed, was added as
a compiler flag in the cmake definition file for the attitude module.

3.5.4 Hardcoding output matrices, constraints matrices
and vectors

The Dell Latitude laptop has a significantly larger memory capacity compared
to that on the Pixhawk hardware. Therefore, running custom functions used
to generate output matrices, constraint matrices and vectors were executed
smoothly. In order to reduce the computational load on the pixhawk, these
matrices and vectors were hardcoded, after the desired control and prediction
horizons were chosen.

3.5.5 Static keyword

In addition to hardcoding matrices and vectors, these variables were preceded
with the keyword static. The static keyword ensures that the accompanying
variable is declared and stored only once in memory. The initialised value
remains constant until it is modified within its function or class. The keyword
ensures that the defined values persist until the program is terminated — when
the Pixhawk is powered off.

3.5.6 Disable unused modules and libraries

The PX4 firmware can also be used to control VTOL vehicles, fixed wing
aircraft and rovers. Some of the modules associated with these vehicles are
activated by default. These modules were disabled to conserve more memory
on the Pixhawk. Furthermore, other unused modules, libraries and device
drivers were disabled.

3.5.7 Size of control and prediction horizons

Two crucial parameters in designing an MPC controller are the control and
prediction horizons, as the matrices and vectors used are influenced by the
size of these horizons. After several iterations, a sample time of 0.2 s was
chosen for the discrete model for the MPC angular rates controller, to be
implemented on the Pixhawk. Initially, a control horizon of three was used with
a prediction horizon of eight. Building the firmware with matrices and vectors
in correspondence with these horizons resulted in build errors. Decreasing the
prediction horizon down to two also resulted in an unsuccessful build, and
a horizon of one underutilises the predictive ability of the MPC controller.
Reducing the control horizon to two with a prediction horizon of five finally
resulted in a successful firmware build.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 60

The next chapter presents the results obtained from varying the size of the
prediction horizons.

All of these steps contributed in successfully uploading the modified PX4
firmware, with the MPC angular rates controller, onto the Pixhawk. Before
flight testing outdoors, the quadcopter was flown in the Structures laboratory
at the Mechanical Engineering department, Stellenbosch University, with a
net over the area to be flown, in order to dampen any quadcopter crashes as
parameters such as the input weights and the rate of input change constraints
were being tuned and tested.

Figure 3.8 below shows the quadcopter used in the laboratory.

Figure 3.8: Indoor flight testing

Before flying the quadcopter — indoor or outdoor — the following checklist
had to be ticked off in the order below,

� Upload PX4 firmware onto Pixhawk.

� Charge quadcopter batteries.

� Calibrate sensors using QGroundControl.

� Calibrate radio transmitter to receiver via QGC.

� Ensure the right propellers are used and are tightly fastened.

� Connect the Pixhawk power module cable to the battery.

� Turn off the safety switch.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 3. CONTROLLER DESIGN AND IMPLEMENTATION 61

� Arm quadcopter for flight via the radio transmitter.

The table below lists the hardware components of the quadcopter used for
flight testing.

Table 3.2: Summary of quadcopter hardware

Quadcopter hardware components
S/N Part Component used
1 Frame s500
2 Propellers 12× 3.8 Quanum carbon fiber
3 Motors EMAX MT3506 650kv
4 ESCs Hobbywing Platinum 30A
5 Battery 14.8v 5000 mah LIPO Turnigy
6 Controller Pixhawk
7 Transmitter Spektrum DX7 radio
8 Receiver Spektrum DSMX receiver

The results obtained from the controller implementations discussed in this
chapter are presented in the following one.

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Simulation and Experiments

The results obtained from running the simulations in MATLAB are presented in
section 4.1.Section 4.2 presents the results obtained from the SITL simulations.
Finally, the flight test results from flying the quadcopter running the modified
PX4 firmware are plotted and discussed in section 4.3.

4.1 MATLAB Simulations
The MPC angular rates controller designed in the previous chapter was sim-
ulated in MATLAB in order to test its performance. Sinusoidal functions were
used as the references to be tracked by the controller. Its performance was
observed by plotting the model output (or response) together with the ref-
erences, by varying the control and prediction horizons. The weights on the
control inputs were tuned to adjust to these variations. Furthermore, the appli-
cable matrices and vectors, dependent on the size of the control and prediction
horizons, were modified for compatible matrix and vector computations.

The sinusoidal references tracked by the MPC angular rates controller were
the fourier series below,φ̇θ̇

ψ̇

 =

 sint+ cos(3t)
2

sint+ cos(3t)
2

sint+ cos(2t)
2

+ sin(3t)
3


The variables φ̇, θ̇ and ψ̇ are the angular rates for the roll, pitch and yaw

axes respectively measured in rad/s. t is the simulation time step which is
bounded between 0 and 20; with increments of 0.2.

The table below shows the initialisations of the parameters needed for the
MATLAB simulations, where

[
p q r

]T
=
[
φ̇ θ̇ ψ̇

]T
.

62

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SIMULATION AND EXPERIMENTS 63

Table 4.1: MATLAB MPC simulation parameters for nu = 3, ny = 6

nu ny p, q r disturbance
3 6 sint + cos(3t)

2
sint + cos(2t)

2
+ sin(3t)

3
(rand(3,101)*2 -1)*0.5

The results obtained from the simulations are plotted below.

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12 14 16 18 20

p
[ra

d/
s]

Simulation points

Roll rates
setpoint current

Figure 4.1: MATLAB roll rates for nu = 3, ny = 6

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12 14 16 18 20

q [
ra

d/
s]

Simulation points

Pitch rates
setpoint current

Figure 4.2: MATLAB pitch rates for nu = 3, ny = 6

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SIMULATION AND EXPERIMENTS 64

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12 14 16 18 20

r[
ra

d/
s]

Simulation points

Yaw rates
setpoint current

Figure 4.3: MATLAB yaw rates for nu = 3, ny = 6

-2

-1

0

1

2

0 2 4 6 8 10 12 14 16 18 20

U 1
 [N

m]

Simulation points

Roll torque
umax umin roll torque

Figure 4.4: MATLAB roll torque for nu = 3, ny = 6

-2

-1

0

1

2

0 2 4 6 8 10 12 14 16 18 20

U 2
 [N

m]

Simulation points

Pitch torque
umax umin pitch torque

Figure 4.5: MATLAB pitch torque for nu = 3, ny = 6

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SIMULATION AND EXPERIMENTS 65

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 2 4 6 8 10 12 14 16 18 20

U 3
 [N

m]

Simulation points

Yaw torque
umax umin yaw torque

Figure 4.6: MATLAB yaw torque for nu = 3, ny = 6

In table 4.1, a disturbance parameter was initialised. It is a weighted
randomised value, added to the output vector of the quadcopter model, to
replicate ambient disturbance and sensor noise present in real world quadcopter
flights.

It is apparent from the rates plots that the controller was able to attain
close reference tracking despite the additional disturbance parameter.

The dotted horizontal lines in each of the torque (or input) plots represent
the constraints that bound the respective input control signals. By tuning the
input weight matrix W , favourable reference tracking was achieved, with the
torque signals within their respective constraints.

Further MATLAB simulations were carried out and the results of these sim-
ulations are presented in appendix G.

4.2 Software-in-the-loop (SITL)
The SITL simulation results were obtained by flying the simulated quadcopter
— running the modified PX4 firmware — in jMAVSim through flight mission
waypoints created in QGroundControl. In figure 4.7 below, the left panel
shows the quadcopter in the simulated jMAVSim environment and the right
panel shows the flight mission waypoints in QGC.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SIMULATION AND EXPERIMENTS 66

Figure 4.7: Left panel: Quadcopter in jMAVSim, right panel: Flight mission way-
points in QGC

The label T, in the right panel of the figure above, indicates the take-
off position and L, the landing position. Between take-off and landing, the
quadcopter flew in ascending numerical order of the points shown above. The
flight mission was initiated by clicking the Arm button at the bottom of the
QGC screen.

The initial SITL flight mission above was executed with a control horizon
of two and a prediction horizon of five. After take off, it was noticed that the
quadcopter oscillated with high frequency, about its centre of gravity, as it
flew to the first waypoint and eventually crashed. The tentative explanation
for this response was that the sample time of the controller was faster than
the response time of the quadcopter.

To test this conjecture, the minimisation procedure was slowed down by en-
closing the Hildreth’s quadratic programming function and state space model
parameters, within a loop to run at least twice before outputting the input (or
torque) commands to the mixer module. Running the loop three times resulted
in the quadcopter drifting off course, after taking off, and subsequently crash-
ing. Whereas, a loop with two iterations resulted in a relatively smooth flight
through each mission waypoint, and the mission ended with a safe landing.

The SITL flight simulations were resumed after making this modification
and the flight data was accordingly plotted. QGC was used to download the
flight data for each flight mission executed.

The control and prediction horizons used in the flight data plotted below
were two and four respectively.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SIMULATION AND EXPERIMENTS 67

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70

p
[ra

d/
s]

Time [s]

Roll rates

current roll rates
setpoint roll rates

Figure 4.8: SITL roll rates for nu = 2, ny = 4

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70

q[
ra

d/
s]

Time [s]

Pitch rates

current pitch rates
setpoint pitch rates

Figure 4.9: SITL pitch rates for nu = 2, ny = 4

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60 70

r[
ra

d/
s]

Time [s]

Yaw rates
current yaw rates
setpoint yaw rates

Figure 4.10: SITL yaw rates for nu = 2, ny = 4

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SIMULATION AND EXPERIMENTS 68

1000

1200

1400

1600

1800

2000

30 35 40 45 50 55 60 65 70 75

PW
M

Time [s]

PWM values
motor 1
motor 2
motor 3

Figure 4.11: SITL PWM values for nu = 2, ny = 4

Similarly, jMAVSim includes disturbance in the simulator, to replicate real
world flight conditions and it is evident from the rate plots that the MPC rates
controller was able to achieve close reference tracking of the rates setpoint.

As established in subsection 3.1.1, the output from the attitude and rates
controller is sent to the mixer module. The mixer module converts these sig-
nals into motor commands to be sent to the quadcopter; for real flight, these
commands are sent to the ESCs to regulate the speed of each quadcopter
motor. The motor commands from the mixer module are Pulse Width Modu-
lation (PWM) values which vary between 1000 (the minimum) and 2000 (the
maximum). In figure 4.11, it can be observed that these PWM values are well
within the PWM limits from take-off to landing.

Appendix G contains plots of other flight missions that were executed.

4.3 Flight Tests
The measures outlined in section 3.5 were effected to ensure a successful
firmware upload onto the Pixhawk. Furthermore, the loop modification dis-
cussed in the previous section was made, and the checklist listed at the end
of section 3.5 was ticked off before indoor flight testing commenced. The in-
put weights and rates of input change constraints were tuned indoors, in the
Structures laboratory at the Stellenbosch University Mechanical engineering
department, before the quadcopter was flown outside.

The following results were obtained for an outdoor flight using a control
horizon of two and prediction horizon of two.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SIMULATION AND EXPERIMENTS 69

-4

-2

0

2

4

0 2 4 6 8 10

p
[ra

d/
s]

Time [s]

Roll rates

current roll rates
setpoint roll rates

Figure 4.12: Flight roll rates for nu = 2, ny = 2

-4

-2

0

2

4

0 2 4 6 8 10

q[
ra

d/
s]

Time [s]

Pitch rates

current pitch rates
setpoint pitch rates

Figure 4.13: Flight pitch rates for nu = 2, ny = 2

-4

-2

0

2

4

0 2 4 6 8 10

r[
ra

d/
s]

Time [s]

Yaw rates

current yaw rates
setpoint yaw rates

Figure 4.14: Flight yaw rates for nu = 2, ny = 2

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 4. SIMULATION AND EXPERIMENTS 70

1000

1500

2000

0 2 4 6 8 10

PW
M

Time [s]

PWM Values
motor 1
motor 2
motor 3
motor 4

Figure 4.15: Flight PWM values for nu = 2, ny = 2

Real world quadcopter flights are subjected to external disturbances, such
as wind, sensor noise, model uncertainty from assumptions made in the mod-
elling process and more. Despite these flight conditions, it can be observed
that the MPC angular rates controller, running on the Pixhawk, was able to
closely track the setpoint rates. It is also evident that the PWM values sent to
the motors were well within the minimum and maximum PWM boundaries.

Additional flight testing results are available in appendix G. The following
chapter concludes this thesis.

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

Conclusion

This chapter concludes the thesis with a summary of the methodology em-
ployed in achieving the aim and objectives outlined in chapter 1, and finally,
recommendations are made for future research.

Summary
The PX4 firmware, which runs on the Pixhawk autopilot, is categorised into
modules that control different vehicles such as multicopters, VTOL vehicles,
fixed wing aircrafts and rovers. To accommodate vehicles of different sizes, PID
(or any of variants) controllers are used to control these vehicles. These con-
trollers can be implemented on any vehicle, that the PX4 firmware supports,
irrespective of size; albeit the user will have to tune the control parameters.
Model predictive control requires a mathematical model of the specific vehicle
(or system) to be controlled. Model predictive control has yet to be imple-
mented on the PX4 firmware, the specificity required by MPC is one of the
main reasons why.

Thus, the aim of this thesis was to evaluate the feasibility of implementing
model predictive control on the PX4 firmware, running on the Pixhawk autopi-
lot, to control the angular rates of a quadcopter. The methodology, visualised
in the following figure, shows the approach carried out in this evaluation.

71

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONCLUSION 72

Formulate mathematical model

MPC controller design

MATLAB implementation

Software-in-the-loop (SITL)
implementation

Flight testing

Figure 5.1: Methodology

The challenges encountered in the MPC angular rates implementation was
most prominent in the flight testing stage. Stack overflow, among other error
messages, was the reoccurring message outputted on the Ubuntu terminal win-
dow for each unsuccessful firmware upload attempt. Increasing the stack size
of the attitude control module, which contains the angular rates controller,
proved ineffective in rectifying the stack overflow error message. Therefore, fo-
cus was shifted towards code optimisation, in order ensure a successful firmware
upload onto the Pixhawk.

During this code optimisation process, it was realised that a maximum
control horizon of two was crucial to a successful upload of the firmware onto
the Pixhawk. A quadcopter running the modified PX4 firmware on the Pix-
hawk was flight tested. The results obtained illustrate that the MPC angular
rates controller is able to attain close reference tracking of the setpoint angu-
lar rates. But more significantly, these results demonstrate the feasibilty of
implementing model predictive control on the PX4 firmware.

Recommendation for Future Research
The results presented in the previous chapter, substantiate the feasibility of
implementing model predictive control on the PX4 firmware, to control the
angular rates of a quadcopter. Considering the implementation challenges
encountered, expanding MPC to other PX4 modules and/or using a control
horizon larger than two will require a Pixhawk with a larger memory.

The Pixhawk 1 was the hardware used in this thesis with a processor run-
ning at 168 MHz with 256 Kb RAM and 2 Mb flash memory. There are two
new versions of the Pixhawk, which are the Pixhawk 3 pro and Pixhawk 4.

Stellenbosch University https://scholar.sun.ac.za

CHAPTER 5. CONCLUSION 73

The Pixhawk 3 pro has a processor with a flash size of 2 Mb, 384 Kb in RAM
running at 180 MHz. Whereas the Pixhawk 4 has a processor speed of 216
MHz, 2 Mb flash memory and 512 kB RAM.

These versions of the Pixhawk are superior to the Pixhawk 1, and will
be a good starting point for implementing larger control and prediction hori-
zons, for performance and comparative analysis. In addition, the feasibility of
integrating model predictive control into other PX4 control modules can be
explored.

Stellenbosch University https://scholar.sun.ac.za

Appendices

74

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Optimisation example

Consider the quadratic objective function, J , and its inequality constraints in
equation A.0.1

J = 0.5x2
1 − 4x1 + x2

2 − 5x2 + 30 (A.0.1)

such that,
x2 − x1 ≥ 2

0.5x1 + x2 ≥ 9

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

The objective is to minimise J to obtain the x1 and x2 values. Two cases
will be considered: one with no constraints on the objective function and an-
other where constraints are applied.

Case 1: No constraints
To minimise equation A.0.1, the partial derivates of J are taken for the variables
x1 and x2. The optimal points of x1 and x2 are obtained by equating the partial
derivative equations to zero and solving for the corresponding variable. This
is shown below.

∂J

∂x1

= x1 − 4 = 0

⇒ x1 = 4

∂J

∂x2

= 2x2 − 5 = 0

⇒ x2 = 2.5

Thus, x∗1 = 4, x∗2 = 2.5

75

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. OPTIMISATION EXAMPLE 76

Figure A.1 below shows a contour plot of the objective function with the
optimal x1 and x2 values indicated by the dot where the contour lines represent
different values of the objective function.

Figure A.1: Contour plot of objective function without constraints

Case 2: With constraints
In order to use the Hildreth’s quadratic programming procedure to minimise
the objective (or cost) function in equation A.0.1 with constraints taken into
account, it is necessary to first set up the objective function in matrix and
vector format to satisfy the form in the equations below and then formulate a
dual problem as detailed in subsection 2.5.9.

J =
1

2
xTEx+ xTF

such that,
Mx ≤ γ

Thus,

E = 2 ∗
[
0.5 0
0 1

]
, F =

[
−4
−5

]
, x =

[
x1

x2

]

M =

[
1 −1
−0.5 −1

]
, γ =

[
−2
−9

]
Figure A.2 shows the contour plot of the objective function. The con-

straints are represented by the lines on the plot. The solution to minimising

Stellenbosch University https://scholar.sun.ac.za

APPENDIX A. OPTIMISATION EXAMPLE 77

the objective function is restricted to the feasibility region as labelled in the
figure. The optimal point is represented by the dot.

feasible region

Figure A.2: Contour plot of objective function with constraints

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Pixhawk Autopilot Specifications

Figures B.1 and B.2 show the top and side view of Pixhawk 1 flight controller
respectively.

Figure B.1: Top view of Pixhawk hardware with labeled ports (Pixhawk, 2013)

Figure B.2: Labeled side view of Pixhawk (Pixhawk, 2013)

78

Stellenbosch University https://scholar.sun.ac.za

APPENDIX B. PIXHAWK AUTOPILOT SPECIFICATIONS 79

The specifications of the Pixhawk board are given below and are obtained
from Pixhawk (2013).

Processor

• 32bit STM32F427 Cortex M4 core with FPU

• 168 MHz

• 256 Kb RAM

• 2 Mb Flash

• 32 bit STM32F103 failsafe co-processor

Sensors

• MPU6000 as main accel and gyro

• ST Micro 16-bit gyroscope

• ST Micro 14-bit accelerometer/compass (magnetometer)

• MEAS barometer

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Parameter Determination

The physical properties of the quadcopter are determined in this chapter and
the summary of these properties are tabulated at the end.

C.1 Mass
The mass, m, of the quadcopter (with the battery connected) was measured
using a digital mass scale. It was found to be approximately 1.587 kg.

C.2 Moment Arm
The moment arm, d, of the quadcopter was determined by measuring the
distance from the centre of any propeller to the centre of the quadcopter frame
with a measuring tape. The obtained moment arm is labelled in Figure C.1
below.

Figure C.1: Moment arm of quadcopter

80

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. PARAMETER DETERMINATION 81

C.3 Moments of Inertia
Moment of inertia is a measure of resistance to rotate a body about a par-
ticular axis (Jardin and Mueller, 2007). An experiment known as the bifilar
pendulum experiment (Habeck and Seiler, 2016) was carried out as the first
step in determining the moment of inertia for the three axes of the quadcopter.

In this experiment, the quadcopter is suspended from a horizontal beam
using two strings (filars); where the mass, tension and elasticity of the string
are assumed to be negligible. The two strings are of equal length. The length
of the string and the distance between them were measured and recorded.

Once the quadcopter has been suspended and motionless, the quadcopter
is displaced slightly from its equilibrium position. A stopwatch is started as
soon as the quadcopter is displaced and the number of seconds it takes for the
quadcopter to complete ten oscillations is recorded. This procedure is repeated
two more times in order to calculate an average.

The quadcopter is suspended in the other two axes and the method de-
scribed above is repeated for each subsequent setup. The experimental setup
for the bifilar pendulum for the respective axes is displayed in figure C.2 be-
low. The results from the experiments are presented in tables C.1, C.2 and
C.3 below.

Figure C.2: (a) Rotation about x-axis (b) Rotation about y-axis (c) Rotation about
z-axis

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. PARAMETER DETERMINATION 82

Table C.1: Time for oscillations about X-axis

Rotation about X-axis
Run Time taken for 10 Oscillations
1 13.09 s
2 12.93 s
3 13.06 s

Table C.2: Time for oscillations about Y-axis

Rotation about Y-axis
Run Time taken for 10 Oscillations
1 13.28 s
2 13.44 s
3 13.12 s

Table C.3: Time for oscillations about Z-axis

Rotation about Z-axis
Run Time taken for 10 Oscillations
1 11.71 s
2 11.41 s
3 11.68 s

The next step in determining the moment of inertia is to calculate the
period for each axis from the oscillations recorded; thereafter this value is
substituted into equation C.3.1 obtained from Habeck and Seiler (2016). The
period is the time needed to complete one oscillation cycle (Tongue, 2002).
This is calculated by dividing the average oscillations in tables C.1, C.2 and
C.3 above by 10.

Moment of inertia,

I =
mgT 2d2

16π2L
(C.3.1)

where,
m - mass of quadcopter (with battery connected), kg
g - acceleration due to gravity, ms−2

T - period for one oscillation, s
d - distance between strings, m
L - length of string, m

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. PARAMETER DETERMINATION 83

C.3.1 Moment of inertia for x-axis, Ixx
From table C.1, the average period is calculated as follows,

Average oscillation,

=
13.09 + 12.93 + 13.06

3
= 13.027 s

Period for one oscillation,

=
13.037

10
= 1.3027 s

For this experimental setup the following values were measuerd,
L = 0.928 m
d = 0.344 m
m = 1.587 kg

The moment of inertia is calculated below,

Ixx =
1.587× 9.81× 1.30272 × 0.3442

16× π2 × 0.928

Ixx = 0.0213 kgm2

C.3.2 Moment of inertia for y-axis, Iyy
From table C.2, the average period is calculated as follows,

Average oscillation,

=
13.28 + 13.44 + 13.12

3
= 13.28 s

Period for one oscillation,

=
13.28

10
= 1.328 s

The values of L, d andm are the same as those used in the x-axis pendulum
setup.

The moment of inertia is calculated below,

Iyy =
1.587× 9.81× 1.3282 × 0.3442

16× π2 × 0.928

Iyy = 0.02217 kgm2

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. PARAMETER DETERMINATION 84

C.3.3 Moment of inertia for z-axis, Izz
From table C.3, the average period is calculated as follows,

Average oscillation,

=
11.71 + 11.41 + 11.68

3
= 11.6 s

Period for one oscillation,

=
11.605

10
= 1.1 s

For this experimental setup the following values were measuerd,
L = 1.064 m
d = 0.4755 m
m = 1.587 kg

The moment of inertia is calculated below,

Ixx =
1.587× 9.81× 1.162 × 0.47552

16× π2 × 1.064

Izz = 0.0282 kgm2

C.4 Drag Coefficient
The formulas used in this section to determine the drag coefficient and the
thrust coefficient in the following section were obtained from Luis and Ny
(2016).

The torque created by a propeller is calculated with the formula below,

Q = Cdρn
2D5 (C.4.1)

where,

Cd - non-dimensional drag coefficient
n - propeller speed, rps
D - rotor diameter, m
ρ - air density, kg/m3

The formula for the drag coefficient of the propeller is presented in equation
C.4.2 below,

k =
CdρD

5

3600
(C.4.2)

Stellenbosch University https://scholar.sun.ac.za

APPENDIX C. PARAMETER DETERMINATION 85

APC carbon fiber propeller data for 12 inches × 3.8 inches was used in
the absence of Quanum carbon fiber propeller data to obtain the value of Cd.
This value is available on the APC propeller website. The propeller diameter
is 0.304 m. Taking the air density to be 1.225 kg/m3.

k =
0.095493× 1.225× 0.3045

3600

= 8.4367× 10−9 Nm/rpm2

C.5 Thrust Coefficient
From Luis and Ny (2016), the formula for calculating the thrust of a propeller
is as follows,

Thrust, T ,

T = Ctρn
2D4

where,

Ct - non-dimensional thrust coefficient
n - propeller speed, rps
D - rotor diameter, m
ρ - air density, kg/m3

For uniformity, the propeller speed is converted to rpm. Using,

1 rev/s = 60 rev/min

Therefore,

T = Ctρ(
ω

60
)2D4 (C.5.1)

where ω is the propeller speed in rpm
Ct is obtained from the APC propeller website. Using the diameter and air

density values from the previous section, the thrust coefficient, b, is calculated
as follows,

b =
CtρD

4

3600
(C.5.2)

=
0.14× 1.225× 0.3044

3600
= 4.0687× 10−7 N/rpm2

Stellenbosch University https://scholar.sun.ac.za

Appendix D

MATLAB Code

The MATLAB code used in designing the MPC controller is presented in this
chapter. Each section corresponds to a different function required by the main
MATLAB script file.

D.1 Main Program

1 % This script initializes the quadcopter parameters and matrices
needed to

2 % run the MPC control algorithm.
3
4 % In addition, the main control algorithm is initialized here.
5
6 %% Parameter Declarations
7
8 tic % initialize timer
9

10 % Quadcopter properties
11
12 m = 1.587; % Mass [kg]
13 g = 9.81; % Accel due to gravity [m/(s^2)]
14 Ixx = 0.0213; % x-axis moment of inertia [kg*m^2]
15 Iyy = 0.02217; % y-axis moment of inertia [kg*m^2]
16 Izz = 0.0282; % z-axis moment of inertia [kg*m^2]
17 b = 4.0687e-7; % Thrust coefficient [N/(rpm)^2]
18 k = 8.4367e-9; % Drag coefficient [N*m/(rpm)^2]
19 d_arm = 0.243; % Moment arm [m]
20 max_speed = 4720; % Maximum motor speed [rpm]
21 min_speed = 3093; % Minimum take-off speed [rpm]
22
23 % Controller design parameters
24
25 no_of_states = 6; % Number of states
26 no_of_inputs = 3; % Number of inputs
27 no_of_outputs = 3; % Number of outputs

86

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. MATLAB CODE 87

28 nu = 3; % control horizon
29 ny = 6; % prediction horizon
30 N_sim = 20; % Number of simulations
31 x = zeros(6,1); % Initial state values
32 y = zeros(3,1); % Initial output values
33 u = [0;0;0]; % Initial control values
34 t = 0:0.2:N_sim; % Steps for sinusoidal reference

functions
35
36 % Reference to be tracked
37 r = [sin(t) + cos(3*t)/2; sin(t) + cos(3*t)/2; sin(t) + cos(2*t)/2

+ sin(3*t)/3];
38
39 Rs = ref_adj(no_of_outputs, ny); % Reference Adjusting Matrix
40 dist = (rand(3,101)*2 -1)*0.5; % Disturbance
41
42 %% State Space Matrices
43
44 A = [0 1 0 0 0 0 ;...
45 0 0 0 0 0 0 ;...
46 0 0 0 1 0 0;...
47 0 0 0 0 0 0;...
48 0 0 0 0 0 1 ;...
49 0 0 0 0 0 0];
50
51 B = [0 0 0;
52 1/Ixx 0 0;
53 0 0 0;
54 0 1/Iyy 0;
55 0 0 0;
56 0 0 1/Izz];
57
58 C = [0 1 0 0 0 0;...
59 0 0 0 1 0 0;...
60 0 0 0 0 0 1];
61
62 D = zeros(3,3);
63
64 %% Converting from Continuous to Discrete Time
65
66 [Ad,Bd,Cd,Dd] = c2dm(A,B,C,D,0.2);
67
68 %% Augmented Model
69
70 [A_aug,B_aug,C_aug] = augment_mimo(Ad,Bd,Cd,no_of_states,

no_of_inputs,no_of_outputs);
71
72 % Controllability check
73 CO = [B_aug A_aug*B_aug A_aug^2*B_aug A_aug^3*B_aug A_aug^4*B_aug

A_aug^5*B_aug];
74
75 rank(CO);

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. MATLAB CODE 88

76
77 %% Prediction Matrices
78
79 [H,P] = mpc_predictions_output(A_aug,B_aug,C_aug,ny,nu); % Output

Predictions
80
81
82 %% Constraints
83
84 % Constraint calculations
85
86 u_1 = d_arm * b*(max_speed^2 - min_speed^2);
87 u_2 = u_1;
88 u_3 = k * (max_speed^2 + max_speed^2 - min_speed^2 - min_speed^2);
89
90 umax = [u_1; u_2; u_3];
91 umin = -umax;
92 Dumax = 0.6*umax;
93
94 % Constraint matrices
95
96 [CC, dd, dupast] = constraints_mimo(Dumax,umax,umin,no_of_inputs,

nu);
97
98 %% Cost Function & its Parameters
99

100 % Weights on control inputs
101
102 % Works
103 % W = [7.5e-2 0 0 0 0 0 ;...
104 % 0 7.5e-2 0 0 0 0 ;...
105 % 0 0 4.5e-2 0 0 0 ;...
106 % 0 0 0 7.5e-2 0 0 ;...
107 % 0 0 0 0 7.5e-2 0 ;...
108 % 0 0 0 0 0 4.5e-2];
109
110 % Also works
111 % W = [7.5e1 0 0 0 0 0 ;...
112 % 0 7.5e1 0 0 0 0 ;...
113 % 0 0 4.5e1 0 0 0 ;...
114 % 0 0 0 7.5e1 0 0 ;...
115 % 0 0 0 0 7.5e1 0 ;...
116 % 0 0 0 0 0 4.5e1];
117
118 W = [7.5e-2 0 0 0 0 0 0 0 0 ;...
119 0 7.5e-2 0 0 0 0 0 0 0 ;...
120 0 0 4.5e-2 0 0 0 0 0 0;...
121 0 0 0 7.5e-2 0 0 0 0 0 ;...
122 0 0 0 0 7.5e-2 0 0 0 0 ;...
123 0 0 0 0 0 4.5e-2 0 0 0 ;...
124 0 0 0 0 0 0 7.5e-2 0 0 ;...
125 0 0 0 0 0 0 0 7.5e-2 0 ;...

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. MATLAB CODE 89

126 0 0 0 0 0 0 0 0 4.5e-2];
127
128 E = 2*(H'*H + W);
129
130 % Simulation loop parameters
131
132 Xf = zeros(size(B_aug,1),1);
133 xh = zeros(size(B_aug,1),1);
134 yh = y;
135
136 % Simulation loop
137
138 for i = 1:100
139
140 F = -2*H'*(Rs*r(:,i) - P*(Xf));
141
142 d = dd + dupast*u;
143
144 % Quadratic Progamming
145
146 [DeltaU, Uncons] = QPhild(E,F,CC,d);
147
148 % For control horizon of 2
149 % DeltaU = [DeltaU(1,1) DeltaU(2,1) DeltaU(3,1);...
150 % DeltaU(4,1) DeltaU(5,1) DeltaU(6,1)];
151
152 % For control horizon of 3
153 DeltaU = [DeltaU(1,1) DeltaU(2,1) DeltaU(3,1);...
154 DeltaU(4,1) DeltaU(5,1) DeltaU(6,1);...
155 DeltaU(7,1) DeltaU(8,1) DeltaU(9,1)];
156
157 deltau = DeltaU(1,:);
158 u = u + deltau'; % Input
159
160 % Model
161
162 xh(:,i+1) = A_aug*xh(:,i) + B_aug*deltau';
163 yh(:,i) = C_aug*xh(:,i+1) + dist(:,i);
164 Xf = xh(:,i+1);
165
166 % % Same result with model above
167
168 % x(:,i+1) = Ad*x(:,i) + Bd*u;
169 % y(:,i) = Cd*x(:,i+1) + dist(:,i);
170 % Xf = [x(:,kk+1) - x(:,kk); y(:,kk)]
171
172 % Plot variables
173
174 u1(:,i) = u;
175 delt(:,i) = deltau;
176
177 % Scaled input

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. MATLAB CODE 90

178 % u_s = (2 * ((u(:,1) - umin(:,1))./(umax(:,1) - umin(:,1)))
- 1);

179
180 end
181
182 toc % terminate timer
183
184 %% Plots
185
186 % i=1:N_sim;
187 i = 1:100;
188
189 % Output 1
190 subplot(3,1,1)
191 plot(i,r(1,i),'k',i,yh(1,i),'r')
192 legend('reference trajectory','actual output')
193 xlabel('Time {ms}')
194 ylabel('\phi {rad}')
195
196 % Output 2
197 subplot(3,1,2)
198 plot(i,r(2,i),'k',i,yh(2,i),'r')
199 legend('reference trajectory','actual output')
200 xlabel('Time {ms}')
201 ylabel('\theta {rad}')
202
203 % Output 3
204 subplot(3,1,3)
205 plot(i,r(3,i),'k',i,yh(3,i),'r')
206 legend('reference trajectory','actual output')
207 xlabel('Time {ms}')
208 ylabel('\psi {rad}')
209
210 figure (2)
211 subplot(3,1,1)
212 plot(i, umax(1)*ones(1,100), '--k', i, umin(1)*ones(1,100), '--k',

i, u1(1,i), '--g')
213 title('Plots of input over a sample period')
214
215 subplot(3,1,2)
216 plot(i, umax(2)*ones(1,100), '--k', i, umin(2)*ones(1,100), '--k',

i, u1(2,i), '--g')
217
218 subplot(3,1,3)
219 plot(i, umax(3)*ones(1,100), '--k', i, umin(3)*ones(1,100), '--k',

i, u1(3,i), '--g')
220
221 figure (3)
222 subplot(3,1,1)
223 plot(i, Dumax(1)*ones(1,100), '--k', i, -Dumax(1)*ones(1,100), '--

k', i, delt(1,i), '--g')
224 title('Change in input over a sample period')

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. MATLAB CODE 91

225
226 subplot(3,1,2)
227 plot(i, Dumax(2)*ones(1,100), '--k', i, -Dumax(2)*ones(1,100), '--

k', i, delt(2,i), '--g')
228
229 subplot(3,1,3)
230 plot(i, Dumax(3)*ones(1,100), '--k', i, -Dumax(3)*ones(1,100), '--

k', i, delt(3,i), '--g')

D.2 Augment State Space Matrices

1 function [A_aug,B_aug,C_aug] = augment_mimo(Ad,Bd,Cd,no_of_states,
no_of_inputs,no_of_outputs)

2
3 A_aug = [Ad zeros(no_of_states,no_of_inputs); Cd*Ad eye(

no_of_outputs)];
4 B_aug = [Bd; Cd*Bd];
5
6 C_aug = [zeros(no_of_inputs, no_of_states) eye(no_of_inputs)];

D.3 Constraint Matrices and Vectors

1 % Constraint matrices for mimo with state/output constraints
2
3 % CC*du(future) - dd + du*u(k-1) + dy*ypast ypast is the past

state vector
4
5 % Dumax is the change in input
6 % umax and umin are the input limits
7 % ymax and ymin are the output/state limits
8 % nu is the control horizon
9 % ny is the output/state horizon

10 % no_of_inputs is the number of inputs
11
12 function [CC, dd, dupast] = constraints_mimo(Dumax,umax,umin,

no_of_inputs,nu)
13
14 CC = [];
15 dd = []; % vector of limits
16 dupast = []; % matrix coefficient of past input, u(k-1)
17 % dypast = []; % matrix/vector coefficient of past output, y(k-1)
18 dim = nu*no_of_inputs;
19
20 %% CC
21
22 % C Delta U
23
24 CC(1:dim,1:dim) = eye(dim);
25 CC(dim+1:2*dim,1:dim) = -eye(dim);

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. MATLAB CODE 92

26
27 % CuE
28 % E
29
30 s = 0; % row counter
31
32 E = zeros(dim,dim);
33
34 % Rows
35 for j=1:nu
36 E(1+s:no_of_inputs*j,1:no_of_inputs) = eye(no_of_inputs);
37
38 s = s + no_of_inputs;
39 end
40
41 % Columns
42
43 p = no_of_inputs + 1;
44
45 for counter = 1:nu-1
46 i = counter;
47 for k = (no_of_inputs*counter)+1:no_of_inputs:dim-no_of_inputs

+1
48 E(k:no_of_inputs*(i+1),p:no_of_inputs*(counter+1)) = eye(

no_of_inputs);
49 i = i + 1;
50 end
51 p = p + no_of_inputs;
52 end
53
54 % Cu
55 Cu = [eye(dim); -eye(dim)];
56 CuE = Cu*E;
57
58 % Putting CuE in CC
59 CC(2*dim+1:4*dim,1:dim) = CuE;
60
61 %% dd vector of limits
62
63 % d deltaU limits
64
65 ddeltaU = zeros(2*dim,1);
66 t = 1;
67 for i=1:no_of_inputs:size(ddeltaU,1)
68
69 ddeltaU(i:t*no_of_inputs,1) = Dumax;
70 t = t+1;
71 end
72
73 % du limits on input
74 du = zeros(2*dim,1);
75

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. MATLAB CODE 93

76 % Upper Limits
77 t = 1;
78 for i=1:no_of_inputs:size(du,1)/2
79 du(i:t*no_of_inputs,1) = umax;
80 t = t + 1;
81 end
82
83 % % Lower Limits
84 for i = 1 + size(du,1)/2: no_of_inputs: size(du,1)
85 du(i:t*no_of_inputs,1) = -umin;
86 t = t+1;
87 end
88
89 dd = [ddeltaU; du];
90
91 %% dupast past inputs
92
93 % L
94 L = zeros();
95 t = 1;
96 for i=1:no_of_inputs:(no_of_inputs*nu)
97 L(i:no_of_inputs*t,1:no_of_inputs) = eye(no_of_inputs);
98 t = t+1;
99 end

100
101 % -CuL
102 CuL = Cu*L;
103
104 dupast = [zeros(size(ddeltaU,1),no_of_inputs);-CuL];

D.4 Hildreth’s Quadratic Programming
Function

1 function [DeltaU, Uncons] = QPhild(E,F,CC,d)
2
3 [n1,m1] = size(CC);
4 DeltaU = -E\F; % Global solution without constraints
5 Uncons = DeltaU;
6 kk = 0;
7
8 for i=1:n1
9 if(CC(i,:)*DeltaU > d(i))

10 kk = kk + 1;
11 else
12 kk = kk + 0;
13 end
14 end
15
16 if (kk == 0)
17 return;

Stellenbosch University https://scholar.sun.ac.za

APPENDIX D. MATLAB CODE 94

18 end
19
20 % Dual quadratic programming matrices
21
22 T = CC*(E\CC'); % Same as H matrix = M*inv(E)*M'
23
24 K = (CC*(E\F) + d);% This is the K matrix = gamma + M*inv(E)*F ..

from their examples
25
26 % backslash(\) is used instead of the inverse function, inv()
27
28 [n, m] = size(K);
29 lambda= zeros(n,m);
30 al = 3;
31
32 for km = 1:15 % Number of iterations
33 % find the elelments in the solution vector one by one
34 % km could be larger i the Lagrange multiplier has a slow
35 % convergence rate
36 lambda_p = lambda; % previous lambda
37
38 for i=1:n % Loop to determine lambda values for respective

iters
39 w = T(i,:)*lambda - T(i,i)*lambda(i,1);
40 w = w + K(i,1);
41 la = -w/T(i,i);
42 lambda(i,1) = max(0,la);
43 end
44
45 al = (lambda-lambda_p)'*(lambda-lambda_p);
46 if (al < 10e-5)
47 break;
48 end
49 end
50
51 DeltaU = -E\F - E\CC'*lambda;

Stellenbosch University https://scholar.sun.ac.za

Appendix E

C++ Code

The MPC angular rates C++ code in this appendix is separated in sections
according to how the code is typed in the PX4 attitude control module. A
control horizon of two and a prediction horizon of five was utilised in the
controller code snippets in the following sections.

E.1 Includes
These are the headers included at the top of the mc_att_control.cpp file in
addition to the default headers.

1 #include <px4_eigen.h>
2 #include <eigen/Eigen/Dense>
3 #include <eigen/unsupported/Eigen/MatrixFunctions>
4 #include <eigen/Eigen/Core>
5 #include <eigen/Eigen/Cholesky>

E.2 Multicopter Attitude Control Class
The code snippet below shows the definitions for the matrices and vectors used
for the MPC controller in the multicopter attitude class.

1
2 // Hildreth's Quadratic programming function
3 Matrix<float, 6, 1> QPhild(const Matrix<float, 6, 6> &E,
4 Matrix<float, 6, 1> &F, const Matrix<float, 24, 6> &CC,
5 Matrix<float, 24, 1> &d);
6 Matrix<float, 6, 1> x; // State vector
7 Matrix<float, 6, 1> x_prev; // Previous state vector
8 Matrix<float, 3, 1> des; // Reference/desired rates vector
9 Matrix<float, 3, 1> u; // Input/control vector

10 Matrix<float, 9, 1> Xf; // Augmented state vector

95

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E. C++ CODE 96

11 Matrix<float, 3, 1> y; // Output vector
12 Matrix<float, 3, 1> x_curr; // Current rates vector
13 Matrix<float, 15, 9> P; // Output prediction matrix, P
14 Matrix<float, 15, 6> H; // Output prediction matrix, H
15 Matrix<float, 6, 15> H_trans; // Transpose of H matrix
16 Matrix<float, 3, 1> dist; // Randomised disturbance vector
17 Matrix<float, 6, 6> E; // Quadratic programming matrix, E
18 Matrix<float, 6, 6> W; // Input weight
19 Matrix<float, 24, 6> CC; // Constraint matrix
20 Matrix<float, 24, 1> dd; // Constraint vector
21 Matrix<float, 24, 3> dupast; // Past constraint matrix

E.3 Constructor
Some of the vectors and matrices defined in the multicopter attitude class are
initialised in the constructor. These initialisations are shown below.

1 MulticopterAttitudeControl::MulticopterAttitudeControl() :
2 {
3 // Initialisations
4 x.setZero(6,1);
5 u.setZero(3,1);
6 y.setZero(3,1);
7 Xf.setZero(9,1);
8
9 // Output prediction matrix P

10 P <<
11 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
12 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
13 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
14 0.0f, 2.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
15 0.0f, 0.0f, 0.0f, 2.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
16 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 2.0f, 0.0f, 0.0f, 1.0f,
17 0.0f, 3.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
18 0.0f, 0.0f, 0.0f, 3.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
19 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 3.0f, 0.0f, 0.0f, 1.0f,
20 0.0f, 4.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
21 0.0f, 0.0f, 0.0f, 4.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
22 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 4.0f, 0.0f, 0.0f, 1.0f,
23 0.0f, 5.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
24 0.0f, 0.0f, 0.0f, 5.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
25 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 5.0f, 0.0f, 0.0f, 1.0f;
26
27 // Output prediction matrix H
28 H << 9.3897f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
29 0.0f, 9.0212f, 0.0f, 0.0f, 0.0f, 0.0f,
30 0.0f, 0.0f, 7.0922f, 0.0f, 0.0f, 0.0f,
31 18.7793f, 0.0f, 0.0f, 9.3897f, 0.0f, 0.0f,
32 0.0f, 18.0424f, 0.0f, 0.0f, 9.0212f, 0.0f,
33 0.0f, 0.0f, 14.1844f, 0.0f, 0.0f, 7.0922f,

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E. C++ CODE 97

34 28.169f, 0.0f, 0.0f, 18.7793f, 0.0f, 0.0f,
35 0.0f, 27.0636f, 0.0f, 0.0f, 18.0424f, 0.0f,
36 0.0f, 0.0f, 21.2766f, 0.0f, 0.0f, 14.1844f,
37 37.5587f, 0.0f, 0.0f, 28.1690f, 0.0f, 0.0f,
38 0.0f, 36.0848f, 0.0f, 0.0f, 27.0636f, 0.0f,
39 0.0f, 0.0f, 28.3688f, 0.0f, 0.0f, 21.2766f,
40 46.9484f, 0.0f, 0.0f, 37.5587f, 0.0f, 0.0f,
41 0.0f, 45.1060f, 0.0f, 0.0f, 36.0848f, 0.0f,
42 0.0f, 0.0f, 35.4610f, 0.0f, 0.0f, 28.3688f;
43
44 // Input weight
45 W << 0.065f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
46 0.0f, 0.065f, 0.0f, 0.0f, 0.0f, 0.0f,
47 0.0f, 0.0f, 0.085f, 0.0f, 0.0f, 0.0f,
48 0.0f, 0.0f, 0.0f, 0.065f, 0.0f, 0.0f,
49 0.0f, 0.0f, 0.0f, 0.0f, 0.065f, 0.0f,
50 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.085f;
51
52 // Transpose of H output matrix
53 H_trans = H.transpose();
54
55 // quadratic programming variable, E
56 E = 2 * (H_trans*H + W);
57
58 // Constraint matrix
59 CC << 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
60 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
61 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
62 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
63 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f,
64 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
65 -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
66 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
67 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
68 0.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
69 0.0f, 0.0f, 0.0f, 0.0f, -1.0f, 0.0f,
70 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f,
71 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
72 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
73 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
74 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
75 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
76 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,
77 -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
78 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
79 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f,
80 -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
81 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f,
82 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f;
83
84
85

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E. C++ CODE 98

86 // Constraint vector of input and rate of input change
87 dd << 0.7548f,
88 0.7548f,
89 0.1288f,
90 0.7548f,
91 0.7548f,
92 0.1288f,
93 0.7548f,
94 0.7548f,
95 0.1288f,
96 0.7548f,
97 0.7548f,
98 0.1288f,
99 1.258f,

100 1.258f,
101 0.2147f,
102 1.258f,
103 1.258f,
104 0.2147f,
105 1.258f,
106 1.258f,
107 0.2147f,
108 1.258f,
109 1.258f,
110 0.2147f;
111
112 // Past rate of input change matrix
113 dupast << 0.0f, 0.0f, 0.0f,
114 0.0f, 0.0f, 0.0f,
115 0.0f, 0.0f, 0.0f,
116 0.0f, 0.0f, 0.0f,
117 0.0f, 0.0f, 0.0f,
118 0.0f, 0.0f, 0.0f,
119 0.0f, 0.0f, 0.0f,
120 0.0f, 0.0f, 0.0f,
121 0.0f, 0.0f, 0.0f,
122 0.0f, 0.0f, 0.0f,
123 0.0f, 0.0f, 0.0f,
124 0.0f, 0.0f, 0.0f,
125 -1.0f, 0.0f, 0.0f,
126 0.0f, -1.0f, 0.0,
127 0.0f, 0.0f, -1.0f,
128 -1.0f, 0.0f, 0.0f,
129 0.0f, -1.0f, 0.0f,
130 0.0f, 0.0f, -1.0f,
131 1.0f, 0.0f, 0.0f,
132 0.0f, 1.0f, 0.0f,
133 0.0f, 0.0f, 1.0f,
134 1.0f, 0.0f, 0.0f,
135 0.0f, 1.0f, 0.0f,
136 0.0f, 0.0f, 1.0f;
137 }

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E. C++ CODE 99

E.4 Hildreth’s Quadratic Programming
Function

The Hildreth’s quadratic programming function is defined in the following code
snippet.

1 // Hildreth's Quadratic Programming function
2
3 Matrix<float, 6, 1> MulticopterAttitudeControl::
4 QPhild(const Matrix<float, 6, 6> &E, Matrix<float, 6, 1> &F,
5 const Matrix<float, 24, 6> &CC, Matrix<float, 24, 1> &d)
6 {
7 // Compute decomposition of E
8 static LLT<Matrix<float, 6, 6>> lltOfE(E);
9 static Matrix<float, 6, 24> CC_transd = CC.transpose();

10 Matrix<float, 24, 24> T = CC*(lltOfE.solve(CC_transd));
11 Matrix<float, 24, 1> K = (CC*(lltOfE.solve(F)) + d);
12
13 int k_row = 24;
14 Matrix<float, 24, 1> lambda;
15 lambda.setZero(24, 1);
16 float al = 3.0f;
17 int km = 0;
18
19 do
20 {
21 Matrix<float, 24, 1> lambda_p = lambda;
22 // loop to determine lambda values for respective iterations
23 int i = 0;
24 do
25 {
26 float Tii = T(i, i);
27 T(i, i) = 0;
28 float la = -(T.col(i).dot(lambda) + K(i)) / Tii;
29 T(i, i) = Tii;
30 if (la < 0.0f) lambda(i) = 0.0f;
31 else lambda(i) = la;
32 i++;
33 } while (i < k_row);
34 al = (lambda - lambda_p).squaredNorm();
35
36 if (al < 0.001f) break;
37 km++;
38 } while (km < 15);
39
40 Matrix<float, 6, 1> DeltU = -lltOfE.solve(F) -
41 (lltOfE.solve(CC_transd))*lambda;
42
43 return DeltU;
44 }

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E. C++ CODE 100

E.5 Inside Attitude Control Rates Function
In this final section, the MPC angular rates controller code is presented.

1 void MulticopterAttitudeControl::control_attitude_rates(float dt)
2 {
3 // State space matrices
4 static Matrix<float, 6, 6> Ad;
5 Ad << 1.0f, 0.2f, 0.0f, 0.0f, 0.0f, 0.0f,
6 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
7 0.0f, 0.0f, 1.0f, 0.2f, 0.0f, 0.0f,
8 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
9 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.2f,

10 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f;
11
12 static Matrix<float, 6, 3> Bd;
13 Bd << 0.9390f, 0.0f, 0.0f,
14 9.3897f, 0.0f, 0.0f,
15 0.0f, 0.9021f, 0.0f,
16 0.0f, 9.0212f, 0.0f,
17 0.0f, 0.0f, 0.7092f,
18 0.0f, 0.0f, 7.0922f;
19
20 static Matrix<float, 3, 6> Cd;
21 Cd << 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
22 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f,
23 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f;
24
25 // Desired attitude rates/ rates setpoint
26 des << _rates_sp(0),
27 _rates_sp(1),
28 _rates_sp(2);
29
30 // Reference adjusting matrix
31 static Matrix<float, 15, 3> Rs;
32 Rs << 1, 0, 0,
33 0, 1, 0,
34 0, 0, 1,
35 1, 0, 0,
36 0, 1, 0,
37 0, 0, 1,
38 1, 0, 0,
39 0, 1, 0,
40 0, 0, 1,
41 1, 0, 0,
42 0, 1, 0,
43 0, 0, 1,
44 1, 0, 0,
45 0, 1, 0,
46 0, 0, 1;
47

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E. C++ CODE 101

48 // disturbance
49 dist.setRandom(3,1);
50 dist*0.06;
51
52 // current rates
53 x_curr << rates(0),
54 rates(1),
55 rates(2);
56
57 // Defining previous state vector
58 x_prev << 0,
59 x_curr(0),
60 0,
61 x_curr(1),
62 0,
63 x_curr(2);
64
65 // QPhild section to determine torque vector,
66 // that is _att_control vector
67
68 int i = 0;
69 do{
70
71 Matrix<float, 6, 1> F = -2 * (H_trans)*(Rs*des - P*Xf);
72 Matrix<float, 24, 1> d = dd + dupast*u;
73 Matrix<float, 6, 1> DeltaU = QPhild(E, F, CC, d);
74
75 Matrix<float, 2, 3> DeltaU_1;
76
77 DeltaU_1 << DeltaU(0, 0), DeltaU(1, 0), DeltaU(2, 0),
78 DeltaU(3, 0), DeltaU(4, 0), DeltaU(5, 0);
79
80 Matrix<float, 3, 1>deltau_tran=(DeltaU_1.row(0)).transpose

();
81 u = u + deltau_tran;
82
83 x = Ad*x_prev + Bd*u;
84 y = Cd*x;//+ dist;
85
86 Xf << x - x_prev,
87 y;
88
89 x_prev = x;
90 i++;
91 } while(i < 2);
92
93 _att_control(0) = u(0);
94 _att_control(1) = u(1);
95 _att_control(2) = u(2);
96
97 math::Vector<3> umaxx(1.258f, 1.258f, 0.2147f);
98 math::Vector<3> uminn = -umaxx;

Stellenbosch University https://scholar.sun.ac.za

APPENDIX E. C++ CODE 102

99
100 // Scale inputs or attitude control vector between -1 and 1
101 // before sending to mixer module
102
103 for (int k = 0; k < 3; k++)
104 {
105 _att_control(k) = (2 * ((_att_control(k) - uminn(k))
106 /(umaxx(k) - uminn(k)))-1);
107 }
108 }

Stellenbosch University https://scholar.sun.ac.za

Appendix F

jMAVSim

The following lines of code below are executed in the Ubuntu terminal; from
cloning the repository that contains the code for the multirotor simulator to
installing the required programs and finally to running the software.

Clone repository and initialise submodule:

1 git clone https://github.com/DrTon/jMAVSim
2 git submodule init
3 git submodule update

Compile:

1 cd jMAVSim
2 ant

Run:

1 java -cp lib/*:out/production/jmavsim.jar me.drton.jmavsim.
Simulator

More information can be found on the jMAVSim GitHub page.

The QGroundControl software is downloaded from the QGC website.

103

Stellenbosch University https://scholar.sun.ac.za

Appendix G

Additional Results

G.1 MATLAB Simulations
The parameters used for each MATLAB simulation are shown in tables G.1 and
G.2.

Table G.1: MATLAB MPC simulation parameters for nu = 2, ny = 2

nu ny p, q r disturbance
2 2 sint + cos(3t)

2
sint + cos(2t)

2
+ sin(3t)

3
(rand(3,101)*2 -1)*0.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12 14 16 18 20

p
[ra

d/
s]

Simulation points

Roll rates
reference current

Figure G.1: MATLAB roll rates for nu = 2, ny = 2

104

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. ADDITIONAL RESULTS 105

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12 14 16 18 20

q[
ra

d/
s]

Simulation points

Pitch rates
reference current

Figure G.2: MATLAB pitch rates for nu = 2, ny = 2

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12 14 16 18 20

r [
ra

d/
s]

Simulation points

Yaw rates
reference current

Figure G.3: MATLAB yaw rates for nu = 2, ny = 2

-2

-1

0

1

2

0 2 4 6 8 10 12 14 16 18 20

U 1
 [N

m]

Simulation points

Roll torque
umax umin roll torque

Figure G.4: MATLAB roll torque for nu = 2, ny = 2

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. ADDITIONAL RESULTS 106

-2

-1

0

1

2

0 2 4 6 8 10 12 14 16 18 20

U 2
 [N

m]

Simulation points

Pitch torque
umax umin pitch torque

Figure G.5: MATLAB pitch torque for nu = 2, ny = 2

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 2 4 6 8 10 12 14 16 18 20

U 3
 [N

m]

Simulation points

Yaw torque
umax umin yaw torque

Figure G.6: MATLAB yaw torque for nu = 2, ny = 2

Table G.2: MATLAB MPC simulation parameters for nu = 2, ny = 4

nu ny p, q r disturbance
2 4 sint + cos(3t)

2
sint + cos(2t)

2
+ sin(3t)

3
(rand(3,101)*2 -1)*0.5

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. ADDITIONAL RESULTS 107

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12 14 16 18 20

p
[ra

d/
s]

Simulation points

Roll rates
reference current

Figure G.7: MATLAB roll rates for nu = 2, ny = 4

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12 14 16 18 20

q[
ra

d/
s]

Simulation points

Pitch rates
reference current

Figure G.8: MATLAB pitch rates for nu = 2, ny = 4

-2.5

-1.5

-0.5

0.5

1.5

2.5

0 2 4 6 8 10 12 14 16 18 20

r [
ra

d/
s]

Simulation points

Yaw rates
reference current

Figure G.9: MATLAB yaw rates for nu = 2, ny = 4

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. ADDITIONAL RESULTS 108

-2

-1

0

1

2

0 2 4 6 8 10 12 14 16 18 20

U 1
 [N

m]

Simulation points

Roll torque
umax umin roll torque

Figure G.10: MATLAB roll torque for nu = 2, ny = 4

-2

-1

0

1

2

0 2 4 6 8 10 12 14 16 18 20

U 2
 [N

m]

Simulation points

Pitch torque
umax umin pitch torque

Figure G.11: MATLAB pitch torque for nu = 2, ny = 4

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 2 4 6 8 10 12 14 16 18 20

U 3
 [N

m]

Simulation points

Yaw torque
umax umin yaw torque

Figure G.12: MATLAB yaw torque for nu = 2, ny = 4

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. ADDITIONAL RESULTS 109

G.2 Software-in-the-loop Simulations
The flight data from SITL flight missions executed in section 4.2 are plotted
in the following subsections.

The results displayed below were obtained from executing the SITL flight
mission in section 4.2 for nu = 2 and ny = 2.

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120

p
[ra

d/
s]

Time [s]

Roll rates
current roll rates
setpoint roll rates

Figure G.13: SITL roll rates for nu = 2, ny = 2

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100 120

q[
ra

d/
s]

Time [s]

Pitch rates

current pitch rates
setpoint pitch rates

Figure G.14: SITL pitch rates for nu = 2, ny = 2

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. ADDITIONAL RESULTS 110

-1

-0.5

0

0.5

1

0 20 40 60 80 100 120

r[
ra

d/
s]

Time [s]

Yaw rates
currrent yaw rates
setpoint yaw rates

Figure G.15: SITL yaw rates for nu = 2, ny = 2

1000

1200

1400

1600

1800

2000

80 85 90 95 100 105 110 115 120 125

PW
M

Time [s]

PWM values
motor 1
motor 2
motor 3
motor 4

Figure G.16: SITL PWM values for nu = 2, ny = 2

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. ADDITIONAL RESULTS 111

G.3 Flight Tests
Additional results from obtained from outdoor flight testing are plotted in this
section with a control horizon of two and a prediction horizon of five.

-4

-2

0

2

4

0 2 4 6 8 10

p
[ra

d/
s]

Time [s]

Roll rates

current roll rates
setpoint roll rates

Figure G.17: Flight roll rates for nu = 2, ny = 5

-4

-2

0

2

4

0 2 4 6 8 10

q[
ra

d/
s]

Time [s]

Pitch rates
current pitch rates
setpoint pitch rates

Figure G.18: Flight pitch rates for nu = 2, ny = 5

-4

-2

0

2

4

0 2 4 6 8 10

r[
ra

d/
s]

Time [s]

Yaw rates

current yaw rates
setpoint yaw rates

Figure G.19: Flight yaw rates for nu = 2, ny = 5

Stellenbosch University https://scholar.sun.ac.za

APPENDIX G. ADDITIONAL RESULTS 112

1000

1500

2000

0 2 4 6 8 10

PW
M

Time [s]

PWM Values
motor 1
motor 2
motor 3

Figure G.20: Flight PWM values for nu = 2, ny = 5

Stellenbosch University https://scholar.sun.ac.za

List of References

Alderete, T.S. (1995). Simulator aero model implementation. NASA Ames Research
Center, Moffett Field, California. (Cited on page 12.)

Bangura, M. and Mahony, R. (2014). Real-time model predictive control for quadro-
tors. IFAC Proceedings Volumes, vol. 47, no. 3, pp. 11773–11780. (Cited on
page 17.)

Bemporad, A., Pascucci, C.A. and Rocchi, C. (2009). Hierarchical and hybrid model
predictive control of quadcopter air vehicles. IFAC Proceedings Volumes, vol. 42,
no. 17, pp. 14–19. (Cited on page 17.)

Bhatkhande, P. and Havens, T.C. (2014). Real time fuzzy controller for quadro-
tor stability control. In: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International
Conference on, pp. 913–919. IEEE. (Cited on page 3.)

Carminati, A., Starke, R.A. and de Oliveira, R.S. (2017). Combining loop unrolling
strategies and code predication to reduce the worst-case execution time of
real-time software. Applied Computing and Informatics, vol. 13, no. 2, pp. 184 –
193. ISSN 2210-8327.
Available at: http://www.sciencedirect.com/science/article/pii/
S2210832716300564 (Cited on page 52.)

Carrillo, L.R.G., López, A.E.D., Lozano, R. and Pégard, C. (2013). Modeling the
quad-rotor mini-rotorcraft. In: Quad Rotorcraft Control, pp. 23–34. Springer.
(Cited on page 12.)

Cavcar, M. (2000). The international standard atmosphere (isa). Anadolu University,
Turkey, vol. 30, p. 9. (Cited on page 9.)

Choset, H.M. (2005). Principles of robot motion: theory, algorithms, and implemen-
tation. MIT press. (Cited on page 32.)

CMake (). Cmake. https://cmake.org/. (Cited on page 54.)

Console, P.S. (). System console Â· px4 developer guide. https://dev.px4.io/en/
debug/system_console.html. (Cited on page 58.)

Cutler, C.R. and Ramaker, B.L. (1980). Dynamic matrix control?? a computer
control algorithm. In: Joint automatic control conference, 17, p. 72. (Cited on
page 17.)

113

Stellenbosch University https://scholar.sun.ac.za

http://www.sciencedirect.com/science/article/pii/S2210832716300564
http://www.sciencedirect.com/science/article/pii/S2210832716300564
https://cmake.org/
https://dev.px4.io/en/debug/system_console.html
https://dev.px4.io/en/debug/system_console.html

LIST OF REFERENCES 114

Dani, S., Sonawane, D., Ingole, D. and Patil, S. (2017). Performance evaluation
of pid, lqr and mpc for dc motor speed control. In: Convergence in Technology
(I2CT), 2017 2nd International Conference for, pp. 348–354. IEEE. (Cited on
page 20.)

Diehl, M. (2015). Optimization algorithms for model predictive control. Encyclopedia
of Systems and Control, pp. 989–997. (Cited on pages 28 and 29.)

Forbes, M.G., Patwardhan, R.S., Hamadah, H. and Gopaluni, R.B. (2015). Model
predictive control in industry: Challenges and opportunities. IFAC-PapersOnLine,
vol. 48, no. 8, pp. 531–538. (Cited on page 17.)

Ganga, G. and Dharmana, M.M. (2017). Mpc controller for trajectory tracking
control of quadcopter. In: Circuit, Power and Computing Technologies (ICCPCT),
2017 International Conference on, pp. 1–6. IEEE. (Cited on page 3.)

Giernacki, W., Skwierczyński, M., Witwicki, W., Wroński, P. and Kozierski, P.
(2017). Crazyflie 2.0 quadrotor as a platform for research and education in robotics
and control engineering. In: Methods and Models in Automation and Robotics
(MMAR), 2017 22nd International Conference on, pp. 37–42. IEEE. (Cited on
page 7.)

Golnaraghi, F. and Kuo, B.C. (2010). Automatic control systems. Complex Variables,
vol. 2, pp. 1–1. (Cited on page 22.)

Greenwood, D.T. (2003). Advanced Dynamics. Cambridge University Press. (Cited
on page 7.)

Grujic, I. and Nilsson, R. (2016). Model-based development and evaluation of control
for complex multi-domain systems: attitude control for a quadrotor uav. Technical
Report Electronics and Computer Engineering, vol. 4, no. 23. (Cited on pages 10,
11, 12, 14, and 16.)

Habeck, J. and Seiler, P. (2016). Moment of inertia estimation using a bifilar pen-
dulum. (Cited on pages 81 and 82.)

Habib, M.K., Abdelaal, W.G.A., Saad, M.S. et al. (2014). Dynamic modeling and
control of a quadrotor using linear and nonlinear approaches. (Cited on page 13.)

Henriques, B.S.M. (2011). Estimation and control of a quadrotor attitude. PhD
diss., Technical University of Lisbon. (Cited on pages 32 and 33.)

Holkar, K. and Waghmare, L. (2010). An overview of model predictive control.
International Journal of Control and Automation, vol. 3, no. 4, pp. 47–63. (Cited
on page 17.)

Hsu, T.-R. (2002). Miniaturization–a paradigm shift in advanced manufacturing and
education. In: Internat ional conference on Advanced Manufacturing Technologies
and Education in the 21st Century. (Cited on page 1.)

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 115

Hu, T. and Lin, Z. (2001). Control systems with actuator saturation: analysis and
design. Springer Science & Business Media. (Cited on page 20.)

Hu, T. and Lin, Z. (2003). Composite quadratic lyapunov functions for constrained
control systems. IEEE Transactions on Automatic Control, vol. 48, no. 3, pp.
440–450. (Cited on page 24.)

Jardin, M.R. and Mueller, E.R. (2007). Optimized measurements of uav mass mo-
ment of inertia with a bifilar pendulum. In: AIAA Guidance, Navigation and
Control Conference and Exhibit, Hilton Head, SC, USA. (Cited on page 81.)

Julier, S.J. and Uhlmann, J.K. (1997). A new extension of the kalman filter to
nonlinear systems. In: Int. symp. aerospace/defense sensing, simul. and controls,
vol. 3, pp. 182–193. Orlando, FL. (Cited on page 32.)

Kalman, R.E. et al. (1960). Contributions to the theory of optimal control. Bol. Soc.
Mat. Mexicana, vol. 5, no. 2, pp. 102–119. (Cited on page 22.)

Kim, A. and Golnaraghi, M. (2004). Initial calibration of an inertial measurement
unit using an optical position tracking system. In: Position Location and Naviga-
tion Symposium, 2004. PLANS 2004, pp. 96–101. IEEE. (Cited on page 9.)

Kwon, W.H. and Han, S.H. (2006). Receding horizon control: model predictive control
for state models. Springer Science & Business Media. (Cited on page 18.)

Lau, M.S., Yue, S., Ling, K. and Maciejowski, J. (2009). A comparison of interior
point and active set methods for fpga implementation of model predictive control.
In: Control Conference (ECC), 2009 European, pp. 156–161. IEEE. (Cited on
pages 28 and 29.)

Leong, B.T.M., Low, S.M. and Ooi, M.P.-L. (2012). Low-cost microcontroller-based
hover control design of a quadcopter. Procedia Engineering, vol. 41, pp. 458–464.
(Cited on page 2.)

Lim, H., Park, J., Lee, D. and Kim, H.J. (2012). Build your own quadrotor: Open-
source projects on unmanned aerial vehicles. IEEE Robotics & Automation Mag-
azine, vol. 19, no. 3, pp. 33–45. (Cited on page 2.)

Luis, C. and Ny, J.L. (2016). Design of a trajectory tracking controller for a
nanoquadcopter. arXiv preprint arXiv:1608.05786. (Cited on pages 84 and 85.)

Luukkonen, T. (2011). Modelling and control of quadcopter. Independent research
project in applied mathematics, Espoo. (Cited on pages 1, 12, and 14.)

Magnussen, Ø. and Skjønhaug, K.E. (2011). Modeling, design and experimental study
for a quadcopter system construction. Master’s thesis, Universitetet i Agder/Uni-
versity of Agder. (Cited on page 8.)

Meier, L., Honegger, D. and Pollefeys, M. (2015 may). PX4: A node-based mul-
tithreaded open source robotics framework for deeply embedded platforms. In:
Robotics and Automation (ICRA), 2015 IEEE International Conference on. (Cited
on pages 35 and 36.)

Stellenbosch University https://scholar.sun.ac.za

LIST OF REFERENCES 116

Moradzadeh, M., Boel, R. and Vandevelde, L. (2014). Anticipating and coordinating
voltage control for interconnected power systems. Energies, vol. 7, no. 2, pp. 1027–
1047. (Cited on page 19.)

Mueller, M.W. and D’Andrea, R. (2013). A model predictive controller for quadro-
copter state interception. In: Control Conference (ECC), 2013 European, pp.
1383–1389. IEEE. (Cited on page 17.)

Nagaty, A., Saeedi, S., Thibault, C., Seto, M. and Li, H. (2013). Control and
navigation framework for quadrotor helicopters. Journal of intelligent & robotic
systems, pp. 1–12. (Cited on page 12.)

Nebylov, A.V. and Watson, J. (2016). Aerospace Navigation Systems. John Wiley
& Sons. (Cited on page 11.)

Nocedal, J. and Wright, S. (2006). Numerical optimization, series in operations
research and financial engineering. Springer, New York, USA, 2006. (Cited on
page 29.)

Palunko, I. and Fierro, R. (2011). Adaptive control of a quadrotor with dynamic
changes in the center of gravity. IFAC Proceedings Volumes, vol. 44, no. 1, pp.
2626–2631. (Cited on page 3.)

Patel, K. and Barve, J. (2014). Modeling, simulation and control study for the
quad-copter uav. In: Industrial and Information Systems (ICIIS), 2014 9th Inter-
national Conference on, pp. 1–6. IEEE. (Cited on page 7.)

Pixhawk (2013). Home - pixhawk flight controller hardware project. https://
pixhawk.org/. (Cited on pages 35, 78, and 79.)

QGroundControl (). Qgc - qgroundcontrol - drone control. http://qgroundcontrol.
com/. (Accessed on 07/24/2018). (Cited on page 56.)

Quan, Q. (2017). Introduction to multicopter design and control. Springer. (Cited
on page 9.)

Richalet, J., Rault, A., Testud, J. and Papon, J. (1978). Model predictive heuristic
control: Applications to industrial processes. Automatica, vol. 14, no. 5, pp. 413–
428. (Cited on page 17.)

Risqi, A.N., Hermanudin, A.A., Reksoprodjo, A.A., Muharram, A.P., Sunar, A.,
Baskoro, F.A.S., Muhamad, F., Fernanda, H., Utama, I.B.K.Y., Fitriani, L. et al.
(). Makara 07-autonomous surface vehicle. (Cited on page 3.)

Rossiter, J.A. (2003). Model-based predictive control: a practical approach. CRC
press. (Cited on pages 15, 18, 19, 20, and 23.)

Snyman, J. (2005). Practical mathematical optimization: Basic theory and gradient-
based algorithms. (Cited on page 28.)

Stellenbosch University https://scholar.sun.ac.za

https://pixhawk.org/
https://pixhawk.org/
http://qgroundcontrol.com/
http://qgroundcontrol.com/

LIST OF REFERENCES 117

Thorat, S.R. (2015). Quadcopter Flight Control using Modular Spiking Neural Net-
works. Ph.D. thesis, Indian Institute of Technology, Bombay Mumbai. (Cited on
page 7.)

Tongue, B. (2002). Principles of Vibration. Oxford University Press. ISBN
9780195142464.
Available at: https://books.google.co.za/books?id=wAGqXVImUjYC (Cited on
page 82.)

Tosun, D., Isik, Y. and Korul, H. (2015). Comparison of pid and lqr controllers on a
quadrotor helicopter. International Journal of Systems Applications, Engineering
and Development, vol. 9. (Cited on page 3.)

Villbrandt, J. (2011). The quadrotors coming of age. Illumin Magazine, vol. 12.
(Cited on page 1.)

Voise, J., Schindler, M., Casas, J. and Raphaël, E. (2011). Capillary-based static
self-assembly in higher organisms. Journal of The Royal Society Interface, p.
rsif20100681. (Cited on page 8.)

Wan, E.A. and Van Der Merwe, R. (2000). The unscented kalman filter for nonlinear
estimation. In: Adaptive Systems for Signal Processing, Communications, and
Control Symposium 2000. AS-SPCC. The IEEE 2000, pp. 153–158. Ieee. (Cited
on page 32.)

Wang, L. (2009). Model predictive control system design and implementation using
MATLAB®. Springer Science & Business Media. (Cited on pages 20, 21, 22, 24,
27, 28, 29, 30, 31, and 41.)

Wang, Y., Ramirez-Jaime, A., Xu, F. and Puig, V. (2017). Nonlinear model predic-
tive control with constraint satisfactions for a quadcopter. In: Journal of Physics:
Conference Series, vol. 783, p. 012025. IOP Publishing. (Cited on page 17.)

Stellenbosch University https://scholar.sun.ac.za

https://books.google.co.za/books?id=wAGqXVImUjYC

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Background
	Research Problem
	Aim of Thesis
	Objectives
	Thesis Outline

	Literature Review
	Quadcopter Structure
	Coordinate Frames
	Quadcopter Dynamics
	State Space Representation
	Model Predictive Control
	State Observer
	Pixhawk Autopilot

	Controller Design and Implementation
	PX4 Architecture
	Model Predictive Controller
	MATLAB Implementation
	SITL Implementation
	Flight Testing

	Simulation and Experiments
	MATLAB Simulations
	Software-in-the-loop (SITL)
	Flight Tests

	Conclusion
	Appendices
	Optimisation example
	Pixhawk Autopilot Specifications
	Parameter Determination
	Mass
	Moment Arm
	Moments of Inertia
	Drag Coefficient
	Thrust Coefficient

	MATLAB Code
	Main Program
	Augment State Space Matrices
	Constraint Matrices and Vectors
	Hildreth's Quadratic Programming Function

	C++ Code
	Includes
	Multicopter Attitude Control Class
	Constructor
	Hildreth's Quadratic Programming Function
	Inside Attitude Control Rates Function

	jMAVSim
	Additional Results
	MATLAB Simulations
	Software-in-the-loop Simulations
	Flight Tests

	List of References

