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SUMMARY 

Multivariate statistical process control (MSPC) approaches based on principal 

component analysis (PCA), partial least squares (PLS) and related extensions are now 

widely used for process monitoring and diagnosis in process systems where observed 

correlated measurements are readily available. However, highly nonlinear (dynamic) 

processes pose a challenge for MSPC methods as a large set of nonlinear features are 

typically required to capture the underlying characteristic behaviour of the process in the 

absence of faults. Several extensions of basic (PCA) methods have previously been 

proposed to handle features such as autocorrelation in data, time-frequency localization, 

and nonlinearity.  

In this study multivariate statistical process monitoring methods based on nonlinear 

singular spectrum analysis which use nonlinear principal component analysis, 

multidimensional scaling and kernel multidimensional scaling are proposed. More 

specifically, singular spectrum analysis using covariance and dissimilarity scale structure 

are proposed to express multivariate time series as the sum of identifiable components 

whose basis functions are obtained from the process measurements. Such an approach 

is useful for extracting trends, harmonic patterns and noise in time series data. Using 

nonlinear SSA decomposition of time series data, a multimodal representation is 

obtained that can be used together with existing statistical process control methods to 

develop novel process monitoring schemes.  

The advantages of these approaches are demonstrated on simulated multivariate 

nonlinear data and compared with those of classical PCA and multimodal SSA on base 

metal flotation plant data and the Tennessee Eastman process benchmark data. The 

nonlinear SSA methods better captured the nonlinearities in the observed data. 

Consequently, this yielded improved detection rates for various faults in nonlinear data 

over those obtainable by alternative competing multivariate methods. 
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OPSOMMING 

Meerveranderlike statistiese prosesbeheer (MSP) benaderings gebaseer op 

hoofkomponentontleding, gedeeltelike kleinste kwadrate en verwante uitbreidings, word 

tans wyd gebruik in prosesmonitering en –diagnose van prosesstelsels waar 

waargenome gekorreleerde metings geredelik beskikbaar is. Hoogs nie-lineêre 

(dinamiese) prosesse is egter ’n uitdaging vir MSP metodes, aangesien ’n groot stel nie-

lineêre kenmerke tipies benodig word om die onderliggende karakteristieke gedrag van 

die proses vas te vang in die afwesigheid van foute. Verskeie uitbreidings van basiese 

hoofkomponentonledingsmetodes is voorheen voorgestel om kenmerke, soos 

outokorrelasie, tyd-frekwensielokalisering en nie-lineariteit in die data te hanteer. 

In die studie, word meerveranderlike statistiese prosesmoniteringsmetodes voorgestel, 

gebaseer op nie-lineêre enkelvoudige spektrumontleding wat nie-lineêre 

hoofkomponentontleding, meerdimensionele skalering en kern- multidimensionele 

skalering gebruik. Meer spesifiek, enkelvoudige spektrumontleding wat kovariansie- en 

andersheidskaalstrukture gebruik, word voorgestel om meerveranderlike tydreekse uit te 

druk as die som van identifiseerbare komponente, wat se basisfunksies van 

prosesmetings verkry kan word. So ’n benadering is nuttig vir die ekstraksie van 

tendense, harmoniese patrone en geraas in die tydreeksdata. Deur nie-lineêre 

enkelvoudige spektrumontleding te gebruik vir ontbinding van die tydreeksdata, word ’n 

multimodale verteenwoordiging verkry wat gebruik kan word saam met bestaande 

statistiese prosesbeheermetodes om nuwe prosesmoniteringskemas te ontwikkel. 

Die voordele van die benaderings word gedemonstreer en vergelyk met die van 

klassieke hoofkomponentontleding en multimodale nie-lineêre enkelvoudige 

spektrumontleding op gesimuleerde meerveranderlike nie-lineêre data, data van ’n 

basismetaalflottasie-aanleg en die Tennessee Eastman prosesykingsdata. Die nie-

lineêre enkelvoudige spektrumontledingsmetodes het die nie-lineariteite in die 

waargenome prosesdata beter beskryf. Gevolglik het dit tot beter foutopsporingstempo’s 

gelei, as wat behaal kon word met alternatiewe kompterende meerveranderlike 

metodes. 
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CHAPTER 1: INTRODUCTION 

In this chapter, the background and motivation for data-based process monitoring 

methods for fault or hazard identification and risk management to ensure optimal 

process efficiencies as well as the safety of operating such chemical processes is 

introduced.After discussing limitations of current and well-established statistical 

approaches now routinely used in many industries, the problem statement and 

objectives underlying this study are presented. 

1.1 BACKGROUND  

Process monitoring, also referred to as fault detection and diagnosis, is a critical task in 

any production environment that affects process and product quality, process safety, 

productivity, material and energy consumption, and therefore the bottom line – that is, 

the profitability of operating any process plant. Modern chemical and metallurgical 

processes are characterised by complex physico-chemical phenomena, with 

interdependence among different unit operations arising from, for example, recycle 

streams, the effect of feedback control systems and buffer holdups within the system. 

The features of these processes are highly nonlinear, with long time delays, and highy 

correlation among the measurements. Hence, ensuring that the operations satisfy the 

performance specifications and that anomalies are detected at the earliest possible time 

– which are the objectives of process monitoring – has become a challenge in most 

practical situations (Li & Xiao, 2011). 

Process monitoring approaches are generally divided into the following categories: 

model-based methods, knowledge-based methods and data-based methods. Model-

based methods rely on the physical and mathematical knowledge of the industrial 

processes and give more accurate results than other two methods, as long as there is a 

priori knowledge of the first principle of physical/chemical relationship between the 

variables in the process. However, it is difficult to construct first-principles models based 

on prior knowledge of the process, especially for the modern complex process system. 

Knowledge-based methods are built on the available knowledge of the process 

characteristics and experience of the plant operators gained from oerating the process 
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over a long period. The results thus obtained by these methods are conclusions that are 

derived from known facts. However, the developments of knowledge-based models 

require long-term knowledge and experience of the process operations, and this became 

a difficult and time-consuming task for process operators. The major difficulty associated 

with modern chemical process monitoring is the lack of sufficient knowledge to develop 

accurate mathematical process descriptions, while inappropriate methodologies are 

used to exploit abundant operational data (Frank, 1990; Ge et al., 2013; Himmelblau, 

1978; Li & Xiao, 2011). 

Recently, data-based process monitoring methods have gained a lot of attention in the 

monitoring of complex process systems. This is due to the advances in automation 

technologies, and the large amounts of data being recorded and collected, which contain 

most of the process information for modelling, monitoring and control (Ge et al., 2013). 

In the chemical industry, for example, an integrated database is used to store all 

operational data from all process units and also product analysis data obtained by 

inspection. In such cases, data-based monitoring method can be utilised to extract 

information from those datasets. Data-based approaches exploit structures or 

regularities in data to derive mathematical or statistical models that describe expected 

process behaviour under normal operating conditions. The developed models can then 

be used for monitoring, control and process optimisation tasks.  

Product quality improvement is mainly coupled with tasks such as 

(i) prediction of the quality of the product from operating conditions, 

(ii) development of  better operating conditions that can maintain and improve 

the product quality and, finally, 

(iii) detection and elimination of process faults or malfunctions to prevent any 

abnormal operations. 

Typically, task (i) is implemented by using a soft sensor, in which a mathematical model 

is built to relate the product quality based on the operating conditions and parameters of 

the process. This model is then used to formulate and solve an optimisation problem for 

the realisation of task (ii). The third task is realised by statistical process control (SPC) 

techniques. SPC is based on the use of probability theory and statistical methods to 

detect the existence and time of occurrence of faults that cause abnormalities in process 

performance (Negiz & Cinar, 1997). The SPC framework was originally developed for 
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industrial engineering applications to monitor stochastic processes. Later, the basic 

framework of SPC was extended to monitor dynamic multivariate systems with highly 

correlated variables. The group of such multivariate statistical techniques is commonly 

referred to as multivariate statistical process control (MSPC) (Ge et al., 2013; Kano & 

Nakagawa, 2008; Kresta et al., 1991; Krishnannair, 2010; Yin et al., 2014).  

1.2 MOTIVATION  

MSPC techniques focus on exploiting a high degree of redundancy in correlated data by 

generating a reduced set of statistically uncorrelated variables. Thus the use of 

multivariate data analysis techniques in process monitoring is easier and less 

complicated because it provides a reduced variable space in which variables are 

uncorrelated. Latent variable methods, such as principal component (PC) analysis (PCA) 

and partial least squares (PLS) are widely used in MSPC in various industrial 

applications.  

Despite the huge success in the application of latent variable methods, it is generally 

accepted that chemical processes are nonlinear, and the use of methods based on 

linear correlations in the observed data has the undesirable effect of substantial loss of 

information (Maulud et al., 2006). Therefore, their application to data from a (highly) 

nonlinear process may result in misleading insights. The application of conventional 

MSPC techniques to nonlinear data causes difficulties in the selection of an optimal 

number of latent variables, since the nonlinear effects tend to distribute non-uniformly 

among the latent variables, that is, latent variables judged uninformative may actually 

have greater impact.  

To overcome the limitations of linear MSPC techniques, several nonlinear extensions of 

MSPC have been developed to improve feature extraction in the nonlinear data. These 

include nonlinear generalisation of conventional PCA with auto-associative neural 

networks, kernel PCA (KPCA) by combining kernel functions and PCA, and 

multidimensional scaling (MDS) (Cox & Cox, 1994; Dong & McAvoy, 1996; Kramer, 

1991; Schölkopf et al., 1998). A detailed review of some of these methods is presented 

in the next chapter. 

MSPC techniques are best at decorrelating variables. However, serial or auto-correlation 

in individual variables presents a challenge. Auto-correlation in variables can arise from, 
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for example, the effect of feedback control systems, time correlation of process noises 

and the inherent dynamic nature of the process. One way to eliminate the dynamic effect 

of process data is to use a large sampling interval, which will weaken the correlations 

between the sampling data. However, this leads to a potential loss of information, as well 

as distortion of the relationships between process variables. In particular, the monitoring 

performance of the dynamic change in the process variables will deteriorate if the 

dynamic relationships are not accounted for in process modelling. Hence, several 

extensions of MSPC have been proposed to handle the static and dynamic process 

characteristics of the chemical process system (Ge et al., 2013; Ku et al., 1995).   

The operating conditions of chemical processes vary frequently, mainly because of the 

fluctuations of process raw materials, the shift of set-points, ageing of process units and 

seasonal effects, among other factors.  MSPC models rely on the assumption that the 

process operates in a steady-state condition and have practical limitations when applied 

to chemical processes that are slow-varying or have multiple operating conditions. 

Moreover, these techniques are based on a single-scale representation of the 

measurements and hence do not make use of the advantage of multiscale 

representations of measurements, that is, the representation of features that occur at 

different localization in time, space and frequency (Aradhye et al., 2003). The 

decomposition of data into different levels exploits the features of the process that 

change in frequency and scale. For example, a low-scale (high-frequency) component of 

a signal gives a detailed view of the signal, while a high-scale (low-frequency) signal 

component provides a non-detailed view of the signal (Polikar, 1996). An alternative to 

using linear time series models to capture the dynamics is multiscale modelling using 

wavelet analysis (Aradhye et al., 2003; Bakshi, 1998; Yoon & MacGregor, 2004). A 

multiscale approach to statistical process monitoring that combines the PCA and 

multiscale representation using wavelets was introduced by Bakshi (1998). 

In the last decade, singular spectrum analysis (SSA) has been proposed for pre-

processing data prior to the application of MSPC in process monitoring (Aldrich & 

Barkhuizen, 2003; Jemwa & Aldrich, 2006; Krishnannair, 2010). Using SSA, a method 

for process monitoring called multiscale SSA (MS-SSA) was proposed as an alternative 

to wavelet decomposition for extracting trends at different resolutions. (Although 

multiscale SSA shares a similar design concept to multiresolution analysis (MRA) in that 
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a signal is represented at different levels of granularity, the notion of scale as used in 

MRA is lacking in SSA. In particular, “singular spectrum analysis” relates to the spectrum 

of eigenvalues from the SVD of the correlation matrix, and not time-frequency 

decomposition as used in wavelet analysis.) Multiscale SSA allows for simultaneous 

extraction of complex trends and periodicities with varying amplitude in the process data 

at different resolutions (Krishnannair, 2010). In this approach, SSA is used to 

decompose the data into multiple modes/levels, and each signal in the multimodal setup 

is monitored separately using PCA for fault detection (Krishnannair, 2010). In this 

method, the word “scale” is used to represent the decomposed SSA components at the 

same mode for different measurements to extract information on the dynamical system. 

In SSA, the additive components, such as trend, anharmonic oscillations or noise, are 

extracted by an adaptive basis function that is derived from the data and hence is more 

appropriate for pre-processing nonlinear and nonstationary data than wavelets, which 

use a non-adaptive basis function. For a time series with a complex structure, SSA 

decomposition can be modified in different ways, leading to different versions, such as 

SSA with single and double centring, toeplitz SSA, sequential SSA, oblique SSA, deriv 

SSA, kernel SSA and nonlinear SSA (Golyandina & Shlemov, 2014; Golyandina et al., 

2001; Hsieh & Wu, 2002; Jemwa & Aldrich, 2006). This observation can be exploited, as 

proposed in this thesis, such that, in the SSA decomposition stage, a dissimilarity scale 

(that is, an inter-distance measure) is used instead of a correlation measure between 

variables (as used in standard PCA), giving an alternative approach for monitoring 

processes that have nonlinear characteristics. Nonlinear extensions of SSA could be an 

alternative solution to capturing nonlinear characteristics of the process data. 

Specifically, the key contribution of this thesis is a set of novel multivariate statistical 

process monitoring approaches using nonlinear singular spectrum analysis that  address 

limitations of conventional MSPC techniques and their extensions. 

1.3 PROBLEM STATEMENT 

Process monitoring can play a key role in detecting faults, identifying root causes of 

abnormal events and improving the performance of control systems. Better process 

monitoring becomes possible with more known characteristics of process signals. 

Therefore, the nonparametric method SSA, which decomposes data into multiple modes 

with a featured component, was chosen for monitoring the process signals in this study. 

Process monitoring based on SSA is data-adaptive where the basis function is adapted 
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to data that does not suffer from the limitations of other spectral techniques, where fixed-

basis functions are chosen prior to data analysis. Decomposing signals on the basis of 

their singular spectra is equivalent to using wavelets that are constructed from the data 

themselves, with their shape (basis function) adapted to fit these data accurately (Yiou et 

al., 2000). However, SSA explicitly accounts for the auto-correlation in observed process 

data, and is particularly well suited for handling short time series as well. Although 

multivariate statistical process monitoring techniques based on SSA have been proven 

effective in process monitoring, there are still a few challenges that need attention, 

particularly for dynamic, nonlinear systems as are encountered in chemical engineering. 

A multimodal nonlinear process monitoring framework using singular spectrum analysis 

for signal decomposition is proposed as an alternative to existing spectral approaches 

for handling nonlinear data 

 In this study, multimodal nonlinear process monitoring techniques based on NLSSA, 

SSA with dissimilarity matrix (DSSA) and SSA with kernel multidimensional scaling 

(KDSSA), are proposed to detect process deviations at multiple modes. Thus most of 

the limitations of using multiscale SSA (MS-SSA) in nonlinear data can be improved by 

evaluating the data at the respective modes with variations in basis SSA decomposition 

with nonlinear projection methods, rather than linear PCA, as has been the case in 

previous studies. The proposed multimodal statistical monitoring strategy extends the 

suitability of NLSSA, DSSA and KDSSA to statistically monitor processes based on 

nonlinear auto-correlated measurements. In addition, the resulting nonlinear models at 

multiple scales are more sensitive in detecting various changes in a process. These 

ideas are to be illustrated by suitable simulated and industrial data. The basic idea of the 

methodology proposed above is that uncorrelated nonlinear principal components are 

analysed using conventional linear statistical analysis techniques at different modes, 

which is equivalent to nonlinear analysis of the original data. 

The proposed data-adaptive multimodal nonlinear algorithms will perform better than the 

conventional MSPC methods. Monitoring the real-time operation of the petrochemical 

process using the proposed method will yield a minimum false alarm rate in the early 

detection of process faults, and this method also can grasp any slow and feeble change 

in the process signals at an earlier stage. 
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1.4 OBJECTIVES OF THE STUDY 

The main objective of this study is the development of multimodal nonlinear process 

monitoring methods using nonlinear singular spectrum analysis for the early and reliable 

detection of anomalies/deviations in nonlinear chemical process systems. An analysis of 

the properties of the frameworks is presented. Subsequently, the proposed techniques 

are demonstrated using simulated and industrial data. Also, a comparative analysis 

between linear and nonlinear SSA is given using the Tennessee Eastman Challenge 

problem as benchmark data. 

In brief, the objectives of this study can be listed as follows: 

 Development of a nonlinear process monitoring framework using NLSSA, DSSA 

and KDSSA 

 Development of a guidelines towards selection of the key parameters in the 

implementation of NLSSA, DSSA and KDSSA 

 Demonstration of the algorithm using simulated and industrial data 

 Comparison of process monitoring methods based on PCA and multiscale SSA 

with methods based on nonlinear SSA such as multimodal nonlinear SSA, 

multimodal DSSA and multimodal KDSSA using the Tennessee Eastman 

Challenge problem. 

1.5 THESIS OUTLINE 

The thesis is organised as follows: Chapter 2 provides a detailed illustration of 

methodological issues and implementation procedures of the typical data-driven process 

monitoring method, along with a detailed review of the advantage of the basic 

multivariate methods and their extensions as part of the literature review. Applications of 

MSPC and their limitations are also reviewed in this chapter. Chapter 3 discusses the 

basic procedure of singular spectrum analysis and multiscale SSA, their applications and 

limitations in chemical process monitoring. Alternative multimodal nonlinear monitoring 

strategies based on variations in the basic SSA procedure with NLPCA, MDS and kernel 

MDS are proposed, and the respective methodologies are demonstrated and assessed 

by means of three case studies: a simulated nonlinear systems, as well as data from a 

base metal flotation plant and the Tennessse Eastamen Challenge in Chapter 4 and 

Chapter 5. The conclusion of the thesis and opportunities for future research are 

highlighted in Chapter 6.   
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CHAPTER 2: MULTIVARIATE 

STATISTICAL PROCESS MONITORING: A 

LITERATURE REVIEW 

In this chapter, an overview of a typical data-based process monitoring methodology and 

some of the state-of-the-art data-driven process monitoring methods for linear, nonlinear 

and auto-correlated dynamic processes are reviewed.  

2.1 DATA-DRIVEN PROCESS MONITORING METHODOLOGY 

Different procedures that are commonly used in data-based process monitoring 

schemes and their implementation through different approaches are described briefly in 

this section, since the development of a process monitoring model incorporates these 

procedures in the process monitoring task. Figure 2.1 shows an overview of the data- 

based process monitoring scheme, adopted from Ge et al. (2013) and discussed briefly 

in the following subsections. 
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Figure 2.1: Data-based process monitoring scheme (Ge et al., 2013). 

2.1.1 Data inspection and selection 

Data inspection and selection is the first step in data-based process monitoring. In this 

step, the data structure is examined, different data characteristics area analysed, the 

operating region is identified, a suitable dataset for modelling is determined and the 

evaluation is performed. The success of process monitoring methods depends entirely 

on the proper data inspection and the selection of an appropriate dataset for modelling. 

Any inappropriate selection of a dataset for modelling results in a false alarm or miss-

detection of process faults. Thus this step is an important one in the process monitoring 

scheme because the following steps are all based on it. 
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2.1.2 Data pre-processing 

Data pre-processing transforms the original data in an appropriate manner through 

uniform data-scaling of the different process variables to avoid the model being inclined 

to any one of the process variables. It includes normalisation of data samples to zero 

means and unit variance in MSPC techniques. Other issues, such as gross errors in the 

dataset, outliers and missing data, are common in practice and can be handled through 

data pre-processing. 

2.1.3 Model selection, training and validation 

The type and complexity of the model structure is determined on the basis of the 

analysis of the data characteristics and the results of the evaluation. For example, if the 

variables are linearly correlated, a linear model should be developed, and for nonlinear 

correlation some nonlinear modelling approach can be employed for the best results in 

process monitoring. Thus the selection of a proper, optimal model is important for the 

better performance of the monitoring task. However, there are no specific criteria for 

model selection, as this is often done on the basis of experience or on the type of 

process. The selected model is then trained based on the process data and its 

performance is evaluated based on the model. For the training and evaluation steps in 

MSPC models, the process dataset is divided into a training dataset and a testing 

dataset. 

2.1.4 Online process monitoring 

The online monitoring task broadly involves four hierarchical tasks, namely fault 

detection, fault diagnosis, fault reconstruction and fault identification, based on the data- 

based model and appropriate statistics that are computed from the model. 

In fault detection, the aim is to determine whether an abnormal event happened in the 

process or when a process or plant being monitored is out of control. The early detection 

of a fault condition is important in avoiding below quality product batches or system 

breakdown, and this can be achieved through the proper design of effective fault 

detection monitoring statistics with proper control limits. If the values of the monitoring 

statistics exceed the control limits of the corresponding statistics, a fault is detected. 

Once a fault condition has been positively detected, the next step is to diagnose or 

determine the root cause of the out-of-control status. The subsystems or even a 

sensor/actuator are mainly monitored to diagnose faults. After fault detection it is 
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important to know the direction, magnitude and time of occurrence of the fault, which is 

done by fault reconstruction.  The normal value of the faulty data can be recovered 

after the fault reconstruction. This is important for fault isolation, process recovery and 

process control. When a fault has been detected, an understanding of the characteristics 

of the fault helps the operator find the proper maintenance strategy to get the process 

back into normal operating condition. This task is referred to as fault identification.  

2.1.5 Fault isolation and process recovery 

After detailed information on the detected faults has been obtained, the system is 

corrected by elimination of the fault or its cause via the fault isolation and process 

recovery phase. The operators isolate the fault from other parts of the process without 

any significant impact on process operation. The isolated fault is repaired to bring the 

process back to normal. 

2.1.6 Model maintenance 

Model maintenance is the evaluation of the feasibility and efficiency of the process 

monitoring model to reduce the number of false alarms due to process changes and 

slow drifts. Model maintenance methods that have been developed in the past include 

recursive/adaptive, moving-window approaches, and multimodal methods and so on. 

Data-based process monitoring statistics based on multivariate methods and their 

applications in fault detection in industrial processes are introduced briefly in the next 

section.  

2.2 DATA-DRIVEN PROCESS MONITORING STRATEGIES 

The development of data-driven process monitoring strategies started with the advent of 

basic Shewhart charts, which were developed for each variable monitored on the 

assumption that a process is in control as long as all variables are in control. Pre-defined 

thresholds, called control limits, are used for each variable to define the boundary for in-

control operations in this chart. The process is considered to be out of control if any one 

of the variables violates the control limits (Raich & Cinar, 1996). The other types of 

univariate charts, such as cumulative sum (CUSUM) and exponentially weighted moving 

average (EWMA) charts, are modifications of basic Shewhart charts for the detection of 

small shifts in the process. The Shewhart chart, together with CUSUM and the EWMA, 

have been proven to be effective in monitoring single variables. Modern chemical 
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processes are characterised by a high prevalence of instrumentation and process 

automation systems that enable the tracking of a massive set of process variables. 

Thus, it is not uncommon to have large amounts of data collected every few seconds on 

such plants. The large number of measured process variables makes it extremely 

difficult for operators to monitor large-scale systems by simply observing the data on a 

univariate time series plot, such as the Shewhart, CUSUM and EWMA charts (Kourti et 

al., 1996). Moreover, as most chemical processes are dynamic, the interdependence or 

correlations among the variables can result in process deviations going unnoticed when 

traditional univariate statistical quality control approaches are used. All these limitations 

of univariate charts led to the development of the multivariate extensions of Shewhart 

control charts for the simultaneous monitoring of different variables (Hotelling, 1947).  

The multivariate extensions of Shewhart control charts, such as 𝜒2 and Hotelling 𝑻2 

control charts, are used when the process parameters of the underlying process are 

known and unknown respectively. For the detection of small shifts, multivariate 

extensions of CUSUM (MCUSUM) and EWMA (MEWMA) were developed (Lowry et al., 

1992). When the number of variables to be monitored is large and they are highly 

correlated with one another, then the data is ill-conditioned in nature and the multivariate 

extensions of control charts fail to provide results (Das et al., 2012; MacGregor and 

Kourti, 1995). These problems can be solved with the use of data-driven multivariate 

monitoring methods that project high dimensional data into a lower dimensional 

coordinate that reveals the intrinsic patterns in the process data. As a result, multivariate 

projection methods such as principal component analysis (PCA) and partial least 

squares (PLS) have been developed and applied for more than two decades to monitor 

the process data (Kresta et al., 1991; MacGregor & Kourti, 1995). This chapter focuses 

on PCA and its extensions in MSPC, although the monitoring results are equally 

applicable to PLS. PCA describes major trends in the data by finding a linear 

combination of variables that maximise the explained variance in a more compact space 

(Das et al., 2012; Kresta et al., 1991; Wise & Gallagher, 1996; Wold et al., 1987; Yin et 

al., 2014).  

Observed process data exhibit many properties, such as nonlinearity, serial 

correlation/auto-correlation and multiscale behaviour. Therefore the modelling of any 

system requires taking into account these characteristics in the formulation of the model. 
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Thus several extensions of PCA have been introduced to handle such aspects in 

process monitoring over the last decade. For example, nonlinear PCA and kernel PCA 

aim to deal with non-linearity among the process variables and can be used to capture 

most of the variation in the data in a reduced dimension compared to linear PCA, while 

dynamic PCA takes into account auto-correlation in the data and multiscale PCA exploits 

the multiscale characteristics of process variables. All these extensions to basic PCA 

might solve some of the issues that are encountered in the process, but they by no 

means change the nature of the implications of the non-linearity of the original 

multivariate data. Thus, an alternative process monitoring framework using classical 

multidimensional scaling (CMDS) has recently been proposed to monitor multivariate 

data. This method uses the inter-dissimilarity structure of the original data in the 

development of principal components in reduced dimensional space (Yunus, 2012). 

The majority of process monitoring methods proposed in the literature employ a uniform 

strategy based on PCA, artificial neural networks, self-organising maps, qualitative trend 

analysis or signal-processing methods (Gosh, 2012). But it is difficult to develop and 

apply a unified method to monitor a modern chemical plant that is highly complex with a 

large number of process variables. As a result, each method has its own advantages 

and limitations and there is no method that can perform well in all chemical processes. 

Thus, one monitoring method that can give good monitoring performance in one 

particular process may not perform well in another process. As a result there is a need to 

develop a monitoring method that integrates with other methods to overcome their 

limitations.  

The basic PCA process monitoring framework and its linear and nonlinear extensions in 

multivariate process monitoring are discussed briefly in the following subsections. As a 

solution to the PCA framework, an alternative multivariate technique, CMDS, and its 

connections to the PCA and kernel PCA are also reviewed briefly below.   

2.2.1 Principal component analysis (PCA) 

PCA is a basic data-driven multivariate method, originally proposed for the 

dimensionality reduction of large number of correlated data, and preserves the 

significant variability information extracted from process data. PCA has been used 

widely in several applications, such as image analysis, feature extraction, pattern 

recognition, data compression and time series prediction. PCA describes the significant 
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process deviations by constructing a reduced set of statistically independent variables 

called principal components (PCs), which are the linear combination of original variables. 

In PCA, the total variance of the original set of variables remains unchanged and 

redistributed, such that the most is in the first PC, the next largest goes to the second 

PC, and the least to the last PC. The advantage of using PCA in process monitoring is 

its ability to explain the total variation in the data as much as possible with the least 

number of principal components. PCA is based on an eigenvector decomposition of the 

covariance or correlation matrix of the process variables (Ralston et al., 2004; Wise & 

Gallagher, 1996; Yin et al., 2014). 

For a given data matrix 𝐗, with 𝑛 observations and 𝑚 process variables, the covariance 

matrix of 𝐗 is approximated after normalising them to zero mean and unit variance as 

 𝐶𝑜𝑣(𝐗) =  𝑛−1𝐗𝑇𝐗 . (2.2.1)  

The eigenvalue decomposition is performed on the covariance matrix in equation (2.2.1) 

to obtain the significant variability information from the pre-processed data, that is, 

 𝑛−1𝐗𝑇𝐗 = 𝐕𝛌𝐕𝑇 (2.2.2) 

where 𝐕 is a matrix of loading or eigenvectors of size 𝑚×𝑚 and 𝛌 is the diagonal matrix 

containing the eigenvalues (𝜆𝑖), with 𝜆1 ≥ 𝜆2 ≥ ⋯𝜆𝑚 ≥ 0 of the covariance matrix of 𝐗. 

Projections of the data on the principal axes (given by columns of 𝐗𝐕) are called 

principal components or scores. 

Alternatively, the scores and loadings can be computed by singular value decomposition 

(SVD) of the data matrix 𝐗 by 

 𝐗 = 𝐔 𝚲 𝐕𝑇 (2.2.3) 

where 𝚲 is the diagonal matrix containing the singular values (𝜎𝑖),𝐔 and 𝐕 are unitary 

matrices of size 𝑛 × 𝑛 and 𝑚×𝑚 respectively. The loading vectors are the orthonormal 

column vectors in the matrix  𝐕, and the variance of the data matrix 𝐗 projected along the 

𝑖𝑡ℎ column of  𝐕 is equal to 𝜎𝑖
2. Thus solving (2.2.3) is equivalent to solving an 

eigenvalue decomposition of the covariance matrix of 𝐗 as shown in equation (2.2.2). 
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The PCA model of 𝐗 can be developed by retaining 𝑘 largest eigenvalues and the 

corresponding loading vectors to capture the variations in the data, while minimising the 

effect of random noise by discarding 𝑚 − 𝑘 eigenvalues. The several of eigenvalues in a 

dataset with a large number of variables are zero or close to zero due to multiple 

measurements of the same variables, or collinearity problem due to the redundancy in 

the dataset. This redundancy can be eliminated from the data by choosing eigenvalues 

greater than a very small positive number and corresponding eigenvectors (Ku et al., 

1995). Thus, the dimensionality reduction by retaining 𝑘 eigenvalues results in a better 

estimate of the covariance matrix and a better feature extraction (Russell et al., 2000). In 

other words, PCA decomposes the data matrix 𝐗 as a sum of the product of the score 

vectors 𝐭𝑖 and PC loadings 𝐯𝑖, plus a residual matrix 𝐄 : 

 𝐗 = 𝐓𝑘𝐕𝑘
𝑇 + 𝐄 =  ∑𝐭𝑖

𝑘

𝑖=1

𝐯𝑖
𝑇 + 𝐄 (2.2.4) 

where  𝑘 ≤ min{𝑛,𝑚}. The score space is represented by the approximated data matrix  

  𝐗̂ =  𝐓𝑘𝐕𝑘
𝑇 = ∑𝐭𝑖

𝑘

𝑖=1

𝐯𝑖
𝑇 (2.2.5) 

The orthogonal scores vector is the linear combination of the original data 𝐗, defined by 

𝐯𝑖, that is 

 𝐭𝑖 = 𝐗 𝐯𝑖 (2.2.6)  

which contains information on the relationship between the samples, while the 

orthonormal loading vectors, 𝐯𝑖, contain information on the relationship between the 

variables that are useful for process monitoring. The eigenvalues, 𝜆𝑖 are the measure of 

the amount of variance described by the pair 𝐭𝑖,𝐯𝑖, and they are arranged in descending 

order according to the associated 𝜆𝑖. In other words, the first pair captures the largest 

amount of information (variation) in the data and the remaining variations in the data are 

captured by the subsequent pairs (Wise & Gallagher, 1996). The residual matrix,𝐄 

contains the part of the variation in the data that is not explained by the PCA model by 

the first 𝑘, 𝐭𝑖,𝐯𝑖  pair, where 𝑖 = 1,2, … , 𝑘. The appropriate number of eigenvalues or PCs 
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is selected by techniques such as percent variance, parallel analysis, scree plots of the 

eigen-spectrum and cross-validation (Jackson, 1991). 

For the PCA applications considered later, the percent variance criteria were chosen for 

selecting the appropriate number of PCs to represent the measure of variation in the 

data. The first 𝑘 eigenvalues and corresponding eigenvectors were chosen by 

calculating the smallest number of loading vectors needed to explain the specified 

minimum percentage of the total variance,𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, typically 90% or 95%:  

 𝑘 > 𝑚𝑖𝑛 {𝑑 ∈ (1,𝑚)/
∑ 𝜆𝑖
𝑑
𝑖=1

∑ 𝜆𝑖
𝑚
𝑖=1

> 𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}. (2.2.7) 

The discarded eigenvalues correspond to those PCs with high-frequency variations in 

data, probably due to the influence of noise. A geometric representation of PCA is 

illustrated for a three-dimensional system in Figure 2.2, where the data are explained 

well by two principal components (Krishnannnair, 2010). 
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Figure 2.2: Geometric representations of the steps in the principal component analysis for 

a three-dimensional system showing (a) the data points in the observation space, (b) the 

first principal component, and (c) the plane defined by the first two principal components. 

This figure indicates that the derivation of principal components is based on the 

successive projection of lines through three-dimensional space (Krishnannair, 2010). 

The process monitoring step with PCA involves the calculation of Hotelling’s  𝑻𝟐 statistic 

and squared prediction errors (SPE), or 𝑸 statistics. Hotelling’s 𝑻𝟐 statistic is the sum of 

normalised squared principal components, which explains the measure of variations 

within the score space and is defined as 

 𝑻𝑖
2 = ∑

𝐭𝑖𝑗
2

𝜆𝑗

𝑘

𝑗=1

= 𝐱𝑖𝐕𝑘𝝀
−1 𝐕𝑘

𝑇 𝐱𝑖
𝑇 (2.2.8) 

where 𝑻𝑖
2 is the 𝑻2 value for the 𝑖𝑡ℎ row of measurements, 𝑘 is the number of selected 

PCs, 𝐭𝑖𝑗 is the PC corresponding to the 𝑖𝑡ℎ row and 𝑗𝑡ℎ eigenvector, 𝐗 𝑖 is the 𝑖𝑡ℎ 

observation in the data matrix, 𝐗,  𝝀−1 is a diagonal matrix containing the inverse 

eigenvalues corresponding to 𝑘 retained eigenvectors, and 𝐕𝑘 is the matrix of 𝑘 loading 

vectors retained in the PCA model. Confidence limits for 𝑻2 can be calculated by using 

the 𝐹-distribution, as follows: 
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 𝑇𝑘,𝑛,𝛼
2 = 

(𝑛 − 1)𝑘

𝑛 − 𝑘
 𝐹𝑘,𝑛−𝑘,𝛼 (2.2.9) 

where 𝐹𝑘,𝑛−𝑘,𝛼 is the upper 100.𝛼 % critical point of the 𝐹-distribution, with 𝑘 and 𝑛 − 𝑘 

degrees of freedom.  

If the process has shifted outside the normal operating conditions, the change in the 

normal condition will not be captured in the PCA model. Hence, using only the 𝑻2 chart 

based on the first  𝑘, PCs may not be sufficient for detecting the fault. Such process 

shifts may cause a change in the nature and dimensions of the relationship between the 

process variables, and can be detected using both the 𝑻2 statistic and the 𝑸 statistic 

(Kresta et al., 1991).  

The 𝑸 statistic measures variability in the data that is not captured by the 𝑘 principal 

components retained in the score, and is obtained from the sum of the squared errors in 

the residual space or the sum of variations in the residual space, which is defined as 

 𝑸𝑖 = ∑(𝑥𝑖𝑗 − 𝑥𝑖𝑗)
2 = 𝐞𝑖

𝑘

𝑗=1

𝐞𝑖
𝑇 = 𝐱𝑖(𝐈 − 𝐕𝑘𝐕𝑘

𝑇)𝐱𝑖
𝑇 (2.2.10) 

where 𝑥𝑖𝑗 is the predicted value of 𝑥𝑖𝑗, 𝐞𝑖, is the 𝑖𝑡ℎ row of the residual matrix 𝐄, and 𝐈 is 

the identity matrix of appropriate size. For all the given eigenvalues, 𝜆𝑖, of the covariance 

matrix of 𝐗, the upper confidence limit for 𝑸 can be calculated as 

 𝑄𝛼 = Λ1 [1 + 
𝑐𝛼  (2Λ2𝜃

2)
1
2

Λ1
+
Λ2𝜃(𝜃 − 1)

Λ1
2 ]

1
𝜃

 (2.2.11) 

where Λ𝑖 = ∑ 𝜆𝑗
𝑖𝑚

𝑗=𝑘+1   for  𝑖 = 1,2,3… , 𝜃 = 1 −
2Λ1Λ3

(3Λ2
2)

 , and 𝑐𝛼 is the standard normal 

deviate corresponding to the upper (1-𝛼) percentile. 

The PCA model that represents the normal behaviour can be now used to predict the 

future behaviour of the process by referencing the new model based on the new 

observation against this controlled model. For the new set of observations, the values of 

the  𝑻2 and 𝑸 statistics are calculated by projecting them onto the plane obtained by the 
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𝑘 principal component loading vectors retained in the in-control PCA model. The new 

scores are obtained as 

 𝐭𝑖,𝑛𝑒𝑤 = 𝐗𝑛𝑒𝑤𝐯𝑖. (2.2.12)  

The new residuals are calculated as follows: 

 𝐄𝑛𝑒𝑤 =  𝐗𝑛𝑒𝑤 − 𝐗̂𝑛𝑒𝑤 (2.2.13)  

where  𝐗̂𝑛𝑒𝑤 = 𝐭k,new𝐕𝑘
𝑇. 

For the new dataset, at a specific time, if the value of the 𝑻2 or 𝑸 statistics exceeds the 

control limits, the process is monitored as being out of control at that time. The large 

value of the 𝑸 statistics indicates the change in the correlation of current variables 

according to the reference PCA model of the data in the normal operating condition, and 

a shift in the operating condition is usually detected by the 𝑻2 chart (MacGregor & 

Kouriti, 1995; Qin, 2003). However, both statistics should be used simultaneously in the 

process monitoring scheme to detect different types of faults in the process data.  

PCA has been applied successfully to several chemical processes with a large number 

of highly correlated variables. However, chemical process data are dynamic and 

contaminated by gross errors and by noise, hence the application of PCA may suppress 

noise to a certain level by projecting data into a lower dimension with fewer principal 

components due to the influence of random noise. Several extensions of MSPC 

approaches have been proposed to cope with the restrictions of linear PCA in process 

monitoring and fault diagnosis. For example, dynamic PCA has been proposed to 

decorrelate the auto-correlation in process data by augmenting the data matrix with time-

lagged variables (Ku et al., 1995; Lin et al., 2000; Luo et al., 1999). Adaptive PCA 

updates the model parameters continuously by exponential smoothing so as to get the 

model adjusted to suit new operating conditions (Wold, 1994). Multiway and multiblock 

PCA are suitable for batch process operations (MacGregor et al., 1994; Nomikosi and 

MacGregor, 1995; Wold et al., 1996). Moreover, multiblock PCA allows for the efficient 

computation of very large datasets; in model-based PCA, a first principle model is 

integrated with PCA (Rotem et al., 2000), moving PCA for monitoring changes in the 

direction of principal components (Kano et al., 2001). The MSPC method based on the 

Stellenbosch University  https://scholar.sun.ac.za



20 

 

dissimilarity of process data, called DISSIM (Kano et al., 2002), is a method that 

incorporates external information into a PCA model based on constrained PCA (Yoon & 

MacGregor, 2001), and the monitoring of the performance of MSPC is further improved 

by the development of independent component analysis (ICA) (Kano et al., 2003). 

However, with the increased requirements of multiple products and operation conditions, 

the process variations in practical chemical processes are more significant, and the 

relationships among the process variables are nonlinear. Thus, the use of linear PCA in 

nonlinear problems can lead to the loss of important information in the data if the minor 

principal components are discarded. This is because the minor components in nonlinear 

data always carry important information (Xu et al., 1992). On the other hand, PCA might 

contain too many principal components to solve an application if the minor components 

are not discarded. In general, a large number of principal components (PCs) are 

necessary for nonlinear systems to capture the manifold structure(s) in the data (Zhang 

et al., 1997). To address this challenge, nonlinear extensions to PCA have been 

proposed that are well suited when nonlinear correlations are present in the observed 

data (Dong & McAvoy, 1996). 

The objective of nonlinear PCA (NLPCA) is to capture both linear and nonlinear 

relationships between process variables. This objective is achieved by projecting the 

process variables onto curves or surfaces instead of lines or planes (Harkat et al., 2007). 

The concepts of linear principal component and nonlinear principal component are 

illustrated in Figure 2.3(a) and (b) respectively. In Figure 2.3(a), the one-dimensional 

subspaces can be approximated by two principal components, whereas in Figure 2.3(b) 

they can be approximated using a continuous curve or one nonlinear component. 

Moreover, Figure 2.3(a) shows that the linear principal component minimises the sum of 

the squared orthogonal deviations using a straight line, while Figure 2.3(b) shows that 

the nonlinear principal component minimises the sum of squared orthogonal deviations 

using a smooth curve. 
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Figure 2.3: Illustration of the concept of (a) linear PCA and (b) nonlinear PCA.  A straight 

line is used in PCA to minimize the sum of squared orthogonal deviations whlile NLPCA 

used a smooth curve to minimize the sum of the orthogonal deviations. 

To overcome the limitations of linear MSPC techniques, nonlinear extensions of PCA, 

such as nonlinear PCA based on auto-associative neural networks and principal curves, 

have been proposed for process monitoring (Dong & McAvoy, 1996; Kramer, 1991). In 

both these methods, a nonlinear optimisation problem is solved that is costly and not 

guaranteed to find the global optimal solution. Kernel principal component analysis 

(KPCA), a nonlinear dimension-reduction technique, was proposed as an alternative that 

avoids the computational complexity of the above nonlinear PCA frameworks by solving 

a linear algebraic formulation with a global optimum solution (Choi & Lee, 2004; Choi et 

al., 2005; Lee et al., 2004).  

In nonlinear processes, fault detection is more complicated than in linear processes, and 

fault may get smeared in the process. There is no one such unified method that can 

detect the faults in all industrial processes; this is because of the differences in the 

nonlinear relationship among the process variables. One method may work well in one 

process but may not function well in another process (Ge et al., 2013). Although many 

different methods to extract nonlinear principal components are available in the 

literature, the nonlinear PCA based on auto-associative neural network and kernel PCA 

was used in this study to extract nonlinear components from the data. Detailed reviews 

of these methods are provided in following sections (Choi et al., 2005; Kramer, 1991; 

Lee et al., 2004). 

  x 2   

x 1   

x 1   

x 2   

(b) (a) 
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2.2.2 Nonlinear PCA (NLPCA) 

For a data matrix, 𝐗 = [x1, x𝟐, … , x𝑛]
𝑇 ∈ 𝐑𝑛×𝑚, with 𝑛 observations and 𝑚 variables, as 

discussed earlier, PCA reconstructs the original data matrix, 𝐗̂, by finding a projection 

axis 𝐰 ∈ 𝐑𝑚×1 that represents the direction with maximum variability to represent the 

original data (Jackson, 1991). That is, 

 max
w

𝑣𝑎𝑟(𝐗𝐰), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝐰‖2 = 1 . (2.2.14)  

The above objective function is equivalent to the minimum reconstruction error criterion 

(Sanger, 1989; Zhao & Xu, 2005).  

 𝐽1 =  minw

1

𝑛
∑ ‖𝐱𝑖 − 𝐱i𝐰𝑖𝐰𝑖

𝑇‖2𝑛
𝑖=1 . (2.2.15) 

After obtaining the first principal component, 𝐗𝐰1, the original data 𝐗 is deflated as 𝐗1 =

𝐗 − 𝐗𝐰1𝐰1
𝑇. The remaining PCs are then retrieved by using 𝐗1 in the same manner and 

the process is repeated until a convergence index is satisfied (Zhao & Xu, 2005). 

The above standard approach in PCA has been extended to develop NLPCA to find both 

the linear and nonlinear relationships between the variables by projecting the process 

variables onto curves or surfaces instead of lines or planes by minimising the mean 

square error,  𝐸{‖𝐗 − 𝐗̂‖} (Shao et al., 1999), as illustrated in Figure 2.3(b). 

The NLPCA models can be represented by mapping and de-mapping sub-models. The 

nonlinear principal component, 𝐓, is obtained from the mapping model, while the de-

mapping model gives the estimation of the data matrix, 𝐗. The nonlinear mapping is 

expressed as 

 𝐭 = 𝑮(𝐱) (2.2.16)  

where  𝐱 ∈ 𝐗   and 𝐭 ∈ 𝐓, and 𝑮 is the nonlinear mapping function. The de-mapping 

model estimates 𝐱̂ of 𝐱 from the nonlinear principal component, 𝐭, by inverse 

transformation and is given as 

 𝐱̂ = 𝑭(𝐭) (2.2.17)  
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where 𝑭 is the nonlinear de-mapping function, which is equivalent to the projection 

matrix 𝐕 in linear PCA (Shao et al., 1999). 

Therefore, the original data, 𝐗, can be represented by 𝑘 nonlinear principal component 

as 

 𝐗 = 𝐗̂ + 𝐄 = 𝑭(𝐓) + 𝐄 (2.2.18)  

where  𝐓 = [𝐓1, … , 𝐓𝑘] is the matrix of nonlinear principal components 𝐓 = 𝑮(𝐗), and 𝐄 is 

the residual matrix. 

The nonlinear projection functions 𝑮 and 𝑭 are identified by minimising the objective 

function, which is the sum of squared orthogonal deviations, i.e.  

 min∑‖𝐱𝑖 − 𝐱̂𝑖‖
2 = min∑‖𝐱𝑖 − 𝑭(𝑮(𝐱𝑖))‖

2

𝑛

𝑖=1

𝑛

𝑖=1

 (2.2.19) 

where 𝐱𝑖 is the 𝑖𝑡ℎ row of 𝐗 and 𝐱̂𝑖 is its estimation by the five-layer neural network 

NLPCA model (Harkat et al., 2007; Kramer, 1991).  

The NLPCA proposed by Kramer (1991) is based on multilayer perception (MLP) with an 

auto-associative neural network. The standard auto-associative neural network consists 

of three hidden layers of neurons between the input and output layers of variables, which 

gives five layers altogether, with a single bottleneck layer that executes an identity 

projection, as shown in Figure 2.4 (Hsieh, 2007). 
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Figure 2.4: Schematic diagram of an auto-associative neural network (Hsieh, 2007). There 

are three layers of hidden neurons between the input layer  𝐗 and the output layer 𝐗̂. 

The input column vector 𝐱 of length 𝑚 is mapped to the first hidden layer 𝒉(𝐱) of network 

of length 𝑟 by a transfer function, 𝑮1, with elements  

 

𝒉𝑗
(𝐱)
= 𝑮1 ((𝐕

(𝐱)𝐱 + 𝒃(𝐱))) =  𝑮1(∑𝐯𝑖𝑗
𝐱

𝑚

𝑖=1

𝐱𝑖 + 𝒃𝑗
(𝐱)) (2.2.20) 

where 𝐕(𝐱)  is an 𝑟 ×𝑚  weight matrix, 𝒃(𝐱), column vector, containing a bias parameter  

of length 𝑟, and 𝑗 = 1, 2, … , 𝑟. 

The nonlinear principal component 𝐭 is computed as 

 𝐭 =  𝒘(𝐱)𝒉(𝐱) + 𝒃̅(𝐱) = ∑ 𝒘𝑗
(𝐱)
𝒉𝑗
(𝐱)
+ 𝒃̅(𝐱) 𝑟

𝑗=1 . (2.2.21)  

Thus the mapping function 𝑮 is given as 

 𝑮(𝐱) =  ∑ 𝒘𝑗
(𝐱)
𝒉𝑗
(𝐱)𝑟

𝑗=1 + 𝒃̅(𝐱). (2.2.22) 

In the next step, the nonlinear principal component, 𝐭, is mapped to the final hidden layer 

𝒉(𝐭) of length 𝑟 by a transfer function 𝑭1 with elements 

 𝒉𝑗
(𝐭)
= 𝑭1 ((𝒘

(𝐭)𝐭 + 𝒃(𝐭))
𝑗
) =  𝑭1( 𝒘𝑗

(𝐭)𝐭 + 𝒃𝑗
(𝐭)) . (2.2.23) 

Hence the demapping function 𝑭 is given by  

 𝑭(𝐭) =  ∑ 𝐯𝑗𝑖
(𝐭)
𝒉𝑗
(𝐭)
+ 𝒃̅𝑖

(𝐭)𝑟
𝑗=1 . (2.2.24)  

𝐗 𝐗̂ 
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The nonlinear transfer functions, 𝑮1 and  𝑭1, are generally the hyperbolic tangent or the 

sigmoidal functions. 

The original data, 𝐱, is approximated by the output of the network, 𝐱̂, as 

 𝐱̂ = 𝑭(𝐭) = 𝑭(𝑮(𝐱)) . (2.2.25)  

By finding the optimal values of 𝐕(𝐱), 𝒃(𝐱), 𝒘(𝐱), 𝒃̅(𝐱), 𝒘(𝐭), 𝒃(𝐭), 𝐕(𝐭)  and 𝒃̅(𝐭), the cost 

function, 𝑬 = ‖𝐱 − 𝐱̂‖2, can be minimised. Thus the mean square error (m.s.e) between 

the neural network output 𝐱̂ and the input 𝐱 is minimised (Harkat et al., 2007). The 

efficient computation of latent variables in NLPCA depends on the nonlinear optimisation 

of the above parameters, which is complex to compute, time consuming and costly. 

However, the application of NLPCA is computationally demanding, since the 

development of the NLPCA model requires a large amount of computational time. 

Complications also arise in the decision on the number of mapping and de-mapping 

layers in the auto-associative architect for the development of the optimum model. 

Nevertheless, several nonlinear principal component analysis methods have been 

proposed in the literature to improve the feature extraction when the variables are 

nonlinearly correlated. 

Hastie and Stuetzle (1989) proposed a principal curve methodology that provides a 

nonlinear summary of an 𝑚-dimensional dataset. However, this non-parametric 

technique cannot be used for the continuous mapping of new data. Kramer (1991) 

proposed nonlinear principal component analysis (NLPCA) to capture nonlinear 

relationships among variables. The main difference between PCA and NLPCA is that the 

latter uses nonlinear mapping between the original and the reduced dimension space. 

Compared to linear PCA, NLPCA can explain more variance in smaller dimensions 

(Dong & McAvoy, 1996; Kramer, 1991; Tan and Mavrovouniotis, 1995). NLPCA can be 

performed by a variety of methods. For example, Kramer (1991) and Hsieh (2004) used 

the auto-associative neural network model (ANN) to perform a nonlinear data reduction 

similar to PCA. In the proposed methodology, a neural network containing a bottleneck 

layer is used to perform the identity mapping. The network architecture makes use of 

three hidden layers, which are necessary to achieve the general nonlinear fitting 

property (Kramer, 1991). Dong and MacAvoy (1996) proposed NLPCA based on the 

principal curves and neural network methods to generate nonlinear principal scores. Tan 
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and Mavrovouniotis (1995) developed a nonlinear data-reduction technique based on 

the optimisation of the neural network inputs, where each input pattern is fixed but 

adjusted along with internal network parameters to reproduce a corresponding output 

pattern based on the steepest gradient descent network optimisation rule. A nonlinearity 

measure for the principal component is proposed to determine whether the process 

monitoring task used should be linear or nonlinear (Kruger et al., 2005). A hybrid neural 

network model that was developed for rule generation for processes has been also used 

for process monitoring (Tan et al., 2007). For the online monitoring of process mean and 

variance shifts, an ensemble learning method has been combined with a neural network 

(Wu & Yu, 2010). A hierarchical neural network based on the fuzzy clustering method 

has been proposed for fault diagnosis in the Tennessee-Eastman benchmark process 

(Eslamloueyan, 2011). Recently, several other nonlinear process monitoring methods 

based on principal curves and neural networks have been used in systems monitoring  

(Antory et al., 2008; Jia et al., 2001; Karpenko et al., 2003; Kim et al., 2009; Silva, 2010).  

Kernel PCA (KPCA), which is the reformulation of conventional PCA in a high-

dimensional space that is constructed using kernel function, has been used in process 

monitoring to avoid the complexity of nonlinear optimisation in nonlinear algorithms with 

neural networks (Lee et al., 2004). The basic concept of KPCA is that, without prior 

knowledge of the nonlinear function, a kernel function is used to map the measurements 

in the original space to a feature space or the kernel space. Then PCA is performed in 

the feature space to extract the nonlinear components in the data without the need to 

specify the number of components to be extracted prior to modelling. Thus, the 

application of PCA in the feature space provides kernel PCA with the property of 

constructing nonlinear mappings. In KPCA, the principal eigenvectors are computed 

using a kernel matrix, rather than the covariance matrix of the data in the feature space 

(Van der Maaten et al., 2008).  

2.2.3 Kernel PCA (KPCA) 

KPCA is a nonlinear PCA algorithm that maps the original input data into a high-

dimensional feature space, F,   where a linear PCA model is developed (Lee et al., 2004; 

Schölkopf et al., 1998). The KPCA algorithm shown in this section is according to 

Schölkopf et al., (1998) and Lee et al. (2004). As indicated before, the KPCA algorithm 

involves steps such as mapping the data from the input space to a feature space and the 
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application of PCA in the feature space. For a given set of 𝑛 training samples, 𝐗 =

 [𝐱1, 𝐱2, … , 𝐱𝑛] ∈ 𝐑
𝑚, consider a nonlinear mapping of 𝐱𝑗 (𝑗 = 1,2, … , 𝑛) into a feature 

space F  by 𝝓: 𝐱𝑗 ∈ 𝐑
𝑚 → 𝝓(𝐱𝑗) ∈ F. Then the sample covariance matrix in the feature 

space is 

 

𝐂𝑓 = 
1

𝑛
∑𝝓(𝐱𝑗)𝝓(𝐱j)

𝑇

𝑛

𝑗=1

 

 

(2.2.26)  

where 𝐱𝑗 ∈ 𝐗 and it is assumed that 𝝓(𝐱𝑗) is the centred nonlinear mapping of the input 

vector, 𝐱𝑗,that is ∑ 𝝓(𝐱𝑖) = 0 
𝑛
𝑖=1 . 

The eigenvalue problem in the feature space can be solved by diagonalising the 

covariance matrix, 𝐂𝑓,  

 𝜆𝐯 =  𝐂𝑓𝐯 (2.2.27) 

where 𝜆 is the eigenvalue, 𝜆 ≥ 0 and 𝐯 is the eigenvector in F  \ {0}  .The first PC in F  is in 

the direction of 𝐯 with the largest eigenvalue, and the last PC is in the direction of the 

smallest eigenvalue.  

Multiplying 𝝓(𝐱𝑘) on both sides of equation (2.2.27), we get: 

 𝜆〈𝝓(𝐱𝑘), 𝐯〉 =  〈𝝓(𝐱𝑘), 𝐂
𝑓𝐯〉 (2.2.28) 

where 〈𝝓(𝐱𝑗), 𝐯〉 is the dot product between 𝝓(𝐱𝑗) and 𝐯 , 𝑘 = 1, 2, … , 𝑛 .This shows that 

𝐯 is spanned by 𝝓(𝐱1), 𝝓(𝐱2),… , 𝝓(𝐱𝑛) , and there is a coefficient 𝛼𝑖  (𝑖 = 1,2, … , 𝑛), such 

that   

 𝐯 =  ∑ 𝛼𝑖 𝝓(𝐱𝑖)
𝑛
𝑖=1 . (2.2.29) 

Then, by combining equations (2.2.26) and (2.2.28) and substituting in equation (2.2.29), 

we get  

 

𝜆∑𝛼𝑖〈𝝓(𝐱𝑘), 𝝓(𝐱𝑖)〉 =  
1

𝑛

𝑛

𝑖=1

∑𝛼𝑖

𝑛

𝑖=1

〈𝝓(𝐱𝑘),∑𝝓(𝐱𝑗)

𝑛

𝑗=1

〉 〈𝝓(𝐱𝑗), 𝝓(𝐱𝑖)〉 (2.2.30) 
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where 𝑘 = 1, 2,… , 𝑛.  The eigenvalue problem in equation (2.2.30) only requires the dot 

products of the mapped vectors in the feature space, and that can be computed using a 

kernel matrix. Thus, the computational difficulties in the higher dimensional feature 

space can be simplified into finding the dot products of vectors in the feature space by 

using a kernel function (Jemwa & Aldrich, 2006).  

The kernel function implicitly determines the nonlinear mapping and the feature space. 

The kernel matrix, 𝑲(𝑛 × 𝑛), is defined as  𝑲𝑖𝑗 = 𝑲(𝐱𝑖, 𝐱𝑗) = 〈𝝓(𝐱𝑖), 𝝓(𝐱𝑗)〉, and then the 

equation (2.2.30) can be written as  

 𝜆𝑛𝑲𝐮 = 𝑲2𝐮  (2.2.31) 

where 𝐮 = [𝐮𝟏, … , 𝐮𝒏]. As discussed by Schölkopf et al. (1998), mean-centring in high-

dimensional space is required for the prior application of KPCA, which is done by 

substituting the kernel matrix, 𝑲, with the following: 

 𝑲̃ = 𝑲− 𝟏𝑛𝑲−𝑲𝟏𝑛 + 𝟏𝑛𝑲𝟏𝑛  (2.2.32) 

where 

 

𝟏𝑛 =
1

𝑛
[
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

] ∈ 𝐑𝑛×𝑛 . (2.2.33) 

The solution of equation (2.2.31) can be obtained by solving the eigenvalue problem of 

the centered kernel,  

 𝑛𝜆𝐮 =  𝑲̃𝐮  (2.2.34) 

for all nonzero eigenvalues, 𝜆. Thus the application of PCA in F, gives eigenvectors 

𝐮1, 𝐮2, … , 𝐮𝑛, with eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯𝜆𝑛. The dimensionality of the data is reduced 

by retaining the first 𝑘 eigenvectors, and the solution is further normalised by imposing 

𝜆𝑘(𝐮𝑘, 𝐮𝑘) = 1 in F by using  𝐯𝑝 = ∑ 𝐮𝑖
𝑝
𝝓(𝐱𝑖)

𝑛
𝑖=1 , where 〈𝐯𝑝, 𝐯𝑝〉 = 1 for all 𝑝 = 1,2, … , 𝑘. 

The principal component, 𝐭𝑘,𝑛𝑒𝑤 , of a test vector 𝐗𝑛𝑒𝑤 in F, is extracted by projecting 

𝝓(𝐱𝑛𝑒𝑤) onto eigenvectors  𝐯𝑝 in F  , where 𝑝 = 1,2, … , 𝑘. That is 
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 𝐭𝑝,𝑛𝑒𝑤 = 〈𝐯𝑝, 𝝓(𝐱𝑛𝑒𝑤)〉 =  ∑ 𝐮𝑖
𝑝𝑛

𝑖=1 〈𝝓(𝐱𝑖), 𝝓(𝐱𝑛𝑒𝑤)〉. (2.2.35) 

In short, using integral operator kernel functions as a nonlinear map instead of the basic 

dot product, one can perform PCA in a high-dimensional space, F, which is nonlinearly 

related to the input space, as shown in Figure 2.5 (Schölkopf et al., 1998). Similar to 

linear PCA, the principal component in KPCA is uncorrelated and orthogonal, and the 

first PC carries more variance than the other components. Mostly in KPCA the number 

of generated PCs are equal to the number of sample points in the data. Kernel functions 

that have been used successfully in the machine learning literature include the 

Linear kernel:  

 𝒌(𝐱, 𝐲) =  〈𝐱, 𝐲〉  (2.2.36) 

Polynomial kernel: 

 𝒌(𝐱, 𝐲) =  〈𝐱, 𝐲〉𝑑          (2.2.37)  

Sigmoid kernel:  

 𝒌(𝐱, 𝐲) = tanh (𝛽0〈𝐱, 𝐲〉 + 𝛽1)  (2.2.38) 

and Gaussian kernel:  

 
𝒌(𝐱, 𝐲) = exp(−

‖𝐱 − 𝐲‖𝟐

𝑐
) 

(2.2.39)  

where 𝑑, 𝛽0, 𝛽1 and 𝑐 are specified a priori before using the above kernel functions and 

give similar results if appropriate parameters are chosen. The above kernel functions 

give a low-dimensional KPCA subspace that represents the distribution of the mapping 

of the nonlinear mapping of the training vectors in the feature space F (Lee et al., 2004). 

The Gaussian kernel is used in this thesis to capture the nonlinear behaviour of the 

process data, since this distance-based kernel has the flexibility of generalising the data 

without any prior assumptions regarding relationships between the variables and is 

widely used in the process monitoring literature. The main advantage of KPCA 

compared to NLPCA is that it does not need nonlinear optimisation and requires only the 

solution of an eigenvalue problem. KPCA can handle a wide range of nonlinearities due 
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to its ability to use different kernels. In addition, KPCA has performed better than linear 

PCA methods in feature extraction and classification in nonlinear systems due to the fact 

that it specifies the number of components to be extracted prior to the modelling (Lee et 

al., 2004). 

 

 

Stellenbosch University  https://scholar.sun.ac.za



31 

 

 

Figure 2.5: The basic idea of KPCA (Schölkopf et al., 1998). Nonlinear kernel functions are 

used to perform PCA in the feature space F   which is nonlinearly related to the input 

space 𝐑𝟐. 

To monitor multivariate data with nonlinear characteristics, several variants of KPCA 

have been proposed in the literature. Lee et al. (2004; 2005) proposed a nonlinear 

Linear PCA 
R2 

 

R2 
Kernel PCA 

F 

𝒌(𝐱, 𝐲) =  〈𝐱, 𝐲〉𝑑 

𝒌(𝐱, 𝐲) =  〈𝐱, 𝐲〉 
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process monitoring strategy based on KPCA, with two monitoring statistics for fault 

detection and the identification of an industrial chemical process with different fault 

conditions. The technique of local approach has been combined with KPCA for an 

improved KPCA process monitoring scheme to handle the nonlinear and non-Gaussian 

characteristics of the data simultaneously (Ge et al., 2009). Several other methods 

based on KPCA involve the reconstruction-based contribution approach of Alcala and 

Qin (2010), the adaptive KPCA for small disturbances of nonlinear process of Cheng et 

al., (2010), and dynamic kernel PCA for nonlinear dynamic process monitoring of Choi 

and Lee (2004). In some applications, KPCA has been combined with PLS, independent 

component analysis, support vector machines, recursive-weighted PCA and wavelets for 

improved process monitoring and fault diagnosis (Chakour et al., 2015; Choi et al., 2008; 

Lee et al., 2007; Zhang, 2008; Zhang & Ma, 2011; Zhang et al., 2010).  

Even though the computation of the KPCA model is less complicated, the 

implementation process involves high-dimensional models, thus the original problem of 

high dimensionality cannot be solved effectively. Nevertheless, nonlinear PCA models 

are effective in detecting faults, but the fault identification process may give false 

conclusions due to the inherent behaviour of principal component models (Yunus & 

Zhang, 2010). As an alternative to projection to latent structure techniques based on 

PCA, a MSPC framework that uses classical multidimensional scaling (CMDS), one of 

the main techniques in multidimensional scaling (MDS) (Cox & Cox, 1994), has recently 

been proposed in which a summary of the multivariate data is obtained in a relatively 

smaller dimension (Yunus &Zhang, 2010; Yunus & Zhang, 2014). In CMDS, the 

dissimilarity of inter-object distance is the basic measure for multivariate scores 

development in the data. This can also handle nonlinear correlations in the data, like 

other nonlinear methods in process monitoring (Yunus & Zhang, 2010). In MDS, the 

process signals are represented as points in a co-ordinate system, in such a way that 

the distance between points conveys something about the dissimilarities among the 

signals. In general, nonlinear techniques based on MDS can represent the high-

dimensional data to a lower dimension while retaining the pairwise distance between the 

data points as much as possible. In particular, MDS can be considered as a method that 

provides the graphical representation of point configuration, which shows the predefined 

set of inter-distances or dissimilarities between points of reference from particular 

multivariate data. Moreover, Takane (2003) states that points are arranged in such a 
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way that their distances correspond to the correlation between the variables, and if the 

points have high similarity they are located closely together, otherwise they are far apart. 

CMDS is strongly related to PCA by the procedure for finding eigenvectors of the 

dissimilarity matrix that is obtained from the basis of the dot product of the original data, 

as done in the PCA procedure. When Euclidean distance is used as the dissimilarity 

measure in CMDS, then both PCA and CMDS share the same observation-sample 

score configuration (Cox & Cox, 1994; Yunus & Zhang, 2010). Thus, the issue of non-

linearity is naturally incorporated in CMDS scores by using the dissimilarity measure, 

and better fault detection is possible in a reduced dimension because CMDS uses 

dissimilarity scale transformation instead of variance transformation in PCA. That is, in 

CMDS, the amount of variances will be calculated based on the multivariate score 

behaviours, instead of adopted from the original data as in PCA.  This motivated the 

development of an alternative multivariate statistical nonlinear process monitoring 

framework based on classical multidimensional scaling to detect faults in the process 

data (Yunus & Zhang, 2010; Yunus & Zhang, 2014).  

The first step in CMDS is the computation of a dissimilarity matrix, a matrix with values 

such as dissimilarity coefficients that contains information about the degree of 

resemblance between variables in the data. CMDS is related to PCA in the sense that 

the procedure for obtaining the eigenvectors of dissimilarity matrix in this study is 

constructed based on the Euclidean distance between the points in the dataset. In the 

second phase, the multidimensional dissimilarity matrix is converted into a manageable, 

lower dimensional configuration of points specified by coordinates through a 

multidimensional scaling process, which is much easier to interpret and portray 

(Prentice, 1980). In this study, a multivariate statistical process monitoring framework 

based on CMDS is used to project the multivariate scores by using the dissimilarity 

values of the variables and, hence, the complex computation of nonlinear principal 

components could be avoided. 

2.2.4 Classical multidimensional scaling (MDS) 

Multidimensional scaling (MDS) is a widely used multivariate statistical method for 

dimensionality reduction and the visualisation of similarities and dissimilarities in 

multivariate time series analysis (Cox, 2001). MDS reduces the dimension of a 

multidimensional dataset by representing it as points in a graphical coordinate system, in 
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such a way that the inter-distance or dissimilarity relationships among the data points 

are retained in a low-dimensional space (typically two- or three-dimensional for 

visualisation purposes). The distances between the points correspond to the correlation 

between the variables – points with high similarity are positioned closely together, 

otherwise they are further apart (Takane, 2003). Therefore, the goal of MDS is to find a 

configuration to measure how well the projected multivariate scores match as accurately 

as possible according to the predefined dissimilarity scales that corresponds with the 

correlation between the measurements (Kruskal & Wish, 1978). The different types of 

matching give rise to the different techniques of MDS, of which classical 

multidimensional scaling (CMDS) has recently been used to build a MSPC framework for 

industrial process monitoring (Yunus & Zhang, 2010).  

The first step in classical MDS is the construction of the dissimilarity matrix,𝐃, based on 

the Euclidean distance between the points in the dataset (Cox & Cox, 1994). The 

Euclidean distance between variables 𝑖 and 𝑗 in a data matrix 𝐗 with 𝑛 points and  

𝑚 variables is defined as  

 𝑑𝑖𝑗
2 =  {∑ (𝑥𝑖𝑟 − 𝑥𝑗𝑟)

2𝑚
𝑟=1 } =  (𝑥𝑖 − 𝑥𝑗)

𝑇
(𝑥𝑖 − 𝑥𝑗) =  𝑥𝑖

𝑇𝑥𝑖 + 𝑥𝑗
𝑇𝑥𝑗 − 2𝑥𝑖

𝑇𝑥𝑗. (2.2.40) 

In the second phase, the multidimensional dissimilarity matrix is converted into a lower 

dimensional configuration of points by computing the principal components from the 

inter-distance scale structure. Cox and Cox (1994) started the procedures for obtaining 

the principal component loadings from the inter-distance scale structure by defining the 

scalar product matrix, 𝐁 (or the dissimilarity matrix of 𝑑𝑖𝑗
2 ), that is 𝐁 = 𝐗𝐗𝑇, where 𝐗 is a 

𝑛 ×𝑚 mean-centred data matrix. Through eigenvalue decomposition on 𝐁, the 

eigenvalues, 𝜆𝑖, and corresponding eigenvectors 𝐯𝑖 of 𝐁, can be computed, where 𝑖 =

1,2,… ,𝑚. Thus  

 𝐁𝐯𝑖 = 𝜆𝑖𝐯𝑖. (2.2.41)  

From equation (2.2.41), the principal component loading factors can be computed and 

the computation is shown in the following equations: 

 𝐗𝑇𝐁𝐯𝑖 = 𝜆𝑖𝐗
𝑇𝐯𝑖 (2.2.42)  
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 𝐂𝐚𝑖
∗ = 𝜆𝑖𝐚𝑖

∗ (2.2.43) 

where 𝐂 =  𝐗𝑇𝐗  and 𝐚𝑖
∗ = 𝐗𝑇𝐯𝑖. The orthogonal loading factors (principal components), 

𝐚𝑖, similar to PCA, are obtained by normalising eigenvectors 𝐚𝑖
∗ by the corresponding 

eigenvalues, 𝜆𝑖, 

 𝐚𝑖 = 
1

√𝜆𝑖
 𝐗𝑇𝐯𝑖  (2.2.44) 

and therefore  

 𝐚𝑖
𝑇𝐚𝑖 = 1. (2.2.45)  

Thus, through the above equations, principal component analysis can be considered as 

a specific variant of CMDS, where the former uses the correlation measure and the latter 

uses the dissimilarity measure. 

The matrix 𝐁 can be computed from any means of inter-distance measures between the 

variables. Thus any type of inter-distance scales can be transformed into  𝐁, based on 

the relationship between the scalar product, 𝐁, and the Euclidean distance,𝐃, with size 

𝑛 × 𝑛, as shown in equation (2.2.46) (Borg & Groenen, 1997; Cox & Cox, 1994; Yunus & 

Zhang, 2014) 

 

𝑏𝑖𝑗 = −
1

2
(𝑑𝑖𝑗

2 − 
1

𝑛
∑𝑑𝑖𝑗

2

𝑛

𝑖=1

−∑𝑑𝑖𝑗
2

𝑛

𝑗=1

+
1

𝑛2
∑∑𝑑𝑖𝑗

2

𝑛

𝑗=1

𝑛

𝑖=1

) (2.2.46) 

where, b𝑖𝑗 is the scalar product between variables 𝑖 and 𝑗. 

However, the projection of multivariate scores is always rearranged in the form of 

Euclidean space (Cartesian coordinates), and the computation of 𝐁 using equation 

(2.2.46) can be regarded as an equally good or better transformation of any inter-

distance scales into Euclidean distance based scales (Yunus & Zhang, 2014).  

The key advantage of CMDS is its efficient computation of relatively low-dimensional 

data with a better visualisation of the hidden, nonlinear structure of the high-dimensional 

data. In CMDS, the dissimilarity (or similarity) measure is usually Euclidean distance (or 

the positive definite metric). Since the inner product function that induces the similarity is 
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positive definite, the theory of reproducing kernels can be applied, allowing for more 

flexibility in the choice of the dissimilarity measure (Zhang & Jordan, 2009). More 

specifically, in CMDS the input points are embedded into an idealised Euclidean space, 

on which the Euclidean distance reflects the dissimilarity/similarity between the points in 

the input space. This embedded Euclidean space and points are also considered as 

feature space and feature vectors. The points in the input space can be embedded into 

the feature space with linear or nonlinear mapping (kernel functions). Thus CMDS is a 

nonlinear dimensionality-reduction method in which linear kernels are used for the 

nonlinear mapping of input space into feature space. On the other hand, the projection of 

data onto selected eigenvectors in kernel PCA is equivalent to performing CMDS on the 

transformed dissimilarities when the kernel functions are Gaussian. Thus nonlinear 

dimensionality reduction using CMDS can be obtained by using reproducing kernels as 

similarities in lieu of Euclidean distance (Williams, 2002; Zhang & Jordan, 2009). In this 

study, a nonlinear multivariate statistical process monitoring framework is used based on 

the equivalence between reproducing kernels and inner products (similarities), building 

on top of a linear approach using CMDS that has recently been used for industrial 

process monitoring (Yunus & Zhang, 2014).  

2.2.5 Kernel multidimensional scaling (kernel MDS) 

For matrix 𝐗 with a set of 𝑛 points and 𝑚 variables, the 𝑛 × 𝑛 dissimilarity matrix,𝐃, is 

constructed based on the Euclidean distance between variables 𝑖 and 𝑗, 𝑑𝑖𝑗, which is 

calculated using equation (2.2.40). 

The squared dissimilarity matrix is double centered to compute the inner product matrix 

𝐁: 

 
𝐁 =  −

1

2
 𝐉𝑛𝐃

2𝐉𝑛 = 𝐉𝑛𝐗𝐗
𝑇𝐉𝑛 (2.2.47) 

where 𝐗 =  [𝐗1, 𝐗2, … , 𝐗𝑛],  𝐉𝑛 = (𝐈𝑛 − 𝟏𝑛 𝟏𝑛
𝑇 𝑛⁄ ), 𝐈𝑛 is an identity matrix, and 𝟏𝑛 is a 

vector of length 𝑛 with all elements equal to 1. 

In order to establish the relationship between the dissimilarity matrix in (2.2.40) and the 

reproducing kernels, the positive definite kernel function 𝑲 is used to compute the inner 

products in the feature space F, which is related to the input space 𝐅 by a nonlinear map, 
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𝝓. That is, the kernel function can be used to compute the value of inner products in F   

without carrying the nonlinear map 𝝓 and is represented by 

 𝑲(𝐟𝑖 , 𝐟j) =  𝝓(𝐟𝑖)
𝑇𝝓(𝐟𝑗) (2.2.48) 

where 𝐟𝑖 and 𝐟𝑗 are the input vectors in 𝐅. 

Gaussian kernels are used to obtain the squared (Euclidean) distance, 𝑑𝑖𝑗
2  , between the 

vectors in the feature space, as shown in the following equation:   

 𝑑𝑖𝑗
2 = 𝑲𝑖𝑖 + 𝑲𝑗𝑗 − 2𝑲𝑖𝑗 (2.2.49)  

where 𝑲𝑖𝑗 = 𝑲(𝐟𝑖, 𝐟𝑗). Thus, in this study, the double-centred inner product matrix 𝐁 can 

be expressed in terms of kernel function as 

 𝐁 = 𝐉𝑛𝑲 𝐉𝑛 (2.2.50)  

where each entry of the linear kernel matrix, 𝑲, is the dot product between the Euclidean 

vector, 𝑲𝑖𝑗 = 𝐱𝑖
𝑇𝐱𝑗. Any type of inter-distance can be transformed into 𝐁, based on the 

relationship between the dissimilarity matrix 𝐃 and the kernel matrix 𝑲. The 

eigendecomposition of 𝐁 in equation (2.2.50) approximates the feature space distance. 

Thus the dimensionality reduction of data in the feature is obtained by projecting them 

onto the first few eigenvectors; this is equivalent to performing CMDS in the feature 

space. This procedure is called kernel MDS (Williams, 2002). 

Given 𝐁, either by equation (2.2.47) or (2.2.50), CMDS finds the reconstructed 

coordinates of points by applying eigenvalue decomposition on 𝐁, and hence 𝐁𝐯𝑖 = 𝜆𝑖𝐯𝑖. 

That is, 

 
𝐗̃ =  𝐕𝑝√𝚲𝑝 (2.2.51)  

where 𝚲𝑝 is the diagonal matrix with 𝑝-ordered eigenvalues, and 𝐕𝑝 is the 𝑛 × 𝑝 matrix 

whose columns correspond to the first 𝑝 eigenvectors of 𝐁. Thus the reconstructed point 

is 𝐱̃𝑖 = √𝜆𝑖𝐯𝑖. 
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In KPCA, the sample covariance matrix of vectors, 𝐟𝑖, in the feature space is used to 

extract the nonlinear principal scores, which are given by  

 𝐂 =  
1

𝑛
∑ (𝐟𝑖 − 𝐟)̅(𝐟𝑖 − 𝐟)̅

𝑇𝑛
𝑖=1 = 

1

𝑛
𝐅𝑇𝐉𝑛𝐅 =  

1

𝑛
𝐅𝑇𝐉𝑛𝐉𝑛𝐅 =  

1

𝑛
(𝐉𝑛𝐅)

𝑇(𝐉𝑛𝐅)  (2.2.52) 

where 𝐟̅ =  
1

𝑛
∑ 𝐟𝑖
𝑛
𝑖=1 . Since 𝐅𝑇𝐉𝑛 𝐉n𝐅 has the same nonzero eigenvalues as 𝐉𝑛𝐅 𝐅

𝑇𝐉𝑛 =

 𝐉𝑛𝑲 𝐉𝑛 = 𝐁, it can be shown that the eigenvalues of 𝑛𝐂 are the 𝑝 nonzero eigenvalues of 

𝐁 in KPCA. To show this, note that 𝐉𝑛
2 = 𝐉𝑛, and thus that 𝑛𝐂 =  (𝐉𝐧𝐅)

𝑇(𝐉𝑛𝐅). Let 𝐯𝑖 be a 

unit-length eigenvector of 𝐁, so that 𝐁𝐯𝑖 = 𝜆𝑖𝐯𝐢. Premultiplying by (𝐉𝑛𝐅)
𝑇  gives 

 (𝐉𝑛𝐅)
𝑇(𝐉𝑛𝐅)(𝐉𝑛𝐅)

𝑇𝐯𝑖 = 𝜆𝑖(𝐉𝑛𝐅)
𝑇𝐯𝑖 (2.2.53) 

where 𝜆𝑖 is an eigenvalue of 𝑛𝐂, and 𝐞𝑖 = (𝐉𝑛𝐅)
𝑇𝐯𝑖 is the corresponding eigenvector in 

which 𝐞𝑖𝐞𝑖
𝑇 = 𝜆𝑖. Centring 𝐅 and projecting it onto the unit vector, 𝐞̃𝑖 = 

1

√𝜆𝑖
𝐞𝑖, obtains the 

𝑝-dimensional configuration of 𝐅. That is  

 (𝐉𝑛𝐅)𝐞̃𝑖 = 
1

√𝜆𝑖
 (𝐉𝑛𝐅)(𝐉𝑛𝐅)

𝑇𝐯𝑖 = 
1

√𝜆𝑖
𝐉𝑛𝐅𝐅

𝑇𝐉𝑛𝐯𝑖 = 
1

√𝜆𝑖
𝐁 𝐯𝑖 = 

1

√𝜆𝑖
𝐯𝑖 . (2.2.54) 

Thus we see that the projection of 𝐅 onto the eigenvalues of 𝑛𝐂 returns the classical 

scaling solution. This proves the duality between KPCA and CMDS. 

CMDS can be performed in the feature space by using different kernel functions. For 

example, the use of linear kernels gives the basic CMDS, because 𝐟𝑖 = 𝐱𝑖 . Hence 

CMDS can be used as an alternative dimensionality-reduction technique because there 

exist a nonlinear mapping from 𝐟𝑖 to 𝐱𝑖 (Zhang & Jordan, 2009). 

In summary, kernels can be considered as generalised dissimilarity measures that are 

positive definite, and can be viewed as a nonlinear generalisation of the similarity 

measure based on inner products. Thus a new framework for the distance-based 

algorithm is devised by using suitable kernel functions for the realisation of squared 

Euclidean distance in the feature space (Pekalska et al., 2001; Schölkopf, 2000). This 

motivated the use of the kernel MDS algorithm in this study as a form of performing 

CMDS in feature space using Gaussian kernels. 
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Process monitoring using MDS was first proposed by Cox (2001), who summarised the 

multivariate data structure by means of conventional score configuration (observation- 

sample) profiles. Also, the occurrence of an abnormal event results in a deviation of the 

sample in greater magnitude from the normal sample. In another approach by Cox 

(2003), the status of the monitoring performance was introduced by a variable-based 

form of scores in which the variables responsible for fault conditions not only show the 

deviation, but also project the information on the deviation of the normal variable’s 

coordination in terms of multivariate scores. A multiple linear regression was used in 

projecting the MDS scores for online monitoring and fault detection by Matheus et al. 

(2006) based on topographic mapping and clustering operation in another study. 

However, the above studies do not propose any kind of monitoring statistics as the basic 

measure for fault detection. Three new process monitoring frameworks using CMDS as 

an alternative tool for dimensionality reduction based on the dissimilarity measure in 

describing the correlation between the process variables were proposed recently by 

Yunus and Zhang (2010). Thus the limitations of conventional multivariate methods for 

monitoring nonlinear processes are addressed. A reduced dimensional space for an 

effective process monitoring scheme was obtained on the basis of variable scores 

instead of sample scores as in PCA (Yunus & Zhang, 2010). Even though fault detection 

was improved in these studies, there were difficulties in understanding the real effect of 

different inter-distance scaling on the fault detection performance between the process 

systems. A new MSPM framework has been proposed by Yunus and Zhang (2014), in 

which the correlation among the samples are measured using dissimilarity scale 

structure and 𝑻𝟐 and SPE statistics for fault detection. Hence the original conceptual 

framework of MSPM is maintained to a great extent, without focusing too much on new 

terminologies, as was the cases in previous studies. This MSPM framework is used as 

an alternative monitoring tool to address the issues with PCA in this study. 

2.2.6 Multiscale process monitoring 

While traditional PCA and its various extensions assume that the chemical processes 

operate at a single-scale steady condition, the operating conditions of modern processes 

vary from time to time or move from one operating condition to another. The operating 

conditions of processes in practical situations change over time because of the 

variations in the availability of raw materials, changes in set-point, equipment 

degradation and the effects of environmental (seasonal) changes. Nevertheless, the 
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process personals have to meet the market demands for product quality and its safe 

operation. Hence the application of a stable monitoring approach to such operations may 

give rise to a false alarm, even when the process operates in another steady-state 

nominal mode. In order to keep the process under control, the model has to be updated 

automatically or adaptive models must be used (Sun et al., 2012). In the past years, 

another monitoring technique based on wavelet transforms has been developed to 

handle the changes in the process condition. Multiscale PCA (MSPCA), a combination of 

wavelet transform and PCA, was introduced into the process monitoring scheme by 

Bakshi (1998) to separate the components in the data into multiple time scales. When 

the data is decomposed into several time scales, the separated time scale is indirectly 

close to having a constant mean, which solves the issues when PCA is applied (Mirin 

and Wahab, 2014). 

In multiscale PCA, wavelets are used to decompose the data into several views or 

scales before the application of PCA to detect the faults in the process operations. Here, 

the ability of PCA to decorrelate variables is combined with the ability of wavelets to 

decompose the data into multiple scales, eliminating autocorrelation in the observations 

due to the time-frequency localisation property of wavelets. In order to monitor the 

multiscale process, several combinations of PCA with wavelets have been developed 

because of the ability of wavelets to separate multiscale features and approximately 

remove serial or auto-correlations in time signals (Bakshi, 1998; Maulud et al., 2006; 

Misra et al., 2002; Rosen & Lennox, 2001). The MSPCA approach has been extended to 

monitor the nonlinear process by using neural networks to extract the latent nonlinear 

structure from the PCA-transformed data (Fourie & De Vaal, 2000; Shao et al., 1999; 

Geng & Zhu, 2005). Shao et al. (1999) proposed a nonlinear process monitoring and 

fault diagnosis method for the application of an industrial process based on wavelets and 

NLPCA, using an input-training neural network to extract both linear and nonlinear 

correlation from the process data in which the data is first pre-processed using wavelets 

to remove noise and spikes prior to the application of NLPCA in the monitoring 

algorithm. Fourier and De Vaal (2000) also developed a nonlinear multiscale principal 

component analysis (NLMSPCA) technique for process monitoring and fault detection 

based on multilevel wavelet decomposition and NLPCA, using input-training neural 

networks, in which the multiscale representation of the data obtained by using wavelets 

enhances the performance of the monitoring scheme to detect different types of 
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abnormal conditions in the process. Geng and Zhu (2005) presented a novel method of 

wavelet-based adaptive multiscale nonlinear PCA (MS-NLPCA), using an improved 

input-training neural network (IT-NN) for monitoring process signals. The slow and 

feeble changes in fault signals are effectively and accurately detected with a minimum 

rate of false alarms. A multiscale orthogonal nonlinear strategy for multivariate statistical 

process monitoring was proposed by Maulud et al. (2006), using optimal wavelet 

decomposition and an orthogonal NLPCA algorithm to capture the nonlinear 

characteristics of the process data with a minimum number of principal components. 

The concept of KPCA has also been combined with multiresolution analysis for nonlinear 

multiscale process monitoring. In the nonlinear multiscale modelling strategy for fault 

detection and identification proposed by Choi et al. (2008), they applied KPCA in the 

model built with the reconstructed data obtained by performing wavelet transform and 

inverse wavelet transform sequentially on the process data. Deng and Tian (2006) 

developed a monitoring method based on multiscale KPCA for nonlinear dynamic 

processes in which wavelet analysis is combined with nonlinear transformation using 

KPCA. Zhang and Ma (2011) proposed a novel nonlinear process monitoring and fault 

diagnosis technique called multiscale KPCA, and multiscale kernel partial least squares 

based on KPCA and kernel partial least squares (KPLS) models at different scales. In 

the proposed monitoring algorithm, KPCA and KPLS are applied to the multiscale data 

obtained by wavelet decomposition to capture the correlation of process variables at 

different scales. In the abovementioned multiscale methods based on wavelets and 

KPCA, wavelets are used to analyse the dynamic characteristics of process data, while 

the KPCA is used to capture nonlinear principal components by kernel function. 

Although wavelets can extract deterministic and stochastic features at various scales, 

the success thereof is dependent on a number of factors, the most significant being the 

choice of a basis function or mother wavelet for the optimal orthogonal expansion of the 

signal for the application at hand. This mother wavelet should also have some desirable 

properties, such as good time frequency localisations and general admissibility 

properties, including various degrees of smoothness (number of continuous derivatives) 

and a large number of vanishing moments (ensures maximum number of zeros of the 

polynomial at the highest discrete frequency) (Daubechies, 1992; Ganesan et al., 2004; 

Meyer, 1992). A large number of wavelet bases have been developed to meet the 
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requirements, such as completeness, time-frequency localisation, and orthogonality or 

limited redundancy for non-orthogonal base functions. Clearly, choosing an appropriate 

wavelet basis function for a specific purpose is a difficult task for practitioners. In 

addition, while the optimal multiscale decomposition of the signal can be obtained by an 

automatic time-varying adjustment in the mother wavelet’s shape, it does not allow for 

adjusting the nature of the analysing function that is adaptable to the signal 

(Krishnannair, 2010).  

For nonlinear and non-stationary data, an adaptive basis function that is derived from the 

data is more appropriate to represent the variety of underlying physical components in 

the process. Unfortunately, wavelet-based multiscale methods have a prior basis and 

they are not adaptive. Thus, to overcome the above limitations of wavelet-based 

multivariate methods, a data-adaptive multimodal method adapted to the nature of data, 

such as singular spectrum analysis (SSA), was developed and nonlinear versions of 

SSA are proposed for handling the nonlinearity and non-stationary behaviour of the 

process in the following chapters. 
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CHAPTER 3: PROCESS MONITORING 

USING SINGULAR SPECTRUM 

ANALYSIS 

Singular spectrum analysis (SSA) has recently become a promising tool to extract 

information from short and noisy auto-correlated time series by decomposing the data 

into deterministic and stochastic components without prior knowledge of the dynamics 

affecting the time series. These components can be classified as independent additive 

time series of slowly varying trends, periodic series and aperiodic noise (Golyandina et 

al., 2001). SSA does this decomposition by projecting the original time series onto a 

data-adaptive vector basis obtained from the series itself, based on principal component 

analysis (PCA). A multiscale SSA strategy has been proposed to capture both the time 

and frequency domain by treating each process variable as a time series, and the auto-

correlation between the variables is explicitly accounted for (Krishnannair, 2010). It is 

found that, in most cases, the proposed method is superior in detecting the gradual or 

slow process changes and faults of different magnitudes accurately, compared to 

classical statistical process control (SPC) based on latent variable methods. SSA uses 

data-adaptive basis functions and therefore can be expected to provide more flexibility 

than other spectral techniques.  

Singular spectral time-series analysis pre-filters the original time series into a sum of 

different components such as trend, periodic or quasi-periodic, and noise. This is done 

by the singular value decomposition (SVD) of a trajectory or lagged covariance matrix 

obtained from the original time series, followed by reconstruction of the series using 

subsets of eigenfunctions and corresponding principal components.  

More specifically, the SSA methodology is summarised as the following procedure, the 

first step of which is the embedding of the time series into a 𝑀-dimensional time series 

known as the trajectory matrix. In the second step, singular value decomposition is 

applied to decompose the trajectory matrix into a sum of elementary matrices. 
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Subsequently, the elementary matrices that contribute to the norm of the original matrix 

are grouped, with each group giving an approximation of the original matrix. Finally, the 

smoothed approximation of the time series is recovered by diagonal averaging of the 

elementary matrices obtained from decomposing the trajectory matrix.  

3.1 SSA METHODOLOGY 

An outline of the basic SSA methodology is summarised in Figure 3.1 (Golyandina et al., 

2001), and the procedural steps involved in SSA are adopted from Jemwa and Aldrich 

(2006) and Krishnannair (2010). 

 

Figure 3.1: Embedding, decomposition, grouping and reconstruction of a time series 

usingf singular spectrum analysis. 

3.1.1 Step 1: Embedding 

In this step, a time series, 𝑥(𝑡), 𝑡 = 1,2,… ,𝑁, of length 𝑁 is embedded with a window of 

length 𝑀 to construct 𝐾 lagged vectors, 𝐱𝑖 ∈ ℜ
𝑀: 

 𝐱𝑖 = (𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑀 − 1))𝑇  , 1 ≤ 𝑖 ≤ 𝐾,   𝐾 = 𝑁 −𝑀 + 1. (3.1.1) 

These embedded vectors are then augmented into a multidimensional time series, 

commonly referred to as the trajectory matrix in the study of nonlinear dynamic systems, 

since it represents a trajectory of the evolution of the dynamical system represented by 

 

Decomposition 

X=TPT 

  

Lagged 
Trajectory Matrix 

(X) 

Grouping of components 
Reconstruction of 

Original Time 
Series X  =   i t i p i 

T +  j t j p j 
T 
+…  k t k p k   

T 
+ 

Stellenbosch University  https://scholar.sun.ac.za



45 

 

the observed time series  𝐗 = (𝐱1, 𝐱2, … , 𝐱𝐾)
𝑇  (Broomhead & King, 1986; Ghil et al., 

2002):  

 𝐗 =  (𝑥𝑖𝑗)𝑖,𝑗=1
𝐾,𝑀

= [

𝑥(1) 𝑥(2) ⋯ 𝑥(𝑀)
𝑥(2) 𝑥(3) … 𝑥(𝑀 + 1)
⋮ ⋮ ⋱ ⋮

𝑥(𝐾) 𝑥(𝐾 + 1) … 𝑥(𝑁)

]. (3.1.2) 

The augmented matrix, 𝐗 ∈ ℜ𝐾×𝑀 , is in the form of a a Hankel matrix (Strang, 2009), 

that is, 

 𝑥𝑖𝑗 = 𝑥(𝑖 + 𝑗 − 1),   1 ≤ 𝑖 ≤ 𝐾,   1 ≤ 𝑗 ≤ 𝑀. 

3.1.2 Step 2: Singular value decomposition 

A  𝑀 ×𝑀 covariance matrix, 𝐂𝐱 of , 𝐗 is constructed from the trajectory matrix, i.e. 

 
𝐂𝐱 = 

1

𝐾
 𝐗𝑇𝐗 

(3.1.3)  

where  𝐾 = 𝑁 −𝑀 + 1 , and the eigendecomposition of 𝐂𝐱 is computed as a solution of 

the eigenvalue problems 

 𝐂𝐱𝐚𝑘 = 𝜆𝑘𝐚𝑘 , 𝑘 = 1,2, … ,𝑀 (3.1.4)  

where  𝐚𝑘 and 𝜆𝑘 are the 𝑘𝑡ℎ eigenvector and eigenvalue respectively. 

The square root of the non-negative eigenvalues (√𝜆𝑘)  are called the singular values, 

and the ordered set of singular values, 
1 2

...
M

     , is called the singular 

spectrum, from which SSA derives its name. The ordering implies that the 𝑘𝑡ℎ 

eigenvalue explains at least as much of the variance in the data as the (𝑘 + 1)𝑡ℎ 

eigenvalue. Broomhead and King (1986) expressed the singular value decomposition 

(SVD) of the trajectory matrix in terms of eigenfactors of 𝐂𝐱, by setting 𝑑 = max {𝑘 ∈

 {1,2,… ,𝑀}/𝜆𝑘 > 0} and  𝐯𝑘 = 𝐗
𝑇𝐚𝑘/√𝜆𝑘  for  𝑘 = 1,2, … , 𝑑 , and it can be written as  

 𝐗 = ∑ √𝜆𝑘
𝑑
𝑘=1  𝐚𝑘𝐯𝑘

𝑇 = 𝐗1 + 𝐗2 +⋯+ 𝐗𝑑  (3.1.5) 
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where 𝐗𝑘 = √𝜆𝑘  𝐚𝑘𝐯𝑘
𝑇 are bi-orthogonal matrices with rank one, known as elementary 

matrices. 

An alternative approach estimates the covariance matrix 𝐂𝐱 directly from the data such 

that its entries 𝐂𝐱(𝑖, 𝑗) depend only on the lag |𝑖 − 𝑗|, that is, as a Toeplitz matrix (Elsner 

& Tsonis, 1996). Advantages of using each of the approaches have been discussed in 

the literature (Elsner & Tsonis, 1996; Ghil et al., 2002). Without loss of generality, the 

SVD approach is used in this study. 

The SVD of the trajectory matrix in equation (3.1.5) can also be written as a product of a 

score matrix, 𝐓 ∈ ℜ𝐾×𝑀, and a transposed loading matrix, 𝐏 ∈ ℜ𝑀×𝑀 , similar to PCA. 

That is,   

 𝐗 = 𝐓𝑖𝐏𝑖
𝑇 = 𝐭1𝐩1

𝑇 + 𝐭2𝐩2
𝑇 +⋯+ 𝐭𝑑𝐩𝑑

𝑇  (3.1.6) 

where 𝐏𝑖 = √𝜆𝑖𝐯𝑖 and 𝐓𝑖 = 𝐚𝑖 . 

Thus, the mathematical and statistical properties of PCA extend to SSA, since SSA is 

PCA performed on the trajectory matrix. When the variables are highly correlated, the 

leading first few principal components (PCs) capture most of the information in the data. 

Moreover, the approximation error can be minimised by representing the data by the first 

few leading PCs. When the data is distributed normally, the first few leading PCs have 

minimal entropy. For monitoring purpose, a PC explaining a larger portions of the 

variance in the data is considered (Aldrich & Barkhuizen, 2003; Jemwa & Aldrich, 2006; 

Krishnannair, 2010). 

3.1.3 Step 3: Grouping of components 

The additive components of the time series can be separated into the sum of intrinsic 

dynamical components and external noisy components through grouping. A large part of 

the information for the signal can also be compressed through grouping by projecting the 

time series on the subspace of the PCs corresponding to the largest singular values 

(Vitanov et al., 2008). 

Each eigenvector obtained from the eigenvalue decomposition can be used to construct 

a time series of length 𝐾 = 𝑁 −𝑀 + 1 by projecting the vectors along each principal 

direction, 𝑘:   

Stellenbosch University  https://scholar.sun.ac.za



47 

 

 𝐭𝑘(𝑡) =  ∑ 𝑥(𝑡 + 𝑗 − 1)𝐚𝑘
𝑀
𝑗=1 (𝑗)  (3.1.7) 

for 𝑡 = 1,2, … , 𝐾  to obtain principal component scores 𝐭𝑘 . These scores represent the 

new coordinates of the data in the rotated coordinate space. Hence, the time series is 

represented by 𝑝 < 𝑀  leading components, and the 𝑝-dimensional score vectors of the 

decomposed matrix, 𝐓, are given by  

 𝐭(𝑡) =  [𝐭1(𝑡), 𝐭2(𝑡),… , 𝐭𝑝(𝑡)]
𝑇
, 𝑡 = 1,2,… , 𝐾 . (3.1.8) 

The selection of leading components to retain for the extraction of signal features such 

as trends and oscillations can be done in many ways. For example, grouping the indices 

from slowly varying eigenvectors can extract a trend and oscillations can be extracted by 

grouping those indices from eigenvector pairs whose scatter plot resembles a circle or a 

polygon (Thomakos et al., 2002). The percentage contribution of the 𝑘𝑡ℎ principal 

component in the analysed time series can also be used to group components to retain. 

The percent contribution of an eigenvector (or fraction of explained variance) is 

represented by the ratio (Tzagkarakis et al., 2007) 

 𝑅𝑘 = 
𝜆𝑘

∑ 𝜆𝑗
𝑀
𝑖=1

 . (3.1.9)  

The contribution of the elementary matrix,  𝐗 , to the expansion of the trajectory matrix, 

𝐗, can also be represented by the above ratio (Alonso & Salgado, 2005). 

3.1.4 Step 4: Reconstruction 

The convolution of a set of principal components,𝐓, with corresponding eigenvector or 

principal directions, recovers phase information lost in the preceding decomposition: 

 𝐱̃(𝑡 + 𝑗 − 1) =  ∑ 𝐭𝑘(𝑡)𝐚𝑗(𝑘),
𝑝≤𝑀
𝑘=1  𝑡 = 1,2,…𝐾, 𝑗 = 1,2… ,𝑀 . (3.1.10) 

The approximation of the reconstructed time series can be obtained by taking the 

average of the elements on the corresponding diagonals of the elementary matrices 

obtained in the grouping stage. Through diagonal averaging, or Hankelization, the 

elementary matrix obtained in equation (3.1.10) is transformed into a principal 

component of length N to create reconstructed components (RCs) of the original series. 

The diagonal averaging is performed according to 

Stellenbosch University  https://scholar.sun.ac.za



48 

 

 

𝐱̃(𝑖) =  

{
 
 

 
 

1

𝑖
∑ ∑ 𝐭𝑘(𝑖 − 𝑗 + 1)𝐚𝑘(𝑗)

𝑝
𝑘=1

𝑖
𝑗=1 1 ≤ 𝑖 ≤ 𝑀 − 1

1

𝑀
∑ ∑ 𝐭𝑘(𝑖 − 𝑗 + 1)𝐚𝑘(𝑗)

𝑝
𝑘=1

𝑀
𝑗=1 𝑀 ≤ 𝑖 ≤ 𝑁 −𝑀 + 1

1

𝑁−𝑖+1
∑ ∑ 𝐭𝑘(𝑖 − 𝑗 + 1)𝐚𝑘(𝑗)

𝑝
𝑘=1

𝑀
𝑗=𝑖−𝑁−𝑀 𝐾 + 1 ≤ 𝑖 ≤ 𝑁

  (3.1.11) 

where  𝐾 = 𝑁 −𝑀 + 1 . 

The diagonal averaging on the elementary matrices leads to the decomposition of the 

original series into 𝑝 reconstructed components of the fitted values of the reconstruction 

and residual series, capturing the error in the reconstruction. In most physical 

applications, the fitted values of the reconstruction are associated with deterministic 

components (trends) and the residual series is associated with stochastic components 

(noise) in the data. Hence the reconstruction step separates the underlying signal from 

the noise (Thomakos et al., 2002). Moreover, the reconstruction step preserves the 

phase of the time series so that 𝑥(𝑡) and 𝑥̃(𝑡) can be superimposed on the same time 

scale, 1 ≤ 𝑡 ≤ 𝑁.  This is an advantage of using RCs over PCs of length 𝐾, as these do 

not contain direct phase information within the embedding dimension 𝑀 (Krishnannair, 

2010). The reconstructed components, 𝑥̃(𝑖), recover phase information of the time series 

lost in the decomposition stage, and the diagonal averaging in equation (3.1.11) is an 

adaptive optimal filter in the least-squares sense (Ghil et al., 2002; Vautard et al., 1992). 

The typical decomposition of a signal using SSA is illustrated in Figure 3.2. The original 

univariate, auto-correlated and noisy time series is plotted in Figure 3.2(a). The 

decomposition of the original data into five different modes is achieved by using the SSA 

algorithm, as described above. An embedding window of length five was used to build 

the trajectory matrix. The high frequency features in modes 2 to 5 are plotted in Figure 

3.2(c-f). The low-frequency features in the first mode are plotted in Figure 3.2b. The low-

frequency signals in the first mode are reconstructed by using those PCs with the largest 

eigenvalues, and the remaining components are reconstructed by using those PCs with 

eigenvalues decreasing in the ascending order. SSA decomposes the signal into 

principal signals that capture distinct features in the original signal, namely the 

deterministic mean and random variations (Tzagkarakiz et al., 2007). The first few 

deterministic components carry most of the information content of the original signal and 

can give more accurate predictions because of their slow-varying nature. The 

reconstruction of signals at different modes in Figure 3.2 is obtained by using a data-
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adaptive basis function, which has been adapted to the different features of the signal 

(Krishnannair, 2010). 

 

Figure 3.2: Decomposition of an (a) observed signal into multiple scale representations 

using singular spectrum analysis. Here, a sliding window M = 5 was used. The significant 

or deterministic component (b), explaining the most variation in the signal, is associated 

with the leading eigenelement, with (c) to (f) progressively explaining less variability. In 

particular, the last signal is associated with high frequency components (Krishnannair, 

2010). 

Applications of SSA have been widely reported in climatology and geophysical sciences, 

which include the analysis of paleoclimatic time series for the detection of climatic 

oscillations and regime changes in amplitude (Vautard & Ghill, 1989); the analysis of 

global surface air temperature time series for the extraction of global warming trends and 

oscillatory modes from the noisy components (Vautard et al., 1992); climatic oscillations 

reported in the Guliya ice core, their connections to variations in solar radiation and the 

recorded sub-orbital climatic oscillations (Yang et al., 2006); and the detection of 

periodicities and trends in the temporal dynamics of soil salinity (Florinsky et al., 2009). 
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SSA has also been used for the extraction of relevant trends and oscillations in the time 

series in a comparative study on climatic oscillations (Aldrich & Barkhuizen, 2003; Ghil & 

Yiou, 1996).  

Applications of SSA in the biosciences have also been reported in certain studies. 

Mineva and Popivanov (1996) investigated the dynamics of the single-trial readiness 

potentials in human beings using EEG (electroencephalogram) signals. While Pereira 

and Macial (2001) used SSA in ultrasonic analysis, Pereira et al. (2004) extended the 

study to the characterisation of the properties of trabecular bones. Other related 

applications of SSA include ultrasonic detection and imaging of brachytherapy seeds 

(Mamou & Feleppa, 2007); the detection of spatial and temporal variations in shoreline 

positions to identify characteristic patterns in the shoreline response (Rozynski et al., 

2001); the analysis of time series with missing data points (Schoellhamer, 2001); and 

signal-to-noise ratio enhancement (Carniel et al., 2006).  The use of SSA has also been 

reported in econometrics (Hassani & Thomakos, 2010; Hassani and Zhigljavsky, 2009; 

Hassani et al., 2009; 2010; 2013; Thomakos et al., 2002;); biomechanical analysis 

(Alonso et al., 2005); machine condition monitoring (Alonso & Salgado, 2005; Salgado & 

Alonso, 2006; 2007; Wang et al., 2001); computer network behavioural analysis 

(Tzagkarakis et al., 2007; Wu & Gong, 2000); safety control and monitoring in nuclear 

power plants (Palomo et al., 2003); pre-filtering/denoising and smoothing of data 

(Oropeza & Sacchi, 2011); system identification in metallurgical reactors (Aldrich & 

Barkhuizen, 2003); trend extraction (Alexandrov, 2009); time series classification 

(Jemwa & Aldrich, 2006); multimodal process monitoring (Krishnannair, 2010); and  

process analysis and performance assessment of sheet-forming processes (Yuan, 

2015). 

Since SSA is the principal component analysis performed on a trajectory matrix, all 

mathematical and statistical properties associated with PCA apply to SSA, as indicated 

before. The use of statistical concepts in the SSA framework does not require certain 

statistical assumptions, such as stationarity or the normality of residuals (Golyandina et 

al., 2001; Hassani & Zhigljavsky, 2009; Vautard et al., 1989). SSA belongs to a family of 

methods based on empirical orthogonal function (EOF) expansion, whose main 

characteristic is the data-adaptive nature of the basis functions. The variance of the 

decomposition using EOF methods is defined in terms of the basis functions or mode 
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(i.e.{𝐚𝑘} in equation (3.1.4)) and, therefore, unlike in wavelet decomposition, the 

variance distribution does not imply scales or frequency content of the signal. This 

limitation has been cited as a critical flaw of EOF-based methods (Huang et al., 1998). 

However, because of the data-adaptive property, SSA and related methods have been 

used successfully in many applications, as discussed in the above paragraphs. 

3.2 STATISTICAL PROCESS MONITORING USING SINGULAR SPECTRUM 

ANALYSIS  

As discussed in the previous section, SSA separates a time series into additive 

components such as trend, anharmonic oscillations, or noise. Because of the data-

adaptive nature of the basis functions, extracted anharmonic oscillations are usually 

expressed in terms of a much fewer number of the basis functions than would be 

required when using fixed basis functions, for example sines and cosines in Fourier 

analysis. Therefore, the separate analysis of extracted components may give information 

on the underlying dynamics of the physical system that cannot be extracted from the 

analysis or the use of raw measurements, possibly due to confounding influences such 

as noise, auto-correlation, or embedded features with different time-frequency 

localisations. This insight contributes to the development of multiscale process 

monitoring methods based on wavelet decomposition (Aradhye et al., 2003; Bakshi, 

1998; Reis et al., 2008; Yoon & MacGregor, 2004). In these studies, the ‘scale’ 

represents the width of the scaling function or ‘mother wavelet’, and the wavelet 

coefficients at the same scale for different measurements can be considered collectively. 

The proposed use of SSA for process monitoring is motivated by similar reasoning, but 

exploiting the data-adaptive nature of the obtained basis functions in this section and in 

this study in general, and is named multiscale SSA (MS-SSA), as indicated in Chapter 1. 

The basic framework for on-line and off-line process monitoring using SSA is illustrated 

in Figure 3.3. The input data can either be univariate or multivariate, with any of the 

following attributes: stationary or non-stationary; Gaussian or non-Gaussian; random or 

gross errors; independent or correlated; linear or nonlinear; deterministic or stochastic. 

In off-line training, the initial step is the decomposition of variables using SSA into 

different modes. Then the signal at each mode is subsequently reconstructed, 

preserving the phase of the original time series. After the reconstruction step, statistical 

process control (SPC) techniques such as PCA can be applied to monitor the 
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reconstructed data at different modes for significant information on faults, by computing 

the 𝑻2 and 𝑸 statistics in the respective modes. Finally, the control limits of the 

monitoring statistics are computed for fault detection. In on-line training, new sets of 

samples are used to determine the monitoring statistics. If the monitoring statistics 

exceed the control limits then the process is monitored to be out of control; otherwise it 

is normal. More detailed discussion of the above basic steps will follow in the discussion 

of the process monitoring method with SSA.  
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Figure 3.3: Basic steps in the statistical process monitoring method using SSA. 

3.2.1 MS-SSA methodology 

The process monitoring methodology using SSA, multiscale SSA (MS-SSA), involves 

the decomposition of each variable by SSA into multiple models, after which a PCA 

model is developed using the reconstructed variables of each mode, thereby accounting 

for the correlation between variables. Classical PCA is applied to each reconstructed 

multivariate data at each mode, representing the normal operation for calculating control 
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limits for scorers and residuals. For new data, a change in the normal operation (fault) is 

detected if the scores or residuals of the reconstructed data violate the control limits at 

any mode. Multimodal decomposition of the time series data using SSA is illustrated in 

Figure 3.4 and is discussed in detail below (Krishnannair, 2010). 
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Figure 3.4: A schematic summary of multivariate SSA-based multimodal decomposition 

(Krishnannair, 2010). 

3.2.1.1 Multimodal decomposition of data with SSA 

In MS-SSA, the analysis of the process variables at different modes can be obtained by 

applying SSA to each variable separately, using a common window of size 𝑀. For a 

given multivariate time series data 𝐗 with 𝑁 observations on 𝑚 variables, a trajectory 

matrix for each variable 𝐗𝑘
′  is computed by augmenting each variable  with 𝑀 lagged 

copies of itself using equation (3.1.2). Selecting the optimal 𝑀 to use is a design 

challenge and its choice requires elaboration, as it is the parameter that controls the 

trade-off between the amount of significant information and the statistical confidence in 

the extracted information (Broomhead & King, 1986; Ghil et al., 2002). 
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Golyandina et al. (2011) discussed in detail the interplay between the choice of window 

size and the separability of features of interest. In general, large window sizes are 

preferable for a detailed decomposition of a time series, whereas a small window size 

allows for as many repetitions as possible of identical features. Poor choice of the 

window length may result in the mixing of interpretable components. Unfortunately, 

many time series are invariably disparate and, therefore, no general recommendation 

exist on the proper choice of window length. In practice, the choice of 𝑀 is based mainly 

on heuristics, namely the first minimum of mutual information criteria and the first zero of 

the auto-correlation function (Abarbanel, 1997). The estimation of the window size using 

mutual information is based on the determination of a probability distribution on the 

system states and may result in a poor choice of the embedding dimension for any 

incorrect estimation of the probability distribution. 

Estimation of the window size based on the first zero crossing of the auto-correlation 

function for the data depends on the linear independence between the two “state” 

variables, 𝑥(𝑡) and 𝑥(𝑡 − 𝑀) (Bray & Wikswo, 2002). This method gives more reliable 

results than the mutual information criterion, because auto-correlation functions are 

useful for determining residuals, for detecting periodic components in data and for 

identifying the dominant power law noise type (white, flicker, random walk, flicker walk 

and random run) for the particular data type (Krishnannair, 2010). The selection of 

window length for SSA decomposition in this study was based on the first zero of the 

auto-correlation. Irrespective of what criterion was selected, the choice of window size 

must ensure that the lag is large enough for the coordinates to carry as much new 

information as possible, and small enough for the various coordinates not to be far apart. 

In this study, the choice of embedding window size based on the first maximum 

decorrelation point at which the sample auto-correlation was zero gave much more 

reliable results than what could be obtained by choosing some other point as 

decorrelation point for the auto-correlation function of the variables in the data.  

The embedding dimension, 𝑀, for the data in the delay coordinate space can be 

selected such that the points of different lagged vectors in each variable, 𝐱𝑖(𝑙), 𝐱𝑖(𝑘),( 

𝑙 ≠ 𝑘),1 ≤ 𝑖 ≤ 𝑚 , are linearly independent. In this study, the window length 𝑀 was 

selected as the first maximal decorrelation point of variables, or the highest value of 𝑀 

where the sample auto-correlation function of each variable, 𝑐𝑖(𝑀), first crossed zero on 
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the 𝑦-axis (Bray & Wikswo, 2002). Mathematically, 𝑀 is the 𝑓𝑖𝑟𝑠𝑡.𝑚𝑎𝑥{𝑀 𝑐𝑖(𝑀)⁄ = 0}, 

where  

 
𝑐𝑖(𝑀) =  

∑ (𝑥𝑖(𝑗 + 𝑀) − 𝑥̅𝑖)
𝑁
𝑗=1 (𝑥𝑖(𝑗) − 𝑥̅𝑖)

∑ (𝑥𝑖(𝑗) − 𝑥̅𝑖)
2𝑁

𝑗=1

 
(3.2.1)  

and 𝑥̅𝑖 = 
1

𝑁
∑ 𝑥𝑖(𝑗)
𝑁
𝑗=1  is the arithmetic mean of the corresponding variables 𝐱𝑖. 

Thus, given 𝑁 observations of 𝑚 variables, 𝐗 ∈ ℜ𝑁×𝑚 , each variable 𝐱𝑗 for 𝑗 = 1,2, … ,𝑚 

is decomposed by expressing its corresponding trajectory matrix in terms of an ordered 

series of score and loading vector products, i.e. 

 𝐗𝑗
′ = 𝐭𝑗,1𝐩𝑗.1

𝑇 + 𝐭𝑗,2𝐩𝑗,2
𝑇 +⋯+ 𝐭𝑗,𝑀𝐩𝑗,𝑀

𝑇  . (3.2.2) 

In SSA, the PCs with which the trend is obtained share some frequency bands with the 

PCs that represent the noisy component. SSA decomposes the signal without making 

any assumption about the frequency content of each PC, in contrast to other spectral 

techniques, which decompose the signal into disjoint frequency spectra (Golyandina et 

al., 2001; Krishnannair, 2010; Salgado & Alonso, 2006). In SSA, the spectrum of 

singular values only gives the proportion of variance explained by the PC directions and 

has no relation to the notion of scales or frequency of the signal. Hence, the individual 

principal directions will be referred to as modes and the statistical process control 

method can be considered multimodal as opposed to multiscale, as appearing in the 

study by Krishnannair (2010). The ranking of these modes is used to re-constitute the 

original multidimensional time series structure at multiple views or levels. There is no 

specific rule for selecting important modes for process monitoring, and the selection of 

significant modes is based mainly on heuristic criteria. However, important features can 

be extracted by monitoring the first few modes. Since PCs in the first few modes explain 

the maximum amount of variance in the data, those PCs are used to reconstruct the 

signal in the respective modes. 

3.2.1.2 Reconstruction of data in all modes 

The different components that represent the original signal in each mode are 

reconstructed by taking the average along the diagonals of each elementary matrix 

computed using equation (3.1.10). 
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Scaled versions of the original data matrix 𝐗 are then reconstructed by 

 𝐗̃𝑖 = [𝑟(𝐭1,𝑖𝐩1,𝑖
𝑇 )      𝑟(𝐭2,𝑖𝐩2,𝑖

𝑇 )   …       𝑟(𝐭𝑚,𝑖𝐩𝑚,𝑖
𝑇 )]  (3.2.3) 

where 𝑟(. ) is the diagonal averaging function (equation (3.2.3). The term 𝑟(𝐭𝑘,𝑖𝐩𝑘,𝑖
𝑇 ) 

represents the 𝑘𝑡ℎ reconstructed component obtained from the variable 𝑘 for the 𝑖𝑡ℎ 

mode. Hence, at the coarsest level (mode 𝑖 = 1), the data matrix 𝐗 will be represented 

by all 𝑚 process variables reconstructed from their respective first principal component 

loading and score vector pairs only, as shown in equation (3.2.4): 

 𝐗̃1 = [𝑟(𝐭1,1𝐩1,1
𝑇 )       𝑟(𝐭2,1𝐩2,1

𝑇 )   …        𝑟(𝐭𝑚,1𝐩𝑚,1
𝑇 )]  . (3.2.4)  

This is repeated for all 𝑀 modes, resulting in 𝑀 representations of the data, as shown in 

Figure 3.4 above. More clearly, all the reconstructed components associated with the 𝑖𝑡ℎ 

principal directions or group in the decomposition are collected to form a multivariate 

series, 𝐗̃𝑖 , 𝑖 = 1,2,… ,𝑀. In this sense, the method corresponds to multiscale methods 

based on wavelets, except that hierarchical representation is in the time domain and not 

in the wavelet domain.  

3.2.1.3 Statistical process monitoring of the reconstructed signal 

Once the multimodal representations have been obtained after decomposing and 

reconstructing each variable of the multivariate time series, SPC methods can be 

applied to each of the multiple-level representations for fault detection. Thus the  

𝑀 approximations of the original data are subsequently monitored separately using SPC 

methods. That is, each reconstructed matrix 𝐗̃𝑗 is decomposed using PCA:  

 𝑐𝑜𝑣(𝐗̃𝑗)𝐩̃𝑖,𝑗 = 𝐩𝑖,𝑗𝜆𝑖,𝑗  (3.2.5) 

for 𝑖 = 1,2,… ,𝑀 and 𝑗 = 1,2,… ,𝑚, where 𝜆𝑖,𝑗 is the eigenvalue associated with the 𝑗𝑡ℎ 

eigenvector, 𝐩̃𝑖,𝑗 , of the 𝑖𝑡ℎ representation of the original dataset. 

Note that these loadings and corresponding scores, 𝐭̃𝑖,𝑗 , are not the same as those used 

to approximate the original data at the different scales (since the matrices from which 

they are derived are different).  
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Similar to conventional PCA, the appropriate number of principal components retained 

(𝐴) at each scale is selected and the control limits on the monitored indexes (Hotelling’s 

𝑻2 and 𝑸 statistics) are determined using a dataset obtained under normal operating 

conditions (e.g. Kresta et al., 1991). Hotelling’s 𝑻2 statistic for sample 𝑘 is given by  

 𝑻𝑘
2 = 𝐭̃𝑘𝝀

−1𝐭̃𝑘 = 𝐱̃𝑘𝐏̃𝐴𝝀
−1𝐏𝐴

𝑇𝐱̃𝑘 (3.2.6) 

where 𝐭̃𝑘 refers to the 𝑘𝑡ℎ row of 𝐓̃𝐴, the matrix of 𝐴 score vectors from the PCA model, 

and 𝝀−1 is the diagonal matrix containing the inverse of the eigenvalues associated with 

the 𝐴 principal components retained in the model. The squared residuals, or 𝑸 statistics, 

resulting from approximating the data by the PCA model can be shown to be  

 𝑸̃𝑘 = 𝐞̃𝑘𝐞̃𝑘 = 𝐱̃𝑘(𝐈 − 𝐏𝐴𝐏𝐴
𝑇)𝐱̃𝑘

𝑇  (3.2.7) 

where 𝐞̃𝑘 is the 𝑘𝑡ℎ row of  𝐄̃ , and 𝐈 is the identity matrix of appropriate size.  

Given new data, 𝐗𝑛𝑒𝑤, a time-lagged expansion is performed on each variable using a 

window length of 𝑀. This is followed by eigenvalue decomposition of the resulting 

trajectory matrices. Subsequently, a set of multilevel representations of the original data 

is obtained using the same parameters as for the normal data. The values of the 𝐓2 and 

𝑸 statistics are also calculated, using equation (2.2.12) and equation (2.2.13), for the 

new datasets and are compared to the corresponding control limits determined on the 

basis of the training set for each 𝑘𝑡ℎ representation. That is, the scores of the new data 

are calculated by projecting these data onto the 𝐴 principal component loadings 

calculated with equation (3.2.3): 

 𝐭̃𝑛𝑒𝑤,𝑖,𝑗 = 𝐗̃𝑛𝑒𝑤,𝑖
′ 𝐩̃𝑖,𝑗. (3.2.8)  

If, at a specific mode, 𝑻2 or 𝑸 for the reconstructed new dataset is outside the calculated 

control limits, the process is judged to be out of control.  

The use of multiple tests increases false positives error, i.e. the likelihood of incorrectly 

assigning an event as abnormal. For a set of independent tests, the significance level of 

each test must be adjusted such that the overall significance for all tests taken together 

equals the nominal value. Bonferroni’s method can be used to adjust the significance 
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values (𝛼) at each level (Bakshi, 1998; Yoon & McGregor, 2004). Thus, for an 𝑀 level 

decomposition, the required Bonferroni adjustment is given by  

 𝛼𝑎𝑑𝑗 = 1 − (1 − 𝛼𝑛𝑜𝑚𝑖𝑛𝑎𝑙)
1
𝑀⁄ . (3.2.9)  

In short, SSA is a nonparametric data adaptive technique and the application of SSA 

does not require any statistical assumption such as stationarity of an analysed series 

and normality of a residual. SSA can effectively handle stationary, non-stationary and 

seasonal time series. SSA decomposes a time series into interpretable components, 

such as trends, harmonic components and residuals for further applications such as 

forecasting and process monitoring. Since SSA can be applied to short time series and 

is beneficial for analysis of nonlinear dynamics (Hassani, 2007; Hassani & Zhigljavsky, 

2009). 

However, the multimodal SSA strategy that has been proposed to capture the features in 

multiple levels by treating each process variable as time series and the auto-correlation 

between the variables are explicitly accounted for (Krishnannair, 2010). It is found that in 

the case of multivariate auto-correlated systems, the proposed method is superior in 

detecting the gradual or slow process changes and faults of different magnitude 

accurately compared to classical statistical process control (SPC) based on latent 

variable methods. SSA uses data-adaptive basis functions and, therefore, can be 

expected to provide more flexibility than other spectral techniques.  
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CHAPTER 4: PROCESS MONITORING 

WITH NONLINEAR SINGULAR 

SPECTRUM ANALYSIS 

In SSA, a linear approximation of the embedded dataset is sought, which accounts for 

the maximum amount of variance in the data. Since in SSA the lagged copies of time 

series are analysed by linear PCA, it can be expected that “lossy” feature extractors are 

obtained where a nonlinear description is more appropriate for the data on hand. 

Moreover, in SSA, the data is reconstructed based on the leading principal components 

and all other minor principal components are discarded in the reconstruction process. 

However, for data with nonlinear characteristics, the minor components always carry 

important information (Xu et al., 1992). Unfortunately, retaining minor components has 

the undesirable effect of too many decomposition levels – a familiar variant of the bias-

variance trade off scenario in statistical modelling (Hastie et al., 2011). SSA can also 

give misleading information in analysing anharmonic signals with too many modes since 

the signal energy is scattered into many SSA modes (Hsieh & Hamilton, 2003; Hsieh, 

2004). Hence nonlinear extensions of SSA proposed by Hsieh and Wu (2002) have 

been used to deal with significant intrinsic nonlinearity associated with the real-world 

processes.  

In this study, nonlinear generalisation of SSA, which is called multimodal nonlinear SSA, 

has been proposed with auto-associative neural networks (Kramer, 1191), classical 

multidimensional scaling (Cox & Cox, 1994) and kernel MDS (Williams, 2002) to exploit 

nonlinear redundancies that are detected by multimodal SSA. The proposed methods 

use nonlinear SSA to extract nonlinear features from the data by decomposing each 

variable into different modes as well as the nonlinear correlation of the variables. Thus, 

most of the limitations in the use of multimodal SSA in nonlinear data can be improved 

by evaluating the data at the respective modes with nonlinear singular spectrum analysis 

rather than basic SSA, as was the case in the previous studies.  
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Moreover, little work exists in the literature regarding the integration of MSPC with 

methods such as neural networks, CMDS, KMDS and singular spectrum analysis for 

process monitoring in chemical processes.  Thus, in this study the aim was to improve 

monitoring performance of chemical process systems by the application of multivariate 

statistical methods that combine nonlinear singular spectrum analysis with the PCA 

monitoring method. Hence, an alternative, nonlinear, multimodal MSPC method is 

proposed to analyse the lagged copies of the time series in SSA that uses NLPCA, 

CMDS and kernel MDS instead of PCA in SSA decomposition. These methods are 

called multimodal NLSSA, multimodal DSSA and multimodal KDSSA. These methods 

aim to address some of the limitations of basic SSA-based process monitoring (MS-

SSA) by introducing a variation in the SSA decomposition procedure. This is explained 

in detail in this chapter. In the multimodal NLSSA method (MM-NLSSA), NLSSA is used 

to extract the multilevel characteristics/features as well as the nonlinear correlation of 

variables in the data. The proposed MM-NLSSA combines the NLPCA concept with 

featured decomposition of data into multiple modes based on SSA. In multimodal DSSA 

technique (MM-DSSA), SSA decomposition is performed on the dissimilarity matrix of 

process data using MDS. In this method MDS handles the nonlinear correlation of the 

data in multiple modes in the decomposition procedure of basic SSA. That is, SSA is 

combined with MDS for nonlinear extraction of components in multiple modes. In 

multimodal KDSSA (MM-KDSSA), SSA is used to extract the multiple features using 

kernel multidimensional scaling (kernel MDS). In this technique, kernel MDS is used in 

basic SSA decomposition to handle the nonlinearity in the data. The proposed MM-

NLSSA involves nonlinear extraction of multiple components of process signals obtained 

by reconstructing covariance structure of points in a low-dimensional space. On the 

other hand, MM-DSSA and MM-KDSSA extract nonlinear multiple components by 

reconstructing dissimilarities between pairs of data points by distance in a reduced 

dimensional space using linear and Gaussian kernels. 

The proposed multimodal monitoring strategy extends the suitability of nonlinear SSA to 

statistically monitor processes based on nonlinear, auto-correlated measurements. 

Additionally, the resulting nonlinear PCA model at multiple modal is more sensitive in 

detecting changes in a process. These ideas are to be illustrated by suitable industrial 

data as indicated in chapter1. The basic idea in the above proposed methodology is that 

uncorrelated, nonlinear, principal components are analysed using conventional linear 
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statistical analysis techniques at different modes, which is equivalent to nonlinear 

analysis of original data. Application of the proposed technique is demonstrated using 

simulated data and the Tennessee Eastman Challenge process in this section and the 

next chapter. 

4.1 NONLINEAR SINGULAR SPECTRUM  ANALYSIS (NLSSA) 

The objective of nonlinear SSA (NLSSA) is to capture both linear and nonlinear 

relationships between process variables by decomposing the data into multiple modes 

using data adaptive basis functions. This objective is achieved by replacing PCA with an 

auto-associative neural network in the decomposition process of SSA. Hsieu and Wu 

(2002) developed the NLSSA method based on NLPCA with a circular node at the 

network bottleneck (NLPCA.cir) to study the anharmonic nature of tropical stratospheric 

wind and pointed out that the general configuration of the NLPCA.cir is capable of 

extracting both open and closed curve solutions. 

In the NLSSA method, the first three steps of SSA are used to pre-filter the data as 

described in chapter 3 (section 3.1), then the principal components of the first few 

leading SSA modes  

 𝐭(𝑡) =  [𝐭1(𝑡), 𝐭2(𝑡), … , 𝐭𝑝(𝑡)  ],  𝑡 = 1,2,… , 𝐾  (4.1.1) 

are used as input to a feed-forward neural network mapping through a bottleneck to the 

output 𝐭′ as shown in Figure 4.1.  
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Figure 4.1: Schematic diagram of an auto-associative neural network (Hsieh, 2004) for 

approximating nonlinear principal components from SSA modes with a circular node at 

the bottleneck layer with two neurons p and q. 

The model in Figure 4.1 is a standard, feed-forward neural network with three neurons 

denoted by circles enclosed between the input layer 𝐭 on the left hand and the output 

layer 𝐭′ on right-hand side. The encoding layer with 𝑚 = 2 is placed next to the input 

layer with 𝑙 = 3 neurons. The bottleneck layer with two neurons in the middle of the 

network is followed by a decoding layer with 𝑚 = 2 neurons; and lastly, the output layer 

with 𝑙 = 3 neurons.  

Kirby and Miranda (1996) introduced the above network for extracting closed curve 

solutions. The original NLPCA network introduced by Kramer (1991) in Figure 2.4 is 

replaced with two neurons 𝑝 and 𝑞 in the bottleneck confined to lie on a unit circle with 

one degree of freedom by an angle 𝜃 as shown in Figure 4.1. The periodic or wave 

modes in the data can be extracted effectively using NLPCA.cir because of its ability to 

extract closed curve solutions (Hsieh, 2001). 

In SSA, each periodic mode had to be split into a pair of modes such as stochastic and 

deterministic, since the analysis using PCA technique models the data by a straight line 

rather than by a closed curve (Hsieh & Wu, 2002). Thus, the use of NLPCA.cir can 
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combine two or more SSA modes into one NLSSA modes. The general configuration of 

NLPCA.cir models both open and closed curve solutions unlike the original NLPCA, 

which models only open curve solutions. Moreover, NLPCA.cir is more general than 

NLPCA and hence, is used to perform NLSSA (Hsieh & Wu, 2002). 

As shown in equation (2.2.20) in chapter 2 (section 2.2.2), in NLPCA.cir the input vector 

𝐭 of length 𝐾 = 𝑁 −𝑀 + 1 is mapped to encoding layer (first hidden layer) 𝒉(𝐭) with 

elements  

 𝒉𝑘
(𝐭)
= tanh ((𝒘(𝐭)𝐭 + 𝐛(𝐭))

𝑘
) , 𝑘 = 1,2,… ,𝑚  (4.1.2)  

of length 𝑚 and 𝒘(𝐭) is a weighted matrix with 𝑚 rows and 𝐾 columns, 𝒃(𝐭) contains the 

bias parameter of length 𝑚. Hyperbolic tangent functions are used as a transfer function 

𝑮1 as in equation (2.2.20). 

The mapping from the encoding layer to the bottleneck layer with coupled neurons 𝑝 and 

𝑞 is performed with a linear transfer function. The initial states 𝑝0 and 𝑞0 are computed 

as 

 𝑝0 = 𝒘
(𝐭). 𝒉(𝐭) + 𝑏̅(𝐭) and  𝑞0 = 𝐰̃

(𝐭). 𝒉(𝐭) + 𝑏̃
(𝐭)

 (4.1.3)  

where 𝒘(𝐭), 𝒘̃(𝐭) are weighted parameters and 𝑏̅(𝐭), 𝑏̃(𝐭) are bias parameters. 

The circular node is define as 

 𝑝 =  
𝑝0

𝑟⁄  and   𝑞 =  
𝑞0
𝑟⁄  (4.1.4)  

where 𝑟 =  (𝑝0
2 + 𝑞0

2)
1

2 and satisfies the unit circle equation 𝑝2 + 𝑞2=1 (Kirby & Miranda, 

1996; Hsieh & Wu, 2002). Hence there is only one angular degree of freedom from the 𝜃 

at the bottleneck layer because of the above circle constraint. 

A hyperbolic tangent function is used for the mapping from the bottleneck layer to the 

decoding layer (𝑭1), as shown in equation (2.2.23), which is given as 

 𝒉𝑘
(𝐬)
= tanh ((𝒘(𝐬)𝑝 + 𝒘̃(𝐬)𝑞 + 𝒃(𝐬))𝑘), 𝑘 = 1,2,… ,𝑚.  (4.1.5) 
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The network output is represented by 

 𝐭𝑖
′ = (𝒘(𝐬)𝒉(𝐬) + 𝒃̅(𝐬))𝑖.  (4.1.6) 

The optimal values of weight and bias parameters are determined by minimising the 

mean square error m.s.e of 𝐭′ relative to 𝐭, which is given as 

 𝐽 =  〈‖𝐭 − 𝐭′‖2〉.  (4.1.7) 

For a better nonlinear solution, the number of hidden neurons 𝑚 ≥ 2 is used in the 

encoding and the decoding layers where as one hidden neuron is used in the bottleneck 

layer as shown in Figure 4.1. Hence, for any given number of hidden neurons in the 

input and output layer, one hidden neuron in the bottleneck layer will be enough to 

approximate any continuous function to arbitrary accuracy. The selection of number of 

neurons 𝑚 in the encoding and decoding layer follow a general assumption that the 

nonlinear capability of the network is increased with a larger number of , but also give 

over-fitted solutions (Hsieh & Wu, 2002). The number of neurons (𝑚) in the encoding 

and decoding layers is set to be equal in this study. Several rules have been used in the 

literature for the selection of number of neurons to avoid over-fitting in the training phase 

of the network. To have better generalisation performance, a procedure called early 

stopping was used in this study in which the m.s.e was monitored by gradually 

increasing the number of neurons and the training is stopped when m.s.e decreases 

steadily. Hence, the number of neurons which realise the minimum m.s.e is selected to 

avoid over-fitting in the training process.  

The neural network outputs 𝐭′ are the NLSSA mode 1 approximation of the first leading 

SSA modes (PCs). The NLSSA reconstructed component 1 (NLRC1) is the 

reconstruction of the original time series. The elementary matrix is obtained by 

multiplying  

 𝐭′ =  [𝐭1
′ ,   𝐭2

′ , … , 𝐭𝑝
′ ] (4.1.8)  

by the corresponding SSA eigenvectors,  

 𝐚 =  [𝑎1, 𝑎2, … , 𝑎𝑝]  (4.1.9) 
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which are transformed into NLRC1 through diagonal averaging as explained in the step 

4 of SSA decomposition. 

The first nonlinear SSA (NLSSA) mode extracted from NLPCA.cir is a continuous curve 

solution, which is obtained by principal components nonlinearly. The residual vector 

obtained by subtracting the first NLSSA mode 𝐭′ from 𝐭 is the input to the NLPCA.cir 

network for the second NLSSA mode. This procedure can be repeated for subsequent 

modes. 

4.2 MULTIMODAL NONLINEAR SSA (MM-NLSSA) 

The MM-NLSSA is the PCA modelling of each reconstructed signal resulting from the 

multimodal decomposition of the original signal using NLSSA. The MM-NLSSA 

methodology consists of decomposing each variable by NLSSA into multiple modes, 

after which the PCA model is developed using the approximated variable at each mode. 

This accounts for the nonlinear correlation between the variables. Control limits for 

scores and residual at each mode are computed as in classical multivariate statistical 

process monitoring method (Kresta et al., 1991) using data representing normal 

operation. For new data, a fault or a significant change in the process parameter detects 

whether the scores or residuals of the reconstructed data violate the control limits at any 

mode. The proposed MM-NLSSA algorithm follows the monitoring framework shown in 

Figure 3.3 with use of NLSSA for decomposition of data into different modes. The MM-

NLSSA also uses the same procedure for the selection of parameters in SSA 

decomposition in the linear case of multimodal SSA discussed in the previous chapter 

(section 3.2.1). The schematic summary of multimodal decomposition of NLSSA for the 

respective modes is illustrated in Figure 4.2.  

The first step of MM-NLSSA, is the decomposition of the data matrix 𝐗(𝑛 × 𝑚) with 𝑚 

variables and 𝑛  observations, using NLSSA as described in the above section. That is 

each column of 𝐗 is decomposed by applying SSA using a common window size 𝑀 as 

discussed in the decomposition step of basic SSA in chapter 3 (section 3.1.1 and 3.1.2). 

In this study, the embedding window dimension is selected based on the first maximal 

decorrelation point of the autocorrelation function of each variable obtained by using 

equation (3.2.1). Thus, through SVD of the covariance matrix of the trajectory matrix 

𝐗𝑗
′, 𝑗 = 1,2,… ,𝑚 , the scores and the corresponding loading vectors are computed as 
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solution of the eigenvalue problems, as discussed in the SSA decomposition step. After 

SSA decomposition, the score matrix 𝐓 = [𝐓1, 𝐓2, … , 𝐓𝑚], where 𝑻𝑗 = 𝐭𝑗,𝑖, 𝑗 = 1,2,… ,𝑚, 

𝑖 = 1,2, … , 𝑝 1, 2 ...j m , 1, 2 , ...i p  is  computed by using equation (3.1.7) with the first 𝑝 

leading PCs, where each score 𝐭𝑖,𝑗 is a time series of length 𝐾 = 𝑛 −𝑀 + 1. A nonlinear 

PCA model is constructed for using each 𝐓𝑗 as the inputs to the NLPCA.cir. The NLPCA 

reconstructed component 1, 𝐓̃ =  [𝐓̃1  , 𝐓̃2 , … , 𝐓̃𝑚] (NLPC1) is the approximation of 𝐓 by 

the NLPCA mode 1. The trajectory matrix 𝐗𝑗
′ can be expressed in terms of an ordered 

series of nonlinear scores and loading vectors by multiplying these approximated 

nonlinear PCs (NLPCs) from the mode 1 with the corresponding SSA eigenvectors from 

SSA modes. That is 

 𝐗𝑗
′ = 𝐓̃𝑗𝐏𝑗

𝑇 = 𝐭̃𝑗,1𝐩𝑗,1
𝑇 + 𝐭̃𝑗,2𝐩𝑗,2

𝑇 +⋯+ 𝐭̃𝑗,𝑝𝐩𝑗,𝑝
𝑇 , 𝑗 = 1,2, …𝑚. (4.2.1) 

Summing over (diagonal averaging) 𝑝 modes gives the reconstruction of the time 

series 𝐗̃𝑗
′, 𝑗 = 1,2,… ,𝑚, from the NLSSA mode 1, which can be considered as the 

multimodal approximation of mode 1. After the first NLSSA mode has been obtained, the 

nonlinear scores extracted from the first NLPCA.cir mode can be subtracted from the 

original scores to get the residuals. These residuals then are the input into the network 

to extract the second NLSSA mode. All other different modes are approximations of time 

series from respective NLSSA modes. Figure 4.2 illustrates the approximation of the 

𝑖𝑡ℎscale in MM-NLSSA.  

Finally, as indicated in the monitoring procedure of MS-SSA and Figure 3.3, PCA is 

applied to the reconstructed data matrix 𝐗̃ =  [𝐗̃1
′ , 𝐗̃2

′ , … , 𝐗̃𝑚
′ ] obtained by nonlinear linear 

transformation of the original data 𝐗 . The number of PCs and the control limits on the 

monitored statistics 𝑻2 and 𝑸 at each mode are calculated as discussed in section 

(3.2.1.3). More specifically, each reconstructed matrix 𝐗̃𝑗, 𝑗 = 1,2,… ,𝑚 in each mode is 

decomposed by PCA using equation (3.2.5). By using data representing normal 

operating conditions, the control limits for 𝑻2 and 𝑸 statistics are calculated. The 𝑻2 and 

𝑸 for sample 𝑘  are computed using equations (3.2.6) and (3.2.7). The significance level 

at each mode is adjusted using equation (3.2.9).  
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For new data set 𝐗𝑛𝑒𝑤 the lagged trajectory matrix 𝐗𝑛𝑒𝑤,𝑗
′  ,𝑗 = 1,2, …𝑚 for each variable 

is calculated using the window length 𝑀.The new score matrix is: 

 𝐓𝑛𝑒𝑤 = [𝐓𝑛𝑒𝑤,1, 𝐓𝑛𝑒𝑤,2, … , 𝐓𝑛𝑒𝑤,𝑚  ] (4.2.2)  

where 𝐓𝑛𝑒𝑤,𝑗 = 𝐭𝑛𝑒𝑤,𝑗,𝑖, 𝑗 = 1,2,… ,𝑚, 𝑖 = 1,2,… , 𝑝 is obtained through eigenvalue 

decomposition of the resulting trajectory matrices and the first 𝑝 leading PCs are used as 

the inputs to the NLPCA.cir. After extracting the first NLSSA mode 𝐓̃𝑛𝑒𝑤, the residual  

𝐓𝑛𝑒𝑤 − 𝐓̃𝑛𝑒𝑤 can be the input to the second NLPCA mode and so on for all other higher 

modes.  

The multimodal approximation of new data for each mode is obtained through the 

diagonal averaging of the reconstructed trajectory matrix 𝐗̃𝑛𝑒𝑤,𝑗
′ , represented by the 

product of the new approximated nonlinear score matrix 𝐓̃𝑛𝑒𝑤,𝑗 and the loading vector 𝐏𝑗, 

where 𝑗 = 1,2,… ,𝑚 obtained from the corresponding modes of the data operating under 

normal condition. The 𝑻2 and 𝑸 statistics for new data are computed using new scores 

obtained by the application of PCA on each reconstructed mode of the new data set 

using equations (2.2.12) and (2.2.13) and are compared with corresponding control 

limits calculated using normal data. The process is monitored to be out of control, if 𝑻2 or 

𝑸 statistics of the reconstructed new data set exceeds the control limits at a specific 

mode. 
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Figure 4.2: Schematic summary of multivariate NLSSA based multimodal decomposition.  
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MM-NLSSA methodology: An illustration 

The MM-NLSSA algorithm is illustrated by data representing a simple mathematical 

example (Dong & McAvoy, 1996). The following nonlinear mathematical model consists 

of three variables x1, x2 and x3 with added independent and identically distributed random 

noises e1, e2, and e3. 

 x1 = t + e1 (4.2.3) 

 x2 = t2 - 3t + e2 (4.2.4) 

 x3 = -t3 + 3t2 + e3 (4.2.5) 

where ei ∈ N(0, 0.01) , t ∈ [6, 15] ,is uniformly distributed and i = 1,2 ,3. 

The first 900 samples generated by the above equations are taken as normal data. A 

fault condition (Case 1) is generated by changing the parameter of the  

variable x3 according to  

 x3 = - 1.1t3.3 + 3.2t1.7 + e3
 (4.2.6) 

and keeping the other variables unchanged. A test data (Case 0) in which no fault was 

present was also generated as a control set for performance evaluation of MM-NLSSA. 

The data for normal and abnormal conditions are shown in Figure 4.3. 
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Figure 4.3: Data for normal operating condition (NOC) and abnormal operating condition 

(ANOC). 

SSA with window size 𝑀 = 331, is determined using equation (3.2.1) on the basis of the 

maximum value of the decorrelation point where the auto-correlation functions of the 

variables are zeros, as indicated in Figure 4.4. Here the size 331, corresponding to the 

first point of maximal decorrelation point of the three variables, was applied to the normal 

data. The first three PCs from each variable obtained by SSA decomposition accounted 

for at least 90% variance of the augmented data. These PCs ( 𝐓𝑖, 𝑖 = 1,2, … ,𝑚) are used 

as the input to NLPCA.cir network, with two hidden neurons in the encoding and 

decoding layers of the first variable, six hidden neurons for the second variable and 

three hidden neurons for the third variable respectively. The mean square error (𝑚. 𝑠. 𝑒) 

between NLPCA.cir network output (𝐓̃𝑖) and the original PC (𝐓𝑖) was minimum with the 

respective hidden neurons in those variables when compared with fewer or a larger 

selection of neurons in the hidden layers. Thus, the selection of the proper number of 

neurons in the encoding and decoding layer was essential to avoid the over fitting of the 

data for any false alarm in the monitoring chart. 
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Figure 4.4: Sample autocorrelation functions of the variables. The first maximal 

decorrelation point is 331. 

The NLPCA.cir network output for each variable (𝐓̃𝑖) are the NLSSA mode 1 

approximation for the three leading PCs. The NLSSA reconstructed components of the 

time series in the first mode/level is the nonlinear approximation of the original time 

series by NLSSA mode 1. This can be determined by multiplying the approximated PCs 

from NLPCA.cir with the corresponding SSA eigenvectors and diagonal averaging the 

matrices 𝐗̃𝑖
′ = 𝐓̃𝑖𝐏𝑖

𝑇 = [𝐓̃1𝐏1
𝑇 , 𝐓̃2𝐏2

𝑇 , … , 𝐓̃𝑚𝐏𝑚
𝑇 ], 𝑖 = 1,2, … ,𝑚   for each variable. The 

residual (𝐓̃𝑖
′ = 𝐓𝑖 − 𝐓̃𝑖  , 𝑖 = 1,2,… ,3)  of the approximated PCs from NLSSA mode 1 can 

be used as the input to the NLPCA. cir network for the second NLSSA mode. Multiplying 

the approximated PCs from the NLSSA mode 2 with the corresponding SSA 

eigenvectors and diagonal averaging the respective matrices as in the mode 1 

extraction, give the components of the time series in mode/level two of the original data. 

These procedures can be repeated for all other modes with the respective residuals of 

the approximated PCs from the corresponding NLPCA.cir mode. The approximated 

signals in NLSSA modes are the closed curve solution of the original time series 

obtained with NLPCA.cir by combining two or more basic SSA modes. Thus, most of the 

features in the time series can be extracted with first few NLSSA modes to avoid the 

over- fitting of data. The m.s.e was found to be a minimum in the reconstructed 

components in mode 1 and 2 compared to that in higher modes. Hence, the first two 

modes from the first two NLSSA modes were chosen for PCA monitoring for fault 

detection. Figure 4.5 and Figure 4.6 show the reconstructed components of the normal 

and abnormal data in the first two modes/levels from mode 1 and 2. In Figure 4.5 the 

reconstructed components are the deterministic components of the original signal for the 
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both normal and abnormal data. On the other hand, in Figure 4.6 the reconstructed 

component of normal data represents noisy components while the reconstructed 

component of the test data represents the deterministic component of the data. Hence 

the faults in the process can be detected by using the first two modes. 

 

Figure 4.5: Reconstructed variables in normal operating conditions (NOC) and abnormal 

operating conditions (ANOC) in MM-NLSSA mode 1. These smothered reconstructed 

components represent the deterministic components of the data carrying more 

information. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



74 

 

 

Figure 4.6: Reconstructed variables of normal and abnormal data in MM-NLSSA mode 

2.The reconstructed variables in ANOC are smoother than the reconstructed variable in 

the NOC.The reconstructed variables in NOC are associated with noisy components. 

The PCA model is used to monitor the reconstructed components in each mode and the 

SPE and 𝑻2 plots are used to detect the faults in each mode using equation (3.2.6) and 

equation (3.2.7). The control limits for both 𝑻2 and SPE statistics were set at 95% 

confidence level. The performance of MM-NLSSA in Case 0 and Case 1 are 

summarised in Table 4.1 on the basis of the percentage of reliability as shown in Figure 

4.7 – 4.9. The reliability index is defined as the fraction of test samples violating 95% 

control limit in SPE and 𝑻2 plots. Any change in the process variables and the 

relationship among the process variables results in an increase in the 𝑻2 and SPE value 

of the process data, because the new measurements cannot be explained by the PCA 

model. Thus, any kind of abnormality in the process can be detected by monitoring both 

𝑻2 and SPE charts of the continuous data.  
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Table 4.1: Reliability % of MM-NLSSA for Case 0 and Case 1 

Case 0 Case 1 

 T2 statistics SPE statistics T2 statistics SPE statistics 

Mode1 0% 1% 0% 83.9% 

Mode 2 13% 16.8% 77.5% 32.9% 

 

 

Figure 4.7: The T2 and SPE chart for MM-NLSSA in Case 0 in mode1 for both the normal 

condition with the 95% confidence limit. The monitoring statistics are calculated using the 

first and last 900 samples taken from the normal condition of the simulated system. The 

dotted line separate the train and test data in the above figure.In T2 chart all the samples 

are below the control limit while 1% test data samples exceeded the control limit in the 

SPE chart. 
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Figure 4.8: The T2 and 𝑸 chart for MM-NLSSA in Case 0 in mode 2 with 95% confidence 

limit in the normal condition. In T2 chart 13% of test samples in the normal condition 

violated the control limit while16.8% test samples exceeded the control limits in 𝑸  in mode 

2. This variation in the reliability percentage from the expected percentage (5%) also 

indicates the presence of noise (high frequency components) in the reconstructed 

variables in mode 2 of the normal data in Case 0. 

 

 

Figure 4.9: The T2 and SPE chart for MM-NLSSA in Case1 for of both normal data data (first 

900 samples) and faulty data (last 900 sample) with 95% confidence limit. The T2 chart in 

mode 2 gave the highest reliability (77.5%) while in the SPE chart the highest relaibily 

percentage was (83.9%) obtained in mode 1. 
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The reliability measure obtained in the normal condition (Case 0) in the first mode is zero 

for 𝑻2 and 1% for the 𝑸 statistics. This indicates that calculations of control limits are 

successful in finding the deviations in the process when there are no faults. However, in 

the second mode the reliability percentage was above 5% due to the added noise in 

mode 2 of the reference model. The MM-NLSSA model detected the change in the 

variable 3(x3) both in SPE and 𝑻2 chart as indicated in the table and in the Figure 4.9. 

The MM-NLSSA mode 2 detected the fault by extracting the nonlinear relationship 

among the PCs of SSA in both SPE and 𝑻2 chart while mode 1 detected the change in 

variable 3 only in the SPE chart. The deterministic reconstructed components in mode 1 

in Figure 4.5 indicate that the components of the original signal in Figure 4.3 are 

approximated more accurately than that in Figure 4.6. Hence, a better detection of the 

parametric change of variable 3 is achieved in mode 1 of the 𝑸 chart. The parametric 

change in variable 3 causes the PCs in the test data to move away from the plane of the 

reference model. In addition, some points have overlap with the normal reconstructed 

data in the original plane of the reference model as shown in Figure 4.5. Thus, an 

increase in value of the SPE of the residuals is obtained compared to 𝑻2  values in mode 

1. On the other hand, the 𝑻2 statistics is not very sensitive in mode 1 of MM-NLSSA 

since the reconstructed component of the faulty data within the model is not significant. 

This is the reason for the better performance of the SPE chart in mode 1. Nevertheless 

most of the reconstructed components in mode 2 of the test data are located within the 

model plane and some of them located outside the model plane as shown in Figure 4.6. 

Hence, 𝑻2 statistic detected the fault at higher number when compared to 𝑸 statistics. In 

general, the performance of MM-NLSSA in the first two modes shows that the proposed 

nonlinear SSA monitoring method can effectively detect the parametric changes in 

nonlinear process systems. More clearly, NLSSA effectively extracts nonlinear relations 

in PCs from different SSA modes while they are linearly uncorrelated. 

Even though MM-NLSSA detected the faults in the process, this approach involves 

increased computational processing time due to the complexity in nonlinear optimisation 

of the NLPCA network for the extraction of nonlinear components in different modes. 

The creation of an optimum reference model based on 900 data samples also shows 

that the MM-NLSSA requires a massive amount of data for building the reference model 

as with the case of NLPCA models. In practical situations, to obtain a huge data set that 

operates in normal conditions is very difficult and is a challenge for the development of a 
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reference model. In addition, as discussed in the previous sections, the use of NLPCA in 

SSA decomposition by no means changes the nature of nonlinearity implication of the 

original multivariate data. A variation in SSA decomposition step is proposed in the next 

section in order to extract nonlinear components in multiple modes as an alternative 

solution for process monitoring to solve the issues with MM-NLSSA as mentioned 

earlier. In the proposed method the correlation between the variables are measured 

using the dissimilarity (inter-distance) scale structure in SSA decomposition instead of 

the variance-covariance (or correlation) matrix as in basic SSA. A multimodal process 

monitoring framework, as shown in Figure 3.3, that uses classical multidimensional 

scaling instead of PCA as in basic SSA decomposition, is proposed for monitoring 

processes that have nonlinear characteristics. 

4.3 SINGULAR SPECTRUM ANALYSIS WITH DISSIMILARITY MATRIX (DSSA) 

The objective of using a dissimilarity measures in SSA is to decompose time series data 

into multiple levels/modes of resolution, where the eigenvectors used for score 

projection are derived from a dissimilarity matrix instead of the correlation matrix used in 

basic SSA. The trajectory matrix 𝐗 in equation (2.2.42) is scaled to zero mean and unit 

variance prior to the spectral decomposition step in SSA. Subsequently, the classical 

MDS algorithm is applied in the spectral decomposition of SSA. The multivariate scores 

are obtained through eigenvalue decomposition of double-centered squared dissimilarity 

matrix of size 𝐾 ×𝐾 using equation (2.2.40) on the scaled trajectory matrix 𝐗 in terms of 

the number of observations in the process data. The squared dissimilarity matrix 𝐃2 on 𝐗 

is  

 𝐃2 = 𝐗𝐗𝑇. (4.3.1)  

The double centering equation in equation (4.3.2) below is then applied to 𝐃2 to obtain 

the inner product matrix 𝐁; 

 
𝐁 = −

1

2
 𝐉𝐾𝐃

2 𝐉𝐾 (4.3.2)  

where 𝐉𝐾 = (𝐈𝐾 − 𝟏𝐾 𝟏𝐾
𝑇 𝐾⁄ ), 𝐈𝐾 is an identity matrix, and 𝟏𝑘 is a vector with elements of 

1 and size 𝐾. 
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Using eigenvalue decomposition of 𝐁 in equation (4.3.2) and using equations (2.2.41 - 

44), the principal component scores can be computed as:  

 𝐭𝑘 = 
1

√𝜆𝑘
 𝐗𝑇𝐮𝑘 (4.3.3)  

where, 𝑘 = 1,2, … , 𝐾, 𝜆𝑘 and 𝐮𝑘 are the corresponding eigenvalues and eigenvectors of 

the double-centered dissimilarity matrix 𝐁. 

The dimension of the features or scores retained can be determined using the ratio of 

the retained and total eigenvalues (Cox & Cox, 1994), that is,  

 ∑ 𝜆𝑖
𝑝
𝑖=1 ∑ 𝜆𝑖

𝐾
𝑖=1⁄   (4.3.4) 

where 𝜆𝑖 is the 𝑖𝑡ℎ eigenvalue, 𝑝 is the number of selected dimensions and 𝐾 = 𝑛 −𝑀 +

1 (i.e. number of samples in the dissimilarity matrix). Hence, for 𝑝 < 𝐾, leading scores 

are selected based on equation (4.3.4) to represent the time series. The 𝑝-dimensional 

score vectors of the decomposed matrix 𝐓 are given by 

 𝐭(𝑡) =  [𝐭1(𝑡), 𝐭2(𝑡),… , 𝐭𝑝(𝑡)]
𝑇
, 𝑡 = 1,2,… , 𝐾.  (4.3.5) 

Hence the eigenvalue decomposition of the trajectory matrix can be written as: 

 

𝐗̃ =  ∑𝐱̃𝑖

𝑝

𝑖=1

 (4.3.6)  

where 𝐱̃𝑖 = √𝜆𝑖 𝐮𝑖𝐭𝑖
𝑇 . 

The multimodal approximations of the reconstructed signals in equation (4.3.6) can be 

achieved through diagonal averaging described in SSA decomposition (step 4). 

4.4 MULTIMODAL NONLINEAR SSA WITH A DISSIMILARITY MATRIX (MM-

DSSA) 

The MS-DSSA methodology consists of decomposing each variable by DSSA into 

multiple modes after which the PCA model is developed using the approximated variable 

at each mode, thereby accounting for nonlinear correlation between the variables. 

Control limits for scores and residual at different modes are computed as in classical 
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multivariate statistical process monitoring method (Kresta et al., 1991) using data 

representing normal operation. For new data, a fault or a significant change in the 

process parameter is detected if the scores or residuals of the reconstructed data violate 

the control limits at any mode. The schematic summary of MM-DSSA procedure is 

shown in Figure 4.10 and the process monitoring procedure follows the basic process 

monitoring framework shown in Figure 3.3 where DSSA is used for decomposition step. 
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Figure 4.10: Schematic summary of decomposition of data using MS-DSSA at the ith scale. 

The first step in MM-DSSA is the decomposition of the data matrix 𝐗(𝑛 ×𝑚) with 𝑚 

variables and 𝑛 samples by applying DSSA as explained in the previous section. More 

specifically, each column of 𝐗 is decomposed by applying DSSA using a common 

window size 𝑀. The window length 𝑀 is the first maximal decorrelation point of the 

variables in the process, which is obtained through equation (3.2.1). The scaled 
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trajectory matrix of each variable 𝐱𝑗, 𝑗 = 1,2,… ,𝑚 are expressed in lower dimension 𝑝 

(𝑝 < 𝐾) by decomposing them using the inter-distance scale/dissimilarity measures of 

sample points in order to obtain the scores and the corresponding loading vectors, that 

is: 

 𝐗𝑗
′ = √𝜆𝑗,1 𝐮𝑗,1𝐭𝑗,1

𝑇 + √𝜆𝑗,2 𝐮𝑗,2𝐭𝑗,2
𝑇 +⋯+√𝜆𝑗,𝑝𝐮𝑗,𝑝𝐭𝑗,𝑝

𝑇 . (4.4.1)  

The original data matrix is then reconstructed by 

 𝐗̃𝑖
′ = [𝑟(√𝜆1,𝑖𝐮1,𝑖𝐭1,𝑖

𝑇 )    𝑟(√𝜆2,𝑖𝐮2,𝑖𝐭2,𝑖
𝑇 )   …       𝑟(√𝜆𝑚,𝑖𝐮𝑚,𝑖𝐭𝑚,𝑖

𝑇 )]  (4.4.2) 

where 𝑟(. ) is the diagonal averaging function (equation (3.1.11)). Thus, the data matrix 

𝐗̃1
′  in the first mode (level 𝑖 = 1) will be represented by all 𝑚 process variables 

reconstructed from their respective first eigenvector and score vector only. 

 𝐗̃1
′ = [𝑟(√𝜆1,1𝐮1,1𝐭1,1

𝑇 )     𝑟(√𝜆2,1 𝐮2,1𝐭2,1
𝑇 )   …     𝑟(√𝜆𝑚,1𝐮𝑚,1𝐭𝑚,1

𝑇 )]. (4.4.3) 

This is repeated for all 𝑝 modes, resulting in 𝑝 representations of the data. Lastly, 

analysis of the reconstructed data matrix 𝐗̃′ = [𝐗̃1
′ , 𝐗̃2

′ , … , 𝐗̃𝑝
′  ] of 𝐗 obtained through 

equation (4.4.2) are performed using PCA as explained in the monitoring process of MS-

SSA in chapter 3 (section 3.2.1). The number of PCs and the control limits on the 

monitored indices 𝑻2and 𝑸 at each mode are also determined accordingly. 

That is each reconstructed matrix 𝐗̃𝑗
′ , 𝑗 = 1,2, … , 𝑝 is decomposed using PCA and 

equation (3.2.5).The number of principal components at each mode and the control 

limits on 𝑻2and 𝑸 statistics are calculated using data operating at the normal condition. 

The 𝑻𝟐 and 𝑸 statistics for sample 𝑘 are obtained using equation (3.2.6) and equation 

(3.2.7).  

For on-line monitoring, the lagged trajectory matrix of the new data set 𝐗𝑛𝑒𝑤 is 

calculated using the window length 𝑀 calculated in normal the operating condition. This 

is followed by calculating new scores of the new data set by projecting the lagged 

trajectory matrix onto the 𝑝 loading vectors obtained in the normal operating condition. 

Thus, the new data set in different modes can be represented by all 𝑚 process variables 
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reconstructed from their respective eigenvectors obtained in the normal operating 

condition and the new score vector as 

 𝐗̃𝑛𝑒𝑤,𝑖
′ = [𝑟(√𝜆1,𝑖𝐮1,𝑖𝐭𝑛𝑒𝑤,1,𝑖

𝑇 )   𝑟(√λ2,𝑖𝐮2,𝑖𝐭𝑛𝑒𝑤,2,i
𝑇 )  …  𝑟(√𝜆𝑚,𝑖𝐮𝑚,i𝐭𝑛𝑒𝑤,𝑚,𝑖

𝑇 )]  (4.4.4) 

where 𝑟(. ) is the diagonal averaging function. 

The 𝑻2 and 𝑸 statistics for new data are calculated by using new scores obtained by 

using equation (3.2.8). The significance level at each mode is also adjusted using 

equation (3.2.9). If 𝑻2  and 𝑸 statistics for the reconstructed data at a specific mode 

exceed the control limit then the process is monitored to be out of control at that mode. 

MM-DSSA methodology: An illustration 

The MM-DSSA algorithm is evaluated by using the nonlinear data obtained through 

equations (4.2.3- 5) indicated in the previous section with three variables x1, x2 and x3 

with added independent and identically distributed random noises e1, e2, and e3 (Dong & 

McAvoy, 1996), where ei ∈ N(0, 0.01) , t ∈[10, 11] is uniformly distributed,and i = 1,2 ,3. 

The first 100 samples obtained by using equations (4.2.3-5) are taken as normal data. A 

fault condition (Case 1) is generated by changing the parameter of the variable x3 

according to equation (4.2.6) and keeping the other variables unchanged. A control set 

(Case 0) was also generated in which no fault was present for performance evaluation of 

MM-DSSA. The data for normal and abnormal conditions are shown in Figure 4.11. 
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Figure 4.11: Data for normal operating condition (NOC) and abnormal operating condition 

(ANOC) in MM-DSSA. 

An embedding window of size 𝑀= 37 was determined on the basis of the autocorrelation 

functions of the variables for SSA decomposition using equation (3.2.1) and is shown in 

Figure 4.12 as discussed in the previous chapter (section 3.2). The dissimilarity matrix 

on the trajectory matrices of each variable are computed using equation (4.3.1). The 

loading factors for each variable (𝐭𝑖 , 𝑖 = 1,2,… , 𝐾, 𝐾 = 𝑛 −𝑀 + 1)are obtained through 

the eigenvalue decomposition of double-centered dissimilarity matrix using equation 

(4.3.2) and equation (4.3.3). The selections of the score vectors to represent the original 

set of dissimilarities in multiple modes are determined based on equation (4.3.4) and 

also using the scree plot of the eigenvalues. The ratio of the retained and total 

eigenvalue is 95%. 
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Figure 4.12: Sample autocorrelation functions of the variables. The first maximal 

decorrelation point is 37. 

Figure 4.13 shows the plot of the logarithm of the singular values of the double centered 

dissimilarity matrices obtained from the lagged trajectory matrix of the normal data. The 

slowly decreasing sequence of eigenvalues can be produced by pure noise series while 

closely paired eigenvalues represent purely harmonic series (Golyandina et al., 2001, 

Hassani, 2007, Hassani & Thomakos, 2010). Thus, a break or knee can also be used in 

the scree plot of the eigenvalues in Figure 4.13 to separate the different components in 

the signals such as trends and noise. A drop in the singular value occurs around 

component 12, which can be considered the start of the noise component. Hence, the 

first 12 principal scores from variables 1, 2 and 3 are selected to obtain the multimodal 

approximation of the original data based on the threshold from equation (4.3.4) as well 

as the scree plots in Figure 4.13. 
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Figure 4.13: Logarithms of the eigenvalues of the dissimilarity matrix of the normal data. A 

drop in the eigenvalue occurs at 12th singular value. 

The MM-DSSA reconstructed components of the original set of dissimilarities in mode 1 

are approximated using equation (4.4.3), based on the first principal scores, eigenvalues 

and eigenvectors obtained from the double centered dissimilarity matrices of each 

variable. Thus, all other modes can be determined by multiplying the approximated 

scores with the corresponding eigenvectors and diagonal averaging the matrices for 

each variable. 

Hence, the first twelve modes from 65 modes were chosen for PCA monitoring for fault 

detection based on equation (4.3.4) and also based on the distribution of eigenvalues as 

shown in Figure 4.13. The selected modes represent different dynamical component of 

the original time series at different resolutions. The first twelve principal scores obtained 

from DSSA decomposition accounted for at least 95% variation of the augmented data 

from each variable. The percentage provides the sense of proximity of the reconstructed 

scorers with respect to the measures of dissimilarity scales (in terms of sample inter-

distance measure) instead of variance (Yunus & Zhang, 2010). Figure 4.14 (a-d) shows 

the reconstructed components of the normal and abnormal data in the first, second 

fourth and the last mode (twelve).  
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(a)  

 

(b)  
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(c)  

 

(d)  

Figure 4.14 (a), (b), (c) and (d): Reconstructed variables in the normal operating condition 

(NOC) and abnormal operating condition (ANOC) in mode 1, 2, 4 and 12 for MM-DSSA. The 

smoother reconstructed variables in NOC and ANOC in mode 1, 2 and 4 in figure 23 a-c are 

associated with deterministic components. Figure 23 (d) shows the reconstructed 

variables in mode 12 which is associated with the noisy components. 

The reconstructed components in each mode are monitored using PCA as explained in 

the monitoring step of MS-SSA in the previous chapter (section 3.2.1.3). 𝑻2 and SPE 

plots are used to detect faults in each mode using equation (3.2.6) and (3.2.7). The 

control limits for both statistics were set at 95% confidence level. The performance of 
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MM-DSSA is summarised in Table 4.2 based on the percentage of reliability as shown in 

Figure 4.15-4.16. The reliability index is defined as the fraction of test samples violating 

the 95% control limit in 𝑻2 and SPE plots. Any kind of abnormality that is not explained 

by the PCA model of the reconstructed components results in an increase in the  𝑻2 and 

SPE values of the process data as mentioned earlier. The reliability measure obtained in 

Case0 for MM-DSSA is close to the expected false alarm rate of 5% as shown in Figure 

4.15. Therefore, the control limits are successfully determined in the normal operating 

condition to detect the faults in abnormal condition.  

Table 4.2: Reliability % of MM-DSSA  

Monitoring statistics Case0 Case 1 

T2 8% 15% 

Q 5% 99% 

 

Figure 4.15: The T2 and SPE chart for MM-DSSA in Case 0 with 95% confidence limit. The 

first 100 samples represent the normal train data and the last 100 samples represent the 

test data from normal operating condition. In these charts the number of samples 

exceeded the control limits are within the expected range. 
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Figure 4.16: The T2 and SPE chart for MM-DSSA in Case 1 with 95% confidence limit for 

both the normal data (first 100 samples) and the faulty data (last 100 samples). In the T2 

chart 15% (highest reliability) of samples in faulty data exceeded the control limits in mode 

4. The highest reliability (99%) in the SPE chart is obtained from the reconstructed 

components in mode 1. 

The MM-DSSA model detected the change in variable 3 (x3) in the SPE chart of mode 1 

as indicated in Table 4.2 and in the Figure 4.16. The better performance of MM-DSSA 

was detected at mode 4 and 1 out of 12 modes in the 𝑻2  and SPE chart respectively. 

The high reliability percentage obtained in the SPE chart in mode 1 in this study clearly 

shows that the parametric change in variable 3 (x3) broke the correlation in the normal 

data that caused the variation in the residual space; hence, the reconstructed 

component of faulty data is placed outside the reference model plane as shown in Figure 

4.14(a). Thus, MM-DSSA captured the nonlinear correlation in data in the first mode, 

which is the deterministic component of the data as shown in Figure 4.14(a) and leads to 

the reduced dimensionality selection to build the PCA model of the reconstructed 

signals. Hence, monitoring of reconstructed signals in those modes using PCA leads to 

a reduction in the computational time and cost of process monitoring task. In this context 

MM-DSSA can resolve the issues with conventional methods when monitoring a 

nonlinear data as well as the issue of nonlinear optimisation in NLSSA when using 
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NLPCA.cir. On the other hand, the issue of using a massive amount of data used to 

build the optimised reference model in the previous study can be resolved by using MM-

DSSA in process monitoring.  

The variation in SSA decomposition that was proposed in the above section used a 

dissimilarity measure to decompose time series data into multiple levels/modes of 

resolution in which the scores are projected on eigenvectors derived from a dissimilarity 

matrix instead of correlation matrix as used in basic SSA. This is equivalent to using 

CMDS procedure instead of PCA in the decomposition step of basic SSA to extract and 

project principal scores, as described in the previous section. The use of kernel functions 

in data analysis provides a nonlinear mapping of data and recently became a popular 

tool for data reduction in process monitoring as discussed in Chapter 2 (section 2.2.3). 

The duality between KPCA and CMDS discussed in kernel MDS in section 2.2.4 also 

shows that CMDS can be used for nonlinear dimensionality reduction by using kernels 

as similarities where the points in the Euclidean space are equal to the input vectors. 

Hence, the devised SSA framework based on CMDS extracts and approximates the 

nonlinear components in the data into multiple levels/modes (Zhang & Jordan, 2009). In 

this study we used Gaussian kernels for the nonlinear mapping from input space to the 

Euclidean space. This is also considered as using a kernel MDS algorithm (Williams, 

2002) in SSA decomposition and named the singular spectrum analysis with kernel MDS 

(KDSSA), which is described in the following section.  

4.5 SINGULAR SPECTRUM ANALYSIS WITH KERNEL MDS (KDSSA) 

In KDSSA, the trajectory matrix 𝐗 in equation (3.1.2) is scaled to zero mean and unit 

variance prior to the spectral decomposition step in SSA. Subsequently, the kernel MDS 

algorithm is applied in the spectral decomposition of SSA. The multivariate scores are 

obtained through eigenvalue decomposition of a double centered kernel matrix of size 

𝐾 × 𝐾 using equation (2.2.40) and Gaussian kernels (equation (2.2.39)) on the scaled 

trajectory matrix 𝐗 in terms of the number of observations in the process data. The 

squared dissimilarity matrix 𝐃2 on 𝐗 is determined by equation (4.3.1). 
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The kernel matrix 𝑲 is obtained through the squared exponential kernel. That is, 

 𝑲 = 𝒌(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 {−𝜃(𝑥𝑖 − 𝑥𝑗)
𝑇
(𝑥𝑖 − 𝑥𝑗)} = exp (−𝜃𝐃

2). (4.5.1)  

In this study the parameter 𝜃 is 0.5. Then the double-centering equation in equation 

(4.5.1) below is applied to 𝑲 to obtain the inner product matrix 𝐁; 

 𝐁 =  𝐉𝐾𝑲𝐉𝐾 (4.5.2)  

where 𝐉𝐾 = (𝐈𝐾 − 𝟏𝐾 𝟏𝐾
𝑇 𝐾⁄ ), 𝐈𝐾 is an identity matrix, and 𝟏𝐾 is a vector with elements of  

1 and size 𝐾. 

Eigenvale decomposition on 𝐁 in equation (4.5.2) yields the reconstruction of the 

trajectory matrix 

 

𝐗̃ =∑
1

√𝜆𝑖

𝑝

𝑖=1

𝐕𝑖𝐕𝑖
𝑇𝑲 (4.5.3)  

where 𝐕𝑖 is the eigenvector and 𝜆𝑖 is the corresponding eigenvalue of 𝐁 (double 

centered kernel matrix)  and 𝑖 = 1,2,… , 𝑝. 

The dimension of the retained eigenvectors can be determined using the ratio of the 

retained and total eigenvalues (Cox & Cox, 1994) as shown in equation (4.3.4). Hence, 

for 𝑝 < 𝐾 leading scores are selected based on equation (4.3.4) to represent the time 

series.  

The multimodal approximations of the reconstructed signals in equation (4.5.3) can be 

obtained through diagonal averaging described in SSA decomposition (step 4). 

4.6 MULTIMODAL NONLINEAR SSA WITH KERNEL MDS (MM-KDSSA) 

In MM-KDSSA, each variable is decomposed into multiple modes by KDSSA. The PCA 

model is then built using the reconstructed variable at each mode for the extraction of 

nonlinear correlation between the variables. The schematic summary of the MM-KDSSA 

algorithm is shown in Figure 4.17. The monitoring algorithm is developed based on the 

process monitoring framework provided in Figure 3.3, using KDSSA for the 

decomposition step. By using data representing a normal operation, control limits for 

scores and residuals at different modes are computed as shown in the classical 
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multivariate statistical process monitoring method (Kresta et al., 1991). For new data, if 

the scores or residuals of the reconstructed data violate the control limits at any mode 

indicates the occurrence of a fault or a significant change in the process parameter. 
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Figure 4.17: Schematic summary of decomposition of data using MM-KDSSA at the ith 

mode. 

The first step in MS-KDSSA is the decomposition of each variable in the data matrix 

𝐗 (𝑛 × 𝑚) with 𝑚 variables and 𝑛 samples by applying KDSSA using a common window 

size 𝑀 as explained in section 4.5. The window length 𝑀 for embedding the data in the 

delay coordinate space can be selected such that the points of different lagged vectors 

in each variable 𝐗𝑖(𝑙), 𝐗𝑖(𝑘), (𝑙 ≠ 𝑘),1 ≤ 𝑖 ≤ 𝑚 are linearly independent. In this study, the 
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window length 𝑀 is selected as the first maximal decorrelation point of variables in the 

process system using equation (3.2.1). 

The scaled trajectory matrix of each variable 𝐱𝑗,𝑗 = 1,2,… ,𝑚 is expressed in lower 

dimension 𝑝 (𝑝 < 𝐾) by decomposing them using double-centered kernels as described 

in section 4.5 (equation (4.5.2)). This is obtained through Gaussian kernels in which the 

squared inter-distance scale/dissimilarity measures of sample points in each variable 

served as input space; that is 

 𝐗𝑗
′ = 

1

√𝜆𝑗,1
𝐯𝑗,1𝐯𝑗,1

𝑇 𝑲+ 
1

√𝜆𝑗,2
𝐯𝑗,2𝐯𝑗,2

𝑇 𝑲+⋯+
1

√𝜆𝑗,𝑝
𝐯𝑗,𝑝𝐯𝑗,𝑝

𝑇 𝑲. (4.6.1) 

The original data matrix can be reconstructed by 

 𝐗̃𝑖
′ = [𝑟 (

1

√𝜆1,𝑖
𝐯1,𝑖𝐯1,𝑖

𝑇 𝑲)     𝑟 (
1

√𝜆2,𝑖
𝐯2,𝑖𝐯2,𝑖

𝑇 𝑲)…   𝑟(
1

√𝜆𝑚,𝑖
𝐯𝑚,𝑖𝐯𝑚,𝑖

𝑇 𝑲)] (4.6.2) 

where 𝑟(. ) is the diagonal averaging function (equation (3.1.11)). Here the data matrix 

𝐗̃1
′  in the first mode (level 𝑖 = 1) represents all 𝑚 reconstructed process variables from 

the corresponding first eigenvector and eigenvalues only. 

 𝐗̃1
′ = [𝑟 (

1

√𝜆1,1
𝐯1,1𝐯1,1

𝑇 𝑲)    𝑟 (
1

√𝜆2,1
𝐯2,1𝐯2,1

𝑇 𝑲)…     𝑟(
1

√𝜆𝑚,1
𝐯𝑚,1𝐯𝑚,1

𝑇 𝑲)].  (4.6.3) 

This procedure is repeated for all 𝑝 modes, resulting in 𝑝 multimodal representations of 

the data. Finally, approximation of the reconstructed data matrix 𝐗̃′ of  , obtained through 

equation (4.6.2), are monitored using PCA as explained in section 3.2. That is, each 

reconstructed matrix 𝐗̃𝑗
′ is decomposed using PCA, where 𝑗 = 1,2,… , 𝑝 as explained in 

section (3.2.1.3) using equation (3.2.5). That is, the 𝑝 approximations of the original data 

are subsequently monitored separately. 

Similar to conventional PCA, the appropriate numbers of principal components retained 

at each scale are selected and the control limits on the monitored indexes (Hotelling’s 𝑻2 

and 𝑸 statistics) are determined using a data set obtained under normal operating 

conditions. The Hotelling’s 𝑻2 and 𝑸 statistic for sample 𝑘 are calculated using equation 

(3.2.6) and equation (3.2.7).  
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For on-line monitoring, the lagged trajectory matrix of the new data 𝐗𝑛𝑒𝑤 is computed 

using the common window 𝑀 obtained in the normal condition. Then the kernel matrix 

𝑲𝑛𝑒𝑤 = 𝒌(𝑥𝑖 , 𝑥𝑗) is computed using equation (4.5.1), where 𝑥𝑖 ∈ 𝐗 and 𝑥𝑗 ∈ 𝐗𝑛𝑒𝑤. The 

reconstruction of the trajectory matrix of the test data can be computed as 

 𝐗̃𝑛𝑒𝑤
′ = ∑

1

√𝜆𝑖

𝑝

𝑖=1

𝐕𝑖𝐕𝑖
𝑇𝑲𝑛𝑒𝑤 (4.6.4) 

where 𝐕𝑖  is the eigenvector and 𝜆𝑖 is the corresponding eigenvalue of double-centered 

kernel matrix of 𝐗. The multimodal approximation of the test data is obtained by 

performing the diagonal averaging of the above matrix (equation (4.6.4)) by equation 

(3.1.11). The values of 𝑻2  and 𝑸 statistics are also calculated for the new data sets, i.e. 

the scores of the new data are calculated by projecting the reconstructed test data onto 

the retained principal component loadings calculated by equation (3.2.8). The 

significance level at each scale are adjusted using equation (3.2.9). If, at a specific 

scale, 𝑻2or 𝑸 statistic for the reconstructed new data set is outside the calculated control 

limits, the process is judged to be out of control.  

MM-KDSSA methodology: An illustration 

The MM-DSSA methodology is illustrated by data representing a simple mathematical 

example obtained by using equation (4.2.3- 5), as discussed in section 4.2.1 and section 

4.4.1.  

The first 100 samples generated by the above equations are taken as normal data.  

A fault condition (Case 1) is generated by changing the parameter of the variable x3 

according to  

 x3 = - 1.1t3 + 3.2t2 + e3
 (4.6.5) 

and keeping the other variables unchanged. A test data (Case 0) in which no fault was 

present was also generated as a control set for performance evaluation of MM-KDSSA. 

The data for normal and abnormal conditions are shown in Figure 4.18. 
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Figure 4.18: Data for normal operating condition (NOC) and abnormal operating condition 

(ANOC) in MM-KDSSA. 

An embedding window of size 𝑀 =37, for SSA decomposition using equation (3.2.1), 

was determined on the basis of the maximum value of the decorrelation point where the 

auto-correlation functions of the variables are zero, as discussed in chapter 3 (section 

3.2.1) and shown in Figure 4.12. The dissimilarity measure of the trajectory matrices of 

each variable are computed using equation (4.3.1). The data points in the dissimilarity 

matrix are mapped into a feature space by using the Gaussian (exponential) kernel 

function in equation with 𝜃  = 0.5 as discussed in section 4.5 (equation (4.5.1)). The 

double centered kernel matrix 𝐁 is computed using equation (4.5.2). The eigenvalue (𝜆𝑖) 

and the eigenvector (𝐕𝑖) for each variable (𝑖 = 1,2… ,𝐾, 𝐾 = 𝑛 −𝑀 + 1) are obtained 

through the eigenvalue decomposition of double-centered kernel matrix in equation 

(4.5.2) for the reconstruction of the trajectory matrix using equation (4.5.3). The selection 

of the eigenvalues and eigenvectors to represent the original set of dissimilarities in 

multiple modes are determined based on equation (4.3.4) and also using the distribution 

of the eigenvalues. The ratio of the retained and total eigenvalue explains at least 95% 

of variance in this study. Figure 4.19 shows the plot of the logarithm of singular values of 

the double centered kernel matrix of the dissimilarity measures calculated from the 

lagged trajectory matrices of the data under normal condition. A plateau in the 

eigenspectra shows the components with almost equal singular values. In this study the 
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first three eigenvalues are selected, because a drop in singular value occurred around 

the third component in Figure 4.19. Hence, the first three eigenvalues and eigenvectors 

from variables 1, 2 and 3 are selected to obtain the multimodal approximation of the 

original data based on the threshold from equation (4.3.4) as well as the scree plots in 

Figure 4.19. 

 

Figure 4.19: Logarithms of the eigenvalues of the kernel dissimilarity matrix of the normal 

data. A drop in the eigenvalue occurs at the 3rd singular value. 

The variables are reconstructed into multiple levels through diagonal averaging of the 

data obtained by projecting the transformed dissimilarity measure onto the normalised 

eigenvectors using equation (4.6.1) and (4.6.2). The extracted components at different 

levels/modes represent different characteristics of the time series. The first three modes 

from 65 modes are selected for PCA monitoring that is explained in section (3.2.1.3) for 

fault detection. Figure 4.20(a-c) shows the reconstructed components of the normal and 

abnormal data in the first three modes. In Figure 4.20(a-c) the reconstructed 

components are the deterministic components of the original signal. Hence, most of the 

information in the signal can be extracted just by monitoring the deterministic component 

of the data in those modes. 
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(a)  

 

(b)  
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(c)  

Figure 4.20: Reconstructed variables in the normal operating condition (NOC) and the 

abnormal operating condition (ANOC) in mode 1, 2, and 3 for MM-KDSSA. The smoother 

reconstructed variables in the normal and abnomal data in the first three modes represent 

deterministic components. 

The first three eigenvectors obtained from the KDSSA decomposition accounted for at 

least 99% variation of the augmented data from each variable. The 𝑻2and 𝑸 statistics 

plots are used to detect faults in each mode using equation (3.2.6) and (3.2.7). The 

control limits for both statistics were set at 95% confidence level.  

The performance of MM-KDSSA is summarised in Table 4.3 based on the percentage 

reliability as obtained from Figure 4.21.The reliability index is defined as the percentage 

of test samples violating the 95% control limit in 𝑻2 and 𝑸 plots as discussed in the 

previous studies. Any kind of change that is not captured by the PCA reference model of 

the reconstructed components results in an increase in the 𝑻2 and 𝑸 value of the 

process data as mentioned earlier. The reliability measure obtained in Case 0 for MM-

KDSSA is also close to the expected false alarm rate of 5% as shown in Figure 4.22. 

Thus, the control limits are successfully computed in the normal operating condition to 

detect the faults in abnormal situation. 
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Table 4.3: Reliability % of MM-KDSSA 

Method Monitoring Statistics Case0 Case1 

MM-KDSSA T2 8% 39% 

Q 5% 100% 

 

 

Figure 4.21: The T2 and SPE chart for MM- KDSSA in Case 1 with 95% confidence limit for 

both nomal data (first 100 samples) and faulty data (last 100 samples). The reconstructed 

components in the first mode gave the highest reliability (39%) in T2 chart while the 

components in the 3rd mode gave 100% reliability in SPE chart. 
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Figure 4.22: The T2 and SPE chart for MM- KDSSA in Case 0 with 95% confidence limit for 

the normal condition. The first 100 samples were taken as train data and the last 100 

samples were taken as test data.The number of samples exceeded the control limit in 

these charts were within the expected reliability percentage. 

The value of 𝑸 statistics exceeded the confidence limit in all the three modes and the 

highest reliability percentage were obtained in mode 3, as indicated in the Table 4.3 and 

in Figure 4.21. This shows that 𝑸 statistics captured the systematic variation due to the 

parametric change in the variable (x3) better than 𝑻2 statistics. On the other hand, 

𝑻2 statistics are not very sensitive to the fault in this case. This is because the variability 

of the faulty data within the model is not significant and the parametric change in 

variable three caused a large difference between the variables and its projection onto 

the latent variables in the model .This is the reason for the better performance of 𝑸 chart 

as shown in the Figure 4.20(a) and 20(c). The results in Table 4.3 also indicate that 

performance of MM-KDSSA in detecting the change in variable x3
 was successful and 

best detection for both statistics occurred at the first mode and the third mode. This 

clearly indicates that MM-KDSSA, benefiting from the linear data structure using 

Gaussian kernels in the feature space, could capture the nonlinearity in the input space 
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to obtain the better or comparable monitoring results in this study. Hence, MM-KDSSA 

can also resolve the issues with conventional methods when monitoring nonlinear data 

with a dissimilarity structure in basic SSA decomposition.  

In conclusion, the process parameters are physical process coefficients, which are 

directly related to the monitored process. Thus, the deviations of the process parameter 

from their normal value can be realated to a significant change in the process.The 

proposed nonlinear SSA methods showed better performace in detecting changes in the 

process parameter in the above illustrated studies with nonlinear SSA; hence, better 

dection of faults in the process system. 
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CHAPTER 5: MULTIMODAL NONLINEAR 

SSA: PROCESS MONITORING AND 

COMPARISON 

In this chapter, the proposed methodologies of MM-NLSSA, MM-DSSA and MM-KDSSA 

are evaluated and compared by means of three case studies: (i) the Tennessee 

Eastman Challenge problem used as a benchmark in many process control studies 

(Downs & Vogel, 1993), and (ii) industrial process from Base Metal Flotation Plant. The 

performance of the proposed multimodal nonlinear methods are compared with the 

classical multivariate process monitoring method based on PCA as well as process 

monitoring based on multimodal basic SSA (MS-SSA). Dissimilarity plots are used to 

visualise the global structure of the similarity between different sample points in different 

positions relative to each other in Tennessee Eastman Challenge process. These plots 

are used to understand the relationship between sample points in three difficult fault 

cases in the Tennessee Eastman process (TE-Process), which are unobservable from 

the process data. 

5.1 CASE STUDY 1: BASE METAL FLOTATION PLANT 

In this study, MM-KDSSA, MM-DSSA and MM-NLSSA monitoring methods are applied 

to industrial data from an Australian base metal flotation plant. In this context, the 

proposed methods can be used for early detection of any abnormal event that could 

potentially lead to sudden changes in the plant. These changes mainly occur due to the 

disturbances in the grinding circuit as well as to the zinc rougher concentrate grade, 

which are directly related to the textural features/structure of the froth in the zinc 

roughers. This is achieved by identifying variations in textural features or parameters of 

the froth such as froth mobility, froth stability, bubble size, colour and distribution, which 

were characterised by the neighbouring grey level dependence matrix method. The 

quantification of these features is a difficult task and any error in the control of the 

process can lead to serious problems in process operation. Thus, the proper monitoring 

and control of the variations in the image features of the froth are useful in tracing the 
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cause or origin of those changes in troubleshooting efforts. Changes in the froth 

appearance could predict changes in metullargical performance, such as instabilities in 

the grinding circuit owing to mechanical failures and random changes in the attributes of 

the ore (Bezuidenhout et al., 1997, Aldrich et al., 2000). 

In industrial processes, prior assumptions with regard to process operations are difficult 

to obtain unlike in other case studies discussed in this study. This is because the quality 

of data is unknown and data is possibly corrupted with unknown faults and gross errors. 

Moreover, the dependencies of the froth features and plant performance on ore 

characteristics are nonlinearly related. Hence, the application of multimodal nonlinear 

methods to monitor the froth textures will perform better than classical linear MSPC 

methods to separate deterministic and stochastic components in data for an improved 

safer process operation. 

In this study, five features (image variables) are extracted from digital images of surface 

froths in the zinc roughers using the neighbouring grey level dependence matrix method 

as discussed in the work by Bezuidenhout et al. (1997). These variables are called small 

number emphasis feature (SNE), second moment (SM), average grey level of the image 

(AGL), entropy feature(ENT), and the instability of the froth (INSTAB). The flotation plant 

concentrator consists of a few integrated unit operations, namely, Grinding mill (SAG), 

Ball mill, Hydrocyclone for classification of pulp from ball mill, flotation feed buffer tank 

and rougher banks. The camera is placed to monitor the froth surface of the third zinc 

rougher. A simplified layout of the concentrator of the base metal flotation plant is shown 

in Figure 5.1.  
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Figure 5.1: The schematic diagram of the concentrator of a base metal flotation plant 

(Bezuidenhout et al., 1997). 

The MM-KDSSA, MM-DSSA, MM-NLSSA and MS-SSA based process monitoring 

algorithm was applied using an embedding window of size 𝑀 = 43, determined on the 

basis of the auto-correlation functions of the variables using equation (3.2.1). The 

reference model for PCA, MS-SSA, MM-DSSA, MM-KDSSA were developed based on a 

set of 284 samples collected under normal operating conditions. A set of 284 samples 

collected under faulty conditions was projected onto each of the models for evaluation. 

The faulty data was collected during the change in froth image features because of the 

variations in the operating condition due to various reasons such as instability in grinding 

circuits, random variations in ore feed, stoppage in SAG mill and variations in the 

dosage of addition of reagents in the zinc rougher bank. The variables representing 

normal and abnormal conditions are displayed in Figure 5.2. First three modes from 242 

modes are monitored for fault detection in MM-KDSSA, while 43 modes in MS-SSA and 

206 modes from 242 modes were monitored in MM-DSSA and the first two modes were 

monitored in MS-NLSSA. The percentages of variance explained by selected 

eigenvalues for reconstruction of components in those three modes were at least 95% in 
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MS-KDSSA, which was obtained by equation (4.3.4) and by the spectrum of the 

logarithm of eigenvalues. In MM-DSSA, the first 206 scores explained 90% variance of 

augmented data from each variable, which is also obtained by using equation (4.3.4) 

and by the spectrum of the logarithm of eigenvalues. Figures 5.3–5.7 show the 𝑻2 and 

SPE charts for MM-DSSA, MM-SSA, PCA, MM-KDSSA and MM-NLSSA respectively 

and the results are summarised in Table 5.1. 

 

Figure 5.2: Variables from normal operating conditions (NOC) and abnormal operating 

conditions (ANOC) in the base metal flotation plant. In each plot the horizontal axis 

represents the sample size of each variable and the vertical axis represents the 

corresponding values of each variable. 
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Table 5.1: Reliability percentage of MM-KDSSA, MM-DSSA, MM-NLSSA, MS-SSA and PCA 

in base metal flotation plant 

Method Monitoring 
statistics 

Case0 Case1 

PCA T2 7.04% 4.9% 

Q 6% 94.01% 

MS-SSA T2 2.5% 67.96% 

Q 2.1% 98.94% 

MM-NLSSA T2 4.92% 89.43% 

Q 3.52% 57.39% 

MM-DSSA T2 7.75% 96.65% 

Q 8.1% 85.21% 

MM-KDSSA T2 6.33% 100% 

Q 4.23% 100% 

 

 

Figure 5.3: The T2 and SPE chart for MM-DSSA in a base metal flotation plant with 95% 

confidence limit for both normal data (first 284 samples) and the faulty data (last 284 

samples). MM-DSSA detected the faut in T2 chart in mode 123 and SPE chart in mode 128 

with highest reliability percentage. 
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Figure 5.4: The T2 and SPE chart for MS-SSA in base metal flotation plant with 95% 

confidence limit for both normal and faulty data. MS-SSA detected the fault in SPE chart in 

mode 1 with a 98.94% reliabilty whereas almost half of the faulty samples in T2 chart of 

mode 1 is undected in this study. 

 

Figure 5.5: The T2 and SPE chart for PCA in base metal flotation plant with a 95% 

confidence limit for both normal and faulty data. In PCA, 95% of faulty samples remain 

undetected in T2 chart while all the faulty samples exceeded the control limits in the SPE 

chart. 
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Figure 5.6: The T2 and SPE chart for MM-KDSSA in a base metal flotation plant with a 95% 

confidence limit for both normal and faulty data. All the faulty samples in mode 1 of the T2  

and SPE chart exceeded the control limits in this study. 

 

Figure 5.7: The T2 and SPE chart for MM-NLSSA in a base metal flotation plant with a 95% 

confidence limit for both normal and faulty data. Most of the faulty samples in T2 chart in 

mode 1 violated the control limit while almost half of the samples remains undetect in 

mode 2 of the SPE chart. 
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All the methods adopted a 95% control limit for the monitoring charts and have a 

reliability percentage close to 5% in Case 0 (normal operating condition) in both 𝑻2 and 

SPE charts, which indicated the good approximation for control limits of the 𝑻𝟐 and SPE 

chart. The results from Figure 5.6 and Table 5.1 show that MM-KDSSA performed better 

in detection of faults with the highest reliability in both statistics in the first mode. 

Whereas for MM-DSSA better detection was in mode 123 and 128 for MM-NLSSA it was 

in the first and second mode and in MS-SSA it was obtained in the first mode for 𝑻2and 

SPE statistics. However, it is interesting to notice that in MM-KDSSA and MM-DSSA 

based monitoring both 𝑻2 and SPE statistics gave the highest reliability while in PCA 

and MS-SSA the highest reliability was obtained only in SPE statistics, whereas in MM-

NLSSA, the reliability obtained by 𝑻2 statistics is higher than SPE statistics. Hence it can 

be concluded that the systematic variation in the PC subspace that changes the 

correlation between the variables and the respective change in the operating region is 

captured well in MM-KDSSA and MM-DSSA compared to PCA, MM-SSA and MM-

NLSSA based monitoring. MM-NLSAA requires a large amount of data for creating a 

reference model as done in the previous studies. This degrades the monitoring 

performance of MM-NLSSA in this case. Nevertheless, the performance of MM-NLSSA 

was comparable to that of MS-SSA in this study. In contrast, the 𝑻2 monitoring chart of 

PCA in Figure 5.5 barely captures the fault in this study, while the time-series patterns of 

the 𝑻2 and SPE statistics of multimodal methods based on SSA are sufficiently different 

between normal and faulty samples to indicate the change in the process (the process is 

in abnormal conditions).This shows the advantage of using SSA in process monitoring 

by decomposing the data into multiple modes with data adaptive basis function.  

In summary, the results in Table 5.1 show that the reconstructed components of MM-

KDSSA and MM-DSSA capture the nonlinear relationship in the process variables using 

dissimilarity measures better than MM-NLSSA and MM-SSA by covariance structure of 

the data in both statistics. Finally, the fault detection in MM-KDSSA is obtained with the 

extraction of smaller number of modes as found in the previous studies, which is less 

time consuming and more effective than other multimodal methods. In MM-DSSA and 

MS-SSA a larger number of modes is used to extract the components into different 

levels and to monitor for fault detection, which is computationally expensive and time 

consuming. Also MM-NLSSA suffers from the issue of sample size as indicated earlier 
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and optimisation issue for the selection of neurons in the neural network for the better 

extraction of nonlinear components. 

5.2 CASE STUDY 2: TENNESSEE EASTMAN PROCESS 

The Tennessee Eastman Process (TEP) is a simulation of an actual chemical process 

developed as a realistic industrial process for plant-wide process control problems 

including process monitoring and fault diagnosis (Downs & Vogel, 1993; Kano et al., 

2002). The process consists of five major units: an exothermic two-phase reactor, a 

product condenser, a recycle compressor, a vapor-liquid separator, and a product 

stripper. It also involves eight components A, B, C, D, E, F, G, and H. G and H 

components are liquid products produced from the gaseous reactants A, C, D, and E. 

The component F is an undesired byproduct. The process flow diagram is shown in the 

Figure 5.8.  

 

Figure 5.8: Process flow sheet for TEP (Downs & Vogel, 1993). 

The reactor reactions are represented by the following equations: 

 ( ) ( ) ( ) ( ), 1A g C g D g G liq p ro d u c t    (5.2.1) 

 ( ) ( ) ( ) ( ), 2A g C g E g H liq p ro d u c t    (5.2.2) 
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 ( ) ( ) ( ),A g E g F liq b yp ro d u c t   (5.2.3) 

 3 ( ) 2 ( ),D g F liq b yp ro d u c t  (5.2.4) 

The reactions in equation (5.2.1- 5.2.4) are exothermic, irreversible and approximately 

first-order with respect to the reactant concentrations. The Arrhenius function of 

temperature is used to represent the reaction rates. The reaction for G product formation 

in equation (5.2.1) has higher activation energy than the reaction for H in equation 

(5.2.2) and therefore, results in higher sensitivity to temperature. 

The liquid products are formed by the reactant gases, which are catalysed by a non-

volatile catalyst dissolved in the liquid. The cooling water circulated in the reactor 

reduced the heat of the reaction. The catalyst is retained while the gaseous products are 

separated from the reactor. The product gas is then cooled by a condenser after which it 

is fed to a vapor-liquid separator. By the use of a compressor, the non-condensed vapor 

from the separator is recycled to the reactor. A portion of the recycled vapor is purged to 

keep the inert product and byproduct from accumulating in the process using the vapor-

liquid separator. The reactants that remain in the condensed stream from the separator 

are then removed in the stripper.  

The process provides 12 manipulated or control variables and 41 measured or observed 

variables. Of the 41 measured variables, 22 are continuous and 19 are composition 

measurements. Sixteen variables from the 53 process variables are used, as selected 

by Chen & McAvoy (1998), for monitoring purposes and are listed in Table 5.2.  
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Table 5.2: Process variables used for monitoring. 

Variable Description 

1 A feed 

2 D feed 

3 E feed 

4 A and C feed 

5 Recycle flow 

6 Reactor feed rate 

7 Reactor temperature 

8 Purge rate 

9 Product separator temperature 

10 Product separator pressure 

11 Product separator underflow 

12 Stripper pressure 

13 Stripper temperature 

14 Stripper steam flow 

15 Reactor cooling water outlet temperature 

16 Separator cooling water outlet temperature 

The TEP process contains 21 fault cases, which are listed in Table 5.3, of which 16 are 

known and 5 are unknown. Each of the first 7 faults are associated with a step change in 

a process variable while faults 8 to 12 represent the increased variability in some of the 

process variables. Fault 13 is associated with a slow drift in the reaction kinetics. Faults 

14, 15, and 21 are associated wih actuator faults such as sticking valves.  

  

Stellenbosch University  https://scholar.sun.ac.za



115 

 

Table 5.3: Process faults 

Case Disturbance Type 

1 A/C feed ratio, B composition constant Step 

2 B composition, A/C ratio constant Step 

3 D feed temperature Step 

4 Reactor cooling water inlet temperature Step 

5 Condenser cooling water inlet temperature Step 

6 A feed loss Step 

7 C header pressure loss - reduced availability Step 

8 A, B, C feed composition Random variation 

9 D feed temperature Random variation 

10 C feed temperature Random variation 

11 Reactor cooling water inlet temperature Random variation 

12 Condenser cooling water inlet temperature Random variation 

13 Reaction kinetics Slow drift 

14 Reactor cooling water valve Sticking 

15 Condenser cooling water valve Sticking 

16-20 Unknown Unknown 

The data representing normal operating conditions and the 21 fault cases contained 500 

samples in this study. The monitoring performance of MM-KDSSA, MM-DSSA and MM-

NLSSA methods for all 21 fault conditions were evaluated to compare the proficiency of 

multimodal nonlinear methods in the respective fault condition and the monitoring results 

are also compared to MS-SSA and PCA. As in the previous case studies, 95% control 

limits are set for both 𝑻2and SPE statistics in all methods. The reliability percentage was 

calculated from samples that violate the 95% confidence limit in respective modes of 

each monitoring method. In each mode the ratio of number of samples violating the 

control limits in both 𝑻2 and SPE values were calculated, and the maximum ratio was 

taken as the reliability percent of the respective fault condition (as summarised in Table 

5.5). The reliability in Case 0 is considerably higher or close to 5% in all the methods, 

which indicates that the control limits are determined successfully to detect the faults in 

all the models. A detailed discussion on the monitoring performance of nonlinear SSA in 

some of the difficult fault conditions are evaluated with performance of MS-SSA and 

PCA methods based on the reliability percentage in Table 5.5. 

The monitoring performances of MM-KDSSA, for all 21 fault conditions were evaluated 

with a window size of 𝑀=38. The embedding dimension 𝑀 was selected based on the 

first maximal decorrelation point of monitored variables by equation (3.2.1) and was 
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used for computing the trajectory matrices of 16 variables. The selection of the 

eigenvalues and eigenvectors to represent the reconstructed components in multiple 

modes were determined based on equation (4.3.4). The logarithm of the singular values 

of the doublecentered kernel matrices obtained from the dissimilarity matrix of lagged 

trajectory matrix of the normal data accounted for at most 99% variation of the 

augmented data from each variable. A drop in the singular value occurring at around the 

third singular value indicates the start of the noise component and hence, the first three 

modes from 463 modes were used to build the PCA model for each fault condition. The 

PCs retained in the PCA model of reconstructed signal in each mode captured at least 

90% variance in the data. The reliability percentage for 𝑻2 and SPE obtained by the MS-

KDSSA model for 21 fault conditions are summarised in Table 5.5 based on 95% control 

limits for monitoring statistics.  

In MM-NLSSA, a window size of 𝑀=38 is used for SSA decomposition of 16 variables. 

The number of PCs retained in SSA decomposition for each variable as the input to the 

NLPCA.cir network explained at least 90% of variance in the data. The number of hidden 

neurons for NLPCA.cir network for each variable was determined based on the minimum 

mean square error m.s.e between the neural network output 𝑻′ and the original PC  𝑻. 

The number of PCs retained in SSA decomposition and the numbers of chosen neurons 

for the NLPCA.cir network for each variable are listed in Table 5.4. The PCs retained in 

the PCA model of reconstructed signal in each mode, capture at least 96% variance in 

the data. The maximum reliability percentage for 𝑻2 and SPE obtained from the first two 

modes for all 21 fault conditions are shown in Table 5.5 as indicated before. 
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Table 5.4: Number of PCs retained in SSA decomposition and the number of hidden 

neurons used in NLPCA.cir for 16 variables 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number 

Of PCs 

26 3 3 3 3 3 3 19 3 3 28 3 3 3 3 3 

Number 

Of  

Neurons 

22 5 6 5 4 3 5 5 5 4 10 4 7 7 4 5 

An embedding window size of 𝑀=38 was determined based on the first maximal 

decorrelation point of monitored variables, leading to a 38-level multimodal 

representation in the case of MS-SSA. The PCs retained in the PCA model for each 

mode captured at least 96% variance in the data. The reliability percentage based on 

MS-SSA is calculated from the samples, which violated the 95% confidence limits in the 

respective modes. In each mode the ratio of the number of samples violating the control 

limits in both 𝑻2 and 𝑸 statistics values are calculated. The maximum detection rate is 

considered as the per cent reliability of the associated fault condition, which is listed in 

Table 5.5. 

The performance of the MM-DSSA method for all 21 fault conditions was evaluated with 

a window size of 𝑀 =38 for the computation of a lagged trajectory matrix. The first 145 

modes from 463 modes were used to build the PCA model for each fault condition based 

on the logarithmic distribution of eigenvalues and equation (4.3.4). The PCs retained in 

the PCA model of reconstructed signal in each mode, capture at least 90% variance in 

the data. The reliability percentage for 𝑻2 and SPE obtained by MM-DSSA for 21 fault 

conditions are listed in Table 5.5. The control limits for both statistics were set at 95% 

confidence level in all cases as indicated previously. 

Using cPCA, 13 PCs explaining 96% of the variation in the data for the normal case 

were retained in the PCA model. The estimated reliability of 𝑻2 and 𝑸 statistics in each 

case using cPCA are also listed in Table 5.5, as mentioned earlier. 
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Table 5.5: Reliability (%) of MS-SSA, PCA, MM-NLSSA, MM-DSSA and MM-KDSSA in TE 

Process 

Process monitoring methods 

Cases  PCA MS-SSA MM-DSSA MM-KDSSA MM-NLSSA 

2
T  Q  2

T  Q  2
T  Q  2

T  Q  2
T  Q  

Case 0 2 8 1 0 5 4 7.2 4.2 1.4 5.8 

Case 1 100 100 100 100 100 100 100 100 100 98 

Case 2 100 93 100 100 100 100 100 100 100 98 

Case 3 60 16 48 51 100 99 100 100 100 86 

Case 4 29 9 31 79 100 99 100 100 100 83 

Case 5 100 81 100 100 100 100 100 100 100 90 

Case 6 100 100 100 100 100 100 100 100 100 97 

Case 7 100 87 100 100 100 100 100 100 100 89 

Case 8 98 90 100 100 100 100 100 100 100 93 

Case 9 11 10 31 46 100 99 100 100 100 92 

Case 10 84 86 93 95 100 99 100 100 100 92 

Case 11 67 14 93 86 100 99 100 100 100 96 

Case 12 100 89 100 100 100 100 100 100 100 95 

Case 13 83 88 100 100 100 99 100 100 100 90 

Case 14 100 93 98 65 100 100 78.2 100 100 90 

Case 15 8 7 37 49 100 100 100 100 100 93 

Case 16 28 12 55 87 100 100 100 100 100 79 

Case 17 99 95 100 100 100 100 100 100 100 86 

Case 18 52 48 68 87 100 99 100 100 100 93 

Case 19 40 14 72 91 100 100 100 100 100 99 

Case 20 45 32 54 81 100 99 100 100 100 93 

Case 21 9 10 20 100 100 99 100 100 100 92 

The reliability of MM-KDSSA is higher (100%) than that of PCA, MS-SSA, MM-DSSA, 

and MM-NLSSA for all fault conditions in both statistics. More specifically, the fault case 

1-2, case 5-8, case 10, case 12-13 and case 17 are easily detected by all methods and 

some of them are discussed briefly below. Almost all the methods have above 80% 

reliability percentage in both 𝑻2 and 𝑸 statistics. For case 14, all the methods offer high 

reliability (90%-100%) in 𝑻2 and 𝑸 statistics except that MS-SSA and MM-KDSSA have 

65% and 78.2% for 𝑸 and 𝑻2 statistics respectively. For fault 1 (Case 1) there is a step 

change in the ratio of A/C feeds causing variations in flow rates and compositions of 

stream 6 and 4. Many variables in the reactor are affected by these variations and 

hence, the fault is detected easily by all methods. In fault 2 (Case 2), the step change of 

gaseous inert B in stream 4 caused an increase in the stripper pressure which leads to 
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variations in compositions in the reactor feed, the purge stream and the product stream. 

Many variables, therefore, behave differently from the normal case (Case 0) and hence, 

the fault is detected easily by all the methods.  

In Fault 5 the step change in the condenser cooling water inlet temperature caused an 

increase in the flow rate of the outlet stream from the condenser to the vapor-liquid 

separator. This resultsed in an increase in the gas-liquid temperature and the separator 

cooling water outlet temperature. In this case, SSA based methods gave 100% reliability 

in both 𝑻𝟐 and 𝑸 statistics while PCA gave 100% reliability in 𝑻2 and 81% reliability in 𝑸 

statistics. This is because the combination of SSA based analysis and PCA extracts 

richer information from correlated variables and hence results in a better detection rate.  

Fault 6 is associated with component A feed loss in stream 1, which causes an increase 

in the reactor pressure. The effect of this fault easily propagates to most of the variables 

and can be detected easily. The step change in the C header pressure loss-reduced 

availability in fault 7 and random variation in the temperature of stream 4 (C feed 

temperature) in fault 10 cause variations in the process variables. This resulted in getting 

good detection reliability with most of the monitoring methods. Similarly, variations in the 

relationships of the process variables in fault 8, 12, 13 and 17 also gave high detection 

rate with most of the methods in this study. 

In fault 14, the reactor cooling water valve was stuck. Most of the methods could detect 

this fault effectively with high reliability percentage. However, the 𝑸 statistics of MS-SSA 

and 𝑻2 statistics of MM-KDSSA performed poorly when compared to the other methods 

in those statistics. 

For fault cases 4, 11, 16, 18, 19, 20 and 21, SSA based multimodal methods provided 

improved performance monitoring over the standard PCA. In particular, SSA based 

nonlinear methods provide superior results in the detection of these faults with a high 

reliability percentage compared to MS-SSA. The root causes for faults 16 to 20 are 

unknown and are not easy to detect. Therefore, the performance of conventional MSPC 

methods on these faults will have obvious differences. A detailed discussion on the fault 

detection performance using 𝑻2and 𝑸 charts are given below for some of the selected 

faults in the above cases. 
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The Case 4 occurs due to a sudden temperature increase in the reactor. This causes a 

step change reduction in the reactor cooling water inlet temperature. Hence, the 

temperature increases quickly but small variations in the measurements compared to the 

normal operating conditions may occur as a result of a change in the temperature of the 

reactor. MM-KDSSA, MM-DSSA and MM-NLSSA detected these small events better 

than the case with PCA and MS-SSA. MM-KDSSA and MM-NLSSA detected the faults 

in the first mode while MM-DSSA detected the fault at the mode 116 as shown in 

Figures 5.9-5.13. Similarly, fault condition 11 was associated with random variation in 

the reactor cooling water inlet temperature. Hence, large oscillations in the reactor 

cooling water flow rate induce fluctuations in the reactor temperature. The step change 

in D feed temperature causes a mean shift in flow and outlet temperature of the reactor 

cooling water via a cascade control system for reactor temperature (Kano et al., 2002). 

This small mean shift in the measurement caused a change in the relationship between 

the process variables as defined under normal operating conditions. In contrast to PCA 

and MS-SSA, both 𝑻2 and 𝑸 statistics of MM-DSSA, MM-KDSSA and MM-NLSSA in 

Figures 5.14-5.18 showed high performance in detection of these faults. This shows the 

advantage of using nonlinear methods, MM-KDSSA, MM-DSSA and MM-NLSSA in 

detecting mean shifts in the process compared to linear methods such as conventional 

PCA and MS-SSA. This is achieved by monitoring the reconstructed components in the 

first mode of MM-KDSSA and MM-NLSSA while MM-DSSA gave better performance in 

mode 42. 
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Figure 5.9: The T2 and SPE chart for PCA in fault condition 4 for both normal data (first 500 

samples) and the fault condition data (last 500 samples) with 95% confidence limit. 

 

Figure 5.10: The T2 and SPE chart for MS-SSA in fault condition 4 for both normal and 

abnormal data with 95% confidence limit. 
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Figure 5.11: The T2 and SPE chart for MM-DSSA in fault condition 4 for both normal and 

abnormal data with 95% confidence limit. 

 

Figure 5.12: The T2 and SPE chart for MM-KDSSA in fault condition 4 for both normal and 

abnormal data with 95% confidence limit. 
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Figure 5.13: The T2 and SPE chart for MM-NLSSA in fault condition 4 for both normal and 

abnormal data with 95% confidence limit. 

 

Figure 5.14: The T2 and SPE chart for PCA in fault condition 11 for both normal and 

abnormal data with 95% confidence limit. 
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Figure 5.15: The T2 and SPE chart for MS-SSA in fault condition 11 for normal and 

abnormal data with 95% confidence limit. 

 

Figure 5.16: The T2 and SPE chart for MM-DSSA in fault condition11 for both normal and 

abnormal data with 95% confidence limit. 
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Figure 5.17: The T2 and SPE chart for MM-KDSSA in fault condition11 for both normal and 

abnormal data with 95% confidence limit. 

 

Figure 5.18: The T2 and SPE chart for MM-NLSSA in fault condition11 for both normal and 

abnormal data with 95% confidence limit. 

Cases 16 and 19 produced feeble and slow changes in the process that were relatively 

difficult to detect with classical multivariate methods. The root cause of case 16 was 

unknown. The detection results using 𝑻2 and 𝑸 statistics for PCA, MS-SSA, MM-NLSSA, 
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MM-DSSA and MM-KDSSA are summarised in Table 5.5 and are shown in Figure 5.19-

5.23.  

MM-KDSSA, MM-DSSA and MS-SSA showed better detection compared to PCA. This is 

because case16 is associated with random variation and hence, affects the residual 

space (Lau et al., 2013). The fault rich information in the residual space was filtered by 

data adaptive basis functions using SSA. Features are then extracted in multiple modes 

for better detection of change in the variables as compared to PCA in which the feature 

extraction was obtained in single mode. Therefore, MM-KDSSA, MM-DSSA MM-NLSSA 

and MS-SSA gave a high reliability percentage in 𝑸 statistics compared to PCA.  

The small changes in Case 19 affected the recycle flow in TE-process and affected the 

residual space, which also measured the random variations in the process (Lau et al., 

2013). The value of the 𝑸 statistics was above the threshold for most of the time for MM-

KDSSA, MM-DSSA, MM-NLSSA and MS-SSA compared to PCA as shown in Figures 

5.24-5.28. PCA used only the score space information, which extracted large deviations 

in the process variables while information in the residual space for random variations is 

discarded. On the other hand, MM-KDSSA, MM-DSSA, MM-NLSSA and MS-SSA had 

better detection of changes in the stochastic behavior of the variable by the extraction of 

features in multiple modes using SSA. In particular, MM-KDSSA, MM-NLSSA and MM-

DSSA utilised the residual space information effectively to capture deviations in the 

process variables using nonlinear SSA and hence, achieved a better detection 

compared to MS-SSA and PCA in most of these cases in both 𝑻2and 𝑸 statistics. In all 

the above cases, MM-KDSSA outperformed MM-DSSA, MM-NLSSA and MS-SSA in 

detecting faults in relatively smaller modes (first mode) in both statistics. Moreover, the 

detection values for both statistics are higher in MM-KDSSA and MM-DSSA compared 

to MM-NLSSA and MS-SSA in all the fault conditions. This shows the advantage of 

using dissimilarity measure to capture the random variation in the process. 
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Figure 5.19: The T2 and SPE chart for PCA in fault condition16 for both normal data (first 

500 samples) and abnormal data (last 500) samples with a 95% confidence limit. 

 

Figure 5.20: The T2 and SPE chart for MS-SSA in fault condition16 for both normal and 

abnormal data with 95% confidence limit. 
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Figure 5.21: The T2 and SPE chart for MM-DSSA in fault condition 16 for both normal and 

abnormal data with 95% confidence limit. 

  

Figure 5.22: The T2 and SPE chart for MM-KDSSA in fault condition16 for both normal and 

abnormal data with 95% confidence limit. 
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Figure 5.23: The T2 and SPE chart for MM-NLSSA in fault condition 16 for both normal and 

abnormal data with 95% confidence limit. 

 

Figure 5.24: The T2 and SPE chart for PCA in fault condition 19 for both normal and 

abnormal data with a 95% confidence limit. 
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Figure 5.25: The T2 and SPE chart for MS-SSA in fault condition 19 for both normal and 

abnormal data with 95% confidence limit. 

 

Figure 5.26: The T2 and SPE chart for MM-DSSA in fault condition 19 for both normal and 

abnormal data with 95% confidence limit. 
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Figure 5.27: The T2 and SPE chart for MM-KDSSA in fault condition 19 for both normal and 

abnormal data with 95% confidence limit. 

 

 

Figure 5.28: The T2 and SPE chart for MM-NLSSA in fault condition 19 for both normal and 

abnormal data with 95% confidence limit. 
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The superiority of nonlinear, SSA-based methods for the detection of faults, which are 

more difficult to detect (faults 3, 9 and 15) over the other MSPC fault detection methods 

including MS-SSA and PCA, previously reported in the literature, is demonstrated using 

dissimilarity plots of process variables and plots of reconstructed components in the 

normal and abnormal cases of those faults. The previous works on the analysis of faults 

3, 9 and 15 have found that these faults proved to be difficult for data-driven detection 

methods because these faults have very little effect on the corresponding process 

measurements. That is, these faults are defined as unobservable from the process data 

since there is no observable change in the mean or the variance that can be detected 

(Chiang et al., 2001; & Ma, 2011). In other words, variables in these faults were 

unobservable in the abnormal condition of TE-process as shown in Figures 5.29–5.34. 
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Figure 5.29: Variables (1-8) in Case 3 for normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in the TE-Process.In each plot the horizontal axis 

represents the sample size and the vertical axis represents the corresponding values of 

each variable. 
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Figure 5.30: Variables (9-16) in Case 3 for normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in the TE-Process. In each plot the horizontal axis 

represents the number of samples and the vertical axis represents the corresponding 

values of each variable. 
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Figure 5.31: Variables (1-8) in Case 9 for normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in the TE-Process. In each plot the horizontal axis 

represents the  sample size and the vertical axis represents the corresponding values of 

each variable. 
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Figure 5.32: Variables (9-16) in Case 9 for normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in the TE-Process. In each plot the horizontal axis 

represents the number of samples and the vertical axis represents the corresponding 

values of each variable. 
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Figure 5.33: Variables (1-8) in Case 15 for normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in the TE-Process. In each plot the horizontal axis 

represents the sample size and the vertical axis represents the corresponding values of 

each variable. 
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Figure 5.34: Variables (9-16) in Case 15 for normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in the TE-Process. In each plot the horizontal axis 

represents the number of samples and the vertical axis represents the corresponding 

values of each variable. 

Fault 3 is the small constant change in feed concentration, which affects the steady state 

in the reactor. In order to keep the level of conversion of a highly exothermic reaction at 

a desired level, the manipulated variable, reactor cooling water flow, needs to be 

changed/controlled in such a way that any change in the mean of the steady state 

reactor temperature can be eliminated (Shams et al., 2010). Hence, any change in the 
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manipulated variables will have the associated change in the process variables. This 

type of small deviations in the process can be detected by integrating several fault 

detection methods as is the case in this study. Dissimilarity plots of the variables in the 

normal and abnormal data in this fault case can be used to visualise the global structure 

(similarity between different objects is reflected by their position relative to each other) of 

the data points in those conditions as shown in Figures 5.35–5.38. In these plots, the 

smaller dissimilarity values appear close to the main diagonal. Therefore, it can be 

visualised that the closer objects are together in these plots the higher are their 

similarity. 

 

                                (a)                                                                  (b) 

Figure 5.35: (a) Dissimilarity plots of variables (1-4) in normal operating conditions (NOC) 

and (b) dissimilarity plots of variables (1-4) in abnormal operating conditions (ANOC) in 

Case 3 in TE-Process. 
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(a)                                                            (b) 

Figure 5.36: (a) Dissimilarity plots of variables (5-8) in normal operating conditions (NOC) 

and (b) dissimilarity plots of variables (5-8) in abnormal operating conditions (ANOC) in 

Case 3 in TE-Process. 

 

(a)                                                             (b) 

Figure 5.37: (a) Dissimilarity plots of variables (9-12) in normal operating conditions (NOC) 

and (b) dissimilarity plots of variables (9-12) in abnormal operating condition (ANOC) in 

Case 3 in TE-Process. 
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                                   (a)                                                                       (b) 

Figure 5.38: (a) Dissimilarity plots of variables (13-16) in normal operating conditions 

(NOC) and (b) dissimilarity plots of variables (13-16) in abnormal operating conditions 

(ANOC) in Case 3 in the TE-Process. 

In these plots, the objects in the dissimilarity matrix are clustered together in such a way 

that the clusters, which contain objects that are more similar, are displayed close 

together. This helps to visualise the relationship between different clusters in the plot. 

Moreover, in the above plots the dark gray shading (or black) represents low dissimilarity 

values while the light gray (or white) represents high dissimilarity. The dissimilarity plots 

of the variables in the above Figures 5.35-5.38 are not identical and hence, clearly 

indicate the variations in the data structure of the variables in the normal and abnormal 

operating conditions. Moreover, the variations in the mean dissimilarity value of each 

variables in normal and abnormal conditions in Case 3 in Figure 5.39 are also compared 

by using the paired t-test with a significance level of 0.05. The variations in the means of 

the dissimilarity values for most of the variable in Figure 5.39 (except variable 6) indicate 

the structural difference in the variables between the normal condition and fault condition 

(Case 3). The p-values for the paired t-test is shown in Figure 5.40.The p- values for 

most of the variables in Figure 5.40 are below the significance level except for variable 6 

which also indicate the structural variations in the variables in normal and faulty 

condition. Thus, all these results indicate the structural changes in variables hence the 

better detection of faults by nonlinear SSA methods in this case. 
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Figure 5.39: Mean value of variables in dissimilarity matrix in normal conditions (NOC) 

(first 463 data samples) and fault conditions (ANOC) (last 463 data samples) in Case 3. In 

each plot the horizontal axis represents the number of observations in the mean value of 

the dissimilarity matrix of the lagged variables and the vertical axis represents their 

corresponding mean values.  
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Figure 5.40: The p-values for the paired t-test on the mean values of variables in 

dissimilarity matrix in normal and fault condition in Case 3.  

Moreover, the reconstructed variables in normal and abnormal conditions in Case 3, 

based on SSA methods, are shown in Figures (5.41(a-b)–5.44(a-b)). SSA-based 

nonlinear methods approximated faulty components in multiple modes more accurately 

than MS-SSA in this study as illustrated in Figures 5.41(a-b) –5.44(a-b).Thus, it obtained 

the highest reliability percentage in fault detection in Case 3 as shown in Table 5.5. In 

short, the time series pattern of the reconstructed components in Figures 5.41(a-b) –

5.44(a-b) obtained by the proposed nonlinear SSA methods are sufficiently different 

between the faulty and normal conditions to detect faults in the process compared to 

patterns of those components obtained by basic SSA in Figure 5.44(a-b). This proves 

the efficiency of nonlinear SSA in monitoring nonlinear processes by finding trends of 

different resolutions as opposed to the application of basic SSA in monitoring nonlinear 

processes. 
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Figure 5.41 (a): The reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MM-KDSSA in case 3. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.41(b): The reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MM-KDSSA in case 3. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  

. 
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Figure 5.42 (a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 39 for MM-DSSA in Case 3. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 39 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.42(b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 39 for MM-DSSA in Case 3. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 39 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.43 (a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MM-NLSSA in case 3.  In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.43(b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MM-NLSSA in case 3. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.44 (a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MS-SSA in case 3. In each plot the 

horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.44(b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MS-SSA in case 3. In each plot the 

horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  

Based on the similar argument that was given in the above paragraphs for Case 3, 

nonlinear SSA based methods efficiently detected the changes in Case 9 and Case 15 

whereas other multivariate methods and MS-SSA failed to detect faults in those cases. 

Case 9 is a random variation around a mean and Case 15 caused the changes in 
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cycling of the condenser cooling water flow due to valve stiction. Thus, these faults 

cause an increase in the variance of relevant manipulated variables such as reactor 

cooling outlet temperature and condenser cooling water flow (Shams et al., 2010). As 

mentioned earlier the faults, in Case 9 and Case 15 are also defined as unobservable 

from the process data and hence, it was very difficult to detect the process change in 

those cases with MSPC techniques and MS-SSA as shown in the previous studies 

(Krisnannair, 2010). The plots of the process variables in the normal and abnormal 

condition that was shown in Figures 5.31–5.34 also indicated that there were no 

observable changes in the process in these cases. Nevertheless, nonlinear SSA based 

process monitoring algorithms here again performed better for these unobservable 

faults. Random variations lead to the irregular patterns of reconstructed signals, which in 

turn lead to observable quantitative variations of monitoring statistics in nonlinear SSA-

based algorithms. The following dissimilarity plots of variables in normal condition and 

abnormal conditions in Figures 5.45–5.52 and also the reconstructed components in the 

Figures 5.53(a-b)–5.60(a-b) obtained from nonlinear SSA decomposition and basic SSA 

decomposition, demonstrated these variations in the structure of the data in these fault 

cases and hence, better detection of faults in these cases compared to MS-SSA as 

shown in Table 5.5. Moreover, the mean dissimilarity values of each variable in normal 

and abnormal conditions in Case 9 and Case 15 are also shown in Figures 5.61–5.62. 

The variations in the means of the dissimilarity values for most of the variable in these 

cases (except for variable 2 for fault 9 and variables 8, 12, 13 and 14 for fault 15) 

indicated the structural difference in the variables between the normal conditions and 

fault conditions (Case 3 and Case 15). These variations in the mean dissimilarity value 

of each variable in normal and abnormal conditions in these cases were also compared 

by using the paired t-test with a significance level of 0.05. The p-values for the paired t-

test are shown in Figure 5.63.The p- values for most of the variables for Case 9 and 

Case 15 in Figure 5.63 are below the significance level except for variable 2 in Case 9 

and for variables 8, 12, 13 and 14 in Case 15. This shows the structural variations in the 

variables in normal and faulty conditions in Case 9 and Case 15 and hence, the better 

detection of faults by nonlinear SSA based methods in these cases. In short, nonlinear 

SSA-based methods outperformed MS-SSA and PCA in monitoring the TE-Process in 

most of the difficult fault conditions in this study. 
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(a)                                                                   (b) 

Figure 5.45: (a) Dissimilarity plots of variables (1-4) in normal operating conditions (NOC) 

and (b) dissimilarity plots of variables (1-4) in abnormal operating conditions (ANOC) in 

Case 9 in TE-Process. 

 

 

(a)                                                                (b) 

Figure 5.46: (a) Dissimilarity plots of variables (5-6) in normal operating conditions (NOC) 

and (b) dissimilarity plots of variables (5-6) in abnormal operating conditions (ANOC) in 

Case 9 in TE-Process. 
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(a)                                                                 (b) 

Figure 5.47: (a) Dissimilarity plots of variables (9-12) in normal operating conditions (NOC) 

and (b) dissimilarity plots of variables (9-12) in abnormal operating conditions (ANOC) in 

Case 9 in the TE-Process. 

 

 

(a)                                                      (b) 

Figure 5.48: (a) Dissimilarity plots of variables (13-16) in normal operating conditions 

(NOC) and (b) dissimilarity plots of variables (13-16) in abnormal operating conditions 

(ANOC) in Case 9 in the TE-Process. 
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(a)                                                                   (b) 

Figure 5.49: (a) Dissimilarity plots of variables (1-4) in normal operating conditions (NOC) 

and (b) dissimilarity plots of variables (1-4) in abnormal operating conditions (ANOC) in 

Case 15 in the TE-Process. 

 

Figure 5.50: (a) Dissimilarity plots of variables (5-8) in normal operating conditions (NOC) 

and (b) dissimilarity plots of variables (5-8) in abnormal operating conditions (ANOC) in 

Case 15 in the -Process. 

 

Stellenbosch University  https://scholar.sun.ac.za



156 

 

 

Figure 5.51: (a) Dissimilarity plots of variables (9-12) in normal operating conditions (NOC) 

and (b) dissimilarity plots of variables (9-12) in abnormal operating conditions (ANOC) in 

Case 15 in the TE-Process. 

 

Figure 5.52: (a) Dissimilarity plots of variables (13-16) in normal operating conditions 

(NOC) and (b) dissimilarity plots of variables (13-16) in abnormal operating conditions 

(ANOC) in Case 15 in the TE-Process. 
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Figure 5.53 (a): Reconstructed variable in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode1 for MM-KDSSA in Case 9. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.53(b): Reconstructed variable in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode1 for MM-KDSSA in Case 9. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.54(a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 40 for MM-DSSA in case 9. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 40 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.54(b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 40 for MM-DSSA in case 9. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 40 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.55 (a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MM-NLSSA in case 9.  In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.55 (b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MM-NLSSA in case 9. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.56 (a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode1 for MS-SSA in case 9. In each plot the 

horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.56 (b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode1 for MS-SSA in case 9. In each plot the 

horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.57 (a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode1 for MM-KDSSA in case 15. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.57(b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode1 for MM-KDSSA in case 15. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.58 (a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 40 for MM-DSSA in case 15. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 40 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.58(b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 40 for MM-DSSA in case 15. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 40 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.59 (a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MM-NLSSA in case 15.  In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.59(b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MM-NLSSA in case 15. In each plot 

the horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.60 (a): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MS-SSA in case 15. In each plot the 

horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.60(b): Reconstructed variables in normal conditions (first 500 samples) and 

abnormal conditions (last 500 samples) in mode 1 for MS-SSA in case 15. In each plot the 

horizontal axis represents the number of samples in the reconstructed components of 

each variable in mode 1 and the vertical axis represents the corresponding values of the 

reconstructed variables.  
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Figure 5.61: Mean value of variables in dissimilarity matrix in normal condition (NOC) (first 

463 data samples) and fault condition (ANOC) (last 463 data samples) in Case 9. In each 

plot the horizontal axis represents the number of observations in the mean value of the 

dissimilarity matrix of the lagged variables and the vertical axis represents their 

corresponding mean values.   
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Figure 5.62: Mean value of variables in dissimilarity matrix in normal conditions (NOC) 

(first 463 data samples) and fault conditions (ANOC) (last 463 data samples) in Case 15. In 

each plot the horizontal axis represents the number of observations in the mean value of 

the dissimilarity matrix of the lagged variables and the vertical axis represents their 

corresponding mean values.  
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Figure 5.63: The p-values for the paired t-test on the mean values of variables in 

dissimilarity matrix in normal and fault condition in Case 9 and Case 15.  

In general a relatively better performance of multimodal nonlinear SSA was achieved in 

monitoring all the fault conditions in the TE-Process. This underscores the advantage of 

using nonlinear SSA in monitoring where the transformed variation in the data can be 

obtained through the extraction of fewer components (eigenvectors and eigenvalues) for 

the reconstruction of data into multiple modes. The high percentage of reliability 

obtained in both 𝑻2 and SPE statistics of MM-KDSSA and MM-DSSA showed the 

efficiency of these methods in capturing all the random variations in the process as well 

as the nonlinear correlation between the process variables using inter-dissimilarity 

measure, which naturally incorporate the issue of nonlinearity in the data. The fault 

detection in MM-KDSSA was achieved with a relatively lower number of modes as 

compared to MM-DSSA and MS-SSA because of the dissimilarity scale transformation 

using kernel functions in KDSSA. The MM-NLSSA approach also achieved a reliability 
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percentage that is higher than or equal to MM-KDSSA and MM-DSSA in most of the 

fault cases in mode 1 and 2 in this study. 
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CHAPTER 6: CONCLUSIONS 

Three different novel multimodal and multivariate statistical process monitoring 

techniques, based on nonlinear singular spectrum analysis have been proposed in this 

study for the early and accurate detection of faults in the nonlinear, dynamic and 

complex chemical process systems. SSA is a method used for the the analysis of time 

series structures. The main purpose of SSA is the decomposition of a time series into 

additive components that can be associated with a trend, oscillatory patterns that are 

possibly amplitude- or phase-modulated as well as a periodic or noise component. In the 

three novel nonlinear SSA process monitoring methods, the first approach used the 

covariance measure between the variables while the second and third approaches used 

the dissimilarity measures to extract nonlinear latent variables from the chemical process 

systems. 

An important advantage of SSA compared to other methods is its adaptive nature. 

Specifically, the basis functions used for time series decomposition are obtained from 

the data itself. This allows for a better and more compact representation of certain 

features in the data, such as nonlinear harmonics that can be obtained using fixed basis 

functions such as sinusoids in Fourier analysis or dilated and translated mother wavelets 

in wavelet analysis. Process monitoring using nonlinear SSA is based on obtaining a 

multimodal representation of a multivariate time series and, subsequently applying a 

standard statistical process control scheme to this representation. Moreover, SSA 

explicitly accounts for the auto-correlation in the process data and can also effectively 

decompose a short time series into deterministic and stochastic components in multiple 

modes.  

Recently, a variant of SSA known as nonlinear SSA has been proposed for nonlinear 

extraction of features from the time series by recombining the SSA modes in order to 

reduce the energy scatter into many SSA modes when the underlying signal has 

oscillatory components. This motivated the extension of the application of nonlinear SSA 

to extract nonlinear components in chemical process systems. MSPC methods with 

nonlinear SSA called multimodal NLSSA, DSSA and KDSSA were developed in this 

Stellenbosch University  https://scholar.sun.ac.za



178 

 

study for monitoring nonlinear process systems, which use the concept of nonlinear 

PCA, multidimensional scaling and kernel MDS for the multimodal decomposition of 

data. The application of multimodal NLSSA, multimodal DSSA and multimodal KDSSA 

are demonstrated using a simulated nonlinear data source.The monitoring performance 

of multimodal NLSSA, multimodal DSSA and multimodal KDSSA are compared to 

conventional PCA and MS-SSA using the Tennessee Eastman process data and data 

from an industrial source. 

In the MM-NLSSA method, the process data is decomposed into multiple modes using 

SSA and then the nonlinear relations among the PCs of decomposed data in the 

different modes are extracted using NLPCA.cir. Hence, MM-NLSSA is an alternative 

data adaptive nonlinear approach to uncover the nonlinear characteristics while 

simultaneously providing a fault detection platform for nonlinear chemical processes as 

illustrated by case studies in this thesis. The proposed monitoring strategy extends the 

suitability of NLSSA to monitor statistically processes based on nonlinear auto-correlated 

measurements. Additionally, the resulting nonlinear PCA model at multiple levels is more 

sensitive to detecting changes in a process. These ideas are illustrated by simulated and 

industrial case studies. 

In MM-KDSSA and MM-DSSA, the decomposition step in basic SSA is modified with 

kernel methods and CMDS techniques for nonlinear and multimodal extraction of 

components in the data. The difference between KDSSA and DSSA is that KDSSA uses 

the CMDS in the feature space, which is the realisation of the dissimilarity measures of 

the points in the trajectory matrices by Gaussian kernels, while the latter uses linear 

kernels for the transformation of the dissimilarity measures. 

In MM-DSSA, the augmented variables are transformed into principal scores of lower 

dimensions using dissimilarity scales/inter-distance scales of the respective sample 

points and then the augmented data was reconstructed into multiple modes through 

diagonal averaging. In other words, the role of PCA in basic SSA decomposition is 

replaced with CMDS based MSPM framework. MM-DSSA is thus an alternative 

nonlinear process monitoring technique to resolve the issues with conventional MSPC 

techniques in chemical process monitoring. The proposed multimodal monitoring 

strategy broadens the use of dissimilarity scale-based SSA to monitor nonlinear process 

at multiple modes as illustrated by simulated case study. 
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In MM-KDSSA, Gaussian kernels were used in an SSA framework to map the input data 

(inner product) to a higher dimensional space for SSA decomposition with CMDS for the 

nonlinear extraction of multi-level components. In MM-KDSSA the dissimilarity/inter-

distance measures of the augmented data are transformed to a feature space using a 

nonlinear map. The reconstruction of the augmented data into multiple modes is 

obtained by the application of CMDS in feature space through diagonal averaging. In 

other words, the role of PCA in basic SSA decomposition is replaced with a kernel MDS-

based MSPM framework. Thus, MM-KDSSA is an alternative nonlinear process 

monitoring technique to resolve the issues with conventional nonlinear MSPC 

techniques in chemical process monitoring. The proposed nonlinear monitoring 

techniques made kernel dissimilarity scale based SSA more appropriate to monitor the 

nonlinear process at multiple scales, as illustrated by simulated and industrial case 

studies. 

In this study, it has been demonstrated that nonlinear SSA approaches to process 

monitoring compares favourably with existing methods such as MS-SSA and PCA. The 

performace of these methods were compared using percentage of samples, which 

exceeded the control limits of monitoring statistics (percentage reliability) on the 

simulated data, base metal flotation plant data and the Tennessee Eastman industrial 

control test problem. Nonlinear SSA could reliabily detect parameter changes in the 

simulated multivariate nonlinear data. However, nonlinear SSA methods outperformed 

PCA and MS-SSA in the detection of faults in base metal flotation plant data. When 

applied to data generated from the Tennessee Eastman control model, nonlinear SSA 

methods performed better than both PCA and MS-SSA on most of the difficult, 

unobservable disturbances considered. The overall performance of MM-KDSSA on all 

case studies can be perceived as superior compared to PCA, MS-SSA and other 

nonlinear SSA methods. Compared to other nonlinear spectral methods, the main 

advantage of MM-KDSSA is that it does not involve nonlinear optimisation and handles a 

wide range of nonlinearities in the data by using kernel functions as illustared in the case 

studies. 

In summary, from the simulated and industrial applications, MM-KDSSA was found to be 

more efficient and sensitive in detecting various faults in the process data compared to 

MM-NLSSA and MM-DSSA in relatively smaller modes (first mode) in the Tennessee 
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Eastman process while other nonlinear methods seemed to be almost equally efficient in 

detecting parameter changes. This is achieved in MM-NLSSA in a smaller number of 

modes just as in MM-KDSSA while MM-DSSA required a larger number of modes for 

reconstruction components to become effective in fault detection. In short, MM-KDSSA 

and MM-NLSSA can perform better by monitoring reconstructed components in the first 

two modes. On the other hand, MM-NLSSA requires large data sets for model 

caliberation for effective fault detection and also has difficulties in deciding the number of 

mapping and demapping layers when used with an auto-associative neural network. 

Further modifications of the current study can be executed to modify the proposed 

monitoring methods. Firstly, general theoretical guidelines can be used for the optimal 

selection of window length and selection of significant modes for fault detection. 

Secondly the effectiveness of the proposed nonlinear SSA methods can be improved by 

the multiscale decomposition of data using multiscale nonlinear extensions of SSA and 

varying embedding dimension instead of fixed window size, which was used in this 

study. Thirdly, process monitoring in MM-KDSSA and MM-DSSA can be further 

investigated by considering the effect of other types of interdistance scaling such as city-

block scale to find dissimilarities between the data points instead of Euclidean distance, 

which was used in this study. 
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