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Abstract

Application of Statistical Pattern
Recognition and Deep Learning for

Morphological Classification in Radio
Astronomy
A. B. Becker

Computer Science Division,
Department of Mathematical Sciences,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc
April 2022

The morphological classification of radio sources is important to gain a full under-
standing of galaxy evolution processes and their relation with local environmental
properties. Furthermore, the complex nature of the problem, its appeal for citi-
zen scientists and the large data rates generated by existing and upcoming radio
telescopes combine to make the morphological classification of radio sources an
ideal test case for the application of machine learning techniques. One approach
that has shown great promise recently is Convolutional Neural Networks (CNNs).
Literature, however, lacks two major things when it comes to CNNs and radio
galaxy morphological classification. Firstly, a proper analysis to identify whether
overfitting occurs when training CNNs to perform radio galaxy morphological clas-
sification is needed. Secondly, a comparative study regarding the practical appli-
cability of the CNN architectures in literature is required. Both of these short-
comings are addressed in this thesis. Multiple performance metrics are used for
the latter comparative study, such as inference time, model complexity, compu-
tational complexity and mean per class accuracy. A ranking system based upon
recognition and computational performance is proposed. MCRGNet, ATLAS and
ConvXpress (novel classifier) are the architectures that best balance computational
requirements with recognition performance.
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Uittreksel

Toepassing van Statistiese Patroon Herkenning en Diep
Leer vir Morfologiese Klassifikasie in Radio Astronomie

(“Application of Statistical Pattern Recognition and Deep Learning for
Morphological Classification in Radio

Astronomy”)

A. B. Becker
Rekenaar Wetenskap Afdeling,

Departement Wiskundige Wetenskappe,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc
April 2022

Die morfologiese klassifikasie van radiobronne is belangrik om ’n volledige begrip
van die evolusieprosesse binnein sterrestelsels te ontwikkel, asook die rol wat hul
plaaslike omgewings hierin speel. As gevolg van die ingewikkelde aard van die
probleem, asook die aantrekkingskrag daarvan vir “burgerwetenskaplikes” en die
groot hoeveelhede data wat deur bestaande en opkomende radioteleskope gege-
nereer word, maak die morfologiese klassifikasie van radiobronne ’n ideale proef-
gebied vir die toepassing van masjienleertegnieke. ’n Benadering wat belowend
lyk, is Konvolusionele Neurale Netwerke (KNNe). Literatuur ontbreek egter twee
belangrike dinge as dit kom by KNNe en die morfologiese klassifikasie van radio
sterrestelsels. Eerstens is daar ’n analise nodig rondom die identifikasie van oor-
passing wanneer KNNe afgerig word om radio sterrestelsels volgens morfologie te
klassifiseer. Tweedens word ’n vergelykende studie oor die praktiese toepaslik-
heid van die KNN-argitekture in literatuur benodig. Albei hierdie tekortkominge
word in hierdie tesis aagespreek. Veelvuldige prestasiemetings word vir laasge-
noemde vergelykende studie gebruik, soos inferensietyd, modelkompleksiteit, be-
rekeningkompleksiteit en gemiddelde akkuraatheid per klas. ’n Rangorde skema
word voorgestel gebaseer op herkenning en berekeningsprestasie. MCRGNet, AT-
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LAS en ConvXpress (nuwe bydrae) is die argitekture wat berekeningsvereistes en
herkenningsprestasie die beste balanseer.
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Chapter 1

Introduction
“The time will come when diligent research over long periods will bring
to light things which now lie hidden. A single lifetime, even though
entirely devoted to the sky, would not be enough for the investigation of
so vast a subject... And so this knowledge will be unfolded only through
long successive ages. There will come a time when our descendants
will be amazed that we did not know things that are so plain to them...
Many discoveries are reserved for ages still to come, when memory of
us will have been effaced.”

— Lucius Annaeus Seneca, Quaestiones Naturales

1.1 Overview
Radio astronomy is undergoing a significant change in observational capabilities in
the buildup to the Square Kilometre Array (Braun et al., 2015; Bourke et al., 2018,
SKA). This rapid development comes with a unique set of challenges, primary of
which is the massive data output from these radio telescopes. SKA precursors
such as the Australian Square Kilometre Array Pathfinder (ASKAP) (Johnston
et al., 2008) and the enlarged Karoo Array Telescope (named MeerKAT) (Jonas
and MeerKAT Team, 2016) output several petabytes (PBs) of data per year. The
SKA is eventually expected to produce approximately 300 PB per telescope per
year during full operation, resulting in a 8.5 Exabyte archive over the 15-year
lifespan of the project (Scaife, 2020).

The SKA’s pathfinders and precursors (Norris et al., 2013) could potentially
revolutionize the field of radio astronomy. Very Large Array Sky Survey (VLASS)
(Lacy et al., 2020) and Evolutionary Map of the Universe (EMU) (Norris et al.,
2011) are two ongoing surveys that are expected to detect up to roughly 5 and 70
million radio sources, respectively. To date, only roughly 2.5 million radio sources
are known. Historically, scientific analysis used catalogues compiled by either
individuals or small teams (Fanaroff and Riley, 1974). However, the increasingly
large samples of radio sources detected by modern radio telescopes means that

1
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CHAPTER 1. INTRODUCTION 2

the classification of full catalogues by subject matter experts is no longer a viable
option (Hocking et al., 2015).

The recent advances in machine learning tasks related to image classification
are a potential solution, providing near human accuracy. Convolutional Neural
Networks (CNNs) are a popular choice for image recognition problems in both
academia and industry (LeCun et al., 1989; Goodfellow et al., 2016). A CNN is a
special type of neural network that learns which features are important to extract
from images. It then employs these learned features to perform classification. A
prime example of a CNN architecture that has been successful in classifying images
is AlexNet, which was one of the first CNN architectures to achieve human-level
performance on the ImageNet Challenge. This involved classifying 1.2 million
images into 1000 different classes (Deng et al., 2009; Krizhevsky et al., 2012).

Several CNNs have been developed specifically for radio astronomy, start-
ing with Aniyan and Thorat (2017)’s classifier Toothless which was inspired by
AlexNet. The rising popularity of Deep Learning led to a series of articles which
proposed novel CNN architectures for classification of radio sources, most of these
were not comparable with their predecessors for various reasons, mostly due to be-
ing trained on different datasets. Furthermore, the models developed during these
studies were often trained on small sample sizes, which make it difficult to assess
generalization to a larger dataset. Only one of these studies report on compu-
tational requirements beyond trainable parameter count. An additional problem
caused by the classifiers being trained on different datasets is that we cannot com-
pare which of these architectures are more prone to overfitting than the others.
Significant research has been done in creating new classifiers, but with no means
to compare these studies, it is difficult to assess the performance and practicality
of these methods at scale.

1.2 Problem Statement
Large datasets are expected in the Exabyte range from new radio astronomy sur-
veys, which would limit the practicality of subject matter expert image classi-
fication. A method of automatic classification is needed that can classify such
large datasets reliably and fast. Significant research has been done to automate
the morphological classification of radio galaxies, with several studies proposing
new classifiers for this task. However, no study has compared the performance of
these classifiers. Most classifiers have been trained on datasets of different sizes
and composition, making comparison even more difficult. As such, an assessment
of which classifiers are more prone to overfitting is also lacking. The relevant
studies in radio astronomy has given in-depth information regarding classification
performance metrics but focuses very little on computational requirements.
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In short, no comparison study exists to assess the recognition and compu-
tational performance of the CNN architectures that have been proposed for the
morphological classification of radio galaxies. When considering such a study, an
assessment of overfitting and the effectiveness of regularization interventions is
also crucial. Such a study will make it possible to select the best architectures for
deployment and aid in the future development of better performing architectures.

1.3 Objectives
To address these problems, several CNN architectures from the radio astronomy
literature were retrained on the same dataset. We then assess how prone the ar-
chitectures are to overfitting relative to each other and test various regularization
interventions on those that overfit. The most effective interventions then replace
the original models in the recognition performance comparison study. Architec-
tures were also assessed on their computational requirements. A simple ranking
system is proposed based on recognition performance and computational require-
ments.

The objectives of this study are:

1. Identifying proneness to overfitting: After all the architectures from
the selected studies are retrained on the same dataset, we assess how prone
the architectures are to overfitting relative to each other.

2. Assessing regularization intervention effectiveness: After identifying
which architectures are more prone to overfitting, we test the various regu-
larization interventions from the literature of selected studies on those that
overfit. The most effective interventions are then applied to these overfit-
ting prone architectures and replace the original models in the recognition
performance comparison study.

3. Assessing recognition performance: Classifier performance is then as-
sessed and compared with regards to precision, recall, F1-score and mean
per class accuracy.

4. Reporting computational requirements: Besides recognition perfor-
mance, it is important to assess the computational requirements of various
CNNs when considering which to use in practice. We assess and report the
computational requirements of each architecture in literature in this thesis.

5. Ranking system: A ranking system has been developed to assess and com-
pare CNNs that take into account the recognition performance and compu-
tational requirements of each architecture.
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CHAPTER 1. INTRODUCTION 4

1.4 Contributions

1.4.1 Publications

• B. Becker and T. Grobler, Classification of Fanaroff-Riley Radio Galaxies
using Conventional Machine Learning Techniques, 2019 International Multi-
disciplinary Information Technology and Engineering Conference (IMITEC),
Vanderbijlpark, South Africa, 2019, pp. 1-8 (Becker and Grobler, 2019).

• B. Becker, M. Vaccari, M. Prescott, M. and T. Grobler, 2021, CNN Archi-
tecture Comparison for Radio Galaxy Classification. Monthly Notices of the
Royal Astronomical Society, 503(2), pp.1828-1846 (Becker et al., 2021).

1.4.2 Software

Software contributions that have been made are available publicly on Github at:
https://github.com/BurgerBecker/rg-benchmarker

1.5 Thesis Outline
The thesis outline is summarized below:

• Chapter 2 discusses the background and theory surrounding radio astronomy.
The radio astronomy section of this chapter discusses the radio galaxy mor-
phology taxonomy that subject matter experts use to classify radio sources.

• Chapter 3 discusses the background and theory of CNNs. This chapter starts
with a historical overview of the development and adoption of CNNs. The
chapter then discusses the layers that a CNN is composed of. Overfitting
is defined and methods of addressing overfitting through regularization is
discussed. Lastly the metrics we used to evaluate the models from the ex-
periments we conducted in this thesis are presented.

• Chapter 4 introduces the data used in this thesis and the acquisition thereof.

• Chapter 5 provides an overview of the radio galaxy CNN literature. The
chapter starts by listing the different architectures we considered in this
study. We then discuss the contributions of each study, i.e how did each
study address overfitting and which regularization strategies did they utilize.
We also mention the minor modifications made to some architectures to be
suitable for the comparison study.

Stellenbosch University https://scholar.sun.ac.za
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CHAPTER 1. INTRODUCTION 5

• Chapter 6 presents the experimental setup. The various experiments are laid
out and discussed, starting with the identification of architectures prone to
overfitting in Experiment 1 (see point 1 from Section 1.3). We then discuss
Experiment 2 in which we assess the effectiveness of the various regularization
strategies used in the literature (point 2, Section 1.3). Lastly, we discuss
Experiment 3 which compares the architectures’ performance on the test set
(point 3, Section 1.3) and their computational complexity (Section 1.3, point
4). This experiment also discusses and introduces the ranking system (point
5, Section 1.3).

• Chapter 7 presents the results of the experiments in Chapter 6.

• Chapter 8 offers our conclusion and closing remarks.

1.6 Grant Acknowledgement
This work is based on the research supported wholly or in part by the National
Research Foundation (NRF) of South Africa grant number 117275.
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Chapter 2

Background: Radio Astronomy
“The total amount of energy from outside the solar system ever received
by all the radio telescopes on the planet Earth is less than the energy
of a single snowflake striking the ground.”

— Carl Sagan, Cosmos

This chapter gives the background context which is needed to understand the
material relating to Radio Astronomy presented in the thesis. In Section 2.1 the
instruments that are used to observe radio sources are described. In Section 2.2
the taxonomy scientists use to group the different radio sources is presented.

2.1 Radio Telescopes
Earth’s low atmospheric opacity within the radio frequency range, from 15MHz to
300MHz (20m to 1mm wavelength) provides a unique opportunity to study radio-
loud astronomical sources from the planet’s surface with minimal loss of signal
quality. The field of radio astronomy focuses on studying sources detected in the
radio window of the electromagnetic spectrum via radio telescopes.

Radio telescopes are radio receivers made up of specialized antennae that ob-
serve radio waves emitted by astronomical sources. These astronomical sources are
extremely distant, ranging from exosolar objects to galaxies at the edge of the ob-
servable universe, and therefore have very weak radio signals by the time it reaches
earth. Radio telescopes require sensitive receivers and large surface areas to collect
and/or focus enough energy from the signal in order to study it meaningfully. This
can either be done by increasing the dish size (such as the Arecibo Observatory
dish with a 305 meter diameter in Figure 2.1) or combine the signal of an array of
smaller telescopes to emulate a larger telescope through radio interferometry, such
as the Very Large Array (VLA) (see Figure 2.2).

The SKA radio telescope is of the latter type and will after completion have a
collecting area of more than one square kilometre. The SKA radio telescope will

6
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Figure 2.1: The Arecibo Observatory dish in Puerto Rico is an example of a
single dish radio telescope. Operations began in 1963, the 305 meter diameter
dish claimed the title of largest single filled aperture telescope for 53 years until
2016 with the completion of the Five-hundred-meter Aperture Spherical Telescope
(FAST) in Kedu, Peoples Republic of China. The Arecibo Observatory dish was
decommissioned on 19 November 2020 due to safety concerns. Before controlled
demolition could commence, on 1 December 2020 the main telescope collapsed.

be co-located in South Africa and Australia. The South African Radio Astronomy
Observatory (SARAO) is responsible for managing all the South African radio
astronomy facilities and initiatives, including the South African contribution to
the SKA project. SARAO is a facility of the NRF.

2.2 Morphological Classes of Radio Galaxies
Since the days of Hubble, astronomers have been progressively creating more so-
phisticated classification schemes to group galaxies based on their shapes observed
at optical wavelengths into seperate classes. Morphological classification has be-
come a fundamental aspect of studies relating to galaxy formation and evolution,
therefore, critical to modern astronomy as a whole. The shape of a galaxy is inti-
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Figure 2.2: The VLA located in Socorro, USA, is an example of an array telescope,
consisting of 27 radio antennas. Each antenna in the array measures 25 meters
(82 feet) in diameter and weighs about 230 tons.

mately tied to the dynamical and physical processes at play within and around it
(Hubble, 1926; de Vaucouleurs, 1959; Sandage, 1961; Elmegreen and Elmegreen,
1987). Current understanding of galaxy formation and evolution state that every
massive galaxy is believed to contain a supermassive black hole (SMBH) which un-
dergoes periods of accretion throughout cosmic time to produce an Active Galactic
Nucleus (AGN). AGNs are often detected in radio surveys via their synchrotron
emission produced by accelerated electrons in their cores, lobes and jets (see Fig-
ure 2.3). These are referred to as radio-loud AGN.

Radio galaxies are morphologically distinguished by the shape of their jets
and lobes and the position of their hotspots in these jets, relative to their core.
Figure 2.3 illustrates the mechanism whereby energy is expelled from the core of
the AGN in jets that feed into lobes around the galaxy.

The first morphological classes of radio galaxies were split based on the ratio of
inter-lobe “hotspot” distance to total length. A hotspot is an area of high intensity
in either one of the lobes. This is called the Fanaroff-Riley ratio (Fanaroff and
Riley, 1974) (see Figure 2.4). The division was postulated to lie at a ratio of 0.5
with a corresponding division in radio luminosity. Fanaroff-Riley Type I (FRI)
were more likely to have the hotspots near the core and Fanaroff-Riley Type II
(FRII) with the hotspots near the edges. Figure 2.5 depicts an example of an
FRI and FRII galaxy. There are also Bent-tailed sources whose lobes do not
form in a straight line. Finally there are Compact sources, which are simply one
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Figure 2.3: Schematic representation of the structure of a radio-loud Active Galac-
tic Nucleus

undifferentiated core with no jets and lobes. These are the morphological classes
that are considered in this study.

Figure 2.4: A diagram of the Fanaroff-Riley ratio. The ratio is defined as the
inter-lobe hotspot distance (B) divided by the total source length (A)
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Figure 2.5: The FRI galaxy 3C 449 (left) and the FRII galaxy 3C 98 (right)
illustrate the FR morphology. The red area indicates the brightest radio emission.
For the FRII’s the edges are much brighter in radio emissions, while the FRI’s have
hotspots closer to the core region. Reproduced from Extragalactic Jets from Every
Angle, Proceedings of the International Astronomical Union, IAU Symposium,
Volume 313, pp. 211-218 with permission (Kharb et al., 2015)
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Chapter 3

Background and Theory:
Convolutional Neural Networks

“The central challenge to solid mathematical, scientific understanding
of intelligence today is to understand and replicate the highest level of
intelligence that we can find even in the brain of the smallest mouse.
This is clearly far beyond the qualitative level of capabilities or func-
tionality that we find in even the most advanced engineering systems
today.”

— Paul Werbos, A Scientific/Engineering View of Consciousness and
How to Build It

This chapter gives the background context which is needed to understand the
material related to CNNs presented in the thesis. In Section 3.1 a concise intro-
duction to machine learning and its aims are given. In Section 3.2 a brief historical
overview is given of Artificial Neural Networks (ANNs) and CNN development and
adoption. The building blocks and training of ANNs are discussed in Section 3.3.
The basics of CNNs are discussed in Section 3.4. The problem of overfitting is
discussed in Section 3.5. Regularization and methods to address overfitting is dis-
cussed in Section 3.6. The metrics we used in this thesis to evaluate the CNNs
from radio astronomical literature are summarized in Section 3.7.

3.1 Machine Learning
Machine learning is a subset of the field of Artificial Intelligence (AI). By using
sample data, machine learning algorithms develop models that can perform a spe-
cific task with data that it previously has not been exposed to. This ability to
perform a specific task well on previously unobserved inputs is referred to as gen-
eralization. The model learning from sample data is called training and the sample
data is referred to as training data.

11
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Mitchell (1997) provides an operational definition of machine learning:

• “The field of machine learning is concerned with the question of how to
construct computer programs that automatically improve with experience.”

• “A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in
T, as measured by P, improves with experience E.”

Various machine learning models have been developed in which some task is
learned based on experiences or data. For the purposes of this thesis we will be
focusing on the task of image classification. During a classification task, the model
is required to state whether the input item is part of one of k classes. Machine
learning algorithms can be broadly categorized into supervised or unsupervised
learning tasks, based on the way the model has been trained, although this is not
a strict definition since neither are formally defined terms and degrees of overlap
occur between both (Goodfellow et al., 2016).

3.1.1 Unsupervised Learning

In unsupervised learning, the training data the model is exposed to has no cor-
responding labels. The model learns a probability distribution that can generate
representative examples of the training set that it was exposed to.

3.1.2 Supervised Learning

When using a supervised learning approach, the model is given input-output pairs
to learn the correct associations for specific data. Supervised learning requires an
input xj and a corresponding label yj that the model can learn from. The label
represents the desired output or class of the input.

All of the studies considered in this thesis follow a supervised learning approach.

3.1.3 Task: Image Classification

A specific task is required to assess performance of the learning algorithm. Image
classification is one such task and the focus of our study. Algorithms performing
image classification attempt to place an image into one of a set of predefined classes
based on the contents of the image as a whole (Wang and Su, 2020). This is done
by assigning the image a class label. This task is typically performed on images
where only a single object is present, in contrast to object detection that performs
both classification and localization of multiple objects in an image. We do not,
however, train any models for this task.
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3.2 Historical Overview
CNNs have within the last decade revolutionized the field of computer vision, at-
taining human-like accuracy levels when it comes to recognition and classification
tasks. Although these recent innovations have made headlines in mainstream me-
dia and captured the popular imagination as the “ascendancy” of AI, CNNs have
a history stretching back to the mid-20th century, long before computers became
ubiquitous.

3.2.1 McCulloch-Pitts Neuron

Walter Pitts was pivotal to the development of the idea of an artificial neuron. He
had taught himself Greek, Latin, mathematics and number theory before reaching
puberty, despite a difficult childhood with a family who thought it better that he
join the workforce than stay in school. An anecdote tells that while a 12 year
old Pitts was being chased through the streets of Detroit, he went and hid in a
public library. There he found Alfred Whitehead and Bertrand Russel’s three vol-
ume Principia Mathematica, spending the next three days in the library reading
all 2000 pages. The Principia was an attempt to reframe mathematics from the
perspective of pure logic. The young Pitts sent Russel a letter listing errors he had
found. Russel invited Pitts to Cambridge University, which he turned down due
to his young age. Pitts did however run away from home three years later when he
found out Russel would be visiting the University of Chicago. Pitts was destitute,
when he met Jerome Lettvin, a young medical student. Lettvin would end up
introducing him to Warren McCulloch, a neurophysiologist with a background in
mathematics. Pitts and McCulloch shared a common interest in the work of the
great German polymath Gottfried von Leibniz. One particular shared interest was
for what Davis (2002) would later refer to as: Leibniz Dream. According to Davis,
Leibniz “dreamt of an encyclopedic compilation, of a universal artificial mathemat-
ical language in which each facet of knowledge could be expressed, of calculational
rules which would reveal all the logical interrelationships among these propositions.
He also dreamt of machines capable of carrying out calculations, freeing the mind
for creative thought.” McCulloch, being further inspired by Alan Turing’s work
showing the possibility of a machine capable of computing any function (given that
the computation can be carried out within finite steps), had developed the belief
that the human mind was such a machine and was interested in mathematically
formulating the mechanism by which it functioned, from the neuron upward. Mc-
Culloch explained his theory to Pitts, whose in depth understanding of number
theory proved useful in underpinning the idea mathematically.

Following this, McCulloch invited both Pitts and Lettvin to live with him and
his family. Pitts was destitute at this point in his life.
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McCulloch and Pitts went about formalizing their theory which culminated
in their seminal work: “A Logical Calculus of the Ideas Immanent in Nervous
Activity” (McCulloch and Pitts, 1943), which proposes an artificial neuron that
sums the inputs to it and activates if the values are above a certain threshold. This
activation mechanism is similar to what McCulloch refers to as the “all-or-none”
activation characteristic of how biological neurons were believed to work at the
time, enough of the neighbouring neurons have to send a signal to a neuron for it
to fire itself. The artificial neuron described in their work has become more widely
known as the McCulloch-Pitts neuron. The McCulloch-Pitts neuron has served as
a foundational principle for how nearly all ANNs work today.

Despite the best efforts of McCulloch, Pitts would never hold any official posi-
tion at the Massachusetts Institute of Technology (MIT) beyond research associate
nor finish his Doctoral dissertation. His work with Levitt on “What the Frog’s Eye
Tells the Frog’s Brain” (Lettvin et al., 1959) found that the frog’s eye preprocessed
a lot of the visual information before conveying it to the brain, rather than the
brain processing all the information pixel by pixel. This pushed Pitts to despair,
he refused to sign the paperwork to receive his Ph.D. and he set fire to his Doctoral
dissertation. Pitts started drinking heavily and died in 1996 at age 43, McCulloch
died 4 months later. Figure 3.1 shows McCullogh, Pits and Lettvin.

McCulloch and Pitts provided a mechanistic view of the human brain, rather
than the less quantifiable views popularised by Freud and Jung’s psycho-analytic
school. A more mechanistic view set the stage for further development of ANNs
as a more concrete field of academic study, rather than the more abstract views of
cognition held in psycho-analysis at the time.

3.2.2 Perceptron

The perceptron was developed by Frank Rosenblatt and was inspired by the
McCulloch-Pitts neuron, a perceptron neuron will fire if the inputs to it are greater
than zero. It used a single neuron for classification and had a learning rule (Rosen-
blatt, 1958). It was eventually shown that the perceptron could not learn the XOR
function (Minsky and Papert, 1969).

3.2.3 From Hubel and Wiesel to AlexNet

Hubel and Wiesel (1968) found that mammalian visual cortices primarily consist
of two types of cells, i.e. simple cells (that would activate when straight edges had
a certain orientation) and complex cells (with a larger receptive field and lower sen-
sitivity to orientation). This inspired the Neocognitron (Fukushima, 1980) which
combined layers consisting wholly of one of two types of “cells” into a hierarchical
model that could perform handwritten character recognition. One type of cell
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Figure 3.1: Warren McCulloch lecturing [left image]. Walter Pitts (right) and
Jerome Lettvin inspect a frog [right image]. Both were co-authors of “What the
Frog’s Eye Tells the Frog’s Brain” (1959) together with McCulloch, one of the
most cited papers in history, the findings of which pushed Pitts to despair and
alcoholism. McCulloch and Pitts developed the logical underpinnings that have
been foundational to the development of artificial neural networks.

would apply a convolutional operation to the input, while the other would down-
sample the input. The weights for the convolutional operation would be learned
from input examples. The first deep CNN (LeCun et al., 1998) had seven layers
and was primarily used for handwritten character recognition, although training
such deep models was computationally very expensive and time consuming. The
widespread advent of Graphics Processing Units (GPU) within desktop computers,
however, resulted in more people being able to quickly train deep CNNs (Cireşan
et al., 2010). Furthermore, Deep Learning in general and CNNs in particular
became the de facto standard for image classification after the 2012 ImageNet
Challenge was won by a CNN, i.e. AlexNet (Krizhevsky et al., 2012).

3.2.4 History of Backpropagation

The back propagation of error (referred to commonly as backpropagation) is a
method developed to efficiently calculate the gradient of the loss function and is
described further in Section 3.3.5. Using backpropogation to train neural networks
was first proposed by Paul Werbos in 1971 (Werbos, 1974). This was published in
his 1974 Doctoral dissertation and was initially used to train a model to predict
social communication and nationalism.

Sadly, the workWerbos did remained mostly unnoticed by the scientific commu-
nity in the early 1980’s. The aforementioned backpropagation algorithm was inde-
pendently rediscovered by Rumelhart et al. (1986). In “Backpropagation through
time: what it does and how to do it” Werbos (1990) clarifies and makes concise
the central ideas of backpropagation. Werbos’ original thesis was later reprinted
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Figure 3.2: An ANN example of a 3 layer structure, with one input layer, one
hidden layer and an output layer. The input layer receives and distributes the
data to the hidden layer neurons. Each connection between neurons has a weight
factor (depicted as w on the right hand side of the figure) and a bias term. The sum
of all the inputs to a neuron and its bias term have an activation function applied
to it (depicted as σ in the figure; σ is usually a non-linear function). This is the
output of this neuron, which in this case gets sent to the output layer’s neurons,
where the same process is repeated, except that the output of this neuron’s layer
represents the probability of the data being in this class.

as part of Werbos’ larger work “The Roots of Backpropagation: From Ordered
Derivatives to Neural Networks and Political Forecasting” (Werbos, 1994). In 1995
Werbos was awarded the IEEE Neural Network Pioneer Award for his discovery
of backpropagation.

The first application of backpropagation to a Neocognitron-esque CNN was
done by LeCun et al. (1989).

3.3 Artificial Neural Networks
Neural networks can in general be visualized as graph-like structures in which
nodes are referred to as neurons (see Figure 3.2). Each edge or connection to
another neuron has a weight term, which represents the strength of its connection.
All non-input neurons also have a bias parameter. The weights and biases affect
the propagation of information through the network. With the right combination
of weights, the network can match input from a certain class to its respective class
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label reliably. The neurons are arranged in layers, with an input being propagated
from the input layer, through intermediate layers (called hidden layers) until it
reaches the output layer.

ANNs are normally composed of fully connected or dense layers. The neurons
of a fully connected layer are connected to all the neurons of the previous layer.
The output layer is also a fully connected layer. When the ANN is being used
for classification the output layer has as many neurons as the number of classes
that have been provided. The main difference, within the context of the current
deep learning regime, between the output layer and other layers is the activation
function being applied to that layer’s input. For example, for all the architectures
selected in this study the softmax activation function was used in the output layer
while either ReLU or a linear activation was used in the

3.3.1 Deep Learning Frameworks: Keras and Tensorflow

The Keras deep learning framework (Chollet et al., 2015) was made use of during
our study, which is an open-source software library with a Python language Appli-
cation Programming Interface (API) for the Tensorflow deep learning framework
(Abadi et al., 2015). Keras is useful for fast experimentation and prototyping with
ANNs. Several technical terms have different implementations within the various
deep learning frameworks (such as dropout, see Section 3.6.2) and all such terms
are discussed within the context of the Keras and Tensorflow implementations.

3.3.2 Activation Functions

In an ANN, a neuron typically has an activation function that is applied to the
neuron’s inputs to provide an output. When a multi-layer ANN has only linear
activations, the output is a linear transformation of the input. Since these ac-
tivations are commutative, the network structure of the ANN with only linear
activations can be condensed to two layers: the input and the output layers. A
two layer neural network with non-linear activation has been shown to be a uni-
versal function approximator (Cybenko, 1989). For ANNs non-linear activation
functions are commonly used (although linear activations are also used), which
can be used to model more complex relations. Some commonly used activation
functions in ANNs are discussed in the following subsections.

3.3.2.1 Logistic sigmoid

The logistic sigmoid (or simply ‘sigmoid’) function was one of the earliest acti-
vation functions used in ANNs. The sigmoid function applied to any real value
maps it to a value between zero and one. As the magnitude of the input increases,
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the sigmoid’s gradient decreases rapidly, which leads to the vanishing gradient
phenomenon (see Section 3.3.5.5). This has lead to the waning of the activation
function’s popularity. Equation 3.1 is the activation function mathematically ex-
pressed, with x representing the input to the function:

σ(x) =
1

1 + e−x
. (3.1)

Equation 3.2 represents the derivative of the sigmoid function:

σ′(x) = σ(x)(1− σ(x)). (3.2)

3.3.2.2 ReLU

Another activation function used in ANNs (which has become more commonly
used within the current deep learning dispensation) is the rectified linear unit
(ReLU) which is mathematically defined as:

σ(x) = max(0, x) =

{
x x > 0
0 x ≤ 0

(3.3)

σ′(x) =

{
1 x > 0
0 x ≤ 0

(3.4)

Although the derivative of ReLU is technically undefined at zero, Equation 3.4
is commonly used. ReLU is much less prone to the vanishing gradient problem (see
Section 3.3.5.5) than the sigmoid activation function is and is part of the reason
why it has seen such widespread adoption (see Section 3.3.5.5).

3.3.2.3 Softmax

The softmax function is the activation function which is commonly used within
the current deep learning context in the output layer for multi-class classification.
This activation function normalizes an input vector’s values to the range between
zero and one to represent a probability associated with each class. The neuron
with the highest output value determines the classification result, with a higher
value meaning greater model confidence in the classification. The softmax function
σ : Rn → [0, 1]n is defined as:

σi(x) =
exi∑n
j=1 e

xj
, for i = 1, ..., n and x = (x0, ..., xn) ∈ Rn (3.5)

with n being the size of the input vector x. The derivative of Equation 3.5 is
expressed as:

∂σi
∂x

=

{
σi(x)(1− σi(x)) i = j
σi(x)σj(x) i 6= j

(3.6)
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The softmax function takes a vector as input and as output gives a vector
with each element in the input affecting each element in the output. The softmax
function is a generalization of the sigmoid function to an n-dimensional categorical
probability distribution. As such, softmax is used as the output layer for multiclass
classification.

3.3.3 Loss Function

The loss function C measures how well the model performs on a specific task. A
loss function is used to calculate the error between the current predicted output y′j
and the correct label yj for a specific set of weights and biases. Alternative terms
for the loss function include the error or cost function. The loss function used for
classification is categorical Cross-entropy loss. This is also the loss function used
in this thesis.

C(y′,y) = −
n∑

j=1

yjlog(y′j) (3.7)

3.3.4 Forward Pass

Consider a small ANN consisting of an input layer, hidden layer and an output
layer such as the one pictured in Figure 3.3. The example ANN has labelled
weights wl

jk, neuron outputs alj, activation function σ and the model prediction y′.
The generalized example ANN we refer to in the rest of Section 3.3 has L layers.

The input layer’s neurons take as input the individual elements of the data
instance x. The input layer has the same number of neurons as the input dimension
n.

Let zlj correspond to the cumulative inputs to the jth neuron in layer l, i.e.
the sum of the weighted input to that neuron and the jth neuron’s bias parameter
blj. Weights are represented as wl

jk with k representing the neurons in layer l − 1.
More formally,

zlj =
∑
k

wl
jka

l−1
k + blj (3.8)

The output of neuron j in layer l is given in Equation 3.9 after an activation
function σ is applied to what we will refer to from here on as the pre-activation
term zlj.

alj = σ(zlj) (3.9)

For input in the first layer there is no activation function.
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Figure 3.3: Example ANN with labelled weights (wl
jk), neuron outputs (alj) and

the model prediction (y′). The arrows indicate the flow of the network during a
forward pass (as in the case of inference) or a backward pass (during parameter
updates).

a0j = xj (3.10)

For a forward pass the input values (xj) are fed into the input neurons in layer
l = 0. The output of the input neurons are a01 and a02. These values are then
passed to the hidden layer neurons, where their weighted sum is calculated and a
bias term is added (see Equation 3.8) to which the activation function is applied
(Equation 3.9). The neuron outputs are then passed to the output layer, where
the weigted sum of the activations in the previous layer is computed and a bias
term is added. The final activation function is then applied which provides the
output probabilities. We designate this last layer’s outputs as aLj (alternatively as
y′j).

During training, validation and testing an additional step takes place to calcu-
late the error using a loss function and given labels.

3.3.5 Backpropagation

ANN training is done by minimizing the loss function with respect to the param-
eters of the neural network. Gradient descent is used to minimize the loss by
iteratively moving in the direction of the gradient’s downward slope until a local
or global minimum is reached. This gradient calculation is done efficiently with
the backward propagation of errors algoritm (backpropagation).
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3.3.5.1 The Chain Rule

The chain rule allows us to decompose the gradient of a function. Given two
functions y = f(u) and u = g(x) the derivative with respect to x takes the form
of Equation 3.11.

∂y

∂x
=
∂y

∂u

∂u

∂x
= f ′(u)g′(x) (3.11)

3.3.5.2 Derivatives

In order to minimize the loss function with respect to the ANNs parameters, we
apply gradient descent. To do this, we require the gradient of the network’s loss
function with respect to the network’s parameters. Making use of the chain rule
in Equation 3.11 we calculate the derivative of the loss function C with respect to
the weights and the biases as follows:

∂C

∂wl
jk

=
∂C

∂zlj

∂zlj
∂wl

jk

(3.12)

The derivative of the pre-activation term zlj from Equation 3.8 with respect to
the weight wl

jk simplifies to al−1k since no other term in Equation 3.8 has the wl
jk

factor.
We will use the following shorthand notation to represent the loss term’s deriva-

tive w.r.t. the pre-activation term:

∆l
j :=

∂C

∂zlj
(3.13)

We can now rewrite Equation 3.12 as:

∂C

∂wl
jk

= ∆l
ja

l−1
k (3.14)

Similarly, the derivative of the loss function with respect to a specific bias term
can be computed via Equation 3.15 and simplifies to Equation 3.16.

∂C

∂blj
=
∂C

∂zlj

∂zlj
∂blj

(3.15)

= ∆l
j (3.16)

Application of the chain rule to the loss function’s derivative w.r.t the pre-
activation term of the last layer L; we obtain Equation 3.19.
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∆L
j =

∂C

∂zLj
(3.17)

=
∂C

∂aLj

∂aLj
∂zLj

(3.18)

=
∂C

∂aLj
σ′(zLj ) (3.19)

Likewise, applying the chain rule to the loss function’s derivative w.r.t each
pre-activation term in layer l + 1, we get Equation 3.22.

∆l
j =

∂C

∂zlj
(3.20)

=
∑
i

∂C

∂zl+1
i

∂zl+1
i

∂zlj
(3.21)

=
∑
i

∆l+1
i

∂zl+1
i

∂zlj
(3.22)

Recall that the ith pre-activation term in layer l+ 1 is given by Equation 3.24.

zl+1
i =

∑
k

wl+1
ik alk + bl+1

i (3.23)

=
∑
k

wl+1
ik σ(zlk) + bl+1

i (3.24)

Since only one of the terms in Equation 3.24 has a factor parameterized by zlk ,
the partial derivative ∂zl+1

i

∂zlj
simplifies to Equation 3.25.

∂zl+1
i

∂zlj
= wl+1

ij σ′(zlj) (3.25)

Substitution of Equation 3.25 into Equation 3.22 we can write the gradient ∆l
j

of as Equation 3.26.

∆l
j =

∑
i

∆l+1
i wl+1

ij σ′(zlj) (3.26)

The gradient of each layer is a function of the gradient of the next layer, since
the output of any layer is a function of the previous layer’s outputs.

Clearly, the gradients associated with layer l depend only on the gradients
associated with layer l + 1. We can, thus, efficiently calculate the gradients with
respect to the parameters (Equations 3.12 and 3.15).

We elaborate bellow on how these are used to update the weights and biases.
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3.3.5.3 Gradient Descent

Training takes place by updating the parameters for each training sample in an
iterative fashion, the weight update mathematically expressed as:

wl
jk = wl

jk − λ∆l
ja

l−1
k (3.27)

blj = blj − λ∆l
j (3.28)

Please note that the weight and bias variables on the left side of the equa-
tions represent the updated values, while on the right side the weight and bias
variables represent the previous values. The learning rate λ is a hyperparameter
that scales the step size of gradient descent. We discuss hyperparameter tuning in
Section 6.1.2.

We will now discuss a high level walk-through of the backpropagation algorithm
using the gradients and parameter updates.

3.3.5.4 Algorithmic Description

Below follows a description of the backpropagation algorithm:

• During a forward pass of training data in the network, we store the pre-
activation zlj and activation alj for all layers.

• Then we calculate ∆L
j using Equation 3.19.

• The gradients ∆l
j are then calculated for each layer using Equation 3.26,

while moving backward from the output layer to the input layer. As we
move backward we reuse the gradients associated with layer l + 1 as well as
the zlj values computed during the forward pass.

• We calculate the gradient of the loss function with respect to the weights
(Equation 3.14) and biases (Equation 3.16) of each layer.

• The weights and biases are updated using the step size in Equations 3.27
and 3.28. The gradients calculated for each layer ∆l

j and the outputs of each
layer alj (computed during the forward pass) are re-used in this step.

To summarize, for each training sample the backpropagation algorithm makes
a forward pass (inference), then measures the error using the loss function, goes
through the neural network in reverse (backward pass) to measure the error con-
tribution from each parameter and updates the parameters to reduce the error
(gradient descent).
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3.3.5.5 Vanishing Gradient Problem

As we have shown above, during gradient descent the weight updates are done
proportionally to the gradients calculated for each layer. Sometimes this gradient
becomes extremely small which prohibits the weights from updating. In extreme
cases, this stops the network from learning effectively. This is known as the van-
ishing gradient problem and since the effect compounds, deep neural networks are
especially more prone to it (Goodfellow et al., 2016). Some activation functions
(sigmoid, Section 3.3.2.1) are more likely to be affected by this than others (ReLU,
Section 3.3.2.2).

3.3.6 Optimisation Algorithm

Variations of optimisation algorithms change the default update equation of gra-
dient descent to something more advanced to improve convergence. Otherwise
slow convergence could occur depending on the type of loss landscape or massive
oscillations could occur, should there be several local minima.

3.3.6.1 Root Mean Squared Propagation

Root Mean Squared Propagation (RMSProp) (Hinton et al., 2012a) was one of
the first optimisation algorithms that makes use of adaptive learning rates. An
adaptive learning rate is when the step size of each parameter is scaled individually.
An adaptive learning rate is used to better achieve convergence since larger learning
rates might overstep local/global minima.

3.3.6.2 ADAM

Adaptive moment estimation (ADAM) is an optimization algorithm that can be
used to iteratively update a neural network’s weights (Kingma and Ba, 2017). A
learning rate is kept for every network parameter and is adapted separately as
training continues.

ADAM was chosen as the optimisation algorithm to be used in this study
since it is efficient. ADAM is recommended by several Deep Learning experts,
namely Andrej Karpathy (former OpenAI researcher and Head of AI at Tesla) and
Sebastian Ruder. In “An Overview of Gradient Descent Optimization Algorithms”,
Ruder (2016) found that while there are more similarities than differences between
Adam and other adaptive learning rate optimizers. For example, ADAM also stores
a decaying average of previous squared gradients in the way that RMSProp does,
but ADAM also stores the previous gradients. ADAM, however, does perform
better towards the end of optimization and lists Adam as the overall best choice.
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3.4 Convolutional Neural Networks
Next we provide a technical overview of CNN structure and functionality starting
with layer composition. Although many different types of ANNs have developed
over time, CNNs in particular have become some of the top performing classifiers
for image recognition.

CNNs have three main types of layers: Convolutional layers, pooling layers and
fully connected (or dense) layers. The convolutional layers are usually grouped to-
gether to form convolutional blocks. These convolutional blocks are often followed
by pooling layers. Most CNNs consist of several convolutional blocks with pooling
layers. The output of these layers are then flattened to a single output vector
which is then input into dense layers. We have already discussed these so called
dense layers in some detail in Section 3.3. The last dense layer is an output layer
which has the same number of neurons as there are classes, each representing a
probability that the input is part of that class (and usually employs the softmax
activation function).

Broadly speaking, the convolutional and pooling layers select the features which
are then classified by the dense layer.

3.4.1 Convolutional Layers

In convolutional layers, a convolution operation is performed on a small neighbour-
hood of pixels which then outputs a single value for the neuron in the next layer.
This operation is realized using a small matrix containing trainable weights. This
small matrix is known as the kernel. The aforementioned kernel is then moved over
the image in strides, with a stride length of 1 moving the centre of the kernel one
pixel across or down until the entire image has been covered. The average kernel
size that is used is 3× 3 pixels, although some networks use larger kernel sizes of
up to 11× 11 pixels early on in the network to reduce input size while the image
still contains a high ratio of noise to information (we will see later that AlexNet
and Toothless make use of this). In practice, the kernel is three dimensional and
can, therefore, be applied to the red, blue and green channels of images. In later
convolutional layers, the kernel is moved across the outputs of the previous layer
and not the original image, i.e. the outputs of the previous layer become the input
pixels of the current convolutional layer. Furthermore, more than one channel of
pixels can be created in subsequent layers if more than one three dimensional ker-
nel is used per layer. In the literature, these “channels” are also known as feature
maps.

This many-to-one mapping during convolution leads to the output of a convo-
lutional layer to be downsampled (i.e. to have a smaller output dimension than
the input). If downsampling happens too suddenly, this can potentially lead to
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the loss of too much information without it being incorporated into the model.
One workaround for the downsampling problem is padding the input with zeros
around the edges, to ensure the output shape is the same size as the input shape.
This padding is often referred to as same or zero padding, whereas the absence of
padding is known as valid padding. Kernel size, stride length and padding type are
all examples of hyper parameters of a CNN, each of which could affect recognition
performance.

The output of the final convolutional layer is then flattened into a one dimen-
sional vector, which then becomes the input of the first fully connected layer.

Please note that for the sake of clarity we often used the term “pixel” in the
above descriptive paragraphs instead of “neuron” (they are in fact almost inter-
changeable concepts in this context). This is important to bear in mind, whilst
reading through Section 3.4.2.

3.4.2 Convolution

The convolutional operation used within the convolutional layers of a CNN (as
mentioned in the previous section) is defined as:

zi,j,k = bk +

f−1∑
u=0

f−1∑
v=0

f ′
n−1∑
k′=0

xi′,j′,k′ · wu,v,k′,k with

{
i′ = i× s+ u

j′ = j × s+ v
. (3.29)

In Equation 3.29, zi,j,k is the output of row i and column j’s neuron in the kth
feature map in convolutional layer l. Moreover, s is the stride length (horizontal
and vertical strides are the same for all architectures in this study). Furthermore,
f is the size of the receptive field (i.e. the kernel size used) and f ′n is the number
of feature maps in the previous layer (l − 1). Note that all the architectures we
considered in this study made use of a square receptive field. The symbol xi′,j′,k′
represents the output of row i′ and column j′’s neuron in the k′th feature map
and bk is the bias term in feature map k of layer l. Furthermore, wu,v,k′,k is the
connection weight between neurons in feature map k of layer l and their input
located at row u and column v at feature map k′. Note that, in practice, zi,j,k is
first passed through an activation function before it is passed on to the next layer
of the network. Convolution is depicted graphically in Figure 3.4.

3.4.2.1 Max Pooling Layers

Pooling layers are used to deliberately downsample the input, reducing the input
size while preserving the salient features we want the network to learn. Max
pooling layers perform downsampling by moving a kernel across the input and
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Figure 3.4: A visual representation of a single convolutional layer with a stride
length of 2 and a filter size (kernel size) of 3 by 3.

returning only the maximum pixel value within a kernel. Since a max pooling
layer’s kernel size is normally 2× 2, this leads to a size reduction of the input by
half.

A reduction in input size is needed so that the computational requirements of
deeper layers can be reduced or kept constant.

3.4.3 Rotational Invariance

When a CNN can classify an image irrespective of orientation, it is said to have
rotational invariance. CNNs are normally not fully rotationally invariant (Lukic
et al., 2019b). Convolutional layers enforce translation equivariance and pooling
layers add translation invariance but both of these usually allow only limited in-
variance to rotations, normally not more than a few degrees (Marcos et al., 2016).
Other Deep Learning architectures are rotationally invariant by design, such as
Capsule Networks (Sabour et al., 2017) which have been considered by Lukic et al.
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(2019b) in a radio astronomy study with the results in favour of traditional CNNs.
This is expanded more on in Chapter 5.

3.4.3.1 Receptive Field and Effective Stride

The final convolutional layer’s output is not necessarily the result of a transfor-
mation applied to every pixel in the input image (unlike a dense/fully connected
layer). Rather, each output pixel has a limited “field of view”, a limited region in
the input image that trickles down through the convolutional layers to become a
single output. This is the architecture’s theoretical receptive field, as opposed to
its effective receptive field (the pixels in that limited region that had the largest
impact on the output) (Luo et al., 2017).

3.5 Overfitting
In this section we give a brief introduction to over fitting. We also briefly discuss
the bias-variance trade-off and how this pertains to overfitting.

3.5.1 Overfitting a model

When a statistical model corresponds/fits too closely to noise in a particular
dataset that it cannot extrapolate or interpolate accurately to new data, the model
is said to have been overfitted on the dataset. When training ANNs overfitting is a
significant concern. The model will fit to noise that is specific to the training data
that is not present in other samples pulled from the same distribution. This will
lead to poor generalization performance. The ability to adapt to new previously
unseen data by a model is referred to as its ability to generalize.

Overfitting occurs in a model when the loss of the model on the training set
is low but high on the validation/test set. Overfitting will likely result in high
training accuracy and low validation/test accuracy.

Another method of reducing overfitting is to add regularization techniques
(discussed in Section 3.6), which place constraints on your model with regards to
the type of information and quantity that can be stored. The idea behind this is
that with less capacity, only the most salient features and patterns can be learned.

3.5.2 Capacity

Loosely speaking, the ability of a machine learning model to fit a variety of func-
tions is called capacity. One way of reducing the probability that a model will
overfit or underfit is by adjusting its capacity. A model will generally perform
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better when its capacity is suitable for the complexity of the task at hand and the
number of training samples which are available. Increasing a model’s capacity will
increase the functions a model can learn and fit to data. Low capacity models are
unable to represent all the relations of complex tasks within their hypothesis space
and are more likely to underfit. High capacity models can produce models that
solve these complex tasks but the capacity might be higher than what is required,
at which point the model fits to noise and results in overfitting.

3.5.3 Bias-variance tradeoff

From a theoretical perspective a model’s generalization error is expressed as the
combination of its bias, variance and irreducible errors (Geman et al., 1992). Gen-
eralization error is an accuracy measure of a model on previously unseen data.

Bias errors come from the incorrect assumptions a model makes about a given
dataset (e.g. finding a linear trend when the actual function is polynomial). Low
capacity models tend to have a high bias error, their limited hypothesis space
means that the function fitted to the data will likely be too simplistic. This is when
a model is said to be underfitting. Underfitting is when a model insufficiently learns
and fits to the training data and has adverse effects on generalization performance.

High capacity models have low bias error, fitting more complex functions to
represent the data. However, this may lead to the model fitting too closely to noise
present in the data, resulting in poor generalization on new unseen data. This is
the variance error that models with large capacity suffer from, being sensitive to
small variations in the training data. This is when a model is said to be overfitting.

Irreducible error is a result of the noise present in the data set. This error
can be mediated by cleaning up the data through preprocessing and curating or
changing the data collection method.

The bias-variance tradeoff comes in to play when increasing a model’s capacity,
this will reduce its bias but increase its variance. A decrease in the one leads to an
increase in the other. Since the generalization error is dependant on both the bias
and variance error, an optimal capacity range exists where the sum of the errors
is at a minimum where the model is less prone to overfitting and underfitting.

3.6 Regularization
Here we will present some of the most widely used approaches to avoid overfitting,
namely dropout, kernel regularization, batch normalization and early stopping.
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3.6.1 Batch Normalization

Batch normalization (often shortened to batch norm) reparametrizes the model to
introduce multiplicative and additive noise in the hidden neurons during training
(Ioffe and Szegedy, 2015). The primary purpose of batch normalization was to
improve optimization, but the additive noise can have a similar regularizing effect
to dropout.

3.6.2 Dropout

Dropout, as originally proposed by Hinton et al. (2012b), “severs” some off the
weighted connections within the network during training to reduce the reliance
of the network on all the neurons. This creates smaller sub-networks within the
larger network, effectively creating simpler networks within a larger more complex
one. The generalized form developed by Srivastava et al. (2014) randomly sets the
inputs to a neuron to zero with a probability of p. The dropout rate p is usually
set to 0.5 which works for a wide variety of network configurations (Srivastava
et al., 2014). The Keras implementation used in this study scales the weighted
connections that have not been “cut”/set to zero by a factor of 1/(1− p) (Chollet
et al., 2015). After training, dropout is no longer active and as such Srivastava
et al. (2014) proposes that the weights are scaled by the dropout rate when training
finalizes. In the Keras framework (Chollet et al., 2015) the weight rescaling is done
at training time, at the end of a batch after the weight updates.

Dropout has been shown to work well in practice particularly in combination
with ReLU (Dahl et al., 2013) but does not perform well in combination with
batch normalization (Li et al., 2019).

3.6.3 Kernel Regularization

Model complexity is sometimes described as a function of weights. Models that
have weights with a large magnitude can be viewed as being more complex. These
models are also very sensitive to changes in the input variables and thus more
sensitive to noise. Kernel regularization adds a penalty to the loss function. This
encourages smaller weights, but does not necessarily enforce them (Géron, 2019;
Ng, 2004). L2 kernel regularization is mathematically defined as:

CL2 = C + λ
∑
i

w2
i (3.30)

This is implemented in Keras as: loss = l2 * reduce_sum(square(x))
This result is then added as a penalty to the loss function. The Keras function

reduce_sum adds all the elements of the kernel together, while the square function
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computes the square of the input kernel element-wise. This result is then scaled
with the l2 factor (also referred to as λ).

3.6.4 Early Stopping

When a moving average over the validation loss increases more than a threshold,
then the training is stopped. This is called overfitting and is an effective counter
to overfitting.

3.7 Description of Metrics
The different metrics we used to evaluate the performance of the CNN architectures
we considered are summarized in this section.

3.7.1 Confusion Matrix and F1-Score

A useful tool when reporting the results of classifiers in general is the confusion
matrix. The ijth entry of a confusion matrix shows the number of images that were
classified as belonging to class j even though they actually belong to class i. For
the case where i = j (i.e. along the diagonal), the classification is in the correct
class. In practice, when we depict confusion matrices we often use annotated
interpretable labels instead of the aforementioned integer labels. A hypothetical
confusion matrix which was obtained after classifying a dataset consisting of radio
sources is depicted in Figure 3.5. This confusion matrix depicts how well our
classifier could distinguish FRI sources from non-FRI sources. The class for which
a classifier’s performance is currently being assessed is known as the positive class
(the class currently under consideration). The remaining classes are known as
the negative classes. In the case of Figure 3.5 FRI is our positive class. The
depiction in Figure 3.5 will of course be different if another class becomes the
positive class. Furthermore, the confusion matrix in Figure 3.5 also graphically
depicts the definition of the following concepts in the case of a multiclass scenario:
true positives, false positives, true negatives and false negatives. The general
definition of the above concepts and examples thereof (from Figure 3.5) are listed
below:

• True Positives (TP): images belonging to the positive class being classified
as such (sources that were annotated as FRI and classified as such).

• True Negatives (TN): images from the negative classes that are not classi-
fied as belonging to the positive class (sources that were annotated as FRII

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. BACKGROUND AND THEORY: CONVOLUTIONAL NEURAL
NETWORKS 32

and correctly classified as such or sources that were annotated as Bent, but
incorrectly classified as FRII ).

• False Negative (FN): images belonging to the positive class not classified as
such (sources annotated as FRI, but incorrectly classified as FRII ).

• False Positives (FP): images belonging to the negative classes that are clas-
sified as belonging to the positive class (sources annotated as FRII, but in-
correctly classified as FRI ).

Recall refers to the ratio of the number of images that were correctly classified
as belonging to the positive class to the total number of images in the positive
class, i.e.

recall =
TP

TP + FN
(3.31)

Recall is also referred to as the true positive rate. Precision is the ratio of
images that were correctly classified as belonging to the positive class to the total
number of images that were classified as belonging to the positive class, i.e.

precision =
TP

TP + FP
(3.32)

The weighted average of recall and precision is known as the F1-score,

F1 = 2× precision× recall
precision + recall

(3.33)

A larger F1-score is considered a preferable metric.

3.7.2 Mean per Class Accuracy

Overall accuracy is the ratio of correct classifications for all classes to the total
number of samples tested on. Based on the confusion matrix in Figure 3.5, this is
calculated by dividing the main diagonal (the TP of each class) by the sum of the
entire matrix.

Overall accuracy can be a misleading metric, especially when a significant class
imbalance is present.

For this purpose we use Mean per Class Accuracy (MPCA), calculated as the
mean of the main diagonal of a normalized confusion matrix. The confusion matrix
is normalized by dividing each row with the number of samples in that row (which
corresponds to the number of samples per class). This metric is less susceptible to
class imbalances than overall accuracy.
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Figure 3.5: Confusion Matrix Layout. This specific example showcases an assess-
ment of the FRI class.

3.7.3 Model Complexity

We define model complexity as the model’s number of trainable parameters. The
trainable parameters of a CNN are its weights and bias terms. The number of train-
able parameters of all model instances associated with a particular architecture will
be the same as long as they were created using the same set of hyperparameters.

3.7.4 Computational Complexity

The computational complexity of the architectures considered was measured using
Tensorflow’s version 1 profiler (https://www.tensorflow.org/api_docs/python/
tf/compat/v1/profiler/profile). The aforementioned profiler measures the
number of floating point operations (FLOPs) used by the model in a single for-
ward pass.

3.7.5 GPU Memory Usage

Theoretical GPU memory usage was estimated by first determining the memory
footprint of the CNNs parameters and then adding to that the amount of active
memory the CNN would require when processing a batch of data (a batch size,
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the number of samples classified at the same time by the CNN, of 32 was used in
this case).

3.7.6 Inference Time and Classification Rate

Inference time is the time that a CNN requires to classify a single image. Classi-
fication rate is the number of images that are classified per second, obtained by
inverting inference time. In this thesis, inference time was estimated by taking the
average of 10 timed runs in which we classified 3072 images (with a batch size of
32).

3.7.7 Training to Validation Loss Ratio

We use the ratio between a model’s training and validation loss as a metric to assess
which architectures are more prone to overfitting comparative to other architec-
tures. The metric is calculated by dividing the training loss with the validation
loss.

When the training loss is significantly lower than the validation loss, this in-
dicates that overfitting is present. With the training and validation loss closer to
each other, we assume that less overfitting is present.

3.7.8 Training to Validation Accuracy Ratio

Similarly to the loss ratio discussed above, we use the ratio between a model’s
training and validation accuracy as a metric to assess which architectures are
more prone to overfitting than other architectures. The metric is calculated by
dividing the training accuracy with the validation accuracy.

When the training accuracy is significantly higher than the validation accuracy,
this indicates that overfitting is present. With the training and validation accuracy
closer to each other, we assume that less overfitting is present.
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Data Description and Acquisition
“Errors using inadequate data are much less than those using no data
at all.”

— Charles Babbage, Attributed to Charles Babbage in William
Kenneth Richmond’s “The Education Industry”, 1969.

The data that we used for our experiments is discussed in this chapter. In Sec-
tion 4.1 and 4.2 two datasets used by Ma et al. (2019) are introduced. The dataset
we used in this study is presented in Section 4.3.

4.1 unLRG Dataset
We have modified a dataset that Ma et al. (2019) made use of for their study. Their
original study is shortly summarized in Section 5.2.8. The authors referred to the
forementioned dataset as the Unlabelled Radio Galaxy (unLRG dataset) dataset,
which contains 14254 sources from the Best-Heckman sample (Best and Heckman,
2012). Although this dataset is referred to as being “unlabelled”, it was manually
labelled by the authors. They grouped the data into six classes; this included the
compact, FRI, FRII, two bent-tail types, X-shaped and ringlike classes.

4.2 Excluded Data
Why is unLRG then called “unlabelled” when it has been manually labelled by Ma
et al. (2019)? The moniker “unlabelled” was used to distinguish it from another
mutually exclusive dataset which Ma et al. (2019) used. This other dataset is
referred to as the Labelled Radio Galaxy (LRG dataset) dataset. This curated
dataset contains well attested sources from the Combined NVSS-FIRST Galaxies
(CoNFIG) catalogue (Gendre and Wall, 2008; Gendre et al., 2010), the Groups cat-
alogue (Proctor, 2011), the FRI catalogue (FRICAT) (Capetti et al., 2017a), the
FRII catalogue (FRIICAT) (Capetti et al., 2017b), the FR0 catalogue (FR0CAT)

35

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. DATA DESCRIPTION AND ACQUISITION 36

Source Right Ascension Declination Classification
Name (degrees) (degrees)
J000001.57-092940.3 0.00044 -9.49453 Compact
J000025.55-095752.8 0.00710 -9.96467 FRI
J000027.89-010235.4 0.00775 -1.04317 Compact
J000049.32-005042.9 0.01370 -0.84525 FRI
J000052.92+003044.6 0.01470 0.51239 FRII

Table 4.1: The first 5 rows of the MURG dataset, the full table is available online
at https://github.com/BurgerBecker/rg-benchmarker

(Baldi et al., 2018) and the X-shaped catalogue (Cheung, 2007). NVSS is the
National Radio Astronomy Observatory (NRAO) VLA Sky Survey. The LRG
dataset contains 1442 sources and consists of 6 classes (compact, FRI, FRII, two
bent-tail types, X-shaped and ringlike). To avoid confusion, the LRG dataset has
been excluded from the experiments that was conducted as part of this thesis, i.e.
we exclusively work with the unLRG dataset from this point onward.

4.3 Modified unLRG (MURG) dataset
As mentioned before, our study uses a modified version of unLRG dataset. Since
only MCRGNet classified X-shaped and ringlike sources of all the studies in Table
5.1 these sources were removed. A number of error-prone images were also removed
from the unLRG dataset (i.e. images consisting only of NaN values). Three com-
pact, two FRI and two FRII sources were also removed. Moreover, all FR0 sources
were added to the compact class, since these classes were used interchangeably in
some of the selected studies (Alhassan et al., 2018). We grouped the two bent-tail
classes together into a single bent-tail class. From this point on in the thesis the
modified unLRG dataset that we made use of in our study is referred to as the
MURG dataset. The MURG datasets contains 14093 sources. All images from the
MURG sample are drawn from the VLA FIRST survey (Becker et al., 1995).

The final catalogue that was used for our experiments is partially presented in
Table 4.1. The rest of the catalogue is available on our Github repository (https:
//github.com/BurgerBecker/rg-benchmarker). The sources can be downloaded
from our Github repository. We acquired the dataset by downloading FIRST
cutouts (Becker et al., 1995) in Flexible Image Transport System (FITS) format
(300 by 300 pixels) via the Skyview tool (McGlynn et al., 1998) (available online
via https://skyview.gsfc.nasa.gov). The final class breakdown of the MURG
dataset is presented in Table 4.2. An example source from each of the morpholog-
ical classes we considered in this thesis can be found in Figure 4.1 to Figure 4.4.
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Figure 4.1: Example of the FRI (A) radio morphology from the FIRST survey
(Becker et al., 1995). The example shown is before the preprocessing step discussed
in Section 6.1.1.
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Figure 4.2: Example of the FRII (B) radio morphology from the FIRST survey
(Becker et al., 1995). The example shown is before the preprocessing step discussed
in Section 6.1.1.
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Figure 4.3: Example of the compact (C) radio morphology from the FIRST survey
(Becker et al., 1995). The example shown is before the preprocessing step discussed
in Section 6.1.1.
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Figure 4.4: Example of the Bent tail (D) radio morphology from the FIRST survey
(Becker et al., 1995). The example shown is before the preprocessing step discussed
in Section 6.1.1.
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Class MURG
Compact 6093
FRI 5039
FRII 2072
Bent 889
Total 14 093

Table 4.2: The MURG dataset breakdown per class.
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Chapter 5

Literature Review
“The role of radiologists will evolve from doing perceptual things that
could probably be done by a highly trained pigeon to doing far more
cognitive things.”

— Geofrey Hinton, The New Yorker “A.I. Versus M.D.”(Mukherjee
et al., 2017)

In this Chapter, we review the CNN architectures that are currently used to per-
form the radio morphological classification task. In Section 5.1 we briefly discuss
the history of CNNs in astronomy and how this influenced the research done in
radio astronomy. In Section 5.2 we discuss each of the selected studies in more
depth as well as give a layout of their architectures (as implemented in this study).
In Section 5.3 we discuss the impact of the various modifications that have been
made during our study on the performance of the various architectures. In the
penultimate section, we discuss our contribution in Section 5.4. This is a novel
architecture and comparison study. In this thesis we have expanded upon the com-
parison study and added an overfitting experiment (discussed in the next Chapter).
Lastly, we briefly mention the excluded architectures in Section 5.5 as well as other
machine learning methods developed for radio astronomy.

5.1 CNNs and Radio Astronomy
The application of deep CNNs to radio astronomy for image classification is a rel-
atively young research area which roughly started five years ago, and was sparked
by the succesfull adoption of deep CNNs in the field of optical astronomy. Optical
galaxy morphology is an ideal image classification task with clear class distinctions
and simple rules to follow for classification (Lukic et al., 2018).

Willett et al. (2013) proposed the Kaggle Galaxy Zoo competition with the
purpose of training a machine learling solution that could classify a crowd sourced
annotatet optical astronomy dataset. The winning solution was a CNN developed

42
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by Dieleman et al. (2015). The work of Dieleman et al. (2015) influenced the
development of similar research in radio astronomy, such as the CNN developed
by Alger (2016) to determine the presence of a SMBH in a radio galaxy. The first
architecture specifically designed for morphological classification of radio galaxies
was developed by Aniyan and Thorat (2017). This largely shaped morphological
classification in radio astronomy and provided a research framework that many
other studies expanded upon. Below we expand on several studies that have had
an impact on radio galaxy classification.

5.2 Selected Architectures
The terms architecture and model are not used interchangeably in the context of
this study. We refer to an architecture as the layout of the network’s structure,
whereas a model is a specific trained instance of the architecture. Models of the
same architecture are differentiated by the data it was trained on and other hyper-
parameters such as different learning rates or the optimizer used during training.

The focus of this thesis is on what we refer to as “traditional” CNN architectures
which is comprised of single-input, single-output layers in a stacked structure. As
such, we briefly mention but do not consider capsule networks, residual networks,
attention gated networks, steerable group equivariant CNNs, CNNs that use par-
allel convolutional blocks or architectures that use inception modules (Goodfellow
et al., 2016; Géron, 2019). This is beyond the scope of this thesis but would be
useful approaches that could be considered as part of a future endeavour.

Table 5.1 provides the architecture names, the corresponding studies from the
literature as well as shortened keys assigned for use in plots. Some studies have
contributed more than one architecture (Lukic et al., 2019a). All of the archi-
tectures listed in Table 5.1 were modified to enable them to discern between four
types of radio sources (i.e. the number of output classes were changed to four).
An example source from each of the morphological classes we considered in this
thesis can be found in Figure 4.1 to Figure 4.4. Figure 5.1 outlines a timeline of
these studies. Below we briefly discuss the contribution of each study.

5.2.1 AlexNet

The architecture of AlexNet is described in Table 5.2 (Krizhevsky et al., 2012).
This architecture has influenced a lot of the other architectures that are considered
in this work.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. LITERATURE REVIEW 44

Architecture Name Key Study
AlexNet ALN Krizhevsky et al. (2012)
ATLAS X-ID † ATL Alger et al. (2018)
ConvNet4 CN4 Lukic et al. (2019a)
ConvNet8 CN8 Lukic et al. (2019a)
FIRST Classifier 1stC Alhassan et al. (2018)
FR-Deep FR-D Tang et al. (2019)
Hosenie H Hosenie (2018)
MCRGNet † MCRG Ma et al. (2019)
Radio Galaxy Zoo RGZ Lukic et al. (2018)
SimpleNet CNs Lukic et al. (2019a)
Toothless † TLS Aniyan and Thorat (2017)
CLARAN † (VGG16D) VGG Wu et al. (2019)
ConvXpress CXP Becker et al. (2021)

Table 5.1: List of architectures and their keys for all figures. Architectures marked
† have been modified from their original form.

Jul 2017
Sep 2017

Nov 2017
Jan 2018

Mar 2018

May 2018
Jul 2018

Sep 2018
Nov 2018

Jan 2019
Mar 2019

May 2019
Jul 2019

Sep 2019

Toothless

Radio Galaxy Zoo

Hosenie

ATLAS X-ID

FIRST
Classifier

CLARAN
(VGG16D)

MCRGNet

ConvNet8

SimpleNet

ConvNet4

FR-Deep

Matplotlib release dates

Figure 5.1: Timeline of selected publications relating to radio galaxy classification.

5.2.2 Toothless

Just as AlexNet has been a seminal work in image classification for CNNs, so
too has Toothless (Aniyan and Thorat, 2017) made its mark on the classification
of radio galaxies for being the first CNN developed for image classification. As
mentioned before, Toothless has influenced the general direction of morphological
classification in radio astronomy. It has thus been referenced in almost all of the
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Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 96 11x11 4 Valid ReLU
Max Pooling - 3x3 2 Valid -
Batch Norm. - - - - -
Convolutional 256 5x5 1 Valid ReLU
Max Pooling - 3x3 2 Valid -
Batch Norm. - - - - -
Convolutional 384 3x3 1 Valid ReLU
Batch Norm. - - - - -
Convolutional 384 3x3 1 Valid ReLU
Batch Norm. - - - - -
Convolutional 256 3x3 1 Valid ReLU
Max Pooling - 3x3 2 Valid -
Batch Norm. - - - - -
Flatten - - - - -
Fully Connected 4096 - - - ReLU
Dropout 0.5 - - - -
Batch Norm. - - - - -
Fully Connected 4096 - - - ReLU
Dropout 0.5 - - - -
Batch Norm. - - - - -
Fully Connected 4 - - - Softmax

Table 5.2: AlexNet Architecture Layout

subsequent works listed in Table 5.1. Toothless is based on AlexNet’s architecture
and does not differ much other than the type of padding used and the addition of
batch normalization. The original AlexNet design using valid padding (no padding
is applied around the edges of the input of a layer) rather than same padding
(zero padding around the edges of the input of a layer to ensure there is no size
reduction other than that caused by stride length). Valid padding reduces the
input size steadily after each convolutional layer, while same padding keeps the
original input size to the layer. This means that the majority of downsampling
(reduction in input size) in Toothless is a result of max pooling.

Aniyan and Thorat (2017) originally implemented Toothless as three binary
classifiers each one either classifying an image as being either FRI/FRII, FRI/Bent
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and FRII/Bent. If two classifiers would predict a source as the same class with a
60% probability, the classification would be accepted, if both predicted with less
than the 60% confidence threshold, a ‘?’ would be appended to the classification.
Additionally, should none of the classifiers give the same class output, the source is
labelled as "Strange". To reduce computational requirements, only a single classi-
fier instance of Toothless (not three) is considered in our study. The architecture
used to represent Toothless in this study can be found in Table 5.3.

Toothless was trained on 177 Bent-tails, 125 FRIs and 227 FRIIs (a data set
similar in nature to the one reported in Section 4.3). Traditional CNNs require
large amounts of data to train. To overcome this obstacle, Aniyan and Thorat
(2017) augmented each class by employing one-degree augmentations of the orig-
inal dataset. Aniyan and Thorat (2017) do raise concerns that this may affect
generalization performance and may reduce the feature space that the CNN can
choose from, leading to a model which fits to the noise present in the data. To
address this, batch normalization was used between the convolutional layers and
dropout was added between the dense layers. A dropout rate of 50% was used.

The models were also very sensitive to the preprocessing procedure which was
used. They employed sigma clipping, which entails setting pixles that reside three
sigma above or below the mean to zero (see Chapter 6.1.2 for more information).

Another concern was the class imbalance, which was addressed by creating
more augmented samples for the underrepresented FRI class. Testing was done on
187 samples (77 Bent-tails, 53 FRI, 57 FRII). The worst precision was for FRII,
which the authors argue is due to a subset-population of the Bent-tail class that
are exhibiting FRII-like morphology and as such they are misclassified.

5.2.3 Radio Galaxy Zoo Classifier

The issues of overfitting faced by Aniyan and Thorat (2017) due to the rela-
tively few representative samples of each class prior to augmentation drove Lukic
et al. (2018) to consider a different data collection approach. Instead of using the
small datasets which were prepared by domain experts in catalogues, Lukic et al.
(2018) developed a different four class system based on the number of components
each source has (compact, single-component extended, two-component extended
and multi-component extended). These labels are automatically generated by the
Python Blob Detector and Source Finder (PyBDSF) if it is applied to an inter-
ferometric image. PyBDSF was developed by Mohan and Rafferty (2015) and is
an automated source finding tool that can aid the labeling of radio sources by
fitting Gaussian mixture models to the data. The use of PyBDSF allowed Lukic
et al. (2018) to construct much larger datasets. The new classification scheme
used by Lukic et al. (2018) is not interchangeable with the classification system
used by Aniyan and Thorat (2017). This approach made it possible to construct
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Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 96 11x11 4 Valid ReLU
Batch Norm. - - - - -
Max Pooling - 3x3 2 Valid -
Convolutional 256 5x5 1 Same ReLU
Batch Norm. - - - - -
Max Pooling - 3x3 2 Valid -
Convolutional 384 3x3 1 Same ReLU
Batch Norm. - - - - -
Convolutional 384 3x3 1 Same ReLU
Batch Norm. - - - - -
Convolutional 256 3x3 1 Same ReLU
Batch Norm. - - - - -
Max Pooling - 3x3 2 Valid -
Flatten - - - - -
Fully Connected 4096 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4096 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.3: Toothless Architecture Layout

a training set which contained twenty one thousand samples. The quality of the
labelling was, however, questionable. Another dataset was also used, the first data
release from the Radio Galaxy Zoo citizen science project was used, providing
almost fifteen thousand training samples labelled by human volunteers (also as
either compact, single-component extended, two-component extended and multi-
component extended). Roughly seven thousand samples were used for testing.

Lukic et al. (2018) developed six classifiers, removing those that overfit and
comparing the rest based on classification accuracy. The E variant is proposed by
the authors as the best architecture and can be found in Table 5.4. Dropout was
used between the fully connected layers with a dropout rate of 50%.

Lukic et al. (2018) was the first paper from the Radio Galaxy Zoo research
group which explicitly deals with radio galaxy classification task. Their study was
done with two experiments. The results of the first experiment was then used to
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fine tune the hyperparameters of their models and to determine the models that
were overfitting. The models that were found to overfit were excluded from the
second experiment. The fine tuned hyperparameters from from the first experiment
were then re-used in the second experiment.

Compared to Toothless, the reliance on preprocessing was reduced significantly.
Recall, Toothless required pre-processing in order for it to classify with an accept-
able classification accuracy (Aniyan and Thorat, 2017). Lukic et al. (2018) showed
that training and validation loss were quite close for their models and that overfit-
ting does not seem to be present. The authors address the presence of other sources
(a second or third etc. source surrounding the primary target source) in 44% of
the multi-component extended samples, which they attempted to remove manu-
ally but many such superimposed images remained. Radio Galaxy Zoo Classifier
was not modified in any further way for our comparison study. The architecture
is given in Table 5.4.

Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 16 8x8 3 Same ReLU
Convolutional 32 7x7 2 Same ReLU
Max Pooling - 3x3 3 Valid -
Convolutional 64 2x2 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Flatten - - - - -
Fully Connected 1024 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 1024 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.4: Radio Galaxy Zoo Classifier Architecture Layout

5.2.4 Hosenie

This architecture was originally a binary classifier (for the FRI and FRII classes)
but has been modified for the four class scheme we adopt in this thesis. Hosenie
(2018) developed a much smaller network (29 thousand parameters) compared
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to Aniyan and Thorat (2017) (87 million parameters) to address the overfitting
concerns they brought up. The architecture proposed is represented in Table 5.5.
A more stringent selection criteria was also applied to the dataset used by Aniyan
and Thorat (2017) to remove noisy samples. Additionally, dropout was applied
as regularization techniques between all layers, with a dropout rate of 50% in the
dense layers and 25% in the convolutional layers.

Training was done on 48 FRIs and 185 FRIIs sources with rotational augmen-
tation applied. Testing was done on 116 samples.

Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 6 11x11 1 Same ReLU
Max Pooling - 3x3 3 Valid -
Dropout 0.25 - - - -
Convolutional 19 5x5 1 Same ReLU
Max Pooling - 3x3 3 Valid -
Dropout 0.25 - - - -
Convolutional 38 3x3 1 Same ReLU
Convolutional 26 3x3 1 Same ReLU
Convolutional 26 3x3 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Dropout 0.25 - - - -
Flatten - - - - -
Fully Connected 40 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 40 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.5: Hosenie Architecture Layout

5.2.5 ATLAS

ATLAS was not designed explicitly for radio galaxy classification, but rather to find
the host galaxies of radio sources in the infrared spectrum. Alger et al. (2018) did
a comparative study between a CNN, a logistic regression classifier and a random
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forest classifier for this task. The CNN and the logistic regression classifier were
less sensitive to changes in brightness when tested on fainter components from
another survey than the training set.

The CNN described in Alger et al. (2018) had an additional input vector of 10
features from the candidate host in the Spitzer Wide-area Infrared Extragalactic
(SWIRE) survey, which has not been included in the modified architecture we used
in this study. The original CNN model was a binary classifier. The output layer’s
activation function was, therefore, changed from sigmoid to softmax. The hidden
dense layer also made use of a sigmoid activation, which was changed to a ReLU
activation.

Similarly to Lukic et al. (2018), experiments were done with both domain
expert labelled and crowd sourced labelled data. The authors comment that the
models that were trained with the crowd sourced data performed comparable to the
models that were trained using the data that were labelled by domain experts. The
domain expert labelled data contained 468 samples while the crowd sourced data
contained 2460 samples. The authors also comment that larger datasets would be
helpful to help rectify the large class imbalance which was present in their data.
The architecture of ATLAS is presented in Table 5.6. ATLAS has dropout layers
between all the convolutional and fully connected layers with a dropout rate of
25% and 50%, respectively.

Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 32 10x10 1 Same ReLU
Max Pooling - 5x5 5 Same -
Dropout 0.25 - - - -
Convolutional 32 10x10 1 Same ReLU
Max Pooling - 5x5 5 Same -
Dropout 0.25 - - - -
Flatten - - - - -
Fully Connected 64 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.6: ATLAS Architecture Layout
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5.2.6 FIRST Classifier

Alhassan et al. (2018) introduces the four class scheme of Compact, Bent-tail,
FRI and FRII for automatic classification (the same scheme we use in this study).
Previous studies up to this point (with the exception of Lukic et al. (2018) which
did not use the Fanarof-Riley classification scheme) excluded Compact sources
because of their relatively simple morphology. Numerous methods that can identify
compact sources already exist (Mohan and Rafferty, 2015). The FIRST Classifier
was developed by utilizing experiments that varied the number of convolutional
layers (between 2 to 10) and the different types of activation functions. The best
performing model based on precision, recall and F1-score was selected at the end.
No modifications were made to this architecture.

The architecture consists of three convolutional layers with 3x3 kernels and two
fully connected layers. To combat overfitting the authors added a dropout layer
was added after the first fully connected layer (a dropout rate of 50% was used).

Training was done on 530 samples and testing on 154 samples. Validation and
training loss was equal at the end of training, although it is unknown whether the
loss was rectified for known effects that make validation loss appear lower. For
example, since validation loss is calculated at the end of each epoch and training
loss is calculated at the end of each batch, the training loss calculated at the end of
each epoch might be lower than the value reported in the article. The architecture
of FIRST Class is given in Table 5.7.

Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 32 3x3 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Convolutional 64 3x3 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Convolutional 194 3x3 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Flatten - - - - -
Fully Connected 194 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.7: FIRST Classifier Architecture Layout
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5.2.7 CLARAN (VGG16D)

Wu et al. (2019) differs from all the studies selected for this thesis in that it does
not perform a pure image classification task but performs object detection instead.
This means that it performs object localization in addition to image classification
and as such is less susceptible to the issues that arise when an image contains
more than one source. The shift of task to object detection rather than image
classification is in part a response to address the concerns of Lukic et al. (2018)
who pointed out that a significant number of images in their dataset contained
multiple sources. Wu et al. (2019) used a Faster Region Based Convolutional
Neural Networks (R-CNN) model as the basis of this architecture (Ren et al., 2015)
with a VGG16D backbone for image classification (Simonyan and Zisserman, 2015)
which was pretrained on ImageNet. The architecture of VGG16D is described in
Table 5.8. A morphological classification system different from the Fanarof-Riley
scheme is used in this study as well, based on the number of components C and
peaks P; which results in a six class classification scheme (1C-1P, 1C-2P, 1C-3P,
2C-2P, 2C-3P and 3C-3P). This was done in response to the concerns of the small
feature space in the data sample used by Aniyan and Thorat (2017) and to build
on the classification system used in Lukic et al. (2018).

In their study, training was done on 6141 samples and testing on 4603 samples.
No rotational augmentation was used. To assess whether the model was overfitting
an additional experiment was performed which entailed training model variants
that utilized less parameters. This was done by decreasing the dimensions of the
two dense layers from 4096 to 256 for the one experiment and to 64 for the other.
This, respectively, leads to an 83% and 86% decrease in model parameters. These
models score poorer on test accuracy than the original. Wu et al. (2019) concludes
from this result that the CLARAN model is not overfitting, since test error is still
decreasing with an increase in capacity (Goodfellow et al., 2016).

The authors attribute the relatively better performance of the original network
architecture to several factors that help prevent overfitting: the two dropout layers
in the dense layers (with a rate of 50%), “augmentation” resulting from small areas
selected in each image by the region of interest proposals that increase training
samples from the thousands to the millions and lastly transfer learning, where
the weights of a pretrained network is used rather than initialising weights and
training from scratch. Since our data does not have bounding box labels and our
study focusses on comparing traditional CNNs, we only train the VGG16D model.

5.2.8 MCRGNet

Morphological Classification of Radio Galaxy Network (MCRGNet) was developed
with the aim of making use of large amounts of unlabelled radio data to pre-train
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Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 64 3x3 1 Same ReLU
Convolutional 64 3x3 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Convolutional 128 3x3 1 Same ReLU
Convolutional 128 3x3 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Convolutional 256 3x3 1 Same ReLU
Convolutional 256 3x3 1 Same ReLU
Convolutional 256 3x3 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Convolutional 512 3x3 1 Same ReLU
Convolutional 512 3x3 1 Same ReLU
Convolutional 512 3x3 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Convolutional 512 3x3 1 Same ReLU
Convolutional 512 3x3 1 Same ReLU
Convolutional 512 3x3 1 Same ReLU
Max Pooling - 2x2 2 Valid -
Flatten - - - - -
Fully Connected 4096 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4096 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.8: VGG16D Architecture Layout
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a CNN. To do this a convolutional autoencoder (CAE) was trained on the 14254
unlabelled images (described in Chapter 4 as the unLRG dataset). An autoencoder
is a type of ANN used to learn efficient codings of unlabeled data. After the
training step the convolutional layer’s weights were used in a CNN model that was
then fine-tuned on a smaller well curated dataset of 1442 labelled sources (described
in Chapter 4 as the LRG dataset). The architecture originally classified images
into six classes; Compact, FRI, FRII, two Bent types, X-shaped and Ringlike
sources.

In our study, the dropout rate of the dropout layers between the convolutional
layers have been reduced from the original 50% to 25%. This was adapted due to
both poor initial results and to be more consistent with the dropout rate of the
dropout layers between the convolutional layers of the other architectures. The
architecture has a dropout layer between all the convolutional layers and all the
fully connected layers. The architecture of MCRGNet is given in Table 5.9.

Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 8 3x3 2 Same ReLU
Dropout 0.25 - - - -
Convolutional 8 3x3 2 Same ReLU
Dropout 0.25 - - - -
Convolutional 16 3x3 2 Same ReLU
Dropout 0.25 - - - -
Convolutional 16 3x3 2 Same ReLU
Dropout 0.25 - - - -
Convolutional 32 3x3 2 Same ReLU
Dropout 0.25 - - - -
Flatten - - - - -
Fully Connected 64 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.9: MCRGNet Architecture Layout
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5.2.9 FR-Deep

The original focus of the study by Tang et al. (2019) was to assess the viability
of transfer learning in radio astronomy specifically across surveys with different
resolutions. For this a CNN with five convolutional layers and four fully connected
layers was developed. This CNN was then pretrained on lower resolution surveys
and then fine-tuned on a higher resolution survey. The FIRST survey was one of
the datasets used to pretrain the CNN with fine-tuning and testing being done on
data from MeerKAT. The authors found that pre-training with lower resolution
data does not have any real benefit, if the new data has a much better resolution.

No modifications was made to this classifier’s architecture, however we do not
apply any pre-training. The architecture has batch normalization between each
convolutional layers and dropout layers with a 50% dropout rate between the fully
connected layers. The modified architecture is presented in Table 5.10.

5.2.10 SimpleNet, ConvNet4 and ConvNet8

The authors compared the performance of three traditional CNNs with that of
a capsule network. The classifiers originally classified three classes: unresolved
sources, FRI and FRII. Lukic et al. (2019a) found that the traditional CNNs
outperformed the capsule networks.

The three traditional CNNs are referred to in this thesis as SimpleNet, Con-
vNet4 and ConvNet8. SimpleNet consists of five convolutional layers followed
immediately by the output layer. This was done to assess the necessity of an
intermediate dense layer. ConvNet4 has four convolutional layers and two fully
connected layers. ConvNet4 used a larger kernel size (5x5) throughout its convo-
lutional layers, rather than a reduction after initially utilizing large kernels (like
in AlexNet) to reduce the number of convolutional parameters that are required.
ConvNet8 has eight convolutional layers and two fully connected layers. The con-
volutional layers are structured as four pairs each followed by a max pooling layer.
The convolutional layers also use a smaller kernel size of 3× 3.

SimpleNet was found to perform significantly worse than ConvNet4 and Con-
vNet8. This result prompted the authors to postulate that and intermediate dense
layer is only useful if more complex patterns are present in the data that comes
from the convolutional layers (which is not the case for the radio galaxy morphol-
ogy classification task).

No modifications have been made to any of the architectures, other than the
number of output classes which were changed to four. The dropout rate of the
dropout layers between the convolutional layers have been set to 25% and to 50%
between the fully connected layers. L2 regularization is added to the first fully
connected layers of ConvNet4 and ConvNet8.
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Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 6 11x11 1 Same ReLU
Batch Norm. - - - - -
Max Pooling - 2x2 2 Valid -
Convolutional 16 5x5 1 Same ReLU
Batch Norm. - - - - -
Max Pooling - 3x3 3 Valid -
Convolutional 24 3x3 1 Same ReLU
Batch Norm. - - - - -
Convolutional 24 3x3 1 Same ReLU
Batch Norm. - - - - -
Convolutional 16 3x3 1 Same ReLU
Batch Norm. - - - - -
Max Pooling - 5x5 5 Valid -
Flatten - - - - -
Fully Connected 256 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 256 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 256 - - - ReLU
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.10: FR-Deep Architecture Layout

The modified architectures is presented in Tables 5.11, 5.12 and 5.13.

5.3 Impact of Modifications
At this point in time we should take a moment to consider the potential impact
that the modifications we discuss in Section 5.2 will have on the performance of
the architectures presented in the studies from Table 5.1. It should be noted that
the modifications proposed by us are a necessity as these modifications make it
possible to perform a meaningful comparison of these architectures. Three major
modifications were discussed:
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Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 16 4x4 1 Same ReLU
Convolutional 16 4x4 1 Same ReLU
Convolutional 16 4x4 1 Same ReLU
Max Pooling - 4x4 4 Same -
Dropout 0.25 - - Same -
Convolutional 16 4x4 1 Same ReLU
Convolutional 16 4x4 1 Same ReLU
Max Pooling - 4x4 4 Same -
Dropout 0.25 - - - -
Flatten - - - -
Fully Connected 4 - - - Softmax

Table 5.11: SimpleNet Architecture Layout

Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 16 5x5 1 Same ReLU
Convolutional 16 5x5 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Convolutional 16 5x5 1 Same ReLU
Convolutional 16 5x5 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Fully Connected 500 - - - Linear
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.12: ConvNet4 Architecture Layout
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Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 32 3x3 1 Same ReLU
Convolutional 32 3x3 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Convolutional 64 3x3 1 Same ReLU
Convolutional 64 3x3 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Convolutional 128 3x3 1 Same ReLU
Convolutional 128 3x3 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Convolutional 256 3x3 1 Same ReLU
Convolutional 256 3x3 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Flatten - - - - -
Fully Connected 500 - - - Linear
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.13: ConvNet8 Architecture Layout

Output Classes The number of the output classes and in some cases even the
output-labels of the output classes were altered (Toothless as an example of
the former, CLARAN as an example of the latter). This alteration, however,
is standard practise within the field of Deep Learning. Take AlexNet as
an example it was originally designed for the ImageNet Challenge, but it
is nowadays used to solve many other types of image recognition problems
(i.e. the number of classes and the output labels it can produce differ from
its original use case). Generally speaking, if a CNN architecture is identified
that can discern betweenN different classes, then its recognition performance
will normally not deteriorate significantly if the number of classes that one
considers is either reduced or increased by one (given that it is properly re-
trained). Moreover, neither would considering N completely different labels
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have a significant impact on its performance. There are of course exceptions
to this, if the nature of the problem is changed completely or the inherent
separability of the dataset changes significantly this generalization might not
necessarily remain true.

Architecture Instances Only single architecture instances were considered (as
an example only a single architecture instance of Toothless (Aniyan and
Thorat, 2017) was used). Multiple instances of any architecture can be in-
corporated into a more complex classifier (like Toothless). This will certainly
improve the recognition performance of a particular architecture. However,
knowing how a single instance of the architecture performs enables us to
identify which architectures will ultimately perform better if they are chosen
to create a more complex classifier.

Data The same dataset was used to evaluate each architecture.

5.4 Contributions
The unique contributions made by our study is presented in this section.

5.4.1 ConvXpress

The novel architecture of ConvXpress is based on the architecture of MCRGNet,
ConvNet8 and VGG16D. This architecture was introduced formally in our article
“CNN Architecture Comparison for Radio Galaxy Classification” (Becker et al.,
2021). ConvXpress is deeper than ConvNet8 (11 vs 8 convolutional layers) and
uses the convolutional stack structure introduced by VGG16D. Each stack is com-
prised of three convolutional layers (except for the last stack, which consists of
only two layers) and a max pooling layer. This was developed to match or en-
large the receptive field size (see Section 3.4.3.1) of AlexNet’s convolutional layers
without having to use AlexNet’s large kernel size. The effective receptive field
of ConvXpress’s first convolutional stack is 11 × 11, the same size as AlexNet’s
first convolutional layer. However, the stack structure has applied three non-linear
rectification functions compared to AlexNet’s single activation, making the model
more discriminative (Simonyan and Zisserman, 2015).

In addition to this, the number of parameters required are reduced by stacking:
a layer with an 11 × 11 kernel with C input channels require 112C2 = 121C2

parameters, while 3 layers with a 3 × 3 kernel and C input channels require only
3(32C2) = 27C2 parameters.

ConvXpress has a non-standard stride length, similar to MCRGNet, Toothless,
AlexNet and Radio Galaxy Zoo. In particular, it makes use of a stride length of 2 in
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the first convolutional layer of the first and second convolutional stacks. The dense
(or fully-connected) layers are the same as ConvNet8’s, using a linear activation
in the second last layer with an L2 kernel regularizer. ConvXpress also contains
five dropout layers. The dropout rate for the dropout layers in ConvXpress is 25%
between the convolutional layers. The only exception is the dropout layer between
the fully connected layers which uses a dropout rate of 50%. The architecture of
ConvXpress is presented in Table 5.14.

Layer Type

Filter
size/
Dropout
rate/
Neurons

Kernel Size Stride Pad Activation

Convolutional 32 3x3 2 Same ReLU
Convolutional 32 3x3 1 Same ReLU
Convolutional 32 3x3 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Convolutional 64 3x3 2 Same ReLU
Convolutional 64 3x3 1 Same ReLU
Convolutional 64 3x3 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Convolutional 128 3x3 1 Same ReLU
Convolutional 128 3x3 1 Same ReLU
Convolutional 128 3x3 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Convolutional 256 3x3 1 Same ReLU
Convolutional 256 3x3 1 Same ReLU
Max Pooling - 2x2 2 Same -
Dropout 0.25 - - - -
Flatten - - - - -
Fully Connected 500 - - - Linear
Dropout 0.5 - - - -
Fully Connected 4 - - - Softmax

Table 5.14: ConvXpress Architecture Layout
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5.4.2 Comparison Study

One of the central contributions to the literature that we have made is discussed
in detail in Becker et al. (2021). In this work we present a comparison framework
to allow easier comparison of classifiers with each other. While some other studies
compare their CNNs with previous CNNs (mostly with Toothless), they do not
retrain any of these CNNs on the dataset used in their study. Only Lukic et al.
(2019a) trained several novel CNN architectures they had developed as well as a
Capsule Network, but did not retrain any previous architectures for comparison.
Additionally, the results from Lukic et al. (2019a) is based off of a single run.

Our contribution in Becker et al. (2021) involved retraining all of the archi-
tectures mentioned in Section 5.2 on the same dataset with three iterations, each
iteration trained on a randomized subset of the larger dataset. We expand on
that work in this thesis, increasing the number of iterations to ten, while simulta-
neously place a larger emphasis on identifying and reducing overfitting. Another
study that further expands on the research we’ve done is the work done by Field-
ing et al. (2021) in which a comparison study is presented which focusses on the
classification of optical galaxies instead of radio galaxies.

5.4.3 Overfitting and Regularization

The regularization methods used by the architectures are listed in Table 5.15.
All studies used dropout between the hidden layers of their fully connected/dense
layers. SimpleNet (CNS) has only an output layer, hence why no dropout layer
is present. We can broadly categorize the regularization strategies used by the
various studies as either dropout between the convolutional layers (convolutional
dropout), L2 kernel regularization or batch normalization.

Batch normalization showed inconsistent results in terms of regularization for
preliminary experiments, which have been excluded from our study. Batch nor-
malization is not widely used in the selected studies. As such, we’ve excluded
batch normalization in our consideration of regularization effects.

The architectures that have implemented L2 kernel regularization have also im-
plemented convolutional dropout. In our previous study (Becker et al., 2021) it was
found that ConvNet8 and ConvXpress were among the best performing architec-
tures. As such, we perform several tests to determine which of these two methods
(or the combination of them) are the most effective regularization intervention.

5.5 Excluded Architectures
Some architectures were excluded from the study for either being originally de-
signed to perform a task other than classification or in order to restrict the scope
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Key Dropout
(Conv)

Dropout
(Dense)

Total
Dropout

Batch
Norm

Kernel
Reg-
ulizer

Dropout
Rate
(Conv)

Dropout
Rate
(Dense)

CXP 4 1 5 0 L2(0.01) 0.25 0.5
CN4 2 1 3 0 L2(0.01) 0.25 0.5
CNS 2 0 2 0 0 0.25 0
MCRG 5 1 6 0 0 0.25 0.25
H 3 2 5 0 0 0.25 0.5
ATL 2 1 3 0 0 0.25 0.5
FR-D 0 3 3 5 0 0 0.5
1stC 0 1 1 0 0 0 0.5
RGZ 0 2 2 0 0 0 0.5
CN8 4 1 5 0 L2(0.01) 0.25 0.5
VGG 0 2 2 0 0 0 0.5
TLS 0 2 2 5 0 0 0.5
ALN 0 2 2 2† 0 0 0.4

Table 5.15: Regularization Methods used in each classifier. The columns with
dropout in the title indicate the number of dropout layers each architecture has.
This has further been subdivided between convolutional and dense layers, a total
is also given. † AlexNet has batch normalization between it’s dense layers, while
the other classifiers have it between the convolutional layers.

of the study to traditional CNN architectures. The following architectures were
excluded:

• Convosource: Designed for source-finding, to extract the pixels that belong
to an astronomical source from an image with background noise (Lukic et al.,
2019b).

• COSMODEEP: Designed to perform a combination of source finding and
classification by breaking up larger images into smaller tiles that are then
individually classified as either containing no signal or containing a radio
source (Gheller et al., 2018).

• DEEPSource: Aimed at source-finding in low signal-to-noise ratio cases
(Sadr et al., 2019).

• Capsule Networks: This study limits the focus of comparison to traditional
CNN architectures described in the literature. Lukic et al. (2019b) compared
Capsule Network performance with traditional CNN architectures.
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• Attention gated CNNs: Bowles et al. (2020) used attention gated CNNs
for radio galaxy classification and was inspired by the succesfull application
thereof to the classification of sonograms task (Schlemper et al., 2018). The
architecture Schlemper et al. (2018) developed uses the convolutional layers
of VGG16D but replaces the fully connected layers with an attention gated
mechanism, thereby reducing the number of parameters required by almost
90% (696K parameters required vs. VGG16D’s 138m parameters). Bowles
et al. (2020) reports results comparable to Tang et al. (2019).

• Steerable group equivariant CNNs: Scaife and Porter (2021) introduced
steerable group equivariant CNNs to radio astronomy, which was developed
by Weiler and Cesa (2019). Scaife and Porter (2021) used steerable group
equivariant CNNs with convolutional layers that are rotation and reflection
equivariant. These steerable group equivariant CNNs requires less param-
eters and according to Scaife and Porter (2021) they perform similarly to
traditional CNN designs.

• Mask R-CNN: Arslan (2020) trained a Mask R-CNN for radio galaxy lo-
calization and classification, with the Mask R-CNN architecture originally
being developed by He et al. (2017). Arslan (2020) reports worse results
than CLARAN in all but the compact class.

• Maslej-Krešňáková et al. (2021) developed a CNN with three parallel con-
volutional blocks that feeds into a fully connected layer and performed a
comparative study on augmentation techniques. The study found that rota-
tions, reflections and increasing the brightness within a specific pixel range
had positive effects on recognition performance while translation and zoom-
ing/cropping the image had detrimental effects.

• Samudre et al. (2021) used a pre-trained DenseNet model with a cyclical
learning rate and discriminative learning to increase training speed.

• Polsterer et al. (2016) used self organizing Kohonen maps to construct pro-
totype classes of radio galaxy morphologies.

• Ma et al. (2018) developed a deep neural network autoencoder and Gaussian
mixture models to generate FRI and FRII samples.

• Ralph et al. (2019) developed a self organizing map in conjunction with a
convolutional autoencoder for the unsupervised clustering of radio galaxies.

• Ntwaetsile and Geach (2021) used Haralick features to automatically sort
and cluster radio galaxies based on their morphology.
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• Giant Radio Galaxy Classification using Multi-Domain Deep Learning. This
work by Tang et al. (2021) uses multi-domain multi-branch CNNs to identify
giant radio galaxies.
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Chapter 6

Experiment Description
“As the true method of knowledge is experiment, the true faculty of
knowing must be the faculty which experiences.”

— William Blake, All Religions Are One, “The Argument”, 1788.

The experiments we conducted are described in this chapter. In Chapter 5.1,
we list and discuss all the architectures we considered in our study. The exper-
imental setup is presented in Section 6.1, with image preprocessing discussed in
Section 6.1.1 and other preliminaries such as hyperparameter selection discussed
in Section 6.1.2. The experiments conducted are presented in Sections 6.2 to 6.4.
Experiment 1 (assessment of overfitting) is presented in Section 6.2. Experiment 2
(assesment of regularization intervention) is discussed in Section 6.3. Experiment
3 (ranking) is discussed in Section 6.4.

6.1 Experimental Setup
This section describes the experimental setup that we have used. The image
prepossessing procedure that we have adopted is described in Section 6.1.1. The
hardware used as well as other important overarching experimental information is
presented in Section 6.1.2.

The experiments conducted are described in Section 6.2 through Section 6.4.

6.1.1 Image Preprocessing

The preprocessing steps used are that the images were first normalized and then
thresholding was applied. The images were normalized by taking the minimum
pixel value of each image, subtracting this from every other pixel value and then
dividing the result by the difference between the maximum and minimum pixel
value of the same image. The thresholding method used assigns a zero value to
all pixels with a value below the threshold of three standard deviations above the
mean pixel value of the specific image. Otherwise, the pixel value is kept the same.

65
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6.1.2 Preliminaries

All training was performed on a Nvidia Tesla V100 32 GB. Our architectures
were constructed using the deep learning framework, Keras (Chollet et al., 2015).
To ensure replicable results we provided a random seed to all non-deterministic
processes. A customized version of the Keras data generator class was used to load
images during training, validation and testing.

Each architecture was trained for 20 epochs with a learning rate selected for
each architecture based on preliminary runs. Adam was used as the optimizer
with a learning rate scheduler. Loosely speaking, a learning rate scheduler is a
function called during training which reduces the learning rate if the loss has not
decreased by a given threshold for x epochs. For the experiments in this thesis,
the learning rate is reduced by half after three epochs in which the validation loss
has not decreased by a threshold of 0.01. After training is done, we save the model
resulting from 20 epochs of training which we refer to as the “final” model (these
models are used in Experiments 1 to 3 in Sections 6.2 to 6.4).

Furthermore, the experiments below were repeated ten times (different seed
values for the random processes and the subset selection were assigned during each
of the runs). Using different seed values results in a different weight initialization
for the CNNs and a different subset selection for the training, validation and
testing sets during each run. This is done to get a more accurate representation
of an architecture’s performance. All the dropout rates of dropout layers between
the convolutional layers were set to 25% and to 50% between the fully connected
layers (see Section 5.2 for architecture specific implementation).

6.1.3 Training and Validation

The training and validation data are sampled from the MURG dataset. Training
is performed on a random selection of 250 sources per class (6000 after augmen-
tation) and validation on 100 sources per class (2400 after augmentation). The
training set is augmented by rotating each source at 15 degree intervals, leading
to 24 rotated samples of each image. This results in 24,000 and 9,600 sources for
training and validation respectively after augmentation (as shown in parentheses
in Table 6.1). Again, exactly which sources are selected is determined by the
random seed that was used during each experimental run. While this is a much
larger training and validation split (in absolute terms) than what was used by the
selected studies trained on datasets labelled using the Fanaroff-Riley scheme (see
Chapter 5), it is significantly smaller (in relative terms) than what is normally used
when training most conventional CNNs. The selected studies that were trained
on datasets labelled using the Fanaroff-Riley scheme trained on up to 60% of the
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Class Training Set Validation Set Test Set
(Augmented) (Augmented)

Compact 250 (6000) 100 (2400) 5743
FRI 250 (6000) 100 (2400) 4689
FRII 250 (6000) 100 (2400) 1722
BENT 250 (6000) 100 (2400) 539
Total 1000 (24 000) 400 (9600) 12 693

Table 6.1: MURG Random Split Experiment: Training, validation and test set
break down per class. The test set is a subset of the MURG samples. The values
in parentheses are the number of augmented samples.

available data and tested on 20%, which translates to less than 40 unique samples
in the test set on average.

As we have already alluded to, we have taken a smaller percentage of the
training set size than the selected studies used, but the absolute number of samples
is in line with what the selected studies used. Hence, this smaller selection was
chosen to assess the efficacy of model performance on a larger dataset when training
on a relatively small subset of the data, since this is how models, that will perform
radio galaxy morphological classification in practice, are to be trained (at least
at first). It should also be noted that there is a large class imbalance present in
the dataset. Moreover, there is a second reason we considered the aforementioned
data split: This data spilt ensures that each class is equally represented in the
training set (i.e it allows us to perform undersampling). Testing was performed
on a MURG test split. The total number of samples in this test set is given in
Table 6.1.

6.2 Experiment 1: Assessment of Overfitting
In this experiment all the architectures from Table 5.1 are trained according to
the experimental setup described in Section 6.1. To summarize, each architecture
is trained for 20 epochs over ten separate runs. The available data is uniquely
split for each run. For each run, for each architecture, a “final” model (the model
obtained after 20 epochs of training) is produced. The “final” models are then used
in this experiment.

Both the loss and accuracy of the training and validation sets are calculated
and stored. We use these values to calculate the loss and accuracy ratios. The
loss ratio is calculated by dividing the training loss by the validation loss (see
Section 3.7.7). Similarly, we calculate the accuracy ratio by dividing the training
accuracy with the validation accuracy (see Section 3.7.8). The loss and accuracy
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ratios serve as a proxy for measuring overfitting. In order to take both metrics into
account, we plot these metrics versus each other and determine overfitting based
on how far a datapoint is from the (1,1) point. The (1,1) point is the best score the
models can achieve in terms of loss and accuracy ratios (although there is a point
to be made that being closer to this point does not necessarily mean the model is
better, more is elaborated on this in Section 7.2). We do not attempt to postulate
a threshold with regard to either ratio when deciding which architectures overfit
and which do not, but rather take the five architectures that are the furthest from
the (1,1) point (this is done using a positional ranking scheme, discussed in the
next paragraph). We assume that these architectures are more prone to overfitting
than the other architectures in our study, based on the discussion of these metrics
in Sections 3.7.8 and 3.7.7. These are the architectures we use to test the efficacy
of various regularization methods as is discussed in the next experiment.

The position ranking is calculated as follows for a specific run: sorting the
distances of the models in ascending order (i.e. furthest first, closest last), the
numerical value of their position minus one is then added to their rank. This is
then repeated for each run, with each subsequent ranking added, after which we
have the position ranking. In our case, since there are 13 models with 10 runs
each and we subtract one from the numerical value of their position the maximum
position ranking which is obtainable is 120. This is done per run rather than using
the mean distances of each architecture to ensure we give the same weight to each
individual run. The top five models in the position ranking (i.e. the furthest) are
the most prone to overfitting and will be used in the next experiment.

6.3 Experiment 2: Intervention of Regularization
Techniques

Having selected candidate architectures that are likely overfitting, we apply several
interventions to test which one is the most effective regularization method with
regards to our metrics.

We regularize the 5 models selected in Experiment 1 using either L2 kernel
regularization or convolutional drop out or a combination of both. To have a
baseline comparison, the models that made use of regularization were retrained.
The retraining was done after having removed the above two interventions from
them if an architecture employed them. These baseline architectures, however,
still make use of dropout in their dense layers. An l2 factor of 0.01 was used.

The experiment described above provides three intervention strategies and the
baseline for comparison. The methods are then compared based on the effect
that they have on the loss and the accuracy of each architecture instance, both
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with reference to training and validation error. For each architecture (over all 10
runs), we then select the regularization strategy that resulted in the best validation
accuracy and validation loss for the next experiment. Moreover, a model is only
included in the next experiment if it does not overfit (which is determined by
evaluating the loss and accuracy ratios defined in Section 3.7.7 and Section 3.7.8).

6.4 Experiment 3: Architecture Comparisons
The best intervention strategy is then selected to replace the default regularization
strategies of the five most overfitted models. These models’ results from the previ-
ous experiments are then used in the ranking based on classifier accuracy (classifier
ranking) and ranking based on computational cost (computational ranking).

The aforementioned rankings are calculated using a round-robin “tournament”
in which each architecture is compared to every other architecture (excluding itself)
in several different categories. If an architecture achieves a higher or lower score
(which depends on the metric of the category under consideration) than a “compet-
ing” architecture does in a specific category then the former architecture’s ranking
is incremented by one, while the latter architecture’s ranking is decremented by
one. As alluded to before, this comparison is repeated for every category and ev-
ery architecture-pair. A higher category score is better in the case of recognition
performance metric categories, while a lower category score is better in the case of
computational requirement metric categories. To establish a classifier ranking, the
MPCA, the per class F1-score, precision and recall of the different architectures
are compared with one another (i.e. a total of 13 categories are considered). To
establish a computational ranking, GPU memory usage, floating point operations
and inference time are compared with one another (i.e. a total of 3 categories are
considered).
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Results
“The process may seem strange and yet it is very true. I did not so much
gain the knowledge of things by the words, as words by the experience
I had of things.”

— Plutarch

In this chapter we present the results of the experiments described in the previous
chapter. The results of Experiment 1 (assessment of overfitting) is presented in
Section 7.1. The results of the Experiment 2 (assesment of regularization inter-
ventions) is discussed in Section 7.2. The results of Experiment 3 is discussed in
Section 7.3 in which the ranking of the different architectures has been established.
The aforementioned ranking takes into account the recognition performance and
the computational requirements of the different architectures.

7.1 Results of Experiment 1: Assessment of
Overfitting

The results of Experiment 1 (Section 6.2) are given in Figures 7.1, 7.2 and 7.3.
The main metrics that are being considered for this experiment are two ratios:

the ratio of the training loss to the validation loss, and the ratio of the training
accuracy to the validation accuracy. We will simply refer to these ratios as the loss
ratio and accuracy ratio further in the text. In Figure 7.1, we plot the accuracy
ratio versus the loss ratio. Figure 7.1 provides us with an estimate of whether
the architectures are overfitting on the data. Each individual datapoint represents
a model which was trained during a specific run, with the colour indicating the
architecture. The triangles indicate the mean values of that architecture.

A model that exhibits a higher accuracy ratio is more prone to overfitting than
a model with a lower accuracy ratio. A higher accuracy ratio is indicative of a
model that scores better on the training set than on the validation set. Conversely,
a model that exhibits a lower loss ratio is more prone to overfitting than a model
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Figure 7.1: Loss Ratio vs Accuracy Ratio for each of the models after having been
trained for 20 epochs.
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with a higher loss ratio. A higher validation loss relative to a lower training loss
is indicative of overfitting.

The further a model is from (1,1) the more prone it is to overfitting. In order
to calculate which five architectures is most prone to overfitting we use a ranking
scheme. The results of this ranking is given in Table 7.1 as well as the mean
distance each architecture is from (1,1).

Architecture Key Position Ranking Mean Distance Std Dev
1stC 0 0.9963 0.03
VGG 10 0.7728 0.08
ATL 20 0.5451 0.07
MCRG 30 0.3537 0.05
TLS 40 0.2782 0.05
CN8 65 0.1664 0.04
CXP 78 0.1456 0.05
ALN 78 0.1438 0.05
CNS 81 0.1332 0.05
RGZ 82 0.1262 0.07
CN4 82 0.1294 0.06
FR-D 97 0.1045 0.04
H 117 0.0646 0.05

Table 7.1: Positional Ranking and Mean Distance from (1,1) with standard devi-
ation included.

The architectures furthest from (1,1) are Toothless, MCRGNet, ATLAS,
VGG16D and FIRST Class. These are the architectures to be considered in Ex-
periment 2. For the sake of completeness, we also investigate the relationships
between the performance on the training and validation sets for the loss and ac-
curacy metrics.

Figure 7.2 shows the training loss versus the validation loss of each architec-
ture. Each individual datapoint represents a model trained for a run, with the
colour indicating the architecture. The triangles indicate the mean values of that
architecture. The crescent shape has models that overfit on the left end and mod-
els that likely underfit on the right end, with the best trade-off models near the
middle. Architectures with a much lower training loss than validation loss on the
left side of the figure are the candidates identified for overfitting with our distance
metric in Figure 7.1. On the right side of the figure, architectures with a training
loss similar to their validation loss can be found. This shows one of the limitations
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Figure 7.2: Training vs Validation Loss for model after 20 epochs of training

of the ratio plot in Figure 7.1, it is difficult to identify models that underfit or are
overregularized.

Figure 7.3 shows the training accuracy versus the validation accuracy of each
architecture. Each individual datapoint represents a model trained for a run, with
the colour indicating the architecture. The triangles indicate the mean values of
that architecture.

Next we look at the five models identified as most prone to overfitting and the
effect regularization has on them.
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Figure 7.3: Training vs Validation Accuracy for model after 20 epochs of training

7.2 Results of Experiment 2: Intervention of
Regularization Method

We regularize the 5 models selected in Experiment 1 using either L2 kernel regu-
larization or convolutional drop out or a combination of both. To have a baseline
comparison, the models with some regularization were retrained without utiliz-
ing either regularization method. The baseline models, however, still make use
of dropout between their dense layers. Each of the regularization methods are
indicated by a shorthand in the figures: with L2 kernel regularization as L2, con-
volutional drop out as D, the combination of both as L2D and the baseline model
with neither method as NCD (no convolutional dropout).
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Figure 7.4 shows the loss and accuracy ratio of the results from Experiment 2
over all the runs. We provide some additional information is to better understand
the figures in this section: the method of regularization used on a specific archi-
tecture is indicated by the marker shape and the colour indicates the architecture,
the smaller markers are the results for each individual run and the larger markers
with the black edges are the means of each architecture.

Table 7.2 shows the average distance of each architecture from (1,1). The
original architectures indicated with an asterisk in the table are the original ar-
chitecture given in Table 7.1. Note that the Toothless models in Table 7.1 are
derived from an architecture that uses batch normalization which were removed
from all the Toothless variants in Table 7.2, since batch normalization can poten-
tially affect regularization and complicate the comparison study. The architecture
that closest resembles the original Toothless here is the no convolutional dropout
(NCD) variant with the only difference being the lack of batch normalization. To
illustrate this, we mark Toothless NCD with a dagger in Table 7.2. This exclusion
of batch normalization from the architecture caused an increase in mean distance
from (1,1). We also note that further research into the effect of batch normaliza-
tion within the context of radio galaxy classification should be done, but that this
is beyond the scope of the current study.

Figure 7.5 shows the means of the loss and accuracy ratio of the results from
Experiment 2, with the addition of the means for each regularization method.
The crimson markers with hatches (for example see Figure 7.5) show the mean
associated with a regularization method.

We note that the combination of both methods (L2D) shows the greatest de-
crease in distance relative to the baseline models (NCD) with the L2 kernel reg-
ularization (L2) close by (see Table 7.3). While convolutional dropout (D) does
show an improvement relative to the baseline models, it does not have the same
effect on First Class’s models (which is severly overfitting).The other intervention
regularization techniques do significantly improve the performance of First Class’s
models. This trend is true for ATLAS’s and to a lesser extent for MCRGNet’s
models, but does not hold for Toothless’s and VGG16D’s models which both show
that using convolutional dropout results in an overall significant decrease in dis-
tance to (1,1). This is likely because both of these architectures have significantly
more convolutional parameters than the other three.

Figure 7.6 shows the training loss compared to the validation loss. A simi-
lar crescent shape as seen in Figure 7.2 is visible. We see that no convolutional
dropout (NCD) results in a significantly lower training loss with a much higher
validation loss, convolutional dropout (D) does have a significant regularizing ef-
fect, moving much closer to the middle. The effects are significantly more varied
per architecture. As an example, convolutional dropout does have much of an
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Figure 7.4: Regularization Interventions: Accuracy Ratio vs Loss Ratio of All
Runs
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Figure 7.5: Regularization Interventions: Accuracy Ratio vs Loss Ratio of Means
per Architecture
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Architecture Position Rank Mean Distance Std Dev
1stC NCD* 0 0.9963 0.03
1stC D 11 0.9616 0.03
MCRG NCD 20 0.8615 0.07
VGG NCD* 29 0.7728 0.08
ATL NCD 43 0.5944 0.06
ATL D* 51 0.5451 0.07
TLS NCD† 60 0.4857 0.08
MCRG D* 79 0.3537 0.05
VGG L2 80 0.3604 0.10
1stC L2 89 0.3212 0.05
1stC L2D 97 0.2981 0.06
VGG D 111 0.2459 0.07
ATL L2 125 0.2050 0.06
TLS L2 137 0.1683 0.04
MCRG L2 138 0.1743 0.04
ATL L2D 140 0.1787 0.06
VGG L2D 158 0.1351 0.06
TLS D 165 0.1210 0.07
MCRG L2D 182 0.0832 0.05
TLS L2D 185 0.0781 0.05

Table 7.2: Position Ranking and Distance of each Regularized Architecture

impact on First Class, while Toothless sees a significant increase in validation ac-
curacy. L2 kernel regularization without convolutional dropout (L2) produces the
lowest average validation loss without an accompanying lower training loss (which
is normally indicative of overfitting). L2 kernel regularization with convolutional
dropout (L2D) results in an increase of both training and validation loss when it is
compared to L2 without convolutional dropout. Figure 7.7 shows the training ac-
curacy compared to the validation accuracy, with L2 scoring the highest validation
accuracy.

The average distances and positional rank of each of the regularization methods
is given in Table 7.3. The average validation accuracy, loss and accuracy ratios of
each of the regularization methods are given in Table 7.4.

In Table 7.3, we note that the positional ranking now includes the sum of all
the models’ ranks that use a specific regularization method. L2D has a much
larger effect on the distance metric than the other methods do, although as we
have mentioned before this can be misleading with regards to loss and accuracy
values because the ratios do not take the absolute values of accuracy and loss into
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Figure 7.6: Regularization Intervention: Training Loss vs Validation Loss

Regularization Method Position Rank Average Distance
No Convolutional Dropout (NCD) 152 0.7421
Dropout (D) 417 0.4454
L2 Kernel Regularization (L2) 569 0.2458
L2 Kernel Regularization & Dropout (L2D) 762 0.1547

Table 7.3: Position Ranking and Mean Distance of each Regularization Method
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Figure 7.7: Regularization Intervention: Training Accuracy vs Validation Accuracy

Reg. Method Accuracy Loss
Train Val. Ratio Train Val. Ratio

NCD 90.03 70.71 1.2755 0.2719 1.0146 0.3120
D 81.41 68.09 1.1967 0.4855 0.8822 0.6016
L2 79.73 71.74 1.1116 0.6343 0.8097 0.7823
L2D 74.42 68.93 1.0796 0.7488 0.8585 0.8719

Table 7.4: Regularization Method Mean Accuracy, Loss and Ratios
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account.
In Table 7.4 we see that L2 has associated with it the lowest validation loss

and the highest validation accuracy of all regularization methods. While the L2D
method has associated with it the best loss ratio and accuracy ratio, we see signs
of underfitting relative to the other methods with a more than 5% lower training
accuracy than L2 and a nearly 3% lower validation accuracy. NCD exhibits clear
signs of having overfitting with a very high training accuracy. D performs worse
than L2D on validation accuracy. We select L2 kernel regularization as the inter-
vention we will apply, based on its performance on the validation set and since it
does not show any clear signs of overfitting.

From the results of Table 7.3 and 7.4 we conclude that the most effective
regularization intervention that does not compromise performance is the addition
of L2 kernel regularization in the first dense layer.

7.3 Results of Experiment 3: Architecture
Comparisons

All the results presented in the subsequent subsections were obtained from Ex-
periment 3 (see Section 6.4). The results of this experiment is summarized in
Table 7.6. In Section 7.3.1, we report on the MPCA versus the computational
complexity of the architectures in Table 5.1. Note that, for the sake of brevity we
sometimes only use the shortened phrase “architectures” instead of “architectures
in Table 5.1” when referring to the architectures that we considered in this the-
sis. Section 7.3.2, looks at the per class F1-score performance of the architectures
(which serves to showcase the trade-off in class performance for each classifier and
highlights the shortfalls of a metric such as MPCA). The memory requirements
and the classification speeds of the architectures are discussed in Section 7.3.3 and
Section 7.3.4. The overall ranking of the architectures is presented in Section 7.3.5.

7.3.1 Accuracy-rate vs Computational Complexity vs
Model Complexity

Figure 7.8 reports the MPCA versus the computational complexity of the architec-
tures in Table 5.1; for a single forward pass (measured in floating point operations
or FLOPs). The size of the markers in Figure 7.8 represents the model complex-
ity of the architectures (measured in the number of trainable parameters). These
values are presented in Table 7.5.

The model with the highest MPCA (74.38%) is CLARAN (i.e. VGG16 L2)
(Wu et al., 2019; Simonyan and Zisserman, 2015). The best performing models
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from the existing literature ConvNet8 (Lukic et al., 2019b) (73.18%), FIRST Class
L2 (Alhassan et al., 2018) (71.67%), MCRGNet L2 (Ma et al., 2019) (71.38%) and
Toothless L2 (Aniyan and Thorat, 2017) (71.34%). The novel classifier produced
for this thesis, ConvXpress, has the third highest MPCA (72.69%). These results
are presented in Table 7.6.

We note that all of the best performing classifiers make use of an L2 kernel reg-
ularization layer and that nearly all of the architectures that have been regularized
are in this group.

The figures in this section was in part inspired by work done by Bianco et al.
(2018) who performed a benchmark analysis of various deep neural network archi-
tectures at the time. We drew inspiration from the various plots to represent the
data, such as Figure 7.8.

Key Learning Rate Parameters FLOPs
GPU
Mem.
(GB)

MCRG L2 0.001 213916 8406674 63.49
RGZ 0.00001 5283444 75825974 84.99
H 0.0001 261239 109649469 315.39
FR-D 0.0001 479996 141486958 280.58
ATL L2 0.0001 1385988 546585022 411.65
CXP 0.0001 3415944 764997460 393.22
ALN 0.00001 37302980 1107736302 412.67
CNS 0.0001 37460 797660134 573.44
CN4 0.0001 165910168 1036529876 897.02
TLS L2 0.00001 71906180 1634645742 782.34
1stC L2 0.0001 51655412 1128841236 1715.20
CN8 0.0001 42646184 4612528724 1844.22
VGG L2 0.00001 201384644 27231525758 4061.18

Table 7.5: Learning Rate, Parameters, FLOPs and GPU Memory

7.3.2 Per Class F1-score

Figures 7.9 through 7.12 report the F1-score of each class sorted by mean F1-
score. The results are also given in Table 7.7. The results are represented as violin
plots for each architecture. Violin plots use kernel density estimation (KDE) to
estimate a probability distribution of the data. The middle tick present on each
architecture’s violin represents the median value. F1-score encapsulates recall and
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Key Computational Rank Classifier Rank MPCA
1stC L2 -18 488 71.67
ALN 4 -884 63.23
ATL L2 8 249 70.57
CN4 -14 -470 66.07
CN8 -28 857 73.19
CNS -12 -738 64.98
CXP 6 636 72.69
FR-D 10 -975 59.30
H 20 -611 64.31
MCRG L2 36 474 71.38
RGZ 30 -577 66.06
TLS L2 -14 459 71.34
VGG L2 -36 1092 74.38

Table 7.6: Rankings and MPCA Table: Computational Ranking, Classifier Rank-
ing and MPCA is given. Architectures are sorted alphabetically according to their
keys.

precision into a single metric. More general metrics, such as MPCA and overall
accuracy, can be misleading metrics, since a model might score high in either
of these metrics by doing exceptional well in one class, whilst underperforming in
another class. These results are presented in Table 7.7. Classifiers should in general
not be evaluated using a single metric. However, a single metric is sometimes
necessary as it can convey information in a concise and succinct manner.

Most architectures fair well classifying Compact sources, with even the worst
performing architecture in Figure 7.9 outperforming the best F1-score for the other
classes. Compact sources have a more straightforward morphology (for the most
part) than the other classes. This more straight forward morphology allows the
classifiers to learn the class distinction easier. VGG L2 has the highest mean and
median score for this class, although some VGG L2 models performed worse than
MCRGNet L2’s models, which score close to each other. We note that MCRGNet
L2 (213916 parameters) is a much less complex model than VGG16 L2 (201384644
parameters) in terms of parameter size with accuracy scores quite comparable for
the compact class.

The FRI class was more difficult for the classifiers to learn than Compact
sources, although the worst performing classifier for the FRI class does not drop
below 0.5, as it does for FRII and Bent-tails. The results are given in Figure 7.10
VGG L2 has the highest mean and median score for this class. VGG L2 does,
however, have greater variability in model performance than the 2nd and 3rd best
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Figure 7.9: Compact Source F1-score Violin Plot: Architectures are sorted accord-
ing to the means with the median value is displayed on the plot.
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Figure 7.10: FRI F1-score Violin Plot: Architectures are sorted according to the
means with the median value is displayed on the plot.
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architectures, i.e. ConvNet8 and MCRGNet L2, respectively.
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Figure 7.11: FRII F1-score Violin Plot: Architectures are sorted according to the
means with the median value is displayed on the plot.

The results for the FRII class show some models getting a F1-score below 0.5,
likely because of confusion between FRII images and Bent-tail images. In Fig-
ure 7.11 a divide is present between architectures that use L2 kernel regularization
and those that have not (with the exception of ConvNet4), with a sudden rise in
F1-score between AlexNet and MCRGNet L2. VGG L2 is the best performing
architecture in this class. The models of the architectures with L2 kernel regu-
larization show less variability in F1-score (with the exception of Toothless and
ConvNet4) than the architectures without it.
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Figure 7.12: Bent-tail F1-score Violin Plot: Architectures are sorted according to
the means with the median value is displayed on the plot.
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Figure 7.12 reports a violin plot of the F1-score for the Bent-tail class. As
with the results from the FRII class, we see some architectures getting an average
F1-score below 0.5, likely because of confusion between FRII images and Bent-tail
images. The architectures with L2 kernel regularization (with the exception of
ConvNet4) are also the best performers for the Bent-tail class, although not as
pronounced as in the FRII class. VGG L2 is the best performing classifier.

7.3.3 Classification Speed

Classification speed is the number of images an architecture can classify per second
at a certain batch size. A batch size of 32 has been used for this experiment. The
classification speed of the different architectures are obtained by taking the inverse
of the inference times reported in Figure 7.13. Figure 7.14 reports the MPCA ver-
sus classification speed of the different architectures. It is evident from Figure 7.14
that computationally efficient models generally have faster classification speeds. A
trade-off, therefore, exists between faster classification and higher recognition per-
formance, at least for standard CNN architectures. Moreover, MCRGNet has the
fastest classification speed at 1270 images per second with Radio Galaxy Zoo close
by at 1246 images per second. VGG16 has the slowest classification speed at 291
images per second. These results are presented in Table 7.8.

In comparison, the classification speed of an average person is “about 250 im-
ages in 5 minutes” or roughly 0.833 images per second (Markoff, 2012). The
classification task from which this result was obtained is complex, a human clas-
sifier had to choose a label from a large number of possibilities, and as such the
aforementioned result should be regarded as a lower bound estimate of how fast
an average person would be able to classify 250 images.

7.3.4 Inference Time vs. GPU Memory Usage

Figure 7.13 reports inference time versus theoretical GPU memory usage (at a
batch size of 32). As memory usage increases, inference time dramatically in-
creases. The standard deviation associated with the inference time is also de-
picted in Figure 7.13. Inference time is tabulated in Table 7.8 and GPU memory
in Table 7.5.

7.3.5 Ranking

All the architectures listed in Table 5.1 have been ranked in Table 7.6 according to
their recognition performance (given as classifier ranking) and their computational
performance (given as computational ranking). An overall rank is calculated based
on the sum of these two rankings. Please note that this ranking is a relative ranking
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Key Comp. Prec. FRI Prec. FRII Prec. Bent Prec.
VGG L2 0.8283 0.7196 0.7145 0.7349
CN8 0.8077 0.7040 0.6867 0.7269
CXP 0.7926 0.7023 0.6917 0.7276
1stC L2 0.8161 0.6625 0.6933 0.6922
TLS L2 0.8215 0.7063 0.6693 0.7151
MCRG L2 0.8283 0.6815 0.6691 0.6745
ATL L2 0.8198 0.6681 0.6661 0.6644
RGZ 0.7863 0.6292 0.5994 0.6195
H 0.8215 0.5709 0.5996 0.5924
CNS 0.7824 0.6055 0.5984 0.5926
ALN 0.7566 0.5663 0.5862 0.6401
CN4 0.7768 0.6354 0.6286 0.5801
FR-D 0.8254 0.5347 0.5378 0.4890

Comp. Recall FRI Recall FRII Recall Bent Recall
VGG L2 0.8894 0.6785 0.7208 0.6866
CN8 0.9008 0.6724 0.7082 0.6460
CXP 0.9012 0.6517 0.6919 0.6629
1stC L2 0.8662 0.6976 0.6963 0.6065
TLS L2 0.8758 0.6330 0.7202 0.6245
MCRG L2 0.8829 0.6785 0.6869 0.6071
ATL L2 0.8747 0.6664 0.6924 0.5892
RGZ 0.8713 0.6514 0.6301 0.4894
H 0.8686 0.6740 0.5041 0.5260
CNS 0.8848 0.6427 0.5673 0.5043
ALN 0.8649 0.6117 0.6573 0.3954
CN4 0.8956 0.6857 0.5876 0.4740
FR-D 0.8235 0.7009 0.4029 0.4449

Comp-F1 FRI-F1 FRII-F1 Bent-F1
VGG L2 0.8564 0.6963 0.7142 0.6995
CN8 0.8515 0.6874 0.6959 0.6818
CXP 0.8412 0.6748 0.6903 0.6883
1stC L2 0.8401 0.6794 0.6943 0.6452
TLS L2 0.8457 0.6632 0.6819 0.6425
MCRG L2 0.8542 0.6795 0.6761 0.6362
ATL L2 0.8456 0.6669 0.6779 0.6218
RGZ 0.8253 0.6396 0.6118 0.5429
H 0.8429 0.6170 0.5342 0.5517
CNS 0.8301 0.6232 0.5797 0.5422
ALN 0.8037 0.5873 0.6128 0.4780
CN4 0.8310 0.6586 0.6043 0.5178
FR-D 0.8229 0.6059 0.4458 0.4499

Table 7.7: Average results of the F1-score, Precision and Recall are given in this
table.
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Figure 7.13: GPU Memory Usage vs Inference Time

and that it is limited to the architectures within this study (and the datasets used)
and as such cannot be seen as an absolute reflection of architecture standing.

Figure 7.15 shows the computational and classifier rankings of the architectures
and replaced counterparts. For precise values see Table 7.6. The computational
rank takes into account memory requirements, classification rate and FLOPs (see
Table 7.5). This is calculated by comparing the models of each architecture per
run. For each of these metrics the architecture gains a point for having the lower
value and loses one for having the higher value (except for the classification rate
where a higher value gains a point and lower loses), draws result in no increase
or decrease for either party. This same scoring system is applied during each run
for both the computational and the recognition performance metrics; the scoring
is applied cumulatively.
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Figure 7.14: Images per Second vs MPCA

The classifier rank takes into account F1-score, precision and recall for all
classes as well as mean per class accuracy. These values are given in Table 7.7 and
7.6. This is calculated by comparing the models of each architecture per run. For
each of these metrics the architecture gains a point for having the higher value
and loses one for having the lower value, draws result in no increase or decrease
for either party.

Architectures on the right side of the figure outperform the classifiers to the
left while the architectures to the top of the figure require less computational
resources and have a higher classification rate compared to those near the bottom.
Dividing Figure 7.15 into quadrants we see four groups of classifiers emerging: high
computational rank with low classifier rank (top left), low computational rank with
low classifier rank (bottom left), low computational rank with high classifier rank
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Key
Images
per
Second

Inference
Time (s) STD

MCRG L2 1270 2.42 0.27
RGZ 1246 2.47 0.31
H 1110 2.77 0.30
FR-D 1065 2.88 0.24
ATL L2 1056 2.91 0.37
CXP 1049 2.93 0.22
ALN 1126 2.73 0.29
CNS 621 3.70 0.24
CN4 874 3.51 0.23
TLS L2 1044 2.94 0.22
1stC L2 931 3.30 0.26
CN8 649 4.73 0.25
VGG L2 291 10.53 0.34

Table 7.8: Inference Time and Images per Second

(bottom right) and high computational rank with high classifier rank (top right).
The trade-off in the loss of classifier rank for the gain in computational rank

is quite significant when comparing the models in the top right quadrant with
those in the bottom right. The three worst performing classifiers in terms of
computational rank are in the bottom right quadrant, while the best performing
architecture (MCRGNet L2) is in the top right. In terms of classifier rank the
bottom right quadrant has the two best performing classifiers, with the top right
having the 3rd and 6th best. MCRGNet L2, CXP and ATLAS L2 show a good
trade-off between computational rank and classifier rank.
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Chapter 8

Conclusion
“Knowledge that is not being used for winning of further knowledge does
not even remain – it decays and disappears.”

— JD Bernal, Science in History - Volume 3: The Natural Sciences
in our Time, 1971

In this chapter we offer some concluding remarks. In Section 8.1, we summarize the
thesis. In Section 8.2, we restate the research objectives, discuss how these were
addressed and conclude whether the objectives have been met. In Section 8.3, we
give the general conclusions that can be drawn from this study. In Section 8.4, we
discuss whether the overarching problem of developing an automatic classification
pipeline for radio galaxy classification is now solved. We end the chapter with
some final remarks in Section 8.5.

8.1 Summary of Thesis
Chapter 2 provides a brief background overview of radio astronomy. Chapter 3
discusses the background and history of CNNs. Chapter 4 outlines the dataset
used for the experiments. Chapter 5 provides a literature review of CNNs used in
radio astronomy. Chapter 6 discusses the experimental setup and experiments we
perform. Chapter 7 gives the results of the experiments.

Three experiments were performed in this study. In the first experiment we
assessed overfitting on the MURG dataset, the setup is discussed in Section 6.2 and
the results in Section 7.1. In the second experiment we assessed the effectiveness
of regularization techniques and select which regularized architectures will replace
the original overfitting versions, the setup is discussed in Section 6.3 and the results
in Section 7.2. In the third experiment we perform the architecture comparisons
based, the setup is discussed in Section 6.4 and the results in Section 7.3.

95
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8.2 Assessment of Objective Completion
In this section, we assess whether the objectives stated in Section 1.3 were com-
pleted. We briefly restate the objective of this study, discuss how this objective
was addressed and critically evaluate each of the objectives.

8.2.1 Identifying proneness to overfitting

Objective

The architectures from the selected studies are retrained on the same dataset, we
assess how prone the architectures are to overfitting relative to each other.

How was this objective addressed?

We used the loss and accuracy ratios of the validation and training sets as metrics
to determine which architectures were more susceptible to overfitting. Both ratios
are calculated by taking the corresponding metric from the training set and the
validation set and dividing the values so obtained with one another. From this
it follows that a lower accuracy ratio should indicate less overfitting (it is always
larger than one), while a higher loss ratio indicates less overfitting (it is always
smaller than one). If there is little to no overfitting present both ratios will be close
to one. We plot these metrics against each other (accuracy ratio on the x-axis, loss
ratio on the y-axis) and use a distance metric to determine the five architectures
furthest from the (1,1) point (depicted in the Figure 7.1).

These are the metrics that were used to conclude which architectures show
more significant signs of overfitting than other architectures. The identified five
architectures from literature that overfit by employing a scatter plot of the accu-
racy and loss ratios (see Figure 7.1). The five architectures that were identified
are: VGG, Toothless, ATLAS, MCRGNet and FIRST Class. Further results are
discussed in depth in Section 7.1.

Has the objective been met?

The loss and accuracy ratios is most useful when comparisons between models
trained on the same data are being made, rather than as standalone metrics to
be assessed on its own to conclude overfitting. This is why we do not postulate
a threshold value, but rather select the five furthest architectures from a prede-
termined point. The use of the loss and accuracy ratios to determine underfitting
was not explored in depth and it could be useful in this regard. In conclusion, we
have identified architectures that show more significant signs of overfitting than
other architectures, we state that this objective has been met.
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8.2.2 Assessing regularization intervention effectiveness

Objective

After identifying which architectures are more prone to overfitting, we test the
various regularization interventions from the literature of selected studies on those
that overfit. The most effective interventions are then applied to these overfit-
ting prone architectures. The resulting architectures are then used to replace the
original architectures in the recognition performance comparison study.

How was this objective addressed?

Two main regularization methods were used in the selected studies, namely con-
volutional dropout and L2 kernel regularization (see Table 5.15 for a complete
breakdown per architecture). These two regularization strategies were then ap-
plied to the architectures identified in Experiment 1, we tested each method on
its own as well as a combination of both. A baseline was also trained that uses no
other regularization approach, other than dropout between the dense layers. The
method with the best validation loss and accuracy across all of the overfitting ar-
chitectures was then selected (and that showed reduced signs of overfitting). The
five original architectures are then replaced in the comparison study with their
regularized versions. These regularized versions use the aforementioned method
with the best validation loss and accuracy. We found that applying convolutional
dropout on its own yielded poor results. L2 kernel regularization gave the best
results (and as such is the regularization strategy we would suggest to try first for
the problem at hand). Using convolutional dropout and kernel regularization in
conjunction usually resulted in a overregularized model.

Has the objective been met?

Further study of kernel regularization’s effect when applied more broadly in the
architecture is needed, since the kernel regularization we applied was limited to a
single layer in all the networks. This was done to mimic the studies in literature
who employed kernel regularization (see ConvNet8 as an example). We also do
not explore the effect that the dropout rate has on combating overfitting since all
of the selected studies used a similar dropout rate. We do not explore varying
the number of dropout layers either. These additional experiments were excluded
because the scope of this objective was of a more limited nature: to assess the effec-
tiveness of the regularization methods present in the selected studies. As such, we
rather focused on comparing convolutional dropout with L2 kernel regularization,
as well as their combined effect. In conclusion, we were successful in assessing the
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effectiveness of various regularization interventions and in selecting a method that
provides adequate support in combating overfitting.

8.2.3 Assessing recognition performance

Objective

Classifier performance is assessed and compared with regards to precision, recall,
F1-score and MPCA.

How was this objective addressed?

The architectures that were found to be overfitting in Experiment 1 were replaced
with a regularized version from Experiment 2. The performance of the various ar-
chitectures have been assessed on the same dataset, which allows for a comparison
of the performance of the various architectures. This was done with multiple splits
of the dataset. Ten models of each architecture was trained. The results associated
with the various architectures are then compared. The top five architectures in
this regard are VGG L2, ConvNet8, ConvXpress, FIRST Class and Toothless L2.
MCRGNet L2 deserves to be higlighted since it comes quite close to Toothless L2
in terms of classification performance and has a slightly higher MPCA and utilizes
few parameters.

Has the objective been met?

As stated above, the various architectures have been trained on ten splits to get the
average performance of each architecture. We believe that ten runs are adequate to
establish how the architecture would perform in general and although more could
be useful, we had to limit ourselves to ten runs due to computational constraints.
Furthermore, testing various other hyperparameter setups (batch size, learning
rate, etc.) can possibly lead to better results but again to computational con-
straints we were unable to explore this. Using similar datasets from other domains
for comparison would be a good way to validate the results, however since this
thesis is focused on radio galaxy classification, this has been left for future work.
In conclusion, the average performance of each architecture has been established.

8.2.4 Reporting computational requirements

Objective

Besides recognition performance, it is important to assess the computational re-
quirements of various CNNs when considering which to use in practice. We assess
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and report the computational requirements of each architecture in literature in
this thesis.

How was this objective addressed?

The computational requirements of the various architectures have been assessed.
We measure the GPU memory usage, floating point operations and classification
rate of each architecture. Number of parameters are also assessed. The top five
architectures in this regard are MCRGNet L2, Radio Galaxy Zoo, Hosenie, FR-
Deep and ATLAS L2.

Has the objective been met?

Another computational metric that would be useful to consider would be aver-
age training time across various commonly used hardware setups and with varied
batch sizes, since these metrics would be quite useful to select architectures that
would have to be retrained often or in use cases that have tight computational con-
straints that has to be adhered to. Since the computational resources used for our
experiments was shared, we were unable to establish a useful baseline for training
time. In conclusion, we successfully report on the computational requirements of
each architecture.

8.2.5 Ranking system

Objective

A ranking system has been developed to assess and compare CNNs that take
into account the recognition performance and computational requirements of each
architecture.

How was this objective addressed?

The assessments of recognition performance and computational requirements pro-
vided several metrics to compare the various architectures. However, a useful way
to convey this information concisely is with a ranking system. The architectures
that have both a positive classifier ranking and a positive computational rank is
MCRGNet L2 (6th class. rank, 1st comp. rank), ATLAS L2 (7th class. rank, 5th
comp. rank) and ConvXpress (3rd class. rank, 6th comp. rank). These are useful
architectures to consider when computational resources are limited or a high clas-
sification speed is required. We also note that the architecture ranked the highest
in the classification rank is the lowest in the computational rank (VGG16D L2).
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Additional computational complexity in an architecture can aid recognition per-
formance (see Figure 7.8) however this is not a guaranteed strategy nor a scalable
strategy. This can possibly lead to overfitting unless the architecture is regularized.
We discuss this further in Section 8.3. In comparison to MCRGNet L2, VGG16D
L2 requires significantly more computational resources to perform better (and only
marginally so in some cases, Figures 7.9 and 7.10). VGG16D L2 has a 3% higher
MPCA than MCRGNet L2 but requires 3239 times more FLOPs and roughly 64
times more GPU memory. MCRGNet L2 is also 4 times faster at classifying images
than VGG16D L2. Arguably, MCRGNet L2, ATLAS L2 or ConvXpress would be
preferable architectures to select based on this information.

Has the objective been met?

A ranking system was developed that compares classifiers both in terms of com-
putational requirements and classification capabilities. The classification ranking
system does, however, only give a highlevel indication of an architecture’s recogni-
tion capability due to the fact that any specific information about an architectures’
performance in any given class is lost. Similarly, the computational ranking pro-
vides an aggregate metric and any specifics therefore are extirpated.

In conclusion, a ranking system has been created that reports on both compu-
tational and classification capabilities, while illustrating the trade-offs one would
make when choosing an architecture.

8.3 General Conclusions
There are also a few other minor conclusions that can be drawn from the results
obtained from the experiments we conducted in this thesis:

Dataset The MURG dataset has only been labelled by a single person, a dataset
labelled by more subject matter experts would arguably be preferable. How-
ever, for the purposes of comparing architecture performance as well as iden-
tifying overfitting, we find that the MURG dataset was adequate since the
alternative datasets were too small and noisy.

Why do the architectures overfit? VGG16D, FIRST Class and Toothless are
likely overfitting because of the large number of parameters they have (201
million, 51 million and 71 million respectively). The original Toothless archi-
tecture shows less signs of overfitting than the other two mentioned before,
likely due to the inclusion of batch normalization between the convolutional
layers. The other architectures with high parameter counts, ConvNet4 and
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ConvNet8, both have dropout between their convolutional layers as well as
and L2 kernel regularization to counter overfitting.

MCRGNet and ATLAS show less signs than VGG16D and FIRST Class
of overfitting and this is expected when looking at their parameter count.
MCRGNet has the second least parameters at 213 thousand and ATLAS has
1.3 million parameters, both architectures have full dropout between their
convolutional layers. The reason why these two smaller models overfit and
others with similar capacity and regularization levels do not still eludes us at
present. This phenomenon will be investigated as part of a future endeavor.
The answer might lie in our metric in identifiying overfitting, i.e. the accu-
racy and loss ratio distance metric. Our selection of the five architectures
with the largest distance does not guarantee that these architectures are
overfitting, only that they present more signs of overfitting relative to the
other architectures. Other small architectures with smaller distance metrics
also show signs of underfitting as discussed earlier, which the accuracy and
loss ratio distance metric does not highlight. Both of these factors are severe
limitations when using a relative metric rather than an quantitative metric.
However, what is clear is that L2 kernel regularization reduced the tendency
to overfit in all of the above architectures. In that sense the metric is a useful
tool to identify and reduce overfitting.

Intervention effectiveness Convolutional dropout and L2 kernel regularization
overregularizes most architectures, convolutional dropout does not provide
as much regularization for most architectures as L2 kernel regularization.
L2 kernel regularization provides a good trade-off of providing regularization
without significantly affecting training time.

Architecture A few design choices for CNN architectures can speed up model
performance while driving down resource costs. A larger kernel’s receptive
field is equivalent to several smaller receptive fields when these are stacked
without a pooling layer in between with the added bonus that more layers
of non-linearity are added through more ReLU activation functions while
driving down the number of parameters. This was originally used within
the VGG architecture family developed by Simonyan and Zisserman (2015).
Several of the architectures in Table 5.1 build on these design decisions,
specifically ConvNet-8 (Lukic et al., 2019a).

ConvXpress ConvXpress utilizes the aforementioned stacking strategy. It also
uses a non-standard stride length which indirectly reduces its computational
cost. This architecture performs well when compared to the other architec-
tures in Table 5.1 (see Table 7.6).
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Parameters Increasing your recognition performance by simply utilizing more
and more trainable parameters is discouraged as it is a strategy that can
lead to overfitting (increasing trainable parameters also does not scale well
computationally). Furthermore, an increase in trainable parameters will in-
crease computational complexity, training time and GPU memory usage.
Overall Deep Learning models are viewed as inefficient in exploiting their
full learning power (Muhammed et al., 2017) given the large number of pa-
rameters they require relative to other machine learning approaches.

FLOPs Computational complexity (given as FLOPs) and recognition performance
(approximated as MPCA) are weakly correlated (see Figure 7.8). Utiliz-
ing more computational resources is, therefore, likely to result in at least
marginal increases in recognition performance. As we have hinted at previ-
ously, increasing your recognition performance by simply utilizing more and
more computational resources is frowned upon as it is a strategy that does
not scale well.

Classification Speed Generally, models with a higher MPCA, classify slower
than those with a lower MPCA (see Figure 7.14). The trade-off between
classification speed and recognition performance is evident as model MPCA
decreases with an increase in images classified per second.

Ranking As alluded to earlier, CNNs can be ranked according to their recognition
performance results and the computational resources that they require. The
ranking we obtained doing just this is presented in Table 7.6. It is, however,
important to realize that this study is not exhaustive enough to provide us
with an absolute ranking of the architectures in Table 5.1. A more extensive
study that considers all possible combinations of hyperparameters would be
required for us to achieve the aforementioned goal. Such a study would,
however, be computationally infeasible. This study does, however, provide
us with a useful pragmatic ranking as the hyperparameters were chosen in
accordance with excepted guidelines.

8.4 Influence on automatic classification of radio
galaxies

As we have mentioned in the introduction to this work, the larger problem is that a
method of automatic classification is needed that can classify large datasets reliably
and fast. Our attempt is largely focused on creating a framework that provides
the environment to compare architectures with regards to classification reliability
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when trained on various different data splits and the speed at which this classi-
fication can be performed. We also contribute a novel architecture that provides
a good trade-off between computational performance and classifier performance,
i.e. it classifies images both fast and does so reliably for different models of the
architecture. Arguably, newer architectures can do this even faster and more reli-
ably. Architectures designed for other tasks, such as object detection or semantic
segmentation might be better suited for the task at hand, given the preprocessing
required to first locate and identify a radio galaxy before morphological classifica-
tion can even begin. For an in-depth comparison of the more recent architectures
that are being used in radio astronomy for image recognition and classification,
please refer to the list of excluded architectures in Section 5.5. In conclusion,
we do not adress the problem of providing an end to end calsification pipeline in
this study. Our study can however be used to help realize this end goal. Which,
according, to our literature review is still an ongoing endevour.

8.5 Final Remarks
Training CNNs for the purpose of image classification and specifically radio galaxy
classification, has become a relatively easy task to set up given the computational
resources available at present. But as Jitendra Malik, Arthur J. Chick Professor
of Electrical Engineering and Computer Sciences at the University of California
Berkeley and one of the seminal figures in computer vision, stated “There are many
problems in [computer] vision where getting 50 percent of the solution you can get
in one minute, getting to 90 percent can take you a day, getting to 99 percent
may take you five years and 99.99 percent, maybe not happen in your lifetime”
(Fridman and Malik, 2020).

The lack of large sets of annotated training data remains one of the greatest
challenges in assessing and improving the general recognition performance of CNNs
when they are employed for the morphological classification of radio galaxies (and
all image classification algorithms). In addition, determining the computational
resources a model requires is important to consider when selecting an architecture
for deployment. The framework and experiments laid out in this study will hope-
fully be able to help aid the future of image recognition development within the
field of radio astronomy.
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