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ABSTRACT 

Pomegranate fruit is susceptible to a number of postharvest quality problems such as external 

and internal decay, weight loss, internal browning, chilling injury and husk scald. Postharvest 

treatments offer the possibility of alleviating these challenges and maintain fruit quality. The 

aim of the study was to investigate the potential of exogenous application of chemical 

treatments (putrescine (PUT) and fludioxonil (FLU)) in reducing the incidence of postharvest 

physiological disorders of pomegranate fruit (cv. Wonderful). Fruit were treated at three 

concentrations (putrescine – 1, 2 and 3 mM; fludioxonil – 150, 300 and 600 mg/L) and stored 

for 4 months at 5 °C plus an additional 4 days at 20 °C (shelf life). The effects of the 

chemical treatments and storage duration on fruit physiological response and quality were 

investigated.  

The results showed that treating pomegranate fruit with putrescine at different concentrations 

(1, 2 and 3 mM) reduced incidence of physiological disorders such as external fruit decay, 

chilling injury and husk scald during the first 3 months of storage. However, putrescine had 

no effect on internal disorders such as internal decay and aril browning.  Physico-chemical 

attributes such as peel colour, aril colour, TSS, TA and pH were not significantly (p > 0.05)  

affected by putrescine application. After four months of storage, treated samples had firmer 

fruit and arils while the control had softer fruit with lower firmness (10.12 ± 0.40 N) and aril 

hardness (143.20 ± 3.84 N). Fruit treated with 2 mM PUT had the best sensory quality 

(crispness, sweet taste, juiciness) after 3 months of storage. Although 3 mM PUT effectively 

reduced physiological disorders, 2 mM PUT had the advantage of both reducing the external 

disorders and maintaining fruit sensory quality during storage up to 3 months.  

Fludioxonil was very effective in reducing decay incidence among treated fruit, with 600 

mg/L as the most effective FLU concentration having 15.7 % lower decay than control. 

However, other physiological disorders such as aril browning, chilling injury and husk scald 

were more pronounced in treated fruit. Fruit firmness was maintained among treated fruit 

while aril texture was not significantly (p > 0.05) affected. Control fruit had higher aril 

redness (a*) and intensity (C*) compared to fruit treated with FLU. The chemical attributes 

TA, TSS and BrimA generally decreased with storage for all FLU concentrations. Fruit 

treated with 600 mg/L were related to eating attributes for crisp, juicy and sweet fruits. Fruit 

were successfully stored up to 3 months without adversely affecting quality and 600 mg/L 

was the most effective FLU concentration. 
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A further study on the effects of the PUT and FLU treatments on phytochemical and volatile 

composition of fruit revealed that fruit juice ascorbic acid content decreased slightly while 

total phenolic content (TPC) significantly decreased during storage for both chemicals. Fruit 

treated with FLU had higher TPC for the first 3 months while fruit treated with PUT only 

showed high TPC after month 2 of storage. Total anthocyanin content (TAC) of fruit initially 

increased to values above harvest regardless of FLU concentration. However, TAC decreased 

as storage progressed with no significant difference (p > 0.05) between FLU concentration at 

the end of the storage duration. On the other hand, TAC of PUT treated fruit significantly 

reduced throughout storage (except at month 2), with no significant differences observed 

among PUT concentrations at the end of storage. In contrast, the antioxidant capacity of both 

FLU and PUT treated fruit increased throughout the storage duration. Furthermore, a total of 

31 and 32 volatile compounds were identified in fruit treated with FLU and PUT, 

respectively. Six chemical groups (alcohols, aldehydes, acids, ketones, esters and terpenes) 

were identified among fruit treated with FLU, while five (alcohols, aldehydes, acids, esters 

and terpenes) were detected in fruit treated with PUT. Volatile compounds evolved with 

prolonged storage, with new compounds, especially terpenes, detected at later storage 

durations. Accumulation of terpenes had adverse effects on fruit sensory quality and therefore 

storage for long duration may result in lower fruit flavour.    

Overall, the study provided insightful information on the potential of putrescine and 

fludioxonil treatments in reducing pomegranate fruit postharvest disorders and their effects 

on fruit edible and nutritional quality attributes. The application of FLU greatly reduced fruit 

decay but not chilling injury, husk scald and aril browning while PUT alleviated all these 

physiological disorders. However, PUT and FLU did not effectively reduce weight loss, and 

therefore, future studies may focus on combining chemical treatments together with physical 

treatments such as film wrapping and waxing so as to benefit from the hurdle effect. In 

addition, combination of FLU and PUT may be explored to harness the full potential of the 

two chemical treatments. 
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OPSOMMING 

Granate is vatbaar vir 'n aantal na-oes kwaliteit probleme soos uitwendige en inwendige 

verval, gewigsverlies, koueskade en dopwonde. Na-oes behandelings bied die moontlikheid 

van die oplossing van hierdie probleme en verbeter ook vrugkwaliteit. Die doel van hierdie 

studie was om die potensiaal van die uitwendige toediening van chemiese behandelings 

(putresien (PUT) en fludioksonil (FLU)) in die vermindering van die voorkoms van na-oes 

fisiologiese afwykings van granate (cv. Wonderful) te ondersoek.  Die vrugte is behandel met 

drie konsentrasies (putresien - 1, 2 en 3 mM is; fludioksonil - 150, 300 en 600 mg/L) en 

gestoor vir 4 maande by 5 °Cm plus ‘n bykomende 4 dae by 20 °C (raklewe). Die gevolge 

van chemiese behandelings en stoortydperk op die fisiologiese vrugreaksie en gehalte is 

ondersoek. 

Resultate het getoon dat die behandeling van granate met putresien by verskillende 

konsentrasies (1, 2 en 3 mM) die voorkoms van fisiologiese afwykings soos uitwendige vrug 

verval, koueskade en dopwond gedurende die eerste 3 maande van stoor verminder. Putresien 

het egter geen effek op interne versteurings soos interne verval en saadhuid verbruining 

gehad nie. Fisiochemiese eienskappe soos die kleur van die skil en saadhuid, TSS, TA en pH 

was nie beduidend (p > 0.05) beïnvloed deur putresien behandeling nie. Na vier maande van 

stoor het kontrole vrugte verlaagde vrugfermheid (10.12 ± 0.40 N) en saadhuid hardheid 

(143.20 ± 3.84 N) getoon, terwyl behandelde vrugte se waardes hoër was. Vrugte wat met 2 

mM PUT behandel is, het die beste sensoriese kwaliteit na `n 3 maande stoortydperk getoon. 

Hoewel 3 mM PUT effektief was om fisiologiese versteurings te verminder, was 2 mM PUT 

voordelig, deurdat dit tydend ’n 3 maansde stoortydperk uitwendige versteurings kon 

verminder, asook vrug sensoriese kwaliteit handhaaf.  

Fludioxonil was baie effektief deur dat dit die verval van behandelde vrugte kon verminder. 

Die mees doeltreffende FLU konsentrasie was 600 mg/L met `n 15.7 % laer verval as die by 

die kontrole. Maar ander fisiologiese afwykings soos saadhuid verbruining, koueskade en 

dopwonde was meer merkbaar in behandelde vrugte. Vrugfermheid was gehandhaaf onder 

behandelde vrugte, terwyl saadhuid tekstuur nie beduidend (p > 0.05) beïnvloed was nie. 

Hoewel rooiheid (a*) en intensiteit (C*) van die saadhuid in kontrole vrugte hoër was, het 

FLU-behandelde vrugte ook aanvaarbare rooi kleur vertoon. Die chemiese eienskappe TA, 

TSS en BrimA was oor die algemeen verlaag tydens stoor onder alle FLU konsentrasies. 

Vrugte wat met 600 mg/L behandel is, het verbeterde sensoriese eienskappe in terme van 

varsheid, sappigheid en soetigheid vertoon. Vrugte was suksesvol gestoor tot 3 maande 
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sonder enige negatiewe invloed op gehalte en 600 mg/L was die mees doeltreffendste FLU 

konsentrasie. 

'n Verdere studie oor die uitwerking van PUT en FLU behandelings op fitochemiese en 

vlugtige samestelling van vrugte, het gewys dat die askorbiensuur inhoud in vrugte effens 

afneem, terwyl totale fenoliese inhoud (TPC) aansienlik afneem tydens stoor vir beide 

chemikalieë. Vrugte onder FLU behandeling het hoër TPC gehad vir die eerste 3 maande, 

terwyl PUT-behandelde vrugte slegs hoë TPC na maand 2 van stoor gewys het. Algehele 

antosianien inhoud (TAC) van vrugte het aanvanklik gestyg bo oes, ongeag die invloed van 

FLU konsentrasie. Maar, TAC het afgeneem namate stoor gevorder het, met geen beduidende 

verskil (p > 0.05) tussen FLU konsentrasie aan die einde van die stoortydperk nie. In 

teenstelling het die TAC van PUT-behandelde vrugte beduidend verminder tydens stoor 

(behalwe op maand 2), en geen betekenisvolle verskille is waargeneem onder PUT 

konsentrasies aan die einde van stoor. In teenstelling hiermee het die antioksidant kapasiteit 

van beide FLU- en PUT-behandelde vrugte toegeneem gedurende stoor. Verder is 'n totaal 

van 31 en 32 vlugtige verbindings geïdentifiseer in vrugte onder FLU en PUT behandeling 

onderskeidelik. Ses chemiese groepe (alkohole, aldehiede, sure, ketone, esters en terpene) is 

geïdentifiseer in vrugte onder FLU behandeling, terwyl vyf (alkohole, aldehiede, sure, esters 

en terpene) opgespoor is in vrugte onder PUT behandeling. Vlugtige verbindings he met 

langdurige stoor ontwikkel, met nuwe verbindings, veral terpene, wat tydens latere 

stoortydperke opgespoor is. Ophoping van terpene het `n nadelige uitwerking op die 

sensoriese kwaliteit van vrugte gehad, en dus kan langtermyn stoor lei tot laer vrugsmaak. 

In die geheel het hierdie studie insiggewende inligting verskaf oor die potensiaal van 

putresien en fludioksonil behandelings in die vermindering van granaat versteurings, en die 

uitwerking daarvan op vrugkwaliteit-eienskappe. Die toediening van die FLU het vrug verval 

aansienlik verminder, maar nie koueskade, dopwonde en saadhuid verbruining nie, terwyl 

PUT hierdie fisiologiese versteurings insluitend vrugte verval kon verlig Nietemin kon PUT 

en FLU nie effektief gewigverlies verminder nie, en dus daar tydens toekomstige studies op 

die kombinasie van chemiese behandelings met fisiese behandelings soos plastiek verpakking 

en waslaag toepassing gefokus word ten einde voordeel te trek uit die hekkie effek. 

Daarbenewens kan’n kombinasie van die FLU en PUT ondersoek word, om voordeel te trek 

uit die volle potensiaal van die twee chemiese behandelings.  
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GENERAL INTRODUCTION 

Diet affects human health and unlike genetics, individuals have better control over their own 

nutrition (McAdams, 2011). The awareness of the role of nutrition on individual health has 

resulted in interest and development of “functional foods” (American Dietetic Association, 

2004; McAdams, 2011). There has been an upsurge of interest in foods that address health 

issues and in particular, plant-based foods (Espín et al., 2007; McAdams, 2011). Fruit and 

vegetable consumption can decrease the risk to chronic illnesses, including those that are 

oxidation-related (Kelawala & Ananthanarayan, 2004). This is because plant phytochemicals 

have antioxidant activity and antioxidants protect the body against oxidative stress, which is 

detrimental to cells and biological function (Seeram et al., 2006; Fawole et al., 2011; 

McAdams, 2011). One of the many plants that have been studied for their potential health 

benefits is pomegranate. Pomegranate fruit contains high levels of active antioxidants, 

polyphenols in particular (Kelawala & Ananthanarayan 2004; Adams et al., 2010; Fawole et 

al., 2011; Mphahlele et al., 2014). The recent global trend of increased demand for 

pomegranates as fresh fruit or derived products is growing rapidly due to the health benefits 

of pomegranate (Rymon, 2011; Fawole & Opara, 2013). The health benefits are due to the 

remarkably high concentration of phenolic compounds (Gil et al., 2000; Fischer et al., 2011). 

Many clinical studies have shown that consumption of pomegranate contributes to prevention 

of some diseases such as coronary heart disease and some types of cancer (Aviram et al., 

2000; Langley, 2000; Sumner et al., 2005). Consequently, in addition to the traditional 

markets, new markets are arising based on the manufacture of pomegranate-derived 

functional food products such as nutraceuticals, dietary and health supplements (Palou et al., 

2007).   

Pomegranate (Punica granatum L.) belongs to the Punicaceae family native to areas 

from Iran to the Himalayans in northern India (Faria & Calhau, 2011). It is a hardy fruit plant 

extensively produced in the tropical and subtropical regions due to the moderate climatic 

conditions which are required for fruit maturation (Nanda et al., 2001; Waskar, 2011). The 

fruit is spherically shaped, crowned with a persistent calyx and leathery pericarp with deep 

purple-red and glossy appearance (Holland et al., 2009; Wetzstein et al., 2011) (Fig. 1). 

However, some cultivars such as ‘black’ pomegranates maintain a black skin colour 

throughout development of the fruit until fruit ripening (Holland et al., 2009). The edible part 

of the fruit is the arils which constitutes 55 - 60 % of the fruit weight and contain around 80 

% juice and 20 % seed (Al-Maiman & Ahmad, 2002; Al-Said et al., 2009; D’Aquino et al., 
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2010). The arils are tender, deep crimson with good flavour and the skin is of medium 

thickness making the fruit well adapted for both fresh consumption and processing for whole 

arils or juice (Holland et al., 2009). Although pomegranates are mainly grown for 

consumption of fresh arils, they are also produced as flavouring and colouring agents in the 

food and beverage industry (Gil et al., 2000; Maestre et al., 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Pomegranate whole fruit and its parts 

 Pomegranate has been classified as a non-climacteric fruit which has been attributed 

to the low respiration and ethylene production rates (Kader et al., 1984). According to 

Elyatem & Kader (1984), pomegranates kept well when stored at 5 °C as compared to lower 

temperatures. However, storage at 5 °C caused chilling injury with symptoms increasing with 

storage time and temperature decrease below 5 °C (Eris & Türk, 1999). Besides chilling 

injury, other major postharvest conditions contributing to pomegranate fruit loss include fruit 

decay, bruising, water loss and as well as husk scalding (D’Aquino et al., 2010). A number of 

physiological and enzymatic disorders lead to quality losses, with the major storage problem 

being moisture loss leading to browning of both peel and arils (Sayyari et al., 2010). Even 

though the pomegranate rind appears to be thick, there are numerous minute openings that 

allow free movement of water vapor which makes the fruit highly susceptible to water loss 
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and shrivelling (Kader et al., 1984). Another major problem that causes loss and limits 

pomegranate storability is fruit decay. This is caused by a number of pathogens such as 

Alternaria spp., Aspergillus spp., Penicillium spp., and especially Botrytis cinerea (Roy & 

Waskar, 1997) which usually develops at the recommended fruit storage condition of 5 - 8 °C 

and 90 - 95 % RH (Palou et al., 2007). To alleviate these pomegranate postharvest 

challenges, several postharvest treatments can be applied (Opara et al., 2015). Physical 

treatments including curing and intermittent warming (Artés et al., 2000), shrink wrapping 

(Nanda et al., 2001), hot water (Mirdehghan et al., 2007b), gamma irradiation (Shahbaz et 

al., 2014), among others. Chemical treatments can also be applied. These include applications 

of fungicides (fludioxonil, carbendazim, thiabendazole, etc), polyamines (putrescine, 

spermidine, spermine), organic acids and their derivatives (oxalic acid, salicylic acid, methyl 

jasmonate, methyl salicylate) and calcium chloride (Mirdehghan et al., 2007a; D’Aquino et 

al., 2010; Sayyari et al., 2010; Ramezanian & Rahemi, 2010; Sayyari et al., 2011; Waskar, 

2011) among others.  

Pomegranate production in South Africa has increased over the years. Recent local 

production increased by more than 20 % to 4500 tonnes in 2015 (Kriel, 2015). The number of 

pomegranate processors has increased in response to rising demand (Kriel, 2015). However, 

producers are still struggling to achieve the full potential of the fruit through improved 

postharvest management. According to Kriel (2015), although the pomegranate market is 

lucrative, production of high-quality fruit remains a challenge. Research efforts have helped 

to increase the production of pomegranate but the goal of obtaining maximum profit will be 

served only if the increased production is supplemented with similar efforts to minimize 

postharvest losses and enhance shelf life (Waskar, 2011).  

South Africa is one of the emerging commercial producers in the pomegranate 

international market (Fawole & Opara, 2013) and to be able to compete globally, there is 

need for research to reduce postharvest losses and improve fruit quality of the cultivars grown 

in the country. This is particularly essential because studies have shown that fruit quality of 

pomegranates differ significantly among growing regions (Schwartz et al., 2009; Mditshwa et 

al., 2013). Furthermore, most of the pomegranates produced in South Africa are sold on the 

export market, mainly Europe. To reach these markets, fruits spend a long time in transit 

during which they are susceptible to spoilage leading to losses. Therefore, there is a need to 

prolong the storability and shelf life such that fruit can reach the destined markets fresh and 

acceptable so as to fetch premium prices and favourably compete on the international market. 
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In addition, most research work that have been carried out to date on South African 

pomegranates focused mainly on treatment of arils to reduce spoilage and extend shelf life, 

including the application of modified atmosphere packaging (Hussein et al., 2015; Banda et 

al., 2015a, Caleb et al., 2013), citric acid treatment (Banda et al., 2015b), cold storage 

(Aindongo et al., 2014) and anti-browning pre-treatments (Caleb et al., 2015). Currently, 

there is limited information on postharvest treatments to maintain quality and reduce losses of 

pomegranate whole fruit grown in South Africa.  

Research aim and objectives 

The aim of this study was to investigate the potential of selected chemicals as postharvest 

treatments to maintain fruit quality and minimize loses of pomegranate whole fruit (cv. 

Wonderful). 

The research aim was achieved through the following specific objectives; 

1. To evaluate the efficacy of putrescine on physiological disorders and impacts on the 

physiological response, physico-chemical and sensory attributes of pomegranate 

whole fruit,  

2. To determine the effects of fludioxonil on physiological disorders and impacts on the 

physiological response, physico-chemical and sensory attributes of pomegranate 

whole fruit, and  

3. To investigate the effects of putrescine and fludioxonil on the phytochemicals, 

antioxidant activity and volatile composition of pomegranate whole fruit. 
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APPLICATION OF PHYSICAL AND CHEMICAL POSTHARVEST TREATMENTS 

TO ENHANCE STORAGE AND SHELF LIFE OF POMEGRANATE FRUIT - A 

REVIEW 

Abstract  

There has been recent interest in pomegranate fruit production and research due to its high 

nutritional and health benefits. The increase in demand of the fruit necessitates the need to 

improve quality, storability and shelf life to meet consumers’ expectations of consistent 

supply of quality fruit. However, pomegranate fruit is susceptible to various postharvest 

quality problems including high weight loss, decay and susceptibility to physiological 

disorders such as chilling injury and husk scald. To improve fruit storability and shelf life, 

physical and chemical postharvest treatments have been applied. However, these treatments 

have varied effects on the external and internal quality attributes of fruit. This review 

therefore discusses the different postharvest treatments applied to enhance storage of 

pomegranate whole fruit and arils and highlights the effects of the treatments on the fruit 

quality. 

1. Introduction 

Pomegranate (Punica granatum L.) is an ancient known fruit belonging to the family 

Lythraceae (Holland et al., 2009). It is an important fruit in the tropical and sub-tropical 

regions of the world and mainly cultivated in countries with Mediterranean climate. 

(Özgüven & Yilmaz, 2000; Nanda et al., 2001). As a result of its high adaptability to various 

soils and climates, pomegranate is now grown in many countries including South Africa, 

Iran, India, Pakistan, Russia, Turkey, Japan, Greece, Sultanate of Oman, China, Egypt and 

U.S.A (Elyatem & Kader, 1984; Köksal, 1989; Holland et al., 2009; Fawole & Opara, 

2013a,c). The fruit peel colour varies from yellowish-green to deep red depending on cultural 

practices (like pruning, light penetration), climate, and cultivar (Sepúlveda et al., 2000; Faria 

& Calhau, 2011). The fruit is made up of a hard leathery outer exocarp (skin), mesocarp 

(albedo), endocarp (membrane) and many arils. Each aril, which is edible, is surrounded by a 

translucent sac that contains juice and a seed constituting about 80 % and 20 % (fresh weight) 

of an aril, respectively (D’Aquino et al., 2010). The fresh juice is mainly made up of water 

(85 %), sugars (10 % majorly glucose and fructose), ascorbic acid, anthocyanins, 

polyphenolic flavonoids, pectins, amino acids and minerals (Roy & Waskar, 1997). 
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Fig. 1 Pomegranate fruit physiological disorders 

According to Kader et al. (1984), pomegranate is classified as a non-climacteric fruit 

due to its low respiration and ethylene production rates after harvest. In spite of its non-

climacteric nature, the fruit still undergoes both qualitative and quantitative losses due to 

postharvest handling processes resulting in chilling injuries, husk scald, weight loss, and 

decay (Kader et al., 1984) (Fig. 1). Storage of pomegranates at room temperature reduces the 

shelf life due to increased desiccation and incidence of decay. To prolong storability, there is 

need to store fruit at low temperatures (Barman et al., 2011; Fawole & Opara, 2013b). 

However, when fruit are exposed to temperatures below 5 °C, they are susceptible to chilling 

injury (Sayyari et al., 2010). These symptoms are noticeable as brown discoloration of the 

peel, surface pitting and susceptibility to decay organisms. In most cases these symptoms 

reach the arils, which decrease both internal and external quality of the fruit (Elyatem & 

Kader, 1984; Kader, 2006; Fawole & Opara, 2013b). Husk scald, considered to be a symptom 

Chilling injury Husk scald Aril browning 

Internal fruit decay External fruit decay Shrivel due to weight loss 
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of chilling injury develops faster and more severely in fruit stored between 6 and 10 °C than 

in fruit stored at lower temperatures (Ben-Arie & Or, 1986). Decay is another major cause of 

postharvest loss which limits storability of pomegranate fruit, especially when stored at 

temperatures above those that cause chilling injury (Palou et al., 2007). Decay usually 

develops at the recommended storage conditions (5 - 8 °C and 90 - 95 % RH) and is caused 

by various pathogens such as Aspergillus spp., Alternaria spp., Penicillium spp., and Botrytis 

cinerea (Roy & Waskar, 1997).       

 Global demand for pomegranate fruit as fresh aril, dried or value-added processed 

products has increased globally in recent years due partly to reported high content of 

healthful phytochemicals (Fawole et al., 2012). This increase in demand and popularity 

among consumers has led to steady increase in production in both Northern and Southern 

hemisphere countries including the Sultanate of Oman and South Africa (Opara et al., 2009; 

Mditshwa et al., 2013). A number of treatments have been applied to improve quality and 

increase the shelf life of pomegranate whole fruit and arils, these include intermittent 

warming, curing, film wrapping, waxing, polyamines, controlled atmosphere, honey 

treatments and modified atmosphere packaging, among others (Artés et al., 1998; Nanda et 

al., 2001; Hess-Pierce & Kader, 2003; Mirdehghan et al., 2007a; Ergun & Ergun, 2009; 

Waskar, 2011; Caleb et al., 2012a,b; Caleb et al., 2013). 

Despite the availability of various postharvest treatments, high incidence of 

postharvest loss of pomegranates still occurs, often exceeding 30 % for some cultivars in one 

season (Shete & Workar, 2005).  This results in loss of nutritional and quality attributes as 

well as financial loss which greatly reduces profitability and growth of the industry. 

Therefore, there is need for more research to increase storability and reduce postharvest loss 

of pomegranate if the full potential of the fruit is to be realized. Furthermore, there is need for 

research focusing on the application of postharvest treatments and innovative technologies to 

maintain or enhance the nutritional and bioactive ingredients of the fruit. The objective of this 

review was to review current knowledge on the application of postharvest treatments to 

enhance the storage and shelf life of pomegranate fruit.  
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2. Physical treatment of pomegranate fruit 

2.1. Curing and intermittent warming  

2.1.1. Effects on physiological response 

Studies have shown that curing of pomegranate fruit results in weight loss, depending on the 

storage temperature. For instance, pomegranate fruit cured at 33 °C for 3 days resulted in 

high fruit weight loss, with higher losses observed in fruit stored at 5 °C compared to 2 °C 

(Artés et al., 2000). However, no symptoms of shrivelling were observed after cold storage 

and shelf life periods of 6 days at 15 °C (Table 1). This was similar to previous findings that 

intermittent warming of fruit led to higher weight loss than conventionally stored fruit after 

cold storage at 0° and 5 °C for 80 days and an additional 7-day shelf life period at 15 °C 

(Artés et al., 1998). Susceptibility of pomegranate fruit to weight loss after curing or 

intermittent warming was suggested to be due to easy passage of water vapour through 

numerous minute openings on pomegranate peel.  

Decay incidence in pomegranate can also be reduced by intermittent warming. 

According to Artés et al. (1998), lower decay was observed in fruit subjected to intermittent 

warming compared to those stored conventionally. However, the choice of cold storage 

temperature during intermittent warming is important. For instance, after cold storage (0 °C, 

2 °C and 5 °C) for 12 weeks and additional shelf life period of 6 days at 15 °C and 75 % RH, 

fruit stored at 0 °C showed no decay while fruit stored at 2 °C had lower fungal attacks 

compared to those stored at 5 °C after shelf life (Artés et al., 2000). In the same study 

comparing curing and intermittent warming (Table 1), it was observed that curing of 

pomegranate resulted in higher weight loss than a day intermittent warming at 20 °C every 6 

days of fruit stored at 2 °C or 5 °C while control fruit had the lowest weight loss (Artés et al., 

2000). Curing has also been reported to reduce incidence of decay in pomegranate fruit. After 

curing pomegranate fruit, Artés et al. (2000) observed no symptoms of decay after 12 weeks 

of cold storage at 2 °C and 5 °C until during a 6-day shelf life at 15 °C and 75 % RH. The 

authors observed higher decay incidences at higher storage temperature, with decay incidence 

of 28.7 % at 5 °C as opposed to 8.7 % at 2 °C.  

The physical appearance of pomegranate fruit is of great relevance because it affects 

consumer appeal and purchasability of the produce. Artés et al. (2000) observed that curing 

pomegranate whole fruit at 33 °C for 3 days before storage at 2 °C and 5 °C for 12 weeks did 

not affect the skin colour, with higher L*, C* and H° colour parameters on the skin than those 
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obtained on the arils however curing decreased the visual colour appearance of arils after cold 

storage of fruit (Artés et al., 2000). For intermittent warming however, no changes were 

observed in fruit lightness (L*) with only slight changes in the colour intensity (C*) and hue 

angle (h°) values of fruit after 80 days of storage at 0° and 5 °C (Artés et al., 1998). 

According to the authors intermittent warming and storage at 0 °C showed a better result for 

maintaining the desirable red colour of pomegranate fruit. 

2.1.2. Effects on chemical properties  

The effect of postharvest treatments on the nutritional and chemical composition of the fruit 

is of paramount importance in evaluating the relevance of the treatments. Intermittent 

warming resulted only in a slight decrease in the soluble solids content (SSC) after 80 days of 

cold storage (0° and 5 °C) and shelf life periods of six additional days at 15 °C and 75 % RH 

(Artés et al., 1998). Similarly, Artés et al. (2000) observed that both curing and intermittent 

warming of pomegranate whole fruit (‘Mollar de Elche’) resulted in a slight but non-

significant decrease in the soluble solids content after cold storage for 12 weeks at 2 and 5 

°C. Generally, curing resulted in slight changes in the SSC, pH and TA (titratable acidity) of 

pomegranate fruit in comparison to fruit at harvest (Artés et al., 2000). In addition, Artés et 

al. (2000) observed that although anthocyanin concentration decreased with storage, curing 

maintained the anthocyanin concentration of pomegranate fruit while slight increases were 

observed in intermittent warmed and control fruit stored at 5 °C for 12 weeks (Artés et al., 

2000).  

Artés et al. (1998) also found that the appearance of arils from intermittent warmed 

fruit was scored good and remained unchanged during 80 days of storage. This was further 

supported in a later study that intermittent warming and storage at 5 °C yielded arils with the 

best visual appearance (Table 1) (Artés et al., 2000). Curing on the other hand resulted in loss 

of flavour with storage at 5 °C having the lowest flavour (Artés et al., 2000). In comparison 

with curing, intermittent warming with 2 °C storage was a better treatment for pomegranate 

whole fruit as it resulted in the best flavour, higher total anthocyanin content, lowest total 

losses and maintained quality and shelf life for up to 13 weeks (Artés et al., 2000).  
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2.2. Hot water treatment 

2.2.1. Physiological responses  

Several studies have reported the use of hot water as a postharvest treatment for pomegranate. 

Mirdehghan & Rahemi (2005) observed that treatment of ‘Malas Yazdi’ pomegranate whole 

fruit with hot water at 50 °C resulted in the least fruit weight loss compared to chemical 

(Imazalil and Benzyladenine) and control treatments. In addition, fruit weight loss increased 

with increasing hot water temperature, with significant weight loss and heat injury observed 

at 65 °C. In another study, it was observed that hot water treatment decreased weight loss by 

5.86 % in comparison to the control, with the suggestion that the decrease could be associated 

with improvement in cells membrane function or in skin cuticular properties (Ramezanian & 

Rahemi, 2010). Furthermore, a study reported that skin browning was lowest in fruit treated 

with hot water at 50 °C compared to control and chemical treatments (Imazalil and 

Benzyladenine) stored at 1.5 °C for 4.5 months (Mirdehghan & Rahemi, 2005). Hot water 

treatment (HWT) at 45 °C for 2 and 5 min significantly reduced skin browning, however at 

65 °C, slight heat injury and increased percentage of browning was observed when fruit were 

stored for 3 months (Mirdehghan & Rahemi, 2005). Similarly, hot water treatment at 45 °C 

for 4 min also significantly reduced the rate of browning by 9 % in comparison to control 

treatment (Ramezanian & Rahemi, 2010). In addition, the authors recommended HWT at 45 

°C for 4 min as the best heat treatment to control chilling injury of ‘Malas Yazdi’ and ‘Malas 

Saveh’ whole fruit. This observation is in agreement with a previous study by Mirdehghan et 

al. (2007b) where heat treatment (45 °C for 4 min) significantly reduced chilling injury on 

‘Malas Yazdi’ pomegranate in comparison to control fruit. The authors suggested that heat 

treatment maintained membrane integrity and unsaturated fatty acids during cold storage thus 

reducing the incidence of chilling injury.  

Electrolyte leakage was significantly reduced with hot water treatment (HWT) at 50 

°C for 2 and 5 min when compared to other treatments (Imazalil and Benzyladenine), which 

had no effect (Mirdehghan & Rahemi, 2005). Mirdehghan et al. (2007b) also observed that 

electrolyte leakage was higher in control than in hot water treated (45 °C) fruit, suggesting 

that hot water dipping reduced leakage of electrolytes from the fruit. In agreement with other 

studies, Ramezanian & Rahemi (2010) also found that hot water treatment reduced 

electrolyte leakage by 20 % in comparison with the control for ‘Malas Yazdi’ pomegranates 

stored at 2 °C for 4.5 months plus a further 3 days of shelf life. 
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2.2.2. Effects on physical and chemical properties 

According to Mirdehghan et al. (2007b), hot water dipping at 45 °C for 4 min retarded skin 

browning of pomegranate fruit (‘Mollar de Elche’) and maintained fruit firmness during 

storage for 90 days. The author attributed improved fruit firmness to the broad effect of heat 

on cell wall degrading enzymes (Mirdehghan et al., 2007b). Although hot water treatment 

was shown to have no significant effects on the TSS, TA, pH and ascorbic acid of fruit after 

storage for 3 months (Mirdehghan & Rahemi, 2005; Ramezanian & Rahemi, 2010), 

antioxidant activity increased significantly and this observation was attributed to minimal 

degradation of phenolic compounds (Ramezanian & Rahemi, 2010). In addition, dipping 

pomegranate fruit (‘Mollar de Elche’) in hot water (45 °C for 4 min) preserved the fatty acids 

concentrations in the juice (Mirdehghan et al., 2007b). It was observed that the concentration 

of all fatty acids remained significantly higher in fruit treated with hot water than control 

throughout the storage period. Furthermore, observed decrease in fatty acids in untreated 

pomegranate fruit was highly correlated with increase in electrolyte leakage (Mirdehghan et 

al., 2007b).  

2.3. Film wrapping 

2.3.1. Physiological responses  

Respiration rate of ‘Ganesh’ pomegranate fruit wrapped in shrink film was significantly 

reduced due to the low permeability of the films used for wrapping (Nanda et al., 2001). 

Interestingly, after 10 weeks of storage, unwrapped (control) fruit exhibited lower respiration 

rate than wrapped fruit. This was primarily due to reduced number of living cells in the peel 

of control fruit resulting from excessive dehydration (D’Aquino et al., 2010). Moreover, 

weight loss was greatly reduced in shrink wrapped fruit stored at 8, 15 and 25 °C, with BDF 

and D-955 films having 1.5 and 2.3 % weight loss, respectively compared to 14 % loss in 

control fruit stored at 25 °C for 25 days (Nanda et al., 2001). This was in agreement with 

D’Aquino et al. (2010), who also reported 0.6 % weight loss in film wrapped ‘Primosole’ 

pomegranate as opposed to 5.1 % weight loss in unwrapped fruit after 6 weeks of storage at 8 

°C. Film wrapping has also shown to prevent symptoms of husk scald in pomegranate fruit. 

For instance, wrapping resulted in no signs of scald, discoloration or browning during a 6-

week storage period at 8 °C whereas skin of control fruit developed yellow to dark yellow 

and brown coloration as storage progressed (D’Aquino et al., 2010). Furthermore, Nanda et 
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al. (2001) reported spoilage mainly due to Penicillium spp. with 12 % spoilage in unwrapped 

fruit while the wrapped fruit were fresh with high scores for good appearance (Table 1). 

2.3.2. Effects on physical and chemical properties 

Fruit firmness of pomegranate (‘Ganesh’) wrapped with BDF-2001 and D-955 films was 

maintained throughout a 12-week storage period whereas unwrapped fruit were less firm, 

tough and desiccated (Nanda et al., 2001). In addition, loss in skin colour was minimized in 

film wrapped fruit compared to control fruit for ‘Primosole’ cultivar (D’Aquino et al., 2010). 

Decrease in acidity was considerably lower in wrapped than those of unwrapped fruit during 

12 weeks of storage (Nanda et al., 2001). This was attributed to the higher respiration rate in 

unwrapped fruit and a concurrent loss in acidity which was attributed to the ongoing 

metabolism in the fruit. D’Aquino et al. (2010) observed a higher increase in pH and 

decrease in TA of wrapped fruit compared to unwrapped ones during 12 weeks of storage at 8 

°C for ‘Primosole’. Another advantage of film wrapping on pomegranate is its ability to 

minimise loss of vitamin C in pomegranate juice. In the study by Nanda et al. (2001), film 

wrapping minimised loss of vitamin C by 3.21- 5.11 % during 12 weeks storage period at 8 

°C.  On the other hand however, film wrapping has been reported to result to significant 

reduction in total phenolics and anthocyanin content during storage, resulting to continuous 

decrease in antioxidant activity of the fruit (D’Aquino et al., 2010).  

2.4. Coatings  

  

2.4.1. Physiological responses 

The application of coatings on fruits provides a partial barrier to movement of water thus 

reducing moisture loss from fruit surface and also establishes a modified atmosphere around 

the fruit thus slowing down respiration and senescence (Mahajan et al., 2014). A number of 

studies have reported the use of skin coating on pomegranate fruit. Coating of pomegranate 

whole fruit (‘Ganesh’) with sucrose polyester (SPE) reduced weight loss during storage at 8 

°C and 25 °C (Nanda et al., 2001). Similarly, application of lecithin (Table 1) significantly 

reduced fruit weight loss as well as incidence and severity of husk scald in ‘Primosole’ 

cultivar (D’Aquino et al., 2012). In addition, starch based edible coating (containing cold 

pressed oil from Nigella sativa) had about 6-fold weight loss reduction in pomegranate arils 

(Table 1). The reduced weight loss was attributed to improved water vapour barrier properties 

of the coatings by providing hydrophobicity and increased resistance to water transmission 
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(Oz & Ulukanli, 2012).  Furthermore, the use of Aloe vera gel (Table 2) has been reported to 

influence respiration rate of ‘Mollar de Elche’ arils. This was evidenced by significant 

increase in CO2 concentration with a concomitant decrease in O2 over time (Martínez-

Romero et al., 2013). Coating arils with starch and oil has also been reported to reduce 

browning (Oz & Ulukanli, 2012).  

2.4.2. Effects on physical and chemical properties 

Coating of arils with either starch or oil significantly reduced the aril softening ratio, with the 

combination of starch and oil being more effective than starch alone. The softening ratio was 

3 % and 5 % when treated with starch and oil, respectively compared to 18 % in control arils 

(Oz & Ulukanli, 2012). Pomegranate arils treated with either 10 % or 20 % honey solution 

(Table 2) did not lose firmness as much as those of control samples after 5 days of storage at 

4 °C for ‘Hicaznar’ cultivar (Ergun & Ergun, 2009). Similarly, Martínez-Romero et al. 

(2013) reported that aril firmness was better maintained when arils were treated with Aloe 

vera either alone or in combination with acids. Martínez-Romero et al. (2013) also observed 

decrease in hue angle in arils treated with Aloe vera while the control arils showed increased 

hue angle during storage for cultivar Mollar de Elche. It was suggested that increase in aril 

colour was due to the increase in anthocyanin pigments during postharvest storage of 

pomegranate fruit (Sayyari et al., 2011a; Martínez-Romero et al., 2013). 

 Coating pomegranate fruit (‘Primosole’) with soy lecithin resulted in slight but 

significant changes in pH values and decrease in TA over storage while TSS was not affected 

(D’Aquino et al., 2012). Coating with sucrose polyester (SPE) resulted in a slight decrease in 

TSS after storage at 8, 15 and 25 °C although the treatment did not minimise loss of vitamin 

C content during storage (Nanda et al., 2001). Similarly, coating with SPE did not prevent 

loss of acidity in ‘Ganesh’ pomegranate between 9 and 12 weeks of storage at 8, 15 and 25 

°C (Nanda et al., 2001). Oz & Ulukanli (2011) observed that pomegranate arils (‘Silifke aşısı 

33 N 16’) coated with starch and oil from Nigella sativa (Table 2) had 14.2 % loss in TSS 

content of arils during storage compared with 17 % loss in control fruit. Studies have shown 

that vitamin C content of pomegranate arils reduces with increasing storage duration (Oz & 

Ulukanli, 2012; O’Grady et al., 2014). However, the application of oil and starch coating 

minimized vitamin C loss in ‘Silifke aşısı’ pomegranates stored for 12 days at 4 °C (Oz & 

Ulukanli, 2012). According to the authors, vitamin C diminished by 66 % (from 24 to 8 

mg/100 g) in control fruit whereas only 12 % (from 58 to 51 mg/100 g) was diminished in 
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fruit treated with the combination of oil and starch coating. Total antioxidant capacity (TAC) 

of pomegranate arils treated with the combination of oil and starch was observed to decrease 

during initial storage (from 4 to 6 days) and stabilized at the later days (6 to 12 days) of 

storage (Oz & Ulukanli, 2012). Shelf life of pomegranate fruit (Ganesh cultivar) was only 

marginally extended by coating with a sucrose polyester (Table 1) during storage for 12 

weeks (Nanda et al., 2001). Martínez-Romero et al. (2013) found that scores for sensory 

attributes such as colour, aroma, texture, flavor and purchase decision were lowest (below 2) 

in control arils but arils treated with combination of Aloe vera gel and acids had high scores 

with no detection of off-flavour. Similarly, studies by Ergun & Ergun (2009) showed that 

aroma scores for control arils declined below the acceptable limit whereas arils treated with 

honey had excellent aroma scores throughout storage for 10 days (Table 2). Similar findings 

have been reported by Martínez-Romero et al. (2013) who found that arils treated with Aloe 

vera had aroma of fresh fruit while the aroma of control (untreated) arils corresponded with 

over ripe fruit. The authors concluded that shelf life of arils coated with Aloe vera gel could 

be extended for up to 12 days compared to 8 days for control arils. 

2.5. Waxing 

 

2.5.1. Physiological responses 

Treatment of ‘Mridula’ pomegranate fruit with carnauba wax in combination with putrescine 

(PUT) lowered fruit respiration and ethylene production rates due to reduced gas interchange 

and low oxygen available for respiration during 60 days of storage at 3 °C (Barman et al., 

2011).  Combination of carnauba wax and putrescine (Table 1) also reduced fruit weight loss 

by 10 % in treated compared to 17 % in control fruit due to the overlapping platelets of 

carnauba wax which act as a barrier for diffusion thus resist penetration of water vapour from 

the fruit (Barman et al., 2011). This also explains why very low weight loss (0.1 %) was 

observed for pomegranate fruit (‘Bhagawa’) coated with wax mixed with carbendazim during 

80 days of storage (Waskar, 2011). No decay was observed during storage at 3 °C for 60 days 

after treatment of ‘Mridula’ pomegranate fruit with carnauba wax and putrescine (Barman et 

al., 2011). 

2.5.2. Effects on physical and chemical properties 

Pomegranate fruit (‘Mridula’) treated with PUT + carnauba wax and stored for 60 days at 3ºC 

retained firmness due to less occurrence of dehydration and slower degradation of cell wall 
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components (Barman et al., 2011). Interestingly, there was lower reduction in juice content 

for waxed ‘Bhagawa’ pomegranate as a result of minimal moisture loss and respiration 

thereby retaining juice percentage (Waskar, 2011). The shelf life of pomegranate fruit 

(‘Bhagawa’)  treated with waxol (9 %) and carbendazim (9 %) was extended by 30 days at 

room temperature and by 65 days at 8 °C, with fruit having good acceptance scores and 

organoleptic rating in terms of colour, flavour and texture (Waskar, 2011). 

2.6. Irradiation 

 

2.6.1. Physiological responses 

Irradiation has been used as a treatment in a number of fruits but its use is limited due to the 

concerns surrounding its impact on human health. Irradiation of pomegranate whole fruit is 

limited as it has been more commonly applied to the juice. However a few studies have 

reported the effect of irradiating pomegranate fruit (Table 1 and 2). López-Rubira et al. 

(2005) observed that ultraviolet- C (UV-C) irradiation of pomegranate arils (‘Mollar’) had no 

effect on respiration rate of on-time and late-harvested fruit although the late harvested fruit 

generally had a higher respiration rate, which was attributed to increase in metabolic activity 

as a signal of decay. Likewise, the gas composition of the arils was also not affected by 

irradiation with increased CO2 and decreased O2 levels observed in the packages throughout 

storage at 5 °C for 16 days (López-Rubira et al., 2005).  

2.6.2. Effects on physical and chemical properties 

Irradiation has been shown to affect the physical and chemical parameters of pomegranate 

fruit. Pomegranate juice from irradiated fruit was observed to have a lighter colour compared 

to the control as redness (a*) and yellowness (b*) increased with increasing irradiation dose 

due to a decrease in polyphenoloxidase activity by irradiation (Shahba et al., 2014). Chemical 

compounds in fruit are sensitive to irradiation, in particular bioactive compounds such as 

anthocyanins have been shown to be affected by irradiation (Maghoumi et al., 2013; Shahba 

et al., 2014). Lower irradiation doses (0.4 and 1kGy) had no effect on titratable acidity, pH 

and total soluble solids but losses were reported when higher dosage levels (2 kGy) were 

applied (Shahba et al., 2014). In addition, total phenolic content and anthocyanin content of 

juice from irradiated pomegranate fruit (California cultivar) decreased gradually with 

increase in dosage from 0.4 kGy to 2 kGy due to immediate oxidation of phenolic compounds 

as these play an antioxidant role by reducing the free radicals and the reactive oxygen species 
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produced by irradiation (Shahba et al., 2014). Combined use of ultraviolet-C irradiation (UV-

C) and high oxygen packing was useful for keeping fresh-cut ‘Mollar de Elche’ pomegranate 

arils quality at 5 °C and extending their shelf life to 15 days. However, anthocyanin content 

declined while total phenolic content remained unchanged with ultraviolet-C irradiation and 

high oxygen packing during storage of arils (‘Mollar de Elche’) at 5 °C for 14 days 

(Maghoumi et al., 2013). Sensory evaluation of  juices from low dose irradiated fruit (0.4 and 

1 kGy) were preferred among panelists compared to juice from control and high dose treated 

fruit (2 kGy) as high doses of irradiation can induce an off-odour called “irradiation odour” in 

fruit juices (Shahba et al., 2014). On the contrary, López-Rubira et al. (2005) observed no 

desirable changes resulting from irradiation of ‘California’ cultivar. 

3. Chemical treatment of pomegranate fruit 

3.1. Polyamines 

 

3.1.1. Physiological responses 

Polyamines (PAs) are naturally occurring compounds that are involved in many 

developmental processes of plants. Exogenous application of polyamines such as putrescine, 

spermidine and spermine on pomegranate has been reported in several studies (Table 1). 

Barman et al. (2011) attributed the reduced ethylene production rate of pomegranate fruit 

(‘Mridula’) treated with putrescine to the anti-ethylene function of polyamines because both 

(PAs and ethylene) use the common precursor SAM (S-adenosyl methionine) for their 

biosynthesis. While putrescine reduced the respiration rate of ‘Mridula’ pomegranate fruit 

(Barman et al., 2011), spermidine did not affect the respiration rate of ‘Mollar de Elche’ 

pomegranate during 60 days of storage at 2 °C (Mirdehghan et al., 2007a). Putrescine, either 

alone or in combination with carnauba wax reduced chilling injury and skin browning of 

pomegranate (‘Mridula’) by 65 % due to induced cold acclimation which led to maintenance 

of membrane fluidity at lower temperatures and consequently reduced electrolyte leakage and 

skin browning (Barman et al., 2011). Similarly Mirdehghan et al. (2007a) also observed that 

application of putrescine or spermidine either by pressure or immersion reduced skin 

browning by 25 % and weight loss by 13 % and 15 % for putrescine and spermidine, 

respectively. 
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3.1.2. Effects on physical and chemical properties  

Treatment of ‘Mridula’ pomegranate with putrescine (PUT) + carnauba wax maintained the 

highest fruit firmness after 60 days of storage at 3 °C (Table 1). The effect of polyamines on 

maintaining fruit firmness was ascribed to their cross-linkage to the carboxyl group of the 

pectic substances in the cell wall, resulting in rigidification. The binding between PAs and 

pectin also blocks the access of cell wall degrading enzymes such as pectimethylestearase, 

pectinesterase and polygalacturonase, thereby reducing the rate of softening during storage 

(Barmna et al., 2011). This binding effect was evidenced in the report by Mirdehghan et al. 

(2007a) who observed reduction in loss of fruit firmness by application of polyamines during 

45 days of storage at 2 °C. Treatment of pomegranate fruit (‘Mridula’) with PUT + carnauba 

wax resulted in fruit with higher hue angle and lower chroma values with red shinning colour 

as opposed to deep tan red dull colour in control fruit after 60 days of storage at 3 °C 

(Barman et al., 2011). Highest total sugars and TA and lowest TSS were observed in PUT + 

carnauba wax treated fruit compared to control fruit during a 60-day storage period. This was 

attributed to lower respiration, maturation process and water loss in treated fruit in 

comparison to control fruit (Barman et al., 2011). However, on the other hand, Mirdehghan et 

al. (2007a) observed no effect of polyamine treatment on the SSC and acidity during 60 days 

storage (Table 1). The changes were associated to delayed maturation due to application of 

PUT or SPD treatments as a result of their anti-senescence properties (Mirdehghan et al., 

2007a). 

According to Barman et al. (2011), total anthocyanin content increased for the first 15 

days at 3 °C but later decreased with putrescine treated fruit, having 30 - 40 % higher 

amounts than control after 60 days of storage (Barman et al., 2011). This was attributed to 

putrescine protecting the membrane lipids from being converted from liquid-crystalline to a 

solid-gel state thereby preventing lipid peroxidation. Treatment with PUT + carnauba wax 

also retained 20 % more ascorbic acid compared to control after storage at 3 °C for 60 days 

due to the anti-senescence properties of putrescine (Barman et al., 2011). 

3.2. Fungicides 

 

3.2.1. Physiological responses 

Fungicides have been widely used to control spoilage of pomegranate fruit. A number of 

studies have shown the effect of these compounds on fruit quality. Fludioxonil (FLU) was 

effective in reducing decay of pomegranate fruit caused by Penicilium spp.  At the end of 7 
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days of shelf life, decay in fruit (‘Primosole’) treated with FLU alone or in combination with 

film wrapping was between 8 to 12 %, which was between 2 - 3 fold less than in control fruit 

stored for 12 weeks at 8 °C (D’Aquino et al., 2010). Furthermore, D’Aquino et al. (2012) 

observed that decay development significantly reduced when ‘Primosole’ pomegranate was 

treated with fludioxonil whereas lecithin treatment did not affect fruit decay. Interestingly, 

fludioxonil when applied alone showed better performance than in combination with lecithin.  

After one week of storage, no decay was detected in fruit treated with fludioxonil while 

control fruit showed 35 - 60 % decay, and after 2 weeks of storage there was 100 % decay 

incidence in control fruit while fruit treated with fludioxonil had only 2.5 - 7.5 % decay even 

in the third week of storage (D’Aquino et al., 2009). However, fludioxonil had no significant 

effect on weight loss, husk scald severity and overall appearance (D’Aquino et al., 2012). 

3.2.2. Effects on physical and chemical properties  

Generally, there is limited information on the effects of fludioxonil on the physical and 

chemical parameters of pomegranate fruit. Residues of fludioxonil were detected only on the 

skin but not in the edible flesh part of ‘Primosole’ pomegranate and residue levels increased 

with increase in fludioxonil concentration and dipping temperature after 2 weeks at 20 °C 

(D’Aquino et al., 2009).  It was also observed that efficacy of fludioxonil decreased 

substantially when the infections occurred more than 24 h before treatments due to the fact 

that fludioxonil is a contact fungicide as opposed to being systemic (D’Aquino et al., 2009). 

 

3.3. Organic acids and their derivatives 

 

3.3.1. Physiological responses 

Organic acids are naturally occurring compounds in plants that play different important roles 

in the survival of the plant. A number of studies have reported the use of these compounds in 

postharvest treatment of pomegranates (Table 1). Treatment of pomegranate fruit (‘Mollar de 

Elche’) with acetyl salicylic acid (ASA) reduced respiration rate by 22 - 38 % compared to 

control due to retardation of fruit metabolism and reduced chilling injury during 84 days of 

storage at 2 °C (Sayyar et al., 2011b).  In another study, Sayyari et al. (2011a) observed that 

the application of methyl salicylate (MeSa) and methyl jasmonate (MeJa) on ‘Mollar de 

Elche’ pomegranates significantly reduced the chilling injury by 2 - 3 folds lower than 

control fruit during storage for 84 days. The mechanism of MeJa in reducing chilling injury 

was been attributed to enhancing the activities of superoxide dismutase, catalase and 
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ascorbate-peroxidase and lowering the activity of lipoxygenase. Similarly, treating fruit 

(‘Mollar de Elche’) with oxalic acid reduced respiration, weight loss and electrolyte leakage 

after 84 days of cold storage at 2 °C (Sayyari et al., 2010). The effects of oxalic acid in 

reducing the incidence of chilling injury was attributed to the inhibition of polyphenoloxidase 

and peroxidase activities. Sayyari et al. (2009) also observed reduced chilling injury 

symptoms when fruit were treated with salicylic acid and the effectiveness increased with 

higher concentration. Similarly, acetyl salicylic acid reduced chilling injury in ‘Mollar de 

Elche’ pomegranate, an effect ascribed to its conversion to salicylic acid (Sayyari et al., 

2011b). 

3.3.2. Effects on physical and chemical properties 

Methyl jasmonate (MeJa) and methyl salicylate (MeSa) delayed softening of ‘Mollar de 

Elche’ pomegranate fruit, with MeSa being more effective than MeJa (Sayyari et al., 2011a). 

It was postulated that MeJa reduces pectinmethylesterase (PME) activity, decreasing de-

esterification of pectin and thus maintaining fruit texture (Sayyari et al., 2011a). In another 

study, oxalic acid treatment had no significant effect on fruit firmness after 84 days of storage 

(Sayyari et al., 2010). Treating fruit with oxalic acid limited the reduction in titratable acidity 

(TA) but had no effect on the total soluble solids (TSS) content of ‘Mollar de Elche’ 

pomegranates after storage at 2 °C for 84 days (Sayyari et al., 2010). Similarly, TSS and TA 

were not affected by treatment with salicylic acid (Sayyari et al., 2009). Furthermore, 

decrease in the organic acids during storage was reduced with MeJa and MeSa (Sayyari et al., 

2011b).  According to the authors, these could be as a result of organic acids being the main 

respiratory substrates during pomegranate postharvest storage (Sayyari et al., 2011b). 

Application of oxalic acid reduced loss of phenolics, and significantly increased ascorbic acid 

during cold storage at 2 °C for 84 days (Sayyari et al., 2010). Moreover, acetyl salicylic acid 

had no effect on total phenolic content throughout storage for 12 weeks at 2 °C (Sayyari et 

al., 2011b). On the contrary however, Sayyari et al. (2011a) found that total phenolic content 

increased during storage in fruit treated with MeSa and MeJa. In addition, acetyl salicylic 

acid increased total anthocyanins during storage by 15 % compared to control during 12 

weeks of storage of ‘Mollar de Elche’ pomegranate (Sayyari et al., 2011b). Increase in 

anthocyanin concentration due to oxalic acid treatment of pomegranate (‘Mollar de Elche’) 

was associated with advancement of the ripening process during storage. According to the 

authors, exogenous oxalic acid could possibly act as an elicitor of anthocyanin biosynthesis 

and a natural antioxidant thereby suppressing lipid peroxidation (Sayyari et al., 2010). 
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4. Application of controlled and modified atmospheres  

4.1. Effects on fruit physiological response 

In controlled atmosphere storage (CAS) and modified atmosphere packaging (MAP), the gas 

composition inside the store or package containing produce is altered, and often CO2 

concentration is increased while O2 concentration is reduced. Research on the effects of 

applying CA/MA as postharvest on pomegranate fruit is limited. In their study on scald 

development in ‘Wonderful’ pomegranates, Defilippi et al. (2006) reported that storing fruit 

under CA effectively controlled the disorder, especially with atmospheres of 15 kPa CO2 

which completely controlled development of scald for up to 6 months at 7 °C storage. 

Investigating the effects of passive MAP on pomegranate arils (‘Acco’ and ‘Herskawitz’), 

Caleb et al. (2013) observed that headspace O2 concentration inside the packages decreased 

while the CO2 levels increased significantly during storage at different temperatures. To 

prevent excessive accumulation of CO2 inside the package, the authors proposed the use of 

polymeric films with higher permeability to CO2. 

4.2. Effects on physico-chemical quality attributes 

Defilippi et al. (2006) reported that after 6 months of CA storage, ‘Wonderful’ pomegranates 

maintained a lighter red colour relative to control fruit and this effect on CA-stored fruit was 

attributed to delayed synthesis of anthocyanins and other phenolics responsible for the red 

colour of the skin. Higher peel colour lightness was also observed in fruit stored under CA. 

The authors concluded that CA treatments maintained very good fruit visual quality up to 6 

months in cold storage.  

In their recent study on two pomegranate cultivars (‘Acco’ and ‘Herskawitz’) grown 

in South Africa, Caleb et al. (2013) reported an overall steady weight loss of arils during 

storage under passive MAP. The initial increase in aril weight observed during the early part 

of the storage period was attributed to rapid evaporation of moisture from aril surface and 

condensation inside the package. No significant changes were observed in the firmness and 

titratable acidity when pomegranate arils stored for 14 days at 5, 10 and 15 °C; however, total 

anthocyanin content decreased with storage duration. Furthermore, the authors found low 

total aerobic mesophilic bacterial and fungal counts below detection limits. 
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5.  Conclusions and future prospects 

 

There are several physical and chemical postharvest treatments that can be applied to enhance 

the quality, storage and shelf life of pomegranate fruit. The use of chemicals like fungicides 

has been debated over the years because of the potential side effects they impart on both 

human health and the environment. This review identified natural plant compounds like 

polyamines such as putrescine, as well as organic acids such as oxalic acid, methyl jasmonate 

which have been successfully applied to control the incidence of spoilage and physiological 

disorders in pomegranates. The application of a combination of physical and chemical 

treatments, often referred to as hurdle technology, results in fruit with better quality. The 

additive properties of both treatments enhance quality attributes better than when treatments 

are used individually due to a broad spectrum effect. In addition to postharvest treatments, 

good crop management strategies should be emphasised if the full potential of the fruit is to 

be realised as preharvest factors affect the postharvest quality of the fruit.  
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Table 1 Effects of postharvest treatment on quality attributes of pomegranate whole fruit 

Fruit treatment  Cultivar  Treatment description Key finding Reference 

Physical     

Curing and intermittent 

warming 

Mollar de Elche Curing at 33 °C and 95 % RH for 3 

days and storage at 2 or 5 °C 

Cycles of intermittent warming (IW) of 

1 day at 20 °C every 6 days at 2 or 5 °C  

IW fruits had lowest chilling injury 

and highest anthocyanin 

Concentrations, titratable acidity and 

best visual appearance. 

 

Artés et al., 2000 

 

Shrink film wrapping and skin 

coating with a sucrose polyester 

(SPE) 

Ganesh  Fruits shrink wrapped with two 

polyolefin films (BDF-2001 and D-955) 

and skin coating with a sucrose 

polyester and stored at 8, 15 and 25 °C 

 

Best obtained with shrink-wrapped 

with BDF-2001 film and storage at 8 

°C. 

Nanda et al., 2000 

Gamma irradiation 

 

 

 

 

 

California cultivar 

 

 

 

 

 

The fruits were irradiated with doses of 

0, 0.4, 1 and 2 kGy 

Chemical attributes were unaffected 

up to 1 kGy treatment. Total 

anthocyanin and phenolic content 

decreased. 

Shahbaz et al., 2013 

 

 

Heat treatment Mollar de Elche Heat treatment (hot water dip at 45 °C 

for 4 min) and storage at 2 °C for 90 

days 

Chilling injury (CI) symptoms were 

reduced. Increase in free putrescine 

and spermidine observed. 

 

Mirdehghan et al., 

2007b 
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Table 1 continued     

Fruit treatment Cultivar Treatment description Key finding Reference 

Chemical     

Application of polyamine by 

pressure or immersion 

Mollar de Elche Fruits treated with putrescine or 

spermdine and stored at 2 °C for 60 

days 

All changes were delayed by 

polyamine treatments. 

Mirdehghan et al., 

2007a 

Oxalic acid treatment Mollar de Elche Oxalic acid applied and fruits stored at 

2 °C for 84 days 

CI symptoms were reduced. Total 

phenolics loss reduced and ascorbic 

acid increased. 

Sayyari et al., 2010 

Spermidine and calcium 

chloride treatments 

Mala-e-Yazdi Fruits treated with CaCl and spermidine 

and stored at 2 °C for 4 months 

Treated fruit had higher CAT and 

SOD activity and lower POX 

activity. 

Ramezanian & 

Rahemi, 2011 

 

Salicylic acid treatment Malas saveh Fruits treated with salicylic acid and 

stored at 2 °C at 85 % RH for 3 months 

2mM was the most effective 

concentration in reducing CI, EL and 

for maintenance of AA levels. 

Sayyari et al., 2009 

Methyl jasmonate and methyl 

salicylate vapor treatments 

Mollar de Elche Fruits were treated with methyl 

salicylate (0.1 and 0.01mM) and methyl 

jasmonate (0.1 and 0.01mM) 

The CI symptoms were significantly 

reduced. Total phenolics and 

anthocyanins increased. 

Sayyari et al., 2010 

Lecithin application  

 

Primosole 

 

 

Fruits dipped in Xedabio (a soy lecithin 

based formulation) alone or in 

combination with fludioxonil and stored 

at 8 °C 90-95 % RH for 6 or 12 weeks 

Xedabio maintained the commercial 

value of fruit.  

Minor changes occurred in 

nutritional. 

 

 

D’Aquino et al., 2012 
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Table 1 continued     

Fruit treatment Cultivar Treatment description Key finding Reference 

Combined      

Fludioxonil application and 

film wrapping 

Primosole Fruit dipped in fludioxonil, wrapped 

with a polyolephinic film and stored at 

8 °C and 90 % RH for 6 or 12 weeks 

 

Film wrapping maintained freshness 

for all the storage periods. FLU 

reduced the incidence of decay. 

D’Aquino et al., 2009 

Putrescine and carnauba wax ‘Mridula’ Fruits treated with putrescine and 

carnauba wax alone or in combination 

All the undesirable changes were 

delayed by putrescine + carnauba 

wax application. 

Barman et al., 2011 

Wax and carbendazim Bhagwa Fruits treated with wax (waxol) alone 

and in combination with carbendazim 

and stored at 8 °C and 90-95 % RH 

Treated fruits stored longer and 

application of fungicides with wax 

gave excellent effects. 

Waskar, 2011 

CAT- catalase; SOD- superoxide dismutase; POX- peroxidase; EL- electrolyte leakage; AA- ascorbic acid ; FLU- fludioxonil 
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Table 2 Effects of postharvest treatment on quality attributes of pomegranate arils 

Aril treatment  Cultivar  Treatment description Key findings Reference 

Chemical     

Washing with chlorine, 

ascorbic acid and citric acid 

and MAP 

Mollar de Elche Arils washed in chlorine, ascorbic acid 

and/or citric acid, sealed in POPP or 

OPP and stored at 8, 4 and 1 °C 

Best results obtained with chlorine, 

followed by antioxidant solution and 

packaged in polypropylene films and 

storage at 1 °C. 

Gil et al., 1996 

Honey treatments Hicaznar Arils treated with diluted honey 

solutions for 5min and held at 4 °C for 

10 days 

Honey extended the fresh-like quality 

and delayed microbial development. 

Ergun & Ergun, 2009 

Aloe vera gel coating Mollar de Elche Arils treated with aloe vera alone or in 

combination with ascorbic and citric 

acid and stored in rigid propylene 

boxes for 12 days at 3 °C 

The combination of A. vera gel at 100 % 

+ ascorbic acid and citric acid at 1 % was 

the most effective treatment. 

Martínez-Romero et al., 

2013 

Edible starch- based coating 

(with glycerol plus Oleum 

nigella) 

Silifkeasisi Arils coated with a solution of starch 

(only) and starch (with oil) 

Coating with 300 ppm oil + starch 

yielded best results. 

Oz & Ulukani, 2011 

 

Combined treatment 

    

Combined heat treatment, 

UV-C and superatmospheric 

oxygen packaging 

Molar de Elche Fresh-cut arils subjected to hot water 

dipping (55 °C), UV-C and passive 

modified atmosphere packaged or high 

oxygen packaging 

The combination of UV-C and high 

oxygen maintained the antioxidant 

compounds. 

 

 

Maghoumi et al., 2013 
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Table 2 continued      

Aril treatment Cultivar Treatment description Key findings Reference 

UV-C and modified 

atmosphere packaged 

Mollar of 

Elche 

Arils chlorine disinfected, exposed to 

UV-C radiation, packaged in poly 

propylene baskets and stored for 13-15 

days at 5 °C 

 

No benefits were found with different 

UV-C radiation doses. 

L´opez-Rubira et al., 

2005 

UV-C treatment Hicaznar Arils were illuminated with UV-C and 

stored at 2 °C for 6 days 

UV-C had effect phenolics but not on 

SSC and citric acid. 

Nunes et al., 2010 

Hot air treatment, 

superatmospheric O2 and 

elevated CO2 

Malese-Saveh Arils treated with hot air, packed in 

PET sealed on top with PE and 

packaged using different gas 

compositions and stored at 4 °C, 90 % 

RH 

The combination of HO and HT 45 °C 

enhanced the benefits of applying each 

treatment separately obtained the best 

aril quality. 

Maghoumi et al., 2013 

MAP- modified atmospherepackaging; POPP- perforated oriented polypropylene; OPP- oriented polypropylene; UVC- ultraviolet-C; HO- high oxygen; HW- hot water 

 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



  

39 
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POSTHARVEST PHYSIOLOGICAL RESPONSES OF POMEGRANATE FRUIT 

(CV. WONDERFUL) TO EXOGENOUS PUTRESCINE TREATMENT AND 

EFFECTS ON PHYSICO-CHEMICAL AND SENSORY QUALITY ATTRIBUTES 

Abstract   

Pomegranate fruit (cv. Wonderful) were treated with putrescine (1, 2 and 3 mM) before 

storage for 4 months at 5 °C and 95 % RH and the effects on postharvest quality were 

studied. Sampling for fruit quality (physiological, physico-chemical and sensory properties) 

was carried out on a monthly basis after storing fruit for additional 4 days at 20 °C to 

simulate market conditions. Results showed that incidence of external decay and 

physiological disorders such as husk scald, chilling injury and aril browning increased with 

progressive storage but treating pomegranate fruit with putrescine reduced incidence of most 

disorders. Treating fruit with 3 mM concentration was the most effective in alleviating the 

incidence of fruit physiological disorders with regard to decay, weight loss, chilling injury 

(CI) and husk scald during 4 month storage. Control fruit had higher levels of external decay 

(1.72 - 33.26 %), CI (10.53 - 38.77 %) and scald (15.04 - 100 %) with less attractive colour 

during 4 month storage. Variations were observed on other fruit quality parameters although 

treatment with putrescine at 2 and 3 mM concentration reduced changes in colour, pH, TSS 

and TA. Peel colour attributes a* (redness) and C* (colour intensity) were higher in untreated 

fruit after the first 3 months of storage but were lower at the end of storage. Higher a* (20.19 

- 21.43) and C* (22.27 - 22.89) were also found for aril colour of control fruit during storage 

while treated fruit showed lower values of 17.50 - 20.36 and 17.79 - 21.90 for a* and C*, 

respectively.  After 4 months of storage, control fruit had lower fruit firmness (10.12 N) and 

aril hardness (146.50 N) whereas fruit treated with putrescine showed better results with 

values of 10.82 - 11.92 N and 155.10 - 159.60 N for firmness and aril hardness, respectively. 

Sensory parameters were best preserved in fruit treated with 2 mM concentration of 

putrescine with respect to juiciness and crispness. Treatment of pomegranate fruit with 

putrescine resulted in improved storability and fruit quality during storage. Therefore, for 

short term storage, 2 mM concentration of putrescine adequately maintained fruit quality 

especially in the first three months of storage. However, for longer storage period, 3 mM 

concentration was the most effective in alleviating disorders in addition to maintaining fruit 

physico-chemical quality parameters and sensory attributes during storage. 
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1. Introduction 

The explosion of interest in pomegranate fruit and rapid increase in global production and 

consumption has been credited to its health benefiting properties which in turn are mainly 

attributed to the content of phytochemicals with high antioxidant activity and functional 

properties (Opara et al., 2009; Vuida-Martos et al., 2010; Fawole et al., 2013a; Barman et al., 

2014). Pomegranate fruit production in South Africa has seen tremendous growth over the 

years with 40 % and 56 % annual increase in production in 2014 and 2015, respectively, and 

31 % rise in total exports in 2015 (Goosen, 2015). The fruit is classified as non-climacteric 

due to its low respiration, ethylene production rates and the fact that the fruit does not 

continue ripening off the tree (Kader et al., 1984; Barman et al., 2011; Fawole & Opara, 

2013a; Pareek et al., 2015). Despite its non-climacteric nature, pomegranate fruit has short 

shelf life when stored at ambient temperature (Mirdehghan et al., 2007; Fawole & Opara, 

2013a). The factors that contribute to the short shelf life of this fruit include rapid weight 

loss, incidence of fungal decay and internal browning (Fawole & Opara, 2013a).  

Cold storage is commonly used to slow down these processes and extend the 

storability and shelf life of the fruit, with a recommended optimal storage temperature of 5 

°C. However, chilling injury (CI) occurs at 5 °C or lower during prolonged cold storage. 

Chilling injury is characterized by peel browning, husk scald, aril browning and susceptibility 

to decay among others (Elyatem & Kader, 1984; Mirdehghan et al., 2007; Barman et al., 

2011). This condition limits consumer acceptability, ultimately resulting in economic loss to 

producers and exporters. In order to mitigate losses caused by these physiological disorders 

and prolong storage of pomegranate, a number of physical and chemical treatments have been 

employed (Opara et al., 2015). For example, heat treatments such as intermittent warming, 

hot water and hot air treatments have been studied for commercial application for extending 

fruit storage life (Artés et al., 1998; 2000; Mirdehghan & Rahemi, 2005; Mirdehghan et al., 

2007). However, due to the presence of numerous micro-openings on pomegranate surfaces 

(Kader et al., 1984; Nanda et al., 2001; Fawole et al., 2013a), moisture loss becomes 

problematic in application of heat treatments as the fruit loses moisture rapidly and become 

unappealing and unmarketable due to excessive shrivel and other skin defects such as 

browning.  

Chilling injury development during low temperature storage of pomegranate fruit 

involves phase transition of membrane lipids which induces damaging effects on the tissue. 
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Kramer et al. (1989) observed accumulation of putrescine during exposure of apple to 

chilling stress and proposed that polyamines (PAs) may be involved in reducing chilling 

injury. PAs are a group of positively charged low molecular weight aliphatic amines that are 

present in living organisms and have been implicated in a number of biological processes like 

plant growth, development and response to stress (Smith, 1985). The common polyamines 

include putrescine (diamine), spermidine (triamine) and spermine (tetramine) (Khosroshahi et 

al., 2007). Other uncommon polyamines such as homospermidine, 1,3-diaminopropane, 

cadavarine and canavalmine have also been detected in biological systems of plants, animals, 

algae and bacteria (Khosroshahi et al., 2007). Concentration of polyamines in cells is 

regulated by their biosynthesis, breakdown, translocation and conjugation with different 

compounds (Khosroshahi et al., 2007).  

In nature, PAs often occur as free molecular bases and have been reported to bind 

with negatively charged phospholipids or other anionic sites on membranes. Thus, PAs affect 

membrane fluidity and indirectly modulate the activities of membrane-associated enzymes 

(Slocum et al., 1984). Saftner & Baldi (1990) reported that polyamines retarded fruit ripening 

in tomato and their levels decreased with ripening in most cultivars. Based on the findings, 

the authors suggested that free polyamines are endogenous anti-senescence agents. Treating 

fruit with polyamines has been reported to increase fruit firmness in apples (Wang et al., 

1993), tomatoes (Law et al., 1991), pomegranate (Barman et al., 2011) and lemons (Valero et 

al., 1998). These effects of polyamines are associated with their anti-ethylene property 

because exogenous polyamines have been shown to inhibit ethylene production and activity 

in vitro (Galston & Sawhney, 1990). Application of polyamines can inhibit ethylene 

biosynthesis by competing with ethylene for the common precursor S-adenosyl methionine 

(Smith, 1985; Pandey et al., 2000). Exogenous application of polyamines impart other 

beneficial effects such as delayed colour changes, reduced susceptibility to mechanical 

damage and chilling injury, and increased shelf life of both climacteric and non-climacteric 

fruit (Serrano et al., 1996; Martínez-Romero et al., 2002; Pe´rez-Vicente et al., 2002). 

Furthermore, treating pomegranate fruit with putrescine and spermidine has shown to 

improved fruit quality (Mirdehghan et al., 2007; Barman et al., 2011; Ramezanian & Rahemi, 

2011). 

The successful broad-spectrum benefits of polyamines such as putrescine in 

alleviating incidence of physiological disorders and maintaining fruit quality during storage 
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has been widely studied (Mirdehghan et al., 2007; Barman et al., 2011; Ramezanian & 

Rahemi, 2011). Response of fruit to postharvest chemical treatments is however dependent 

on a number of factors such as cultivar, concentration used, mode of application, agro-

climactic regions among others. Although the recent years have seen rapid growth of the 

South African pomegranate industry (Fawole & Opara, 2013b), postharvest losses of the fruit 

are still high and the application of alternative healthier chemical treatments is limited in the 

industry. Therefore, the aim of this study was to investigate the physiological responses of 

pomegranate fruit (cv. Wonderful) to exogenous application of putrescine and to assess the 

effects on physico-chemical, phytochemical and sensory attributes.  

2. Material and methods 

2.1. Plant material 

Pomegranate fruit (cv. Wonderful) were procured during commercial harvest period from 

Heinrich F.R. Schaefer (HFR) Properties farm in Western Cape (33º44ʹ26.185ʺS 

18º44ʹ41.193ʺE), South Africa. Fruit were transported in a ventilated vehicle to the 

Postharvest Technology Research Laboratory at Stellenbosch University and immediately 

sorted for presence of physical damage such as cracks, sunburn, decay and bruises. Fruit were 

equilibrated overnight at ambient room temperature (20 ± 2 °C) prior to treatment. 

2.2. Treatments  

Fruit were divided into four treatment groups of 108 fruit per group. Fruit were dipped for 2 

min in a solution in 15 L of putrescine (Sigma Aldrich, South Africa) containing 2 % Tween-

20. A dipping time of 2 min was selected based on preliminary studies in which different 

dipping times (2, 5 and 8 min) were tested, and 2 min was the most effective. Treatments 

included; (1): Immersion in tap water (control); (2) Immersion in 1 mM putrescine for 2 min; 

(3) Immersion in 2 mM putrescine for 2 min; (4) Immersion in 3 mM putrescine for 2 min. 

After immersion, fruit surface was thoroughly dried by holding fruit at ambient room 

condition (20 ± 2 °C and 65 ± 2 % RH) for 12 h before storage. 

2.3. Storage 

Fruit were packed in to standard open top ventilated cartons (dimensions: 0.4 m long, 0.3 m 

wide and 0.133 m high) used for commercial postharvest handling of pomegranates.  All the 

treatment groups were stored at 5° C and 95 % relative humidity for 4 months. Temperature 
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and relative humidity (% RH) inside the cold room was recorded daily throughout the storage 

period using Tiny Tag TV-4500 data loggers (Gemini Data Logger, Sussex, UK). At the end 

of each month, a batch of fruit (n = 20) were removed from 5° C storage and placed at 20 °C 

and 65 - 70 % RH for additional 4 days in order to simulate a reasonable retail sale period. 

Fruit were thereafter analysed for incidence of physiological response, physiological 

disorders, physico-chemical and sensory properties. Measurement of all parameters was 

carried out on a monthly interval and results were presented as mean ± standard error (S.E). 

2.4. Physiological response, decay and physiological disorders 

2.4.1. Respiration rate 

Fruit respiration was determined using a closed system as described by Caleb et al. (2012). In 

5 replicates, two fruit were placed in a glass jar containing a rubber septum. The jar was 

sealed hermetically with vaseline to ensure a vacuum seal. Fruit were incubated for 2 h at 20 

°C then gas composition inside each glass jar was measured using a calibrated O2/CO2 

analyzer (Checkmate 3, PBI Dansensor, Ringstead, Denmark). Carbon dioxide production 

was determined and results presented as mL CO2 kg-1h-1 of five determinations. 

2.4.2. Weight loss     

Ten randomly selected fruit per treatment were used for this purpose. Fruit were weighed 

individually at monthly intervals during storage using an electronic scale (Mettler, Toledo, 

Switzerland, 0.0001 g accuracy). Cumulative weight loss of each fruit was calculated as:  

  𝑊 =  
(Wo − Wi)

Wo
  x  100                                                                                                                (1) 

Where W is the weight loss (%) of fruit; Wo is the weight (g) of fruit at the beginning of 

storage; Wi (g) is the weight of fruit at the storage time.  

2.4.3. Fruit external and internal decay incidence 

Fruit decay incidence was visually assessed as total rots. Fruit with any sign of external rot 

such as mould and crown rot was considered as external decay. Fruit with external decay 

appearance were counted and discarded. For internal decay, fruit with rotten arils and heart 

rot were counted and also discarded. For both external and internal decay, percentage of 

discarded fruit was calculated using the formula: 
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Decay incidence (%)   =  
(Number of discarded fruit at each sampling date)

Total number of fruit
  x  100      (2) 

2.4.4. Evaluation of chilling injury, husk scald and aril browning  

Incidences of chilling injury, husk scald and aril browning were visually assessed monthly 

per treatment. The severity of disorders were assessed using a four level scale as described by 

Fawole and Opara (2013a); where 0 = none (no symptom), 1 = trace (1 – 25 %), 2 = slight 

(26 – 50 %), 3 = moderate (51 – 75 %) and 4 = severe (76 – 100 %)  

A physiological disorder index was calculated by multiplying the scores of severity by the 

number of affected fruits and dividing by the total number of assessed fruits (Artés et al., 

1998; Fawole & Opara, 2013a): 

 

Disorder index = 

∑
(Value of scale) x (Number of fruit with the corresponding scale number)

Total number of fruit
  x  100     (3) 

 

Disorder incidence =  
(Number of affected fruit)

Total number of fruit
  x 100                                                        (4) 

 

2.5. Colour and textural attributes 

2.5.1. Whole fruit and aril colour 

Colour parameters in CIELAB coordinates (L*, a*, b*) were measured using a Chroma meter 

(CR-400, Minolta Corp, Osaka, Japan). Ten fruit per treatment were used to monitor changes 

in external colour by measuring peel colour at two opposite spots on individual fruit, while 

aril colour was determined by placing the arils in a colourless glass Petri dish. Colour 

intensity or chroma (C*) and hue angle (h°) were calculated using the equations (5) and (6) 

(Fawole & Opara, 2013a). 

C ∗ = √(a ∗2+ b ∗2)                                                                                                                                   (5) 

h° =  arctan (b ∗/a ∗)                                                                                                         (6) 

Furthermore, total colour difference (TCD) between the external peel and internal arils 

components was calculated as;  

TCD = √(L*o – L*)2 + (a*o – a*)2 + (b*o – b*)2      (7) 
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Where L*0, a*0 and b*0 are the colour parameters of the peel (reference value), while L*, a* 

and b * are the colour values of the aril (Pathare et al., 2013). 

2.5.2. Fruit puncture resistance  

Fruit puncture resistance was measured using a fruit texture analyzer (GÜSS-FTA, model 

GS, South Africa). A 5 mm cylindrical probe was programmed to puncture 8.9 mm into the 

fruit at the speed of 10 mm/s on a steel test platform with the stem calyx axis parallel to the 

platform. Tests were performed in duplicate on the equilateral region of 10 individual fruit. 

Puncture resistance was determined as the peak force required to puncture the fruit surface. 

2.5.3. Aril firmness 

Aril compression test was performed using a texture profile analyzer XT Plus (Stable 

MicroSystem Ltd., Godalming, UK) equipped with a 35 mm diameter cylindrical 

compression probe. Compression test was performed on individual arils with the following 

operating conditions: pre-test speed 1.5 mm/s, probe test speed 1 mm/s, post-test speed 10.0 

mm/s, compression force 10 N and compression distance 10 mm (Fawole & Opara, 2013b). 

Aril hardness (N) (measures the maximum force required to break the aril), elastic modulus 

(N/mm) (measures the aril’s ability to recover from deformation within a given distance), 

toughness (N mm) (indicates the energy required to completely compress the aril) and 

bioyield (N) (measures the force required to compress an aril until the juice just exudes 

without breaking the aril sac) were captured on Exponent v.4 software (Stable MicroSystem 

Ltd., Godalming, UK). At each storage interval, tests were done using 20 arils extracted from 

10 randomly selected fruit for each treatment and results presented as mean ± S.E of 20 

determinations. 

2.6. Chemical attributes 

2.6.1. Titratable acidity, total soluble solids and pH 

Titratable acidity (TA) was measured by diluting 2 mL of fresh juice with 70 mL of distilled 

water and titrating with 0.1 M NaOH to an end point of pH 8.2 using a Metrohm 862 compact 

titrosampler (Herisua, Switzerland). The results were expressed as percentage of citric acid 

(% CA). Total soluble solids (TSS, °Brix) was measured using a digital refractometer (Atago, 

Tokyo, Japan) calibrated with distilled water. The pH values were determined at room 

temperature using a calibrated pH meter (Crison, Model 00924, Barcelona, Spain). BrimA, a 
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criterion for consumer acceptance of fruit juice was expressed as BrimA = TSS – k * TA, 

where k is the tongue’s sensitivity index (k = 2 for pomegranate) (Fawole & Opara, 2013d).  

All measurements were made on 10 individual fruit juice samples for each treatment. 

2.7. Sensory attributes 

Sensory evaluation was carried out using a trained panel of 6 members of the Postharvest 

Technology Research Group at Stellenbosch University who are familiar with the 

characteristic taste of pomegranate fruit and regular consumers (Caine et al., 2003; Sudha et 

al., 2007; Chen & Opara, 2013). Panelists received further orientation on pomegranate 

attributes (Vázquez-Araújo et al., 2011a). Sensory evaluation was carried out on arils (10 g) 

served at 21 °C on Petri dishes randomly coded (Fawole & Opara, 2013b). The descriptive 

test required panelists to rate the intensity of the attributes on a scale of 0 – 4 (0 = none, 1 = 

slight, 2 = moderate, 3 = much, 4 = very much). The descriptive attributes evaluated for the 

study included sweet taste, sour taste, crispness, astringency, off flavour, juiciness, grittiness 

and hardness. Sensory evaluation was not carried out beyond 3 months of storage due to 

decay and limited sample size. 

3. Statistical analysis  

Statistical analysis was carried out using Statistica software (Statistica version 14.0, StatSoft 

Inc., Tulsa, USA). Data was subjected to factorial analysis of variance (ANOVA) at 95 % 

confidence interval. Main effects (putrescine concentration and storage duration) and their 

interaction effects (concentration*storage duration) were also assessed. Post-hoc test 

(Duncan’s Multiple Range Test) was used to test for statistical significance such that 

observed differences at p < 0.05 were considered significant. Principal component analysis 

(PCA) was carried out using XLSTAT software version 2012.04.1 (Addinsoft, France). 

4. Results and discussion 

4.1. Physiological response 

4.1.1. Fruit respiration rate  

Fruit response showed that respiration rate was majorly dependent on storage duration (Fig. 

1). After one month of storage, results showed a decrease in respiration rate from harvest, 

with no significant difference (p > 0.05) between putrescine concentrations. The second 

Stellenbosch University  https://scholar.sun.ac.za



  

48 
 
 

month of storage was, however, characterised by a 1.5 to 2-fold increase in respiration rate 

both in control and fruit treated with putrescine. This was followed by slight increases in fruit 

respiration rate after the third month of storage, with fruit treated with 2 mM putrescine 

having the highest respiration rate (22.49 mL CO2 kg-1 h-1) compared to control with 18.16 

mL CO2 kg-1 h-1. At the end of storage, fruit respiration rate declined slightly with no 

significant differences between the treatment concentrations (Fig. 1). Respiration rate is a 

good indicator of physiological activity as it affects other quality attributes during storage of 

fruit. The observed increase in respiration rate of fruit during storage could be an indication 

of increase in stress including presence of physiological disorders (Fawole & Opara, 2013a). 

This would also indicate depletion of respiratory substrates such as sugars and organic acids, 

and concomitant accelerated senescence process (Giménez et al., 2016). Barman et al. (2011) 

also observed increased respiration rate with advancement of storage for ‘Mridula’ 

pomegranate stored for 60 days at 3 °C. However, lower respiration rate was reported for 

fruit treated with a combination of putrescine + carnauba wax compared to sole treatment 

with putrescine.  The authors attributed this to the antisenescence and barrier properties of 

putrescine and carnauba wax respectively (Barman et al., 2011). 

 4.1.2. Weight loss 

Weight is an important quality parameter as produce price is often determined on weight 

basis; therefore, it is crucial to ensure low weight loss during storage of fresh produce. 

Percentage fruit weight loss after the first month of storage was below 10 %, with no 

significant (p > 0.05) differences among treatments (Fig. 2). Fruit continued to lose weight 

with prolonged storage duration regardless of putrescine concentration. About 1.7 and 2.3-

fold increase in weight loss was observed after the second and third months, respectively. 

However, putrescine concentration slightly but significantly (p < 0.05) influenced fruit 

weight loss after the fourth month of storage, where the highest weight loss of 24.61 %  was 

observed in fruit treated with 1 mM while those treated with 3 mM had the least weight loss 

(21.49 %) (Fig. 2). This could possibly be because putrescine at 3 mM was high enough to 

maintain cell membrane integrity. Treating fruit with putrescine was shown to reduce weight 

loss through consolidation of the cell integrity and permeability of the tissues, changes in 

biophysical properties of the fruit and ameliorating chilling injury (Barman et al., 2011; 

Jawandha et al., 2012). As indicated by the results of factorial analysis, storage duration (as 

opposed to concentration) played a significant (p < 0.0001) role on fruit weight loss.  High 
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porosity of the pomegranate peel is responsible for the high fruit susceptibility to weight loss 

due to increased potential for free water vapour movement from the peel (Elyatem & Kader, 

1984; Fawole & Opara, 2013a). The increase in fruit weight loss with storage could be 

attributed in part to the observed increase in fruit respiration rate with storage duration (Fig. 

1). Similar findings were reported by Serrano et al. (2003) who observed increase in weight 

loss with storage of four plum cultivars, although increases were lower in putrescine-treated 

plums from day 7 until the end of the storage period. However, Khosroshahi et al. (2007) 

reported that putrescine had no significant effect on weight loss of ‘Selva’ strawberry during 

storage at 5 °C for 13 days. 

4.1.3 External and internal decay incidence 

Decay is one of the major challenges faced during storage of pomegranate fruit. Incidence of 

external fruit decay was low after the one month of storage, affecting less than 10 % of the 

fruit regardless of putrescine concentration (Fig. 3A). External decay incidence was however 

apparent after two months of storage, although the incidence remained below 10 % for all 

treatments except for fruit treated with 3 mM putrescine. In terms of the efficacy of the 

treatment and concentration thereof, after the third and fourth month of storage, it was clearly 

observed that treating fruit with putrescine minimized external fruit decay than in control in 

which fruit decay exceeded 30 % by the end of storage. In addition, 2 mM putrescine 

treatment showed a better result with the lowest decay incidence at the end of the storage 

period (Fig. 3A). This could be due to the antipathogenic properties of putrescine. In presence 

of a pathogen attack, polyamines such as putrescine conjugate with phenolic compounds and 

hydroxycinamic acid amines and this conjugation has antipathogenic activity (Walters, 2003). 

In agreement with the results, treating fruit with putrescine reduced decay in fruits such as 

mango (Jawandha et al., 2012), strawberry (Khosroshahi et al., 2007), among others, and this 

effect has been attributed to the protective function of putrescine.  

Internal decay in pomegranates has been attributed mainly to heart rot (black heart), a 

pre-harvest disease caused by Aspergillus niger and Alternaria spp., characterized by a mass 

of black arils (Yehia, 2013; Arendse, 2014). The outer peel and the hard rind of infected fruit 

retain their healthy appearance but when opened, brown (soft) to black (dry) rot of the arils is 

observed (Tziros et al., 2008; Ezra et al., 2015). After one month of storage, internal decay 

was only observed in fruit treated with 2 mM putrescine which had 10 % internal decay (Fig. 

3B).  Interestingly, after the second month of storage, fruit treated with 2 and 3 mM showed 
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10 % decay while those treated with 1 mM and control had no internal decay. This was 

interesting because treatment with putrescine reduced external fruit decay (Fig. 3A) and 

therefore treated fruit were expected to show less internal decay symptoms because of the 

anti-pathogenic properties of putrescine. After the third and fourth months of storage, internal 

decay increased with fruit treated with 2 mM having the highest internal decay (20 %) while 

those treated with 1 mM showed no internal decay incidence (Fig. 3B). It is noteworthy that 

there is no effect in terms of the efficacy of putrescine in preventing internal fruit decay. This 

could be becausec aril decay, due to heart rot occurs from infection of fruit in the orchard 

during flowering (Zhang & McCarthy, 2012; Ezra et al., 2015). Therefore the observed decay 

incidence could in fact, be due to inherent fruit condition at harvest. Ezra et al., (2015) 

showed that development of heart rot occurs when a spore (Alternaria spp.) penetrates the 

pistil of an open flower and into the tunnel and then into the loculus, where it remains latent 

until the ripening fruit can support its growth. In apple (cv. Red Delicious), core rot (mainly 

associated with A. alternata) was found to develop during, rather than prior to fruit 

development (Shtienberg, 2012). Core rot is characterized by dark brown tissue that appears 

dry and corky within loculi and contains air pockets when it penetrates the fruit mesoderm 

(Shtienberg, 2012). Postharvest treatment of pomegranate fruit had no effect on internal 

decay of pomegranate fruit; therefore, internal decay could best be prevented by ensuring 

good agricultural practices and application of pre-harvest treatments. Arendse (2014) also 

observed increased severity of internal decay with prolonged storage and temperature of 

‘Wonderful’ pomegranate fruit. Our results were however lower than those reported by 

Fawole & Opara (2013a), who observed severe to extremely severe aril decay for ‘Bhagwa’ 

and ‘Ruby’ pomegranates stored for 16 weeks at 5 and 7 °C. This could probably be due to 

differences in cultivars. 

4.1.4. Aril browning 

Severity of aril browning increased with prolonged storage regardless of putrescine treatment. 

The first month of storage was characterised by none to trace levels of aril browning (Fig. 

3C). However, after the second month of storage, aril browning became more apparent in 

fruit treated with putrescine (regardless of concentration) than in control fruit, albeit in trace 

to slight severity. Aril browning appearance further increased after the third and fourth 

months of storage to above slight and moderate, respectively, in treated fruit. Visual 

appearance is essential especially in the pomegranate fresh-cut industry where pomegranate 
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fruit is minimally processed into ready to eat arils. The colour of arils influences consumer 

choice (Pathare et al., 2013) and arils with browning above moderate are deemed 

unmarketable. Overall, external application of putrescine as postharvest treatment of 

pomegranate fruit did not reduce aril browning in our study. This is could be because 

putrescine was exogenously applied on fruit surface and therefore had no influence on the 

internal fractions of the fruit. Arendse (2014) also reported between moderate to severe aril 

browning after four months of storage of cv. Wonderful pomegranate. However, Fawole & 

Opara (2013a) observed severe to extremely severe aril browning after four months of 

storage of ‘Bhagwa’ and ‘Ruby’ pomegranates at 5 °C.  

4.1.5. Chilling injury incidence and severity 

Chilling injury is a physiological disorder that affects chill-sensitive fruits stored at low 

temperatures. Chilling injury incidence increased with progressive storage of pomegranate 

fruit irrespective of treatment. The incidence of chilling injury was low after one month of 

storage with fruit treated with 1 mM putrescine showing the highest (16.35 %) while fruit 

treated with 3 mM had the lowest (8.08 %) incidence (Fig. 4). A similar trend with treatments 

was observed after the second month of storage but more fruit became chill-injured, with fruit 

treated with 1 mM and 3 mM putrescine having the highest and lowest chilling injury 

incidences, respectively. Although the number of chill-injured fruit increased with prolonged 

storage, regardless of treatments, the higher concentrations (2 mM and 3 mM) were effective 

in minimizing incidence of chilling injury when fruit were stored beyond 2 months (Fig. 4).  

In addition, treatment of fruit with the highest concentration of putrescine (3 mM) evidently 

maintained the lowest chilling injury incidence throughout the storage period. This could be 

attributed to the ability of putrescine to enhance cold acclimation. It was important to assess 

the severity of chilling injury for fruit marketability. Chilling injury severity was well below 

trace level throughout the storage period (Fig. 4) despite high incidence, suggesting that the 

fruit could be deemed marketable. With regard to treatments, the severity of chilling injury 

was again lowest in fruit treated with 3 mM throughout the storage period. During chilling 

conditions in plant tissues, cell membrane lipids undergo changes in physical state from 

liquid-crystalline to solid-gel state, which lead to an increase in membrane permeability and 

ion leakage (Gómez-Galindo et al., 2004). When polyamines (e.g. putrescine, spermidine and 

spermine) are exogenously applied, they induce cold acclimation, which lead to maintenance 

of membrane fluidity at low temperatures and thus responsible for reducing electrolyte 
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leakage and skin browning (Barman et al., 2011) thereby reducing the chilling injury 

symptoms. Mirdehghan et al. (2007) reported that chilling injury developed from the first 

sampling date but application of putrescine and spermidine significantly reduced skin 

browning of pomegranate fruit (cv. Mollar de Elche) stored at 2 °C for 60 days. Similarly, 

application of putrescine, either alone or in combination with carnauba wax significantly 

reduced chilling injury and skin browning of ‘Mridula’ pomegranate after storage for 60 days 

at 3 °C (Barman et al., 2011).  

4.1.6. Husk scald incidence and severity 

Husk scald is a physiological disorder faced during prolonged storage of pomegranate fruit. It 

appears as superficial browning that develops from the stem end of the fruit and does not 

affect the internal quality. However, it affects the visual quality and marketability of fruit and 

also increases susceptibility of fruit to decay (Defilippi et al., 2006; Fawole, 2013). Husk 

scald was a major problem observed during long term storage of pomegranate fruit in this 

study. The incidence and severity of husk scald were low after the first two months of cold 

storage and subsequent shelf life condition regardless of concentration (Fig. 5). At below 

trace level, less than 20 % of the fruit were affected by scald incidence in all putrescine 

concentrations with the exception of fruit treated with 1 mM putrescine after the second 

month (Fig. 5). However, there were marked increases in scald incidence and severity after 

the third month of storage, with further exponential increases at the end of the storage period 

in all treatments. All the remaining fruit developed scald with above moderate severity after 

the fourth month of storage. There was a very strong positive correlation between husk 

scalding and weight loss (Table 1). Husk scald in pomegranate has been attributed to 

enzymatic oxidation of o-dihydroxyphenols which involves breakdown of phenolic 

compounds in the fruit peel (Ben-Arie & Or, 1986; Defilippi et al., 2006). Although 

putrescine is reported to have antioxidant properties (Barman et al., 2011), this could 

probably not have been strong enough to prevent husk scalding as all the remaining fruit 

developed scald by the end of storage and a further shelf life irrespective of  concentration. 

Furthermore, husk scalding is an oxidative process and can be minimized or controlled in the 

presence of low oxygen environment (Ben-Arie & Or, 1986). In the current study, fruit were 

stored under regular atmosphere, with no alteration in atmospheric oxygen more so that the 

treatment was not a coating. This suggests that there was enough oxygen supply for 
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enzymatic oxidation hence rendering putrescine ineffective in controlling scalding in 

pomegranate (in long term stored fruit).  

 

4.2. Physico-textural properties 

4.2.1. Peel and aril colour attributes 

4.2.1.1. External appearance (peel) 

Fruit colour is a vital attribute that influences consumer choice and produce purchasability 

(Pathare et al., 2013). The current study revealed that changes in fruit peel colour parameters 

were influenced by the concentration of putrescine applied and storage duration (Fig. 6). In 

general, fruit peel redness (a*) and colour intensity (C*) decreased gradually throughout the 

storage duration. This was concomitant with increase in hue angle, suggesting colour loss of 

pomegranate peel during storage (Fig. 6). Fruit redness and colour intensity did not change 

significantly among treatments for the first two months of storage except for fruit treated with 

1 mM putrescine which had the least peel redness (34.92 ± 1.56). However after the third 

month, control fruit had the highest peel redness and colour intensity whereas there was no 

significant difference among treated fruit, and by the end of the storage period (month 4), no 

differences were observed irrespective of concentration (Fig. 6). The decrease in peel colour 

during storage could be due to peel browning which was evidenced by development of husk 

scald. As a result, peel hue angle (h°) increased with prolonged storage but there were no 

significant differences among all concentrations throughout the storage duration (Fig. 6). Hue 

angle has been shown to increase with a decrease in red colour of pomegranate as it measures 

colour purity (deviation from saturation). Therefore, the increase in hue could be due to the 

decrease in peel redness with progressive storage, which could be attributed to the 

development of physiological disorders such as chilling inujury and husk scald. Arendse 

(2014) reported initial increase in pomegranate peel colour during the first three months of 

storage although external appearance deteriorated up till the end of storage (5 months at 5 and 

10 °C). Untreated mango fruit (cv. Langra) retained higher values of a* and b* during storage 

while fruit treated with 2 mmol/L of putrescine recorded minimum values (Jawandha et al., 

2012). The authors reported that polyamines may retard chlorophyll degradation in skin 

tissues by inhibiting peroxidase activity.  
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4.2.1.2. Internal appearance (aril) 

Aril colour is important as it influences consumer choice during purchase of minimally 

processed pomegranate arils. Changes were observed when fruit were stored for an additional 

4 days at 20 °C. Redness of fruit arils (a*) increased slightly with storage and well above the 

aril colour at harvest. Factorial analysis showed that changes in aril redness and colour 

intensity were predominantly influenced by storage duration (a* = <0.0001; C* = <0.0001). 

Again, there was no significant difference among treatments throughout the storage duration 

(Fig. 6). The increase in aril redness is associated with anthocyanin biosynthesis which has 

been reported to occur during cold storage of pomegranate fruit (Gil et al., 1995; Arendse, 

2014). At the start and end of storage, control fruit had higher aril redness compared to 

treated fruit. Putrescine has been shown to prevent colour development during storage 

(Barman et al., 2011; Jawandha et al., 2012; Zafari et al., 2015).  It is possible that it could 

have prevented or retarded the rate of anthocyanin biosynthesis among treated fruit. Decline 

in hue angle (h°) further supported this phenomenon, indicating improved colour 

development in all treatments throughout the storage period (Fig. 6). The changes were 

influenced by the storage time and not concentration. Fawole & Opara (2013a) also reported 

relatively stable aril colour of ‘Bhagwa’ pomegranate during storage 5 °C for 16 weeks. 

Total colour difference (TCD) declined generally during storage of fruit with no 

difference between the first two months of storage (Fig. 6). After the third month of storage, 

control fruit had the highest TCD while fruit treated with 1 mM putrescine had the lowest 

values. A further decrease was observed at month 4 with fruit treated with 3 mM putrescine 

showing the highest total colour difference (Fig. 6). Treating fruit with 3 mM generally 

maintained a relatively stable TCD throughout storage. TCD showed a disparity in the colour 

between the peel and aril.  Given the importance of aril and juice redness, lower TCD is 

desired in the initial stages of storage as it is an indication of smaller differences in peel and 

aril redness. However, with prolonged storage, higher TCD is desired especially due to the 

fact that the fruit peel develops physiological disorders such as husk scald and chilling injury. 

Similar ranges of TCD were observed by Fawole (2013) for ‘Arakta’, ‘Bhagwa’, ‘Ganesh’, 

‘Mollar de Elche’ and ‘Wonderful’ cultivars of pomegranate. However, Al-said et al. (2009) 

reported higher ranges of TCD (50 - 60) of four cultivars of pomegranate grown in the 

Sultanate of Oman. 
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4.2.2. Juice colour  

Juice colour is an important quality attribute especially in the juice processing sector as it 

influences consumer appeal and preference. Juice colour absorbance remained fairly 

unchanged during storage of pomegranate fruit with no significant (p < 0.05) changes among 

treatments, with significant interaction (p = 0.0125) between the main factors (duration and 

concentration) (Table 1). The changes in juice colour relate to the relatively stable aril 

redness that was observed during storage of fruit (Fig. 6). This could be because putrescine 

was applied exogenously and therefore no direct significant effect on the internal components 

of fruit.  According to Shulman et al. (1984), pomegranate juice colour absorbance is an 

indication of anthocyanins which are light-absorbing plant-based pigments. This suggests no 

significant changes in light-absorbing anthocyanins during storage of pomegranate fruit. No 

changes were similarly observed in juice colour of ‘Wonderful’ pomegranate fruit stored for 

up to 10 weeks at 0 and 5 °C (Elyatem & Kader, 1984). Nanda et al. (2001) also reported no 

statistical differences in juice colour of film wrapped, skin coated and control pomegranate 

(cv. Ganesh) stored at 8 and 15 °C for 10 weeks. 

4.2.3. Fruit puncture resistance (firmness) 

Fruit firmness decreased from values at harvest but did not change significantly after the first 

two months of storage (Table 1). Slight variations were however existent in the last two 

months of storage with fruit treated with 2 mM having the highest puncture resistance (11.92 

± 0.40 N) after the last month of storage, 15.10 % higher than control fruit and the changes 

were influenced by the interaction between the putrescine concentrations and storage duration 

(Table 1). It is possible that putrescine could have maintained the integrity of the fruit peel. 

Putrescine has been reported to improve fruit firmness of pomegranates (Barman et al., 2011) 

and plums (Valero et al., 2002) due to its ability to cross link with the pectic substances in the 

cell wall hence preventing access of cell wall degrading enzymes like polygacturonase, 

pectinesterase and pectimethylesterase, thereby reducing softening during storage. The 

beneficial effect of putrescine was also reported by Barman et al. (2011) who found 33 % 

higher fruit firmness in pomegranate fruit (cv. Mridula) treated with putrescine + carnauba 

wax compared to control.  
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4.2.4. Aril firmness  

Variations were observed in aril hardness during the current study. Aril hardness of treated 

fruit fluctuated during storage with increase in the last month of storage (Table 1). Aril 

hardness of untreated fruit on the other hand increased after the second month but thereafter 

decreased by 3.2 % after the last month of storage. Control fruit significantly had lower aril 

hardness compared to treatments, with 8.21 % lower hardness at the end of the storage 

duration. However, no significant changes (p = > 0.05) were observed among treated fruit 

after storage for 4 months and the changes were influenced by interaction between the factors 

(Table 1). Decrease in aril hardness is due to loss in cell wall integrity of pomegranate arils 

(Ekrami-Rad et al., 2011; Arendse, 2014). Loss of cell wall integrity could in turn be due to 

senescence which progresses with storage (Arendse, 2014). Treatment of fruit with putrescine 

maintained aril hardness during storage (except at month 3), as all treatments had higher aril 

hardness compared to control fruit. Arendse (2014) found that aril hardness did not differ 

with storage temperature but decreased with extended storage of ‘Wonderful’ pomegranate 

fruit at 5, 7.5 and 10 °C for 5 months. Aril toughness increased in the second month, 

decreased in the third month and finally increased after the fourth month with significant 

interaction of concentration and storage duration. The other aril firmness parameters of 

elastic modulus and bioyield were generally maintained during storage of fruit with no 

significant differences observed among concentrations (Table 1). 

4.3. Chemical attributes  

4.3.1. pH  

The pH of pomegranate juice determines its sour taste (Zarei et al., 2011). pH of pomegranate 

juice was characterized as acidic (low below pH 4) and increased as storage progressed for 

most treatments with some decreases (for concentration 2 and 3 mM) (Table 2). The increase 

could be explained by the initial decrease in titratable acidity as the two are inversely 

proportional. Slight differences were observed in pH with fruit treated  with 2 mM having the 

highest and lowest pH in the first two and last two months of storage respectively. The 

interaction between the two factors played a significant role in the pH of stored fruit (p < 

0.0001) (Table 2). The increase in pH with storage could be due to utilization of organic acids 

evidenced by the general reduction in titratable acidity with storage. Putrescine also had no 

effect on pH of ‘Selva’ and ‘Kamarosa’ strawberry fruit (Khosroshahi et al., 2007; Zafari et 
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al., 2015).  Similar results were reported for pomegranate fruit (cv. Mollar de Elche) that had 

undergone curing and intermittent warming prior to storage at 2 °C for 90 days (Artés et al., 

2000). Fawole & Opara (2013a) also reported increase in juice pH with storage for ‘Ruby’ 

fruit stored at 5 °C, reaching a maximum value of 3.96 after 16 weeks of storage. However, 

no changes were observed when ‘Malas Yazdi’ and ‘Malas Saveh’ pomegranate fruit were 

treated with hot water (45 °C) and stored at 1.5 °C for 3 months (Mirdehghan & Rahemi, 

2005).  

4.3.2. Titratable acidity (TA) 

Titratable acidity decreased with storage except at month 3 where all treatments showed 

increases (Table 2). Similarly, no differences were observed during storage with the 

exception of month 3 where some variations existed with the control fruit showing the 

highest TA (2.24 ± 0.04). This could most likely be due to concentration of acids from weight 

loss in control fruit. Storage duration significantly (p < 0.0001) influenced the changes in 

titratable acidity during storage (Table 2). Organic acids (which are the main contributors to 

titratable acidity) have been reported to be the major substrates for pomegranate respiration 

during storage (Kader et al., 1984; Fawole & Opara, 2013a). Interestingly, respiration rate of 

fruit also prominently increased after the third month of storage (Fig. 1) and this could 

explain the major decrease in titratable acidity by the end of storage. These results are similar 

to Arendse (2014) who also reported decrease in titratable acidity during storage of 

pomegranate fruit (cv. Wonderful) at 5 and 7.5 °C for 5 months. Several authors have 

reported decreases in TA during storage of fruit. Decrease in pH was observed for mango (cv. 

Langra) treated with putrescine and stored at 13 °C for 4 weeks (Jawandha et al., 2012). After 

treating four cultivars of plum with putrescine, Serrano et al. (2003) found decreased TA 

during storage at 20 °C for nine days. Barman et al. (2011) also reported decrease in TA of 

pomegranate fruit (cv. Mridula) treated with putrescine and stored for 60 days at 3 °C. On the 

other hand, increase in TA levels during storage has previously been reported by Gil et al. 

(1996) for the Spanish ‘Mollar de Elche’ cultivar. 

4.3.3. Total soluble solids (TSS) 

TSS varied during storage of fruit during this study. TSS decreased from harvest, increased 

after the second month for some treatments and then finally decreased until end of storage. 

Fruit treated with 3 mM putrescine had the highest TSS after the first and third months (15.65 
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± 0.27 and 15.73 ± 0.19 respectively) of storage while no significant differences (p > 0.05) 

were observed after the second and last month of storage (Table 2). The initial increase in 

TSS could be due to initial concentration of sugars due to loss of moisture whereas the 

subsequent decrease thereafter could be due to utilization of sugars in fruit metabolic 

processes (Fawole & Opara, 2013a). Although organic acids have been reported to be the 

major substrates of pomegranate respiration during storage, the decrease in TSS could be due 

to utilization of sugars in other metabolic processes with the storage duration showing a 

significant effect (p < 0.0001) (Table 2) on TSS of pomegranate fruit. The changes with time 

could be due to senescence or increased metabolism with progressive storage. Our findings 

are in agreement with Fawole & Opara (2013a) who reported decrease in TSS of ‘Bhagwa’ 

and ‘Ruby’ pomegranate with storage duration. On the contrary however, Arendse (2014) 

reported significant increase in TSS of pomegranate (cv. Wonderful) stored at 5, 7.5 and 10 

°C for 5 months.  

4.3.4. TSS/TA ratio 

The taste of pomegranate is determined mainly by juice TSS level and the ratio between the 

TSS and TA (Zarei et al., 2011). TSS/TA ratio influences the flavour of products and it 

measures that balance between the acids and sugars in produce (Fawole & Opara 2013a). As 

a result of the changes in TSS and TA, fluctuations were observed in the TSS/TA during 

storage. There was an initial decline in TSS/TA ratio from harvest and thereafter an increase 

observed in all treatments after 2 months of storage (Table 2). A decrease was observed after 

the third month followed by ~38.47 % increase after 4 months. However no significant 

differences (p > 0.05) were observed in the TSS/TA during the entire storage duration and the 

changes were influenced by the storage duration. The increase in TSS/TA ratio could be due 

to the observed decrease in TA and slight increases in TSS values during storage which then 

results in higher TSS/TA ratio. The TSS/TA ratio level has been attributed mainly to 

breakdown of starch into water, soluble sugars, sucrose and glucose (Zafari et al., 2015). The 

findings in this study are similar to the work by Zafari et al. (2015) who observed increase in 

TSS/TA ratio of strawberry fruit (cv. Kamarosa) treated with putrescine and Aloe vera. 

Arendse (2014) also reported increase in TSS/TA value during storage of pomegranate fruit 

(cv. Wonderful) at different temperatures (5, 7.5 and 10 °C). Similarly, Fawole & Opara 

(2013a) observed significant increases in TSS/TA ratios of ‘Bahgwa’ and ‘Ruby’ 
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pomegranate stored for 16 weeks at 5, 7 and 10 °C from 9.98 at harvest to a maximum of 

13.12 after storage. 

4.3.5. BrimA  

Jordan et al. (2001) proposed a new index (“BrimA”) based on the TSS/TA ratio to determine 

acceptability of juices, but added a tongue’s sensitivity index (“k”) as well. This index, k, 

takes into account that the tongue has higher sensitivity to acid than to sugar, and has values 

normally from 2 to 10 depending on the fruit type The authors proposed BrimA as a more 

sensitive predictor of consumer acceptability in different fruits. During this study, BrimA 

initially decreased from harvest with no significant differences among treatments except for 

control fruit that had the lowest values (9.76 ± 0.60) (Table 2). It thereafter increased after the 

second month, decreased after the third and finally increased by 5.9 % after the fourth month 

of storage with significant differences. The changes in BrimA were significantly affected by 

storage duration (p < 0.0001) (Table 2). The changes in TSS and TA resulted in significant 

decreases in BrimA due to storage duration. BrimA decreased in all treatments during storage 

with the exception of month 2 where increases were observed although no significant 

differences existed among treatments (Table 2). Overall, treating fruit with 3 mM resulted in 

the best BrimA compared to other treatments. Similar decrease in BrimA was reported by 

Fawole & Opara (2013a) for pomegranate (cv. Ruby and Bhagwa) stored at 5, 7 and 10 °C 

for 16 weeks. Arendse (2014) reported an increase in BrimA from 10.64 at harvest to 14.33, 

13.62, 12.96, and 12.30 during storage at 5 °C, 7.5 °C, 10 °C and 21 °C respectively, for 

‘Wonderful’ pomegranate.  

4.4. Sensory properties 

To evaluate quality of fruits and vegetables, sensory attributes such as appearance, aroma, 

texture and colour are some of the vital criteria used by a consumer (Nunes et al., 2007; 

Opara et al., 2007). ‘Wonderful’ pomegranate is characterized mainly by sour over sweet 

taste (Vázquez-Araújo et al., 2011b). Sensory attributes of pomegranate fruit changed during 

storage. After the first month of storage, higher sweet taste was perceived in control fruit 

(non-treated) compared to treated fruit (Fig. 7A) and this could be related to the higher TSS 

values that were observed in control fruit. Sour taste was scored higher in fruit treated with 1 

and 2 mM putrescine while off flavour was generally low in all treatments with scores of 0.2 

- 0.4. Astringency, responsible for the tartness taste in pomegranate especially in the sweet-
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sour and sour cultivars, was highest in fruit treated with 1 mM putrescine. Crispness of arils 

was generally maintained among all treatments while juiciness was highest in control fruit. 

Grittiness and hardness were scored higher for fruit treated with 3 mM putrescine (Fig. 7A). 

In general, after one month of storage, control fruit had better sensory quality with regards to 

sweet taste and juiciness. Jawandha et al. (2012) also reported that initially after one week of 

storage of mango (cv. Langra), highest palatability rating was recorded in untreated (control) 

fruit compared to fruit that had been treated with putrescine.  

After storage of fruit for two months, prominent differences were observed in the 

sensory attributes, with control and fruit treated with 2 mM showing higher scores while fruit 

treated with 1 and 3 mM had lower scores (Fig. 7B). As shown by the radar plot (Fig. 7B), 

control and fruit treated with 2 mM putrescine had better sensory attributes with regards to 

sweetness, juiciness and crispness compared to the other treatments. Pomegranate fruit (cv. 

Mridula) treated with putrescine and carnauba wax was reported to have higher sensory 

scores than control with regard to colour, aroma, taste, juiciness and aril firmness after 60 

days storage for storage at 5 °C (Barman et al., 2014). 

Moreover, at the end of three months control fruit were scored the highest for aril 

sweet taste while sour taste was more prominent in fruit treated with 3 mM putrescine. Off 

flavour increased with storage although fruit with 2 mM putrescine had the lowest scores 

(Fig. 7C).  Astringency was also low in all treatments, even lower than the previous months 

of storage. This could possibly be attributed to the decrease in T.A and increase in pH among 

all treatments as storage progressed (Table 2). This is because organic acids (especially 

tartaric acid) which are responsible for astringency are utilized for metabolism during storage 

of pomegranate. Fawole & Opara (2013b) also reported low astringency and alcohol taste for 

‘Ruby’ pomegranate fruit. Crispness and grittiness were more pronounced in fruit treated 

with 2 mM while juiciness was higher in fruit treated with 1 mM putrescine.  Additionally, 

hardness was best maintained in fruit treated with 3 mM putrescine (Fig. 7B). Comparing all 

treatments at all storage durations, fruit treated with 2 mM putrescine generally had higher 

sensory attribute ratings compared to other concentration. Jawandha et al. (2012) reported 

highest palatability rating in mango fruit (cv. Langra) treated with putrescine of 2 mM as fruit 

were still in very good quality after 3 weeks of storage. Similarly, ‘Selva’ strawberry fruit 

treated with putrescine had better quality in terms of flesh firmness, appearance, color change 

and taste especially when fruit were treated with 2 mM putrescine (Khosroshahi et al., 2007). 
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Treating pomegranate (Mridula) with putrescine and carnauba wax resulted in higher sensory 

scores compared to control after 60 days of storage at 2 and 5 °C (Barman et al., 2014). 

4.5. Multivariate analysis 

4.5.1. Pearsons’ correlation analysis of physiological responses and disorders 

Pearsons’ correlation showed a moderate positive correlation between respiration rate and 

weight loss (r = 0.67) (Table 3). This shows that increase in fruit respiration rate results in 

increased weight loss of fruit. Fruit weight loss was strongly correlated with fruit decay, 

chilling injury, scald and aril browning. Therefore, development of physiological disorders 

result into greater weight loss of fruit. Development of chilling injury was associated with 

increased respiration rate, weight loss and fruit decay. In addition, husk scald increased fruit 

susceptibility to decay as there was a strong positive correlation (Table 3). This could be 

attributed to increased senescence with scalding thus making fruit more prone to fungal 

attack. Although some studies have reported that husk scald does not affect the internal 

quality of affected fruit (Defilippi et al., 2006), the strong positive correlation showed that 

aril browning increased with scald incidence (r = 0.91) and severity (r = 0.93) (Table 3). This 

indicated the contribution of husk scalding to fruit internal quality through increased 

enzymatic oxidation activity of the internal components. On the other hand, the presence of 

internal decay had a weak correlation with the other physiological disorders and this is not 

suprising because this is a preharvest condition. 

4.5.2. Principal component analysis   

To obtain a broad view on changes in fruit quality attributes that occurred during storage, the 

whole data set was subjected to principal component analysis (PCA). An Eigenvalue 

measures the significance of a factor, with Eigenvalues ≥ 1 considered significant. Therefore 

the highest eigenvalues are the most significant (Fawole & Opara, 2013c). The total 

variability was explained by 11 factors (F1-F11), with the first two factors of the PCA 

showing moderate correlation of 53.22 % (Fig. 8). The first factor (F1) was responsible for 

33.36 %, while the second factor (F2) explained 19.86 % of total variation, indicating that the 

maximum possible variation during fruit storage was explained by the F1 (Fig. 9A). Positive 

scores along F1 corresponded with long storage duration (2-3 months). Short term storage (1 

month) had high negative scores along F1 while fruit stored for 2 months had low positive 
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scores (Fig. 9A). Negatives scores along F1 corresponded with peel colour, fruit firmness, 

juice colour, aril hardness, grittiness, TSS, TA and astringency. The peel colour indicated that 

fruit had better peel appearance during short storage duration but decreased with prolonged 

storage which can be related to development of physiological disorders especially husk scald. 

Fruit stored for short duration (1 month) were associated with grittiness, hardness and 

astringency. The contribution of phenolics to fruit astringency has been previously reported 

(Kulkarni & Aradhya, 2005). As storage progressed, there was a shift from left to right along 

F1 (Fig. 9B) with increase in aril redness (a*), sweet taste, crispness and juiciness. This gives 

a clear indication that fruit stored for short duration (1 month) could clearly be distinguished 

from fruit stored for long duration (3 months). The increase in aril colour is associated with 

increased anthocyanin biosynthesis while the increase in sweet taste could be as a result of 

concentration of sugars due to weight loss with progressive storage of fruit (Fawole & Opara, 

2013b). A strong positive relationship between TSS/TA ratio and BrimA was indicated by the 

short distance between the two attributes on the PCA while a strong negative relationship 

existed between TA and TSS/TA ratio (Fig 9A). A general view of the PCA showed that 

short term storage of fruit was associated with grittiness, hardness, fruit firmness, TSS, TA 

and astringency among others while long term storage resulted in fruit with better aril colour, 

juiciness, sweet taste and crispiness. The results indicate that storage duration, instead of 

other factors (such as treatment concentration) contributed to the distinction of sensory and 

instrumental attributes during the study. This suggests the importance of storage duration in 

postharvest studies as well as changes in postharvest quality of fresh produce. Arendse (2014) 

also reported such observation, where storage duration rather than temperatures (5, 7.5 and 10 

°C) influenced the storage quality of ‘Wonderful’ pomegranate fruit for up to 4 months of 

storage. 

5. Conclusions 

Exogenous application of putrescine on pomegranate fruit, especially at higher concentrations 

(2 and 3 mM) reduced the incidences of fruit decay and physiological disorders particularly 

chilling injury severity, with effects more prominent during the last months of storage. In 

addition, these concentrations resulted in lower husk scald after storage for the first 3 months 

although 100 % of the fruit developed scald at the end of storage. Husk scald was the major 

physiological disorder during storage of pomegranate fruit after the chemical treatments 
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during the study. Since scalding is an enzymatic oxidative process, this highlights the 

significance of physical treatments as they have been shown to reduce scalding by providing 

a barrier to oxygen supply. Therefore treating pomegranate fruit with putrescine reduces 

physiological disorders but only for shorter storage time (2 - 3 months).  

Treating fruit with putrescine also reduced changes in physico-chemical properties 

like colour through reduction of anthocyanin biosynthesis. Despite control fruit having more 

intense aril red colour, treated fruit had adequate aril colour and the additional advantage of 

reducing physiological disorders and decay. From the sensory point of view, treating fruit 

with 2 mM putrescine maintained and in some cases improved the sensory properties of fruit 

especially after 2 and 3 months of storage. In conclusion, treating ‘Wonderful’ pomegranate 

fruit with 2 and 3 mM concentration of putrescine would be recommended to improve 

postharvest quality of fruit. However, further research is required to combine the benefits of 

chemical treatment together with physical treatments if the maximum potential of healthier 

alternative chemicals is to be realized since chemical treatments alone are not substantial 

enough to cater for all the quality parameters of the fruit.  
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Table 1 Changes in juice colour, fruit firmness and aril firmness of pomegranate fruit treated with putrescine during storage for 4 

months at 5 °C and additional 4 days at 20 °C 

Parameter 

Concentration 

(mM) Harvest   Storage duration (Month)   Significance level 

  

 

  

 

1 2 3 4   

Concentration 

(A) 

Duration 

(B) A x B 

Juice colour 

absorbance (520nm) 

 

3.28 ± 0.01 

         

 

0 (Control) 

  

3.08 ± 0.14a 3.16 ± 0.07a 3.20 ± 0.01a 3.22 ± 0.01a 

 

0.1758 0.1403 0.0125 

 

1 

  

3.24 ± 0.02a 3.22 ± 0.02a 2.80 ± 0.16b 3.03 ± 0.10ab 

    

 

2 

  

3.20 ± 0.05a 2.97 ± 0.14ab 3.00 ± 0.11ab 3.15 ± 0.07a 

    

 

3 

  

3.26 ± 0.01a 3.23 ± 0.01a 3.20 ± 0.01a 3.02 ± 0.13ab 

    Fruit firmness (N) 

 

13.39 ± 0.30 

         

 

0 (Control) 

  

12.04 ± 0.59a 10.96 ± 0.45abc 10.03 ± 0.38c 10.12 ± 0.40c 

 

0.3981 <0.0001 <0.0001 

 

1 

  

11.71 ± 0.38ab 10.13 ± 0.46c 11.21 ± 0.50abc 11.17 ± 0.38abc 

    

 

2 

  

11.03 ± 0.48abc 11.06 ± 0.44abc 8.27 ± 0.40d 11.92 ± 0.40a 

    

 

3 

  

12.20 ± 0.23a 10.43 ± 0.34bc 10.20 ± 0.37c 10.83 ± 0.51abc 

    Aril firmness 

            Hardness (N) 

 

157.20  ±  2.81 

      
 

  

 

0 (Control) 

  

91.27 ± 3.05f 142.80 ± 5.42de 151.40 ± 3.57abc 143.20 ± 3.84cde 

 

<0.0001 <0.0001 <0.0001 

 

1 

  

159.20 ± 4.24abc 158.40 ± 3.36ab 136.50 ± 2.91e 155.10 ± 3.35abc 

    

 

2 

  

92.33 ± 3.03f 158.90 ± 3.71ab 139.00 ± 1.98de 154.20 ± 2.18abc 

    

 

3 

  

157.50 ± 2.80ab 162.50 ± 3.55a 148.40 ± 3.54bcd 160.30 ± 4.77a 

    Elastic modulus  

(N/mm) 

 

8.57 ± 0.49 

         

 

0 (Control) 

  

5.85 ± 0.49ab 6.21 ± 0.46ab 6.41 ± 0.51ab 5.34 ± 0.63b 

 

0.2801 0.2660 0.1662 

 

1 

  

6.09 ± 0.60ab 5.98 ± 0.49ab 6.28 ± 0.43ab 6.24 ± 0.70ab 

    

 

2 

  

5.96 ± 0.43ab 7.13 ± 0.71a 5.97 ± 0.49ab 5.92 ± 0.46ab 

    

 

3 

  

5.84 ± 0.50ab 5.54 ± 0.38ab 5.78 ± 0.50ab 6.45 ± 0.60ab 

 
 

  Toughness (N.mm) 

 

169.90 ± 3.83 

      
 

  

 

0 (Control) 

  

119.80 ± 4.36f 152.30 ± 8.38de 152.60 ± 5.91b-e 143.30 ± 5.66e 

 

<0.0001 0.0616 0.0039 

 

1 

  

170.80 ± 6.90abc 171.00 ± 5.06abc 155.30 ± 5.14cde 162.60 ± 4.63a-e 
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2 

  

117.80 ± 4.09f 171.90 ± 4.15ab 158.70 ± 2.86b-e 164.80 ± 3.06a-d 

    

 

3 

  

165.00 ± 5.23a-d 178.20 ± 5.62a 157.10 ± 5.36b-e 175.70 ± 6.84a 

    Bioyield (N) 

 

5.96 ± 0.82 

      
 

  

 

0 (Control) 

  

6.17 ± 0.78a 6.25 ± 0.51a 5.96 ± 0.62a 6.53 ± 0.92a 

 

0.9859 0.8250 0.3103 

 

1 

  

6.32 ± 0.67a 6.40 ± 0.62a 7.50 ± 0.56a 6.62 ± 0.76a 

 
 

  

 

2 

  

6.98 ± 0.67a 8.13 ± 0.94a 6.95 ± 0.70a 7.31 ± 0.78a 

      3     6.10 ± 0.64a 6.51 ± 0.68a 6.42 ± 0.61a 7.76 ± 0.92a         

Data presented as mean ± SE. Different letters across concentration and storage duration for each attribute differ significantly (p < 0.05) according to Duncan’s 

multiple range test. SE - standard error 
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Data presented as mean ± SE. Different letters across concentration and storage duration for each attribute differ significantly (p < 0.05) according to Duncan’s 

multiple range test. TA - titratable acidity; TSS - total soluble solids; SE - standard error 

Table 2 Chemical attributes of pomegranate fruit treated with putrescine during storage for 4 months at 5 °C and additional 4 days at 20 °C 

 

Parameter 

Concentration 

(mM) Harvest   Storage duration (Month)   Significance level 

        1 2 3 4   Concentration (A) Duration (B) A x B 

pH 

 

3.28 ± 0.03 

      
 

  

 

0 (Control) 

  

3.00 ± 0.07e 3.25 ± 0.15d 3.49 ± 0.05c 3.61 ± 0.04bc 

 

0.0002 <0.0001 <0.0001 

 

1 

  

2.58 ± 0.03f 3.23 ± 0.05d 3.68 ± 0.04b 3.87 ± 0.04a 

 
 

  

 

2 

  

3.11 ± 0.04de 3.58 ± 0.06bc 3.60 ± 0.05bc 3.49 ± 0.03c 

 
 

  

 

3 

  

2.53 ± 0.05f 3.54 ± 0.03bc 3.49 ± 0.05c 3.53 ± 0.06bc 

    TA (% citric acid) 1.68 ± 0.08 

      
 

  

 

0 (Control) 

  

2.53 ± 0.28a 1.43 ± 0.14efg 2.24 ± 0.15ab 1.26 ± 0.04fg 

 

0.0261 <0.0001 0.4938 

 

1 

  

2.40 ± 0.14a 1.45 ± 0.11efg 1.71 ± 0.06cde 1.10 ± 0.07g 

    

 

2 

  

2.21 ± 0.13ab 1.27 ± 0.13fg 1.85 ± 0.09cd 1.09 ± 0.04g 

 
 

  

 

3 

  

2.22 ± 0.15ab 1.53 ± 0.08def 1.94 ± 0.11bc 1.14 ± 0.08g 

 
 

  TSS  (°Brix) 

 

16.2 ± 0.16 

         

 

0 (Control) 

  

14.83 ± 0.21c-f 15.21 ± 0.35a-d 14.7 ± 0.41c-g 14.56 ± 0.19d-g 

 

0.0308 <0.0001 0.1535 

 

1 

  

15.10 ± 0.23a-e 15.28 ± 0.07a-d 14.86 ± 0.22b-f 13.96 ± 0.31g 

 
   

 

2 

  

15.5 ± 0.21abc 14.93 ± 0.19b-e 15.08 ± 0.22a-e 14.09 ± 0.21fg 

 
   

 

3 

  

15.65 ± 0.27ab 15.25 ± 0.26a-d 15.73 ± 0.19a 14.34 ± 0.31efg 

 
 

  TSS/TA 

 

9.98 ± 0.41 

      
 

  

 

0 (Control) 

  

6.40 ± 0.85e 11.33 ± 1.45ab 6.14 ± 0.33e 11.62 ± 0.32ab 

 

0.0935 <0.0001 0.4670 

 

1 

  

6.47 ± 0.41e 11.10 ± 0.80ab 8.79 ± 0.34cd 13.12 ± 0.92a 

    

 

2 

  

7.20 ± 0.42de 12.18 ± 1.25ab 8.30 ± 0.42cde 13.10 ± 0.45a 

 
 

  

 

3 

  

7.39 ± 0.59de 10.13 ± 0.70bc 8.25 ± 0.45cde 13.05 ± 0.76a 

 
 

  BrimA 

 

12.84 ± 0.18 

      
 

  

 

0 (Control) 

  

9.76 ± 0.60g 12.75 ± 0.63a 10.23 ± 0.59fg 12.03 ± 0.16a-d 

 

0.1018 <0.0001 0.0983 

 

1 

  

10.29 ± 0.41efg 12.39 ± 0.18abc 11.47 ± 0.25bcd 11.75 ± 0.31a-d 

    

 

2 

  

11.08 ± 0.32def 12.39 ± 0.34ab 11.37 ± 0.32b-e 11.92 ± 0.21a-d 

 
 

    3     11.20 ± 0.48b-f 12.14 ± 0.32a-d 11.85 ± 34a-d 12.07 ± 0.27a-d         
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Table 3 Pearson’s correlation coefficient matrix between assessed physiological disorders 

Variables 

Respiration 

rate 

Weight 

loss 

Fruit 

decay 

CI 

severity 

% CI 

incidence 

Scald 

severity 

% Scald 

incidence 

Aril 

browning 

Internal 

decay 

Respiration rate 1         

Weight loss 0.671 1        

Fruit decay 0.392 0.868 1       

CI severity 0.653 0.770 0.567 1      

% CI incidence 0.670 0.778 0.675 0.907 1     

Scald severity 0.357 0.910 0.894 0.628 0.608 1    

% Scald incidence 0.588 0.912 0.827 0.618 0.686 0.858 1   

Aril browning 0.599 0.954 0.817 0.698 0.638 0.928 0.908 1  

Internal decay 0.372 0.425 0.443 -0.027 0.184 0.426 0.495 0.465 1 

Values in bold are different at significance level of p < 0.05. Values in bold have moderate to strong correlation 

CI- chilling injury 
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 Fig. 1 Respiration rate of control and putrescine treated pomegranate fruit during storage for 

4 months at 5 °C and additional 4 days at 20 °C. Each data point represents mean and error 

bars designate standard error (SE) of the mean. ------Respiration rate at harvest.  
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Fig. 2 Cumulative weight loss of pomegranate fruit treated with putrescine during storage for 

4 months at 5 °C and additional 4 days at 20 °C. Each bar represents mean and error bars 

represent standard error (SE) of the mean. Bars followed by different letters are significantly 

different at p< 0.05 according to Duncan’s multiple range test.  
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Fig. 3 Effect of putrescine on physiological disorders of pomegranate fruit during storage for 

4 months at 5 °C and additional 4 days at 20 °C. External decay (A), internal decay (B), aril 

browning (C). 
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Fig. 4 Effect of putrescine on chilling injury incidence and index of pomegranate fruit during 

storage for 4 months at 5 °C and additional 4 days at 20 °C.  

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



  

79 
 

0

20

40

60

80

100

Control 1 mM 2 mM 3 mM
S

c
al

d
 i

n
c
id

e
n
c
e
 (

%
)

0

1

2

3

4

Storage duration (month)

1 2 3 4

Severe

Moderate

Slight

Trace

None

S
c
al

d
 s

e
ve

ri
ty

 

Fig. 5 Effect of putrescine on husk scald incidence and severity of pomegranate fruit during 

storage for 4 months at 5 °C and additional 4 days at 20 °C.      
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Fig. 6 Changes in colour parameters of pomegranate fruit peel and arils during storage for 4 

months at 5 °C and additional 4 days at 20 °C. Each bar represents mean and error bars 

denote standard error (SE) of the mean. Bars followed by different letters are significantly 

different at p < 0.05 according to Duncan’s multiple range test. -----Represents values at 

harvest. 
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Fig. 7 Average sensory scores of pomegranate fruit treated with putrescine during storage for 

3 months at 5 °C and additional 4 days at 20 °C. The plot represents storage at month 1 (A), 

month 2 (B) and month 3 (C). 
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Fig. 8 Scree plot of variance explained by each factor of the principal components. The 

Eigenvalue indicates the significance of a factor. 
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Fig. 9 Principal component analysis showing variables (A) and observations (B) for 

‘Wonderful’ pomegranate fruit using instrumental and sensory attributes of fruit stored for 3 

months at 5 °C and additional 4 days at 20 °C. The circulated points indicate the factors and 

the arrow shows a shift from month 1 to month 3. 
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CHAPTER FOUR: Effects of exogenous fludioxonil postharvest treatment on 

physiological response, physico-chemical, textural and sensory characteristics 

of pomegranate fruit 
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EFFECTS OF EXOGENOUS FLUDIOXONIL POSTHARVEST TREATMENT ON 

PHYSIOLOGICAL RESPONSE, PHYSICO-CHEMICAL, TEXTURAL AND 

SENSORY CHARACTERISTICS OF POMEGRANATE FRUIT 

Abstract 

The study investigated the effects of fludioxonil (FLU) postharvest treatment on the 

postharvest quality of pomegranate fruit (cv. Wonderful). Fruits were dipped in FLU 

concentrations (control, 150, 300 and 600 mg/L) and stored for 4 months at 5 °C and 90 - 95 

% relative humidity (RH) plus an additional 4 days at 20 °C and 65 % RH. Effects of FLU 

were evaluated on fruit physiological responses, quality and sensory attributes. Results 

showed that fruit weight loss and decay incidence were reduced by FLU treatment, with fruit 

treated with 600 mg/L concentration showing the best results. Fruit respiration rate was more 

influenced by storage duration than FLU concentration. The severity and occurrence of 

physiological disorders increased with storage duration and were higher in fruit treated with 

FLU compared to control. FLU treatment enhanced the retention of whole fruit firmness, 

however, aril texture attributes were not significantly affected. Storage duration influenced 

fruit colour whereas aril colour was affected by FLU concentration. Untreated fruit showed 

better aril redness (a*) and chroma (C*) although treated fruit also had acceptable red colour. 

Chemical quality attributes of fruit juice were not significantly affected by FLU 

concentrations. Treating fruit with FLU resulted in better sensory attributes with regards to 

crispness, juiciness and sweetness. The PCA highlighted the contribution of storage duration 

and FLU concentration on the measured parameters and indicated that fruit quality was 

majorly affected by storage period as quality deteriorated with time. Overall, this study 

showed that fruit treated with FLU at 600 mg/L had the best quality with respect to decay 

incidence, fruit firmness and sensory attributes.  
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1. Introduction 

Pomegranate (Punica granatum L.) is a non-climacteric fruit and is an important horticultural 

crop in many tropical and subtropical regions of the world (Roy & Waskar, 1997; Nanda et 

al., 2001). The edible portion of the fruit is comprised of arils that can be consumed fresh as 

seeds, juice or used as flavouring and colouring agents (Gil et al., 2000; Al-Said et al., 2009; 

Opara et al., 2009). The fruit juice is high in sugars, vitamins, organic acids, polysaccharides, 

polyphenols and essential minerals (Al-Maiman & Ahmad, 2002; Fawole & Opara, 2013d). 

Pomegranate fruit has recently captured consumer interest because of its reported beneficial 

health properties (Heber & Bowerman, 2009; Fawole & Opara, 2013a). Several researchers 

have reported the chemo-preventative, anti-inflammatory and antibacterial properties of 

pomegranate fruit (and its derived products) which, have been attributed to its high 

antioxidant capacity (Kim et al., 2002; Lansky & Newman, 2007; Syed et al., 2007; Opara et 

al., 2009; Fawole et al., 2012; Mphahlele et al., 2016). Beneficial properties of pomegranates 

against atherosclerosis, certain cancers and other degenerative diseases have also been 

reported (Mertens-Talcott et al., 2006; Aviram et al., 2008).  

One of the challenges limiting the use of pomegranates is the limited postharvest life. 

When the fruit is stored under ambient conditions, storage life is limited to only a few weeks 

and therefore cold storage is recommended, with temperatures between 0 and 10 °C 

depending on cultivar (Elyatem & Kader, 1984; Fawole & Opara, 2013a). At the same time, 

relative humidity during storage should be maintained at 90 - 95 % to prevent desiccation of 

the skin because the fruit is very prone to moisture loss (Roy & Waskar, 1997; Fawole & 

Opara, 2013a; Arendse et al., 2014). However, high humidity promotes the growth of micro-

organisms and enhances fruit decay (D’Aquino et al., 2009). Fruit decay is a major cause of 

postharvest loss during storage of pomegranate fruit. The major postharvest decay diseases 

during fruit storage include grey mould – caused by Botrytis cinerea (which develops at 

recommended storage conditions of 5 - 8 °C and 90 - 95 % RH), heart rot – caused by 

Aspergillus niger and Alternaria ssp., and Penicillium rot – caused by different species of 

Penicillium, including P. digitatum and P. implicatum (Roy & Waskar, 1997; Labuda et al., 

2004; Pekmezci & Erkan, 2004). To reduce the incidence of fruit decay, fungicides are used 

both as preharvest and postharvest treatments of fruit. Preharvest fungicides include 

fenhexamid, azoxystrobin and tebuconazole (Förster et al., 2007; Romanazzi et al., 2014; 

2016) and postharvest fungicides include methyl 2-benzimidazole carbamate (BMC), 
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thiabendazole (TBZ) and fludioxonil (FLU), among others (Errampalli et al., 2006; 

Romanazzi et al., 2014). 

A shift in interest to naturally occurring compounds as antimicrobial agents or as 

components for chemical synthesis of new active ingredients, together with the understanding 

of their structures and properties, has motivated the synthesis of new broad spectrum “natural 

mimetic” fungicides that have different mechanisms of action from other previously 

registered ones (Gullino et al., 2000; Leroux, 2003; Schirra et al., 2005). To cope with 

problems associated with resistance development to ‘older fungicides’ by current and 

emerging fungal pathogens, a number of novel fungicides have been developed for 

horticultural crops (Gullino et al., 2000). Among these is fludioxonil, a broad-spectrum 

fungicide with a different mode of action compared to older registered chemicals (Förster et 

al., 2007; Schirra et al., 2009). Fludioxonil, together with pyrimethanil and azoxystrobin 

were categorised as reduced-risk compounds by the United States Environment Protection 

Agency (US E.P.A) (Adaskaveg et al., 2004). This indicates that these chemicals have more 

advantageous properties compared to old fungicides and have extensively been assessed for 

control of green mould in California citrus industry (Adaskaveg et al., 2004; Smilanick et al., 

2006). Fludioxonil is a synthetic analogue of pyrrolnitrin belonging to the class of 

phenylpyrroles (Rosslenbroich & Stuebler, 2000) and is considered a reduced risk pesticide 

by the US E.P.A (Schirra et al., 2005; D’Aquino et al., 2009). The mode of action is by 

inhibition of the transport-associated phosphorylation of glucose and the prevention of 

glycerol synthesis (Vaquero-Fernández et al., 2008; Brycht et al., 2015). This inhibits spore 

germination, germ tube elongation, and mycelium growth of B. cinerea and induces 

morphological alterations of germ tubes (Leroux, 1996; Rosslenbroich & Stuebler, 2000). 

Fludioxonil has been used as postharvest treatment for stone fruit, pome fruit, 

pomegranates, kiwi fruit, and citrus (Brycht et al., 2015). Developed in the mid-1900s to 

control Botryrtis cinerea in viticulture (Rosslenbroich & Stuebler, 2000), it is also highly 

effective on a large number of pathogens, including Botrytis spp., Penicillium spp., 

Alternaria spp, Sclerotinia ssp.  (D’Aquino et al., 2009). Although the application of 

fludioxonil has been studied on pomegranate (Adaskaveg & Förster, 2002; D’Aquino et al., 

2009; D’Aquino et al., 2010), these studies majorly focused on control of fungal pathogens 

and decay incidence, as well as crop residue levels. There is limited information on the 

influence of FLU concentrations on the postharvest quality of pomegranate fruit, a factor that 

may affect the sensory and antioxidant property of fruit (Feliziani et al., 2014). In addition, 
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the different cultivars used from different climatic regions in previous studies may also 

influence the response of fruit to the chemical. Therefore, the aim of this study was to 

evaluate the effects of treating harvested whole pomegranate fruit with different 

concentrations of fludioxonil on the physiological response, physico-chemical and sensory 

quality attributes, and antioxidant properties.  

2. Material and methods 

2.1. Plant material and chemicals 

Pomegranate fruit (cv. Wonderful) were handpicked during commercial harvest from 

Heinrich F.R. Schaefer (HFR) farm in the Western Cape (33º44ʹ26.185ʺS 18º44ʹ41.193ʺE), 

South Africa and transported in a well-ventilated vehicle to the Postharvest Technology and 

Research Laboratory at Stellenbosch University. Fruit were selected based on uniform size 

and colour, and absence of physical damage such as cracks, sunburn and bruises.  

The fungicide was a commercial formulation of FLU (Scholar®, Syngenta, South Africa) 

containing 23 % active ingredient (a.i.).  

2.2. Treatments  

Upon arrival at the laboratory, fruit were divided into four different treatment groups, each 

comprised of 108 fruit. Treatments were performed by dipping a batch of fruit in 15 L of 

scholar solution (a.i. 23 % fludioxonil). The four applied treatments were:  

(1) Control: immersion in water. 

(2) Immersion in 150 mg/L fludioxonil. 

(3) Immersion in 300 mg/L fludioxonil.  

(4) Immersion in 600 mg/L fludioxonil.  

 

After immersion of each batch for 2 min, fruit surface was left to thoroughly dry at ambient 

room conditions (20 ± 2 °C and 65 ± 5 % RH) for 12 h before transfer to cold storage (5 ± 0.7 

°C and 95 ± 2 % RH).    

2.3. Packaging and storage 

Fruit were packed into commercial ventilated cartons (0.4 m long, 0.3 m wide and 0.133 m 

high) used for postharvest handling of pomegranate fruit and put in cold storage for 4 months. 

Temperature and relative humidity within the cold room was recorded daily using Tiny Tag 
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TV-4500 data loggers (Gemini Data Logger, Sussex, UK). At the end of cold storage, a batch 

of fruit (n = 20) from each treatment was placed under ambient storage (20 - 24 °C and 65 - 

70 % RH) for a 4-day period to simulate reasonable retail sale period. Fruit were then 

analysed for incidence of physiological response, physiological disorders, physico-chemical, 

textural and sensory properties after cold storage and shelf life. Measurement of all 

parameters was carried out on a monthly interval and results were presented as mean ± 

standard error (S.E).  

2.4. Physiological response, decay and physiological disorders 

2.4.1. Respiration rate 

Fruit respiration was measured using a closed system as described by Caleb et al. (2012). In 5 

replicates, two fruit of known weight were placed in a glass jar containing a rubber septum. 

The jar was sealed hermetically with vaseline to ensure a vacuum seal. Fruit were incubated 

for 2 h at 20 °C then gas composition inside each glass jar was measured using a calibrated 

O2/CO2 analyser (Checkmate 3, PBI Dansensor, Ringstead, Denmark). Carbon dioxide 

production was determined and results presented as mL CO2 kg-1h-1 of five determinations. 

2.4.2. Weight loss     

Ten randomly selected fruit per treatment were used for this purpose. Fruit were weighed 

individually at monthly intervals during storage using an electronic scale (Mettler, Toledo, 

Switzerland, 0.0001 g accuracy). Cumulative weight loss of each fruit was calculated as:  

  𝑊 =  
(Wo − Wi)

Wo
  x  100                                                                                                                (1) 

Where W is the weight loss (%) of fruit; Wo is the weight (g) of fruit at the beginning of 

storage; Wi (g) is the weight of fruit at the storage time.  

2.4.3. Fruit external and internal decay incidence 

Fruit decay incidence was visually assessed as total rots. Fruit with any sign of external rot 

such as mould and crown rot was considered as external decay. Fruit with external decay 

appearance were counted and discarded. For internal decay, fruit with rotten arils and heart 

rot were counted and also discarded. For both external and internal decay, percentage of 

discarded fruit was calculated using the formula: 
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Decay incidence (%)   =  
(Number of discarded fruit at each sampling date)

Total number of fruit
  x  100      (2)                         

2.4.4. Incidence of chilling injury, husk scald and aril browning  

Incidences of chilling injury, husk scald and aril browning were assessed monthly. The 

severity of disorders were assessed using a four-level scale as described by Fawole & Opara 

(2013a); where 0 = none (no symptom), 1 = trace (1 – 25 %), 2 = slight (26 – 50 %), 3 = 

moderate (51 – 75 %) and 4 = severe (76 – 100 %)  

A physiological disorder index was calculated by multiplying the scores of severity by the 

number of affected fruits and dividing by the total number of assessed fruits (Artés et al., 

1998; Fawole & Opara, 2013a): 

 

Disorder index = 

∑
(Value of scale) x (Number of fruit with the corresponding scale number)

Total number of fruit
  x  100     (3) 

 

Disorder incidence =  
(Number of affected fruit)

Total number of fruit
  x 100                                                        (4) 

2.5. Physico-textural attributes 

2.5.1. Whole fruit and aril colour 

Colour parameters in CIELAB coordinates (L*, a*, b*) were measured using a Chroma meter 

(CR-400, Minolta Corp, Osaka, Japan). Ten fruit per treatment were used to monitor changes 

in external colour by measuring peel colour at two opposite spots on individual fruit, while 

aril colour was determined by placing the arils in a colourless glass Petri dish. Colour 

intensity or chroma (C*) and hue angle (h°) were calculated using equations (5) and (6) 

(Pathare et al., 2013; Fawole & Opara, 2013a). 

C ∗ = √(a ∗2+ b ∗2)                                                                                                                                   (5) 

h° =  arctan (b ∗/a ∗)                                                                                                         (6) 

Furthermore, total colour difference (TCD) between the peel (external) and arils (internal) 

was calculated as;  

TCD = √(L*o – L*)2 + (a*o – a*)2 + (b*o – b*)2      (7) 
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Where L*0, a*0 and b*0 are the colour parameters of the peel (reference value), while L*, a* 

and b* are the colour values of the aril (Al-Said et al., 2009).  

2.5.2. Fruit puncture resistance  

Fruit puncture resistance was measured using a fruit texture analyser (GÜSS-FTA, model GS, 

South Africa). A 5 mm cylindrical probe was programmed to puncture 8.9 mm into the fruit 

on a steel test platform at the speed of 10 mm/s with the stem calyx axis parallel to the 

platform. Tests were performed in duplicate on the equilateral region of 10 individual fruit. 

Puncture resistance was determined as the peak force required to puncture the fruit surface. 

2.5.3. Aril texture 

Aril compression test was performed using a texture profile analyser XT Plus (Stable 

MicroSystem Ltd., Godalming, UK) equipped with a 35 mm diameter cylindrical 

compression probe. Compression test was performed on individual arils with the following 

operating conditions: pre-test speed 1.5 mm/s, probe test speed 1 mm/s, post-test speed 10.0 

mm/s, compression force 10 N and compression distance 10 mm (Fawole & Opara, 2013b). 

Aril hardness/maximum compression force (N), toughness (area under the curve, N mm), 

elastic modulus (N/mm), and bioyield force (N) were captured using Exponent v.4 software 

(Stable MicroSystem Ltd., Godalming, UK). At each storage interval, tests were done using 

20 arils extracted from 10 randomly selected fruit for each concentration and results 

presented as mean ± S.E of 20 determinations.  

2.6. Chemical quality attributes 

2.6.1. Titratable acidity, total soluble solids and pH 

Titratable acidity (TA) was measured by diluting 2 ml of fresh juice with 70 ml of distilled 

water and titrating with 0.1M NaOH to an end point of pH 8.2 using a Metrohm 862 compact 

titrosampler (Herisua, Switzerland). The results were expressed as percentage of citric acid 

(% CA). Total soluble solids (TSS, °Brix) was measured using a digital refractometer (Atago, 

Tokyo, Japan) calibrated with distilled water. The pH values were determined at room 

temperature using a calibrated pH meter (Crison, Model 00924, Barcelona, Spain). BrimA, a 

criterion for consumer fruit juice acceptance was expressed as BrimA = TSS – k * TA, where 

k is the tongue’s sensitivity index which normally ranges from 2 to 10. A value of k = 2 was 

used to avoid a negative BrimA index (Fawole & Opara, 2013c).  All measurements were 
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made on 10 individual fruit juice samples for each treatment. 

2.7. Sensory attributes 

Sensory evaluation was carried out using a trained panel of 6 members of the Postharvest 

Technology Research Group at Stellenbosch University who are familiar with the 

characteristic taste of pomegranate fruit and regular consumers (Caine et al., 2003; Sudha et 

al., 2007; Chen & Opara, 2013). Panelists received further orientation on pomegranate 

attributes (Vázquez-Araújo et al., 2011).  Sensory evaluation was carried out on arils (10 g) 

served at 21 °C on Petri dishes randomly coded (Fawole & Opara, 2013b). The descriptive 

test required panelists to rate the intensity of the attributes on a scale of 0 – 4 (0 = none, 1 = 

slight, 2 = moderate, 3 = much, 4 = very much). The descriptive attributes evaluated for the 

study included sweet taste, sour taste, crispness, astringency, off flavor, juiciness, grittiness 

and hardness. Sensory evaluation was not carried out beyond 3 months of storage due to 

decay and limited sample size.  

3. Statistical analysis  

Statistical analysis was carried out using Statistica software (Statistica version 14.0, StatSoft 

Inc., Tulsa, USA). Data was subjected to factorial analysis of variance (ANOVA) at 95 % 

confidence interval. Main effects (FLU concentration and storage duration) and their 

interaction effects (concentration*storage duration) were also assessed. Post-hoc test 

(Duncan’s Multiple Range Test) was used to test for statistical significance such that 

observed differences at p < 0.05 were considered significant. Principal component analysis 

(PCA) was carried out using XLSTAT software version 2012.04.1 (Addinsoft, France). 

4. Results and discussion 

4.1. Physiological response 

4.1.1. Fruit respiration rate  

Results showed that fruit respiration rate was influenced mainly by storage duration (p < 

0.0001), with upsurge in respiration rate between 1 to 3 months of storage followed by a 

decline in the last month regardless of FLU concentration (Fig. 1). The first month of storage 

showed differences in fruit respiration rate, with fruit treated with 150 and 600 mg/L FLU 

concentration showing the highest and lowest respiration rates, respectively. Thereafter, fruit 
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respiration rate followed a similar trend with no significant difference among concentrations 

as storage progressed (Fig. 1). Respiration of pomegranate fruit has been found to increase 

with advancement of storage (Barman et al., 2011; Fawole & Opara, 2013a). The initial 

increase in respiration could be due to increased fruit stress as a result of senescence and 

metabolic reactions as these phenomena have been reported to trigger respiration of 

pomegranate fruit (Fawole & Opara, 2013a). The decline in respiration at the end of storage 

could possibly be due to excessive senescence, physiological disorders and cell death of the 

membrane due to reduced number of living cells (Nanda et al., 2001; D’Aquino et al., 2010). 

Therefore, treating pomegranate fruit with fludioxonil did not significantly affect the 

respiration rate of stored fruit since the changes were mainly influenced by the duration of 

storage (FLU concentration = 0.2760, Duration = < 0.0001).  

4.1.2. Weight loss  

Weight loss is considered as the main cause of loss of visual quality in horticultural produce 

as excessive transpiration leads to desiccation, shriveling and hastened senescence (Ben-

Yehoshua & Rodov, 2003). In this study, fruit lost weight over the entire storage period but 

the magnitude was dependent on concentration of fludioxonil treatment as evidenced by the 

significant effects of concentration (p < 0.0001) and storage duration (p < 0.0001) (Fig. 2). 

After cold storage, fruit treated with FLU at 150 mg/L concentration showed the highest 

weight loss (26.77 %) compared with those treated with 300 mg/L (20.86 %) or 600 mg/L 

(20.98 %) FLU (Fig. 2).  In particular, fruit treated with 150 mg/L FLU concentration had 

higher weight loss (8.51 %, 15.8 %, 21.81 % and 26.86 %) after storage (1, 2, 3 and 4 

months, respectively). Since weight loss is linked to respiration rate (Fawole & Opara, 

2013a), the high weight loss could be explained by the high respiration rate that was observed 

for this treatment after the first and last month storage (Fig. 1). Treatment of pomegranate 

fruit with higher FLU concentrations (300 and 600 mg/L) reduced weight loss during cold 

storage (Fig. 2).  The reduction in weight loss could possibly be due to the reduction in fruit 

decay incidence especially for fruit treated with the high concentrations because high decay 

incidences have been reported to increase weight loss of other types of fruit such as citrus 

(Montero et al., 2010).  

4.1.3. Fruit decay  

Fruit decay is a major cause of postharvest loss during storage of pomegranate fruit. Fruit 

decay increased with storage time, with low decay incidences observed after the first 2 
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months of storage but later increased with long storage (Fig. 3A). High decay incidence was 

observed for control fruit especially after 3 and 4 months of storage. It is also worth 

mentioning that percentage fruit decay seemed to decrease with FLU concentration at the end 

of the storage period (4 months), with 150, 300 and 600 mg/L having 10.83 %, 12.39 % and 

15.76 % lower decay compared to control respectively (Fig. 3A). The decrease in decay 

among treated fruit is expected since fludioxonil is a fungicide with excellent protective and 

preventive activity on a large number of pathogens (D’Aquino et al., 2010). Fludioxonil is a 

reduced-risk fungicide that has a wide spectrum against many pathogens and has been used to 

control decay in a number of fruits. It has been shown to be effective against decay in other 

crops like stone fruit (Adaskaveg et al., 2005), pear (Schirra et al., 2009) and citrus 

(D’Aquino et al., 2010; D’Aquino et al., 2013), and has also been shown to be highly 

effective at low rates against large spectrum of fungi such as Botrytis cinerea and Penicillium 

spp. (D’Aquino et al., 2010). Despite FLU reducing the decay in the fruit, complete control 

of decay was not achieved. This is possible because FLU is non-systemic and is not able to 

move deep through the peel of the fruit (D’Aquino et al., 2013). Similar results have been 

reported with good control of decay of FLU in various fruit including citrus (Zhang, 2007), 

cactus pear (D’Aquino et al., 2015) and pomegranate (D’Aquino et al., 2010).  

4.1.4. Internal decay  

The major internal decay disorder observed was heart rot, also known as black heart, caused 

by Aspergillus niger and Alternaria spp., which is characterised by a mass of black arils 

(Yehia, 2013). This is a preharvest disease that affects the postharvest quality of pomegranate 

fruit and from the results, it increased with storage of fruit during the study (Fig. 3B). Fruit 

treated with 150 mg/L FLU concentration developed internal decay earlier but maintained the 

same percentage decay throughout the storage duration whereas 300 mg/L and control fruit 

developed decay after storage for 2 months. The highest concentration (600 mg/L) developed 

decay latest and had the lowest percentage internal decay at the end of storage. No direct 

relationship can be drawn on the effect of fludioxonil on the internal decay of pomegranate 

fruit as some treatments had higher decay than untreated fruit although it could possibly be 

that fludioxonil reduced the growth and proliferation of the fungi that caused internal decay 

after long storage. Internal decay due to heart rot has been reported to occur as a result of 

infection of fruit during flowering in the orchard (Zhang & McCarthy, 2012; Ezra et al., 

2015). The efficacy of FLU on internal decay could be questionable because despite being an 

excellent protective and preventative fungicide, its curative activity is decreased on old 
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established latent infections because it is a non-systemic fungicide and also due to the 

difficulty of the solution in entering the crown of pomegranate fruit (D’Aquino et al., 2010). 

Therefore, being a preharvest condition (Zhang & McCarthy, 2012; Ezra et al., 2015), this 

could probably best be prevented by observing good agricultural practices and application of 

preharvest treatments. 

4.1.5. Aril browning  

Aril browning increased with progressive storage of fruit with untreated fruit consistently 

showing lower browning of arils compared to treated fruit throughout the storage duration 

(Fig. 3C). Aril browning has been associated with enzymatic oxidation and chilling injury in 

pomegranate fruit (Mirdehghan & Rahemi, 2005). The lower browning of untreated fruit 

could be related to the higher chilling injury that was observed for treated fruit compared to 

control (Fig. 4A and B). FLU is a non-systemic fungicide (D’Aquino et al., 2010) and hence 

does not migrate deep into the fruit. Therefore, its protective effect could be more external 

with no direct effect on internal (aril) browning. Fawole & Opara (2013a) also observed that 

internal disorders such as browning and decay increased with progressive storage of 

‘Bhagwa’ and ‘Ruby’ pomegranate cultivars stored for 16 weeks at 5, 7 and 10 °C.  

4.1.6. Chilling injury incidence and severity 

Chilling injury (CI) developed from the first sampling date, with an increase in chilling injury 

percentage incidence as storage advanced indicating an increase in number of affected fruit 

with advancing storage period. Control fruit had a low incidence of CI while fruit treated with 

150 and 300 mg/L FLU concentrations had high incidences throughout the storage period 

with incidences of 68.58 % and 66.79 % CI, respectively, at the end of storage (Fig. 4A). 

Despite the occurrence of chilling injury, the severity of the physiological disorder (index) 

remained below trace level for all concentrations throughout the storage period (Fig. 4B). 

During chilling conditions, there is a change in state of lipid cell membranes from liquid-

crystalline to solid-gel state which causes deleterious effects on the tissues (Mirdehghan et 

al., 2007; Barman et al., 2011). From the results, it is apparent that fludioxonil does not 

possess antioxidant properties that could have reduced chilling injury symptoms in treated 

fruit. Despite its strong antifungal property (D’Aquino et al., 2010), the current study 

suggests that fludioxonil had no beneficial effect of alleviating chilling injury in pomegranate 

fruit. A similar observation was reported for citrus (oranges, lemon, grapefruit and 

clementine mandarins) treated with Fludioxonil and Imazalil at 20 °C (Schirra et al., 2005). 

Stellenbosch University  https://scholar.sun.ac.za



  

96 
 

On the contrary, however, fludioxonil has been reported to reduce the typical symptoms of 

chilling injury and preserve fruit freshness of cactus pear especially when used at 50 °C 

(D’Aquino et al., 2015). The differences could be due to fruit physiology and morphology, as 

different fruits may response differently to chemical treatments. 

4.1.7. Husk scald incidence and severity 

Husk scald together with weight loss and skin pitting are the main physiological disorders 

responsible for market downgrading in pomegranates (D’Aquino et al., 2012). Husk scald 

incidence increased with storage, with low incidences observed after the first two months of 

storage but greatly increased after the last months of storage (Fig. 5A). After the first two 

months, control fruit had the lowest husk scald incidence while fruit treated with 300 mg/L 

FLU concentration had the highest incidences (Fig. 5A). After 3 months, 150 mg/L 

concentration showed the lowest scalding but by the end of storage, regardless of treatment, 

all fruit had developed scald (Fig. 5A). Husk scald severity (index) was low for the first two 

months of storage with all treatments having below trace scald (Fig. 5B). After 3 months of 

storage, scald was between trace and slight with fruit treated with 600 mg/L concentration 

showing the lowest incidence. The last month of storage was prominently characterised by 

high scald severity between moderate and severe although control fruit showed the lowest 

severity (Fig. 5B). This indicates that treating fruit with fludioxonil was not effective in 

alleviating husk scald in pomegranate fruit. This is in agreement with D’Aquino et al. (2012) 

who reported no significant effect of fludioxonil on husk scald and overall appearance of 

pomegranate fruit (cv. Primosole) during 12 weeks of storage at 8 °C. However, application 

of fludioxonil alone or with sodium bicarbonate reduced peel disorders such as scald on 

cactus pear, with treatments resulting in better fruit appeal compared to untreated fruit 

(D’Aquino et al., 2015). Husk scald is as a result of enzymatic oxidation of the phenolic 

compounds in the fruit peel. Tissue browning is reported to be due to oxidation of phenolic 

compounds into quinone compounds under aerobic conditions by polyphenol oxidase. The 

quinones then undergo polymerization forming brown pigments thus leading to browning 

(Kahn, 1983; Zhang & Zhang, 2008). Zhang & Zhang (2008) reported enzyme-mediated 

denaturation of skin tannins as the basis for pomegranate fruit browning. This was further 

supported by D'Aquino et al. (2010) who observed that husk scald of ‘Wonderful' 

pomegranate at 6 or 10 °C decreased and progressed at a slower rate when the tension of 

oxygen reduced, however, the incidence of scald increased after transfer of fruit to 20 °C in 

conventional atmosphere. The development of scald in all fruit at the end of storage (Fig. 5B) 
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indicates the relevance of combining FLU treatment with other treatments that can control 

oxygen supply to the fruit during storage, for instance, physical treatments like wrapping, 

coatings and controlled atmosphere. 

4.2. Fruit firmness  

As shown in Figure 6, changes in fruit firmness were driven by both FLU concentration (p = 

0.0228) and storage duration (p = 0.0023). Fruit firmness at the end of storage was better 

maintained among fruit treated with FLU compared to control (Fig. 6). The loss in fruit 

firmness during storage is due to loss of cell wall integrity resulting from the breakdown of 

pectic substances, which in turn leads to an increase in soluble pectin and thus a decline in 

firmness (Sayyari et al., 2011). Generally, the decline in fruit firmness was more evident for 

control fruit at the later period of storage (3 - 4 months), indicating a faster breakdown of 

pectic substance in the peel of control fruit (Sayyari et al., 2011).  

4.3. Aril texture  

In this study, aril elastic modulus decreased from harvest, however, no significant differences 

were observed during storage as evidenced by the non-significant effect of FLU 

concentration (p = 0.3719), storage duration (p = 0.3641) and their interaction (p = 0.2688) 

(Table 1). Aril hardness was however influenced by FLU concentration and storage duration 

(p < 0.0001). Aril hardness increased after the first two months and thereafter decreased after 

the last two months of storage for control and 150 mg/L FUL concentration while 300 mg/L 

FLU concentration decreased after two months and then increased after 3 and 4 months of 

storage with significant interaction of the two factors (p < 0.0001).  Aril toughness generally 

decreased compared to values at harvest except for 600 mg/L FLU concentration, which 

showed highest toughness after 4 months of storage (172.4 ± 6.96 N) (Table 1). Changes in 

aril toughness were influenced by FLU concentration (p < 0.0001) with control fruit having 

lowest aril toughness values compared to FLU treated fruit all along the storage duration. 

Decrease in aril toughness could be attributed to softening of arils as a result of membrane 

deterioration (Bchir et al., 2012; Fawole & Opara, 2013b) indicating that arils of control fruit 

softened faster than those of FLU treated fruit. Bioyield on the other hand was stable 

throughout storage with no significant effect of FLU concentration (p = 0.9988) or storage 

duration (p = 0.8255) (Table 1). 
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4.4. Fruit peel and aril colour parameters 

4.4.1. Fruit peel colour 

Colour of pomegranate is an important quality attribute that is fundamental for consumer 

preference (Pathare et al., 2013). Generally, peel redness (a*) decreased with storage for all 

concentrations, with no significant difference in peel redness amongst FLU concentrations 

except at the end of 3 months in cold storage (Table 2). However, changes in peel redness 

were influenced by storage duration (p < 0.0001). The decrease in redness could be as a result 

of breakdown of peel colour pigments due to senescence during storage and also peel 

browning as a result of physiological disorders (Arendse et al., 2014). Peel colour intensity 

(C*) followed a similar pattern with progressive storage, irrespective of concentration during 

a short term storage (Table 2). It is, however, worth mentioning that after 3 months of 

storage, control fruit had the highest colour intensity (C* = 47.88) while fruit treated with 150 

mg/L FLU concentration had the lowest values (C* = 38.23) (Table 2). Storage duration 

affected peel hue angle (ho) (p < 0.0001) which generally increased with fruit storage with no 

significant differences observed at all storage periods for all concentrations (Table 2). Again, 

this indicates loss of red colouration in fruit peel with storage duration possibly due to the 

development of physiological disorders such as husk scalding in fruits and degradation of 

anthocyanin pigments (Arendse et al., 2014). The findings in this current study corroborate 

the report by D’Aquino et al. (2012) who found that treating ‘Primosole’ pomegranates fruit 

with FLU (at 600 mg/L) had no significant effects on the overall appearance after cold 

storage at 8 °C for 12 weeks.  

4.4.2. Aril colour 

Results showed a decrease in aril colour redness (a*) for all concentrations after the first 3 

months of storage followed by a slight increase with long storage. The effect of FLU 

concentration was significant (p < 0.0001) with untreated fruit having highest aril a* from the 

second to the last month of storage (Table 2). The initial decrease in aril a* could be 

attributed to browning of arils due to breakdown of red colour pigments (Arende et al., 2014).  

A similar trend was observed for aril colour intensity (C*) with untreated fruit having 

significantly higher aril C* throughout the storage duration and significant effect of 

concentration (p < 0.0001) (Table 2). The high C* in untreated fruit corresponds with the 

highest aril a* indicating greater anthocyanin biosynthesis in control compared to treated 
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fruit. The high a* and C* in untreated fruit can be related to the lower aril browning that was 

observed for untreated fruit (Fig. 3C). However, although arils from treated fruit had lower 

C* and a* values, the aril colour was sufficient enough for consumption. Aril hue angle (ho) 

differed with storage of fruit with no significant differences observed among all 

concentrations at all storage times (Table 2). The total colour difference (TCD) indicates the 

colour disparity between the peel and aril and this was influenced by the storage duration. 

TCD decreased during storage however, no significant differences were observed among 

concentrations during storage with the exception of month 3 (Table 2).  This effect of FLU is 

similar to a study by Feliziani et al. (2015) who reported no significant change in the color 

luminescence (L*), red tone (a*) and yellow tone (b*) of ‘Alba’ and ‘Romina’ strawberry 

fruit after a fungicide strategy of cyprodinil and fludioxonil was applied as preharvest 

treatments while benzothiadiazole and chitosan treatments reduced a* and L* values 

respectively.  

4.5. Chemical properties 

4.5.1. pH, TA, TSS, TSS/TA and BrimA  

There were slight fluctuations observed in pH during storage of fruit (Table 3), with a 

significant interaction (p < 0.0001) between FLU concentration and storage duration. With 

regard to TA, changes were driven by the combined effect of storage duration (p < 0.0001) 

and FLU concentration (p = 0.0004) (Table 3). In general, TA decreased with prolonged 

storage duration except after month 3 where slight increases were observed probably due to 

the concentration of acids resulting from weight loss (Fawole & Opara, 2013a). Organic acids 

(which mainly contribute to titratable acidity) have been reported to be the major substrates 

for respiration during storage of pomegranate fruit (Kader et al., 1984; Fawole & Opara, 

2013a) hence the reduction in TA as storage advanced. The decrease in TA, therefore, could 

be due to utilisation of organic acids in fruit respiration. Similarly, when ‘Montenegrina’ 

tangerine was treated with the fungicide Imazalil or sodium bicarbonate and stored at 5 °C for 

20 days, no changes were observed in the TA for Imazalil treatment whereas sodium 

bicarbonate reduced fruit acidity slightly (Montero et al., 2010). However, Rouchaud et al. 

(1984) reported that preharvest treatment of ‘Jonagold' apple trees with fungicides generally 

increased the fruit citric acid content while total acids were generally not changed after 

postharvest of fruit and storage at 2 °C for 15 days. In fruit, each acid and sugar have its own 

taste and acidity enhances fruit flavour (Rouchaud et al., 1984). 
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There was a general decrease in TSS during storage with no significant (p = 0.6640) 

effect of concentration on TSS values (Table 3).  At the end of storage, no significant 

differences were observed among the treated fruit, which had lower TSS values than control 

fruit. In addition, a significant interaction (p = 0.0001) between concentration and storage 

duration was observed (Table 3). A similar reduction in TSS during storage of pomegranate 

fruit has been previously reported (Artés et al., 1998; 2000; Fawole & Opara, 2013a).  

However with regard to the postharvest treatment of pomegranate fruit, Mirdehghan et al. 

(2007) observed no changes in TSS during storage of pomegranate fruit treated with 

polyamines. In the current study, the observed reduction in TSS with prolonging storage 

duration could be attributed to the utilisation of sugars in some metabolic process such as 

fruit respiration during storage (Fawole & Opara, 2013a).  

TSS/TA ratio and BrimA, based on changes in soluble solids and titratable acidity in fruit 

during storage determine the characteristic taste and flavour of fruit (Zarei et al., 2011; 

Arendse et al., 2014). Generally, TSS/TA ratio increased with prolong storage duration 

(month 3 being an exception), suggesting faster depletion of organic acids compared to TSS 

in the fruit (Table 3). As regard BrimA, there were no significant differences amongst 

treatments. As indicated by the factorial analysis, the observed changes were influenced by 

both FLU concentration and storage duration for TSS/TA ratio, while a significant interaction 

between FLU concentration and storage duration was observed for BrimA (Table 3). It is also 

worth mentioning that TSS/TA ratio in control fruit was lower compared to treated fruit, 

indicating a loss in taste and flavour of the fruit.  

4.6. Sensory attributes 

After storage of fruit for one month, sweet taste of fruit arils was high while sour taste was 

low for fruit treated at 600 mg/L FLU concentration (Fig. 7A). Off flavour of arils was 

generally low, less than 0.5 for all concentrations. Astringency was more pronounced for 150 

mg/L and 300 mg/L FLU concentration. Crispiness and juiciness were greater for 600 m/L 

while grittiness and hardness were high for 300 mg/L and control fruit (Fig. 7A). From the 

results, treating pomegranate fruit with the highest concentration (600 mg/L) of fludioxonil 

achieved the best sensory characteristics after storage for 1 month. 

After two months of storage, fruit treated with 150 mg/L FLU concentration had a 

high sweet taste (Fig. 7B) which can be related to the higher TSS that was observed for this 

treatment (Table 2). Sour taste was generally low with similarities among concentrations. 
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Pomegranate of the ‘Wonderful’ cultivar is a sweet-sour cultivar and its acidic content 

contributes the taste of the cultivar. The sweet-sour taste is preferred in some regions of the 

world depending on consumer preference (Holland et al., 2009). The sour taste is only 

undesirable when the sourness is extreme as can sometimes happen in some fruits. Off 

flavour was generally very low less than 0.4 (Fig. 7B). Off flavour indicates spoilage or 

fermentation in the fruit due to a build-up of alcoholic by-products like ethanol. This is 

usually more important in minimally processed arils and whole fruit treatments that involve 

alternating oxygen supply which may cause anaerobic respiration such as MAP, controlled 

atmosphere storage and film wrapping. Aril crispiness and juiciness was high for 150 mg/L 

and control fruit. Grittiness and hardness were generally low but highest for 600 mg/L. After 

storage for 2 months, 150 mg/L FLU concentration maintained the best sensory parameters. 

As storage progressed to three months, the untreated fruit had the highest sweet taste 

which could be due to the concentration of sugars from weight loss (Fig. 7C). Sour taste was 

high for 150 mg/L and low for untreated fruit while off flavour increased for all 

concentrations compared to earlier storage periods. Astringency was still quite low among 

concentrations with 150 mg/L having the highest values while grittiness was high for 300 

mg/L (Fig. 7C). Although fruit treated with 600 m/L FLU concentration had the highest aril 

hardness, the treatment resulted in the best aril crispiness and juiciness. Untreated fruit had 

good sensory quality although 600 mg/L FLU concentration retained the best characteristics 

for most sensory attributes. 

4.7. Multivariate analysis 

4.7.1. Pearsons correlation analysis of physiological responses and disorders 

Pearsons’ correlation was used to investigate the relationships between the physiological 

disorders. Fruit weight loss increases with increased respiration and decay and this was 

indicated by the moderate positive correlation (r = 0.63 and r = 0.77 for respiration rate and 

weight loss respectively) (Table 4). Weight loss of fruit strongly correlated with fruit decay, 

chilling injury, scald and aril browning indicating the impact of physiological disorders on 

fruit weight. Chilling injury correlated strongly with aril browning supporting findings by   

Elyatem & Kader (1984), who reported that chilling injury affects fruit internal quality. Husk 

scald strongly associated with fruit decay (Table 4) suggesting that development of scald 

enhances suspetibilty of fruit to decay possibly due to increased senescence. (Defilippi et al., 

2006) reported that scald does not affect internal quality of fruit however, the strong positive 

correlation showed that development of scald increases aril browning severity (r = 0.93) 
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(Table 4). Internal decay correlated moderately with respiration rate, weight loss, chilling 

injury, scakld and aril browning. 

4.7.2. Principal component analysis 

Examination of eigenvalues and loadings showed that major changes in fruit were dependent 

on storage duration (Table 5).The factor scores relate with the factor loadings, as the factor 

loadings indicate the strength of correlation between the variables and factors. The factor 

scores can be interpreted with factor loadings. Classification of factor loadings is considered 

‘strong’ for values > 0.75, ‘moderate’ for 0.75 - 0.50 and ‘weak’ for 0.50 - 0.30 (Liu et al., 

2003; Fawole & Opara, 2013d). Along F1, positive factor scores for 150 mg/L FLU 

concentration (month 1) corresponded moderately to strongly with a crispness, peel a* and 

C*, aril a* and C* and elastic modulus (Table 5). High negative scores along F1 for 150 

mg/L (month 3) correlated with sour taste, off flavour, grittiness, hardness, aril hardness peel 

ho and pH (Table 5). Along F2, high positive scores correlated strongly with sweet taste, 

crispness, juiciness, pH, TSS/TA and BrimA while high negative scores strongly correlated 

with sour taste, grittiness, aril ho and TA (Table 5). In general, the study showed that fruit 

stored for 2 months had the best sensory attributes and described by sweet taste, crispness, 

juiciness and TSS while fruit stored for a long time (3 months) had sour taste, off flavor, 

grittiness and hardness (Fig. 8A and B). This indicated quality and sensory deterioration of 

fruit with long term storage. 

5. Conclusions 

Treating pomegranate fruit with FLU concentrations improved fruit attributes such as fruit 

reducing fruit decay, weight loss, fruit firmness and improving sensory quality. The sensory 

attributes of FLU treated fruit were maintained especially when treated with 600 mg/L FLU 

concentration.  However, the fungicide was not beneficial in reducing the incidence of 

physiological disorders such as aril browning, chilling injury, husk scald and maintaining aril 

redness. Therefore, further studies should be carried out on the use of hurdle technology 

where the fungicide may be used in combination with other technologies such as physical 

treatments to fully harness the potential of the chemical as postharvest technology for 

improved handling of pomegranates (cv. Wonderful). 
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Table 1 Aril textural parameters of pomegranate fruit treated with fludioxonil during storage for 4 months at 5 °C and additional 4 days at 20 °C 

Storage duration 

(month) 
Concentration (mg/L) 

Elastic 

modulus 

(N/mm) 

Hardness     Toughness Bioyield  

(N)  (N.mm) (N) 

Harvest  

 

8.57 ± 0.49 157.20 ± 2.81 169.90 ± 3.83  5.96 ± 0.82 

1 
     

 
0 (Control) 5.85 ± 0.49ab 139.31 ± 3.05e 119.80 ± 4.36d 6.17 ± 0.78a 

 
150 7.21 ± 0.65a 148.80 ± 4.15a-d 154.10 ± 6.60bcd 6.48 ± 0.74a 

 
300 5.35 ± 0.58ab 155.40 ± 3.55ab 163.40 ± 6.29ab 4.91 ± 0.61a 

 
600 5.63 ± 0.48ab 154.20 ± 3.32abc 165.20 ± 5.21ab 5.48 ± 0.48a 

2 
     

 

0 (Control) 6.21 ± 0.46ab 142.80 ± 5.42cd 152.30 ± 8.38bc 6.25 ± 0.51a 

150 4.99 ± 0.32ab 158.10 ± 4.07a 165.30 ± 5.49ab 5.44 ± 0.39a 

300 6.14 ± 0.41ab 139.60 ± 2.19d 155.30 ± 3.71abc 6.25 ± 0.55a 

600 6.30 ± 0.59ab 154.50 ± 3.95abc 164.90 ± 5.85ab 6.42 ± 0.73a 

3 

     

 

0 (Control) 6.42 ± 0.51a 151.40 ± 3.57a-d 152.60 ± 5.91bc 5.96 ± 0.62a 

150 5.02 ± 0.49ab 153.90 ± 3.07abc 160.80 ± 5.41abc 5.79 ± 0.61a 

300 5.47 ± 0.35ab 154.00 ± 3.73abc 164.10 ± 4.74ab 6.05 ± 0.54a 

600 5.54 ± 0.47ab 155.50 ± 3.74ab 162.80 ± 4.34ab 5.90 ± 0.56a 

4 

     

 

0 (Control) 5.34 ± 0.63ab 143.20 ± 3.84bcd 143.30 ± 5.66c 6.53 ± 0.92a 

150 4.71 ± 0.43b 145.80 ± 3.23a-d 151.60 ± 3.92bc 5.80 ± 0.59a 

300 5.37 ± 0.33ab 152.50 ± 2.48abc 167.30 ± 3.96ab 6.91 ± 0.56a 

600 5.76 ± 0.51ab 157.50 ± 5.47a 172.40 ± 6.96a 6.91 ± 0.63a 

Significance level 

     

 

Concentration (A) 0.3719 <0.0001 <0.0001 0.9988 

 

Storage duration (B) 0.3641 <0.0001 0.0525 0.8255 

  A x B 0.2688 <0.0001 0.0051 0.3695 

Data presented as mean± SE. Different letters across concentration and storage duration for each attribute differ significantly (p < 0.05) according to Duncan’s multiple range 

test. SE - standard error 
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Table 2 Peel and aril colour parameters of pomegranate fruit treated with fludioxonil during storage for 4 months at 5 °C and additional 4 days 

at 20 °C 

Storage duration 

(month) 

Concentration 

(mg/L) 
Peel     Aril      TCD 

    a* C* h° a* C* h°   
Harvest 

 
42.54 ± 1.29 51.67 ± 1.03 34.73 ± 1.05 16.33 ± 0.69 18.09 ± 0.78 24.27 ± 1.04 46.15 ± 0.92 

1 

        

 

0 (Control) 38.21 ± 2.47ab 49.09 ± 1.59a 38.63 ± 2.75bcd 20.19 ± 1.34a-d 22.27 ± 1.44abc 24.86 ± 1.16a 40.31 ± 1.75abc 

 

150 39.47 ± 1.44a 48.48 ± 1.18a 35.36 ± 1.43d 18.28 ± 0.98b-f 20.19 ± 1.02a-f 23.33 ± 1.46ab 43.29 ± 1.97a 

 

300 37.36 ± 2.27ab 46.67 ± 1.45ab 36.52 ± 2.69cd 20.23 ± 0.89abc 21.57 ± 1.10a-e 24.59 ± 1.61a 38.30 ± 1.60a-e 

 

600 38.27 ± 1.66ab 46.73 ± 1.29ab 35.12 ± 1.53d 17.87 ± 0.98b-f 19.43 ± 1.12a-f 22.17 ± 0.85ab 41.14 ± 1.43abc 

2 

       
 

 

0 (Control) 36.13 ± 1.85ab 47.37 ± 1.38ab 39.86 ± 2.36bcd 20.89 ± 1.68ab 22.78 ± 1.92ab 22.74 ± 0.83ab 39.10 ± 2.31a-d 

 

150 33.33 ± 1.41bcd 44.92 ± 0.84bc 41.08 ± 1.78a-d 17.85 ± 0.85b-f 19.23 ± 0.97b-f 21.25 ± 0.63ab 40.85 ± 1.41abc 

 

300 35.29 ± 1.64abc 47.26 ± 1.16ab 41.48 ± 1.94a-d 19.14 ± 0.81a-e 21.00 ± 0.93a-e 23.84 ± 0.94ab 42.27 ± 2.08ab 

 

600 33.76 ± 1.52bcd 44.40 ± 1.11bc 40.38 ± 1.74bcd 17.09 ± 0.68def 18.86 ± 0.81c-f 23.90 ± 1.38ab 38.22 ± 1.73a-e 

3 

    
 

  
 

 

0 (Control) 34.89 ± 2.19abc 47.88 ± 1.42ab 43.14 ± 2.47ab 20.59 ± 0.95ab 22.16 ± 1.09a-d 21.44 ± 0.50ab 43.80 ± 1.67a 

 

150 29.13 ± 1.01def 38.23 ± 0.77ef 41.96 ± 1.911abc 15.32 ± 0.56f 16.83 ± 0.64f 23.54 ± 1.12ab 35.43 ± 1.55cde 

 

300 30.45 ± 1.54c-f 41.80 ± 1.11cd 43.18 ± 1.84ab 16.99 ± 0.94ef 18.37 ± 1.11ef 21.28 ± 0.77ab 36.92 ± 0.94b-e 

 

600 30.94 ± 1.16cde 42.54 ± 1.01cd 43.57 ± 1.54ab 17.09 ± 0.68c-f 18.62 ± 0.83def 21.85 ± 0.50ab 43.55 ± 2.01a 

4 

    
  

 
 

 

0 (Control) 28.48 ± 1.29ef 40.30 ± 0.75def 44.61 ± 2.11ab 21.43 ± 1.06a 22.89 ± 1.13a 20.49 ± 0.49b 33.14 ± 1.92ef 

 

150 26.01 ± 1.06f 35.16 ± 0.72f 41.57 ± 2.12a-d 18.50 ± 0.94a-e 20.43 ± 1.10a-e 24.29 ± 1.09a 28.92 ± 2.31f 

 

300 26.21 ± 1.01ef 36.06 ± 0.98f 42.65 ± 1.92abc 19.57 ± 1.05a-e 21.55 ± 1.13a-e 24.00 ± 1.38ab 29.76 ± 1.89f 

 
600 25.96 ± 1.11f 38.45 ± 0.87ef 47.41 ± 1.47a 17.14 ± 0.67c-f 18.33 ± 0.89ef 23.32 ± 1.17ab 33.67 ± 1.60def 

Significance level 

        
 

Concentration (A) 0.157 <0.0001 0.6152 <0.0001 <0.0001 0.6146 0.1238 

 
Storage duration (B) <0.0001 <0.0001 <0.0001 0.0483 0.0598 0.1932 <0.0001 

  A x B 0.7878 0.0033 0.7304 0.6649 0.7566 0.0595 0.0052 

Data presented as mean ± SE. Different letters across concentration and storage duration for each attribute differ significantly (p < 0.05) according to Duncan’s multiple range 

test. SE - standard error 
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Table 3 Chemical attributes and juice colour of pomegranate fruit treated with fludioxonil during storage for 4 months at 5 °C and additional 4 

days at 20 °C 

Storage duration 

(month) 

Concentration 

(mg/L) 
pH 

TA (% citric 

acid) 
TSS (°Brix) TSS/TA BrimA 

Juice colour 

absorbance (520nm) 

Harvest  

 

3.28 ± 0.03 1.68 ± 0.08 16.2 ± 0.16 9.98 ± 0.41 12.84 ± 0.18 3.28 ± 0.01 

1 

 
 

   
 

 

 

0 (Control) 2.98 ± 0.07h 2.53 ± 0.28a 14.83 ± 0.21d 6.40 ± 0.85d 9.76 ± 0.60g 3.08 ± 0.14abc 

 

150 3.05 ± 0.05gh 2.46 ± 0.17a 15.22 ± 0.24bcd 6.43 ± 0.39d 10.31 ± 0.32efg 3.26 ± 0.01a 

 

300 3.15 ± 0.05fg 2.09 ± 0.11bc 15.81 ± 0.26ab 7.77 ± 0.47cd 11.63 ± 0.33bcd 3.18 ± 0.06abc 

 

600 3.38 ± 0.04cd 2.04 ± 0.17bc 16.01 ± 0.22ab 8.31 ± 0.69cd 11.92 ± 0.45bcd 3.27 ± 0.03a 

2 
       

 

0 (Control) 3.25 ± 0.15def 1.44 ± 0.14efg 15.21 ± 0.35bcd 11.33 ± 1.45b 12.75 ± 0.63ab 3.16 ± 0.07abc 

 

150 3.76 ± 0.05a 1.46 ± 0.09efg 16.06 ± 0.16a 11.37 ± 0.64b 13.14 ± 0.25a 3.26 ± 0.01a 

 

300 3.25 ± 0.03def 1.27 ± 0.08ghi 15.64 ± 0.23abc 12.58 ± 0.75ab 13.09 ± 0.37a 3.26 ± 0.01a 

 

600 3.23 ± 0.03def 1.36 ± 0.08fgh 15.27 ± 0.17a-d 11.59 ± 0.70b 12.55 ± 0.19abc 3.16 ± 0.08abc 

3 

       

 

0 (Control) 3.49 ± 0.05bc 2.24 ± 0.15ab 14.70 ± 0.41d 6.14 ± 0.33d 10.23 ± 0.59fg 3.20 ± 0.01ab 

 

150 3.21 ± 0.07ef 1.67 ± 0.07def 14.74 ± 0.20d 8.95 ± 0.38c 11.39 ± 0.25cde 3.18 ± 0.03abc 

 

300 3.63 ± 0.03ab 1.75 ± 0.04cde 15.28 ± 0.18bcd 8.80 ± 0.27c 11.78 ± 0.23bcd 3.24 ± 0.01a 

 

600 3.66 ± 0.05a 1.88 ± 0.08cd 14.91 ± 0.23cd 8.07 ± 0.44cd 11.15 ± 0.37def 3.14 ± 1.11abc 

4 

       

 

0 (Control) 3.61 ± 0.04ab 1.26 ± 0.04ghi 14.56 ± 0.19d 11.62 ± 0.32b 12.03 ± 0.16a-d 3.22 ± 0.01a 

 

150 3.35 ± 0.05cde 1.06 ± 0.06hi 13.74 ± 0.42e 13.19 ± 0.71ab 11.28 ± 0.45def 2.96 ± 0.13bc 

 

300 3.43 ± 0.04a 0.96 ± 0.05i 13.44 ± 0.29e 13.81 ± 0.89a 11.51 ± 0.36cd 2.96 ± 0.12bc 

 

600 3.37 ± 0.03cde 0.97 ± 0.08i 13.33 ± 0.19e 14.53 ± 1.11a 11.40 ± 0.28cde 2.95 ± 0.11c 

Significance level 

       

 
Concentration (A) 0.1723 0.0004 0.664 0.0018 0.0223 0.8767 

 
Storage duration (B) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0011 

  A x B <0.0001 0.1826 0.0001 0.4049 0.0020 0.1135 

Data presented as mean ± SE. Different letters across concentration and storage duration for each property differ significantly (p < 0.05) according to Duncan’s multiple range 

test. TA - titratable acidity; TSS - total soluble solids; SE - standard error 
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Table 4 Pearson’s correlation coefficient matrix between assessed physiological disorders 

          

Variables 

Respiration 

rate 

Weight 

loss 

Fruit 

decay 

CI 

severity 

% CI 

incidence 

Scald 

severity 

% Scald 

incidence 

Aril 

browning 

Internal 

decay 

Respiration rate 1 0.632 0.247 0.589 0.707 0.274 0.562 0.509 0.595 

Weight loss  1 0.766 0.690 0.733 0.864 0.860 0.912 0.566 

Fruit decay   1 0.267 0.348 0.867 0.761 0.734 0.489 

CI severity    1 0.970 0.573 0.573 0.741 0.577 

% CI incidence     1 0.596 0.679 0.782 0.715 

Scald severity      1 0.848 0.926 0.524 

% Scald incidence       1 0.917 0.691 

Aril browning        1 0.635 

Internal decay         1 

Values in bold are different at significance level of p < 0.05. Values in bold have moderate to strong correlation 

CI- chilling injury 
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Table 5 Factor scores, loadings, eigenvalues and variance (%) for the first two factors (F1 and F2) based on sensory and instrumental attributes of 

‘Wonderful’ pomegranate fruit treated with fludioxonil 

Factor loadings 

    F1 F2 

Sweet taste 0.196 0.825 

Sour taste -0.596 -0.685 

Off flavour -0.794 -0.114 

Astringency 0.432 -0.155 

Crispness 0.578 0.532 

Juiciness 0.427 0.633 

Grittiness -0.598 -0.714 

Hardness -0.703 -0.183 

Peel a* 0.899 -0.292 

Peel C* 0.934 -0.103 

Peel h° -0.602 0.377 

Aril a* 0.745 -0.104 

Aril C* 0.792 -0.123 

Aril h° 0.375 -0.582 

TCD 0.469 0.112 

Juice colour -0.016 0.407 

Fruit firmness 0.042 -0.483 

Aril hardness -0.551 0.055 

Elastic modulus 0.617 -0.125 

Toughness -0.479 0.490 

Bioyield 0.220 0.077 

pH -0.512 0.659 

TA 0.235 -0.783 

TSS 0.242 0.431 
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TSS/TA 0.005 0.777 

BrimA -0.041 0.809 

Eigenvalue 7.506 6.181 

Variability (%) 28.870 23.775 

Cumulative (%) 28.870 52.645 
Values in bold have moderate to strong correlation.  

TCD- total colour difference; TA- titratable acidity; TSS- total soluble solids 

 

 

   

Factor scores 

  Observation F1 F2 

Control_Month1 2.901 -4.102 

150 mg/L_Month1 2.954 -2.426 

300 mg/L_Month1 0.465 -3.183 

600 mg/L_Month1 1.019 0.302 

Control_Month2 2.932 2.543 

150 mg/L_Month2 0.239 4.847 

300 mg/L_Month2 1.596 1.886 

600 mg/L_Month2 0.457 1.762 

Control_Month3 0.626 -0.203 

150 mg/L_Month3 -5.057 -2.088 

300 mg/L_Month3 -4.853 0.290 

600 mg/L_Month3 -3.278 0.371 
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Fig. 1 Effect of fludioxonil concentration on respiration rate of pomegranate fruit during 

storage for 4 months at 5 °C and an additional 4 days at 20 °C. Each data point represents 

mean and error bars designate standard error (SE) of the mean. ----- Respiration rate at 

harvest. 
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Fig. 2 Weight loss of pomegranate fruit treated with fludioxonil during storage for 4 months 

at 5 °C and an additional 4 days at 20 °C. Each data point represents mean and error bars 

designate standard error (SE) of the mean.             
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Fig. 3 Influence of fludioxonil concentration on physiological disorders on pomegranate fruit 

during storage for 4 months at 5 °C and additional 4 days at 20 °C. External decay (A), 

internal decay (B), aril browning (C). 
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Fig. 4 Effect of fludioxonil on chilling injury incidence and index of pomegranate fruit 

during storage for 4 months at 5 °C and additional 4 days at 20 °C.  
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Fig. 5 Effect of fludioxonil on husk scald incidence and severity of pomegranate fruit during 

storage for 4 months at 5 °C and additional 4 days at 20 °C.      

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



  

122 
 

1 2 3 4
0

5

10

15

20
Control 150 mg/L

Concentration (A) = 0.0228

Duration (B) = 0.0023

AxB = 0.0702

abcabcab
a

bcdbcd
a-d

bcd
d

ab
a-d

cd d
a-d

ab
a-d

300 mg/L 600 mg/L

Storage duration (month)

F
ru

it
 f

ir
m

n
e
ss

 (
N

)

 

Fig. 6 Changes in fruit firmness of pomegranate fruit treated with fludioxonil and stored for 4 months 

at 5 °C and additional 4 days at 20 °C. -----Represents values at harvest.    
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Fig. 7 Radar plot showing averaged sensory scores of pomegranate fruit treated with 

fludioxonil during storage for 3 months at 5 °C and additional 4 days at 20 °C. The plot 

represents storage at month 1 (A), month 2 (B) and month 3 (C). 
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Fig. 8 Instrumental and sensory attributes of fruit stored for 3 months at 5 °C and additional 4 

days at 20 °C of ‘Wonderful’ pomegranate fruit showing Scree plot of variance explained by 

each factor of the principal components (A) and Principal component analysis showing 

variables and observations (B). 
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CHAPTER FIVE: Effects of fludioxonil and putrescine postharvest treatments 

on phytochemical, antioxidant properties and volatile composition of 

pomegranate fruit during long-term storage 

 

 

Stellenbosch University  https://scholar.sun.ac.za



  

126 
 

EFFECTS OF FLUDIOXONIL AND PUTRESCINE POSTHARVEST 

TREATMENTS ON PHYTOCHEMICAL, ANTIOXIDANT PROPERTIES AND 

VOLATILE COMPOSITION OF POMEGRANATE FRUIT DURING LONG-TERM 

STORAGE 

Abstract 

The study investigated the effects of postharvest chemical treatments (fludioxonil and 

putrescine) on the phytochemical, antioxidant properties and volatile composition during 

storage of pomegranate fruit. Pomegranate whole fruit (cv. Wonderful) were dipped in 

solutions of different concentrations of fludioxonil (0, 150, 300 & 600 mg/L) and putrescine 

(0, 1, 2 & 3 mM) for 2 min. Fruit were dried and stored for 4 months at 5 °C and 95 % RH, 

and analysed monthly for phytochemical, antioxidant properties and volatile composition. 

Ascorbic acid content of fruit declined slightly for both fludioxonil (FLU) and putrescine 

(PUT) at different concentrations. For both chemicals used, untreated fruit had the highest 

ascorbic acid after the storage period (114.70 mg AA/ 100 mL). Total phenolic content 

significantly decreased as storage progressed. Fruit treated with fludioxonil maintained 

higher phenolic content (252.40, 165.80, 262.20 mg GAE/ 100 mL) after the first two months 

of storage compared to control (130.70 mg GAE/ 100 mL) however, no significant 

differences were observed for the last two months of storage.  Putrescine only resulted in 

higher phenolic content after the second month of storage with no significant differences 

observed during the other storage periods. Total anthocyanin content (TAC) initially 

increased for fruit treated with fludioxonil but thereafter decreased as storage progressed. 

Fruit treated with FLU regardless of concentration had higher anthocyanin content compared 

to control after the first two months of storage but by the end of the storage duration, no 

differences existed among concentrations. Generally, putrescine treatment resulted in 

decrease in fruit TAC during storage, with only slight differences observed among PUT 

concentrations used. However, increase in antioxidant capacity of fruit was observed with 

prolonged storage regardless of concentration of FLU and PUT concentration. In total, thirty-

two volatile organic compounds belonging to six chemical groups (alcohols, aldehydes, acids, 

ketones, esters and terpenes) were identified in the investigated fruit, alcohols being the 

predominant group. However, volatiles belonging to terpene group evolved during later 

storage (2 - 4 months), indicating changes in fruit flavour with progressive storage. 
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1. Introduction  

The search for natural antioxidants from inexpensive and abundant food sources has attracted 

global attention (Anahita et al., 2015). In the recent years, there has been a spurred interest in 

consumption of fruits and vegetable due to their health benefiting bioactive constituent. High 

intake of fruits and vegetable has been linked to diminished morbidity of some diseases such 

as cardiovascular diseases, neurological damage and certain cancers (Aviram et al., 2001; 

Lansky & Newman, 2007; Anahita et al., 2015). Epidemiological studies have established the 

role of antioxidants in disease prevention through mechanisms such as averting chain 

reactions that generate free radicals and free radical neutralization (Ayala-Zavala et al., 2004; 

Garcia-Alonso et al., 2004; Stanner et al., 2004).  Pomegranate fruit (Punica granatum L.) is 

one of the oldest known edible fruits but has lately become popular because of its high 

antioxidant activity due to its phytochemicals such as phenolic compounds including 

anthocyanins (Opara et al., 2009; Fawole et al., 2012a; Mphahlele et al., 2016b). The 

antioxidant capacity of pomegranate fruit has been linked to polyphenols, ascorbic acid and 

anthocyanins present in the fruit (Gil et al., 2000; Seeram et al., 2008; Fawole et al., 2012a; 

Mphahlele et al., 2016b). Other bioactive compounds in pomegranate include catechin, 

epicatechin, ellagitannins and rutin among others (Mphahlele et al., 2016a). These 

compounds have diverse biological activities, for example, hindering oxidation through 

scavenging reactive oxygen species and increasing defense against chronic disease such as 

cardiovascular disorders and cancers (Fuhrman et al., 2005; Hong et al., 2008).  

Some studies have suggested the anti-inflammatory, anti-hypertension and anti-

mutagenic properties of polyphenolic compounds of pomegranate and its products (Lansky & 

Newman, 2007; Viuda-Martos et al., 2010; Fawole et al., 2012b). In local medicine, dried 

pomegranate fruit fractions have been used for treatment of diarrhoea, wound healing and 

control of bacterial action (Opara et al., 2009). The importance of pomegranate fruit on 

health has been appreciated hence the global increase in demand for the fruit.  However, 

pomegranate availability is majorly restricted to the harvesting season due to the high 

demand (Arendse, 2014). To increase fruit availability beyond its seasonality and improve 

quality and storability, a number of physical and chemical treatments are applied to the fruit 

(Opara et al., 2015). These treatments may however have different effects not only on fruit 

quality but also on phytochemical composition of the fruit. It is therefore important to study 

the effect of these treatments on health promoting bioactive compounds.  
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The volatile and phenolic constituents of pomegranate fruit are developed during 

harvest, postharvest and even during storage, resulting in changes in the overall pomegranate 

flavour (Fawole & Opara, 2013b,c). Furthermore, fresh pomegranate fruit has low aromatic 

intensity and flavours of commercial juices are different from that of fresh fruit due to losses 

from fruit processing (Melgarejo et al., 2011). Previous studies on aroma and flavour of 

pomegranate have focused on identification of unique volatile compounds produced by the 

ripe fruit (Calín-Sánchez et al., 2011; Melgarejo et al., 2011; Mayuoni-Kirshinbaum et al., 

2012; Fawole & Opara, 2013c; Mphalele et al., 2016b,c) and the effect of modified 

atmosphere packaging (MAP) on volatile composition (Caleb et al., 2013; 2015). Volatile 

compounds affect the sensory quality of fresh and processed fruit products (Calín-Sánchez et 

al., 2011).  Together with phenolic compounds, composition of volatile and aroma 

compounds depends on a number of factors such as climatic conditions, cultivar, harvest, 

storage conditions, postharvest treatments and processing (Calín-Sánchez et al., 2011).  

Considering the changes in quality occurring during long-term storage of 

pomegranate fruit, and the prospect of extending storage life by applications of postharvest 

chemical treatments, it is therefore crucial to investigate the potential for modulation of 

polyphenols and volatile composition of pomegranate by the application of fludioxonil and 

putrescine. So far, no studies have explored the effect of postharvest chemical treatments on 

volatile composition of pomegranate fruit. Therefore, the objective of this study was to assess 

the effects of exogenous application of postharvest chemical treatments (fludioxonil and 

putrescine) on the phytochemical, antioxidant properties and volatile composition of 

pomegranate fruit (cv. Wonderful). 

2. Materials and methods 

2.1. Plant material and chemicals 

Pomegranate fruit were obtained during commercial harvest from Heinrich F.R. Schaefer 

(HFR) farm (33º44ʹ26.185ʺS 18º44ʹ41.193ʺE), Western Cape, South Africa. Fruit were 

transported in well ventilated vehicle to the postharvest technology research laboratory where 

they were then manually sorted to get rid of the damaged ones (bruise, crack, sunburns) and 

the remaining fruit used for treatments. Putrescine (PUT) was purchased from Sigma Aldrich, 

South Africa while the fungicide was a commercial formulation of Fludioxonil (FLU) 

(Scholar®, Syngenta, South Africa) containing 23 % active ingredient (a.i.).  
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2.2. Treatments  

Fruit were separated into eight treatment groups with 108 fruit per group. Fruit were dipped 

for 2 min in a solution in 15 L of respective solutions. Fludioxonil and putrescine (containing 

20 % Tween-20) solutions were used. Fludioxonil was purchased from Sygenta®, South 

Africa and putrescine from Sigma Aldrich, South Africa. A dipping time of 2 min was 

selected based on preliminary studies in which different dipping times (2, 5 and 8 min) were 

tested, and 2 min was the most effective.  

The putrescine treatments included: 

(1) Immersion in water (control)  

(2) Immersion in 1 mM putrescine  

(3) Immersion in 2 mM putrescine  

(4) Immersion in 3 mM putrescine  

The fludioxonil treatments included:  

(1) Immersion in water (control)  

(2) Immersion in 150 mg/L fludioxonil 

(3) Immersion in 300 mg/L fludioxonil 

(4) Immersion in 600 mg/L fludioxonil 

After dipping in respective solutions, fruit surface was thoroughly dried by keeping fruit at 

ambient condition (20 ± 2 °C and 65 ± 2 % RH) for 12 h before cold storage.  

2.3. Packaging and storage 

Fruit were packed inside standard open top ventilated cartons (dimensions: 0.4 m long, 0.3 m 

wide and 0.133 m high) used for commercial postharvest handling of pomegranates.  All the 

treatment groups were stored at 5 °C and 95 % relative humidity for 4 months. Temperature 

and relative humidity (% RH) inside the cold room were recorded daily throughout the 

storage period using Tiny Tag TV-4500 data loggers (Gemini Data Logger, Sussex, UK). At 

the end of cold storage, a batch of fruit (n = 10) was placed at 20 °C and 65 - 70 % RH for a 

further 4-day period to simulate a reasonable retail sale period. Fruit were thereafter analyzed 

for phytochemical, antioxidant properties and volatile composition. Measurements were 

carried out on a monthly basis. Treatments were independently assessed by comparing 

concentrations within each chemical treatment used.  
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2.4. Analysis of phytochemicals  

2.4.1. Sample preparation 

Pomegranate arils were manually hand extracted from the fruit. Ten (10) fruit from each 

treatment group were used. Pomegranate juice (PJ) was extracted from the arils of each fruit 

using a using LiquaFresh juice extractor (Mellerware, South Africa). Crude PJ sample (0.5 

mL) was extracted with 14.5 mL of 50 % cold aqueous methanol in centrifuge tubes. The 

mixture was vortexed and sonicated in ice for 15 min. Thereafter, the mixture was 

centrifuged at 4000 rpm for 15 min at 4 °C (Merk, Eppendorf AG, Germany) to prevent 

particle interference when measuring absorbance. The supernatant was carefully collected 

and subsequently used for analysis of ascorbic acid, total phenolic content, total anthocyanin 

content and antioxidant capacity. All analyses were carried out in triplicate.  

2.4.2. Ascorbic Acid  

Ascorbic acid concentration was determined colorimetrically in triplicate using the method 

described by Barros et al. (2007) with some modifications (Fawole et al., 2012a). 

Pomegranate juice was extracted with 1 % metaphosphoric acid (MPA) (0.5 mL of PJ to 14.5 

mL of 1 % MPA). Mixture was vortexed for 2 min and sonicated for 3 min in cold water 

before centrifugation at 5000 rpm for 10 min at 4 °C. Approximately, 1 mL of the supernatant 

was mixed with 9 mL of 2, 6-dichlorophenolindophenol (dye), vortexed for 2 min and 

incubated in the dark for 10 min before the measurement read at absorbance 515 nm against a 

blank. Ascorbic acid content of each sample was calculated on the basis of the calibration 

curve of standard L-ascorbic acid. Results were expressed as milligram of ascorbic acid per a 

hundred millilitres of crude pomegranate juice (PJ) (mg AA/ 100 mL). 

2.4.3. Total phenolic content 

Folin-Ciocalteu (Folin C) method as described by Makkar et al. (2007) was used to determine 

the total phenolic content in triplicate. About 50 μL of diluted aqueous methanolic juice 

extracts in the test tube was mixed with 450 μL of 50 % methanol followed by the addition of 

Folin C reagent (500 μL) and 2.5 mL of sodium carbonate solution after 2 min. The mixture 

was vortexed and incubated in a dark chamber for 40 min at room temperature (20 °C) before 

measuring the absorbance at 725 nm using an UV-visible spectrophotometer (Thermo Fisher 

Scientific, Madson, USA). The results were presented as mean of duplicate analyses and 

expressed as milligrams of gallic acid equivalent per 100 mL of crude pomegranate juice (mg 
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GAE/ 100 mL). 

2.4.4. Total anthocyanin content  

Quantification of total anthocyanin content was determined using the pH differential method 

as described by Fawole et al. (2012a). PJ extract (0.5 mL) was mixed with 4.5 mL of two 

separate buffers, pH 1.0 and pH 4.5. Absorbance of the two buffers was measured at 510 and 

700 nm using a UV-visible spectrophotometer after blanking with 100 % methanol. Total 

anthocyanin concentration was calculated using equation (1) and expressed as mg cyanidin 3-

glucoside equivalent per 100 mL PJ (mg C3gE/ 100 mL PJ). 

Total monomeric anthocyanin (mg C3gE/ 100 mL) = A × MW × DF ×100
E × L

                  (1) 

Where, A = (A510-A700)pH1.0 – (A510-A700)pH 4.5; MW = anthocyanin molecular weight (449.2); 

DF = dilution factor; E = cyaniding-3-glucoside molar absorbance (26,900); L = cell 

pathlength (1 cm).  

2.4.5. Antioxidant activity  

DPPH radical-scavenging activity 

The radical scavenging activity of PJ was colorimetrically measured by its ability to scavenge 

2,2-diphenyl-1-picryl hydrazyl (DPPH) using a method by Fawole et al. (2012a). In triplicate 

15 µL PJ methanolic extract were diluted with 735 µL of 100 % methanol followed by 

addition of 750uL of 0.1mM methanolic DPPH solution. Samples were then vortexed and 

incubated in a dark chamber for 30 min. thereafter, absorbance was measured at 517 nm 

using a UV-vis spectrophotometer (Thermo Fisher Scientific, Madson, USA). A standard 

curve (with varying concentration 0.0-2.0 mM, with linear equation y = -2.433x + 0.5113 and 

R2 = 0.9915) was used to compare the absorbance. The free-radical scavenging capacity of PJ 

was expressed as ascorbic acid (mM) equivalent per 100 mL of crude PJ (mM AAE/100 mL).   

2.5. Gas chromatography- Mass Spectroscopy (GC-MS) analysis of volatile composition 

Headspace solid-phase micro-extraction (HS-SPME) as described by Melgarejo et al. (2011) 

was used to trap and extract volatile compounds from the sample vial headspace. In triplicate, 

fresh pomegranate juice (10 mL) was pipetted into a 20 mL SPME vial and 2.5 mL of 20 % 

Sodium chloride added to enhance the release of volatile compounds into the headspace and 

inhibit enzymatic degradation. An internal standard of Anisole (50 µL) was added. 
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Equilibration of the SPME vials was done at 50 °C for 10 min at 250 rpm in a PAL COMB-xt 

autosampler incubator. Thereafter, a fibre coated with 50/30 m divinylbenzene/-carboxen/-

polydimethylsiloxane (DVB/CAR/PDMS) was exposed to the sample headspace for 20 min 

at 50 °C. Volatile desorption from the fibre coating was done in the injection port of CTC at 

250 oC during 6 min in splitless mode. Volatile organic compounds trapped in the fibre were 

separated, identified and quantified on a gas chromatograph using Agilent 6890 N (Agilent, 

Palo Alto, CA), coupled with an Agilent mass spectrometer detector Agilent 5975 MS 

(Agilent, Palo Alto, CA). The GC–MS system was equipped with a polar Agilent 

Technologies ZB-FFAP capillary column (model Zebron 7HG-G009-11) with dimensions 30 

m × 250 mm i.d. and 0.25 μm film thickness. Helium carrier gas with a flow of 1.3 mL/min 

with average velocity of 42 cm sec-1 was used for analyses. The injector temperature was 

maintained at 250 °C. The oven temperature was started at 40 °C for 5 min and finally 

increased to 240 °C at 10 °C min-1 and held for 6 min. Compounds were identified by 

comparing the retention times (RI) with mass spectral libraries (NIST, version 2.0). For 

quantification, the calculated relative percentages were used (Mphahlele et al., 2016d). 

3. Statistical analysis 

Data was subjected to factorial analysis of variance (ANOVA) at 95 % confidence interval 

using Statistica software (Statistica version 14.0, StatSoft Inc., Tulsa, USA). Main effects 

(concentration and storage duration) and their interaction effects (concentration*storage 

duration) were also assessed. Post-hoc test (Duncan’s Multiple Range Test) was used to test 

for statistical significance such that observed differences at p < 0.05 were considered 

significant. Principal component analysis (PCA) was carried out using XLSTAT software 

version 2012.04.1 (Addinsoft, France). 

4. Results and discussion 

4.1. Ascorbic acid content 

Ascorbic acid (AA) content of FLU treatment remained steady up to the third month of 

storage with the exception of control fruit (Fig. 1A), where AA content was significantly 

higher than in treated fruit. This was followed by significant decreases in AA content in 

treated fruit below the amount obtained at harvest, however, AA content further increased in 

controlled fruit (Fig. 1A). In addition, according to factorial analysis, FLU concentration 
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showed a significant effect on AA content (p < 0.0001), however, the magnitude of FLU 

concentration cannot be established due to significant interaction between FLU 

concentration. On the other hand, changes in AA content followed a different pattern in fruit 

treated with PUT, with slight general increases in AA content obtained during storage 

(Fig.1B). The observed high content of AA content could be attributed to concentration effect 

due to higher moisture loss in control fruit compared to treated fruit (Fawole et al., 2013a). In 

comparison with previous studies on postharvest treatments of pomegranate, Sayyari et al. 

(2010) observed that AA content was maintained when ‘Mollar de Elche’ pomegranate fruit 

were treated with oxalic acid and stored for 84 days at 2 °C. Furthermore, Barman et al. 

(2014) reported a declining trend in the AA content during storage of ‘Mridula’ pomegranate 

fruit although the decline was more pronounced in control as compared to fruit treated with 

putrescine.  

4.2. Total phenolic content  

As shown in Fig. 2A, total phenolic content of fruit treated with FLU concentrations 

significantly reduced with progressive storage for all concentrations and by the end of the 

storage duration, all concentrations had less than 150 mg GAE/ 100 mL (Fig. 2A). The first 

three months of storage were characterized by higher total phenolic content among FLU 

treated fruit than control. Continued storage to 4 months showed no significant differences 

among FLU concentrations (Fig. 2A). Treating pomegranate fruit with fludioxonil resulted in 

greater TPC for up to three months of storage. The reduction in phenolic content during 

storage of pomegranate fruit can be attributed to breakdown of phenolic compounds due to 

enzymatic activity (Fawole & Opara, 2013a; Arendse et al., 2014). Decrease in phenolic 

content during storage of arils has also been associated with metabolic processes such as 

respiration and enzymatic activity for example oxidation of phenolic compounds by 

phenoloxidase (Shiri et al., 2011). Similarly, decrease in phenolic content of pomegranate 

fruit has been previously reported (Sayyari et al., 2010, Sayyari et al., 2011b). 

Upon treatment with putrescine, total phenolic content (TPC) of fruit similarly 

decreased with storage. After one month of storage, control fruit showed significantly high 

phenolic content (233.30 ± 8.58 mg GAE/ 100 mL) while no significant differences (p > 

0.05) were observed among PUT concentrations (Fig. 2B). As TPC of control fruit declined 

after 2 months, TPC of treated fruit showed increases with fruit treated with 2 mM having 

29.7 % higher TPC than control.  The initial increase in phenolic content at month 2 for 
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treated fruit could be attributed to initial concentration of anthocyanins as a result 

anthocyanin biosynthesis (Fawole & Opara, 2013a). TPC then gradually decreased during the 

last two months of storage with no significant differences for all concentrations (Fig. 2B) and 

significant interaction (p = 0.0001) between the factors. The decrease in phenolic content 

with storage could be attributed to decline in phenolic concentration resulting from enzymatic 

activities taking place in the fruit as reported in rowanberries and pomegranate fruits 

(Baltacioğlu et al., 2011; Fawole & Opara, 2013a). Similarly, decrease in phenolic content 

with storage was reported by Fawole & Opara (2013a) for ‘Ruby’ pomegranate. Contrary, 

increases in phenolic content during storage of pomegranate fruit has been reported by 

Arendse et al. (2014) and Mirdehghan et al. (2007) and attributed this to accumulation of 

anthocyanins. 

4.3. Total anthocyanin content  

Total anthocyanin content (TAC) of fruit initially increased to values above harvest and 

thereafter, gradually decreased during storage for all FLU concentrations (Fig. 3A). Fruit 

treated with FLU significantly showed higher TAC after the first three months of storage with 

600 mg/L FLU concentration having the highest amounts at month 1 and 3 (138.90 ± 10.21 

and 108.90 ± 6.23 mg AAE/ 100 mL respectively). The decrease in TAC during storage 

could be attributed to enzymatic oxidation of anthocyanin compounds (Jiang & Chen, 1995).  

Jiang & Chen (1995) reported that anthocyanins are chemically unstable and easily degraded 

due to enzymatic oxidation resulting from loss of compartmentalization of substrates and 

enzyme during long-term storage. At the end of the storage duration, untreated fruit exhibited 

higher TAC however no significant differences were observed compared to untreated fruit. 

Storage duration was significant (p < 0.0001) indicating that the depletion of anthocyanins 

was influenced by the storage time and not FLU concentration (P = 0.4658) (Fig 3A). Artés et 

al. (2000) similarly reported decrease in anthocyanins (delphindin 3-glucoside and 

delphinidine 3,5-diglucoside) at the end of cold and shelf life storage of ‘Mollar de Elche’ 

pomegranate at 2 and 5 °C for 12 weeks. Abd-elghany et al. (2012) also observed that 

anthocyanins content decreased for both untreated and treated (2 % CaCl2 and film wrapped) 

pomegranate fruit (cv. Wonderful) during 60 days of storage at 5 °C and 85 % RH. Contrary, 

Sayyari et al. (2011a) observed an increase in the total anthocyanin concentration of 

pomegranate fruit (cv. Mollar de Elche) treated with acetyl salicylic acid (ASA) during 

storage for 84 days at 2 °C. The effect of fludioxonil (infact fungicides in general) on 

pomegranate phytochemical composition has not been widely studied however from the 
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results, the fungicide had no effect (p = 0.4658) on the anthocyanin content of pomegranate 

fruit. 

With regards to putrescine treatment, TAC also decreased during storage of fruit with 

the exception of 1 mM PUT concentration (at month 2) which had significantly high amounts 

(136.10 ± 2.53) (Fig. 3B). Differences among concentrations were more pronounced at 

months 2 and 3 where fruit treated with 2 mM and 1 mM PUT concentrations had the lowest 

TAC (95.02 ± 7.56 and 61.37 ± 9.11 mg AA/ 100 mL respectively). After the storage period, 

no significant differences were observed among all concentrations and the changes in TAC 

were influenced by the interaction between the storage duration and concentration (Fig. 3B). 

As observed for FLU treatment, the decrease in TAC of pomegranate fruit could similarly be 

attributed to the oxidation of anthocyanin compounds by enzymatic processes (Jiang & Chen, 

1995; Champa et al., 2015). Although PUT has been reported to have antioxidant properties, 

PUT concentration had no significant effect on the anthocyanin content of pomegranate fruit 

(p = 0.1396) during the study. Barman et al. (2014) reported that carnauba wax lowered O2 

and therefore contributed to lowering oxidation, which contributed to higher anthocyanins 

retention in pomegranate when combined with PUT. This indicates the role of O2/oxidation in 

lowering anthocyanin content in pomegranate fruit.   

Conflicting results have been reported on changes in the total anthocyanin content 

during storage of pomegranate fruit with some studies showing decreases and others 

increases. Pérez-Vicente et al. (2004) reported decrease in total anthocyanin of pomegranate 

fruit juices. During storage of cv. ‘Mollar’ pomegranate, Miguel et al. (2007) likewise 

observed a significant decrease in anthocyanin monoglucosides but not for cv. ‘Assaria’ 

pomegranate. Several other studies have similarly reported decrease in pomegranate TAC 

during storage (Artés et al., 1998; Oz & Ulukanli, 2012; Caleb et al., 2013; Maghoumi et al., 

2013). On the other hand, many studies have reported increase in anthocyanin content of fruit 

during cold storage of pomegranate (Artés et al., 2000; Miguel et al., 2004; Arendse et al., 

2014; Fawole & Opara, 2013a; Martinez-Romero et al., 2013), raspberry and strawberry (El 

Ghaouth et al., 1991; Han et al., 2004). The increase in anthocyanin content has been 

associated to anthocyanin biosynthetic pathway enzymes (Varasteh et al., 2012). These 

differences among studies therefore necessitate the need for further research to assess 

intervarietal differences on changes in bioactive compounds of pomegranate fruit (Artés et 

al., 1998). Total anthocyanin content during the study was higher than that observed for 

minimally processed arils (Caleb et al., 2013, 2015; Martinez-Romero et al., 2013; Banda et 
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al., 2015) and this could be due to maintenance of compartmentalization during storage of 

whole fruit.  

4.4. Antioxidant capacity (DPPH radical scavenging activity) 

Antioxidant capacity was based on the DPPH assay of juice from pomegranate fruit. Effect of 

FLU on antioxidant capacity of pomegranate is illustrated in Fig. 4A. The antioxidant 

capacity of fruit progressively increased during cold storage. Untreated fruit showed higher 

antioxidant capacity compared to treated fruit after 2 and 3 months of storage while treated 

fruit showed no statistical differences among FLU concentrations. There was as significant 

interaction of storage duration and FLU concentration (p < 0.0001) with no significant 

differences observed after the end of the storage period (Fig. 4A). Some studies have 

attributed the increase in antioxidant capacity of pomegranate to phenolic compounds and 

anthocyanins (Gil et al., 2000; Fawole & Opara 2013a). However, Barman et al. (2014) 

suggested that plant produce antioxidant capacity is largely due to the presence of pigments 

vitamins and tannins. In agreement with the results, Ramezanian & Rahemi (2010) observed 

an increase in the DPPH antioxidant activity of ‘Malas Yazdi’ pomegranate pretreated with 

spermidine, calcium chloride and hot water after 4.5 months at 2 °C and 85 % RH. Sayyari et 

al. (2010) similarly reported that the hydrophilic antioxidant activity (H-TAA) of ‘Mollar de 

Elche’ pomegranate fruit treated with oxalic acid increased after 84 days of storage at 2 °C. 

However, when the authors treated the same pomegranate cultivar with acetyl salicylic acid 

(ASA), a reduction in the antioxidant capacity was observed during fruit storage at 2 °C for 

84 days (Sayyari et al., 2011b). Literature on the effect of fungicides on fruit antioxidant 

capacity is very limited as most studies majorly focus on their role in control of fruit decay. 

No studies have reported the effect of fludioxonil on the antioxidant activity of pomegranate 

fruit. Literature on other fruits is also very limited. FLU concentration had a significant effect 

on fruit antioxidant capacity (p < 0.0001) but no conclusion could be made because there was 

a significant interaction of the two factors (p < 0.0001). 

The effect of treating pomegranate with putrescine on the antioxidant activity was also 

determined as shown in Fig. 4B. Similar to results observed for FLU, there was a general 

increase in the antioxidant capacity of PUT treated fruit with storage. Slight differences were 

observed after the first two months of storage with 1 mM PUT concentration having the 

lowest antioxidant capacity at month 2. However, no significant differences were observed 

between the treated and untreated fruit after 3 and 4 months of storage and the storage 
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duration (p < 0.0001) was the major factor that influenced the changes in antioxidant capacity 

during storage of PUT treated fruit (Fig. 4B). Increase in total antioxidant activity of heat 

treated pomegranate (cv. Mollar de Elche) during cold storage at 2 °C for 90 days has also 

been reported (Mirdehghan et al., 2006) and this was attributed to an increase in the total 

phenolic content. Similarly, after treating pomegranate with putrescine and spermine, 

Mirdehghan et al. (2007) observed an increase in total antioxidant activity during storage for 

60 days. This was attributed to the ability of these polyamines in lowering the losses in 

phenolic compounds (Mirdehghan et al., 2007). Contrary, the antioxidant activity (expressed 

as radical scavenging activity) of pomegranate fruit (cv. Wonderful) decreased during storage 

at various temperatures (21 °C, 10 °C, 7.5 °C, 5 °C) for 5 months (Arendse et al., 2014). 

Barman et al. (2014) first observed an increase and a decrease thereafter in antioxidant 

activity of ‘Mridula’ pomegranate during storage (3 and 5 °C for 60 days) after treatment 

with putrescine and carnauba wax although treated fruit retained more activity than control.  

Interestingly, the observed changes in total antioxidant activity did not correlate with the 

trends observed for TPC, ascorbic acid or total anthocyanins suggesting that other bioactive 

compounds could have been the major contributors to the antioxidant activity during the 

study. Some studies have also reported that the trend observed for total phenolic did not 

correspond to that of content antioxidant activity (Arendse et al., 2014). This may indicate 

that other bioactive compounds (such as tannins) may also contribute to antioxidant capacity 

of pomegranate or that antioxidants react differently depending on the assay used (Çam et al., 

2009; Arendse et al., 2014). Many studies have however suggested phenolic compounds and 

anthocyanins as major contributors to the antioxidant capacity of pomegranate fruit (Gil et 

al., 2000; Mirdehghan et al., 2007; Sayyari et al., 2011b; Fawole & Opara, 2013a). Calín-

Sánchez et al. (2011) on the other hand reported that the major antioxidant compounds in 

pomegranate juice are hydrolysable tannins although anthocyanins and ellagic acid are also 

contributors. Therefore, the increase in antioxidant capacity of fruit during the study could be 

attributed to migration of tannins from rind to aril (Barman et al., 2014). Pérez-Vicente et al. 

(2004) detected increase in the antioxidant capacity of pomegranate fruit juices during 

processing and attributed the increase to the hydrolysable tannins in the fruit peel and to 

increase in ellagic acid. The authors suggested that ellagic structures polymerized into 

ellagitannins or anthocyanin polymers formed during storage (Pérez-Vicente et al., 2004). 

Some authors have suggested that the antioxidant activity of some fruits could be attributed to 

their allo-derivatives contents for example in bananas (García-Alonso et al., 2004). Pérez-
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Vicente et al. (2004) found no correlation (R2 < 0.100) between the concentration of 

anthocyanins, ellagic acid or total phenols and the antioxidant activity of pomegranate juice. 

The authors insinuated possible synergism phenomena and suggested more research on the 

bioavailabilty of polymers that could be responsible for the activity.  

4.5. Volatile organic composition 

In this study, a total of 31 and 32 volatile compounds were identified in pomegranate fruit 

(cv. Wonderful) treated with FLU and PUT, respectively (Tables 1 & 2). Some of the 

identified volatiles evolved during storage. Eight compounds were identified at harvest. After 

1 month of storage, however, additional 5 and 4 compounds were identified in fruit treated 

with PUT and FLU, respectively. As storage progressed, more compounds evolved (in 

particular terpenes) for both treatments (Tables 1 and 2; Figs. 5 and 6). Varying numbers of 

volatiles have been identified in pomegranate fruit. The number of compounds identified in 

this study was more than those (between 15 and 23 compounds) reported by Calín-Sánchez et 

al., 2011; Vázquez-Araújo et al., 2011a; Fawole & Opara 2013c; Caleb et al., 2015. 

However, more compounds (83 volatiles) than in this study was reported by Beaulie & Stein-

Chishol (2016) for ‘Wonderful’ and commercial pomegranate juices in the U.S.  Overall, the 

abundance of volatile groups was in the order of 

alcohols>esters>terpenes>aldehydes>acids>ketones between harvest and month 2 for both 

FLU and PUT. However, this order was altered between month 3 and 4 as 

terpenes>esters>alcohols>aldehydes>ketones (Tables 1 & 2). There were changes in volatile 

profile with storage. For instance, the alcohol group was predominant between month 1 and 2 

(FLU: 36.43 - 70.62 %; PUT: 22.69 - 55.77 %) (Fig. 5 & 6). This is in agreement with 

Fawole & Opara (2013c), who reported alcohols as the most dominant volatile group with 

proportions of 32.5 % and 54.9 % for ‘Wonderful’ and ‘Bhagwa’ pomegranate cultivars, 

respectively, at harvest. Ketones were observed in fruit treated with FLU but not in PUT 

treated fruit. This could be attributed to the antioxidant properties of putrescine as ketones are 

formed by oxidation of alcohols (Marko et al., 1996). The alcohol group in this study 

comprised compounds such as 1-Butanol 2-methyl, 1-hexanol and 3-hexen-1-ol of which 1-

hexanol characterized by leafy, fruity and woody aroma was the most abundant for both 

treatments (FLU: 28.04 - 51.47 % and PUT: 31.07 - 39.79 %).  

However, as storage progressed (month 3 and 4), compounds belonging to terpene 

group were upregulated (FLU: 67.25 - 98.85 %; PUT: 17.53 - 94.98 %). This included 

monoterpenes (m-cymene, terpineol, limonene, pinene and cineole) and sesquiterpnes 
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(zingiberene, caryophyllene, farnesene, bisabolene and cadrene) (Fig. 7).  Fruit treated with 

FLU had more volatile compounds than control fruit suggesting its inability to control 

chilling injury. In particular, m-cymene characterized by citrus, woody, terpenic, spicy and 

cumin aroma was the most abundant terpene for both treatments, suggesting possible aroma 

attributes of the pomegranate juice during prolong storage (month 2 - 4) (Tables 1 & 2). In 

comparison with Mayuoni-Kirshinbaum et al. (2013), massive increase in terpenes (majorly 

sesquiterpenes) and subsequent decrease in flavour preference during long-term storage of 

‘Wonderful’ pomegranate fruit was observed. The observed upregulation in terpenes in this 

study could be attributed to response of fruit to chilling stress (Mphahlele et al., 2016b).  

5. Conclusion 

The study revealed that postharvest chemical treatments did not greatly affect the 

phytochemical and antioxidant properties of pomegranate fruit during cold storage. Treating 

pomegranate fruit with fludioxonil and putrescine resulted in slight changes in the ascorbic 

acid content. Ascorbic acid minimally decreased during storage of treated and untreated fruit. 

Total phenolic content on the other hand significantly declined during storage of fruit and 

treating fruit with FLU maintained higher values only for short-term storage (2 months). 

After storage, no significant differences were present irrespective of the concentrations used 

for both FLU and PUT treatments. Total anthocyanin content slightly increased to values 

above harvest after the first two months of storage for fruit treated with FLU. However, no 

differences existed after the end of the storage duration for all FLU concentrations. Putrescine 

similarly showed decreased anthocyanin content during storage. Both FLU and PUT 

concentrations had no significant effect on the anthocyanin content of fruit during storage as 

the changes were majorly influenced by the storage duration. Antioxidant capacity of 

pomegranate fruit increased as storage progressed for fruit treated with FLU and PUT. This 

was a surprising result because the trend that was observed did not coincide with those 

observed for ascorbic acid, total phenolic content and total anthocyanin contents for both 

FLU and PUT. This indicated that some other bioactive compounds such as tannins might 

have been the major contributors to the antioxidant capacity of pomegranate fruit during the 

study. To our knowledge, this is the first study that has reported on the effects of postharvest 

treatments of fungicides (fludioxonil) on the phytochemical and antioxidant capacity during 

storage of pomegranate.  
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A total of 31 and 32 volatile organic compounds were identified during storage of 

pomegranate fruit treated with fludioxonil and putrescine respectively during the study. The 

compounds belonged to 6 chemical groups; alcohols, aldehydes, esters, ketones, acids and 

terpenes for FLU treatment while the PUT treatment had 5 groups (excluding ketones). The 

alcohols were the most abundant groups during short storage time (2 months) while the 

terpenes were predominant during prolong e storage duration for both fruit treated with FLU 

and PUT. Some compounds were only identified in fruit treated with fludioxonil (2-nonane, 

α-phallendrene and α-cadrene) while others were unique to fruit treated with putrescine 

(isoamyl alcohol, 1-hexanol, 2-ethyl and phenyl alcohol). Evolution of volatiles with storage 

was evident as some compounds (alcohols, aldehydes and esters) declined with time while 

others (terpenes) accumulated with progressive storage. These changes may have influence 

on the flavour perception of stored fruits, and further studies are warranted in this area.   
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Table 1 Effect of fludioxonil on volatile organic composition of pomegranate fruit during storage for 4 months at 5 °C and additional 4 days at 20 °C 

Compound 

Retention 

time Harvest Month 1 Month 2 Month 3 Month 4 

      Control 150 mg/L 300 mg/L 600 mg/L Control 150 mg/L 300 mg/L 600 mg/L Control 150 mg/L 300 mg/L 600 mg/L Control 150 mg/L 300 mg/L 600 mg/L 

Alcohols      

   

  

   

  

   

  

    

1-Butanol, 2-methyl- 8.8334 _ _ _ _ _ _ _ _ _ _ 2.34±0.19e 2.45±0.57e 2.93±0.60e _ _ 1.51±0.13e 0.86±0.06e 

1-Hexanol  11.1371 36.76±9.92ab _ 31.98±2.63cd 51.47±2.81ab 46.72±3.32ab 34.68±5.97e 37.02±3.95ab 28.04±2.16bc 37.30±2.07e 19.39±3.45e 5.14±0.56e 8.73±0.80e 11.21±0.10e 6.34±0.71e _ 1.91±0.12e 3.07±0.29e 

3-Hexen-1-ol  11.6104 17.61±2.24ab 18.10±2.69a 10.46±1.18cd 19.15±1.67ab 16.01±0.08ab 10.87±2.45e 6.06±0.38ab 8.39±0.66bc 7.82±0.79e _ 0.97±0.08e 1.56±0.05e 2.19±0.13e _ _ _ _ 

Total alcohols   54.37 18.10 42.44 70.62 62.73 45.55 43.08 36.43 45.12 19.39 8.45 11.18 16.33 6.34 _ 3.42 3.93 

Aldehydes   _ 

   

  

   

  

   

  

    

Hexanal 5.2919 8.51±1.97a 6.98±1.59a 2.59±0.33cd 5.55±1.94ab 5.55±0.51ab _ 5.12±0.29ab 4.24±0.31bc _ _ _ _ _ _ 0.77±0.08de _ _ 

Total aldehydes   8.51 6.98 2.59 5.55 5.55 _ 5.12 4.24 _ _ _ _ _ _ 0.77 _ _ 

Ketones     

   

  

   

  

   

  

    

2-Nonanone 11.4261 12.65±1.68de _ 5.87±0.22cd _ 7.64±1.42ab _ _ _ _ _ _ _ _ _ _ _ _ 

Total ketones   12.65 _ 5.87 _ 7.64 _ _ _ _ _ _ _ _ _ _ _ _ 

Acids   _ 

   

  

   

  

   

  

    

Acetic acid 12.6492 _ _ _ _ _ _ _ _ _ _ 1.70±0.42e 0.79±0.04e _ _ _ 0.44±0.13e 0.70±0.07e 

Total acids   _ _ _ _ _ _ _ _ _ _ 1.70 0.79 _ _ _ 0.44 0.70 

Esters      

   

  

   

  

   

  

    

Isoamyl acetate 6.3153 _ 2.91±1.25a 1.94±0.13bc 0.88±0.11ab _ _ _ _ 1.30±0.21e _ 9.67±2.28e 3.49±1.57e 7.06±2.24e _ 0.27±0.00de 0.32±0.05e 0.49±0.05e 

Acetic acid, hexyl 

ester 9.3858 2.01±0.61e 28.84±5.07a 21.54±3.72cd 2.99±0.39ab 4.19±1.33ab 24.14±4.83e 2.68±0.84ab _ 5.88±2.56e 15.67±3.15e 5.71±1.4e 7.16±2.32e 7.65±0.94e _ _ 0.51±0.01e _ 

3-Hexen-1-ol, acetate 10.2559 _ 29.48±9.68a 11.03±1.62cd 1.76±0.18ab 2.05±0.84ab 9.44±2.77e _ _ 2.87±0.40e 4.29±0.63e 1.29±0.37e 1.47±0.35e 1.70±0.23e _ _ _ _ 

Total esters   2.01 61.23 34.51 5.63 6.24 33.58 2.68 _ 10.05 19.96 16.67 12.12 16.41 _ 0.27 0.83 0.49 

Terpenes     

   

  

   

  

   

  

    

β-Pinene  5.5194 _ _ _ _ _ _ 3.17±0.25ab 2.70±0.50bc 3.57±0.42e 7.17±1.02e 3.01±0.43e 3.21±0.32e 4.19±0.25cd 3.76±0.61e 3.75±0.33de 2.50±0.12e 5.29±0.31b 

α-Phellandrene 6.8678 _ _ _ _ _ _ _ 0.93±0.21e _ _ 0.41±0.03e 0.46±0.04e 0.81±0.08e _ _ _ _ 

Myrcene 7.0139 _ _ _ _ _ _ _ _   1.30±0.1e 1.63±0.12e 1.50±0.12e 1.95±0.07e 3.06±0.35e 1.40±0.07e 1.34±0.02de 0.81±0.07e 1.71±0.17e 

α-Terpinene 7.1763 _ _ _ _ _ _ 1.15±0.07ab 1.12±0.10bc _ _ 1.24±0.01e 1.66±0.07e 2.99±0.35e 1.12±0.03e 0.70±0.01de 0.46±0.04e 0.94±0.11e 

1,4-Cineole  7.3062 _ _ _  1.04±0.33ab 0.85±0.26ab _ _ _    _ _ _ _ 0.48±0.05e _ _ _ _ 

Limonene 7.5338 6.50±1.02de 2.41±0.04a 4.63±0.98cd 4.97±0.96ab 4.34±0.62ab 15.04±1.77e 9.20±0.30ab 12.60±0.65bc 0.80±0.12e 15.94±0.77e 6.98±0.29e 8.71±0.37e 12.93±0.63e 8.11±0.17e 6.81±0.36de 4.40±0.32e 8.66±0.40e 
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β-Phellandrene 7.6961 _ _ _ _ 1.89±0.06ab _ _ 3.94±0.63bc 10.67±0.46e 2.22±9.25e 2.01±0.16e 2.37±0.09e 4.08±0.24e 1.85±0.03de 1.68±0.07de 1.09±0.05e 2.16±0.13e 

1,8-Cineole 7.9074 13.95±1.63ab 8.57±0.94a 6.37±0.33cd 10.41±1.39ab 10.76±1.52ab _ 17.18±2.75ab 10.92±0.48bc 1.61±0.18e _ 0.58±0.03e 0.73±0.06e 1.22±0.10e _ 0.48±0.05e 0.34±0.02e 0.65±0.04e 

γ-Terpinene  8.4273 _ _ _ _ _ _ _ 6.51±1.06bc 6.11±0.61cd 10.44±1.57a 2.03±0.21e 3.92±0.71e 4.86±0.38cd 5.65±1.77cd 2.85±0.24de 2.08±0.45e 2.87±0.68e 

m-Cymene  9.0932 _ 1.08±0.24a 1.37±0.12cd 1.77±0.26ab _ 3.97±1.01bc 4.26±0.25ab 6.49±1.95bc 4.59±1.94e 4.19±0.65ab 23.80±2.89e _ _ 46.25±3.32e 12.94±1.49de 14.14±2.00e 23.43±1.39e 

α-terpinolene  9.2883 _ _ _ _ _ _ _ 1.31±0.33bc 1.10±0.10ab _ 2.45±0.13e 3.33±0.27e _ _ 1.02±0.03de 1.05±0.07ab _ 

α-Zingiberene 13.3066 _ _ _ _ _ _ _ _ _ _ 2.05±0.43e 1.41±0.07e 2.12±0.03e 1.52±0.42e 7.10±0.71de 4.62±0.68e 7.48±0.44e 

α-Bergamotene 13.9771 _ _ _ _ _ _ 9.05±2.37ab 7.61±2.22bc 8.47±1.59e _ 5.19±0.72e 19.93±2.32e 5.90±0.58e 7.39±0.61e 5.89±0.76de 28.31±1.42e 13.11±0.16e 

Trans-Caryophyllene  14.9014 _ _ _ _ _ _ _ 3.44±0.33bc _ _ _ 5.52±0.49e 2.47±0.04e 2.04±0.37e 5.22±1.09e _ _ 

α-Farnesene  14.2709 _ _ _ _ _ _ 2.82±0.74ab _ 1.37±0.36e 6.61±1.43e _ _ _ 3.74±0.22e 11.56±0.25de 6.77±0.16e _ 

Terpinen-4-ol 14.3681 _ _ _ _ _ 1.86±0.21e _ _ 3.49±0.65e 6.66±0.52e 5.75±0.39e 5.98±0.65e 8.99±0.60e 3.06±0.30e _ 2.58±0.31e 4.07±0.29e 

Camphene  15.556 2.01±0.09ab 1.62±0.25a 1.64±0.04cd _ _ _ 2.30±0.07ab 1.77±0.38bc 1.76±0.21e _ _ 1.75±0.14e _ _ _ _ _ 

β-Bisabolene 15.9439 _ _ _ _ _ _ _ _ _ 3.34±0.32e 6.51±1.32e 4.74±0.33e 7.88±0.67e _ 17.85±0.55de 9.63±1.19e 16.12±1.62e 

α-Cedrene 16.0771 _ _ _ _ _ _ _ _ _ _ 1.48±0.21e _ _ _ 1.40±0.04de 1.02±0.06e _ 

β-Farnesene 16.2953 _ _ _ _ _ _ _ _ _ 2.45±0.18e 2.01±0.03e 3.09±0.14e 5.27±0.04e 3.01±0.18e 8.58±1.00de 6.49±0.58e _ 

β-Sesquiphellandrene 15.4166 _ _ _ _ _ _ _ _ _ _ 1.63±0.02e 1.43±0.18e _ 1.59±0.08e 0.93±0.22de 4.37±0.76e _ 

α-Curcumene 16.4649 _ _ _ _ _ _ _ _ _ _ 4.57±0.11e 4.25±0.50e _ 3.18±0.50e 8.75±0.24de 4.67±0.24e 8.38±0.66e 

Total terpenes   22.46 13.68 14.01 18.19 17.84 20.87 49.13 59.34 44.84 60.65 73.20 74.44 67.25 93.67 98.85 95.33 94.87 

Total compounds 

 

100.00 99.99 99.42 99.99 100.00 100.00 100.01 100.01 100.01 100.00 100.02 100.09 99.99 100.01 99.89 100.02 99.99 

Data presented as mean ± SE. Different letters across volatile compounds in each row differ significantly (p < 0.05) according to Duncan’s multiple range test. SE - standard 

error 
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Table 2 Effect of putrescine on volatile organic composition of pomegranate fruit during storage for 4 months at 5 °C and additional 4 days at 20 °C 

Compound 

Retention 

time Harvest Month 1 Month 2 Month 3 Month 4 

      Control 1 mM 2mM 3 mM Control 1 mM 2 mM 3 mM Control 1 mM 2 mM 3 mM Control 1 mM 2 mM 3 mM 

Alcohols     

   

  

   

  

   

  

    

1-Propanol, 2-methyl-  5.9417 _ _ _ _ _ _ _ _ _ _ 3.29±0.57d 3.71±0.17d 2.65±0.11d _ _ _ _ 

Isoamyl alcohol 8.8983 _ _ _ _ _ _ _ 14.29±4.55d _ _ 18.27±1.23d 24.76±2.40d _ _ _ _ _ 

1-Hexanol  11.1371 36.76±9.92d _ _ _ 31.75±1.95c 34.64±5.77d 38.99±1.99a 31.07±3.08d 39.79±3.47d 19.39±3.45d 6.79±1.15d 11.22±0.40d 3.96±0.46d 6.34±0.71d 7.63±1.51d 5.02±0.61d 6.41±0.57d 

3-Hexen-1-ol 11.6104 17.61±2.24b 17.29±1.62b 30.53±0.96a 22.69±3.24c 8.24±2.08c 10.89±2.51d 12.15±0.15a 7.61±1.28d 8.73±1.73d _ 1.58±0.31d 2.34±0.08d _ _ _ _ 0.89±0.06d 

1-Hexanol, 2-ethyl-  13.0436 _ _ _ _ _ _ 2.72±0.19a 2.80±0.47d 2.82±0.06d _ _ _ _ _ _ _ _ 

phenyl alcohol 18.0287 _ _ _ _ _ _ _ _ _ _ 2.48±0.70d 4.03±1.50d 5.45±0.97d _ _ _ _ 

Total alcohols   54.37 17.29 30.53 22.69 39.99 45.53 53.86 55.77 51.34 19.39 32.41 46.06 12.06 6.34 7.63 5.02 7.30 

Aldehydes     

   

  

   

  

   

  

    

Hexanal 5.2919 8.51±1.97ab 6.67±0.97b 10.24±1.71a 3.85±0.47c 2.80±0.62c _ 10.48±1.19a _ _ _ _ _ _ _ _ _ _ 

2-Hexenal 8.5248 _ 4.48±0.65b 9.91±0.51a 15.13±4.73c _ _ _ _ _ _ _ _ _ _ _ _ _ 

Total aldehydes   8.51 11.15 20.15 18.98 2.80 _ 10.48 _ _ _ _ _ _ _ _ _ _ 

Ketones     

   

  

   

  

   

  

    

2-Nonanone   12.65±1.68 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Total ketones   12.65 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Acids      

   

  

   

  

   

  

    

Acetic acid 12.6492 _ _ _ _ _ _ _ _ _ _ 4.23±0.07d 14.23±4.77d 16.90±4.74d _ _ _ _ 

Total acids   _ _ _ _ _ _ _ _ _ _ 4.23 14.23 16.90 _ _ _ _ 

Esters     

   

  

   

  

   

  

    

Isoamyl acetate 6.3153 _ 2.79±0.77d _ _ 2.17±1.12c _ _ _ _ _ 8.84±0.36d 11.58±0.77d 49.87±1.63d _ _ _ _ 

Acetic acid, hexyl 

ester 9.3858 2.01±0.61d 27.60±3.17b 15.67±5.72a 19.29±8.54c 31.98±1.17c 24.19±4.89d 5.29±0.41a 21.72±1.18d 17.79±6.03d 15.67±3.15d 2.69±0.31d 7.05±0.37d 3.11±0.28d _ _ _ _ 

3-Hexen-1-ol, acetate 10.2559 _ 28.11±5.82b 12.14±5.64a 18.25±1.56c 6.22±3.76c 9.46±2.78d 1.53±0.11a 8.52±2.11d 6.87±2.73d 4.29±0.63d 0.47±0.05d 1.57±0.05d 0.50±0.08d _ _ _ _ 

Total esters   2.01 58.50 27.81 37.54 40.37 33.65 6.82 30.24 24.66 19.96 12.00 20.20 53.48 _ _ _ _ 

Terpenes     

   

  

   

  

   

  

    

β-Pinene  5.5194 _ _ 2.91±0.48a _ _ _ 4.30±0.22a 2.22±0.64d 3.70±0.59d 7.17±1.02d 0.83±0.21d 1.88±0.03d 1.35±0.21d 3.76±0.61d 3.72±0.34d 3.72±0.34d 4.42±0.75d 

Myrcene 7.0139 _ _ _ _ _ _ _ _ _ 1.63±0.12d _ _ 0.60±0.07d 1.40±0.07d 1.03±0.05d 1.15±0.04d 1.67±0.17d 
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α-Terpinene 9.2883 _ _ _ _ _ _ _ _ _ _ 0.47±0.04d _ 0.61±0.02d 1.12±0.03d 0.78±0.04d 0.93±0.01d 1.26±0.19d 

1,4-Cineole  7.3062 _ _ 1.18±0.15a 0.83±0.03c _ _ 1.38±0.09a _ _ _ _ _ _ _ _ _ _ 

Limonene 7.5338 6.50±1.02d 2.30±0.04b 5.21±0.27a 3.14±0.51c 4.25±1.40c 15.03±1.70d 14.40±1.10a 7.88±0.91d 12.89±0.91d 15.94±0.77d 3.88±0.12d 5.89±0.51d 4.99±0.98d 8.11±0.17d 6.65±0.26d 8.25±0.41d 8.49±0.28d 

β-Phellandrene 7.6961 _ _ _ _ _ _ _ _ _ 2.22±0.25d 0.77±0.12d 0.92±0.06d _ 1.85±0.03d 1.36±0.11d 1.92±0.02d 1.76±0.23d 

1,8-Cineole 7.9074 13.95±1.63a 8.18±0.57b 10.48±0.90a 12.13±0.64c 7.58±1.65c _ _ _ _ _ 0.32±0.02d _ _ _ _ _ _ 

γ-Terpinene  8.4273 _ _ _ _ _ _ _ _ _ 10.44±1.57d 0.76±0.15d 5.63±0.35d 3.19±0.58d 5.65±1.77d 4.29±0.13d 5.30±1.09d 3.86±0.17d 

m-Cymene  9.0932 _ 1.03±0.15b 1.73±0.18a 2.42±0.33d 3.90±1.77c 3.94±0.91d 4.68±0.66a _ 2.31±1.16d 4.19±0.65d 43.56±56d _ _ 46.25±3.32d 41.24±2.86d 40.79±0.23d 31.58±0.26d 

α-terpinolene  9.1746 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1.31±0.03d 1.75±0.08d 

α-Zingiberene 13.3066 _ _ _ _ _ _ _ _ _ _ _ _ _ 1.52±0.42d 1.60±0.14d _ 1.90±0.13d 

α-Bergamotene 13.9771 _ _ _ _ _ _ _ _ _ _ _ 3.02±0.58d 3.62±0.69d 7.39±0.61d 16.79±2.98d 18.47±1.88d 21.74±1.04d 

Trans-Caryophyllene  14.9014 _ _ _ _ _ _ _ _ _ _ _ _ _ 2.04±0.46d _ 2.34±0.22d 2.16±0.34d 

α-Farnesene  14.2709 _ _ _ _ _ _ _ _ _ 6.61±0.43d _ _ 1.12±0.29d 3.74±0.22d _ 3.43±0.25d 2.78±0.91d 

Terpinen-4-ol 14.3681 _ _ _ _ _ 1.86±0.22a 1.97±0.18a 2.38±0.36d 3.01±0.81d 6.66±0.52d _ 1.17±0.11d 1.27±0.18d 3.06±0.30d 3.14±0.42d 3.72±0.13d 3.64±0.40d 

Camphene  15.556 2.01±0.09c 1.55±0.14b _ 2.26±0.35c 1.12±0.32c _ 2.12±0.21a 1.53±0.24d 2.09±0.17d _ 0.77±0.21d 0.98±0.18d 0.78±0.21d _ _ _ 1.03±0.02d 

β-Sesquiphellandrene 15.4166 _ _ _ _ _ _ _ _ _ _ _ _ _ 1.59±0.08 _ _ _ 

β-Bisabolene 15.9439 _ _ _ _ _ _ _ _ _ 3.34±0.32d _ _ _ _ 4.17±0.42d 1.27±0.27d 1.01±0.03d 

β-Farnesene 16.2953 _ _ _ _ _ _ _ _ _ 2.45±0.18d _ _ _ 3.01±0.18d 3.45±0.42d 2.38±0.37d 3.63±0.45d 

α-Curcumene 16.4649 _ _ _ _ _ _ _ _ _ _ _ _ _ 3.18±0.50d 4.13±0.43d _ _ 

Total terpenes   22.46 13.06 21.51 20.78 16.85 20.83 28.85 14.01 24.00 60.65 51.36 19.49 17.53 93.67 92.35 94.98 92.68 

Total compounds 

 

100.00 100.00 100.00 99.99 100.01 100.01 98.63 100.02 100.00 100.00 100.00 99.98 99.97 100.01 99.98 100.00 99.98 

Data presented as mean ± SE. Different letters across volatile compounds in each row differ significantly (p < 0.05) according to Duncan’s multiple range test. SE - standard 

error 
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Fig. 1 Ascorbic acid concentration of pomegranate fruit treated with fludioxonil (A) and 

putrescine (B) during storage for 4 months at 5 °C and additional 4 days at 20 °C. ----- 

Represents values at harvest. Each bar represents mean and error bars denote standard error 

(SE) of the mean. Bars followed by different letters are significantly different at p < 0.05 

according to Duncan’s multiple range test. 
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Fig. 2 Changes in total phenolic concentration of pomegranate fruit treated with fludioxonil 

(A) and putrescine (B) during storage for 4 months at 5 °C and additional 4 days at 20 °C. ----

- Represents values at harvest. Each bar represents mean and error bars denote standard error 

(SE) of the mean. Bars followed by different letters are significantly different at p < 0.05 

according to Duncan’s multiple range test. 
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Fig. 3 Effect of fludioxonil (A) and putrescine (B) on total anthocyanin concentration of 

pomegranate fruit during storage for 4 months at 5 °C and additional 4 days at 20 °C. ----- 

Represents values at harvest. Each bar represents mean and error bars denote standard error 

(SE) of the mean. Bars followed by different letters are significantly different at p < 0.05 

according to Duncan’s multiple range test. 
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Fig. 4 Effect of fludioxonil (A) and putrescine (B) on DPPH antioxidant capacity of 

pomegranate fruit during storage for 4 months at 5 °C and additional 4 days at 20 °C. ----- 

Represents values at harvest. Each bar represents mean and error bars denote standard error 

(SE) of the mean. Bars followed by different letters are significantly different at p < 0.05 

according to Duncan’s multiple range test. 
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Fig. 5 Changes in chemical groups of volatile compounds in ‘Wonderful’ pomegranate fruit 

treated with fludioxonil and stored for 4 months at 5 °C and additional 4 days at 20 °C. ----- 

Represents values at harvest. 
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Fig. 6 Changes in chemical groups of volatile compounds in ‘Wonderful’ pomegranate fruit 

treated with putrescine and stored for 4 months at 5 °C and additional 4 days at 20 °C. ----- 

Represents values at harvest. 
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Fig. 7 Principal component analysis biplots showing the effect of fludioxonil (A) and putrescine (B) on volatile organic composition of 

‘Wonderful’ pomegranate fruit stored for 4 months at 5 °C and additional 4 days at 20 °C. Red colour represents the variables while blue colour 

represents the factors. 
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GENERAL DISCUSSION AND CONCLUSION 

Chapter One: General Introduction 

Plant phytochemicals have antioxidant activity that protect the body against oxidative stress 

(Seeram et al., 2006). Therefore, consumption of fruits and vegetables can reduce the risk to 

chronic illnesses including those that are oxidation-related (Kelawala & Ananthanarayan 

2004). Pomegranate in particular has recaptured worldwide consumer interest because of its 

prominent health benefits (Heber & Bowerman, 2009; Fawole & Opara, 2013a). This has 

resulted in high global demand for the fruit, and has consequently led to dramatic increase in 

production and consumption of the fruit (Fawole & Opara, 2013a). Despite the increased 

demand, pomegranate fruit faces a number of qualitative and quantitative postharvest losses 

such as chilling injury, weight loss, husk scald and fruit decay (caused by Aspergillus spp., 

Alternaria spp., Penicillium spp., and especially Botrytis cinerea) (Roy & Waskar, 1997). To 

alleviate these postharvest challenges, a number of postharvest treatments such as fungicide 

and polyamines may be applied (Opara et al., 2015). It has been shown that quality of 

pomegranates significantly varies among growing regions (Schwartz et al., 2009; Mditshwa 

et al., 2013), suggesting that fruit respond differently to different treatments. Most studies on 

South African grown pomegranates focused on reducing spoilage of arils, which is the edible 

part of the fruit (Caleb et al., 2013, 2015; Aindongo et al., 2014; Banda et al., 2015a,b; 

Hussein et al., 2015). Therefore, there is a dearth of information on the postharvest treatments 

of pomegranate whole fruit grown in South Africa. To supplement the efforts that have 

helped increase pomegranate production, there is need to minimize postharvest losses and 

enhance shelf life if the full potential of the emerging pomegranate industry is to be realized. 

This study investigated the potential of fludioxonil (FLU) and putrescine (PUT) to maintain 

the quality and reduce postharvest losses of South African pomegranate whole fruit (cv. 

Wonderful). The study also evaluated the effects of the chemical treatments on the 

phytochemical properties and volatile organic composition of pomegranate fruit. 

Chapter Two: Literature review on application of physical and chemical postharvest 

treatments to enhance storage and shelf life of pomegranate fruit 

To overcome the postharvest challenges faced by the pomegranate fruit industry, a number of 

postharvest treatments are employed to reduce loss and improve storability of fruit. The 
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physical and chemical treatments applied to both pomegranate whole fruit and arils were 

reviewed in this chapter. The chapter explored the effect of these treatments on physiological, 

physico-chemical, phytochemical and sensory attributes of pomegranate fruit. A detailed 

discussion of the effects of different postharvest treatments on fruit quality was highlighted. 

This review emphasised the importance of hurdle technology that involves combining the 

chemical treatments together with physical treatments to harness the full potential of 

postharvest technologies. The review showed that despite the availability of various 

postharvest treatments, high incidence of fruit loss still occurred (Shete & Workar, 2005) 

which results in loss of nutritional as well as financial loss and growth of the industry. The 

review therefore highlighted the need for more research focusing on the application of 

postharvest treatments and innovative technologies to maintain and enhance the nutritional 

and bioactive components of the fruit.  

Chapter Three: Postharvest physiological responses of pomegranate fruit (cv. Wonderful) to 

exogenous putrescine treatment and effects on physico-chemical and sensory quality 

attributes. 

In this chapter, the potential of putrescine as a postharvest chemical treatment on 

pomegranate fruit was investigated. Fruit were treated with putrescine (PUT) at 1, 2 and 3 

mM concentration and stored for 4 months at 5 °C plus an additional 4 days at 20 °C (shelf 

life), and the effect on fruit physiological response, quality and sensory attributes evaluated. 

The results showed that respiration rate increased after the first three months of storage and 

later decreased after the last month with significant effect of storage duration (p < 0.0001). 

Concentration of putrescine had no significant effect on fruit respiration rate (p = 0.096). 

Fruit weight loss increased over storage with fruit treated with the highest PUT concentration 

(3 mM) having the lowest weight loss (21.49 %) after the storage duration. This could be due 

to consolidation of the cell integrity and ameliorating chilling injury (Barman et al., 2011; 

Jawandha et al., 2012). The results also showed that treating pomegranate fruit with PUT 

reduced fruit decay especially after long term storage (3 and 4 months), with fruit treated with 

2 mM concentration having the least decay incidence. The effect of putrescine on fruit decay 

could be attributed to the protective function of putrescine through conjugation to phenolic 

compounds and hydroxycinamic acid amines (Walters, 2003). This showed the potential of 

PUT in reducing fruit loss during storage. However, putrescine had no effect on internal 

decay and this was possibly because PUT was exogenously applied and thus did not move 
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deep into the internal fruit portions to impart its protective benefits.  Furthermore, internal 

decay was due to heart rot, which occurs from infection of fruit during flowering in the 

orchard (Zhang & McCarthy, 2012; Ezra et al., 2015). PUT was not beneficial in reducing 

internal decay as treated fruit consistently had higher aril browning compared to control fruit. 

Therefore, no conclusion on the effect of PUT on aril browning was postulated.  

The beneficial effect of PUT on chilling injury (CI) was evident especially after 3 - 4 months 

of storage such that fruit treated with 2 and 3 mM PUT concentration had lower CI incidence 

than fruit treated with 1 mM concentration and control. CI index (severity) was generally low 

among all concentrations. The reduced CI was probably due to the ability of PUT to induce 

cold acclimation thus maintaining membrane fluidity by preventing changes in lipid cell 

membrane (Gómez-Galindo et al., 2004; Barman et al., 2011). Lower husk scald was 

observed among fruit treated with 3 mM PUT while the other concentrations had high 

incidences. However, after the last storage period (4 months), all fruit had developed husk 

scald regardless of PUT concentration applied. This was possibly because the antioxidant 

properties of putrescine were not strong enough to prevent scalding. To control husk scalding 

in pomegranate, the results highlighted the need to incorporate treatments that ensure a low 

oxygen environment since scalding in pomegranate is an oxidative process (Ben-Arie & Or, 

1986). The lower CI and husk scald indicated that 3 mM PUT concentration resulted in fruit 

with the best colour and appearance.   

External fruit colour decreased with storage duration and the changes in fruit redness (a*) and 

intensity (a*) were influenced by both PUT concentration and storage duration.  The decrease 

in colour was attributed to peel browning as evidenced by the development of husk scald. 

Fruit hue angle (h°) increased with storage indicating reduction in fruit red colour as storage 

progressed. Aril colour (a* and C*) on the hand increased with storage for all PUT 

concentrations and this was probably due to anthocyanin biosynthesis during storage of 

pomegranate (Gil et al., 1995; Arendse et al., 2014). The decline in aril hueo further 

buttressed this phenomenon. Fruit treated with PUT may be stored for 4 months without 

drastic loss of fruit colour. Juice colour of fruit remained stable during storage and was 

significantly affected by interaction of PUT concentration and duration. Fruit firmness, 

measured as the fruits ability to resist puncture, decreased with storage with significant 

interaction between PUT concentration and storage duration. After 4 months of storage, fruit 

treated with 2 mM had 15.10 % higher firmness than control fruit. This could be attributed to 

the ability of putrescine to cross link with the pectic substances in the cell wall thus 
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preventing access of cell wall degrading enzymes and hence reducing softening (Barman et 

al., 2011). This highlighted role of PUT in reducing senescence and maintaining fruit 

freshness. There was significant interaction of PUT concentration and duration for aril 

firmness parameters (hardness, elastic modulus, toughness and bioyield) with treated fruit 

having higher aril firmness compared to control after storage. Therefore, treating fruit with 

PUT is recommended as to maintain fruit aril firmness however, the storage period should be 

put into consideration. Changes in fruit chemical attributes are important because they 

influence flavour of fruit, which influences consumer acceptability. Increase in pH 

corresponded with decrease in titratable acidity (TA) during fruit storage and this could be 

due to utilization of organic acids during metabolic activities such as respiration (Fawole & 

Opara, 2013a). Initial increase in TSS was probably due to concentration of sugars from 

moisture loss while the subsequent decrease could be due to utilization of sugars in fruit 

metabolic processes (Fawole & Opara, 2013a). The changes in TSS and TA influenced the 

changes in TSS/TA and BrimA parameters, which affect sensory attributes of fruit.  

Furthermore, the study evaluated sensory attributes of stored fruit. Results showed that during 

short-term storage (2 months), control fruit had good sensory quality with regard to sweet 

taste, crispness and juiciness. However, with longer storage, (2 - 3 months) fruit treated with 

1 and 2 mM PUT concentration had better sensory quality (sweet taste, juiciness and 

crispness). Off flavour was lowest among fruit treated with 2 mM PUT concentration. This 

therefore, implies that when storing fruit for short period (2 months), chemical treatment may 

not necessary. However, treating pomegranate fruit with PUT is reccomended when fruit are 

to be stored for a longer period as it is beneficial in reducing disorders and maintaining 

sensory quality. The principal component analysis (PCA) explained 53.22 % of the observed 

variability and separation of parameters was dependent on storage duration. Fruits stored for 

1 month were associated with fruit and aril firmness, peel a*, astringency, TA and grittiness. 

Indicating freshness of fruit with good fruit colour. However, after 3 months of storage, fruit 

had high sweet taste, crispness, juiciness and aril a*. The high sweet taste was probably due 

to concentration of sugars and the aril a* was possibly due to biosynthesis of colour 

pigments, anthocyanins. This therefore elucidates that fruits can be stored for 3 months with 

good sensory quality.  

Overall, this chapter showed the potential of PUT in alleviating physiological disorders 

during storage of pomegranate fruit with the highest concentration (3 mM) being the most 

effective. Physico-chemical parameters such as aril colour and fruit firmness were also 
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maintained after treating fruit with PUT. Sensory quality was best preserved for control and 

fruit treated with 2 mM PUT concentration. Although 3 mM PUT concentration was the most 

effective in alleviating physiological disorders, 2 mM PUT concentration had the advantage 

of both reducing the disorders and also maintaining the sensory quality of the fruit. Therefore, 

2 mM is a recommended concentration for treatment of pomegranate fruit with PUT.   

Chapter Four: Effects of fludioxonil treatment on physiological response, physico-chemical 

and sensory properties of pomegranate whole fruit 

The postharvest life of fruit is challenged mainly by decay and spoilage during storage. The 

potential of fludioxonil (FLU) as a postharvest chemical treatment to maintain quality and 

improve storability of pomegranate whole fruit was explored in this chapter. Fruit were 

treated with FLU at 150, 300 and 600 mg/L concentration and stored for 4 months at 5 °C 

plus additional 4 days at 20 °C (shelf life). The effect of FLU on fruit quality was 

investigated and reported. The results showed increase in fruit respiration rate after the first 

three months of storage followed by a decrease with changes influenced by storage duration. 

However, fludioxonil (FLU) concentration had no significantly effect on fruit respiration rate 

(p = 0.2760).  The increase in respiration rate was attributed to stress due to ongoing 

senescence and metabolic activities (Fawole & Opara, 2013a), while the decrease during the 

last month could be attributed to excessive senescence, physiological disorders and cell 

disintegration (Nanda et al., 2001; D’Aquino et al., 2010). Weight loss of fruit increased over 

storage with significant effect of FLU concentration and storage duration. Fruit treated with 

150 mg/L FLU concentration consistently had the highest weight loss throughout the storage 

duration and this was attributed to the high respiration rate that was observed for this 

concentration especially after months 1 and 4. There were no significant differences observed 

amongst the other FLU concentrations. This was contrary to the report by D’Aquino et al. 

(2012), who reported no significant effect of FLU treatment on ‘Primosole’ pomegranate 

fruit. This conflicting observation further suggested that fruit response to postharvest 

treatment is dependent on cultivar thus the need for cultivar specific postharvest treatment for 

pomegranate fruit. 

Fruit decay, a major cause of postharvest loss in pomegranate, increased with advanced 

storage with the highest incidence observed in control fruit. The reduced decay amongst 

treated fruit could be attributed to the good protective activity of FLU as a fungicide on a 
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number of pathogens (D’Aquino et al., 2010). FLU has successfully been used to control 

decay in a number of fruits such as pear, stone fruit and citrus (Adaskaveg et al., 2005; 

Schirra et al., 2009; D’Aquino et al., 2010; D’Aquino et al., 2013). Internal decay in fruit 

was majorly due to black heart. Fruit treated with 150 and 600 mg/L FLU concentrations 

showed low incidences of internal decay while control and 300 mg/L FLU concentration 

showed high incidences. As FLU application is a contact application, there was no 

relationship drawn on the effect of FLU on internal decay of pomegranate fruit. It was thus 

logical to conclude that FLU would not prevent internal decay in pomegranate as such 

problem results from fruit infection in the orchard during the flowering stage (Zhang & 

McCarthy, 2012; Ezra et al., 2015). Being a preharvest condition, the study thus suggested 

use of preharvest treatments and good agricultural practices to control this disorder. Aril 

browning also increased with storage although untreated fruit had lower browning throughout 

the storage duration. Since aril browning has been related to CI (Mirdehghan & Rahemi, 

2005), it was assumed that the lower incidence in untreated fruit could be attributed to the 

lower chilling injury incidence that was observed for untreated fruit (Mirdehghan & Rahemi, 

2005). Therefore, the study concluded that exogenous application of FLU had no direct effect 

on the internal components of the fruit. 

During the study, chilling injury of fruit developed from the first sampling date and increased 

as storage progressed. Low CI incidence was observed for control and fruit treated with 600 

mg/L FLU while high incidences were observed for 150 and 300 mg/L FLU concentration. 

CI in pomegranate fruit has been attributed to changes in the state of lipid cell membranes 

from liquid-crystalline to solid-gel state and this causes injurious effects (Mirdehghan et al., 

2007; Barman et al., 2011). The study suggested that treating fruit with FLU did not alleviate 

chilling injury in pomegranate fruit. Husk scalding was the major physiological disorder 

observed in the study, with high scalding incidence and severity as storage progressed. After 

4 months of storage, all fruit had developed husk scalding regardless of concentration 

applied, suggesting that treating pomegranate fruit with FLU does not alleviate husk scalding 

during cold storage. This was possibly because scalding results from enzymatic oxidation of 

phenolic compounds in the peel of the fruit (Kahn, 1983; Zhang & Zhang, 2008) and since 

the chemical treatment did not reduce the oxygen tension, fruit developed severe husk scald. 

Furthermore, control fruit lost aril firmness faster than treated fruit, a phenomenon that 

results from loss of cell wall integrity due to break down of pectic substances and aril 

membrane deterioration (Sayyari et al., 2011; Bchir et al., 2012; Fawole & Opara, 2013b). 
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Aril firmness with regard to hardness declined with storage but there were no significant 

differences among FLU concentrations. In addition, there were no significant differences 

found for bioyield, elastic modulus and toughness with significant interaction of the factors 

(FLU concentration and storage duration). 

Colour is an important attribute for consumer acceptability and is used to grade pomegranate 

fruit. Fruit peel redness (a*) declined as storage progressed, with no significant differences 

among FLU concentrations. This indicates loss of peel colour pigments due to senescence 

and peel browning (Arendse et al., 2014). This was also evident by the dynamics in peel hue 

angle (ho), which increased with increasing storage duration. Peel colour was mainly 

influenced by storage duration and fruit may be stored up to 3 months without excessive loss 

in colour. Aril colour was influenced by FLU concentration with treated fruit having lower 

aril a* and C* and higher ho, indicating the negative effect of FLU on colour. Nevertheless, 

the aril colour from treated fruit was sufficient for consumption. Chemical attributes are of 

importance as they affect fruit flavour, which influences consumer acceptability and repeat 

purchase of fruit by consumers. Significant decline in titratable acidity was observed during 

storage. This was not surprising as organic acids are utilised during fruit respiration (Montero 

et al., 2010; Fawole & Opara, 2013a). Interestingly however, there was an increase in TA 

during month 3. This could be due to concentration effect as the fruit continued to loss 

moisture.  Concomitant decline in TSS was also observed as storage progressed possibly due 

to utilisation of sugars in some metabolic processes during storage (Fawole & Opara, 2013a). 

Furthermore, there was no significant effect of FLU concentration. The dynamics in TA and 

TSS reflected different changes on derived parameters; TSS/TA and BrimA. This would have 

a practical implication on sensory attributes of the investigated fruit.   

The study further evaluated the effect of FLU treatment on sensory attributes of fruit. 

Although control fruit had highest sweet taste after 3 months of storage, fruit treated with 600 

mg/L FLU concentration had the better sensory qualities with regard to sweet taste, crispness, 

juiciness and firmness after 1 and 3 months of storage. The FLU concentration also had lower 

scores for off flavour, astringency and grittiness. This implies that FLU at 600 mg/L 

concentration maintained the best sensory quality of fruit for 3 months with fruit having good 

flavour and firmness and no off flavour. After 3 months, fruit treated with 150 mg/L FLU 

concentration had the lowest sensory quality (lowest sweet taste, crispness, and juiciness but 

highest sour taste and astringency). From the principal component analysis (PCA), the effect 

of storage duration was more prominent as grouping was more distinct with duration than 
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FLU concentration. Fruit stored for 1 month had high astringency, fruit firmness, TA, peel 

and aril redness. Implying that fruit were still fresh, firm, more appealing appearance and 

more acidic, with characteristics of fresh pomegranate fruit. Fruit stored for 2 months were 

associated with crispness, TSS, sweet taste, juiciness and bioyield. This means that fruit still 

had their freshness and tasted sweeter probably due to loss of moisture. With further storage 

to 3 months, fruits had high peel ho, pH, flavour, grittiness and sour taste indicating loss of 

fruit colour (due to physiological disorders) and lower acidity but fruit still good flavour. 

Despite lower colour, fruit were still marketable because after 3 months, the severity of 

physiological disorders were below moderate. Therefore, fruit can be stored for up to 3 

months of storage.     

Overall, this chapter showed that FLU was effective in reducing decay of fruit during storage. 

However, the chemical did not decrease development of physiological disorders; chilling 

injury, husk scald and aril browning. FLU maintained physico-chemical attributes and had 

fruit with good sensory quality. Overall, 600 mg/L FLU concentration was the most effective 

in reducing fruit decay and had fruit with better sensory attributes. 

Chapter Five: Effects of fludioxonil and putrescine postharvest treatments on 

phytochemical, antioxidant properties and volatile composition of pomegranate fruit during 

long-term storage 

The effect of both fludioxonil and putrescine on phytochemicals and volatile composition of 

pomegranate fruit was assessed in this chapter. With a significant interaction of FLU 

concentration and duration, there was a slight decline in the ascorbic acid (AA) content of 

fruit treated with FLU during the study. Control fruit on the other hand had values higher 

than at harvest for month 2, 3 and 4 (119.50 ± 0.15 and 112.70 ± 0.07 and 114.90 ± 0.60 mg 

AA/ 100 mL respectively). The higher ascorbic acid content in untreated fruit was attributed 

to concentration of AA as a result of moisture loss. On treating fruit with PUT, slight changes 

were observed in the ascorbic acid content of fruit. Interaction of the factors was significant. 

After storage 4 months of storage, however, control fruit had higher AA content while no 

significant differences were observed among PUT concentrations and this was also attributed 

to moisture loss due to concentration. Treating fruit with FLU and PUT did not maintain AA 

content as treated fruit had lower AA content than control.  Total phenolic content (TPC) of 

fruit significantly declined during storage of fruit treated with FLU with significant 
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interaction of the factors. Untreated fruit had lower TPC for the first three months of storage 

compared to treated fruit. The decrease in TPC during fruit storage could be attributed to the 

breakdown of phenolic compounds due to enzymatic activity (Fawole & Opara, 2013a; 

Arendse et al., 2014). The study showed that treating pomegranate fruit with FLU resulted 

into higher TPC for short-term storage up to 3 months thus FLU acted as an elicitor to 

promote biosynthesis of total phenolics.  

With regard to PUT treatment, the trend was reversed as control fruit initially had higher TPC 

(above harvest). Treated fruit only had higher TPC after month 2. Rapid moisture loss in 

control fruit resulted in concentration of juice constituents including TPC during the first 

month. However, TPC declined afterwards probably due to enzymatic breakdown of phenolic 

compounds (Fawole & Opara, 2013a; Arendse et al., 2014). Therefore, FLU retained more 

TPC of fruit while PUT had no benefit with regard to mainting TPC of fruit. Treating 

pomegranate fruit with FLU resulted in an initial increase in the total anthocyanin content 

(TAC) after the first two months of storage, above harvest. This could be attributed to 

accumulation due to anthocyanin biosynthesis in pomegranate fruit during storage as 

previously reported (Miguel et al., 2004; Fawole & Opara, 2013a; Arendse et al., 2014). 

Anthocyanins have been reported to be unstable and easily degraded due to enzymatic 

oxidation as a result of loss of compartmentalization of substrates during long storage (Jiang 

& Chen, 1995). This explains the observed decreased in TAC after prolong storage (3 and 4 

months of storage), with no significant differences observed among FLU concentrations. A 

similar observation was also noted on TAC when fruit were treated with PUT. 

The antioxidant capacity of fruit treated with FLU and PUT increased with storage duration. 

Although previous studies have attributed increase in antioxidant activity to phenolic 

compounds (Gil et al., 2000; Fawole & Opara 2013a), this was not observed during the study. 

Some studies have suggested that antioxidant capacity could be due to vitamin C and tannins 

(Barman et al., 2014).  In general, the antioxidant capacity observed did not correlate with the 

trends observed for TPC, ascorbic acid or total anthocyanin thus suggesting that other 

bioactive compounds such as tannins could have been the main contributors to the fruit 

antioxidant capacity found during the study.  

On determining the volatile composition during storage of fruit treated with FLU and PUT, 

31 and 32 volatile compounds were identified for FLU and PUT respectively. Six chemical 

groups (alcohols, aldehydes, ketones, acids, esters and terpenes) were detected for fruit 

treated with FLU while five groups (minus ketones) were detected for PUT treated fruit. The 
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volatiles evolved during storage with eight compounds identified at harvest but more 

compounds evolved as storage progressed especially terpenes for both FLU and PUT 

treatments. The alcohol group was predominant between month 1 and 2 with 1-hexanol 

(leafy, fruity and woody) as the most abundant compound. As storage progressed to 3 and 4 

months, terpenes (monoterpnes and sesquiterpenes) massively accumulated with m-cymene 

characterised by citrus, woody, terpenic, spicy and cumin aroma being the most abundant 

compound for both FLU and PUT treatments. Upregulation of terpenes has been attributed to 

response of fruit to chilling stress (Mphahlele et al., 2016). Accumulation of terpenes may 

have an impact on flavour of fruit (Mayuoni-Kirshinbaum et al., 2013). Storage of fruit for 

long duration may result in fruit with undesirable flavour due to accumulation of terpenes. 

Therefore, irrespective of concentration used fruit treated with FLU and PUT can be stored 

up to 3 months without significant loss of fruit flavour. 

Recommendations and future prospects 

The study showed that PUT was effective in alleviating physiological disorders; chilling 

injury, husk scald and external fruit decay but not internal decay. The chemical maintained 

physico-chemical and sensory quality of fruit although the benefits on phytochemical 

properties was not evident. The study highlighted that PUT at 2 mM concentration had the 

benefit of both reducing physiological disorders and maintaining good sensory fruit quality. 

With regards to FLU, the chemical significantly reduced fruit decay during storage, but was 

not effective in alleviating the other physiological disorders (chilling injury, husk scald and 

aril browning). FLU, however, maintained good sensory quality, physico-chemical attributes 

and phytochemical properties of fruit. FLU at 600 mg/L concentration was the most effective 

in reducing fruit decay, had fruit with better sensory attributes and maintained phytochemical 

properties of stored fruit.  

For both FLU and PUT, fruit were stored for up to 3 months without adversely affecting fruit 

quality. Therefore, FLU and PUT have the potential to be applied as postharvest chemical 

treatments although further research is required to improve on their efficacy. This 

information is helpful in reducing postharvest losses, improving storability and maintaining 

quality by treating fruit at farm and pack-house level. However, husk scald and weight loss 

remained a challenge during the study especially from 3 months of storage. Therefore, future 

prospects could focus on the use of physical treatments as complementary postharvest 
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strategies for reducing fruit spoilage. The use of simple physical treatments such as liners and 

surface coating (for example waxing) in combination with chemical treatments would be 

worth investigating. Additionally, further research may also focus on combination of FLU 

and PUT to benefit from hurdle effect to harness the full potential of the two chemicals since 

they have different modes of action. 
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