
Link failure recovery among dynamic routes in

telecommunication networks

by

Dieter Stapelberg

Thesis presented in partial ful�lment of the requirements for

the degree of Master of Commerce in Computer Science at

Stellenbosch University

Department of Mathematical Sciences, Computer Science Division,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Supervisor: Prof. A.E. Krzesinski

December 2009

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the owner of the copy-
right thereof (unless to the extent explicitly otherwise stated) and that I have
not previously in its entirety or in part submitted it for obtaining any quali�-
cation.

Date: .

Copyright© 2009 Stellenbosch University
All rights reserved.

i

Abstract

Link failure recovery among dynamic routes in
telecommunication networks

D. Stapelberg

Department of Mathematical Sciences, Computer Science Division,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MComm (Computer Science)

December 2009

Since 2002 data tra�c has overtaken voice tra�c in volume [1]. Telecom /
Network operators still generate most of their income carrying voice tra�c.
There is however a huge revenue potential in delivering reliable guaranteed
data services. Network survivability and recovery from network failures are
integral to network reliability. Due to the nature of the Internet, recovery
from link failures needs to be distributed and dynamic in order to be scalable.

Link failure recovery schemes are evaluated in terms of the survivability of
the network, the optimal use of network resources, scalability, and the recovery
time of such schemes. The need for recovery time to be improved is highlighted
by real-time data tra�c such as VoIP and video services carried over the
Internet.

The goal of this thesis is to examine existing link failure recovery schemes
and evaluate the need for their extension, and to evaluate the performance of
the proposed link failure recovery schemes.

ii

Uittreksel

Netwerk skakel herstelling tussen dinamiese roetes in
telekommunikasie netwerke.

(�Link failure recovery among dynamic routes in telecommunication networks�)

D. Stapelberg

Departement Wiskundige Wetenskappe, Rekenaarwetenskap Afdeling,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MComm (Computer Science)

Desember 2009

Sedert 2002 het data verkeer die stem verkeer in volume verbygesteek [1].
Telekommunikasie / netwerk operateurs genereer egter steeds die meeste van
hul inkomste met stem verkeer. Netwerk oorlewing en die herstel van netwerk
mislukkings is integraal tot netwerk stabiliteit. Die samestelling van die Inter-
net noodsaak dat die herstel van skakel mislukkings verspreid en dinamies van
natuur moet wees.

Die herstel-skema van skakel mislukkings word evalueer in terme van die
oorleefbaarheid van die netwerk, die mees e�ektiewe benutting van network
bronne, aanpasbaarheid, en die herstel tydperk van die skema. Die vinnig
moontlikste herstel tydperk word genoodsaak deur oombliklike data verkeer
soos �VoIP� en beeld dienste wat oor die Internet gedra word.

The doel van hierdie tesis is om bestaande skakel mislukking herstel skemas
te evalueer, en dan verder ondersoek in te stel na hul uitbreiding. Daarna word
die voorgestelde skakel mislukking skema se e�ektiwiteit gemeet.

iii

Acknowledgements

I am thankful to Prof. A.E. Krzesinski whose pursuit of answers was an inspi-
ration to me. His knowledge and guidance proved invaluable. My gratitude
also to Johannes Göbel for the discussions and work done on Successive Sur-
vivable Routing. Lastly to my parents, whose support brought me to this
point.

iv

Dedications

Hierdie tesis word opgedra aan my ouers. Baie dankie vir die kompas en die
kaart.

v

Contents

Declaration i

Abstract ii

Uittreksel iii

Acknowledgements iv

Dedications v

Contents vi

List of Figures viii

List of Tables x

1 Introduction 1

2 Network theory 3
2.1 The Internet Protocol (IP) . 3
2.2 The network graph . 5
2.3 Open Shortest Path First . 6
2.4 Optimal edge-disjoint path pair 12
2.5 Teletra�c Engineering . 20
2.6 Multipath Label Switching Protocol (MPLS) 21

3 Network models and topology generation 25
3.1 Real world network models . 25
3.2 The BRITE network topolgoy generator 30

4 Successive Survivable Routing 34
4.1 Review of SSR . 34
4.2 Capacity giveback . 41
4.3 State-dependent backup routing 42
4.4 SSR results for link failure scenarios 45
4.5 Network topology engineering for SSR 50

vi

CONTENTS vii

5 Beowulf cluster-computing 59
5.1 An introduction to Beowulf cluster computing 59
5.2 Setting up a Beowulf cluster . 60
5.3 Usage of the Beowulf cluster . 68
5.4 The basic Beowoulf cluster . 69
5.5 Beyond the basic Beowulf cluster 70
5.6 Linux administration . 71
5.7 Priority scheduling . 72
5.8 Summary . 78

6 Conclusion 79

Appendices 81

A Appendix 82

List of References 90

List of Figures

1.1 Internet growth by domain search. 1

2.1 The IP recovery cycle. 4
2.2 The �sh network graph. 5
2.3 An undirected graph. 11
2.4 The two-step-algorithm network. 13
2.5 The two-step-algorithm fails to �nd the shortest pair of paths. . . . 13
2.6 The two-step-algorithm fails to �nd a pair of paths. 14
2.7 The (s, sp) case; path γ1 is path s, the straight line from A to Z.

Path s′p intersects path s at n vertices, but does not share any edges
with path s. 15

2.8 Case 1 of the (sp, sp) case. 16
2.9 Case 2 of the (sp, sp) case. 16
2.10 Case 3 of the (sp, sp) case. 16
2.11 Case 4 of the sp × sp case. 17
2.12 A (sp, sp) case with m = 3. 18
2.13 The 2SA failure example network with link cost. 19
2.14 The modi�ed network with negative costs. 20
2.15 MPLS TE Global Path Protection. 23

3.1 The AT&T North American network model. 27
3.2 The MCI North American network model. 27
3.3 The European Ebone network model. 28
3.4 The European Tiscali network model. 29
3.5 The Australian Telstra network model. 30

4.1 The example �ve-node network. 36
4.2 The SCA structure for the �ve-node network. 39
4.3 Find a new backup path for �ow 2 using SSR. 40
4.4 The SSR algorithm backup capacity requirements. 46
4.5 The SSR algorithm computation time in minutes. 46
4.6 The SSR algorithm backup capacity requirements. 48
4.7 The SSR algorithm computation time in minutes. 48
4.8 The BRITE topologies SSR algorithm backup capacity requirements. 49

viii

LIST OF FIGURES ix

4.9 The BRITE topologies SSR algorithm computation time in minutes. 50

5.1 A typical Beowulf network topology. 62

A.1 The beorsakey script. 83
A.2 The beouseradd script. 84
A.3 The sudoers �le. 85
A.4 The beo�lerep script. 86
A.5 The beoprioritize script. 87
A.6 The beocronsched script. 88
A.7 The beorun script. 89

List of Tables

2.1 A working example of Dijkstra's algorithm 8

3.1 Network topology parameters . 26
3.2 The AT&T USA model . 26
3.3 The MCI USA model . 26
3.4 The EBone European model . 28
3.5 The Tiscali European model . 29
3.6 The Telstra Australian model . 30
3.7 BRITE router level parameters . 31
3.8 BRITE topologies network pro�le 33

4.1 The SSR algorithm notation . 38
4.2 The SSR-SD de�nitions . 43
4.3 The additional SSR-SD notation 43
4.4 Example network information . 45
4.5 SSR backup capacity requirement 46
4.6 �Real-world� network pro�les . 47
4.7 SSR �real-world� network result data 49
4.8 BRITE topology pro�les . 49
4.9 SSR BRITE network result data . 49
4.10 SSR standard and maximum deviation investigation 51
4.11 The N20D2BA2 network node degrees 51
4.12 The EBone network node degrees 52
4.13 The EBone network properties and results 53
4.14 The SSR6 network properties and results 54
4.15 The SSR6 network properties and results 55
4.16 The MCI network properties and results 56
4.17 The AT&T network properties and results 57
4.18 The N10D4BA2 network properties and results 57
4.19 The N20D2BA2 network properties and results 57
4.20 The hubbed networks' SSR standard and maximum deviation in-

vestigation . 58

x

Chapter 1

Introduction

One of the most basic human desires is the need to communicate. With the
advent of the Internet, a new and powerful medium of communication has
been realised. The growth of the Internet has been exponential [2], as shown
in Figure 1.1.

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

Jan 94 Jan 96 Jan 98 Jan 00 Jan 02 Jan 04 Jan 06 Jan 08

Internet Growth by domain search

Figure 1.1: Internet growth by domain search.

The large-scale deployment of Voice over IP (VoIP) has resulted in the
even more rapid growth of data tra�c over the Internet. This creates an
opportunity to increase the revenues earned from data tra�c by optimizing the
network carrying the data tra�c. With more of this carried tra�c being critical
services, in addition to the increase in the overall volume of tra�c carried over
the Internet, recovery from network failures has become an important aspect
of network engineering.

In both our personal and business life, we have become more and more
dependent on the array of communication services at our disposal. Commu-
nication networks are subject to a variety of errors. Human error, overload
and natural disasters are examples of unintentional failures. Intentional dis-
ruptions include maintenance actions and sabotage. Communication networks
play an integral part of our daily lives. Commercial uses of communication
networks are critical to business functions. This has led to availabilty (uptime)
guarantees forming an integral part of service level agreements (SLAs) between

1

CHAPTER 1. INTRODUCTION 2

service providers and their customers. Telecommunication and Internet com-
panies require sound strategies to create a successfull business model using the
Internet as a platform. Network reliability is arguably the most critical factor
for Internet-enabled business.

No network is free from failures. Network integrity is the ability of the
network to provide the desired quality of service (QoS), not only in normal
network conditions, but also when network congestion or network failure oc-
curs.

Network survivabilty is a subset of network integrity. Survivability refers
to the ability of a network to recover in the event of failure, with little or no
consequence to the user. Link failure recovery can take a long time (recovery
times are measured in milliseconds) in traditional computer networks, in some
cases even a few minutes.

This thesis �rst provides a background to IP architecture as it is relevant
to network recovery. We then examine existing networking routing protocols,
and focus on the edge-disjoint open shortest path �rst (ED-OSPF) routing
algorithm. We brie�y examine Multi-Protocol Label Switching (MPLS) tra�c
engineering (TE) which has enjoyed considerable success, which has led to
the development of MPLS TE recovery techniques that require our attention.
We next discuss existing network recovery mechanisms, and we investigate the
Successive Survivable Routing (SSR) algorithm as part of the failure recovery
mechanism.

We propose a recovery scheme which involves the development of link fail-
ure recovery algorithms that can recover from any link failure in the network
model. Furthermore, the failure of multiple links (large-scale disaster) needs
to be investigated. Failure recovery schemes should therefore deploy recovery
routes that are link-disjoint to the failed route. We next study the e�ects of
our proposed link failure recovery scheme against the criteria that we will set.

The outcome of this work is an e�ective scheme to recover from link failures,
and the optimal provisioning of network spare capacity to recover from these
failures. The goal is to minimize the e�ect of such failures on the network,
and to return the network to the state prevailing before the network failure as
soon as possible. We run simulations on sets of network topologies to measure
the performance of the network recovery scheme. We also look at the network
engineering required to improve the performance of the algorithm.

Simulation results are only useful if sensible input is provided to the simula-
tion. The network model is a crucial �parameter� supplied to the simulator. We
attempt to create more realistic network models using ISP provided network
speci�cations, data obtained from the Rocketfuel project [3], and arti�cially
generated network topologies [4].

Performing numerous simulation runs can be a tedious and time-consuming
task. To accelerate this process we built a Beowulf cluster-computer which en-
ables the parallel execution of simulation runs, and greatly reduces the elapsed
time of simulations, as well as the coordination overhead required.

Chapter 2

Network theory

We begin with an introduction and discussion of the Internet Protocol (IP),
which is a vital component in the structure of the Internet and is used by
the Internet hosts and the routers to communicate. Routing in the network
forms an integral part of network recovery and hence survivability. SSR, for
example, uses IP (actually OSPF) to �nd the �rst set of recovery routes and
then uses di�erent cost metrics to discover more optimal recovery routes. We
also present some relevant graph theory which lays the foundation for our
discussion on link-state routing algorithms.

2.1 The Internet Protocol (IP)

The Internet Protocol (IP) is used for communicating data across a packet-
switched internetwork. Together with the Transmission Control Protocol (TCP),
it is the backbone of Internet data transfer. IP is concerned with two basic
functions namely addressing and packetization.

Packetization is concerned with splitting the data to be transmitted into
smaller packages, or datagrams. We are more interested in the addressing
function of IP. From RFC 791 [5]:

. . . The Internet modules use the addresses carried in the In-
ternet header to transmit Internet datagrams toward their desti-
nations. The selection of a path for transmission is called routing
. . .

. . . In addition, these modules (especially in gateways) have pro-
cedures for making routing decisions and other functions.

These routing decisions are made by consulting routing tables that are
maintained in each router. In order to make these routing decisions we need a
method for �nding paths in the network and distributing this path information
among the routers. This is the function of the link-state OSPF algorithm
discussed in Section 2.3 on Page 6.

3

CHAPTER 2. NETWORK THEORY 4

Link-state Interior Gateway Protocols (IGPs) have a proven track record
over many years. They are deployed in the majority of networks and form the
foundation of the Internet. Link state routing has also had renewed interest for
network survivability due to the fast recovery properties of link state routing
protocols [6]. Refer to the IP routing recovery cycle in [6] as it is de�ned on
the timeline.

} Time} }}}
Fault detection time

Hold-off time

Fault notification time

Recovery operation time

Traffic recovery time

Failure

Fault detected

{ Overall recovery time

Figure 2.1: The IP recovery cycle.

OSPF operates as follows in reference to the recovery timeline in [6]:

1. Fault detection and characterization. Early detection of faults in
the network has a considerable impact on the total recovery time.

2. Hold-o� timer. In modern networks it is likely that there exist mul-
tilayer recovery mechanisms. This means that is appropriate for the IP
layer to wait for the lower network layers to determine if their own re-
covery mechanisms can manage to recover from the fault. If the recovery
time for the lower layer is de�ned as X, we need to de�ne a hold-o�
timer Y for the IP layer, with Y > X.

3. Fault noti�cation time. When a link or node failure occurs, the nodes
directly connected to the point of failure will detect the error. They will
issue a fault indication signal (FIS) to the nodes that they are connected
to. Each node in turn that receives a FIS forwards it to its neighbours.
OSPF uses a process called Link State Announcement (LSA) �ooding
to ensure that the FIS eventually reaches each connected node in the
routing domain.

4. Recomputation of the routing table. Each node has to compute a
new routing table using the updated network topology state information.
In this process each node uses OSPF to create the Shortest Path Tree
(SPT). The SPT contains the next node on the shortest path from this
node to every other node in the routing domain.

CHAPTER 2. NETWORK THEORY 5

5. Route using the new Routing Information Base (RIB). Once the
SPT computation is complete each node will update its RIB and tra�c
that was routed on a failed path will now be routed on a recovery path.

2.2 The network graph

A graph is used to represent a computer network. A graph G = (V, E) is
a set of vertices (nodes) V connected by a set of edges (links) E. The nodes
in a computer network can be computers, routers, switches or any other net-
working hardware device. The edges that connect these nodes are the com-
munication links used to establish these connections. These could be Ethernet
network connections, dial-up network connections, �ber-optic network connec-
tions, satellite connections, and so on.

Consider the network graph in Figure 2.2 below. Due to its topological
layout it is referred to as the �sh network graph.

A E

F

C D G

B

1

2

3

2

5

3

1

Figure 2.2: The �sh network graph.

� The set of nodes in this network is V = {A, B, C, D, E, F,G}.

� The number of nodes in the network is denoted by |V| (in this network
|V| = 7).

� The set of links in this network is E = {AC, BC, CD, DE, DF, EG, FG}.

� The number of edges in the network is denoted by |E| (in this network
|E| = 7).

� The degree (v) of a node indicated by dG(v) de�nes the number of edges
connecting to this node (in this network network dG(D) = 3).

An edge is de�ned as a bi-directional link not necessarily of equal cost in
both directions. We can now represent a real computer network as a network
graph.

CHAPTER 2. NETWORK THEORY 6

To route information between nodes in the network we need to know the
paths which connect the nodes. We are concerned with a method of �nding
these paths in the network. We refer to the starting point (node) of a path as
the origin node, and the end point (node) of the path as the destination node.

A path from a node i to a node j is a sequence of contiguous edges that
connect these nodes. Consider the example in Figure 2.2 above. There exist
two paths for the origin-destination (O-D) pair A and G. We can use a short-
hand notation to indicate this O-D pair as (AG). We can denote the path for
AG as a sequence of edges: (AG) = ACDEG or (AG) = ACDFG.

The next question is how to �nd these paths. OSPF is a standard link-state
routing algorithm, which we discuss next in Section2.3.

2.3 Open Shortest Path First

Before the advent of the Internet, networks were smaller entities, which became
known as Autonomous systems (AS). Routing within an AS was done by the
Routing Information Protocol (RIP) [7]. A large contributing factor to RIP's
success was its inclusion in the widely used Berkeley Standard Distribution
(BSD) UNIX. However RIP, a distance vector protocol, su�ered from several
de�ciencies [8]:

� slow convergence,

� routing loops,

� the �counting to in�nity� problem,

� the �small in�nity� problem,

� some of the problems above were solved by restricting paths to be no
longer than 15 hops, which is a problem in itself.

As networks grew bigger, these �aws were exposed. The Internet Engi-
neering Task Force (IETF) formed a working group in 1988 to develop a new
link-state routing algorithm. This link-state algorithm was known as shortest
path �rst (SPF). Their mandate was to design an Interior Gateway Protcol
(IGP) based on the SPF algorithm. This algorithm is also known as Dijk-
stra's algorithm, named after its creator, Edsger W. Dijkstra. Dijkstra's own
recollection of the creation of the SPF algorithm [9] is candid and surprising:

I designed my �rst nontrivial algorithms. The algorithm for the
Shortest Path was designed for the purpose of demonstrating the
power of the ARMAC at its o�cial inauguration in 1956, the one for
the Shortest Spanning Tree was designed to minimize the amount
of copper in the backpanel wiring of the X1. In retrospect, it is

CHAPTER 2. NETWORK THEORY 7

revealing that I did not rush to publish these two algorithms: at
that time, discrete algorithms had not yet acquired mathematical
respectability, and there were no suitable journals. Eventually they
were o�ered in 1959 to�Numerische Mathematik� in an e�ort of
helping that new journal to establish itself. For many years, and
in wide circles, the Shortest Path has been the main pillar for
my name and fame, and then it is a strange thought that it was
designed without pencil and paper, while I had a cup of co�ee with
my wife on a sunny cafe terrace in Amsterdam, only designed for
a demo. . .

The �rst version of OSPF was described in RFC 1131 [5] and published in
1989. It was replaced by OSPF v2 in RFC 1247 [5], published in 1991. OSPF
v2, often referred to as OSPF, is in use today.

The SPF algorithm �nds the shortest path in the network between each
node pair. It does this by incremental search. We start with Dijkstra's algo-
rithm as de�ned in Figure 1 [10]. A working example is provided to illustrate
Dijkstra's algorithm.

2.3.1 Dijkstra's algorithm

Denote the source node by A and the destination node as Z. Dijkstra's algo-
rithm is given in Algorithm 1.

CHAPTER 2. NETWORK THEORY 8

Data: A connected network graph V
Result: The shortest path from A to Z.

1. Start with d(A) = 0.

d(i) =

{
ℓ(A) if i ∈ ΓA,

∞ otherwise (∞ is a large number as de�ned below).

d(i) ≡ the distance of node i (i ∈ V) from the source node A, which is
the sum of arcs in a possible path from node A to node i.
Γi ≡ the set of neighbouring nodes of node i.
ℓ(ij) = length of the arc from node i to node j.
Assign S = V − {A}. Assign P (i) = A ∀i ∈ S.

2. a) Find j such that d(j) = min(d(i)), i ∈ S.

b) Set S = S − {j}
c) If j = Z (the destination node), END; otherwise go to step 3

3. ∀ i ∈ Γj and i ∈ S, if d(j) + ℓ(ji) < d(i), set
d(i) = d(j) + ℓ(ji), P (i) = j.
Go to step 2.

Algorithm 1: Dijkstra's algorithm

The symbol of ∞ (also refered to as INF) is a large
number used to initialise the distance of each of the nodes (excluding source

node A) from node A. The value of INF must be larger than the length of the
path to be determined. The shortest path length is not known a priori, as it
is the output of the algorithm. We therefore set INF equal to or greater than
the longest path between A and Z. We de�ne INF to be greater than the sum
of the lengths of the edges in the given graph, G = (V,E).

Consider the following example of the OSPF algorithm applied to the net-
work presented in 2.3:

In the above network we wish to �nd the shortest path from node A to
node G. The steps performed by the algorithm are as follows:

Table 2.1: A working example of Dijkstra's algorithm

Step Details
1. d(A) = 0

d(B) = 1, d(C) = 1, d(E) = 5, d(D) = d(F) = d(G) = ∞
S = {B,C,D,E, F,G}
P (B) = P (C) = P (D) = P (E) = P (F) = P (G) = A

Continued on the next page

CHAPTER 2. NETWORK THEORY 9

Table 2.1 � continued from the previous page

Step Details

2. min{d(B), d(C), d(D), d(E), d(F), d(G)} = d(B) = 1
(a) j = B
(b) S = {C,D,E, F,G}
(c) j = B ̸= G

3. ΓB = {A,C,D}
S = {C,D,E, F,G}
ΓB ∩ S = {C,D}
d(C) = d(B) + ℓ(BC) = 1 + 3 = 4
⇒ 4 > d(C) = 1
d(D) = d(B) + ℓ(BD) = 1 + 5 = 6
⇒ 6 < d(D) = ∞
⇒ d(D) = 6, P (D) = B

2. min{d(C), d(D), d(E), d(F), d(G)} = d(C) = 1
(a) j = C
(b) S = {D,E, F,G}
(c) j = C ̸= G

3. ΓC = {A,B,D,E, F}
S = {D,E, F,G}
Γ ∩ S = {D,E, F}
d(D) = d(C) + ℓ(CD) = 1 + 2 = 3
⇒ 3 < d(D) = 6
⇒ d(D) = 3, P (D) = C
d(E) = d(C) + ℓ(CE) = 1 + 3 = 4
⇒ 4 < d(E) = 5
⇒ d(E) = 4, P (E) = C
d(F) = d(C) + ℓ(CF) = 1 + 1 = 2
⇒ 2 < d(F) = ∞
⇒ d(F) = 2, P (F) = C

2. min{d(D), d(E), d(F), d(G)} = d(F) = 2
(a) j = F
(b) S = {D,E,G}
(c) j = F ̸= G

3. ΓF = {C,D,E,G}
S = {D,E,G}

Continued on the next page

CHAPTER 2. NETWORK THEORY 10

Table 2.1 � continued from the previous page

Step Details
ΓF ∩ S = {D,E,G}
d(D) = d(F) + ℓ(FD) = 2 + 4 = 6
⇒ 6 > d(D) = 3
d(E) = d(F) + ℓ(FE) = 2 + 1 = 3
⇒ 3 < d(E) = 4
⇒ d(E) = 3, P (E) = F
d(G) = d(F) + ℓ(FG) = 2 + 2 = 4
⇒ 4 < d(G) = ∞
⇒ d(G) = 4, P (G) = F

2. min{d(D), d(E), d(G)} = d(D) = 3
(a) j = D
(b) S = {E,G}
(c) j = D ̸= G

3. ΓD = {B,C, F}
S = {E,G}
ΓD ∩ S = {}

2. min{d(E) = 3, d(G) = 4} = d(E) = 3
(a) j = E
(b) S = {G}
(c) j = E ̸= G

3. ΓE = {A,C,F,G}
S = {G}
ΓE ∩ S = {G}
d(G) = d(E) + ℓ(EG) = 3 + 1 = 4
⇒ 4 ≡ d(G) = 4

2. min{d(G)} = d(G) = 4
(a) j = G
(b) S = {}
(c) j = G ⇒ END

Using the predecessor list P that we built up in the above example we
extract the path from node A to node G as ACFG.

CHAPTER 2. NETWORK THEORY 11

A

B F

E

GC

D

5

1
3

2

1

3
1

1

2

1

45

Figure 2.3: An undirected graph.

2.3.2 The modi�ed Dijkstra's algorithm

In the following Section 2.4 on Page 12, we discuss the method of �nding
an optimal edge-disjoint pair of paths for any given O-D pair [10]. In the
construction of these optimal edge-disjoint path pairs we will make use of
graphs with negative arcs. An arc is a directional link between nodes. A bi-
directional edge is composed of two arcs. AB refers to the arc from node A to
node B and BA refers to the arc from node B to node A. These two arcs AB
and BA together form the bi-directional edge between the nodes A and B. It
is possible to assign di�erent costs to the link between two nodes, dependent
on its direction. For example, we can assign a positive cost of 5 to the arc AB
and a negative cost of -3 to the arc BA. The usefulness of negative arcs will
be illustrated in Section 2.4 on Page 12. Dijkstra's algorithm as discussed in
Section 2.3.1 cannot work with negative arc costs. It therefore requires the
modi�cation as detailed in Algorithm 2.

CHAPTER 2. NETWORK THEORY 12

1. Start with d(A) = 0,

d(i) =

{
ℓ(A) if i ∈ ΓA,

∞ otherwise (∞ is a large number as de�ned below).

Γi ≡ set of neighbour nodes of node i, ℓ(ij) = length of arc from node i
to node j.
Assign S = V − {A}
Assign P (i) = A ∀i ∈ S.

2. a) Find j ∈ S such that d(j) = min(d(i)), i ∈ S.

b) Set S = S − {j}
c) If j = Z (the destination node), END; otherwise go to step 3

3. ∀ i ∈ Γj, if d(j) + ℓ(ji) < d(i), set

a) d(i) = d(j) + ℓ(ji), P (i) = j.

b) S = S
∪
{i}.

Go to step 2.

Algorithm 2: The modi�ed Dijkstra algorithm

There are two changes in the modi�ed Dijkstra algorithm. First, in Step 3,
the modi�ed Dijkstra algorithm scans all the neighbours of the node selected
in Step 2(a). This is necessary as a node that was previously �permanently�
labelled can now be relabelled since it may receive a lower label upon fur-
ther scanning of the graph. Secondly, step 3(b) re-enters any node that was
relabelled in Step 3(a) into the set S.

Note that for nonnegative arcs these steps become redundant and the mod-
i�ed Dijkstra algorithm reduces to the Dijkstra algorithm.

2.4 Optimal edge-disjoint path pair

In the Section 2.3 on Page 6 we discussed the Dijkstra and the modi�ed Dijk-
stra algorithm. These algorithms are concerned with �nding the shortest path
between any O-D pair in the network. It is likely that more than one path
exists between any O-D pair in the network. Not all of these paths will be
independent of each other, meaning that they will share common edges. We
de�ne a pair of paths to be edge disjoint if they have no edges in common.
The pair of edge-disjoint paths with the least total path length is de�ned to
be the shortest pair of paths.

Before we examine the shortest edge disjoint pair of paths algorithm, we

CHAPTER 2. NETWORK THEORY 13

examine a simple algorithm to �nd a pair of paths for an O-D pair, the two-
step-approach algorithm.

2.4.1 The two-step-approach (2SA) algorithm

The 2SA algorithm uses Dijsktra's algorithm to �nd the shortest path. The
edges contained in this path are then removed from the graph (by setting their
cost to in�nity) and Dijkstra's algorithm is run again to �nd the new shortest
path in the modi�ed graph. We begin with the network graph as given in
Figure 2.4 below:

A

B

C G

D F Z

E
1

3

4

2

5

2

11 1

2 1

13

1

Figure 2.4: The two-step-algorithm network.

Running Dijkstra's algorithm we �nd the shortest path for AZ to be ADFZ.
The next step is to remove the edges contained in the �rst path from the
network graph. This produces the network graph given in Figure 2.5 below.
Running Dijkstra's algorithm again, we �nd the second path as ABEFGZ. The
cost for the �rst path ADFZ is 3. The cost for the second path ABEFGZ is 7.
The combined cost for the 2SA algorithm shortest edge-disjoint pair of paths
is 10.

A

B

C G

D F Z

E
1

3

4

2

5

2

2 1

13

1

Figure 2.5: The two-step-algorithm fails to �nd the shortest pair of paths.

CHAPTER 2. NETWORK THEORY 14

Note that using the edge-disjoint shortest pair path algorithm, which we
discuss in Section 2.4.2 on Page 14, we �nd that the shortest pair of paths is
ABEFZ and ADGZ, with a total path cost of 5 + 4 = 9.

This example shows that the 2SA algorithm is suboptimal. Furthermore
the 2SA algorithm can fail to �nd a pair of edge-disjoint paths, even when they
exist. Figure 2.6 below provides such an example. For the remaining network
graph examples we assume that the straight line from node A to node Z (which
is the O-D pair for which we �nd the path(s)) is the shortest path between
the O-D pair. This is represented by the dashed line in Figure 2.6. After the
�rst run of Dijkstra's algorithm for the 2SA algorithm the links AB, BC, and
CZ are removed. This leads to the second run of Dijkstra's algorithm for the
2SA algorithm which now is not able to �nd a path from A to Z. The network
graph in Figure 2.6 is now disconnected. With the ED-OSPF algorithm, as
indicated by the two dotted outer lines, the paths ADCZ and ABEZ with a
total cost of 6 are found as the shortest pair of paths for O-D pair AZ.

A

D

B C Z

E

Figure 2.6: The two-step-algorithm fails to �nd a pair of paths.

2.4.2 Optimal edge-disjoint path pair development

We begin the development of the ED-OSPF algorithm by examining the set
of possible paths that can deliver the shortest path pair.

Let path s denote the shortest path between the designated O-D pair. For
now we will assume that s is unique. We de�ne a segment of the path s as any
contiguous subset of arcs on the path. For example, if the shortest path s is
path ABCDEFGHZ, the segments BCDE and FGH are segments of the path
s. Let

Sp= the set of all paths whose segments overlap with path s, (2.4.1)

S ′
p= the set of all paths whose segments do not overlap with path s (2.4.2)

and let

CHAPTER 2. NETWORK THEORY 15

� sp denote a path ∈ Sp,

� s′p denote a path ∈ S ′
p,

� (γ1, γ2) denote a pair of paths γ1 and γ2.

From 2.4.1 and 2.4.2 we see that there are 6 possible combinations for (γ1, γ2):

(γ1, γ2) ∈ {(s, s′p), (sp, sp), (s′p, s′p), (sp, s′p), (s, sp), (s, s)} (2.4.3)

The requirement for edge disjointness rules out (s, sp) and (s, s).
We can also rule out (s′p, s

′
p), (sp, s

′
p), since these path choices will always

be longer than (s, s′p), due to the uniqueness assumption made for the shortest
path s.

Next we look at the (s, sp) combination as shown in Figure 2.7 below:

A ZB B B1 2 n

path γ

path γ = path s
1

2

Figure 2.7: The (s, sp) case; path γ1 is path s, the straight line from A to Z. Path
s′p intersects path s at n vertices, but does not share any edges with path s.

Path γ2 by de�nition cannot contain any segment of path s. Therefore the
sum of the lengths of the two paths γ1 and γ2 is greater than twice the length
of path s. This leaves:

(γ1, γ2) ∈ (sp, sp) (2.4.4)

We now de�ne each of the paths in (sp, sp) in 2.4.4 to contain a single (but
exclusive) segment of path s. This leads to the the following 3 subcases:

1. One of the segments of the two paths terminates at one of the endpoint
nodes.

2. Neither of the two segments terminates at an endpoint node.

3. Both of the segments terminate at an endpoint node.

CHAPTER 2. NETWORK THEORY 16

A

B

C D Z

E

G

F

Figure 2.8: Case 1 of the (sp, sp) case.

We wish to show that the two paths constituting the shortest edge-disjoint
pair intersect each other at a node on path s. We will prove this by contra-
diction. Figures 2.8 to 2.11 illustrate the cases where the pair of paths do not
intersect each other. The �rst case is shown below:

Nodes A and C, which are on path s are connected via node B. The path
ABC is longer than the direct path AC. This means that the path pair ACDEZ
and AFGZ is shorter than the pair ABCDEZ and AFGZ.

The same argument can be applied for the following two cases in Figures 2.9
and 2.10 below:

A

B

C D H

E

G

F

Z

I

Figure 2.9: Case 2 of the (sp, sp) case.

A

B

C

D

E

G

F Z

Figure 2.10: Case 3 of the (sp, sp) case.

CHAPTER 2. NETWORK THEORY 17

Figure 2.11 needs further consideration. Each of the alternate paths is
longer than the shortest path s. Thus the sum of these two paths is greater
than twice the cost of path s. This is the same as the (s, s′p) case which we
have already ruled out. Also note that there is a single break DC in this graph.
If we generalise this, there can be m breaks, with m > 0. We will come back
to this in Figure 2.12 on Page 2.12. This �gure illustrates this general case,
with m = 3.

A

B

CD

E

Z

Figure 2.11: Case 4 of the sp × sp case.

Now we relax the constraint that the paths cannot intersect at a node on
path s. This would mean that the node on path s where the paths intersect
has a minimum degree of 4. For Figures 2.8 and 2.9 we combine nodes D and
G into node D, with d(D) = 4. In Figure 2.10 we combine nodes C and F into
node C, with d(C) = 4. The same arguments before combining the vertices
still hold to make this con�guration invalid.

Figure 2.11 can be modi�ed into a valid con�guration. If we combine
vertices C and D into node C, with d(C) = 4, we have a valid con�guration as
it is equivalent to the (s, s′p) con�guration.

This gives the shortest edge-disjoint pair representation as:

(γ1, γ2)edge-disjoint shortest pair ∈ {(sp, sp), (s, s′p)} (2.4.5)

Furthermore, the two paths may intersect at any number of nodes on path
s and also contain segments of path s so that there exist breaks in path s.
Figure 2.7 shows the (s, s′p) case that occurs when all the segments of path s
are part of the two edge-disjoint shortest pair paths.

Next we relax the constraint of the shortest path uniqueness. This allows
for additional con�gurations, as in Figures 2.8, 2.9 and 2.10.

These con�gurations occur with the same total path cost for the pair of
paths. Consider Figure 2.8; if path ABCDGZ has the same cost as as path
s (ACDGZ), then the pair of paths (ABCDEZ, AFGZ) has the same path
cost as (ACDEZ, AFGZ). This is the same as the con�guration discussed for
Figure 2.11.

CHAPTER 2. NETWORK THEORY 18

The cases (sp, s
′
p) and (s′p, s

′
p) in equation 2.4.4 also have to be taken into

consideration again. Once again, the con�gurations would occur with the same
total path cost as the paths in the (s, s′p) case.

In the case of more than one shortest path, it is clear that these additional
con�gurations are of the same total length as the con�gurations based on the
unique shortest path constraint. Therefore, in the construction of the shortest
pair edge-disjoint paths, the con�gurations given by 2.4.5 are applicable. From
the previous argument it follows that s can be either a unique path or one of
several shortest paths selected by the path �nding algorithm.

A

H

B D F

J

E

I

G

K

ZC

Path

Path

γ

γ

1

2

Figure 2.12: A (sp, sp) case with m = 3.

Consider Figure 2.12 above which corresponds to the (sp, sp) con�guration.
When the breaks in Figure 2.12 � BC, DE and FG � are reduced to zero it is
equivalent to the (sp, s

′
p) con�guration in Figure 2.7. We consider Figure 2.12

as the general con�guration that includes the (s, s′p) case.
This means that any edge-disjoint shortest pair path algorithm that gener-

ates and optimises over all con�gurations as generalised in Figure 2.12 produces
the shortest pair of edge-disjoint paths.

Referring back to the two-step algorithm, it corresponds only to the (s, s′p),
and as already shown in the example, it is suboptimal and could possibly not
�nd disjoint paths in a network graph even if they do exist.

2.4.3 The optimal edge-disjoint path pair algorithm

We can now state the algorithm for generating the edge-disjoint shortest pair
path [10] as in Algorithm 3.

We illustrate this algorithm by using the same network example as in Fig-
ure 2.6 on Page 14. We include link costs to illustrate the graph modi�cations
made by the ED-OSPF algorithm.

We now �nd the ED-OSPF paths as follows:

1. Let node A be the source node, and node Z the destination node. The
OSPF shortest path is ABCZ.

2. Remove arcs BA, BC and ZC replace edges AB, BC and CZ respectively.

CHAPTER 2. NETWORK THEORY 19

1. Select any of the two nodes as the source node and the other as the
destination node. Use the modi�ed Dijkstra algorithm (see
algorithm 2) to �nd the shortest path for this O-D pair.

2. Replace each edge of the shortest path by a single arc directed to the
source node. This means that the arc for each link on the shortest path
from the source to the destination must be set to in�nity.

3. Negate the length of the above arcs in the direction of the destination
node to the source node.

4. Run the modi�ed Dijkstra algorithm again on the graph with the
modi�ed arcs, and �nd the shortest path again for the same origin and
destination nodes.

5. Revert the arcs modi�ed in steps 2 and 3 back to obtain the original
graph, and erase any interlacing edges of the two paths. The interlacing
edges are de�ned as arcs that exist in both the �rst and second shortest
path obtained steps 1 and 4, with the direction of the arc disregarded.
Therefore if arc AB exists in the �rst path, and arc BA exists in the
second both are removed from their respective shortest paths. Arrange
and alternate the remaining segments based on the interlaced edges
that were removed to obtain the shortest pair of edge-disjoint paths.

Algorithm 3: The edge-disjoint shortest path pair algorithm

A

D

B C Z

E

1

1

2

11

2 1

Figure 2.13: The 2SA failure example network with link cost.

3. Set BA = -1, BC = -1, ZC = -1.

4. The shortest path in the modi�ed network graph as in Figure 2.14 below
is ADCBEZ.

5. Reverting back to the original network, the two paths ABCZ and AD-
CBEZ have an interlacing edge BC in common. We remove this inter-

CHAPTER 2. NETWORK THEORY 20

lacing edge as follows:

� The ABCZ path from node A to node B proceeds where we reach
the interlacing edge BC. We proceed to node B on the ADCBEZ
path. We then proceed from node B to node E, and from node E
to node Z on the ADCBEZ path. This gives us the �rst ED-OSPF
path ABEZ.

� The ADCBEZ path proceeds from node A to node D, then from
node D to node C. Here we reach the interlacing edge BC. We
proceed to node C on the ABCZ path. We then proceed from node
C to node Z on the ABCZ path. This gives us the second ED-OSPF
path ADCZ.

A

D

B C Z

E

1

-1

2

-1-1

2 1

Figure 2.14: The modi�ed network with negative costs.

2.5 Teletra�c Engineering

Tra�c engineering is one of the most important elements of network design.
In the �eld of network and telecommunications it is referred to as teletra�c
engineering (TE). TE uses statistical techniques to predict and respond to the
behaviour of telecommunication networks. The main goal is to route tra�c so
network resources are �e�ciently� used.

The de�nition of �e�ciently� depends on the perspective taken on teletra�c
engineering. From the end-user perspective, we wish to minimise delays and
avoid congestion in the network. In terms of the network operator, they could
wish to route speci�c tra�cs along certains paths / segments which have the
appropriate hardware and / or links to deal with this tra�c.

From [11] the objective of teletra�c theory can be formulated as follows:
�to make the tra�c measurable in well de�ned units through mathematical

CHAPTER 2. NETWORK THEORY 21

models and to derive relationships between grade-of-service and system capac-
ity in such a way that the theory becomes a tool by which investments can be
planned.�

For reasons of limited space, we refer the reader to references [11], [12]
which provides more detailed information on teletra�c engineering.

2.6 Multipath Label Switching Protocol

(MPLS)

In IP routing, discussed in Sections 2.1 and 2.3, teletra�c engineering is made
possible by the manipulation of the link costs. Due to its widespread use many
IP TE engineering techniques have been developed. Other networks use TE
methods as well (public voice, ATM, and frame relay). We focus on Multi
Path Label Swithching (MPLS) TE in this section and , [6], [13], [14], [15] will
provide more background on MPLS and MPLS TE.

The need has arisen to have more control of the routing process, which
in the case of IP TE is dynamic and distributed. MPLS was developed with
this in mind. MPLS TE is a �tunneling� mechanism that establishes TE La-
bel Switch Paths (TE LSPs) between origin-destination pairs. In MPLS TE
we refer to the origin node as the head-end label switched router (LSR) and
the destination node as tail-end LSR. Each TE LSP has its own set of con-
straints. These constraints, along with the network topology and resources,
are used to compute the TE LSP that meets the given requirements. For the
purposes of our link failure recovery scheme, the requirements would be rapid
and equivalent recovery from network link failure. This requires the immediate
availability of provisioned backup paths that can survive any link failure. This
will be discussed in Chapter 4 on Page 34.

The path computation methods can be distributed or centralised. Once
an LSP is established, the IP packets are routed according to the LSP. The
intermediate nodes do not make any routing decisions. LSPs support the
notion of link disjointness (also referred to as link diversity), where two LSPs
do not have a link in common. Another concept to note is that of Shared risk
link groups (SRLG). A SRLG provisions for the fact the failure of any single
element (such as hardware failure) can result in the failure of multiple network
elements. SRLG disjointness refers to an LSP being either link (L) disjoint
or node (N) disjoint, i.e. if its path does not include any link ℓ ∈ L, or node
n ∈ N in its path. Likewise two TE LSPs are SRLG disjoint if their respective
sets of links do not have any SRLG in common.

2.6.1 MPLS TE components

MPLS TE consists of the following �ve main components:

CHAPTER 2. NETWORK THEORY 22

1. Con�guring the TE LSP on a head-end LSR.

2. Topology and resource information distribution. Note that is only re-
quired for distributed / on-line path computation.

3. TE LSP computation. The TE LSP path computation can be performed
by an o�-line or by an on-line tool. This stage of MPLS TE is where our
SSR algorithm, which will be discussed in Chapter 4 on Page 34, can be
employed.

4. TE LSP setup. Once a TE LSP is computed, the head-end LSR signals
the TE LSP by using the Resource Reservation Protocol (RSVP) [14]
signalling protocol as extended for LSP tunnels [15]. It is important to
note that paths are not set up using RSVP. The paths are maintained
and torn down using di�erent RSVP messages.

5. Packet forwarding. Once the TE LSP is set up by the head-end LSR
using RSVP, it updates its routing table and can start forwarding packets
on the route.

2.6.2 MPLS advantages

MPLS TE should be considered for the following reasons.

1. Bandwidth optimization: MPLS TE can achieve the network resource
utilization goals de�ned by the network administrator.

2. QoS: Various guarantees can be provided through engineering the net-
work to meet the demands of network services.

3. Fast recovery: Several mechanisms are available that allow for fast re-
covery, and in particular we will examine MPLS TE Global Path Pro-
tection. The existing mechanisms o�er fast convergence, but bandwidth
optimization and QoS guarantees can also be met.

2.6.3 Recovery Operation Time

Referring to the IP recovery cycle illustrated in Figure 2.1 on Page 4 we now
focus on the fourth segment of the cycle, the recovery operation time. We
consider three MPLS recovery techniques:

� MPLS TE global default restoration which is the default MPLS recovery
mode. This requires that when a failure occurs, the head-end LSR is
noti�ed by means of RSVP and the routing protocol. The head-end
LSR will recompute a new path and re-signal the TE LSP along the new
path.

CHAPTER 2. NETWORK THEORY 23

� MPLS TE global protection. Two TE LSPs are set up by the head-end
LSR, a primary LSP and a backup LSP. When a failure occurs and the
head-end LSR is noti�ed, it is not required to recompute a new path,
the head-end LSR can immediatly start using the backup LSP.

� MPLS TE local protection. This is a local recovery scheme, where upon
the occurance of network failure, the LSPs a�ected by the failure are
locally rerouted by the node immediatly upstream from the failure.

2.6.3.1 MPLS Tra�c Engineering Global Path Protection

We illustrate the use of MPLS through an example. Figure 2.15 illustrates a
15-node network where we show the paths for two O-D pairs, A-Z and J-Z.

A DB C Z

E F G H I

J K L M N

Primary TE LSP
Backup TE LSP

Figure 2.15: MPLS TE Global Path Protection.

The bold dashed line is the primary TE LSP used for routing tra�c under
normal network conditions. The lighter dashed lines are the backup (sec-
ondary) LSPs that will be deployed as backup routes if the primary TE LSP
is inoperable due to network failure. Note that the backup LSP is signalled
on the same path as the primary path. There is a requirement however that
the backup route must be link diverse from from the primary TE LSP. This is
necessary since, if any of the links on the primary path fail, then the working
path has failed and the backup path must be used. If the backup path makes
use of links on the primary path, we can not be sure that these links have
not failed. With MPLS TE it is di�cult to guarantee that the QoS require-
ments will be met. The QoS degredation depends on the use of the other LSPs
sharing the same network resources as the backup LSP path. In MPLS TE it
is also di�cult to gaurantee the network bandwidth constraints, unless they
have been reserved. This is where the SSR algorithm plays a vital part in
our network recovery mechanism, as it provisions the backup capacity while
minimising the overall backup capacity required.

CHAPTER 2. NETWORK THEORY 24

From [6] we note the following advantages and drawbacks for MPLS TE
Global Path Protection.

Advantages

� The method is easy to deploy in networks with many links and nodes and
a limited number of LSPs to protect. Only the necessary diversly routed
TE LSPs need to be con�gured. With local protection for example every
network element would need to be protected with a backup path.

� The backup tunnel is computed and signalled before the failure. The
advantage is that the path is deterministic and that the network ad-
ministrator has control over the backup tunnel path. This is especially
important where the individual backup tunnels are selected as part of a
globally optimised backup path selection.

Drawbacks

� Global path protection requires doubling the number of TE LSPs, which
can have a signi�cant impact in full mesh networks. However, in Chap-
ter 3 on Page 25 we show that full mesh networks are not common in
�real-world� network topologies, where we see that preferential connec-
tivity follows a power-law distribution when new nodes are connected to
the network.

� Global path protection cannot in most cases (especially international
networks) recover from network failure in tens of milliseconds, which is
critical for time sensitive tra�c like voice data. This is due to the fact
that failure noti�cation needs to be received by the head-end LSR before
switching over to the pre-con�gured backup LSP.

� If a bandwidth guarantee is required, in order to provide bandwidth
sharing, path protection requires the use of an external o�-line tool for
the computation of both the primary and the secondary TE LSPs. SSR
in Chapter 4 on Page 34 can provide the tool for this requirement.

� The requirement for an end-to-end diversely routed path may in some
cases imply the selection of a nonoptimal path for the primary TE LSPs.
This problem has already been addressed by ED-OSPF, discussed in
Section 2.4 on Page 12, where we select the optimal pair of network paths
that have the lowest commbined path length. It has also been shown in
Section 2.4.1 on Page 13 that the ED-OSPF algorithm succeeds where
the 2SA fails.

Chapter 3

Network models and topology

generation

Protocols and network behaviours must be investigated and optimised before
implementation. Simulation is an important part of network research and is
often used to investigate the performance of networks and protocols. The net-
work model or topology with which we run the simulation is a crucial input
parameter, and it has an important in�uence on the outcomes of the simula-
tion.

In this chapter we examine several realistic network topologies obtained
from the Rocketfuel project [3] and other sources of real network data. As in
[16] we examine �POP-level� (point of presence level) topologies. We examine
the BRITE topology generation tool [4] and we create several topologies which
are investigated in Section 3.2.2 on Page 33.

3.1 Real world network models

Using the data from [3] we created representations of the AT&T topology of
North America, the Ebone topology of Europe, the Tiscali topology of Europe
and the Telstra topology of Australia. Each of these models was modi�ed in
two ways:

1. The POP-level representation was simpli�ed in cases where multiple
POPs are located in the same metropolitan area.

2. The network topologies are subject to a minimum node-degree of two.
This is to facilitate network recovery algorithms such as ED-OSPF, dis-
cussed in Section 2.4, which require link disjointness.

Table 3.1 presents the notation for the network topology properties that
we use to pro�le our networks.

25

CHAPTER 3. NETWORK MODELS AND TOPOLOGY GENERATION 26

Table 3.1: Network topology parameters

Number of nodes N

Number of edges (arcs) L(A)

Average node degree d

Average shortest path length p

Minimum shortest path length min p

Maximum shortest path length max p

3.1.1 North America - the AT&T model

The AT&T North American network model was created from [3] with nodes
(POPs) that reside in the USA. The network parameters are given in Table 3.2.

Table 3.2: The AT&T USA model

N 50

L(A) 79 (158)

d 3.16

p 2.773

min p 1

max p 6

3.1.2 North America - the MCI model

The MCI network model was created by visual inspection of data provided
on the ISP's site [17]. This network di�ers from the AT&T model in that
it has international connections to locations such as London, Sao Paulo and
Hong Kong. One modi�cation was made (a link from Los Angeles to Seoul)
to maintain the minimum node-degree. The network parameters are given in
Table 3.3.

Table 3.3: The MCI USA model

N 43

L(A) 94 (188)

d 4.372

p 2.904

min p 1

max p 6

CHAPTER 3. NETWORK MODELS AND TOPOLOGY GENERATION 27

Figure 3.1: The AT&T North American network model.

1

23

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

192021

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

Figure 3.2: The MCI North American network model.

CHAPTER 3. NETWORK MODELS AND TOPOLOGY GENERATION 28

3.1.3 Europe - the Ebone model

The Ebone Europe model was created using the data in [3] with nodes (POPs)
that reside in Europe. The network was modi�ed to ensure the minimum node
degree. The network parameters are given in Table 3.4.

Table 3.4: The EBone European model

N 26

L(A) 48 (96)

d 3.692

p 2.942

min p 1

max p 6

2

3

4

5

6

8
9

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

1

16

7

Figure 3.3: The European Ebone network model.

3.1.4 Europe - the Tiscali model

The Tiscali Europe model was created from [3] and, similar to the MCI net-
work model in Subsection 3.1.2, it has connections to New York, Chicago and
Washington. To ensure the minimum node-degree an additional connection

CHAPTER 3. NETWORK MODELS AND TOPOLOGY GENERATION 29

from London to Chicago was established. The network parameters are given
in Table 3.5.

Table 3.5: The Tiscali European model

N 26

L(A) 48 (96)

d 3.692

p 2.504

min p 1

max p 6

2

1
9

2
0

1
2
2

2
3

1
0

1
3

1
4

1
5

1
6

4
8

2
5

2
8

3
0

2
4

2
6

2
1

2
7

2
9

4

5
1
1

6

7
1
8

9

1
2

3
2

3
3

3
4

4
0

3
8

3
5

3
6

4
1

4
2

4
3

3
7

4
4

4
6

4
7

3
1

4
5

3
9

41

42

45

46
47

48

44

43

1

2

3

4

5

6

7

8

10

11

13

14 15

16

17

18

19

20 22

21

24

25

26

27

28

29

30

31

32

33

34

36

38

39

40

12

9

37

23

35

Figure 3.4: The European Tiscali network model.

3.1.5 Australia - the Telstra model

The Telstra Australia model was created in [3]. All of the nodes (POPs) reside
in Australia, and it has no internationl links. Links were added to the network
to ensure the minimum node degree. The network parameters are given in
Table 3.6.

CHAPTER 3. NETWORK MODELS AND TOPOLOGY GENERATION 30

Table 3.6: The Telstra Australian model

N 26

L(A) 48 (96)

d 3.16

p 3.279

min p 1

max p 6

1

2

3

4

5

6

7

89

10

11
12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28
29

30

31

32

33

34

35

36

37

38

39 40

41

42
43

44

45

46

47

48

49

50

Figure 3.5: The Australian Telstra network model.

3.2 The BRITE network topolgoy generator

Real Internet topologies are not made fully and readily available, if at all. ISPs
regard their router-level topologies as con�dential information. The Rocketfuel
project as discussed in Section 3.1 on Page 25 addresses the lack of realistic
router-level network topologies and allowed the development of the �real-world�
network topologies, with the exception of the MCI USA network topology,
which was built with information published on the ISP's site.

The three main BRITE network topology generator principles [4] are

1. Representativeness - the topologies accurately re�ect many aspects of
the Internet topology.

2. Inclusiveness - to combine the strengths of as many topology generation
models as possible in a single generation tool.

CHAPTER 3. NETWORK MODELS AND TOPOLOGY GENERATION 31

3. Interoperability - to provide interfaces to widely-used simulation and
visualisation applications.

The BRITE network topologies will serve as synthetic network topolo-
gies for our simulations to compare to realistic and to other example network
topologies. Although BRITE o�ers four main topology types we only focus on
the Router Level topologies.

To generate a BRITE router level topology we need to supply values for
the parameters as listed in Table 3.7.

Table 3.7: BRITE router level parameters

HS & LS The size of one side of the plane, and of
one side of a high-level square

N The number of nodes in the network

Model Waxman or Barabási-Albert

α Waxman-speci�c parameter for node
interconnecting probability

β Waxman-speci�c parameter for node
interconneting probability

Node place-
ment

Random or heavy-tailed

m Number of links per new node (node de-
gree)

Growth type All or incremental

BWDist Constant, uniform, exponential or
heavy-tailed

MaxBW,
MinBW

The maximum and minimum bandwith
values

The HS and LS parameters are important in topologies that use heavy-
tailed node-placement as the grouping for these nodes into squares (size given
by LS) on the plane (size given by HS) is employed. In contrast random node
placement can be anywhere on the plane (size given by HS).

The model types (Waxman or Barabási-Albert) di�er in the method of
connecting nodes to the network. The Waxman node interconnecting proba-
bility for the nodes of the random topology is given by:

P (u, v) = αed/(βL) (3.2.1)

where α > 0, β ≤ 1, d is the Euclidian distance from node u to node v, and
L is the maximum distance between any two nodes.

The Barabási-Albert model suggests two possible causes for the emer-
gence of a power law in the frequency of the outdegrees in network topologies:

CHAPTER 3. NETWORK MODELS AND TOPOLOGY GENERATION 32

� incremental growth - networks are formed by the continual addition of
new nodes, and the gradual increase in the size of the network

� preferential connectivity - new nodes connect to existing nodes that are
highly connected, which form hubs.

When node i joins the network, the probability that it connects to an
existing node j is given by:

P (i, j) =
dj∑
k∈V dk

(3.2.2)

where dj is the outdegree of the target node; V is the set of nodes that
have joined the network and

∑
k∈V dk is the sum of the outdegrees of all the

nodes that have previously joined the network.
The growth type is important for our topology generation. Incremental

growth states that a node has a higher probability of linking to nodes with
more existing network connections. We oberve this in our �real-world� Aus-
tralia model in Section 3.1.5 on Page 29 where the Adelaide, Brisbane, Perth,
Melbourne and Sydney nodes have a high degree of connectivity as they act
as hubs in the network. Random node placement means a node can connect
to any existing node in the network at random. The number of links per new
node determines the minimum amount of connections that a new node makes
when it connects to the network.

The link bandwith and distribution can largely be ignored for the purposes
of our simulations, as we use population-based tra�c demands to determine
the bandwidth requirements between nodes. We discuss this in Section 3.2.1.
The number of nodes is given by N and this allows us to choose the size of
our arti�cial network topology.

3.2.1 Population-based tra�c and bandwidth
requirements

The generated BRITE topologies do not determine the city populations that
we use in our network topology models. The power law for the frequency
of node degree in [18] has also been observed for city populations [19]. We
use a Pareto distribution to create a set of city populations for our BRITE
topologies.

We use random samples that are generated using inverse transform sam-
pling. Given a random variate U drawn from the uniform distribution on the
unit interval (0, 1), the variate

T =
xm

U1/k
(3.2.3)

with xm being a positive scale parameter, and k the positive shape param-
eter, is Pareto-distributed.

CHAPTER 3. NETWORK MODELS AND TOPOLOGY GENERATION 33

3.2.2 Generated BRITE topologies

We begin by generating network topologies comparable to the SSR example
networks as discussed in Section 4.4.1 on Page 45.

We created the following networks:

� 10 node, node degree of 4, Waxman connection model (N10D4DWax)
network topology,

� 10 node, node degree of 4, BA2 connection model (N10D4BA2) network
topology,

� 20 node, node degree of 2, Waxman connection model (N20D2DWax)
network topology,

� 20 node, node degree of 2, BA2 connection model (N20D2BA2) network
topology,

� 30 node, node degree of 2, Waxman connection model (N30D2Wax)
network topology,

� 30 node, node degree of 2, BA2 connection model (N30D2BA2) network
topology.

Table 3.8 presents the network pro�le for these topologies.

Table 3.8: BRITE topologies network pro�le

Property N10D4Wax N10D4BA2 N20D2Wax N20D2BA2 N30D2Wax N30D2BA2

N 10 10 20 20 30 30

L (A) 34 (68) 30 (60) 40 (80) 55 (110) 60 (120) 119 (238)

d 6.8 6 4 5.5 4 7.933

p x x x x x x

min p x x x x x x

max p x x x x x x

Chapter 4

Successive Survivable Routing

4.1 Review of SSR

The Successive Survivable Routing (SSR) algorithm [20] provides a computa-
tionally e�cient approximate solution to the Spare Capacity Allocation (SCA)
problem, discussed in Section 4.1.2. The purpose of the SSR algorithm is to
minimise the total spare (backup) capacity neccessary to provide equivalent
recovery routes in the case of link failure. We review the SCA problem, then
review and verify the SSR algorithm. We then extend SSR to employ capac-
ity giveback and we also develop a state-dependent version of SSR to further
reduce the spare capacity requirement.

4.1.1 A new de�nition of a �ow

Before we discuss the SCA problem, we need to rede�ne a �ow. In [20] a
�ow is de�ned as a tra�c demand between an origin-destination (O-D) pair.
Thus for each additional tra�c demand between an O-D pair, a new �ow is
added to the SSR data structures. With reference to Fig. 4.1, example 3 in
[20] illustrates a new �ow between the O-D pair AB. The addition of each
new �ow leads to the growth of the matrices P, Q, M, D, U, and T which
are de�ned below. Furthermore the number of Gr matrices increases with the
number of �ows r. These matrices are summarised in Table 4.1 and explained
in Sections 4.1.2 and 4.1.3.

We de�ne a �ow as the aggregated tra�c demand between an O-D pair,
thus on a per route basis. New tra�c demand on any given O-D pair is
therefore aggregated into the existing tra�c demand for the given O-D pair.
We provide an example that illustrates the working of the SSR algorithm on
a per route basis.

34

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 35

4.1.2 The SCA problem

Using the network graph representation as discussed in Chapter 2 on Page 3
we represent an undirected network graph G, with N vertices (nodes), L edges
(links), and R �ows. A �ow exists between each O-D pair.

We now examine the data structures employed by the SSR algorithm to
represent the network con�guration and calculate the backup paths and the
backup capacities required. Let mr denote the bandwidth requirement (�ow)
of �ow r. The working and backup paths of �ow r are given by the 1×L binary
row vectors pr = {prℓ} and qr = {qrℓ} respectively where L is the number of
links in the network. For each link ℓ that is used in the path for �ow r the
ℓ-th element of of the vector is set to 1. The transposes of these r row vectors
form the path link incidence matrix. This gives two R×L matrices P = {prℓ}
and Q = {qrℓ}.

Let M= Diag({mr}R×1) be the diagonal matrix that contains the band-
width demands of the r �ows where R is the number of �ows. Scaling this
matrix allows for partial/additional reservation of spare capacities.

The matrix B = (bnℓ)N×L represents the node incidence matrix where N
is the number of nodes. If node n is either the origin or destination of the link
ℓ, bnℓ = 1. Similarly, D = (drn)R×N represents the �ow node matrix, where
drn = 1 if o(r) = n or if d(r) = n.

It is neccessary to record the spare capacity requirements for each of the
ℓ links. Let G = {gℓk}L×K denote the spare provision matrix where K is
the number of failure scenarios. The element gℓk denotes the minimum spare
capacity required on link ℓ when link k fails. In the case of single-link failures,
K = L. We also record the maximum spare capacity for each link using column
vector s = {sℓ}L×1.

Given the working paths P, the initial set of backup paths Q, and the
demand bandwidth matrixM it is possible to state the SCA problem as follows:

minQ,sϕ(s) (4.1.1)

such that
s = maxG (4.1.2)

G = QTMU (4.1.3)

T+Q ≤ 1 (4.1.4)

QBT = D. (4.1.5)

In Eq (4.1.1) the objective is to minimize the total cost ϕ(s) of spare ca-
pacity, through the selection of the backup paths Q and the spare capacity
allocations s.

We use constraints (4.1.2) and (4.1.3) to calculate the spare capacity vec-
tor s from the spare provision matrix G, where M is a diagonal matrix of
bandwidth allocations and U = P⊙ FT is the path failure incidence matrix,

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 36

with P the working path link incidence matrix and F the link failure incidence
matrix. The operators max and ⊙ are de�ned in Table 4.1 on Page 38.

Link disjointness is enforced by constraint (4.1.4). T = U⊙ F denotes the
�ow tabu matrix.

Constraint (4.1.5) guarantees that the backup paths contained in Q are
feasible paths for the �ows in these undirected networks, with D being the
route node incidence matrix.

4.1.3 Successive Survivable Routing

SSR solves the SCA problem by solving it as a random sequence of single
�ow problems. The order of selection of the �ows r could produce di�erent
solutions, and we can select the randomised sequence of �ows that delivers
the best resulting spare capacity requirement. We present the SSR algorithm
from [20] in Algorithm 4. The notation for the SSR algorithm is summarised
in Table 4.1.

4.1.4 A working example of SSR

We now present a working example of the SSR algorithm using the �ve-node
network from [20] reproduced in Fig. 4.1.

7

54

3

2

1

b c

de

a 6

Figure 4.1: The example �ve-node network.

Each O-D pair has a �ow r, with a unit demand to keep the matrices simple.
A requirement of SSR is that the working paths and the backup paths are link
disjoint. For each O-D pair we calculate a pair of edge-disjoint routes such
that the sum of their lengths is minimal using [10] as discussed in Chapter 2.
Recall that this is the optimal edge-disjoint pair. However, the calculation
of the backup paths before running SSR is not required. It is nonetheless
worth investigating if these optimal edge-disjoint pair paths lead to a faster
convergence of the SSR algorithm. The SSR algorithm uses q∗

r = 11×L − (T)k
as the backup path to compare to the new backup path. This is not the
shortest path, but a list of all non-tabu links used to calculate the incremental
cost of spare capacity on all the links.

The working paths are stored in the matrix P, the backup paths in the
matrix Q, the spare capacity requirement in the spare provision matrix (SPM)
G, and the maximum spare capacity requirement for each link in the column

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 37

Data: The number of links (L), the number of �ows (R) and the
number of failure scenarios (K). Matrices P, M and F. Cost
function ϕ.

Result: Matrix Q containing the backup paths.
begin

Calculate U = P⊙ FT

Calculate T = U⊙ F.
Use Algorithm 2 to intialise the backup path matrix Q, only using
non-tabu links (trℓ = 0).
Calculate the spare provision matrix G = QTMU.
Calculate s = maxrows G
repeat

Calculate thisCost =
∑

ϕ(s)
foreach path r ∈ {1, . . . , R} in random order do

Calculate qr = (Q)r and q∗
r = 11×L − (T)k

Calculate Gr = mr(q
T
r ur)

Calculate Gr∗ = mr(q
∗T
r ur)

Calculate G−r = G−Gr

Calculate s−r = maxrows G
−r

Calculate s∗ = maxrows G
−r +Gr∗

Calculate v = ϕ(s∗)− ϕ(s−r)
Each non-tabu link ℓ (trℓ = 0) is enabled at cost vℓ.
All tabu links are disable by setting their cost to ∞.
Use Algorithm 2 to determine the least cost backup path q
for path r.
Update vector qnew

r = {qnewr }1×L set (qnewr)ℓ = 1 if q makes
use of link ℓ and 0 otherwise.
if qnew

r v < qrv then
Calculate (Q)r = qnew

r

Calculate G = QTMU
Calculate s = maxrows G

end
Calculate newCost =

∑
ϕ(s)

end
until thisCost = newCost ;

end
Algorithm 4: The SSR algorithm.

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 38

Table 4.1: The SSR algorithm notation

N,L,R,K Number of nodes, links, paths, failure scenarios.

n, ℓ, r, k Indices of nodes, links, paths, failure scenarios.

o(r), d(r) Origin and destination nodes of path r.

P = {prℓ}R×L Working path link incidence matrix: prℓ = 1 if the
path r traverses link ℓ and 0 otherwise.

Q = {(qrℓ}R×L Backup path link incidence matrix: (qk)rℓ = 1 if the
backup path qr for path r in scenario k traverses link ℓ
and 0 otherwise.

M = Diag({mr})R×R Diagonal bandwidth demand matrix mr of path r.

F = {fkℓ}K×L Failure link incidence matrix: fkℓ = 1 if link ℓ fails in
scenario k and 0 otherwise.

U = {urk}R×K Flow failure incidence matrix: urk = 1 i� �ow r's
working path is a�ected in scenario k and 0 otherwise.

T = {trl}R×L Flow tabu-link matrix: trℓ = 1 i� link ℓ should not be
used on �ow r 's backup path.

D = {drn}R×N Flow node incidence matrix.

ϕ = {ϕl}L×1 Backup capacity cost function: ϕℓ is the cost of a unit
of backup capacity on link ℓ.

Gk = {(gk)ℓr}L×R Path backup requirement per scenario: (gk)ℓr is the
backup capacity required on link ℓ for path r in failure
scenario k.

G = {gℓk}L×K Backup provision matrix: gℓk is the backup capacity
required on link ℓ for failure scenario k.

B = {bℓk}L×K Giveback capacity matrix: bℓk is the giveback capacity
released from link ℓ for failure scenario k.

vr = {(vr)ℓ}L×1 Link cost vector: vℓ is the cost of including link ℓ into
the currently rerouted backup path qr.

s = {sℓ}L×1 Vector of link backup capacity: sℓ is the backup ca-
pacity required on link ℓ for any failure scenario.

e = {eℓ}1×L Unit vector.

U⊙ F The ⊙ operator denotes binary matrix multiplication.
The matrix containing the multiplication results only
stores the values 0 or 1. In the case where the matrix
multiplication result for any entry is greater than 1, it
is reset to 1.

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 39

vector s. This is illustrated in Fig. 4.2. Not shown is the failure matrix F,
which is an identity matrix. This matrix represents the scenario of provisioning
spare capacity to construct equivalent recovery paths for all single link failures.

Figure 4.2: The SCA structure for the �ve-node network.

The axes at the top left provide the dimension of the matrices and the
column vector. We focus on �ows 2 and 6. The matrix P reveals that the
working path for �ow 2 uses links 1 and 3, while the backup path for �ow 2
uses links 2 and 7. Likewise the working path for �ow 6 uses links 3 and 5, and
the backup path uses links 4 and 7. Note that the working paths the backup
paths are link-disjoint.

These two sets of working and backup paths, combined with the �ow fail-
ure incidence matrix U, give the SPM G, with the maximum spare capacity
required stored in the column vector s. The current total of the vector s in
Fig. 4.2 gives the required spare capacity to provision for the single link failure
scenario provided by matrix F, without SSR optimisation. The current total
spare capacity is 13.

We will follow the same steps to perform SSR as given in [20] on Page 204.
The example is explained in Fig. 4.3.

Consider �ow 2 between the O-D pair a−c. In the case of protecting against
single link failures we have t2 = u2 = p2. Refer to Figure 4.3 above, this
implies that for path r = 2 - the �ow tabu-link matrix, �ow failure incidence
matrix and working path link matrix are the same. We follow the 5 steps of
the SSR algorithm:

1. Compute u2 and t2 as shown above.

2. Sum the Gr matrices into G.

3. a) Compute the SPM G−2 = G − G2 and the backup path matrix
Q−2 = Q −Q2 after the current backup path q2 is removed. The

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 40

Figure 4.3: Find a new backup path for �ow 2 using SSR.

di�erences betweenG andG−2, and between s and s−2 are indicated
by the underlined entries in Step 3(a) of Fig. 4.3.

b) Use q∗
2 = e− t2 as the new backup path using only non-tabu links.

As we already have the information available in Step 1, this vector
is shown in Step 1 above. We obtain G2∗(q∗

2) = m2q
∗T
2 u2. This

G2∗(q∗
2) is the new spare provision matrix for �ow r. Obtain the

new capacity reservation vector from the new spare provision matrix
as s∗(q∗

2) = max(G−2 +G2∗(q∗
2)). The capacity reservation vector

now adds to 14. The changes between G and G2∗(q∗
2), and between

s and s∗(q∗
2) are indicated by the bold and italic entries in Step 3(b)

of Fig 4.3.

c) Calculate the vector of link cost metrics for �ow r that gives the
incremental cost of using a link on the backup path for the given
�ow. If v2ℓ = 0, we can use link ℓ on the backup path of �ow
2 without having to deploy any additional spare capacity. From
Fig. 4.3 comparing s−2 and s∗ we see that if the backup path uses
any of links 2, 4, and 6 then it needs an additional unit of capacity
on each of these links. The backup path will need no additional
capacity on links 5 and 7 should it use these links.

4. Use the cost vector v as the link cost metric. Rerun the shortest path
algorithm, obtaining the new backup path qnew

2 , which uses links 2, 5,
and 7.

5. Deploy the new backup path qnew
2 if it has a lower cost than the existing

backup path, with the path cost based on the link metrics in v2:

q2 = qnew
2 , when vT

2 q2 v
T
2 q

new
2 .

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 41

As shown in Fig. 4.3 in Step 1, the current backup path uses links 2 and
6. The new backup path uses links 2, 5, and 7. In terms of hop count,
the current backup path is the shortest. Comparing the incremental
cost of the path using v2 we see that the current path requires 2 units
of additional capacity (links 2 and 6), and the new path requires only 1
unit of additional capacity (link 2).

The new backup path is added to Q and G and s is recalculated. We
end this iteration of the SSR algorithm with Gnew and snew. The total
spare capacity has been reduced from 13 to 12. The di�erences between
G and Gnew, and between s and snew are indicated by the bold and italic
and underlined entries in Step 5 of Fig 4.3.

It is left to the reader to show that using the steps above for �ow 6, we can
further reduce the total spare capacity requirement from 12 to 11.

4.2 Capacity giveback

A route between a O-D pair consists of a set of links. If the �ow on the route
requires n units of capacity, each link that forms part of that route requires n
units of capacity.

In any particular failure scenario we have a corresponding set of link fail-
ures. These failed links form part of the routes carrying the �ow r between
the route's O-D pair. As already mentioned, the working and backup paths
are link disjoint. For every failure scenario, the non-failed links are still capac-
itated to carry the �ow of the route a�ected by the failure scenario. The link
disjointness requirement implies that a link in the working route can never be
part of the backup route. This capacity is therefore unavailable to the backup
path of the failed �ow r that it supports. This capacity can however be used
by the backup route of another �ow that is allowed to use this link as part of
its backup path.

In order to keep track of the capacity made available by the given failure
scenarios, we calculate giveback capacity in (4.2.1)

B = PTMU. (4.2.1)

We store the resulting giveback capacity in matrix B, as listed in Table 4.1
on Page 38.

A link can be a surviving element of a route for more than one failure
scenario. Continuing with the example network in Fig. 4.1 on Page 36, with
the working and backup paths as given in Fig. 4.2 on Page 39, we examine
link 3. As shown in the working path matrix P, link 3 is used together with
link 1 to form the route for �ow 2, and together with link 5 to form the route
for �ow 6. We assume that �ow 2 has a �ow of 2 units of capacity, and �ow
6 has a requirement of 6 units of capacity. In the event of link 1 failing, we

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 42

have link 3 as the surviving link, with 2 units of capacity made available to
it, and when link 5 fails, link 3 has 6 units of capacity made available to
it. Di�erent amounts of spare capacity are freed, depending on which failure
scenario applies.

We modify Step 3 of the SSR heuristic in Algorithm 4 by calculating the
spare provision matrix G as:

G = [QTMU−B]+ (4.2.2)

We now reduce the spare capacity requirement for gℓk, the backup path link
ℓ used in failure scenario k, by the amount of capacity given back by pℓk, the
surviving working path link ℓ when failure scenario k occurs. The reader will
notice that we return the capacity of the failed link(s) ℓ in failure scenario k, in
this case of single link failure, Diag(B). Consider however that gℓk will always
be zero, since edge-disjointness requires that this link cannot be used in the
backup path. Even if the giveback capacity from the failed link is deducted,
the non-negative sum would reset the giveback capacities for the failed links
to zero.

Also in Step 3, by implication, G−r now represents the overall backup
capacity requirement for each link and failure scenario with the current backup
path for r removed, but with the surviving links working bandwidth being
made available to backup routes, thereby reducing the cost of using these links
in the backup paths. Note however that the requirement of edge-disjointness
implies that the same backup path cannot use the surviving link giveback
capacity. This can be utilised by other backup paths that are also a�ected by
the same failure scenario.

4.3 State-dependent backup routing

One of the requirements of the SSR algorithm is that the backup path must
be link disjoint from the working path. From [20] we recall:

U = P⊙ FT (4.3.1)

T = U⊙ F (4.3.2)

T+Q ≤ 1 (4.3.3)

This restriction leads to the exclusion of the surviving links in the working
path, which continue to function after the failure of the failed links. If we
calculate the backup paths required in each failure scenario k it is possible to
make use of all the surviving links in the network. In order to achieve this we
need to modify SSR. We begin with the additional matrix operations required
to achieve this, as given in Table 4.2.

First, the tabu link matrix T is no longer required, since all failed links are
�ltered using the failure matrix F and all surviving links are candidates for

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 43

Table 4.2: The SSR-SD de�nitions

v =
∑
rowsA Column vector containing the sum of each row of A, i.e.

(in case A is a I × J matrix) vi =
∑

j aij

the backup path. We now require a set of backup matrices Qk (1 ≤ k ≤ K)
that contains the computed backup paths for each failure scenario k. If a path
r does not fail in scenario K, a backup path would not be required and (Qk)r
will be zero.

We now require Gk, which is the SPM for each scenario's computed backup
paths:

Gk = QT
kM. (4.3.4)

The SPM for each failure scenario has to be aggregated into the SPM G.
We are interested in the total backup capacity for all paths using capacity on
link ℓ, therefore we use

∑
rows Gk to store the capacity requirement for scenario

k in Ck.
In order to present the spare capacity requirement in the SPM G we need

to combine the results for each of the failure scenarios. We achieve this by
concatenating each of the column vectors C with link capacity requirements
for each failure scenario k:

Gk = (C1 |C2 |. . . |Ck) . (4.3.5)

If capacity giveback is used we calculate G as:

G =
[
(C1 |C2 |. . . |CK) −PTMU

]+
. (4.3.6)

The end result is the SPM G and the remainder of the SSR-SD algorithm
is the same as SSR.

Table 4.3: The additional SSR-SD notation

Ck = {(ck)ℓ}L×1 Link capacity requirement per scenario: (ck)ℓ is the link
capacity required for each failure scenario k

Z = {zrk}R×K Failed backup path and failure scenario optimisation at-
tempts matrix: zrk counts the successive unsuccessful at-
tempts of changing the backup path qr for scenario k.

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 44

We are now ready to implement the SSR-SD algorithm which summarised
in Algorithm 5.

Data: values L, R, K, matrices P, M, F, Q1≤k≤K , cost function ϕ
Result: Set of matrices Qk containing backup paths. Column vector s

with backup capacity to employ
begin

repeat
Calculate curCost =

∑
ϕ(s)

Calculate Z = (0)R×K

for each link ℓ ∈ [1...L] with sℓ > 0 in random order do
for each scenario k ∈ [1...K] with gℓk = sℓ in random order
do

for each path r ∈ [1...R] with (gk)ℓr > 0 and zrk < 2 in
random order do

Calculate qr = (qk)r.
Calculate q0r = (0)1×L.
Calculate q∗r = (e)1×L − (FT)k.
Calculate s0 = s by setting (qk)r to q0r .
Recalculate Gk, G, and s.
Calculate s∗ = s by setting (qk)r to q∗r .
Recalculate Gk, G, and s.
Calculate vr = ϕ(s∗)− ϕ(s0) add 1 to (vr)ℓ.
Calculate the least cost backup path qnewr for path r in
scenario k using Algorithm 2 with any surviving link ℓ′

(i.e. fkℓ′ = 1) enabled at cost (vr)ℓ′
if qnewr vr < qrvr then

Calculate (qk)r = qnewr ;
Set zrk = 0;

else
Calculate (qk)r = qr;
Increment zrk by 1;

end
Recalculate Gk, G, and s;

end

end

end
until curCost =

∑
ϕ(s) ;

end
Algorithm 5: The SSR-SD algorithm.

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 45

4.4 SSR results for link failure scenarios

In this section we present the results of the SSR algorithm. We �rst examine
the results of the SSR example networks to verify our implementation. We
next examine the results of the SSR algorithm on our �real-world� network
topologies as discussed in Section 3.1 on Page 25. Lastly we examine the the
results of the BRITE generated network topologies as discussed in Section 3.2
on Page 30.

4.4.1 SSR example network topologies results

The eight network topologies provided in [20] on Page 206 are used as input
models to verify our implementation of the SSR algorithm. In addition the
performance of capacity giveback discussed in Section 4.2 and state-dependent
SSR discussed in Section 4.3 is evaluated. Table 4.4 gives the number of nodes
(N), the number of undirected / bidirectional links (L), and the average node
degree (d).

Table 4.4: Example network information

Network 1 2 3 4 5 6 7 8

N 10 12 13 17 18 23 26 50

L(A) 22 (44) 25 (50) 23 (46) 31 (62) 27 (54) 33 (66) 30 (60) 82 (164)

d 4.4 4.17 3.54 3.65 3 2.87 2.31 3.28

The simulations were run on an Intel Pentium 1.5GHz with 1.5Gb of mem-
ory. Following the network redundancy performance results in Figure 4.4 the
computation time required to run 20 iterations of the SSR algorithm for 20
replications are given in Figure 4.5 below. We also provide the �gures used for
charting Figure 4.4 in Table 4.5 on Page 46.

The following �ve variations of the SSR algorithm are evaluated:

1. SSR,

2. SSR with capacity giveback,

3. SSR state-dependent,

4. SSR state-dependent and capacity giveback, and

5. SSR state-dependent, capacity giveback, and non-unit link capacity.

The �rst four cases are variations on topics already discussed. In the �th
case we evaluate the case of a network capacitated with non-unit link capaci-
ties. This gives a more acurate presentation of a real-world network topology.

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 46

With the unit link capacities presented in [20] the deviation in spare capacities
required in the spare provision matrix G is more limited than with non-unit
link capacities. We show the e�ect this has on the backup capacity provision-
ing.

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5 6 7 8

B
ac

ku
p

ca
pa

ci
ty

 %

Network number

SSR algorithm results

SSR
GB
SD

SD GB
SD GB Cap

Figure 4.4: The SSR algorithm backup capacity requirements.

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

Network number

SSR algorithm results

SSR
GB
SD

SD GB
SD GB Cap

Figure 4.5: The SSR algorithm computation time in minutes.

Table 4.5: SSR backup capacity requirement

Network 1 2 3 4 5 6 7 8

% SSR 43.7 54.5 47.5 44.1 61 68.6 66.4 53.5

% GB 42.3 53.8 47.5 43.8 58.3 66.8 59.9 47.6

% SD 36.6 46.4 39.5 35.7 58.3 65.4 65.4 -

% SD & GB 36.6 45.5 38.9 35.7 55.4 63.6 62 -

% SD & GB & Cap 39.4 46.9 44.3 37.9 61.7 72.7 93.3 -

Note that there are no results for the three state-dependent simulations of
network 8. The size of the network and number of states to be maintained in
the simulation is too large to timely compute the results.

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 47

The decrease in backup capacity where SSR capacity giveback is used
ranges from roughly 0.3 to 6.5 percent for the eight networks. Network 4
shows the least improvement with roughly 0.3 percent, and Network 7 shows
the most improvement of 6.5 percent. This is noteworthy as Network 7 has
the lowest average node degree of all the eight networks and gains the largest
bene�t from capacity giveback.

The limited node connectivity, as given by the node degree, means that
path selection is more limited in these networks and that paths share more
links than highly connected networks. This indicates that the SSR algorithm
has fewer alternate paths to select in order to maximise backup capacity util-
isation, as indicated by Network 7 having the second worst backup capacity
requirement of the eight networks. This same characteristic leads to the in-
creased bene�t of capacity giveback. The working paths share more common
links, and therefore in any given failure scenario the surviving links return
bandwidth to the network that can then be better utilised by the una�ected
working paths.

4.4.2 �Real-world� topologies SSR results

We next examine the results of the SSR algorithm when applied to the follow-
ing �real-world� network topologies:

� AT&T USA network topology,

� MCI USA network topology,

� EBone European network topology,

� Tiscali European network topology, and

� Telstra Australian network topology.

Table 4.6 gives the number of nodes (N), the number of undirected /
bidirectional links (L), and the average node degrees (d).

Table 4.6: �Real-world� network pro�les

Network AT&T MCI EBone Tiscali Telstra

N 31 43 26 48 50

L(A) 65 (130) 94 (188) 48 (96) 101 (202) 79 (158)

d 4.194 4.732 3.692 4.208 3.16

The simulations were run on an Intel Pentium 1.5GHz with 1.5Gb of mem-
ory. Figure 4.6 presents the network redundancy performance results and
Figure 4.7 presents the computation time required to run 20 iterations of the

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 48

SSR algorithm for 20 replications. The same �ve variations of the SSR algo-
rithm as for the SSR example networks are evaluated. Note that for all the
results that are beyond the scale of the computation time axis, the simulation
could not be completed due to the excessive run-time of the algorithm. There
is a stopping rule at 5000 minutes. If one SSR replication cannot be completed
by the 5000 minute limit, the simulation is aborted. In the cases where at least
one SSR replication could be completed, we use the one result obtained. If
there is no result for the given network and SSR algorithm combinations, the
table will have a dashed entry to indicate no result.

 0

 50

 100

 150

 200

AT M
CI

EBone

Tiscali

Telstra

B
ac

ku
p

ca
pa

ci
ty

 %

SSR real network algorithm results

SSR
GB
SD

SD GB
SD GB Cap

Figure 4.6: The SSR algorithm backup capacity requirements.

 0

 1000

 2000

 3000

 4000

 5000

AT M
CI

EBone

Tiscali

Telstra

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

SSR real network algorithm results

SSR
GB
SD

SD GB
SD GB Cap

Figure 4.7: The SSR algorithm computation time in minutes.

4.4.3 BRITE generated topologies SSR results

We provide the SSR performance results for six BRITE generated network
topologies. In addition to the performance of the SSR algorithm, the perfor-
mance of the capacity giveback discussed in Section 4.2, and state-dependent
SSR discussed in Section 4.3 are evaluated.

Table 4.8 gives the number of nodes (N), the number of undirected /
bidirectional links (L), and the average node degrees (d).

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 49

Table 4.7: SSR �real-world� network result data

Network AT&T MCI EBone Tiscali Telstra

% SSR 67.2 77.6 86.8 94.7 133

% GB 65 76.8 86 89.1 129.8

% SD - - 77.7 90.9 -

% SD & GB 57.8 67.7 76.8 - 121.7

% SD & GB & Cap 69.6 84.6 79.7 - -

Table 4.8: BRITE topology pro�les

Network N10D4Wax N10D4BA2 N20B2Wax N20B2BA2 N30D2Wax N30D2BA2

N 10 10 20 20 30 30

L(A) 34 (68) 30 (60) 40 (80) 55 (110) 60 (120) 119 (238)

d 6.8 6 4 5.5 4 7.933

We next present the results for the SSR algorithm on the BRITE gener-
ated network topologies in Figure 4.8, while the computation times for the
algorithms are given in Figure 4.9. The network results that were used to plot
the results are given in Table 4.9.

 0

 50

 100

 150

 200

N10D4W
ax

N10D4BA2

N20D2W
ax

N20D2BA2

N30D2W
ax

N30D2BA2

B
ac

ku
p

ca
pa

ci
ty

 %

SSR BRITE network algorithm results

SSR
GB
SD

SD GB
SD GB Cap

Figure 4.8: The BRITE topologies SSR algorithm backup capacity requirements.

Table 4.9: SSR BRITE network result data

Network N10D4Wax N10D4BA2 N20D2Wax N20D2BA2 N30D2Wax N30D2BA2

% SSR 51.8 56.7 54.2 62.4 52 52.4

% GB 46.4 56.7 52.5 62.4 50.6 52.4

% SD 32.1 33.3 44.6 49.4 41.7 34.7

% SD & GB 32.1 33.3 42.9 49.1 38.8 34.7

% SD & GB & Cap 89.8 83.4 74 88 - -

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 50

 0

 1000

 2000

 3000

 4000

 5000

N10D4W
ax

N10D4BA2

N20D2W
ax

N20D2BA2

N30D2W
ax

N30D2BA2

C
om

pu
ta

tio
n

tim
e

(m
in

ut
es

)

SSR BRITE network algorithm results

SSR
GB
SD

SD GB
SD GB Cap

Figure 4.9: The BRITE topologies SSR algorithm computation time in minutes.

4.5 Network topology engineering for SSR

The SSR algorithm results for the SSR example networks, �real-world� net-
works and BRITE generated networks required further investigation regarding
the network pro�les and their resulting backup requirements. The SSR exam-
ple networks on average required 54.9% backup capacity. The �real-world
networks� on average required 92.1% backup capacity. The BRITE generated
network topologies required 54.9% backup capacity. It is of concern that the
inherent properties of our �real-world� network topologies have such a signi�-
cant impact on the performance of the SSR algorithm.

We evaluated the SSR example 6 network, the EBone, AT&T and MCI
�real-world� networks and the N10D4BA2 and N20D2BA2 networks. Both the
SSR example network 6 and the N20D2BA2 BRITE generated networks had
the largest required backup capacity (68.7% and 62.3%) for their respective
categories. The EBone network had the third highest percentage required
backup capacity of the �real-world� networks, but the number of network nodes
(26) and links (48) made engineering the topology easier. We included the
AT&T and MCI networks for the same reason.

We �rst examine the network pro�le of the SSR example network 6. The
average node degree of 2.87 is the second lowest of all the SSR example net-
works. SSR example network 7, which has the second highest backup capacity
requirement for the SSR example networks, has the lowest average node degree
of 2.31.

The EBone, AT&T and MCI networks show that the average node degree
does not primarily determine the spare capacity requirement. The EBone net-
work has a 86.8% backup capacity requirement, and an average node degree
of 3.7. The AT&T network has a 67.2% backup capacity requirement, and an
average node degree of 4.2. The MCI network has a 77.6% backup capacity
requirement, and an average node degree of 4.7. The EBone network has the
lowest average node degree and the highest backup capacity requirement. The
MCI network however, with a higher node degree than the AT&T network,
has a higher backup capacity requirement. If we look at the BRITE gener-

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 51

ated network topologies we see that the N20D2BA2 and N10D4BA2 networks,
which have the highest (62.4%) and second-highest (56.7%) backup capacity
requirements, have high average node degrees (5.5 and 6). Furthermore the
average node degree for the SSR example networks is 3.4%, for the �real-world�
network examples it is 3.9% and for the BRITE generated networks it is 5.7%.
The low average node degree for the SSR example networks show that it may
not be possible to reduce the spare capacity requirement simply by adding
more links (thus increasing the average node degree).

We next evaluate the deviation of the node degrees. The backup capacity
requirements as well as the standard (SD) and maximum deviation (MD) for
the six networks we focus on are given in Table 4.10.

Table 4.10: SSR standard and maximum deviation investigation

Network SSR6 EBone AT&T MCI N10D4BA2 N20D2BA2

% SSR 68.65 86.83 67.16 77.61 56.67 62.36

SD 0.76 1.72 2.28 3.23 1.63 3.49

MD 2.13 4.31 5 10.63 2 7.5

The maximum deviation for the EBone and MCI networks, the two net-
works with the worst backup capacity requirements are noticably high. The
N20D2BA2 network however has the second highest maximum deviation and
the highest standard deviation, yet its backup capacity requirement is the
second lowest. On closer examination of the N20D2BA2 network we see the
following node degrees (d) and di�erence from the average node degree (∆d)
for the network as given in Table 4.11.

Table 4.11: The N20D2BA2 network node degrees

Node d ∆d Node d ∆d

1 13 7.5 11 7 1.5

2 3 2.5 12 3 2.5

3 9 3.5 13 2 3.5

4 8 2.5 14 2 3.5

5 6 0.5 15 4 1.5

6 8 2.5 16 3 2.5

7 3 2.5 17 3 2.5

8 7 1.5 18 3 2.5

9 13 7.5 19 3 2.5

10 8 2.5 20 2 3.5

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 52

Note that the main contributors to the high standard deviation are nodes
1 and 9, which both have the maximum di�erence of 7.5 from the average
node degree. We now compare these properties to that of the EBone network
model, which has the highest backup capacity requirement of all the 6 networks
we investigated. The node degrees (d) and di�erence from the average node
degree (∆d) for the EBone network are given in Table 4.12

Table 4.12: The EBone network node degrees

Node d ∆d Node d ∆d

1 5 1.3 14 4 0.3

2 3 0.7 15 4 0.3

3 4 0.3 16 2 1.7

4 5 1.3 17 5 1.3

5 2 1.7 18 2 1.7

6 3 0.7 19 2 1.7

7 5 1.3 20 3 0.7

8 8 4.3 21 2 1.7

9 7 3.3 22 3 0.7

10 6 2.3 23 3 0.7

11 3 0.7 24 2 1.7

12 3 0.7 25 2 1.7

13 6 2.3 26 2 1.7

The EBone network topology has node 8 with a maximum node degree
di�erence of 4.308, and node 9 is second highest with a node degree di�erence
of 3.308. Also of interest is that 8 nodes in total have the minimum required
node degree of 2. In the N20D2BA2 network, while having 6 nodes less than
the EBone network, there are only a total of 3 nodes that have the minimum
required node degree of 2.

We therefore re-engineer the EBone network topology to a more prefer-
entially connected (hubbed) network as in [21]. We keep the same number
of nodes and links in the network, moving network links as required for the
hubbed topology. We choose nodes 22 and 24 as the hub nodes to which we
relocate links. After these changes all nodes have a node degree of 3 or more.
The links are moved as follows:

� Remove node 1 to 7 link, and add node 5 to 14 link.

� Remove node 4 to 9 link, and add node 8 to 18 link.

� Remove node 9 to 10 link, and add node 16 to 21 link.

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 53

� Remove node 9 to 13 link, and add node 14 to 19 link.

� Remove node 12 to 13 link, and add node 12 to 14 link.

� Remove node 7 to 10 link, and add node 14 to 24 link.

� Remove node 8 to 17 link, and add node 2 to 25 link.

� Remove node 2 to 17 link, and add node 17 to 26 link.

We run the SSR algorithm on the modi�ed, hubbed topology. Table 4.13
compares the results and network topology of the original EBone network and
the hubbed EBone network.

Table 4.13: The EBone network properties and results

EBone network

Network Original Network Hubbed Network ∆

% SSR 86.83 % SSR 45.77 ∆ % SSR -41.07

d 3.692 d 3.692 ∆d 0

SD 1.715 SD 1.35 ∆ SD -0.365

MD 4.308 MD 4.308 ∆ MD 0

By moving 8 links in the network we gain an improvement of 41.1% in the
required backup capacity. The standard deviation is reduced by 0.365 degrees.
The maximum node degree deviation is unchanged.

We now use the same approach with the SSR example network 6. We keep
the same number of nodes and links in the network, and move the links as
required for the hubbed topology. We choose nodes 6, 11 and 16 as hubs. The
links are moved as follows:

� Remove node 1 to 2 link, and add node 6 to 7 link.

� Remove node 3 to 18 link, and add node 8 to 11 link.

� Remove node 2 to 5 link, and add node 6 to 11 link.

� Remove node 9 to 20 link, and add node 6 to 16 link.

� Remove node 12 to 14 link, and add node 11 to 16 link.

� Remove node 15 to 18 link, and add node 5 to 6 link.

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 54

Table 4.14: The SSR6 network properties and results

SSR6 network

Network Original Network Hubbed Network ∆

% SSR 68.6 % SSR 58.6 ∆ % SSR -9.9

d 2.87 d 2.87 ∆d 0

SD 0.75 SD 1.14 ∆ SD 0.39

MD 2.13 MD 3.13 ∆ MD 1

We run the SSR algorithm on the modi�ed, hubbed network topology.
Table 4.14 compares the results and network topology of the original SSR
example 6 network and the hubbed SSR example 6 network.

By moving 6 links in the network we gain an improvement of 9.9% required
backup capacity. We also increased the standard deviation by 0.39. The
maximum node degree deviation has increased by 1. Note that the orignial
SSR example 6 network contains 7 nodes with the minimum required node
degree of 2. Due to the restriction of maintaining the same number of links
in the modi�ed, hubbed SSR example 6 network, the modi�ed network has 12
nodes with the minimum required node degree of 2.

We now compare the hubbed network approach with a more connected
network, where we increase the minimum node degree for all nodes to 3 and
we bring down the standard deviation of the node degree. Due to the average
node degree of 2.87 for the SSR example network 6 we need to add two more
links to ensure the minimum node degree of 3 for all nodes. We move and add
links as follows:

� Remove node 1 to 2 link, and add node 6 to 7 link.

� Remove node 2 to 5 link, and add node 5 to 10 link.

� Remove node 18 to 19 link, and add node 19 to 21 link.

� Add node 8 to 11 link.

� Add node 2 to 13 link.

We run the SSR algorithm on the modi�ed, more connected network topol-
ogy. Table 4.15 compares the results and network topology of the original SSR
example 6 network and the more connected SSR example 6 network.

A more connected network topology with a minimum node degree of 3,
we gain a 31.9% improvement in required backup capacity as opposed to the
9.9% improvement in our �rst attempt at re-engineering the SSR example 6
network. We had moved 3 links and added 2 more to the network.

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 55

Table 4.15: The SSR6 network properties and results

SSR6 network

Network Original Network Connected Network ∆

% SSR 68.56 % SSR 36.59 ∆ % SSR -31.97

d 2.87 d 3.04 ∆d 0.17

SD 0.75 SD 0.209 ∆ SD -0.541

MD 2.13 MD 0.957 ∆ MD -1.173

We now con�rm the minimum node degree recommendation of 3 by apply-
ing this topology change for the �real-world� MCI network. We leave network
nodes 6, 9 and 16 as network hubs, as they have 15, 14 and 10 network links
respectively. We move the network links as follows:

� Remove node 12 to 18 link, and add node 1 to 8 link.

� Remove node 12 to 43 link, and add node 11 to 13 link.

� Remove node 4 to 7 link, and add node 15 to 19 link.

� Remove node 4 to 12 link, and add node 20 to 22 link.

� Remove node 7 to 12 link, and add node 23 to 26 link.

� Remove node 28 to 29 link, and add node 31 to 34 link.

� Remove node 28 to 30 link, and add node 32 to 38 link.

� Remove node 40 to 41 link, and add node 36 to 39 link.

� Remove node 35 to 40 link, and add node 9 to 42 link.

We run the SSR algorithm on the modi�ed hubbed network topology with
the minimum network degree increased from 2 to 3. Table 4.16 compares the
results and network topology of the original MCI network and the modi�ed
MCI network.

This delivers a 27.2% improvement in the backup capacity requirement,
the original network hubs were not signi�cantly modi�ed, with one link being
added to hub node 9. The node degrees of hub nodes 6 and 10 were not
changed. The biggest improvement in the performance of the SSR algorithm
is made by increasing the minimum node degree from 2 to 3 for all networks
being provisioned with backup capacity and routes.

We apply the same minimum node degree increase for the AT&T �real-
world� network model. We select nodes 14 and 15 as the hub nodes. We move
the following links:

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 56

Table 4.16: The MCI network properties and results

MCI network

Network Original Network Hubbed Network ∆

% SSR 77.61 % SSR 50.43 ∆ % SSR -27.18

d 4.732 d 4.732 ∆d 0

SD 3.23 SD 2.854 ∆ SD -0.376

MD 9.628 MD 10.628 ∆ MD 1

� Remove node 1 to 3 link, and add node 6 to 14 link.

� Remove node 1 to 4 link, and add node 7 to 15 link.

� Remove node 1 to 11 link, and add node 11 to 15 link.

� Remove node 4 to 5 link, and add node 9 to 14 link.

� Remove node 4 to 22 link, and add node 12 to 14 link.

� Remove node 4 to 25 link, and add node 14 to 19 link.

� Remove node 5 to 22 link, and add node 2 to 22 link.

� Remove node 24 to 27 link, and add node 14 to 20 link.

� Remove node 9 to 24 link, and add node 9 to 15 link.

� Remove node 21 to 28 link, and add node 15 to 28 link.

� Remove node 8 to 14 link, and add node 14 to 31 link.

� Remove node 16 to 25 link, and add node 16 to 18 link.

We run the SSR algorithm on the modi�ed hubbed network topology with
the minimum network degree increased from 2 to 3. Table 4.17 compares the
results and network topology of the original AT&T network and the modi�ed
AT&T network.

The improvements can be explained in terms of how SSR operates. The
backup path is selected using the OSPF Algorithm 2 (explained on Page 12),
with the incremental backup capacity being the link cost. If each node has a
minimum network degree of 3, we have more options available for the routing
in the network to miminize this backup capacity cost. With the SSR algorithm
and our minimum node-degree of 2 the routing options are limited even further.
Remember that the set of links in the path that fails are set as tabu-links and
this results in the cost for those links being set to in�nity. This means that our
selection for certain links on 2-connected nodes are restricted to the remaining

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 57

Table 4.17: The AT&T network properties and results

AT&T network

Network Original Network Hubbed Network ∆

% SSR 67.16 % SSR 50.8 ∆ % SSR -16.36

d 4.194 d 4.194 ∆d 0

SD 2.28 SD 2.75 ∆ SD 0.47

MD 3 MD 9.806 ∆ MD 6.806

link on the node, regardless of the cost of this link. With a 3-connected node,
even after the cost of one of the links are set to in�nity, we still have a selection
between the two remaining links.

We perform similar modi�cations to the BRITE generated topologies, N10D4BA2
and N20D2BA2. Tables 4.18 and 4.19 present the results for the modi�ed
N10D4BA2 network and the modi�ed N20D2BA2 network respectively.

Table 4.18: The N10D4BA2 network properties and results

N10D4BA2 network

Network Original Network Hubbed Network ∆

% SSR 56.67 % SSR 43.33 ∆ % SSR -13.33

d 6 d 6 ∆d 0

SD 1.632 SD 0 ∆ SD 0

MD 2 MD 0 ∆ MD 0

Table 4.19: The N20D2BA2 network properties and results

N20D2BA2 network

Network Original Network Hubbed Network ∆

% SSR 62.36 % SSR 65.03 ∆ % SSR 2.68

d 5.5 d 5.5 ∆d 0

SD 3.487 SD 3.749 ∆ SD 0.262

MD 7.5 MD 10.5 ∆ MD 3

We now provide the improvement in SSR backup capacity requirements for
the nodes under investigation, as well as the change in their network topology.

The improvement obtained by network re-engineering in some cases exceed
and in some cases fall short of the SSR-SD results for improvement in required
backup capacity. Note that there is no additional computation time required,

CHAPTER 4. SUCCESSIVE SURVIVABLE ROUTING 58

Table 4.20: The hubbed networks' SSR standard and maximum deviation
investigation

Network SSR6 EBone AT&T MCI N10D4BA2 N20D2BA2

∆ % -31.971 -41.07 -16.356 -27.181 -13.334 2.675

∆ SD -0.541 -0.365 0.47 -0.376 -1.633 0.262

∆ MD -1.173 0 6.806 1 -2 3

as the original SSR algorithm is used with the re-engineered network. This
means that we can reduce the backup capacity requirements for the AT&T
and MCI networks by 16.4% and 27.2% respectively, where the SSR-SD simu-
lation was not computationally feasible. Also the re-engineered EBone network
delivers a 41.1% backup capacity requirement improvement over the 9.1% of
SSR-SD.

Chapter 5

Beowulf cluster-computing

5.1 An introduction to Beowulf cluster

computing

Beowulf cluster computing yields a supercomputer built by using commodity
o� the shelf (COTS) computer systems. The required components are the
personal computer, Ethernet networking, and the Linux operating system.

The personal computer has evolved over the past two decades to become
a viable component for a supercomputing solution. The �rst IBM PC, in
1981, had an Intel 8088 CPU running at 4.77MHz, no hard disk and 64KB of
memory. Moving 20 years forward, we compare it to a Pentium 4 Processor
running at 1.7GHz, with a 80Gb hard disk, and system memory ranging of
1GB and higher. The Pentium 4 clock speed is more than 300 times faster
than the original 1981 IBM PC. As the computing power kept growing the
prices kept falling. Je�rey Rayport [22] made a striking but inconclusive com-
parison between microprocessor development and the automotive industry. If
the automotive industry kept pace with semiconductor development, a Rolls-
Royce would cost $2.75 and get 3 million miles per gallon. Comparing it to
the aircraft industry - a Boeing 767 would cost $500 and circle the globe in 20
minutes, using 5 gallons of fuel.

The Ethernet standard was developed at the Xerox Palo Alto Research
Centre [23] by Robert Metcalfe who designed a networking system to enable
all the PCs on site to connect to the �rst laser printer being built there. In 1976
Metcalfe and his assistant published the �rst Ethernet paper. Ethernet quickly
became an industry standard. It was adopted by the LAN standards commit-
tee of the Institute of Electrical and Electronics Engineers (IEEE 802) as �IEEE
802.3 Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Ac-
cess Method and Physical Layer Speci�cations�. It was adopted by the Inter-
national Standards Organisation (ISO) as a networking standard. The IEEE
committee thereafter worked on increasing the transmission rate while using
the same access method. They succeeded in increasing the 10Mbps transfer

59

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 60

rate to 100Mbps. This 100Mbps Ethernet is often referred to as Fast Ethernet.
Fast Ethernet was an important factor in Beowulf computing, in allowing fast
communication between Beowulf cluster nodes.

Linux, and the open source movement, also plays a vital role in the de-
velopment of Beowulf clusters. Linux originated by Linus Torvalds [24], at
the time a 21 year old second-year computer science student. He wanted to
use the MINIX [25] operating system as a basis for a new Unix-like operating
system. Torvalds was in part inspired by Richard Stallman's GNU project
[26] which aspired to providing free quality software. Stallman created the
GNU C Compiler (GCC) as a basic tool striving to build a free operating
system. The development of Linux started in 1991 as a hobby, and has grown
into a force rivalling the Microsoft Windows operating system. The two most
important factors in the success of Linux are that it is free and it is stable.
Supercomputers have always been extremely expensive closed architecture ma-
chines. No-one could conceive of rivalling these machines using PCs. However,
the desktop PCs of today rival the supercomputers of several years ago. The
bottleneck created by these processing nodes communicating cheaply has been
alleviated by fast Ethernet. For each node to operate, we need an operating
system. If the operating system had to be bought, the costs would grow lin-
early with each node added. Enter Linux, with no operating system (or even
application software) cost for each node. Scientists at the NASA Goddard
Space Flight Centre realised these advantages and combined them to form the
�rst Beowulf cluster, called Wiglaf. This Beowulf consisted of a 16-processor
system with Intel 80486 66MHz processors. These soon became 100MHz DX4
processors. They achieved a sustained performance of 4.6M�ops per node (76
M�ops total). From there the Beowulfs have multiplied and are in use in
research centres, universities and schools.

5.2 Setting up a Beowulf cluster

The setup of the Beowulf cluster can be divided into 3 sections:

� node requirements and setup

� network topology and con�guration

� Linux con�guration.

5.2.1 Node requirements and setup

A Beowulf node di�ers from a typical desktop PC. A Beowulf node's main (and
usually only) responsibility is to perform the activities and capabilities asso-
ciated with application execution. Therefore we mostly require the following
from our Beowulf nodes:

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 61

� instruction execution

� high speed temporary information storage

� high capacity persistent information storage

� communication with other nodes, and possibly external nodes.

From these requirements it follows that the node's processor, memory, stor-
age and networking speci�cations are of particular importance. The proces-
sor can range from a Pentium to a Pentium 4, or their binary compatible
AMD/Cyrix processors. The memory and storage requirements will vary ac-
cording to the application of the Beowulf cluster. The best price/performance
ratio for the networking layout would be using Fast Ethernet. Therefore we
require a standard 10/100Mbps network interface card (NIC) for each node.

Due to the expandability of COTS PCs we can easily add or upgrade the
components required for each node. Special mention should be made of the
�world� node, see Figure 5.1 below. This node acts as a router between the
external network and the internal Beowulf network. It will also be the storage
node for the applications and data that will be shared among the Beowulf
nodes using NFS. We will discuss this in the Linux con�guration section on
Page 63. The world node will therefore require another additional NIC, as
it interfaces to two networks: the external network and the internal Beowulf
network. The world node will also require more storage space than the other
nodes, due to the NFS mount points from this node. Additional storage can
be added as required.

5.2.2 Network topology and con�guration

In the layout of the Beowulf network, we have the following three options:

� an isolated Beowulf network

� an open Beowulf network

� a connected Beowulf with a single entry point.

We will implement the connected Beowulf with a single entry point. An
isolated Beowulf network can be de�ned as having all nodes connected to one
another but no node is connected to the external network. An open network
is de�ned as having each of the nodes connected to the external network that
it forms a part of. The reason for chosing the single entry point option is
that an isolated Beowulf network would mean needing physical access to the
cluster each time it is used. On the other hand, an open Beowulf network is
unnecessary, and a security risk. The world node, being the single entry point
to the Beowulf, is the only �interactive� node. We can submit all our jobs,

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 62

and view the output here. The other nodes are processing points requiring
no direct access. The network topology for our Beowulf will thus be as in
Figure 5.1

10/100 switch

internal node

eth0

internal node

eth0

internal node

eth0

world node

External network

eth0

eth1

Figure 5.1: A typical Beowulf network topology.

With reference to Figure 5.1 we will use the �rst interface (eth0) on all the
Beowulf nodes, to connect to the internal network, and the second interface
(eth1) for the world node only, to connect it to the external network. For our
initial setup we have only one node, the world node, with a second network
interface. We can however, if required, attach any node directly to the external
network by adding a second interface.

The IP addressing scheme is dictated by the network topology chosen. In
our topology we have control over our internal network. The following three
IP address ranges have been reserved for use by private networks:

� 10.0.0.0 - 10.255.255.255

� 172.16.0.0 - 172.31.255.255

� 192.168.0.0 - 192.168.255.255

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 63

These address ranges are never assigned for Internet use, and packets carry-
ing these addresses will not be forwarded by Internet routers. The IP address
range from 192.168.1.0 - 192.168.1.255 will be used by our network. Note that
the addresses 192.168.1.0 and 192.168.1.255 are reserved.

There are considerations in naming our nodes. The scalability of our Be-
owulf is an issue. Managing a 5-node Beowulf cluster is possible. A 10-node
cluster already presents a challenge for the replication of node con�gurations.
A Beowulf cluster growing beyond this size can impede on the e�cient man-
agement of the cluster con�guration. Therefore we use a standard naming
scheme. We pre�x all our node host names with beo and concatenate it with
the node number, starting at 1. Why not use 0? Going back to the previous
paragraph, we have explained that the host address 0 and 255 are reserved.
We therefore start our IP address assignment from 1. The host name for the
external node will most probably be determined by the network administrator.
Note that you can however still determine the second interface host name, in
other words the one connecting to the Beowulf network.

We would like our host name number to correspond to the IP host address
for that number. For example, using our IP address range beo1 would have
IP address 192.168.1.1, and this is the Beowulf network interface host name
for the world node. The cluster nodes will be next starting with host name
beo2 and IP address 192.168.1.2. Furthermore the management process will
be alleviated by using scripts to manage the nodes. If we have a standard
naming scheme we can easily address and con�gure these nodes using scripts.

5.2.3 Linux con�guration

The nodes cannot function without an operating system. As explained in the
introduction, Linux was a vital component in the advent of Beowulf cluster
computing. Due to the phenomenal growth of Linux many di�erent distri-
butions are available. We need to con�gure our Beowulf to be as simple as
possible and conform to a standard. We therefore keep the di�erent Linux
distributions used to a near minimum. Red Hat Linux 9 and Mandrake Linux
9.2 were the two distributions chosen. The reason for choosing both lies in
hardware support and the applications available. Since our Beowulf cluster is
composed of COTS systems, we have many hardware components from di�er-
ent vendors. The probability of getting a node up and running is higher if we
use two main Linux distributions.

Not only do these Linux distributions provide the necessary platform for
application execution, they also have the necessary tools needed to run a Be-
owulf cluster. We will discuss these tools:

� the user administration, used to create global user(s) for di�erent levels
of Beowulf cluster access

� the Network File System (NFS), used to create and mount share points

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 64

� Perl, the scripting language used to dispatch given jobs to given proces-
sors

� Secure Shell (ssh), used to log into nodes, and execute applications on
their processors.

5.2.3.1 User administration

We need a user account to gain access to any Linux machine, whether locally,
or across the network. The user account speci�es what resources we have access
to. A normal user account and an administration account are required. For
administration it is straightforward � we need root access to setup hardware,
install applications, modify system �les and set permissions. It is recommended
to keep the same root password for all Beowulf nodes.

We also need a general Beowulf cluster user account for the users executing
applications on the Beowulf cluster. As we will explain in the ssh section 5.2.5
on Page 67, this user account should be con�gured with the same username
and password across all the Beowulf nodes. This enables easily automated ssh
access to all Beowulf nodes.

5.2.3.2 NFS

NFS is used to mount a �le system on a remote computer as if it were local
to your own machine. NFS operates over a TCP/IP network. Setting up NFS
involves the following:

� specify the shares in the /etc/exports �le

� set the security permissions in the /etc/hosts.deny and hosts.allow �les

� run the three daemons rpc.mountd, rpc.nfsd, and rpc.portmapper

� test the share mount points using mountd

� set up automatic mounting in the /etc/fstab �le.

Setting up the NFS shares involves the client and server con�gurations. We
will start with the server. The /etc/exports �le contain entries in the following
format:
directory machine1(option11,option12) machine2(option21,option22). The di-
rectory above would be the local directory that is to be shared. The machine
option will be a list of machines allowed to access the share. There are var-
ious options, see [27] for details. It is important to decide whether to allow
read-only (ro) or read-write (rw) access.

For example suppose that the server 192.168.1.1, wishes to share two local
directories /home/BeoShare and /home/BeoResult. We store the executable

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 65

program �les and their input �les in BeoShare. We want the nodes to pipe
their processing results to BeoResult.

For these purposes we will make BeoShare read-only to prevent any mali-
cious or accidental damage to our program �les or their input. BeoResult will
be read-write, to ensure that the processing nodes can pipe their output to one
central storage location on the server. We therefore have the following entries
in /etc/exports:

/home/BeoShare 192.168.1.0/255.255.255.0 \

(ro,sync,no_root_squash)

/home/BeoResult 192.168.1.0/255.255.255.0 \

(rw,sync,no_root_squash)

Next we set the security permissions for the shares. There are two �les
involved namely /etc/hosts.deny and /etc/hosts.allow. Note that the server
allows a request as follows:

� Check if the machine is in hosts.allow. If it is, allow access.

� If it is not in hosts.allow, check hosts.deny. If the machine is listed here,
deny access.

� If the machine is listed in neither �le, allow access.

From this we can see that it is better to lock the share access as strictly as
possible and then explicitly allow access. We begin by modifying hosts.deny
as follows:

portmap:ALL

lockd:ALL

mountd:ALL

rquotad:ALL

statd:ALL

This blocks all machines from using the NFS services. Next we explicitly
allow access to all services to our 192.168.1.0 class C subnet in /etc/host.allow:

ALL: 192.168.1.0/255.255.255.0

Having set up the shares and allowed access to our machines, we set the
shares to be mounted automatically at boot time on each node. For this we
need to modify the /etc/fstab �le on each node by adding:

192.168.1.1:/home/BeoResult /mnt/BeoResult nfs

user,exec,suid,rsize=8192,wsize=8192,bg 0 0

192.168.1.1:/home/BeoShare /mnt/BeoShare nfs

user,exec,suid,rsize=8192,wsize=8192,bg 0 0

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 66

These shares will now be mounted at boot time to /mnt/BeoShare and
/mnt/BeoResult. Any changes or additions to the shares may be con�gured
by editing the NFS server's /etc/exports �le and editing each client node's
/etc/fstab �le, and then rebooting, or restarting NFS.

Now that we have centralised the storage of our programs, input �les, and
output �les, management is made much easier. We need only compile our
program in one location, and we have all the output from each processing
node stored in one location.

5.2.4 Perl

Now that we the nodes are ready, and the shares are in place to centrally access
applications and store output, we need a dispatcher to send the jobs to the
nodes as they become available. Doing this manually is not only a cumbersome
task, but will also lose valuable processing time in detecting free processors
and dispatching new jobs to them manually. We will use a Perl script to act
as our dispatcher. We use dispatcher given in [28] as a basis. Perl is both a
scripting and a programming language. From Perl in a Nutshell [29]:

Perl is especially popular with systems programmers and web de-
velopers, but it also appeals to a much broader audience. Orig-
inally designed for text processing, it has grown into a sophis-
ticated, general-purpose programming language with a rich soft-
ware development environment complete with debuggers, pro�lers,
cross-referencers, compilers, interpreters, libraries, syntax-directed
editors, and all the rest of the trappings of a �real� programming
language.

The Perl script is called prun and must be available in the application
share. We also need to give the Perl script a list of commands to execute
(cmd_list), and a list of processors to execute them on (proc_list). The
contents of cmd_list are typically:

/mnt/BeoShare/ospfsim /mnt/BeoShare/OSPFModelBeo1 \

> /mnt/BeoResult/OSPFModel1Res

/mnt/BeoShare/ospfsim /mnt/BeoShare/OSPFModelBeo2 \

> /mnt/BeoResult/OSPFModel2Res

/mnt/BeoShare/ospfsim /mnt/BeoShare/OSPFModelBeo3 \

> /mnt/BeoResult/OSPFModel3Res

From above we see that we execute the ospfsim application 3 times. Each
time we give it a di�erent input �le (OSPFModel1 to OSPFModel3), and redi-
rect the results to the corresponding output �les.

The proc_list �le contains a list of the host names of the nodes in the
Beowulf cluster, with each host name on a separate line:

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 67

beo1

beo2

beo3

Note that we can provide di�erent users with di�erent processor lists,
thereby allowing di�erent levels of resource access. We now execute the Perl
script with these two �les as input. The syntax is:

./prun proc_list cmd_list

There is one more hurdle to overcome before we can execute applications
across the Beowulf cluster. The Perl script automates the dispatching of the
processes to processors. The way in which these applications are executed on
these processors is by using the secure shell (ssh). We discuss this next.

5.2.5 ssh

ssh is a program used to securely log in to a remote machine and execute
commands on it. Seeing as this program allows access to any machine using
ssh on the network, strict security measures are necessary. If we use our
Perl script as is to run processes on the processors, we need to authenticate
ourselves each time we access a processor using ssh. Provision has been made
for this, and there are several authentication methods available to us. The
RSA based authentication method was chosen as it can be used transparently.
Each machine needs to maintain a list of public keys of other hosts permitted
to log in. We use the key generator ssh-keygen to create the RSA key-pair.
In our example below we show how to set up automatic ssh access to a new
Beowulf node for the server. Suppose that beo1 is our server (world node),
and that we are adding automatic ssh access to beo2.

On beo2 we do the following:

1. execute $ ssh user@beo2 to access a command shell on beo2. Note that
the user would match the username set up for Beowulf execution use as
in Section 5.2.3.1 on Page 64

2. execute $ ssh-keygen -t rsa to generate the key-pair. Accept the defaults
at the prompts

3. execute $ cp .ssh/id_rsa.pub ./ssh/authorized_keys to place the public
key in the right location

On beo1 we do the following:

1. execute $ ssh-keygen -t rsa to generate the key-pair. Accept the defaults
for the prompts. One should only perform this step if you have not

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 68

generated a key-pair on this node before. If you have, abort the ssh-
keygen process and use the already existing id_rsa.pub �le in the next
step.

2. execute $ cat .ssh/id_rsa.pub | ssh beo2 �/bin/cat \
>> .ssh/authorized_keys� to add the server's public key to the list of
authorised public keys for node beo1

Whenever you ssh to node beo1 you will be automatically authenticated
and allowed access.

5.3 Usage of the Beowulf cluster

The usage of the Beowulf cluster is simple. If the reader has any questions
regarding concepts in this section, consult the Beowulf cluster setup section
5.2 on Page 60. We �rst look at the information that the user will be provided
with:

� The external host name and/or IP address of the Beowulf cluster world
node.

� The username and password to access the Beowulf cluster.

� The locations of the program and the output shares.

� The location of the dispatcher Perl script and processor list.

The IP address and username will together allow ssh access to the Beowulf
cluster from any location on the external network. The dispatcher Perl script
will be used to automate the application execution process. The processor
list contains the names of all the processors available to the user to execute
applications on. The applications themselves will be stored in one central
location, and their output in another.

For example, suppose that we were provided the following information:

1. The world node external network host name is heathcli�.

2. The world node internal Beowulf host name is beo1.

3. The username and password is beouser / hr0thgar.

4. The application share is located in /mnt/BeoShare, the output share is
located in /mnt/BeoResult.

5. The location of the dispatcher Perl script is /mnt/BeoShare/prun, and
the processor list is in /mnt/BeoShare/proc_list.

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 69

First we need access to the Beowulf cluster through the world node. Using
our given username beouser, we ssh to the world node heathcli� as follows: $
ssh beouser@heathcli�. Now in keeping with our Beowulf naming scheme, we
ssh to the world node's internal network host name:
$ ssh beouser@beo1. Next we change directory to our application share:
$ cd /mnt/BeoShare.

Assume that we want to run a simulator application called ospfsim, and
we want to do 3 di�erent runs using the following input �les: OSPFModel1,
OSPFModel2, OSPFModel3. In the same directory location as the Perl Script
and processor list, we create the command list �le cmd_list whose contents
are:

/mnt/BeoShare/ospfsim /mnt/BeoShare/OSPFModel1 \

> /mnt/BeoResult/OSPFModel1Res

/mnt/BeoShare/ospfsim /mnt/BeoShare/OSPFModel2 \

> /mnt/BeoResult/OSPFModel2Res

/mnt/BeoShare/ospfsim /mnt/BeoShare/OSPFModel3 \

> /mnt/BeoResult/OSPFModel3Res

We next execute the command list on the world node using:
$./prun proc_list cmd_list.
Basic information output is given as the processes are dispatched. The

current command being executed is shown on the world node. Once the appli-
cation run is �nished, the user will receive a message con�rming completion.
All the output results are stored in one location. For example, we change
directory to $ cd /mnt/BeoResult. Here we have the application output �les
OSPFModel1Res, OSPFModel2Res, OSPFModel3Res in one location, ready to
be processed.

5.4 The basic Beowoulf cluster

The realisation of the Beowulf cluster is so e�ective and easy it seems to be an
obvious development. The computing power placed in the hands of research
and educational facilities o�ers easy access to viable high end computing. A
Beowulf cluster is open to user control. Considering the rise of the Linux op-
erating system and the growing appeal of its open source and standards-based
nature, and combining this with COTS hardware, we see encouraging price /
performance ratios for Beowulf cluster super computers. Adding more com-
puting power to increase the Beowulf cluster's performance is made a�ordable
and easy by COTS hardware.

Beowulf cluster computing is still a relatively new phenomenon. At present
we can dispatch various application runs over an array of Beowulf nodes. As

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 70

the need for more powerful parallel programming grows, the standardised mes-
sage passing interface (MPI) [30] may be used to build highly parallelised ap-
plications. The most immediate improvements to be made the Beowulf cluster
are to automate the node maintenance, and to ensure maximum uptime of the
nodes. The physical placement and cooling of the Beowulf cluster needs to be
addressed as the cluster grows.

We are now able to execute more simulations in the same given time,
increasing the application output sample space, thereby greatly improving our
con�dence intervals for these simulations.

5.5 Beyond the basic Beowulf cluster

We have introduced Linux Beowulf cluster computing and explained how to
build and use such a Beowulf cluster, which will be referred to as the cluster.
After the initial setup of the cluster, its attributes and requirements have
changed. The main attribute change is the network topology. The machines
made available to the cluster are powerful Xeon dual-processor machines. It
was decided that these computing resources should be made widely available.
The cluster evolved from a connected Beowulf network with a single entry
point, to an open Beowulf network, where each node in the cluster, which
will be referred to as a node, is also available on the external network. The
idea is to maximize the usage of the processors, while prioritizing simulation
processes on the cluster. We therefore implemented priority scheduling to
ensure that simulation runs receive the highest priority, and thus the most
processor allocation. This was implemented using the following mechanisms:

� controlling the number of secure shell (ssh) sessions per user

� ensuring that the simulation run receives the highest priority on each
processor

� lowering the priority of external users logged on to the machine, but only
if simulation runs are executed on it.

These three mechanisms work together to ensure optimum processor allo-
cation to the simulation runs executed on the cluster. We implemented these
mechanisms at the user and / or group level. It is important to standardize
the user accounts and system con�guration across our Beouwlf cluster. Before
implementing these mechanisms, we focus �rst on automating the user admin-
istration and system con�guration in the next section. We then focus on the
three priority scheduling mechanisms in detail in Section 5.7 on Page 72

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 71

5.6 Linux administration

The reader is referred Section 5.2 on Page 60 on the principles involved in
building the cluster. We will extend the section on user administration, as
this is crucial to the proper working con�guration of NFS. Before we can
e�ectively automate the user administration process, we need to make certain
system con�guration changes. We discuss this system administration, and
then the user administration.

5.6.1 System administration

Before we can fully automate the cluster con�guration and administration,
we need to address the use of ssh, which is central in allowing access to the
nodes. The steps involved in trusted ssh access have already been discussed
in Section 5.2. Non-interactive ssh access is implemented through the use of
RSA-keypairs, with the public keys shared between machines. In this report
we will only present beorsakey, the automated version of this setup procedure,
in Figure A.1 on Page 83.

Note that automated ssh access is only allowed for the user speci�ed in
the script parameters. Furthermore, the user account executing this script
must correspond to the user account spec�ed in the script parameters. The
automated access is one-way from the master node to all other cluster nodes.
Root access to the master node can still be privileged, even if root access is
granted to other cluster nodes.

5.6.2 User administration

We create Linux user accounts to allow uniform access to all of our nodes. The
user account enables accounting of the resources used and more importantly,
allows secure access to the cluster. We will explain why we need to replicate
the same user and group setup across all nodes. Replication of the setup for the
cluster user, referred to as beouser, is handled by beouseradd. See Figure A.2
on Page 84.

The parameter checking has been abbreviated in this example, but can be
extended if necessary. Note that the last parameter node_list supplies the
name of a text �le containing the host names for all the nodes, with each host
name in node_list contained in a separate line. This �le, combined with ssh
access to each of these nodes, serves to replicate the con�guration across all
nodes. We use the same concept to replicate the con�guration �les to all nodes
with beo�lerep (see Figure A.4 on Page 86). This will be discussed later.

The groupadd and useradd commands, together with the options as spec-
i�ed to beouseradd are used to create the necessary user and group. After
being created, we need to set the new user account password. This can be
done using the passwd command. It was necessary to modify the behaviour of

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 72

passwd so as to input the new password token in a non-interactive way, avoid-
ing inputting the same password twice for each host contained in node_list.
The --stdin option provides this functionality, allowing us to pipe the pass-
word token with the echo command into passwd. As mentioned, the user setup
is crucial to the proper working of NFS [27]. NFS allows �le access through
standard UNIX user and group �le permissions. These user and group �le per-
missions are, however, communicated by using the userid (uid) and groupid
(gid) supplied by the client. For this reason we need to ensure that our uid for
the user beouser, and the gid for the group beousers match across all nodes to
the master node. Our nodes use uid 600 and gid 701.

5.7 Priority scheduling

Any multitasking operating system includes process switching. This means
that we switch execution from one process to another in a very short time
frame, making it appear as if these processes are executing simultaneously
[31]. The Linux operating system is no exception. We will look at Linux
process scheduling, which is concerned with when to switch which processes.
Priority scheduling refers to prioritizing the scheduling process to suite speci�c
processing needs.

5.7.1 Controlling ssh sessions

Users of the cluster, or individual nodes, will gain access via ssh. Whatever
their processing needs, we cannot assume that users will never try to abuse
the system. We will allow ssh access to any machine, but limit the users to a
maximum of 2 logons per machine. If we take into account that any cluster
by de�nition should contain any number of machines, then this restriction is
diminished as the cluster grows bigger. In e�ect this helps us to load balance
power users over the cluster. To enforce this ssh logon limit, we use pluggable
authentication modules for Linux (Linux-PAM or PAM). PAM enables us to
customize a security scheme for our machine at a per application and per user
level, as described [32]:

It is the purpose of the Linux-PAM project to separate the develop-
ment of privilege granting software from the development of secure
and appropriate authentication schemes. This is accomplished by
providing a library of functions that an application may use to re-
quest that a user be authenticated. This PAM library is con�gured
locally with a system �le, /etc/pam.conf (or a series of con�gura-
tion �les located in /etc/pam.d/) to authenticate a user request via
the locally available authentication modules. The modules them-
selves will usually be located in the directory /lib/security and take
the form of dynamically loadable object �les.

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 73

On our nodes the PAM library is con�gured as system �les within the
/etc/pam.d directory. Here we focus on the con�guration �le /etc/pam.d/sshd.
It con�gures the privileges for sshd, the ssh daemon allowing ssh sessions.

sshd listens for new connections from ssh clients. Each time a client tries to
connect, sshd forks a new daemon for each connection. It also loads the PAM
libraries and uses the application's PAM con�guration �le to authenticate and
validate the ssh client.

We do not need to modify this con�guration �le beyond the default set-
tings. Note however that we need the 4 modules (auth, account, password,
and session) to be required, and using the system-auth service. We use
pam_stack.so to be able to call from one service, the stack of another service.
This enables the use of one system-wide setup shared by multiple services.
The contents of /etc/pam.d/sshd are as follows:

#%PAM-1.0

auth required pam_stack.so service=system-auth

auth required pam_nologin.so

account required pam_stack.so service=system-auth

password required pam_stack.so service=system-auth

session required pam_stack.so service=system-auth

We execute the system-wide setup of the user limits. This is speci�ed in
the PAM limits con�guration �le /etc/security/limits.conf. This is the default
�le location on a Mandrake Linux 9.2 distribution, but can di�er on other
Linux distribution. In limits.conf we de�ne limits for users using the following
syntax:

<domain> <type> <item> <value>

The <domain> speci�cation sets the domain of the restrictions for:

� username: a user, based on a username,

� @groupname: a group, based on a groupname,

� *: a wild-card, for the default entry,

� %: a wild-card, used for the maxlogins item only, can also be used with
the % group syntax.

The <type> speci�cation sets the limits to be enforced as:

� hard: on hard limit set here is enforced by the Linux kernel. The user
cannot increase her requirements above this hard level,

� soft: a soft limit enables users to raise or lower their requirements, within
a range set by hard limits,

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 74

� -: used to enforce hard and soft limits together.

There are various <item> options to set limits on their corresponding
resources. We focus on:

� maxlogins: the maximum number of remote logon sessions that can be
made to the machine,

� nproc: the maximum number of processes that may we created by the
user on the machine.

In <value> we specify the value of the limit on each item. It is important
to note that these restrictions apply per login session, and that user level
restrictions have priority over group level restrictions. Our basic con�guration
is as follows:

@beousers hard maxlogins 20

@beousers hard nproc 100

* hard maxlogins 2

* hard nproc 10

We allow the beousers group members 20 simultaneous ssh sessions, and
each session can create 100 processes, while all other users are allowed 2 si-
multaneous logon sessions, with 10 processes allowed to each. The 20 allowed
simultaneous logon sessions for beousers should be su�cient, seen in the con-
text of how the simulation runs are distributed and executed. Once an ssh
session is initiated with a node, we execute the �rst waiting command in the
command list. The dispatcher script only executes another command on this
node once it has completed the currently executing command. Therefore we
only have one running ssh session at any given time. It is necessary to enforce
priority scheduling now that our commands (processes) are executing across
the cluster on all the nodes.

5.7.2 Simulation run priority

Every command that is run on any of our nodes has a priority of 0 by default.
This priority value can range from -20 (the highest) to 19 (the lowest). This
priority value is governed by the use of the nice command, which runs a value
supplied as a parameter to nice, with an adjusted scheduling priority. The
default adjustment value of 10 lowers the priority to 10. This default behaviour
is where the command name nice is derived from. The idea is that users can run
non-critical applications with a lower priority using nice in order to give more
processing cycles to the other users of the system. We are doing the opposite.
We want to ensure that our simulation receives the highest priority. We do
this by setting the adjustment value to -20. There is one problem however.
The beouser account does not have the privilege to increase the scheduling

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 75

priority, we can only lower the priority at present. We need root access to
increase scheduling priorities.

All users cannot be entrusted with root access to our cluster. Not only is
this a security risk, it is also ine�ectual. It is only required to execute speci�c
commands with root privileges. For this purpose we use the sudo command. It
enables authorized users to execute permitted commands as the superuser (or
any other user) as speci�ed in the sudoers �le. We edit the sudoers �le, so as
to allow us privileged use of nice, to execute all commands on our cluster with
higher priority. We next look at con�guring the sudoers �les and executing
our commands with higher priority.

5.7.2.1 Con�guring the sudoers �le

In the Mandrake Linux 9.2 distribution sudoers is located in etc/sudoers. We
do not edit this �le directly, however. We use the visudo command, acting
as an interface to the sudoers �le. It locks the �le and prevents simultaneous
edits, provides sanity checks, and checks for parse errors. By default visudo
uses the editor vi. Another editor may be speci�ed as parameter to visudo.

We now discuss the syntax of the sudoers �le (Figure A.3 on Page 85). We
focus on the user privilege speci�cation as starting point. It contains these
two speci�cations:

root ALL=(ALL) ALL

BEOUSERS BEOHOSTS = NOPASSWD: NICE, RENICE, SUDO

The �rst speci�cation is standard and allows the root user on any host
permission to execute all commands. We focus on the second privilege. The
NOPASSWD: modi�er prevents the following sudo command default behaviour:
sudo prompts the user running a permitted privileged command for the user's
account password. This presents the same problem as encountered with ssh
access to our cluster nodes � the automation is rendered useless if we are
interactively prompted for a password every time a command is executed.
NOPASSWD: prevents these password prompts and automatically allows sudoers
to perform command execution. The other parameters in the user privilege
speci�cation are all aliases, de�ned in their own sections. An alias has the
following syntax:

Alias_Type Alias_Label Alias_Details

We now show the three types of aliases and give an example of each:

� User_Alias which speci�es an user list, e.g. User_Alias BEOUSERS =
beouser, beoadmin

� Host_Alias which speci�es a host list, e.g. Host_Alias BEOHOSTS =
beo1, beo2, beo3

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 76

� Cmnd_Alias which speci�es a command and it's �le location, e.g. Cmnd_Alias
NICE = /bin/nice

We can specify di�erent permutations of these aliases in the user privilege
section to e�ect di�erent sudo execution permissions. Looking at our sudoers
privilege speci�cation again, we allow the user accounts BEOUSERS, running
on BEOHOSTS, a list of commands to execute (in this case NICE, RENICE,
and SUDO), without a password prompt. We end this section by discussing
the utility beo�lerep to replicate the sudoers �le across the cluster nodes (see
Figure A.4 on Page 86).

Usage of the script is simple if seen as a wrapper for the scp command
namely to:

� Supply beo�lerep with the �le(s) to be copied in the local_�les param-
eter.

� Specify where it is to be copied to with the remote_dir parameter

� Lastly node_list points to the text �le containing a list of hosts to which
the �le(s) will be copied, with each host in a seperate line.

Note that the script detects the user executing the beo�lerep command
and uses this user account to copy the �le(s) to the cluster nodes. This user
account determines the local read permissions for local_�les, and the remote
write permissions for remote_dir on each node. Seeing as this administration
utility needs privileged access, it has to be executed as root.

5.7.2.2 Using the sudo command

We can now execute nice using root privileges, as follows:
sudo nice �adjustment=-20 "command". We need only pre�x this to each
command in the command list (cmd_list) supplied to our job dispatcher, and
it will be executed with the highest priority on each cluster node.

5.7.3 Bumping external user priorities

The remaining task is to lower the process priority for all other users of the
nodes. We manage this by using the renice command. It is in e�ect the same as
the nice command, except it governs the priority of processes already running.
Refer to Subsection 5.7.2.1 on Page 75, where we con�gured sudoers to grant
the renice command the required priveleges to adjust process priorities both
ways. We now discuss the beoprioritize script (see Figure A.5 on Page 87).

The renice command can alter the scheduling priority of one or more run-
ning processes. This task is further aided by renice allowing us to specify a
user, for whom all his running processes are altered. Therefore we need to
know which users are currently logged on to our system. The users command

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 77

provides this information. The list of logged on users supplied by users is pro-
cessed by awk to convert this list with users to a format for use with the cut
command. Using cut with a bash for-loop, we lower the process priority for
each of the logged-on users, except root and beouser, using renice with the -u
option.

This is not a complete solution yet. renice only a�ects the current running
processes. If an user logs on after the simulation run has been started, their
process priorities will be assigned the default value of 0, and will not be lowered.
It is necessary to periodically lower other user's process priorities, and once
the simulation run has been completed, to restore them to normal. If we need
to periodically schedule a command, we use the cron command. cron [33] uses
the crontab command to schedule commands to be executed by cron. The
crontab command manages the �le located in /var/spool/cron/$username,
where $username is the name of the user account from which the schedule was
created. We do not have permissions to edit this �le directly, so we can only
use crontab to schedule commands.

Fortunately there is a non-interactive method of supplying crontab with
entries to be scheduled: execute crontab �lename, with �lename being any
text �le with schedule entries each in a separate line. The syntax for these
entries is:

mins hrs day-of-month month weekday cmd

To schedule our prioritize script to run every 5 minutes, and lower external
user process priorities to 19, we edit crontab�le to contain

5 * * * * /mnt/BeoStore/prioritize -u 19

and then execute crontab crontab�le. This con�gures the cluster so that
while the simulation is running, we also have the scheduled priority control
script beoprioritize running. Once the simulation run is �nished, we need to
stop adjusting external user process priorities, as they are now allowed full
use of the processing resources again. For this purpose execute crontab with
the -r option. There is one more consideration, the currently running user
processes which priorities have been lowered. We need to restore these back
to the original default.

We discuss the beocronsched script (see Figure A.6 on Page 88), which
takes care of both tasks for us. With the -a option given, we schedule our
beoprioritize script, and the -d option removes the beoprioritize script from
the schedule. The current version of beocronsched does no more than the
crontab command itself. The idea is to extend beocronsched for the following
scenario. If at any stage we decide we need to schedule tasks for beouser other
than beoprioritze, we cannot simply add and remove the scheduled tasks with
crontab. We need to carefully add and remove the crontab�le entries, leaving
any other scheduled tasks untouched. This can be performed by beocronsched

CHAPTER 5. BEOWULF CLUSTER-COMPUTING 78

All that remains for managing the priority scheduling of external users is
to combine the above scripts for use in the beorun script (see Figure A.7 on
Page 89). We begin by lowering the process priorities for the external users,
and then scheduling this action to take place every �ve minutes. Then we exe-
cute the simulation run with the Perl dispatcher script. Once it has completed,
we remove the process priority script from the scheduler, and resume executing
all current running processes at the default priority. The date command logs
the start and �nish of the simulation run into a simulation result �le, to keep
track of processing time for each simulation run.

5.8 Summary

We extended the basic cluster to provide priority scheduling to ensure optimal
processor allocation for beouser simulation runs. It was clear that we need
a uniform system con�guration across the cluster. The development of a set
of scripts, referred to as beoscripts, has automated this process. The UNIX
philosophy of keeping programs and systems simple, focused, and reusable has
been e�ective and helpful in achieving our priority scheduling goal. Linux
commands and �les interact to allow the easy implementation of our adminis-
trative requirements. The beoscripts utilities can be combined and adapted to
suit the needs of di�erent cluster requirements. These scripts, together with
the Beowulf reports, are available online [34].

Further adminstrative work for the Beowulf cluster includes the following
main targets, which may be adjusted as the Beowulf cluster enjoys higher and
more varied usage:

� Implement node failure recovery, including restarting terminated pro-
cesses on failed nodes.

� Con�gure beorun to allow simulation run resumption after an interrup-
tion (e.g. power failure).

� Setting a limit on memory usage for external users, acceptable to both
the external and cluster users.

� Using logon limitations to set an upper limit on the number of concurrent
simulation runs by beouser.

� Enhancing the progress feedback to beouser from the process dispatcher.

Chapter 6

Conclusion

This thesis has investigated current link failure recovery schemes and developed
a link failure recovery scheme using the Successive Survivable Routing (SSR)
algoritm. We have looked at network theory and the development of the
modi�ed Dijstra algoritm which is a crucial component in the selection of
optimal edge-disjoint OSPF (ED-OSPF) path pairs. Link disjointedness is a
requirement for the SSR algorithm.

We investigated teletra�c engineering and speci�cally Multi-path Label
Switching tra�c engineering (MPLS TE). We also focus on MPLS TE global
path protection.

The advantages of MPLS TE global path protection are:

� It is well suited for large-scale networks with a limited number of LSPs
to protect. We specify the LSPs to protect in the SSR algorithm using
the link failure matrix.

� The backup tunnels to be used as recovery LSPs are computed and sig-
nalled before the failure, which is an important part of a globally opti-
mised backup path set. The SSR algorithm addresses the computation
and optimal selection of the backup path set for the network.

The drwabacks of MPLS TE global path protection are:

� Global path protection requires the doubling of the number of TE LSPs,
which has a signi�cant impact in full mesh networks. In our investigation
of �real-world� network topologies and the theories to why such topologies
came into being, we have shown that preferential connectivity applies,
which reduces the total number of network links.

� In international networks, generally global path protection recovery time
is measured in tens of milliseconds, which is a problem with time sensitive
tra�c like voice and video data. This requires further investigation.

79

CHAPTER 6. CONCLUSION 80

� The requirement of a bandwidth guarantee means that an external o�-
line tool is required for the computation of both the primary and sec-
ondary TE LSPs. We have shown how SSR is a well-suited tool for this
purpose.

� The requirement for end-to-end diversely routed backup paths could im-
ply the selection of a nonoptimal path for the primary TE LSPs. We
have shown that the ED-OSPF algorithm ensures that we select the op-
timal pair of network paths, and have shown that it succeeds where the
two-step (2SA) algorithm fails.

The above has shown that SSR is a viable tool for investigating global path
protection. We investigated and extended the SSR algorithm to include capac-
ity giveback and state-dependent SSR (SD-SSR) [35]. We have discovered that
the computational requirements for SD-SSR are not scalable; therefore SSR
cannot be deployed as a tool within larger sized networks. It could however
be argued that the SSR algorithm is an o�-line tool, which would permit it
additional computation time. We also presented the Beowulf clustercomputer,
which allows us to distribute the computation of the SSR algorithm across any
number of cluster nodes to speed up the processing time.

To expand on the results of the SSR algorithm [20] which were tested
on example networks, we developed �real-world� network topologies [3] and
generated synthetic �real-world� topologies [4]. We discovered that the SSR-
algorithm does not perform as well on these �real-world� topologies. We in-
vestigated the properties of the �real-world� topologies, and discovered that
through network engineering we could gain a signi�cant reduction of backup
capacity requirement without any penalty to the SSR algorithm computation
time. We mainly achieve this by enforcing a minimum node-degree of 3 for all
nodes in the topologies under investigation.

6.0.1 Further work

Though the SSR algorithm is capable of dealing with multiple link failures,
this thesis has focussed on single-link failures. The performance of the SSR
algorithm with multiple link failure scenarios requires further investigation.

The gains made through network engineering can also be developed further.
The �real-world� American, European and Australian models can be combined
with African and Asian �real-world� network topologies to create a �real-world�
global network for evaluation of the SSR algorithm performance.

Furthermore, the SSR algorithm and �real-world� network topologies could
be incorporated into existing, well supported discrete event simulators. The
ns [36] and OMNET++ [37] discrete event simulators o�er built-in MPLS
simulation models, and are well-suited for extension to include SSR algorithm
based routing.

Appendices

81

Appendix A

Appendix

The appendix contains the scripts discussed in Chapter 5 on Page 59. To
modify the working of these scripts, the reader can refer to the on-line manual
pages of these commands by using the man Linux command. Type man followed
the the Linux command you wish to use and it explains the command as well
as it's parameter use.

82

APPENDIX A. APPENDIX 83

clear

echo '/------------------------------------\'

echo '| beorsakey |'

echo '| - utility allows non-interactive |'

echo '| access from a master node to a |'

echo '| list of hosts as specified in a |'

echo '| text file for the user that is |'

echo '| specified |'

echo '\------------------------------------/'

if ["$1" = ""]; then

echo No user account name given!

echo Usage: rsakey user masternode node_list

exit 1

elif ["$2" = ""]; then

echo No master node host name given!

echo Usage: rsakey user masternode node_list

exit 2

elif ["$3" = ""]; then

echo No node list given!

echo Usage: rsakey user masternode node_list

exit 3

fi

if [-f $3]; then

if [-f $HOME/.ssh/id_rsa.pub]; then

echo 'Master node: id_rsa.pub file exists.'

else

echo 'Master node: creating id_rsa.pub file.'

ssh-keygen -t rsa

fi

if [! -f $HOME/.ssh/authorized_keys]; then

echo 'Master node: creating authorized_keys file.'

cp ~/.ssh/id_rsa.pub ~/.ssh/authorized_keys

else

echo 'Master node: authorized_keys file exists.'

fi

for host in $(cut -f1 $3); do

if [$2 != $host]; then

ssh $1@$host "ssh-keygen -t rsa; cp__

~/.ssh/id_rsa.pub ~/.ssh/authorized_keys"

fi

done

for host in $(cut -f1 $3); do

if [$2 != $host]; then

cat ~/.ssh/id_rsa.pub | ssh $1@$host__

"/bin/cat >> ~/.ssh/authorized_keys"

fi

done

else

echo 'Invalid node list file name given'

exit 4

fi

Figure A.1: The beorsakey script.

APPENDIX A. APPENDIX 84

clear

echo '/------------------------------------\'

echo '| |'

echo '| beouseradd |'

echo '| - utility to add the same user |'

echo '| across the Beowulf cluster on |'

echo '| each node, with the same |'

echo '| settings configured all. |'

echo '\------------------------------------/'

echo

if ["$1" = ""]; then

echo No parameters supplied!

echo Usage: beouseradd user uid password__

group gid node_list

exit 1

fi

for host in $(cut -f1 $6); do

echo "Adding user $1 in group $4 to node $host."

ssh $host "groupadd -g $5 $4;__

useradd $1 -u $2 -g $4 -d /udd1/$1"

ssh $host "echo "$3" | passwd $1 --stdin"

done

Figure A.2: The beouseradd script.

APPENDIX A. APPENDIX 85

sudoers file.

#

This file MUST be edited with the 'visudo'__

command as root.

#

See the sudoers man page for the details__

on how to write a sudoers file.

#

Host alias specification

Host_Alias BEOHOSTS = grendel1, grendel2,__

onegin, beo1, beo2, beo3

User alias specification

User_Alias BEOUSERS = beouser

Cmnd alias specification

Cmnd_Alias NICE = /bin/nice

Cmnd_Alias RENICE = /usr/bin/renice

Cmnd_Alias SUDO = /usr/bin/sudo

Defaults specification

User privilege specification

root ALL=(ALL) ALL

BEOUSERS BEOHOSTS = NOPASSWD: NICE, RENICE, SUDO

Uncomment to allow people in group wheel__

to run all commands

%wheel ALL=(ALL) ALL

Same thing without a password

%wheel ALL=(ALL) NOPASSWD: ALL

Samples

%users ALL=/sbin/mount /cdrom,/sbin/umount /cdrom

%users localhost=/sbin/shutdown -h now

Figure A.3: The sudoers �le.

APPENDIX A. APPENDIX 86

#!/bin/sh

clear

echo '/---\'

echo '| |'

echo '| beofilerep - |'

echo '| - utility to add replicate file(s) |'

echo '| across the Beowulf to each node |'

echo '\---/'

echo

if ["$1" = ""]; then

echo 'No local file(s) given!'

echo Usage: beofilerep files remote_dir node_list

exit 1

elif ["$2" = ""]; then

echo No remote directory given!

echo Usage: beofilerep files remote_dir node_list

exit 2

elif ["$3" = ""]; then

echo No node list given!

echo Usage: beofilerep files remote_dir node_list

exit 3

fi

username=`whoami`

for host in $(cut -f1 $3); do

scp $1 $username@$host:$2

done

Figure A.4: The beo�lerep script.

APPENDIX A. APPENDIX 87

#!/bin/sh
clear
echo '/------------------------------------\'
echo '| beoprioritize |'
echo '| - utility to lower or increase |'
echo '| the running process priorities |'
echo '| all users except authorized |'
echo '| Beowulf users |'
echo '\------------------------------------/'

if ["$1" = ""] || ["$1" != "-u"] &&__
["$1" != "-d"]; then
echo 'Usage: beoprioritize -u | -d [value]'
echo ' Where -u assigns a lower priority'
echo ' Where -d assigns a higher priority'
echo ' Value is optional. If not specified,'
echo ' -u lowers to 19, -d increases to 0.'
echo ' Process priority may range from'
echo ' -20 (highest) to 19 (lowest).'
exit 1

fi

users > users.txt; awk '
BEGIN {

NF=" "
}
{
for (i=NF;i>=1;i--)

print $i
}' users.txt > users2.txt

if ["$2" != ""] && ["$2" -ge -20] &&__
["$2" -le 19]; then
priority=$2

else
if ["$1" = "-u"]; then

priority=19
else

priority=0
fi

fi

for user in $(cut -f1 users2.txt)
do

case $user in
"beouser")

echo Skipping user beouser
;;

"root")
echo Skipping user root
;;

*)
if ["$1" = -u]; then

echo Lowering process priorities for $user
sudo renice $priority -u $user

elif ["$1" = -d]; then
echo Increasing process priorities for $user
sudo renice $priority -u $user

fi
;;

esac
done

rm -f users.txt; rm -f users2.txt

Figure A.5: The beoprioritize script.

APPENDIX A. APPENDIX 88

#!/bin/sh

clear

echo '/--------------------------------\'

echo '| cronsched - |'

echo '| - utility to schedule exec |'

echo '| of prioritize script every |'

echo '| 5 minutes. The file with |'

echo '| the actual crontab entry |'

echo '| is also specified |'

echo '\--------------------------------/'

echo

if ["$1" != "-a"] && ["$1" != "-d"]; then

echo No -a or -d command given!

echo 'Usage: cronsched -a|-d [crontabfile]'

echo ' Where -a adds entries,

echo ' -d removes entries in crontabfile'

echo ' optional crontabfiles specifies '

echo ' filename which contains the entries'

echo ' If ommited, file crontabfile used'

exit 1

fi

if ["$1" = "-a"] && ["$2" != ""] && [-f "$2"]

then

filename=$2

echo using filename $filename

elif ["$1" = "-a"] && [-f crontabfile]; then

filename="crontabfile"

echo Using filename $filename

elif ["$1" = "-a"] && [! -f crontabfile]; then

echo 'No crontabfile exists, no filename supplied!'

echo 'Priority script not scheduled'

exit 2

fi

if ["$1" = "-a"]; then

crontab $filename

echo Successfully added user crontab entries.

elif ["$1" = "-d"]; then

crontab -r

echo Successfully removed user crontab entries.

fi

Figure A.6: The beocronsched script.

APPENDIX A. APPENDIX 89

#!/bin/sh

clear

echo '/--------------------------------\'

echo '| beorun - |'

echo '| - utility to start exec of |'

echo '| multiple simulation runs |'

echo '| across the Beowulf cluster |'

echo '\--------------------------------/'

echo

if ["$1" = ""]; then

echo No project name given!

echo Usage: beorun simrun_name cmd_list node_list

echo ' Where project_name is name of sim run'

echo ' Where node_list is file list of nodes'

echo ' Where cmd_list is file list of commands'

exit 1

elif ["$2" = ""]; then

echo No command list given!

echo Usage: beorun node_list cmd_list

echo ' Where project_name is name of sim run'

echo ' Where node_list is the file list of nodes'

echo ' Where cmd_list is file list of commands'

exit 2

elif ["$3" = ""]; then

echo No node list given!

echo Usage: beorun node_list cmd_list

echo ' Where project_name is name of sim run'

echo ' Where node_list is the file list of nodes'

echo ' Where cmd_list is file list of commands'

exit 3

fi

beoprioritize -u

beocronsched -a

date > /mnt/BeoResult/$1.status

/mnt/BeoStore/prun $3 $2

beocronsched -d

beoprioritize -d

date >> /mnt/BeoResult/$1.status

Figure A.7: The beorun script.

List of References

[1] World-Information.org: In search of reliable internet
measurement data, 2009. Available at http://world-
information.org/wio/infostructure/100437611791/100438658352.

[2] Consortium, I.S.: Iscdomain name survey, August 2009. Available at
https://www.isc.org/solutions/survey.

[3] Spring, N., Mahajan, R., and Whetherall, D.: Measuring isp topologies with
rocketfuel. In: SIGCOMM 2002. ACM, 2002.

[4] University, B.: Boston university representative internet topology generator,
2008. Available at http://www.cs.bu.edu/brite/.

[5] Taskforce, T.I.E.: Request for comments, 2009. Available at
http://www.ietf.org/rfc.html.

[6] Vasseur, J.-P., Pickavet, M. and Demeester, P.: Network Recovery: Protection

and restoration of optical, SONET-SDH, IP, and MPLS. Morgan Kaufmann
Publishers, 2004. ISBN 0-12-715051-x.

[7] Hendrick, C.: Routing information protocol - rfc 1058, 1988. Available at
http://www.ietf.org/rfc/rfc1058.txt.

[8] Kozierok, C.: The tcp/ip guide v3.0, 2005. Available at
http://www.tcpipguide.com/free/t_RIPProtocolLimitationsandProblems.htm.

[9] Dijkstra, E.: Ewd-1166, 1993. Available at
http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1166.pdf.

[10] Bhandari, R.: Survivable Networks: Algorithms for Diverse Routing. Kluwer
Academic Publishers, 1999. ISBN 0-7923-8381-8.

[11] Iversen, V.: Handbook: Teletra�c engineering, May 2008. Available at
http://oldwww.com.dtu.dk/teletra�c/handbook/telenookpdf.pdf.

[12] Zukerman, M.: Introduction to queueing theory and stochastic teletra�c mod-
els, 2008. Available at http://www.ee.cityu.edu.hk/�zukerman/classnotes.pdf.

[13] Rosen, E., Viswanathan, A. and Callon, R.: Multiproto-
col label switching architecture, January 2001. Available at
http://www.ietf.org/rfc/rfc3031.txt?number=3031.

90

LIST OF REFERENCES 91

[14] Braden, R., Zhang, L., Berson, S., Herzog, S. and Jamin, S.: Resource reserva-
tion protocol � version 1 functional speci�cation, September 1997. Available at
http://www.ietf.org/rfc/rfc2205.txt?number=2205.

[15] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V. and Swallow, G.:
Rsvp-te: Extensions to rsvp for lsp tunnels, December 2001. Available at
http://www.ietf.org/rfc/rfc3209.txt?number=3209.

[16] Heckmann, O., Piringer, M., Schmitt, J. and Steinmetz, R.: On realistic network
topologies for simulation. In: SIGCOMM 2003. ACM, 2003.

[17] MCI: North america network topology map, 2004. Accessed at
http://global.mci.com/about/network/global_presence/global.

[18] Barabasi, A. and Albert, R.: Emergence of scaling in random networks. pp.
509�512. October 1999.

[19] Zipf, G.: Human Behavior and the principle of least e�ort. Addison-Wesley,
1949.

[20] Liu, Y., Tipper, D. and Siripongwutikorn, P.: In: Approximating Optimal Spare
Capacity Allocation by Successive Survivable Routing. February 2005.

[21] Medina, A., Matta, I. and Byers, J.: On the origin of
power laws in internet topologies. April 2000. Available at
http://www.cs.bu.edu/brite/publications/ccr00.pdf.

[22] Rayport, J.: Semiconductor industry and business survey, 1988.

[23] Spurgeon, C.: Ethernet (ieee 802.3) web site, 2004. Available at
http://www.ethermanage.com/ethernet/.

[24] Online, L.: Linus torvalds biography, 2007. Available at
http://www.linux.org/info/linus.html.

[25] van der Veen, V.: The minix3 operating system, 2008. Available at
http://www.minix3.org/.

[26] Stallman, R.: Richard stallman's personal page, 2008. Available at
http://www.stallman.org/#serious.

[27] Barr, T.: Linux nfs-howto, 2002. Available at http://nfs.sourceforge.net/nfs-
howto/.

[28] Sterling, T., Salmon, J. and Becker, D.: How to Build a Beowulf. MIT Press,
1999.

[29] Siever, E., Spainhour, S. and Patwardhan, N.: Perl in a Nutshell. O'Reilly,
1998.

[30] Gropp, W., Lusk, E. and Skjellum, A.: Using MPI: portable parallel program-

ming with the message-passing interface. MIT Press, 1994. ISBN 0-262-57104-8.

LIST OF REFERENCES 92

[31] Bovet, D. and Cesati, M.: Understanding the Linux Kernel. O'Reilly, 2000.

[32] Morgan, A.: A linux-pam page, 2004. Available at
http://www.kernel.org/pub/linux/libs/pam/.

[33] Peek, J., O'Reily, T. and Loukides, M.: Unix Power Tools 2nd Edition. O'Reilly,
1997.

[34] Stapelberg, D.: Building a linux beowulf cluster, 2004. Accessed at
http://www.cs.sun.ac.za/ dstapel/beowulf/.

[35] Göbel, J., Krzesinski, A. and Stapelberg, D.: A distributed scheme for respon-
sive network engineering. pp. 2070�2075. June 2007.

[36] Fall, K. and Varadhan, K.: The ns manual, 2009. Available at
http://nsnam.isi.edu/nsnam/index.php/Main_Page.

[37] Varga, A.: The omnet user manual, 2009. Available at
http://www.omnetpp.org/doc/omnetpp40/manual/usman.html.

