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Abstract

Traffic engineering determines the bandwidth allocation required to meet the traffic loads in a

network. Similarly an economic market determines the resource allocation required to meet the

demand for resources. The term bandwidth market denotes traffic engineering methods that use

economic market methodology to determine the bandwidth allocation required to meet the traffic

loads. A bandwidth market is an attractive traffic engineering method because of its distributed

nature and ability to respond quickly to changes in network architecture or traffic loads.

Network terminology is frequently used to define bandwidth markets. Our approach is to use

the concepts of microeconomics to define a bandwidth market. The result is that our bandwidth

markets are similar to economic markets, which is advantageous for applying economic principles

correctly.

This thesis presents the theoretical basis for two bandwidth markets. The first bandwidth market

is a framework for building bandwidth markets. The second bandwidth market represents a society

of cooperating individuals. The society distributes resources via a mechanism based on economic

principles. An implementation of the bandwidth market is presented in the form of an optimisation

algorithm, followed by its application to several test networks.

We show that, in the test networks examined, the optimisation algorithm reduces the network

loss. For all test networks, the network loss achieved by the optimisation algorithm compares well

with the network loss achieved by a centralised optimisation algorithm.
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Opsomming

Verkeersingenieurswese bepaal die nodige bandwydtetoekenning om die verkeersvolume in 'n

netwerk te dra. Op 'n soortgelyke wyse bepaal 'n ekonomiese mark die nodige hulpbrontoekenning

om die aanvraag vir hulpbronne te bevredig. Die terme bandwydtemark stel verkeersingenieurs-

wesetegnieke voor wat ekonomiese-mark metodes gebruik om die bandwydtetoekenning vir die

verkeersvolume in 'n netwerk te bepaal. 'n Bandwydtemark is 'n aantreklike verkeersingenieurs-

wesetegniek omdat dit verspreid van aard is en vinnig kan reageer op veranderinge in netwerk

argitektuur en verkeersvolume.

Netwerkterminologie word gereeld gebruik om bandwydtemarkte te definieer. Ons benadering is

om mikro-ekonomiese begrippe te gebruik om 'n bandwydtemark te definieer. Die resultaat is

dat ons bandwydtemarkte soortgelyk aan ekonomiese markte is, wat voordelig is vir die korrekte

toepassing van ekonomiese beginsels.

Hierdie tesis lê die teoretiese grondwerk vir twee bandwydtemarkte. Die eerste bandwydtemark

is 'n raamwerk vir die ontwikkeling van bandwydtemarkte. Die tweede bandwydtemark stel 'n

vereniging van samewerkende individue voor. Die vereniging versprei bandwydte deur middel van

'n meganisme wat gebasseer is op ekonomiese beginsels. 'n Implementasie van hierdie bandwyd-

temark word voorgestel in die vorm van 'n optimeringsalgoritme, gevolg deur die toepassing van

die optimeringsalgoritme op 'n aantal toetsnetwerke.

Ons wys dat die bandwydtemark die netwerkverlies verminder in die toetsnetwerke. In terme van

netwerkverlies vaar die bandwydtemark goed vergeleke met 'n gesentraliseerde optimeringsalgo-

ritme.
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Chapter 1

Introduction

In many telecommunication networks the network connectivity and the offered traffics change over

time. If routes fail then traffic can be lost, and if traffics change then links may become overloaded.

Traffic losses and link overloads are undesirable because they degrade the quality of the service

experienced by the network users. In order to preserve quality of service, a network operator may

apply network engineering and acquire additional bandwidth for overloaded links, or the network

operator can apply traffic engineering and reroute the traffic over links that have spare bandwidth.

This thesis focuses on traffic engineering and investigates methods for rerouting traffic.

It may be worthwhile for a network to respond to changes in traffic demand if the gain in revenue

from a more accurate routing configuration outweighs the revenue loss incurred by additional

signaling information on the network. Routing changes are mainly caused by changes in the traffic

demand or changes in the underlying physical network. Typically a response mechanism, aware

of local traffic and network configuration properties, will adjust the network resources allocated

to the routes affected by the change. Major changes in the network are caused for example by

link/node failures or traffic surges, which may require substantial changes in traffic routing and

reallocation of network resources.

The welfare of a network can be evaluated in terms of the traffics and the network resources. A

network operator can apply traffic engineering by employing a centralised optimisation algorithm

that uses information about the traffics and the network resources to calculate a routing configu-

ration that maximises the network welfare. Typically this information is acquired, a new routing

configuration is calculated and the new routes are deployed. During the time between information

acquisition and the deployment of the new routes, the traffics and resources of the network may

change such that the newly calculated routing configuration no longer maximises the network

welfare.

Alternatively, traffic engineering can be applied by a distributed optimisation method which de-

ploys multiple agents in the network, each agent capable of adjusting the routing configuration.

1
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Chapter 1. Introduction 2

The term agent implies an autonomous entity which acts on behalf of a client, ensuring the well-

being of that client. Autonomous agents act without centralised control from a system coordinator,

behaving entirely by local information and rules. The advantage of such a system over a centralised

optimisation algorithm, is that an agent is able to ensure the well-being of a client without the

delayed administration of a centralised entity. Moreover, the centralised execution of the opti-

misation algorithm represents a single point of failure whose malfunction would compromise the

optimal operation of the network. A distributed system can be designed such that the actions

of the agents not only ensure the well-being of the clients but also maximise the welfare of the

network.

This thesis investigates the design of systems of distributed autonomous agents targeted to max-

imise the welfare of a network. A typical design of a system of distributed autonomous agents will

include an objective for each agent and rules for collaboration amongst the agents. We investigate

systems of distributed autonomous agents with agent objectives and rules of collaboration similar

to those found in economics. Therefore we use economic terminology to define the systems of

distributed autonomous agents and we apply economic principles in these markets.

Other authors have used economic principles to apply traffic engineering in telecommunication

networks. The application of economic principles for traffic engineering is often called a bandwidth

market. In [19] Kuwabara et al. define a market model that uses a pseudo price for controlling

the allocation of link bandwidth. Gibney et al. also use a pseudo pricing approach in [14]. We

investigate pseudo prices in economics (Chapter 5) before using a pseudo pricing approach for

pricing bandwidth. In [32] Wellman describes a bandwidth market with a mechanism to calculate

the market clearing prices. These market clearing prices yield an allocation of resources which

maximises the welfare of the network.

The work presented in this thesis differs from most previous works, because it uses fundamental

economic terminology to define the entities in a bandwidth market. For example, Wellman used

economic terminology to define a bandwidth market in [32]. However, most previous works define

bandwidth markets in network terms to which economic principles are applied. The advantage of

defining the bandwidth market in the correct economic terminology is that it serves as foundation

for examining the economic literature concerning the particular type of market.

An economy does not evolve because of the application of economic theory. The evolution of an

economy is the result of a demand for resources and the efforts of multiple agents to transform

and distribute resources in order to meet the demand. Economic theory is the scientific study of

the evolution of an economy. Agents in an economy may however use economic theory to predict

the evolution of the economy and thereby make optimum choices that maximise their well-being.

When designing a bandwidth market the designer must be careful not to apply economic theory

to agents in an environment that does not resemble an economy. A common mistake is to name a

network entity as an economic entity and ignore the differences in properties or behaviours that are

premises for economic theory to render the correct result. In a bandwidth market where economic

entities are defined incorrectly, the results of applying the theory of economics are limited. Other

2
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Chapter 1. Introduction 3

than presenting an optimisation algorithm through well known concepts, the usefulness of defining

such a bandwidth market is questionable.

A distributed autonomous agent system is a distributed algorithm executed on a distributed pro-

cessing platform". We design two such systems of distributed autonomous agents and implement

one of them. Anerousis and Lazar [3J survey a number of algorithms for creating virtual paths

in networks and provide a taxonomy for the algorithms. According to their classification our

distributed autonomous agent system is a data-driven, asynchronous, decentralised algorithm.

The algorithm requires information about the network status, it is executed periodically, it is

asynchronous to events in the network and it is a distributed multi agent system.

1.1 Game theory, markets and strategic equilibrium

Multi agent systems [15, 22, 30, 34J and equilibrium have been thoroughly studied in economics

[11, 13, 25, 33J. This is not surprising, since events in real economic markets are determined by

the strategy and behaviour of many independent agents (corporations and individuals). Their

seemingly uncoordinated actions lead to an astonishingly stable economic market, in which most

agents do well in achieving their goals such as maximising profit and maximising utility.

The agents in markets are interested in acquiring market resources. Competition for the same

resources leads to conflict between the agents.

Game theory [9, 12, 16, 20, 23, 24J aims to analyse various problems of conflict between parties

with diverse interests. Game theory has been applied to network routing problems and bandwidth

allocation [1, 2, 17, 21J. Chapters 4 and 5 use game theory to analyse the markets which are

designed to maximise the welfare of a network.

A market can be modeled as a game in which the players are the agents, the rules of the game

are the market mechanisms and the strategy of an agent is the behaviour of the players in every

possible situation. There are several formal representations of games. We use the normal form

representation of a game. The definition of a game in normal form has four parts: players,

strategies, payoff functions and additional rules. The first three may be symbolised by a triple

(N,B, p) where N is a set of N players, B = Bl X ... x BN is the strategy space which is the

Cartesian product of the individual strategy sets Bi of the players i E Nand p is the vector of

payoff functions. Given the chosen strategies Si E Si, i E N of all the players in the game, the

payoff function Pi (Sl, ... , SN) of a player i is a numerical measure of how well the player does in

the game. Additional rules [9, p.XJ specifies the extent to which the players can communicate with

one another, whether the players can or cannot enter into binding agreements, whether rewards

obtained in the game may be shared and what information is available to the players in the game.

Games may differ in duration. In a single period game players choose their strategies, the game

1A distributed algorithm executed on a distributed processing platform is not necessarily a distributed au-
tonomous agent system.

3
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Chapter 1. Introduction 4

is played, the payoffs are evaluated and the game ends. A multi period game consists of T

single period games, called the constituent games. The payoff of a multi period game is the sum

~'{=l p(S) of the payoffs of the constituent games. The players may choose new strategies for each

constituent game and this is done based on the strategies chosen in the previous constituent games.

If T -+ 00 the multi period game is called a super game. Our market games are super games.

We assume that all players are rational. A rational player always'' chooses a strategy that will

maximise its payoff.

Cooperating players may follow a joint strategy which provides a mutually greater payoff than

when the players do not cooperate. Games (and markets) are classified as cooperative or non-

cooperative. Our market games are cooperative. A game is cooperative if the players are able to

make binding, unbreakable agreements. Binding agreements are necessary for players to cooperate

and they restrict the strategies of the cooperating players. In order to demonstrate this consider

a simple two player super game where each player i E {1,2} can choose between strategy a; or

strategy bi for each constituent game. The payoff function of each constituent game is given in

Table 1.1 where the left hand value is the payoff of Player 1 and the right hand value the payoff

of Player 2.

I ~~ II
o o 9 -8

-8 9 8 8

Table 1.1: 2-player game.

Cooperating players may agree on the mutually best strategy pair (bl, b2). Games are non-

cooperative if the players cannot make binding agreements. In this example if the players do

not cooperate, Player 1 prefers the strategy pair (al,a2) over (bl,a2) and (al,b2) over (bl,b2).

Thus regardless whether Player 2 chooses the strategy a2 or bz, the best strategy for Player 1 is

strategy al. Since Player 1 and Player 2 are in the same situation the best strategy for Player 2 is

also strategy a2 and the players will choose the strategy pair (al, a2) for each constituent game.

In any game an equilibrium strategy set is a set of player strategies by which the players earn a

payoff such that no player has incentive to deviate from its strategy. The equilibrium discussed

in this section is also referred to as a strategic equilibrium. In a multi agent system a strategic

equilibrium is a strategy set that is persistently chosen by the system agents. The designer of the

multi agent system is therefore interested in ensuring that all equilibria have favourable conditions

(such as maximising the system welfare). Naturally it is important that the system designer knows

the conditions of every possible strategic equilibrium.

2A reputation of being irrational can be advantageous to a player [18]. For example, in a super game, a player
may choose strategies that do not maximise its payoff for some constituent games and let the other players think
that it is irrational. This may change the choice of strategies of the other players which may enable the seemingly
irrational player to take advantage and eventually earn a larger payoff for the super game. Note that such a player
is rational in context of the super game.

4
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Chapter 1. Introduction 5

A more general definition of a strategic equilibrium is: a combination of player strategies, agreed

upon by cooperation or chosen by individual players, such that no player or group of players in

coalition has an incentive to deviate from their equilibrium strategy.

One of the most well known strategic equilibriums is the Nash equilibrium [20, p.25]. A Nash

equilibrium occurs when no player in the game can do better by changing its own strategy, thus

abstaining from changes to its (conjectured) equilibrium strategy". The Nash equilibrium applies

only to non-cooperative games. Note that in the game with the payoff functions given in Table 1.1

the strategy pair (al,a2) is a Nash equilibrium.

The Nash equilibrium cannot characterise a strategic equilibrium in cooperative games where

cooperating players can agree to jointly change their strategies. That is to say, players that

cannot do better by changing their own strategy can do better by agreeing with other players to

jointly change their strategies. Cooperative strategic equilibrium occurs when no group of players

is able to better their payoffs by jointly changing their strategies. Such a strategic equilibrium

can be characterised as a strong Nash equilibrium [27, p.26]. A strong Nash equilibrium occurs

when no subgroup (coalition) of players in the game can change their joint strategy such that each

member in the subgroup has a better or at least the same payoff.

In most games the strong Nash equilibrium is too strong, meaning that the strong Nash equilibrium

rarely exists. In choosing a cooperative equilibrium combination of player strategies it is more

useful to define a Pareto efficient combination of player strategies.

Definition 1.1 A combination of player strategies S dominates a combination of player strate-

gies Z if each player earns at least as much payoff with the strategy set S as with strategy set Z

and at least one of the players earns a strictly higher payoff with S than with Z.

For example consider the payoff vectors (1,1) and (3,4). An obvious interpretation is that the

combination of player strategies resulting in a payoff vector (3,4) dominates the combination of

player strategies resulting in a payoff vector (1,1). However for the payoff vectors (3,4) and (4,3),

neither combination of player strategies dominates the other.

A Pareto efficient combination of player strategies is such that there is no other combination of

player strategies by which some players do better without any player being worse off.

Definition 1.2 A Pareto efficient combination of player strategies is a combination of player

strategies that is not dominated by any other combination of player strategies.

The Pareto efficient combination of player strategies proves to be more useful in many contexts.

The shaded interior region and the points on the enclosing boundary in Figure 1.1 illustrate the

payoff space or the attainable payoffs for a two player game, where Pl is the payoff of Player 1

3The formal definition is presented in Definition 4.4.

5
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Chapter 1. Introduction 6

PI

a

P2

Figure 1.1: The Pareto frontier.

and P2 the payoff of Player 2. According to Definition 1.1 the points on the marked boundary

between a and b are not dominated by any point in the payoff space. The points on the marked

boundary are Pareto efficient payoff pairs and the marked boundary is called the Pareto frontier.

Each payoff pair in the payoff space is dominated by a Pareto efficient payoff pair on the Pareto

frontier. The Pareto inefficient payoff pairs are the payoff pairs in the payoff space which are not

on the Pareto frontier.

In most cases players in a coalition benefit more by choosing a Pareto efficient combination of

player strategies rather than a Pareto inefficient combination of player strategies. In Chapter 4

we investigate a case where this is true. It is often difficult if not impossible for players to agree

on which Pareto efficient combination of player strategies they should choose. There will always

be a trade-off in choosing one Pareto efficient combination of player strategies over another Pareto

efficient combination of player strategies, because changing from one Pareto efficient combination

of player strategies to another Pareto efficient combination of player strategies will increase the

payoff of one player at the cost of decreasing the payoff of another player.

In some games payoffs are transferable, which means that one player may transfer some of its

payoff to another player. For instance if Players 1 and 2 choose a Pareto efficient point close

to a then Player 1 may transfer an amount of payoff to Player 2 as a side-payment for the

cooperation. In Chapter 4, we present a market model in which payoffs are transferable. Thus

the cooperating players will prefer any Pareto efficient combination of player strategies that yields

a higher aggregated payoff over an alternative that yields a lower aggregated payoff. Payoffs are

not transferable in the cooperative market model presented in Chapter 5. The Pareto efficient

combinations of player strategies which the players may agree on are therefore limited in the

market model presented in Chapter 5.

6
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Chapter 1. Introduction 7

Several theories [12, p.234-289J describe how players can bargain for a cooperative equilibrium.

In our market models we assume the players have already agreed upon a combination of player

strategies and we incorporate this agreed equilibrium combination of player strategies in the agent

behaviours. It is a complex and interesting experiment to allow the players to bargain for a

cooperative strategic equilibrium rather than provide them with a pre-determined cooperative

equilibrium combination of player strategies. On the other hand it may prove to be too complex

and resource intensive to be practical in real networks.

1.2 Problem statement

Using the concepts presented in the previous sections and some concepts of autonomous agent

systems [30, Chapter 7J, we state the problem investigated in this thesis.

Definition 1.3 A mechanism design problem is a system of agents with a defined set of

preferred system state(s). The system state determines the payoff of each individual agent and the

goal of each agent is to maximise its payoff.

Definition 1.4 A mechanism for a mechanism design problem is a set of actions available to

each agent in a system. The action of an agent can change the system state.

A mechanism design problem and a mechanism together comprise a game.

Definition 1.5 A solution mechanism for a mechanism design problem is a mechanism defin-

ing a game of which every strategic equilibrium necessarily leads to one of the preferred system

state(s).

This thesis defines two mechanism design problems and establishes a mechanism for each mech-

anism design problem. Although we do not prove that these mechanisms are mechanism design

solutions for the mechanism design problems, the aim is to establish a mechanism design solution

for each mechanism design problem.

In particular, the goal of this thesis is to define a mechanism design problem equivalent to the

network resource allocation problem where resources are limited in quantity and distributed among

agents. The mechanism design problem is defined such that it resembles an economic market. A

mechanism that resembles the mechanisms used in real economic markets can then be designed.

This mechanism may lead to an optimal resource allocation, which is the desired outcome defined

by the mechanism designer.

In order to define a mechanism design problem that resembles an economic market we model

the allocation of resources in a network as a market and identify the appropriate entities of the

mechanism design problem in this market model.

7
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Chapter 1. Introduction 8

1.3 Thesis layout

This thesis is organised as follows: Chapter 2 introduces the framework of the communication

network. Chapter 3 presents the fundamental definitions used in the market models presented in

this thesis.

Chapter 4 presents a general market model and identifies the entities of a mechanism design

problem and a mechanism.

The following two chapters describe a second market model. Chapter 5 presents the definitions

of the market model and identifies the entities of a mechanism design problem and mechanism.

Chapter 6 presents an implementation of the market model presented in Chapter 5 along with

a strategy for each agent and the results of testing an implementation of this market model.

Chapter 7 presents our conclusions.

The notation used in this thesis is as follows. Bold capital letters denote matrices X of which Xi is
the i-th row vector and Xij the entry in the i-th row and j-th column. Let [Xli = Xi and [Xlij = Xij

for any matrix X. A vector is denoted by a lower case letter X and its i-th entry by Xi.

The vector 0 denotes the zero vector and ei denotes the i-th unit vector. For a function f(r) =

f(T1, ... ,Tn) we use the notation D;j(r) = 8f(T1, ... ,Tn)/8Ti to represent the partial derivative

of the function f with respect to Ti. The sets IR,IR+, IN, lNo and 7L. are the sets of real numbers,

positive real numbers including zero, positive integers, positive integers including zero and integers

respectively.

8
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Chapter 2

The network framework

In this Chapter we define the network framework, which is a simplified definition of the real

network [4] for which the market models in this thesis are designed.

2.1 Network

2.1.1 Physical link layer

The physical layer of a network (layer 1) is the physical fabric connecting communicating nodes

in a communication network. The network physical layer can be static or dynamic. It is however

not uncommon for a network to contain a hybrid of dynamic and static network components.

Static physical layer

The simplest physical network layer consists of physical links connecting communicating nodes.

This is known as a static physical layer where the bandwidth between nodes is constant. Small

networks like a local area network (LAN) or a wide area network (WAN) have a static physical

layer.

Dynamic physical layer

Backbone networks, carrying large traffics from a variety of sources, have more advanced physical

layers consist of switching network nodes connected by physical network links. The role of the

switches is to produce single concatenated links from originating nodes to destination nodes via

transit nodes. These switches enable dynamic changes to the bandwidth between nodes. Optical

network technology is the most widely used and cost effective dynamic physical layer.

9
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Chapter 2. The network framework 10

2.1.2 Optical physical network

Optical switches with optical fibre links are widely used in building dynamic physical layers. An

optical switch is capable of switching ingress fibre links to egress fibre links, called Fibre-Switch

Capable (FSC).

Different optical wavelengths can be multiplexed onto a single fibre using Wavelength Division

Multiplexing (WDM). Each of these wavelengths can be "switched" to other wavelengths on dif-

ferent fibres (Lambda Switch-capability LSC), adding another dimension to switching and making

the optical switch more complex. A cable of two multiplexed fibre optic links has a capacity of

120Gbps (1,451,520 x 64kbit/s channels). WDM has an economic advantage, since the previously

installed FSC link capacities can be expanded at nominal cost. In 2001 Telkom [26] hosted Optical

fibre links with WDM capable of carrying 240,000 channels, compared to an FSC capacity of only

30,000 channels.

There are two well known types of optical switches:

Optical Cross-connect (OXC) The signals traversing an OXC switch undergo

optical/electrical/optical conversion (O/E/O). Error detection is done on the electrical signal

and the LSC is accomplished by tunable lasers.

Photonic Cross-connect (PXC) Signals traversing a Photonic Cross-Connection (PXC) switch

do not undergo electrical conversion. PXC switches are optical to optical devices, reducing

the complexity of the switch, allowing a smaller footprint, and lowering power consumption.

Depending on the nature of the switch an OXC switch can switch around 252 to 1008 pairs of

in-bound and out-bound ports at less than 1 microsecond per switching pair.

2.1.3 Logical link layer

In a dynamic physical layer, a logical link is a set of physical links between a node pair, cross

connected by node switches (OXC/PXC). In the case of a static physical layer the logical links

and physical links are the same entities.

The logical link layer is a meshed network topology on top of a sparse physical link topology,

provisioned at different rates, such as Tl, OC3, OCI2, OC48, OC192, etc., depending on the

requirement between nodes. As can be seen from Figure 2.1 the logical link layer (layer 2) is not

necessarily fully connected.

On the edges of the logical links are packet routers. The role of a packet router is to transfer

encapsulated data fragments, called packets, via the logical links to another packet router. A finite

buffer is allocated to a packet router, for storing incoming packets while previously received packets

10
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LOGICAL (LAYER 2)

t---- LOGICAL
LINK
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SWITCH

11--- FIBRE LINK

C D

Figure 2.1: Physical and logical link layers.

are dispatched. Almost all packet routers are either Internet Protocol (lP) or Asynchronous

Transfer Mode (ATM) routers.

2.1.4 Internet Protocol and Asynchronous Transfer Mode

lP routers use routing tables for forwarding packets over logical links. In the last decade of the 21

century, the version of lP (IPv4) was deemed insufficient for providing service to a considerable

portion of communication formats (Voice, High Definition Video, etc.). One deficiency of IPv4

was its inability to provide a guaranteed quality of service. IPv4 packets are routed from ingress

to egress router according to routing tables, which are populated and updated by path discovery

protocols such as OSPF, normally minimising the number of logical links crossed between ingress

and egress router. This is called destination-based connectionless routing. In IPv4 there are no

mechanism for routing packets on a specified path, making traffic engineering difficult.

ATM [10] provides a connection-orientated service to protocols in higher abstraction layers. Traf-

fics using an ATM network can be engineered to follow distinct paths through the network. Be-

cause of this property, most telephony telecommunication networks invested in ATM as a transport

protocol.

The native protocol of most computers is lP and in computer networks the role of ATM is limited

to transporting lP packets. Because of lP's dominance as the native protocol for computers, it

will undoubtedly be the standard transport protocol for future integration of services on a shared

communication network.

11
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2.1.5 Multi-protocol Label Switching

The development of Multi-protocol Label Switching (MPLS) [8] commenced from a protocol called

Tag Switching. The main function of the MPLS protocol is to enable the set up of explicit

routes through a packet switched network and thus provide a connection-orientated structure to

a connectionless network. The development of MPLS was motivated by a need to address

• scalability,

• decoupling of the routing scheme and the forwarding implementation,

• the complexity of mapping lP to ATM, and

• better price versus performance in routers.

The steep rise in demand for guaranteed quality traffic transport services motivated telecommu-

nication companies to acquire a network infrastructure that could integrate and offer customer

specified traffic transport services. Initially such a network infrastructure was not available and

telecommunication companies invested huge amounts of money in network solutions that could

offer limited services. Because of these large investments, the transition to a network solution that

could integrate and offer a variety of customer specified traffic transport services must be able

to interface with legacy networks. An attractive feature that MPLS offers to telecommunication

companies is that it can interface with almost all legacy networks, translate the service require-

ments for the traffics of the legacy networks traversing the MPLS domain and maintain the quality

of the services offered.

lP routers may be replaced by superior low cost MPLS routers called label switch routers (LSRs)

and existing ATM routers will be converted to MPLS routers by reprogramming the control

software. An LSR is responsible for identifying the next hop of each incoming MPLS packet and

forwarding the packet accordingly. There are explicit paths (Label Switch Paths) over the links

on which the MPLS packets are switched across the MPLS network.

Label Switch Paths

--{~----------{j---{j----------{j-~
LSP

logical link logical link

Figure 2.2: A label switch path along a logical link.

MPLS packets are forwarded along explicit paths called label switch paths (LSPs). LSPs are set

up by configuring the LSRs, marking a path or a so called flow, through the MPLS network.

12
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Each LSR has a table (Label Information Base) which is used to map a set of incoming labels to

outgoing labels. Essentially these mapped pairs of labels identify flows through the LSR. These

flows are further sub-classified into Forwarding Equivalence Classes (FEC). A FEC is a unique

identifier for a flow through an MPLS network, flow granularity being a key feature in enabling

MPLS to support multiple virtual networks; each with its own distinct flows. A packet submitted

to an ingress LSR (origin node) requiring transportation to an egress LSR (destination node) via

an explicit path has a label and a FEC assigned to it. Indicated by its label and FEC, a packet

will be forwarded to the next LSR. At each LSR, the incoming label of an incoming MPLS packet

is replaced by the mapped outgoing label. MPLS packets of an LSP will thus be routed across a

series of logical links (Figure 2.2) by the core LSRs situated between the logical links. The traffic

routing scheme is thus decoupled from the forwarding implementation in the LSR router. This is

a major advance, since hardware or software routing optimisation agents can be changed without

any changes in the forwarding implementation of the LSRs.

2.1.6 Virtual Network/ Virtual Path Connection Network

Constraint Routed Label Switch Paths (CRLSPs) are LSPs conforming to constraints or service

quality preferences, for instance maximum delay or minimum bandwidth.

CRLSPs with common ingress/egress nodes and common constraints are grouped into a traffic

trunk, called a Virtual Path Connection (VPC) in ATM networks. A traffic trunk is thus a

collection of paths through a network between ingress and egress nodes, satisfying certain criteria.

A service connection request to the traffic trunk is provided with equal Quality of Service (QoS),

regardless of the CRLSP of the traffic trunk over which the connection is routed.

Similar to the grouping of CRLSPs into traffic trunks, traffic trunks are grouped into Virtual Net-

works (VNETs). These VNETs are fully connected virtual networks having certain characteristic

properties (QoS). VNETs are dynamic and adaptive to changes in service demands, transport

network alterations, and have high survivability during network failure. From the network client's

perspective, the choice VNET is a reliable fully connected virtual network conforming to all the

network client specifications and providing a sustained QoS. A separate virtual network for each

service class exists on the physical network. When working with a specific virtual network, we call

the traffic trunks the origin-destination pairs (OD-pairs) of that virtual network.

2.2 Quality of service

Network clients are the sources of connections (calls) to the network. Network clients wish to

specify the quality of the data transmission service they are provided with. This specification is

called the Quality of Service (QoS). We characterise and discuss briefly the major components of

QoS.

13
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Latency

Latency, also known as mean packet delivery time, is the elapsed time between the submission

of data to an ingress node (origin node) and arrival at the egress node (destination node). This

time delay is caused by node delay, which is incurred in examining and resubmitting data to the

appropriate link transport medium and link delay, incurred in transporting data over the physical

network link. Latency is of cardinal importance to real time services (interactive voice, interactive

gaming).

Throughput speed

Measured in bit rate, throughput speed represents the amount of data throughput per unit time,

which is largely dependent on the bandwidth of the network.

Jitter

Packets do not arrive at the egress node at regular time intervals. Some services, especially

Constant Bit Rate (CBR) service classes, require data to arrive at the egress node at a sustained

rate. A common metric for jitter over a time interval, is maximum difference in packet delivery

time.

Transport reliability

Fallible physical transmission medium renders data transmission faulty to some extent. If detected,

such transmission faults would require retransmission, or in case of real-time critical services,

packet loss and degredation of service. The degree of unreliability is measured in packet loss

probability or bit loss probability, referred to as packet or bit delivery grade of service (GoS).

Service connection blocking

Due to the conservation of QoS of the connections currently active on the network, additional

service connections may be rejected. The number of connection requests rejected serves as measure

of revenue loss. Under-provisioned networks will reject connection requests and lose revenue, in

order to conserve the QoS of the active connections. From an QoS perspective, service connection

blocking is part of the service Quality offered.

Security

Some network services require secure transmission. Security measures such as data encryption are

applied at edge nodes.

14

Stellenbosch University http://scholar.sun.ac.za



Chapter 3

Fundamental definitions of the
market

The definitions in this Chapter describe our fundamental market model. In later Chapters we use

our fundamental market model as a foundation for designing more detailed market models.

3.1 Definitions

A market agent is assigned to every origin-destination (OD) pair, under the assumption that a

connection is unbiased as to the LSP on which it is routed, except for the origin and destination

of the LSP.

The primary interest of each agent is to manage network resources I for the transportation of traffic

for that OD-pair, thus managing the capacity reserved for each LSP.

3.1.1 Payoff and utility

The term utility and payoff are both used in game theory and in the theory of economics. We

present definitions of payoff and utility [16, p.3] using simple concepts.

Consider an individual with a choice of strategies S = {SI, S2, S3, ... }. Each of these strategies

describes an action or series of actions taken by the individual in every possible situation encoun-

tered. For example when a router is running out of buffer space the strategies may be: SI to drop

a packet, S2 to send a request to reduce the packet transmission rate or S3 to drop a packet and

send a request to reduce the packet transmission rate. Let R = {rI, r2, r3, ... } be a set of vectors.

lThe terms resource and commodity are used interchangeably.
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Each vector quantifies an outcome of following a strategy. The outcome of a request to reduce the

packet transmission rate may be to alleviate the shortage of buffer space.

Definition 3.1 A payoff function of an individual is a function p : S -+ R such that if the

individual follows a strategy sES then p( s) is the outcome relevant to the individual. p( s) is the

payoff of the individual when following the strategy s.

The outcomes of a strategy choice allow us to infer how well the individual does by choosing a

particular strategy. For simple outcomes like revenue generation it is obvious that an individual

does better by choosing strategies that yield higher revenue. However when outcomes are complex,

it is less obvious how well an individual does with a strategy choice. For instance if an individual

sends data over a network the relevant outcome is the quality of the data transmission (QoS).

How well the individual does with a certain QoS depends on the preference of that individual.

A utility function quantifies the preference of an individual. The practical advantage of having

a concise utility function rather than many individual preferences is significant [9, p.58). The

definition, rules and applications of utility functions are sometimes called utility theory.

Consider a set of k entities E = {el, ... , ek}. Each of these entities may be anything of value to an

individual: a resource, a bundle of resources or the payoff of following a strategy. For example el

may be a computer, e2 a network connection and e3 a resource bundle consisting of a computer

and a network connection, or E may contain vectors describing QoS specifications.

Let a, b, cE E. We define the binary relations >-, -<, '" on the entities in the set E such that

• a >- b if and only if entity a is preferred over entity b,

• a '" b if and only if the individual is indifferent to entity a or entity b,

• a >- b implies b -< a.

The conditions

• either a >- b, a -< b or a '" b, and

• if a >- band b >- c then a >- c,

are met by the binary relations >-, -<, '" on the entities in set E. The binary relations >-, -<, '" are

called preference relations on the entities in the set E.

Definition 3.2 A utility function of an individual is a function u : E -+ IR+such that u(a) >
u(b) if and only if a >- b. u(a) is the utility of the entitya.

A utility function or payoff function may include other variables in its domain. An entity or

strategy may then lead to different utilities or payoffs, depending on the values of these other

variables.
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A linear ordering of entities according to their utility will arrange the entities in order of an

individual's preference. It is important to mention that the preference of an individual is observed

whereupon a utility function is established which the individual seems to be maximising [9, p.56].

Strictly speaking it is wrong to sayan individual is trying to maximise its utility; very likely the

individual does not even know such a thing exists. Thus throughout this thesis when referring to

an agent that maximises its utility we refer to an agent that acts as though it maximises its utility.

3.1.2 Commodities and utility

The basic commodity of the market is the bandwidth of the physical link between an OD-pair.

This bandwidth can be reserved for use in different ways, for example the link bandwidth can

carry direct traffic, or it can be used by transit routes traversing the link. Bandwidth can thus

be assigned to routes, so that a route represents bandwidth assigned from the several physical

links that make up the route. The route bandwidth is a composite commodity produced from a

composition of basic commodities. Although commodities are discrete valued and allocated in

unit quantities, in order to use derivatives we represent commodities as continuous variables and

work with continuous functions.

Commodities are classified according to their OD pairs which in terms of MPLS are LSPs with

identical originating and terminating nodes. For example commodities 1-3, 1-2-3 and 1-4-3 are

commodities of class 1-3. Note that an OD-pair agent owns commodities of only one class.

Let N be the number of market agents and N = {1, ... ,N} be a set of indices identifying

the market agents. N is then also the set of indices identifying the commodity classes. The

primary interest of an agent i EN is to own an amount of commodities satisfying the commodity

requirement of the network clients. An agent can thus be viewed as a broker who acts within the

market in order to acquire commodities on behalf of the consumers (groups of network users).

An agent benefits by owning commodities. Let IRt. denote the n-fold product of the set of positive

real numbers, where n E IN. An agent i owns a bundle bi E IRt. of commodities, where n is the

number of commodities. The preference for owning a bundle of commodities of class i is given by

the agent's utility function

ui(bi, di)

where Ui : IRt. X IR+ -+ IR, bi is a bundle of commodities and di E IR+ is the requirement for

commodities of class i. Each utility function ui(bi, di) is bounded for bounded values of bi and di.

Definition 3.3 For a given commodity requirement di, ui(bi, di) > ui(bi, di) if and only if an

agent i prefers a bundle bi of commodities over a bundle bi of commodities.

In our model it is necessary that the utility functions of all the agents be twice differentiable and

monotone increasing so that DjUi(bi,di) > 0 (see Section 1.3) for j E {l, ... ,n}. Furthermore

the utility function ui(bi, di) is concave on bi E IRt..
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Definition 3.4 A multi-variable twice differentiable function u(bi, di) is concave on bi E IR+-if

D;u(bi,di)::; 0 for jE {1, ... ,n}.

Definition 3.5 A multi-variable twice differentiable function u(bi, di) zs convex on bi E IR+-if

D;u(bi, di) ~ 0 for jE {1, ... , n}.

The characteristics of the utility function Ui(') with respect to the commodity requirement di

will be discussed when presenting the particular market model. For simplicity, we will on oc-

casion assume that the commodity requirements are time independent, so that each commodity

requirement di is constant.

There are two kinds of utility functions in economic theory. An ordinal utility function generates a

ranking of commodity bundles in order of most preferred to least preferred while a cardinal utility

function quantifies by how much one commodity bundle is preferred to another. When allocating

commodity bundles to agents, it is necessary to know how much an agent prefers one commodity

bundle to another. It is also necessary to know how much one agent prefers a commodity bundle

than another agent. We therefore use cardinal utility functions.

Because we use cardinal utility functions, a utility defines a numerical score representing the value

of a bundle of commodities [25, p74] to an agent. The value quantifies how well the commodity

bundle bi does in meeting the commodity requirement di.

A unique class number is assigned to every commodity class and a unique commodity number

is assigned to each commodity in every class. For example commodities 1-3, 1-2-3 and 1-4-3 are

numbered 1, 2 and 3 respectively and are of class 1-3 which is numbered 1. The bundle bi therefore

contains an amount bij of commodity number j of class i.

Throughout this thesis, when referring to the utility of an agent we refer to the utility of the

bundle of commodities owned by that agent.

Definition 3.6 Given a commodity requirement di, the utility ui(bi, di) is the rate at which agent i

receives benefits for owning the commodity bundle bi.

There is an important difference between models of markets in a real economy and the models

we present. In a real economy commodities are created and destroyed (or consumed), whilst in

our market models in generalé commodities are indestructible and cannot be created, they merely

change form. A consumer in a real economy that has utility for a certain commodity bundle

may find that the utility of that commodity bundle diminishes due to the degraded quality or

consumption (destruction) of that commodity bundle. In our market models the only factors that

can change the utility of a commodity bundle are factors external to the commodity itself, such as

the requirement for commodities in that commodity bundle. Commodities in the market models

we investigate are therefore limited in quantity and are indestructible.

2Commodities may be be destroyed (link failure) or created (bandwidth added to network) only on rare occasions.
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3.1.3 The production of commodities

An agent can transform commodities into other classes of commodities. The detail of the trans-

formation depends on the capability of the agent to transform commodities, which is called the

technology of the producing agent. The market uses a production function Pk(X) to produce a

class k commodity from a production bundle X of commodities. The domain of the production

Pk (X) = Yk is a non-zero matrix where Xij 2: 0 is the amount of commodity number j of class i

used in the production. The range of Pk(X) = Yk is a vector Yk where Ykj 2: 0 is the amount of

commodity number j of class k produced.

The use of a production function is demonstrated by an example production

which uses one unit of commodity number 1 of class 1 and one unit of commodity number 1 of

class 2 to produce one unit of commodity number 2 of class 3.

Assumption 3.1 A production Pk(X) = Yk is restricted to produce only a single commodity in

the bundle Yk.

Corollary 3.1 From Assumption 3.1 it follows that for a production Pk(X) = Yk there exists

only one element Ykj > 0 in the vector Yk.

Assumption 3.2 For a production Pk(X) = Yk with Yk£ > 0 either Xij = Yk£ or Xij = 0 for all i

and j.

Assumption 3.2 is a reasonable assumption in a network where a route uses equal amounts of

capacity from each link which it traverses.

Corollary 3.2 According to Assumption 3.1 and Assumption 3.2 we can write a production pro-

ducing commodity number C of class k as Pk(X) = Pk(AR) = Ae£ = Yk, where R is a matrix

containing only 1 's and 0 's, and A > 0 is the amount of commodity number C of class k produced.

We call R the unit production bundle.

Our next assumption concerning productions is very important. In section 3.1.4 we see that this

assumption is part of a policy which simplifies the market mechanisms.

Assumption 3.3 The technology of a producing agent is restricted such that composite commodi-

ties can only be produced from basic commodities.

Production bundles that are linearly independent are distinct:
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Definition 3.7 A production bundle X ":f 0 is distinct from a production bundle Y if and only

if X ":f (JY for all (J E IR+.

Distinct production bundles have unit production bundles that are unequal:

Lemma 3.1 For distinct production bundles X and Y and their respective unit production bundles

AX Rx = X and Ay Ry = Y it follows that Rx ":f Ry.
Proof. Because X is distinct from Y, according to Definition 3.7 X is not expressible as X = (JY,

in particular for (J = AX / Ay from which it follows that Rx ":f Ry. _

Definition 3.8 Each distinct production bundle X maps to a unique commodity number ex of

class k with Pk(aX) = aPk(X) = aYk = aAxeex' This mapping is unique in the sense that for

any production bundle Y distinct from the production bundle X, Pk (Rx) ":f Pk(Ry), where Rx

and Ry are unit production bundles with AX Rx = X and Ay Ry = Y.

Definition 3.9 Two commodities are distinct if and only if the commodities are produced from

distinct production bundles.

Theorem 3.1 For any two distinct production bundles X and Y it follows that Pk(X + Y) ":f
Pk(X) + Pk(Y).

Proof. Assume that Pk(X + Y) = Pk(X) + Pk(Y) for at least one pair of distinct production

bundles X and Y. According to Corollary 3.2 we can write Pk(X + Y) = Ax+yeex+y, Pk(X) =
Axeex and Pk(Y) = Ayee¥> with Ax+y,Ax,Ay > O. However X and Yare distinct production

bundles thus according to Definition 3.8 eex ":f efy, implying that al efx + a2efy ":f a3er for all

al ,a2, a3 > 0 and all r E Rk where Rk is the index set of the commodi ties of class k. This

contradicts the assumption Pk(X + Y) = AX+yefx+y = Pk(X) + Pk(Y) = Axefx + Ayefy. -

From Theorem 3.1 it follows that Pk is a non-linear transjormationé , because there exist produc-

tion bundles X and Y such that Pk(aX + Y) ":f aPk(X) + Pk(Y).

Definition 3.10 The inverse of Pk (.) is called the decomposition function Pk-
l (-). If Pk-

l (b) = X

then X is called the decomposit.ion" of b. The production function characterises the decompo-

sition function as follows: For every composite commodity number j of class k and A > 0 let

pk-l(Aej) = ARj be a linear transformation where Pk(ARj) = Aej is a mapping from R, to a

unique ej for each Rj according to Definition 3.8.

Note that b may contain more than one composite commodity whereby the decomposition of b

may comprise several production bundles.

3P is a linear transformation if P(aX + Y) = aP(X) + P(Y) for all X and Y otherwise P is a non-linear
transformation.

4 Jf b contains only a single composite commodity then the decomposition is the production bundle of this
composite commodity.
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When using the production functions Pk(·) and Pk-lU it is important to be aware of their (non)

linearity. Consider for example the production bundles Xj , X2, X3 and production function Pk (.)
and decomposition function Pk-l U: because Pk is a non-linear transformation Pk (XI) +Pk (X2) +
Pk(X3) =I- Pk(XI +X2 +X3), though Pk-

l (Pk(XI) + Pk(X2) + Pk(X3)) = X, +X2 +X3, because

Pk-
l is a linear transformation.

A commodity is called a basic commodity if it cannot be produced from a bundle of other com-

modities except a bundle containing the basic commodity itself:

Definition 3.11 A commodity number, contained in bundle Yk as Yk, > 0 with Ykj 0 for

all j =1-, is a basic commodity of class k if and only if Pk(X) = Yk implies that

i = k
otherwise.

A commodity is therefore a basic commodity if and only if any production producing the commodity

only has the commodity itself in the production bundle.

Assumption 3.4 We assume that there is only one commodity in each class i EN satisfying the

conditions defining a basic commodity in Definition 3.11.

For the remainder of this thesis, where no confusion can arise we let the domain of the produc-

tion Pi(X) = Y: and the range of the decomposition Pi-I(Yi) = x be a vector x where Xk is the

amount of basic commodity of class k used to produce a composite commodity of class i in the

commodity bundle Yi.

Without loss of generality, let commodity number 1 denote the commodity number of the basic

commodity of class i E N and bi the amount of basic commodity of class i in the commodity

bundle bi. The commodity number j > 1 of class i is a composite commodity and bij the amount

of composite commodity number j of class i in the commodity bundle bi.

Our agents have incorporated production capability. An agent can therefore acquire a bundle of

basic commodities with the intent of producing a composite commodity. Since each agent owns

and produces composite commodities of one specific class, we consider them to be specialists in

that class of commodity.

Definition 3.12 The composite commodity allocation of a market is a matrix B representing

the commodity bundles bi of the agents i E N.

Definition 3.13 We define

as the index set of the basic commodities required to produce a composite commodity number j
of class i. The set Ki,j contains the indices of the specialists from which basic commodities are

required to produce a composite commodity j of class i.
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3.1.4 Trading

Given constant commodity requirements and resources, it is desirable that the market reaches an

equilibrium where no further trades of commodities take place. This equilibrium is regarded as a

market equilibrium since it is not an equilibrium reached in the choosing of trading strategies but

rather an equilibrium allocation of commodities.

Definition 3.14 A market equilibrium occurs when none of the agents in a market is able to

trade commodities.

At a market equilibrium, each agent is either content with the utility of its commodity bundle

or discontent with the utility of its commodity bundle but unable to trade commodities that will

improve the utility of its commodity bundle. The market moves towards market equilibrium by

agents trading resources.

Definition 3.15 The state of a market is the information about everything in the market. The

market state will include among others information about the agents in the market, the agent

utility functions, the requirement for commodities, amount of basic commodities and the composite

commodity allocation (see Definition 3.12).

Definition 3.16 A market process is a sequence of market states, representing the states of a

market over time.

An agent may make poor-trades which are poor by global standards, but which are reasonable by

local standards. A poor-trade necessitates a future trade to reverse the losses incurred by the poor-

trade. Such poor-trades cause oscillations. When trading resources in a market, it is desirable

that trading proceeds in such a way as to prevent oscillations and so minimise communication

between agents (overhead cost). An oscillating market has redundant trades which increase the

overhead cost of trading and increase the time before equilibrium is reached. Avoiding oscillations

inherently lessens overhead cost. This conforms to our aim of converging the market process

(non-oscillating) towards market equilibrium.

The autonomy of the agents in a distributed market may inadvertently give rise to oscillations.

The behaviour of one agent may indirectly stimulate the reaction of another agent, which in turn

can influence the behaviour of the original agent. Such pairs, or perhaps groups of agents with

recurrent behaviour can potentially cause recurrent trades of the same resource, thereby producing

oscillations which increase overhead cost.

In order to avoid oscillations and reach equilibrium we enforce a policy which restricts the trading

strategies of the agents in the market. The policy is applied by setting the following restrictions

on trading.
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Basic resource cache: A basic resource belongs only to the specialist of that basic resource.

A basic resource is not distributed among many agents, which simplifies the market since

the market agents only have to contact one agent (the specialist) to acquire a certain basic

resource.

Resource production from basic resources: Only basic resources are traded, which simpli-

fies the technology of production (only basic resources are used in production bundles).

An agent i initiates a trade whenever there is an opportunity to improve the utility of its bundle

of commodities bi or an opportunity to collaboratively improve the utilities of the bundles of

commodities of a group of agents. The agent will then take one of the following actions:

• Select a production formula for a composite resource and contact the respective specialists

to negotiate a trade of the basic resources required to produce the composite resource. This

may take place in the form of auctions (section 3.1.7).

• Select a composite resource and contact the respective specialists to negotiate the decom-

position and trade of the basic resources from which the composite resource was produced.

This may also take place in the form of auctions (section 3.1.7).

The following subsections present the market mechanisms used in the trading process. The trad-

ing of commodities is a two-phase process: the selection of a commodity, ruled by the current

commodity price, followed by the trade and production or decomposition of that commodity.

3.1.5 Market demand and supply

An agent owns commodities in order to satisfy the commodity requirements of its clients. If

an agent owns more commodities than its clients require, then there is an excess amount of

commodities and the agent may sell commodities to other agents. Alternatively if an agent owns

fewer commodities than its clients require, then there is a deficit amount of commodities and the

agent may buy commodities from other agents. Hence the clients' requirement for commodities

causes their agents to either demand commodities from the market or supply commodities to the

market.

Since only basic commodities are traded in the market, demand and supply only apply to basic

commodities.

Definition 3.17 The market demand and market supply of basic commodity of class k refers

to the aggregated demand and supply of basic commodity of class k of the agents N - {k}.

Definition 3.18 The specialist demand and specialist supply of basic commodity of class k

refers to the demand and supply of basic commodity of class k of the specialist k.
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Due to the trading restrictions, from the perspective of any agent i E N - {k} the specialist k is

the only other supplier or demander of basic commodity of class k.

A demand curve is the unit price that an agent or group of agents is prepared to pay per quantity

of commodity demanded and a supply curve is the unit price that an agent or group of agents is

prepared to accept per quantity of commodity supplied. A demand curve describes the negative

relation between the unit price of a commodity and the quantity of commodity that agents demand:

an increased unit price leads to lower quantity of commodity demanded. Conversely a supply

curve describes the positive relation between the unit price of a commodity and the quantity of

commodity that agents supply: an increased unit price leads to increased quantity of commodity

supplied. Due to the diminishing marginal utility'' of commodities the demand curves are convex

(Definition 3.5). Similarly due to the increased marginal cost of commodities supplied the supply

curves are convex.

D- D D+ s D s s-

quantity supplied/demanded quantity supplied/demanded

Figure 3.1: Demand and supply curves demonstrating changes in supply and demand.

Figure 3.1 illustrates the demand curve D and supply curve S. According to economic theory the

following rules apply to supply and demand:

• If demand decreases then the quantity used at every price decreases, implying that the

demand curve D shifts to the left onto D-.

• If demand increases then the quantity used at every price increases, implying that the demand

curve D shifts to the right onto D+.

• If supply decreases then the quantity supplied at every price decreases, implying that the

supply curve S shifts to the left onto S- .

• If supply increases then the quantity supplied at every price increases, implying that the

supply curve S shifts to the right onto S+.

If the quantity of basic commodity supplied mismatches the quantity of basic commodity de-

manded, the agents will trade basic commodities in order to decrease the difference between the

5Marginal utility is the increase in utility per additional unit of commodity.
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quantity of basic commodity supplied and the quantity of basic commodity demanded [6, p.111-

116, p.165J. Later in this section we show how this occurs.

If the quantity of basic commodity supplied equals the quantity of basic commodity demanded,

then a market equilibrium occurs. The intersection of the demand curve and the supply curve

renders a market equilibrium. At this market equilibrium the (equilibrium) quantity of basic

commodity supplied is the market clearing quantity and the (equilibrium) unit price is the market
clearing unit price. The market clearing unit price is special because it is dually the highest

unit price at which the quantity demanded is not less than the quantity supplied and the lowest

unit price at which the quantity supplied is not less than the quantity demanded. It is therefore

favourable for both the supplier and demander.

D s

p

Ol
U.;::
0.

qs qd
quantity supplied/demanded

qd q.
quantity supplied/demanded

Figure 3.2: Demand and supply curves demonstrating market disequilibria.

Figure 3.2 depicts the supply curve S and demand curve D of a basic commodity. The graphs

illustrate market disequilibria where the quantity supplied qs is less than the quantity demanded qd
and the quantity supplied iis is more than the quantity demanded iid respectively.

Consider the case where qs < qd. Because the quantity demanded is higher than the quantity

supplied the supplier will increase the quantity supplied and charge a higher unit price. Then

because of the higher unit price the quantity demanded will decrease. Consider the case where iis >
iid. Because the quantity supplied is higher than the quantity demanded the supplier will decrease

the quantity supplied and charge a lower unit price. Then because of the lower unit price the

quantity demanded will increase.

It is clear that the supplier and demander will end up in a market equilibrium, where the quantity

supplied equals the quantity demanded.

In Chapter 5 demand and supply will play an important role in defining the unit price of a basic

commodity.
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3.1.6 The pricing of commodities

Each commodity has a price. How prices are calculated and used are specific to the particular

market model. We define the calculation and use of prices in Chapter 4 and Chapter 5.

3.1. 7 Auctioning

An auction is a mechanism for determining the distribution and the highest unit price of com-

modities where multiple agents with varying demands for commodities buy the commodities from

single sellers. Likewise, an auction is also a mechanism for determining the distribution and the

lowest unit price of commodities where multiple agents with varying supplies of commodities sell

the commodities to single buyers.

The details of the auctioning mechanism will be discussed when presenting a particular market

model.

3.2 Relating the market to an MPLS network

The previous sections defined a framework of a market and the objectives of the market agents.

We now specify the relationship between the market and an MPLS network.

Note that the commodity classes have nothing to do with the service classes in MPLS. A commodity

class is a unique number identifying a basic commodity (the bandwidth of a single link LSP) and

composite commodities (the bandwidth of multi-link LSPs). A service class in MPLS identifies a

virtual network layered onto the physical architecture of the lP network. The traffics on a virtual

network are protected from traffics on other virtual networks, so that from the point of view of

the user a virtual network seems to be a separate physical network.

In an MPLS network, bandwidth is not allocated to an LSP. LSPs are bundled together into

aggregates, and these aggregates' capacities are protected from each other. This is done by fair

queuing mechanisms at the label switching routers (LSRs). Bandwidth may however be reserved

for LSPs.

Our market-based routing scheme is set within an MPLS network service class (virtual net-

work), with protected link (direct route) bandwidth. In market terms, the virtual network link

bandwidths represent the original basic commodity bundle. For the remainder of this thesis let

q = (ql, ... , qN) denote the basic commodities in the original basic commodity bundle of the

market.

Some virtual link bandwidth is reserved for each direct route LSP. The remaining bandwidth on

each virtual link may be reserved for multi-link LSPs traversing the virtual link.
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During the market process the following relations are true:

L [Pr-1(br)]i = qi
rEN

where N is the set of agents (OD pairs) and brj the bandwidth reserved for LSP j of OD pair r.

In other words the decomposition of all the composite commodities in the market is equal to the

original basic commodity bundle. In market terms, the traffic offered to an OD-pair i EN is the

commodity requirement di.

The task of the agents in the market is to manage the bandwidth reserved for connections on the

LSPs. Given a configuration of capacities on LSPs, connections are routed via LSPs with enough

available reserved capacity.

3.3 Market overview

A commodity class is assigned to each commodity in the market. By means of productions, agents

may combine basic commodities of different classes to produce a composite commodity of another

class. Each agent i in the market has a utility function Ui(') which maps the bundle of commodities

it owns to a utility value. Owning more commodities increases the utility value of the bundle of

commodities owned by an agent. Some classes of commodities increase the utility of certain agents

more than others.

3.3.1 The market variables and market equilibrium

We make a distinction between endogenous variables and exogenous variables of a market

model [6, p.g].

Definition 3.19 The endogenous variables of a market model are those variables that are only

affected by the choices of individuals (agents or players).

Definition 3.20 The exogenous variables are the ultimate givens of the market model and their

values are not affected or chosen by individuals in the market.

The exogenous variables of the market model presented in this Chapter are the set of agents N,
the basic commodity bundle qt, the commodity requirements dt, the production functions P(·)

and the utility functions u(·). The exogenous variables may change over time t.

The endogenous variables of the market model presented in this Chapter are the composite com-

modity allocation Bt. The endogenous variables may also change over time t.

Agents in a market will trade if they have incentives to do so. The trades cause the endogenous

variables to change and may lead to a market equilibrium. When there are no incentives for agents
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to trade, a market equilibrium occurs and none of the endogenous variables in the market changes

during a market equilibrium. A market in equilibrium can only be brought into disequilibrium by

a change in an exogenous variable [6, p.21].

3.3.2 The basic market models in economics

All models of economic markets are descendants of four basic market models. In this section we

classify our fundamental market model as a descendant of one of these basic market models.

Table 3.1 presents the characteristics of these four basic market models. Here the agents repre-

sent the suppliers of the basic commodities. It is important to note that the table presents the

normal characteristics of each of these market models. For example an oligopoly normally has

differentiated products, however it may rarely have homogeneous products. The characteristics of

monopolistic competition are so similar to that of an oligopoly that the economic theory of the

behaviour of agents in a monopolistic competition is applicable to an oligopoly [12, p.45].

Characteristic Perfect Monopolistic Oligopoly Monopoly
competition competition

Number of many many few one
agents
Type of homogeneous differentiated differentiated unique
Product

Restrictions on none some significant entry blocked
entry
Price fierce considerable some none

competition
Commodities non-durable non-durable durable rare and durable

example (minerals) (food) (refrigerators) (diamonds)

Table 3.1: Characteristics of the four basic market models.

We note that:

1. The commodities of our fundamental market model are durable (indestructible). According

to Table 3.1 this is a characteristic of an oligopoly or monopoly.

2. In our fundamental market model there are distinct classes of commodities and the marginal

utility of composite commodities may differ, therefore commodities are differentiated which

is a characteristic of monopolistic competition and an oligopoly.

3. Each class consists of several commodity types. The basic market model is therefore not a

monopoly.

4. An agent can manufacture composite commodities. There are only a few agents supplying

the basic commodities required for these productions. This is a characteristic of an oligopoly.
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According to the arguments about we classify our fundamental market model presented in this

Chapter as a descendant of the oligopoly basic market model in Table 3.1.

3.3.3 Market models

It is evident that there are opportunities for the agents to trade resources in order to arrive at a

mutually better allocation of resources.

We consider two market models and their respective means of solving the resource allocation

problem. Before describing the market models we present a few definitions.

Definition 3.21 Self-interest is a behaviour of an agent whose goal is to increase the well-being

of itself. A ny increase or decrease of another agent's well-being is inconsequential.

Definition 3.22 Altruism is a behaviour of an agent (altruist) whose goal is to increase the

well-being of one or more agents other than itself. The goal of the altruist need not include the

increase of its own well-being.

Definition 3.23 Cooperation is a behaviour of two or more agents who coordinate their strategy

choices in order to increase the well-being of the individual cooperating agents.

In general the utility of an agent is a measure of the well-being of that agent. Note that a self-

interested agent may (and will) cooperate in order to increase its own well-being, although the

increase or decrease of the other agents' well-being is inconsequential.

• The dual-oligopoly is a market of self-interested agents that interact to find a better resource

allocation. Each agent trades resources in order to increase its own utility. Agents may

cooperate or compete by setting prices for resources in the oligopoly presented in Chapter 4.

• The social community is a market where a society of self-interested agents" cooperate in order

find a better resource allocation. Rules are established by which all agents abide. These

rules restrict the trading of resources and dictate the prices of resources. The reactions of

the agents to the restrictions on trading and resource prices constitute a better resource

allocation. Chapter 5 presents the social community.

6Although it may appear that an agent is altruistic in context of a single period game, an agent only cooperates
in order to increase its own well-being. Each agent is therefore self-interested.
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The dual-oligopoly

This Chapter maps the resource allocation problem in a network to a market model that is a

descendant of the oligopoly basic market model.

In section 4.4 the naming dual-oligopoly will become apparent. This Chapter defines the structure

of a market model and does not specify a method for setting buying or selling prices, neither does

it specify whether or how the agents in the market should cooperate. This structure of a market

model may serve as basis for modeling a bandwidth market that conforms closely to market models

in economic literature.

4.1 Wealth and utility

In the dual-oligopoly, the utility function ui(bi, di) is defined as the rate at which an agent i earns

revenue by routing the traffic load di over the route bandwidths bi. Hence LiEN ui(bi, di) is the

network's rate of earning revenue.

We introduce an additional commodity called wealth. When we refer to commodities however, we

refer to the the commodities in the market excluding the commodity wealth. The role of wealth

in this model is similar to the role of money in real economic markets. According to [11, p.Ll],

money facilitates trade in three ways: it serves as a medium of exchange; it allows value to be

stored; and it allows the value of a commodity to be evaluated by the use of a common measure.

Each agent is endowed with an initial amount of wealth and a bundle of commodities. Commodi-

ties and wealth are traded whenever there is an opportunity to increase the utility of the agents

participating in the trade.

There exists an important interplay between wealth and utility. In economic theory, money is

usually modeled as a commodity with a positive marginal utility for all the agents in a market.

Commodities and wealth in this market model have positive marginal utilities. Let mi be the
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amount of wealth owned by agent i. The total wealth in the market is a constant M = LiEN mi.

Let n be the maximum number of distinct commodities per commodity class. We extend the

utility function Uie) of Chapter 3 and define a utility function Ui(') which includes wealth as a

parameter

ui(bi, mi, di) = ui(bi, di) +mi· (4.1)

ui(bi,mi,di) is bounded for bounded values of bi, mi and di. From Equation (4.1) and for

allj E {l, ... ,n}

DjUi(bi, mi, di)

oUi(bi, mi, di)/omi 1.

The marginal utility DjUi(bi, mi, di) of a commodity j of class i is thus independent of the

wealth mi and the marginal utility of wealth is equal to 1 for each agent i E N.

4.2 Money and wealth

Wealth and money are not synonymous. An agent in a real world market has utility for money

because money has the potential to be exchanged for commodities. If money cannot be exchanged

for commodities, the money will lose its value and the agent will have no utility for money. Money

therefore loses all its value when no trades can take place in the market.

In the real world economy there is a constant exchange of commodities from creation (resources

that are mined for example), transformation of commodities (manufacturing) up to consumption

or destruction. There is therefore a constant flow of commodities through the market. The money

in the market will always have some value - given that there are commodities to be traded for

money.

Consider a market with only commodities that are indestructible and limited in quantity. There

is always the risk that there will be no supply of commodities. This will happen if none of the

owners of commodities wishes to sell. If there is no supply of a commodity, money will not be

exchanged for that commodity. In such a case money is rendered valueless. The periods of no

supply may be erratic and the agents owning money will receive no benefits for owning money

during these periods.

Thus in a market with only indestructible commodities in limited quantity, commodities can only

be exchanged for other indestructible commodities in limited quantity. This is true, only if we value

commodities objectively. A rare diamond is both limited in quantity and virtually indestructible,

but it has only aesthetic value. The monetary value of a diamond is the aesthetic value proclaimed

by the highest bidder.

In Chapter 3 we stated that the commodities in our market models are indestructible and limited

in quantity. The money used in our market therefore has the characteristics of an indestructible
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commodity in limited quantity in order to be exchangeable for commodities. Thus we use the

term "wealth" rather than "money". Here, wealth is the rate of earning money. The initial wealth

endowment is therefore a rate of earning money allocated to an agent. If for a certain time period,

the agent keeps this wealth, he receives a benefit. This benefit is the utility of the wealth. An

agent may exchange its wealth for commodities and by doing so exchanges its wealth benefits for

the benefits of owning the commodities.

Wealth is indestructible and allocated to the market agents as a fixed total quantity M. If no

trades can take place in the market, the agents still receive benefits for keeping their wealth.

4.3 Trading

Agents may trade commodities and wealth amongst each other, subject to the constraints on

trading defined in Chapter 3. The concept of buying a quantity of commodity refers to the trading

of an amount of wealth for a quantity of commodity, the concept of selling a quantity of commodity

refers to the trading of a quantity of commodity for an amount of wealth. When referring to trading

a quantity of commodity or trading in general we refer to either buying a quantity of commodity

or selling a quantity of commodity.

The trading of commodities or setting of a price in the market is an instantaneous event at any

time t E IR+. At any time t the goal of an agent i is to maximise the utility ui(bL m~,dD of its

commodity bundle b~, wealth m~ and commodity requirement ~. A specialist sets buying and

selling prices in order to increase its wealth and thereby its utility. Agents increase their utili-

ties by buying basic commodities to produce composite commodities and decomposing composite

commodities to sell basic commodities.

4.3.1 The specialist and prices

According to the basic market model of Chapter 3, the basic commodity of class k may only be

bought from the specialist k or sold to specialist k. Each specialist k sets a buying and a selling

unit price for the basic commodity of class k.

At time t the specialist k

• sells quantities of basic commodity of class k at a selling price pL,

• and/or buys quantities of basic commodity of class k at a buying price pL,

• or does nothing.

For any agent i the buying price C~j and selling price êL of a unit of composite commodity number j
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of class i is then

t L ptCij
kEK.,j

-t L -tCij Pk
kEK.,j

(4,2)

(4,3)

respectively, where

is the set containing the classes of the basic commodities required to produce a composite com-

modity number j of class i as defined in Definition 3.13.

4.3.2 The agents, productions and decompositions

At time tlet rfj > 0 denote the production of a quantity rL of composite commodity j of class i

and S~j > 0 denote the decomposition of a quantity sL of composite commodity number j of

class i, Let rfj = 0 or S~j = 0 denote the production or decomposition of zero quantity of

composite commodity number j of class i at time t.

An agent i E N producing a quantity rL of a composite commodity number j of class i buys a

quantity rL of basic commodity of class k E Ki,j from each specialist k E Ki,j at time t, The total

amount of wealth paid to the specialists is rfjc;j, where Cij is defined in Equation 4,2,

An agent i decomposing a quantity S~j of a composite commodity number j of class i sells a

quantity sL of basic commodity of class k E Ki,j to each specialist k E Ki,j at time t. The total

amount of wealth received from the specialists is sLêL, where êij is defined in Equation 4,3,

At time t the quantity of basic commodity owned by the specialist k increases (or decreases if

negative) by I::j:kEK.,,(sL - rL) and the wealth increases by I::j:kEK.,,(rLpi - sLiJt) as result
of trading with the agent i. Hence, at time t the quantity of basic commodity owned by the

specialist k increases (or decreases if negative) by

zi = L L (sL -r~j)
iEN -{k} j:kEK',j

and the wealth increases by

as result of trading with all the agents i E N - {k}.

Thus given the prices ct and ët, at time t each agent (and specialist) i E N maximises
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by choosing to produce the quantity ri or decompose the quantity Si of composite commodities

and setting the selling price p~ and buying price M of the basic commodity of class i, subject to

the constraints m~ 2 0, bL 2 0 for all i, j. Let (rL sI, pI, pD denote the action of the agent i at

time t.

4.4 The market structure

In this section we discuss the structure of the dual-oligopoly.

sub-market sub-market

Figure 4.1: The sub-markets in the dual-oligopoly

A specialist in the dual-oligopoly can be viewed as a mediator between two sub-markets. Figure 4.1

illustrates the sub-markets in the dual-oligopoly. In the first sub-market the buyers are all the

market agents to which the specialists sell quantities of basic commodities. A buyer agent in this

sub-market has a choice of composite commodities to produce. However there are few specialists

from which it can buy basic commodities. The demand for basic commodity of class k is the market

demand (see Definition 3.17) for basic commodity of class k and the supply of basic commodity

of class k is the specialist supply (see Definition 3.18) of basic commodity of class k.

In the second sub-market the sellers are all the market agents from which the specialists buy

quantities of basic commodities. A seller agent in this sub-market has a choice of composite com-

modities to decompose. However there are few specialists to which it can sell basic commodities.

The supply of basic commodity of class k is the market supply of basic commodity of class k and

the demand of basic commodity of class k is the specialist demand of basic commodity of class k.

The specialists set the unit price for buying and selling in the respective sub-markets. These sub-

markets are interdependent, each specialist buys basic commodities from the second sub-market

to sell in the first sub-market. The agents in each sub-market consist of all the agents in the dual-

oligopoly. These sub-markets are identical except for the direction of trading (selling or buying),

thus we consider only the first sub-market in the following discussion.
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The distinct characteristic [12, p.5] of an oligopoly is that the decisions of each of the few supplying

agents in an oligopoly has an observable effect on any agent. The decisions of the agents in each

of these sub-markets has an observable effect on the other agents. Each of these sub-markets is

an oligopoly.

There is a separate market demand curve (see Section 3.1.5) for each specialist in the first sub-

market. We demonstrate this by observing the effect of a change in the selling price Pk of basic

commodity of class k.

Consider a specialist k that increases the selling price Pk of the basic commodity of class k E Ki,j.

This will cause the price cL for producing a unit of composite commodity number j of class i

to increase. The composite commodities that do not have the basic commodity of class k in

their production bundles will thus become cheaper relative to composite commodities that do

have the basic commodity of class k in their production bundles. Agents will buy the cheaper

basic commodities in order to increase their utilities. It is clear that the market demand for basic

commodities of class i E N - {k} will increase and the market demand for basic commodities of

class k will decrease.

Consider a specialist k that decreases the selling price Pk of the basic commodity of class k E Kij.

This will cause the price cL for producing a unit of composite commodity j of class i to decrease.

The composite commodities that have the basic commodity of class k in their production bundles

will thus become cheaper relative to composite commodities that do not have the basic commodity

of class k in their production bundles. Agents will buy the cheaper basic commodities in order to

increase their utilities. It is clear that the market demand for basic commodities of class i E N- {k}
will increase and the market demand for basic commodities of class k will decrease.

The market demand for the basic commodity of each specialist kEN is therefore a function of

all the selling prices pt. In particular

• the market demand for basic commodity of class k is negatively correlated with the selling

price p~ set by the specialist k, and

• the market demand for basic commodity of class k is positively correlated with the selling

prices P~ set by the specialists i E N - {k}.

4.5 Agent behaviour

Chamberlin's model of a monopolistic competition [12, p.56-57] explains the behaviour of agents

with market demand curves that are dependent as explained in the previous section.

In Figure 4.2 the curve ddt represents the increased sales which a specialist may enjoy by lowering

its selling price. Let the current price and quantity sold be PI and ql. ,A specialist will lower

the selling price of the basic commodity it sells to P2 so that the market demand for this basic
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Figure 4.2: Chamberlin's modeling of demand.

commodity increases. The specialist does so under the assumption that the market demand for the

basic commodities of other specialists will only decrease slightly. This decrease in market demands

will be small enough not to provoke a decrease of the prices of the other basic commodities. The

specialist will thus sell a larger quantity qz of basic commodity at a lower price P2.

However each of the specialists in the market will behave in this way, which will result in a general

decrease of selling prices. In Figure 4.2 the curve DDI shows the actual sales of the specialist as

the general decrease of selling prices takes place. The specialist will therefore sell a quantity of

basic commodity qo only slightly larger than qi at a decreased price P2.

It is clear that there is some price competition in each sub-market.

4.6 Social welfare

Social welfare refers to the joint utility of a group of agents. Let

be a market state (see Definition 3.15) with N agents, agent utility functions ii(·), a composite

commodity allocation Bt, basic commodities selling prices pt and buying prices pt, a wealth

allocation mt, commodity requirements dt, basic commodities qt and total wealth M. In this

model, the social welfare is defined as the sum of the utilities of all the agents in the market

W(8t) =L ui(bLmLdD·
iEN

(4.4)

Social welfare functions are classified as Pareto or non-Pareto according to the Pareto value judge-

ment [13, p.63]. The Pareto value judgement derives from the concept of Pareto efficiency. In
order to define the Pareto value judgement we present a definition of Pareto efficiency.
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4.6.1 Pareto efficiency

Definition 1.1 presented an informal definition of domination between combinations of player

strategies. The following is a formal definition of domination.

Definition 4.1 Let r be an N -player game in normal form with players N = {I, ... ,N}, player

strategy sets 51, 52, , 5N and payoff functions PI (-), P2(.), ... ,PN (.). Let >- be a binary relation

on the set 5 = 51 X X 5N such that for sE 5 and s" E 5, s >- s* implies Pj(s) 2:: Pj(s') for all

JEN and pj(s) > pj(s') for at least one JEN. The binary relation >- is non-commutative and

transitive and we say that s" is dominated by s if s >- S·.

The following is a formal definition of a Pareto efficient combination of player strategies (see the

informal Definition 1.2).

Definition 4.2 Let r be an N -player game in normal form with players N = {I, ... ,N}, player

strategy sets 51,52, ... ,5N and payoff functions PI ('),P2('), ... ,PN(')' An N -tuple s* E 5 where

5 = 51 X ... X 5N is a Pareto efficient N -tuple if there is no N -tuple s E 5 such that s >- S·.

4.6.2 The Pareto value judgement

The Pareto value judgement states that welfare is increased if one or more agents are made better

off and no agent becomes worse off in terms of utility.

Definition 4.3 For r an N -player game in normal form with players N = {1, ... ,N}, player

strategy sets 51,52, ... ,5N with 5 = 51 X ... X 5N and payoff functions P1(·),P2(·), ... ,PN(-),

let W (.) be a welfare function W : 5 -+ IR+. Then the Pareto value judgement is the statement:

For any pair of N-tuples Sx, Sy E 5, if Sx >- Sy then W(sx) > W(Sy).

A welfare function is classified as a Pareto welfare function if the Pareto value judgement holds

for that welfare function, otherwise it is a non-Pareto welfare function.

Figure 4.3 depicts welfare indifference curves of a Pareto and a non-Pareto welfare function in a

society of two agents with utilities UI and U2 respectively. All the points on a welfare indifference

curve have the same social welfare value. The welfare indifference curves of the Pareto welfare

function are SWP1 and SWP2 and the welfare indifference curves of the non-Pareto welfare func-

tion are SWR1 and SWR2. The relations P2 > PI and 1'2> 1'1apply to the social welfare values

on the welfare indifference curves in Figure 4.3.

Note that for the non-Pareto welfare function when moving from T to T', thus keeping the utility

of agent 2 constant while increasing the utility of agent 1, initially increases the social welfare

but eventually leads to a decrease in social welfare. This is not the case with the Pareto welfare

function. Similarly for the non-Pareto welfare function when moving from P to PI, thus keeping
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T'

p

SWPI = PI

T U2

Figure 4.3: Welfare indifference curves of a Pareto and a non-Pareto social welfare function.

the utility of agent 1 constant while increasing the utility of agent 2, initially increases the social

welfare but eventually leads to a decrease in social welfare.

In a society where social welfare is defined by a Pareto welfare function, increasing the utilities of

some agents while keeping the utilities of the others constant cannot reduce the social welfare.

It is relatively easy to see a positive association between the individual's choice and that which

is best for society when observing a society with a Pareto social welfare function. In contrast, if

social welfare is defined by a non-Pareto welfare function it is not clear whether the individual's

choice reflects that which is best for society. In some sense a Pareto welfare function is inferior

to a non-Pareto welfare function. If certain groups of agents become better off and leave others

behind, it creates divisions between the groups in a society. Such differences may be regarded as

undesirable". A Pareto social welfare function does not allow that possibility.

The social welfare function WC) of the dual-oligopoly is classified as a Pareto welfare function.

Chapter 5 presents a market model of a society with a non-Pareto welfare function.

4.6.3 Equilibrium and social welfare

For this section we assume that the commodity requirement dt = d and basic commodity alloca-

tion qt = d are constants with respect to time t.

A market equilibrium (Definition 3.14) occurs whenever no agent in the market chooses or is able

to trade commodities. We say that the market is in a strategic equilibrium at a market state et
if the actions of the agents in the market renders the basic commodity prices unchanged and no

trades take place in the market. It is clear that if a strategic equilibrium occurs at a market

1In a network it may be undesirable to have seriously degraded service for traffics between some O-D pairs,
while traffics in the rest of the network receive top-grade service.
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state et then a market equilibrium occurs.

If the agents in the market are able to collaborate then a subgroup of agents may jointly choose

their actions in order to increase the utility of the subgroup. The strategic equilibrium is then a

strong Nash equilibrium [27, p.26]. However if cooperation is impossible a strategic equilibrium

occurs when no agent has incentive to unilaterally deviate from its (conjectured) equilibrium

strategy.

Definition 4.4 Let r be an N -player game in normal form with players N = {I, ... ,N}, player
strategy sets SI, S2, ... , SN and payoff functions pI(.), P2(.), ... ,PN(')' An N -tuple
(si, ... , s'N) with si E Si is a Nash equilibrium N -tuple if for every j and for every Sj E Sj

Pj(s~, ... ,Sj, ... ,s'N) ::;Pj(s~, ... ,s;, ... ,s'N).

A Nash equilibrium is not necessarily unique nor does its occurrence imply that a market equilib-

rium which maximises social welfare occurs.

4.7 Mechanism design

The dual-oligopoly is a game constituted by a mechanism design problem and a mechanism design

solution as presented in Section 1.2. The mechanism presented in the Chapter is only a framework

for building a detailed market mechanism.

For a given commodity requirement d' = d, a quantity of basic commodity qt := q and an amount

of wealth M, the mechanism design problem of the dual-oligopoly is 0 = (N, 8', U, W) where

• N is the set of agents,

• the set of outcomes is

8' = {(N,u(.),B,p,p,m,d,q,M) E§: L:)P;l(br)]i = qi, Lmi = M},
rEN iEN

where

§={(N,u(.),B,p,p,m,d,q,M):BEIN~, pEIRN
, pEIRN

, mEIR~},

with N = INI and R the total number of distinct commodities in the market,

• U = UI X ... X UN where Ui is the set of utility functions for each agent i E N. Each Ui E Ui
satisfies the requirements for utility functions presented in Section 4.1, and

• W : U -7 1P(8') is a function mapping the agent utilities to subsets of outcomes, namely

those desired by the mechanism designer. In particular

W(N, u(·),d, q,M) = {e E 8' : W(·) has a local maximum at e with respect to Band m}.
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Given the mechanism design problem 0

where

(N, ';S, U, W), we define a mechanism (A, f.L) for 0

• A = Al X ... X AN where Ai ~ rNo x rNo x IR+ x IR+ is the set of actions available to an

agent i E Nand n the maximum number of distinct commodities of class i. An action

(r., Si,Pi,Pi) E Ai represents buying and producing an amount rij and decomposing and

selling an amount Sij of composite commodity number j of class i. Pi and Pi are the selling

and buying unit prices of basic commodity of class i set by the specialist i. A E A is then

an action profile, and

• f.L: A x ';S --+ ';S maps each action profile and outcome pair (At, 0t) E A x ';S onto an outcome

0t+E E ';S, where 0t+E is the first market state where an agent trades commodities or changes

a basic commodity price after time t.

The mechanism design problem and the mechanism together constitute a super game. Note that

the action profile At E A represents a sequence of market trades and setting of prices directing

the transition from the market state 0t to the market state 0t+E•

The dual-oligopoly is a super game I' consisting of the single period games ft = (N, A, (Ui)iEN) , t E
IR+ where At E A are the strategy choices of the players, (N, u(·),Bt+E, pHE, pHE, m"!"; d, q, M) =
0t+E = f.L(At, 0t) is the outcome and ui(b~+E, m~+E, di), i EN the player payoffs of the single pe-

riod game ft. The super game payoff of a player i EN is Joooui(bL m~, di)dt.

Market equilibrium occurs at time t when an action profile At E A is a strategic equilibrium of

the constituent game ft.

4.8 Conclusion

The dual-oligopoly has a market structure that conforms closely to some market models in eco-

nomic literature. We define a market mechanism for the dual-oligopoly that places few restrictions

on the communications and actions of the market agents. A market mechanism and market agent

strategy for the dual-oligopoly may render an autonomous multi-agent system that does well in

maximising network welfare.
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Chapter 5

The social community

In this Chapter we build a market model using the definitions in Chapter 3. The market model is

named the social community because it resembles a society of individuals. The market agents are

members of the social community and are bound by the rules of the social community. These rules

define the mechanism for distributing resources in the market and essentially protect the welfare

of the individual agents while enhancing the welfare of the group. In order to simplify the market

model we assume that the agents are unable to break any of the rules of the social community.

The utility of an agent is a measure of how well the agent does with a commodity bundle in meeting

the demand for commodities. The goal of the social community is to maximise the individual agent

utilities. The agents realise the goal of the social community by trading commodities.

A pseudo price is assigned to each basic commodity. These prices are calculated periodically and

communicated to the market agents. An agent chooses the composite commodities to produce or

decompose, based on the prices of the basic commodities.

We develop a notion of fairness for each agent. The notion of fairness dictates the amount of

commodities that agents trade and ensures that agents obtain commodities in proportion to their

commodity requirements. An agent with a large requirement for commodities will obtain a larger

amount of commodities than an agent with a small requirement for commodities. An agent can

evaluate this measure of fairness by using information about the utilities and commodity bundles

of the agents with which it trades.

The pseudo price of a basic commodity acts as a penalty for agents using that basic commodity

to produce composite commodities. These penalties control the use of the basic commodities in

productions.
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5.1 The agent utility

Let R; denote the index set of the commodities of class i. For the social community, the utility

function ui(bi, di) is defined as the probability that a call is carried by the Ofr-pair whose routes

are managed by the agent i. The supremum utility of an agent is therefore 1 and for any di E

IR+, sUPbi {Ui (bi, di)} = 1. Ordinarily, for a utility close to this supremum utility, the marginal

utility DjUi(bi, di), JERi of the commodity bundle bi becomes insignificant.

Definition 5.1 For a given commodity bundle bi an agent i prefers a lower commodity require-

ment di over a higher commodity requirement, hence the marginal utility 8Ui(bi, di)/8di of the

commodity requirement di is negative.

Furthermore we assume that the network clients using commodities of class i are indifferent to the

particular commodity number of class i which they use:

Assumption 5.1 For each agent i E N in the social community the marginal utility of a com-

modity number j of class i is equal to the marginal utility of a commodity number k of class i.

Thus DjUi(bi, di) = DkUi(bi, di) for any bil dil i EN and i.k E Ri where Ri denotes the index

set of the commodities of class i.

5.2 Public resources and shadow prices

We introduce public resources and shadow prices by presenting an example from the world econ-

omy concerning the pricing of a clean environment. A clean environment is a valuable public

resource; not only in a qualitative sense, but society is prepared to pay a price in order to keep the

environment clean. For instance, first world countries pay a price to dispose of their nuclear waste

in the territories of developing countries. Both first world and developing countries value a clean

environment. However in this example of nuclear waste, a developing country has more urgent

problems, of which keeping a clean environment is the lesser important". In terms of demand

and supply some agents in society demand the right to use (pollute) the environment and society

supplies the right to use the environment. It is difficult to define the supply of a clean environ-

ment, because a clean environment is not the property of a single agent in society. In economic

terms a clean environment is defined as a public resource. The unique characteristic of a public

resource is that it may be consumed by one agent without hindering the ability of the resource to

be consumed by other agents [13, p.222].

Definition 5.2 A public resource may be used by one agent without hindering the ability of the

resource to be used by other agents.

1Nuclear waste is a long term threat to a clean environment. Developing countries are more concerned with
solving the short term problems of society. It is therefore attractive for developing countries to allow the regulated
disposal of nuclear waste in their territories.
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The pollution by one agent does not hinder the ability of another agent to pollute. It is therefore

virtually impossible to quantify the supply of a clean environment. The supply and demand of a

clean environment can thus not meet in a market place.

It is important to be able to quantify the supply of a clean environment, because there is an

increasing social cost 2 for every additional agent polluting the environment. The concept of

shadow prices provides a solution to the problem of quantifying supply. Shadow prices are prices

calculated as if there were a market supply of a clean environment. The essential idea of shadow

pricing is to assign pseudo prices to a public resource in such a way that its consumption by one

agent does hinder the ability of the public resource to be consumed by others".

There exist various techniques to simulate such a market and evaluate the price of a clean envi-

ronment. Each of these techniques aims to estimate the marginal social cost of the public resource

consumed. The marginal social cost of the public resource is then used as a supply curve. Some of

these techniques of calculating shadow prices include the cost of removing the pollution and what

society is prepared to pay for a clean environment.

price

demand to
pollute

marginal
social
cost

N
pollution quantity

Figure 5.l: Pricing a clean environment.

Figure 5.1 depicts a demand and supply curve representing the demand to pollute and the marginal

social cost of pollution. The intersection of the supply curve and demand curve renders the market

clearing pollution quantity N and market clearing price P where the marginal cost of pollution

equates the marginal cost polluters are prepared to pay. The shadow prices therefore act as a

penalty for agents using the resources subjected to shadow pricing.

In the nuclear waste example, the shadow price for disposing nuclear waste in developing countries

is substantially lower, since first world societies are prepared (and able) to pay much more for a

clean environment+ than if the waste were disposed in their own territories.

2Increasing social cost is detrimental to the well-being of all the agents in society.
3In order for shadow pricing to be successful in reducing the consumption of a public resource, the demand of

that public resource must be elastic. In other words the agents in the society must be able to choose the amount
of that public resource they consume.

4Pollution is threatening the cleanness of the global environment. Developing countries blame first world coun-
tries for using the global environment without proper compensation to their societies. First world countries are pres-
sured to agree on environmental shadow prices [31] that will reduce pollution, to the detriment of their economies.
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5.3 The price of commodities

Similar to shadow prices for public resources we define a price for basic commodities. This price

is based on the amount of available basic commodities and the requirement for commodities.

Let e = (N, u(·), B, d, q) be a market state with a set of market agents N, a composite commodity

allocation B, commodity requirements d, basic commodities q and utility functions u(·) (see

Section 3.1.2). In this section we define a price Si for each basic commodity of class i EN at the

market state e. Each composite commodity number JERi of class i EN is priced according to

the prices for basic commodities.

5.3.1 The price of basic commodities

Definition 5.3 The quantity Qi of basic commodity of class i supplied for the production of

composite commodities of class jf:. i,j EN is Qi = Lj=Fi,jEN [Pj-l(bj)J,

According to Definition 5.3 and the constraints LjEN[Pj-l(bj)]i = qi, for all i EN, Qi = qi - bi

is the quantity of basic commodity of class i supplied to productions and bi the quantity of basic

commodity not available to supply to productions.

The price Si of supplying basic commodity of class i to productions is defined as

which is also the supply curve with Si the unit price of basic commodity of class i and Qi the

quantity of basic commodity of class i supplied. By evaluating the derivatives

OS;jOQi = DIUi((qi - Qi) el,di) = Dlui(biel,di) > 0

o2s;jOQ; = -DIDIUi((qi - Qi) el, di) = -DIDlui(biel,di) 2: 0

we determine the slope and concavity of the supply curve: the supply curve is monotone increasing

and convex (Definition 3.5). The supply curve is well defined in a sense that the price of supplying

basic commodity increases as the quantity of basic commodity supplied increases.

One expects the supply of basic commodity of class i to decrease if the the client requirement di

for commodities of class i increases. The derivative

indicates that an increased requirement di increases the unit price at every quantity supplied or

equivalently the quantity supplied decreases at every unit price, hence the supply decreases. The

opposite is also true, a decrease in the requirement di decreases the unit price at every quantity

supplied or equivalently the quantity supplied increases at every unit price, hence the supply

increases.
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The price Si for the basic commodity of class i characterises a supply curve. In network terms a

lower price Si results in more direct route bandwidth qi to be used by multi-link routes and vice

versa.

5.3.2 The cost of a composite commodity

The cost of a composite commodity is a price that represents a penalty for producing a unit of

that composite commodity.

Let C denote a matrix of unit prices of the composite commodities where Cij is the unit price

of composite commodity number j > 1 of class i. As previously stated, the price of the basic

commodity of class i is

We define the unit price of a composite commodity as the sum of the prices of the basic commodities

in the unit production bundle. The unit price of composite commodity number j > 1 of class i is

Cij = L Sk

kEKi.;

(5.5)

with Ki,j as in Definition 3.13. Note that the price Cil = 0 for all i E N.

5.4 The total cost of composite commodities and the utili-
sation of network resources

The total cost of composite commodities is

C(0) L Ci' bi

iEN

&;~ (,];,;,,) b"

E~C];,; (1- ",(he" d'))) b,;

An example of a (physical or virtual) network with resources that are fully utilised, is a fully

connected network with direct links that have exactly the required bandwidth to carryall the

traffics of the network users. Traffics however are variable in volume, origins and destinations

and it is impossible to maintain a network with fully utilised resources. Networks are therefore

provided with extra bandwidth to meet the uncertainty of traffic demands. If we assume the

network can always meet the QoS criteria such as maximum delay, a measure of efficient routing
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in a network is the utilisation of resources of the network. The lower the utilisation of network

resources for carrying a certain volume of traffic, the more efficient the routing scheme.

Traffic that is routed across multiple links increases the utilisation of the network resources. It is

therefore more efficient to route traffics over direct links and short routes. The total cost of compos-

ite commodities increases whenever composite commodities are produced from basic commodities

(a synonym for routing over multiple links) and decreases whenever composite commodities are

decomposed (a synonym for routing over single links). In essence the total cost of composite

commodities is a measure of efficient routing, where the composite commodity bundle B is the

routing configuration. In market terms the total cost of composite commodity is a measure of an

efficient composite commodity allocation (see Definition 3.12). Chapter 6 depicts the total cost of

composite commodities in an implementation of the social community.

5.5 Social welfare

This section defines social welfare, which is a measure of how well the members of the social

community perform with the composite commodity allocation B at a market state G. All the

agents in the social community cooperate to increase social welfare.

The utility of each agent contributes to the welfare of the social community. An agent with a

higher requirement for commodities contributes more to the social welfare than an agent with

the same utility and a lower requirement for commodities. Let the social welfare contribution of

an agent i be ui(bi, di)Ii where Ii = dil LjEN dj represents the requirement for commodities of

class i expressed as a fraction of the total requirement for commodities. The weighted average

agent utility is

A(G) = L ui(bi, di)h
iEN

(5.6)

In network terms A(G) is the fraction of the total network traffic carried.

We develop an objective function which quantifies the welfare of the agents in the market for a

given allocation of resources. Optimising this objective function is analogous to maximising social

welfare. It is an intricate process to design mechanisms and agent strategies that optimise the

objective function, since there is no global control over the behaviour of the agents and each agent

has only limited information about the total agent system. We say that each agent acts on local

information only.

Definition 5.4 The local information available to an agent i is its production function Pi(·), its

utility function Ui (.), its composite commodity bundle bi and the basic commodity price Si. The

basic commodity prices Sj, JEN are calculated periodically and communicated to the agents. The

basic commodity prices are therefore classified as local information available to an agent. When

an agent initiates a trade with another agent, the utility functions and commodity bundles of the

trading participants are also classified as local information available to each trading participant.
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Because of the restricted nature of the agents, the agents themselves cannot evaluate the objective

function. The objective function can therefore not serve as an aid for the agents to reach an

optimum resource allocation. However we will use the objective function as a performance measure

of the social community.

The objective function is called the social welfare penalty function. Kuwabara et al. [19] minimised

the variance of the agent utilities as the social welfare of an agent system. We use the variance of

the agent utilities V(8) and the weighted average agent utility A(8) in Equation (5.6) to define

the social welfare penalty function

W(8) = al Jï1(E)) + a2 (1 - A(8)) , (5.7)

where the constants al, a2 > 0 represent the weights of the respective terms contributing to the

social welfare penalty,

V(8) =L (ui(bi, di) - 1-£(8))2j(N - 1)
iEN

is the variance of the agent utilities and

1-£(8)= L uj(bj, dj)jN.
JEN

Note that 0 ~ A(8) < 1.

Increasing the utility of one agent and keeping the utility of the other agents constant may decrease

the social welfare. The social welfare function of the social community is therefore a non-Pareto

social welfare function (see Definition 4.3).

5.6 The optimisation method

The fraction A(8) of the total network traffic carried can be increased by producing a composite

commodity number j of class i if

Rij = diDjUi(bi, di) - L dkDIUk(bk, dk) > O.
«ex.;

Likewise A(8) can be increased by decomposing the composite commodity number j of class i

if Rij < O. The problem with this method is that it may be computationally expensive to calculate

the optimal amount of composite commodity to produce or decompose. An optimisation algorithm

could select the composite commodity number j of class i with the largest value Rij and produce a

small amount of composite commodity number j of class i. This process is repeated until Rij < e

for some value e. > O. This method uses a large number of productions and decompositions of

small amounts of commodity in an attempt to maximise A(8).

The social community determines that a commodity bundle bi, i EN contains an excess amount

of commodities relative to a commodity bundle bj,j EN if and only if ui(bi,di) > uj(bj,dj).
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Hence an agent i has excess commodities relative to an agent j if and only if agent i does bet-

ter than agent j in meeting its commodity requirement. The optimisation method used by the

social community transfers (produces or decomposes) commodities from agents with an excess

amount of commodities to agents with a shortage of commodities. The notion of fairness in the

social community ensures that commodities are not transferred from an agent with a shortage of

commodities to an agent with an excess amount of commodities.

Although we did not find a mathematical proof that this method optimises W(8), we tested this

method in Chapter 6 which applies an implementation of the social community to several test

networks. The results compare well with a conventional optimisation method.

5.7 The rules of the social community

In the social community the pricing of basic commodities is a mechanism used by an agent to

select the composite commodities to produce or decompose. The rules of the social community

stipulate how these prices are calculated (see Section 5.3). Chapter 6 explains how the agents use

the prices.

In addition to the pricing mechanism, the rules of the social community restrict the amount of

composite commodities an agent produces or decomposes. A trade that satisfies these restrictions

on the amount of composite commodity produced or decomposed is called a fair trade. Agents

may only take part in fair trades.

5.8 Fair trades

This section presents the conditions of a fair trade. Note that these conditions restrict the amounts

of composite commodities to produce and decompose and do not dictate which composite com-

modity to produce or decompose.

The notion of a fair trade is derived from a notion of fairness called maxmin fairness [28, 29].

Maxmin fairness states that the utility of one agent is not increased at the cost of decreasing the

utility of another agent that has a lower or equal utility. Maxmin fairness is attractive because it

promotes smaller differences between the agent utilities and the agents therefore do equally well in

meeting their commodity requirements. An agent with a large requirement for commodities will

acquire a larger amount of commodities than an agent with a smaller requirement for commodities.

Maxmin fairness only considers pairs of agents. When producing or decomposing composite com-

modities we must consider more than two agents. We extend maxmin fairness to multiple agents:

• If the utility of a single agent is increased at the cost of decreasing the utility of multiple

agents, the utility of the single agent must be less than or equal to the utilities of the other
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agents .

• If the utilities of multiple agents are increased at the cost of decreasing the utility of a single

agent, the utility of the single agent must be greater or equal to the utility of at least one of

the other agents.

Definition 5.5 A maxmin fair trade is a production or decomposition that conforms to one of

the following:

1. For a production Fi(X) = Y with x the production bundle of the composite commodity

number j of class i in the bundle y =I- 0, then Uk (hk - Xkel, dk) 2:: ui(hi + y, di) for all k E

Ki,j'

2. For a decomposition Fi-
1 (y) = x with y =I- 0 the bundle containing the composite commodity

number j of class i to be decomposed and x the decomposition of the composite commodity

number i. then Uk (hk + Xkel, dk) ::::Ui(hi - y, di) for at least one k E Ki,j'

Productions may lead to a condition of dual-stability. Dual-stability occurs when composite com-

modities are produced from the basic commodities of agents who themselves posses insufficient

quantities of commodities. These agents will then produce composite commodities to replace their

basic commodities, which leads to an equilibrium market state where all the agents use composite

commodities. To produce a unit of composite commodity requires more than one unit of basic

commodity hence the amount of commodities 2:j bij of each agent i is reduced. Furthermore the

additional utility for a unit of composite commodity is the same as the additional utility for a unit

of basic commodity (see Assumption 5.1), hence the allocation of commodities is inefficient.

The condition of dual-stability can be avoided by restricting agents to either supply basic com-

modities for productions or to produce composite commodities. This restriction is called the

donor-recipient relationship.

Assumption 5.2 The donor-recipient relationship applies to the social community. Hence for an

agent i EN that supplies basic commodity (Qi > 0), the amounts of composite commodities bij = 0
for all j > 1.

When an agent i executes a production of a composite commodity number j of class i each

agent k E Ki,j becomes a supplier (Qk > 0) of basic commodity and from Assumption 5.2 bkr = 0

for all composite commodities r > 1. Similarly when an agent i executes a decomposition of

a composite commodity number j of class i each agent k E Ki,j is a supplier (Qk > 0) of basic

commodity and from Assumption 5.2 bkr = 0 for all composite commodities r > 1. The commodity

bundles hk of the agents k E Ki,j in Definition 5.5 thus reduce to bkel and we define a fair trade

as:

Definition 5.6 A fair trade is a production or decomposition that conforms to one of the follow-

ing:
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1. For a production Fi(X) = Y with x the production bundle of the composite commodity

number j of class i in the bundle y i= 0, then Uk ((bk - Xk) el, dk) ?: ui(bi + y, di) for

all k E x.;
2. For a decomposition Fi-l (y) = x with y i= 0 the bundle containing the composite commodity

number j of class i to be decomposed and x the decomposition of the composite commodity

number i. then Uk ((bk + Xk) el, dk) ~ ui(bi - y, di) at least one k E Ki,j'

Let

denote the set of all possible discrete-valued composite commodity allocations where R is the total

number of distinct commodities in the market. Let TB ~ ~q be the set of all possible discrete-

valued composite commodity allocations resulting from a trade starting with the composite com-

modity allocation B. Let TBQ ~ TB be the set of all possible discrete-valued composite commodity

allocations resulting from a fair trade starting with the composite commodity allocation B.

Definition 5.7 A composite commodity allocation B is fair and the market said to be in a fair

market equilibrium if and only if no fair trades can take place (TB
Q = 0).

Definition 5.8 A fair market is a market in which only fair trades take place.

Chapter 6 shows that starting from a market state eo the market process (et)tENo converges to a

fair market equilibrium in a finite number of fair trades. There is only a finite number of market

states, because the amount of commodities is fixed and quantized. Hence by proving that there

are no recurrent market states in a fair market, we prove that the market process converges to a

fair market equilibrium in a finite number of fair trades.

Proving that there are no recurrent market states in a fair market is equivalent to proving that

there are no cycles in the directed graph (V,E) = (~q, {(B,A): B E ~q,A E TBQ}), where V is

the set of vertexes (the market states) and E the set of edges (the fair trades) such that (B, A) E E.

It may be possible to prove that there are no recurrent market states in a fair market because we

are able to specify the set TBQ for any B E ~q. Attempts were made to prove this. However we

abandoned this course of action and rather showed in Chapter 6 that it is reasonable to suppose

that there are no recurrent market states in a fair market.

5.9 Mechanism design

The social community is a game constituted by a mechanism design problem and a mechanism as

presented in Section 1.2.
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For a given commodity requirement d and a quantity of basic commodity q the mechanism design

problem of the social community is 0 = (N,~, U,W) where

• N is the set of agents,

• the set of outcomes is

~ = {(N, u('),B,d,q) : B E !N~, I)Pr-I(br)]i = qi}
rEN

with N = INI and R is the total number of distinct commodities in the market,

• U = UI X .. , X UN where Ui is the set of utility functions for each agent i E N. Each Ui E Ui

satisfies the requirements for utility functions presented in Section 5.1, and

• W : U -t IP(~) is the function mapping the agent utilities to subsets of outcomes, namely

those desired by the mechanism designer. In particular

W(N, uC), d, q) <;;; {8 E ~ : WC) has a local minimum at 8 with respect to B}.

Given the mechanism design problem 0 = (N,~, U, W), we define a mechanism (A, f.l) for 0

where

• A = Al x ..X AN where Ai <;;; R; X R; is the set of actions available to an agent i E N with Ri

the index set of the composite commodities of class i. An action (j, k) E Ai represents an

attempt'' to execute a fair trade and production of the composite commodity number j of

class i and an attempt to execute a fair trade and decomposition of the composite commodity

number k of class i. A E A is then an action profile, and

• f.l : A x ~ -t ~ maps each action profile and outcome pair (At, 8t) E A x ~ onto an

outcome 8HI E ~. The function f.l determines which fair trades take place and the quantity

traded.

The mechanism design problem and mechanism together constitute a super game. Note that the

action profile At E A represents a sequence of fair trades directing the transition from the market

state 8t to the market state 8tH, The auctioning mechanism in Chapter 6 is an implementation of

the function f.l of the mechanism (A,f.l). At any market state 8t this auctioning mechanism allows

multiple fair trades (or actions in the action profile At E A) to take place simultaneously while

excluding any trades that are not fair. The auctioning mechanism also determines the quantities

of basic commodities traded.

The social community is a super game r consisting of the single period games rt = (N, A, (Ui)iEN)

with t E !Nowhere At E A are the strategy choices of the players, (N, uC), Bt+I, d, q) = 8HI =

f.l(At,8t) is the outcome and ui(b~H, di), i E N are the player utilities after the single period

game rt ended.

5The market state or the actions of other agents may render a fair trade impossible.
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Definition 5.9 In a super game the strategy of a player defines its actions in every possible

constituent game.

The strategy set of a player i in the super game r is

where a~ E Ai is the action of the player i in the constituent game characterised by the outcome

(market state) e E 'J. The agent strategy in Chapter 6 is a super game strategy Si E Si defined

for each player i EN.

Let Si E Si be the super game strategy of each player i E N. Starting at a market state eo the

strategies Si E Si, i ENdetermine the market state transitions in the market process (et)tENo'

The super game payoff of each player i EN is then

Pi((Sj )jEN) = L ui(bL di)'
tEN

A fair market equilibrium (see Definition 5.7) occurs at a market state et where there exists no

action profile At! E A with tI > t such that et! -::j:. et.

As result of a fair trade in a constituent game, an agent may decrease its utility in order to increase

the utility of another agent. In context of a constituent game an agent in the social community

may appear to be an altruist (see Definition 3.22), however the agent only abides by the rules of

the social community (see Section 5.7) and is self-interested (see Definition 3.21).

The next Chapter presents a strategy for agents in the social community and an auctioning

mechanism that allows multiple fair trades to take place simultaneously while excluding trades

that are not fair.
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Chapter 6

An implementation of the social

community

This Chapter presents a market mechanism that is an implementation of fair trading, and a strat-

egy for an agent using this market mechanism. We present test results of the market mechanism

and the agent strategy employed in the social community. The test results show that the state

of the market converges to a fair market equilibrium that minimises the market welfare penalty

function.

6.1 The market mechanism and agent strategies

This section presents a market mechanism and a strategy for using the mechanism. The mechanism

consists of a production part and a decomposition part and defines the behaviour of an agent playing

the role of a specialist that trades a basic commodity. The strategy defines the behaviour of an

agent playing the role of a producer that produces or decomposes composite commodities.

We prove in Appendix A that the mechanism conforms to the fair trade criteria (see Definition 5.6)

and that by using the strategy, an agent will always take part in at least one fair trade if it is

possible for that agent to take part in any fair trade.

Consider an agent i using the basic commodities of the classes k E Ki,h to produce a composite

commodity number h of class i. For this production to be a fair trade the amount Yi of composite

commodity produced is chosen such that

(6.8)

for all k E Ki,h (see Definition 5.6). The production part of the market mechanism calculates such

values of Yi for all agents i EN simultaneously.
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Consider an agent i decomposing the composite commodity number h of class i and disposing

of the basic commodities of the classes k E Ki,h. For this decomposition to be a fair trade the

amount Yi of composite commodity decomposed is chosen such that

(6.9)

for at least one k E Ki,h (see Definition 5.6). The decomposition part of the market mechanism

calculates such values of Yi for all agents i E N simultaneously.

6.1.1 Production part

An agent that attempts to produce a composite commodity places bids for basic commodities

at the respective auctioneers. Let Bk denote the index set of the agents that place bids for the

basic commodity of class k. Similar to the WALRAS algorithm [32], a bid is a message to the

auctioneer where the message contains information about the utility function, the commodity

requirement and the current commodity bundle of the bidder. The bid also contains information

specifying the composite commodity number h that the bidder i intends to produce by using the

basic commodity of class k. The auctioneers are bound by the rules of the social community and

use the information in the bids to ensure that only fair trades take place. An auctioneer kEN

allocates basic commodity to the bidders i E Bk. The allocation of Yi units of basic commodity

to a bidder i means that the bidder is entitled to use up to Yi units of basic commodity in the

production of composite commodity number h of class i.

Mechanism: The auctioneer

The task of the auctioneer is to allocate basic commodities to the bidders. The auctioneer uses

the information contained in the bids to determine the amount of basic commodity to be allocated

to each bidder. Adhering to the fair trade criteria, the maximum amount of basic commodities is

allocated to each bidder. In the social community the auctioning of commodities is a mechanism

to distribute commodities.

The auction is classified as a multi-unit auction because more than one unit of a commodity is

auctioned at the auction. It is also a private-value auction since each bidder has its own valuation

of the commodity and each bidder is ignorant of the value that the other bidders place on the

commodity. A bidder may only place one bid at each auction.

Let the variable Yi denote the total amount of basic commodity allocated to the bidder i. When the

auction starts, no basic commodities are allocated to the bidders and Yi = 0 for all i E Bk. During

the auction the auctioneer may allocate basic commodities and thus increase the amounts Yi, i E

Bk.

The auction consists of a sequence of phases in which basic commodities are allocated to the

bidders. At each phase the bidder i with the lowest utility of all the bidders is identified. One
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unit of basic commodity is allocated to the bidder i and the phase ends. At each phase, the total

amount of basic commodity Yi allocated to the bidder i therefore increases by one unit.

Because one unit of basic commodity is allocated to a bidder i at the end of each phase, a new

bidder utility must be calculated. According to the information contained in the bid, the bidder i

intends to produce the composite commodity number h of class i. Hence the bidder i will use

an amount Yi of basic commodity of class k to produce an amount Yi of composite commodity

number h. The bidder utility is therefore ui(bi + Yieh, di) for Yi > O. At the end of each phase

the utility of the bidder i is set to ui(bi + Yieh, di)'

The auction terminates when further allocation of commodity will result in the utility of a bidder i :

u. > 0 exceeding the auctioneer's utility

of the basic commodity of class k. The auction therefore terminates at the phase where another

commodity allocation would falsify one of the relations

(6.10)

for any i E Bk such that Yi > O. Note that the auction termination condition in Relations (6.10)

implies that the Relations (6.8) are satisfied.

When the auction terminates the auctioneer sends a message to each bidder i E Bk. Each message

contains information about the total amount Yi of basic commodity allocated to the bidder i by

the auctioneer k.

Strategy: The bidder

The task of the bidder is to choose which composite commodity to produce. The agent strategy

is defined such that an agent avoids producing a composite commodity that requires the use of an

expensive basic commodity. Consider a price vector a = (5,5,1,9), denoting the basic commodity

prices in the production bundle of some composite commodity. An agent prefers to produce a

composite commodity with a price vector b = (5,5,5,5) rather than a price vector a as explained

below.

We define a price index Bij for a composite commodity number j of class i which is a function

of the price vector of the composite commodity j. The price index of a composite commodity

number j of class i is

(6.11)

where Sk is the price of the basic commodity of class k. The price index of a composite commodity

is the price of the most expensive basic commodity in the production bundle of that composite

commodity. An agent i places bids for the production of the composite commodity with the lowest

price index Bij.
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Let Yki be the total amount of basic commodity allocated to the bidding agent i by each auction-

eer k. The agent i uses an amount Yki or less of each basic commodity k E Ki,j in the production

of a composite commodity. In order to produce an amount ). of a composite commodity num-

ber j of class i, an agent i needs). amounts of basic commodities of each class k E Ki,j (see

Assumption 3.2). The agent i maximises utility by producing the maximum amount

(6.12)

of composite commodity.

6.1.2 Decomposition part

A decomposition and trade is the reverse action of a trade and production. There exist separate

auctions for decomposition trades and production trades.

An agent that attempts to decompose a composite commodity places bids to dispose of basic

commodities to the respective auctioneers. Let Bk denote the index set of the agents that place

bids for the basic commodity of class k. A bid is a message to the auctioneer where the mes-

sage contains information about the utility function, the commodity requirement and the current

commodity bundle of the bidder. The bid also contains information specifying the composite

commodity number h that the bidder i intends to decompose. The auctioneers acquire all the

basic commodities disposed by the bidders. An auctioneer kEN determines the amount of basic

commodity deallocated from the bidders i E Bk, The deallocation of Yi units of basic commodity

from a bidder i means that the bidder is entitled to dispose of Yi or more units of basic commodity.

Mechanism: The auctioneer

The task of the auctioneer is to deallocate basic commodities from the bidders. The auctioneer

uses the information in the bids to determine the amount of basic commodity to be deallocated

from the bidders. Adhering to the fair trade criteria, the maximum amount of basic commodities

is deallocated from each bidder.

The auction is classified as a multi-unit auction, because more than one unit of a commodity is

auctioned at the auction. It is also a private-value auction, since each bidder has its own valuation

of the commodity and each bidder is ignorant of the value that the other bidders place on the

commodity. Each bidder may place only one bid at an auction.

Let the variable Yi denote the total amount of basic commodity deallocated from the bidder i.

When the auction starts, no basic commodities are deallocated from the bidders and Yi = 0 for

all i E Bk, During the auction the auctioneer may deallocate basic commodities and thus increase

the amounts tn, i E Bk.

The auction consists of a sequence of phases in which basic commodities are deallocated from the

bidders. At each phase the bidder i with the highest utility of all the bidders is identified. One
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unit of basic commodity is deallocated from the bidder i and the phase ends. At each phase, the

total amount of basic commodity Yi deallocated from the bidder i therefore increases by one unit.

Because one unit of basic commodity is deallocated from a bidder i at the end of each phase, a

new bidder utility must be calculated. According to the information contained in the bid, the

bidder i intends to decompose the composite commodity number h of class i. Hence the bidder i

will decompose an amount Yi of composite commodity number h and dispose of an amount Yi of

basic commodity of class k. The bidder utility is therefore ui(bi - Yieh, di) for Yi > O. At the end

of each phase the utility of the bidder i is set to Ui (bi - Yieh, di)'

The auction terminates when further deallocation of commodity will result in the utility of a

bidder i :Yi > 0 to be less than the auctioneer's utility

uk((bk + ~. Yj)el' dk)
~JEBk

of the basic commodity of class k. The auction therefore terminates at the phase where another

commodity deallocation would falsify one of the relations

(6.13)

for any i E Bk such that Yi > O. Note that the auction termination condition in Relations (6.13)

implies that the Relations (6.9) are satisfied.

When the auction terminates the auctioneer sends a message to each bidder i E Bk. Each message

contains information about the total amount Yi of basic commodity deallocated from the bidder i

by the auctioneer k.

Strategy: The bidder

The task of the bidder is to choose which composite commodity to decompose. The agent strategy

is defined such that an agent disposes of a basic commodity with a high price. Consider a price

vector a = (5,5,5,5), denoting the basic commodity prices in the production bundle of some

composite commodity. An agent prefers to decompose a composite commodity with a price vector

b = (5,5,1,9) rather than a price vector a as explained below.

An agent i places bids for the decomposition of the composite commodity with the highest price

index (Jij = max Sk.
kEKi.;

Let Yki be the total amount of basic commodity deallocated from the bidding agent i by each

auctioneer k. The agent i disposes an amount Yki or more of basic commodity of class k E Ki,j.

When decomposing an amount A of composite commodity number j of class i, an agent i disposes

of amounts A of basic commodities of each class k E Ki,j (see Assumption 3.2). The agent i

maximises utility by decomposing the minimum amount

(6.14)

of composite commodity.
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6.2 The computational complexity of the social community

The computational complexity of an auction is O(C), where C is the amount of commodities

auctioned. The computational complexity of an agent strategy is O(n) where n is the number of

routes defined for that OD-pair. An auction process does not communicate with other auction

processes. The auctions are concurrent processes and since the auction process serialises the

resource allocation, they may be executed independently.

6.3 Testing the social community

We present test results of the social community using the mechanism and agent strategy defined

in Section 6.1

We assume that calls (connections) arrive individually at the instants of a Poisson stream and that

the call holding times are exponentially distributed. Let Pi denote the load offered to OD-pair i.

A connection uses one unit of capacity on each link over which it is routed. The measure of utility!

is the GoS of an OD-pair, hence

(6.15)

where bij is the capacity assigned to the LSP j connecting OD-pair i, n is the number of LSPs

connecting OD-pair i and Be) is the Erlang B loss probability defined by

Cj I
B( ) = P c.C,p C

L pkjk!
k=O

The supremo utility is 1 and Pi characterises the requirement for commodities of class i (at agent i).

The utility function ui(bi,Pi) is such that high blocking results in a low utility and vice versa. An

agent with a low utility for its commodity bundle has incentive to acquire more commodities.

Figure 6.1 depicts the utility of an OD-pair i with Pi = 30.

6.3.1 Agent behaviour and equilibrium

The experiments in this subsection are all of an 8-node bi-directional network with pre-configured

LSPs calculated by XFG [5]. The OD-pair call arrival intensity matrix is given in Table 6.1.

The bi-directional link capacities for the network model are given in Table 6.2 and depicted in

Figure 6.2. As a first approach to test the social community we only test networks with bi-

directional links.

1We consider only a single call class, and we note that the Erlang loss function B( c, p) is convex.
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Figure 6.1: The utility of an OD-pair.

I Node II 1 2 6 7 8
1 - 13 15 2 20 10 4 6
2 - 49 6 64 29 11 17
3 - 7 76 34 13 21
4 - 9 4 2 2
5 - 45 17 27
6 - 8 12
7 - 4
8 -

Table 6.1: The arrival intensities to the 8-node network.

The market process (see Definition 3.16) consists of a series of steps. Agents may be invoked

simultaneously or in any order at each step of the market process. The actions of an agent may

change the state of the market resulting in a changed market state at the subsequent step. Step 0

refers to the starting conditions of an experiment.

There are 28 agents in the 8-node network. The agents were invoked in a random order once every

step. The prices of the basic commodities were re-calculated at each step. Auctions took place

every second agent invocation, thus every second step.

For each experiment, each direct route LSP was initially configured to have a capacity equal to

that of the corresponding physical link. The multi-link LSPs were initially configured to have

no capacity. The multi-link LSPs therefore represent the composite commodities that may be

produced and the direct route LSPs represent the basic commodities. In market terms we view

the LSP configuration as a market with all-basic commodities and a given production technology.

All the trades in the social community are fair, thus a fair market equilibrium is reached whenever

no trades can take place.
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I Node 111 2 3 4 5 6 7 8
1 - 305 128
2 - 178
3 - 239 93
4 - 157 95
5 - 125
6 - 100
7 - 151
8 -

Table 6.2: The physical link capacities of 8-node network.

Figure 6.2: The 8-node network.

Experiment A

Figure 6.3 presents the bidding, auctioning, production and decomposition events of Experiment A.

The commodity auctioned for production is the total amount of basic commodity allocated at an

auction. The commodity auctioned for decomposition is the total amount of basic commodity

deallocated at an auction. The commodity produced is the total amount of composite commodity

produced by some agent. The commodity decomposed is the total amount of composite commodity

decomposed by some agent.

Figure 6.4 presents graphs of the trace data as Experiment A progressed. The total cost of

the composite commodities represents the efficiency of the composite commodity allocation (see

Section 5.4).

The terms .JV(8) and 1 - A(8) of the social welfare penalty function W(-) (see Equation (5.7))

are represented by the variance of the OD-pair blocking and network loss probability respectively.

These terms are called the measures of social welfare. Let Ii = p;/ LjEN Pj be the load offered

to OD-pair i E N expressed as a fraction of the total load offered to the network. ui(bi, Pi)

is the probability that a connection offered to an OD-pair i is carried (see Equation (6.15)),

hence IiUi(bi, Pi) is the load carried by OD-pair i expressed as a fraction of the total load offered

60

Stellenbosch University http://scholar.sun.ac.za



Chapter 6. An implementation of the social community 61

to the network. It follows that the network loss probability (the total load lost expressed as a

fraction of the total load offered to the network) is W(0) = 1 - LiEN IiUi(bi, Pi), where 0 is the

state of the network.

In Experiment A at step 0 all the commodities in the market are basic commodities. Figure 6.3(a)

shows that composite commodities are produced between step 0 and step 16 and no composite

commodities are decomposed. Figure 6.4(a) shows that the total cost of the composite commodities

increases as more composite commodities are produced. The production of composite commodities

decreases the supply of basic commodities. The decreased supply of basic commodities leads to an

increased basic commodity price and an increased cost of producing the composite commodities.

Figure 6.3(b) shows that after step 16 although some agents continue to place bids and commodities

are auctioned, no trade takes place. Thus a market equilibrium is reached at step 16. Figure 6.4(b)

shows that the network loss probability (GoS) settles at just above 0.05.

300 0.07
Commodity produced 0

Commodity decomposed 0
0.06

~ 250 Commodity auctioned for decomposition x
+ Commodity auctioned for production + ~~ + ] ().()5

200E + +8 + + + 10.04
'0 + + + +
§

150 +
4' + 0.03

0

~ 100 +
+ 8 ().O2

50 + 0 0.01

0 0
0 ID 1.1 20 0

step

(a) The productions and decompositions.

production Bids x
decomposition Bids C:::.

10 15 20
step

(b) The bids.

Figure 6.3: The productions, decompositions and bids of Experiment A.
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(a) The total cost of the composite commodities.
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(b) The measures of social welfare.

Figure 6.4: Trace data of Experiment A.
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Experiment B

Experiment B is similar to Experiment A except that the requirement for the commodity of class 4-

5 is increased by 40 Erlangs. We chose to increase the requirement for the commodity of class 4-5

because there are no multi-link routes defined between nodes 4 and 5. The technology of the

market is therefore such that no composite commodities of class 4-5 can be produced. Composite

commodities produced from the basic commodity of class 4-5 must therefore be decomposed to

increase the utility of agent 4-5.

The bandwidth of the physical link between nodes 4 and 5 represents 10% of the total amount

of bandwidth in the network and the increased commodity requirement of 40 Erlangs represents

a 7.6% increase in the total commodity requirement.

In Experiment B at step 20 the requirement for commodities of class 4-5 is increased. Figure 6.5( c)

shows that the increased requirement for commodities of class 4-5 increases the network loss

probability at step 20.

The increased requirement for commodities of class 4-5 increases the price of the basic commodity

of class 4-5. Figure 6.5(b) shows that at step 20 the total cost of the composite commodities

increases as result of the increase in the price of the basic commodity of class 4-5. Some com-

posite commodities containing the basic commodity of class 4-5 in their production bundles are

decomposed because of the increased price of the basic commodity of class 4-5. Figure 6.5(a)

shows that these composite commodities are decomposed between step 24 and step 28.

Figure 6.5(a) shows that some productions take place after step 28 as result of the preceding

decompositions. A market equilibrium is reached at step 40.

Figure 6.5(b) shows that although trading improved the measures of social welfare, the equilibrium

measures of social welfare are somewhat worse than before the requirement of commodities of

class 4-5 was increased.

Experiment C

Experiment C is similar to Experiment A except that at steps 400k, k E {1, ... , 1500} the re-

quirement for commodities of a randomly chosen class is increased by 40 Erlangs. At steps 400k +
200, k E {1, ... , 1500} the requirement for commodities of the randomly chosen class is restored

to its original value. The market exogenous variables thus change at steps 200k + 200, k E

{I, ... , 1500}.

Figure 6.6 presents trace data from Experiment C. A market equilibrium was reached after each

change in the market exogenous variables. Note that each subsequent market equilibrium is not

necessarily the same as any of the previous market equilibria.

Experiment C spans 600,000 steps (only 5000 steps are shown in Figure 6.6). Figure 6.6(b) shows
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(c) The measures of social welfare.

Figure 6.5: The productions and decompositions and the trace data of Experiment B.

that trading improves the measures of social welfare after each increase in the requirement for

commodities. The average number of steps to reach a market equilibrium after an increase in

requirement for commodities is 28.07 and the standard deviation is 19.21. The average number

of steps to reach a market equilibrium after traffic restoration of the requirement for commodities

is 25.32 and the standard deviation is 18.19. The market was in disequilibrium for less than 107

steps after each of the 2998 instances where the market exogenous variables changed.

It is thus reasonable to assume that a fair market equilibrium will be reached in a finite number

of fair trades.

6.3.2 XFG and the social community

We evaluate the social community's effectiveness in maximising social welfare by comparing net-

works configured by XFG [SJwith networks configured by the social community. XFG is a cen-

tralised optimisation algorithm that calculates routes and route bandwidths for a given network

topology and traffic demands such that the bandwidth configuration maximises the network's rate
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Figure 6.6: The trace data of Experiments C.

of earning revenue L:iEN PiUi(bi, Pi)'

Experiments Dl and D2

Figure 6.7 shows the trace data of the Experiments Dl and D2 of a small network whose details

are listed in Table 6.3. Experiment Dl starts with routes and route bandwidths as configured by

XFG. Experiment D2 starts with routes configured by XFG and all the link capacities assigned

to the direct routes.

The result of Experiment Dl is that

• the social community makes insignificant changes the measures of social welfare as shown in

Figure 6.7(d).

The results of Experiment D2 are that

• Figure 6.7(a) shows that initially a large number of productions take place that improve the
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measures of social welfare substantially (see Figure 6.7(d)) followed by a series of productions

and decompositions that improve the measures of social welfare only slightly.

• Figure 6.7(b) shows that the cost of the equilibrium allocation of composite commodities in

Experiment Dl and D2 are similar.

• Figure 6.7(c) shows a close similarity between the equilibrium quantities of commodities

assigned to each commodity class by XFG and by the social community.

• Figure 6.7(d) shows that the social community improves the measures of social welfare such

that the equilibrium measures of social welfare in Experiments D2 and Dl are similar.

There is a limited number of possible bandwidth allocations in a small network. It is therefore

not surprising that the bandwidth allocations calculated by XFG and by the social community

are similar for a small network.

Figure 6.10 shows the trace data of the Experiments El and E2 of the medium network in Figure 6.8

whose details are listed in Table 6.3. Experiment El starts with routes and route bandwidths as

configured by XFG, whereas Experiment E2 starts with routes configured by XFG and all the link

capacities assigned to the direct routes.

The result of Experiment El is that

• the social community makes insignificant changes the measures of social welfare as shown in

Figure 6.10(b).

The results of Experiment E2 are that

• Figure 6.10(a) shows that initially a large number of productions take place that improve

the measures of social welfare substantially (see Figure 6.10(d)) followed by a series of pro-

ductions and decompositions that further improve the measures of social welfare.

• Figure 6.1O(b) shows that the cost of the equilibrium allocation of composite commodities

in Experiment El and E2 are similar.

• Figure 6.10(c) shows a close similarity between the equilibrium quantities of commodities

assigned to each commodity class by XFG and by the social community.

• Figure 6.10(d) shows that the social community improves the measures of social welfare such

that the equilibrium measures of social welfare in Experiments E2 and El are similar.

Figure 6.11 shows the trace data of the Experiments FI and F2 of the large network in Figure 6.9

whose details are listed in Table 6.3. Experiment FI starts with routes and route bandwidths as
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configured by XFG, whereas Experiment F2 starts with routes configured by XFG and all the link

capacities assigned to the direct routes. The results of Experiments F, and F2 are qualitatively

similar to the results of Experiment El and E2.

Table 6.4 summarises the results of Experiments D2' E2' and F2 and the bandwidth configured

on the test networks by XFG. The "social community" is abbreviated as "SOC".

small network I medium network large network
network nodes 8 20 50
physical links 10 51 101
market agents 28 190 1225
distinct commodities 61 485 2729

Table 6.3: Network details.

equilibrium value algorithm small network medium network large network

network loss probability XFG 0.0227 0.00001 0.00018
SOC 0.0334 0.00006 0.00018

variance of Ol) blocking XFG 0.0005 6.1056 x 10-10 1.3187 X 10-7

SOC 0.0007 1.6921 x 10-8 1.0361 X 10-7

total cost of composite XFG 46.1025 378.921 638.784
commodities SOC 49.4818 402.210 674.332
number of distinct XFG 61 485 2729
commodities used SOC 51 330 1903

total number of trades SOC 45 493 3715
average number of trades SOC 1.6 2.6 3.0
per agent

Table 6.4: Summary of results.

In summary, XFG achieved a slightly lower network loss probability than the social community,

although the variance of the ODepair blocking probabilities is similar. XFG calculated a more

efficient bandwidth configuration according to the total cost of the composite commodities. The

number of composite commodities (multi-link routes) used by the social community was less than

the number of routes used by XFG. The average number of trades per agent increases as the

number of nodes in the network increases.

6.4 Results

The social community improves social (network) welfare in the test networks.

For all the test networks the social community calculated an improved bandwidth configuration
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comparable with the optimal bandwidth configuration calculated by a centralised optimisation

algorithm called XFG. The number of routes used by the bandwidth configuration calculated

by the social community is less than the number of routes used by the bandwidth configuration

calculated by XFG. Table 6.4 presents a summary of these results.
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Figure 6.7: The trace data of the experiments with a small network.
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Figure 6.8: The medium network: 20 nodes.

Figure 6.9: The large network: 50 nodes.
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Figure 6.10: The trace data of the experiments with a medium network.
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Figure 6.11: The trace data of the experiments with a large network.
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Chapter 7

Conclusion

This thesis focuses on traffic engineering and methods of routing traffic. Our aim is to map the

problem of routing traffic onto the micro economic problem of resource allocation in a market.

We call this market a bandwidth market. As a prelude to this mapping we present concepts and

entities of game theory, markets and networks.

We formulate the fundamental definitions of our bandwidth markets adhering to assumptions

which simplify the market mechanisms and the communication between agents in the market.

According to these fundamental definitions our bandwidth markets are classified as oligopoly

basic market models.

We construct a bandwidth market called the dual-oligopoly. The dual-oligopoly conforms more

closely to some market models in economic literature than many bandwidth markets encountered

in the literature. A market mechanism and agent behaviour in the dual-oligopoly may lead to an

optimum allocation of resources similar to that achieved in real economic markets.

We construct a second bandwidth market called the social community. We define a price for

bandwidth in accordance with the economic theory of supply. We define rules and mechanisms in

the social community that enforce cooperation between the market agents.

Finally we present an implementation of the social community and test this implementation.

The tests conclude that the social community is a distributed traffic engineering method that

reconfigures traffic routing to improve the network loss rate.
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Appendix A

A proof of fairness and

cooperation

Lemmas A.l and A.3 prove that both parts of the auctioning mechanism presented in Section 6.1
allow multiple fair trades to take place simultaneously while excluding trades that are not fair.

The mechanism thus conforms to the fair trade criteria in Definition 5.6.

Lemmas A.2 and A.4 prove that if no fair trades of the composite commodity chosen by the agent

strategy are possible, then the agent is unable to do any fair trades of composite commodities.

Thus by using the agent strategy presented in Section 6.1, the agents never abstain from fair

trading and thus always cooperate with the other agents in the social community.

Let R, denote the index set of the composite commodities of class i, and let

denote the set containing the classes of the basic commodities required to produce a composite

commodity number j of class i as defined in Definition 3.13.

Lemma A.I Consider an agent J that places bids at the auctioneers k E KJ,c for the produc-

tion PJ (xJ) = Aec producing an amount A of composite commodity number c of class J from the

production bundle XJ. Let Bk be the index set of the bidders that place bids for basic commodity

at the auctioneer k. Note that the agent J is in the bidder sets Bk, where k E KJ,c.

If each auctioneer k E KJ,c allocates an amount Yki of basic commodity of class k to each bid-

der i E Bk such that the auction termination condition (6.10) is true and the agent J produces an

amount (see Equation (6.12)) A = min {YkJ} of composite commodity number c of class J then
k:JEBk

the production PJ (xJ) = Aec is a fair trade.

Proof. From the auction termination condition (6.10), where an auctioneer k allocates an
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amount Yki of basic commodity of class k to each agent i E Bk, we deduce that

(A.I)

for each auctioneer k : 6 E Bk and YkJ > O. From Equation (6.12) the bidder 6 produces an

amount

). = min {YiJ}
i:JEBi

of composite commodity number c of class k and thus uses an amount

XJk = ).= min {YiJ} :S YkJ
z:JEBi

(A.2)

of each basic commodity of class k : 6 E Bk.

Because utility functions are monotone increasing with respect to commodity amounts and by

using the Relations (A.I) and XJk = ). :S Ykó for all k : 6 E Bk from Relation (A.2) we write

uJ(bJ + ).ec, db) < uJ(bJ + YkJec, db) (A.3)

< uk((bk - L. Yki)el,dk) (A.4)
'EBk

< uk((bk - L . Yki - xJk)el,dk) (A.5)
,EBk"""J

< Uk ((bk - XJk) el, dk) (A.6)

for all k E KJ,c for the production PJ(xJ) = ).ec, where Relation (A.2) was used in steps (A.3)

and (A.5) and Relation (A.I) was used in step (A.4).

By comparing Relation (A.6) with Definition 5.6 it follows that the production PJ(xJ) = ).ec,

producing an amount ). of the composite commodity number c of class 6 from the production

bundle XJ is a fair trade. _

Lemma A.2 For an agent 6, if no fair trade (production) of the composite commodity with the

lowest price index is possible then no fair trade (production) of any composite commodity of class 6

is possible.

Proof. Let XJ be the unit production bundle of the composite commodity number c of class 6.

Consider the case where an agent 6 E N cannot do a fair trade to produce any amount ). > 0

of the composite commodity c of class 6 with eJc :S eJT for all r E RJ. Thus the production

PJ ().xJ) = ).ec of any amount). > 0 of the composite commodity number c of class 6 is not a fair

trade and from Definition 5.6

for at least one k E KJ,c and for). > o. Then

(A.7)

for at least one k E KJ,c, because the utility functions are monotone increasing.
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For the composite commodity number c of class 15 with Blie ::; Blir for all r E Rli we write (see

Definition 6.11)

max {sk} = Blie ::;Blir= max {sk}
kEK.,e kEK.,r

which implies that

and

(A.8)

for all r E Rli.

From Relation (A.7) and (A.8)

uli(bli,dli) > Uk (bkel,dk)

> min {Uk (bkel, dk)}
kEK.,e

> min {uk(bkel,dk)}iex«;

(A.9)

(A.10)

for all composite commodities r E Rli of class 15, where Relation (A.7) was used in step (A.9)

and Relation (A.8) was used in step (A.10). Therefore for every composite commodity r E Rli of

class 15 and for at least one k E KIi,r

with Ar > 0 and from Definition 5.6 no fair trade (production) of any composite commodity of

class 15 is possible. _

Lemma A.3 Consider an agent 15 that places bids at the auctioneers k E Klie to dispose basic

commodities after the decomposition PIi-1(Aee) = Xli of an amount A of composite commodity

number c of class 15 to form a production bundle Xli. Let Bk be the index set of the bidders that

place bids for basic commodity at the auctioneer k. Note that the agent 15 is in the bidder sets Bk,

where k E KIi,e.

If each auctioneer k E KIi,e deallocates an amount Yki of basic commodity of class k from each

bidder i E Bk such that the auction termination condition (6.13) is true and the agent 15 decomposes

an amount (see Equation (6.14)) A = max {Ykli} of composite commodity number c of class 15
k:IiEBk

then the decomposition PIi-
1(Aee) = x, is a fair trade.

Proof. From the auction termination condition (6.13), where an auctioneer k deallocates an

amount Yki of basic commodity of class k from each agent i E Bk, we deduce that

(A.ll)
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for each auctioneer k : J E Bk and Ykó > O. From Equation (6.14) the bidder J decomposes the

amount

A = max {YiÓ}
i:óEB,

of composite commodity number c of class J and thus disposes of an amount

Xók = A = max {YiÓ} = Ykó
i:óEB,

(A.12)

of at least one basic commodity of class k : J E Bk'

Because utility functions are monotone increasing with respect to commodity amounts and by

using the Relations (A.U) and Xók = A = Ykó for at least one k : J E Bk from Equation (A.12) we

write

uó(bó - Aee, dó) uo(bo - Ykóee, do)

> uk((bk+"'"'. Yki)el,dk)
L..,,'EBk

uk((bk+"'"' . Yki+xók)el,dk)
L..,,'EBk ,,#ó

> uk((bk + Xok) el, dk) (A.13)

for at least one basic commodity of class k E Kó,e for the decomposition po-l (Aee) = Xo.

By comparing Relation (A.13) with Definition 5.6 it follows that the decomposition Pó-1 (Aee) = Xó,

decomposing an amount A of the composite commodity number c of class J to form the production

bundle Xó is a fair trade. _

Lemma AA For an agent J, if no fair decomposition of the composite commodity with the highest

price index is possible then no fair decomposition of any composite commodity of class J is possible.

Proof. Let Xó be a unit production bundle of the composite commodity number c of class J.

Consider the case where an agent JEN cannot do a fair trade to decompose any amount A > 0 of

composite commodity number c of class J with Boc ~ Bór for all r E Ró. Thus the decomposition

Pó-1 (Aee) = AXo of any amount A > 0 of the composite commodity c is not a fair trade and from

Definition 5.6

for all k E Kó,e and for A > O. Then

(A.14)

for all k E Kó,e, because the utility functions are monotone increasing.

For the composite commodity number c of class J with Bóe :S BÓT for all r E Ró we write (see

Definition 6.11)
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which implies that

and

(A.15)

for all r E RJ.

Finally by using relation (A.15)

< min {uk(bkel, dk)}
kEK,,"

< uk(bkel,dk)

for every composite commodity number r E RJ of class 6 and for all k E KJ,r. Therefore for every

composite commodity number r E RJ of class 6 and for all k E KJ,r

with Ar > 0 and from Definition 5.6 no fair trade (decomposition) of any composite commodity

of class 6 is possible. _
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