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ABSTRACT 

Background. Tuberculosis (TB) remains a major public health threat in South Africa. Substantial 

additional efforts are therefore needed to prevent, find, and successfully treat the disease. An 

increasing number of mathematical modelling studies have investigated the population-level 

impact of TB prevention and care interventions; however, this evidence has not yet been assessed 

in the South African context. Of particular concern for TB care in South Africa is the high 

proportion of initial loss to follow-up (ILTFU), defined as loss to follow-up of individuals who 

were diagnosed with TB but who did not (yet) initiate TB treatment. The aim of this thesis was to 

review existing literature on TB mathematical modelling research to determine the most effective 

intervention strategies to reduce TB burden in South Africa, to identify potential gaps in TB 

modelling research, and further, to conduct a mathematical modelling study to estimate the impact 

of reducing ILTFU in South Africa.  

Methods. A systematic review of studies that used transmission-dynamic models of TB in South 

Africa was conducted. PubMed, Scopus, and Web of Science databases were searched. Target 

populations, types of interventions, and estimates of impact on outcomes related to the End TB 

strategy targets were summarized. For country-level studies, average annual percentage declines 

(AAPDs) in TB incidence and mortality were estimated to compare the impact of interventions. 

Additionally, an existing TB transmission-dynamic model was adapted to estimate the impact of 

reducing ILTFU in South Africa. Data from the LINKEDIn study, a large quasi-experimental study 

that was conducted in three South African provinces, were used to inform model scenarios and 

intervention parameter estimates. The impact of scaling-up the LINKEDIn intervention to country 

level was specified as the number of incident cases and deaths averted over a 13-year period (2023-

2035). 

Results. Twenty-nine studies were identified in the systematic review, of which seven modelled 

TB preventive interventions, 12 considered interventions along the TB care cascade, and 10 

modelled combinations of both. One study considered reductions in TB-related catastrophic costs. 

The highest impact of a single intervention was estimated in studies of TB vaccination, preventive 

treatment among people living with HIV, and scale up of antiretroviral treatment. For preventive 

interventions, AAPDs for incidence varied between 0.06% and 7.07%, and for care-cascade 

interventions between 0.05% and 3.27%. In the modelling study, reducing ILTFU by 50% in the 

population was projected to avert 49,812 (95% uncertainty interval [UI]: 21,258-84,644) incident 

TB cases and 21,479 (UI: 9,500-32,661) deaths between 2023 and 2035. Sensitivity analyses 

showed that population-level impact would depend on rapid implementation and maximum effect 

of the intervention. 

Conclusion. This thesis describes a body of mathematical modelling research with focus on TB 

prevention and care in South Africa. Higher estimates of impact reported in studies of preventive 

interventions were found, highlighting the need to invest in TB prevention in South Africa. The 

population-level impact of reducing ILTFU was projected to be modest. Combinations rather than 

single interventions, such as the LINKEDIn intervention, are likely needed to reach the End TB 

Strategy targets in South Africa. 

Keywords: Tuberculosis; South Africa; systematic review; interventions; transmission-dynamic 

model; initial loss  to follow-up 
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OPSOMMING 

 

Agtergrond. Tuberkulose (TB) bly 'n groot bedreiging vir openbare gesondheid in Suid-Afrika. 

Aansienlike bykomende pogings is dus nodig om die siekte te voorkom, op te spoor en suksesvol 

te behandel. 'n Toenemende aantal wiskundige modelleringstudies het die bevolkingsvlakimpak 

van TB-voorkoming en sorgintervensies ondersoek; hierdie werk is egter nog nie in die Suid-

Afrikaanse konteks beoordeel nie. Van besondere kommer vir TB-sorg in Suid-Afrika is die hoë 

proporsie van aanvanklike verlies tot opvolg (ILTFU), gedefinieer as verlies aan opvolg van 

individue wat met TB gediagnoseer is, maar wat (nog) nie TB-behandeling begin het nie. Die doel 

van hierdie tesis was om bestaande literatuur oor TB wiskundige modelleringsnavorsing te hersien 

om die mees doeltreffende intervensiestrategieë te bepaal om TB-las in Suid-Afrika te verminder, 

om potensiële leemtes in TB-modelleringsnavorsing te identifiseer, en verder om 'n wiskundige 

modelleringstudie uit te voer om die impak van die vermindering van ILTFU in Suid-Afrika te 

beraam. 

 

Metodes. 'n Sistematiese oorsig van studies wat oordrag-dinamiese modelle van TB in Suid-Afrika 

gebruik het, is uitgevoer. PubMed-, Scopus- en Web of Science-databasisse is deursoek. 

Teikenpopulasies, tipes intervensies en ramings van impak op uitkomste wat verband hou met die 

eind-TB-strategie-teikens is opgesom. Vir studies toepaslik tot die hele Suid-Afrikaanse bevolking 

is gemiddelde jaarlikse persentasie dalings (AAPDs) in TB-voorkoms en mortaliteit beraam om 

die impak van intervensies te vergelyk. Daarbenewens is 'n bestaande TB-oordrag-dinamiese 

model aangepas om die impak van die vermindering van ILTFU in Suid-Afrika te beraam. Data 

van die LINKEDIn-studie, 'n groot kwasi-eksperimentele studie wat in drie Suid-Afrikaanse 

provinsies uitgevoer is, is gebruik om modelscenario's en intervensie parameter beramings in te 

lig. Die impak van die uitbreiding van die LINKEDIn-invensie na die hele Suid-Afrika is 

gedefinieer as die aantal  TB gevalle en sterftes wat oor 'n tydperk van 13 jaar (2023-2035) 

afgeweer is. 

 

Resultate. Nege-en-twintig studies is in die sistematiese oorsig geïdentifiseer, waarvan sewe TB-

voorkomende intervensies, 12 intervensies tot die TB-sorgkaskade, en 10 kombinasies van beide 

gemodelleer het. Een studie het verlagings in TB-verwante katastrofiese koste oorweeg. Die 

grootste impak van 'n enkele intervensie is beraam in studies van TB-inenting, TPT vir mense wat 

met MIV leef, en opskaal van antiretrovirale behandeling. Vir voorkomende intervensies het 

AAPD's vir insidensie tussen 0.06% en 7.07% gewissel, en vir sorg-kaskade intervensies tussen 

0.05% en 3.27%. In die modelleringstudie, is die vermindering van ILTFU met 50% in die 

bevolking geprojekteer om 49 812 (95% onsekerheidsinterval [UI]: 21 258-84 644) TB-gevalle en 

21 479 (UI: 9 500-32 661) TB-sterftes tussen 2023 en 2035 te voorkom. Sensitiwiteitsanalises het 

getoon dat bevolkingsvlak impak sal afhang van vinnige implementering en die maksimum effek 

van die intervensie. 

 

Afsluiting. Hierdie tesis beskryf 'n geheel van wiskundige modelleringsnavorsing met die fokus 

op TB-voorkoming en -sorg in Suid-Afrika. Hoër ramings van impak wat in studies van 

voorkomende intervensies gerapporteer is, is gevind, wat die behoefte beklemtoon om in TB-

voorkoming in Suid-Afrika te belê. Die impak op bevolkingsvlak van die vermindering van ILTFU 

is geprojekteer om beskeie te wees. Kombinasies eerder as enkele intervensies, soos die 

LINKEDIn-intervensie, is waarskynlik nodig om die eind-TB-strategie-teikens in Suid-Afrika te 

bereik. 
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1  Introduction 

1.1 Background on tuberculosis 

1.1.1 Epidemiology of tuberculosis  

Tuberculosis (TB) is a curable and preventable infectious disease caused by Mycobacterium 

tuberculosis (M.tb). The bacterium was isolated more than 140 years ago (1), however the disease 

continues to affect approximately 10 million people yearly with 1.5 million deaths recorded each 

year (2). M.tb is predominantly transmitted by airborne infectious aerosol through coughing, 

sneezing, singing, and talking. Characteristic symptoms of TB disease may include prolonged 

coughing, chest pain, weakness or fatigue, weight loss, fever, and night sweats (3).  

 

There are different aspects of TB that make the disease difficult to diagnose, treat, and control (4). 

TB can evolve from a contained infection, known as latent TB, to active disease at which point an 

individual may develop symptoms. TB can manifest as subclinical (without symptoms) or clinical 

disease in an infected person, in the lungs (pulmonary TB) or other parts of the body such as in 

bones (extrapulmonary TB). The disease can become resistant to the drugs used for treatment 

which is one of the most difficult challenges in TB control. Increased resistance often results in 

unsuccessful treatment outcomes (5). Some individuals are more at risk of developing active TB 

than others. These include, but are not limited to, immunocompromised individuals such as people 

living with HIV (PLWH) or diabetes, people living in high populous areas which are associated 

with malnutrition and increased air pollution, adults in their most productive years (although TB 

can affect all age groups), and people with increased intake of alcohol and tobacco use (6).  

1.1.2 Major factors influencing the TB epidemic in South Africa 

Together with growing drug resistance of TB, the HIV epidemic is said to be the cause of the rapid 

increase in TB burden in the 1990s which has negatively impacted TB control in South Africa (7). 

In 2021, the Joint United Nations Programme on HIV/AIDS (UNAIDS) estimated an HIV 

prevalence in adults aged 15-49 of 18.3% (15.6 – 20.5%) in the country which highlights the major 

contribution towards TB burden (8). It has been estimated that 55% of TB cases and 69% of TB 

deaths between 1990 and 2019 were due to HIV, consistent with the idea that HIV has a substantial 

population-level effect on TB (9). 

 

Since 2019, SARS-CoV-2 has also largely contributed to an increase in TB burden across the globe 

due to substantial disruptions in TB health services (10). A recent review found that COVID-19 

negatively impacted TB and HIV control in South Africa due to diversion of key resources from 

TB and HIV control to COVID-19 response, lack of patient access to health care, and suspension 

of TB and HIV research (11). The WHO’s Global TB report for 2022 states that COVID-19 

continues to negatively impact TB diagnosis and treatment, stalling progress towards the End TB 

strategy targets. The main outcome of TB impacted by the COVID-19 pandemic was the large 

decrease in case notifications reported in 2020. There was, however, partial recovery from this 

decrease in 2021 (2).  

1.1.3 The World Health Organization’s End TB strategy targets 

In 2014, the World Health Assembly adopted the WHO’s post-2015 End TB strategy to eliminate 

TB globally through targets for prevention, care, and control by 2035 (12). The targets include a 

reduction in TB incidence rates by 90%, the number of TB deaths by 95%, and ensuring zero 

catastrophic costs are incurred by TB-affected households, compared to 2015 levels. According to 

WHO data, for South Africa to reach these goals the country requires a reduction in the TB 
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incidence rate from 988 to 98.8 per 100,000 population and the number of TB deaths to decrease 

from 65,000 to 3,250 by 2035 (2). Although South Africa has reached the first milestone of the 

End TB strategy to reduce TB incidence by 20% compared to 2015 levels (2), the country is 

unlikely to reach the 2035 targets with current strategies (13,14).  

1.1.4 TB prevention and care strategies 

Several pharmaceutical and non-pharmaceutical interventions for TB control exist in South Africa 

and elsewhere. Current preventive strategies include vaccination with the Bacille Calmette-Guérin 

(BCG) vaccine, antiretroviral treatment (ART) among PLWH, treating latent TB infection and 

screening initiatives among high-risk groups, as well as TB preventive treatment (TPT) such as 

isoniazid preventive therapy (IPT) and rifampicin, among others (15).  

 

In addition to preventative measures, interventions along the TB care cascade are vital in reducing 

losses between TB diagnosis, initiating treatment, and successful treatment completion (13,16). 

These interventions may include targeted case finding initiatives, introduction of novel diagnostic 

tools (e.g., using more sensitive diagnostic tools such as Xpert Ultra, or drug susceptibility testing), 

improving linkage to care (e.g., through better communication between patients and health care 

workers), and treatment interventions (e.g., novel or shorter treatment regimens, improving 

treatment adherence), among others (17).  

 

Estimating which of these interventions have had the greatest impact on TB incidence and 

mortality in South Africa in recent years will provide guidance on resource allocation for future 

research. I consider this research gap through a systematic review of transmission-dynamic 

mathematical modelling papers in Chapter 2.  

1.1.5 The care cascade and initial loss to follow-up in South Africa 

Individuals with presumptive TB may be lost along the care cascade anywhere between accessing 

health care services, receiving test results, initiating TB treatment, and successfully completing 

their treatment. Identifying and quantifying these losses is useful for highlighting gaps in health 

systems, and planning strategies to improve the quality of care (18). Care cascades have been 

widely used in HIV research in South Africa (19–21), and are being increasingly used to evaluate 

TB control (16,22). In 2013, it was estimated that ~53% of individuals who accessed care in South 

Africa were successfully treated (13). This estimate was updated to ~47% in 2020, presented by 

the TB Think Tank during a meeting titled “Finding the missing people with TB” in May of 2022 

(correspondence: South African TB Think Tank). This highlights the need for increased efforts to 

improve existing measures and close the gaps along the cascade. 

 

Initial loss to follow-up (ILTFU), defined by the WHO as a “TB patient who did not start treatment 

or whose treatment was interrupted for 2 consecutive months or more” (23), is an important gap 

in the South African TB care cascade (24–26). Individuals who are ILTFU are a concern for TB 

programmes as they are associated with poor patient outcomes (24,27) and are expected to 

contribute to onward transmission. An estimated 21% of diagnosed TB patients in South Africa 

are initially lost to follow-up (13). Several studies have reported underlying reasons and risk 

factors for ILTFU in South Africa. Healthcare-related factors identified include poor 

communication and lack of counselling by health care workers, misinterpretation of diagnostic 

results, under-resourced facilities, and negative staff attitudes (26,28). Patient-level factors include 

poor knowledge on TB treatment, stigma surrounding TB (especially its linkage to HIV), and other 

socioeconomic factors (such as poverty and lack of transport to primary health care facilities) (24). 

Various interventions to avert ILTFU have been proposed. These include more attention to keep 

track of, register, and report TB patients who did not timely initiate treatment (29), ensuring that 

correct contact information is recorded upon registration of a patient, in case follow-up is 
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necessary, clear communication of diagnostic results to patients, interventions to support treatment 

initiation such as registration of TB patients in hospitals (30), and early interaction with TB 

patients to facilitate timely registration and treatment initiation (31).  

1.2 Different models used in infectious disease modelling 

Infectious disease models are important tools for evaluating the effect of intervention strategies 

and assisting policymakers in making informed decisions. There are a vast range of models that 

are used to predict, assess, and control potential infectious disease outbreaks which fall under 

statistical models (e.g., spatial models and regression techniques) and mathematical/ mechanistic 

models (e.g., deterministic compartmental and stochastic Markov Chain models) (32). A key 

distinction between the model types, is that mathematical models simulate transmission and other 

biological processes, while statistical models assume a distributional shape of the epidemic (33). 

Within the mathematical model group, further comparisons can be made including dynamic versus 

static models, individual-based versus compartmental models, and deterministic versus stochastic 

models.  

 

Approaches to mathematical modelling of diseases can be static or dynamic. Static models assume 

that, over time, the probability of disease exposure is constant in the population or varying in a 

pre-defined way (34), while dynamic models allow  the risk of infection to depend on the time-

varying prevalence of infectious individuals (35). A further distinction that can be made are 

individual-based vs.  compartmental models which can either be static or dynamic. In summary, 

compartmental models aggregate individuals in a population according to common characteristics 

where they, in essence, lose their individuality. Individual-based models, however, track each 

member of the population independently where they experience events tailored to their 

demographics and behaviour (36). Distinguishing between deterministic models and stochastic 

models is also important when considering different modelling techniques. When given an input 

parameter set, deterministic outcomes will be the same for each model run. Alternatively, as a 

result of the intrinsic randomness in events simulated by stochastic models, outcomes will be 

different each time the model is run (36,37).  

 

In this thesis, I focus on transmission-dynamic compartmental TB models in South Africa which 

are being increasingly used to estimate the impact of different interventions on population-level 

outcomes such as incidence and mortality (38–40).  

1.3 Problem statement 

South Africa remains one of five high TB burden countries to have more than 500 cases per 

100,000 population in 2021 (2). Recently, considerable declines in individuals accessing 

healthcare services, TB testing and diagnosis have occurred in conjunction with lockdown 

measures implemented to contain SARS-CoV-2 transmission (10). Consequently, TB incidence, 

prevalence and mortality are expected to rise which will impact South Africa’s progress towards 

achieving the End TB strategy targets.  

 

To mitigate these adverse consequences, substantial efforts are required to prevent, find, and 

successfully treat TB in the country. Through the systematic review in Chapter 2, I extract data 

from existing TB modelling studies in South Africa to determine which types of interventions 

could result in the largest reduction in TB burden. Additionally, the review identifies gaps in 

mathematical modelling research that should be addressed to better inform policy making in South 

Africa. Using findings from the review, Chapter 3 implements a modelling approach to fill one of 

these gaps – to estimate the impact of reducing ILTFU in the South African population, a key loss 

in the TB care cascade. Having estimated which interventions could be most successful in reducing 
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TB burden in South Africa, as well as filling a knowledge gap in TB research, allows for a better 

understanding of where resources could be best allocated in this high-burden country. 

1.4 Justification 

Identifying which types of interventions should be focused on for TB prevention and control, and 

estimating the impact of these useful interventions, will aid in reducing TB burden in South Africa. 

Many systematic reviews focusing on mathematical modelling of TB control measures exist (41–

43), but none have considered the impact of different types of interventions in the South African 

context specifically. With regards to reducing ILTFU, several mathematical models have 

estimated the impact of related interventions in the South African population (44–46), however, 

to my knowledge, none involve the use of data from a study that has been implemented in the 

country, and none has simulated ILTFU within the detailed TB care cascade.  

 

Toward this thesis, I conducted a systematic review of mathematical modelling studies in South 

Africa to determine the most impactful interventions for TB control in the country. The systematic 

review is especially relevant in the context of the 2023-2028 National TB programme (NTP) 

Strategic plan and will highlight important research gaps for further modelling studies for South 

Africa. Additionally, I addressed an important gap, estimating the impact of reducing ILTFU in 

South Africa through a mathematical modelling study. I used data and expert opinion provided by 

researchers from the LINKEDIn study, a large quasi-experimental study that was conducted in 

three South African provinces, to estimate population-level impact of scaling-up their intervention 

countrywide. 

 

The combination of the systematic review and modelling study will add to the existing body of TB 

research in South Africa and has implications for TB decision making. 

1.5 Research questions 

This thesis aims to answer the following research questions:  

 

1. “In South Africa, what is the population-level impact of different types of interventions for 

tuberculosis prevention and care towards the targets of the End TB strategy projected by 

mathematical modelling research?”  

 

2. “What is the estimated impact of reducing initial loss to follow-up at country-level on TB 

incidence and mortality in South Africa?” 

1.6 Aims and objectives 

The aim of this project was to systematically review existing mathematical modelling research to 

determine the most effective intervention strategies to reduce TB burden in South Africa, to 

identify gaps in this research, and further conduct a mathematical modelling study to estimate the 

impact of reducing initial loss to follow-up in South Africa. The following objectives were used 

to complement this aim: 

 

1. Conduct a systematic review of mathematical modelling studies in South Africa that 

estimated the impact of prevention and care interventions on population-level outcomes 

linked to the WHO’s End TB strategy Targets (TB incidence, mortality, and TB-affected 

households facing catastrophic costs), and determine which interventions had the most 

promising impact towards reducing TB burden. 
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2. Adapt an existing transmission-dynamic mathematical model of TB to estimate the 

population-level impact of reducing initial loss to follow-up on TB incidence and mortality 

in South Africa using data and estimates from a large implementation study conducted in 

three South African Provinces. 

1.7 Ethical considerations 

This thesis includes a systematic review (Chapter 2) and a mathematical modelling study (Chapter 

3). The systematic review involved a search of publications using three online databases (Scopus, 

PubMed, and Web of Science) accessible through Stellenbosch University, as well as the TB 

Modelling and Analysis Consortiums’ (TB MAC) publicly available list of publications. Our 

search resulted in 29 publications which were obtained from online database searches (n = 27), the 

TB MAC public database (n = 1) and reference list searches (n = 1). No individual patient-level 

data was accessed during this review. 

 

The modelling study simulated population-level tuberculosis incidence, and mortality at country-

level in South Africa. No individual patient-level data was used. Additional data required, such as 

parameter estimates for the baseline level of initial loss to follow-up in South Africa was obtained 

through review of the published literature (the systematic review conducted as well as recent 

epidemiological studies on tuberculosis) and expert opinion. The mathematical model used in this 

study was developed as part of another project and has been previously calibrated for the South 

African context. 

 

An application for exemption from ethical clearance (Project ID: 26464, HREC reference number 

X22/09/023) was approved by the Health Research Ethics Committee (HREC) on 12/10/2022. 

1.8 Thesis overview 

The outline of this thesis is as follows: Chapter 1 consists of relevant background information on 

TB and describes interventions and strategies used to prevent and treat the disease. The purpose, 

justification and objectives of the study are also outlined in the first chapter. Chapter 2 acts as the 

first paper in the thesis. It is a systematic review of mathematical models used to determine which 

existing interventions for TB prevention and care are most promising in reducing TB incidence 

and mortality in South Africa. The review is used to highlight important gaps in TB modelling 

research in South Africa. Chapter 3 describes findings from a mathematical modelling study. I 

used an existing transmission-dynamic mathematical model to estimate the number of incident TB 

cases and TB deaths that could be averted if an intervention to reduce ILTFU in the South African 

population was scaled up country wide. The study uses data and estimates from the LINKEDin 

study, a large implementation study to reduce ILTFU in three South African provinces. Chapter 4 

includes the discussion of the research conducted towards this thesis as a whole and provides 

recommendations for future research.  

 

 

  

https://scholar.sun.ac.za



 

 

 6 

2  Impact of interventions for tuberculosis prevention and care in South 

Africa – a systematic review of mathematical modelling studies 

This chapter presents a study that has been accepted for publication in the peer-reviewed scientific 

journal, the South African Medical Journal. The manuscript is titled “Impact of interventions for 

tuberculosis prevention and care in South Africa – a systematic review of mathematical modelling 

studies” (https://doi.org/10.7196/SAMJ.2023.v113i3.16812) and will be published in the March 

2023 issue. The study aims to systematically review TB transmission-dynamic mathematical 

modelling studies specific to South African populations at national and sub-national level that 

estimated the impact of interventions on outcomes that link to one of the three End TB strategy 

targets. This chapter also aims to identify gaps in TB modelling research.  

2.1 Introduction 

South Africa remains one of the countries with the highest TB burden in the world (2). In 2020, 

an estimated 328,000 people developed TB, and 61,000 people died from the disease (2); TB thus 

remains the leading infectious disease cause of death in the country (47). Recent measures to 

contain the spread of SARS-CoV-2 (10) have led to considerable declines in individuals accessing 

health care services, TB testing and individuals diagnosed with TB (48); resulting in an expected 

increase in TB prevalence and mortality. These developments have also seriously affected South 

Africa’s progress towards the milestones and targets set for the World Health Organization 

(WHO)’s End TB strategy that aims to reduce the number of TB deaths by 95%, the TB incidence 

rate by 90% (relative to 2015), and the percentage of TB-affected families facing catastrophic costs 

due to TB to zero by 2035 (49). 

 

To mitigate these adverse consequences on TB epidemiology and to restore progress towards the 

End TB strategy targets, substantial additional efforts are needed to prevent, find and successfully 

treat TB in South Africa. A comprehensive consultation process, coordinated by the TB Think 

Tank of the National Department of Health, is currently under way to define additional 

interventions to be implemented as part of South Africa’s upcoming 2023-2027 National 

Tuberculosis Programme (NTP) Strategic Plan. 

 

For policy makers to identify and implement strategies for optimal outcomes towards the End TB 

strategy targets, evidence must be collected to inform decisions (40). Generating this evidence 

directly through empirical research poses considerable challenges. Cluster-randomized trials to 

estimate the population-level impact of interventions on TB incidence, mortality and catastrophic 

costs demand considerable resources and time. They often focus on a limited set of (e.g., one or 

two) interventions, yielding limited insights into how these interventions will compare with 

alternatives (50). 

 

Mathematical models for infectious diseases are valuable tools for evaluating the effect of 

intervention strategies and assisting policymakers in making informed decisions (51). 

Transmission-dynamic models of TB are increasingly used to estimate the impact of interventions 

on population-level outcomes in high-burden countries, including South Africa (38,39,52). To 

date, the evidence from mathematical modelling research on interventions to reduce TB incidence, 

mortality and catastrophic costs in South Africa has not been systematically assessed.  

 

In an effort to support decision making for TB in South Africa, I reviewed mathematical modelling 

studies that estimated the population-level impact of interventions towards the End TB strategy 

targets for TB incidence and mortality, and catastrophic costs associated with TB. I aimed to 

describe the types of interventions, intervention designs and target populations considered, and the 
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impact estimated through modelling. I also aimed to highlight gaps in TB modelling research that 

could be addressed in future research to inform TB policy making in the country. 

2.2 Methods 

The PICOS (Population, Intervention, Control, Outcomes and Study design) tool (53) was 

employed to define the research question and the design of this systematic review. Table 2.1 

outlines the application of the PICOS methodology. The review protocol is registered with the 

international prospective register for systematic reviews (PROSPERO; CRD42021276526). I 

adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines for 2020 (54). The PRISMA checklist can be found in the appendix (Table A1). 

 

Table 2.1: PICOS framework for the research question and the limit applied on each criterion 

 

PICOS criterion Definition Limit management 

Population South Africa (country or subpopulations) Search limit 

Intervention 

Any interventions reducing the impact of 

population-level outcomes (e.g., case finding, 

vaccination, TB preventive treatment, diagnosis, 

treatment) 

No limit applied 

Comparator Current status quo of each modelled intervention No limit applied 

Outcome 

Reduction in number of TB deaths, reduction in 

TB incidence rate, reduction in number of 

households facing catastrophic costs 

Inclusion/exclusion 

criteria 

Study Design Transmission-dynamic, mathematical models 

Search terms and 

Inclusion/exclusion 

criteria 

2.2.1 Search strategy and selection criteria 

I conducted a systematic search of the published literature using PubMed, Web of Science, and 

Scopus databases (see Table 2.2 for individual search strategies). Additionally, I searched the TB 

Modelling and Analysis Consortium’s (TB MAC) list of mathematical and economic TB 

modelling studies (55), Global Index Medicus, African Index Medicus, and reference lists of 

eligible studies. I also consulted four leading global experts in TB modelling to identify additional 

publications not included in the initial search from their personal databases. The search was 

conducted up to September 28, 2021.  No restriction on the year of publication was applied. I 

included articles that reported results using population-based, transmission dynamic models of TB 

in South Africa at country or sub-country level. I was interested in studies that estimated reductions 

in population-level TB outcomes (incidence, prevalence and/or mortality). The studies were 

required to model the impact of interventions towards at least one of the WHO’s End TB strategy 

targets (i.e., TB incidence, TB mortality, or catastrophic costs due to TB). I excluded articles that 

reported statistical models of empirical data or cohort models that were not transmission dynamic. 

I further excluded reviews of modelling studies and articles describing mathematical models that 

did not refer to the South African population (or a population in South Africa). 

 

Table 2.2: Search strategies for each of the electronic databases 

 

Database Search Terms 

PubMed 

(“South Africa*”[Title/Abstract]) AND (Tuberculosis[Title/Abstract] OR 

TB[Title/Abstract]) AND ((mathem* AND (model or models)) OR (mathem* 

modell*) OR (mathem* modeling) OR (modelling OR modeling) OR “Population 
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Dynamics”[MeSH Terms] OR “Population Dynamics” OR “System Dynamics” 

OR “Computer Simulation” OR “Computer Simulation”[MeSH Terms] OR 

“epidemiologic* model” OR “tuberculosis model” or “TB model” OR 

“transmission model” OR “dynamic model” AND model) 

Scopus 

( TITLE-ABS-KEY ( "South Africa*" )  AND  TITLE-ABS-KEY ( Tuberculosis  

OR  TB )  AND  ALL ( ( ( mathem*  AND  ( model  OR  models ) )  OR  ( 

mathem*  AND  modell* )  OR  ( mathem*  AND  modeling )  OR  ( modeling  

OR  modelling )  OR  "Population Dynamics"  OR  "System Dynamics"  OR  

"Computer Simulation"  OR  "epidemiologic* model"  OR  "tuberculosis model"  

OR  "TB model"  OR  "transmission model"  OR  "dynamic model" AND model ) 

) ) 

Web of 

Science 

((AB=tuberculosis OR TI=tuberculosis OR AB=TB OR TI=TB) AND 

(AB=("South Africa*") OR TI = ("South Africa*")) AND ALL=(((mathem* AND 

(model OR models)) OR (mathem* modell*) OR (mathem* modeling) OR 

(modeling OR modelling) OR "Population Dynamics" [MeSH Terms] OR 

"Population Dynamics" OR "System Dynamics" OR "Computer Simulation" OR 

"Computer Simulation" [MeSH Terms] OR "epidemiologic* model" OR 

"tuberculosis model" OR "TB model" OR "transmission model" OR "dynamic 

model" AND model))) 

2.2.2 Data extraction 

Titles and/or abstracts of articles identified during the initial search were screened by two 

reviewers. The full texts of these studies were then retrieved and independently assessed for 

eligibility. Data extracted from eligible studies included the type of model, study population, 

intervention details, key study outcomes and model projections. For studies that modelled multiple 

scenarios of the same intervention, I extracted the scenario that resulted in the greatest impact. I 

described modelling results by type of intervention and target population with respect to estimated 

gains towards the End TB strategy targets. In addition, for studies describing country-level TB 

models, I compared average annual percentage declines (AAPDs) in TB incidence and mortality 

estimated for different interventions relative to base-case (no intervention). For articles reporting 

percentage declines over the entire model time horizon, I calculated AAPDs using the following 

formula 

 

𝐴𝐴𝑃𝐷 = (1 −  √1 − 𝑃𝑃𝐷/100𝑡  )  ×  100 

 

where 𝑡 denotes the time horizon of the model, and 𝑃𝑃𝐷 the period percentage decline attributable 

to the intervention investigated (i.e., the percentage difference between the baseline scenario and 

intervention scenario at the end of the time horizon) reported in a study.  

 

I illustrate how AAPDs are calculated in the assumed scenario Figure 2.1 (A) and I include an 

example of a typical realistic scenario of the reduction in incidence in Figure 2.1 (B) to show a 

scenario in which the assumption may fail. I assume the difference between baseline and 

intervention increases linearly over the time horizon as shown in Figure 2.1 (A). If a hypothetical 

intervention is introduced into a population, TB incidence is estimated to decline by an additional 

30% compared to baseline at the end of the time horizon (15 years). The baseline scenario is 

defined as a continuation of current TB control measures in the country. The period percentage 

decline (PPD) is thus 30% compared to baseline. Using our AAPD formula for the assumed 

scenario (Figure 2.1 (A)), we obtain an AAPD of 2.35%.  

https://scholar.sun.ac.za



 

 

 9 

 

2.2.3 Risk of bias assessment  

An adapted risk of bias tool (41,56,57) was used to assess the methodological quality of eligible 

modelling studies. Criteria in the tool included aims and objectives, setting and population, 

intervention(s) and comparator(s), outcome measures and research questions, modelling methods, 

parameter specifications, assumptions, data quality and uncertainty, fitting methods, validation, 

results and discussion presentation, funding sources, and conflicts of interest. Table 2.3 gives a 

full description of each criterion and considerations for the score given, adapted from Harris et al. 

(41). An overall score consideration of 0 was given if no required information was provided, 1 if 

some aspects of the study were incomplete, and 2 if the necessary information was clear and 

appropriate for the research question. A risk-of-bias score (0-28) was given to each study by adding 

itemised scores. In accordance with guidance from previous users of the tool, the quality of eligible 

studies was deemed very high (> 22), high (19-22), medium (14-18) or low (< 14) according to 

the risk of bias score.  

  

Figure 2.1: (A) Illustrative example of how AAPDs are calculated for different interventions in the 

review – assumed scenario compared to baseline. (B) Illustrative example of how this assumption 

may fail. 
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Table 2.3: Risk of bias tool for the assessment of eligible modelling studies (adapted slightly from Harris et al. to fit the research question(41)) 

Criterion Considerations Score considerations (0, poor to 2, good) 

1 
Are the aims and objectives 

clear? 

Are the research questions and modelling 

objectives clearly defined? 

0 Not stated 

1 Stated but vague 

2 Stated and focussed 

Definitions: 

max 8 

points 

2 
Is the setting and population 

clearly defined? 

Does the paper clearly state the setting (e.g., 

geographical location, high/low TB burden)? 

0 Not stated 

1 Stated but vague or details missing 

2 Stated and focussed 

Does the paper clearly state the modelled 

population? (e.g., patient or population group 

characteristics) 

Have sub-populations necessary for the research 

question and setting been modelled? 

3 

Are the intervention and 

comparators adequately 

defined? 

Does the paper clearly state the population(s) 

targeted for specific interventions? 

0 Not stated or very unclear 

1 Stated but details missing 

2 Stated and all necessary details stated 

Does the paper clearly define the intervention 

characteristics (e.g., specificity/ sensitivity of a 

test, vaccine efficacy, duration of treatment)? 

If there is a comparator (current status quo), is it 

clearly defined? 

4 

Are the outcome measures 

defined and answer the 

research question? 

Does the paper clearly define the outcomes of 

interest? 

0 Not stated, very unclear or not suited to 

research question 

1 Stated but details missing or not 

directly aligned with research question 

2 Stated, all necessary details stated, and 

aligned with research question 

Do the outcomes correspond to the research 

question? 

5 

Are the model structure and 

time horizon clearly 

described and appropriate 

for the research question? 

Is the model structure clearly reported and 

appropriate for the research question? 

0 Not appropriate model structure, or 

poor/no description of model 

1 Incomplete description, and/or 

appropriate in part for research question 

2 Complete and reproducible, appropriate 

structure and time horizon 

Model 

methods: 

max 4 

points Does the model reflect current knowledge of 

disease natural history? Does the model consider 

subclinical disease in any form? 
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Is the time horizon and time step of the model 

clearly stated and appropriate to the research 

question (i.e., is it long enough to capture health 

effects)? 

6 

Are the modelling methods 

appropriate for the research 

question and adequately 

described? 

Were the modelling methods clearly described, 

and suited to the research question? 

0 Not appropriate model structure, or 

poor/no description of methods 

1 Incomplete description, and/or 

appropriate in part for research question 

2 Complete and reproducible, appropriate 

method 

7 

 

Are the parameters, ranges 

and data sources specified? 

Are all parameters and their ranges reported? 0 Poorly reported 

1 Some information missing 

2 Complete reporting of parameters, 

ranges and data sources 

Model 

inputs: max 

6 points 

Are the data sources for parameters reported? 

8 
Are any assumptions explicit 

and justified? 
Are all assumptions explicit and justified? 

0 Not reported 

1 Explicit 

2 Explicit and justified 

9 

Is the quality of data 

considered and is uncertainty 

explored through uncertainty 

and/or sensitivity analyses? 

Are data limitations discussed? Are any of the 

sources known to the reviewer to be 

inappropriate (e.g., do not match the parameter, 

are outdated, or known to be poor quality)?  

0 No sources or uncertainty 

1 Partially addressed, and/or some data 

inappropriate 

2 Fully addressed 
Is uncertainty in model structure, parameters 

and/or assumptions explored through uncertainty 

and/or sensitivity analyses? 

10 
Is the method of fitting 

described and suitable? 

Is the method of fitting/calibrating the model 

clearly described? 

0 Not done, unsuitable method or poor/no 

description 

1 Incomplete description or method not 

optimal 

2 Complete description and suitable 

methods  

Fitting/ 

validation: 

max 4 

points 

Is the method of model fitting/calibration 

suitable? 

11 
Has the model been 

validated? 

Has an assessment of validity of the results been 

made by comparing across one or more different 

model structures, or against a validation data set? 

0 Not considered 

1 States criteria for validation 

2 Validation undertaken 
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Overall Scoring: Max 28 points  

Very high >22 

High 19-22 

Medium .14-18 

Low <14 

 

12 

Have the results been clearly 

and completely presented, 

with a range of uncertainty? 

Have the outcome values and their uncertainty 

ranges for each intervention/scenario been 

reported? 

0 Not reported, very unclear or not suited 

to research question 

1 Stated, but ranges or planned sensitivity 

analyses missing and/or not directly 

aligned with research question 

2 Values and ranges and planned 

sensitivity analyses reported and aligned 

with research question. 

Results: 

max 4 

points 

Do the results match the objectives? 

Are sensitivity analyses clearly reported? 

13 

Are the results appropriately 

interpreted and discussed in 

context? 

Does the discussion reflect a fair and balanced 

interpretation of the results?  

0 No/poor discussion 

1 Some discussion but key points, 

limitations or context missed 

2 Full discussion of key points in context, 

generalisability considered, limitations 

discussed 

Are the results of the study discussed in context 

and is generalisability considered? 

Are possible biases and limitations discussed? 

14 
Are the funding source and 

conflicts of interest reported? 

Is the funding and the role of the funder clearly 

stated? 
0 No statement of funding or conflicts 

1 Funding or conflicts reported 

2 Funding and conflict statement 

Conflicts: 

Max 2 

points Is there a conflict of interest statement? 
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2.3 Results 

2.3.1 Search process and selection of articles 

The initial search yielded a total of 2,128 records of which 1,243 were unique records. The majority 

of articles excluded at title and abstract screening (n=1168) described statistical models, 

descriptive analyses, or static cost-effectiveness models. Following full-text review of 75 articles, 

I identified a total of 29 that met the inclusion criteria. A full breakdown of articles identified for 

this review is shown in Figure 2.2. Detailed reasons for exclusion at full-text review for 

transmission dynamic modelling studies are provided in addendum A (Table A2). 

 

2.3.2 Risk of bias assessment 

From 29 eligible records assessed for quality, 16 received a risk-of-bias score of > 22, and were 

considered of very high quality, and 13 received a score of 19-22, considered of high quality. A 

median score of 23 (of 28) was recorded, equivalent to very high quality. Reductions in the score 

were due to lack of model validation, incomplete parameter descriptions, lack of justification of 

assumptions made, and several missing limitations and study context in results. Detailed scores of 

the assessment for the individual studies are provided in Table 2.4. 

Web of Science 

628 records

PubMed

707 records

Scopus

793 records

Titles & abstracts screened

1243 records

Duplicates removed 

885 records

Excluded

1168 records

Included based on title & abstract

75 records

Full text review

75 records

Final included

29 records

Excluded (48)

• Not modelled for South Africa (3)

• Not a transmission dynamic model (26)

• None of End TB Strategy targets quantified (2)

• No intervention/s modelled (11)

• Population not representative (2) 

• Not population-based (1)

• Review of modelling studies (3) 

Studies included from other sources (2)

• TB MAC (1)

• Reference searches (1)

Figure 2.2: Flow diagram of the study selection process. 
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Table 2.4: Risk of bias assessment of included studies 

Study Risk of Bias item 
Final 
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Quality 
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Azman et al. (58) 2 1 1 2 2 2 1 1 2 1 0 2 2 2 21 High 

Basu et al. (59) 2 1 1 2 2 2 2 2 2 2 2 2 2 2 26 Very High 

Basu et al. (60) 2 2 2 2 2 1 2 2 2 2 0 2 1 1 23 Very High 

Chindelevitch et al. 

(61) 
2 2 2 2 2 2 2 1 2 2 1 2 2 2 26 Very High 

Dowdy et al. (62) 2 2 2 2 2 1 1 2 2 1 0 2 2 1 22 High 

Dye et al. (63) 2 2 2 1 2 1 1 1 1 2 0 1 1 2 19 High 

Dye et al. (64) 2 2 2 2 1 2 2 2 1 2 0 2 1 1 22 High 

Gilbert et al. (65) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 28 Very High 

Gilbert et al. (66) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 28 Very High 

Harris et al. (67) 2 2 2 2 2 2 2 2 2 2 0 2 2 2 26 Very High 

Hippner et al. (45) 2 2 2 2 2 2 2 1 1 1 0 1 1 2 21 High 

Houben et al. (40) 2 2 2 1 2 2 1 1 1 1 0 1 2 2 20 High 

Kendall et al. (68) 2 2 2 2 2 2 2 2 2 2 0 2 2 2 26 Very High 

Kendall et al. (69) 2 2 2 2 2 2 2 2 2 2 0 2 2 1 25 Very High 

Knight et al. (44) 2 2 2 2 2 2 2 1 1 1 0 1 2 2 22 High 

Knight et al. (70) 2 2 2 2 2 2 1 1 1 2 0 1 2 2 22 High 
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Marx et al. (71) 2 2 2 2 2 2 2 2 2 2 0 2 2 2 26 Very High 

Marx et al. (72) 2 2 2 2 2 2 2 2 2 2 0 2 2 2 26 Very High 

Menzies et al. (38) 2 2 2 2 2 2 2 1 2 2 0 2 2 2 25 Very High 

Pretorius et al. (73) 2 2 2 2 2 2 1 1 1 2 0 1 1 2 21 High 

Rhines et al. (74) 2 2 2 2 2 2 1 1 1 1 0 2 1 2 21 High 

Ricks et al. (75) 2 2 2 2 2 2 2 2 2 2 0 2 2 2 26 Very High 

Shrestha et al. (76) 2 2 2 2 2 1 1 1 1 2 0 1 1 2 20 High 

Sumner et al. (77) 2 2 2 2 2 2 2 2 2 2 0 1 1 2 24 Very High 

Sumner et al. (78) 2 2 2 2 2 2 2 2 2 2 0 2 2 2 26 Very High 

Uys et al. (79) 2 2 1 2 2 2 1 1 2 1 0 2 1 0 19 High 

Verguet et al. (80) 2 2 2 2 2 2 1 2 2 1 0 2 2 2 24 Very High 

Vynnycky et al. (46) 2 2 2 2 2 2 2 2 2 2 0 1 1 2 24 Very High 

Williams et al. (81) 2 2 1 2 2 2 1 1 2 1 2 2 1 1 22 High 
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2.3.3 Characteristics of eligible studies 

Studies varied considerably in terms of model design, time horizon over which interventions were 

modelled, study population, type of intervention and outcomes measured (Figure 2.3). Of the 29 

articles included, 20 described deterministic compartmental models, (38,45,46,58,59,61–

69,74,75,77–79,81) three stochastic compartmental models, (60,71,72) and three stochastic 

individual-based models (IBM) (44,70,76). The remaining three studies used a combination of 

different types of transmission-dynamic models (40,73,80). All but one study included 

stratifications by HIV status to account for the modifying effect of HIV infection on TB natural 

history (79). With respect to the End TB strategy targets, all but two studies (60,80) reported 

outcomes for reductions in TB incidence, 17 reported reductions in TB mortality, (38,44,45,58,60–

62,64,65,67–73,75) and only one (80) considered catastrophic costs averted due to TB 

interventions. 

2.3.4 Interventions modelled 

Of the 29 studies identified, 22 modelled hypothetical interventions, while seven modelled 

scenarios for scale up of existing interventions (38,61,63,69,73,77,81). Seven studies modelled 

preventive interventions, (64,67,69,73,74,76,81) 12 considered interventions along the care 

cascade for TB, (38,45,58,60,62,68,70,75,77–80) and 10 considered a combination of both 

(40,44,46,59,61,63,65,66,71,72). Table 2.5 provides an overview of key characteristics and study 

outcomes by type of intervention and setting for the studies included in this review. Estimates of 

impact measured in the studies are provided below. 

Figure 2.3: The number of included studies grouped by different characteristics.  

*Models may use multiple interventions. (ILTFU = initial loss to follow-up, TPT = TB preventive 

treatment, ART = antiretroviral therapy) 
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2.3.4.1 Vaccination 

Three studies estimated the impact of vaccination against TB, two of which modelled novel 

vaccines (63,67), and one considered revaccination using the Bacillus Calmette-Guerin (BCG) 

vaccine (64). Considerable reductions in TB incidence and mortality were projected for a 

hypothetical novel vaccine with 70% efficacy in preventing M.tb infection (63), and a different 

hypothetical novel vaccine with 100% efficacy, equally effective in PLWH and HIV-negative 

people, M.tb infected and M.tb uninfected populations (67). The latter study considered various 

vaccination strategies including  early-adolescent and 10-yearly mass vaccination campaigns (67). 

Re-vaccinating HIV-negative adolescents in an urban high-transmission setting using the BCG 

vaccine (efficacy: 10-80%) was estimated to be of limited impact but potentially cost-effective 

(64). 

2.3.4.2 ART for TB prevention 

Five studies estimated the impact of ART scale up for TB prevention in South Africa. Two were 

published in 2015 (44,61) and one in 2014 (73), at a time when ART eligibility in South Africa 

was limited to people living with HIV (PLWH) with a CD4 count of ≤500 cells per mm3 (82) and 

focused on expanding ART towards universal treatment (regardless of CD4 count). Reaching 80% 

coverage among PLWH was estimated to reduce TB incidence and mortality substantially (61,73), 

while a coverage of 42% was estimated to be of lower impact (44). Other studies focused on 

combinations of ART and isoniazid preventive therapy (63), and the introduction of universal HIV 

testing with immediate ART following a positive test (81). 

2.3.4.3 TB preventive treatment 

Six studies estimated the impact of TB preventive treatment (TPT) which all considered isoniazid 

monotherapy. Target groups considered included adolescents, PLWH and people previously 

treated for TB. Screening adolescents attending secondary schools for latent TB infection followed 

by TPT for those testing positive was found to be beneficial to both the adolescent and adult 

populations (74). Scaling up TPT among PLWH on ART after screening for TB disease was 

estimated to lead to considerable reductions in population-level TB incidence and mortality in one 

study (63), but was of lower impact in another (40).  Limited impact was estimated when extending 

TPT to HIV-negative individuals (44). Two subsequent studies of TB in a in a suburban high-

incidence setting concluded that TPT combined with case finding/follow-up examinations among 

people who previously completed TB treatment could accelerate declines in TB incidence and 

mortality at population level and potentially reduce costs (71,72). 

2.3.4.4 Case finding/ screening 

Seven studies modelled TB screening/ active case finding (ACF) interventions. Target populations 

considered included the general population, PLWH on ART, people previously treated for TB and 

public health clinic attendees. Three studies considered case-finding interventions in the general 

population. Periodic ACF reaching 60% of the general population using a hypothetical, high-

sensitivity screening test was estimated to moderately reduce TB incidence with greater impact 

seen on mortality (44). In a rural setting, symptom-based screening followed by Xpert, culture 

and/or drug susceptibility testing (DST) was estimated to simultaneously reduce incident 

multidrug-resistant (MDR-) and extensively drug-resistant (XDR-) TB (66). Increasing the use of 

a symptom-based screening tool from 40% to 100% among people attending ART was estimated 

to have limited impact on TB incidence (77). Expanded access to care using outreach clinics and 

symptom-based screening in primary care was estimated to reduce cases of catastrophic costs due 

to TB substantially, with larger impact seen after 5-10 years (80). One study in a high-incidence 

setting focused on ACF among people who previously completed TB treatment. The study showed 

considerable declines in TB incidence for targeted ACF alone or in combination with TPT (71). 
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Two studies modelled the impact of TB screening among individuals attending public health care 

clinics. Verbal TB symptom screening at public health clinic entrances, assuming 100% screening 

coverage, was estimated to reduce TB incidence countrywide (40). In the Western Cape province, 

increasing cough-based screening coverage followed by smear microscopy for those positive was 

estimated to have noticeable impact on TB incidence and mortality (45).  

2.3.4.5 Diagnostic interventions 

Five modelling studies focused on Xpert-based algorithms as the standard diagnostic test for TB 

in South Africa, prior to (38,46,61,65) and during (77) its roll-out in 2013. A diagnostic modelling 

study of TB in five African countries including South Africa suggested that the introduction and 

scale-up of Xpert could reduce morbidity and mortality, with less impact seen on long-term 

epidemiological outcomes (38). Replacing all smear-microscopy tests with Xpert (61), increasing 

the coverage of Xpert-based diagnoses from 80% in 2016 to 100% in 2035 (77) and supplementing 

DST with Xpert (65) were suggested to have limited impact on TB incidence and mortality. 

Diagnosing gold miners, an occupational group at high risk for TB in South Africa, with Xpert 

instead of radiographical screening was estimated to reduce TB incidence in mining settings 

substantially (46). One study estimated the impact of novel lateral flow urine lipoarabinomannan 

(LAM) tests for the early detection of TB in South Africa and found that, while future LAM tests 

could be important for averting TB deaths among PLWH with advanced disease, population-level 

impact would depend on diagnostic accuracy (75). All three studies that investigated the impact of 

DST on drug-resistant (DR)-TB concluded that, although transmission could be reduced, 

additional interventions would be necessary to effectively reduce the burden of drug-resistant TB 

in the population (60,62,79). 

2.3.4.6 Reducing initial loss to follow-up 

One study focused on interventions for reducing initial loss to follow-up (ILTFU), defined as the 

loss of individuals with confirmed TB from care before initiating treatment. It concluded that 

decreasing ILTFU by 50% through higher efficiency in  the diagnostic process, increased 

education and improved follow-up by healthcare professionals could lead to moderate reductions 

in TB incidence (44). 

2.3.4.7 Treatment 

Eight modelling studies focused on TB treatment-related interventions of three types: reducing 

poor treatment outcomes, introducing novel drugs and treatment regimens, and improving drug-

resistant (DR)-TB treatment. Three studies considered reducing poor outcomes of routine TB 

treatment in South Africa. Identifying treatment failure, improving cure rates (61), and increasing 

treatment success through improved adherence (44) were estimated to yield limited impact on TB 

incidence and mortality. However, another study suggested that improving treatment quality by 

using mobile health care, patient follow-up, adherence counselling and improved staffing for 

MDR-TB could greatly reduce catastrophic costs in TB-affected households (80). Two studies 

focused on the introduction of hypothetical novel TB treatment regimens at country level. 

Focusing on treatment efficacy in clinical trials of novel treatment regimens, in this case a 

rifampicin-resistant regimen, was estimated to yield significant impact on TB incidence and 

mortality (68). Rapid scale-up of a four-month TB treatment regimen that was as effective as the 

standard six-month regimen, but would reduce loss to follow-up during treatment, was estimated 

to be of low impact (44). Three studies focused on treatment interventions to reduce MDR- and 

XDR-TB. A study published in 2009, when XDR-TB treatment was only offered in hospitals, 

estimated that early DST in combination with providing treatment at outpatient health clinics (as 

opposed to inpatient treatment) could substantially reduce the probability of XDR-TB epidemics 

(60). Improving first-line and MDR-TB treatment success using patient monitoring and 
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community outreach programs (40) and MDR-TB treatment decentralization, initialized by 

shortened hospitalization and home-based treatment for individuals presenting for treatment  (65) 

were estimated to accelerate reductions in TB incidence and mortality.  

2.3.4.8 Other interventions 

Reducing delay in care seeking among people experiencing TB-characteristic symptoms was 

found to have substantial impact on TB incidence and mortality (61). Halving the annual risk of 

infection through a combination of interventions to enhance case management was estimated to 

reduce TB incidence and mortality four-fold and eight-fold, respectively (63). One modelling 

study considered the use of a novel mRNA correlate-of-risk (COR) test (83) to target TPT towards 

high-risk HIV-negative adults. Use of this new test for effective targeting of TPT was estimated 

to reduce TB incidence considerably (78). 
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Table 2.5: Outcomes reported for interventions modelled by eligible studies 

Publication 

Time horizon 

Intervention modelled and target 

population 
Study outcome* 

% Reduction compared to 

baseline at end of time 

horizon or number averted 

over time horizon

C
o
u

n
tr

y
 l

ev
el

 

Vaccination 

Dye et al. (63)

2025-2050 

Hypothetical pre-infection vaccine 

introduced in 2025 protecting 70% 

of uninfected, HIV-negative people 

by 2050 

Number of TB cases and deaths would fall 

from 8,500 to approximately 1,700 and 1,220 

to 360 per million, respectively.  

Incidence: 80% 

Deaths: 70.5% 

Harris et al. (67)

2025-2050 

Hypothetical vaccines with varied 

efficacy to prevent infection or 

disease (70/100%), effective in 

uninfected or infected individuals 

and duration of protection of 10 

years 

A pre-/post-infection vaccine (efficacious for 

PLWH) for protection against infection and 

disease resulted in an 84% IRR (81-87%) and 

an 83% reduction in mortality. A vaccine with 

the same specifications, but with 70% 

efficacy, resulted in an IRR of 71% (66-89%). 

Incidence (100%): 84% 

Mortality (100%): 83% 

Incidence (70%): 71% 

ART for TB prevention 

Chindelevitch et al. 

(61) 

2012-2032 

Expanding ART eligibility by 

increasing ART initiation for each 

CD4 category for PLWH 

Universal ART eligibility over 20 years 

reduced incidence and mortality (000s) by 

3,437 (2,387-4,696) and 1,306 (939-1,747), 

respectively. 

Incidence: 50%

Mortality: 53.8% 

Dye et al. (63)

2010-2050 

Increasing ART coverage from 

40%-80% (2010-2050) for PLWH 

on IPT 

The efficacy of ART in preventing TB per unit 

time is 67% which is offset by a 50% 

reduction in mortality, extending the number 

of life-years at risk of TB.  

Incidence: 2.4% 

Mortality: 1.6% 

Knight et al. (44) 

2014-2032 

Expanding ART eligibility for 

PLWH 

ART given universally (UTT) reduced 

incidence and mortality by 21% and 30%, 

respectively.   

Incidence: 23% 

Mortality: 33% 
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Pretorius et al. (73) 

2014-2033 

Improving pre-ART and ART 

services, and expanding ART 

eligibility for PLWH 

Expanding ART access to all PLWH 

(universally), with 80% coverage, would 

reduce incidence and mortality by 10-23% and 

13-36%, respectively. 

Incidence: 10-23% 

Mortality: 13-36% 

Williams et al. (81) 

2010-2050 

Regular HIV testing and immediate 

ART for PLWH  

HIV test-and-treat could avert 0.6 of 2.17 

million cases of TB between 2010 and 2015 

and 4.58 of 9.82 million cases between 2015 

and 2050.   

Cases (2010-2015): 28% 

Cases (2015-2050): 47% 

 

TB preventive treatment 

Dye et al. (63) 

2025-2050 

Increasing coverage of ART-linked 

IPT (from 0% -75%) for PLWH 

between 2025 and 2035  

IPT scale-up could reduce the number of cases 

and deaths from 8,500 to approximately 1,400 

and 1,220 to 200 per million, respectively, by 

2050. 

Incidence (IPT): 83.5% 

Mortality (IPT): 83.6% 

Houben et al. (40) 

2015-2025 

Providing continuous ART-linked 

IPT to PLWH  

In addition to the 2-5% annual decline in 

incidence, continuous IPT reduced incidence 

by a further 16% (range 8-51%).  

Incidence: 16% 

Knight et al. (44) 

2014-2032 

Providing IPT to HIV-negative 

people 

By 2032, incidence and mortality were 

reduced by 17% and 25%, respectively, for the 

same intervention. 

Incidence: 17% 

Mortality: 25% 

Rhines et al. (74) 

2012-2032 

Scale-up of IPT to adolescents in 

secondary schools (from 5% to 

90%)  

90% IPT coverage in adolescents testing 

positive for infection reduces incidence in 

adolescents and adults by 55% and 36%, 

respectively. 

Incidence (adolescents): 55% 

Incidence (adults): 36% 

Case finding/ screening 

Azman et al. (58) 

2012-2022 

Sustained ACF programs in the 

general population  

Sustaining an increase of 25% of cases 

diagnosed and treated in their first year could 

reduce incidence and mortality by 22-27% and 

40-44%, respectively. 

Incidence: 22-27% 

Mortality: 40-44% 

Basu et al. (60) 

Over 5 years 

Early XDR-TB screening in 

hospitals and the community 

In combination with improved treatment, early 

screening prevented approximately 50 deaths 

per 100,000 over 5 years.  

Deaths: 50 per 100,000 over 

5 years 
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Houben et al. (40) 

2015-2025 

Screening of all attendees at 

primary-health clinics 

In addition to the 2-5% annual decline in 

incidence, screening reduced incidence by a 

further 20% (7-35%). 

Incidence: 20% 

Knight et al. (44) 

2014-2032 

ACF in the general population 

measured in 2032  

Periodic ACF with high sensitivity and high 

coverage reduced incidence and mortality by 

48% and 58%, respectively, by 2032. 

Incidence: 48% 

Mortality: 58% 

Sumner et al. (77) 

2016-2035 

Intensified case finding (symptom-

based screening) for PLWH  

Symptom-based screening for PLWH reduced 

incidence by 14.5% (12.2-16.3%).  

Incidence: 14.5% 

 

Verguet et al. (80) 

2016-2035 

Expanding access to care in outreach 

clinics and symptom screening in 

primary care facilities for 

households facing catastrophic costs 

due to TB 

Decreasing population without access to care 

from 5% to 0% would avert 60,000-240,000 

(5-20%) cases of catastrophic costs. 

Households in the lowest two income quintiles 

benefitted the most with 65-90% of cases of 

catastrophic costs averted. 

% Cases of catastrophic 

costs: 5-20% 

Cases of catastrophic costs 

(lowest two income 

quintiles): 65-90% 

Diagnostic interventions 

Basu et al. (60) 

Over 5 years 

Rapid DST in hospitals and the 

community 

To obtain XDR DST results in 1 week instead 

of the current 6-week delay, mortality was 

reduced from 230 to 215 deaths per 100,000 

over 5 years. 

Deaths: 15 per 100,000 over 

5 years 

Chindelevitch et al. 

(61) 

2012-2032 

Using more sensitive diagnostics 

(replacing a proportion of smear 

microscopy with Xpert) in the 

general population 

Improved diagnostics over 20 years reduced 

incidence and mortality (000s) by 6,428 

(4,797-8,735) and 2,284 (1,644-3,308), 

respectively. 

Incidence: 6.6% 

Mortality: 19.9% 

Dowdy et al. (62) 

2007-2017 

Improving diagnosis for adults with 

access to expanded culture and DST 

Performing culture and DST in 37% of new 

suspects and 85% of previously treated 

patients averted 17.2% of deaths (95% S.I.: 

8.9-24.4%), 3% (1.1-5.9%) of incident cases, 

14.1% (5.3-23.8%) of incident MDR-TB cases 

and 46.6% (32.6-56%) of MDR-TB deaths. 

Mortality: 17.2% 

MDR-TB cases: 14.1% 

MDR-TB deaths: 46.6% 

Menzies et al. (38) 

2012-2022  

Improving diagnosis (scale-up of 

Xpert for initial diagnosis up to full 

Xpert initiation reduced prevalence, incidence, 

and mortality by 28% (14-40%), 6% (2-13%), 

21% (10-32%), respectively. The number of 

Incidence: 6%  

Mortality: 21%  

Incidence (MDR-TB): 25%  

https://scholar.sun.ac.za

https://scholar.sun.ac.za



 

 

 23 

coverage over 2012-2015) for 

individuals suspected to have TB 

MDR-TB cases would be lowered by 25% (6-

44%). 

Ricks et al. (75) 

2020-2035 

Improving testing (future LAM tests 

compared current LAM tests) for 

people receiving HIV care and HIV-

negative patients.  

Future LAM tests deployed to inpatients, 

outpatients and routine TB care reduced 

incidence and mortality by 17.7% (8.62-29%) 

and 29.6% (17.8-43.6%), respectively.  

Incidence: 17.7% 

Mortality: 29.6% 

 

Sumner et al. (77) 

2016-2035 

Increased usage of Xpert as a first-

line test in the general population 

(80% to 100% coverage) 

Using Xpert testing alone reduced incidence 

by 1.6% (2.5th-97.5th PR, 0.9-2.4%).  

Incidence: 1.6% 

Reducing ILTFU 

Knight et al. (44) 

2014-203 

Decreasing pre-treatment LTFU in 

the general population measured in 

2032  

A 50% decrease in pre-treatment LTFU 

reduced incidence and mortality by 30% and 

52%, respectively, by 2032. 

Incidence: 30% 

Mortality: 52% 

Treatment 

 

Basu et al. (60) 

Over 5 years 

Improving treatment for XDR-TB at 

community- and hospital-based 

levels 

In combination with early XDR-TB screening, 

improving XDR treatment prevented 

approximately 50 deaths per 100,000. 

Deaths: 50 per 100,000 

Chindelevitch et al. 

(61) 

2012-2032 

Improving treatment (identifying 

treatment failure and improving cure 

rates) in the general population 

Improved treatment over 20 years reduced 

incidence and mortality (000s) by 5,904 

(4,418-8,109) and 2,276 (1,610-3,322), 

respectively. 

Incidence: 14.2% 

Mortality: 19.4% 

Houben et al. (40) 

2015-2025 

Improving first-line/ MDR-TB 

treatment success by monitoring 

patients and outreach programs in 

communities 

In addition to the 2-5% annual decline in 

incidence, improving treatment reduced 

incidence by a further 8% (0-25%). 

Incidence: 8% 

Kendall et al. (68) 

Over 25 years 

Improving RR-TB treatment with 

novel regimens in the general 

population 

Optimal RR-TB regimen reduced incidence 

and mortality by 30.1% (15.4-47.7%) and 

30.3% (17.1-45.4%), respectively.  

Incidence (RR-TB): 30.1% 

Mortality (RR-TB): 30.3% 

Knight et al. (44) 

2014-2032 

Increasing treatment success in the 

general population 

A 50% increase in treatment success reduced 

incidence and mortality by 17% and 31%, 

respectively. 

Incidence: 17% 

Mortality: 31% 
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Knight et al. (70) 

2015-2035 

Shortening TB treatment length with 

novel 4-month regimen in the 

general population 

Novel 4-month treatment regimen reduced 

incidence and mortality by 1% compared to 

the standard 6-month regimen. 

Incidence: 1% 

Mortality: 1% 

Verguet et al. (80) 

2016-2035 

Improving treatment quality (mobile 

health care, patient follow-up, 

adherence counselling, improved 

staffing for MDR-TB) for 

households facing catastrophic costs 

due to TB  

Improving treatment for DS-TB and MDR-TB 

would avert 90,000-220,000 and 70,000-

220,000 cases of catastrophic costs, 

respectively. Households in the lowest two 

income quintiles would avert 90% of cases of 

catastrophic costs in both scenarios. 

Cases of catastrophic costs 

(DS-TB): 90,000-220,000 

Cases of catastrophic costs 

(MDR-TB): 70,000-220,000 

Cases of catastrophic costs 

(lowest two income 

quintiles): 90% 

Other interventions 

Chindelevitch et al. 

(61) 

2012-2032 

Improving healthcare coverage 

(reducing delay of disease 

development to clinic attendance) in 

the general population 

Improved coverage over 20 years reduced 

incidence and mortality (000s) by 4,236 

(3,223-5,609) and 1,347 (927-2,054), 

respectively. 

Incidence: 38.4% 

Mortality: 52.3% 

 

Dye et al. (63) 

2025-2050 

Enhancing case management (early 

case detection, accurate diagnosis 

and high cure rate) 

Halving the ARI over 20 years reduced the 

number of cases and deaths from 8,500 to 

approximately 3,700 and 1,220 to 530 per 

million, respectively. 

Incidence: 56.5% 

Mortality: 56.6% 

Sumner et al. (78) 

2020-2035 

Improving testing (use of mRNA 

expression signature COR test to 

target PT) for HIV-uninfected adults 

COR reaches a reduction in incidence of 

20.4% (15.2-26.9%) and IGRA a reduction of 

38.8% (31.2-48%) after 15 years. 

Incidence (COR): 20.4% 

Incidence (IGRA): 38.8% 

P
ro

v
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a

l 
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Case finding/ screening 

Hippner et al. (45) 

2017-2035 

Increasing screening coverage in the 

general population 

Screening reduced incidence and mortality in 

KZN, LP and WC by 11.5% and 18.8%, 3.4% 

and 8.8%, and 25% and 41.4%, respectively. 

Incidence (KZN, LP, WC): 

11.5%, 3.4%, 25% 

Mortality (KZN, LP, WC): 

18.8%, 8.8%, 41.4% 

Uys et al. (79) 

Over 20 years 

Screening in the community Screening in combination with rapid diagnosis 

of DR-TB reduced incidence from 11.2 cases 

per month (per 100,000) to 1.6 cases. 

Cases: 85.7% 

Diagnostic interventions 
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Uys et al. (79) 

Over 20 years 

Improving diagnosis (earlier 

diagnosis of DR-TB) in the 

community 

Rapid diagnosis of resistance with 97% 

sensitivity reduced incidence from 11.2 cases 

per month (per 100,000) to 2.4 cases.  

MDR-TB cases: 78.6% 

Reducing initial loss to follow-up 

Hippner et al. (45) 

2017-2035 

 

Improving linkage to care (ILTFU 

reduced by 80% by 2021) in the 

general population 

Improving linkage to care reduced incidence 

and mortality in KZN, LP and WC by 4.9% 

and 10.2%, 5.2% and 13.2%, and 13.8% and 

22.8%, respectively. 

Incidence (KZN, LP, WC): 

4.9%, 5.2%, 13.8% 

Mortality (KZN, LP, WC): 

10.2%, 13.2%, 22.8% 

Treatment 

Hippner et al. (45) 

2017-2035 

Improving DS-/DR-TB treatment 

(DS-TB to 85% and DR-TB to 67%) 

in the general population 

Improving treatment reduced incidence and 

mortality in KZN, LP and WC by 5.6% and 

14.8%, 11.5% and 26.2%, and 4.6% and 

11.6%, respectively. 

Incidence (KZN, LP, WC): 

5.6%, 11.5%, 4.6% 

Mortality (KZN, LP, WC): 

14.8%, 26.2%, 11.6% 

C
it

y
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Vaccination 

Dye et al. (64) 

2009 

BCG revaccination of HIV-negative 

adolescents and teenagers (efficacy 

of 80% with protection of 10 years) 

With a revaccination efficacy of 80%, the 

percentage of cases averted reaches 17% 

(1,554 of 9,290 cases) and the annual risk of 

infection is reduced from 5.7% to 4.8% per 

year. 

Cases: 17% 
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TB preventive treatment 

Gilbert et al. (65) 

2001-2011 

ART-linked IPT for PWH (12 

months for TST negative, 36 months 

for TST positive)  

IPT averted 7% (95% CI 4-9%) of total TB 

and 8% (5-10%) of DS-TB cases. Minimally 

impacted MDR-/XDR-TB and TB/HIV 

mortality. 

Cases (TB, DS): 7%, 8%  

Gilbert et al. (66)  

2015-2025 

ART-linked IPT for PWH (12 

months for TST negative, 36 months 

for TST positive and lifetime for 

PWH)  

Expanding IPT from 36/12 months to lifetime 

(without screening) reduced incidence from 

298 to 254 cases per 100,000. Negligible 

impact on MDR-/XDR-TB. 

Incidence: 14.8%  

Case finding/ screening 
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Gilbert et al. (65)  

2001-2011 

TB/ HIV CICF and improving case 

detection for individuals interested 

in voluntary TB or HIV testing 

Cases averted for total TB, DS-TB, MDR-TB, 

and XDR-TB were 23% (95% CI 13-27%), 

24% (15-31%), 10% (6-20%), and 9% (18-

23%), respectively. TB/HIV mortality was 

reduced by 13% (9-18%).  

Cases (TB, DS, MDR, 

XDR): 23%, 24%, 10%, 9%  

Deaths (TB/HIV): 13% 

Gilbert et al. (66)  

2015-2025 

Community-based TB/ HIV 

screening for individuals interested 

in voluntary TB or HIV screening 

Introducing community-based screening 

reduced total TB, MDR-TB, and XDR-TB 

incidence from 298 to 274-233, from 54 to 15-

14, and from 12 to 5-4 cases per 100,000, 

respectively.  

Incidence (TB, MDR, XDR): 

8-22%, 72%-74%, 58-67% 

Diagnostic interventions 

Basu et al. (59) 

2007-2012 

Drug susceptibility testing using 

different assays (e.g., phage-based 

and line probe assays) in hospital 

wards and the catchment community 

population 

Rapid DST prevented between 2 and 4% of 

XDR-TB cases (26-52 cases).  

Cases: 2-4% 

Gilbert et al. (65)  

2001-2011 

Improving diagnosis (Xpert) in the 

general population 

Xpert averted 31% (95% CI 11-65%) and 41% 

(10-72%) of MDR-TB and XDR-TB cases, 

respectively. Minimally impacted TB and DS-

TB incidence, and TB/HIV mortality.  

Cases (MDR, XDR): 31%, 

41% 

Treatment 

Gilbert et al. (65)  

2001-2011 

Improving TB/MDR-TB treatment 

and first-line treatment cure rates for 

patients presenting for diagnosis at 

hospitals or clinics 

Increasing cure rates to 80% reduced DS-TB 

and MDR-TB cases by 6% (95% CI 2-11%) 

and 9% (3-20%), respectively, and TB/HIV 

mortality was reduced by 3% (1-4%). 

Improving MDR-TB treatment reduced MDR-

TB and XDR-TB cases by 43% (18-71%) and 

72% (35-92%).  

Cases (CR: DS, MDR): 6%, 

9% 

Deaths (CR): 3% 

Cases (Treatment: MDR, 

XDR): 43%, 72% 

ART for TB prevention 

Gilbert et al. (65)  

2001-2011 

ART-linked IPT for PWH 

(expanding ART coverage) 

Expanding coverage averted 10% (95% CI 2-

14%) of total TB cases.  

Cases: 10% 
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Basu et al. (59) 

2007-2012 

Offering ART with voluntary 

counselling and testing at 

community-level for PLWH 

ART averted 312 (221-391) XDR-TB cases  Cases: 24%  

Other 

Basu et al. (59) 

2007-2012 

Reducing length of stay, detention 

of confirmed XDR-TB cases, 

mechanical ventilation, natural 

ventilation, air purifiers, using 

individual isolation facilities, 

reducing clusters of patients (5/10), 

and ensuring staff/ patients wear 

N95 masks for diagnosed XDR-TB 

patients or hospital staff 

In order of intervention specification, XDR-

TB cases prevented: 78 (39-117), -39 (-26- -

52), 430 (104-456), 156 (130-326)/ 286 (260-

456), 417 (391-586), 742 (664-820), 482 (417-

586)/ 391 (352-456), and 26 (13-39)/ 65 (26-

130).  

Cases: 6%, -3%, 33%, 12%, 

22%/ 32%, 57%, 37%/ 30%, 

2%/ 5%  
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TB preventive treatment 

Kendall et al. (69)  

2008-2013 

Continuous ART-linked IPT for 

PWH 

Continuous IPT regimen reduced incidence 

and mortality by 10.5% (6.9-14.8) and 6.7% 

(3.8-10.7%), respectively.  

Incidence: 10.5%  

Mortality: 6.7%  

Marx et al. (71) 

2016-2025 

Secondary IPT for previously 

treated TB patients  

Secondary IPT in addition to ACF would avert 

40% (21-56%) of all incident cases and 41% 

(16-55%) of deaths. 

Incidence: 40%  

Mortality: 41%  

Marx et al. (72) 

2019-2028 

Secondary IPT for previously 

treated TB patients 

Continuous follow up in combination with 

secondary IPT would avert 20.4% (5.9-35.9%) 

of cases and 18.2% (0.7-34.2%) of deaths. 

Incidence: 20.4%  

Mortality: 18.2%  

Case finding/ screening 

Marx et al. (71) 

2016-2025 

Active case finding for previously 

treated TB patients 

ACF alone would avert 14% (0.4-28%) of all 

incident cases and 21% (2.5-39%) of deaths.  

Incidence: 14%  

Mortality: 21%  

ART for TB prevention 

Kendall et al. (69)  

2008-2013 

ART-linked IPT for PWH 

(expanding levels of ART) 

Increasing ART coverage in the presence of 

IPT reduced incidence by 7.2% (4.3-12.6%). 

In the presence of IPT, ART reduced mortality 

by 5.4% (2.8-9.6%). 

Incidence: 7.2%  

Mortality: 5.4%  
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* Uncertainty intervals are reported where provided in the article. 

Other 

Marx et al. (72) 

2019-2028 

Post-treatment follow-up 

examinations for previously treated 

TB patients 

Continuous follow up in combination with IPT 

would avert 20.4% (5.9-35.9%) of cases and 

18.2% (0.7-34.2%) of deaths. 

Incidence: 20.4%  

Mortality: 18.2%  
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Vaccination 

Shrestha et al. (76) 

Over 20 years 

Hypothetical post-infection vaccine 

with 60% efficacy over 10 years for 

miners or people in associated 

labour-sending communities 

Vaccines targeted to labor-sending community 

averted a median of 5,510 (95% range 2,360-

10,000) cases. Vaccines targeted to miners 

averted a median of 8,090 (3,750-13,300) 

cases. 

Cases (labor): 5,510  

Cases (mine): 8,090  

TB preventive treatment 

Vynnycky et al. (46) 

2003-2017 

IPT scenario with 100% cure and 

100% protection for gold miners  

Incidence was reduced by 24.5% (95% CI: 

24.2-25%) using an IPT regimen with 100% 

cure and 100% protection against infection.  

Incidence: 24.5% 

Diagnostic interventions 

Vynnycky et al. (46) 

2003-2017 

Improving diagnosis (using Xpert) 

for gold miners 

An approximate 30% reduction in predicted 

true incidence. 

Incidence: 30% 

Reducing initial loss to follow-up 

Vynnycky et al. (46) 

2003-2017 

Reducing ILTFU for gold miners Decrease in ILTFU and treatment delay 

reduced incidence by approximately 40%. 

Incidence: 40%  

Treatment 

Vynnycky et al. (46) 

2003-2017 

Decreasing treatment delay for gold 

miners 

Decrease in LTFU and treatment delay 

reduced incidence by approximately 40%. 

Incidence: 40% 

ART for TB prevention 

Vynnycky et al. (46) 

2003-2017 

Scale up of ART to 80% for gold 

miners with HIV 

An approximate 50% reduction in predicted 

true incidence. 

Incidence: 50% 
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Key  Setting 

 Country level 

 Provincial level 

 City level 

 Rural community/ district level 

 Township/ suburban/ urban level 

 Occupational level 

 

ACF: active case finding LP: Limpopo province 

ART: antiretroviral therapy (I)LTFU: (initial) loss to follow-up 

ARI: annual risk of infection MDR-TB: multidrug resistant TB 

BCG:  Bacille Calmette Guérin  PHC: primary health care facility 

CI: confidence interval PR: percentile range 

CICF: community-based intensified case finding PT: TB preventive treatment 

COR: correlate of risk PLWH: people living with HIV 

CR: cure rates RR-TB: rifampicin resistant TB 

DS-TB: drug susceptible TB RS-TB: rifampicin susceptible TB 

DST: drug susceptibility testing TLTI: treatment of latent TB infection 

HAART: highly active ART TST: tuberculin skin test 

HIV: human immunodeficiency virus UR: uncertainty range 

IGRA: interferon gamma release assay UTT: universal test and treat program 

IPT: isoniazid preventive therapy WC: Western Cape 

KZN: KwaZulu-Natal XDR-TB: extensively drug resistant TB 

LAM: lipoarabinomannan  
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2.3.5 Estimated impact by type of intervention 

Figure 2.4 shows AAPDs in TB incidence and mortality for different interventions, calculated 

from reported model outcomes and time horizons. AAPDs varied between 0.05% and 7.1% for TB 

incidence, and between 0.02% and 7.1% for TB mortality. Larger impacts were estimated for 

preventive interventions (TB vaccination, TPT among PLWH on ART, and ART with high 

coverage), than for improved diagnosis and treatment. Interventions along the care cascade (e.g., 

case finding, diagnosis, treatment) were estimated to have greater AAPDs in TB-associated 

mortality than in TB incidence. 

 

Another way to visualize a comparison of the impact of different interventions is to stratify AAPDs 

for TB incidence and mortality according to intervention categories. Figure 2.5 shows AAPDs for 

incidence (A) and mortality (B), calculated from reported model outcomes and time horizons. 

Interventions that were estimated to have the largest impact on TB incidence were of the 

vaccination (light blue), preventive treatment categories (light green), and ART for TB prevention 

Figure 2.4: Average annual percentage declines (AAPDs) for different interventions modelled at 

country level.  

AAPDs were calculated from reported percentage declines in incidence and mortality relative to 

the baseline scenario at the end of model time horizons. (-) denotes missing result as impact was 

not estimated for the indicator. (IPT = isoniazid preventive therapy, PLWH = people living with 

HIV, ART = antiretroviral therapy, ACF = active case finding, TB = tuberculosis, COR = correlate 

of risk, PHC = primary health care facility, DST = drug susceptibility testing, DR-TB = drug-

resistant TB, LTFU = loss to follow-up, RR-TB = rifampicin-resistant TB, HIV = human 

immunodeficiency virus). 
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(dark blue), with AAPDs estimated above 4% for incidence. Interventions of improved diagnosis, 

and improved treatment were estimated to be of lower impact (AAPDs for incidence estimated 

below 3%). 

 

2.4 Discussion 

I conducted this systematic review to synthesise the evidence for TB prevention and care in South 

Africa from studies using transmission-dynamic mathematical models.  

 

I identified 29 eligible modelling studies, the majority of which were published in the past 6-7 

years. Studies focused on a variety of interventions for preventing TB and strengthening the care 

cascade for TB. Most studies (22 of 29) investigated the impact of hypothetical novel 

interventions, with the remainder focusing on the scale up of existing interventions. All but one 

study projected the impact of interventions on the End TB strategy target indicators of TB 

incidence, TB mortality, or both. The remaining study (80) extended earlier modelling studies 

(38,52,72,84) to estimate the impact of interventions on the number of households experiencing 

TB-related catastrophic costs. 

 

I calculated crude estimates of AAPDs in TB incidence and mortality from study outcomes of 

impact over different time horizons. I found that preventive interventions including TB 

vaccination, TPT among PLWH, and scaling up ART were most promising to reduce TB incidence 

and mortality in South Africa. The use of novel vaccines to prevent Mycobacterium tuberculosis 

infection and/or TB disease was estimated to lead to substantial reductions, above 5% per annum, 

in TB incidence at country level, highlighting the importance of vaccine research and development 

in the fight against TB in South Africa. These findings are consistent with a recent systematic 

review that emphasized the important role of novel vaccines towards achieving TB elimination 

Figure 2.5: The number of studies corresponding to average annual percentage declines 

which were ascertained using reported percentage declines in incidence (A) and mortality 

(B) from eligible studies in addition to the baseline scenario, and time horizons over which 

interventions were modelled at country level.  

https://scholar.sun.ac.za



 

 

 32 

globally (41). Prior to, and with the arrival of novel vaccines, specific and data-driven strategies 

for delivering vaccines to key populations in South Africa will be important (85). Varying levels 

of impact were projected for TPT implementation and scale up. This variation is explained by 

different target populations for TPT considered and different model assumptions, including about 

intervention coverage and time horizons. All studies of TPT focused on isoniazid monotherapy, 

and none considered the impact of novel shorter regimens for TB prevention such as 3RH (a 3-

month rifampicin-isoniazid course) (86). Prior to the roll-out of universal ART to PLWH in 2016, 

extending ART eligibility for TB prevention with high coverage was predicted to have substantial 

impact on TB incidence and mortality. This is also consistent with a retrospective study conducted 

in 2019 which showed that recent declines in TB incidence and mortality in South Africa were 

associated with expanding access to and coverage of ART among PLWH (87).  

 

The majority of studies focused on interventions along the care cascade for TB. Interventions 

considered include screening/active case finding, scale up of current and introduction of novel TB 

diagnostic tests, reducing initial loss to follow-up, and improving TB treatment. While 

interventions of case finding and strengthening the care cascade for TB are essential to reduce 

suffering from TB and improve individual-level health outcomes, their impact on reducing 

transmission and TB incidence may be lower compared with preventive interventions. 

Consistently, we found that most care-cascade interventions were estimated to have a greater effect 

on TB mortality than on TB incidence (Figure 2.4). One exception might be interventions to reduce 

initial loss to follow-up, i.e., the loss of people who have been diagnosed but are lost before 

initiating TB treatment, a serious challenge in South Africa (27). Furthermore, a large fraction of 

people with subclinical TB have recently been reported in South Africa’s first national TB 

prevalence survey (88), raising concerns about onward transmission from this group (89). As 

people with subclinical TB are less likely to self-present for TB diagnosis, interventions to detect 

subclinical TB may be important in South Africa. Several studies estimated that Xpert-based 

algorithms had no significant impact on TB incidence and mortality. These findings align with 

results reported in recent studies (90,91). 

 

This review identified gaps for TB modelling research in South Africa that, if addressed, could 

provide valuable additional information for decision making. More vulnerable groups should be 

considered for future case finding initiatives, as was highlighted in a recent systematic review (92). 

New developments in TB diagnosis and treatment are currently underway (93). Modelling the 

effect of these novel diagnostic tests and treatment regimens for active TB could assist in 

understanding how they should be optimally implemented in the population. Shortening the length 

of preventive treatment regimens is associated with higher rates of treatment success and lower 

loss to follow-up (94). Modelling the impact of TPT in different target populations will be 

important. Additional modelling of interventions to reduce ILTFU in South Africa could help 

understand how these interventions could help reduce transmission and TB deaths in South Africa 

(95). Beyond impact, future modelling research should also address the affordability and cost-

effectiveness of interventions to inform decision making. Only 9 of the 29 modelling studies 

identified addressed cost-effectiveness (38,58,64,66,70,72,77,79,80). Reducing the number of TB-

affected households facing catastrophic costs due to TB to zero represents one of the three targets 

of the WHO’s End TB strategy. We found that only one modelling study estimated the effect of 

interventions on reducing households facing catastrophic costs in South Africa (80). More 

modelling research is needed to estimate the financial impact of TB on families in South Africa, 

and to estimate the impact of TB interventions on reducing catastrophic costs. This gap is of 

particular relevance for South Africa where over one quarter of people face barriers such as 

unemployment, limited access to transport for clinic attendance and household overcrowding (96), 

and where these challenges amplify TB.  
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This review has limitations. I restricted the analysis to modelling studies of TB in the South African 

population. Findings from other TB modelling studies focusing on populations outside of South 

Africa may still be relevant to the South African context and should be taken into consideration 

for policy making. While I report findings from modelling studies at different population levels, 

findings from studies at sub-country level might not be readily generalizable to the national level. 

Likewise, generalizability of country-level analyses to different local areas in South Africa may 

be limited given the considerable heterogeneity in TB burden and epidemiology in the country 

(97). This study focused on impact with respect to the End TB strategy target indicators. I did not 

focus on resource availability and cost-effectiveness of interventions, which are also relevant for 

decision-making. Heterogeneity in model structure, study design and reported outcomes, limited 

the ability to compare interventions with respect to their potential to generate progress towards the 

End TB strategy targets. I also note that the estimated impact of the interventions depends on the 

baseline to which they are compared, and these baselines are not always consistent between the 

modelling studies. While I report impact with crude measures of annual reductions in TB incidence 

and mortality for single interventions, many studies considered combinations of interventions. I 

estimated that a 12% and 19% decline in incidence and mortality, respectively, is required between 

2022 and 2035 to meet the End TB strategy targets for South Africa (Addendum A, Table A3). Of 

note, none of the single interventions were estimated to yield sufficient reductions over time, 

consistent with the idea that a combination rather than single interventions will be necessary to 

achieve the End TB targets (40).  

 

In conclusion, I highlight an extensive body of modelling research with relevance for TB decision 

making in South Africa. I present these findings at a time where additional guidance is urgently 

needed to confront recent setbacks in the fight against TB caused by health service disruptions 

during the COVID-19 pandemic, and to ensure progress towards the 2035 End TB strategy targets 

in South Africa. I found that interventions focusing on prevention, including vaccination, TPT 

among PLWH and scaling-up ART, would have the greatest potential to reduce TB incidence and 

mortality. However, relating estimates of impact to the progress that would be needed in South 

Africa to achieve the End TB strategy targets revealed that single interventions will be unlikely to 

generate sufficient progress. Combinations of interventions rather than single interventions are 

therefore needed to effectively reduce TB incidence and mortality in South Africa. This review 

discusses important knowledge gaps in modelling research, including studies of novel diagnostic 

tests for TB, interventions in vulnerable and high-risk populations, and interventions towards 

reducing TB-related catastrophic costs. Closing these gaps through additional modelling research 

could help prioritize novel interventions and accompany already implemented interventions to 

better understand how they will aid progress towards TB elimination in South Africa.   
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3  Modelling the population-level impact of reducing initial loss to follow-up 

among individuals diagnosed with tuberculosis 

This chapter aims to address an important modelling gap, also identified in Chapter 2, to determine 

the impact of reducing ILTFU in South Africa. I adapted an existing TB transmission-dynamic 

mathematical model to determine the number of cases and deaths averted when reducing ILTFU 

in South Africa. This project made use of data and expert opinion provided by researchers of the 

LINKEDIn study, which implemented an intervention to reduce ILTFU in three South African 

provinces: KwaZulu-Natal, Gauteng and the Western Cape.   

3.1 Introduction 

TB continues to be a major threat to public health in South Africa; the country is currently among 

five globally with a TB incidence rate of over 500 per 100,000 population (2). At the current rate 

of decline, South Africa is unlikely to reach the 2035 targets of the End TB strategy, defined by 

the World Health Organization (WHO) and partners, to reduce TB incidence by 90% and the 

number of TB deaths by 95% compared to 2015 (14). In 2020 and 2021, response measures to 

contain the spread of COVID-19 have led to disruptions in TB services; a setback in efforts to 

reduce TB is expected (10). Substantial efforts will thus be needed in the forthcoming years to 

accelerate the decline in TB incidence and mortality and get back on track towards the proposed 

End TB targets (11).  

 

A key obstacle to reducing TB burden in South Africa is losses along the care cascade for TB. 

Individuals with presumptive TB may be lost along the care cascade anywhere between accessing 

health care services, receiving test results, initiating TB treatment, and successfully completing 

their treatment. Identifying and quantifying these losses is useful for highlighting gaps in health 

systems, and planning strategies to improve the quality of care (18). Care cascades have been 

widely used in HIV research in South Africa (19–21), and are being increasingly used to evaluate 

TB control (16,22). It is estimated that only 53% of individuals who accessed care in South Africa 

were successfully treated, highlighting the need for increased efforts to improve existing measures 

and close the gaps along the cascade (13). 

 

Initial loss to follow-up (ILTFU), defined by the WHO as a “TB patient who did not start treatment 

or whose treatment was interrupted for 2 consecutive months or more” (23), is an important gap 

in the South African TB care cascade (24–26). Individuals who are ILTFU are a concern for TB 

programmes as they are associated with poor patient outcomes (24,27) and are expected to 

contribute to onward transmission. An estimated 21% of diagnosed TB patients in South Africa 

are initially lost to follow-up (13). Several studies have reported underlying reasons and risk 

factors for ILTFU in South Africa (24,26,28). Healthcare-related factors identified include poor 

communication and lack of counselling by health care workers, misinterpretation of diagnostic 

results, under-resourced facilities, and negative staff attitudes. Patient-level factors include poor 

knowledge on TB treatment, stigma surrounding TB (especially its linkage to HIV), and other 

socioeconomic factors (such as poverty and lack of transport to primary health care facilities). 

Among TB patients with ILTFU in the Western Cape, South Africa, approximately 20% of 

diagnosed patients did not link to treatment within 30 days of diagnosis (30). Of these patients, 

17% died within 60 days of diagnosis. This highlights the need for improvement in health care 

service quality to reduce ILTFU in South Africa. Various interventions to avert ILTFU have been 

proposed. These include more attention to keep track of, register, and report TB patients who did 

not timely initiate treatment (29), ensuring that correct contact information is recorded upon 

registration of a patient, in case follow-up is necessary, clear communication of diagnostic results 

to patients (26), interventions to support treatment initiation such as registration of TB patients in 
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hospitals (30), and early interaction with TB patients to facilitate timely registration and treatment 

initiation (31).  

 

The LINKEDIn study was a large quasi-experimental, implementation study conducted between 

July 2018 and December 2020 in three provinces of South Africa: Western Cape, KwaZulu-Natal, 

and Gauteng. Its main goal was to implement and investigate an intervention to support patient 

registration, linkage to TB treatment and prevent ILTFU among individuals diagnosed with TB. 

The intervention consisted of two components. First, a patient management system was 

established, to support linkage to care among individuals diagnosed in hospitals and primary health 

care. The patient management system included efforts to strengthen data and information about 

newly diagnosed TB patients and an alert-and-response system for health care workers to support 

treatment initiation among patients at risk of ILTFU. Second, to ensure that reports of TB patients 

who were diagnosed in hospitals were complete, hospitals were turned into reporting units. Results 

from sub-district locations in the Western Cape demonstrated that the intervention was feasible 

and effective in facilitating early TB treatment initiation (31), and scaling-up this intervention 

could support linkage to care (98).  

 

The LINKEDin intervention and other efforts to ILTFU will likely produce individual-level 

benefits as TB patients timely initiate TB treatment, and therefore will experience less morbidity 

and mortality. The benefits of these interventions could extend to the population level if onward 

transmission of TB from individuals with ILTFU will be reduced. The extent to which 

implementing and scaling up these interventions would reduce transmission and therefore 

accelerate declines in TB incidence and mortality in South Africa is currently not known. 

 

The aim of this study was to use an existing transmission-dynamic mathematical model of TB in 

South Africa to investigate the impact of reducing ILTFU on TB incidence and mortality in South 

Africa, assuming scale up of the LINKEDin interventions country-wide between 2023 and 2028. 

The study further aimed to interpret the expected impact with respect to the 2035 targets of the 

End TB strategy. 

3.2 Methods 

3.2.1 Underlying study 

This modelling study was centred around findings from the LINKEDIn study, a quasi-

experimental study conducted in three South African Provinces, KwaZulu Natal, Western Cape, 

and Gauteng. The aim of the LINKEDIn study was to reduce ILTFU among diagnosed patients 

attending primary health care facilities (PHCs) by systematically following up those detected as 

ILTFU to supporting linkage to care (31,98). The study used a patient management intervention 

that was targeted to individuals diagnosed in PHCs and non-PHCs (including hospitals). The 

intervention is made up of two parts. The first, a community intervention, or an “alert-and-

response” system, assumed a TB patient management system was put in place that tracks patients 

who do not link to a TB treatment facility. In summary: if a TB patient did not link to a treatment 

facility within 3 days of receiving their diagnosis, a short message service (SMS) was sent. If they 

did not link to treatment after an additional 3 days, they received a telephone call. Finally, if after 

a further 3 days there was no linkage to treatment, a referral to a community health care worker 

was sent for a home visit. The second was a hospital-based intervention that used the TB care 

cascade to identify TB patients diagnosed in TB hospitals and ensured the infection and prevention 

control team were notified for appropriate clinical management. Using preliminary results and 

consultation with researchers from the study, I estimated what a national scale-up of the 

intervention within an existing mathematical TB model could look like.  
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3.2.2 Details of the transmission-dynamic model used in the analysis 

The model I was provided with and used was jointly developed by researchers at the Desmond 

Tutu TB Centre (DTTC) and the South African Centre for Epidemiolocal Modelling and Analysis 

(SACEMA) TB modelling group. Prior to this analysis, the model was initialized, the parameters 

were estimated, and calibration to specific TB targets was conducted. Here, I provide relevant 

details of the transmission-dynamic model. Additional detailed information is available in 

Addendum B which was provided by the developers of the model and includes the original model 

structure and overview, model parameters, model initialization, and the calibration approach.  

3.2.2.1 Modelling approach and overview 

The structure of the transmission-dynamic mathematical model of TB in South Africa follows 

conventions of previously published models (38,63,71). It is implemented as a series of ordinary 

differential equations describing the movement of individuals between disease compartments over 

time. The TB model includes stratifications by HIV status to account for the modifying effect of 

HIV infection on TB natural history. The model considers HIV infection, progression of HIV 

disease with decreasing CD4+ T-cell counts of cells/mm3 (CD4), and antiretroviral therapy (ART) 

for the different HIV states. The model uses external estimates of HIV incidence obtained from 

UNAIDS (8) and the Thembisa model (99) to simulate population-level HIV infection; HIV 

transmission-dynamics are not modelled. The model structure is provided in Figure 3.1. 
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Figure 3.1: Model structure (provided by the developers of the model) 
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Upon primary infection with M.tb, susceptible individuals transition to the recent latently infected 

state. From there, individuals either progress to the subclinical infectious disease state or they 

move to the distant latently infected state. Research has shown that the distinction between recent 

and distant latent infection is important, since the risk of progression to active disease is lowered 

the longer an individual is latently infected (100,101). Reinfection to recent latently infected or 

reactivation to the subclinical infectious state can occur from this stage. Once infectious (in a 

subclinical state where an individual has asymptomatic disease), progression to symptomatic 

clinical disease occurs. An individual may seek care upon symptom onset, at which point they 

move to the symptomatic awaiting diagnosis state. Once in the awaiting diagnosis state, individuals 

enter the TB care cascade, depicted in Figure 3.2. 

 

The model takes different losses along the TB care cascade into account. These losses include pre-

diagnostic loss to follow-up, patients being unable to produce sputum for a bacteriological test, 

false-negative bacteriological tests due to imperfect sensitivity of diagnostic tests, and ILTFU, 

when a patient is diagnosed with TB and referred for treatment, but never initiates treatment. The 

model distinguishes between ILTFU individuals in PHCs versus non-PHCs (not explicitly 

depicted), which is important considering TB patients are only able to register at community PHCs 

and selected specialized TB hospitals in South Africa (30). If a patient is lost before initiating 

treatment, they move to the compartment for individuals who previously sought care and are still 

infectious. From there, these individuals can re-seek care at a rate faster than initial care seeking, 

and transition back to the awaiting diagnosis state. If a patient is linked to TB treatment, they move 

onto the on-treatment state. From treatment, individuals can recover and be at high-risk (if they 

have not successfully completed treatment) or low-risk (if they have successfully completed 

treatment). From clinical diseased states, individuals can recover naturally to the high-risk state 

and may subsequently transition to the low-risk state. Not explicitly depicted in the model diagram 

are births into the susceptible class and deaths that can occur due to TB infection or other causes.  

 

For people living with HIV (PLWH), TB risk was accounted for based on categories of CD4 cell 

counts (Figure 3.1) as well as ART initiation in the population. HIV has an impact on several of 

the TB model parameters as shown by the prior parameters, available in Addendum B. The effect 

of HIV on these parameters includes increasing the proportion of progression from latent to active 

TB disease (and subclinical to clinical disease), increasing the relative risk of reinfection from 

either latent infection or recovery, increasing the rate of relapse from recovered, decreasing the 

rate of natural recovery, and increasing the rate of excess mortality due to TB for treated and 

untreated TB, among others, as CD4 cell count decreases. These parameters are all negatively 

affected by HIV, consistent with an observational cohort study conducted in South Africa 

describing the risk of TB associated with CD4 cell recovery during ART (102). If individuals are 

on ART, however, the effect of HIV on the parameters is reduced (103).  

3.2.2.2 Model initialization and parameter estimation 

Figure 3.2: The TB care cascade and losses at each step (provided by developers of the model) 
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The transmission-dynamic model used for this analysis was previously calibrated to data from 

2016 to 2020. The model simulations were initiated in 1995 to allow for a 20-year burn in period. 

The time horizon for model projections of TB incidence and mortality is between 2020 and 2035. 

Calibration dates were chosen according to the availability of data, including estimates from the 

first South African TB prevalence survey conducted in 2018 (97). Feasible ranges were used to 

exclude simulated trajectories that could be considered unrealistic through the calibration process.  

  

A Bayesian calibration approach, similar to previous studies (71,72), was used to identify 

parameter values that fit the calibration targets. Prior distributions for parameters used in the model 

are found in Addendum B. A sampling-importance-resampling algorithm was used to implement 

the approach (104). Parameter values were sampled independently from defined uniform prior 

distributions of all model parameters to create 100,000 parameter sets (“sampling”). Parameter 

sets that result in infeasible model outcomes are removed at this step using predefined feasible 

ranges for calibration targets. The total likelihood of the data given a parameter combination was 

calculated to determine the goodness-of-fit of an individual parameter combination’s model 

outcomes to the calibration targets (“importance”). The parameter sets were then resampled with 

replacement by assigning weights to each parameter combination proportional to the likelihood of 

observing the calibration data (“resampling”). The set of resampled parameter combinations 

approximates the posterior distributions of the model parameters. Figure 3.3 shows the simulated 

trajectories of the model outcomes using the 1,000 resampled parameter sets against the calibration 

targets and feasible ranges. 

Figure 3.3: Calibration targets and fitted trajectories of the model.  

Red dots represent the calibration targets with 95% uncertainty intervals where applicable. Grey 

lines represent the 1,000 model trajectories obtained by calibration. Shaded regions represent 

feasible ranges for trajectories. Data used to build this graph was provided by the developers of 

the TB model. 
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3.2.3 Adaptations to the provided transmission-dynamic model for this analysis 

In this section I describe adaptations to the model that was developed and provided for prior to this 

analysis, including calculations of baseline estimates for ILTFU in PHCs and non-PHCs, scenario 

analyses and a sensitivity analysis for parameters used in the model.  

3.2.3.1 Development of a LINKEDIn scale-up scenario for South Africa 

I made several assumptions surrounding ILTFU in South Africa base on the LINKEDIn study. 

Beginning with baseline ILTFU in South Africa, I assumed the proportion of people who are lost 

before initiating treatment in PHCs and non-PHCs remains constant over the model time horizon. 

Under the baseline scenario, suspected TB cases are diagnosed in either primary health care 

facilities (PHCs) or non-PHCs, including hospitals. Data from the Electronic TB Register (ETR) 

shows that 70% of people are diagnosed in PHCs and 30% are diagnosed in non-PHCs. A study 

assessing the care cascade in South Africa was recently updated and estimated that 21% of 

diagnosed TB patients are lost prior to starting treatment (13). Given consultation with researchers 

from the LINKEDIn experimental study who have received preliminary results, I assumed TB 

patients diagnosed in non-PHCs (such as hospitals) are twice as likely to be ILTFU than TB 

patients diagnosed in PHCs. In accordance with these data, I was able to estimate prior ranges for 

the proportion of TB patients who are ILTFU in PHCs and non-PHCs. 

 

Overall ILTFU: 

 

(0.7 ∗ (𝐼𝐿𝑇𝐹𝑈𝑃𝐻𝐶)) + (0.3 ∗ (𝐼𝐿𝑇𝐹𝑈𝑛𝑜𝑛−𝑃𝐻𝐶)) = 0.21 

 

ILTFU in non-PHCs as a function of PHCs: 

 

𝐼𝐿𝑇𝐹𝑈𝑛𝑜𝑛−𝑃𝐻𝐶 = 2 ∗ 𝐼𝐿𝑇𝐹𝑈𝑃𝐻𝐶 

 

Solving both these equations simultaneously leads to prior estimates of ILTFU of ~15% in PHCs 

and ~30% in non-PHCs. Wide ranges of uncertainty in the uniform prior distributions were used: 

10-20% for ILTFU in PHCs and 20-40% in non-PHCs. 

 

In the intervention scenario, I assumed that the intervention would be implemented countrywide 

between 2023 and 2028 and would prevent losses prior to treatment initiation in the population. 

Through consultation with LINKEDIn researchers, I assumed the maximum effect of the 

intervention would reach 50% after five years (i.e., the intervention would reduce ILTFU in South 

Africa by half) and would remain constant thereafter. I assumed it would take two years to reach 

half the maximum effect in the population (i.e., after two years the intervention reduces ILTFU by 

25%). Individuals prevented from being lost are assumed to successfully begin TB treatment and 

have the same probability of completing treatment as patients who initiated treatment without the 

intervention.  

3.2.3.2 Scenario analyses 

The baseline scenario, used for the comparator for reducing ILTFU in South Africa, is defined as 

the continuation of current TB prevention and care strategies. Under this scenario, the model 

includes a linear decline in the rate at which people access diagnosis by between 1-10% between 

2020 and 2023 due to COVID-19 disruptions to TB health services. Levels of accessing diagnosis 

recover back to normal, or what was observed prior to the introduction of COVID-19, after 2023.  

 

Unlike the baseline scenario, analyses regarding the intervention scenarios represent accelerated 

progress in TB control strategies. I modelled the effect of the patient management intervention by 
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reducing the proportion of ILTFU using a negative logistic function, as seen below, with 

accompanying parameters defined in Table 3.1. 

 

𝐼𝐿𝑇𝐹𝑈 = 𝛼 +
𝛽 − 𝛼

1 + 𝑒𝛿(𝑥−𝑥𝑚)
 

 

 

Table 3.1: Table of parameters for the logistic function that represents the implementation of the 

intervention in the South African population 

 

Parameter Definition 

𝐼𝐿𝑇𝐹𝑈 Proportion population ILTFU  

𝛼 Minimum proportion of ILTFU (after intervention implementation) 

𝛽 Maximum proportion of ILTFU (baseline proportion of ILTFU) 

𝛿 Logistic curve parameter: steepness of the curve  

𝑥 Model time point 

𝑥𝑚 
Logistic curve parameter: inflection point (represents the timepoint to reach 

half of maximum effect) 

 

I was thus able to specify the minimum (𝛼) and maximum (𝛽) effect of the interventions as well 

as simulate the delay of implementing the interventions in PHCs and non-PHCs (𝑥𝑚). For the 

primary analysis, I assumed the maximum effect of the intervention was a 50% reduction in ILTFU 

and implementation is such that it takes 2 years to reach half the maximum effect in the population. 

Alternatively, in a secondary analysis I varied the maximum effect of the intervention (25% and 

75%) as well as the time to mid-implementation (2 years and 3 years). Figure 3.4 illustrates the 

scale-up scenarios for the reduction in ILTFU in PHCs compared to baseline levels. Scenarios for 

non-PHCs are similar. 

 

I conducted a further scenario analysis on the duration at which people who are ILTFU re-seek 

care. This is a necessary addition to the study as it can be argued that the time to re-seek care can 

either increase or decrease if people are lost prior to initiating treatment. For example, if an 

individual begins to experience more severe symptoms than when they were initially diagnosed, 

they are more likely to seek care faster. Alternatively, if a patient is afraid of stigma surrounding 

TB or is affected by their socioeconomic status (e.g., they cannot afford transport to a nearby 

PHC), they will take longer to re-seek care if at all. This allows increased transmission in the 

population which results in an increased number of individuals that require diagnosis and 

treatment. I implement this scenario in the model in a similar way to the LINKEDIn intervention, 

using a logistic function. I increase and decrease the duration by 10% and 20% while running the 

primary analysis (i.e., implementing the intervention) and determine the effect on population-level 

outcomes. This analysis has a direct implication on the effectiveness of the intervention. If patients 

take longer to seek care, they may contribute to ongoing transmission within their communities 

leading to increased incidence and, potentially, increased mortality. 
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3.2.4 Model outcomes 

I simulated trajectories for TB incidence and mortality over a 13-year time horizon (2023-2035). 

I considered a baseline scenario and different intervention scenarios for ILTFU in PHCs and non-

PHCs. The impact of these interventions was defined as the number and percentage of incident TB 

cases and deaths averted during the 13-year period relative to the baseline scenario. Additionally, 

percentage reductions in TB incidence and mortality rates were calculated. I estimated the 

proportion of overall losses along the care cascade (Figure 3.2) attributed to ILTFU as well as the 

increased proportion of people who initiated TB treatment due to the LINKEDIn intervention. The 

results are presented as the mean and 95% uncertainty intervals of the outcome values from 1,000 

simulated model trajectories. 

3.2.5 Sensitivity analysis 

I performed a sensitivity analysis to determine how sensitive the outcome measure of the model 

was due to each of the input parameters using partial rank correlation coefficients (PRCCs). The 

analysis was conducted using the prcc function in the epiR (version 2.0.52) package for R (version 

4.1.2). This analysis is applicable when the relationship between the model output and the input 

parameters is monotonic and nonlinear (105). PRCCs were calculated using resampled parameter 

sets produced by the calibration process. One parameter is varied at a time, while the rest remain 

constant, and the correlation between the highlighted parameter and outcome was measured. The 

model outcome (percentage of incident TB cases averted) is based on results from the primary 

Figure 3.4: Illustration of how the intervention scenarios were implemented under different 

conditions.  

The black solid line represents the effect of the intervention on the ILTFU parameter while the red 

dashed line represents the baseline parameter value. Shaded regions represent 95% uncertainty 

intervals. 

https://scholar.sun.ac.za



 

 

 42 

analysis, assuming the maximum achievable effect of the intervention is 50% and the time to mid-

implementation in the population is 2 years. 

3.3 Results 

3.3.1 Baseline scenario 

Under the baseline scenario, the model projected a total number of 3.7 million incident TB cases 

(95% uncertainty interval [UI]: 3.0 – 4.7 million) and 503,524 TB deaths (UI: 309,232 – 754,141), 

to occur between 2023 and 2035. Modelled baseline projections for TB incidence, mortality, and 

case notifications between 2016 and 2035 are shown in Figure 3.5.Among people seeking health 

care for clinical TB under the baseline scenario, the model estimates that 43.6% (UI: 35.9 – 53.7%) 

of HIV-negative people and 39.1% (UI: 32.5 – 46.6%) of PLWH are diagnosed for TB and initiate 

treatment as a direct consequence of this health care visit. ILTFU among HIV-negative individuals 

and PLWH accounted for 17.5% (UI: 11.7 – 23.1%) and 14.5% (UI: 10.2 – 19.9%) of overall 

losses along the care cascade, respectively.  

3.3.2 Intervention scenarios 

Implementation of the LINKEDIn intervention between 2023 and 2028 would avert 49,812 (UI: 

21,258 – 84,644) incident TB cases and 21,479 (UI: 9,500 – 32,661) TB deaths, equivalent to 

percentage reductions of 0.8% (UI: 0.4 – 1.4%) and 2.5% (UI: 1.3 – 3.5%) for cases and deaths, 

respectively. The proportion of individuals who would initiate TB treatment under the LINKEDIn 

intervention would increase by 4.4% (UI: 3.2 – 5.5%) among HIV-negative individuals and 4.9% 

(UI: 3.6 – 6.3%) among PLWH compared to the number initiating treatment under the baseline 

scenario. Figure 3.6 shows the mean TB incidence and mortality rates for the baseline and 

intervention scenarios. Baseline TB incidence and mortality rates were estimated at 364 (UI: 283 

– 456) and 48 (UI: 28 – 72) per 100,000 population, respectively, at the end of the time horizon. 

 

 

 

 

 

 

Figure 3.5: Model projections (mean represented by solid lines, 95% UIs represented by shaded 

areas) compared to WHO 2019 and 2020 estimates (red points; source: (2)) for TB incidence, 

mortality, and case notifications. 
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Under the intervention scenario, corresponding incidence and mortality rates were 355 (UI: 274 – 

449) and 45 (UI: 27 – 68) per 100,000 population. Hence, the resulting percentage reduction in TB 

incidence and mortality rates due to the LINKEDIn intervention at the end of the time horizon 

were 2.5% and 6.3%, respectively. Using methods described in section 2.2.2 of this thesis, the 

projected average annual percentage declines (AAPDs) were calculated as 0.2% for TB incidence 

and 0.5% for mortality. Scenario analysis showed that the impact of interventions varied with the 

maximum effect and the duration of implementing the LINKEDIn intervention (Table 3.2). 

 

Table 3.2: Results for different intervention scenarios reported as the number and percentage of 

cases and deaths averted over a 13-year time horizon.  

“Scenario” is split into the year at which the effect of the intervention is half the maximum and the 

percentage of maximum effect of the intervention. *Indicates scenarios for the primary analysis. 

(UI: Uncertainty interval). 

 

Cases 

Scenario Number cases averted (95% UI) Percentage cases averted (95% UI) 

2025 

25% 25,831 (10,938 – 43,979) 0.4% (0.2 – 0.7%) 

50%* 49,812 (21,258 – 84,644) 0.8% (0.4 – 1.4%) 

75% 72,144 (31,012 – 122,498) 1.2% (0.6 – 2.0%) 

2026 

25% 22,455 (9,575 – 38,107) 0.4% (0.2 – 0.6%) 

50% 43,369 (18,629 – 73,555) 0.7% (0.3 – 1.2%) 

75% 62,904 (27,206 – 106,618) 1.0% (0.5 – 1.8%) 

Deaths 

Scenario Number deaths averted (95% UI) Percentage deaths averted (95% UI) 

2025 

25% 11,145 (4,887 – 17,074) 1.3% (0.7 – 1.8%) 

50%* 21,479 (9,500 – 32,661) 2.5% (1.3 – 3.5%) 

75% 31,092 (13,861 – 46,972) 3.6% (1.9 – 5.0%) 

2026 

25% 9,934 (4,355 – 15,141) 1.2% (0.8 – 1.6%) 

50% 19,169 (8,472 – 29,014) 2.2% (1.5 – 3.1%) 

75% 27,781 (12,372 – 41,796) 3.2% (2.2 – 4.5%) 

 

 

Figure 3.6: TB incidence (A) and mortality (B) rates for baseline and intervention scenarios.  

Lines represent the means of 1,000 model trajectories. 
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Reductions in the number and percentage of incident TB cases and TB deaths averted are shown 

in Figure 3.7 and Figure 3.8, respectively. As the maximum effect of the intervention increases 

(from 25% to 75%), the model outcomes (number and percentage of cases and deaths averted) 

increase. Conversely, when the time to reach half the maximum effect of the intervention in the 

population increases from 2 years to 3 years, the model outcomes decrease. The resulting effect of 

the intervention is larger for TB mortality than for incidence as shown by the overall percentage 

of outcomes averted in Figure 3.7(B). 

 

 

 

 

 

 

Figure 3.7: Resulting number of cases (A) and deaths (B) averted when the maximum effect of 

the intervention is varied, as well as the time of implementation of the intervention.  

Points represent the mean of 1,000 model trajectories with 95% uncertainty intervals. 

Figure 3.8: Resulting percentage of cases (A) and deaths (B) averted when the maximum effect 

of the intervention is varied, as well as the time of implementation of the intervention.  

Points represent the mean of 1,000 model trajectories with 95% uncertainty intervals 

https://scholar.sun.ac.za



 

 

 45 

Figure 3.9 shows the results of the scenario analysis after varying the relative rate of seeking care 

among people who had previously sought care but were lost (using the rate of care seeking among 

those who never sought care before as a reference). By increasing the rate of accessing diagnosis 

after being lost before starting treatment, I decreased the duration that an individual resides in the 

particular compartment (“Diseased (previously sought care)”, see Figure 3.1). As the parameter is 

increased, the number of cases and deaths averted increases. Conversely, if the parameter is 

decreased, the outcomes are reduced. When reducing the rate of re-seeking care by 20%, the effect 

of the intervention is almost nullified. As with the primary analysis, the resulting effect of the 

intervention on mortality is larger than TB incidence as represented by the percentage of cases and 

deaths averted in Figure 3.9 (B). 

 

3.3.3 Sensitivity analysis 

I conducted a PRCC analysis of the model parameters and outcomes to determine how sensitive 

outcomes were to model parameters. The outcome used for the PRCC was the percentage of cases 

averted due to the LINKEDIn intervention. The twenty most sensitive parameters resulting from 

the PRCC analysis are shown in Figure 3.10.  

 

The most sensitive parameters include the percentage ILTFU in PHCs and non-PHCs (including 

hospitals), the rate at which individuals lost along the care cascade re-seek care, the proportion of 

the population in the susceptible class, and the rate of initial care seeking, among others. The most 

influential parameter, namely ILTFU in PHCs, has a positive correlation with the outcome of the 

model, suggesting that an increase in the parameter results in an increase in the outcome. 

Alternatively, a negative correlation, such as the relative transmissibility of TB in people with 

subclinical disease, suggests that a decrease in the parameter value results in an increase in the 

outcome, or vice versa.  

Figure 3.9: The number of cases deaths averted (A) and the percentage of cases and deaths averted 

(B) due to the intervention while varying the relative rate that individuals lost along the care 

cascade re-seek care.  

Points represent the mean of 1,000 model trajectories with 95% uncertainty intervals. 
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3.4 Discussion  

This study made use of an existing transmission-dynamic mathematical model to determine the 

impact of reducing ILTFU on TB incidence and mortality in South Africa based on findings from 

LINKEDIn study, a large implementation study in three South African Provinces that aimed to 

reduce ILTFU among people diagnosed with TB. I estimated the impact of country wide scale-up 

of the LINKEDIn intervention. The findings suggest that implementing the LINKEDIn 

intervention to reduce ILTFU by 50% could lead to notable reductions in TB incidence and 

mortality. It was estimated that the intervention would prevent approximately 50,000 incident TB 

cases and 21,500 TB deaths between 2023 and 2035. Without additional interventions, however, 

the impact was not sufficient to reach the End TB strategy targets.  

 

The population-level impact estimated in this study differs from that estimated in other modelling 

studies at national (44) and sub-national level (45,46). Knight et al. compared a variety of 

interventions for reducing TB in the South African population, including decreasing ILTFU (44). 

The study suggested that substantial reductions in TB incidence and mortality (30% and 52%, 

respectively) could be achieved over a 17-year time period if ILTFU was reduced. The study made 

similar assumptions about the effect of the intervention (50% reduction in ILTFU). However, it 

assumed a shorter time to full scale up of the intervention (1 year vs. ~5 years in my study) and a 

longer time horizon for impact after full implementation (16 years vs. ~8 years in my study). More 

importantly, the study assumed lower overall losses along the care cascade and a higher increase 

in the proportion of individuals with TB who would initiate treatment as a result of the intervention 

(11.6% vs. 4.5%/4.9% HIV negative/positive).  

 

Two other studies modelled a reduction in ILTFU at sub-national level in South Africa, namely 

provincial-level (45) and occupational setting in South African mines (46). Scaling up an 

intervention that improved linkage to care for diagnosed individuals in three provinces of South 

Africa (KwaZulu-Natal, Limpopo, and Western Cape) was assumed to reduce ILTFU by 80% 

between 2015 and 2021 (45). A reduction in TB incidence of 4.9 – 13.8% and mortality of 11.6 – 

Figure 3.10: Results from the PRCC analysis.  

The outcome corresponds to the percentage of cases averted due to the intervention with a 50% 

maximum effect and 2-year period to reach half the maximum effect. Model parameters are listed 

on the y-axis, PRCC values on the x-axis. *ILTFU in other facilities includes hospitals. (HIV = 

Human immunodeficiency virus, HIV- = HIV-negative individuals, PLWH = people living with 

HIV). 
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26.2% was estimated in the different provinces. Targeting South African miners with a 

hypothetical intervention to reduce ILTFU by 86%, on average, for smear-positive and smear-

negative individuals was estimated to reduce TB incidence by 40% over 10 years (46). These 

settings estimated a larger impact on population-level outcomes; however, they may not be 

generalizable to the whole of South Africa and, therefore, the outcomes may not be directly 

comparable. Different estimates of the impact of ILTFU observed across these different studies 

(44–46) suggests that impact will be context specific. More research is required to understand the 

role of differential losses along the care cascade for TB. 

 

At secondary analysis, I considered additional scenarios describing the maximum effect and 

implementation duration of the LINKEDin intervention. The first scenario consisted of varying 

levels for the maximum effect of the intervention (25%, 50% - primary analysis, and 75%) and 

delays of implementing the intervention in the population (2 years – primary analysis, and 3 years 

to reach half the maximum effect of the intervention). These analyses showed that the impact of 

reducing ILTFU is greatest when intervention strategies can be implemented more rapidly, and 

when the maximum effect of the intervention is increased. These findings are plausible, since a 

larger intervention effect and a shorter delay would ensure less individuals are lost prior to 

treatment, leading to better survival and less infectious individuals transmitting the disease in the 

population. The second scenario consisted of varying the time at which individuals re-seek care 

after they are lost within different stages of the care cascade. This has direct implication on the 

effectiveness of the intervention, since the longer individuals with TB take to link to treatment, the 

greater their potential of transmitting the disease to others in the population and the higher the 

likelihood of death (106). 

 

The variation in impact observed under the latter analysis is consistent with the findings from the 

sensitivity analysis, which showed that epidemiological impact is sensitive to the rate at which 

people lost along the care cascade (e.g., due to ILTFU) are re-seeking care. The sensitivity analysis 

also showed that the number of cases averted is dependent on the proportion of people initially 

lost to follow-up in PHC and non-PHC facilities. This is expected because higher ILTFU at 

baseline leads to greater absolute effect of the intervention. 

 

I note the following important limitations of this study. The model aggregates all losses along the 

care cascade into a compartment called “Diseased (previously sought care)” and are allowed to re-

seek care at the same rate after some time, see Figure 3.1. This is a limitation, since individuals 

lost at different stages in the care cascade are likely to have different care-seeking behaviour (17). 

I do, however, consider this rate in the secondary analysis to account for variability. This analysis 

focused on South Africa, a country with high rates of ILTFU. The impact of this intervention may 

not be generalizable to other settings, since factors such as the prevalence of ILTFU in other 

settings may result in a lower, or higher, return on the intervention. There is considerable 

uncertainty in parameters of natural history and parameters of ILTFU in PHCs and non-PHCs, 

partly because prior estimates are based on different data sources. Additionally, the uncertainty 

around the different losses along the care cascade is significant. To reduce bias, the model was 

calibrated prior to this analysis with prior ranges that represent the substantial uncertainty in 

parameters. There was also much uncertainty in the maximum achievable level of the intervention 

and the delay of implementation in the population, however, these factors were considered at 

secondary analysis to determine what outcomes could look like with different scenarios.  In this 

study, individuals who were prevented from being ILTFU and initiated on treatment through the 

LINKEDIn intervention were assumed to complete treatment at the same rate as people who did 

not need support to link to TB care. It is, however, possible that these individuals will have a higher 

risk of being LTFU during treatment. Ideally, individuals who are detected as ILTFU and started 

on treatment would receive support throughout the process to ensure they successfully complete 

their treatment. I did not vary initial loss to follow-up based on HIV and/or ART status due to data 
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limitations and this may have affected model outcomes. Final results of the impact of the 

LINKEDIn intervention at sub-national level were not readily available at the time of this 

modelling study, and so preliminary data were used. An update of the model, once this data can 

be utilized, will be beneficial for a more realistic representation of what the scale-up of this 

intervention could look like at country level.  

 

Since a cost-effectiveness analysis was out of the scope of this study, the cost and resource 

implications of scaling up this intervention in the South African population should be considered. 

Analysis of the cost-effectiveness of implementing this intervention will provide further evidence 

in determining whether a scale-up will be beneficial in the planning of TB control activities. Costs 

and resources to implement the LINKEDIn intervention, such as SMS’s, telephonic calls, and 

visits by HCWs to those who do not start treatment following diagnosis could be prohibitive. As 

such, more information on which populations are at high risk of being initially lost to follow-up 

should be considered so interventions can be optimally targeted. A combination of interventions, 

including those to reduce ILTFU, is likely to have a larger population-level effect and should be 

modelled to determine an optimal effect strategy for South Africa. Data is required from empirical 

studies to determine the risk of previously ILTFU individuals successfully completing treatment 

following an intervention such as this. This may highlight the need for continuous support for 

linkage to TB treatment and successful completion. Further modelling should be conducted on the 

impact of reducing a combination of losses along the TB care cascade to strengthen the process of 

individuals with active TB seeking care and completing their treatment.   

 

In conclusion, I used an existing transmission-dynamic model to determine the population-level 

impact of reducing ILTFU in South Africa based on early results from a large quasi-experimental 

study. I found that the LINKEDIn intervention would have a notable effect on TB mortality with 

a more moderate effect on TB incidence. The observed indirect effects from reducing transmission 

extend individual-level benefits among individuals at risk of ILTFU who are more likely to initiate 

TB treatment through the LINKEDIn intervention. Since ILTFU is a growing concern in South 

Africa, this study highlights the need for prioritisation of a combination of interventions to reduce 

ILTFU when planning for TB control efforts. Furthermore, integrated interventions to reduce 

different types of losses along the care cascade are needed. 
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4  Discussion and conclusions 

4.1 Overview 

TB continues to be a major public health threat in South Africa. This thesis aimed to synthesize 

the impact of different interventions on TB incidence and mortality as estimated in studies using 

transmission-dynamic mathematical models, in order to explore which interventions should be 

prioritised to maximise impact. It further aimed at addressing an important research gap by 

estimating the population-level impact of reducing ILTFU in South Africa. Original research 

conducted towards this thesis is presented in Chapters 2 and 3.  

 

In Chapter 2, I conducted a systematic review of mathematical modelling studies that focused on 

South Africa and estimated the impact of various interventions of TB prevention and care on 

outcomes linked to the End TB strategy. Through this study, I explored which types of 

interventions would be most promising in reducing TB burden in South Africa and identified 

several gaps for further mathematical modelling research. The study presented in Chapter 3 

addresses one of the gaps identified in the systematic review. I used an existing TB transmission-

dynamic model to estimate the impact of reducing ILTFU in South Africa by scaling-up the 

LINKEDIn intervention that has been implemented in 3 South African provinces.  

 

This chapter discusses the key findings of the two studies in the context of existing literature. I 

then highlight strengths and limitations of this thesis as a whole and end with a summary of 

recommendations for future research and important conclusions 

4.2 Discussion of key findings 

4.2.1 A systematic review of mathematical modelling studies  

To meet the first objective, I performed a systematic review of transmission-dynamic TB models 

to synthesize evidence for TB prevention and control interventions in South Africa. This review 

was designed to support decision making by highlighting interventions with the greatest potential 

to accelerate progress towards reaching the End TB strategy targets. The 2035 targets include a 

90% reduction in the TB incidence rate, a 95% reduction in the number of TB deaths and the 

number of families facing TB-related catastrophic costs to zero, compared to 2015 levels (49). 

 

The systematic review showed that all 29 eligible studies, except one, projected the impact of 

interventions towards reducing the End TB strategy target indicators of TB incidence, mortality, 

or both. The remaining study estimated the impact of interventions on the number of households 

experiencing TB-related catastrophic costs (80). This is an outcome that is particularly relevant 

for South Africa since TB is amplified by the high proportion of the population facing 

unemployment, household crowding, and other resource limitations such as transport for clinic 

attendance (96). Crude measures of average annual percentage declines in TB incidence and 

mortality were calculated to compare the impact of different interventions. Preventive 

interventions including vaccination, TPT among PLWH, and scaling up ART, were most 

promising in terms of estimated impact. This finding is supported by studies that have emphasized 

the need to develop novel, more effective vaccines targeted to key populations (41,85), and to 

expand the usage of other preventive strategies in high-burden settings (107). Although the 

majority of studies considered interventions along the TB care cascade, including active case 

finding or screening, the scale-up of existing and development of novel diagnostic tests, reducing 

ILTFU, and improving treatment, their impact on TB transmission and incidence was found to be 

lower. An example was the scale-up of Xpert-based algorithms in South Africa prior to and during 

its roll-out in 2013. Summarized findings from this review showed that introducing Xpert as a 
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diagnostic test had a moderate effect on TB mortality and diagnostic yield, consistent with findings 

from a recent meta-analysis (90) and implementation study (13). 

 

Several gaps in TB modelling research were identified through this review, including a lack of 

modelling studies that focused on targeting interventions towards vulnerable groups (for example, 

PLWH and exposed household contacts), and modelling the effect of newly developed diagnostic 

tests and regimens for active TB (93). More modelling studies should consider the potential for 

South Africa to reach the End TB target of reducing catastrophic costs faced by TB-affected 

households to zero. Another important gap that should be considered is the impact of reducing 

ILTFU in South Africa. Only one study measured this impact at country-level (44). People who 

are lost prior to initiating TB treatment present a challenge for TB programmes since they are 

associated with poor treatment outcomes and are expected to contribute to onward transmission 

(24,27).  

4.2.2 Mathematical modelling to reduce ILTFU in South Africa 

The second objective was chosen to complement the LINKEDIn study, a quasi-experimental study 

that aimed to support prompt registration and linkage to treatment through a patient management 

intervention (31,98). I used an existing transmission-dynamic mathematical model of TB to 

estimate the number of cases and deaths that could be averted if the LINKEDIn intervention was 

brought to scale in South Africa. Furthermore, I related the anticipated impact estimated in this 

modelling study to the 2035 End TB strategy targets.  

 

The analysis suggested that implementing the intervention to reduce ILTFU by 50% could avert 

approximately 50,000 cases and 21,500 deaths between 2023 and 2035. Due to the delay of ~5 

years to implement the LINKEDIn intervention fully in the population, there was less time to 

measure impact (~8 years). The year 2035 was chosen as the end time point, as I aimed to link the 

estimated reduction in TB incidence and mortality to the 2035 End TB strategy targets. A reduction 

in the incidence and mortality rates of 2.5% and 6.3% were estimated at the end of the 13-year 

time horizon. These results differ from those in an earlier study which estimated that a 50% 

reduction in ILTFU could reduce TB incidence and mortality rates by 30% and 52% over 17 years 

(44). Knight et al. assumed a shorter time to fully implement the intervention in the population, 

and a longer time horizon following full implementation (44). More importantly, the study 

assumed lower overall losses along the care cascade and a higher increase in the proportion of 

individuals with TB who would initiate treatment as a result of the intervention (11.6% vs. 

4.5%/4.9% HIV negative/positive). 

 

Given that detailed losses along the TB care cascade were considered, I was able to model ILTFU 

in relation to other losses along the care cascade. The model suggested that ILTFU represented a 

small proportion of the overall losses along the care cascade and, thus, would explain the smaller 

impact I estimated compared to Knight et al. (44).The relatively modest reductions in TB incidence 

and mortality rates indicate that the addition of the LINKEDIn intervention alone is not likely to 

assist South Africa in meeting the End TB strategy targets. This finding is consistent with the idea 

that a combination of interventions to reduce TB burden in South Africa is necessary to reach a 

90% reduction in the TB incidence rate and a 95% reduction in the number of TB deaths (39,40), 

which was also an important finding in the systematic review presented in Chapter 2.   
 

This modelling study addresses an important gap also identified in the systematic review presented 

in Chapter 2. Among diagnosed individuals, people who are lost before initiating treatment are an 

increasing concern in South Africa (30); only one study in the systematic review focused on 

reducing ILTFU at country-level (44). The scale up of the LINKEDIn intervention to reduce 50% 

of ILTFU resulted in a larger effect on mortality than incidence. This is consistent with findings 

from other modelling studies highlighted in Chapter 2 and is plausible since people who are ILTFU 
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have already developed TB and initiating them on treatment yields direct effects in terms of 

reducing mortality. Additionally, reducing ILTFU has an indirect effect on incidence and mortality 

through the reduction of onward transmission. Comparing AAPDs due to different interventions 

calculated for other modelling studies in the aforementioned systematic review, AAPDs calculated 

in my study (0.2% for incidence and 0.5% for mortality; section 2.2.2) were moderate compared 

to other interventions (61,63,67). Figure 4.1 shows the comparison between the impact of other 

interventions modelled at country-level, calculated in Chapter 2, and the impact of the LINKEDIn 

intervention, highlighted in red. The relatively modest impact estimated for an intervention to 

reduce ILTFU suggests that integrated interventions are required to comprehensively address the 

different losses along the TB care cascade rather than focusing on ILTFU alone. 

 

At secondary analysis, I varied several parameters related to the effectiveness of the LINKEDIn 

intervention, since there is uncertainty in what the scale-up could look like at country level. This 

analysis showed that the impact of reducing ILTFU in South Africa is greatest when the 

interventions can be implemented more rapidly and when the maximum effect is increased. 

Similarly, removing people, who would otherwise be ILTFU, through the LINKEDIn intervention 

from the “awaiting diagnosis” group reduces the average time to re-seek care and, thus, has an 

indirect effect and the resulting impact of the intervention is higher. These findings are supported 

by the idea that linking more people to treatment, and faster, will reduce the potential for 

transmission and increase the probability of a positive treatment outcome (106).  

4.3 Strengths and limitations 
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Figure 4.1: Comparison of AAPDs for modelling studies included in the systematic review in 

Chapter 2 and reducing ILTFU through the LINKEDIn study presented in Chapter 3 
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This thesis consists of two studies, a systematic review, and a mathematical modelling study, 

which, in their own way and in conjunction, add to the existing body of research investigating the 

impact of interventions towards TB prevention and control in South Africa. I highlight several 

important limitations in this research.   

 

The generalizability of findings from this thesis may be limited, since the primary setting was 

South Africa at the national level. The systematic review in Chapter 2 also considered populations 

at sub-national level, however findings may not be generalizable to whole of South Africa due to 

the vast heterogeneity of TB burden and epidemiology between sub-populations in the country 

(97). For example, miners in South Africa have been estimated to contribute substantially to TB 

infections on a per-capita basis, but only a small fraction of overall infections in the country (108). 

This could be attributed to the relatively small mining population and the heterogeneity in TB 

epidemiology between the different settings. Furthermore, in the modelling study in Chapter 3, I 

focused on estimating population-level TB incidence and mortality at the country level. Data and 

expert opinion used to infer estimates of ILTFU and the potential effect the LINKEDIn 

intervention could have on the population are based on provincial-level results in KwaZulu-Natal, 

Western Cape, and Gauteng. Again, these estimates may not be a fair representation of the 

population. I did, however, consider different scenarios to allow for variation in the maximum 

effect of the intervention as well as the time it would take to implement the intervention in the 

population. The modelling study focused on South Africa, a country with high rates of ILTFU. 

The impact of this intervention may not be generalizable to other settings, since factors such as the 

prevalence of ILTFU in other settings may result in a lower, or higher, return on the intervention. 

 

Consideration of the cost and resource requirements of interventions is important for policymakers 

when targeting interventions for TB prevention and control. In this thesis, I did not consider the 

cost-effectiveness of interventions when determining which types were most promising in 

reducing TB burden in South Africa or when estimating the effect of reducing ILTFU on 

population-level incidence and mortality in the country.  Only nine out of 29 eligible studies in the 

systematic review included cost-effectiveness analyses of their interventions, which limited the 

ability to make a fair comparison based on both impact and cost. Additionally, I did not include a 

cost-effectiveness analysis of the LINKEDIn intervention in reducing ILTFU in South Africa as it 

was out of the scope of this thesis.  

 

Uncertainty in mathematical models of infectious diseases is necessary to support the plausibility 

of their outcomes (109). The lack of uncertainty reported in several of the articles included in the 

systematic review in Chapter 2 limited the ability to calculate upper and lower bounds of average 

annual percentage declines in TB incidence and mortality. We could not assume that the mean and 

confidence intervals for model outcomes would directly translate to confidence intervals for 

AAPDs and so, they should be interpreted with caution. Parameters for the TB model presented in 

Chapter 3 are subject to substantial uncertainty. Additionally, there is uncertainty around 

assumptions made for the LINKEDIn intervention, including the feasibility of reaching a reduction 

in ILTFU by 50% and the extent to which the specifics of the intervention are applicable to the 

whole country. To represent this uncertainty, wide prior ranges for model parameters were used in 

calibration by the researchers who developed the model. Additionally, results are presented as the 

mean and 95% uncertainty intervals from 1,000 model runs of re-sampled parameter sets to 

account for uncertainty in outcomes. 

 

Several important limitations were specific to the two studies. Comparing different interventions 

between studies in the systematic review presented in Chapter 2 was limited by the heterogeneity 

in model structure, study design and reported outcomes (for example, some studies estimated the 

number of cases and deaths averted, some measured the percentage decline in incidence and 

mortality rates, or both). In my modelling study, presented in Chapter 3, it’s assumed that 
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individuals lost at different stages along the care cascade re-seek care at the same rate. This is a 

limitation since these people are likely to have different care seeking behaviour depending on 

which type of loss they were recorded as (17). I do, however, vary this rate at secondary analysis 

to account for these potential differences. Additionally, individuals who were prevented from 

being ILTFU and initiated on treatment through the LINKEDIn intervention were assumed to not 

be at additional risk of being lost to follow-up during treatment. This may not be the case, since 

they may require additional support to complete their treatment compared to individuals who did 

not need support to link to care.  

4.4 Overall conclusions and relevance of this research 

In conclusion, this thesis provides a summary of the impact of TB prevention and care 

interventions on population-level outcomes as estimated by previous transmission-dynamic 

modelling studies to explore which interventions should be prioritised to maximise impact within 

South Africa. Furthermore, it addresses an important research gap, namely estimating the impact 

of reducing ILTFU on TB incidence and mortality in South Africa.  

 

Summarizing results from existing modelling studies showed that interventions focusing on 

prevention, including vaccination, TPT among PLWH, and scaling-up ART, would have the 

greatest potential to reduce TB incidence and mortality rather than interventions along the care 

cascade such as ACF, and improving testing and treatment strategies. There is a lack of studies 

estimating the impact of interventions to reduce ILTFU in South Africa, hence this thesis included 

a modelling study to address this gap. Using data and expert opinion from the LINKEDIn study, 

scaling-up their intervention to reduce ILTFU country-wide was found to have notable impact on 

the population-level TB incidence and mortality. An important finding in this thesis was that single 

interventions would be unlikely to generate sufficient progress towards the End TB strategy 

targets, as such, combinations of interventions are needed to effectively reduce TB incidence and 

mortality in South Africa. This thesis offers insights at a time where additional guidance is needed 

following TB health service disruptions caused by the COVID-19 pandemic. Due to these 

disruptions, progress towards the 2035 End TB strategy targets have slowed and thus, evidence is 

required for policymakers to better understand how different interventions will aid progress 

towards TB elimination in South Africa. These results are also useful as part of the consultation 

process towards the 2023-2028 NTP strategic plan for South Africa. 

4.5 Recommendations for further research 

Several recommendations for further research in TB modelling have been highlighted in this thesis. 

Through the systematic review in Chapter 2, gaps that should be considered for future TB 

mathematical modelling research include the need for studies to model the effect of novel 

diagnostic tests for TB, interventions offered specifically to vulnerable and high-risk populations 

such as people living in poverty, exposed household contacts, and PLWH, and importantly, 

interventions aimed at reducing catastrophic costs for TB-affected households, the third target of 

the End TB strategy. Although it was shown that combinations of interventions would be necessary 

to reach the targets of the 2035 End TB strategy, a simplification of the review was to only consider 

the impact of single interventions. Future work should consider which combinations would have 

the greatest potential in reducing TB burden in South Africa. The study presented in Chapter 3, 

which addressed a modelling gap identified in Chapter 2, did not consider the cost or resource 

implications of reducing ILTFU through the LINKEDIn intervention country wide. Future work 

should be done to determine the cost-effectiveness and resources required to scale-up this 

intervention, and whether it would be worthwhile in the South African context. Given that this 

study estimated a modest reduction in a single loss along the care cascade, ILTFU, understanding 

how interventions could be integrated to comprehensively address losses along the TB care 
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cascade will be important. Estimates for losses along the care cascade in South Africa, including 

from this modelling study, highlight substantial gaps in the care cascade and closing these gaps 

will be important to successfully reduce TB morbidity and mortality. Further analyses should be 

conducted to determine the effect of the intervention in combination with other complementary 

strategies, such as early case detection, accurate diagnosis, and high treatment completion rates.  
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Addendum A 

Table A1: PRISMA 2020 Checklist (54) 

Section and Topic 

Item 

# 

Checklist item Location 

where item 

is reported 

TITLE 

Title 1 Identify the report as a systematic review. Title page 

ABSTRACT 

Abstract 2 See the PRISMA 2020 for Abstracts checklist. Page i 

INTRODUCTION 

Rationale 3 Describe the rationale for the review in the context of existing knowledge. Page 7 

Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses. Page 7, 

Table 2.1 

METHODS 

Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. Page 8 

Information sources 6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the 

date when each source was last searched or consulted. 

Page 8 

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used. Table 2.2 

Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each 

record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process. 

Page 8 

Data collection 

process 

9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked 

independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in 

the process. 

Page 8 

Data items 10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each 

study were sought (e.g., for all measures, time points, analyses), and if not, the methods used to decide which results to collect. 

Page 8, 

Page 9, 

Table 2.5 

10b List and define all other variables for which data were sought (e.g., participant and intervention characteristics, funding sources). Describe any 

assumptions made about any missing or unclear information. 

Page 8,  

Page 9, 

Page10, 

Table 2.5 

Study risk of bias 

assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each 

study and whether they worked independently, and if applicable, details of automation tools used in the process. 

Page 10, 

Table 2.3 

Effect measures 12 Specify for each outcome the effect measure(s) (e.g., risk ratio, mean difference) used in the synthesis or presentation of results. Page 7,8,9 
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Section and Topic 

Item 

# 

Checklist item  Location 

where item 

is reported  

Synthesis methods 13a Describe the processes used to decide which studies were eligible for each synthesis (e.g., tabulating the study intervention characteristics and 

comparing against the planned groups for each synthesis (item #5)). 

Page 9 

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data 

conversions. 

N/A 

13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. Page 8,9 

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the 

model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. 

N/A 

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g., subgroup analysis, meta-regression). N/A 

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. N/A 

Reporting bias 

assessment 

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). N/A 

Certainty 

assessment 

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. N/A 

RESULTS   

Study selection  16a Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included 

in the review, ideally using a flow diagram. 

Page 15 

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. Table A3 

Study 

characteristics  

17 Cite each included study and present its characteristics. Table 2.5,  

Page 18-21 

Risk of bias in 

studies  

18 Present assessments of risk of bias for each included study. Page 15, 

Table 2.4  

Results of 

individual studies  

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision 

(e.g., confidence/credible interval), ideally using structured tables or plots. 

Table 2.5 

Results of 

syntheses 

20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. Pages 18-21 

20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g., 

confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. 

Page 33, 

Page 34, 

Table A3 

20c Present results of all investigations of possible causes of heterogeneity among study results. N/A 

20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. N/A 

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. N/A 

Certainty of 

evidence  

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. N/A 
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Section and Topic 

Item 

# 

Checklist item  Location 

where item 

is reported  

DISCUSSION   

Discussion  23a Provide a general interpretation of the results in the context of other evidence. Pages 34, 

Page 35 

23b Discuss any limitations of the evidence included in the review. Page 36 

23c Discuss any limitations of the review processes used. Page 36 

23d Discuss implications of the results for practice, policy, and future research. Page 35-36 

OTHER INFORMATION  

Registration and 

protocol 

24a Provide registration information for the review, including register name and registration number, or state that the review was not registered. Page 8 

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared. Page 8 

24c Describe and explain any amendments to information provided at registration or in the protocol. N/A 

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. Funding 

section 

Competing interests 26 Declare any competing interests of review authors. N/A 

Availability of data, 

code and other 

materials 

27 Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from 

included studies; data used for all analyses; analytic code; any other materials used in the review. 

Data from 

addendum 

referred to 

throughout, 

Page 8 
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Table A2: Table of studies excluded at full text in the systematic review in Chapter 2  

 

Publication (year) Reason for exclusion 

Bacaer (2008)  None of the End TB targets quantified 

Basu (2008) Review of modelling studies 

Blaser (2016) No intervention modelled 

Cohen (2009) Review of modelling studies 

Chang (2018) No intervention modelled  

Currie (2003) Not modelled for South Africa: modelled for Kenya 

Du Toit (2007) 

Not a population-based study: The number of cells over time (T4, infected 

cells, CTLs, APC’s, viral load, and bacterial load) represent the state 

variables that are modelled dynamically.  

Enagi (2017)  Not modelled for South Africa: modelled for Nigeria 

Houben (2014) 
Not representative of the population: model reflects a closed cohort of 

individuals during and after TB preventive therapy 

Houben (2016)  No intervention modelled 

McCreesh (2018) No intervention modelled 

McCreesh (2020) No intervention modelled 

Menzies (2016) None of the End TB targets quantified 

Pretorius (2011) No intervention modelled 

Reid (2015) Secondary report of modelling studies 

Salvatore (2019) No intervention modelled 

Sharma (2017) No intervention modelled 

Sumner (2016) 

Not representative of the population: model reflects a closed cohort of 

individuals during and after TB preventive therapy & none of population-

level outcomes measured 

Viljoen (2012) Not modelled for South Africa: not calibrated to South African data 

Witbooi (2017) No intervention modelled 

Wood (2011) 
Intervention not modelled (explicitly – do show a model and discuss ART 

intervention, but focus on evidence gained from literature) 

 

Table A3: Estimated AAPDs required to meet the WHO’s End TB strategy targets for incidence 

and mortality 

  

Incidence (90% reduction compared to 2015 levels) 

Year Incidence (per 100k) PPD (time horizon) AAPD  

2015 988 
44% (5 years) 11% 

2020 554 

2022 554 (Assumed) 
82% (13 years) 12% 

2035 98.8 (Target) 

Mortality (90% reduction compared to 2015 levels) 

Year Mortality (per 100k) PPD (time horizon) AAPD  

2015 116 
11% (5 years) 2.3% 

2020 103 

2022 103 (Assumed) 
94% (13 years) 19% 

2035 5.8 (Target) 
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Addendum B 

 
SUPPLEMENT 

 
Brief description of the transmission-dynamic mathematical model used for the 

modelling study presented in Chapter 3  
 

(Modelling the population-level impact of reducing initial loss to follow-up among individuals 
diagnosed with tuberculosis) 

 
 
Important information: This supplementary information contains preliminary and unpublished 
information about the transmission-dynamic mathematical model developed by the DTTC-
SACEMA TB modelling partnership. Any questions arising from this document shall be 
directed to Dr. Florian Marx (fmarx@sun.ac.za). 
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S1. Overview 

A deterministic, compartmental transmission-dynamic mathematical model of tuberculosis (TB) and HIV in 
the South African population was developed. The model was implemented as ordinary differential equations 
in R (statistical application). It consists of 11 TB-specific compartments describing the natural history of TB, 
TB diagnosis and treatment, and includes 9 subdivisions for HIV infection, progression, and antiretroviral 
treatment (ART). The model is transmission-dynamic for TB and uses external information on the incidence 
of HIV infection in the population to allow for modifications of the TB natural history and transmission 
dynamics by HIV status and ART. The model is initialized in 1995, and a burn-in period of 20 years is 
applied. The model is calibrated to a total of 10 calibration targets for selected epidemiological and 
programmatic indicators using a Bayesian posterior estimation (sampling-importance-resampling) 
approach. The calibration period is 2016-2020. The complete model time horizon is 1995 to 2035. 
 
 

S2. Model structure 

 
Figure S1 shows the model structure. 

 
Main component: Individuals are born into the susceptible state. Upon primary infection, susceptible 
individuals transition from the susceptible to the latently infected ‘recent’ state. Individuals in the latently 
infected ‘recent’ state are assumed to either contain their infection and transition to a latently infected 
‘distant’ state, or they rapidly progress to a diseased state. Individuals with distant latent infection may 
reactivate their infection and progress to disease, and they may become reinfected. The model 
distinguishes two disease states, a pre-clinical (pre-symptomatic) and a clinical (symptomatic) state. It 
assumes that all individuals who develop TB disease following either primary infection, reinfection or 
reactivation (relapse) enter the preclinical disease state and subsequently progress to a symptomatic 
disease state. Individuals in the symptomatic disease state, upon seeking care, transition into an ‘awaiting 
diagnosis’ state in which they enter the TB care cascade (see below). Individuals lost along the care 
cascade for any reason enter a ‘previously sought care’ diseased state and may seek care again at a rate 
that differs from that among individuals who never sought care before. Individuals diagnosed with TB may 
be initially lost to follow-up before initiating TB treatment. Those who are treated for TB enter the ‘On 
treatment’ state. Individuals who successfully complete treatment enter a recovered ‘low risk’ state. Those 
who do not complete their treatment and those with untreated TB disease who recover naturally enter a 
recovered ‘high risk state’. Individuals in the recovered ‘high-risk’ state transition may relapse or transition 
into the recovered ‘high-risk’ state. Recovered individuals may relapse upon which they re-enter the pre-
clinical disease state, or they may become reinfected upon which they enter the latently infected ‘recent’ 
state. Individuals may die from natural causes or from TB. The rate of death from TB distinguishes between 
untreated individuals and those on TB treatment. 
  
Model subdivisions for HIV infection and ART: The model includes 9 subdivisions for HIV infection, 
progression and antiretroviral treatment (Figure S1).  Upon HIV infection, HIV-negative individuals transition 
to an HIV-infected state and transition through 4 immunocompromised states (CD4 count levels). People 
in the HIV infected states may initiate ART (at any state) upon which they transition to ART treatment states. 
ART initiation is independent of the prevailing TB state. An additional process for ART initiation is 
implemented for people who initiate TB treatment. Individuals in the two lowest CD4 count level states may 
die from diseases associated with HIV infection including TB. 
 
TB care cascade component: The TB care cascade component simulates different types of losses on the 
way to TB diagnosis and treatment (Figure S2). It is implemented as a simple decision function and 
distinguishes between individuals seeking care in primary health care facilities vs. other facilities. 
Individuals who seek care access a pre-diagnostic evaluation at which they may be referred for TB testing. 
Conditional on their ability to produce sputum and the sensitivity of the diagnostic test, individuals may be 
confirmed with TB, and initiate TB treatment. The model allows for clinical diagnosis in the absence of 
bacteriological confirmation. It also allows for the diagnosis among individuals with sputum-negative TB, 
and for false-positive TB diagnosis and treatment among TB-free individuals (not shown in Figure S2). 
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S3. Model parameterization 

Prior parameter values and ranges used in the model along with their sources are provided in the 
subsequent sections and tables. Rates stated are per year unless otherwise specified. 
 

S3.1. Demographic parameters 

Table S1. 

Measure Mean value Uncertainty range Source 

Annual birth rate 0.023 0.020 - 0.026 [1] 

Natural death rate 0.0060 0.0046–0.0077 [1] 

 
 

S3.2. TB transmission 

Table S2. 

Measure Mean value Uncertainty 
range 

Source 

Number of effective contacts per infectious 
person-year (symptomatic, HIV negative) 11 2 - 18 [2, 3] 

Relative infectiousness of sub-clinical vs. 
clinical TB disease 0.635 0.270 - 1.000 [4, 5] 

Relative infectiousness of TB among HIV-
positive individuals (compared to HIV 
negative)     

CD4 > 500 cells/µl 0.95 - [6, 7] 
CD4 350-499 cells/µl 0.85 -  
CD4 200-349 cells/µl 0.65 -  
CD4 <200 cells/µl 0.45 -  

Relative risk of reinfection (distant latently 
infected vs. uninfected) 0.500 0.200 - 0.800 [8-10] 

Relative risk of reinfection (recovered vs. 
uninfected) 0.750 0.500 - 1.000 [8-10] 

 
 

S3.3. Natural TB history (HIV-negative) 

Table S3. 

Measure Mean value Uncertainty range Source 

Duration of the ‘recently infected’ period with 
elevated risk of TB progression (years) 2.0 - [11] 

Probability of rapid progression to pre-clinical TB 
during the recent latently infected period 0.060 0.040 - 0.120 

 
[12-16] 

Rate of delayed reactivation to pre-clinical TB after 
distant latently infected period  0.001 0.0005 - 0.0025 [9, 10, 17] 

Rate of progression from pre-clinical to clinical TB 
disease 1.100 0.500 - 1.200 [18] 

Rate of natural recovery from TB (regression from 
symptomatic to pre-symptomatic to latent infection)    [9, 10] 

HIV negative 0.275 0.200 - 0.350  
CD4 >500 cells/µl 0.175 0.100 – 0.250  
CD4 350-499 cells/µl 0.175 0.100 – 0.250  
CD4 200-349 cells/µl 0 -  
CD4 <200 cells/µl 0 -  

Rate of transition from high-risk to low-risk of 
relapse recovery from TB (two year duration in high-
risk of relapse recovery state)   0.5 - assumption 
Relative risk of relapse from high-risk recovery from 
TB 0.125 0.100 - 0.150 [9, 10, 17] 

Rate of relapse after recovering from TB  0.001 0.0005 - 0.0025 [9, 10, 17] 
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S3.4. Care cascade: care seeking, TB diagnosis and treatment initiation 

 
Table S4. 

Parameter Mean value Uncertainty range Source 

Time between onset of clinical disease and care-seeking 
(years) 6.000 0.2500 - 1.500 [18] 
Time between care-seeking and TB treatment initiation 
(weeks) 1.500 1.000 - 2.000 [19, 20] 
Probability of pre-diagnostic loss to follow-up (before being 
referred to TB diagnostic assessment)  0.200 0.100 - 0.300 [21-24] 
Probability of sputum-scarcity among individuals with 
sputum-positive TB      

Clinical TB, HIV negative 0.150 0.100 - 0.200 
[25, 26] Clinical TB, HIV positive 0.250 0.200 - 0.300 

Sub-clinical TB 0.450 0.300 - 0.600 

Sensitivity of the diagnostic test      
   Xpert Ultra, HIV-negative 0.900 0.860 - 0.940 

[27, 28] 
   Xpert Ultra, HIV-positive 0.880 0.850 - 0.910 
Probability of clinical or empirical diagnosis among people 
with TB who are sputum scarce or sputum test-negative 

  
 

  HIV negative 0.150 0.100 - 0.200 
[29, 30] 

  HIV positive 0.300 0.200 - 0.400 
Diagnostic loss to follow-up    
   Xpert Ultra, HIV-negative 0.080 0.060 - 0.100 

Assumption 
   Xpert Ultra, HIV-positive 0.060 0.040 - 0.080 

Pre-treatment (initial) loss to follow-up    
   PHC 0.150 0.100 - 0.200 

[31] 
   Non-PHC 0.250 0.200 - 0.300 

 
 

S3.5. Natural history of HIV infection and antiretroviral treatment 

Table S5.  

Measure Baseline value Uncertainty range Source 

Probability of perinatal HIV infection Time-varying  [32] 

Rate of HIV infection  Time-varying  [33] 
Rate of HIV progression in the absence of ART:   [34] 

From CD4 >500 to 350–500 cells/µl 0.340 0.280 - 0.390  
From CD4 350–500 to 200–349 cells/µl 0.480 0.400 - 0.580  
From CD4 200–349 to <200 cells/µl 0.320 0.250 - 0.390  

HIV-associated excess mortality rate, CD4 <200 cells/µl 0.210 0.160 - 0.270 [34] 

Ratio: HIV-associated excess mortality rate, CD4 < 200–349 
cells/µl vs. 200 cells/µl 0.145 0.050 – 0.240  [34] 

Relative risk of dying from HIV whilst on ART vs. not on ART    [10] 
  CD4 200-349 cells/µl 0.100 -  
  CD4 <200 cells/µl 0.770 -  

 
 

S3.6. TB mortality 

Table S6.  

Excess mortality due to untreated TB not on ART    
HIV negative 0.12 0.1 – 0.2 [9, 10, 17] 
CD4 500-200 cells/µl 0.12 0.1 – 0.2 [9, 10, 17] 
CD4 <200 cells/µl 0.25 0.30 – 1.0 assumption 

Excess mortality due to treated TB not on ART 
  

SA TB programme 
data (ETR) 

HIV negative 0.080 0.070 – 0.090  
CD4 >500 cells/µl 0.080 0.070 – 0.090  
CD4 350-499 cells/µl 0.100 0.080 – 0.120  
CD4 200-349 cells/µl 0.150 0.120 – 0.180  
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S4. Model initialization and parameter estimation (calibration) approach 

Model simulations were initiated in 1995 followed by a 20-year burn in period; the model was calibrated to 
data between 2016 and 2020. We specified an initial population size of 41,436,000, based on United 
Nations population estimates [1]. The model was calibrated to data on TB incidence, mortality, and case 
notifications published by the WHO [39], data from South Africa’s first national TB prevalence survey 2017-
19 [40, 41] United National population estimates [1], and data on HIV prevalence and ART coverage 
published by UNAIDS [33]. We adopted a Bayesian parameter estimation approach [42] to identify model 
parameters that resulted in simulated trajectories with good fit to the calibration data. To implement this 
approach, we used a sampling-importance resampling algorithm. Prior parameter ranges were obtained 
from the published literature, and uniform prior distributions were specified for each parameter. Multiple 
parameter sets were then randomly and independently selected from these distributions (sampling). We 
measured the goodness of fit of simulated trajectories against the calibration targets (importance). The 
calibration targets were operationalized as the likelihood of observing the calibration data conditional on 
the simulated values. A subset of 1000 parameter sets was then resampled for final analysis with sampling 
probability proportional to goodness of fit (resampling). Figure S3 shows calibration targets and model 
trajectories resulting from the 1,000 resampled final parameter sets. Table S8 shows sources for calibration 
targets.  
 
 

 
 
Figure S3. Model calibration (grey lines show 1,000 final model iterations; red  circles with error bars show 
calibration targets with uncertainty intervals;  blue intervals show feasible ranges, dashed lines show calibration 
period) 
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Table S8. 

Calibration target Source Reference 

Population size United Nations [1] 

TB incidence WHO Global TB Database [39] 

TB mortality WHO Global TB Database [39] 

TB case notifications WHO Global TB Database [39] 

HIV prevalence UNAIDS [33] 

ART coverage UNAIDS [33] 

TB prevalence Moyo et. al, The First National TB Prevalence Survey - South Africa 2018 [40, 41] 

Sub-clinical TB Moyo et. al, The First National TB Prevalence Survey - South Africa 2018 [40, 41 

Previously sought care Moyo et. al, The First National TB Prevalence Survey - South Africa 2018 [40, 41 
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