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Synopsis
Active noise reduction (ANR) is a method of cancelling acoustic noise in a defined enclosure.

Two methods exist to implement ANR, they are the analog feedback method and the digital

feedforward method. Commercial ANR systems employing feedback methods have been around

since the 1980's. Feedforward methods have however only become practically implemental with

the age of fast real time digital signal processing. In current systems, feedback ANR is used to

attenuate broadband noise whilst feedforward methods are used to attenuate narrow band or

tonal noise [2].

This thesis investigates feedforward ANR to cancel broadband acoustic noise in aircraft

headsets. Different adaptive filters, optimal configuration of adaptive filters and practical

limitations to broadband attenuation for headsets are addressed.

Results from this thesis show that at least 10dS noise energy attenuation is attainable over a

bandwidth of 2.5kHz. A number of areas for further research are also identified.

Opsomming
Aktiewe geraas beheer (AGS) is 'n metode om akoestiese geraas te kanselleer in 'n

gedefinieerde omgewing. Twee metodes bestaan om AGS te implementeer. Hulle is die

analoog terugvoer en digitale vorentoevoer metode. Kommersiële AGS wat die terugvoer

metode gebruik is al in gebruik van die 1980's. Vorentoevoer metodes is egter eers sedert

vinnige intydse digitale sein prosessering moontlik. In huidige stelsels word terugvoer AGS

gebruik vir die attenuasie van wyeband geraas terwyl vorentoevoer metodes gebruik word om

nouband of enkel toon geraas te kanselleer [2].

Die tesis ondersoek vorentoevoer AGS om wyeband akoestiese geraas te kanselleer in vliegtuig

kopstukke. Verskillende aanpasbare filters, optimale opstelling van aanpasbare filters en

praktiese beperkings tot wyeband attenuasie vir kopstukke word ondersoek.

Resultate van die tesis wys dat ten minste 10dS geraas energie attenuasie behaal kan word oor

'n bandwydte van 2.5kHz. 'n Aantal areas vir verder navorsing is ook geïdentifiseer.
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Chapter 1

1 Introduction

Active noise reduction (ANR) is a method of cancelling unwanted noise by electronically

producing a signal that resembles the unwanted noise. The reproduced noise signal is

phase shifted by 180 degrees. This signal is better known as anti-noise.

Transmitting the anti-noise in the same cavity as the noise will cause destructive interference

between the noise and anti-noise resulting in noise reduction.

Active noise reduction dates back to 1936with experiments by Lueg [1] to cancel noise in air

ducts. Active noise reduction has however only been implemented for commercial

applications from the early 1980's.

Thesis background

The South African Air Force (SAAF) acquired their first ANR headset in 1998. These

headsets where employed into the current SAAF fleet by 2000. Since their introduction, it

was found that noise cancellation produced by Air Force headsets is inadequate for

helicopter use.

Two basic methods are employed to produce anti-noise in headsets. These methods are

analogue feedback control or digital feedforward control [2]. The current SAAF headsets

employ the analogue feedback control method.

The aim of this thesis is to investigate digital feedforward control as a solution for improved

broadband noise cancellation in military headsets.

1.1. Digital feedforward control method

Roure, Eriksson and Allie [3], [4] demonstrated that adaptive feedforward control could

perform noise reduction from the early 1980's. Operation of the digital feedforward control

method in a headset topology can be explained as follow.

1-1
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Two microphones and one loudspeaker must be mounted on a headset as shown in Figure

1.1. The outside microphone is known as the reference microphone and the inside

microphone is known as the error microphone.

The aim of the feedforward method is to estimate a digital filter that resembles the acoustic

transfer of noise from the outside to the inside of the headset earpiece. Anti-noise is created

by filtering the reference outside noise with the estimated filter and inverting the signal to

give it a 180 degree phase difference from the inside noise. The anti-noise is transmitted to

the inside of the headset cavity via the loudspeaker.

Human Head

,--------------,
: DIA :

,.- _J Converter o---------fH

_----_...... ' ............... ,
,,
\

,'7:', ,.-, \
'-~ ~~I \

I
I
I
I
I
I

......", I

------ ,I'
/

//

.... _----_ .......

'- - -- -- - - - - - - --
Reference

MicrOPhon1
,--------------,
: NO :

--'--'-, Converter ,,
'- - - - - - - - - - - - - -

------------------------------,

,-------------ï
: NO :

r----f_J, Converter 0------,
,_ - - - - - - - - - - - - -

'--- ------------------------------~ ,--------------,
: NO :1-----------------' Converter 1-----

Communication
Signal

'- - -- -- ---- - ---

Figure 1.1 Operation of the digital feedforward method

An adaptive filter algorithm is used to estimate the transfer of the headset. A DSP processor

performs all the digital filtering and adaptive filter calculations. The complete topology block

diagram is shown in Figure 1.1.

1.2. Scope

The following objectives were set for this thesis.

• A realistic simulation environment must be created to simulate the operation of the

adaptive feedforward control method.

1-2

Stellenbosch University http://scholar.sun.ac.za



• A study of different adaptive filter algorithms must be made in an attempt to establish

the optimal adaptive filter algorithm for this application.

• A proto type system must be constructed to test the optimal adaptive filter solution for

broadband noise.

• Simulated results must be compared to the proto type system measurements.

1.3. System specifications

The current SAAF active noise reduction capability was found to be adS attenuation over a

500Hz bandwidth [5]. This capability was accomplished using an analog feedback method

and had good omni-directional noise cancellation properties.

The desired active noise reduction capability required by the SAAF was given as at least

adS attenuation over a 3kHz bandwidth.

In a literature study preceding this thesis, a number of key problems were identified that

could complicate achieving the desired feedforward noise cancellation solution. They are

outlined here.

• Limited success has been found employing the feedforward method for broadband

noise attenuation [2], [6], [7].

• Feedforward noise cancellation has been found to be very directional with respect to

the noise source [7].

1.4. Outline

This thesis was broken down into 9 chapters of which this chapter is one.

Chapter 2 describes the creation of a simulation environment to evaluate different adaptive

filters. Each component of the simulation is mentioned and the criteria to which different

adaptive filters will be evaluated are set in this chapter.

Chapter 3 explains the operation of the LMS algorithm and investigates its performance

according to the ANR simulation of chapter 2.

Chapter 4 explains the operation of the RLS algorithm and investigates its performance

according to the ANR simulation of chapter 2.

1-3
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Chapter 5 explains the operation of the Kaczmarz Projection algorithm and investigates its

performance according to the ANR simulation of chapter 2.

Chapter 6 compares the simulated results found for the LMS, RLS and Kaczmarz Projection

algorithm in an attempt to find the optimal adaptive filter algorithm.

Chapter 7 describes the construction of the proto type system, the acoustic and electrical

problems found and solutions to these stumbling blocks.

Chapter 8 explains the measurement setup and attenuation measurements made on the

proto type headset headpiece.

Chapter 9 discusses further work that might be applicable to future research.

Chapter 10 concludes this thesis with the contributions of this thesis and a summary.

1-4
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Chapter 2

2 Active noise reduction simulation model

This chapter investigated the creation of a simulation model to simulate the adaptive

feedforward noise cancellation topology for headsets. Different adaptive filter algorithms will

be implemented in this simulation for the purpose of finding an optimal adaptive filter

solution.

2.1. Basic system configuration

According to [2], [8], [9], and [10] the basic feedforward noise cancellation configuration

suited for ANR is similar to each other. The basic configuration is shown in the block

diagram of Figure 2.1.

Human Head.,..-----_ ............... ,,
\
\
\
\
\
\
I
I
I
I
I
I

............ , ...','
- -.... I

/
/, ,".

<; _'-----

The function of the adaptive filter is to estimate the real time transfer characteristics of the

headset from the reference and error microphone signals.

Speech
Communications

The estimated headset transfer characteristics are revealed in the form of filter coefficients

for a digital filter. This filter simulates the behaviour of the acoustic transfer of the headset.

Reference
Microphone

Error Microphone

Figure 2.1 Basic configuration for Adaptive active noise reduction
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The adaptive filter algorithm has the property that it is updated on-line once every sample of

the analogue to digital converters sample rate. This property enables the headset filter to

adapt according to possible transfer changes of the headset.

The acoustic headset transfer is expected to change as the user moves his/her head. The

seal of the headset earpiece is essential to the actual transfer of the headset since the

amount of external noise that seeps in to the inside of the headset through the seal

constitutes the transfer of the headset. Since this seal can move when the user moves his

head, the headset transfer might change as external noise seeps in to the earpiece of the

headset in different amounts.

An adaptively estimated digital filter is thus used to filter the noise from the reference

microphone. The filtered output resembles the noise inside the headset earpiece and is

subtracted from the speech signal, causing the transmition of 'anti-noise' plus speech by the

headset loudspeaker inside the headset cavity. The transmitted 'anti-noise' cancels the

noise inside the headset earpiece. A block diagram of this process is shown in Figure 2.1.

2.1.1. Effect of speech being included in the error microphone signal

The error microphone senses the ensuing unwanted noise inside the headset cavity. It also

senses the transmitted communications speech signal produced by the headset

loudspeaker. This error microphone signal is used with the reference microphone signal for

the estimation of the headset transfer filter.

The speech signal included in the error signal might seem unwanted but the speech will

have a limited effect on the estimation of the filter parameters since there is expected to be

little correlation between the speech signal and the reference noise signal, thus

E[ {Reference Signalen)} {Speech Signal(n)}] :::::0 2.1

But a strong correlation between the error and reference signal exists so that,

E[ {Reference Signalen)} {Error Signal(n)}] = Q(n) 2.2

Q(n) represents the time dependant cross correlation between the error and reference

signals.
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It is this cross correlation feature that enables adaptive calculation of the headset transfer

characteristics according to the Normal equations or Weiner-Hopf equation [8], [11].

The Normal equations and Weiner-Hopf equation is very similar and can be expressed as

shown in equation 2.3. Equation 2.3 shows this equation were wen) is the headset transfer

filter tap weights, Q(n) the time dependant cross correlation matrix and R(n) the correlation

matrix of the reference signal with itself.

R(n)=w(n)Q(n) 2.3

Different adaptive filter algorithms that solve equation 2.3 for the headset filter tap weights

will be investigated in the following chapters. It should be kept in mind that that it is the

property of equation 2.1 that allows the inclusion of an external interference signal (Speech

communications) and thus makes the adaptive feedforward method viable for aircraft

headset noise cancellation.

When constructing a feedforward system it must thus be kept in mind that the reference

microphone should be placed outside the influence of the communications speech of the

pilot. This will ensure that equation 2.1 holds, thus ensuring no cancellation of an added

communication signal.

2.2. Adaptive filter simulation model

The basic active noise reduction configuration was modelled in Matlab to create a platform to

evaluate different adaptive filters for optimum performance. A block diagram of the

simulation model is shown in Figure 2.2. This block diagram shows how Figure 2.1 was

implemented in a simulation environment.

The composition of each block in the simulation will be discussed throughout the rest of this

section.

It must be mentioned that all DIA and AID converters was assumed to have unity transfer

and was left out of the simulation. No anti-aliasing filters were included in the simulation

since no risk of aliasing existed.
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Environmental Noise Input

Error Microphone
Signal

Speech Input from
Communications system

Reference Microphone Signal

Figure 2.2 Block diagram for ANR simulation model

2.2.1. Headset transfer

The headset transfer can vary due to changes of air pressure inside the headset cavity. As

mentioned before these changes are due to movement of the cushions that seal the headset

to the side of the head of the user. Omni-directional sounds propagate from different angles

through the headset to the headset cavity. It is expected that every angle have a slightly

different transfer property.

From the above it becomes clear that the headset transfer is expected to be non-stationary

when in practical use. To model such a non-stationary transfer function requires the

implementation of a real time varying digital filter.

It was decided that the modeling of these non-stationary changes where outside the scope

of this thesis. The headset transfer model implemented is thus only applicable for a

stationary headset with an orientation where the headset is directed to the noise source.

The stationary headset transfer model was derived as follow.
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2.2.1.1. Headset transfer measurement

Two audio recordings were made with a measurement set-up as shown in Figure 2.3. More

detail about the test set-up can be found in [5].

o B
Soundcard input

Personal
Computel--_~ Microphone

Biasing circuitI I
I I L--_-l

Soundcard output

i-fJ:,:/
I
I
I

Speaker
Headset

Figure 2.3 Test set-up constructed

A uniform distributed white noise audio wave file was generated with a Matlab routine. This

file was transmitted over the loudspeaker of Figure 2.3 via the computer soundcard and an

audio amplifier.

The direction of the noise source was kept fixed with relation to the artificial head to ensure

that sound only propagated from one direction and no headset movement was allowed

during recordings. This was done to ensure that the recordings conform to the previously

mentioned headset model specifications

Two recordings were made. The first recording was made with no headset present. This

noise recording served as a reference for the headset transfer measurement. The second

recording was made with the headset placed on the artificial head over the microphone.

The power density spectrum for the 'transmitted' noise (recording with no headset on

artificial head) and 'received' noise (recording with headset on artificial head) was calculated

over the recorded frequency range.
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Relating the 'received' power density spectrum to the 'transmitted' power density spectrum,

as shown in equation 2.4, generated a logarithmic scale of the headset transfer.

7' .c 101 ( Received Power Density Spectrum )
1. ransjer = og

Transmitted Power Density Spectrum
2.4

The power density spectrum of equation 2.4 was averaged by the use of a Bartlett

estimation method [12]. Figure 2.4 shows the resulting measured headset transfer at a 12

kHz sampling rate.

_________ ... .. .L .. .. _

, I , I ,

" .." ,.
" "
" "" ,I , , , ,________ 1. 1. -' ., .l _

I , I , I
, , , I ,, , , , ,
, , , , I

, '"
, I I •, , .
, , I , •-------i-----------i-----------j-----------r-----------,---------
I , , , •

I , I ,
I , , ,

, I I ,, , , ,
, ", , , ,----------r-----------t-----------t-----------T---------

I , , I, , ,, , ,, , ,, , ,, , ,, ,

Figure 2.4 Measured headset transfer

2.2.1.2. Headset simulation filter estimation

Different system identification methods exist to determine unknown transfer functions for

electronic systems.

The Least Squares (LS) method [13], [14] is one of the most commonly used transfer

function estimation techniques and was used to determine different z-transforms for the

previously mentioned audio recordings.

The Least Squares method is most understandably explained in the words of Gauss who

stated that:
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"According to this principle, the unknown parameters of a mathematical model should be

chosen in such a way that the sum of the squares of the differences between the actually

observed and computed values, multiplied by numbers that measure the degree of precision,

is a minimum." [13]. The least squares method is directly derived from equation 2.3, as

shown in equation 2.5.

w(n) =[R(n)T1 Q(n) 2.5

It must be noted that the LS method requires an input filter measurement and an output filter

measurement to compute the related filter tap-weights. These measurements must be

completed before any calculations can be made. The least square method does thus have

some limitations. They are outlined as follow:

• The least squares method cannot estimate system parameters for non-stationary

systems since measurements must be completed before any filter tap-weight

calculations can be preformed.

• The least squares method cannot estimate system parameters in real-time since tap-

weights can only be derived from completed measurements.

• For an auto regressive mean average (ARMA) filter, the estimation runs the risk of

being unstable.

• If the order of the system to be estimated is unknown, it must be chosen by trial and

error.

The previously recorded audio recordings, mentioned in section 2.2.1.1, were taken to derive

a stationary headset transfer function. The LS limitation on stationaraty will thus not play any

role in the estimation of a transfer function for the headset.

Real time issues were of no concern since the audio recordings were analysed after

recording and could even allow non-causal analysis.

Establishing filter stability would not be a problem since the estimated filter frequency

response could be evaluated according to the measured headset transfer found in section

2.2.1.1.
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The only issues under consideration for the least squares estimation would be the choice of

the system order.

In 1962 Shaw and Thiessen [15] showed that the passive attenuation of a headset could be

modelled as a second order function consisting of the shell mass (M), cushion damping (R),

stiffness of air in the ear peace cavity (Kv) and stiffness of air in the cushion (Kc). This

function is shown in equation 2.6.

Kv
MAttenuation = RKK

S2 +s-+ v + c

M M

2.6

According to equation 2.6 it can be expected that the theoretical headset transfer will consist

of at least 2 poles.

The LS estimation method was implemented in Matlab. To confirm that the headset

attenuation preformed as expected by Shaw and Thiessen [15], [16], a 2 pole and no zero

filter was estimated from the recorded waves. The resulting transfer function was compared

to the measured headset response. This LS estimated filter response is shown in Figure 2.5 .

. ~------ - Measured headset transfer
: -- - Least Squares estimated headset transfer

· ..•• \o _

• , , I I

, I , I 0

I I I I I

I I I I

I I I I

I I I •

I I I •

I I I •

• I I •------r-----------y-----------T-----------y----------
I , I I

• I • ,
I I I ,

I I • I
I I I ,, , ,, , ,, , ,

Figure 2.5 Two pole, no zero LS estimated headset transfer

The resulting z-transform filter was found to be,
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A . -0.03724ttenuation = --=-2 ------
Z - 0.841z - 0.1278

2.7

To improve the simulation model to reflect better to the measured response, it was decided

to investigate higher order estimated filters. The choice of higher order filters provided the

estimated filters to resemble the measured response more accurately. To describe why

higher order filters could improve the transfer representation, it should first be shown how a

filter output is constructed.

When an ARMA filter is used, as is used in this case, each filter output is constructed from

past input and output values of the filter in question. This is shown below.

Z-transform filter
Out(z) z + a=
In(z) z+b

Time domain representation Outen) = In(n) + aIn(n -I) -bOuten)

Poles thus resemble constants that weigh past output values to contribute to a new filter

output and zeros resemble constants that weigh past input values that contribute to a new

filter output.

The best pole/zero relation was found for a filter relation where the headset transfer filter

consisted of more zeros (past input values) but a limited amount of poles (fed back output

values).

The amount of zeros chosen could be high since the headset transfer is related to time

delayed noise the seeps in through the earpiece seal. A limited amount of poles could be

chosen before the estimated filter became unstable. This instability is due to the feedback of

to many past output values. The limited amount of poles to be chosen thus constitutes that

only a limited amount of poles exists for the headset transfer.

The LS estimated filter that best resembled the measured headset transfer was an ARMA

filter with 3 poles and 40 zeros. The resulting transfer is shown in Figure 2.6.
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The headset transfer model established will allow the feedforward simulation model to

simulate the headset attenuation of external noise to the inside of the headset cavity on a

sample for sample basis. This is essential since the adaptive filter algorithm will adapt

dynamically on a sample for sample basis.

___________ .. .L .L .L _

I , I I

, I I I

, I I I

I I I I

I I I I
I I , I
I I , I

" ,
I • I •------r-----------,-----------,-----------,----------, , ,, , ,, , ,, , ,, ,, ,, ,, ,

Figure 2.6 Three pole, forty zero LS estimated headset transfer

2.2.2. Loudspeaker transfer

A digital filter could also model the loudspeaker characteristics. The transfer characteristics

for military specification headphone loudspeakers were taken from the specifications given in

[17]. The specification were found to be

Type:

Diaphragm Material:

Impedance:

Frequency Response:

Dynamic moving coil

Water resistant mylar

30 n
20 to 20 000 Hz

The sample rate of the ANR system would be chosen is such a way to provide a operational

bandwidth much lower than 20kHz and it was for this reason that the loudspeaker filter was

chosen as a high pass filter.

The loudspeaker filter was chosen as a first order Butterworth high pass filter. The filter

frequency response is shown in Figure 2.7. The filter transfer function is shown in equation

2.8.
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F __0._97_5 (_:__z_- _:_1)
speaker - Z - 0.949 2.8

Figure 2.7 Frequency response of loudspeaker high pass filter

The filter was implemented as a causal difference equation to enable real time simulation.

2.2.3. Microphone transfer

A digital filter could similarly model the sense microphone behaviour. The transfer

characteristics for military specification microphones were once again taken from the

specifications given in [17]. The specifications taken from [17] was,

Type:

Output Impedance:

Frequency Response:

Features:

Electret, with integral FET pre-amplifier

2500 n
20 to 15000 Hz

Rugged construction to withstand a wide range of

temperatures and humidity conditions

As before the microphone response was also approximated to a high pass filter since the

system operational bandwidth was expected to be lower than the low pass microphone cut-

off.
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A first order Butterworth high pass filter configuration was chosen to simulate the

microphone response. The filter transfer function is similar to that of the loudspeaker and is

shown once again in equation 2.9.

F __0._97_S(-'--z_---'-I)
speaker - Z - 0.949 2.9

The frequency response of the microphone simulation transfer function is shown in Figure

2.8.

Figure 2.8 Frequency response of microphone filter

The filter was also implemented as a causal difference equation to enable real time

simulation.

2.2.4. Adaptive filter

Any adaptive filter algorithm could be implemented in the ANR simulation model but only a

number of adaptive filter characteristics were found applicable to noise cancellation in this

topology.

Filters are very versatile and can be used in a number of applications. The applicable filter

characteristics for filtering aircraft noise from a headset can be outlined as follow.

• The filter must be adaptive since the acoustic headset transfer is different for every

user of a headset. This is due to different head and ear dimensions of users. The
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filter must also be adaptive to changes that occur in the headset transfer due to

changes on the earpiece seal when a user moves his head.

• To ensure that all adaptive filters to be estimated are stable, the adaptive filter

topology will only consider estimating finite-duration impulse response (FIR) filters

since they are always guaranteed to be stable.

• The transfer of the headset can be approximated as being linear. The adaptive filters

to be used must thus be able to estimate linear transfer functions.

• Since most adaptive filters are based on second order statistics (Wide sense

stationary), it must be possible to acquire second order statistics, such as the mean,

correlation and cross-correlation of the outside versus inside noise to the headset.

The adaptive filters that adhere to the above specifications and that will be investigated are,

The method of Steepest Descent (LMS algorithm)

Recursive Least Squares Algorithm (RLS algorithm)

Kaczmarz's Projection Algorithm (Normalised LMS algorithm)

Kalman filter

It was found that the Kalman filter reduces to the RLS algorithm in a simplified form, it was

thus deemed unnecessary to investigate both the Kalman filter and RLS algorithm. Only the

following adaptive filters were investigated.

The method of Steepest Descent (LMS algorithm)

Recursive Least Squares Algorithm (RLS algorithm)

Kaczmarz's Projection Algorithm (Normalised LMS algorithm)

2.2.5. Sampling rate

The choice of an adequate simulation sampling rate was made according to the bandwidth

performance required for the ANR system and the physical set-up of the ANR system.

The bandwidth specified for ANR operation was set at 3kHz. This bandwidth was chosen

since the military speech band is 300 - 3000Hz and would thus be included in the noise

reduction bandwidth.
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ANR of this bandwidth would improve the audibility of the communications speech in a

headset fitted with this system.

From previous literature, [2], [7] it must however be noted that the bandwidth chosen here is

exceptionally broadband with respect to ANR systems currently in use.

Keeping the Nyquist criterion in mind, the minimum sampling rate must be twice the

bandwidth needed. Thus the minimum simulation sampling rate was set at 6kHz.

Sample rate microphone positioning implications

When the ANR system is practically implemented the reference and error microphone will

never be able to sense the same sound wave at precisely the same time. This is due to the

fact that the microphones will always be a distance (~ apart. This can be illustrated as shown

in Figure 2.9.

_----- ....

Earpiece

...._-----_ ....

Reference
Microphone

Error
Microphone

Figure 2.9 Microphone placement with relation to the system sample rate

For optimal adaptive filter operation, the error and reference signals used by the adaptive

filter must be of the same time instant on the same propagating sound wave. To solve this

acoustic delay problem, the sample rate of the system can be adapted to reflect the distance

between the microphones.

This distance between the microphones is related to the speed of sound and the specific

sample rate as shown in equation 2.10.

f.
csound =- = Isf.

T,
2.10

c is the speed of sound (330 m/s),fs the system sampling rate and { is the distance between

the microphones. The distance between the microphones was measured to be 30mm.
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Thus j, computes to: I. = Csound = 330 = 11kHz
J.I R 0.03

If the reference microphone samples are delayed for one sample period before being related

with the current sampled error microphone sample, no acoustic time laps will be experienced

for the adaptive filter calculations. This sampled delay compensation will be referred to as

the algorithm update delay. More about this delay in section 8.2.2.

Since simulation for high sample rates are very time consuming, it was decided to run

simulations at 6kHz. This implies that the distance between the microphones of the

simulated system is approximately 55mm. This distance is related to the 6kHz sample rate

by equation 2.10.

It was thus found that the acoustic time delay for sound to travel from one microphone to the

other can be electrically compensated for by adjusting the sampling rate and an number of

sample delays on the first microphone signal to bring it in phase with the second microphone

signal. This compensation is only applicable to updating the adaptive filter algorithm and not

the actual filtering for the reference noise to resemble the inside noise.

Environmental Noise

Reference Microphone

Algorithm update delay

Figure 2.10 Time delayed reference signal adaptive filter updating to compensate for acoustic

delay between microphones
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Solving this phenomenon was found essential to ensure broadband noise cancellation.

Figure 2.10 shows the adapted updating topology.

2.3. Z-transform model of simulation

To understand the simulation operation of the ANR system better, the block diagram of

Figure 2.2 was transformed to a time domain block diagram, Figure 2.11. This time domain

block diagram was then transformed to a z-parameter block diagram. This block diagram is

shown in Figure 2.12.

vironmental Noise Headset
Transfer

(HT)

Error Signal

+
Microphone Speaker {\ (\ Microphone r---.'-- Transfer - Adaptive Filter (AF) - Transfer "\J ~J

Transfer
(MT)(MT) (ST) J ..

mmunications Speech ... Speaker
... Transfer

(ST)

En

Co

Figure 2.11 Time domain of ANR simulation operation

Environmental Noise (EN(Z)} Error Signal (y(Z)}

4 HT(Z) - MT(Z) AF(Z) ST(Z)
':/T\

MT(Z) r-.....-\.V
~

Communications Speech (CS(Z)} ...
ST(Z)...

Figure 2.12 Z-domain of ANR simulation operation

It must be noted that the use of the adaptive filter error signal path was removed since the

adaptive filter update calculations cannot be modelled as a transfer function. The adaptive

filter is assumed to be a stationary filter for every sampling period and that the filter

coefficients are updated before every filter sample period.
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The system transfer can thus be described as shown in equation 2.11.

MT(Z)[ EN(Z)HT(Z)-EN(Z)MT(Z)AF(Z)ST(Z)+CS(Z)ST(Z)] = Y(Z)
2.11

To understand the basic operation of the system, equation 2.11 was simplified with the

following assumptions.

ST (Z) = MT (Z) = 1

These assumptions holds if the loudspeaker and microphones are ideal and have unity

transfer. For simplicity it is also assumed that the system operates without any

communications speech, thus CS(Z) = O.Then equation 2.11 changes to equation 2.12.

EN(Z)HT(Z)- EN(Z)AF(Z) = Y(Z) 2.12

In the time domain, the relation of equation 2.12 can be seen as follows,

x( n ) - £(n ) = y( n) 2.13

Equation 2.13 can intuitively be explained as headset filtered environmental noise (x(n)) that

is cancelled by subtracting anti-noise created by digitally filtering the reference

environmental noise (£(n )).

y(n) is the error output after noise cancelling. The adaptive filter uses the y(n) output as a

error indication for the adaptive filter and so updates the filter coefficients to minimise yen).

2.4. Evaluation of adaptive filter algorithms using the simulation model

The simulation model was implemented in Matlab. The program code for a basic simulation

can be seen in Appendix C. The model components were individually designed and tested

as shown in section 2.2.

AI tested components were combined in the simulation. The purpose of the simulation was

to gather adequate information to evaluate the different adaptive filter algorithms.
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The performance of each adaptive filter algorithm will be evaluated to a set of criteria that will

ensure the adaptive filter is optimally set-up. This is essential to establish the optimal

solution between the different adaptive filter possibilities.

The criteria for evaluating adaptive filters for optimality is outlined as follow.

• Algorithm parameters

Almost every adaptive filter algorithms has individual characteristic parameters that

can be adjusted to optimise the performance of the adaptive filter.

These parameters are unique to each algorithm and their influence on the operation

of the adaptive filter will be explained in the chapters concerned with each particular

filter algorithm.

• Added communications speech

Communications speech interferes with the feed forward error signal to the adaptive

filter. This communication signal was also added to the simulation environment as

shown in Figure 2.2.

This was done to ascertain the effects this will have on the adaptive filter

performance.

• Filter topology and tap size of adaptive filter

The ANR simulation was limited to estimating FIR filters of a variable tap size. These

tap sizes were varied to find the optimal tap size for the estimation filter.

• Bandwidth attenuation performance (No communication vs. communication)

This parameter investigates the attenuation achieved by the system over the

operational bandwidth of the system. The system performance for when a

communications signal is present versus when no communications signal is present

was also investigated using this measurement.

• Convergence considerations
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The convergence of each algorithm will be evaluated by summing all the tap weight

values of the estimated filters into one variable. This variable will be known as the

convergence variable. The significance of the convergence variable is that it

resembles the step response of the filter.

For example:

If the FIR adaptive filter difference equation is given as

y(n) = Ax(n) + Bx(n -1) +Cxtn - 2) = [x(n) x(n -1) x(n - 2){~l
The convergence variable for time n will be the sum of the filter tap weights.

Convergence variable(n) = A + B +C

This is the same as taking the unit step response for the FIR difference equation as

can be shown for the calculation of the 5th sample output of the chosen FIR filter. For

a unit step response x(n-k)==l for all n> 1 and k> 1 except where k==n.

YeS) = Ax(S) + Bx( 4) +Cx(3) = A + B+ C

Changes in the tap weight vector will thus be directly reflected in one single variable

over time. This single variable will be used as a guide to evaluate the convergence of

an adaptive filter algorithm.

The influence of an added communication signal on the convergence of the adaptive

filter can also be investigated using this variable.

• Microphone and Loudspeaker transfer influences

The inclusion of loudspeaker and microphone transfer models in the ANR simulation

will cause phase differences between the headset attenuated aircraft noise and the

adaptive filter generated anti-noise.
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The effects of adding these filters will also be investigated

2.5. Active noise reduction simulation model conclusion

In conclusion this chapter gave the outline for the ANR configuration that will be used to

evaluate different adaptive filters in simulation. This basic configuration will enable an equal

standard to weigh different adaptive filter methods as an ANR solution.

It is now possible to start an investigation in relation to the possible adaptive filters for this

ANR system. The following chapters are dedicated to investigate different adaptive filters

and their performance in the simulated ANR environment.
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Chapter 3

3 Method of Steepest Descent elMS algorithm)

Chapter 3 is part of the investigation on adaptive filters as a solution to active noise

reduction in aircraft headsets.

The adaptive filter method of steepest decent will be addressed in this chapter and the

performance of this method will be established in the simulated environment according to

specifications set out in chapter 2.

3.1. Background

The basic idea of steepest descent is based on the assumption that a continuously

differentiable cost function, l(w), with optimal solution, Wo, exists. l(wo) will be optimal if it is

the smallest attainable value for lew). This cost function must thus comply with the inequality

of equation 3.1, for all w.

J(wo) ~ J(w) 3.1

If a initial w(O) is chosen, a sequence of wen) values must be found to improve l(w(n)) with

every iteration. This can be illustrated with equation 3.2.

J(w(n +1)) < J(w(n)) 3.2

The steepest descent algorithm is based on the methodology that w(n+1) can be updated

along the gradient of the cost function, l(w(n)), towards it's optimum value for as long as

equation 3.1 and 3.2 holds.

With this in mind the method of steepest descent can be formalised by equation 3.3. This will

ensure that a more optimised cost function is found for every iteration of the algorithm.

wen +1) = wen) - J.i [VJ(n)]
2

3.3
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II controls the size of the incremental correction applied to w(n) and is referred to as the step

size or weighing constant.

An adaptation of the steepest descent method gives rise to the least-mean square algorithm

and is considered a standard at which all adaptive filters can be benchmarked. This is due to

the simplicity of the algorithm. [8], [11].

3.2. Algorithm outline and operation

To derive the least mean squares algorithm from the steepest descent method, a cost

function must be found that complies with the restrictions of the steepest descent method.

A quadratic cost function, as shown in equation 3.4, is chosen since it is continuously

differentiable and complies with equation 3.1 and 3.2.

J(w,t) = E[ d(n)-wT(n)u(n) J 3.4

d(n) is the desired output of the adaptive filter. u(n) is a observation matrix comprising of past

inputs to the adaptive filter as far back as the order of the filter to be estimated and w(n) is

the filter tap weights to be estimated.

u(n)=[x(n) x(n-l) x(n-2) x(n-order)]

wen) = [WI (n) w2(n) w)(n) Worde,Cn)]

The optimal solution to equation 3.4 will be the solution with the smallest value, thus the

solution with least squares, hence the name least mean squares algorithm. If equation 3.4 is

expanded into its canonical form it can be seen as shown in equation 3.5.

2 T T TJ(n) = (Jd -W (n)Q(n)-Q (n)w(n)+w (n)R(n)w(n) 3.5

Where (J/ is the variance of a desired signal d(n).

Q(n) is the cross-correlation vector between u(n) and d(n), E[u(n)d(n)], and

R(n) is the correlation matrix of the input observation vector u(n), E[u(n)uT(n)].

The least mean squares algorithm is based on the principal of calculating the gradient of the

cost function and recursively optimising the tap weight vector w(n) to ensure the cost
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function converges to a minimum value. The surface of the cost function can be described

as the error-performance surface.

Since the cost function is quadratic, the error-performance surface can be visualised as a

bowl-shaped surface with the minimum point at the bottom of the bowl.

The steepest decent algorithm will thus aim to calculate the slope or gradient of the cost

function and adapting the filter tap weights will be done so that the cost function gradient

converges to the bottom of the error-performance surface.

The slope of the cost function is calculated as the derivative of equation 3.5. The result is

shown in equation 3.6.

_oJ__:_(n_..:...)= V'J(n) = -2Q(n) + 2R(n)w(n)
8w(n)

3.6

From equation 3.6 it can be seen that the optimum solution for the cost function (bottom of

the bowl) will be the Weiner-Hopf equation as shown in equation 3.7.

R(n)wo =Q(n) 3.7

Where Wo can be seen as the optimum tap weight vector or Weiner solution.

If equation 3.7 is substituted into equation 3.5, the minimum cost function solution is found

as shown in 3.8.

2 TJrnin =v: -Q Wo 3.8

This minimum (J;nin) can be seen as the lowest point on the quadratic cost function. The least

mean square algorithm will tend to approach this minimum value.

The error-performance surface gradient of equation 3.6 can thus be substituted into the

steepest descent tap update algorithm of equation 3.3. The tap weights are thus adapted

along the negative direction of the error-performance surface slope, towards Jmin, by

equation 3.9.
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w(n+ 1) = wen) - jl [VJ(n)]
2

wen + 1) = wen) + jl[Q(n) - R(n)w(n)]
3.9

In order to ensure stability for the least mean square algorithm, Jl must be bigger than zero

but smaller than 2 over the largest eigenvalue (AMax) of the correlation matrix R. The

derivation of this boundary condition can be found in [8], [11].

To compute Q(n)-R(n)w(n) however is not so simple if Q(n) and R(n) is not known. [8], [11]

gives another approach to Q(n)-R(n)w(n) as shown in the derivation of 3.10. In this derivation

it is accepted that all signals are only real and no imaginary parts are present.

Q(n) - R(n)w(n) = E[u(n)d(n)]- E[u(n)uT (n)]w(n)

=E[u(n)d(n) - u(n)uT (n)w(n)]

=E[u(n)(d(n)-uI'(n)w(n))]

=E[u(n)(d(n) _wI' (n)u(n))]

= E[u(n)e(n)]

3.10

The estimation error een) is very easily calculated from the desired reference signal and the

estimated filter output, as shown in equation 3.11. The least mean square algorithm now

come down to implementing equation 3.11 and equation 3.12.

een) = den) _wI' (n)u(n) 3.11

wen + 1) = wen) + jlE[u(n)e(n)] 3.12

This version of the least mean square algorithm is however not very well suited for non-

stationary processes since the tap-weights are estimated along a deterministic trajectory of

the error-performance surface.

If this least mean square algorithm is allowed to determine the tap-weights with some

element of converging random motion around an error-performance surface, it will be easier

to estimate non-stationary processes.

This converging random motion is possible if two types of convergence can be achieved,

namely convergence in the mean, which implies
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3.13

And convergence in the mean square, which implies

J(n) ~ J(oo) as n ~ 00 3.14

Where Wo and J(oo) implies that the Weiner-Hopf solution has been found.

Both these convergences are possible with a random motion convergence if

Q(n)-R(n)w(n) is approximated by u(n)e(n). This simplifies the previous algorithm to give the

final LMS algorithm, as shown in equation 3.15 and 3.16.

een) = den) _wT (n)u(n) 3.15

wen + 1) = wen) + flu(n)e(n) 3.16

This LMS algorithm derivation was derived in accordance to [8] and [11].

3.3. Algorithm performance

The algorithm performance of the LMS algorithm was established according to the

specifications set in section 2.4 of chapter 2 and the simulation model of chapter 2.

3.3.1. Algorithm parameters

From equation 3.16, it can be seen that the only variable parameter in the LMS algorithm will

be the step size variable (Jl).

Optimising the algorithm parameter (Jl) for the LMS algorithm in the headset topology was

addressed in three steps.

• Step one was to establish the boundary 2/AMax.

• Step two was to establish the optimum step size parameter for when only noise is

present in the ANR system.
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• Step three was to establish the optimum step size parameter for when noise and a

communication signal are present in the ANR system.

Step one

The LMS algorithm was simulated for a stationary headset transfer, 6 kHz sampling rate and

no added communications speech to determine the behaviour and optimal value for the step

size variable.

From [8], [11] it is known that the step size variable may not exceed the boundaries of

0<f.1<2/AMax. This first simulation test was done to establish where the 2/AMax boundary is

situated.

Figure 3.1 shows a plot of the cost function values for different step sizes (u). The cost

function values were derived from the square of the simulated error microphone signal. The

simulated error signal data for second 2 to 3 of a 3 second simulation was used to calculate

the average cost function values of Figure 3.1.

From Figure 3.1 it can be seen that the 2/AMax step size boundary can be approximated to be

at 0.009. It can be seen how the LMS performance deteriorates exponentially towards this

boundary.
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Figure 3.1 Step size versus cost function value

Figure 3.1, for small step size values, show a deterioration of performance since the cost

function values increase drastically for step sizes lower than 0.00045. This deterioration is

due to the convergence time boundary of 3 seconds set for the simulation. If the simulation

were allowed an infinite convergence time, the algorithm would be allowed to converge to an

optimal solution with even lower cost function values than shown in Figure 3.1.
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The convergence time constraint can also be explained by Figure 3.2. Figure 3.2 shows the

convergence variable mentioned in section 2.4 of chapter 2 plotted over the simulation run

time.

I , , , I , ,.. ------~-- ---- ---~------ -- -~----------i ------ ---!---------1- po_po;
, • , I
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I " I
, , I I ,____ 1.. , .) '- , J _

I • • , I , I
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, , , , 1 , I

I , , , , I I- - ---r------ ---,------ ---,,----------,.---------,------ ---,----------
, , , I ,
, , I I ,
, , I I ,
, , , I ,

Figure 3.2 Slow convergence for small step size values

Figure 3.2 shows how small step size values take longer to converge to the optimal

estimated filter. If the convergence time is limited, the algorithm will not have converged to

the optimal filter thus resulting in a big minimum squared error or cost function (J) value. This

thus explains the sharp increase in cost function values experienced for step size values

smaller than 0.00045.

From Figure 3.1 it can thus be seen that step size values smaller than 0.00045 constitutes

LMS algorithm convergence times longer than 2 seconds.

It is thus recommended that the bad cost function performance for step size values smaller

than 0.00045 be ignored with the understanding that step size value smaller than 0.00045

converge slower than was required by the LMS algorithm in simulation.

Step two

The experimental simulation run for Figure 3.1 was done with only a noise signal present.

Figure 3.1 is thus applicable to step two as well.

It is clear that the optimal step size value for the LMS algorithm, when only noise and no

speech signal is considered, will be the lowest value on the curve of Figure 3.1.
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If a closer look is taken to Figure 3.1 it can be seen that the optimal step size value can be

chosen at 0.0005. This will ensure an algorithm convergence of less than 2 seconds with the

best estimated fit to the transfer of the given headset. A zoomed version of Figure 3.1 is

shown in Figure 3.3.

. . .-------r-------,.------.,-----, , . ,
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Figure 3.3 Zoom step size versus cost function value

Step three

When speech is added to the system, the minimum cost function value attainable rises

considerably, as can be seen in the cost function values of Figure 3.4.

I , , • ,
, I , , •------------------------.'-------------,------- •• _-_.1- • __ ... _, , , , ,, , , ,, , , ,· , , ,, , . ,· ..· ..· .· ., " ,
, , , , I... _-----,._---------_.,-----_. __ .._-,----_._-----,--------- ..- .... _-----· . .· . .· . .· .· .· .· .· ., . , , ,__ • , • , , • J J ._

, , . , ., , , , ., , , .· .· .· .
· ..----- ..-------------,._--------_._,----_._---._ ... -----------_ .... _-----

Figure 3.4 Step size versus cost function values with a communications signal

The optimum step size with an added communication signal was found to be 0.00021. The

optimum step size value thus decreased due to a added communication signal.
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This implies that an added communications signal allows faster convergence at the cost of

finding a less accurate estimated filter. This is evident from the rise in the minimum cost

function value. The value rose from 1.6x10-4to approximately 1.6x1 0-2.

3.3.2. Filter topology and tap size of adaptive filter

As stated before, only FIR filters will be estimated to ensure that all estimated filters are

stable. It must be noted that it would be impossible for the implemented FIR adaptive filter

algorithm to exactly estimate a filter to resemble the ARMA headset transfer since a FIR filter

can not exactly resemble an ARMA filter. The minimum squared error can thus never be

zero.

The effects of varying the filter order was investigated according to the average cost function

value of every specific adaptive filter with specified filter order.

The simulations were preformed for a stationary headset, sample rate of 6kHz and step size

chosen at 0.0005. The simulations were preformed twice, once with communications speech

and once without communications speech.

It is shown in Figure 3.5 that an increase of the tap weight order improves the adaptive filter

performance since the average cost function value approaches a minimum squared error

value for high filter orders.

The minimum squared error approaches a small value close to zero when no communication

signal is present but a larger constant minimum squared error is found for when a

communications signal is present. This implies that the inclusion of a communications signal

makes it more difficult for the LMS filter to estimate the given headset transfer.

A limiting factor in the choice of the number of taps can be the processing ability of the DSP

chip to be used to implement the LMS algorithm.

The limiting factor of the DSP chip for algorithm calculation does however not have such far

reaching effects with the LMS algorithm as apposed to the RLS algorithm that requires the

calculation of a inverse correlation matrix update, P(n), but more about this in chapter 4.

The LMS algorithm was found the least calculation intensive of all considered algorithms.

This allows the LMS algorithm to estimate higher orders of tap weights than other adaptive

filters.
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Figure 3.5 Average cost function value versus tap order of the adaptive filter

A reasonable tap size that will be adequate for DSP implementation and ensure maximum

attenuation is chosen at 100 tap weights.

3.3.3. Bandwidth attenuation

communication)

This section investigated the LMS bandwidth attenuation properties for when a

performance (No communication vs.

communications signal is present versus when no communications signal is present.

The frequency spectrum attenuation was also compared to the energy attenuation of the

noise signals. This attenuation was calculated according to equation 3.17. The total

attenuation of signal energy due to ANR was calculated from simulation-generated signals.

yen) is the residue noise inside the ear piece cavity after noise reduction and X(n) is the

noise inside the ear piece cavity with no reduction.

Attenuation = 10 log 3.17

The bandwidth attenuation performance for the two simulations is shown in Figure 3.6.
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Figure 3.6 Bandwidth attenuation performance (Communication vs. No Communication)

From Figure 3.6 it was found that added communications signals drastically reduce the

attenuation attained by the system. The total energy attenuation for the two cases was found

to be 75.434dB for no communications signal and 28.467dB for an added communications

signal.

3.3.4. Convergence considerations

The convergence of the LMS algorithm was evaluated according to the convergence

variable as described in section 2.4 of chapter 2.

Considerations that were investigated were the convergence performance of the LMS

algorithm for a system with communications signal as apposed to one without a

communications signal.

The effect of very small step size values (JL) was investigated in section 3.3.1 and will not be

addressed again in this section.

Convergence differences for a system with communications signal as apposed to one

without a communications signal

The convergence variable behaviour for the two cases is shown in Figure 3.7. It was found

that the convergence variable for case one (no communications signal) converges to a

single optimal filter solution of mean value -0.6567 and no variance. This mean value

resembles the filter step response output.
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Figure 3.7 Convergence variable for stationary headset transfer estimation

The convergence variable for case two (with communications signal) constantly adapts to try

and find a better solution. The convergence variable for case two was found to have a

variance of 0.00884 around a mean value of -0.6638.

Both cases thus tend to produce a similar mean step response but case two has a variance

around the mean step response. Both cases reached a close proximity of their mean value

within 1 second of the start of the simulation. The transient filter estimation responses for

both filters were completed within 1 second.

3.3.5. Loudspeaker and microphone filter influences

All previous simulations were conducted with the assumption that the transfer of the

loudspeaker and microphones used in the ANR system are unity filters. In reality this is not

true.

The transfer of the loudspeaker and microphones were modeled as described in section

2.2.2 and 2.2.3. This section investigates the LMS algorithm performance effects that occur

due to the inclusion of these filters.

Simulations with loudspeaker and microphone transfers were run with added

communications speech. These simulations were considered as the worst-case scenario for

adaptive filter implementation for ANR in headsets.
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Again the optimal step size for these simulations had to be found to ensure the best

algorithm performance. Figure 3.8 shows the step size versus cost function relation.

--------:---------1'---------i---------1-----.-
. . ,, , ,, , , ,--------,----------,----------r------·-·,-------. . , ,

, .', ", ", ", "
, I • ,---.--,----------.._--------,---------,----.--

. , , ,-------------.--.- ... ------_ ..._-------------

Figure 3.8 Step size versus cost function when a loudspeaker and microphone is included

The algorithm convergence time allowed was extended to 5 seconds for these simulations.

This was done since the loudspeaker and microphone transfer inclusion complicates the

filter to be estimated. A more complicated filter requires a smaller step size to estimate a

practical filter. This smaller step size slows the convergence of the algorithms extensively

and therefore a longer convergence time was required.

The 2/AMax boundary was found to be 0.006 and the optimal step size was chosen halfway

between 0 and the boundary, at 0.003. The following simulation results were found in this

respect.

It was found (Figure 3.9) that the LMS algorithm convergence time increased to

approximately 3 seconds. A visible difference between the convergence variable mean

occurred. If we recall that without loudspeaker and microphones the convergence variable

mean was -0.6638 whilst with loudspeaker and microphones it was found to be 6.5572.

The difference in the convergence variable mean shows that the new estimated filter is

different from the filter estimated without loudspeaker and microphone transfer. This is

evident since the estimation filter convergence step response converges to a different mean

value.
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Figure 3.9 Convergence variable with loudspeaker and microphone transfer

It is predicted that the new filter estimated by the LMS algorithm has attempted to add

inverse filters for the loudspeaker and microphones to the previously estimated headset

transfer. This is done by the LMS algorithm in an effort to limit the effects of the transducers

on the system. The inclusion of transducer transfers complicates the transfer estimation of

the LMS algorithm. This can be seen from the increased convergence variable variance.
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Figure 3.10 Bandwidth attenuation performance (With loudspeaker/microphone filters)

The total attenuation of signal energy after convergence of the algorithm in the new

simulation deteriorated from 28.467dB to 16.646dB, the deteriorated bandwidth attenuation

performance is shown in Figure 3.10.
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In an attempt to find a better solution, these filter effects were included in the LMS algorithm

derivation of section 3.1. The microphone filters were ignored at first.

This changed the LMS cost function of equation 3.4 as shown in equation 3.18. A graphical

representation of the block diagram can be seen in Figure 3.11.

[

M-l ]2
J(w,t)=E d(n)- t;s;WT(n-i)u(n-i)

[

M-l ]2
J(w,t) = E d(n)- t;s;y(n-i)

3.18

den)

een)x(n)

LMS
Algorithm

Figure 3.11 Inclusion of loudspeaker filter into model

S; is the loudspeaker filter tap weights. The derivative of the new cost function is calculated

from equation 3.18. The result is shown in equation 3.19.

aJ(n) = VJ(n) = -2E[(Is;u(n-i)Jd(n)]+2E[(I s;u(n-i)J(Is;u(n-i)JT]W(n)
8w(n) 1=0 1=0 1=0

[(M-l ) (M-l J(M-l )T]=-2E t;s;u(n-i) d(n)- t;s;u(n-i) t;s;u(n-i) wen)

~ -2E[ (~s,u(n-i»)[ d(n)-(~s,u(n-i) r w(n)]J

~ -2E[ (~s,U(n-i) J[d(n)-wT (n{~s,U(n-i))]J
3.19
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Substituting this result in the steepest descent algorithm of equation 3.3 gives an improved

update algorithm known as the filtered-x LMS algorithm [19].

w(n+l) =w(n)- Jl ['VJ(n)]
2

w(n+ I) ~ w(n)+ PE[ (~s;U(n-i))[ d(n)-w' (n)(~s,U(n-i)) Jl 3.20

Convergence in the mean, implying

E[w(n)]-+wo as n-+oo

and convergence in the mean square, implying

J(n) -+ J(oo) as n -+ 00

is once again assumed. Equation 3.20 simplifies to equation 3.21.

w(n+l) ~ w(n)+ p(~s,U(n-i))[ d(n)-Wr(n{~s,U(n-i)) J 3.21

Equation 3.21 implies that filtering the adaptive filter input with a filter that has the same filter

characteristics as the loudspeaker filter could improve the headset filter estimation.

The inclusion of the filtered-x filter changes the block diagram of Figure 3.11 as shown in

Figure 3.12.

den)

1# ,+
/

x(n) / yen) Speaker y,(n) -..../ 1\/ ...
,ven) - (Sj) ...\..LJ ...

/
/

,----"/

LMS ..~
L....-

Algorithm ..-
X-Filter

(Speaker) -

een)

Figure 3.12 X-filter to compensate for the loudspeaker transfer in the feed forward error
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Inclusion of the microphone filters shows that the microphone filters are already in similar

filtered-x configuration with the adaptive filter if it is assumed that both microphones have the

same transfer properties. It is thus unnecessary to develop an x-filter for the microphones.

Using the new algorithm entailed re-establishing the optimal step size.· The step size

experiments were repeated and the results are shown in Figure 3.13.

It can be seen that the inclusion of the x-filter restores the original 2/'AMax boundary as found

in step one of section 3.2.1. This implies that the filtered-x algorithm restores the operation

step size range to the same range for when the loudspeaker and microphone is not included.

The cost function values are also somewhat closer to zero, and this shows that this

algorithm should give improved attenuation.

Another experimental ANR simulation was run to compare the x-filtered performance with

previous experiments. The experiment was preformed at 6kHz, with a communications

signal, loudspeaker and microphone filters and an x-filter that has the same filter

characteristics as the loudspeaker. The step size was chosen at 0.003. The following results

were generated.

--- Added communications signal and transducer filters
•• - -- - Added communications signal. x-filter and transducer filters

• I
• I

.. L ~ ~J .1. ~ ~ _

---J-- .. --.-- .. ..!. ... ---.---.lL---- ..J------l----L------ .. --: . ::l I . ~:
: , ::~: : :
, , I,ll 0 ! I_----:--- ----------~ ---- - ------~~H- ----------:------- i----i-- ---------
, I ,.'1 . } I

: : ~H: : ;:
, , I,ll • I I-----:---------- ---~--- -- ------~~1------- ----! ----__.J. - - - -~- - - - - - - - ---

i i j i; i'/
----l-------------:---~~~-~~Ll~--::-~-~~-.-~t~-),t----·-j-------·----i*"·

Figure 3.13 Step size versus optimal cost function value for the filtered-x LMS

The un-filtered-x convergence variable mean was 6_5572 while the filtered-x case gave a

convergence variable mean of 6.9449_ Once again it can be seen that the convergence
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variable for the filtered-x case approaches the new filter needed due to the inclusion of the

loudspeaker and microphone.

. .
------------~-------------~------------i------------

. .---------~------------~-------------~------------ -----._----. , ,, ,
I I I I-------------~------------,-------------r------------,-------------, I I I

, ", "

----- -i--~ - No communications signal.! :--Added communications signal
- -/- - - - ~ --- Added communications signal and transducer filtersf ! --- Added communications signal, x-filter and transducer filters

, ---J'-----1-------------r------------1-------------r------------1------------
---f------~-------------~------------~-------------~------------~------------

I' I I

Figure 3.14 Convergence variable with x-filter

The convergence variable variance was found to reduce from 0.0119 to 0.00552. From

Figure 3.14 it can also be seen that the convergence is smoother and thus less random. The

bandwidth attenuation performance for the filtered-x case is shown in Figure 3.15.

Figure 3.15 Filtered-x bandwidth attenuation relation
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From Figure 3.15 it is not clearly shown that the filtered-x performance is better than when

no x-filter is used. The filtered-x attenuation of signal energy however shows that the

experiment with an x-filter gives a 1.553dB improvement since the total signal attenuation

improved from 16.646dB to 18.199dB.

From the above results it can be seen that the filtered-x simulation improves the ANR

performance of the simulation but does not cancel the effect of microphone and loudspeaker

transfer on the system.

3.4. LMS algorithm conclusion

The working of the LMS algorithm was explained in this section and the performance of the

algorithm was evaluated in a simulation environment.

From the results found in this chapter it can be concluded that the filtered-x LMS algorithm

will be satisfactory to perform ANR in headsets. The maximum simulated attenuation for this

algorithm was found to be 18.199dB.

It should however be kept in mind that in reality it is hard to estimate an exact transfer for the

loudspeaker for the purposes of a filtered-x implementation since this transfer is not

stationary [4]. It could be more practical to implement the LMS algorithm without the filtered-

x configuration.

The data extracted from this chapter will be compared with that of other adaptive filter

algorithms in chapter 6. This will enable the choice of an optimal adaptive filter for ANR.
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Chapter 4

4 Recursive Least-Squares Estimation Algorithm

This chapter investigates the use of the standard recursive least-squares estimation

algorithm to implement ANR in aircraft used headsets.

The RLS algorithm is based on least squares estimation. The adaptive filter is fairly complex

to derive but is known for its leniency in getting a working adaptive filter fairly easily. This

adaptive filter implementation has many similarities to the implementation of Kalman filters

and more specifically the dynamic autoregressive Kalman filter.

This chapter will explain the RLS algorithm derivation and performance for an ANR

environment.

4.1. Algorithm outline and operation

First a cost function must be defined for the RLS algorithm. Since The RLS algorithm is

based on least squares estimation, the cost function must minimise the squared error of the

system. This is done as shown in equation 4.1.

i . 2
J(w,t) = LA,-n Id(n) _wT (n)u(n)1

n=l

4.1

Where d(n) is the desired filter output

u(n) is the filter input observation matrix

w(n) is the estimated filter tap-weights computed by the RLS algorithm

i·n is a weighing or forgetting factor. The purpose of the forgetting factor is to exponentially

weigh data from the distant past lower than current data. This is required to improve the non-

stationary transfer estimation ability of the algorithm since ignoring distant past data, ignores

old changes in the transfer estimation and makes the algorithm more susceptible to current

transfer changes.
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The optimum tap-weight solution for equation 4.1 is obtained from the least squares theory

and is known as the normal equations [8], [11]. Equation 4.2 shows the definition of the

normal equations.

R(n)w oen) = Q(n) 4.2

Q(n) represents the time dependant cross correlation matrix between the desired system

output, den), and observation matrix u(n) with exponential forgetting as shown in equation

4.3. No complex signals will be used in the noise reduction applications, thus all derivations

and equations will only be relevant for real signals.

i

Q(n) = LAi-nu(i)d(i)
n=i

4.3

R(n) represents the correlation matrix of the input observations, u(n) with exponential

forgetting and is shown in equation 4.4.

i

R(n) = L Ai-nu(i)UT(i)
n=;

4.4

Equation 4.3 and equation 4.4 can be adapted to be recursively updateable as shown in

equation 4.5 and equation 4.6.

i

Q(n) = LAi-nu(i)d(i)

~J[~J'_'-"U(i)d(i) ] +u( n)d( n)

=AQ(n-1)+u(n)d(n)

4.5

i

R(n) = LAi-nU(i)UT(i)
n=i

~ J[~A'_'_"U(i)U" (i)] +u(n)uT (n)

=AR(n -1) + u(n)uT (n)

4.6
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To calculate recursively updated tap-weights for equation 4.2, it is required to calculate a

recursive inverse correlation matrix (R(n)"'). This can be achieved with the use of the matrix

inversion lemma of matrix algebra. The inversion lemma is also known as Woodbury's

identity [20].

The matrix inversion lemma states that the inverse of a matrix can be found if it is written in

the following form

4.7

Where A and B must both be positive definite M-by-M matrices

D is another positive definite N-by-N matrix

C is an M-by-N matrix

The inverse matrix can then be calculated as shown in equation 4.8.

4.8

The RLS algorithm can now be formulated if the following substitution is made.

A = R(n)

C = u(n)

B-' =). R(n-I)

D =1

Thus from the matrix inversion lemma the recursive inverse correlation matrix can be

formulated as

4.9

For simplicity and convenience equation 4.9 is redefined by substituting

Pen) = R-'(n)

k(n)= A-'~(n-l)u(n)
1+A -'UT (n)P(n -l)u(n)

This gives equation 4.10.
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pen) = A-IP(n-1) - A-lk(n)uT(n)P(n -1) 4.10

ken) is referred to as the gain vector. If the gain vector is rearranged, the following relation is

found.

k n _ A-IP(n-I)u(n)
( )-I+A-IuT(n)R-I(n-I)u(n)

= A-IP(n -I)u(n) - k(n)A -IUT(n)R-I (n -l)u(n)

= [A-IP(n -1) - k(n)A -IUT(n)R-I (n -1) ]u(n)

=P(n)u(n)

= R-I(n)u(n)

4.11

The significance of this relation will become clear as the time update for the tap-weight

vector is derived from equation 4.5, 4.6, 4.10 and 4.11.

wen) = R-I(n)Q(n)

=P(n)Q(n)

=AP(n)Q(n -1) +P(n)u(n)d(n)

= pen -I)Q(n -1) - k(n)uT (n)P(n -l)Q(n -1) +P(n)u(n)d(n)

= R-I (n -I)Q(n -1) - k(n)uT (n)R-I(n -l)Q(n -1) +P(n)u(n)d(n)

Now substituting

wen -1) = R-I (n -I)Q(n -1)

it is found that

wen) = wen -1) - k(n)uT (n)w(n -1) +P(n)u(n)d(n)

=wen -1) - k(n)uT (n)w(n -1) + k(n)d(n)

=wen -1)+ k(n)[ den) _UT (n)w(n -1)]

= wen-I) + k(n)[ den) _wT (n-1)u(n)]

4.12

The total RLS algorithm can thus be summarised into four equations that must be preformed

in the given sequence to estimate filter tap-weights for a adaptive filter with desired signal

den) and input history u(n). The recursive equations are given in 4.13.
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ken) = A_-
I
P(n-l)u(n)

1+A_-IUT (n)R-1 (n -1)u(n)

een) = d(n)-wT(n-l)u(n)

wen) = wen -1) +k(n)e(n)

Pen) = A_-IP(n-l)-A_-lk(n)uT(n)P(n-l)

4.13

If these equations are compared with that of the dynamic autoregressive Kalman filter, an

exact comparison is found. The dynamic autoregressive Kalman filter does however not

allow exponential forgetting and is thus more of a least squares estimation.

The performance of the RLS algorithm was investigated and the results are shown in the

following section of this chapter.

4.2. Algorithm performance

The algorithm performance was established according to the specifications set in section 2.4

of chapter 2 and the simulation were implemented as specified in chapter 2.

4.2.1. Algorithm parameters

The only variable parameter concerned with the RLS algorithm is the forgetting factor (2).

The forgetting factor in essence weighs past values of the least squares error to give present

values more weight than past values. This is helpful to improve the RLS algorithm

performance for non-stationary transfer estimation.

From [8], a forgetting factor value close to one ensures better performance results since a 2

smaller than one changes the operation of the RLS algorithm and causes weight vector

noise, weight vector lag and a increase in the total value of the average excess mean-

squared error. Thus for 2 much smaller than one the losses are to overwhelming and no

performance gain can be achieved, but for values very close to one, some performance

improvements can be found for non-stationary transfer estimations.

Some simulations were implemented to determine the characteristics and optimal value for

the forgetting factor in the estimation of the headset transfer function.

Forgetting factor values from 0.8 to 1 were simulated in the ANR simulation for the chosen

stationary headset transfer. The simulations were repeated twice, once for no added

communications signal and once with a communications signal. The results are shown in

Figure 4.1.
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From Figure 4.1 it can be seen that the squared error decreases as A. grows closer to 1 and

goes to a minimum for ,.1.=1. The minimum error is also expected at ,.1.=1 according to [8], [11].

This is expected since the best estimate for a non-stationary process will be an estimate

without any weight vector noise, weight vector lag and minimum average mean-squared

error.

, "
, , I , I______ , '- ! J .J.

I , • , I
, , , I I
I , , , ,
, , , I ,

I I I I
I , , I
, I I ,

Figure 4.1 ANR attenuation vs. forget factor for estimation of a stationary process

As mentioned before and according to [8], [11] a ,.1.<1 can improve the performance of the

RLS adaptive filter when a slowly varying non-stationary process is estimated. This analysis

is however only sensible if it is clear what is meant by a slow varying process in relation to a

chosen forgetting factor.

We know that the forgetting factor weighs past error measurements as given in equation 4.1.

Thus equation 4.1 can be rewritten as equation 4.14.

; . 2

J(w,t) =Ll,-nly(n)-wT (n)u(n)1
n=l 4.14

If we assume that squared error contributions (le(i-n)12
) multiplied by yn= 0.001 are

neglectable to the current cost function, then we can calculate how far in the past relevant

squared errors are kept for updating the current adaptive filter tap weights.
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Table 4.1 was constructed to illustrate how far in the past the error signal samples are

resident in the algorithm to update the current filter tap weights. The error sample resident

time is related to a chosen forgetting factor and history limit set by choosing a minimum

multiplication cutoff for equation 4.14. The past error multiplication limit was set at AN=0.001.

This implies that it is assumed that past squared error samples multiplied by values smaller

than this limit gives little or no contribution to the cost function of equation 4.14.

A Value Weighting close to 0.001 Memory Time (s)
(number of samples/Sample rate)

A = 1.00 A" = 1.00000 00/6000= 00

A = 0.99 A 680 = 0.00108 680/6000 = 0.1133s

A = 0.98 A 340 = 0.00104 340/6000 = 0.0566s

A = 0.97 A 225 = 0.00106 225/6000 = 0.0375s

Table 4.1 RLS Forgetting Factor Memory Time Table

From Table 4.1 it can be seen that a non-stationary process that time varies slower than

once every 0.1133 seconds will seem stationary for any forgetting factor smaller than 0.99,

given the related error multiplication limit.

The non-stationaraty of headset transfer was expected to vary slower than once every

0.1133 seconds. Although the simulation does not support non-stationary headset transfer,

the above findings show that investigating forgetting factors for non-stationary headset

transfer would be unnecessary for the RLS algorithm if non-stationary headset transfer were

modeled in the simulation model of chapter 2.

Since the headset transfer was seen as a stationary process, the optimal forgetting factor (A)

was always chosen at A=1 from [8], [11] and Figure 4.1.

4.2.2. Filter topology and tap size of adaptive filter

To ensure stable filters, all filters to be estimated were chosen as all zero finite impulse

response (FIR) filters. Different filter orders were tested in a simulation environment with

communication speech signal and with out communications speech. The optimal A, (A=1)

was used.
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Figure 4.2 Average squared error vs. number of RLS taps

Figure 4.2 shows the results for filter order versus average squared error found in the

simulations. It is clear that any filter order above 60 would estimate the simulated headset

transfer equally well.

The choice of the number of taps can however be limited by the processing ability of the

DSP chip that will be used to implement the RLS algorithm. A higher tap order will enlarges

the size of the inverse correlation matrix, pen), thus exponentially increasing the amount of

calculations needed to calculate pen).

To ensure good filter estimates in the simulated environment, the tap size for the RLS

algorithmwas chosen to be 100 taps.

4.2.3. Bandwidth

communication)

This section investigated the RLS algorithm bandwidth attenuation properties for when a

attenuation performance (No communication vs.

communications signal is present versus when no communications signal is present. The

bandwidth attenuation will once again be compared with the total signal energy attenuation

calculated by equation 3.17 of chapter 3.

The attenuation versus frequency bandwidth results attained from these simulations is

shown in Figure 4.3.
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Figure 4.3 Frequency bandwidth versus attenuation

From Figure 4,3 it is seen that the simulation with no communications signal ensures a much

better attenuation of noise than when a communication signal is included.

The signal energy attenuation (calculated from equation 3.17) was found to be 62.517dB for

the no communications case. This value reduced to 48.994dB when a communications

signal is added.

4.2.4. Convergence considerations

The convergence of the RLS algorithm was also evaluated according to the convergence

variable as described in section 2.4 of chapter 2.

The convergence performance for the RLS algorithm was investigated for a system with

communications signal and system without a communications signal. Figure 4.4 shows the

convergence variable behaviour found.

From Figure 4.4 it can be seen that the RLS algorithm has a fast initial convergence and

then slowly keeps converging to find an optimal solution. The convergence variable mean

was found to be -0.6560 for no added communication signal, and -0.6551 for an added

communications signal. From the above it can thus be seen that the same filter is being

estimated in both cases.
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Figure 4.4 RLS algorithm convergence

The convergence variable variance increased for added communications signal. This value

rose from 0.00066541 x10-5 to 2.1323x1 0-5. This shows that this algorithm also finds it more

difficult to estimate the optimal filter when a communications signal is present.

4.2.5. Speaker and microphone effects

The inclusion of a loudspeaker and microphones to the RLS algorithm simulation will be

investigated in this section.

The optimal forgetting factor value for this configuration was investigated first since the

inclusion of a loudspeaker and microphone filter was found to hinder the normal operation of

an adaptive filter in this configuration.

Forgetting factors from 0.8 to 1 was simulated with a convergence limit of 0.5 seconds. This

means that the RLS tap weights were not analysed over the first 0.5 seconds since this time

was given to the adaptive filter to converge to the optimal tap weights. This convergence

limit might seem as a short time but it is adequate to establish what forgetting factor gives

the smallest squared error or cost function value. The resulting forgetting factor versus

average squared error plot is shown in Figure 4.5.

From Figure 4.5 it can be seen that the optimal forgetting factor value will once again be

A=1. This is expected since the speaker and microphone transfers for the simulation is also

stationary. A simulation was run with an added communications signal and

speaker/microphone transfer included.
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Figure 4.5 Forgetting factor versus average squared error

The following convergence, bandwidth versus attenuation and signal power attenuation

results were found in relation with previous results.
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Figure 4.6 Convergence variable for added speaker and microphone transfer

Figure 4_6 show that the added speaker and microphones hinder the convergence of the

RLS algorithm to an undesirable extent The bandwidth versus attenuation response for this

case is shown in Figure 4_7_

A very reduced attenuation of noise can be seen from Figure 4_7_The attenuation of signal

energy was found to be 6_0324dB. This is drastically deteriorated from the previous found

48_994dB for no speaker and microphones included.
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Figure 4.7 Bandwidth versus attenuation response with added speaker and microphones

An investigation into finding a RLS algorithm that makes provision for these transducer

transfers was made but few impiementabie algorithm solutions were available. Research in

this area is being done according to [21].

I.

A possible solution is given in [4] were the RLS algorithm is implemented in a different

topology. It was decided that investigating this solution would be contrary to the aim of

finding an optimal algorithm for the topology of Figure 2.2 of chapter 2. This possible

topology may be investigated in further work.

4.3. RLSalgorithm conclusion

The working of the RLS algorithm was explained in this section and the performance of the

algorithm was evaluated according to a standard simulation environment as depicted in

chapter 2.

It was found that the RLS algorithm has a very good disturbance signal rejection capability

(communications signal) but cannot adapt well if transducer transfers disrupt the error and

reference signals.

The data extracted from this chapter will be compared with that of other adaptive filter

algorithms in chapter 6.
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Chapter 5

5 Kaczmarz Projection (KP) Algorithm

This chapter investigates the use of the Kaczmarz Projection Algorithm as an estimation

filter to implement ANR in aircraft used headsets.

The Kaczmarz projection algorithm resembles the LMS algorithm, but is derived with the aim

to normalise the step size parameter of the LMS algorithm. This is done so that the filter

estimation preformed by this algorithm is independent from the statistics of the reference

noise to the algorithm.

The chapter will also investigate the Kaczmarz Projection Algorithm derivation and

performance

5.1. Algorithm outline and operation

The Kaczmarz projection algorithm is also known as the normalised least mean square

algorithm and aims to improve the LMS algorithm by making the step size parameter of the

LMS algorithm adaptive.

This step size can be optimised by minimising its square Euclidean norm [11], [12]. This can

be represented as shown in equation 5.1. It can be seen that equation 5.1 relates to the

weight updating equation of the LMS algorithm and is concerned with optimising the step

difference between tap weight updates.

5w(n+ I) = w(n+ 1) -wen) 5.1

Equation 5.1 must be subject to the constraint that an reference input signal filtered by the

estimated filter will give the desired signal output. The desired output in this case is an exact

representation of the noise inside the earmuff. This relation is shown by equation 5.2. This

constraint will ensure implementation of this adaptive filter.

wT (n + I)u(n) = den) 5.2
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To solve this optimisation problem, the method of Lagrange multipliers is used. The method

of Lagrange multipliers will not be explained in this section since it is of little significance to

the topic of this thesis. A detailed explanation can be found in Appendix C of [11].

Since only real signals are used in this adaptive filter application, all derivations were made

relevant to real signals only.

According to the Lagrange multiplier method, the cost function for this problem can be given

as shown in equation 5.3. [11]

1 T [ ]J(w,t)=2'[w(n+l)-w(n)] [w(n+l)-w(n)]+a d(n)-wT(n+l)u(n) 5.3

The Lagrangian multiplier (a) is given to handle the constraint of equation 5.2. The optimal,
solution of equation 5.3 can be found from the following derivation.

Firstly the derivative of the cost function of equation 5.3 is found with respect to w(n+1). This

will give equation 5.4.

8J(n) =[w(n+l)-w(n)]-au(n)
8w(n+l)

5.4

Setting the derivative equal to zero will thus produce the optimal solution for w(n+1).

w(n+l) =w(n)+au(n) 5.5

The solution of the Lagrangian multiplier (a ) can be found by substituting equation 5.5 into

the Lagrangian constraint of equation 5.2 as shown in the derivation of 5.6.

den) = wT (n+ l)u(n)

=[w(n)+au(n)y u(n)

= wT (n)u(n) +aUT(n)u(n)

= wT (n)u(n) + allu(n)112

5.6
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Now

_ den) _wT (n)u(n)a = ____:........:......._---'-.,:-'-....:.._;_
Ilu(n)1I

2

_ een)a = _..;._;_~
Ilu(n)11

2

5.7

Were een) is the error between the desired and estimated signals, as shown in equation 5.8

een) = den) _wT (n)u(n) 5.8

The final tap weight update equation for the Kaczmarz projection algorithm or normalised

LMS algorithm can thus be given as shown in equation 5.9.

1
w(n+l)=w(n)+ 2 u(n)e(n)

Ilu(n)11
5.9

The algorithm will need some adjustments to make it more practical. By adding an extra

parameter (y), the step length of the adjustment parameter can be adjusted. It can be proven

from [11] and [12] that y is bounded by 0<y<2.

By adding yet another parameter (a), we can ensure that no potential problems occur when

u(n) = O.We choose a> 0 and reasonably small. The resulting equation is shown in equation

5.10.

w(n+l)=w(n)+ r 2 u(n)e(n)
a+llu(n)11

5.10

The form given in equation 5.10 resembles the LMS algorithm of chapter 3. The only

difference is that the LMS weighting constant (jl) now becomes adaptive in the Kaczmarz

algorithm. It is for this reason that it is expected that the Kaczmarz algorithm will have

distinct characteristics of it's own as an adaptive filter solution.
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5.2. Algorithm performance

The Kaczmarz Projection algorithm was evaluated to the same criteria as given in section

2.4 of chapter 2.

5.2.1. Algorithm parameters

Just like the LMS algorithm the KP algorithm only has one variable namely the step length

parameter (y). The optimal choice of the y-parameter was investigated in simulation.
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Figure 5.1 Step size versus average squared error (With and without Communications Signal)

The step size versus average squared error for a simulation with no communications signal

was found and compared to a simulation with communications signal. The results are shown

in Figure 5.1.

No slow convergence limit issues were found for this algorithm as was found in the LMS

algorithm. This is attributed to the fact that the starting step size values are chosen

reasonably large. The average squared error was calculated for the second to third seconds

of simulation. This implies that the algorithm converged within 2 seconds.

There is a significant difference between the magnitude average squared error for a added

communications signal as apposed to no communications signal but both cases followed the

same average squared error versus step size behavior. The optimal step size value was

chosen small. The step size was chosen at y = 0.1.
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5.2.2. Filter topology and tap size of adaptive filter

Once again it was decided to estimate stable all zero FIR filters of different orders. Different

filter orders were tested in simulation with no communication signal and with communication

signal. These simulations were implemented for the chosen y, (y = 0.1) and stationary

headset.

From Figure 5.2 it can be seen that the minimum average squared error for when a

communication signal is present and when no communication is present can be found for a

filter order chosen bigger than 60. The adaptive filter order was chosen at 100 to ensure best

estimation, the same as for the LMS algorithm.

This number of taps will ensure that the requirements for the DSP chip are not to labour

intensive to perform to many calculations

. ... , , , , , . .
-r- - - -- - - ~- - - - - - - r - - - - - - - r - - - - - - -. - - - -- - -. - - - - - - -. _. --- - -. - - - --
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, , , I • • ,_- - - - - -~- - - - - - - ..- - - - - - - ..- - - - - - -. - - - - - - -. - - - --- -. - - - _ ..-. - - --· . .· . .· . .. .., , , , , . .
-------r-------r-------r-------!-------r.------r-------i------

, , I I , • •-----r-------r-------r-------.-------.-------.-------.-.----
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I I , • • , •
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- - r- - - - - - - ..- - - - - - - ~- - - - - - -. - - - -- - -.- - - - - - -. - - --- - -. - - - - --
I I I I I I I. .. .

Figure 5.2 Average squared error vs. number of taps to be estimated

5.2.3. Bandwidth attenuation performance (No communication vs.

communication)

This section investigated the KP algorithm bandwidth attenuation properties for when a

communications signal is present versus when no communications signal is present. The

bandwidth attenuation will once again be compared with the attenuated signal energy

calculated from equation 3.17 of chapter 3.

The attenuation versus frequency bandwidth results attained from these simulations are

shown in Figure 5.3.
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Figure 5.3 Attenuation versus bandwidth

The simulated attenuation of signal energy was calculated to be 75,1770 dB for the no

communications signal case and 29.2705dB for the added communications signal case.

Once again it is clear that the addition of a communications signal greatly reduces the

attenuation attainable by the KP algorithm. The LMS algorithm showed similar

characteristics. These similarities can be attributed to the similar operation of the KP and

LMSalgorithms.

5.2.4. Convergence considerations

The convergence of the KP algorithm was evaluated according to the convergence variable

as described in section 2.4 of chapter 2.

Considerations investigated were the convergence performance of the KP algorithm for a

system with communications signal as apposed to one without a communications signal.

The convergence variable behaviour found for the Kaczmarz projection algorithm can be

seen in Figure 5.4.

It can be seen that for the added communications signal case the convergence variable has

a bigger variance than for the no communications signal case. These variances were

calculated to respectively be 0.0244 (communications) and 0.0042 (No communications).
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Figure 5.4 Adaptive filter convergence

For both cases the convergence variable settles to the approximate mean value of both

convergence variables within 0.7 seconds. The convergence variable mean values were

found to be -0.6335 (communications) and -0.6457 (No communications).

This implies that both cases are trying to find the same optimal filter since both cases tend to

produce a similar step response output. The increase in variance of the convergence

variable of the two cases can be seen as how much harder it is for the adaptive filter to

adapt and find the optimal filter tap weights.

5.2.5. Loudspeaker and microphone effects

The influence of loudspeaker and microphone behavior once again needed some

investigation for this algorithm. A simulation was run to see what effects typical loudspeaker

and microphone transfer would have to the attenuation capabilities of the KP algorithm.

These simulations were run with added communications speech.

To ensure the optimal operation of the KP algorithm with loudspeaker and microphone

transfer, the optimal step size for this environment was found as shown in Figure 5.5. The

algorithm convergence time allowed was extended to 5 seconds for these optimal step size

simulations. This was done since the loudspeaker and microphone transfer inclusion slowed

the convergence of the algorithms due to smaller step size values required to find a useful

filter estimation.
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Figure 5.5 Optimal step size parameters with added loudspeaker and microphone transfer

From Figure 5.5 it can be seen that the y < 2 boundary is corrupted by the loudspeaker and

microphone filter addition. The optimal step size was chosen at half of the new boundary, y =
0.65. This decision was made independently of the optimal step size values found for the

case with no transducers.

From Figure 5.5 it becomes evident that the new adaptive filter configuration has changed

the operation of the adaptive filter. Figure 5.6 shows the convergence variable and

attenuation of signal energy found for the y = 0.65 step size choice.

Figure 5.6 shows the adaptive filter's attempt to estimate a different filter as before since the

convergence variable mean changes from -0.6335 to 6.9464. The loudspeaker and

microphones thus change the required filter. It is also clear that the new case takes longer to

converge as before.

Figure 5.6 Convergence variable when a loudspeaker and microphones is added
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Figure 5.7 shows the attenuation versus bandwidth performance of the added loudspeaker

and microphones case in relation with previous simulations.

From Figure 5.7 the new case shows very deteriorated attenuation levels as apposed to

previous simulations. The attenuation of signal energy deteriorated from 29.2705dB (No

loudspeaker/microphones) to 17.1452dB for the loudspeaker and microphones case.

I I , , , •.- -_. --~- - - - - - - - - - -~- - - - - - - -- --~- - - - - - - - - - -~-- - - - - - - - --,-- - - - - - '
, , , , , 0;
, I , , ,

, , I I
, , I I I ,
, , I I , L-------,.-----------,.-----------,-----------,-----------,-----------,_
I , , , I I,
I I , , I •
, I , , , •, , , , , .------:-----------:-----------!-----------!-----------t-----------l

, I , •

I I I I

Figure 5.7 Attenuation versus bandwidth performance with loudspeaker and microphone

filters

A method to improve the loudspeaker/microphone-filtered case was investigated. The

filtered-x method used in chapter 3 was attempted for the KP algorithm. The filtered-x KP

algorithm was derived in a similar fashion as the filtered-x LMS algorithm.

Consider that the system operation is altered by the insertion of a loudspeaker as shown in

Figure 5.8.

11 ,+,
Speaker

,
x(n) , yen) y!(n) -.f D, ..,ven) ~ (Sj) \...L/ ~,,

,

KP ..~
L--

Algorithm

I

een)

den)

Figure 5.8 Inclusion of loudspeaker filter into model
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This inclusion of a disturbance transfer must be included in the algorithm cost function as

shown in equation 5.11.

J(w,t) ~ ~[w(n+ I)-w(n)]' [w(n+ I)-W(n)]+a[ d(n)- ~ s,wI' (n+ l-i)U(n-i)]

5.11

The cost function derivative is found as shown in equation 5.12.

8J(n) M-I
_ ___:___:._= [wen + I) -wen) ]-aL siu(n - i)
aw(n + I) i=O

5.12

Setting the derivative equal to zero will produce the optimal solution for w(n+1).

M-I

w(n+ I) = w(n)+aLsiu(n-i)
i=O

5.13

Now to calculate the solution of the Lagrangian multiplier (a ) we can substitute equation

5.13 into the Lagrangian constraint of equation 5.2 with added interference filter as shown

below.

M-I

den) = L siwT(n + I-i)u(n-i)
i=O

M-I M-I 2

= LSiwT (n-i)u(n-i)+a LSiu(n-i)
i=O

Now

M-I

den) - L SiWT(n - i)u(n - i)
i=O een)a = ---=-"------;:---- = ----'--''-----;;-

2 M-I 2

LSiu(n-i)
i=O

M-I

LSiu(n-i)
i=O
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By adding the step size (y) and stability parameter (a), the filtered-x KP algorithm can be

formulated as shown in equation 5.14.

w(n+l)=w(n)+

5.14

Once again the microphone filters can be ignored since they already are in a filtered-x

configuration with the adaptive filter. The new configuration resembles the LMS filtered-x

topology as shown in Figure 3.12.

To ensure the optimal operation of this algorithm, the step size versus average squared error

was once again established as shown in Figure 5.9.

It can be seen that the y <2 boundary condition is restored by the filtered-x algorithm to

resemble the original step size performance as shown in Figure 5.1. The optimal step size

was still chosen smaller than half the step-size boundary since it is not possible to restore

the KP algorithm performance totally and smaller step values tends to converge to more

exact filter tap weights. y was again chosen at 0.65.

I , , I•• _._ ..... • .... 4 _· ..· ..· .." ,.
, , I , ,,-------·.--····--,··--·---r····---,---·-
• • I , ,
• , , I ,· . .· . .-----_._,--------,--_._---'-------· . .

Figure 5.9 Optimal step size parameters with filtered-x loudspeaker transfer and microphones

The filtered-x KP algorithm was evaluated with added communications speech. From Figure

5.10 it was found that the filtered-x estimated filter was of the same form as the filter

estimated without x-filtering since the filtered-x convergence variable mean (6.8552)

resembled the convergence variable mean (6.9464) for the no-filtered-x case.
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The convergence variable variance was found to have dropped from 0.0284 (No x-filtering)

to 0.0069 (filtered-x). The filtered-x convergence variable preformed smoother than before

and thus shows that the new filter estimation is less random.

From Figure 5.11 it can be seen that the attenuation versus bandwidth performance

improved slightly due to the addition of the x-filter. This improvement is also slightly evident

from the attenuation of signal energy that rose from 17.1452dB to 17.5603dB.

, , , I------------.,-------------,-------------r------------,------------
, , I ,
I , , ,

- No communications signal
-- Added communications signal
--- Added communications signal and transducer filters
-- - Added communications . x·filter and transducer filters

Figure 5.10 Convergence variable for filtered-x KP algorithm

Figure 5.11 Attenuation versus bandwidth performance for filtered-x KP algorithm
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The results thus show that using the filtered-x KP algorithm restores the original operational

properties of the algorithm and slightly improves the ANR performance.

5.3. Kaczmarz projection algorithm conclusion

The working and performance of the Kaczmarz projection algorithm was investigated in this

section.

It was found that the KP algorithm has got characteristics different from the LMS algorithm

and that these characteristics are beneficiary to ANR implementation.

The data extracted from this chapter will be compared with that of other adaptive filter

algorithms in chapter 6.
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Chapter 6

6 Adaptive filter summary

Chapter 6 will compare the different adaptive filters that were investigated in chapter 3, 4

and 5.

A summary of each adaptive filter analysed will be given. The summary for each filter is

outlined in the following sections. Each section is awarded a score relative to the findings of

the different adaptive filter algorithms.

This will be done to establish the characteristics of every adaptive filter and to get an

impiementabie adaptive filter to provide the best noise reduction performance for ANR in this

specific topology.

6.1. Least Mean Square algorithm summary

Optimal implementation

Since the J1< 2/AMax boundary is unknown and varying according to the statistics of the noise

environment, it is difficult to choose a optimal step size (J.1) value.

Choosing a very small step size value is not a guarantee for good algorithm performance

since this could prolong the convergence time of the algorithm. The LMS optimal

implementation set-up is therefore classified as being 'complex'.

Calculation complexity

The filter tap weight update algorithm for the LMS algorithm is very simple and not

calculation intensive at all. The calculation complexity is therefore classified as being

'simple'.

Estimation filter order
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Since the calculation complexity of the LMS algorithm is simple, this allows the algorithm to

push its effort in calculation of higher order filters for DSP implementations. The LMS

algorithm can thus be classified as being a 'high order' estimation filter.

Transfer estimation

The transfer estimation ability of the LMS algorithm could be seen in the attenuation levels

attained by the LMS algorithm when no added interferences where simulated.

For this case the LMS algorithm had to estimate a 40 zeros, 3 poles ARMA filter with a 100

zeros FIR filter. The LMS algorithm attained 75.434dB attenuation. This classifies the LMS

algorithm as having a 'very good' transfer estimation ability.

Interference signal rejection

The ability of the LMS algorithm to keep performing well while an uncorrelated interference

signal such as communications speech is present on the feedback error signal of the

algorithm was found to be 'average'.

This could be seen in the drop of attenuation when a communications signal was added to

the ANR LMS simulation. Attenuation levels dropped from 75.434 dB to 28.467dB.

Interference filter rejection

If an interference filter filters the reference input and error feedback signals of the LMS

algorithm, it was found that the LMS performance dropped from 28.467dB to 16.646dB dB

for specific loudspeaker and microphone filters.

The LMS algorithm does however allow the adaptation of the filtered-x LMS algorithm.

Inclusion of an x-filter, improves the LMS performance from 16.646dB to 18.199dB.

The above classifies the interference filter rejection ability of the LMS algorithm as being

'average'.

Filter convergence time
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The LMS algorithm convergence time for the best choice of step size was found to be

approximately 1 second where no interference filters were present. For the more complex

case where interference filters were added the convergence time increased to approximately

3 seconds. This convergence times was classified as being 'good'.

6.2. Recursive Least Squares algorithm summary

Optimal implementation

As stated before the RLS algorithm will be implemented with the assumption that the transfer

of the headset is stationary. This simplifies the choice of forgetting factor. The forgetting

factor will always be optimal at A_=1.

Since this is the only variable parameter that has to be chosen to implement the RLS

algorithm, the optimal implementation is classified as being 'simple'.

Calculation complexity

The filter tap weight update algorithm for the RLS algorithm is much more calculation

intensive than the LMS or KP algorithm. This is due to the big matrix multiplication that must

take place in the algorithm. The calculation complexity is therefore classified as being

'complex'.

Estimation filter order

Since the calculation complexity of the RLS algorithm is very intensive, this limits the

algorithm to only calculating lower order filters for DSP implementation.

The RLS algorithm is thus more often implemented for lower order filters. The RLS algorithm

is thus classified as being a 'low order' estimation filter.

Transfer estimation

The transfer estimation ability of the RLS is once again evident in the attenuation levels

attained by the RLS algorithm for when no added interferences were simulated.
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For this case the RLS algorithm had to estimate a 40 zeros, 3 poles ARMA filter with a 100

zeros FIR filter. The RLS algorithm attained 62.517dB attenuation. This classifies the KP

algorithm as having a ' very good' transfer estimation ability.

Interference signal rejection

The ability of the RLS algorithm to keep performing well while an uncorrelated interference

signal is present on the feedback error signal of the algorithm was found to be 'very good'.

This could be seen in the reasonable small drop of attenuation when a communications

signal is added to the ANR RLS simulation. Attenuation levels dropped from 62.517dB to

48.9938dB.

Interference filter rejection

If an interference filter filters the reference input and error feedback signals of the RLS

algorithm, it was found that the RLS performance dropped from 48.9938dB to 6.0324dB for

specific loudspeaker and microphone filters. The RLS algorithm does not allow the

adaptation of a filtered-x RLS algorithm.

The convergence time for the RLS algorithm with interference filters was found to increase

approximately 10 times. The above classifies the interference filter rejection ability of the

RLS algorithm as being 'very poor'.

Filter convergence time

The RLS algorithm convergence time for the best choice of step size was found to be

approximately 0.9 second where no interference filters were present. With added

interference filters the convergence time increased to approximately 10 seconds. This

convergence times were classified as being 'good (for no interference filters)'.

6.3. Kaczmarz Projection algorithm summary

Optimal implementation

Since the step size parameter is normalised according to the current input noise, this

simplifies the step size choice considerably as apposed to the LMS algorithm. For this
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algorithm the boundary conditions are always the same for all noise environments. The

optimal implementation is therefore classified as being 'average'.

Calculation complexity

The filter tap weight update algorithm for the KP algorithm is somewhat more complex than

the LMS algorithm but is still not very calculation intensive. The calculation complexity is

therefore classified as being 'simple'.

Estimation filter order

Since the calculation complexity of the KP algorithm is not very intensive, this allows the

algorithm to push its effort in calculation of higher order filters for DSP implementations. The

KP algorithm can thus also be classified as being a 'high order' estimation filter like the LMS

algorithm.

Transfer estimation

The transfer estimation ability of the KP algorithm can also be seen in the attenuation levels

attained by the KP algorithm for when no added interferences were simulated.

For this case the KP algorithm had to estimate a 40 zero, 3 poles ARMA filter with a 100

zeros FIR filter. The KP algorithm attained 75.1770dB attenuation. This classifies the KP

algorithm also as having a 'very good' transfer estimation ability.

Interference signal rejection

The ability of the KP algorithm to keep performing well while an uncorrelated interference

signal is present on the feedback error signal of the algorithm was found to be 'average'.

This could be seen in the drop of attenuation when a communications signal was added to

the ANR KP simulation. Attenuation levels dropped from 75.1770 dB to 29.2705dB.

Interference filter rejection
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If an interference filter filters the reference input and error feedback signals of the KP

algorithm, it was found that the KP performance dropped from 29.2705dB to 17.1452dB for

specific loudspeaker and microphone filters.

The KP algorithm does however allow the adaptation of the filtered-x KP algorithm. Inclusion

of an x-filter, improves the KP performance from 17.1452dB to 17.5603dB. It was also found

that the convergence time of the algorithm increased by approximately 2 times.

The above classifies the interference filter rejection ability of the KP algorithm as being

'good'.

Filter convergence time

The KP algorithm convergence time for the best choice of step size was found to be

approximately 0.7 second where no interference filters were present. With added

interference filters the convergence time increased to approximately 2 seconds. This

convergence times were classified as being 'very good'.

6.4. Adaptive filter summary table

All the above adaptive filter information was combined in one table to simplify the evaluation

of the filters with respect to each other.

From Table 6.1 it can be seen that the LMS algorithm has very good performance abilities

but is 'complex' to configure for optimal implementation. This makes it unlikely that the LMS

algorithm can be implemented as functioning optimally at all time.

The RLS algorithm on the other hand is very simple to implement but is unable to handle

interference filters. Unfortunately ANR cannot be implemented without some kind of

interference filters.

The adaptive filter performance results thus show that the Kaczmarz projection algorithm will

be the optimal adaptive filter to implement an adaptive noise reduction system in headsets.

This adaptive filter is simple to implement and shows applicable superior performance

results to the LMS and RLS algorithms.

6-6

Stellenbosch University http://scholar.sun.ac.za



Optimal Calculation Estimation Transfer Interference Interference Filter
Algorithm

Implementation complexity filter order estimation signal filter convergence
rejection rejection time

Least
High VeryMean Complex Simple Average Average Good

Square order good

Recursive Good
Least Simple Complex Low Very Very Very (For no

Squares order good good poor interference
filters)

Kaczmarz Average Simple High Very
Average Good

Very
Projection order good good

Table 6.1 Adaptive filter preformanee summary

6.5. Filtered-Xtopology

The filtered-X topology is only used with the KP and LMS algorithms as shown in derivations

from chapter 3 and 5.

The filtered-X topology in chapter 3 and 5 was used to try and lesson the effects caused by

transducer filters in the system. It was seen that improvements could be achieved with this

addition to the KP and LMS algorithms.

Simulations showed the following improvements.

Normal operation Filtered-X operation

LMS algorithm 16.646dB 18.199dB

KP algorithm 17.145dB 17.560dB

Table 6.2 Filtered-X attenuation improvement

From Table 6.2 it can be seen that the filtered-X operation gave a significant improvement

for the LMS algorithm, but only gave a slight improvement to the KP algorithm.

Since the KP algorithm was chosen as the optimal algorithm for ANR, according to section

6.4, it was decided to exclude the filtered-x configuration for the implementation of an ANR

system.
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This was decided since the complexity of estimating a x-filter transfer did not justify the

improvement in attenuation. The x-filter is known to be non-stationary, [4], which makes

estimating an x-filter very cumbersome and unpractical for the purposes of this thesis.

6.6. Optimal adaptive filter conclusion

This chapter concludes the adaptive filter investigation to find an optimal adaptive filter for

the given ANR topology. The KP algorithm was chosen for its superior characteristics to the

other adaptive filters addressed.

Chapters to follow will elaborate on the DSP implementation of an ANR system that uses the

Kaczmarz Projection algorithm as adaptive filter.
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Chapter 7

7 Active Noise Reduction assembly

This chapter outlines the construction of the experimental ANR system with emphasis on the

constraints found whilst developing the system. The performance of the constructed system

is also evaluated in this chapter.

7.1. System components

The ANR system consisted of six components. These components are described in this

section. Figure 7.1 shows the basic experimental set-up.

Human Head

Speech from
Communications
system

i.) Aircraft Headset

A commercially produced aircraft headset was used to passively dampen

environmental noise. This was the same headset as analysed in section 2.2.1.1

for the simulation analysis. The ANR system was added to this headset to

suppress noise that could not be minimised by passive methods.

ND's & DIA

ii.) Outside microphone

An microphone outside the headset obtains the environmental noise outside the

headset. The aim of the ANR system is to adaptively filter this noise with the DSP

ND

Outside Microphone Inside Microphone

Motorola
DSP56311

Figure 7.1 Assembly of ANR system
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to resemble the noise inside the headset cavity. The data from this microphone

also feeds the Kaczmarz projection algorithm to enable adaptive filter updating.

The microphone chosen had the following characteristics

Part No.

Sensitivity

430784SP

17-34mV/Pa

The microphone transfer characteristics were measured according to a reference

microphone with a known flat frequency response.

The reference microphone specifications are shown below.

Name and model

Frequency response

Transducer principle

Pick-up pattern

Sensitivity

Sennheiser e825S

80Hz to 15kHz

Pressure gradient receiver

Cardioid

1.5mV/Pa
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Figure 7.2 Measured microphone transfer with respect to a reference microphone

The 430784SP microphone frequency response was measured by recording the

microphone output and the reference microphone output to the same zero mean
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white noise source. The outputs were transformed to their power density

spectrums and a related decibel scale plot was generated as shown in Figure

7.2. The reference microphone was multiplied by a gain to normalise Figure 7.2

around zero decibels.

It was found that the 430784SP microphone had an equally flat response with

respect to the reference microphone. This is a good attribute since the whole

frequency range concerned will enjoy equal attention.

iii.) Inside microphone

A microphone was placed inside the headset cavity to enable the regulation of

the uncancelled residue noise. This signal also feeds the Kaczmarz projection

algorithm to enable adaptive filter updating. This microphone had the same

characteristics as the outside microphone.

iv.) Correction loudspeaker

The correction loudspeaker produces the anti-noise to cancel the noise inside the

headset. This loudspeaker also produces the communications signal for aircraft

communication. Simulations showed that the Kaczmarz projection algorithm

preformed best for a flat loudspeaker transfer.

, Elno loudspeaker
-~- - Sony loudspeaker -:-~-
: - Alpha loudspeaker :::: :

Figure 7.3 Different measured loudspeaker transfers
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This can be attributed to the fact that a complex loudspeaker transfer increases

the complexity of the corrective transfer that the adaptive filter has to estimate.

A number of loudspeakers were evaluated to find a loudspeaker with a flat

response. Figure 7.3 shows the possible loudspeaker choices that were

considered.

The loudspeaker transfers were measured by recording a zero mean white noise

input to a loudspeaker and relating its power density spectrum to the power

density spectrum of the measured output of the loudspeaker. The loudspeaker

output was measured with the 430784SP microphone and power density

calculations were averaged using a Bartlett estimation method.

The Sony loudspeaker was chosen since it had the flattest response of the

loudspeakers that were evaluated. The Sony loudspeaker specifications are

listed below.

Name and model

Frequency response

Impedance

Sensitivity

Sony MDR-7506 professional

10Hz to 20kHz

nominal630

106 dBlWlm

Use of this loudspeaker made the use a filtered-x Kaczmarz projection algorithm

even more unnecessary.

v.) NO and DIA conversion

The signal digital to analog (DIA) and analog to digital (NO) conversion interface

was found to be very critical to the operation of an ANR system.

Different avenues were followed to find a capable conversion solution. This

section will only introduce the different NO and DIA converters used for

experimentation purposes, but will not cite the reasons for the use of each NO

and DIA converter. The reasons for using the different converters will be

addressed in detail in section 7.2.

Conversion system A
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The first conversion system consisted of the use of a stereo audio codec that was

interfaced with the DSP56311 chip on the DSP56311 EVM evaluation board.

The codec had a stereo channel input and stereo channel output. The DIA and

AID's were both serially interfaced with the enhanced serial interface ports of the

DSP56311 chip. These 16 bit converters can handle sampling rates of between

8kHz to 48kHz.

Conversion system B

The second conversion system consisted of the use of individually assembled

AID and DIA converters.

This interface was configured to parallel interface two 16 bit AID converters and

one 14 bit DIA converter to the DSP56311 chip through the DSP56311 EVM host

port and port A. The devices were addressed one at a time with a chip select

signal for each device.

The construction and DSP interface of this conversion system is explained in

detail in appendix A of this document.

vi.) DSP56311 EVM chip from Motorola

The Motorola DSP56311 was used for real time adaptive filter calculations and

digital filtering. All digitised signal information was relayed from the AID devices

to the DSP chip for signal processing. After signal processing was completed the

DSP generated an output that was relayed to the DIA device.

DSP characteristics

Resolution

Calculations

Clock speed

24 bit

Two's compliment fixed point

86 MHz

7.2. Acoustic wave propagation time delay constraint

It was found that the biggest constraint for implementing a digital broadband ANR system

would be the acoustic time delay for sound to travel from the outside reference microphone

to the loudspeaker inside the headset cavity.
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7.2.1. Acoustic propagation time delay constraint problem statement

The shortest time delay for a sound wave to propagate from the outside microphone to

where cancellation can take place at the loudspeaker inside the headset was calculated as

follow.

Speed of sound (c) = 330 mIs

Shortest distance from outside microphone to loudspeaker (d) = 0.03m

. . Distance (d) 0.03
Propagation time delay = = -- = 0.00009090s 7.1

Speed of sound (c) 330

A similar time delay was briefly addressed in section 2.2.5. In section 2.2.5 the acoustic time

delay between the two microphones were concerned to ensure effective implementation of

the adaptive filter algorithms. The propagation delay problem is however different.

A practical problem that has come to light, after implementation attempts, has shown that

serial AID and DIA converters have electronic pipeline and filter delays that exceed the time

it takes for sound to travel from the outside microphone to the inside loudspeaker.

This means that no signal from the outside microphone can be digitised (AID), digitally

filtered and reconstructed (DIA) in time to be in phase with respect to the noise that has

propagated from the outside of the headset to the inside of the headset cavity. This

phenomenon can best be explained by Figure 7.4 and Figure 7.5.

DSP to DIA output

Digital anti-noise _----_
....,' .... ,,,,,

\
\
\
\

Result in
headset cavity

Reference
Microphone

Error
Microphone

Figure 7.4 ANR operation with no delay from AID and DIA converters
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DSP to DIA output

Digital anti-noise Pipeline/Filter delays (d)

d
_----- ....

»" ....' ...........,

, "
\ Result in

\headset cavity
I
I

Noise

Reference
Microphone

Error
Microphone

Figure 7.5 ANR operation with delays from AID and DIA converters

This time delay is mainly due to the decimation and interpolation filters of the serial delta-

sigma NO and DIA converters as described in conversion system A. The serial pipelining of

data to the DSP also added some delays.

It was measured that conversion system A had a 22-sample delay before an input to the

system gave a related output. The needed sample rate to ensure that a digital output will be

in time to cancel propagated noise was calculated as follow.

S 1 (samples delay) 22 -_242kHzamp e rate = =
(Propagation time delay) (0.00009090)

This sample rate is the minimum sample rate required to ensure that the adaptive filter to be

estimated remain causal. If a sample rate lower than this is used, it is required by the

adaptive filter to construct a filter that can construct future filter outputs for current filter

inputs, thus a non-causal filter.

This sample rate was too high for conversion system A to achieve. Increasing the sample

rate of the ANR system also extended the operational bandwidth of the system drastically

since delta-sigma converters adapt their anti-aliasing filters dynamically.
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The increased sampling rate would also limits the calculation time required by the DSP to

perform filtering and filter updating calculations at every conversion sample to such an extent

that the adaptive filter calculations could not be preformed in time before the next conversion

sample period. It was found imperative that another solution be found.

7.2.2. Exceptions to the propagation time delay constraint

Although the acoustic propagation time delay constraint seems a discouraging phenomenon,

there is however a case where slow AID and DIA conversion does not have a big effect on

noise cancellation [2].

When the noise to be cancelled is very narrow band or tonal, the noise can be cancelled

very effectively since the adaptive filter can find a filter that phase shifts the tonal anti-noise

with the appropriate phase to exactly cancel the noise inside the headset cavity.

An experiment was preformed with the slower conversion system A to show this exception to

the propagation delay constraint.

A 400Hz tone was generated as tonal noise. The adaptive filter implemented to cancel the

noise signal was a Kaczmarz projection algorithm with no time delay compensation. The

sampling rate of the system was set to 8kHz. The frequency bandwidth attenuation for this

experiment is shown in Figure 7.6. No disturbance signals were included in this experiment.

I , I , I______ L L I. .... ,, 4 .,, _

I , , I • , ,

, I I I • , ,
, I tI' , ,
, , , I , , ,

I , , • , , ,, , , , , . ,
I I • , , I ,

- - - - - - ~- - - - - - - -} - - - - - - - -} - - - - - - - - ~- - - - - - - - f - - - - - - - - f - - - - - - - - t - - - - - - --
• I , , , • ,, , " .,
I , ,. .,, . " .,
, t " .,, . " .,

----- -r--------r--------r--------r--------r--------r--------t--------
, , I , , • I
I , , , I • ,
, , I , , , I
, , , , , • I----- -r--------r--------r--------T--------,--------,--------,--------
I , I , , • ,
I , I , I • ,

" "" "" .,, , ,
I , , , , •

r - - - - - - - -,. - - - - - - - - r - - - - - - - - ~ - - - - - - - - y - - - - - - - - ,- - - - - - - -, - - - - - - --
, , I , , • ,
, , I , , • ,
, , , , I I ,

, , , I ,, ,

Figure 7.6 Tonal noise reduction with delayed ANR system
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It must be kept in mind that the 22 sample AID and DIA delay is 2.75ms. This is 30.253

times slower than the time it takes for sound to propagate from the outside microphone to

the loudspeaker that must cancel the measured noise. The system is thus very non-causal.

It is however just required by the adaptive filter to generate a filter that phase shifts the

observed 400Hz signal to be in phase with itself at the output, although the output is delayed

22 samples from the input.

It is clear from Figure 7.6 that the adaptive filter succeeds very well in estimating a phase

shifting filter to cancel the tonal noise by 25.1402 dB. Some low frequency noise is also

cancelled.

7.2.3. Corrective action for acoustic propagation time delay constraint

The acoustic propagation time delay constraint originates directly from filter and pipeline time

delays caused by the AID and DIA converters.

For an ideal solution, it would thus be the best to limit AID and DIA time delays as far as

possible. This was attempted by implementing new parallel data AID and DIA converters that

have no pipeline delays and fast conversion times «10lJs).

Converters with such capabilities could only be found for converters that employ successive

loop approximation conversion with parallel data transfer at high sample rates. The

ADS7805 AID and the AD7538 DIA was implemented in an attempt to limit conversion

delays.

The acquisition and conversion delay for the ADS7805 AID was in the order of 8.25IJs. The

acquisition and conversion delay for the AD7538 DIA was in the order of 1.177IJs.

The shortest time in which calculations and conversions must be completed was calculated

before in equation 7.1. This time delay was calculated to be 90.9IJs. This means that the

system could start to require a non-causal estimated filter from the adaptive filter algorithm, if

it takes longer than 90.91Jsto acquire, process and output a value from the converters.

The following timing specifications are shown for conversion system B.

AID conversion and acquisition time (AID 1)

(AID 2)

8250.0 ns

8250.0 ns
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DIA conversion and acquisition time

Total time used for conversions and acquisition
1177.0 ns

17677.0 ns

Minimum DSP processing time required to implement the

KP algorithm with a 86MHz DSP clock 13606.8 ns

Total time required for ANR implementation with

conversion system B
+----
31283.8 ns

It is thus clear that it can be possible to solve the propagation time delay constraint. All

acquisition and processing requires 31.283~sJ this is well below the minimum acoustic

propagation delay time of 90.9~s. This will ensure that the system works causally at all

times.

This time requirement however limits the maximum sampling rate at which the system can

function. The maximum sampling rate is 1/31.2838~s = 31.96kHz.

7.3. AID de offset problem

7.3.1. AID de offset problem statement

From Figure 7.2 and Figure 7.3 it might seem that the microphones and loudspeaker transfer

had close to unity transfer for dc values. This is not true since the transducer measurements

were made with zero mean Gausian white noise and can thus not show any dc transfer

components.

A dc signal on a transducer constitutes a constant acoustic pressure. No transducer can

transmit or sense constant acoustic pressure since transducer signals are ac signals or

created from ac signals.

It is thus clear that no dc compensation can be accommodated in this noise cancellation

system. This alone is not a problem since the microphones do not sense any acoustic dc

values and the loudspeaker cannot create constant pressure waves to compensate for

acoustic dc signals.

When the transducer signals are converted to digital signals it does however happen that

untuned AID converters sometime add small dc values to converted analog acquisitions.

Figure7.7 show the dc offset values measured for the two channels of conversion system A.
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The AID scales the input voltage to a representative hexadecimal value with a decimal value

of between -1 and 1.

Channel 2 is clearly out of tune and shows an average dc offset of approximately 2.2x10-4

digital units. But what effect will this uncorrelated dc offset have on the adaptive filter

calculations?

Figure 7.7 Dc offset for analog grounded AlD converters of conversion system A

From experimentation a problem was experienced for calculated adaptive filter coefficients

that would reach a certain desired value and would gradually start to diverge from the

desired filter coefficients.

This algorithm problem only occurred were a reference and error signal was taken from

digitised microphone signals. It was found that the digitised signals had unwanted DC offsets

added by the AID converters.

To understand what happens to the adaptive filter algorithm when uncorrelated dc values

are added to the microphone signals, a short derivation can be shown.

Lets consider the simple LMS algorithm to limit the calculation complexity of the example.

The behaviour of this calculation will be similar for the Kaczmarz projection algorithm except

that the step size value will be normalised to the noise environment. The LMS algorithm for

filter coefficient 0 is shown below.
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wo(n + 1) = wo(n) + Jluo(n)e(n) 7.2

Consider that a and bare uncorrelated dc offset values produced by untuned NO

converters. Equation 7.2 changes as shown below.

wo(n+1) = wo(n)+ Jl[uo(n)+a][e(n)+b]

=wo(n) + Jl [uo(n)e(n) + ae(n) +buo(n) + ab]

= wo(n) + Jluo(n)e(n) + [Jlae(n) + Jlbuo(n) + Jlab]

7.3

It can be seen from equation 7.3 that three new terms are added to the algorithm.

It can be argued that the first term, f.1ae(n),will become very small as the algorithm converges

to a zero error and is thus negligible. If the algorithm however diverges, this term will help

the algorithm diverge even further.

In term two uo(n) is uncorrelated to b. This means that no estimated filter output can help

cancel the effect the value of b has in this term. This term adds an unwanted step to the

adaptive algorithm and the term will have a different effect for each filter coefficient

calculated depending on the related value of uo(n) for that sample.

The third term, "ab, is another term that cannot be altered by any attempt of the adaptive

filter output. This term will add an unchanging constant value to each calculation of the filter

coefficient updates. This will cause the filter coefficients to drift from their desired value for

any small uncorrelated dc offset.

It is thus essential to eliminate any uncorrelated dc offsets from any signals used by the OSP

from the NO converters.

7.3.2. Corrective action for the AID de offset problem

The de-offset problem is solved by filtering any dc from the NO signals inside the OSP

before any signal processing is preformed. This filtering does however degrade the adaptive

filter algorithm performance somewhat since a phase differences is added by the dc filters.

This is however a tradeoff that must be taken since the adaptive filter stability is essential to

the operation of the system.
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The filter designed to block all dc was a single pole single zero filter. The zero was place at

z=1 to ensure all dc is removed. The pole was placed close to the zero to ensure a flat

transfer over the rest of the frequency bandwidth. The designed filter transfer function is

shown in equation 7.4.

F (z) __ z -_1_
z-0.98

7.4

A plot of the frequency response of the dc block filter is shown in Figure 7.8.

Figure 7.8 DC block filter transfer function

This filter ensured adaptive filter algorithm stability. The AID DC offset problem only occurred

with the use of conversion system A. Conversion system B showed no added DC values to

digitised analog values.

7.4. Conclusion to the active noise reduction assembly

This chapter considered the components that make up the experimental ANR assembly, the

implementation problems experienced whilst constructing this system and the respective

solutions to these problems.

It was found from this chapter that an experimental system could be constructed that

operates in fairly the same way as the simulated system of chapter 2. This makes the

simulations for finding an optimal adaptive filter configuration (chapter 3,4,5) applicable to

this practical system implementation. Chapter 8 will show the experimental set-up and

performance measurements for the practical ANR system.
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Chapter 8

8 Measurements

This chapter explains the experimental set-up made to perform noise reduction

measurements of the implemented system. The optimal configuration of the KP algorithm in

this system is also explained and performance measurements are shown.

8.1. Measurement setup

The attenuation measurements were conducted according to the ANSI S3.19 [22] standard.

For this standard the experimental headset was placed on an acoustic test fixture (artificial

head). The artificial head dimensions and construction material coincided with ANSI S3.19.

The dimensions of the test fixture are shown in appendix 8.

Figure 8.1 Measurement configuration

The test fixture with the headset under test was placed close to 2 PC loudspeakers that

would generate 48kHz noise from a PC soundcard. Figure 8.1 shows this set-up.
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The measurement set-up was surrounded by anechoic wedges to shield the set-up from

external noise and to ensure that only directional noise propagated to the tests fixture. This

set-up configuration can be seen in Figure 8.2.

Figure 8.2 External noise shielding and directionality procurement

8.2. Loudspeaker to reference microphone isolation

It is appropriate at this stage to elaborate on the possibility that sound could couple back

from the anti-noise loudspeaker to the outside reference microphone. Two measurements

were made in this respect with the headset mounted on the artificial head as shown in Figure

8.1.
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White noise was transmitted from the loudspeaker inside the headset and the isolation of the

headset cavity was measured by relating a recording of the noise at the error microphone to

that of noise at the reference microphone.

Different measurement strategies exist to determine system transfer from two

measurements like these. One of these strategies was used for previous measurements as

mentioned in section 2.2.1.1.

Two basic methods exist. The first method relates the cross correlation of the two signals

(input and output) to the correlation of the input signal with itself to estimate the transfer in

question. This method is useful since a transfer magnitude and phase plot can be obtained

from the two signals. The two signals must however be recorded simultaneously. A simple

implementation of the Transfer Function Estimate routine in Matlab can then derive this

transfer.

Figure 8.3 Isolation of reference microphone from anti-noise loudspeaker

The second method relates the correlation of the output signal with itself (also known as the

power density spectrum) to the correlation of the output signal with itself. The power density
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spectrum of the output signal is thus related to the power density spectrum of the input

signal. This method was used for the measurements of section 2.2.1.1. For this method the

signal recordings do not have to be simultaneous.

Both these methods were used to estimate the transfer in question. The spectral isolation of

the reference microphone to anti-noise loudspeaker is shown in Figure 8.3.

The two transfer measurement strategies used to generate Figure 8.3 shows that the cross

correlation method gives a very rough approximation of the transfer while the correlation

method gives a smoother, more defined transfer estimation. Both methods used the same

amount of data.

It is for this reason that the correlation method was employed to relate all transfers and

attenuation measurements. The phase data is however lost with this method but is of no

consequence concerning attenuation measurements and a suitable trade-off to gain better

defined magnitude transfer estimates as used in section 2.2.1.

From Figure 8.3 it can be seen that almost the whole spectrum is suppressed by

approximately 20dB. There is however a tonal frequency of 3.170kHz that is not suppressed.

This tonal frequency might have been generated by a prominent frequency in the ambient

noise since these measurements were not conducted in a sound proof room.

It must however be kept in mind that the ANR system will not have to generate large amount

of anti-noise in the 3.17kHz range since the passive attenuation of the headset already limits

the bulk of noise at this bandwidth. The ANR system is also limited to optimal operation at

2.6kHz by the AID anti-aliasing filters of the digital system. These two criteria make it highly

unlikely that high levels of anti-noise power will be transmitted by the loudspeaker at this

bandwidth. Communications speech levels to the loudspeaker are also limited to less than

3kHz, as required by military specifications. Since limited levels of power are transmitted by

the loudspeaker at this bandwidth, the risk that bad isolation at 3.17kHz will hinder the

performance of the system is very unlikely. It is also stated by [19] that this transfer of the

loudspeaker to external headset environment is negligible. This is also evident from the

performance measurements of section 8.3.1. The attenuation performance of the system will

be shown in Figure 8.9.
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8.3. Optimal ANR algorithm configuration

The following strategy was followed to ensure that the optimal algorithm chosen in chapter 6

(Kaczmarz Projection algorithm) was configured optimally for the dimensions of the headset.

Three optimisation variables were identified. They were the update step size of the

Kaczmarz Projection algorithm, the sampling rate of the system and the algorithm update

delay.

The sample rate and algorithm update delay both relate to section 2.2.5. In section 2.2.5 it

was stated that the sample rate should be chosen according to the distance between the

microphones. This was only applicable for the simulations. It was found to be impractical in

the real system since it was unknown if sound propagates directly from the one microphone

to the other, or follows a longer route through the earmuff seal.

It is for this reason that sampling rate and algorithm update delay will be handled as

separate variables that are related to each other by the path length of sound from the

outside to inside microphone.

8.3.1. Optimal algorithm step size

From chapter 5, the step size can be chosen between 0 and 2. It was seen that the step size

variable must be chosen according to two considerations.

The first consideration involves the complexity of the transfer function to be estimated. The

more complex the system, the smaller steps must be taken to ensure that the bottom of the

error performance surface is found. For the experimental system in question, it was

expected that a very small step size would be required since the system is very complex due

to the addition of transducers and anti-aliasing filters.

The second consideration is the convergence time in which conversion must take place.

Large step sizes will ensure fast conversion, whilst small step sizes will take long to

converge.

It can be seen that the above-mentioned properties appose each other and an appropriate

resolution must be found.
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Experiments were preformed for four different sampling rates at seven different step sizes

and a number of different algorithm update delays. All experiments allowed a convergence

time of 90 seconds.

The experiment results for the four different frequencies can be seen in Figure 8.4.

The results of these experiments show that the system has the same expected behavior as

found in the simulations of chapter 5 (Figure 5.6). The Kaczmarz projection algorithm can

thus be configured to perform optimally in the same manner as was done in the simulated

environment.

Figure 8.4 Normalised squared error versus step size and algorithm update delay

Once again the degrading squared error for small step sizes is not due to the adaptive filter

performance but due to the limitation set on the convergence time of the algorithm.

From Figure 8.4, the optimal step size was chosen at 1x10-4. This step size works well for all

sampling rates and ensures the best estimated filter for a convergence time of 90 seconds.
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8.3.2. Algorithm update delay

The optimal algorithm coefficient update delay is directly proportional to the distance that

sound travels from the outside microphone to the inside microphone of the headset.

To find the optimal update delay for different sampling rates seemed a difficult task but

combining the data from different sampling rates measurements made it possible to estimate

the distance sound travels between the microphones and thus simplifies choosing a

appropriate update delay for any sample rate.

A few experimental measurements were taken at different sample rates and a step size of

1x10-4, as previously chosen. The algorithm convergence time was once again limited at 90

seconds. The data at different update delays can be seen as shown in Figure 8.5.

,
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Figure 8.5 Different update delays versus attenuation

From Figure 8.5 it can be seen that the adaptive filter algorithm provides best attenuation for

update delays of between 200 to 350jJs. This means that the time it takes for sound to travel

from the inside microphone to the outside microphone is approximately 200 to 350jJs. This

would imply that the path followed by sound from the inside to outside microphone varies

between 6.6cm to 11.6cm for the shortest path to the longest path.
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Any algorithm coefficient update delay that falls within this time frame will ensure optimal

algorithm performance. Table 8.1 shows a few sampling rates with appropriate update

delays.

Sampling Rate Update delay Time delay

8kHz 2 25Ol-ls

9.6kHz 3 3121-1s

12kHz 3 25Ol-ls

4 3331-1s

16kHz 4 25Ol-ls

5 3121-1s

Table 8.1 Appropriate update delays for different sampling rates

8.3.3. Sampling rate

Throughout this thesis many considerations were made to choose an appropriate sampling

rate. Since only conversion system B allows broadband attenuation, it was decided to

perform the system performance measurements using this conversion system. From section

7.1.3 it was established that the maximum possible sample rate for operation with

conversion system Bis 31.96kHz. No sampling rate above this boundary is thus possible.

Since the required bandwidth of attenuation is 3kHz, the minimum sampling rate cannot be

lower than 6kHz, due to the nyquist limitation. Experiments showed that the attenuation due

to the adaptive filter is lower at higher sample rates. This phenomenon is shown in Figure

8.6.

-----j------ .. t- ......

-----,--------,-------

-----i--------i--------·-------

Figure 8.6 Attenuation versus sampling rate with a 250~s update delay and 90 second

convergence limitation
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This can be attributed to the fact that the adaptive filter order stays the same for all sampling

rates. This can be explained by thinking of the z-transform unit circle.

For the same number of poles and zeros, at lower sample rates, poles and zeros inside the

unit circle have more influence on the entire frequency bandwidth than for higher sample

rates.

An adaptive filter can thus estimate a more accurate filter for low sample rates than high

sample rates given that the filter order stays constant for all sampling rates.

It would thus be most appropriate to choose the lowest sample rate with the highest possible

order adaptive filter to estimate a headset transfer filter for that bandwidth. The optimal

sampling rate was chosen at 8kHz.

8.3.4. Conclusion of optimal ANR algorithm configuration

In conclusion it was found that the optimal algorithm configuration for this headset and

operational bandwidth could be summarised as shown in Table 8.2.

Parameter Value

Algorithm step size 1x10-4

Sample rate 8kHz

Algorithm update delay 2 samples (25Ol-ls)

Adaptive filter order 100 (maximum)

Table 8.2 Optimal ANR algorithm configuration

All performance measurements were preformed with this algorithm configuration. The DSP

assembler program code for this implementation is shown in Appendix D of this thesis.

8.4. System performance measurements

A number of performance measurements were investigated. They were the spectral

attenuation of noise, A-weighted attenuation of noise, energy attenuation of noise, the effect

of an added interference signal on the system attenuation performance and the directionality

of noise cancellation in the headpiece.
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8.4.1. Spectral, A-weighted and energy attenuation

It is appropriate at this stage to investigate A-weighting sound levels. A-weighting is a

commonly used measure of sound level and approximates the 40-phon equal-Ioudness-

level contour of the 1933 Fletcher-Munson data and the 10-phon contour of the Robinson-

Dadson data [36]. A-weighting was preformed by filtering the recorded noise signals through

a filter that possesses the A-weighting characteristics as found in Table 12.1 of [36]. The

response of the used A-weighting filter is shown in Figure 8.7.

Figure 8.7 A-Weighting filter response

Since the A-weighting curve of [36] is an approximation from the 1933 Fletcher-Munson and

more resent Robinson-Dadson data, the small variation between the A-weighted filter fit and

given A-weighting data of [36] is given little consideration and is still seen as a good

approximation of the true A-weighting curve. This A-weighting filter is only applicable for

signals recorded at 8kHz. The filter transfer function is given in equation 8.1.

F) Z2 -2z+1
(z = Z2 -1.4z + 0.45 8.1

Two recordings of the noise levels inside the headset cavity were made to evaluate the

attenuation of the ANR system. The first recording was made with the ANR system not

operating. The second recording was made with the ANR system in operation and after the

adaptive filter algorithm had converged.
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The two recordings of noise were A-weighed and the power density spectra of the signals

were calculated. The A-weighed power density spectra of the signals are shown in Figure

8.8.

---1-------,,,,,
.. _1_ ..,,,,,

O.02~ • + -- - --- i- - -- --- - -+---------~---------i- - - -- - -- --j- - - - -- - - - - ~- - - - - -- --i
!: :

0.02 - -- - - - -1- - - - - -- - - -1--- - - - - ---~ - - -- - - - - -1- - - - - -- - --i- -- --- - -- -~- - - - - - - --1
!0 01S - -- - -- - J- -- -- -- ---1- -- ---- - _or. - - -- - - -- - [. - -- --- ---1.:' -- --- --- .t.. .------~
~ 1 i l

0.01 - -- - _- - i- ------ --+---------~---------1- - -- - -- - --j- --- -- -- - - ~- - - -- -- - -i
. . - . . . .____ .j : i. .i ; j .;

.. .. .. _1- ..,
,,,,

,,...... -.- ..,,,,,,

Figure 8.8 A-weighted power density spectra of noise before and after ANR

From Figure 8.8 it is clear that very little noise energy is present inside the headset cavity at

the higher frequencies. It is however visible that noise energy does exist up to approximately

3kHz, as can be seen in the zoomed in figure of the A-weighted power density spectrum of

noise in the headset cavity with the ANR system on. This shows that attenuation

measurement due to the addition of the ANR system might be unrealistic above 3kHz since

a unknown amount of energy is present in this bandwidth to perform the measurement.

A spectral attenuation plot was generated from the above mentioned power density spectra

to show the affectivity of this ANR system over the bandwidth limited by the sampling rate of

the system. This figure is shown in Figure 8.9.
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Figure 8.9 Measured spectral attenuation due to ANR

At first glance Figure 8.9 shows that the ANR system produces significant attenuation in the

250Hz to 2.2kHz range. Above this bandwidth the anti-aliasing filter complicates attenuation

since the filter has its 3dB cut-off at 2.6kHz. From the power density spectra shown in Figure

8.8 it should also be kept in mind that very little noise energy is present in the headset cavity

above 3kHz and this can influence the accuracy of the attenuation measurement above

3kHz.

The seemingly bad performance at the low frequency range (a-250Hz) can be due to a lack

of low frequency signal energy from the external noise source since the external noise

source was expected to have a bad low frequency response. The lack of low frequency

energy is also visible in the power density spectra of Figure 8.8.

The bandwidth energy attenuation of the system was calculated in the frequency domain.

The spectral power of the reference noise (No ANR) was related to the spectral power of the

attenuated noise (ANR on) in a logarithmic scale as shown in equation 8.2.

Energy Attenuation = 10 log

NI Power Density Specrum (No ANR)
n;1

NI Power Density Specrum (ANR)
n;1

8.2

8-12

Stellenbosch University http://scholar.sun.ac.za



From equation 8.2 the energy attenuation of the system was found to be 10.43dB.

The A-weighted attenuation of the system was calculated in the same manner with A-

weighed power density spectra as shown in equation 8.3.

Attenuation (dBA) = 10log

N

LA-Weighted Power Density Specrum (No ANR)
n=l

N

LA-Weighted Power Density Specrum (ANR)
n=l

8.3

The A-weighted attenuation was calculated to be 18.6dBA.

8.4.2. Spectral, A-weighted and energy attenuation with a additional
interference signal

Since the headset must be able to receive additional communications signals that must be

relayed to the pilot of the aircraft, it is essential to determine what effects this additional

interference signal could have on the performance of the ANR system.

From section 2.1.1 it was shown that the interference signal is uncorrelated with the

reference microphone signal, this makes it possible to transmit a communications signal to

the pilot via the loudspeaker whilst the adaptive filter only cancels unwanted noise.

It was however seen in section 5.2.3 that an added communications signal makes it harder

for the adaptive filter to estimate the headset transfer. It must be kept in mind that no

transducer transfers were included for the system of section 5.2.3.

The spectral attenuation of the system was investigated for the case where a tonal

interference signal is present. A 1.5kHz sinusoid was used as an interference signal since it

could easily be detected in the spectral analysis.

This easy detection of the interference made it possible to calculate the bandwidth energy

attenuation using equation 8.2. The energy around the detected tone is ignored in the

attenuation calculation. The bandwidth attenuation with an added 1.5kHz interference signal

is shown in Figure 8.10.
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Figure 8.10 Attenuation of ANR system with 1.5kHz tonal interference signal

The noise energy attenuation was calculated to be 10.1dB and the A-weighted attenuation

was calculated to be 15.3dBA. This shows that the interference signal has minimal effect on

the attenuation of the noise whilst the tone is unaffected. Considerations concerning the

attenuation in the 0-250Hz and 3-4kHz bandwidths as mentioned in section 8.4.1 are also

applicable to Figure 8.10.

The continues attenuation despite the interference signal confirms the theoretical approach

followed in section 2.1.1 and also shows an drop in attenuation as expected from section

5.2.3. To determine the full effect of an added communication signal, it is suggested that

subjective testing be done in further work.

8.4.3. Directionality of noise cancellation

The adaptive filter algorithm calculates the headset transfer as a function of the correlation

between the noise inside and outside the earmuff.

The microphones measuring the inside and outside noise are always directional to a certain

extent. Inside the earmuff this has no implication since the earmuff cavity is small. Outside

the earmuff the microphone is placed in free space and noise received by the outside

microphone is received as a function of the microphone polar frequency response.
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This suggests that the direction of the reference microphone with respect to the noise source

should thus have an effect on the amount of noise suppression experienced inside the

earmuff cavity.

Figure 8.11 shows the noise energy and dBA attenuation inside the headset cavity in dB

scales with respect to the rotation of the reference microphone on the headset from the

noise source in degrees.

, 15- - _" - -~- - ........ - __

Figure 8.11 Directional polar response of attenuation by ANR headset

This shows that the digital feedforward method attenuates noise directional with respect to

the bearing of the outside reference microphone toward the noise source.

This implies that the reference microphone of the ANR system should always be omni-

directional or should be placed at such an orientation that the main lobe of the microphone

polar frequency response points in the direction of the primary noise source that requires

noise cancellation.

8.5. Simulation versus measurements

The simulated operation of a number of adaptive filter algorithms was investigated in chapter

3, 4 and 5. A simulation environment was constructed according to specifications set out in
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chapter 2 and could be approximated as a simplified version of the practical system. The

following differences however do existed between the simulated and practical systems.

• The headset transfer was approximated from an expected practical transfer.

• The acoustic headset transfer phase response was approximated as being linear.

• Acoustic and electrical delays were timed exactly to the simulation sample rate.

• No anti-aliasing filters were included in the simulated environment.

• The simulation adaptive filter error signal was ideally constructed without any losses.

• All simulated acoustic propagation was directional to one dimension.

• The simulation sample rate was different from the practical system sample rate.

From the above considerations it can be seen that it is difficult to compare simulated

attenuation levels with actual measured results. This was not the aim for constructing the

ANR simulation environment.

The ANR simulation environment was constructed to evaluate different adaptive filter

algorithms and their behavior for different situations. Chapter 6 showed that the simulated

environment could provide significant results for establishing the best adaptive filter

algorithm. The simulation environment also allowed the investigation of ways to ensure that

the chosen algorithm is set-up for optimal performance.

8.6. Measurements conclusion

The above measurements give a performance estimate for the feedforward adaptive filter

topology with a Kaczmarz Projection algorithm. Chapter 9 and 10 will conclude this thesis

with suggestions for further research and a summary.
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Chapter 9

9 New Feedforward ANR possibilities

Further work that could improve feedforward ANR systems will be investigated in

broad terms in this chapter. These improvements were not fully investigated since

they diverged from the main scope of this thesis, namely to find a good adaptive filter

algorithm and implement broadband noise cancellation. It was however felt

appropriate that this work be mentioned since it could lead to new original topologies

for feedforward ANR.

9.1. Further research

9.1.1. Algorithm possibilities

This thesis investigated a number of well known adaptive filter algorithms to perform

ANR. New advances in the field of blind signal separation have led to the discovery

of independent component analyses (ICA). [23]

Although [23] states that practical considerations hinder ICA from being a likely

solution for noise cancellation, [24] shows that an ICA based algorithm can be

derived that performs better noise cancellation than the conventional LMS algorithm.

The improvement is attributed to the ability of ICA algorithms to utilise higher order

statistics, where the normal LMS, KP and RLS algorithms only utilise second order

statistics.

Further investigation in to the theory of ICA and ICA for noise cancellation is

suggested.

9.1.2. Topology possibilities

In the previous measurements, a 1.5kHz sinusoid was used to access the influence

of a communications or external interference signal. These experiments showed

good attenuation results. It was however shown in chapter 5 that a more random

interference signal might not have such good results.
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Some ideas were investigated to improve the ANR system response for more

random interference signals. The adapted block diagram of Figure 9.1 is suggested.

The aim of this topology will be to limit the speech component taken up in the error

microphone signal to the adaptive filter.

A representation of the voice signal component in the error signal can be generated

by filtering the incoming communications signal with a filter that represents the

speaker to error microphone transfer inside the headset. This filtered

communications signal will represent the communications signal component inherent

to the adaptive filter feedback error.

The communication signal predominantly consists of a voice signal. By subtracting

this known communications signal component from the adaptive filter error signal will

thus de-voice the adaptive filter error signal.

Environmental Noise
Input

~---.--------

Error
Microphone
Signal

Speech Input from
Communications
system

Figure 9.1Voice limiting error signal topology

The first challenge of this topology will be to estimate the speaker to error

microphone transfer. This can be achieved by including another adaptive filter to the

system. This adaptive filter will estimate the speaker to error microphone transfer

from the communications signal as reference input and an error signal that is
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generated by subtracting the error microphone signal from the filtered

communications signal.

To ensure conversion of the second adaptive filter the adaptive filter coefficients

should only be updated when a communications signal is present. To establish if a

communications signal is present was the second challenge of this new topology.

9.1.2.1. Speaker to error microphone transfer estimation filter

The algorithm for this estimation requires a high interference signal rejection

capability. The filter for this estimation did not have to contend with any interference

filters since the reference signal originates directly from the aircraft communication

system. The adaptive filter for this application would not be required to estimate a

high filter order, since the speaker to microphone transfer is not expected be a high

order system.

From section 6.4 it was found that the RLS algorithm would best acquire the system

transfer in question.

9.1.2.2. Communications signal presence

For this topology to work, it is essential to know if a communications signal is passing

through the speaker to microphone transfer system. This is essential since it would

be impossible to estimate the speaker to error microphone transfer if no

communications signal passes through the system. The adaptive filter should thus

only operate if a communication signal is present.

The process of determining if a speech signal is present can be preformed by filtering

the communications signal through a 80-800Hz band pass filter. This must be done

since most of the power in a speech signal is concentrated in this bandwidth. The

80Hz high pass cut off also ensured that no dc offset for the signal is present.

The signal power for every sample of the communication signal must be calculated. If

the signal power of the current sample exceeds a chosen threshold, a speech signal

is assumed present. If the signal power is found below this threshold, it should be

assumed that no speech signal is present. Such a power/threshold plot is shown in

Figure 9.2.
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Figure 9.2 Communications signal presence

The second adaptive filter tap weights must only be updated if a communications

signal is classified as being present (above the threshold). If the communications

signal is classified as not being present, the filter tap weights must be restored to the

adaptive filter tap weights most recently updated with a speech signal. This is to

ensure stability of the new topology.

The implementation of the second adaptive filter should be done in such a way that

devoicing should only take place if the second adaptive filter output ensured a

smaller error signal to the first adaptive filter. If the second adaptive filter increases

the error signal it should be decoupled from the system to allow more time for the

second adaptive filter algorithm to converge until such a time that the error signal

improves.

Prelimary simulations showed an improvement in attenuation with this topology but

further investigation would be needed before such a topology can be implemented.

Such work is recommended for further work in the field of ANR.

9.2. Conclusion to new feedforward ANR possibilities

In conclusion to this chapter it can be seen that there exist some new avenues to

improve feedforward ANR. Most research in this field has been concentrated on wide

sense stationary statistical algorithms and the basic feedback topology as given in

section 2.1. It is therefore suggested that the above-mentioned further work be

attempted as part of new research in feedforward ANR for headsets.
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Chapter 10

10 Conclusion

This chapter will collaborate on the contributions and achievements of this thesis in

relation to statements from literature and measurements made of the current SAAF

employed ANR analog feedback system.

10.1. Contributions

10.1.1. Adaptive filter algorithm investigation

Three adaptive filter algorithms were investigated in a simulated environment. It was

found that the Kaczmarz Projection algorithm was the most practically impiementabie

solution with the best performance characteristics. The optimal adaptive filter

evaluation was summarised in Table 6.1 of chapter 6.

Throughout the evaluation of the different adaptive filters the effects of

communications speech and different transducer transfers were investigated. This

led to a proposed new topology strategy for feedforward ANR, as described in

section 9.1.2 of chapter 9.

10.1.2. Broadband noise attenuation

One of the objectives of this thesis, as set out in chapter 1, was to achieve

broadband noise attenuation with the feedforward method. Previous work on

feedforward ANR showed that broadband noise attenuation has not been achievable

due to acoustic and electric delay limitations of current experimental systems.

According to [2] a digital feedforward control system is used for narrow band acoustic

noise attenuation and analog feedback methods are more applicable to broadband

noise attenuation.

[2] also states that broadband noise attenuation is unpractical for a digital system

since it is to difficult to ensure that the electric delays (sampling delays, DIA

converters and low pass filter delays) of the system is shorter than the acoustic

delays for sound to travel from the reference microphone to the loudspeaker.
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[7] classified broadband active noise reduction to a bandwidth of up to 900Hz. In [7]

the combination of a digital feedforward and analog feedback system was

simultaneously employed. The feedforward system reduced tonal noise while the

feedback system was used to reduce broadband noise (900Hz). [7] also states that

good broadband performance for the feedforward method requires shorter electrical

delays than acoustic delays.

These electrical versus acoustic delay limitations were confirmed by findings in this

thesis as shown in section 7.2. Section 7.2 was also dedicated to solving this

phenomenon. It is due to this solution that broadband noise attenuation was found

possible with this digital feedforward algorithm and assembly.

It was also shown that some digital filtering could resolve algorithm divergence due to

uncorrelated DC offset values produced by the AID converters of the system. This is

described in section 7.3.

10.2. Final Summary

This thesis has set out to investigate broadband feedforward active noise reduction

for aircraft headsets.

An adaptive filter simulation environment was formulated to investigate different

adaptive filter solutions for the feedforward topology. It was found that the Kaczmarz

Projection algorithm would ensure optimal attenuation for this topology.

A practical system was constructed to implement the chosen adaptive filter algorithm.

Acoustic and electronic delay problems that hinder broadband noise attenuation were

identified whilst constructing the practical system. These problems were adequately

solved to ensure broadband noise reduction. This thesis thus shows that broadband

feedforward noise reduction is viable, contrary to [2] and [7].

Since this thesis was motivated by the SAAF, it was thought applicable to show the

improvement in attenuation from the current SAAF feedback ANR system to the

feedforward system developed in this thesis.
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The A-weighted power density spectrums of the two systems were compared to

show the amount of energy in the measurements compared to each other. These

spectra are shown in Figure 10.1.
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Figure 10.1 A-weighted power density spectra for feedback and feedforward ANR

The top graph of Figure 10.1 shows the energy inside the headset cavity before the

ANR systems was switched on. It can be seen that the energy inside the headset

cavity for the feedback method was much less than for the feedforward method.

The power density of the measurements with noise reduction is shown in the bottom

graph of Figure 10.2. This shows that the residue noise energy after noise reduction

is much higher for the Feedback system than for the Feedforward system. This

constitutes improved system performance for the Feedforward system since more

energy was present in the Feedforward measurement before the ANR system was

activated. This attenuation improvement is also visible in the A-weighted and energy

attenuation measurements of the systems as shown in Table 10.1.
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A-weighted Attenuation Energy Attenuation

(dBA) (dB)

Feedback ANR 0.4 dBA 4.9 dB

Feedforward ANR 18.6 dBA 10.4 dB

Table 10.1 Attenuation of Feedback versus Feedforward ANR systems

The big difference in the dBA attenuation for the two systems can be attributed to the

fact that the A-weighting curve values high frequency attenuation more than low

frequency attenuation since the human ear is more susceptible to high frequencies.

A frequency versus attenuation plot was constructed from the above power density

spectra and the resulting figure is shown in Figure 10.2.

Figure 10.2 Feedforward versus feedback active noise reduction

The feedforward topology thus ensures higher broadband attenuation than previously

experienced in the feedback system. It must be mentioned however that the

feedforward system will be a much more expensive system to implement as apposed

to the feedback system.
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Appendix A

A Real time data converters for the DSP56311

This appendix explains the construction of a conversion system with no pipeline delays. This

conversion system will be able to take a current analog sample, digitise the sample and

release it for signal processing. After processing the processed digital value must be

reconstructed to an analog sample within the same sample that it was received or

processing. The following converters were interfaced to the Motorola DSP56311 EVM

• AD7538 digital-to-analog converter was configured to operate from the host port

(HI08) of the DSP56311 EVM

• Two ADS7805 analog-to-digital converters were configured to interface to port A of

the DSP56311 EVM.

A.1. Device interfacing

A.1.1. Analog Devices AD7538

The Analog Devices AD7538 is a 24-pin device that performs 14-bit digital to analog

conversions in a conversion time of approximately 300ns per conversion. This allows the

DIA converter to perform up to 3.3 MSPS. [25]

This converter has three control signals namely the chip select (CS), write (WR) and load

digital to analog converter (LDAC) signals. The WR and LDAC signals were tied to digital

ground (DGND). This enables fast conversion by just clocking the CS line low to perform a

conversion.

The DIA was configured for bipolar operation. The DIA circuitry was configured as shown in

Figure A.1.

The host port of the DSP56311 EVM was used to interface the digital signals to the AD7538.

The host port was set up as 110 pins by configuring the host data direction register, host

control register and the host polarity control register. [27]
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The host data direction register was setup to make the entire host port bus outputs. The host

control register was cleared to disable all possible interrupts that work with the host port. The
host polarity register was configured to activate I/O mode for the host port. Assembler code

for this setup is shown below.

--- LOAC

OOND
5

The bipolar configuration of the A07538 does not support two's compliment binary operation
[22]_The DSP56311 does however support two's compliment operation [25].

20

--cs
21

-VliR
22

AD7S38

A software conversion had to be implemented in the OSP to convert the OSP two's
compliment values to binary values of the same analog value for the A07538_ The OSP
assembler code for the conversion and NO triggering is shown below.

Figure A.1 Bipolar operation of AD7538

movep #$FFFF,x:M_HDDR
movep #O,x:M_HCR
movep #J,x:M_HPCR

,-Host Data Direction Register (all outputs)
,-Host Control Register (all interrupts disabled)
,-Host Polarity Control Register (GPJO active)

Host out
bset #15,x:M_HDR ,-Disable AID CS high

Anti _2s_ compliment

move
jset

a2,xO
#1,xO,negative _2_camp

,-Change the DSP 2's compliment value
,-to not 2's compliment for DIA

lsr
nop

,-shift right since host port reads
,-least significant 14 bits

#10,a
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add #$002000,a ; 2's compliment compensation for positive values
nop
jmp end_2_comp

negative _2_camp

a
#10,a

; 2's compliment compensation for negative values
; shift right since host port reads
; least significant 14 bits
; 2's compliment compensation for negative values
; 2's compliment compensation for negative values

neg
lsr
nop
sub
neg

#$OO/FFF,a
a

end_2_comp
nop
nop

a1,x:M_HDR
#/4,x:M_HDR

; Write out value of A to the host port
; Clock the CS of DIA law
; Clock the CS ofDIA low

move
belr
rep #90
nop
bset #/4,x:M_HDR ; Clock the CS of DIA high again

rts

This configuration for the AD7538 preformed well as a real time DIA converter for the

DSP56311.

A.1.2. Burr Brown ADS7805

The Burr Brown ADS7805 is a bipolar 28-pin device that performs 16-bit analog to digital

conversions in a conversion time of approximately 10IJsper conversion. The ADS7805 can

perform a maximum of 100 KSPS and gives a parallel output. [26].

The AID converter has two control signals. A chip select signal (CS) selects the device while

the (RIC) signal is a conversion enable signal. Pulling both CS and RIC low enables a

conversion. CS and RIC must be reset before a conversion is completed. If CS is pulled low

a second time, the data is put on the 16 pit parallel data bus.

The configuration used to interface the ADS7805 with the DSP56311 is shown in Figure A.2.

It should be noted that the ADS7805 operates at a 5 Volt digital voltage. The 5V digital

output bus and control signals were converted to a 3.3 Volt bus for the DSP using the

74LVX4245. [28].

Port A of the DSP56311 was used to interface the digital bus of the AID to the DSP. To

configure this port, two registers had to be configured. They are the external bus control

register and the address attribute register 1. [29].
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Figure A.2 ADS7805 interface circuit

Address attribute register 1 was set-up to access the external bus for data when a memory
address larger than OOCOOOhexadecimal in the Y memory space is addressed with an

assembler move instruction. The 24 bit external data bus values are then returned the to the
register instructed in the move instruction.

The external bus control register was set-up to have one wait state to wait for data to settle

on the external data bus. The external data bus was also made active by toggling bit 0 of the
external bus control register.

Register set-up and data access code is shown below.

movep #$012421,x:M_BCR
movep #$OOCB20,x:M_AAR3

; AARx - 1 wait state
; Set up port A from y: $OOCXXX

bset #O,x:M_BCR
move y:$OOCOOC,a
bclr #O,x:M_BCR

; Set up to Readfrom Port A
; Readfrom Port A
; Put Port A off
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To clock the 2 NO converters correctly to convert analog values to digital values was done
using control signals from the OSP SCI serial and host port. Three signals were set-up as
I/O signals to control the conversion process.

The SCI port was set-up as I/O signals using the SCI control register and SCI direction
register. The appropriate bitswere set in the mentioned registers to set-up the SCI read and
write signals as output signals. Code for this set-up is shown below.

bclr
bclr
bset
bset

#o,X:M_PCRE
#1,x:M_PCRE
#O,x:M_PRRE
#1,x:M_PRRE

; SCI Control register (PCO GPIO active)
; SCI Control register (PCI GPIO active)
; SCI Direction Register (PCO output)
; SCI Direction Register (PCl output)

The host port signal was set-up as shown in section A.1.1.

The code for appropriately triggering the NO converters and acquiring the data of the two

NO converters to the general registers A and B is shown below.

bset #O,x:M_PDRE
bset #1,x:M_PDRE
bset #15,x:M_HDR

bclr #l,x:M_PDRE

; AID control pin (CS_b pin)
; Conversion clock(Conv)
; AID control pin (CS_a pin)

; Conversion clock (Conv)

; First AID start conversion

bclr #O,x:M_PDRE
rep #10

; AID control pin (CS_b pin)

nop
bset #O,x:M_PDRE ; AID control pin (CS_b pin)

; Second AID start conversion

bclr #15,x:M_HDR
rep #10

; AID control pin (CS_a pin)

nop
bset #15,x:M_HDR ; AID control pin (CS_a pin)

bset #1,x:M_PDRE ; Conversion clock (Conv)

; Conversion Wait

do #7,_end
rep #90
nop

end
; Read data A to D 1

bclr
rep #5
nop

#15,x:M_HDR ; AID control pin (CS_a pin)
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bset #O,x:M_BCR
move y:$OOCOOC,a
belr #O,x:M_BCR
bset #15,x:M_HDR

; Set up to Readfrom Port A
; Readfrom Port A
; Put Port A off
; AID control pin (CS_a pin)

; Read data A to D 2

belr #O,x:M_PDRE
rep #5
nop
bset #O,x:M_BCR
move y:$OOCOOB,b
bclr #O,x:M_BCR
bset #O,x:M_PDRE

; AID control pin (CS_b pin)

; Set up to Readfrom Port A
; Readfrom Port A
; Put Port A off
; AID control pin (CS_b pin)

This configuration for the AOS7805 preformed well as a real time value NO converter for the

OSP56311.

A.1.3. Anti-Aliasing filter

The AOS7805 required an anti-aliasing filter to prevent any aliasing of signals when an NO

conversion is preformed. The bandwidth of the ANR system was set at 3kHz in the design

specifications. The chosen sample rate of the system is 8kHz. The anti-aliasing filter thus

had to be designed to have a low pass characteristic with a cut-off frequency of between 3-

4kHz.

A cut-off frequency of 3kHz was chosen to ensure best adequate attenuation of the signal at

4kHz. This will ensure the least aliasing.

The UAF42 Universal filter [30] was used to realise a second order Butterworth low pass

filter. The closest filter to a Butterworth filter that could be realised with commercially

available resistor values was of the following form.

F(s)- 3.l19xl0
8

- S2 +2.558xl04s+3.l27xl08
A1

A bode plot of this filter is shown in Figure A3. This design has a theoretical cut-off

frequency of 2.74kHz. This is still an acceptable cut-off frequency. The configuration of this

filter with the UAF42 is shown in Figure A4.
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Figure A.3 Anti-aliasing filter frequency response
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Figure A.4 UAF42 configuration

The measured response of the built filter was compared to the designed specifications as set

out above. The active filter responded similarly to the design specifications, The 3dB cut-off

frequency was measured to be 2,6kHz. This is adequate for the purposes of this filter.

A.2. Real time conversion system conclusion

The NO and DIA transfer of this conversion system was measured with a frequency sweep

method. The resulting amplitude frequency response is shown in Figure A.5. This response

includes the anti-aliasing filter, a de limiting filter and additional single pole low pass

reconstruction filter with cut-off frequency of 4kHz. The additional reconstruction filter was

added to limit the high frequency harmonics caused by the DIA sample and hold.
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Figure A.5 AlO to DIA transfer at 8kHz

The non-logarithmic phase plot shows that the phase of the transfer changes almost linearly.

This is due to the linear phase behaviour of the anti-aliasing filter. A photo of the completed

interface is shown in Figure A.6.

Figure A.6 Completed AlO and DIA conversion interface with DSP56311EVM

This conversion system was successfully implemented and complied with all the

requirements set out for the conversion system without pipeline delay and minimal filter

delays.
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Appendix B

B Artificial head test fixture
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Appendix C

C Basic simulation program code

C.1. Main program code

% Apadtive Filter evaluation simulation

% Settings

%================================================================
Timelength 10; % Time duration in Seconds (Max time with Comms = 21s)
Tsample 6000; % Sample rate

Comss_y_n l: % 0 = no comms / 1 = comms,
Comms muit l' % Multiplication factor for unity scaled speech- ,
Noise var 2' % Input noise variance before headset filtering,

Speaker _ fil_y_n O' % Speaker filter on == I off == 0,
Mic_fiI_y_n O' % Microphone filter on == 1 off== 0,
Microphone_cutoff 100; % Microphone cuttoff frequency
Speaker_cutoff 100; % Speaker cuttoff frequency

Tap_poles O· % Number of estimation Poles,
Tap_zeros 100; % Number of estimation zeros

Adjust_per 0.01; % Non-stationary adjustment period (seconds) _n must be 1)
Multi filter cal l' % Calculate filters for non stationary and stationary == 1,

x fil O' % X-filter in operation (0 = no 1 =yes),

0/0================================================================
% Analysis Settings
0/0================================================================
begin_offset 8 ; % System settling time before frequency analyses start
Bartlett Windows 100; % Number of Bartlett estimate windows
lamda
mu
alfa

r.,
0.001;
0.65;

% Forgetting factor
% 0 > mu < 2/total input power

%================================================================

if Multi filter cal == 1

transfer_file _starttime=clock;
disp('Transfer file compiling ....')
disp([transfer _file _starttime( 4) transfer_file _starttime(5)])

Wanted_sample_rate = Tsample;

PI
Zl
gainl
TPhil

3;
40;
12;
Headset_transfer _estimation(PI ,Z 1,gain 1,10000, Wanted_sample _rate);
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figure(l)
hold

transfer_file _endtime=c1ock;
disp('Transfer file completed')
disp([transfer _file _ endtime( 4) transfer_file _endtime( 5)])

end

starttime=clock;

disp('Simulation started at')
disp([ starttime( 4) starttime( 5)])

Number_of_samples
Tap_size
Tap_1

round(Timelength *Tsample);
Tap_poles+ Tap_zeros;
PI+ZI;

Max_Tap_size
X

max([Tap _size Tap_I ]);
sqrt(Noise_ var). *randn(I,Number_of_samples); % Environmental Noise

ifComssy_n == I

[IN,Fs] wavread('ANR _Speech. wav');

if Fs == Tsample
Comms

else
IN',

% No-resampling requird
% Communications Speech

Wanted_sample_rate = Tsample; % Resampleing of
Comms resample(IN,Wanted_sample_rate,Fs); % Comms Signal

end

else
Comms
end

zeros( I ,Number _of_samples)'; % No Communications Speech

Max_sampels
Comms

= length(Comms)
= Comms _muit. *Comms( I :Number _of_samples);

0/0-----------------------------
% Simulation Initialisation
% -----------------------------

T = I/Tsample;

0/0=====================================================================
% Filter coeefticeints INIT
%=====================================================================

Pole PI;
Zero ZI;
HPhj TPhiI;

format long

ifSpeaker_fily_n == I;

[BS,AS] = butter(l ,Speaker _cutoffiTsample,'high');
SPhi = [BS AS(2:length(AS))]'; % Speaker 700Hz/4kHz bandpass filter
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else
BS
AS
SPhi

end

if Mic_fil_y_n == 1;

[BM,AM]
MPhi

else
BM
AM
MPhi

end

[1 0];
[00];
[BS AS(2:length(AS))l';

butter( 1,[Microphone _cutoffiTsample ],'high');
[BM AM(2:length(AM))l'; % Microphone 100 Hertz

% cut-off high pass filter

[1 0];
[00];
[BM AM(2:length(AM))l';

0/0=====================================================================
% Simulation Init
%=====================================================================
Startvar
HU
SU
outl
out
error
Nucomms
XM
S
XBL
errorM
errorBL
stop_est
convergence

zeros(1 ,(Max _Tap_size+ 1));
Startvar;
Startvar;
Startvar;
Startvar;
Startvar;
Startvar;
Startvar;
Startvar;
Startvar;
Startvar;
Startvar;
round(Iength(X) );

= [];

%=====================================================================
% Adaptive filter init
0/0=====================================================================

a
P
K
Phi
T

= 10;
= diag(a*ones(I,(Tap_size))+I);
= diag(a*ones(I,(Tap_size))+l);
= [zeros(1,(Tap_size+l))l';
= [];

var = 0;
k =0;
sum_uniform_rand = 0;
sum_squared_uniform_rand = 0;
headsetvar counter = 0;
cut_ adaptive _filter = 0;
Phianal = [];
a =0;
Thetal [fliplr(S(Max_ Tap_size+ 1-(Tap _zeros):Max _Tap _size+ 1)) -fliplr(out(Max_ Tap _size+ 1-
(Tap _poles):Max _Tap _size+ 1-1))l';

%_-------
%
% Simulation loop
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%_-------
h = waitbar(O,'Please wait...simulation in progress ...This can take a while');

for n = (Max _Tap_size+ I): length(X)
waitbar( nllength(X),h)

% Outside headset noise through reference microphone filter
MlTheta [X(n) X(n-I) -XM(n-I)]';
XM(n) = MITheta'*MPhi; % Reference microphone filter

% Outside headset noise through headset transfer

HTheta
HU(n)

[fliplr(X(n-Zero:n» -fliplrflft.Im-Pole.n-Ijj]' ;
HTheta'*HPhi ; % Headset filter

if x fil == I

% Electronic signal through speaker filter

XFTheta
Sen)

[XM(n) XM(n-I) -Sen-I)]';
XFTheta'*SPhi; % Speaker filter

else

Sen) = XM(n);
end

% Anti-Noise creation with adaptive filter

Theta
TTheta
outïn)

[fliplr(S(n-(Tap _zeros):n» -fliplr(out(n-(Tap _poles):n-l »]';
[fliplr(XM(n-(Tap _zeros):n) -fliplr( out(n-(Tap _poles):n-l »]';
TTheta'*Phi;

% -----------------------------------------------
% Speech + anti-Noise mix before speaker filtered
0/0 -----------------------------------------------

Nucomms(n) = Comms(n)-out(n); % Electronic compensation signal transmitted by speaker

% Electronic signal through speaker filter
STheta [Nucomms(n) Nucomms(n-l) -SU(n-l )]';
SU(n) STheta'*SPhi; % Speaker filter

error(n) HU(n)+SU(n); % Signal inside headset

% Error mie transfer inside earcup

M2Theta
errorM(n)

[error(n) error(n-l) -errorM(n-I)]'; % Error microphone filter theta
M2Theta'*MPhi; % Error microphone filter

% ---------------------------------
% LMS algorithm
% ---------------------------------

%Phi = Phi + mu*Thetal *errorM(n-l);

% ---------------------------------
% KP algorithm
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% ---------------------------------

T = (Theta 1'*Theta 1);
P = alfa/(T+O.I);
Phi = Phi + P*Thetal *errorM(n-l);

% ------------------------------------------
% RLS algorithm with exponential forgetting
% ------------------------------------------

%K = lamda*P*Thetal *inv(1 +lamda*Thetal'*P*Thetal);
%Phi = Phi + K*errorM(n-l);
%P = lamda*P-lamda*K*Thetal'*P;

% ---------------------------------
% end of algorithms
% ---------------------------------

%One delay for microphone acoustic delay

Theta I = Theta;

%Phianal = [Phianal Phi];
converge = sum(Phi);
convergence = [convergence converge];

end
% ----------------------------------
% End of SIMULATION
% ----------------------------------

end
close(h)

disp('simulation completed - evaluation start')

0/0=====================================================
% Creation of a NO-AANR signal for evaluation purposes
%=====================================================
ifSpeaker_fil_y_n == I;

speech = filter(BS,AS,Comms);
else

speech = Comms;
end

NoAANR = HU;
AANR error-speech';
Speeched = (NoAANR+speech');

Start = Tsample*begin _offset;

NoAANR_Noise__power =
(I /length(N oAANR( I ,start: length(NoAANR») )*sum(NoAANR( I ,start: length(N oAANR». /\2);
AANR _Noise __power
(1/length(AANR(l,start:length(AANR»»*sum(AANR(I,start:length(AANR»./\2);Verhouding
AANR_Noise__power/NoAANR_Noise__power;
ATTENUATION = IO*logIO{lNerhouding)
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time = [(1/Tsample). *(1 :I :length(NoAANR)));

% Tap weigth plots
%figure
%for i= I:Tap_size+1
%subplot«Tap_size+ I), I,i)
%plot(Phianal(i,:))
%hold on
%plot(HPhi(i). *ones( I ,length(Phianal(i,:))),'r:')
%end

figure
plot(time,NoAANR)
hold on
plot(time,out,'r')
title('Actual noise vs Estimated noise')
ylabel('Amplitude')
grid on

Max dey
Max dey I

= max([ max( errorM) max(N oAANR +speech')));
= Max_dev_1 + O.OI*Max_dev_l;

wavwriteïj Speeched.zlvlax _dey_I ),Tsample, 16,'No_ANR. way')
wavwriteïjerror.zlvlax _dey_I ),Tsample, 16,'With_ANR.wav')

figure
subplot(2, I, I)
plot(time,Speeched)
title('Earcup signal with no AANR')
ylabel('Amplitude')
grid on
subplot(2,1,2)
plot(time,error)
title('Earcup signal with AANR')
ylabel('Amplitude')
xlabel('Time (s)')
grid on

time=[(1/Tsample). *(1: I:Iength(convergence)));

figure(4)
hold on
plot( time,convergence)
grid on
hold on
title('Convergence of Algorithm')
xlabel('Time (s)')
ylabel('Convergence of the sum of the tap weights')

cony_mean = 1/Iength( convergence). *sum( convergence)
cony_variance = real_ time _variance( convergence)

Max dey = max([max(NoAANR) max(AANR)));
Max dey = Max_dey + 0.01 *Max_dey;

wavwrite( (NoAANR./Max _dev), Tsample, 16,'output_ noise I.way')
wavwrite«AANR.lMax _dev),Tsample,16,'outputl.wav')

C-6

Stellenbosch University http://scholar.sun.ac.za



Offset_samples = round(begin _offset*Tsample);
[Attenuation,Frequency _scale _out,Frequency _scale_in]= ANR_Preformance(Tsample,Bartlett _Windows, Offset
_samples); % AANR Preformanee

figure(5)
hold on
plot(Frequency _scale _out(l ,2:length(Frequency _scale _ in))./max(Frequency _scale _out),-
Attenuation( 1,2: length(Frequency _scale_in)), 'green')
hold on
grid on
titIe('Attenuation due to noise reduction (Non-Stationary voiced)')
ylabel('Amplification (dB)')
xlabel('Normalised Frequency [(value)(O.5)(sample rate) = frequency]')

[Head_IN, IN_freq]
[Head_ OUT,OUT_freq]

Bart_ esst(X, Tsample);
Bart _esst(HU,Tsample);

Attenuation IO*loglO(Head _OUT./Head _IN);

A
B
testout

[Phi(l :Tap_zeros+ I)'];
[I Phi«Tap _zeros+2):length(Phi))'];
filter(A,B,X);

[Est_OUT,Est_ freq] Bart_esst(testout,Tsample);

EstAtt IO*logIO(Est_OUT.!Head _IN);

figure(6)
plot(OUT _freq,Attenuation)
hold on
plot(OUT _freq,EstAtt,'r')
legend('Given Headset Transfer','Estimated HEadset Transfer')
grid on

save NLMS 6kHz stat voised xfiltered ISs- - - - -

endtime=clock;
disp('Simulation completed')
disp([ endtime( 4) endtime( 5)])

C.2. Sub-routine program code

C.2.1. Headset transfer filter estimation code

% Program code to estimate headset z-transform.

% Data has to be loaded in to variables IN and OUT before
% the function can run.

function [TPhi] = Headset_transfer _estimation(P ,Z,gain,LS _samples, Wanted_sample_rate);

%% The Data load function must be run before to acquire
% the data in question

[IN,OUT,Fs]=dataload;

% Data is now loaded and can be manipulated.
% Input data Bartlett estimated transfer.
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% To speed up calculations a low resolution Bartlett
% estimation is done to determine the system transfer.

Sample_rate
IN
OUT
max_sample _Iength
Sample_rate

Fs;
RESAMPLE(IN,Wanted_sample_rate,Sample_rate);
RESAMPLE(OUT, Wanted _sample _rate,SampIe _rate);
length(OUT);
Wanted_sample_rate;

[F_IN,IN_freqscale)
[F_OUT,OUT_freqscale)

Bart_ esst(IN', Sample _rate);
Bart_ esst(OUT',Sample _rate);

Attenuation IO*logIOeF_OUT.IF_IN);

figure(l)
plot(IN _freqscale( 1,2:length(lN _freqscale) ),Attenuation( I ,2: length(IN _freqscalejj)
hold on
title('Measured headset transfer(blue) vs. simulated headset transfer(red)')
ylabel('Amplification (dB)')
xlabel('Frequency (Hz)')

% Transfer estimation with Least Squares estimation

IN
OUT

IN(l :LS_samples);
OUT(J :LS_samples);

PHI=[];
lengte
val

length(IN)-I;
max([Z + 1 PJ);

for n=O:Z
PHI

end
for n=O:P-l

PHI
end

= [PHI IN(val-n:lengte-n»);

= [PHI -OlI'T(val-n.Iengte-nj];

OUT = OUT((val+ I):(Iength(IN»);
Theta = inv(PHI'*PHI)*PHI'*OUT;
T l/Sample rate;

T:T:length(OUT)*T;

A gain *[Theta(J :Z+ 1)');
B [1 Theta((Z+2):length(Theta»');

TPhi [A [Theta((Z+2):length(Theta»)']';
sys tf(A,B,T);

% Filter test

FilterIN
Sample _rate
FilterOUT

randn(J ,max_sample _length);
Wanted _sample _rate;
filter(A,B,FilterIN);

[F_IN,IN_freqscale) = Bart_esst(FilterIN,Sample_rate);
[F_OUT,OUT_freqscale) = Bart_esst(FilterOUT,Sample_rate);

Attenuation = 10*10gIO(F_OUT./F_IN);
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figure(l)
plot(OUT _freqscale( I ,2:length(OUT _ freqscale »,Attenuation(l ,2:length(OUT _freqscale »,'r')
hold on
grid on

C.2.1.1. Data loading of recorded noise files

%Data load
function [IN,OUT,Fs]=dataload;

[IN,Fs ]=wavread('WhiteN _Elno_in. way');
[OUT,Fs]=wavread('WhiteN_Elno_out.wav');

max_data _length=length(OUT);
IN=IN(l :max_data_length);

C.2.1.2. Subroutines for headset transfer filter estimation code

Bartlett averaging of frequency spectrum

function [Average _ in,Frequency _scale _in]=Bart _esst(Y,Sample _rate)
clear Average_in

samples
Windows

= length(Y);
= 100; % Ensures a 0.5 Hz resolution

if Windows <= I
disp('Amount Wimdows to smaIl')

end

In = (Yï l.samplesj);

Samples _per_window
Total_ Samples
Average_in

= fix(length(In)/Windows);
= Windows*Samples_per_window;
= zeros(l ,Samples _per_window);

for count = I :Windows;

In

Fourier of in
Average_in

= In([«count-I )*Samples_per _window)+ I ]:[count*Samples_per_ window]);
= (l/Samples_per _window). *abs([fft(in)]/\2);
= Average_in+Fourier_of_in;

end

Average_in
Average_in
Frequency_scale_in
Sample _rate/Samples _per _window:Sample _rate/Samples _per_window: length(A verage _in)*(Sample _rate/Samp
les_per_window);

= (l /Windows). *Average _in;
= Average_in( I :fix(length(Average_in)/2»;

%figure
%plot(Frequency _scale _ in,Average _in)

C.2.2. Simulated ANR performance measurement calculation code

function [Attenuation, Frequency _scale _out,Frequency _scale_in] =
ANR_Preformance(Sample _rate, Windows, begin _offset);
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%Data load
function [samples,IN,OUT] = dataload(begin_offset);

[IN,Fs]
OUT
samples

wavread('output_ noise I.way');
wavread('outputl.wav');
length(OUT);

IN
OUT

IN(begin _offset:samples);
OUT(begin _offset:samples);

samples = samples-begin_offset;

In
Out

= rot90(lN( 1:samples »;
= rot90(OUT(l .samplesj);

Samples _per_window
Total_Samples
Average_in
Average _out

= fix(length(In)/Windows);
= Windows*Samples_per_window;
= zeros( l,Samples _per_window);
= zeros( I ,Samples _per_window);

for count = 1 :Windows;

in
out
Fourier of in
Fourier of out

= In([«count-I)*Samples_per _window)+ I ]:[count*Samples_per_ window]);
= Out([«count-l )*Samples_per _window)+ 1]:[count*Samples _per_window]);
= (I/Samples _per_window). *abs([fft(in)]./\2);
= (I/Samples_per _window). *abs([fft( out)]./\2);

Average_in
Average _out

= Average _ in+Fourier _of_in;
= Average_out+Fourier_of_out;

end

Average_in = (l/Windows).*Average_in;
Average _in = Average _in(l :fix(length(A verage _ in)/2»;
Frequency_scale_in =
Sample _rate/Samples _per _window:Sample _rate/Samples _per _window:length(A verage _in)*(Sample _rate/Samp
les_per_window);

Average_out = (I/Windows).*Average_out;
Average _out = Average _out(l :fix(length(A verage _out)/2»;
Frequency_scale_out =
Sample _rate/Samples _per _window: Sample _rate/Samples _per_window: length(A verage _out)*(Sample _rate/Sam
pies_per_window);

Attenuation = 1O*log1O(Average _out.! Average_in);

C.2.3. Signal variance calculation

function [var ]=real_time _variance(uniform _rand)

sum_uniform_rand = 0;
sum_squared _uniform _rand=O;
k=O;

for n= 1:length( uniform_rand)

k=k+l;
sum uniform rand- - = uniform_rand(k) + sum_uniform_rand;
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sum_squared _uniform _rand = (uniform _rand(k)Y'2 + sum_squared _uniform _rand;

first moment = sum_uniform _rand/k;
second moment = sum_squared_uniform_rand/k;

variance = second_moment-(frrst_momentY'2;

end

var=variance;
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Appendix D

o Program code for ANR implementation on the

DSP56311 EVM and conversion system Binterface
.****************************************************************************,

Single channel FIR Normalised LMS algorithm implementation

By Corné J. Smith

.*****************************************************************************,
nolist
include 'ioequ.asm'
include 'intequ.asm'
include 'ada_equ.asm'
include 'vectors.asm'
list

.******************************************************************************,
;Buffers for talking to the CS4218
.******************************************************************************,

Filorder equ 100 ; Filter order specified
fil K equ $OOOOOa ; filter coefficients y:
DataR equ $000078 ; DataR save location 1 x:
Step equ 0.0002 ;LMS step size parameter
delay equ 2

org x:O
RX BUFF BASE equ *-
RX data 1 2 ds ; data time slot 1/2 for RX ISR (left audio)- --
RX data 3 4 ds ; data time slot 3/4 for RX ISR (right audio)

TX BUFF BASE equ *- -
TX data I 2 ds ; data time slot 1/2 for TX ISR (left audio)- --
TX data 3 4 ds ; data time slot 3/4 for TX ISR (right audio)- --

RX PTR ds ; pointer for RX buffer
TX PTR ds ; pointer for TX buffer

Mu error ds ; Step times error buffer
Filorder var ds ; Variable filter order

A Fil out ds ; Adaptive filter output
R Filout ds ; Real filter output
E out ds ; Error signal output

CTRL WD 12 equ MIN LEFT ATTN+MIN RIGHT ATTN+LIN2+RIN2- - --
CTRL WD 34 equ MIN LEFT GAIN+MIN RIGHT GAIN- - --
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org y:fiI_K

include 'zero IOO.asm'
;ineIude 'test_ band _pass.asm'

;Main Program
.******************************************************************************,

.******************************************************************************,

org p:$400
START

movep #$040006,x:M_PCTL
movep #$012421 ,x:M_BCR
ori #3,mr
movec #O,sp
move #O,omr
move #$40,r6
move #-I,m6

; -------- Host port I/O init --------------

movep #$FFFF,x:M_HDDR
movep #O,x:M_HCR
movep #1,x:M_HPCR

; -------- SCI I/O init

bclr
beIr
bset
bset

#O,x:M_PCRE
#1,x:M_PCRE
#O,x:M_PRRE
#1,x:M_PRRE

; -------- Port A I/O init ------------------

; PLL 7 X 12.288 = 86.016MHz
; AARx - I wait state
; mask interrupts
; clear hardware stack pointer
; operating mode 0
; initialise stack pointer
; linear addressing

; Host Data Direction Register (all outputs)
; Host Control Register (all interrupts disabled)
; Host Polarity Control Register (GPIO active)

; SCI Control register (PCO GPIO active)
; SCI Control register (PCI GPIO active)
; SCI Direction Register (PCO output)
; SCI Direction Register (PCloutput)

movep #$00CB20,x:M_AAR3 ; Set up port A from y:$OOCXXX

; -------- ESSI port inits ------------------

jsr ada init

jsr clear_data_space

bset
bset
bset

#O,x:M_PDRE
#1,x:M_PDRE
#15,x:M_HDR

loop
jset #3,x:M_SSISRO,*
jclr #3,x:M_SSISRO,*

; initialise codec

; AID control pin (CS_b pin)
; Conversion clock(Conv)
; AID control pin (CS_a pin)

; wait for RX frame sync
; wait for RX frame sync

;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Outside Reference Microphone Calculations

;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

jsr AtoDX ; Receive Outside mie and inside mie signal

;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Calculate new ANR output
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;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

move #DataR +Fil_ order+delay,r2
move #DataR+FiI_order+delay-l,rl
jsr Data_arrange _ for_filter
move a,x:(DataR)

; load data count back address in r2
; load data count back address in rl
; Arrange data for filtering
; Place new data in data space

move #DataR,rO
move #fil_K,r4

jsr Filter

neg a
nop

move x:RX_BUFF _BASE,b
nop
add b,a
nop

move a,x:A _Fil_ out
jsr DtoA

; load data start address
; load filter coefficients

; Filter refmic (gives output in a)

; Disturbance signal

; Negative Adaptive filter Save output
; Output value to headset speaker

;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Error Gain Calculation

;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
jsr AtoDE
nop
move b,x:TX_BUFF _BASE
move b,x:TX_BUFF _BASE+I

; Recording
; Recording

;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
; Error Signal Save
;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

move b,x:E_out
nop
move x:E_out,b
nop
move b,xl
move #Step,yl

mpyr xl,yl,a
nop

; step times error(n)

move a,x:Mu _error ; Save Error mic*step

move #DataR +delay ,rO
nop
jsr Data_squared

move b,xO
move x:Mu _error,a

; load data start address

; Get Error mic*step

jsr Devide
move a,xO

; [step*error(n)]/ {[DataR]*[DataR]'+O.l}
; Save fmal Coefficient gain

;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Filter Coefficient update
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;$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

move
move

#DataR+delay,rO
#fil_K,r4

; load Data start address
; load filter Coefficients start address

jsr Coef_update

jmp loop

.********************************************************************************,
;$$$$$$$$$$$$$$$$$$$$$$ FUNCTIONS $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
.********************************************************************************,
clear _data_ space

move #DataR,rO
move #$OOOOOO,a

; Function clears data space where
; data samples will be stored

rep #Fil_order+2
move a,x:(rO)+
rts

.******************************************************************************,
Data _arrange _for_ filter

do #Fil_order+delay,_end_arrange ; reposition data for next entry

move x:(rl)-,b
nop
move b,x:(r2)-

_end_arrange
rts

.********************************************************************************,
Filter

clra
rep #Fil_ order
mac xO,yO,a
rts

x:(rO)+,xO y:(r4)+,yO ; clear filter output;
; loop filter multiplication

x:(rO)+,xO y:(r4)+,yO

.********************************************************************************,
Coef_ update

move x:(rO)+,x I
move y:(r4),a
nop

; Data sample [u(n)]
; Filter Coefficient [H(n)]

do #Fil_ order,_ end_update

mpyr
add
nop
move b,y:(r4)+

xl,xO,b
a,b

x:(rO)+,xl y:(r4),a

; H(n+l) = H(n) + K*u(n) where K=k*error(n)

_ end_update
rts

.********************************************************************************,
Data_ squared

clr b x:(rO)+,a ; Get input data at xO:rOto square

do #Fil_ order-l,_ end_data s ; square all data points and add
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move
mac
nop

end data s

move
maer
add
rts

a,xO
xO,xO,b x:(rO)+,a

; Complete square function
; Add small value to ensure not-zero

Devide
.********************************************************************************,

a,xO
xO,xO,b
#O.OOOOOOOI,b

move a,b
div xO,b
rep #24
div xO,a
move aO,b
nop
move b,a
move xO,b
nop
jelr
neg a

not_neg
rts

#23,b,not_neg

; reset condition code register??? Don't know how else

; Check sign changes and corrects sign

; If Denominator negative jump to

DtoA
.************************************************************************************,

Anti_ 2s_compliment

move
jset

Isr
nop
add

a2,xO
# 1,xO,negative_2_ comp

#IO,a

nop
jmp end_2_ comp

#$002000,a

negative _2_comp

sub
nop
Isr

end_2_comp
nop
nop

or
move
belr
rep #90
nop
bset

rts

#$7FFFOO,a

#IO,a

#$008000,a
al,x:M_HDR
#14,x:M_HDR

#14,x:M_HDR

; Change the DSP 2's compliment value
; to not 2's compliment for DIA

; shift right since host port reads
; least significant 14 bits
; 2's compliment compensation for positive values

; 2's compliment compensation for negative values

; shift right since host port reads

; Write out value of A to the host port
; Clock the CS of DIA low
; Clock the CS ofD/A low

; Clock the CS ofD/A high again
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AtoDX

.************************************************************************************,

bclr #l,x:M_PDRE

; First AID start conversion

bclr #15,x:M_HDR
rep #10
nop
bset #15,x:M_HDR

bset #l,x:M_PDRE

; Conversion Wait

do #8,_end
rep #90
nop

end
; Read data A to D 1

bclr #15,x:M_HDR
rep #5
nop
bset #O,x:M_BCR
move y:$OOCOOC,a
bclr #O,x:M_BCR
bset #15,x:M_HDR

sub #$000800,a

rts

; Conversion clock (Conv)

; AID control pin (CS_a pin)

; AID control pin (CS_a pin)

; Conversion clock (Conv)

; AID control pin (CS_a pin)

; Set up to Read from Port A
; Read from Port A
; Put Port A off
; AID control pin (CS_a pin)

; Subtract unwanted DC offset

AtoDE

.**********************************************************************************,

bclr #l,x:M_PDRE

; Second AID start conversion

bclr #O,x:M_PDRE
rep #10
nop
bset #O,x:M_PDRE

bset #1,x:M_PDRE

; Conversion Wait

do #8,_end
rep #90
nop

end
; Read data A to D 2

bclr #O,x:M_PDRE

; Conversion clock (Conv)

; AID control pin (CS_b pin)

; AID control pin (CS_b pin)

; Conversion clock (Conv)

; AID control pin (CS_b pin)
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rep#5
nop
bset
move
bclr
bset

sub

#O,x:M_BCR
y:$OOCOOB,b
#O,x:M_BCR
#O,x:M_PDRE

; Set up to Read from Port A
; Read from Port A
; Put Port A off
; AID control pin (CS_b pin)

#$000500,b ; Subtract unwanted DC offset

rts
.**********************************************************************************,

include 'ada_ init.asm'
end
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