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SUMMARY 
 

Aflatoxins are mycotoxins predominantly produced by the filamentous fungi Aspergillus 

flavus and Aspergillus parasiticus.  Aflatoxin B1 (AFB1), the most abundant aflatoxin, is 

highly mutagenic, toxic, carcinogenic and teratogenic to humans and animals and is 

particularly correlated with the incidence of hepatocellular carcinoma in parts of Africa, 

China and South East Asia.  In this regard aflatoxin is classified as a type I human 

carcinogen by the International Agency for Research on Cancer.  Furthermore, aflatoxin 

contamination of food and feed is responsible for extensive economic losses due to loss 

of crops and farm animals. 

In spite of regulations regarding acceptable levels of aflatoxin in food, aflatoxin 

contamination remains a serious worldwide problem, especially in developing countries 

where it occurs predominantly in dietary staples.  Inactivation of aflatoxin by physical 

and chemical methods has not yet proved to be effective and economic.  However, 

biological detoxification offers an attractive alternative for eliminating toxins as well as 

safe-guarding the desired quality of food and feed. 

 In this study, the biological degradation of AFB1 by bacteria and fungi was 

investigated.  Several bacteria, including Rhodococcus spp., as well as white rot fungi 

have the potential to degrade a wide range of polycyclic hydrocarbon compounds due to 

the large repertoire of enzymes they produce and therefore the ability of some of these 

microorganisms to degrade AFB1 was investigated.  Effective degradation of AFB1 by 

intracellular extracts of Mycobacterium fluoranthenivorans sp. nov. DSM 44556T, 

Nocardia corynebacterioides DSM 20151 and N. corynebacterioides DSM 12676 was 

demonstrated.  Furthermore, AFB1 was effectively degraded by liquid cultures as well as 

intra- and extracellular extracts of Rhodococcus erythropolis DSM 14303.  Significant 

(P<0.001) reduction in AFB1 was observed following treatment with R. erythropolis 

extracellular extracts with only 33.20% residual AFB1 after 72 h.  Results indicated that 

the degradation by R. erythropolis DSM 14303 is enzymatic and that the enzymes are 

constitutively produced.  The degradation of AFB1 when treated with R. erythropolis 

DSM 14303 extracellular extract coincided with a total loss of mutagenicity.  In addition, 

treatment of AFB1 with culture fractions containing recombinant 2,3-dihydroxybiphenyl 



dioxygenase, which was produced through extracellular expression of the bphC1 gene of 

R. erythropolis DSM 14303 in Escherichia coli BL21, resulted in significant (P<0.0001) 

degradation (49.32%) and reduced mutagenic potency (42.47%) of the molecule. 

Significant (P<0.0001-0.05) degradation of AFB1 was obtained following treatment 

with culture extracts containing laccase enzyme produced by white rot fungi (17.10-

76.00%), purified fungal laccase from Trametes versicolor (1 U/ml, 87.34%) as well as 

with recombinant laccase produced by Aspergillus niger (118 U/L, 55.00%).  

Furthermore, treatment of AFB1 with purified fungal laccase enzyme (1 U/ml) resulted in 

loss of the mutagenic potency of the molecule.  The decrease in the fluorescence and 

mutagenic properties of AFB1 following treatment with the microbial preparations imply 

changes to the furofuran- and/or lactone rings of the molecule. 

The current study contributes towards developing genetic engineered microbial 

strains which could be applied as an important bio-control measure.  Such strains could 

exhibit multifunctional technological properties including degradation of AFB1, to 

significantly improve the quality, safety and acceptability of food. 



OPSOMMING 
 

Aflatoksiene is mikotoksiene wat hoofsaaklik deur die filamentagtige fungi, Aspergillus 

flavus en Aspergillus parasiticus geproduseer word.  Die algemeenste aflatoksien, 

aflatoksien B1 (AFB1), is hoogs mutagenies, toksies, karsinogenies en teratogenies vir 

mense en diere.  Veral in sekere dele van Afrika, China en Suid-Oos Asië bestaan daar `n 

korrelasie tussen aflatoksien en die voorkoms van hepatosellulêre karsinoom en gevolglik 

word aflatoksiene as `n tipe I menslike karsinogeen deur die Internasionale Agentskap vir 

Kankernavorsing geklassifiseer.  Aflatoksien kontaminasie in voedsel het ook `n 

ekonomiese impak as gevolg van verlies aan landbougewasse en diere. 

 Ten spyte van maatreëls betreffende die toelaatbare vlakke van aflatoksiene in 

voedel, is aflatoksien kontaminasie steeds `n groot probleem wêreldwyd, veral in 

ontwikkelende lande waar dit hoofsaaklik in stapelvoedsel voorkom.  Huidiglik is die 

inaktivering van aflatoksiene deur fisiese en chemiese metodes nie effektief en 

ekonomies nie.  Daarteenoor bied biologiese tegnieke `n gunstige opsie vir die 

eliminering van die toksiene, terwyl die organoleptiese eienskappe van die voedsel steeds 

behoue bly. 

 Hierdie studie fokus op die biologiese afbraak van AFB1 deur bakterieë en fungi.  

Verskeie bakterieë, insluitend Rhodococcus spp., sowel as witvrot fungi produseer `n 

verskeidenheid ensieme wat hulle in staat stel om `n wye reeks polisikliese 

hidrokoolstofverbindings af te breek en gevolglik is afbraak van AFB1 deur sommige van 

hierdie mikroörganismes bestudeer.  Effektiewe afbraak van AFB1 deur intrasellulêre 

ekstrakte van Mycobacterium fluoranthenivorans sp. nov. DSM 44556T, Nocardia 

corynebacterioides DSM 20151 en N. corynebacterioides DSM 12676 is aangetoon.  

AFB1 is ook effektief in vloeibare kulture sowel as intra- en ekstrasellulêre ekstrakte van 

Rhodococcus erythropolis DSM 14303 afgebreek.  `n Beduidende (P<0.001) afbraak van 

AFB1 is waargeneem na behandeling met R. erythropolis DSM 14303 ekstrasellulêre 

ekstrakte, met slegs 33.20% oorblywende AFB1 na 72 h.  Resultate het getoon dat die 

afbraak deur R. erythropolis DSM 14303 ensimaties is en dat die ensieme konstitutief 

geproduseer word.  Afbraak van AFB1 deur R. erythropolis DSM 14303 het ook tot `n 

totale verlies aan mutagenisiteit gelei.  Verder het behandeling van AFB1 met 



rekombinante 2,3-dihidroksiebifenieldioksiginase fraksies wat geproduseer is deur 

ekstrasellulêre uitdrukking van die bphC1 geen van R. erythropolis DSM 14303 in 

Escherichia coli BL21, beduidende (P<0.0001) afbraak (49.32%) en vermindering in 

mutagenisiteit (42.47%) van die molekuul teweeggebring. 

 Beduidende (P<0.0001-0.05) afbraak van AFB1 is verkry na behandeling met 

witvrot fungus kultuurekstrakte wat lakkase-ensiem bevat (17.10-76.00%), gesuiwerde 

lakkase geproduseer deur Trametes versicolor (1 U/ml, 87.34%), sowel as rekombinante 

lakkase geproduseer deur Aspergillus niger (118 U/L, 55.00%).  Verder het die 

behandeling van AFB1 met gesuiwerde lakkase-ensiem (1 U/ml) gelei tot verlies aan 

mutagenisiteit van AFB1.  Die afname in fluoressensie en mutageniese eienskappe van 

die AFB1-molekuul na behandeling met die onderskeie mikrobiese preparate dui op 

struktuurveranderings aan die furofuraan- en/of laktoonringe van die molekuul. 

 Hierdie studie lewer `n bydrae tot die ontwikkeling van geneties gemanipuleerde 

mikrobiese rasse wat as `n belangrike biokontrole kan dien.  Sulke rasse met 

multifunksionele tegnologiese eienskappe, insluitend die afbraak van AFB1, kan die 

kwaliteit, veiligheid en aanvaarbaarheid van voedsel verbeter. 
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GENERAL INTRODUCTION AND PROJECT AIMS 
 

1.1. Introduction 
 

Aflatoxin B1 (AFB1) is a highly mutagenic, toxic, carcinogenic and teratogenic 

mycotoxin belonging to a group of more than 13 structurally related polyketide-derived 

difurocoumarolactone compounds, which are collectively called aflatoxins (Bhatnagar et 

al., 2003; Mishra and Das, 2003).  The aflatoxins are natural toxins produced as 

secondary metabolites by the filamentous fungi Aspergillus flavus, Aspergillus 

parasiticus, Aspergillus bombycis, Aspergillus nomius, Aspergillus ochraceoroseus, 

Aspergillus pseudotamarii and Aspergillus tamarii.  In parts of Africa, China and South 

East Asia aflatoxin contamination is correlated with the incidence of hepatocellular 

carcinoma (Wild and Hall, 2000; Yabe and Nakajima, 2004).  In this regard AFB1 is 

classified as a type I human carcinogen by the International Agency for Research on 

Cancer (Wogan, 2000).  Furthermore, aflatoxin contamination in food and feed is 

responsible for significant economic losses due to loss of crops and livestock and 

domestic growers and food processors are under high pressure from consumer groups and 

regulatory organizations to remove aflatoxin from food and feed (Maggon et al., 1977; 

Trail et al., 1995). 

Aflatoxin B1 harbours two key sites influencing its toxicological activity, namely 

a furofuran- and a lactone ring (Heathcote and Hibbert, 1978; Mishra and Das, 2003), and 

changes to the coumarin structure will alter the mutagenic properties of the molecule 

(Liu et al., 1998 a,b,c).  Inactivation of AFB1 in food sources by various procedures has 

been a focus of many research initiatives.  While physical and chemical methods have not 

yet proved to be effective and economically feasible (Mishra and Das, 2003), biological 

detoxification offers an attractive alternative for eliminating toxins as well as safe-

guarding the desired quality of food and feed. 

Several genes encoding enzymes responsible for transforming a wide range of 

polyaromatic compounds were characterized in Rhodococcus spp. (Hauschild et al., 

1996; Kosono et al., 1997; Masai et al., 1995, 1997; Yamada et al., 1998).  These include 
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seven bphC genes encoding 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD) 

enzymes which are involved in the initial ring cleavage steps of biphenyl.  In addition, 

several groups of enzymes produced by white rot fungi are involved in the degradation of 

lignin and aromatic xenobiotics, including heme-containing peroxidases, flavine 

oxidases, cellobiose dehydrogenases as well as laccases (Armstrong and Patel, 1994; 

Cullen and Kersten, 1996; Hammel, 1995; Higson, 1991; Singh et al., 1991). 

Microbial strains expressing AFB1-degrading enzymes could support the 

development of commercial additives based on cultures or enzymatic preparations able of 

degrading AFB1 (Karlovsky, 1999).  Moreover, genetic engineered microbial strains with 

multifunctional technological properties including degradation of AFB1 would be 

valuable as bio-control measure to significantly improve the quality, safety and 

acceptability of food and beverages. 

 

1.2. Aims of the study 
 

The aim of this study was to achieve biological degradation of AFB1 by bacteria and 

fungi in liquid cultures using the following approach: 

 

• Establish the microbiological and chemical analytical techniques for cultivation of 

Rhodococcus erythropolis DSM 14303 in liquid cultures as well as the extraction and 

quantification of AFB1 from bacterial and fungal culture extracts. 

• Examine degradation of AFB1 by intracellular extracts of R. erythropolis DSM 

14303, Mycobacterium fluoranthenivorans sp. nov. DSM 44556T, 

Nocardia corynebacterioides DSM 20151 and N. corynebacterioides DSM 12676. 

• Demonstrate that AFB1 is effectively degraded by R. erythropolis DSM 14303 in 

liquid cultures. 

• Determine whether degradation of AFB1 by R. erythropolis DSM 14303 occurs 

extracellularly, on the cell membrane or intracellularly. 

• Determine whether the degradation of AFB1 by extracellular extracts of 

R. erythropolis DSM 14303 liquid cultures is an induced or constitutive activity. 
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• Determine whether degradation of AFB1 by extracellular extracts of R. erythropolis 

DSM 14303 liquid cultures is enzymatic. 

• Cloning of the bphC1 gene encoding 2,3-DHBD from R. erythropolis DSM 14303 

and extracellular expression in Escherichia coli BL21 (DE3). 

• Demonstrate degradation of AFB1 by extracellular culture fractions of recombinant 

E. coli BL21 (DE3) harbouring the bphC1 gene fused to a PhoA secretion signal. 

• Investigate the correlation between the production of laccase enzyme and degradation 

of AFB1 by white rot fungi in different liquid media. 

• Determine the ability of purified fungal laccase from Trametes versicolor as well as 

recombinant laccase produced by Aspergillus niger (D15-Lcc2#3), expressing the 

lcc2 gene, to degrade AFB1. 

• Determine whether the degradation of AFB1 following treatment with the bacterial, 

fungal and enzyme preparations coincides with a loss of mutagenicity of AFB1 and its 

breakdown products. 

• Detect breakdown products with thin layer chromatography, high performance liquid 

chromatography, electro spray mass spectrometry and liquid chromatography mass 

spectrometry. 
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2. AFLATOXINS 
 

2.1. Chemical structure 
 

A group of more than 13 structurally related polyketide-derived difurocoumarolactone 

compounds are collectively called aflatoxins (Bhatnagar et al., 2003; Mishra and Das, 

2003) (Fig.1). The aflatoxins are natural compounds originally discovered and described 

following the outbreak of turkey poisoning in the U.K. during 1960 (Bennett et al., 1977).  

They are mycotoxins produced as secondary metabolites by primarily Aspergillus flavus, 

Aspergillus parasiticus and less frequently by other Aspergillus spp. including 

Aspergillus bombycis, Aspergillus nomius, Aspergillus ochraceoroseus, 

Aspergillus pseudotamarii and Aspergillus tamarii (Bhatnagar et al., 2003; Mishra and 

Das, 2003).  The four major aflatoxins that contaminate agricultural commodities and 

pose a potential risk to livestock and human health are aflatoxins B1 (AFB1), B2 (AFB2), 

G1 (AFG1) and G2 (AFG2).  Whereas A. parasiticus normally produces AFB1, AFB2, 

AFG1 and AFG2, A. flavus only produces AFB1 and AFB2 (Yabe and Nakajima, 2004).  

Aflatoxins of the B and G groups are distinguished from each other on the basis of their 

fluorescence colour under UV light.  While the B-type aflatoxins typically fluoresces blue 

under UV light and are characterized by a cyclopentane E-ring, the G-type aflatoxins 

have a xantone ring and fluoresce green (Fig.1).  In addition, aflatoxins of the B2 and G2 

type have a saturated bisfuranyl ring and aflatoxins B2a and G2a a hydrated bisfuranyl 

structure (Bhatnagar et al., 2003).  Furthermore, AFB1 and AFB2 contamination is related 

to aflatoxin M1 (AFM1) and M2 (AFM2), since the latter aflatoxins are hydroxylated 

metabolites of AFB1 and AFB2 and are found in milk products obtained from livestock 

that have ingested contaminated feed (Creppy, 2002; Sweeney and Dobson, 1999). 

Aflatoxin B1, the most potent and frequent occurring aflatoxin, harbours two key 

sites influencing its toxicological activity, namely a furofuran ring and a lactone ring 

(Heathcote and Hibbert, 1978; Mishra and Das, 2003).  Interaction of DNA and proteins 

with the lactone ring as well as the double bond in position 8,9 of the furofuran ring leads 

to toxic effects at cellular level and eventually malignant transformation (Liu et al., 

1998 a,b,c; Smela et al., 2001) as discussed in Section 2.3. 



 - 8 -

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

O R2

R4

R3O

R1

H

A B

O

O O

O OCH3

O

R1

H

O

C D

OO
H

R1

OOH
OH H

R1

O

O

O R2

R4

R3O

R1

H

A B

O

O O

O OCH3

O

R1

H

O

C D

OO
H

R1

OOH
OH H

R1

 

 

 
Aflatoxin 
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R1
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BB1 A H OCH3 =O H 
M1 A OH OCH3 =O H 
P1 A H OH =O H 
Q1 A H OCH3 =O OH 
R0 A H OCH3 OH H 
R0H1 A H OCH3 OH OH 
BB2 AC H OCH3 =O H 
BB2a AD H OCH3 =O H 
M2 AC OH OCH3 =O H 
G1 B H - - - 
G2 BC H - - - 
G2a BD H - - - 
GM BC OH - - - 
 

Fig. 1. Chemical structures of the aflatoxins. A, aflatoxins of the B-type are characterized 

by a cyclopentane E-ring;  B, G-type aflatoxins have an xhantone ring instead of the 

cyclopentane;  C, aflatoxins of the B2 and G2-type have a saturated bisfuranyl ring;  

D, aflatoxins B2a and G2a have a bisfuranyl structure (Bhatnagar et al., 2003). 
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2.2. Biosynthesis 
 

2.2.1. Enzymes involved in biosynthesis 

Comprehensive studies were done to unravel the biosynthetic pathway of AFB1 

(Bennett et al., 1997; Trail et al., 1995; Yabe and Nakajima, 2004; Yu et al., 2004).  

Furthermore, many genes encoding enzymes involved in the conversion steps as well as 

the transcription factors have been characterized (Bhatnagar et al., 2003; Yu et al., 2004).  

However, some of the conversion steps in the biosynthetic pathway have not yet been 

assigned to specific genes.  Gene disruption studies involving toxigenic strains of 

A. parasiticus and Aspergillus nidulans have resulted in accumulation or loss of some 

intermediates, which confirmed the role of specific enzymes involved in the biosynthesis 

of aflatoxin.  However, persistent production of low concentrations of aflatoxins by 

disrupted strains indicated that alternative routes or enzymes could be involved in 

biosynthesis (Trail et al., 1995).  Furthermore, slight differences in the biosynthesis of 

AFB1 have been reported between A. flavus and A. parasiticus (Flaherty and Payne, 

1997). 

At present 25 identified genes, which are grouped in a 70 kb gene cluster on one 

chromosome, are involved in aflatoxin biosynthesis (Bhatnagar et al., 2003; Trail et al., 

1995; Yu et al., 2004).  While clustering of genes involved in secondary metabolism is a 

common phenomenon, the physical order of the genes in the cluster appears to 

correspond with the chronological order of enzymatic steps of the pathway (Sweeney and 

Dobson, 1999).  Clustering of the genes in this manner suggests that the exchange of the 

ability to produce AFB1 between fungi possibly occurs by horizontal gene transfer (HGT) 

as discussed in Section 2.4. 

Of all the genes involved in the aflatoxin biosynthetic pathway, only aflR and aflS 

are positive regulatory genes and involved in activating pathway gene transcription 

(Bhatnagar et al., 2003; Yu et al., 2004).  aflS was found to be located adjacent to the 

aflR gene in the aflatoxin gene cluster, possibly interacting with aflR, but the exact 

mechanism by which aflS modulates transcription together with aflR is still under 

investigation. The aflR gene encodes a sequence-specific zinc binuclear DNA-binding 

protein, which had been shown to be essential for transcriptional activation of most of the 
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structural genes, except estA (Yabe and Nakajima, 2004).  Furthermore, a functional aflR 

allele is required for accumulation of norsolorinic acid (NOR), an important intermediate 

in AFB1 biosynthesis and effects on aflatoxin pathway gene transcription may be directly 

caused by changes in the expression of aflR (Bhatnagar et al., 2003; Yu et al., 2004).  

Disruption of the aflR gene in A. flavus results in failure to produce aflatoxin. 

Enzymes involved in the AFB1 biosynthesis pathway are not localized to a certain 

membrane portion and at least four cytosolic and more than seven membrane enzymes 

are intermittently involved in the pathway (Yabe and Nakajima, 2004).  Most of the 

enzymes have narrow substrate specificity and as a result effectively control the 

biosynthetic pathway. 

 

2.2.2. The biosynthetic pathway 

The biosynthesis of AFB1 initiates with the polymerization of acetate and malonate, and 

NOR, a pigmented C-20 anthraquinone forms the first stable precursor in aflatoxin 

biosynthesis (Bhatnagar et al., 2003; Yabe and Nakajima, 2004; Yu et al., 2004) (Fig. 2a).  

It should be noted that aflatoxin and fatty acid biosynthesis are inversely correlated (Shih 

and Marth, 1974).  Synthesis of aflatoxin occurs through a series of oxidation and 

reduction reactions (Bhatnagar et al., 1992; Dutton, 1988; Minto and Townsend, 1997; 

Yu et al., 2004) starting with conversion of malonyl-Coenzyme A (CoA) to noranthrone 

by enzymes encoded by fatty acid synthase genes (fas-1 and fas-2) and a polyketide 

synthase gene (pksA).  The conversion of noranthrone to NOR probably involves a 

monooxygenase (cypA) and a dehydrogenase (norB) while the reduction of NOR to 

averantin (AVN) is reversible and involves a ketoreductase/dehydrogenase enzyme 

(norA, norB and nor-I).  AvnA encodes a cytochrome P-450 monooxygenase that 

converts AVN to 5’-hydroxyaverantin (HAVN), while adhA is involved in the 

conversion of HAVN to averufin (AVR).  The conversion from AVR to the typically 

orange pigmented versiconal hemiacetal acetate (VHA) probably involves an oxidase 

(avfA). 

An esterase (estA) is involved in the conversion of VHA to versiconal (VAL), 

while a versiconal cyclase (vbs) is required for the conversion of VAL to versicolorin B 

(VERB) (Bhatnagar et al., 1992; Dutton, 1988; Minto and Townsend, 1997, Yu et al., 
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2004) (Fig. 2b).  During this critical step the bisfuran ring is closed, which determines the 

stereochemistry of the molecule.  The closed bisfuran ring is responsible for binding to 

DNA and causes aflatoxin to act as mutagen (Yu et al., 2004).  Furthermore, desaturation 

of the bisfuran ring occurs during the conversion of VERB to versicolorin A (VERA) by 

a cytochrome P-450 monooxygenase/desaturase (aflL).  The double bond at the 

8,9 position in the difuran moiety is the target for microsomal cytochrome P-450 

enzymes to generate a highly reactive epoxide, and consequently activation and adduct 

formation with DNA and proteins (Trail et al., 1995).  AFB2 does not have this double 

bond and as a result is several hundred-fold less carcinogenic than AFB1. 

Following the formation of VERB, the pathway branches to form AFB1 and AFG1 

to the one side and AFB2 and AFG2 to the other side (Bhatnagar et al., 1992; 

Dutton, 1988; Minto and Townsend, 1997, Yu et al., 2004).  A ketoreductase (verI) and a 

cytochrome P-450 monooxygenase (verA) is responsible for the conversion of 

versicolorin A (VERA) to demethylsterigmatocystin (DMST).  An O-methyl-transferase I 

(omtB, dmtA) catalyzes the conversion of DMST to sterigmatocystin (ST) and of 

dihydrodemethylsterigmatocystin (DHDMST) to dihydrosterigmatocystin (DHST).  ST, 

the penultimate intermediate in the aflatoxin biosynthetic pathway, is characterized by a 

xanthone moiety fused to a dihydrofuran or tetrahydrofuran moiety and is extremely toxic 

and carcinogenic (Sweeney and Dobson, 1999). 

The conversion of ST to O-methylsterigmatocystin (OMST) and DHST to 

dihydro-O-methylsterigmatocystin (DHOMST) is catalyzed by an O-methyl-transferase 

II (omtA) (Bhatnagar et al., 1992; Dutton, 1988; Minto and Townsend, 1997; Yu et al., 

2004).  Finally, DHST and DHOMST are converted by a NADPH-dependent 

monooxygenase (ordA) to aflatoxins B1, B2, G1 and G2, respectively.  While the 

intermediates accumulate in fungal cells, the synthesized aflatoxins are finally released 

from the mycelia into the medium (Yabe and Nakajima, 2004).  However, an export 

system for aflatoxins has not been found yet.  Differences in localization of the 

intermediates and the aflatoxins could be attributed to the solubility of these substances in 

the lipid layer and aqueous phase. 

Biosynthesis of aflatoxin requires substantial energy (Maggon et al., 1997;  Yabe 

and Nakajima, 2004), which is derived from the primary metabolism of the fungus.  It 
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was calculated that more than ten NADPHs, one NAD and two SAMs are needed for the 

formation of aflatoxin.  NADPH serves as an electron donor and is supplied by the 

pentose-phosphate pathway. 

 

2.2.3. Effect of environmental factors 

Secondary metabolism and metabolites represent a large variety of biosynthetic pathways 

and products which are not involved in growth of the organism (Luchese and Harrigan, 

1993).  The control of the expression of genes for AFB1 biosynthesis through on/off 

regulation of aflR expression may be affected by environmental and nutritional factors 

such as temperature, pH, carbon and nitrogen source, stress factors, lipids, metal salts 

(Cary et al., 2000), cytosolic NADPH/NADP+ (Minto and Townsend, 1997) and certain 

constituents in host plants (Calvo et al., 2002).  The most important environmental factors 

affecting AFB1 biosynthesis are discussed in the sections that follow. 

Multiple signals for growth and mycotoxin production are probably received by 

Aspergillus spp. through different receptors that sense the pH, sugar, and nitrogen content 

of the environment.  Furthermore, a signal transduction pathway exists which regulates 

both conidiation and sterigmatocystin-aflatoxin biosynthesis.  These processes are 

regulated by a G-protein signalling pathway in A. nidulans (Shimizu and Keller, 2001).  

The G-protein operates in most organisms linking external stimuli to a coordinated 

response by the organism.  The role of pH in the regulation of expression of genes 

involved in aflatoxin biosynthesis is not as yet well understood. 

 

2.2.4. Effect of nitrogen 

The effects of nitrate on aflatoxin formation indicate that regulation of aflatoxin 

biosynthesis may be part of the nitrogen control circuit (Cary et al., 2000; Minto and 

Townsend, 1997). Nitrate assimilation in fungi is a closely regulated process. The 

expression of nitrate reductase and nitrite reductase genes requires both the lifting of 

nitrogen metabolite repression and specific induction by nitrate (Marzluf, 1997). 
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Fig. 2a.  The aflatoxin biosynthetic pathway.  Conversion of malonyl-CoA to versiconal.  

Abbreviations used are:  AVN, averantin; AVNN, averufanin; AVR, averufin; HAVN, 

5’-hydroxyaverantin;  NOR, norsolorinic acid;  VAL, versiconal;  VHA, versiconal 

hemiacetal acetate (Bhatnagar et al., 2003). 
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Fig. 2b.  The aflatoxin biosynthetic pathway.  Conversion of versiconal to aflatoxin B1, 

aflatoxin B2, aflatoxin G1 and aflatoxin G2.  Abbreviations used are:  AFBB1, aflatoxin B1;  

AFB2, aflatoxin B2;  AFG1, aflatoxin G1;  AFG2, aflatoxin G2;  DHDMST, 

dihydrodemethylsterigmatocystin;  DHOMST, dihydro-O-methylsterigmatocystin;  

DHST, dihydrosterigmatocystin;  DMST, demethylsterigmatocystin;  OMST, O-

methylsterigmatocystin;  ST, sterigmatocystin;  VAL, versiconal;  VERA, versicolorin A; 

VERB, versicolorin B (Bhatnagar et al., 2003). 
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Whereas aflatoxin and fatty acid biosynthesis are inversely correlated (Shih and 

Marth, 1974), nitrate increases the cytoplasmic NADPH/NADP+ ratio, which favours 

biosynthetic reductive reactions, and thus promotes utilization of malonyl-CoA and 

NADPH for fatty acid synthesis rather than for polyketide synthesis. 

 

2.2.5. Effect of carbon 

Although the role of carbon utilization in the regulation of expression of genes involved 

in aflatoxin biosynthesis is still uncertain, it is known that aflatoxin biosynthesis is 

significantly affected by the identity and concentration of the available carbon sources 

(Cary et al., 2000; Minto and Townsend, 1997).  It was found that carbon sources that are 

oxidized through the hexose monophosphate and the glycolytic pathways support both 

growth and aflatoxin production (Luchese and Harrigan, 1993).  Furthermore, reduced 

tricarboxylic acid (TCA) cycle activity causes a build-up of TCA cycle intermediates, 

which lead to a shunting of acetyl-CoA to aflatoxin synthesis. 

Unlike the biosynthesis of many other secondary metabolites, fungal growth, 

sporulation and aflatoxin gene expression is induced by the presence of simple 

carbohydrates for example glucose, sucrose, or maltose, but not by peptone, sorbose or 

lactose (Calvo et al., 2002; Luchese and Harrigan, 1993; Payne and Brown, 1998).  

Glucose regulates the induction of some of the enzymes associated with aflatoxin 

biosynthesis and maximal aflatoxin is produced in the presence of high glucose 

concentrations.  Inversely, aflatoxin biosynthesis is repressed when glucose utilization is 

inhibited.  The activities of all of the characterized enzymes are dependent on the carbon 

source, except for estA, which is constitutively expressed, irrespective of the culture 

medium (Yu et al., 2003). 

Another indirect effect of glucose utilization on aflatoxin pathway gene 

expression could be the activation of a four gene cluster which is related to sugar 

utilization in A. parasiticus (Bhatnagar et al., 2003; Yu et al., 2000).  This gene cluster is 

situated at the one end of the aflatoxin biosynthetic pathway gene cluster and includes 

sugR, hxtA, glcA and nadA genes.  It was found that expression of the hxtA gene, which 

encodes a hexose transporter protein, is synchronized with the aflatoxin pathway gene 
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cluster.  Therefore, activation of genes in this cluster by an external hexose signal may 

create a region of active chromatin that includes the neighbouring aflatoxin gene cluster. 

Furthermore, the rate at which carbohydrates are transported into the fungal cell 

has an effect on aflatoxin biosynthesis.  High glucose levels increase the level of cyclic 

AMP (cAMP), which in turn activates cAMP-dependent protein kinases. Moreover, the 

level of these kinases is elevated in aflatoxin-producing cultures. A correlation between 

an increased pool size of cAMP and aflatoxin production had been observed previously 

(Bhatnagar et al., 2003). 

 

2.2.6. Effect of lipoperoxidation and trace metals 

Several compounds present in host plants have been reported to effect fungal growth and 

aflatoxin production, including linoleic acid and hydroperoxylinoleic acid, which induce 

conidial formation and aflatoxin biosynthesis (Calvo et al., 2002).  Furthermore, it was 

reported that a major increase in aflatoxin biosynthesis was observed in the presence of 

lipoperoxidases in oil-bearing seeds (Luchese and Harrigan, 1993). 

The main trace metals affecting aflatoxin biosynthesis are manganese, iron and 

zinc (Luchese and Harrigan, 1993).  However, the exact function of trace elements in the 

biosynthesis of aflatoxin is widely hypothesized, but still not well understood.  While the 

proportion of the different aflatoxins produced are affected by the trace metal 

composition of the medium, manganese, magnesium and vanadium favour the synthesis 

of hydroxylated aflatoxins.  Trace metals are probably metalloenzymes catalyzing 

enzymatic activities and are catalysts of lipid peroxidation. 

The presence of zinc is critical during aflatoxin biosynthesis (Luchese and 

Harrigan, 1993).  Zinc affects enzymes of the glycolytic and TCA cycles and as a result 

the utilization of carbohydrates.  Maximal AFB1 concentrations are produced in medium 

containing 0.8 mg/L zinc during the period of early vegetative growth of the fungus.  In 

addition, the absence of zinc reduces the formation of versicolorin.  It was reported 

(Luchese and Harrigan, 1993) that zinc may be acting at the pre-transcriptional or 

transcriptional level. In contrast, manganese inhibits, stimulates or has little effect on 

aflatoxin biosynthesis, depending on the concentration present. 
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Synthesis of secondary metabolites has a more specific requirement for phosphate 

than vegetative growth (Luchese and Harrigan et al., 1993).  High levels of phosphate 

have been shown to inhibit aflatoxin biosynthesis, possibly by removal of essential trace 

metals or feedback inhibition of phosphorylated intermediates into other biosynthetic 

pathways.  While phosphate concentrations between 0.4 and 0.8 mM are optimal for 

aflatoxin biosynthesis, a concentration of 5 mM phosphate results in build-up of 

phosphate in mycelia and inhibition of versicolorin synthesis. 

 

2.3. Toxicity and carcinogenicity 
 

Aflatoxins have been shown to be immunosuppressive, mutagenic, teratogenic, 

hepatotoxic and hepatocarcinogenic in both experimental animals and humans (Eaton and 

Groopman, 1994).  Furthermore, frequent intake of aflatoxin causes bile duct 

proliferation, hepatic necrosis, osteosclerosis of bone, childhood cirrhosis, immune 

suppression, and hepatic veno-occlusive lesions (Mishra and Das, 2003).  Hepatocellular 

carcinoma (HCC) is one of the most frequently occurring cancers in the world, very 

potent and the most patients survive less than one year after diagnosis (Eaton and 

Groopman, 1994; Wild and Hall, 2000).  An estimated 250 000 deaths occur annually in 

China and Sub-Saharan Africa due to HCC (Bennett et al., 1994; Mishra and Das, 2003; 

Wild and Hall, 2000).  In this regard aflatoxin is classified as a type I human carcinogen 

by the International Agency for Research on Cancer (Wogan, 2000).  The major risk 

factors for HCC are infection with the hepatitis B (HBV) or C virus and dietary exposure 

to aflatoxin (Wild and Hall, 2000; Yabe and Nakajima, 2004).  While the interaction 

between the two risk factors appears to be synergistic, the exact mechanism of interaction 

still remains unclear.  Furthermore, it has been reported that sensitivity and susceptibility 

to aflatoxin induced carcinogenicity vary between different animal species depending on 

sex, age, nutritional status as well as the dose level and the period of exposure (Mishra 

and Das, 2003; Wild and Hall, 2000). 

 The enzymes involved in carcinogen metabolism include peroxidases, quinine 

reductases, glucuronyltransferases, flavin-containing mooxygenases, epoxide hydrolases, 

sulfotransferases, cytochrome P-450– and glutathione S-transferases (GST) (Bailey and 
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Williams, 1993).  A balance exists between enzymatic activation and detoxification of the 

carcinogen.  Metabolic activation of AFB1 by the cytochrome P-450 (phase I) enzymes in 

the liver and kidney leads to the formation of reactive AFB1-8,9-epoxide (Minto and 

Townsend, 1997; Mishra and Das, 2003).  However, phase I enzymes could also convert 

AFB1 to the less carcinogenic AFM1, AFQ1 and AFP1.and aflatoxicol.  Furthermore, the 

AFB1-8,9-epoxide could be inactivated by phase II enzymes, through formation of AFB1-

dihydrodiol by epoxide hydrolase or through the formation of AFB1-glutathione 

conjugate by GST (Johnson et al., 1996, 1997).  Following metabolic activation, the 

AFB1-8,9-epoxide strongly binds to DNA and RNA, prevents the RNA polymerase 

transcribing the DNA and inhibits the formation of mRNA, therefore disrupting protein 

synthesis and as a result causes liver necrosis.  More specifically, the AFBB1-8,9-epoxide 

reacts covalently with the N-7 of guanine to form several complexes with the DNA, or 

so-called DNA adducts, which in turn cause further genetic changes and eventually 

malignant transformation (Smela et al., 2001) (Fig. 3). 

 The most significant point mutation found in HCC is a GC→TA transversion on 

the third position of codon 249 of the p53 gene (Minto and Townsend, 1997; Smela et al., 

2001).  In areas where exposure to aflatoxin is high, 44% of the total HCC cases proved 

to have a prevalence of GC→TA mutations at the third position of codon 249 of the p53 

gene.  The p53 gene is a gene transcriptional activator which regulates cell cycles and 

plays a role in the apoptosis pathway, DNA repair and is a tumor suppressor.  Codon 249 

of the p53 gene is extraordinarily reactive with AFB1-8,9-epoxide.  During interaction of 

the AFB1-8,9-epoxide and DNA, the epoxide approaches a reactive guanine of double-

stranded DNA on the 5’ face of the guanine residue, intercalates into the DNA and forms 

DNA adducts.  The mutation results in an Arg→Ser alteration in the p53 protein.  The 

most important DNA adducts formed are 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin 

BB1 (AFB1-N7-Gua), an apurinic (AP) site and AFB1 formamidopyrimidine (AFB1-FAPY) 

(Fig. 3).  While AP is formed after depurination of the imidazole ring of AFB1-N7-Gua, 

opening of the imidazole ring results in AFB1-FAPY.  These adducts, especially AFB1B -

N7-Gua, are the main chemical precursors to the mutations caused by AFB1.  During 

replication the AFB1 residue substitutes into the position of the 5’cytosine, averting the 

cytosine from the helix.  A polymerase inserts adenine, resulting in the C→T transition.  
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However, repair of some strongly reactive sequences can occur, thus preventing 

mutations to develop.  Furthermore, hepatitis B x-protein can inhibit nucleotide excision 

repair, either by binding to repair proteins or to the damaged DNA, making it possible 

that AFB1 adducts persevere in patients who have been exposed to HBV and AFB1.  The 

efficiency of mutation by aflatoxin is influenced by several factors, including the 

preference of one G base over another G base, the preference for a base to be more 

frequently incorrectly replicated depending on the circumstances, the possibility for 

repair of an adduct, while certain atomic environments of DNA sequences may be more 

favourable for DNA intercalation (Smela et al., 2001).  Furthermore, AFB1 have shown a 

preference for GC→TA transversions within GC-rich sequence environment. 

 Although the effect of AFB1 exposure and HBV infection on the p53 gene is still 

not completely clear, the p53 gene is a determinant factor in HCC (Smela et al., 2001).  It 

was thought that animal models could provide valuable information in this regard.  

However, in spite of almost 92% homology with the human p53 gene, the GC→TA 

mutation at codon 248 and 249 could not be detected in experimental animals.  This was 

ascribed to differences in the p53 gene sequence between humans and several of the 

animal species examined, silent mutations in some animal species or the presence of an 

unknown co-carcinogen in humans contributing to mutations at codon 249 and eventually 

HCC. 

 Exposure to AFB1 alters expression of certain genes, including GST as well as 

certain human cytochrome P-450 genes involved in activation of AFB1 (Smela et al., 

2001), while HBV infection influences regulation of these genes.  What's more, aflatoxin 

inhibits oxygen uptake by affecting the ATP enzyme and as a result reduces ATP 

production.  It also reduces hepatic glycogen levels.  To assess human exposure to 

aflatoxin, the presence of aflatoxin-albumin adducts in serum, AFB1-N7-Gua adducts in 

urine, AFM1 metabolites in urine or patterns of p53 gene mutations are considered as 

biomarkers (Creppy, 2002). 
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Fig. 3. Pathway of metabolic activation of AFB1 and DNA adduct formation. DNA 

adducts formed are 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua), 

an apurinic (AP) site and AFB1 formamidopyrimidine (AFB1-FAPY) (Smela et al., 

2001). 
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2.4. Biological significance 
 

Polyketides are a large group of secondary metabolites mainly produced by 

actinomycetes, fungi, and higher plants (Trail et al., 1995).  Secondary metabolism, 

including mycotoxin production, is generally associated with late fungal development and 

sporulation processes in microorganisms (Calvo et al., 2002).  Although regulation of 

mycotoxin synthesis is different from primary metabolism, it relies on primary 

metabolism for energy, enzyme cofactors and acetate.  Most Aspergillus spp. propagate 

solely by asexual spores and conidia serve as a major source of inoculum. It was 

determined that conidiation and ST production are co-regulated.  However, aflatoxin does 

not appear to be essential to the growth and/or life-cycle of the fungus (Bhatnagar et al., 

2003). 

Even though the biological significance of aflatoxin biosynthesis by fungi is 

uncertain, the subject is widely hypothesized (Calvo et al., 2002).  Compounds excreted 

by mycelium during secondary metabolism, can induce or inhibit sexual and asexual 

sporulation in fungi thus governing the ratio of asexual to sexual spores.  Furthermore, it 

was speculated that aflatoxin production may be a prehistoric characteristic that has 

survived due to clustered gene organization (Calvo et al., 2002). One hypothesis 

suggested that such an organization of genes may allow coordinated regulation of the 

pathway.  Another hypothesis is that the cluster organization ensures survival of the 

cluster by providing a mechanism for HGT.  Since anthraquinone polyketide antibiotics 

produced by Streptomyces spp. are structurally related to intermediates of AFB1 

biosynthesis, this bacterium was mentioned as a possible progenitor to AFB1 synthesis in 

fungi (Trail et al., 1995). 

It is also hypothesized that the aflatoxin biosynthetic pathway evolved from a pre-

existing pathway for synthesis of other fungal polyketides, possibly mycelial or spore 

pigments (Trail et al., 1995).  While a high degree of DNA sequence homology exists 

between the accepted aflatoxin polyketide synthetase (PKS) and the PKS involved in 

conidial pigment synthesis, the chemical structure of an intermediate in conidial pigment 

synthesis in A. parasiticus have strong similarity to NA.  Furthermore, an ascospore 

pigment in A. nidulans is a dimer of an anthraquinone and is likely to be derived from a 
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polyketide while a gene product involved in the biosynthesis of melanine have shown 

high homology with the verI gene product involved in aflatoxin biosynthesis by 

A. parasiticus.  These findings suggest that the mentioned biosynthetic pathways or parts 

of it are derived form a mutual ancestral polyketide pathway. 

A further hypothesis is that aflatoxins could be chemical signals between species 

in an ecological niche or serve to signal fungal development (Bhatnagar et al., 2003; Trail 

et al., 1995).  In this manner toxicity of ST and aflatoxin may defend the fungus from 

competitors in the soil or during crop invasion (Calvo et al., 2002; Demain and Fang, 

2000).  The chemical defensive function of aflatoxin may be enhanced by other 

mycotoxins for example cyclopiazonic acid, which is co-produced by certain strains of 

A. flavus, while lower concentrations are produced when grown independently (Minto 

and Townsend, 1997). 

Monooxygenase enzyme activity was detected in the microsomes of 

A. parasiticus (Luchese and Harrigan, 1993), resulting in lipoperoxidation of lipids by 

cytochrome P-450 enzymes during the late growth phase of the fungus.  While fatty acid 

and aflatoxin biosynthesis are inversely correlated (Shih and Marth, 1974) as mentioned 

earlier, degradation of lipoperoxides favours aflatoxin biosynthesis.  Whereas oxygenases 

are mainly involved in detoxification of xenobiotics and endogenous compounds, 

aflatoxin biosynthesis in A. parasiticus may be considered a consequence of lipoperoxide 

degradation in oil bearing seeds. 

Aflatoxins are toxic to insects and some aflatoxin producing species have been 

associated with insect debris (Bhatnagar et al., 2003; Drummond and Pinnock, 1990).  

Insects appear to be excellent vectors for mycotoxigenic fungi during plant invasion.  

While sclerotia from aflatoxigenic strains have a survival advantage compared to those 

from atoxigenic isolates, fungi in the A. flavus group are thought to over winter in soil as 

sclerotia.  Studies have shown that deletion of genes which eliminates the synthesis of 

aflatoxin and intermediates resulted in enhanced production of sclerotia (Trail et al., 

1995).  However, the association between sclerotial formation and aflatoxin biosynthesis 

is still not clear. 
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2.5. Aflatoxin and traditional fermentative foods 
 

Fermented food and beverages are a major dietary constituent of African and Asian 

people (Gadaga et al., 1999; Gonfa et al., 2001; Jespersen, 2003).  Fermentation is one of 

the oldest methods of food preservation and products are especially appreciated for their 

sensory attributes.  Various indigenous dishes constitute a large portion of the daily food 

intake in Ghana, Nigeria, Benin and Togo.  These foods are palatable and wholesome and 

are prepared from raw or heated raw materials including mostly maize, rice, sorghum, 

millet and milk.  The microorganisms involved are mainly lactic acid bacteria 

(Lactobacillus spp.), yeasts (Saccharomyces cerevisiae), moulds and acetic acid bacteria.  

A wide selection of alcoholic and non-alcoholic fermented food products (Gadaga et al., 

1999; Gonfa et al., 2001), mainly produced from a variety of cereals as well as fermented 

milk products are produced commercially or on small-scale at household level.  Milk 

produced by smallholders is usually processed on the farm using traditional dairy 

technology.  Whereas it is not a common practice to clean the udder before milking, the 

milk is often contaminated.  Furthermore, milk is sold fresh, consumed raw or allowed to 

ferment naturally, but is rarely boiled.  While sour milk is the most common fermented 

milk product, milk products are also used as cosmetics by rural people. 

In many cases the raw material are sold in rural markets or home-grown and 

aflatoxin contamination a major risk, especially in stored cereals (Holzapfel, 2002).  As a 

result fermented products prepared from cereals and milk are of varying quality and 

stability and aflatoxin seldom destroyed by normal industrial processing or cooking.  

During fermentation of cereals and milk, S. cerevisiae and Candida krusei have an 

inhibitory effect on growth of Penicillium citrinum, A. flavus and A. parasiticus, due to 

substrate competition.  However, Aspergillus spp. are able of growing on a variety of 

substrates and under different environmental conditions, therefore most food are exposed 

to infection by aflatoxigenic fungi at any stage during production, processing, 

transportation and storage (Mishra and Das, 2003).  Furthermore, control measurements 

for the maximum acceptable levels of mycotoxins in cereals are inadequate in developing 

countries and regular exposure to low levels of aflatoxin a cause for concern (Trail et al., 

1995). 
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Food safety, as well as maintaining the wholesomeness, acceptability and overall 

quality have become increasingly important even in developing countries where old 

customs and cultural particularities in food fermentations are generally well maintained 

(Holzapfel, 2002).  For that reason the development of bacteria and yeasts expressing 

AFB1 degrading enzymes could especially be valuable in the feed, food and the 

fermentation industry (Holzapfel, 2002;  Karlovsky, 1999).  With the application of 

molecular biology techniques microbial strains with multifunctional technological 

properties, including degradation of AFB1, can be developed to significantly improve the 

quality, safety and acceptability of traditional fermented food and beverages. 

 

2.6. Aflatoxin intervention 
 

Aflatoxins were discovered in 1960 (Bennett et al., 1997) and in the years that followed 

extensive studies by biologists and chemists resulted eventually in the identification of 

over 100 mycotoxins (Maggon et al., 1977).  It has been estimated that mycotoxins 

contaminate up to 25% of the world’s food supply (Wild and Hall, 2000) causing 

enormous economic losses due loss of crops, animals, costs for monitoring the aflatoxin 

levels as well as the decrease in performance of farm animals (Maggon et al., 1977; Trail 

et al., 1995).  Therefore, domestic growers and food processors are under pressure from 

consumer groups and regulatory organizations to remove aflatoxin from food and feed. 

Contamination of food and feed remains a serious worldwide problem but is not a 

threat in most developed countries because of careful commodity screening (Bhatnagar 

et al., 2003).  Regulations regarding acceptable levels of aflatoxin in food have been 

implicated in nearly all countries (Mishra and Das, 2003).  Most countries, including the 

U.S.A., have a regulatory level of 20 ppb, while regulations for aflatoxin in Europe are 

stricter, that is 2 ppb for AFB1 and 4 ppb for total aflatoxins.  However, the acceptable 

aflatoxin levels in food and feed are generally based on animal statistics and may be too 

high, due to the differences in the sensitivity between animal species.  Only the minority 

of African countries have instituted regulations to control aflatoxins in food, including 

Cote d’ Ivoire, Egypt, Kenya, Malawi, Nigeria, Senegal, South Africa and Zimbabwe 

(Shephard, 2003).  Aflatoxin contamination of foods in developing countries occurs 
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predominantly in dietary staples and exceeds the regulatory limits for contamination of 

food by one or two orders of magnitude (Wild and Hall, 2000).  In several tropical 

African countries including Egypt, Gambia, Ghana, Nigeria and Senegal, aflatoxin 

contamination is widespread and high aflatoxin concentrations (10 – 525 μg/kg) have 

been recorded in cereals, fermented products, fish and beer intended for human and 

animal consumption (Shephard, 2003).  Conversely, in South Africa aflatoxin producing 

fungi only occur sporadically in commercial and home-grown maize and as a 

consequence a low incidence of aflatoxin contamination is present in local maize. 

Since there is no effective treatment for aflatoxin-induced diseases, the emphasis 

of aflatoxin research is on the prevention of aflatoxin contamination as well as the 

degradation of aflatoxin in food and feed (Bhatnagar et al., 2000).  Often the regions of 

highest exposure to aflatoxins are also those with high prevalence of HBV infection. 

There are several approaches to primary prevention of HCC in developing countries 

(Wild and Hall, 2000).  Firstly it involves measures to control exposure to hepatitis 

infection and secondly to reduce aflatoxin contamination in foods for human and animal 

consumption, especially in rural communities of developing countries where there is a 

high level of small-scale farming.  Aflatoxin contamination can arise from improper 

storage of commodities as well as pre-harvest fungal contamination in corn, peanuts, 

cotton seed and tree nuts. 

 

2.6.1. Pre-harvest crop management 

Pre-harvest measures involving prevention or reduction of fungal growth and mycotoxin 

production are the most effective way to limit aflatoxin contamination (Mishra and Das, 

2003; Trail et al., 1995; Wild and Hall, 2000).  Crops are frequently infected by fungi at 

pre-harvest and especially where crop is under stress because of drought, exposure to 

high temperatures for long periods and damage due to insects. 

Several measures can be implemented at pre-harvest, including using healthy 

seeds, proper irrigation, rotation of crops and the use of fungicides and pesticides (Mishra 

and Das, 2003; Trail et al., 1995; Wild and Hall, 2000).  Unfortunately these methods 

have limited success and are not cost-effective, especially for subsistence farmers.  

Another method is to establish non-aflatoxigenic A. flavus strains to compete with 
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aflatoxigenic strains (Mishra and Das, 2003; Wild and Hall, 2000).  However, these 

strains may still produce mycotoxins other than aflatoxin, they may revert back to 

aflatoxin producers or food-spoilage per se may be a problem. 

 

2.6.2. Post-harvest crop management 

Storage of cereals under hot and humid conditions results in increased fungal growth and 

aflatoxin levels and also favours rodent and insect damage (Wild and Hall, 2000).  

Although numerous methods have been implicated to remove aflatoxins from foods post-

harvest including physical and chemical methods, none really fulfil the necessary 

efficacy, safety, and cost requirements (Mishra and Das, 2003). 

Physical methods that have been used are treatment of aflatoxin contaminated 

food with sunlight, UV light, microwave, autoclaving, cooking, roasting, pasteurization, 

dry heat and solvents (Mishra and Das, 2003).  However, detoxification of aflatoxin in 

both liquid and solid material cannot be achieved by using only one of these methods.  

Furthermore, certain nutrients are destroyed during physical treatment and the 

organoleptic qualities of food are altered, which make these methods unacceptable for 

food intended for human consumption. 

 A variety of chemicals are employed to detoxify aflatoxin including hydrogen 

peroxide, ozone, ammonia, urea with urease, sodiumhypochlorite, sodiumbisulphate 

(Creppy, 2002; Mishra and Das, 2003).  Adsorption, using inert materials such as 

hydrated sodium, calsium and aluminosilicate to bind aflatoxins and reduce AFM1 in 

milk is also used.  However, the formation of harmful compounds and chemical residues 

limit the applicability of these methods.  The most successful chemical method for 

degrading aflatoxins in animal feed is ammoniation, resulting in 95-98% degradation of 

AFB1 (Creppy, 2002).  This method is used in several countries. 

While metabolic activation and detoxification of AFB1 are accomplished by phase 

I and II enzymes (discussed in Section 2.3.), the activity of these enzymes can be 

controlled by chemical agents, resulting in detoxification (Sheweita, 2000).  In this regard 

treatment of human and rat hepatocytes with phenobarbital, 3-methylcholanthrene, 

dithiolethiones and sulforaphane results in inhibition of cytochrome P-450 and induction 

of GST (Maheo et al, 1997; Morel et al., 1993).  Furthermore, an antischitosomal drug, 



 - 27 -

oltipraz, had been developed which inhibits phase I activation of aflatoxin and increases 

phase II conjugation (Creppy, 2002; Smela et al., 2001; Wild and Hall, 2000). 

 Growth of Aspergillus spp. post-harvest is influenced by temperature, moisture 

content and storage time (Creppy, 2002; Mishra and Das, 2003).  Proper management of 

crop immediately after harvesting, drying of crops in the sun, sorting of damaged kernels, 

ventilation during storage and the use of pesticides and biological pest control will 

improve the quality of cereals.  While aflatoxin contamination of food occurs mainly in 

dietary staples in developing countries, exposure to aflatoxin can be reduced through 

cooking or by varying the diet (Wild and Hall, 2000). 

 Detoxification methods should fulfil the following requirements: (i) the 

mycotoxin should be degraded to non-toxic products;  (ii) fungal structures should be 

permanently destroyed;  (iii) the food should retain its nutritive and other desired 

qualities;  (iv) the physical characteristics of cereals should not change notable and (v) 

the detoxification process should be economical (Smela et al., 2001;  Wild and Hall, 

2000). 

 

2.6.3. Genetic engineering of crops 

Control of aflatoxin is possible by genetic engineering of genes encoding resistant factors 

inhibiting aflatoxin synthesis by infectious fungi or introduction of resistant genes from 

other sources into susceptible plants (Mishra and Das, 2003).  Aspergillus parasiticus and 

A. flavus are especially prominent in mature corn seeds with high oil concentrations 

(Trail et al., 1995).  Therefore identification of signals between the plant host and 

pathogen which stimulate aflatoxin production and the genes involved should aid in 

successful genetic manipulation of crops.  Aflatoxin gene reporter constructs are 

especially useful to identify plant compounds which stimulate or inhibit fungal infection, 

growth or toxin biosynthesis.  To be effective, genes should be expressed in the most 

suitable plant tissue and at the right time in the engineered plant.  The volatile corn-

derived compounds, octanal, hexanal and n-decyl aldehyde were studied for their ability 

to inhibit growth and aflatoxin production by A. flavus (Wright et al., 2000).  Results 

have shown octanal and hexanal to inhibit growth of the fungus, while n-decyl aldehyde 

inhibited aflatoxin biosynthesis.  Genes expressing antifungal compounds such as n-decyl 
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aldehyde, hexanal and octanal was applied to develop maize varieties which are both bio-

competitive and resistant to infection by Aspergillus spp. (Mishra and Das, 2003; Wright 

et al., 2000). 

In biological niches, the fungal population is sometimes dominated and controlled 

by certain strains of A. flavus and A. parasiticus over other strains of the same species 

(Trail et al., 1995).  This form of bio-control depends on the survival and domination of 

certain fungal strains over others under specific environmental conditions.  Atoxigenic 

strains of dominant Aspergillus spp. can be developed for bio-control by deletion of key 

enzymes in the aflatoxin biosynthetic pathway.  Such genetically engineered strains of 

A. flavus and A. parasiticus can be applied individually or in combination.  A genetically 

engineered A. parasiticus bio-control strain was developed by disruption of the uvm8 

gene of the aflatoxin biosynthetic pathway. 

Because of uncertainty regarding the short- and long-term effects that genetically 

engineered organisms (GMO’s) will have on human health and the environment, such 

strains are subjected to approval by environmental organisations (Scientist’ working 

groups on bio safety, 1998).  The application of GMO’s to the environment could 

possibly change the ecological functions of naturally-occurring organisms as well as the 

genetic relationships between organisms.  Interbreeding could alter the distribution of 

phenotypes within populations and will serve to change the role of the organisms in the 

ecosystem.  Horizontal gene transfer could allow engineered genes to move into 

populations other than the target population with negative consequences.  The presence of 

foreign proteins in food could also be harmful to individuals who suffer allergies to those 

proteins.  Furthermore, GMO’s could alter the composition of human intestinal 

organisms, resulting in digestive malfunction. 

 

2.6.4. Inhibition of aflatoxin biosynthesis 

An alternative approach for aflatoxin control is based on inhibition of aflatoxin 

biosynthesis at pre- or post-harvest level (Gourama and Bullerman, 1997).  Several 

microorganisms have displayed ability to inhibit aflatoxin biosynthesis.  Extracellular 

extracts of Lactobacillus casei pseudoplantarum 371 totally inhibited aflatoxin 

biosynthesis.  Zjalic et al. (2006) studied the effect of exopolysaccharides and 
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glycoproteins, isolated from culture filtrates of Trametes versicolor, on AFB1 

biosynthesis.  They concluded that β-glucans limit AFB1 biosynthesis by inhibition of 

norAmRNA expression and delay of aflRmRNA transcription. 

Inhibition of aflatoxin biosynthesis by A. flavus was observed in the presence of 

Aspergillus niger, a fungus commonly associated with A. flavus in damaged corn (Horn 

and Wicklow, 1983).  Furthermore, mixed cultures of A. flavus, A. niger, and A. tamarii 

inhibit biosynthesis of aflatoxin (Shantha et al., 1990), due to the production of inhibitors 

by A. niger and A. tamarii, as well as their ability to degrade aflatoxin. 

 

2.6.5. Biological detoxification 

Biological detoxification offers an attractive alternative for eliminating toxins as well as 

safe-guarding the desired qualities in food and feed, such as nutritive value and 

appearance (Mishra and Das, 2003).  Furthermore, the development of biological 

detoxification measures, especially in traditional African fermented food products, is 

essential to improve the safety of these foods for human consumption (Sweeney and 

Dobson, 1999). 

Several studies were done regarding removal of aflatoxin by adhesion to probiotic 

bacteria (Peltonen et al., 2000).  Build-up of AFB1 in the intestine of animals was reduced 

by the formation of aflatoxin-bacteria complexes.  Bacteria capable of adhesion to 

aflatoxin include Lactobacillus rhamnosus, Propionibacterium freudenrichii and 

Bifidobacterium sp.  The mechanism of binding involves hydrophobic and electrostatic 

interactions as well as the formation of hydrogen bonds.  Furthermore, bio-competitive 

inhibition of aflatoxin production by bacteria from the geocarposphere (zone around the 

groundnut pod) can effectively protect developing groundnut pods against aflatoxigenic 

fungi (Chaurasia, 1995).  Flavobacterium odoratum have shown effective inhibition of 

aflatoxin biosynthesis during experiments regarding growth and aflatoxin production by 

A. flavus on viable groundnut kernels and its interaction with other organisms. 

Only few studies reported true biological degradation of AFB1 by microorganisms. 

Detoxification of the aflatoxin molecule occurs when the double bond of the terminal 

furan ring is removed or when the lactone ring is opened (Mishra and Das, 2003).  These 

changes cause loss in fluorescence, toxicity and mutagenicity.  Bacteria known to 
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degrade AFB1 effectively are Nocardia corynebacteroides (formerly known as 

F. aurantiacum) (Ciegler et al., 1996) and Mycobacterium fluoranthenivorans (Hormisch 

et al., 2004), while notable AFB1 degradation by Corynebacterium rubrum was observed 

(Mann and Rehm, 1977; Shih and Marth, 1974).  Recently, Teniola et al. (2005) reported 

degradation of AFB1 by liquid cultures of Rhodococcus erythropolis as well as 

intracellular extracts prepared from R. erythropolis liquid cultures. Furthermore, 

treatment of AFB1 with the extracellular fraction of a R. erythropolis liquid culture 

coincided with a total loss in mutagenicity of AFB1 (Alberts et al., 2006).  These results 

confirm the significant role Rhodococcus spp. play in the removal of toxic polyaromatic 

compounds from the environment (Dua et al., 2002; Sakai et al., 2003). 

 

2.7. Rhodococcus spp. 
 

Rhodococcus is an aerobic gram-positive bacterium belonging to the nocardioform 

actinomycetes (Goodfellow, 1986). The bacterium has cocci or short, rod shaped cells 

and is chemoorganotrophic, having an oxidative metabolism.  Furthermore, bacteria from 

this genus are widely distributed, but are especially abundant in soil, water and herbivore 

dung.  The genus Rhodococcus currently comprise of 19 species:  Rhodococcus 

rhodocrous, Rhodococcus bronchialis, Rhodococcus coprophilus, Rhodococcus equi, 

R. erythropolis, Rhodococcus fascians, Rhodococcus globerulus, Rhodococcus luteus, 

Rhodococcus marinonascens, Rhodococcus maris, Rhodococcus rhodnii, Rhodococcus 

ruber, Rhodococcus rubropertinctus, Rhodococcus terrae, Rhodococcus aichiensis, 

Rhodococcus aurantiacus, Rhodococcus chubuensis, Rhodococcus obuensis, and 

Rhodococcus sputi (Goodfellow, 1986). 

 

2.7.1. Degradation of polyaromatic compounds 

Rhodococcus spp. are capable of transforming a wide range of aromatic xenobiotic 

compounds (Kitagawa, et al., 2001; Sakai et al., 2003), including nitro aromatic 

compounds (Kitova et al., 2004), polycyclic hydrocarbons, pyridine and steroids 

(Goodfellow, 1986), and lignin related compounds.  In addition, biphenyl moieties 

resulting from the breakdown of lignin within the soil might represent a carbon-rich 
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resource for biphenyl-degrading bacteria (Maeda et al., 1995).  Toxic nitro aromatic 

compounds and polyaromatic biphenyls containing chlorine, sulphur and nitrogen are 

commonly used in the manufacturing of paper, production and utilization of heat carriers 

and dielectrics, hydraulic oils, diluents, plasticizers and synthetic dyes (Kitagawa et al., 

2001; Rabinowich et al., 2004; Sakai et al., 2003).  Release of these compounds into the 

environment causes vast environmental problems worldwide by threatening both the 

natural ecosystem and human health (Kitova et al., 2004; Ohtsubo et al., 2004). 

2,4-Dinitrophenol (2,4-DNP) is a nitro aromatic compound used in the production 

of picric acid, sulphur dyes, antiseptics and pesticides (Kitova et al., 2004).  Whereas 2,4-

DNP is toxic and carcinogenic, R. erythropolis strain HL PM-1 was shown to utilize 2,4-

DNP as sole carbon source.  Furthermore, polychlorinated biphenyls (PCBs) are very 

stable chemical compounds containing one to ten chlorine atoms on a biphenyl carbon 

skeleton (Ohtsubo et al., 2004).  One of the most effective approaches to remove these 

compounds from the environment is microbial degradation.  Several organisms, including 

Rhodococcus sp., Pseudomonas sp., Burkholderia sp., Achromobacter sp., 

Comamonas sp., Ralstonia sp., Acinetobacter sp., and Bacillus sp. are capable of 

effectively degrading biphenyl via the biphenyl degradation pathway. 

 

2.7.2. The biphenyl degradation pathway 

Bacterial degradation of biphenyl is initiated by the attack of a dioxygenase at carbon 

positions 2,3 (or 5,6) of the biphenyl molecule (Bedard et al., 1986).  BphA encodes a 

biphenyl dioxygenase enzyme composed of four subunits (BphA1, BphA2, BphA3 and 

BphA4) that converts biphenyl to dihydriol, after which dihydriol is converted to 2,3-

dihydroxybiphenyl by a dehydrogenase enzyme (BphB) (Ohtsubo et al., 2004) (Fig. 4).  

During the following reaction, 2,3-dihydroxybiphenyl is converted to 2-hydroxy-6-oxo-6-

phenyhexa-2,4-deionic acid by a ring cleavage deoxygenase (BphC).  Thereafter the 

formation of benzoate and 2-hydroxy-penta-2,4-dienoate (HPD) is catalyzed by a 

hydrolase (BphD) and further metabolized to pyruvate and CoA by the HPD metabolic 

pathway enzymes, which include a hydratase (BphE), 4-hydroxy-2-oxovalerate aldolase 

(BphF) and acetaldehyde dehydrogenase (BphG) (Sakai et al., 2003). 

 



 - 32 -

 

 

 

 

 

 

 

 
OH

OH

NAD+NADH
O2
H+

NAD+

 

 

 

 

 

 

 

 

 

 

Fig. 4.  The biphenyl degradation pathway (Ohtsubo et al., 2004).  BphA, biphenyl 

dioxygenase enzyme composed of four subunits (BphA1, BphA2, BphA3 and BphA4);  

BphB, dehydrogenase;  BphC,  ring cleavage deoxygenase;  BphD, hydrolase;  BphE, 

hydratase;  BphF, aldolase;  BphG, acetaldehyde dehydrogenase. 
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of aromatic compounds (Kahl and Hofer, 2003; Pieper, 2005).  Having broad substrate 

specificities, the ARHDOs catalyze several ring cleavage reactions by the addition of two 

hydroxyl groups to carbons and consequently the formation of dihydriol compounds 

BphA1A2A3A4 BphB

OH

COOHOBphC
OH

OH

CH3

CHO BphE OH

COOHCH2

OHO

CH3 COOH

NADH
H+

O2

H2O

BphD
COOH

H2O

Pyruvate

BphF

NAD+

CoASH
NADH

H+

BphG

CH3

COS-CoA

H

H

OH

OH

NAD+NADH
O2
H+

NAD+

phA1A2A3A4 BphB

OH

COOHOB BphC
OH

OH

CH3

CHO

CH3

CHO BphE OH

COOHCH2

OH

COOHCH2

OHO

CH3 COOH

NADH
H+

O2

H2O

BphD
COOH

H2O

BphD
COOH

H2O

Pyruvate

BphF

NAD+

CoASH
NADH

H+

BphG

CH3

COS-CoA

NAD+

CoASH
NADH

H+

BphG

CH3

COS-CoA

H

H



 - 33 -

(Kosono et al., 1997).  The initial conversion steps during degradation of biphenyl are 

catalyzed by biphenyl 2,3-dioxygenases (Pieper, 2005).  The biphenyl 2,3-dioxygenases 

belong to a large family of non-heme iron oxygenases.  They consist of a terminal 

oxygenase which has α- and β-subunits, a ferredoxin and a ferredoxin reductase. 

 It was reported that bpdS/bpdT gene products are involved in the regulation of 

PCB degrading genes in Rhodococcus spp. (Ohtsubo et al., 2004).  A variety of aromatic 

compounds activate the regulatory system and as a result transcription of the degradation 

genes.  Furthermore, there is an association between the degree of transcription and 

degradation.  Degradation increases while the transcription levels are low, but as the 

transcription levels increase, the degradation performance reaches a plateau, where after 

degradation performance starts to decline.  This can be attributed to the complex effects 

of limited translation, availability of the substrates, energetic burden of the cell, and 

genetic instability of the degradation genes.  In addition, expression of degradation 

enzymes is low when more preferable carbon sources are present in the environment. 

 

2.7.3. Degradation of PCB congeners 

All of the bph enzymes catalyze the degradation of several PCB congeners (Ohtsubo 

et al., 2004).  However, the efficiency and reaction intermediates differ between the 

different PCBs, depending mainly on the following factors: solubility of the compound, 

expression of the degrading enzymes in the cells and the catalytic breakdown.  The 

solubility of polyaromatic compounds is enhanced by the addition of surfactants and as a 

result improves entrance of the compounds into the cytoplasm.  Furthermore, the 

presence of certain substrates in the environment is recognized by a regulatory protein in 

the organism and induces expression of degradation enzymes.  The α-subunits of the 2,3-

biphenyl dioxygenase enzymes were found to be crucial for recognition and binding of 

the substrates (Pieper, 2005). 
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2.7.4. Genes coding for degradation of aromatic compounds 

 

2.7.4.1. Horizontal gene transfer 

Horizontal gene transfer of catabolic genes located on plasmids, transposons and 

integrons, is a key mechanism for the evolution of catabolic pathways (Poelarends et al., 

2000).  Horizontal gene transfer of catabolic genes is especially significant for adaptation 

of microbial communities exposed to xenobiotics.  Genes involved in primary 

metabolism are usually associated with the chromosome, while catabolic genes are often 

located on plasmids in Rhodococcus spp. (Kitagawa et al., 2001).  Several 

Rhodococcus spp., including R. erythropolis, R. opacus and R. fascians harbour linear 

plasmids (Shimizu et al., 2001).  Three huge linear plasmids, pRHL1 (1100 kb), pRHL2 

(450 kb) and pRHL3 (330 kb), harbouring genes for catabolism of xenobiotics, were 

characterized in Rhodococcus sp. strain RHA1.  Likewise, three of seven bphC genes 

characterized in R. erythropolis TA 421 are located on a linear plasmid (500 kb) 

(Kosono et al., 1997).  The linear plasmids of Rhodococcus spp., harbouring catabolic 

genes, have been associated with HGT (Masai et al., 1997; Warren et al., 2004).  

Insertion sequences, transposes genes and gene duplications detected on the pRHL3 

plasmid of R. erythropolis RHA1 indicate that these genes evolved through HGT.  

Furthermore, large similarities between haloalkane dehalogenase genes of 

R. rhodochrous NCIMB13064, Pseudomonas pavonaceae 170, and Mycobacterium sp. 

strain GP1 (Poelarends et al., 2000), nitrile/amidase gene clusters of R. erythropolis 

strains AJ270, AJ300 and Microbacterium sp. AJ115 (O’Mahony et al., 2005) implicate 

HGT. 

 

2.7.4.2. Degradation of biphenyl 

Several genes encoding enzymes responsible for the degradation of PCBs were cloned 

from Rhodococcus spp. and characterized (Hauschild et al., 1996; Masai et al., 1995; 

Masai et al., 1997; Yamada et al., 1998).  These enzymes include 2,3-dihydroxybiphenyl 

dioxygenases (2,3-DHBDs) for which seven bphC genes in R. erythropolis TA 421 have 

been characterized, while eight genes were found in R. rhodocrous K37 (Pieper, 2005) 
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and three in R. globerulus P6 (Kosono et al., 1997).  The genes encoding 2,3-DHBDs are 

usually clustered and transcribed as an operon. 

The bphACB genes encoding 2,3-DHBDs, which are responsible for the initial 

ring cleavage steps during degradation of biphenyl compounds, were cloned from 

Rhodococcus sp. strain RHA1 (Masai et al., 1997).  In addition, several HPD metabolic 

pathway genes encoding meta-cleavage enzymes, were cloned from the same strain 

(Sakai et al., 2003).  These include the HPD hydratase (bphE1), 4-hydroxy-2-oxovalerate 

aldolase (bphF1) and acetaldehyde dehydrogenase (bphG) genes.  It was found that 

products of these genes are also involved in preventing accumulation of toxic metabolites 

that could interfere with the growth of the organism. 

 

2.7.4.3. Degradation of benzene, ethylbenzene and catechol 

The benzoate catabolic genes benABCDK were cloned from Rhodococcus sp. strain 

RHA1 and it was found that they are localized on the chromosome (Kitagawa et al., 

2001).  Hauschild et al. (1996) cloned the etbC gene coding for a 2,3-DHBD from 

Rhodococcus sp. strain RHA1 when grown on ethylbenzene.  EtbC have broad substrate 

specificity and is possibly co-expressed with bphC.  In addition, two 2-hydroxy-6-

oxohepta-2,4-dienoate genes, etbD1 and etbD2, were cloned from Rhodococcus sp. strain 

RHA1 (Yamada et al., 1998).  These genes are induced by biphenyl, ethylbenzene, 

benzene, toluene and ortho-xylene and the gene products involved in the meta-cleavage 

metabolic pathway of ethylbenzene.  The etbC gene is located upstream of the bphDEF 

gene cluster on a linear plasmid in Rhodococcus sp. strain RHA1 (Masai et al., 1997).  In 

addition, four extradiol deoxygenase enzymes, capable of degrading catechol, were 

cloned from Rhodococcus spp. (Kulakov et al., 1998). 

 

2.7.4.4. Degradation of phenylacetate 

In gram-negative bacteria, aerobic degradation of phenylacetic acid (PAA) via 

phenylacetyl-CoA and consequently hydrolytic ring cleavage, is prevalent in the 

degradation of a diversity of aromatic compounds (Navarro-Llorens et al., 2005).  

However, the PAA catabolic pathway is not well characterized in gram-positive bacteria.  

Nonetheless, a gene cluster containing 13 paa genes coding for products orthologous to 
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those of gram-negative bacteria was identified on the chromosome of Rhodococcus sp. 

strain RHA1.  Yet, the range of substrates degraded by Rhodococcus sp. strain RHA1 via 

the PAA pathway is restricted and the role of the pathway in gram-positive bacteria not 

well understood. 

 

2.7.4.5. Expression of Rhodococcus spp. catabolic genes 

Numerous genes encoding catabolic enzymes in Rhodococcus spp. have been cloned by 

employing Escherichia coli as host and by using a variety of expression vectors.  As a 

result several recombinant E. coli strains capable of degrading xenobiotic compounds 

such as biphenyl, ethylbenzene and benzoate were developed.  These include extradiol 

dioxygenase (edo) genes cloned into E. coli DH5α (Kulakov et al., 1998) employing 

pUC129 as plasmid as well as several biphenyl- (bph) (Masai et al., 1995), ethylbenzene- 

(etb) (Yamada et al., 1998) and benzoate (ben) catabolic genes (Kitagawa et al., 2001) 

which was cloned into E. coli JM109 by using a variety of vectors. 

 

2.8. Degradation of AFB1 by fungi 
 

In recent years it became clear that fungi play a major role in the degradation of AFB1. 

Fungi associated with AFB1 degradation include zygomycetous fungi (Rhizopus sp. and 

Mucor sp.), ascomycetous fungi (A. niger and Trichoderma sp.), plant pathogens 

(Phoma sp. and Alternaria sp.) as well as basidiomycetous fungi (Armillariella tabescens 

and other white rot fungi) (Leonowicz et al., 1999; Liu et al., 1998 a,b,c; Nakazato et al., 

1990; Shantha et al., 1990; Shantha, 1999; Yao et al., 1998).  However, it is still uncertain 

which enzymes are involved in the degradation of AFB1 by fungi. 

Although younger cultures of A. flavus and A. parasiticus produce AFBB1, older 

cultures of these fungi degrade AFB1, presumable under nitrogen-limiting conditions 

(Hamid and Smith, 1987; Huynh and Lloyd, 1984; Shih and Marth, 1974).  During AFB1 

biosynthesis, AFB1 concentration reaches a maximum, where after it decreases due to the 

involvement of cytochrome P-450 monooxygenase degradation.  The degree of 

degradation depends mainly on the age of the culture and temperature of incubation 

(Faraj et al., 1993).  More elevated AFB1 degradation was observed in cultures at 40ºC 
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when compared to 30ºC, while older cultures (12 d) degrade AFB1 more effectively.  

Furthermore, 40% AFB1 degradation was observed in a single culture of A. flavus, while 

A. flavus in mixed culture with A. niger, Rhizopus oryzae and 

Bacillus stearothermophilus displayed 80, 70 and 87% AFB1 degradation respectively.  

Furthermore, it was found that AFB1 is converted to isomeric hydroxyl compounds by 

Rhizopus spp. (Mishra and Das, 2003). 

Other fungi capable of degrading AFB1 include Tetrahymena pyriformis, 

exhibiting 67% AFB1 degradation after 48 h (Mishra and Das, 2003).  Motomura et al. 

(2003) reported degradation of AFB1 by unconcentrated supernatant of 

Pleurotus ostreatus cultured in liquid medium containing glucose, peptone and yeast 

extract.  In addition, degradation of AFB1 and loss of mutagenicity was observed after 

treatment of AFB1 with an enzyme isolated from the mycelium of A. tabescens (Liu et al. 

1998 a,b,c).  Detoxification was accomplished after cleavage of the difuran ring of the 

AFB1 molecule. 

 

2.8.1. Degradation of lignin 

When considering polyphenolic compounds in nature, lignin is undoubtedly the most 

abundant and possibly also the most heterogeneous and recalcitrant compound to be 

degraded microbially (de Jongh et al., 1994).  Lignin is a complex, three-dimensional, 

reticular, polyaromatic phenylpropanoid polymer and the main structural component of 

plant cell walls (Rabinowich et al., 2004).  Lignin is most efficiently degraded to CO2 and 

H2O by microbial communities consisting mainly of basidiomycete, ascomycete and a 

broad range of soil mycelial fungi. 

It should be noted that lignin is not metabolized completely, but is converted 

partially to condensed products, such as biphenyl compounds.  Microbial consortia and 

several non-enzymatic mechanisms, including complexes of transition metal ions, 

peroxide, lipoperoxide, superoxide radicals and endogenous redox mediators, are 

responsible to complete the process.  Different organisms are eventually involved in 

initially opening the lignocellulosic structure, depolymerisation of the complex 

compounds, utilisation of the released sugars, and finally mineralization of the more 

recalcitrant phenolic compounds.  The consortia typically consist of filamentous fungi, 
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yeasts and bacteria.  There are indications that Aspergillus spp. in conjunction with white 

rot fungi may be actively involved in lignin degradation (Duarte and Costa-Ferreira, 

1994), while yeasts and lactic acid bacteria are primarily secondary consumers of 

degradation products. 

Several groups of enzymes are involved in the degradation of lignin and aromatic 

xenobiotics, including heme-containing peroxidases, flavine oxidases, cellobiose 

dehydrogenases as well as laccases (Rabinowich et al., 2004).  It was found that the 

presence of laccase is required for lignin degradation by some white rot fungi, since 

lignin-deficient mutants lose their ability to degrade lignin.  Moreover, multiple isomers 

of these enzymes are produced by ligninolytic fungi. 

Ligninolytic fungi differ in their requirement for nitrogen, carbon, copper, 

manganese and sulphur for optimal production of ligninolytic enzymes and conditions of 

nitrogen deficiency not always favourable for enzyme production (Rabinowich et al., 

2004).  While nitrogen rich media stimulates the production of ligninolytic enzymes in 

certain fungi (P. ostreatus, Lentinus edodus, Cariolopsis gallica and Bjerkandera 

adusta), Phanerochaete laevis produce high levels of Mn-peroxidase under nitrogen 

limited conditions. Furthermore, Phanerochaete chrysosporium produces laccase in 

nitrogen rich medium and exclusively with cellulose as carbon source, while copper 

stimulates the production of laccase (Rabinowich et al., 2004). 

 

2.8.2. Degradation of aromatic xenobiotics 

When the degradation of aromatic xenobiotics are considered, fungi again feature as one 

of the major groups responsible for their degradation, presumably due to the large 

repertoire of extracellular enzymes produced by these fungi (Armstrong and Patel, 1994; 

Hammel, 1995; Higson, 1991; Singh et al., 1991).  White rot fungi are capable of 

oxidizing and degrading a wide range of xenobiotics, including polycyclic aromatic 

hydrocarbons, polychlorinated phenol, chlorinated guaiacol, benzoate derivatives, 

chlorinated biphenyls (Rabinowich et al., 2004), as well as nitro aromatic compounds 

(Hiratsuka et al., 2001). 

 Grey et al. (1998) have reported extracellular extracts of T. versicolor to degrade 

2-chlorophenol to 2-chloro-1,4-benzoquinone.  However, degradation was much higher 
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in the presence of the mycelium and the degradation attributed to the involvement of 

extracellular laccases as well as cell-bound processes. 

 

2.8.3. Laccase enzymes 

Fungal laccases often function as isoenzymes that oligomerize to form multimeric 

complexes (Claus, 2004).  The molecular mass of the monomer ranges from about 50 to 

100 kDa.  Laccase enzymes are very stable probably due to a covalently linked 

carbohydrate moiety.  For catalytic activity a minimum of four copper atoms per active 

protein is needed.  The various copper atoms of laccases drive electrons from a reducing 

substrate to molecular oxygen without releasing toxic peroxide intermediates. 

The enzymatic oxidation of phenol compounds by laccase generates radicals 

which react with each other to form dimers, oligomers and polymers (Claus, 2004).  This 

characteristic of laccase is valuable for their application to detoxify contaminated soil or 

waste waters.  As a result, cathecol and other phenolic substrates are polymerized and 

removed from wastewater streams in the form of a precipitate (Aktas and Tanyolac, 

2003). 

Furthermore, laccases produced by ligninolytic fungi are capable of generating 

highly active free radicals during degradation of complex natural polymers such as lignin, 

which lead to the cleavage of covalent bonds of the substrate and the release of 

monomers (Claus, 2004).  Sometimes the enzymes are not directly in contact with the 

polymers, due to steric hindrance, while small organic compounds or metals mediate the 

radical-catalyzed depolymerization.  In addition, laccases are extremely versatile 

enzymes, catalizing one basic reaction from which all its activities originate (Rabinowich 

et al., 2004). 

Laccases of white rot fungi have acidic pH optima (4-5) for oxidation of phenolic 

substrates (Rabinowich et al., 2004).  In contrast, laccase produced by soft rot fungi 

(Myceliophthora thermophila, Chaetomium thermophile, Rhizoctonia solani) causing 

humification of wood, have more neutral pH optima (6).  The more neutral laccases 

polymerize low-molecular-weight phenols and detoxify compounds of the natural wood 

defence system resulting in humification.  Enzymes with more acidic pH optima are more 

prominent in free-radical ligninolysis. 
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2.9.  The current approach:  Biological degradation of AFB1

 

2.9.1. Biological degradation of AFB1 by (a)  R. erythropolis liquid cultures (b)  2,3-

DHBD of R. erythropolis through extracellular expression of the bphC1 gene in 

E. coli 

Aflatoxins are difuranocoumarin derivatives and are somewhat structurally related to the 

above-mentioned xenobiotic aromatic compounds effectively degraded by 

Rhodococcus spp. (Minto and Townsend, 1997; Payne and Brown, 1998).  For that 

reason the biological degradation of AFB1 by R. erythropolis liquid cultures as well as 

intra- and extracellular extracts obtained from liquid cultures were investigated [Alberts 

et al., 2006 (Chapter 4);  Teniola et al., 2005 (Chapter 3)].  The degradation of AFB1 by 

intracellular extracts of R. erythropolis DSM 14303, M. fluoranthenivorans sp. nov. DSM 

44556T, N. corynebacterioides DSM 20151 and N. corynebacterioides DSM 12676 were 

compared [Teniola et al., 2005 (Chapter 3)].  In addition, the degradation of AFB1 by 2,3-

DHBD in R. erythropolis through extracellular expression of the bphC1 gene in E. coli 

was studied (Chapter 5).  Moreover, evidence will be presented whether the degradation 

coincides with a decrease in fluorescence and mutagenicity of the AFB1 molecule. 

 

2.9.2. Biological degradation of AFB1 by (a)  white rot fungi in liquid culture (b)  

fungal laccase from T. versicolor 

While white rot fungi have the potential to degrade lignin as well as a wide range of 

polycyclic aromatic hydrocarbons, the unique mechanisms of these fungi will possibly 

also allow them to target and degrade AFB1.  The association between laccase production 

and AFB1 degradation by cell free extracts of fungal liquid cultures was investigated 

(Chapter 6).  In addition, the ability of fungal laccase from T. versicolor as well as 

recombinant laccase produced by A. niger (D15-Lcc2#3) to degrade AFB1 was 

determined and if the degradation coincides with loss of mutagenicity. 
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Abstract

Biological degradation of aflatoxin B1 (AFB1) by Rhodococcus erythropolis was examined in liquid cultures and in cell-free

extracts. Dramatic reduction of AFB1 was observed during incubation in the presence of R. erythropolis cells (17% residual

AFB1 after 48 h and only 3–6% residual AFB1 after 72 h). Cell-free extracts of four bacterial strains, R. erythropolis DSM

14303, Nocardia corynebacterioides DSM 12676, N. corynebacterioides DSM 20151, and Mycobacterium fluoranthenivorans

sp. nov. DSM 44556T were produced by disrupting cells in a French pressure cell. The ability of crude cell-free extracts to

degrade AFB1 was studied under different incubation conditions. Aflatoxin B1 was effectively degraded by cell free extracts of

all four bacterial strains. N. corynebacterioides DSM 12676 (formerly erroneously classified as Flavobacterium aurantiacum)

showed the lowest degradation ability (60%) after 24 h, while N90% degradation was observed with N. corynebacterioides

DSM 20151 over the same time. R. erythropolis and M. fluoranthenivorans sp. nov. DSM 44556T have shown more than 90%

degradation of AFB1 within 4 h at 30 8C, whilst after 8 h AFB1 was practicably not detectable. The high degradation rate and

wide temperature range for degradation by R. erythropolis DSM 14303 and M. fluoranthenivorans sp. nov. DSM 44556T

indicate potential for application in food and feed processing.
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1. Introduction

Aflatoxin B1 (AFB1) is one of the mycotoxins

produced by some strains of Aspergillus flavus,

Aspergillus nomius and Aspergillus parasiticus

(Deiner et al., 1987; Kurtzman et al., 1987; Cotty

and Bhatnagar, 1994). It is one of the most potent

naturally occurring mutagens and carcinogens

known. Aflatoxin B1 has been reported in many

foods and food and feed raw materials such as

peanuts, peanut meals, peanut butter, soybeans, cot-

tonseed meal, sorghum, millet, corn, corn oil, dried

chili peppers, milk, etc. (Ciegler et al., 1966; Nwo-

kolo and Okonkwo, 1978; Salifu, 1981; Hao and

Brackett, 1988; Hudson et al., 1992). Food contami-

nated with AFB1 poses a serious health threat when

consumed by human and animals, and when present

at unacceptable levels, the contamination may also

result in severe economic problems world-wide.

This toxin has been reported to be carcinogenic,

teratogenic and hepatotoxic (Eaton and Groopman,

1994; Guengerich et al., 1996). The growth of the

producing mould itself does not always indicate a

significant presence of the mycotoxin. Synthesis

depends on favourable growth conditions related

to moisture, temperature, substrate composition,

competition with other micro-organisms, aeration

as well as genetic requirements (Deiner et al.,

1987; Ellis et al., 1991; Payne, 1992; Cotty and

Bhatnagar, 1994; Woloshuk and Priesto, 1998).

Aflatoxin may be degraded by physical, chemical

or biological means (Nkana, 1987; Park, 1993).

However, limitations such as losses of product

nutritional and organoleptic qualities, undesirable

health effects of such treatments and expensive

equipment required for other degradation techniques

has encouraged recent emphasis on biological meth-

ods (Samarajeewa et al., 1990; Philips et al., 1994).

Some microbial isolates have been reported with

different levels of degradation abilities. However,

studies on numerous lactic acid bacterial strains

have indicated that this phenomenon may be

explained by adsorption rather than by degradation

(El-Nezami et al., 1998). Aspergillus niger, A. para-

siticus, Trichoderma viride, Mucor ambiguus and

few other fungi have been reported to show signif-

icant AFB1 degradation abilities (Mann and Rehm,

1976; Tsubouchi et al., 1983; Huynh et al., 1984;
Line et al., 1994). Limitations such as long degra-

dation time (lasting more than 72 h), incomplete

degradation, non-adaptation to typical food fermen-

tations, and culture pigmentation, however, reduce

their potential for use in the food industry. More-

over, some of these strains with degradation poten-

tial may also produce AFB1 under varying

conditions (Huynh et al., 1984).

Despite the wide attention and potential of the only

hitherto known AFB1 degrading bacterial strain (Cieg-

ler et al., 1966; Smiley and Draughon, 2000; D’Souza

and Brackett, 2001), it was thus-far erroneously clas-

sified as Flavobacterium aurantiacum NRRL B-184

[DSM 12676; now reclassified as Nocardia coryne-

bacterioides DSM 12606; Hormisch et al., 2004].

This work was conducted to demonstrate the abil-

ity of a new strain (DSM 41303) of Rhodococcus

erythropolis, isolated from polycyclic aromatic

hydrocarbons (PAH) contaminated soils, to degrade

AFB1 in liquid cultures. Furthermore, we obtained

comparative information on the intracellular degrada-

tion of AFB1 by four bacterial strains, including R.

erythropolis DSM 41303, and a strain representing a

new species, Mycobacterium fluoranthenivorans

strain DSM 44556T, using cell free extracts obtained

by disruption with the French pressure cell. The

optimal temperature conditions and reaction time

kinetics were also investigated. Finally, with these

investigations, the ultimate aim is to eventually con-

tribute to improve the safety of fermented African

food products by developing a suitable biological

detoxification procedure that may be adopted for

traditional processes.
2. Material and Methods

2.1. Cultures

N. corynebacterioides DSM 12676, N. corynebac-

terioides DSM 20151, R. erythropolis strain Aney3

and Mycobacterium sp. strain Fa4 were used for the

experiments. The R. erythropolis and Mycobacterium

strains were isolated from PAH contaminated soils by

the Institute of Applied Microbiology, University of

Saarbruecken, Germany. Meanwhile, the Mycobacter-

ium strain has been found to represent a new species,

M. fluoranthenivorans, which was originally depos-
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ited under the restricted number as strain DSM

14304, and eventually submitted as type strain

DSM 44556T (Hormisch et al., 2004), whilst R. ery-

thropolis was deposited under the restricted number

DSM 14303. Both these strains are protected by a

patent application (Holzapfel et al., 2002). The

Deutsche Sammlung für Mikroorganismen und Zellk-

ulturen (DSMZ), Braunschweig, Germany, provided

the two N. corynebacterium strains, and aided in the

final identification of strains Aney3 and Fa4.

2.2. Degradation of AFB1 by R. erythropolis in liquid

cultures

R. erythropolis was grown in Standard I broth (pH

7.0) (Goodfellow, 1986). The broth (0.8 ml) was

aliquoted to sterile 2-ml screw-cap Eppendorf tubes

and inoculated with 50 Al of a 24-h pre-inoculum of

R. erythropolis. For degradation experiments, a stock

solution of AFB1 (100 ppm) was used to supplement

cultures to a final concentration of 1.75 ppm. Cultures

were incubated at 30 8C on a rotor wheel for 24 h, 48

h and 72 h respectively. The following two controls

were included: (a) sterile Standard I broth. (b) Stan-

dard 1 broth to which 200 Al autoclaved R. erythro-

polis cells were added. After incubation the cells

were removed by centrifugation (13,000 min�1), the

AFB1 was extracted from the supernatants and quan-

tified by HPLC as described later.

2.3. Preparation of cell free extracts

The frozen or freeze-dried bacterial cultures were

reactivated by successive cultivation steps in Standard-

I-nutrient broth (S-I-media, 1.07882.0500, Merck,

Darmstadt, Germany). For inoculation, 20 ml of a 24

h culture broth were transferred to 500 ml of sterile S-I-

medium. Sterilisation was at 121 8C for 15 min. Inocu-

lated cultures were grown by incubation at 30 8C and

agitation at 160 min�1 for 48 h using a Gyrotary shaker

incubator (Model G25, New Brunswick Scientific Co.,

USA). The cells were harvested by centrifugation (Her-

aeus Sepatech centrifuge, Stuttgart, Germany) at 4 8C
using 6000 min�1 for 20 min. The pellets were washed

twice with phosphate-buffer (67 mM; pH 7.0). The cell

pellets were resuspended in phosphate buffer (pH 7.0)

in preparation for cell rupture (3 ml buffer per gram cell

mass). This suspension was disintegrated thrice by
using the French-press at 8274 MPa pressure (Aminco

French pressure cell, SLM Instruments Inc.). The cell

disruption steps were carried out on ice to ensure low

temperature conditions required for most enzymes. The

disintegrated cell suspension was centrifuged at

20,000�g for 20 min at 4 8C (Sorvall RC 26 Plus,

Kendro Lab., Bad Homburg, Germany). Supernatant

from the centrifugation step was filtered aseptically

using sterile cellulose pyrogen free disposable filters

of 0.2 Am pore size (Schleicher and Schuell, Germany).

2.4. Degradation of AFB1 by cell-free extracts

The experiment was performed in 2-ml-Eppendorf-

tubes in a final volume of 750 Al and an initial AFB1-

concentration of 2.5 ppm. This involved the addition

of 20 Al stock solution of AFB1 dissolved in methanol

(LiChroSolv, Merck) to 730 Al cell free extract. The

mixture was incubated in the dark at 30 8C without

shaking for 1, 2, 4, 6, 8 and 24 h for the optimal

reaction or incubation time studies. Degradation at

different temperatures was also studied to obtain the

optimum temperature amongst the bacteria isolates.

Temperatures considered were 10 8C, 20 8C, 30 8C
and 40 8C over a period of 20 h at pH 7.0. All

experiments were carried out in duplicates. Each

experiment was terminated by the addition of 750 Al
of HPLC grade chloroform (LiChroSolv, Merck) for

extraction of the remaining AFB1.

2.5. Extraction and quantification of residual AFB1

Aflatoxin B1 was extracted three times with chloro-

form (LiChroSolv, Merck) from liquid cultures and

cell-free extracts. The chloroform was evaporated

under nitrogen gas, the samples were dissolved in

methanol (LiChroSolv, Merck), filtered (Millex-GV,

Durapore, 0.22 Am) and analysed by HPLC. HPLC

analyses were performed on a Merck HPLC System

(D-7000 series) using a guard column [LiChroCART

4-4 RP-C18 (5 Am), Merck] followed by a LiChro-

CART RP-C18 [250-4 Hypersil ODS (5 Am), Merck]

column. The mobile phase was acetonitrile/methanol/

water (1:1:2, v/v/v) at a flow rate of 1 ml/min and the

sample temperature was set at 22 8C. AFB1 was

measured by UV (365 nm.) detection. Raw data

were evaluated by the HPLC ChemStation software

system (Hewlett Packard).



Table 1

Protein concentration of the cell-free extracts of the bacterial isolates

used

Strain Protein

concentration

[mg/ml]

Nocardia corynebacterioides DSM12676 1.5

Nocardia corynebacterioides DSM20151 2.9

Mycobacterium fluoranthenivorans nov.

sp., strain DSM 44556T
3.8

Rhodococcus erythropolis DSM14303 3.4
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2.6. Protein determination

The total protein concentrations were measured by

the microbiureth-method (Goa, 1953). Standard curve

was produced by using a known concentration of

bovine serum albumen (BSA). The concentrations of

crude protein extracts present were extrapolated from

the standard curve.
3. Results and discussion

The ability of four bacterial isolates, N. coryne-

bacterioides DSM 12676, N. corynebacterioides

DSM 20151, R. erythropolis strain Aney3 DSM

14303 and M. fluoranthenivorans strain DSM

44556T, to degrade AFB1 was investigated. Cells of

the four isolates were disrupted with the aid of a
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French-press and the cell debris removed by centri-

fugation. The total protein concentrations in the cell

free extracts from all the isolates under study are

shown in Table 1. The protein concentration enables

a comparison among the strains with regard to the

relative concentrations of the cell free extracts as a

whole, as an alternative to microbial cell numbers.

This approach was a first step towards proving the

enzymatic basis of the AFB1 degrading activity. The

cell free extracts of the R. erythropolis and Myco-

bacterium strains contained higher concentrations of

protein than the two N. corynebacterioides strains.

The cell-free extract of DSM 12676 contained 1.5

mg/ml protein and in the extract of DSM 20515,

double the amount of protein was measured (2.9

mg/ml). The protein concentrations of cell free

extracts from R. erythropolis and M. fluoranthenivor-

ans did not differ much (3.4 mg/ml and 3.8 mg/ml,

respectively). Aflatoxin B1 degradation by cell free

extracts of the four bacteria over a period of 24 h was

followed, and different levels of degradation were

observed (Fig. 1a). R. erythropolis and M. fluor-

anthenivorans were able to degrade AFB1 more

effectively and within a shorter time than the two

N. corynebacterioides strains (Fig. 1a). It was parti-

cularly interesting to notice up to 70% AFB1 elim-

ination within 1 h of applying cell free extracts from

the two strains (Fig. 1b), and N90% degradation was

observed within 4 h. There was no detectable AFB1

from any strain after 24 h, with the exception of N.
25
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corynebacterioides DSM 12676 (formerly F. auran-

tiacum). The cell-free extract from N. corynebacter-

ioides shows AFB1 reduction of about 10% after 8 h,

and of about 60% after 24 h. The result is similar to

the observation of Smiley and Draughon (2000).

They observed about 74.5% AFB1 degradation by

its cell free extract obtained by lysozyme treatment

after 24 h of incubation. In their study, they observed

a diminishing AFB1 degradation which was attribu-

ted to the effects of heat treatment and incorporation

of proteinase K into their extract. Hence, they con-

cluded that the degradation could be enzymatic. Dif-

ference in degradation activity with our results may

be due to extract production methods employed.

However, the strain DSM 20151 (formerly C.

rubrum) showed a degradation of over 20% in 1 h

and a total elimination of AFB1 in 24 h. The result

confirms the degrading potential of the organism as

reported by Mann and Rehm (1976).

Liquid cultures of R. erythropolis were also able

to degrade AFB1 very effectively (Fig. 2). A dra-

matic reduction of AFB1 was observed when incu-

bated in the presence of R. erythropolis cells (17%

residual AFB1 after 48 h and only 3–6% residual

AFB1 after 72 h). By contrast, no significant reduc-

tion took place in the absence of R. erythropolis

cells or in the presence of heat-inactivated (auto-

claved) cells. The latter results established that

AFB1 was degraded and not only removed from

the medium by binding to the heat-inactivated bac-

terial cell walls. Furthermore, AFB1 remained stable
in the uninoculated control throughout the incuba-

tion period.

Cell free extracts of R. erythropolis and M. fluor-

anthenivorans thus removed about 70% AFB1 after 1

h, while practically no AFB1 was found after 8 h.

Furthermore, liquid cultures of R. erythropolis practi-

cally removed AFB1 within 72 h of incubation. These

two bacteria strains are therefore superior AFB1-

degraders compared to the previously known N. cor-

ynebacterioides strains. The two N. corynebacter-

ioides strains are pigmented and are slower in

activity than the new bacteria isolates (Ciegler et al.,
l

-
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1966; Line et al., 1994; Mann and Rehm, 1976).

These two features are obviously a disadvantage

because they may affect processing time and the

product’s qualities during fermentation.

Our findings show degradation rather than adsorp-

tion to the cell wall which had earlier been proposed

by El-Nezami et al. (1998) for lactic acid bacteria.

Analysis of the chloroform extracts at the wavelenghts

studied did not reflect presence of any new peaks or

by-products. Past works have indicated the presence

of by-products in the aqueous extracts rather than the

organic phases of AFB1 extraction during analysis

(Mann and Rehm, 1976; Line et al., 1994). This

may be the reason for the inability to detect any by-

products in our study.

The effect of different temperatures on the loss of

AFB1 by cell-free extracts of four bacterial strains

was also evaluated. There was a general reduction of

AFB1 for all the four isolates but to different

extents. After an incubation time of 20 h at 10,

20, 30 and 40 8C the residual AFB1-contents were

determined as shown in Fig. 3. The two strains of N.

corynebacterioides DSM 12676 and DSM 20151

showed an optimum at 30 8C, which agrees well

with the temperature range of 20 to 28 8C reported

by Ciegler et al. (1966) for N. corynebacterioides

DSM 12676 (formerly F. aurantiacum) and 25 8C as

the optimum.

The percentage reduction of AFB1 by the new

isolates (R. erythropolis and M. fluoranthenivorans)

were about the same in the temperature range of 10–

40 8C. This may imply that the enzymes in the cell-

free extract either have a wide temperature range of

activity, or that other factors are involved.

Our results have demonstrated that cell free

extracts of all four bacterial isolates and liquid cul-

tures of R. erythropolis and M. fluoranthenivorans

effectively degrade AFB1. Optimal degradation by

the four isolates occurred at 30 8C which makes

them applicable in food in the tropical environment

like West Africa. The two new bacterial isolates

appear to be more versatile and will have a better

potential due to their fast rate of degrading AFB1 and

the wider temperature range for degradation. Further

work into the enzymology, establishing the absence of

by-products and with any residual toxicity, and prob-

ably also genetic modification, are required to harness

the potential of these strains.
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Abstract

Aflatoxin contamination of food and grain poses a serious economic and health problem worldwide, but particularly in Africa. Aflatoxin B1

(AFB1) is extremely mutagenic, toxic and a potent carcinogen to both humans and livestock and chronic exposure to low levels of AFB1 is a
concern. In this study, the biodegradation of aflatoxin B1 (AFB1) by Rhodococcus erythropolis was examined in liquid cultures using thin layer
chromatography (TLC), high performance liquid chromatography (HPLC), electro spray mass spectrometry (ESMS) and liquid chromatography
mass spectrometry (LCMS). AFB1 was effectively degraded by extracellular extracts from R. erythropolis liquid cultures. Results indicated that
the degradation is enzymatic and that the enzymes responsible for the degradation of AFB1 are extracellular and constitutively produced.
Furthermore, the biodegradation of AFB1 when treated with R. erythropolis extracellular fraction coincided with a loss of mutagenicity, as
evaluated by the Ames test for mutagenicity.
© 2006 Elsevier B.V. All rights reserved.
Keywords: Aflatoxin B1; AFB1 degradation; AFB1 detoxification; Mutagenicity; Rhodococcus erythropolis
1. Introduction

Aflatoxins are highly toxic secondary metabolites (mycotox-
ins) predominantly produced by the filamentous fungi Asper-
gillus flavus and Aspergillus parasiticus (Deiner et al., 1987;
Kurtzman et al., 1987). Other Aspergillus strains producing
aflatoxin are A. nominus, A. tamarii (Goto et al., 1997) and A.
pseudotamarii (Ito et al., 2001). Aflatoxin B1 (AFB1), the most
potent aflatoxin, is extremely toxic, mutagenic, carcinogenic and
teratogenic to both humans and livestock and chronic exposure
to low levels of AFB1 pose a serious health and economic hazard
(Karlovsky, 1999; Mishra and Das, 2003). AFB1 is the
mycotoxin with the greatest impact in Africa and together with
hepatitis B viral infections possibly responsible for the high
incidence of primary liver cancer in certain parts of Africa, such
as Mozambique (Pitt, 2000). Although numerous physical and
chemical detoxification methods have been tested, none really
fulfills the necessary efficacy, safety, and cost requirements
(Mishra and Das, 2003). Therefore, the development of
⁎ Corresponding author. Tel.: +27 21 808 5854; fax: +27 21 808 5846.
E-mail address: whvz@sun.ac.za (W.H. van Zyl).
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biological detoxification measures, especially in traditional
African fermented food products, is essential to improve the
safety of these foods for human consumption (Sweeney and
Dobson, 1999). Several studies were done regarding removal of
aflatoxin by adhesion to probiotic bacteria (Peltonen et al., 2000)
as well as biocompetitive inhibition of aflatoxin production by
geocarpospheric bacteria (Chaurasia, 1995). However, few
studies reported the degradation of AFB1 by microorganisms.
The only bacteria known that degrade AFB1 effectively are
Nocardia corynebacteroides (formerly known as Flavobacter-
ium aurantiacum) (Ciegler et al., 1996) and Mycobacterium
fluoranthenivorans (Hormisch et al., 2004), while notable AFB1

degradation by Corynebacterium rubrum was observed (Mann
and Rehm, 1977; Shih andMarth, 1975). Furthermore Teniola et
al. (2005) recently reported degradation of AFB1 by liquid
cultures of Rhodococcus erythropolis as well as intracellular
extracts prepared from R. erythropolis liquid cultures.

Rhodococcus is an aerobic gram-positive bacterium capable
of transforming a wide range of xenobiotic compounds
including polychlorinated biphenyls (Finnerty, 1992; Kitagawa
et al., 2001; Sakai et al., 2003; Seto et al., 1995) as well as
nitroaromatic compounds (Kitova et al., 2004) and is considered
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to play a critical role in the removal of toxic polyaromatic
pollutants from the environment (Dua et al., 2002; Sakai et al.,
2003). In previous studies several gene clusters responsible for
the degradation of these compounds were characterized in
Rhodococcus spp. (Hauschild et al., 1996; Masai et al., 1995,
1997; Yamada et al., 1998).

Aflatoxins are difuranocoumarin derivates and are somewhat
structurally related to the above-mentioned xenobiotic aromatic
compounds (Payne and Brown, 1998; Minto and Townsend,
1997). In this study, we investigated the biological degradation
of AFB1 by R. erythropolis in liquid cultures, more specifically
if the extracellular fraction is responsible for the degradation
and if the degradation of AFB1 coincides with loss of
mutagenicity.

2. Materials and methods

2.1. Cultures

The R. erythropolis strain used in this study was isolated
from polycyclic aromatic hydrocarbons (PAH) contaminated
soils by the Institute of Applied Microbiology, University of
Saarbrücken, Germany and deposited under the restricted
number DSM 14303 (Teniola et al., 2005), R. erythropolis
was cultivated in Standard 1 broth (Goodfellow, 1986)
comprising of 1.5% (w/v) peptone, 0.3 (w/v) yeast extract,
0.6% (w/v) sodium chloride, and 0.1% (w/v) D (+)-glucose.

2.2. Degradation of AFB1 by extracellular extracts of
R. erythropolis liquid culture

Standard 1 broth (100ml) was inoculated with R. erythro-
polis and incubated at 30°C for 48h on a shaker (100rpm).
Cultures were centrifuged (10000rpm for 10min), the extra-
cellular fraction supplemented with 1.75ppm AFB1, aliquoted
(0.8ml) to sterile screw-cap Eppendorf tubes and incubated at
30°C on a rotor wheel for different time intervals. Standard 1
broth supplemented with 1.75ppm AFB1 was used as reference.
After incubation, AFB1 was extracted from the samples and
analyzed by thin layer chromatography (TLC), high perfor-
mance liquid chromatography (HPLC), electro spray mass
spectrometry (ESMS) and liquid chromatography mass spec-
trometry (LCMS) (described later).

To determine whether AFB1 degradation is an induced or
constitutive activity of R. erythropolis, Standard 1 broth was
supplemented with AFB1 as described by Teniola et al.
(2005) and inoculated with R. erythropolis. A R. erythropolis
culture grown in the absence of AFB1 was used as reference.
After cultivation at 30°C for 48h, the cells were removed by
centrifugation. The extracellular fractions were supplemented
with 1.75ppm AFB1, 0.8ml aliquoted to sterile screw cap
Eppendorf tubes and incubated at 30°C for 24, 48, and 72h,
respectively. Standard 1 broth supplemented with AFB1 was
used as reference. After incubation AFB1 was extracted from
the extracellular fractions and quantified by HPLC. The
production of extracellular enzymes in the absence or
presence of AFB1 was also analyzed by fractionation of
extracellular proteins by SDS-PAGE. The following samples
were analyzed: (a) Standard 1 broth, (b) extracellular fraction
of a R. erythropolis culture, and (c) extracellular fraction of a
R. erythropolis culture supplemented with AFB1 and
incubated for 72h. The samples were concentrated by
ultrafiltration (Amicon ultrafiltration cell, molecular weight
cut-off of 10kDa) and a centrifugal filter device (molecular
weight cut-off of 10kDa). SDS-PAGE was done using
Coomassie staining, where after the protein profiles of the
different samples were compared.

The effect of protease treatment on the AFB1 degrading
ability of extracellular fractions of R. erythropolis was
determined by exposing the fraction to 1mg/ml proteinase K
(Roche Diagnostics, Basel, Switzerland; specific activity
≥30U/mg) for 1h at 37°C; 0.5mg/ml proteinase K plus 1%
SDS for 6h at 37°C; 1mg/ml proteinase K plus 1% SDS for 6h
at 37°C; and 1mg/ml proteinase K plus 1% SDS for 6h at 4°C.
After exposure the samples were supplemented with 1.75ppm
AFB1, aliquoted to sterile screw cap Eppendorf tubes and
incubated for 72h at 30°C. For reference purposes, untreated
extracellular fraction as well as Standard 1 broth was
supplemented with AFB1. After incubation AFB1 was extracted
from the samples with chloroform, dried under nitrogen gas,
suspended in methanol and spotted on silica gel TLC plates
(Merck, Darmstadt, Germany). TLC plates were developed in
chloroform:acetone (9 :1, v/v), where after they were examined
under UV light.

2.3. AFB1 extraction and chromatographic analysis

Aflatoxin B1 was three times extracted from samples with
chloroform (1 :1, v/v) as described by Teniola et al. (2005). The
chloroform was evaporated under nitrogen, the samples
dissolved in methanol, filtered (Millex-GV, Durapore,
0.22μm), and analyzed by HPLC. HPLC analysis was
performed through a guard column [LiChroCART 4-4 RP-C18
(5μm), Merck] followed by a LiChroCART RP-C18 [250-4
Hypersil ODS (5μm), Merck] column. The mobile phase was
acetonitrile :methanol :water (1 :1 :2, v/v/v) at a flow rate of
1ml/min. AFB1 was measured by UV (365nm) detection.

Since AFB1 could be degraded to water-soluble breakdown
products (Line et al., 1994), both the organic and inorganic
phases obtained from extraction were analyzed. HPLC
analyses of the inorganic phases were carried out as previously
described and UV absorbance was monitored between 200 and
400nm. TLC analysis was done on silica gel plates (solvent :
chloroform :acetone, 9 :1, v/v) as well as on C18 plates (Merck,
Darmstadt, Germany) (solvent :methanol : acetonitrile :water,
1 :1 :2, v/v/v). Plates were developed and examined under
UV light. The following samples were analyzed by ESMS and
LCMS: (a) AFB1 standard, (b) Standard 1 broth, (c) Standard 1
broth supplemented with AFB1 to 1.75ppm, and (d) AFB1

after treatment with R. erythropolis extracellular fraction for
72-h. The samples were extracted with chloroform, dried under
nitrogen, suspended in methanol :water (7 : 3, v/v) and
analyzed by ESMS (solvent :methanol :water, 7 :3, v/v) and
LCMS using a Phenomenex 2.0×150mm C18 column and
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methanol : acetonitrile :water (1 :1 :2, v/v/v) as solvent, at a
flow rate of 100μl/min.

2.4. The Ames test for mutagenicity

AFB1 samples were analyzed for loss of mutagenicity after
treatment with R. erythropolis extracellular fractions. Both the
organic and inorganic phases obtained from extraction were
analyzed. While the organic phases obtained from extraction
were evaporated under nitrogen, the inorganic phases were
lyophilized. The plate incorporation assay was done according
to the method described by Moron and Ames (1983).
Salmonella typhimurium TA100 was used as tester strain and
0.5ml of S9 liver enzyme fraction was added per plate for
metabolic activation. Dimethyl sulfoxide (DMSO) was used as
solvent for AFB1. Reference plates with and without AFB1

(10ng/plate) were included to determine the dose response.

2.5. Statistical analyses

Cross-classification ANOVA data analyses were done on the
response variable (AFB1 concentration or number of revertants)
over controls and times observed by using a compound
symmetry model among times (Dunn and Clark, 1987). A
significance level of 5% was used and Bonferroni multiple
comparisons were done when significant differences were
encountered. When responses for two times were compared or
when responses for control versus a time were compared, a
paired t-test was used.

3. Results and discussion

In this study, we investigated the biological degradation of
AFB1 in unconcentrated, cell-free, extracellular extracts of R.
erythropolis liquid cultures. Aflatoxin B1 was shown to be stable
over the 72h incubation period in Standard 1 broth as no
significant (Pb0.283) difference was observed between AFB1

reference samples after 0 and 72h (Fig. 1). However, a
significant (Pb0.001) reduction of AFB1 was observed from
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Fig. 1. AFB1 degradation in the presence of R. erythropolis extracellular fraction
after different time intervals (hatched bars). Untreated AFB1 after 72h was
included as reference sample (open bar).
0 to 72h when treated with R. erythropolis extracellular extracts.
A significant (Pb0.05) reduction in AFB1 was already observed
after 2h in the presence of R. erythropolis extracellular extracts
with only 33.2% residual AFB1 after 72h. These results were
confirmed by TLC analysis, showing a distinct decline in AFB1

fluorescence over the 72h incubation period while the AFB1

reference sample showed no loss in fluorescence (data not
shown).

With the aid of ESMS, AFB1 was identified at m / z=313 for
the protonated cation [M+H]+, m / z=335 for the sodiated
cation of AFB1 [M+Na]+, and at m / z=647 for the dimeric
cation [2 M+Na]+ (Fig. 2A). Standard 1 broth showed no
peaks with m / z values matching those of the three distinct
AFB1 peaks (data not shown), but Standard 1 broth supple-
mented with AFB1 clearly showed the sodiated and protonated
cations at m / z=335 and m / z=313, respectively (Fig. 2B). The
ESMS spectrum of AFB1 (1.75ppm) after 72h treatment with
the R. erythropolis extracellular fraction did not display any of
the distinct AFB1 peaks at m / z=313 or m / z=335 (Fig. 2C).
LCMS analysis of the treated sample showed that AFB1 was
still present, but at a much lower concentration than observed
for Standard 1 broth supplemented with AFB1. These results
confirm the degradation of AFB1 by R. erythropolis extracel-
lular fractions observed with HPLC and TLC quantification
techniques. Furthermore, HPLC, TLC, ESMS and LCMS
analyses could not reveal the formation of any breakdown
products suggesting that AFB1 was most likely metabolized to
degradation products with chemical properties different from
that of AFB1.

The biological degradation of AFB1 when treated with
R. erythropolis extracellular fractions coincided with a total loss
of mutagenicity of AFB1 and its breakdown products, as
evaluated by the Ames test for mutagenicity (Fig. 3). The
positive AFB1 reference produced a 2 fold dose–response when
compared with the negative reference (Fig. 3). Aflatoxin B1 was
stable throughout the assay as a high mutagenic response was
observed in the untreated AFB1 reference sample after
incubation for 72h at 30°C, which did not differ significantly
(Pb0.789) from the positive AFB1 reference at 0h. Aflatoxin
B1 samples treated with R. erythropolis extracellular extract
produced a high mutagenic response in the organic phase
samples at 0h, which did not differ significantly (Pb0.967)
with the positive reference. However, the mutagenic response
declined significantly (Pb0.001) from 0 to 72h. After 72h there
was no significant (Pb0.435) difference in mutagenic response
between negative reference samples and AFB1 samples treated
with R. erythropolis extracellular extracts. Furthermore, no
significant (Pb0.434) difference in mutagenic response was
observed when the inorganic phase samples were compared
with the negative reference.

A significant (Pb0.001) reduction of AFB1 was observed
when treated with R. erythropolis extracellular fractions,
whether they were pre-exposed to AFB1 or not (Fig. 4A).
Furthermore there was no significant (P=1) difference between
the two treatments. Degradation of AFB1 by the extracellular
fractions not pre-exposed to AFB1 suggests that the activity
responsible for its degradation is produced during the normal
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growth of the organism, indicating that the degradation is a
constitutive activity of R. erythropolis. The protein profiles
obtained from SDS-PAGE analysis of R. erythropolis extracel-
lular fractions, either pre-exposed to AFB1 or not, were similar
suggesting that no new prominent protein species were produced
due to exposure to AFB1 (Fig. 4B). These data confirm that
degradation of AFB1 is a constitutive activity of R. erythropolis.

We also investigated whether the degradation of AFB1 is
enzymatic, by evaluating the stability of the extracellular extract
of R. erythropolis after proteinase K treatment. Proteinase K
treated samples retained low AFB1 degradation activity, but
when SDS was added, the AFB1 degradation activity was
destroyed (no distinct loss of fluorescence was observed). The
untreated reference sample showed total loss of AFB1

fluorescence after 72h. These results indicated that enzymes
are involved in the degradation of AFB1 by extracellular
extracts of R. erythropolis.
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Fig. 4. (A) Biodegradation of AFB1 by R. erythropolis. Treatments include AFB1 d
Standard 1 broth without AFB1 (hatched bars) and (b) R. erythropolis pre-incubate
Medium supplemented with 1.75ppm AFB1 at 0h and after 72h is shown with open b
extracellular fraction (lane 2) and R. erythropolis extracellular fraction after being e
Degradation of AFB1 thus most probably occurred through a
cascade of enzyme reactions with loss of fluorescence over
time. If defining the collective AFB1-degrading enzymatic
activity units as μmole AFB1 degraded per min, the AFB1-
degrading enzyme activity was the highest (about 4.16mU/ml)
during the first hour of incubation (calculated from Fig. 1),
where after it decreased to about 0.53–0.75mU/ml after 72h
(calculated from Figs. 1 and 4). Various enzymes produced by
R. erythropolis are involved in the catabolic pathways of
aromatic compounds such as polychlorinated biphenyls (Haus-
child et al., 1996; Masai et al., 1995, 1997; Yamada et al., 1998).
These enzymes include ring cleavage biphenyl dioxygenases,
dihydrodiol dehydrogenases, and hydrolases. The genes coding
for these enzymes are clustered and degradation occurs via a
cascade of reactions. AFB1 is also a polyaromatic compound
and could be degraded in a similar manner.

The development of lactic acid bacteria and yeasts expres-
sing AFB1-degrading enzymes could especially be valuable in
the feed, food and fermentation industry (Karlovsky, 1999;
Holzapfel, 2002). Fermented food and beverages are an
important part of the diet of African people (Gadaga et al.,
1999; Gonfa et al., 2001; Jespersen, 2003). A wide selection of
alcoholic and non-alcoholic fermented food products (Haard et
al., 1999; Gadaga et al., 1999; Gonfa et al., 2001), mainly
produced from a variety of cereals, as well as fermented milk
products are produced commercially or on small-scale at
household level. As a result the products are of varying quality
and stability. The microorganisms involved are mainly lactic
acid bacteria (Lactobacillus spp.), yeasts (Saccharomyces
cerevisiae), moulds and acetic acid bacteria. In many cases
the raw material are sold in rural markets or home-grown and
aflatoxin contamination remains a major risk, especially in
stored cereals (Holzapfel, 2002). Furthermore, control measure-
ments for the maximum acceptable levels of mycotoxins in
cereals are inadequate in developing countries. However, with
the application of molecular biology techniques, microbial
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egradation by the extracellular fraction of (a) R. erythropolis pre-incubated in
d in Standard 1 broth supplemented with 1.75ppm AFB1 (cross-hatched bars).
ars. (B) SDS-PAGE protein profiles of Standard 1 broth (lane 1), R. erythropolis
xposed to AFB1 (lane 3). Lane M contains molecular markers.
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strains with multi-functional properties, including degradation
of AFB1, can be engineered to significantly improve the quality,
safety and acceptability of traditional fermented food and
beverages.
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5.1. Abstract 
 

Biological degradation of aflatoxin B1 (AFB1) by a recombinant 2,3-

dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD) enzyme of Rhodococcus erythropolis 

was investigated.  Rhodococcus spp. are capable of transforming a wide range of toxic 

aromatic xenobiotic compounds and several genes encoding enzymes responsible for the 

degradation of these compounds were previously characterized in Rhodococcus spp.  In 

this study recombinant 2,3-DHBD was produced through extracellular expression of the 

bphC1 gene of R. erythropolis in Escherichia coli BL21 (DE3).  A significant (P<0.0001) 

reduction in AFB1 concentration was observed following treatment with extracellular 

culture fractions containing recombinant 2,3-DHBD, with only 50.68% AFB1 remaining 

after 72 h.  The degradation of AFB1 coincided with a 42.47% loss of mutagenicity of 

AFB1 and its breakdown products as evaluated by the Salmonella typhimurium 

mutagenicity assay.  Treatment of AFB1 with extracellular culture fractions containing 

recombinant 2,3-DHBD significantly (P<0.001) reduced the fluorescence and mutagenic 

potency of the AFB1 molecule, indicating changes to the furofuran- or lactone rings. 
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5.2. Introduction 

 

Aflatoxins are mycotoxins produced by Aspergillus flavus, Aspergillus 

parasiticus, Aspergillus bombycis, Aspergillus nomius, Aspergillus ochraceoroseus, 

Aspergillus pseudotamarii and Aspergillus tamarii (Bhatnagar et al., 2003; Ito et al., 

2001; Mishra and Das, 2003).  The most potent aflatoxin, aflatoxin B1 (AFB1), is highly 

toxic and mutagenic to both humans and animals (Eaton and Gallagher, 1994; Mishra and 

Das, 2003) and classified as a type I human carcinogen by the International Agency for 

Research on Cancer (Wogan, 2000).  Hepatocellular carcinoma (HCC) is one of the most 

frequently occurring cancers in the world and was estimated to cause 250 000 deaths 

annually in Asia and Sub-Saharan Africa (Bennett et al., 1994; Mishra and Das, 2003; 

Wild and Hall, 2000).  The major risk factors for HCC are infection with the hepatitis B 

or C virus and dietary exposure to aflatoxin (Wild and Hall, 2000; Yabe and Nakajima, 

2004).  Metabolic activation of AFB1 by cytochrome P450 enzymes in the liver and 

kidney leads to the formation of reactive AFB1-8,9-epoxide (Minto and Townsend, 1997;  

Mishra and Das, 2003) that reacts covalently with N-7 of the guanine bases of DNA to 

form DNA adducts, which in turn cause further genetic changes and eventually malignant 

transformation (Smela et al., 2001). 

Aflatoxin contamination is found in up to 25% of the world’s food supply 

(Wild and Hall, 2000) causing a vast economical impact due to loss of crops, animals, 

costs for monitoring aflatoxin levels as well as a decline in the performance of farm 

animals (Maggon et al., 1977;  Trail et al., 1995).  Regulations regarding acceptable 

levels of aflatoxin in food have been implemented in nearly all countries (Mishra and 

Das, 2003).  However, control measurements for the maximum acceptable levels of 

mycotoxins in cereals are inadequate in developing countries (Trail et al., 1995).  

Aflatoxin contamination of food in these countries occurs predominantly in dietary 

staples and exceeds the regulatory limits for contamination of food by one or two orders 

of magnitude (Wild and Hall, 2000).  Fermented food and beverages are an important 

part of the diet of African and Asian people and are prepared from raw or heated maize, 

rice, sorghum, millet and milk (Gadaga et al., 1999; Gonfa et al., 2001; Jespersen, 2003).  

In many cases the raw material is sold in rural markets or home-grown where aflatoxin 
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contamination is a major risk, especially in stored cereals (Holzapfel, 2002).  While 

aflatoxins are seldom destroyed by normal industrial processing or cooking, fermented 

products prepared from cereals and milk are of varying quality and stability and daily 

exposure to low levels of aflatoxin is a cause for concern (Trail et al., 1995).  Therefore, 

methods to detoxify AFB1 in food sources are the focus of several research initiatives 

(Mishra and Das, 2003).  Since physical and chemical detoxification methods have not 

yet been proved to be economical and effective, biological detoxification methods offer 

an attractive alternative for eliminating toxins as well as safe-guarding the desired quality 

of food and feed, such as nutritive value and appearance (Mishra and Das, 2003). 

The only bacteria known to degrade AFB1 effectively are Nocardia 

corynebacteroides (Ciegler et al., 1996; Line et al., 1994) and 

Mycobacterium fluoranthenivorans (Hormisch et al., 2004), while AFB1 degradation by 

Corynebacterium rubrum was also observed (Mann and Rehm, 1977; Shih and Marth, 

1975).  Recently, effective degradation of AFB1 by intracellular as well as extracellular 

extracts prepared from liquid cultures of Rhodococcus erythropolis was reported 

(Alberts et al., 2006; Teniola et al., 2005).  Furthermore, treatment of AFB1 with the 

extracellular extract of a R. erythropolis liquid culture coincided with total loss in 

mutagenicity of AFB1 (Alberts et al., 2006). 

Rhodococcus spp. are aerobic gram-positive bacteria capable of transforming a 

wide range of toxic aromatic xenobiotic compounds (Kitagawa, et al., 2001; Sakai et al., 

2003) including nitro aromatic compounds (Kitova et al., 2004), polycyclic 

hydrocarbons, pyridine, steroids (Goodfellow, 1986) as well as AFB1 (Alberts et al., 

2006;  Teniola et al., 2005).  Gene clusters encoding multiple isozymes responsible for 

the degradation of several of these compounds were characterized in Rhodococcus spp. 

(Hauschild et al., 1996; Masai et al., 1995, 1997; Takeda et al., 2004; Yamada et al., 

1998).  The bphACB gene cluster in R. erythropolis RHA1 and TA421 encodes aromatic-

ring-hydroxylating dioxygenases, dihydriol dehydrogenases and biphenyl 2,3-

dioxygenases, which are key enzymes in the initial stepwise degradation of biphenyl, 

resulting in ring-cleavage of the molecule (Kahl and Hofer, 2003; Kosono et al., 1997; 

Pieper, 2005). 
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AFB1 is a polyaromatic heterocyclic molecule which harbours two key sites 

influencing its toxicological activity namely a furofuran- and a lactone ring 

(Heathcote and Hibbert, 1978; Mishra and Das, 2003) and ring-cleavage results in 

inactivation of the molecule (Liu et al., 1998 a,b,c).  The 2,3-dihydroxybiphenyl 1,2-

dioxygenase (2,3-DHBD) enzymes encoded by bphC in R. erythropolis, have broad 

substrate specificity, specifically catalyzing ring-cleavage of several polyaromatic 

biphenyl congeners (Ohtsubo et al., 2004; Takeda et al., 2004) and are therefore of 

relevance.  The present study investigates degradation of AFB1 by a recombinant 2,3-

DHBD of R. erythropolis through expression of the bphC1 gene in Escherichia coli BL21 

(DE3).  Moreover, the effect of 2,3-DHBD on the mutagenic potency of AFB1 was 

determined to assess the biological significance of the breakdown process. 

 

5.3. Materials and Methods 

 

5.3.1. Bacterial strains, growth conditions, and plasmids 
 

The R. erythropolis strain used in this study was isolated from polycyclic aromatic 

hydrocarbon contaminated soils by the Institute of Applied Microbiology, University of 

Saarbrücken, Germany and deposited under the restricted number DSM 14303 (Teniola 

et al., 2005).  Rhodococcus erythropolis was cultivated in Standard 1 broth (Goodfellow, 

1986) comprising of 1.5% (w/v) peptone, 0.3% (w/v) yeast extract, 0.6% (w/v) sodium 

chloride, and 0.1% (w/v) D (+)-glucose.  Escherichia coli strains BL21 (DE3) and DH5α 

were employed as host strains and cultivated in Luria-Bertani (LB) broth containing 

ampicillin (100 μg/ml).  Plasmids pDrive (Qiagen) and pET 11d (Stratagene) were used 

as cloning vectors. 

 

5.3.2. Cloning of the bphC1 gene 
 

Genomic DNA from R. erythropolis DSM 14303 was prepared according to the 

method described by Sambrook et al. (1989).  Primers BphC1-L and BphC1-R (Table 1), 
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containing Xhol restriction sites were designed to target the bphC1 gene sequence (NCBI 

accession number D88013).  A 911 bp Xhol-Xhol DNA fragment, containing the bphC1 

open reading frame, was amplified by PCR, inserted into the pDrive vector and the 

plasmid transformed into E. coli DH5α.  Plasmid DNA isolation from the transformants 

was done according to the method of Sambrook et al. (1989) and the resulting bphC1 

gene sequence verified using the dye terminator sequencing method and a 3130XL 

Genetic Analyser (Applied Biosystems).  A second PCR amplification was done using the 

pDrive-BphC1 plasmid as template and primers PhoA-BphC1-L and BphC1-R (Table 1) 

containing Nco1 and BamH1 restriction sites as well as a PhoA secretion signal.  The 990 

bp Ncol-BamHl fragment that codes for extracellular 2,3-DHBD activity was subcloned 

into the expression vector pET 11d predigested with Ncol and BamHl restriction 

enzymes.  The resulting plasmid was transformed into E. coli BL21 (DE3). 

 

5.3.3. Induction of 2,3-DHBD 
 

 Recombinant E. coli BL21 (DE3), harbouring the bphC1 gene, was cultivated in 

LB broth (100 ml) supplemented with ampicillin (100 μg/ml) on a shaker at 37ºC until an 

optical cell density (OD600) of 0.4-0.8 was reached.  Extracellular 2,3-DHBD was 

induced by adding isopropyl-β-D-thiogalactopyranoside (IPTG, 1 mM) to the culture and 

incubated for a further 24 h on a shaker at 25ºC.  The E. coli BL21 (DE3) host, lacking 

the gene, was included as reference.  To prepare the extracellular fraction, induced 

cultures were centrifuged (10 000 rpm for 10 min) and the supernatant lyophilized.  The 

intracellular fraction was prepared by suspending the residual cells in 100 ml TBS buffer 

(50 mM Tris-HCl, 150 mM NaCl, pH 7.5) followed by sonication (80% output;  3 times 

for 20 s with 20 s intervals), where after the disrupted cell suspension was centrifuged 

(10 000 rpm for 10 min) and the supernatant lyophilized.  The extra- and intracellular 

fractions were stored at -20ºC until employed in SDS-PAGE analyses and AFB1 

degradation experiments. 
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Table 1 

Oligonucleotides (Operon Biotechnologies) employed in PCR reactions 

 

 
Primer Name 
 

 
DNA Sequence 5’ to 3’ 

 

BphC1-L 

 

BphC1-R 

 

PhoA-BphC1-L 

 

GCTACCATGGCACACACCGACATCAAGG 

 

GCATGGATCCCTACATAGCTGCCAGTGGTT 

 

GCTACCATGGCAAAACAAAGCACTATTGCACTGGCACTC

TTACCGTTACTGTTTACCCCTGTGACAAAAGCAGATCTAC

ACACCGACATCAAGGG 

 

 

5.3.4. SDS-PAGE analysis 
 

The presence of 2,3-DHBD in induced recombinant E. coli BL21 (DE3) cultures 

was confirmed by fractionation of the extra- and intracellular proteins by SDS-PAGE.  

Extra- and intracellular fractions (10 mg) were dissolved in 20 μl distilled H2O, dialyzed 

(Millipore VSWP filters, 0.025 μm) and boiled.  A 0.1% SDS-10% PAGE analysis was 

performed using Coomassie brilliant blue R250 staining (Sambrook et al., 1989), where 

after the protein profiles were compared.  The following samples were analyzed:  (a) the 

extracellular fraction of a culture of E. coli BL21 (DE3) as reference host, (b) the extra- 

and (c) intracellular fractions of an induced culture of recombinant E. coli BL21 (DE3). 

 

5.3.5. Determination of enzymatic activity 
 

The 2,3-DHBD activity was determined according to the method described by 

Hauschild et al. (1996) by measuring the formation of meta-cleavage reaction products at 
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434 nm with a Genesys 20 spectrophotometer.  Assays were performed at 25ºC by using 

2,3-dihydroxybiphenyl (Wako Chemicals Co., Japan) as substrate.  A 100 mM stock 

solution of 2,3-dihydroxybiphenyl was prepared in ethanol and diluted with 20 mM Tris-

HCl buffer pH 7.5 to obtain the test solution (1 mM).  Lyophilized extracellular fractions 

obtained from induced cultures of recombinant E. coli BL21 (DE3) were dissolved in 

20 mM Tris-HCl buffer pH 7.5 (20 ml), where after 2,3-dihydroxybiphenyl (500 μM) 

was added and the formation of meta-cleavage reaction products monitored for 6 h.  One 

unit enzyme activity was defined as the amount of enzyme required to catalyze the 

formation of 1 μmol of product per min. 

 

5.3.6. AFB1 degradation 
 

The extracellular fractions obtained from induced cultures of recombinant E. coli 

BL21 (DE3) and the E. coli BL21 (DE3) reference host were suspended in distilled H2O 

(10 ml), supplemented with AFB1 to a final concentration of 1.75 μg/ml, aliquoted 

(0.8 ml) to sterile screw-cap Eppendorf tubes (Alberts et al., 2006) and incubated at 25ºC 

on a rotor wheel for 72 h.  Luria-Bertani broth supplemented with AFB1 was included as 

untreated control.  Following incubation, AFBB1 was extracted from the samples as 

described below.  The organic (CHCl3) and aqueous phases resulting from extraction 

were analyzed for AFB1, water-soluble and other breakdown products by employing high 

performance liquid chromatography (HPLC) and liquid chromatography mass 

spectrometry (LCMS) (Line et al., 1994). 

 

5.3.7. AFB1 extraction and chromatographic analyses 
 

Aflatoxin B1 was extracted from samples with chloroform (1:1, v/v) as described 

by Teniola et al. (2005).  The chloroform was evaporated under nitrogen, the dried extract 

dissolved in methanol and filtered (Millex-GV, Durapore, 0.22 µm). The aqueous phases 

resulting from the AFB1 extraction were lyophilized and stored at -20ºC until analyzed.  

HPLC analysis was performed using a guard column [LiChroCART 4-4 RP-C18 (5 µm), 

Merck] followed by a LiChroCART RP-C18 [250-4 Hypersil ODS (5 µm), Merck] 



 - 73 -

column.  The mobile phase was acetonitrile:methanol:water (1:1:2, v/v/v) at a flow rate of 

1 ml/min.  AFB1 was measured by UV (365 nm) detection using a diode-array detector 

(Waters model 911).  During HPLC analysis of the aqueous phases, UV absorbance was 

monitored between 200 and 400 nm to investigate the possibility that AFB1 could be 

degraded to water-soluble breakdown products (Line et al., 1994).  LCMS was done to 

detect the formation of breakdown products in both phases obtained from extraction.  

Separation was achieved on a mass spectrometer (Waters API Quattro Micro) fitted with 

a gradient HPLC (Waters Alliance 2690) and a Luna C5 [150x2mm (5μm), Merck] 

column by using a gradient mobile phase from 0.1% formic acid to methanol over 

18 min. 

 

5.3.8. Salmonella typhimurium mutagenicity assay 

 

5.3.8.1. Preparation of mutagens.  A stock solution (2 μg/ml) of AFB1 was 

prepared in dimethyl sulfoxide (DMSO) and diluted to obtain a standard test solution 

(0.1 μg/ml).  In the mutagenicity assay the standard test solution was added to a 

concentration of 10 ng AFB1/plate to obtain a 2- to 3-fold mutagenic response as 

compared to the background revertant count.  Untreated control AFB1 samples from the 

2,3-DHBD degradation experiments, containing 1.75 μg/ml AFB1, were also diluted in 

DMSO to 0.1 μg/ml. The organic phases of the 2,3-DHBD treated AFB1 samples were 

evaporated to dryness while the aqueous phases were lyophilized as described above.  

These samples were diluted in a similar volume of DMSO as the untreated control AFBB1 

samples.  An equivalent volume (0.1 ml/plate) of the standard AFB1 test solution, the 

untreated AFB1 control and the 2,3-DHBD treated AFB1 samples were used in the 

mutagenicity assay. 

5.3.8.2. Mutagenicity assay.  The plate incorporation assay was performed 

according to the method described by Moron and Ames (1983) using Aroclor 1254 

induced S9 homogenate (0.7 nmole cytochrome P450/mg protein) for metabolic 

activation of AFB1.  Salmonella typhimurium TA100 was used as tester strain and 0.5 ml 

of S9 mixture containing 2 mg protein of the liver homogenate per ml was added per 
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plate.  The different samples were subjected to mutagenicity testing and a loss in 

mutagenicity interpreted as a measure of 2,3-DHBD breakdown of AFB1. 

 

5.3.9. Statistical analyses 
 

Cross classification ANOVA data analyses were done on the response variable 

observed (AFB1 concentration or number of revertants) over untreated AFB1 control- and 

time values by using a compound symmetry model (Dunn and Clark, 1987).  A 

significance level of 5% was used and Bonferroni multiple comparisons were done when 

significant differences were encountered.  When response for two time values were 

compared or when responses for untreated AFB1 control values versus a time value were 

compared, a paired t-test was used. 

 

5.4. Results and Discussion 

 

Ring-cleavage of biphenyl compounds by Rhodococcus sp. RHA1 is dependable 

on bphACB genes encoding 2,3-DHBDs (Masai et al., 1997).  Genes encoding enzymes 

for biphenyl catabolism are diverse and mainly positioned on linear plasmids in several 

Rhodococcus spp., including R. erythropolis, Rhodococcus opacus and 

Rhodococcus fascians (Maeda et al., 1995; Shimizu et al., 2001).  Likewise, three of 

seven bphC genes encoding 2,3-DHBDs characterized in R. erythropolis TA 421 are 

located on a linear plasmid, while bphC1 is located on the chromosome and therefore 

may have other functions apart from biphenyl degradation and needs to be genetically 

more stable (Kosono et al., 1997). 

Genomic DNA from R. erythropolis DSM 14303 was isolated and used as 

template for PCR amplification to target the bphC1 gene.  The 911 bp Xho1-Xho1 

fragment obtained from the PCR amplification displayed 98% homology with the gene 

sequence of bphC1 of R. erythropolis TA421 (NCBI accession number D88013).  The 

PCR product was ligated into vector pDrive and transformed into E. coli DH5α.  

Subsequently the 990 bp Ncol-BamHl fragment obtained by fusing a PhoA secretion 



 - 75 -

signal to the bphC1 gene was ligated into vector pET 11d and transformed into E. coli 

BL21 (DE3). 

Recombinant extracellular 2,3-DHBD was effectively induced with IPTG (1 mM) 

in liquid cultures of recombinant E. coli BL21 (DE3) and the proteins present in the 

extracellular fraction analyzed by SDS-PAGE (Fig. 1).  Extracellular proteins obtained 

from recombinant E. coli BL21 (DE3) (Fig. 1, lane 3) have shown distinct protein species 

greater than 35 kDa which correspond to the predicted molecular weight (36 kDa) of the 

bphC1 protein, while these protein species were absent in the reference host (lane 2).  

Furthermore, no foreign protein species were observed in the intracellular fraction 

obtained from recombinant E. coli BL21 (DE3) (data not shown), indicating that 

insoluble inclusion bodies have not formed during induction of the bphC1 gene. 

Enzymatic activity assays using 2,3-dihydroxybiphenyl as substrate confirmed 

extracellular 2,3-DHBD activity (34 mU/L) in IPTG induced liquid cultures of 

recombinant E. coli BL21 (DE3).  Enzymatic activity was also measured with the 

growing cell assay (Kitagawa et al., 1996), though no meta-cleavage products could be 

detected.  Although the formation of meta-cleavage reaction products during treatment 

with recombinant 2,3-DHBD encoded by bphC1 were low, similar results were reported 

following treatment of 2,3-dihydroxybiphenyl with enzymes encoded by bphACB of 

R. erythropolis RHA1 expressed in E. coli, even when induced by strong promoters and 

detected by SDS-PAGE (Maeda et al., 1995;  Masai et al., 1995; Sakai et al., 2002).  

However, when 2,3-dihydroxybiphenyl was treated with a combination of enzymes 

encoded by bphB and bphC as well as bnzA of Pseudomonas putida BE-81, distinct 

meta-cleavage reaction products were detected (Masai et al., 1995).  Furthermore, 

intermediate metabolites that accumulate during degradation of polyaromatic compounds 

may inhibit the activity of 2,3-DHBD towards its substrate (Hauschild et al., 1996). 

Aflatoxin B1 was shown to be stable over the 72 h incubation period in LB broth 

as no significant difference (P>0.05) was observed between untreated AFB1 control 

samples at 0 h and 72 h (Fig. 2).  However, a significant (P<0.0001) reduction in AFB1 

concentration was observed in the organic phase samples when AFB1 was treated with 

extracellular fractions containing recombinant 2,3-DHBD, with only 50.68% AFB1 

remaining after 72 h.  Extracellular fractions from the reference host have shown no 
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significant difference (P>0.05) with the untreated AFB1 control samples.  Furthermore, 

no AFB1 was present in the aqueous phase samples. 
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Fig. 1.  SDS-PAGE protein profiles of extracellular fractions of E. coli BL21 (DE3) 

liquid cultures containing recombinant 2,3-DHBD.  Lane M, molecular markers; lane 1, 

extracellular fraction of the E. coli BL21 (DE3) host lacking the enzyme; lane 2, 

extracellular fraction of recombinant E. coli BL21 (DE3) expressing extracellular 2,3-

DHBD activity. 
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With the aid of LCMS, AFB1 was identified at m/z=313 for the protonated cation 

[M+H]+, m/z=335 for the sodiated cation of AFB1 [M+Na]+, and at m/z=647 for the 

dimeric cation [2M+Na]+(data not shown).  Luria-Bertani broth supplemented with AFB1 

clearly showed the sodiated and protonated cations at m/z=335 and m/z=313, 

respectively.  LCMS analyses of the sample treated with extracellular extracts containing 

recombinant 2,3-DHBD have shown that AFB1 was still present, but at lower 

concentrations than the untreated AFB1 controls.  These results confirm the degradation 

results obtained with HPLC. 

The decrease in fluorescence of the AFB1 molecule observed with HPLC and 

LCMS indicates changes to the lactone ring (Liu et al., 1998 a,b,c).  The 2,3-DHBDs 

catalyze several ring-cleavage reactions by the addition of two hydroxyl groups to 

carbons and consequently the formation of dihydriol compounds, thus affecting the 

fluorescence and toxicity properties of the treated polyaromatic molecule (Kosono et al., 

1997).  The α-subunits of the 2,3-biphenyl dioxygenase enzymes were found to be 

crucially responsible for recognition and binding of the substrates (Pieper, 2005).  

Furthermore, HPLC analyses could not reveal the formation of any structural analogues 

resulting from the degradation of AFB1.  LCMS of AFB1 samples treated with 

extracellular extracts containing recombinant 2,3-DHBD revealed the potential formation 

of an unknown compound in the organic phase samples, that was not present in the 

untreated controls and the aqueous phase samples.  However, further studies involving 

the use of radio-labelled AFB1 will be required to confirm the presence of the breakdown 

product and support characterization of the compound. 
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Fig. 2.  Biological degradation of AFBB1 by extracellular fractions prepared from E. coli 

BL21 (DE3) liquid cultures containing recombinant 2,3-DHBD, as determined by HPLC 

of the organic phase samples.  Untreated AFB1 samples representing incubation periods 

of 0 h and 72 h and the extracellular fractions of the E. coli BL21 (DE3) host, lacking the 

enzyme, were included as controls.  Treatments represent the means of triplicate 

determinations and differ significantly (P<0.05) when letters differ. 
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The biological degradation of AFB1, when treated with extracellular fractions 

containing recombinant 2,3-DHBD, coincided with a 42.47% loss of mutagenicity of 

AFB1 and its breakdown products as evaluated by the Salmonella typhimurium 

mutagenicity assay (Fig. 3).  The positive AFBB1 test control produced a 3-fold dose-

response when compared with the baseline revertant counts (data not shown).  Aflatoxin 

B1B  treated with extracellular fractions containing recombinant 2,3-DHBD have shown a 

typical dose response effect regarding the loss of mutagenicity of AFB1 in the organic 

phase samples (Fig. 3).  Significantly (P<0.0001) lower mutagenic response was 

displayed by samples treated with extracellular fractions containing recombinant 2,3-

DHBD as compared to the untreated control AFBB1 samples at 0 h and the E. coli BL21 

(DE3) host samples.  Furthermore, no significant (P>0.05) difference in mutagenic 

response was observed between the aqueous phase samples and the baseline revertant 

counts. 

Treatment of AFB1 with extracellular fractions containing bphC1 encoded 2,3-

DHBD produced by recombinant E. coli BL21 (DE3) had significantly (P<0.001) 

reduced the fluorescence and mutagenic potency of the AFB1 molecule, indicating 

changes to the furofuran- or lactone rings (Liu et al., 1998 a,b,c,).  While complete 

degradation of polyaromatic compounds is accomplished through a cascade of reactions, 

more efficient meta-cleavage is obtained when treated with a combination of enzymes 

(Hauschild et al., 1996).  Therefore, co-expression of bphC encoded dioxygenases with 

etbC of R. erythropolis, bnzA of P. putida BE-81, or the application of multiple bphC 

dioxygenases containing different substrate specificities, will have an advantage in the 

degradation of polyaromatic compounds such as AFB1.  The current study laid the 

foundation for future work towards the treatment of AFB1 with a combination of bph 

encoded enzymes in order to reduce AFB1 concentrations to a level which coincides with 

total loss of mutagenicity.  Furthermore, microbial strains expressing multiple AFB1 

degrading enzymes could support the development of commercial additives based on 

cultures or enzymatic preparations capable of degrading AFB1 in the feed, food and 

fermentation industry. 
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Fig. 3.  Mutagenicity of AFB1 following treatment with extracellular fractions prepared 

from E. coli BL21 (DE3) liquid cultures containing recombinant 2,3-DHBD, as 

determined with the Salmonella typhimurium mutagenicity assay.  The mutagenicity of 

the organic and aqueous phases is the means of five determinations.  Untreated AFB1 

samples representing incubation periods of 0 h and 72 h and the extracellular fractions of 

the E. coli BL21 (DE3) host, lacking the enzyme, were included as controls.  Treatments 

differ significantly (P<0.05) when letters differ. 
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6.1. Abstract 
 

The enzymatic degradation of aflatoxin B1 (AFB1) by white rot fungi as a function of 

laccase production was investigated in different liquid media.  A significant (P<0.0001) 

correlation was observed between laccase activity and AFB1 degradation exhibited by 

Peniophora sp. and Pleurotus ostreatus cultivated in MSM (r=0.93) and MSB-MEB 

(r=0.77) liquid media.  Extracellular extracts of Peniophora sp. cultured in MSB-MEB 

medium supplemented with veratryl alcohol and sugarcane bagasse produced high 

laccase activity (496 U/L) and 40.45% AFB1 degradation as monitored by HPLC.  In 

addition, extracellular extracts of P. ostreatus grown in MSM medium supplemented with 

veratryl alcohol resulted in a laccase activity of 416.39 U/L and 35.90% degradation of 

AFB1.  AFB1 was significantly (P<0.0001) degraded when treated with purified laccase 

enzyme from Trametes versicolor (1 U/ml, 87.34%) as well as with recombinant laccase 

produced by Aspergillus niger (118 U/L, 55%).  Aflatoxin B1 degradation by laccase 

enzyme from T. versicolor and recombinant laccase enzyme produced by A. niger 

coincided with significant (P<0.001) loss of mutagenicity of AFB1, as evaluated by the 

Salmonella typhimurium mutagenicity assay.  The degradation of AFB1 by white rot 

fungi could be an important bio-control measure to reduce the level of this mycotoxin in 

food commodities. 
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6.2. Introduction 

 

Aflatoxins are difuranocoumarin derivates (Minto and Townsend, 1997;  Payne and 

Brown, 1998) predominantly produced as secondary metabolites by the filamentous fungi 

Aspergillus flavus and Aspergillus parasiticus (Diener et al., 1987; Kurtzman et al., 1987;  

Pitt, 2000).  Other Aspergillus spp. producing aflatoxin include Aspergillus nomius, 

Aspergillus tamarii (Goto et al., 1996, 1997) and Aspergillus pseudotamarii (Ito et al., 

2001).  Aflatoxin B1, the most abundant aflatoxin, is highly mutagenic, toxic, 

carcinogenic and teratogenic to humans and animals.  Aflatoxin contamination of feed 

and foodstuffs is responsible for significant economic losses due to loss of crops and 

animals (Eaton and Gallagher, 1994; Mishra and Das, 2003; Pitt, 2000) and in some years 

estimated losses ranged between $85 to $100 million in certain states of the United States 

of America (Yabe and Nakajima, 2004).  In parts of Africa, China and South East Asia 

aflatoxin contamination is correlated with the incidence of liver cancer.  In this regard 

aflatoxin is classified as a type I human carcinogen by the International Agency for 

Research on Cancer (Wogan, 2000). 

Fermented food and beverages are an important part of the diet of African and 

Asian people and a wide selection of alcoholic and non-alcoholic fermented food 

products (Gadaga et al., 1999; Gonfa et al., 2001; Jespersen, 2003) prepared from cereals 

and milk are produced commercially or on household level.  Milk produced by 

smallholders is usually processed on the farms using traditional dairy technology, while 

cereals are obtained from rural markets or home-grown (Holzapfel, 2002).  As a result the 

products are of varying quality and stability.  Most food are exposed to aflatoxigenic 

fungi at some stage of production, processing, transportation and storage making 

aflatoxin contamination therefore a major risk to human health.  A typical example was 

the recent outbreak of aflatoxicosis in rural Kenya resulting in many clinical cases and 

even deaths, after the ingestion of maize containing levels up to 1000 ppb AFB1 (Lewis 

et al., 2005). 

Reduction of AFB1 in food sources by various decontamination procedures has 

been a topic of many research initiatives.  However, inactivation of aflatoxin in food and 

feed by physical and chemical methods has not yet proved to be effective and 
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economically feasible (Mishra and Das, 2003).  In contrast, biological detoxification 

offers an attractive alternative for eliminating toxins as well as safe-guarding the desired 

quality of food and feed.  In recent years it became clear that fungi play a major role in 

the degradation of AFB1.  The biosynthesis of AFB1 by cultures of A. flavus and 

A. parasiticus reaches a maximum, where after it is degraded, presumable under nitrogen-

limiting conditions (Hamid and Smith, 1987; Huynh and Lloyd, 1984; Shih and Marth, 

1975).  Other fungi that have been implicated in AFB1 degradation include zygomycetous 

fungi (Rhizopus sp. and Mucor sp.), ascomycetous fungi (Aspergillus niger and 

Trichoderma sp.), plant pathogens (Phoma sp. and Alternaria sp.) as well as 

basidiomycetous fungi (Armillariella tabescens and other white rot fungi) (Leonowicz 

et al.; 1999;  Liu et al., 1998 a,b,c;  Nakazato et al., 1990; Shantha, 1999;  Shantha et al., 

1990; Yao et al., 1998). 

The current approach to the biological degradation of AFB1 is based on the 

microbial processes involved in the degradation of complex organic aromatic compounds 

such as lignin.  When considering polyphenolic compounds in nature, lignin is 

undoubtedly the most abundant and possibly also the most heterogeneous and recalcitrant 

compound to be degraded microbially (de Jongh et al., 1994).  However, microbial 

communities have developed means that can effectively degrade this complex compound 

to CO2 and H2O.  It is important to note that lignin is not necessarily completely 

degraded.  Different microbial consortia are responsible for initially opening the lignin 

structure, depolymerisation of the complex compounds and finally mineralization of the 

more recalcitrant phenolic compounds.  There are indications that Aspergillus spp. in 

conjunction with white rot fungi may be actively involved in lignin degradation (Duarte 

and Costa-Ferreira, 1994), while bacteria are primarily secondary scavengers of the 

degradation products.  When the degradation of polyphenolic xenobiotics are considered, 

fungi again feature as one of the major groups responsible for their degradation, 

presumably due to the large repertoire of extracellular enzymes produced by these fungi 

(Armstrong and Patel, 1994;  Hammel, 1995;  Higson, 1991; Singh et al., 1991). 

As white rot fungi have the potential to degrade lignin as well as a wide range of 

polycyclic aromatic hydrocarbons (Baldrian et al., 2000), their role in the degradation of 

other carcinogens, such as AFB1 is not known at present. The unique mechanisms 
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whereby these white rot fungi cause lignin degradation involve enzymes such as 

peroxidases (lignin- and Mg-peroxidases) and laccases (Cullen and Kersten, 1996) and 

are therefore of relevance. 

In this study, laccase production and AFB1 degradation by white rot fungi in 

liquid media were investigated. The effect on the mutagenic potency of the mycotoxin 

and possible breakdown products was also monitored to evaluate the biological relevance 

of the breakdown process. 

 

6.3. Materials and Methods 
 

Fungal strains 
 

The fungal strains used in experiments are listed in Table 1.  The strains are part of a 

fungal culture collection belonging to the Microbiology Department of the University of 

Stellenbosch, Stellenbosch, South Africa.  Cultures were maintained on malt extract agar 

plates. 

 

Culture media and agar plates 
 

GPY medium (Motomura et al., 2003).  Glucose (1%, w/v), malt extract (1%, w/v) and 

yeast extract (0.4%, w/v).  Liquid MSM medium.  Sucrose (2%, w/v), yeast extract (0.3%, 

w/v), NH4SO4 (0.45%, w/v), KH2PO4 (0.3%, w/v), MgSO4.7H2O (0.1%, w/v), citric acid 

(0.025%, w/v), CaCl2.2H2O (0.005%, w/v) and trace elements.  The pH of the medium 

was adjusted to 5.5.  The medium was supplemented with veratryl alcohol (1 mM) after 

48 h of incubation.  Liquid MSB-MEB medium (Arora and Gill, 2000). Glucose (1%, 

w/v), KH2PO4 (0.2%, w/v), MgSO4.7H2O (0.05%, w/v), CaCl2.2H2O (0.01%, w/v), 

thiamine HCl (0.0001%, w/v), ammonium tartrate (0.02%, w/v), malt extract broth 

(0.5%, w/v) and trace elements.  The medium was supplemented with veratryl alcohol (1 

mM) and sugar cane bagasse (1%, w/v) after 48 h of incubation.  Liquid wheat straw 

medium (WSM).  Wheat straw (2%, w/v), YNB with amino acids (0.67%, w/v), L-

asparagine (0.2%, w/v), and KH2PO4 (0.5%, w/v).  Liquid minimal medium (Punt 
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and van den Hondel, 1992).  Sucrose (10%, w/v), casamino acids (0.04%, w/v), yeast 

extract (0.1%, w/v), MgSO4.7H2O (0.08%, w/v), NaNO3 (1.2%, w/v), KH2PO4 

(0.3%, w/v), and trace elements.  Poly R-478 agar plates.  Potato dextrose agar (PDA) 

supplemented with Poly R-478 (0.01%, w/v) (Sigma-Aldrich Cat. no. P-1900). 

 

Determination of enzymatic activity 
 

Laccase activity was determined according to the method described by Jönsson et al. 

(1997) by measuring the formation of oxidation products at 434 nm with a Genesys 20 

spectrophotometer.  Assays were performed at 25ºC by using 1.6 mM 2,2’-azino-di-3-

ethylbenzthiazoline sulfonate (ABTS) as substrate. Extracellular extracts of fungal 

cultures were 50-fold diluted in 50 mM sodium acetate buffer (pH 5.2), where after 

0.5 ml was combined with distilled water (0.5 ml) and 200 mM sodium acetate buffer 

(pH 5.2, 0.5 ml).  ABTS (1.6 mM, 0.5 ml) was added to the assay mixture and the 

formation of oxidation products monitored for 10 min.  One unit enzyme activity was 

defined as the amount of enzyme required to oxidise 1 μmol of ABTS per minute. 

 

Degradation of Poly R-478 

 

Decolourization of Poly R-478 by fungal strains (Table 1) was evaluated by inserting a 

9 mm mycelium covered agar plug from a fresh fungal culture, in the centre of a Poly R-

478 agar plate (Novotny et al., 2001).  Plates were incubated at 25°C for 21 d and 

examined for zones of decolourization.  Fungi able to decolourize Poly R-478 effectively 

were used in subsequent AFB1 degradation experiments. 

 

Degradation of AFB1 by extracellular extracts of white rot fungi 
 

Pleurotus ostreatus, Peniophora sp., Phanerochaete chrysosporium, and 

Bjerkandera adusta (Table 1) were cultivated in 100 ml of GPY (Motomura et al., 2003), 

MSM, MSB-MEB (Arora and Gill, 2000) and WSM liquid media for 10 d at 25ºC on a 

shaker (100 rpm).  Cell-free extracellular extracts were prepared by filtering cultures 
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through miracloth (Calbiochem biosciences Inc., La Jolla, CA, USA) followed by a 

0.22 μm filter (Millex-GV, Durapore) and the laccase activity determined (Jönsson et al. 

1997).  For degradation experiments a stock solution (100 μg/ml) of AFB1 (Sigma-

Aldrich Cat. no. A 6636) was used to supplement the extracellular extracts to a final 

concentration of 1.4 μg/ml (Teniola et al., 2005).  Laccase activity (U/ml) in extracellular 

extracts used for degradation experiments ranged between 0.001 and 0.496 (Table 2).  

Extracts were aliquoted (0.8 ml) in screw-cap Eppendorf tubes and incubated at 30ºC on 

a rotor wheel for 72 h.  Untreated AFB1 samples were included as control samples.  

Following incubation, AFB1 was extracted from the samples and quantified by HPLC as 

described below. 

 

Degradation of AFB1 by concentrated extracellular extracts 

 

Pleurotus ostreatus and Peniophora sp. (Table 1) were cultivated in 100 ml of MSM and 

MSB-MEB (Arora and Gill, 2000) liquid media for 10 d at 25ºC on a shaker (100 rpm).  

Cell-free extracellular extracts were prepared (as described above) and 10-fold 

concentrated by ultrafiltration (Amicon ultrafiltration cell, Mr cut off 10 kDa) while 

washing with distilled water, where after the laccase activity was determined.  For 

degradation experiments concentrated extracellular extracts were supplemented with 

AFB1 to a final concentration of 1.4 μg/ml, aliquoted (0.8 ml) to sterile screw-cap 

Eppendorf tubes and incubated at 30°C on a rotor wheel for 72 h as described above.  

Laccase activity (U/ml) in concentrated extracellular extracts used for degradation 

experiments ranged between 0.176 and 2.766 (Table 2).  AFB1 incubations in the absence 

of the extracts were included as control samples.  Following incubation, AFB1 was 

extracted from the samples and quantified by HPLC as described below. 

 

Degradation of AFB1 by purified fungal laccase enzyme 
 

Degradation experiments were carried out in 0.2 M phosphate buffer pH 6.5, using 

purified laccase enzyme produced by Trametes versicolor (Sigma-Aldrich Cat. no. 

38429, specific activity ≥ 0.5 U/mg).  AFB1 was prepared to a final concentration of 
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1.4 μg/ml (as described above) in the phosphate buffer, where after laccase was added to 

obtain solutions with different enzyme activities (0.05, 0.25, 0.5, 0.75, 1 U/ml).  Samples 

were aliquoted (0.8 ml) to sterile screw-cap Eppendorf tubes and incubated at 30°C on a 

rotor wheel for 72 h.  Untreated AFB1 samples at 0 h and 72 h were included as control 

samples.  Following incubation, samples were extracted (as described below) and the 

organic (CHCl3) and aqueous phases analyzed by HPLC, ESMS and LCMS for AFB1, 

water-soluble breakdown (Line et al., 1994) and polymerised products (Aktas and 

Tanyolac, 2003; Claus, 2004; Mattinen et al., 2005).  Aliquots of the different samples 

were also analyzed for mutagenicity as described below. 

 

Degradation of AFB1 by recombinant laccase produced by A. niger 
 

Recombinant A. niger (D15-Lcc2#3), harbouring the lcc2 gene encoding laccase (Bohlin 

et al., 2006), was inoculated (1 x 106 spores/ml) in 25 ml liquid minimal medium (Punt 

and van den Hondel, 1992) and incubated at 30°C on a shaker (100 rpm) for 10 d.  Cell-

free extracellular culture extracts were prepared by filtration as described above, the 

laccase activity determined and extracellular extracts supplemented with AFB1 to a final 

concentration of 1.4 μg/ml (as described above).  Extracellular extracts, containing 

0.118 U/ml laccase activity, were aliquoted (0.8 ml) to sterile screw-cap Eppendorf tubes 

and incubated at 30ºC on a rotor wheel for 72 h as described above.  The A. niger host 

strain, lacking the lcc2 gene, as well as untreated AFB1 samples at 0 h and 72 h were 

included as control samples.  Following incubation, AFB1 was extracted from samples (as 

described later) and the organic and aqueous phases analyzed by HPLC.  Aliquots of the 

different samples were also analyzed for mutagenicity as described below. 

 

AFB1 extraction and chromatographic analyses 

 

AFB1 was extracted from the extracellular extracts with chloroform (Teniola et al., 2005), 

and the solvent evaporated under nitrogen. The dried extract was dissolved in methanol 

and filtered (Millex-GV, Durapore, 0.22 µm).  The aqueous phases resulting from the 

AFB1 extraction were lyophilized and stored at -20°C until analyzed.  HPLC analysis was 
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performed utilising a LiChroCART 250-4 Hypersil ODS (5 µm) column, with a guard 

column [LiChroCART 4-4 RP-C18 (5 µm)] and acetonitrile:methanol:water (1:1:2, v/v/v) 

as the mobile phase at a flow rate of 1 ml/min.  AFB1 was measured by UV (365 nm) 

detection using a diode array detector (Waters model 996).  During HPLC analysis of the 

aqueous phases, UV absorbance was monitored between 200 and 400 nm.  ESMS 

(solvent: methanol: water, 7:3, v/v) and LCMS (solvent: methanol:acetonitrile:water, 

1:1:2, v/v/v) were done using a Phenomenex 2.0 x 150 mm C18 column and a flow rate of 

100 µl/min to detect the formation of possible breakdown products. 

To investigate the possibility of AFB1 polymerisation during treatment with the 

laccase enzyme (Aktas and Tanyolac, 2003; Mattinen et al., 2005), the organic and 

aqueous samples were analyzed by ESMS and HPLC.  ESMS was done by direct infusion 

(solvent: acetonitrile:water, 1:1, v/v; formic acid, 0.1%) at a flow rate of 150 µl/min.  

HPLC analyses were performed by using a gradient mobile phase from 

acetonitrile:methanol:water (1:1:2, v/v/v) to acetonitrile while the UV absorbance was 

monitored between 200 and 400 nm. 

 

Salmonella typhimurium mutagenicity assay 

 

(i) Preparation of samples.  A stock solution (2 μg/ml) of AFB1 was prepared in dimethyl 

sulfoxide (DMSO) and diluted to obtain a standard test solution (0.1 μg/ml).  In the 

mutagenicity assay the standard test solution was added to a concentration of 

10 ng AFB1/plate to obtain a 2- to 3-fold mutagenic response as compared to the 

background revertant count.  Untreated control AFB1 samples from the laccase 

degradation experiments, containing 1.4 μg/ml AFB1, were also diluted in DMSO to 0.1 

μg/ml.  The organic phases of the laccase treated AFB1 samples were evaporated to 

dryness while aqueous phases were lyophilized as described above.  These samples were 

diluted in a similar volume of DMSO as the untreated control AFB1 samples. An 

equivalent volume (0.1 ml/plate) of the standard AFB1 solution, the untreated AFB1 

control and the laccase treated AFB1 samples were used in the mutagenicity assay. 

(ii) Mutagenicity assay.  The plate incorporation assay was performed according 

to the method described by Moron and Ames (1983) using Aroclor 1254 induced S9 liver 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Aktas+N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Tanyolac+A%22%5BAuthor%5D
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homogenate (0.7 nmole cytochrome P450/mg protein) for metabolic activation of AFB1.  

Salmonella typhimurium TA100 was used as tester strain and 0.5 ml of S9 mixture 

containing 2 mg protein of the liver homogenate per ml was added per plate.  The 

different samples were subjected to mutagenicity testing and a loss in mutagenicity taken 

as a measure of enzymatic breakdown of AFB1. 

 

Statistical analyses 

 

Cross classification ANOVA data analyses were done on the response variable (AFB1 

concentration or number of revertants) observed over untreated AFB1 control- and time 

values by using a compound symmetry model (Dunn and Clark, 1987).  A significance 

level of 5% was used and Bonferroni multiple comparisons were done when significant 

differences were encountered.  When responses for two time values were compared or 

when responses for a control value versus a time value were compared, a paired t-test was 

used.  Laccase activity and AFB1 degradation were compared by using Spearman rank 

correlation. 

 

6.4. Results and Discussion 
 

A wide range of fungi, including white rot fungi (Table 1), were examined for their 

ability to produce laccase enzyme and degrade AFB1.  Degradation of the polymeric dye 

Poly R-478 is a valuable tool to screen for laccase activity (Kiiskinen et al., 2004) and for 

selecting promising polycyclic aromatic hydrocarbon degrading fungi (Field et al., 1992).  

Aflatoxins are difuranocoumarin derivatives and are structurally related to Poly R-478.  

Since the production of laccase enzymes and the resulting degradation of Poly R-478 

might coincide with degradation of AFB1, we screened the fungi for their ability to 

decolourize Poly R-478 (Table 1).  Pleurotus ostreatus, Peniophora sp., 

P. chrysosporium, and B. adusta sp. degraded Poly R-478 the most effectively and 

therefore, were used in the subsequent AFB1 degradation experiments. 
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Table 1.  Decolourization of Poly R-478 by fungi cultivated on Poly R-478 agar 

plates. 

 

Fungal strain 
 

Strain nr. 
 

 
Poly R-478 
Decolourization 
 

Bjerkandera adusta SCC0169 ++ 
Cariolus versicolor  K13-1 + 
C. versicolor  K13-2 + 
C. versicolor  K12-1-2 + 
C. versicolor  K12-2 + 
Coriolus pubescens SCC0347 -/+ 
Coriolus zonatus SCC0053 - 
Cryptococcus laurentii 1f - 
Cryptococcus podzolicus 5a - 
Daedalea quercina K8-5 - 
Flammulina velutipes S7-1 - 
Ganoderma applanatum  SCC0182 -/+ 
Laetiporus sulphurous SCC0180 + 
Lentinus edodes S1-2 - 
Lenzites betulina  SCC0382 + 
Penicillium candidum PC 1 - 
Penicillium citrinum  Abo 491 - 
Penicillium janthinellum Abo 34 - 
Penicillium sp  Abo 268 + 
Penicillium sp  Abo 269 + 
Penicillium sp  Abo 272 + 
Penicillium sp  Abo 275 - 
Penicillium sp  Abo 486 - 
Penicillium sp Abo 487 + 
Penicillium sp Unk 1 -/+ 
Penicillium sp  Unk 2 + 
Penicillium variable  Abo 499 - 
Peniophora sp. SCC0152 ++ 
Phanerochaete chrysosporium ME-446 ++ 
Pleurotus  florida  S10-2 + 
Pleurotus  pulmonarius  S11-1-2 - 
Pleurotus djamor  Ab0 284 + 
Pleurotus ensyngii  S5-1 + 
Pleurotus ostreatus  St2-3 ++ 
Poria sp.  SCC0124 + 
Pycnoporus coccineus  SCC0041 + 
Pycnoporus sanguineus PPR 16762 - 
P. sanguineus K3-1 - 
P. sanguineus K3-2 - 
P. sanguineus K5-1 -/+ 
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P. sanguineus K5-2-2 -/+ 
P. sanguineus K5-2-3 - 
P. sanguineus SCC0087 -/+ 
P. sanguineus SCC0108 + 
P. sanguineus SCC0294 + 
Schizophyllum commune D1-1 - 
S. commune K11-M3 - 
Stereum australe  SCC0007 -/+ 
Stereum hirsutum  SCC0383 -/+ 
 

++, highly effective decolourization. 

+, decolourization. 

-/+, unclear decolourization (not all 3 samples). 

-, no decolourization. 

 

 

A significant (P<0.0001) correlation was observed between laccase activity and 

AFB1 degradation obtained from Peniophora sp. and P. ostreatus cultivated in MSM 

(r=0.93) and MSB-MEB (r=0.77) liquid media.  Of the fungal strains examined, 

Peniophora sp. produced the highest laccase activity (496 U/L) in MSB-MEB medium 

supplemented with veratryl alcohol and sugarcane bagasse (Arora and Gill, 2000) (Table 

2) and also exhibited the highest percentage AFB1 degradation (40.45%) (Table 3).  

While little information is available regarding the production of ligninolytic enzymes by 

Peniophora sp. (Kiiskinen et al., 2004), these results confirm that Peniophora sp. 

produces high levels of laccase activity.  Motomura et al. (2003) reported degradation of 

AFB1 by unconcentrated supernatant of P. ostreatus cultured in GPY liquid medium and 

isolated an unidentified AFB1 degrading enzyme, which was not a peroxidase.  However, 

the AFB1 degradation was not further quantified.  In this study P. ostreatus produced 

laccase activity (416.39 U/L) (Table 2) in MSM medium supplemented with veratryl 

alcohol resulting in a 35.9% AFB1 degradation (Table 3).  It is well known that 

P. ostreatus degrades a variety of polycyclic aromatic hydrocarbons (Baldrian et al., 

2000) and that the major enzymes involved are manganese-dependent peroxidases and 

laccases.  Furthermore, high levels of laccase activity (2766.29 U/L) were noticed in 

concentrated extracellular extracts of P. ostreatus cultured in MSM medium 
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supplemented with veratryl alcohol (Table 2), which coincided with the highest 

percentage (76%) degradation of AFB1 (Table 3). 

 

 

 

Table 2.  Laccase activity (U/L) measured in extracellular culture extracts after 

culturing fungi in different liquid media. 

 

 
Fungal strain 

 
Strain 
nr. 

 
WSM 
medium 

 
MSM 
Medium 
 

 
MSB-MEB 
medium 

 
GPY 
medium 

Pleurotus 
ostreatus 1 

St2-3 6.13±0.522 416.39±3.12a 35.65±2.36e 65.19±0.59 

P. ostreatus 2 St2-3 ND  2766.29±2.11b 600±1.56f ND 

Peniophora sp 1 SCC0152 170.64±1.23 55.75±2.45c 496±2.87g 120.45±3.11 

Peniophora sp 2 SCC0152 ND 176.97±1.59d 1105.14±2.48h ND 

Bjerkandera 
adusta1 

SCC0169 3.6±0.99 0 0 1.14±0.89 

Phanerochaete 
chrysosporium1 

ME-446 4.49±0.48 0 0 0 

 

Values are means ± STD of triplicate determinations. 
1unconcentrated extracellular extracts. 
2concentrated extracellular extracts. 

ND, not determined. 

Determinations differ significantly (P<0.05) when letters differ. 
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Concentrated extracellular extracts of Peniophora sp. cultured in MSB-MEB 

liquid medium supplemented with veratryl alcohol, exhibited a laccase activity of 

1105.14 U/L which was associated with an AFB1 degradation of 52.36%.  However, 

effective decolourization of Poly R-478 and degradation of AFB1 (28.19%) by B. adusta 

in WSM liquid medium was not significantly (P>0.05) correlated with laccase activity.  

This could be ascribed to the involvement of other enzymes than laccases, probably 

peroxidases. 

 

 

 

Table 3.  Percentage AFB1 degradation obtained after treatment of AFB1 with 

extracellular culture extracts of the different fungal liquid cultures. 

 
 
Fungal strain 

 
Strain 
nr. 

 
WSM 
medium 

 
MSM 
medium 
 

 
MSB-MEB 
medium 

 
GPY 
medium 

Pleurotus 
ostreatus 1 

St2-3 15.11±1.89 35.9±2.76a 20.95±1.47e 33.89±4.26 

P. ostreatus2 St2-3 ND 76±3.14b 31.28±1.88f ND 

Peniophora sp.1 SCC0152 20.80±1.67 17.10±2.33c 40.45±3.24g 9.32±2.74 

Peniophora sp.2 SCC0152 ND 25.79±2.18d 52.36±4.89h ND 

Bjerkandera 
adusta1 

SCC0169 28.19±2.36 0 0 0 

Phanerochaete 
chrysosporium1 

ME-446 13.77±3.8 0 0 0 

 

Values are means ± STD of triplicate determinations. 
1unconcentrated extracellular extracts. 
2concentrated extracellular extracts. 

ND, not determined. 

Determinations differ significantly (P<0.05) when letters differ. 
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During experiments regarding degradation of AFB1 by different activities of 

purified fungal laccase enzyme (0.05, 0.25, 0.5, 0.75, 1 U/ml), AFB1 was shown to be 

stable over the 72 h incubation period in the absence of the laccase enzyme (Fig. 1).  The 

AFB1 concentration in organic phase samples significantly (P<0.0001) decreased during 

treatment with 0.05 to 1 U/ml laccase, with only 12.66% remaining AFB1 after treatment 

with 1 U/ml laccase.  ESMS and LCMS showed that AFB1 concentration decreased 

notably during the incubation with purified fungal laccase enzyme for 72 h (data not 

shown).  These results confirm the degradation results observed with HPLC 

quantification techniques.  No AFB1 was present in the aqueous samples.  HPLC, ESMS 

and LCMS analyses could not reveal the formation of any structural analogues, 

suggesting that AFB1 was most likely metabolized to breakdown products with chemical 

properties that vastly differ from the parent molecule. 

Enzymatic oxidation of phenolic compounds by laccase generates radicals which 

can react with each other to form dimers, oligomers and polymers (Aktas and Tanyolac, 

2003; Claus, 2004; Mattinen et al., 2005).  This characteristic of laccase is valuable for 

their application to detoxify contaminated soil or waste waters.  As a result, cathecol and 

other phenolic substrates are polymerised and removed from wastewater streams in the 

form of a precipitate.  In order to detect formation of macromolecules after treating AFB1 

with purified fungal laccase enzyme, LCMS and HPLC were performed.  However, no 

such compounds could be detected. 

The biological degradation of AFB1, when treated with different activities of 

purified fungal laccase enzyme (0.05, 0.25, 0.5, 0.75, 1 U/ml), coincided with a typical 

dose response effect regarding the loss of mutagenicity of AFB1 in the organic phase 

samples, as evaluated by the Salmonella typhimurium mutagenicity assay (Fig. 2).  The 

positive AFB1 test control produced a 3-fold dose-response when compared to the 

baseline revertant counts (data not shown).  The mutagenic response decreased most 

significantly (P<0.0001) by the laccase treatment in the organic phase samples (Fig. 2).  

After treatment with 1 U/ml laccase there was no significant difference (P=0.3) in 

mutagenic response in the organic phase samples when compared to the negative test 

control samples.  Treatment with 0.05 to 1 U/ml laccase showed a low mutagenic 

response in the aqueous phase samples with no significant difference (P>0.05) in 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Aktas+N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Search&term=%22Tanyolac+A%22%5BAuthor%5D
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mutagenic response between the negative test control and 0.05 to 0.5 U/ml laccase 

treatments.  However, treatment with 0.75 and 1 U/ml laccase differed slightly, although 

significantly (P<0.05) from the negative test control.  This can possibly be attributed to 

very low levels of water soluble mutagenic AFB1 degradation products present in the 

aqueous phases of extraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Biological degradation of AFB1 by purified fungal laccase (0.05, 0.25, 0.5, 0.75, 

1 U/ml) produced by T. versicolor over a period of 72 h at 30°C.  AFB1 incubations in the 

absence of laccase, representing incubation periods of 0 h and 72 h, were included as 

treatment controls. The level of AFB1 in the organic phases was determined by HPLC. 

Treatments represent the means of triplicate determinations and differ significantly 

(P<0.05) when letters differ. 
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Fig. 2.  Mutagenicity of AFB1 following treatment with different purified fungal laccase 

activities (0.05, 0.25, 0.5, 0.75, 1 U/ml) from T. versicolor, as determined with the 

Salmonella typhimurium mutagenicity assay.  The mutagenicity of the organic and 

aqueous phases is the means of five determinations. Untreated AFB1 samples 

representing incubation periods of 0 h and 72 h were included as the treatment controls. 

Treatments differ significantly (P<0.05) when letters differ. 
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with AFB1 degradation (Faraj et al., 1993).  Furthermore, the biological degradation of 

AFB1, when treated with recombinant fungal laccase enzyme, coincided with a 

significant (P<0.0001) decrease in mutagenicity of AFB1 in the organic phase samples 

(Fig. 4).  No mutagenic response could be detected in the aqueous phase which is in 

agreement with the above experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Biological degradation of AFB1 by extracellular extracts of recombinant A. niger 

(D15-Lcc2#3) liquid cultures containing recombinant laccase (0.12 U/ml) at 30°C for 

72 h.  Untreated AFB1 samples representing incubation periods of 0 h and 72 h and the 

extract of the A. niger host, lacking the enzyme, were included as controls. The level of 

AFB1 in the organic phases was determined by HPLC.  Treatments represent the means 

of triplicate determinations and differ significantly (P<0.05) when letters differ. 
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Fig. 4.  Mutagenicity of the organic and aqueous phases of the AFB1 incubation with 

extracellular extracts of A. niger (D15-Lcc2#3) liquid cultures containing recombinant 

laccase (0.12 U/ml), as determined with the Salmonella typhimurium mutagenicity assay.  

Untreated AFB1 samples representing incubation periods of 0 h and 72 h were included 

as controls.  Treatments differ significantly (P<0.05) when letters differ. 
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properties (Liu et al. 1998 a,b,c).  Moreover, these findings could be valuable to develop 

food additives or genetic engineered microbial strains with multifunctional technological 

properties, including degradation of AFB1 in order to significantly improve the quality, 

safety and acceptability of food and beverages. 
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GENERAL DISCUSSION AND CONCLUSIONS 

 

7.1. Introduction 

 

Aflatoxins are difuranocoumarin derivatives and highly toxic secondary metabolites 

predominantly produced by the filamentous fungi Aspergillus flavus and 

Aspergillus parasiticus.  Aflatoxin B1 (AFB1), the most potent aflatoxin, is highly 

mutagenic, carcinogenic and teratogenic to both humans and animals and chronic 

exposure to low levels of AFB1 pose a serious health and economic hazard worldwide.  

Aflatoxin B1 is classified as a type I human carcinogen by the International Agency for 

Research on Cancer.  While physical and chemical detoxification methods do not fulfil 

the necessary efficacy, safety, and cost requirements, biological detoxification measures 

are favourable to improve the safety of food for human consumption. 

Rhodococcus spp. are capable of degrading a wide range of aromatic xenobiotic 

compounds, including nitro aromatic compounds, polycyclic hydrocarbons, pyridine, 

steroids, and lignin related compounds.  Several genes encoding enzymes responsible for 

transforming polyaromatic compounds were characterized in Rhodococcus spp.  These 

include 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD) enzymes of which several 

bphC genes in Rhodococcus erythropolis TA 421, Rhodococcus sp. strain RHA1, 

Rhodococcus rhodocrous K37 and Rhodococcus globerulus P6 have been characterized. 

 When the degradation of aromatic xenobiotics are considered, fungi also feature 

as one of the major groups responsible for their degradation, presumably due to the large 

repertoire of extracellular enzymes produced by these fungi.  Several groups of enzymes 

produced by white rot fungi are involved in the degradation of lignin and aromatic 

xenobiotics, including heme-containing peroxidases, flavine oxidases, cellobiose 

dehydrogenases as well as laccases.  It was found that the presence of laccase is required 

for lignin degradation, since lignin-deficient mutants lose their ability to degrade lignin. 

 While aflatoxins are structurally related to the above-mentioned xenobiotic 

aromatic compounds, the ability of these organisms to degrade AFB1 is of relevance.  The 

current study investigated degradation of AFB1 by R. erythropolis DSM 14303, 
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Mycobacterium fluoranthenivorans sp. nov. DSM 44556T, Nocardia corynebacterioides 

DSM 20151, N. corynebacterioides DSM 12676, white rot fungi, purified fungal laccase 

enzyme as well as recombinant laccase enzyme.  In addition, the degradation of AFB1 by 

2,3-DHBD in R. erythropolis through extracellular expression of the bphC1 gene in 

Escherichia coli was studied.  Moreover, it was determined whether the biological 

degradation coincides with a decrease in fluorescence and mutagenicity of AFB1, which 

implies changes in the coumarin structure of the molecule. 

 

7.2. Conclusions 

 

Specific milestones achieved and conclusions derived from this study: 

 

Degradation of AFB1 by cell-free extracts of R. erythropolis and 

M. fluoranthenivorans sp. nov. 

 

• Degradation of AFB1 by intracellular extracts of R. erythropolis DSM 14303 

(>90% degradation within 4 h at 30ºC), M. fluoranthenivorans sp. nov. DSM 44556T 

(>90% degradation within 4 h at 30ºC), N. corynebacterioides DSM 20151 

(>90% degradation after 24 h at 30ºC) and N. corynebacterioides DSM 12676 

(60% degradation after 24 h at 30ºC) was achieved. 

• Effective degradation of AFB1 by intracellular extracts of R. erythropolis DSM 14303 

and M. fluoranthenivorans sp. nov. DSM 44556T was observed between 10 and 40ºC.  

Degradation of AFB1 by intracellular extracts of N. corynebacterioides DSM 20151 

and DSM 12676 was optimal at 30ºC. 

• The optimal temperatures of degradation of AFB1 by R. erythropolis DSM 14303, 

M. fluoranthenivorans sp. nov. DSM 44556T, N. corynebacterioides DSM 20151 and 

N. corynebacterioides DSM 12676 are suitable for application in tropical 

environments such as West Africa. 

• Significant (P<0.0001) degradation of AFB1 by R. erythropolis DSM 14303 liquid 

cultures (17% residual AFB1 after 48 h and only 3-6% residual AFB1 after 72 h) was 

achieved. 
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• AFB1 was degraded by R. erythropolis DSM 14303 liquid cultures and not removed 

from the medium by adsorption to bacterial cell walls. 

 

Biological degradation of AFB1 by R. erythropolis cultures 

 

• Significant (P<0.001) degradation of AFB1 was observed when treated with 

R. erythropolis DSM 14303 unconcentrated extracellular extracts (33.20% residual 

AFB1 after 72 h).  Significant (P<0.05) reduction in AFB1 was already observed after 

2 h. 

• The biological degradation of AFB1 when treated with R. erythropolis DSM 14303 

unconcentrated extracellular extracts coincided with a total loss of mutagenicity of 

AFB1 and its breakdown products. 

• Degradation of AFB1 by extracellular extracts of R. erythropolis DSM 14303 is 

enzymatic. 

• The enzymes responsible for degradation of AFB1 when treated with R. erythropolis 

DSM 14303 is produced during the normal growth of the organism, indicating that 

the degradation is a constitutive activity of R. erythropolis DSM 14303. 

• Treatment of AFB1 with unconcentrated extracellular extracts from R. erythropolis 

DSM 14303 could not reveal the formation of any structural analogues, suggesting 

that AFB1 was most likely metabolized to breakdown products with chemical 

properties that vastly differ from the parent molecule. 

 

Degradation of AFB1 by 2,3-DHBD from R. erythropolis through extracellular 

expression in E. coli 

 

• A significant (P<0.0001) reduction in AFB1 concentration was observed when AFB1 

was treated with extracellular culture fractions containing recombinant 2,3-DHBD 

produced by E. coli BL21 (DE3) harbouring the bphC1 gene fused to a PhoA 

secretion signal, with only 50.68% residual AFB1 after 72 h. 

• Degradation of AFB1 when treated with extracellular extracts containing recombinant 

2,3-DHBD produced by E. coli BL21 (DE3) harbouring the bphC1 gene coincided 
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with a significant (P<0.0001) decrease in mutagenicity (42.47%) of AFB1 and its 

breakdown products, as evaluated by the Salmonella typhimurium mutagenicity 

assay. 

 

Degradation of AFB1 by fungal laccase enzyme 

 

• Peniophora sp. produced 496.00 U/L laccase activity (MSB-MEB medium 

supplemented with veratryl alcohol and sugarcane bagasse) and accordingly 40.45% 

AFB1 degradation, while Pleurotus ostreatus produced 416.39 U/L laccase activity 

(MSB-MEB medium supplemented with veratryl alcohol and sugarcane bagasse) and 

35.90% AFB1 degradation. 

• A significant (P<0.0001) correlation was observed between laccase activity and AFB1 

degradation exhibited by Peniophora sp. and P. ostreatus cultivated in MSM (r=0.93) 

and MSB-MEB (r=0.77) liquid media. 

• AFB1 was significantly (P<0.0001) degraded when treated with purified fungal 

laccase (1 U/ml, 87.34%) from Trametes versicolor as well as with recombinant 

laccase (118 U/L, 55.00 %) produced by Aspergillus niger. 

• Degradation of AFB1 when treated with purified fungal laccase from T. versicolor as 

well as recombinant laccase produced by A. niger coincided with significant 

(P<0.001) loss of mutagenicity of AFB1, as evaluated by the Salmonella typhimurium 

mutagenicity assay. 

• Treatment of AFB1 with purified fungal laccase from T. versicolor as well as 

recombinant laccase produced by A. niger did not reveal the formation of any 

structural analogues, suggesting that AFB1 was most likely metabolized to breakdown 

products with chemical properties that vastly differ from the parent molecule. 

 

7.3. Final conclusions 

 

Several bacteria, including Rhodococcus spp., as well as white rot fungi have the 

potential to degrade a wide range of polycyclic hydrocarbon compounds due to the large 

repertoire of enzymes they produce and the ability of some of these microorganisms and 
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enzymes to degrade AFB1 was investigated.  The effect on the mutagenic potency of 

AFB1 and possible breakdown products was monitored to evaluate the biological 

relevance of the breakdown process. 

The furofuran- or lactone rings of the AFB1 molecule were changed by treatment 

of AFB1 with unconcentrated extracellular extracts from R. erythropolis DSM 14303, 

extracellular fractions containing recombinant 2,3-DHBD produced by E. coli BL21 

(DE3) harbouring the bphC1 gene fused to a PhoA secretion signal, purified fungal 

laccase from T. versicolor as well as recombinant laccase produced by A. niger and as a 

result reduced its fluorescence and mutagenic potency significantly (P<0.0001). 

 While complete degradation of polyaromatic compounds is accomplished through 

a cascade of reactions, more efficient meta-cleavage is obtained when treated with a 

combination of enzymes.  Therefore, co-expression of bphC encoded dioxygenases of R. 

erythropolis with etbC of R. erythropolis, bnzA of P. putida BE-81, or the application of 

multiple bphC dioxygenases containing different substrate specificities, will have an 

advantage in the degradation of polyaromatic compounds such as AFB1.  Furthermore, 

the mechanisms whereby white rot fungi cause lignin degradation involve mainly the 

production of free radical agents by peroxidase- and laccase enzymes.  Since fungal 

laccase enzyme significantly (P<0.0001) degrades AFB1 (87.34%), treatment of AFB1 

with fungal peroxidase enzyme and in combination with fungal laccase enzyme, should 

be investigated. 

 The current study laid the foundation for future work towards the treatment of 

AFB1 with a combination of enzymes in order to reduce AFB1 concentrations to a level 

which coincides with total loss of mutagenicity.  The degradation of AFB1 by bacteria, 

white rot fungi and microbial enzymes could be an important bio-control measure to 

reduce the level of this mycotoxin in food commodities.  The results reported here could 

contribute towards developing food additives or genetic engineered microbial strains with 

multifunctional technological properties including degradation of AFB1, to significantly 

improve the quality, safety and acceptability of food and beverages. 
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LIST OF ABBREVIATIONS 
 

ABTS, Azino-di-3-ethylbenzthiazoline sulfonate 

AFB1, Aflatoxin BB1 

ARHDO, Aromatic-ring-hydroxylating dioxygenase enzyme 

DMSO, Dimethyl sulfoxide 

ESMS, Electro spray mass spectrometry 

GMO, Genetically engineered organism 

GST, Glutathione S-transferases 

HBV, Hepatitis B virus 

HCC, Hepatocellular carcinoma 

HCV, Hepatitis C virus 

HGT, Horizontal gene transfer 

HPD, 2-Hydroxy-penta-2,4-dienoate 

HPLC, High performance liquid chromatography 

IPTG, Isopropyl-β-D-thiogalactopyranoside 

LCMS, Liquid chromatography mass spectrometry 

PCB, Polychlorinated biphenyl 

TCA, Tricarboxylic acid 

TLC, Thin layer chromatography 

2,3-DHBD, 2,3-Dihydroxybiphenyl 1,2-dioxygenase enzyme. 

 
 
 


	SUMMARY
	OPSOMMING
	ACKNOWLEDGEMENTS
	PREFACE
	TABLE OF CONTENTS
	CHAPTER 1
	CHAPTER 2
	3. References
	Degradation of aflatoxin B1
	CHAPTER 5
	Degradation of aflatoxin B1 by fungal laccase enzyme
	CHAPTER 7
	LIST OF ABBREVIATIONS

