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Abstract

Facial Feature Reconstruction using Structure from Motion

P.A. Rautenbach

Department of Electric and Electronic Engineering

University of Stellenbosch

Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (Electronic with Computer Science)

April 2005

Structure from Motion suggests that an object or scene’s three-dimensional

structure can be determined from its observed two-dimensional motion. Hu-

man efforts, manifested in computer algorithms, try to mimic the enormous

power of the visual processing capabilities of the human brain. We present

an algorithm to estimate structure, using the Unscented Kalman Filter, from

the motion of point-wise features, produced by the Kanade-Lucas-Tomasi fea-

ture tracker. The algorithm is evaluated critically against an extensive set of

motion sequences, with special attention paid to facial feature reconstruction.
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Samevatting

Herkonstruksie van Gesigskenmerke d.m.v.

Struktuur vanuit Beweging

P.A. Rautenbach

Departement Elektries en Elektroniese Ingenieurswese

Universiteit van Stellenbosch

Privaatsak X1, 7602 Matieland, Suid Afrika

Tesis: MScIng (Elektronies met Rekenaarwetenskap)

April 2005

Struktuur vanuit Beweging stel voor dat ’n voorwerp of omgewing se drie-

dimensionele struktuur vanuit die waargeneemde tweedimensionele beweging

bepaal kan word. Menslike pogings, vergestalt in die vorm van rekenaar-

algoritmes, probeer om die enorme krag van die visuele verwerkingsvermoëns

van die menslike brein na te boots. Ons stel ’n algoritme voor om struktuur

vanuit die beweging van puntsgewyse kenmerke, soos geproduseer deur die

Kanade-Lucas-Tomasi kenmerksoeker, met die Unscented Kalman Filter af te

skat. Die algoritme word krities teen ’n omvattende stel bewegingsekwensies

geëvalueer en spesiale aandag word aan die herkonstruksie van gesigskenmerke

verleen.
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Chapter 1

Introduction

This report, by its very length, defends itself against the risk of being read.

Sir Winston Churchill

The human visual system is one of the greatest pieces of biological engineering,

equipped with a high-resolution, high-definition colour, stereo cameras, driven

by a high-speed processing unit, computing detail about lighting, perspective,

structure and motion within the wink of an eye. We can fool the eye and the

mind with optical illusions, but still, we struggle to mimic this incredible piece

of equipment. Engineers, on a quest to conquer, arise with numerous ways.

One of which is Structure from Motion (SfM).

1.1 Motivation

SfM suggests that an object or scene’s three-dimensional (3D) structure can be

determined from its observed two-dimensional (2D) motion. SfM is preferable

to its counterparts, Shape from Shading (SfS) and Stereovision. SfM avoids

the use of multiple cameras when compared to Stereovision implementations.

Previous SfM implementations use the Extended Kalman Filter (EKF) as esti-

mator (Azarbayejani and Pentland, 1995). We refine that approach, using the

Unscented Kalman Filter (UKF), which is better suited to nonlinear estimation

than the EKF (Julier and Uhlmann, 1996). This refined approach is tested on

1
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(a) Waterfall by MC Escher. (b) Pavement art by Julian Beever.

Figure 1.1: Fool the eye and the mind with optical illusions.

a number of sequences, including synthetic and real sequences. We conclude

with a convincing experiment, performing facial feature reconstruction.

1.2 Background

Computer Vision is a broad field, which includes numerous areas of research.

The area of surveillance deals with the tracking of human activities. Automatic

steering of cameras is applicable to the area of video- and teleconferencing.

Another area of interest is that of autonomous navigation, whether it is a

vehicle or a robot. The character Gollum in the motion video The Lord of the

Rings is an example of Human-Computer Interaction (HCI). A human plays

the character and is afterwards replaced by the appropriate avatar. Some

recent additions to the field of Computer Vision is the prediction and tracking

of 3D trajectories in ball sports.

A SfM system has three compulsory components:

• a feature tracker

• an estimator

• structure, motion and projective models.
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First in this list is the feature tracker. As the name suggests, it tracks a

number of features within a motion sequence. Features within a frame may be

pixels, point-wise features defined by corners or distinct patches of texture, or

parametric curves, which form the outlines of an object or parts of it. Pixel-

based feature tracking methods, which take all pixels within each frame of a

sequence into account, are referred to as dense optical flow methods. Point-wise

feature tracking methods, which track a limited number of features, instead

of all pixels, are referred to as sparse optical flow methods. We opt for the

Kanade-Lucas-Tomasi (KLT) feature tracker, a sparse optical flow method,

to track point-wise features within a sequence. The 3D structure and motion

of the tracked object are then estimated from the subsequent 2D observed

features. Different flavours of the Kalman Filter (KF), such as the EKF or

the UKF, are typically used for this purpose. The projective model relates the

structure and motion models to the observations. In this case, it is done via a

linear perspective projection model for a pinhole camera.

1.3 Literature synopsis

The full literature study is discussed in Chapter 2, but we give an overview

of the literature that has been most useful to us. The SfM system presented

in this thesis is centred around the UKF. The UKF, introduced by Julier

& Uhlmann (1996), is one of the nonlinear extensions of the Linear Kalman

Filter (LKF), originally introduced by Kalman (1960). The UKF is considered

a true nonlinear extension of the LKF, as opposed to the EKF, which makes

use of linearisation techniques.

Online estimation is synonymous to filtering. Filtering is the process of

estimating the internal state of a dynamic system, given a set of past and

present observations in the presence of noise. Previous work by Azarbayejani

& Pentland (1995) is based on point-wise feature reconstruction, using the

EKF. They estimate the structure by estimating only the structure depth

parameter for each feature tracked, as opposed to previous methods that use

the full 3D coordinates (Broida et al., 1990). The motion is modelled by

estimating the rotation and translation parameters of the object. One of the

intrinsic parameters of a camera, the focal length, is also estimated. A linear
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formulation of the perspective projection model for a pinhole camera is used.

It has the advantage that the orthogonal projection model is a special case

of the perspective model when compared to the traditional formulation. We

exploit and extend their approach, using the UKF instead of the EKF, and

incorporate additional motion parameters.

1.4 Objectives

We summarise the objectives of this thesis in the following list:

• to achieve a better understanding of quaternion mathematics and its

applications (Chapter 3)

• theoretical comparison of the different KF topologies (Chapter 4)

• relevance of the UKF to the problem of SfM (Chapter 4)

• incorporate feature occlusion (Chapter 6)

• accurate 3D tracking (Chapter 7)

• accurate 3D reconstruction (Chapter 7).

The quaternion stands central to rotation estimation in SfM. We present a

detailed discussion about the time-derivative of a quaternion. This will form

part of the motion dynamics as discussed in Chapter 5. A comparison of the

different KF topologies leads us to the conclusion that the UKF is superior

to the EKF. Feature occlusion is investigated in Chapter 6. We propose

two methods to overcome the occurrence of this effect. Last, but not least,

are the experiments in Chapter 7, showing that accurate 3D tracking and

reconstruction is possible, using simple structure and motion modelling.

1.5 Contributions

Few solutions to handle occlusion well exist. Due to the complexity of the prob-

lem, most of the available literature propose very complex methods (Nickels

and Hutchinson, 2001) or just ignore the problem (Qian and Chellappa, 2001).

In Section 6.3, we propose two simple methods to deal with feature occlusion:
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• predict the 3D location of an occluded feature

• replace the occluded feature.

It is assumed in this thesis that the tracked object is rigid. Based on this

assumption, the 3D location of an occluded feature can be predicted, since

its position relative to the object’s centroid is fixed. Unfortunately, we find

that this approach performs poorly if the last visible estimate of the occluded

feature’s 3D position has not yet converged.

Another way to handle occlusion is to replace the occluded feature with

another non-occluded feature, given that the feature tracker is able to find

another unoccluded feature. Some post-processing is needed to incorporate

all features tracked throughout the sequence. We show that this approach

performs well under the assumption that the occlusion rate is low.

1.6 Overview of this work

A vast amount of information is available on the subject of Computer Vision.

We give an overview in Chapter 2, covering some commonly used methods and

applications, giving special attention to SfM. The next three chapters are of a

theoretical nature. The first of these (Chapter 3) is dedicated to the quaternion

and its applicability to SfM, especially its usefulness for representing rotations.

A formula for the time-derivative of a quaternion is derived. Chapter 4 focuses

on the KF family, giving an overview of one of the offspring, the LKF. We

compare the nonlinear extensions of the KF, the EKF and UKF, based on

prediction methods and modelling, computational complexity and statistical

accuracy —refer to Subsection 4.1.3. In Chapter 5, the linear perspective

projection model for a pinhole camera is presented. The formulation of the

structure and motion models forms the second part of the chapter and we

conclude with a section about the initialisation and setup of the UKF.

This work gains depth when some of the implementation issues encountered

are discussed in Chapter 6. It includes some notes regarding the implementa-

tion and optimisation of the UKF. A short overview of the KLT feature tracker

is given, which leads to one of the contributions of this thesis in Section 6.3—
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a way to handle feature occlusion. The effect of radial lens distortion, as

applicable to real sequences, is investigated in Section 6.4.

This thesis nears its end when the experiments are discussed in Chapter 7.

A number of experiments are included, starting with a pure synthetic experi-

ment to test our implementation of the UKF. The experiments get closer to

reality as we add the KLT feature tracker and apply the SfM system as a whole

to rendered and real sequences. We conclude with a display of facial feature

reconstruction in Subsection 7.3.2.

In Chapter 8, we take a step back and put this work into perspective. We

review how the proposed objectives were achieved and the results obtained.

This work is concluded with a number of suggestions for future improvements.

Supplementary material is provided in the appendices. Appendix A serves

as a user’s guide for the software provided in Appendix B on CD. It contains,

among other stuff, all the software and sequences used in this thesis.

1.7 Previous work

This thesis builds on the work by Venter (2002), who compared the EKF and

UKF on an experimental basis to determine its suitability in a SfM system.

Our motion modelling is simpler, compared to the models proposed by Venter

(2002). We combine our ideas with those of Azarbayejani & Pentland (1995)

and introduce a method to handle feature occlusion.



Chapter 2

In-depth exploration

Basic research is like shooting an arrow in the air and, where it lands,

painting a target. Homer Adkins

Extensive research has been done in the field of Computer Vision. It is a

field of huge interest to society with numerous applications. It includes the

following:

• surveillance

• video- and teleconferencing

• autonomous vehicle navigation

• robotics

• Human-Computer Interaction

• Virtual Reality.

More recent additions to this field include the prediction and tracking of three-

dimensional (3D) trajectories in ball sports, such as tennis, cricket and golf,

to name only a few. There is also interest in tracking the players. Interesting

deductions can be made from the collected statistics.

We discuss some of the most commonly used methods and applications

in the field of Computer Vision, as applicable to this thesis. This chapter

concludes with a section about Structure from Motion (SfM).

7
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2.1 Filtering methods

We first discuss two of the most widely used filtering methods in the field

of Computer Vision. Filtering is the process of estimating the internal state

of a dynamic system. A distinction between parametric and nonparametric

methods is made. The Kalman Filter (KF) is by nature a parametric method,

since it estimates the parameters of a Probability Density Function (PDF)

(Kalman, 1960; Sherlock and Herbst, 2003). Nonparametric methods include

Sequential Monte Carlo (SMC) methods, such as the Particle Filter (PF),

which alternatively estimates the unknown PDF, using a number of discrete

samples or particles from which the necessary statistics can be calculated (Isard

and Blake, 1998; van der Merwe et al., 2000).

2.1.1 Kalman Filters

The control systems society favours the use of KFs, due to their ease of im-

plementation, robustness and low computational complexity. The KF family

consists of three well-known members, such as the Linear Kalman Filter (LKF),

to handle linear problems, and the Extended Kalman Filter (EKF) and Un-

scented Kalman Filter (UKF), to handle nonlinear problems. KFs operate on

the principle that statistical modelling using a Gaussian PDF is adequate. The

parameters estimated by the KF are the first two moments of the PDF—the

mean and the covariance which are the only non-zero moments.

The EKF approximates nonlinear models by assuming a first order Taylor

series expansion of the modelling equations. On the other hand, the UKF uses

a set of deterministically chosen sigma points to represent the PDF exactly.

Sigma points are discrete n-dimensional samples, chosen in such a way that

it contains the same statistical information as the original PDF. These sigma

points are propagated using the nonlinear model itself, instead of using a first

order approximation. We discuss KFs in detail in Chapter 4.

2.1.2 Particle Filters

The Particle Filter is a SMC method that uses a set of weighted, randomly

drawn samples or particles to represent the prior and posterior PDFs. It is
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common to use the EKF or UKF to propose the prior PDF. A set of particles

are sampled from the prior PDF and each particle is evaluated to calculate

the particles that estimate the posterior PDF. Given an adequate number of

particles, the estimated PDF will converge to the true PDF. In theory, PFs

deal with any kind of nonlinearity or PDF. Any of the required statistics,

such as the mean or covariance, can be calculated from the particles. Some

implementations of the PF suffer from particle degeneration—this means that

one particle tends to gain all the weight during propagation, while the rest of

the particles lose theirs. However, there are methods to overcome this. PFs

also tend to be computationally expensive—the number of particles needed

grows exponentially with the state dimension. More detailed discussions can

be found in the literature of Isard & Blake (1998) and van der Merwe et al.

(2000).

2.2 Motion estimation

When discussing literature about tracking, one has to distinguish between

two-dimensional (2D) and 3D tracking. Parametric curves, using splines or

snakes for example, are usually applied to 2D problems —the curve provides

a segmentation of the image, defining the region to be tracked. Point-wise

features are commonly used in 3D problems. In this case, the projected 2D

motion of the features is correlated in such a way that the 3D information can

be recovered. Parametric curves can act as an aid to 3D problems to facilitate

the localisation of features.

The 2D tracking of multiple objects with the possibility of occlusion in

moderately complex scenes is a problem of interest in surveillance applications.

Conventional methods, tracking only one object at a time, work well. The more

complicated problem of tracking multiple objects is attempted by Dockstader

& Tekalp (2001). Novel modifications to the standard KF are introduced.

They track each object using frame differencing, each combined with its own

modified KF. They notice that the observations of the different objects are no

longer independent during occlusion and introduced a near real-time method

of probabilistic weighting to let the KFs interact.

LaViola (2003) developed a system which accurately tracks 3D human mo-
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tion for use with Virtual Reality (VR) applications. They are particularly

interested in real-time head and hand motion. A comparison between the

EKF and UKF is performed, based only on the orientation of the tracked ob-

ject—the filters estimate the orientation in terms of quaternions and angular

velocities. They conclude that the EKF performs slightly better than the UKF

and argue that the UKF will only achieve better estimates when the higher

order moments, such as the kurtosis, are significant.

Another 2D tracking method by Isard & Blake (1998) tackles the challeng-

ing problem of tracking curves in the presence of dense visual clutter. They

claim that KFs are inefficient, because they rely on unimodal Gaussian mod-

elling. Thus, they introduce a member of the PF family called Condensation

(conditional density propagation). The object is located approximately in the

first frame and tracked in subsequent frames. B-splines are used to parame-

terise the shape’s curves. Their near real-time approach is capable of highly

robust tracking of erratic motion. They developed impressive demonstrations,

for example tracking a camouflaged leaf in the presence of gusts of wind.

Li & Zhang (2002) attempt the identical problem, but rather use the UKF.

They prefer the UKF over Condensation, due to the large number of particles

of the Condensation algorithm. Performance is enhanced by training their

algorithm with a sequence of a hand moving against a clutter-free background,

before testing it against a cluttered background. Even so, their algorithm gets

distracted by the background clutter and never recovers. Chen et al. (2002)

reach a more satisfying conclusion when using a Hidden Markov Model (HMM)

to identify the object to be tracked.

Object tracking is not limited to visual tracking only. Ward et al. (2003)

use a PF to track an acoustic source in a reverberant environment. This kind of

problem is applicable to camera steering for videoconferencing. Their approach

uses an array of microphones to create a beamformer. Time-delay estimation

is done, using the cross-correlation among the microphones. Spurious peaks,

with a greater value than that of the correct peak due to reverberation, may

exist. The PF’s task is to track the correct peak. Their approach seems

successful within moderately reverberant environments.

Rui & Chen (2001) combine the audio and visual techniques of Ward et al.

(2003) and Isard & Blake (1998) to perform tracking. They specifically use the
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UKF to generate the prior PDF and propagate it using Condensation. Their

results are superior to those obtained by Isard & Blake (1998).

2.3 Structure estimation

There are several methods to estimate an object or scene’s 3D structure, three

of which are discussed here.

2.3.1 Shape from Shading

In their paper, Atick et al. (1996) suggest that the human visual system gains

information about 3D shapes, using the shading patterns in a 2D image. They

back this statement by arguing that shading is often used by painters to convey

3D perception, contributing to the realism of their work. Shading is the vari-

ation in brightness from one point to another in an image, due to the amount

of light a surface patch reflects. This is affected by the texture properties of

the patch and its orientation relative to the incident light. They also suggest

that the human brain classifies objects into lower object classes according to

their shape. They speculate that they are able to recover the 3D surface from

a single 2D image of a face, but do not include any conclusive results.

2.3.2 Stereovision

Stereovision uses a disparity map to relate a feature within one frame to its

image in another frame. The two frames are obtained from two differently

positioned and calibrated cameras. If the intrinsic parameters, such as the

focal length and lens distortion, and extrinsic parameters, such as the location

and orientation, of each camera are known, the disparity map can be used

to reconstruct the scene under observation—an absolute 3D model can be

constructed from this. This is a very accurate, but computationally expensive

method.

2.3.3 Structure from Motion

SfM is a method to reconstruct an object or scene’s 3D structure from its

observed 2D motion. SfM is similar to Stereovision in the sense that it ex-
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ploits the interframe differences to obtain the structure. It is preferred over

its Stereovision counterpart, due to lower computational complexity, although

SfM processes many frames, compared to Stereovision’s two.

Accurate tracking is central to SfM. Models for the relative motion of

the camera to the object and the camera’s projective geometry have to be

developed. These are respectively referred to as the state transition model

and observation model. The state transition model contains the structure and

motion parameters and predicts the new state based on the previous state. The

observation model uses the predicted state to create a predicted observation.

The difference between the real and predicted observations is then minimised

to obtain a better estimate of the state. It is typical to use the UKF or PF for

this purpose. The object is normally assumed to be rigid or at least composed

of several rigid parts.

Detailed research have been done by Azarbayejani & Pentland (1995), Je-

bara & Pentland (1996) and Jebara et al. (1999). They formulate a method

for recursive recovery of motion, point-wise structure and one of the camera’s

intrinsic parameters, the focal length. In addition to this, they redefine the

camera’s linear projective geometry in such a way that the orthographic cam-

era model becomes a special case of the perspective camera model. Their

approach is based on the EKF—the results show that their formulation is

more stable and accurate than earlier formulations (Broida et al., 1990). We

fully discuss our adapted approach in Chapter 5.

The work of Qian et al. (2001) fuses inertial kinematics, additional to the

rotation and translation parameters, into a general SfM framework. They

show that the inertial data play an important role in improving resistance to

tracking noise. In another paper by Qian & Chellappa (2001) the problem of

SfM using SMC methods is addressed. Errors in feature tracking are modelled

and they are capable of dealing with feature occlusion.

Two kinds of ambiguities exist in SfM, namely structure ambiguity and

motion ambiguity. Structure ambiguity is the effect where differently scaled

versions of the same object yield the same projection. Thus, the true structure

can only be determined up to a scale factor. Fortunately, if one feature’s true

location is known, the rest can be scaled accordingly to recover the absolute

structure (Szeleski and Kang, 1996). On the other hand, motion ambiguities
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pose an unsolvable problem: these are motions that cannot be uniquely de-

termined by any algorithm. Such motions are referred to as Critical Motion

Sequences (CMSs) as discussed by Sturm (1997). We do not investigate this.

2.4 Summary

Some of the most important literature in the field of Computer Vision, as

related to SfM, including recent additions, was covered. We gave an overview

of some of the filtering methods used and some of the applications in this field.

In this thesis, we use the UKF to perform SfM.



Chapter 3

The quaternion

To everything, turn, turn, turn. The Byrds

Quaternions form an essential part of Structure from Motion (SfM) estimation,

since they provide a simple and efficient way to describe the rotation of a

tracked object. In this chapter, we discuss the fundamental mathematics, as

well as the advantages and disadvantages of using quaternions. We will also

show how quaternions are related to rotation matrices and derive a formula

for the time-derivative of a quaternion.

3.1 Turning towards history

William Rowan Hamilton invented the quaternions in 1843 in an effort to

construct hypercomplex numbers or higher dimensional generalisations of the

complex numbers. Failing to construct a generalisation in three dimensions

in such a way that division would be possible, he considered systems with

four complex units and arrived at the quaternions. He realised that each

one of his complex units could also be associated with a rotation in space.

Vectors were introduced by Hamilton for the first time as pure quaternions

and vector calculus was at first developed as part of this theory. Maxwell’s

electromagnetism equations were first written using quaternions (Coutsias and

Romero, 1999).

14
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platform

gimbal

pivot

body

Figure 3.1: An old-style guidance system using three gimbals.

3.2 Why quaternions?

Quaternions have many advantages over their matrix, Euler axis-and-angle

and Euler angles counterparts (Zikic and Wein, 2004):

• intuitive and simple

• minimum and sufficient representation

• unambiguous

• no gimbal lock

• easier rotation interpolation (Eberly, 2002).

Section 3.4 shows that one can easily relate the quaternion representation

to the Euler axis-and-angle representation, making it intuitive and simple to

understand. Unfortunately, the Euler axis-and-angle representation is ambigu-

ous, since a specific rotation can be represented in more than one way. It also

suffers from gimbal lock.

Gimbal lock nearly became a troublesome complication when Apollo 13

had control difficulties after their tank rupture on their unsuccessful mission

to the moon. Old-style inertial guidance systems used a platform, held in a

fixed orientation in three-dimensional (3D) space by gyroscopes, using only

three gimbals, the minimum for free movement in any direction. The gimbals
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between the platform and the spacecraft enable rapid movement between these

two parts. Gimbals are rings of different sizes that are held together concentri-

cally by two pivots per ring, where two subsequent rings’ pivots are 90◦ apart

as depicted in Figure 3.1. Gimbal lock is what happens when two of these

pivots line up during a sequence of rotations. This means that the number

of gimbals are effectively reduced to two which results in a loss of stability.

Adding a fourth gimbal overcomes this problem. Gimbal lock is not only a

physical phenomenon, but also a mathematical one, causing singularities in

the equations of Euler angles. Gimbal angles are the physical manifestation of

the mathematical Euler angles. It is not the inability of Euler angles to repre-

sent a specific orientation, but rather a discontinuity problem when rotating

by small angles across mathematical boundaries.

The quaternion, rotation matrix, Euler axis-and-angle and Euler angles

representations of rotations all have three DOFs, due to normality constraints,

but the quaternion representation is the only one that does not suffer from the

mentioned problems.

3.3 Quaternion fundamentals

A quaternion is defined as a four-dimensional vector over the quaternion space

Q. The elements q0, q1, q2 and q3 in (3.3.1) are real, while the second of the

two definitions uses a scalar v and a 3D vector w

q = [ q0, q1, q2, q3 ] (3.3.1)

= [ v, w ]. (3.3.2)

Being the most explicit, a quaternion can also be defined in terms of its basis

elements as

q = q0e0 + q1e1 + q2e2 + q3e3, (3.3.3)

where

e0 = [ 1, 0, 0, 0 ]

e1 = [ 0, 1, 0, 0 ]

e2 = [ 0, 0, 1, 0 ]

e3 = [ 0, 0, 0, 1 ].
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Given two quaternions q1 = [ v1, w1 ] and q2 = [ v2, w2 ], we recall the

following definitions (Coutsias and Romero, 1999).

Definition 1 Addition,

q1 + q2 = [ (v1 + v2), (w1 + w2) ] .

Definition 2 Multiplication,

q1q2 = [ (v1v2 − w1 ·w2), (v1w2 + v2w1 + w1 × w2) ],

where w1 · w2 is the dot product and w1 × w2 is the cross product of the two

3D vectors.

It should be noted that the multiplication of two quaternions is not commuta-

tive, since the cross product is not commutative. Addition of two quaternions,

however, is commutative. Also, the associative and distributive laws hold for

addition as well as multiplication. Alternatively, the product of two quater-

nions can be expressed in terms of a matrix-vector multiplication. This is a

very useful representation for computational purposes. Manipulating Defini-

tion 2 yields

q1q2 = Q1q2 (3.3.4)

=















q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0















1















q0

q1

q2

q3















2

. (3.3.5)

Note that the matrix Q1 is antisymmetric (QT
1 = −Q1) if q1 is a pure quater-

nion (see Definition 5), which is the case if q0 = 0.

Definition 3 The conjugate of a quaternion q = [ v, w ],

qc = [ v, −w ].

Definition 4 A unit quaternion q = [ v, w ],

Q1 := {q|N(q) = 1},

where the norm is calculated via the dot product N(q) = qqc = qcq.
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Note that the norm N(q) of a quaternion is the square of its euclidean distance

N(q) = q2
0 + q2

1 + q2
2 + q2

3. (3.3.6)

However, the magnitude of a quaternion is defined as its euclidean distance.

Definition 5 A pure quaternion q = [ v, w ], where

Q0 := {q|q = [ 0, w ]}

forms the set of all pure quaternions.

A quaternion is pure in the sense that w forms a 3D vector over R
3. In this

literature we denote this by using the subscript p, for example, r is a 3D vector

embedded in a quaternion rp, where rp = [ 0, r ].

Definition 6 The reciprocal of a quaternion q = [ v, w ],

q−1 =
[ v, −w ]

N(q)
.

From this it follows that the product qq−1 = q−1q = [ 1, 0, 0, 0 ].

3.4 Rotations using quaternions

Attention is now given to the use of quaternions as related to the SfM problem.

The equations for the SfM models are in Section 5.1 derived in terms of a

rotation matrix. On the other hand, in Section 5.2 we model the rotation with

a quaternion. Thus, we need to define this relationship. To rotate a 3D vector

r, using a quaternion q, we first write it as a pure quaternion rp = [ 0, r ] and

form the expression

r′p = qrpq
c, (3.4.1)

where q is a unit quaternion. It follows from (3.4.1) that the length of rp

remains unaltered. Applying the definitions in Section 3.3, it can be rewritten

in terms of a rotation matrix as

r′ = Rr. (3.4.2)
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φ = −(2π − θ)

(b)

Figure 3.2: A quaternion is unique, except for its sign.

A straight forward, but tedious derivation yields

R =









q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q2q1 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q3q2 + q0q1) q2
0 − q2

1 − q2
2 + q2

3









. (3.4.3)

As a consequence of the normality constraint placed on q, such that N(q) = 1,

the matrix R will be an orthonormal matrix

RRT = I = RTR. (3.4.4)

Also, a rotation matrix is constrained not to allow a reflection

det(R) = 1. (3.4.5)

There exists a useful relationship between unit quaternions and the Euler

axis-and-angle representation, where n = [nx, ny, nz ] is the unit axis of

rotation and θ the angle of rotation about n

q = ±
[

cos θ
2 , n sin θ

2

]

. (3.4.6)

Humans prefer this representation, since it is easy to visualise. It is important

to note that a quaternion representing a specific rotation is unique, except for

its sign. Consider a quaternion q representing a rotation about an axis n by

an angle θ. Fixing n and rotating in the opposite direction (φ = −(2π − θ))
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result in an equivalent rotation, but a change in the sign of q. We illustrate it

graphically as in Figure 3.2 and summarise it mathematically

q =
[

cos φ
2 , n sin φ

2

]

=
[

cos −(2π−θ)
2 , n sin −(2π−θ)

2

]

=
[

cos(−π + θ
2 ), n sin(−π + θ

2)
]

= −
[

cos θ
2 , n sin θ

2

]

.

3.5 Derivative of a quaternion

The time-derivate of a quaternion is of utmost importance in this thesis, since

it will form part of the model for the motion dynamics of the object being

tracked. We base our discussion on the assumptions made by Wertz (1986).

Let the quaternions q(t) and q′′(t+∆t) represent the orientation of a rigid

body with respect to a reference system at subsequent time-steps. Let q′(∆t)

be the quaternion that relates q(t) to q′′(t + ∆t)

q′′(t + ∆t) = q′(∆t)q(t). (3.5.1)

We express q′(∆t) as an Euler axis-and-angle—recall (3.4.6)

q′(∆t) =
[

cos ∆θ
2 , n sin ∆θ

2

]

. (3.5.2)

The change in n over the time interval ∆t leads to second order terms that

can be ignored—the error caused by this assumption is discussed in Wertz

(1986). We rewrite (3.5.1) in terms of the Euler axis-and-angle, using the fact

that a quaternion product can be written as a matrix-vector multiplication as

in (3.3.4)

q′′(t + ∆t) =
{

cos(∆θ
2 )I + sin(∆θ

2 )N
}

q(t), (3.5.3)

where

N =















0 −nx −ny −nz

nx 0 −nz ny

ny nz 0 −nx

nz −ny nx 0















(3.5.4)
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is an antisymmetric matrix. In the case where ∆t is infinitesimal, we define

∆θ = ω∆t, where ω is the magnitude of the instantaneous angular velocity of

the rigid body. The angular velocity vector is given by

ω = ωn (3.5.5)

= [ωx, ωy, ωz ]. (3.5.6)

To simplify (3.5.3), we use the following small angle approximations

cos ∆θ
2 ≈ 1 (3.5.7)

and

sin ∆θ
2 ≈ 1

2ω∆t. (3.5.8)

These substitutions yield the approximation

q(t + ∆t) ≈
{

I + 1
2Ω(ω)∆t

}

q(t), (3.5.9)

where

Ω(ω) =















0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0















(3.5.10)

too is an antisymmetric matrix. This can be rewritten as the definition for a

derivative as
d

dt
q(t) ≡ lim

∆t→0

q(t + ∆t) − q(t)

∆t
. (3.5.11)

Finally, from (3.5.9) and (3.5.12) follows

q̇(t) = 1
2Ω(ω)q(t). (3.5.12)

This equation represents a homogeneous system of linear first order differential

equations. We can solve it exactly if the angular velocity is constant and for

a given initial condition q0 = q(t0) as

q(t) = e
1
2 (t−t0)Ω(ω)

q0. (3.5.13)

The matrix exponential for an arbitrary matrix A is defined as

etA =
∞
∑

n=0

(tA)n

n!
(3.5.14)

= I + tA +
t2

2
A2 +

t3

3!
A3 + · · · . (3.5.15)



Chapter 3. The quaternion 22

This concludes the derivation of the time-derivative of a time-dependent

quaternion under the assumption that the angular velocity is constant.

3.6 Summary

We have shown in this chapter that quaternions provide a simple and effi-

cient way to represent 3D rotations as a hypersphere in four dimensions. The

conversion from a rotation matrix to a quaternion and vice versa is an easy

procedure. We have also shown how to calculate the time-derivative of a

quaternion as applicable to this thesis. Quaternions prove to be very useful in

SfM applications.



Chapter 4

The Kalman Filter paradigm

Declare the past, diagnose the present, foretell the future. Hippocrates

The Linear Kalman Filter (LKF) was introduced by Kalman (1960) and aimed

at the control systems society. Subsequently, it has evolved into a tool used in

many other fields of engineering, for example object tracking, audio restora-

tion and of course Structure from Motion (SfM). It is even used in fields other

than engineering, such as economics, for making financial predictions (van der

Merwe et al., 2000). The Kalman Filter (KF) is particularly useful when im-

plementing real-time or online systems, since it executes at low computational

cost. In this chapter, we give an overview of the LKF and two of its nonlinear

extensions, the Extended Kalman Filter (EKF) and the Unscented Kalman

Filter (UKF). The UKF is the preferred method in this thesis.

4.1 Evolution of the Kalman Filter

In this section, we track the development of the KF, but let us first define

what is meant by filtering: filtering is the process of estimating the internal

state of a dynamic system, given a set of past and present observations in the

presence of noise—KFs are Minimum Mean-Square Error (MMSE) estimators.

The Probability Density Functions (PDFs) involved are generally modelled as

Gaussian distributions, although it is possible to use distributions other than

23
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these. Underlying to the KF is the first order Markov assumption, which states

that the current state only depends on the previous one

p(xi|xi−1). (4.1.1)

Similarly, the current observation depends only on the current state

p(yi|xi). (4.1.2)

We use the notation

xi|i−1 = E(xi|y1, . . . ,yi−1) (4.1.3)

to indicate that the predicted state mean xi|i−1 is the expected value of xi,

given the observations y1, . . . ,yi−1. Similarly, the notation

yi|i−1 = E(yi|y1, . . . ,yi−1) (4.1.4)

indicates that the predicted observation mean yi|i−1 is the expected value of

yi, given the observations y1, . . . ,yi−1.

4.1.1 Linear Kalman Filter

The LKF, being the simplest of all, is not commonly used in practice, since

real-world problems are seldom linear. However, there are exceptions and it

does give us insight on the basic steps involved. Based on the assumptions

(4.1.1) and (4.1.2), we define the linear state transition equation

xi = Fi−1xi−1 + Bi−1ui−1 + µi−1 (4.1.5)

and the linear observation transformation

yi = hixi + νi, (4.1.6)

where i is the current time-step. Fi−1, Bi−1 and Hi−1 are matrices and ui−1

is an external control vector. The noise vectors µi−1 and νi have the following

properties:

• Gaussian distributed

• white (E(µkµ
T
l ) = 0 and E(νkν

T
l ) = 0 ∀ k 6= l)
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State transition equation

xi = Fi−1xi−1 + µi−1

Observation transform

yi = hixi + νi

Predict state

xi|i−1 = Fixi−1|i−1

Pxi|i−1
= FiPxi−1|i−1

FT
i + Qi−1

Predict observation

yi|i−1 = Hixi|i−1

Pyi|i−1
= HiPxi|i−1

HT
i + Ri

Kalman gain

Ki = Pxi|i−1
HT

i P−1
yi|i−1

Corrected state

xi|i = xi|i−1 + Ki(yi − yi|i−1)

Pxi|i
= Pxi|i−1

−KiHiK
T
i

Table 4.1: Summary of the LKF’s equations.



Chapter 4. The Kalman Filter paradigm 26

• additive

• zero-mean (E(µ) = 0 and E(ν) = 0)

• uncorrelated (E(µνT) = 0).

We use the notation

µ ∼ N (0,Q) (4.1.7)

and

ν ∼ N (0,R) (4.1.8)

to indicate that µ and ν are drawn from a zero-mean Gaussian PDF N with

respective covariance matrices Q and R. Typically, a single iteration of the

filter is as follows:

• predict the state xi|i−1, given the best previous state estimate xi−1|i−1

• predict the observation yi|i−1, given the predicted state xi|i−1

• calculate the Kalman gain K

• correct the predicted state from the difference between the actual obser-

vation yi and the predicted observation yi|i−1 to obtain the best possible

estimate of the state xi|i (Schwardt, 2003).

The state and observation can each be fully described by its mean vector and

covariance matrix if unimodal Gaussian PDFs are assumed. The advantage of

using Gaussian PDFs is that it remains Gaussian after a linear transformation.

If the actual distribution is unknown, a Gaussian PDF is the safest bet, be-

cause it has the highest entropy. The state and observation uncertainties are

described by their respective covariance matrices Qi−1 and Ri as indicated in

Table 4.1. We have dropped the control terms from the equation summaries,

since it is not applicable to this thesis. For more details on the LKF, see for

example Sherlock & Herbst (2003) and Schwardt (2003).

4.1.2 Extended Kalman filter

The EKF is a natural extension of the LKF to nonlinear systems. The state

transition equation in nonlinear form now becomes

xi = f(xi−1,ui−1) + µi−1 (4.1.9)
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State transition equation

xi = f(xi−1) + µi−1

Observation transform

yi = h(xi) + νi.

Predict state

xi|i−1 = f(xi−1|i−1)

Pxi|i−1
= Fi|i−1Pxi−1|i−1

FT
i|i−1 + Qi−1

Fi|i−1 =
∂f(x)

∂x

∣

∣

∣

∣

x=xi|i−1

Predict observation

yi|i−1 = h(xi|i−1)

Pyi|i−1
= Hi|i−1Pxi|i−1

HT
i|i−1 + Ri

Hi|i−1 =
∂h(x)

∂x

∣

∣

∣

∣

x=xi|i−1

Kalman gain

Ki = Pxi|i−1
HT

i|i−1P
−1
yi|i−1

Corrected state

xi|i = xi|i−1 + Ki(yi − yi|i−1)

Pxi|i
=
(

I− KiHi|i−1

)

Pxi|i−1

Table 4.2: Summary of the EKF’s equations.
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and the observation transformation

yi = h(xi) + νi. (4.1.10)

The EKF uses a first order Taylor series expansion to approximate respec-

tively the system and observation models, evaluated at the point of interest—

this enables us to proceed as in the linear case. It seems more accurate to

refer to the EKF as a first order EKF, since higher orders are indeed possible,

although hardly if ever used. A Taylor series expansion yields

xi = f(xi−1|i−1) + f ′(xi−1|i−1)(xi−1 − xi−1|i−1) + HOTs + µi−1, (4.1.11)

where

f ′(xi−1|i−1) =
∂f(x)

∂x

∣

∣

∣

∣

x=xi−1|i−1

. (4.1.12)

The same procedure holds for (4.1.10). The Higher Order Terms (HOTs) may

be expanded to obtain a higher order EKF. The linearisation, as applicable

to the KF equations, is achieved by calculating the Jacobian matrices of the

models, as shown in Table 4.2. For more details, see Sherlock & Herbst (2003)

and Morrell (2003), among other’s.

4.1.3 Unscented Kalman Filter

We now come to the focus of this chapter. The UKF was first introduced by

Julier & Uhlmann (1996) to address the shortcomings of the EKF. Firstly, if

the system and observation models are highly nonlinear, the EKF’s linearisa-

tion fails. The UKF does not approximate the nonlinear models, but rather

approximates their distributions using the nonlinear models itself. Figure 4.1

shows a simple two-dimensional (2D) example, comparing the predictions of

the EKF and the UKF. The EKF predicts the state along the tangent to

the curve, resulting in an erroneous mean and covariance. To compensate for

this, the covariance needs to be adjusted to an unrealistic extent. The UKF,

using its sigma points, correctly predicts the state mean and covariance. Sec-

ondly, the EKF is capable of modelling only the first and second moments of a

Gaussian PDF, whereas the UKF is capable of up to fourth moment modelling.
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true state

UKF prediction

EKF predictionEKF corrected prediction

Figure 4.1: The UKF correctly predicts the state, whereas the EKF needs additional

correction.

w
(m)
0 =

λ

(n + λ)

w
(c)
0 =

λ

(n + λ)
+ (1 − α2 + β)

w
(m)
j = w

(c)
j =

1

2(n + λ)
, j = 1..2n

λ = α2(n + κ) − n

Table 4.3: Weights needed by the UKF.

Algorithm

Julier & Uhlmann (1996) claims that their exposition of the UKF is a more

direct generalisation of the LKF than the EKF. In particular, they suggest

that the new approach is a true extension of the KF paradigm, whereas the so-

called EKF is more of a recipe for pounding nonlinear models into linear holes

(sic.). The same state transition equation and observation transformation as

for the EKF are assumed—see (4.1.9) and (4.1.10).

The algorithm relies on the weights given in Table 4.3 and the filter is ini-
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x0 = E[x0]

P0 = E[(x0 − x0)(x0 − x0)
T]

a0 = E[a0] = [xT
0 , 0T, 0T ]T

A0 = E[(a0 − a0)(a0 − a0)
T] =









P0 0 0

0 Q 0

0 0 R









Table 4.4: Initialisation of the UKF.

tialised using the equations from Table 4.4. The weights are used to calculate

the statistics of the state and observation. Table 4.5 shows the filter loop— it

involves steps similar to the LKF (Table 4.1) and the EKF (Table 4.2). Aug-

mented vectors and matrices are used for ease of computation. The dimension

of the augmented state vector as the statistical mean of the sigma points a is

n = nx + nµ + nν, (4.1.13)

where nx, nµ and nν denote the dimensions of the vectors x, µ and ν. Thus,

the augmented state covariance A has dimensions n × n, where nx × nx,

nµ × nµ and nν × nν denote the dimensions of the matrices P, Q and R.

The sigma points are formed by first calculating a matrix square root of the

scaled augmented state covariance A—more details on the actual computation

follows in the next section. These values are assembled into an augmented

sigma point matrix A, where its first column is the augmented state mean a.

The next n columns are formed by adding a to each column of the calculated

matrix square root and the last n columns by subtracting a. The final structure

has a dimension of n × (2n + 1), where 2n + 1 denotes the number of sigma

points. The augmented sigma point matrix A is related to the sigma point

state matrix X , the sigma point state uncertainty matrix V and the sigma

point observation uncertainty matrix N via

A =









X

V

N









(4.1.14)
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Augmented structures

a =









x

0

0









, A =









P 0 0

0 Q 0

0 0 R









, A =









X

V

N









Calculate sigma points

Ai−1|i−1 = [ai−1|i−1, ai−1|i−1 ±
√

(n + λ)Ai−1|i−1]

Predict state

Xi|i−1 = f(Xi−1|i−1,Vi−1)

xi|i−1 =

2n
∑

j=0

w
(m)
j Xj,i|i−1

Pxi|i−1
=

2n
∑

j=0

w
(c)
j [Xj,i|i−1 − xi|i−1][Xj,i|i−1 − xi|i−1]

T

Predict observation

Yi|i−1 = h(Xi|i−1,Ni−1)

yi|i−1 =

2n
∑

j=0

w
(m)
j Yj,i|i−1

Pyyi|i−1
=

2n
∑

j=0

w
(c)
j [Yj,i|i−1 − yi|i−1][Yj,i|i−1 − yi|i−1]

T

Kalman gain

Pxyi|i−1
=

2n
∑

j=0

w
(c)
j [Xj,i|i−1 − xi|i−1][Yj,i|i−1 − yi|i−1]

T

Ki|i−1 = Pxyi|i−1
P−1

yyi|i−1

Corrected state

xi|i = xi|i−1 + Ki|i−1(yi − yi|i−1)

Pxi|i
= Pi|i−1 −Ki|i−1Pyyi|i−1

KT
i|i−1

Table 4.5: Summary of the UKF’s equations.
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as needed by the nonlinear functions f(·) and h(·).

Scaled Unscented Transform

The UKF relies on what is referred to as sigma points. It is by definition the

minimum number of deterministic points to fully represent a given PDF. In

general, 2n+1 sigma points are needed for a distribution of dimension n. One

way to find these points for a Gaussian PDF is to calculate the square root of

its covariance matrix, using Choleski decomposition. It is numerically stable

and efficient. The Choleski decomposition of an n × n matrix A is defined as

A = LLT, (4.1.15)

where

chol(A) = L (4.1.16)

and L is a lower triangular matrix. Each column of L corresponds to one

n-dimensional principal point along one principal axis. These principal points

are assembled into a matrix A to form a symmetrical set of sigma points as

explained in the previous section.

The Unscented Transform (UT) is a method for calculating the statistics

of a nonlinearly transformed Random Variable (RV) or, as in this case, the

statistics of the state and observation. It was originally proposed by Julier

& Uhlmann (1996), but modified by (Julier, 1999) to address the problem

of positive semi-definiteness of the covariance matrices and to include prior

knowledge about the PDF. Julier (2002) also proposed a method to calculate a

reduced set of sigma points, referred to as simplex sigma points. This approach

uses only n+1 asymmetrically distributed sigma points. The downside to this

is the small bias and covariance error it introduces. In this thesis, we use the

Scaled Unscented Transform (SUT) with 2n+1 sigma points to fully represent

a Gaussian PDF.

The SUT has three parameters to manipulate the posterior PDF (van der

Merwe et al., 2000). The prior PDF is defined by the set of sigma points from

which the posterior PDF is calculated via appropriate weighting (Table 4.3).

The parameter α is constrained by 0 ≤ α ≤ 1 and it determines the spread of

the sigma points around the mean. It is set to α = 1 by default and only used
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if the nonlinearities are strong. The parameter β, where β ≥ 0, influences

the higher order moments by adding more weight to the mean via w
(c)
0 if

such knowledge is available. This parameter can also be used to control the

heaviness of the tails of the posterior distribution. For a Gaussian PDF, the

choice β = 2 is recommended (Julier and Uhlmann, 1996; van der Merwe et al.,

2000). To guarantee positive semi-definiteness of the covariance matrices, set

the secondary scaling parameter κ ≥ 0. We set κ = 0 by default.

Computational complexity is an important consideration when implement-

ing online algorithms. How does the EKF compare to the UKF in this respect?

According to van der Merwe & Wan (2001) and van der Merwe & Wan (2003),

both the EKF and UKF run at a computational complexity of O(n3). They

state that implementations of the UKF with a complexity of O(n2) are possi-

ble, but that applies only to parameter estimation and not to state estimation,

which we are dealing with. Parameter estimation refers to methods using the

UKF to train an Artificial Neural Network (ANN), for example. Determining

the computational complexity of an algorithm is in reality a much more com-

plicated process, where atomic operations must be defined in order to make a

fair comparison.

We compare the statistical accuracy of the SUT to the linearisation method

of the EKF by using an example from Julier & Uhlmann (1996). Let us assume

a simple one-dimensional nonlinear transformation

y = x2, (4.1.17)

where x and y are RVs. We define xtrue, a Gaussian RV, as the sum of its

mean x and w, a zero-mean Gaussian RV with variance σ2
x, as

xtrue = x + w. (4.1.18)

We transform xtrue with (4.1.17), to obtain

ytrue = x2 + 2xw + w2. (4.1.19)
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Figure 4.2: The EKF’s and UKF’s output states vs. the true output state for the

input state with mean x = 5 and variance σ2

x = 0.1.

The true transformed mean and variance are calculated by taking expectations:

ytrue = E(ytrue) (4.1.20)

= x2 + σ2
x (4.1.21)

σ2
ytrue

= E((ytrue − ytrue)
2) (4.1.22)

= 2σ4
x + 4x2σ4

x. (4.1.23)

If the statistics are calculated using the linearisation method of the EKF as in

Table 4.2, we obtain the transformed mean

yekf = x2 (4.1.24)

and the transformed variance

σ2
yekf

= (2x)(σ2
x)(2x) (4.1.25)

= 4x2σ4
x, (4.1.26)
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Figure 4.3: The EKF’s and UKF’s output states vs. the true output state for the

input state with mean x = 1 and variance σ2

x = 0.1.

where the nonlinear transformation is linearised as

dy

dx

∣

∣

∣

∣

x=x

= 2x. (4.1.27)

We now use the SUT as used by the UKF to calculate the same statistics. We

take α = 1, β = 0 and κ = 2, which yields λ = 2 for a dimension of n = 1.

From this, we obtain the weights, using Table 4.3, as

w
(m)
0 = w

(c)
0 =

2

(1 + 2)
(4.1.28)

and

w
(m)
1,2 = w

(c)
1,2 =

1

2(1 + 2)
. (4.1.29)

The three sigma points are calculated as

X = [x, x +
√

(1 + λ)σ2
x, x −

√

(1 + λ)σ2
x ]. (4.1.30)
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Figure 4.4: The EKF’s and UKF’s output states vs. the true output state for the

input state with mean x = 0.05 and variance σ2

x = 0.1.

Using all of these, we obtain the transformed mean and variance:

yukf = x2 + σ2
x (4.1.31)

σ2
yukf

= 2σ4
x + 4x2σ4

x. (4.1.32)

It is evident from these equations that the SUT’s results are identical to that of

the true mean and variance, while the linearisation method introduces errors

in both the mean and variance. We include a few figures which illustrate the

effect of these errors on the given input PDF. In Figure 4.2 the linearisation

method’s PDF is very close to that of the true one. In Figure 4.3 the error is

more prominent and in Figure 4.4 it is significant. When x = 0, the lineari-

sation method’s PDF becomes an impulse, because its transformed variance

σ2
yekf

= 0, due to its dependence on the mean. The SUT, which yields re-

sults identical to the true output PDF, is clearly superior to the linearisation

method. As a final remark: the SUT is not influenced negatively by discontin-

uous or piecewise continuous functions, since the sigma points are propagated
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Property EKF UKF

Method linearisation sigma points

Modelling first order Taylor series original nonlinear models

Complexity O(n3) O(n3)

Statistical accuracy second moment up to fourth moment

Table 4.6: Comparison of the EKF to the UKF.

directly. On the other hand, the linearisation method is, since the first deriv-

ative is undefined at discontinuous or sharp points. The reader is referred to

Appendix A of Julier & Uhlmann (1996) for a proof and full discussion.

4.2 Summary

The EKF’s inability to correctly predict the state and observation of nonlinear

models was exploited in this chapter. It is clearly an inferior choice when

compared to the UKF. The UKF’s strength lies in the propagation of its sigma

points using the nonlinear models itself. Up to fourth moment information of

the PDFs can be incorporated by adjusting the parameters α, β and κ. The

comparison of the EKF to the UKF is summarised in Table 4.6.



Chapter 5

Structure from Motion

The best material model of a cat is another, or preferably the same, cat.

A. Rosenblueth and Norbert Wiener

Structure from Motion (SfM) is a method to reconstruct an object or scene’s

three-dimensional (3D) structure from its observed two-dimensional (2D) mo-

tion. The performance of SfM strongly depends on the state and observation

modelling. The state transition model predicts the new state in terms of its

previous state and the observation model transforms this new state into a pre-

dicted observation. The Unscented Kalman Filter (UKF) acts as Minimum

Mean-Square Error (MMSE) agent, minimising the error between the real ob-

servation and the predicted observation by estimating the 3D structure and

motion of the rigid object.

We will discuss our framework based on the concepts used by Azarbayejani

& Pentland (1995) and Venter (2002). Our aim is to construct models that are

robust, not depending on any prior knowledge about the structure or motion.

In the following sections we describe the observation model and structure and

motion model, rounding it off with a section about proper initialisation of the

UKF and the models.

38



Chapter 5. Structure from Motion 39

sample

xccs

yccs zccs

y

−f

pccs

Figure 5.1: Linear perspective projection of a point p onto the image plane as y at

a focal length of f .

5.1 Observation modelling

We assume a linear perspective projection model for the pinhole camera. Con-

sider a 3D coordinate in the Camera Coordinate System (CCS)

pccs =









pccs
x

pccs
y

pccs
z









(5.1.1)

that undergoes a linear perspective projection. The projected coordinate y lies

on the image plane, where the image plane passes through the origin of the

CCS—this is illustrated in Figure 5.1. The focus lies at zccs = −f , referred to

as the Center Of Projection (COP). The mathematical relationship between

the 3D coordinate pccs and its projected 2D coordinate y is described by

y =





pccs
x

pccs
y





(

1

1 + pccs
z

f

)

. (5.1.2)
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sample
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Figure 5.2: The points rccs and pccs yield the same observation.

Altering f in this model, alters the projected coordinate independent of pccs
z

(Azarbayejani and Pentland, 1995). Note that it is impossible to tell whether

we have changed pccs
z or f when either pccs

z or f is kept constant— it is possible

that different values yield the same ratio pccs
z

f
. This model also enables us to

express the orthographic camera model as a special case of the perspective

camera model as

y =





pccs
x

pccs
y



 , (5.1.3)

when f → ∞. We are actually interested in the inverse process of (5.1.2)

pccs =











yx(1 + pccs
z

f
)

yy(1 + pccs
z

f
)

pccs
z











, (5.1.4)

where pccs is written in terms of its projection y and the focal length f . From

this we see that the only information we need to reconstruct pccs up to a scale

factor is y and the ratio pccs
z

f
. In this thesis, we assume that the focal length
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xocs

yocs
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pccs = Rpocs + t

Figure 5.3: Linear perspective projection of a point p in terms of the OCS onto the

image plane as y in the CCS at a focal length of f .

is known, which leaves us with only one unknown parameter per coordinate—

pccs
z . Compared to previous methods that estimate the 3D point pccs as a

whole (Broida et al., 1990), this is a reduction of two thirds. This enables us

to keep the estimated state’s dimension low, since the dimension influences the

computational complexity of the UKF, as stated in Subsection 4.1.3.

The issue of scale is an important one in SfM. Consider a feature pccs

on an arbitrary object to be a scaled version of the same feature rccs on the

unscaled object. Figure 5.2 shows that rccs yields the same observation as pccs.

The significance of this is that the structure can only be estimated up to a

scale value, but this does not pose a problem. If one feature’s real coordinate

is known, the scale factor can be determined and the whole structure scaled

accordingly, since it is assumed to be rigid.

Consider now a rigid object in 3D space under linear perspective projection

as depicted in Figure 5.3. We refer to the coordinate system attached to the

object as the Object Coordinate System (OCS). The structure is estimated

relative to the OCS. The two origins of the respective coordinate systems are

related via the translation vector t. The orientation of the OCS relative to the
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CCS is related via the rotation matrix R. We express this mathematically as

pccs = Rpocs + t. (5.1.5)

Again, we rewrite this as the inverse relationship

pocs = R−1(pccs − t) (5.1.6)

= R−1











yx(1 + pccs
z

f
) − tx

yy(1 + pccs
z

f
) − ty

pccs
z − tz











, (5.1.7)

where we substituted (5.1.4). As discussed in Chapter 3, the rotation is rep-

resented using quaternions. The solution to the differential equation (3.5.13)

implies that we must choose a reference. Thus, we initialise the rotation by

aligning the OCS with the CCS

R−1
0 = I. (5.1.8)

We define a point-wise feature in terms of its image location in the first frame

it appears. The translation components tx and ty are initialised with the mean

of the initial 2D observation. This is a valid assumption: given an adequate

number of features, the mean of the observation tends to coincide with the

centroid of the object. The component tz is set to zero

t0 =









yx,0

yy,0

0









. (5.1.9)

If we incorporate the initial conditions into (5.1.7) and write it in a time-

dependent form, we obtain our perspective projection camera model. The

equation for a single feature is expressed as

pocs
i|i−1 =













yx,0(1 +
pccs

z,i|i−1

f
) − yx,0

yy,0(1 +
pccs

z,i|i−1

f
) − yy,0

pccs
z,i|i−1













(5.1.10)

=











yx,0(1 +
si|i−1

f
) − yx,0

yy,0(1 +
si|i−1

f
) − yy,0

si|i−1











, (5.1.11)
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where s is substituted for pccs
z to simplify the notation and to link it to the state

modelling in Section 5.2. Note that (5.1.11) depends on the initial observation

y0 and its corresponding mean y0 —any errors introduced at initialisation will

be propagated to all future estimates. We assume that the observations are

corrupted by additive, zero-mean, white, Gaussian noise

ν ∼ N (0,R), (5.1.12)

where 0 denotes a zero-mean and R the observation covariance matrix.

5.2 Structure and motion modelling

Our goal is to estimate point-wise structure. It is assumed that no prior knowl-

edge about the structure of the tracked object is available. We assume addi-

tive, zero-mean, white, Gaussian noise throughout this section to characterise

uncertainties, expressed as

µ ∼ N (0,Q), (5.2.1)

where 0 denotes a zero-mean and Q the state covariance matrix. The simplest

form of the structure state transition is given by

si|i−1 = si−1|i−1, (5.2.2)

where i is the current time step. This equation acts on the structure vector

s = [ s0, · · · , sk, · · · , sm−1 ]T. (5.2.3)

It contains the estimated structure parameters, where m is the number of

features and sk = pocs
z,k , where k is the feature index. This structure transition

equation simply states that the current estimate of the structure is similar to

the estimate at the previous step. This is a valid approach if the tracked object

is moving slowly or the frame-rate is high. This way, we rely on the Kalman

gain to adjust the structure—the modelling error is absorbed by its modelling

uncertainty µs.

We describe the rotation of the object relative to the CCS using quater-

nions. Quaternions were fully discussed in Chapter 3. In particular, we use

(3.5.10) and (3.5.12), which yields

qi|i−1 = qi−1|i−1 + ∆t1
2Ω(ωi|i−1)qi−1|i−1. (5.2.4)
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We have to incorporate the object’s angular velocity, also relative to the OCS,

into the state, since Ω(ωi|i−1) is a function of the angular velocity. The angular

velocity state transition is modelled as

ωi|i−1 = ωi−1|i−1. (5.2.5)

These equations act on the vectors

q = [ q0, q1, q2, q3 ]T (5.2.6)

and

ω = [ωx, ωy, ωz ]T. (5.2.7)

The translation transition equations follow a similar procedure. The trans-

lation relates the origin of the OCS relative to the CCS. It is modelled as the

translation at the previous step plus the change in translation, denoted by

ti|i−1 = ti−1|i−1 + ∆tdi|i−1. (5.2.8)

Thus, the model for the translation velocity is given by

di|i−1 = di−1|i−1 (5.2.9)

and is related to the translation t via

d =
dt

dt
, (5.2.10)

which states that the velocity is the time-derivative of the translation. The

vectors on which these equations operate are

t = [ tx, ty, tz ]T (5.2.11)

and

d = [ dx, dy, dz ]T. (5.2.12)

It is clear that all these equations are of first order. Using higher order

modelling results in higher computational complexity. To conclude, we con-

catenate the respective state column vectors to construct the full state column

vector with dimension m + 13

x = [ sT, qT, ωT, tT, dT ]T, (5.2.13)
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where s contains the z-coordinates of all features, q is the rotation of the OCS

with respect to the CCS, ω is the angular velocity of the OCS with respect to

the CCS, t is the translation of the OCS with respect to the CCS and d is the

translation velocity of the OCS with respect to the CCS.

This modelling approach differs from the one by Azarbayejani & Pentland

(1995)—they estimate focal length as an additional parameter, but do not

estimate the translation velocity. We opted for a simpler form of the translation

transition equations than those proposed by Venter (2002). This trade-off does

not seem to influence the performance in a negative way as we will see from

the results in Chapter 7.

5.3 Initialisation and setup

The UKF strongly depends on suitable initial conditions and model uncer-

tainties — if not set up properly, the algorithm fails to converge. Some of the

initialisation choices have been mentioned earlier. Recall that since it is as-

sumed that we have no prior knowledge available about the structure, it is set

to a zero-vector

s0 = 0, (5.3.1)

which corresponds to a plane coincident with the image plane. The estimated

rotation is only a relative measure of orientation and we chose in Section 5.1

to align the OCS with the CCS. Thus, the initial quaternion is set to

q0 = [ 1, 0, 0, 0 ], (5.3.2)

which corresponds to an identity matrix. Accordingly, the initial angular ve-

locity vector is set to

ω0 = 0. (5.3.3)

We have only partial information available to initialise the translation vec-

tor. The components tx and ty are initialised as the 2D mean of the initial set

of observations, since the translation of the tracked object is defined by the

translation of its centroid

t0 =









yx,0

yy,0

0









, (5.3.4)
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where tz is set to zero. Thus, our initial structure coincides with the image

plane with its centroid at the 2D mean of the initial set of observations. This

is also the origin of the OCS and the point about which rotation occurs. It

must be stressed that if these values do not coincide with the real centroid,

due to the distribution of features, it causes difficulties in the estimation of

rotation. The effect of a biased centroid will be observed in Subsection 7.2.3.

Analogous to the angular velocity, we set the initial translation velocity to

d0 = 0. (5.3.5)

The state covariance matrix P0 is initialised with a spherical covariance

matrix, containing the same value for each entry on its main diagonal. The

matrices Q and R are spherical matrices too and the entries on the main

diagonal are fixed for a particular sequence. Thus, these matrices are each

fully described by a variance. Spherical covariance matrices are an appropriate

choice, since it is assumed that the noise is white and uncorrelated—refer to

Subsection 4.1.1. In some cases, it may be necessary to differentiate between

the structure and motion uncertainties to improve convergence. There are two

factors that influence the observation uncertainty:

• accuracy of the feature tracker

• resolution of the frames.

The accuracy of the Kanade-Lucas-Tomasi (KLT) feature tracker depends on

its setup and the quality of the sequence and therefore may vary from sequence

to sequence. We can, however, partially estimate the observation noise from

the resolution of the frames for a particular sequence. It should be noted

that all frames are scaled by the resolution height h and width w to create a

normalised frame with unity width and height. Thus, if we assume one pixel

deviation, the observation noise variance can be based on the mean of the

respective reciprocals of the resolution width and height

σ2
r =

1

2

(

1

w
+

1

h

)

. (5.3.6)

As a final remark, we take a look at the dimensionality of the vectors and

matrices involved, since it influences the computational complexity of the UKF.
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The state, state noise and observation noise vectors x, µ and ν respectively

have dimensions m + 13, m + 13 and 2m if expressed in terms of the number

of features m. Thus, the augmented state vector dimension n is given by

n = 2(m + 13) + 2m (5.3.7)

= 4m + 26. (5.3.8)

The matrices P, Q and R are square matrices with dimensions (m + 13) ×
(m + 13), (m + 13)× (m + 13) and 2m× 2m with an augmented dimension of

n × n. We saw in Subsection 4.1.3 that the number of sigma points are given

by

2n + 1 = 2(4m + 26) + 1 (5.3.9)

= 8m + 43 (5.3.10)

It is clear that a large number of features result in a large number of sigma

points, but more importantly, it also results in very large matrices for a hundred

or so features. This slows down the UKF dramatically.

5.4 Summary

We have established a framework for the observation, structure and motion

models. It may seem inappropriate to use the UKF, which is a nonlinear

estimator, in combination with our linear models. However, it should be kept

in mind that although the motion may seem linear over a small number of

steps, the overall process may contain a number of nonlinear effects. It is these

unpredictable events that we need the UKF to model, for example occlusion.

Thus, using linear models do not restrict us to linear processes only.



Chapter 6

Implementation issues

In theory, there is no difference between theory and practice. In practice,

there is. Chuck Reid

In this chapter, we discuss some of the implementation issues encountered

during the course of this thesis. These include decisions about the setup and

initialisation of the Unscented Kalman Filter (UKF) and use of the Kanade-

Lucas-Tomasi (KLT) feature tracker. A contribution to the field is made with

two methods to handle feature occlusion (Section 6.3). Another implementa-

tion issue discussed is that of radial lens distortion, which has a significant

effect on locally recorded sequences. Finally, we look at the real-time perfor-

mance of our Structure from Motion (SfM) system.

6.1 Unscented Kalman Filter

6.1.1 Initialisation and setup

Care must be taken when setting up the UKF—it is very sensitive to the

initial choice of the initial state uncertainty P0. We prefer to set the initial

entries of P0 � 1 to ensure convergence of the UKF. There exists a trade-

off for the choice of the state transition uncertainty Q. If it is set too large,

it causes the UKF to oscillate, but if it is set too small, the UKF converges

slowly. This corresponds with the findings of Bizup & Brown (2003). The

48
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values as indicated in Table 7.1 and Table 7.2 for P0 and Q were found empir-

ically. Note that a distinction between the structure uncertainty Qs and the

motion uncertainty Qr,t is made— in some cases it is necessary to increase the

structure uncertainty to improve convergence. The downside to this is that

the UKF can use this freedom to minimise the error between the real and pre-

dicted observations, leading to an erroneous estimated structure. Also, if the

ratio of the entries of Qs to Qr,t is large, it will cause the Choleski decompo-

sition to fail, due to ill-conditioning, which will lead to numerical instability.

One implementation which uses the Extended Kalman Filter (EKF) sets one

of the structure parameters to a known value and fix its corresponding uncer-

tainty at zero (Azarbayejani and Pentland, 1995). If this approach is applied

to an implementation based on the UKF, the diagonal state covariance will be

singular, causing the Choleski decomposition to fail.

6.1.2 Optimisation

The UKF can be optimised by noting that the Choleski decomposition of Q

and R need to be calculated only once if its entries are constant over time.

Furthermore, if each of these matrices contain identical entries only on the

main diagonal, the square root of the entries are equal to the Choleski root for

each matrix —the calculation of a single square root is computationally much

more efficient. We express this mathematically for the matrix Q as

chol(Q) = chol(kI) (6.1.1)

= chol(k) chol(I) (6.1.2)

=
√

kI, (6.1.3)

where I is the identity matrix and k a positive constant.

6.1.3 Sigma structure

Consider the previous state of the UKF at a given time-step. Following the

procedure described in Section 4.1.3 and Table 4.5, retrieve the state sigma

points X
i−1|i−1 from the augmented sigma point matrix A

i−1|i−1. These sigma

points are then propagated using the state transition model to yield the pre-

dicted sigma points X
i|i−1, from which the predicted state mean xi|i−1 and
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state covariance Pi|i−1 are calculated. The next step is to create a predicted

observation yi|i−1 from the sigma points X
i|i−1 —refer to the observation pre-

diction step in Table 4.5. To do this, we need to reconstruct the object in the

Object Coordinate System (OCS), but closer inspection of (5.1.11) raises the

question: how do we reconstruct the object from a set of sigma points, if the

initial observation y0 and its mean y0 do not form a set of sigma points? Each

sigma point need a matching initial observation sigma point. The answer is

that we have to do without it. There is no way to create a set of sigma points

from the initial observation, because that implies that we know the state sigma

points that produced it. We instead use the initial observation and its mean

as sigma points. Thus, we rewrite (5.1.11) as

Pocs
j,i|i−1 =









yx,0(1 +
X

s

j,i|i−1

f
) − yx,0

yy,0(1 +
X

s

j,i|i−1

f
) − yy,0

X s
j,i|i−1









, j = 0..2n, (6.1.4)

where X s
j,i|i−1 is the j-th predicted sigma structure parameter. We continue

to work toward a predicted observation, by now rotating and translating the

newly created sigma feature Pocs
j,i|i−1 to get its location in the Camera Coor-

dinate System (CCS). Care must be taken when rotating each reconstructed

sigma feature with its corresponding sigma quaternion X
q

j,i|i−1. A quaternion

must have unit norm to yield to a valid rotation (Section 3.4). Thus, each

sigma quaternion must be normalised to prevent spurious scaling of the sigma

structure. Finally, the sigma structure is projected onto the image plane,

from which the predicted observation mean yi|i−1 and covariance Pyyi|i−1
are

calculated.

6.2 Feature tracking

Although feature tracking is beyond the scope of this thesis, we consider it

necessary to review some of the issues encountered. The quality of our results

strongly depends on the quality of the tracked features. There are a few factors

that influence the quality:

• setup of the feature tracker
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• feature selection method(s) used by the feature tracker

• feature tracking method(s) used by the feature tracker.

We opted for the KLT feature tracker for this thesis. It is one of the most

widely used algorithms to perform the task of point-wise feature tracking in

a sequence. It was originally developed by Lucas & Kanade (1981) and later

refined by Tomasi & Kanade (1991). We do not discuss the algorithm itself —

for more details, see Wagener & Herbst (2002) and (Birchfield, 2003) among

other.

A feature is defined by its window size. A good feature is one that is

easily tracked in subsequent frames. How are features selected by the algo-

rithm? Areas containing rich textures, such as corners or distinct patches, are

considered good and determined by calculating gradients. Another question

comes to mind: how are features tracked in subsequent frames? Small inter-

frame change is modelled as a translation plus a residue term. This proves

to be problematic for the UKF when estimating small subsequent rotations,

which will incorrectly be estimated as small subsequent translations, as will

be shown for the POV-Ray experiment in Subsection 7.2.3. However, their

approach is fast and simple, given a moderate number of features. Unfortu-

nately, for the face sequence used in Subsection 7.3.2, where 180 features were

tracked, the KLT feature tracker’s speed hamper the real-time performance of

our algorithm.

6.2.1 Feature window size

The feature window size is specific to a particular sequence. According to

Tomasi & Kanade (1991), smaller windows are more sensitive to noise. The

advantage of smaller windows is that it is less likely to span discontinuities or

to be affected by a change in viewpoint. We typically set the window size to

7 × 7 pixels. See the documentation of the KLT feature tracker by Birchfield

(2003) on how to fine-tune it.



Chapter 6. Implementation issues 52

(a) (b)

Figure 6.1: A feature tends to slide along an edge of an object.

6.2.2 False features

A false feature exists where two edges of two objects of different perspective

seem to intersect in the projection. The motion of such a feature is not in

accord with the motion of the true features and influences the estimation

negatively.

Another example of a false feature is one that is tracked on an edge of an

object. Such a feature slides along the edge, creating an inconsistent observa-

tion. This usually happens when the feature tracker cannot find the requested

number of features. The POV-Ray cube sequence in Subsection 7.2.3 serves

as example. During the sequence, only six good features (the vertices) can be

tracked. If we request one more feature and the KLT feature tracker is unable

to find another good feature, it selects one on the edge. Figure 6.1 shows a

sliding feature in two subsequent frames.

6.3 Feature occlusion

Feature occlusion is the event of one or more features becoming obstructed.

This may be due to the object being rotated in such a way that previously un-

obstructed features become occluded by the object itself or due to the relative

orientation or position of another object.

One approach is to predict the occluded feature based on the best estimate

of its three-dimensional (3D) orientation and position. Since we assume the
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Figure 6.2: Motion of one feature of the hotel.

object to be rigid, this should work well, in theory at least. Unfortunately, if

the UKF has not yet converged, this wrongly predicted feature will skew the

structure for as long as that feature is occluded, creating biased estimates. This

raises another problem: how do we match a previously occluded feature with

its predicted observation and do that without adding too much overhead? It

remains an open question. This approach did not yield any meaningful results.

One way to continue accurate tracking during the event of occlusion, is to

simply replace the occluded feature with another non-occluded feature. We

assume that the object retains its angular velocity and translation velocity and

leave the associated parameters unaltered. Thus, the only altered parameter

is the replaced feature’s structure depth, which may be re-initialised to any

value—we choose snew = 0. Thus, the structure will appear skewed for a

few iterations. This approach works only if the occlusion rate is low and

given that the KLT feature tracker is able to replace the occluded feature. All

tracked features can be incorporated into the final estimated structure as a

post-processing step.

Results are included to show the feature replacement method in action.

Figure 6.2 shows one of the non-occluded tracked features, where the red dot

indicates a KLT feature and the black circle the feature tracked by the UKF.

The UKF loses track for two to five iterations at time-steps of occlusion. Al-

though we do not have the ground truth data available for this sequence,

inspection of Figure 6.4 shows that the rotation continues almost without in-

terruption. The same conclusion follows from Figure 6.5. The only exception

is the trajectory of tz, which is influenced by the replaced feature’s depth,
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(b) Angular velocity.

Figure 6.4: Estimated rotation of the hotel.

which is re-initialised to zero. Occlusion occurred at frames 33, 68, 82 and

92. Figure 7.22 shows two views of the reconstructed hotel, showing that

reconstruction is possible under feature replacement. We conclude that our

approach handles feature occlusion well under the condition that the feature

occlusion rate is low.

6.4 Radial lens distortion

The assumption made in this thesis (Section 5.1) is that the linear perspec-

tive projection model is an accurate description of a pinhole camera. A

linear projective geometry projects 3D lines onto the image plane as two-

dimensional (2D) lines. However, this is not true in practice, where the most
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Figure 6.5: Estimated translation of the hotel.

distorted linear

correction

Figure 6.6: The effect of radial lens distortion on straight lines.

common distortion is radial lens distortion. The distortion becomes more se-

vere as the focal length decreases. Figure 6.6 shows the effect of radial lens

distortion. The face sequence used in Subsection 7.3.2 suffers from this ef-

fect. Thus, to find the true structure and to calculate the Root-Mean-Square

Error (RMSE), when compared to the 3D scanned data as for the face exper-

iment in Subsection 7.3.2, the distortion needs to be eliminated.

We relate the actual projected coordinate to the ideal coordinate via a

radial displacement. According to Hartley & Zisserman (2001), radial lens

distortion is modelled as

pcorr = pcen + L(r)(prd − pcen), (6.4.1)

where pcorr = [xcorr, ycorr ] is the corrected (ideal) coordinate in terms of

the radially distorted (observed) coordinate prd = [xrd, yrd ] and the centre

of radial distortion pcen = [xcen, ycen ]. The function L(r) determines the
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(a) Distorted. (b) Corrected.

Figure 6.7: Radially distorted and corrected frame from the face sequence.

distortion factor at a radial distance from the centre of distortion, defined as

r =
√

(xrd − xcen)2 + (yrd − ycen)2. (6.4.2)

The function L(r) is defined only for positive values of r, where L(0) = 1. An

arbitrary function may be approximated using a Taylor series expansion, given

by

L(r) = 1 + k1r + k2r
2 + · · · , (6.4.3)

where the k-coefficients and pcen are considered part of the intrinsic parameters

of the camera. According to the number of coefficients estimated, an equal

number of distorted and ideal coordinates must be chosen to yield a unique

solution of (6.4.1). In this case, MATLAB’s Levenberg-Marquardt method

was used to minimise the nonlinear problem in a least squares sense. This

procedure is carried out as a post-processing step. We show the effect on one

frame in Figure 6.7 from the face sequence. The bounding box is added to

show the original position of the face in Figure 6.7(a) in Figure 6.7(b).

6.5 Real-time performance

All experiments were run on a 1.8 GHz PC with 1280 MB RAM. The UKF is

implemented as part of a locally developed software library written in C++.

We use an implementation of the KLT feature tracker written in C, available

from http://www.ces.clemson.edu/~stb/klt/.

http://www.ces.clemson.edu/~stb/klt/
http://www.ces.clemson.edu/~stb/klt/
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Our implementation of the UKF processes more than 60 frames per second,

but the speed is significantly reduced when used in combination with the KLT

feature tracker. Given a moderate number of features, typically less than 20, it

processes 5-15 frames per second. The face sequence’s high number of features

is processed at 1 frame per minute.

6.6 Summary

The most significant implementation issues encountered, such as the initialisa-

tion and setup of the UKF, were discussed in this chapter. Some optimisation

notes, concerning the Choleski decomposition step as applicable to the UKF,

was made.

We also gave an overview of the KLT feature tracker and the parameters

and issues that influence the tracking of good features. Two simple methods to

handle feature occlusion were introduced. We concluded that feature predic-

tion performs poorly if the system has not yet converged. Feature replacement

performs well under the assumption that the occlusion rate is low. The chap-

ter is concluded with sections about radial lens distortion and the real-time

performance of our algorithm.



Chapter 7

Experimental investigation

An experiment is a question which science poses to Nature, and a mea-

surement is the recording of Nature’s answer. Max Planck

We begin this chapter by defining our measure of error to compare the results

from different sequences, before we move on to the actual experiments and

results. An extensive number of sequences is used to show the versatility of

our approach. The structure of this chapter is summarised in the following list

to indicate the flow:

• Cube sequences

– Pure synthetic sequence

– Noisy synthetic sequence

– Quasi-real sequence

• Real sequences

– Hotel sequence

– Face sequence

We begin with a pure synthetic, MATLAB generated cube sequence, simu-

lating the motion of its eight vertices. This is to test our implementation of

the Unscented Kalman Filter (UKF) and Structure from Motion (SfM) mod-

els. Next, we corrupt this sequence with observation noise and rerun the
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experiment. The next step is to integrate the Kanade-Lucas-Tomasi (KLT)

feature tracker, which detects point-wise features within each frame—we gave

a short overview of the KLT feature tracker in Section 6.2. This experiment

is performed on a POV-Ray (Persistence of Vision Raytracer) rendered cube

sequence and is occlusion-free. The real challenge is to test on real sequences

for which ideal conditions seldom hold—practical issues, such as occlusion

and radial lens distortion come into play. The first of these experiments is per-

formed on a toy hotel sequence. The final and main experiment is our attempt

to perform facial feature reconstruction from a locally recorded sequence.

Just a note on how the rendered reconstructed models presented in this

chapter is produced. The three-dimensional (3D) reconstructed point-wise

features are calculated from the estimated structure parameters in the state

vector at a given time-step. These features are then interpolated, using MAT-

LAB’s Delaunay triangulation. The choice of interpolation method, linear or

cubic, is based on prior knowledge about the structure. The final step is to

apply the initial frame of the applicable sequence as a texture map to the

interpolated reconstructed model to produce the final reconstructed model.

7.1 Error calculation

It is necessary to define a measure of error to compare the results of the

different sequences. We are in particular interested in the accuracy of the

reconstruction. Let us now define the distance between the k-th estimated

structure parameter and its reference as

∆sk = |ask − s
ref
k |, (7.1.1)

where a is a scalar used to scale the estimated structure parameters. We use

the well-known definition for the Root-Mean-Square Error (RMSE) to calculate

the reconstruction error

es =

√

√

√

√

1

m

m−1
∑

k=0

∆s2
k, (7.1.2)

where m is the number of features. This is calculated at a time-step of our

choice after the filter has converged. The smaller this value, the more accurate
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the reconstruction. The bias-corrected sample variance of the structure is

defined as

σ2
s =

1

m − 1

m−1
∑

k=0

(∆sk − ∆sk)
2, (7.1.3)

where the mean is defined as

∆sk =
1

m

m−1
∑

k=0

∆sk. (7.1.4)

This result is an indication of the distribution of the expected error. The

smaller the variance, the less the deviation from the true structure.

7.2 Cube sequences

This section covers three experiments. The first one is performed on a pure

synthetic sequence created with MATLAB. The motion of the eight vertices

(point-wise features) acts as observations. The second experiment is performed

on the same sequence, but with observation noise added. These two experi-

ments utilise only the UKF. The UKF is then combined with the KLT feature

tracker. This combination, referred to as the SfM system, is then tested on a

software rendered cube created with POV-Ray. The results of this section is

summarised in Subsection 7.2.4.

7.2.1 Pure synthetic sequence

This MATLAB generated sequence of a cube serves as sanity check. Its pur-

pose is to test our implementation of the UKF. No real feature tracking is

performed. Instead, we generated the projected motion of a cube’s eight ver-

tices and fed that into the UKF. The cube is assumed to be transparent to

prevent occlusion. The cube rotates at a constant angular velocity and trans-

lates at a constant velocity which suits our linear state transition model. A

two-dimensional (2D) projection of the 3D motion is performed in accord with

the observation model for a linear perspective projection camera. Thus, the

observations are ideal and noise free.

Figure 7.1(a) shows the projected motion for the whole sequence and Fig-

ure 7.1(b) a detailed view of the first part. Although the different vertices
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(b) Detailed observations.

Figure 7.1: Motion of the eight vertices of the synthetic cube.
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Figure 7.2: Estimated structure parameters of the synthetic cube.
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Figure 7.3: Estimated rotation of the synthetic cube.
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Figure 7.4: Estimated translation of the synthetic cube.
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Figure 7.5: Convergence for the synthetic cube sequence.

follow quite different 2D projected trajectories, the UKF manages to track it

well— the red dots indicate the true motion and the black circles the filtered

motion.

Figure 7.2 shows the estimated structure parameters s over time. The

initial orientation of the cube’s faces is aligned with the axes of the Object

Coordinate System (OCS) and the Camera Coordinate System (CCS), imply-

ing that half the vertices should lie on either the front or back face. This

is observed from Figure 7.2—the structure parameters converge within 100

frames to the true values of ±0.5.

Figure 7.3 depicts the true and estimated rotation of the cube. Fig-
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ure 7.3(a) shows the four quaternion parameters. The cube rotates at a

constant angular velocity and we expect the quaternion parameters to be

sinusoidal. This is similar to the parameterised sinusoidal and cosinusoidal

functions that represent circular motion in 2D. Figure 7.3(b) confirms that

the angular velocity is constant.

The estimated translation is accurate, showing little deviation from the true

translation as shown in Figure 7.4. However, we note in Figure 7.4(b) that

the translation model is more sensitive to translation along the zccs-axis. This

sensitivity is also reflected by the estimated structure parameters in Figure 7.2.

The reason for the sensitivity is that all the structure parameters s and the

translation parameter tz encode information about depth.

The UKF takes less than 100 iterations to converge when Figure 7.5(a)

and Figure 7.5(b) are considered in combination. Figure 7.5(a) shows the L2

norm of the state covariance over time, which is an indication of the UKF’s

uncertainty —the smaller the norm, the more confident the UKF. Notice the

peaks in the norm during the course of the sequence. We deduce from this that

the motion is highly nonlinear during those sections, which justifies the need

for a nonlinear estimator such as the UKF. Although the uncertainty increases,

the RMSE of the state vector remains small as indicated in Figure 7.5(b).

An extract from the reconstruction sequence relative to the OCS is shown

in Figure 7.6— it is clear that the scaled reconstructed model indicated in

black is a cube. The reconstruction error at frame 175 is es = 0.0167 with a

variance of σ2
s < 0.0001.
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(d) Frame 50.
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(f) Frame 250.

Figure 7.6: Extract from the reconstruction sequence of the synthetic cube where the

reconstructed cube is indicated in black and the original cube in red.
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(b) Detailed observations.

Figure 7.7: Motion of the eight vertices of the noisy synthetic cube.
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Figure 7.8: Estimated structure parameters of the noisy synthetic cube.

7.2.2 Noisy synthetic sequence

We use the same sequence as in Subsection 7.2.1, but this time it is corrupted

with observation noise. The only change in setup of the UKF is the adjusted

observation uncertainty. The added zero-mean noise is Gaussian distributed

with a variance of 0.0001.

It is apparent from Figure 7.7 that the UKF survives this test—the red

dots indicate the true and noise-free motion and the black circles the filtered

motion. The noisy estimated structure parameters depicted in Figure 7.8 are

on average near the correct values. An interesting deduction can be made from

Figure 7.9 and Figure 7.10. Note that the estimated rotation and translation

parameters are very smooth—the angular velocity and translation velocity

parameters absorb the noise. The only exception is tz, which is more noisy.
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(b) Angular velocity.

Figure 7.9: Estimated rotation of the noisy synthetic cube.
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Figure 7.10: Estimated translation of the noisy synthetic cube.
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Figure 7.11: Convergence for the noisy synthetic cube sequence.
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In the view of our argument about sensitivity along the zccs-axis in Subsec-

tion 7.2.1, we conclude that the noise is absorbed by the structure parameters,

since all these parameters encode information about depth.

An extract from the reconstruction sequence is depicted in Figure 7.12. The

state uncertainty and RMSE results are comparable to that of Subsection 7.2.1.

The reconstruction error at frame 370 is es = 0.0488 with a variance of σ2
s =

0.0014. As expected, the results are less accurate than the results for the pure

synthetic case, due to the added noise. This experiment demonstrates the

reconstruction algorithm’s dependence on good features —observation noise

influences the reconstruction negatively.
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(f) Frame 250.

Figure 7.12: Extract from the reconstruction sequence of the noisy synthetic cube

where the reconstructed cube is indicated in black and the original cube in red.
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(a) Frame 80. (b) Detected features.

Figure 7.13: One frame from the POV-Ray sequence.
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(a) Second-half from sequence of

observations.
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(b) Detailed observations.

Figure 7.14: Motion of the six features of the POV-Ray cube.

7.2.3 Quasi-real sequence

The KLT feature tracker is brought into action in this experiment. The KLT

feature tracker together with the UKF forms the complete SfM system. The

feature tracker’s purpose is to detect and track point-wise features within each

frame—the KLT feature tracker is discussed in Section 6.2. This experiment

acts as an intermediate step before testing on real sequences. We apply the

KLT feature tracker to a software rendered cube sequence, created with POV-

Ray. As in the synthetic cases in Subsection 7.2.1 and Subsection 7.2.2, the

projection is performed via a linear perspective projection model, but with the
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Figure 7.15: Estimated structure parameters of the POV-Ray cube.
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(b) Angular velocity.

Figure 7.16: Estimated rotation of the POV-Ray cube.
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Figure 7.17: Estimated translation of the POV-Ray cube.
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Figure 7.18: Convergence for the POV-Ray cube sequence.
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(a) Reconstruction.
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Figure 7.19: The reconstructed POV-Ray cube and its lengths used to calculate the

RMSE.

difference that only visible features are projected. Thus, feature occlusion is

now a possibility. However, we choose a sequence that is occlusion-free—the

matter of occlusion is discussed in Section 6.3.

Figure 7.13 shows two identical frames from the sequence—Figure 7.13(a)

shows the rendered input frame and Figure 7.13(b) the frame processed by the

KLT feature tracker. The cube’s six visible vertices are tracked throughout

the sequence. It translates from left to right while rotating about its zocs-axis

over the first 120 frames. To complete the sequence, this motion is reversed

over the second half.
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We show the tracked features for the sequence in Figure 7.14—note the

observation noise, indicated by the red dots, in Figure 7.14(b). We pointed

out in Section 5.3 that two factors influence the quality of the observations:

• accuracy of the feature tracker

• resolution of the frames.

The resolution of this sequence is 320 × 240 pixels, which yields an estimated

noise variance from (5.3.6) of σ2
r ≈ 0.003, assuming pixel accuracy for the

observations.

Figure 7.15 depicts the estimated structure parameters. Although most of

the transients seem to have passed, the structure still changes —the UKF uses

the structure parameters to minimise the error between the real and predicted

observation. A closer inspection of Figure 7.16 and Figure 7.17 show some

more deviations. The cube’s zocs-parameter of its orientation (Figure 7.16(a))

at frame 120 is θz = −12◦ and should be θz = −24◦ —the global rotation

is expressed in terms of Euler angles instead of quaternions to facilitate the

interpretation of the motion. This incorrect estimate is compensated for by

tz and leads to more erroneous estimates due to this interaction. The reason

is that a small interframe rotation can be modelled as a translation and is

the reason that this kind of error is not reflected by the RMSE of the struc-

ture in Figure 7.18(b). More specific, the KLT feature tracker makes use of

this method (Section 6.2, Tomasi & Kanade (1991)), causing the UKF to in-

correctly estimate the motion. The UKF does this with great confidence as

shown in Figure 7.18(a). Another factor that contributes to the error is the

small number of features, causing an underdetermined system, but this is only

a suggestion. Once again, note the sensitivity of our algorithm to translation

along the zccs-axis.

The reconstruction error is calculated from the normalised lengths (Fig-

ure 7.19(b)) between features along the edges of the cube

` = [ 0.9211, 1.0510, 1.0255, 1.2475, 0.8824, 0.9487, 0.9230 ].

Calculating the RMSE of the structure from these values at frame 229 yield

es = 0.1153 with a variance of σ2
s < 0.0089. This does not compares very
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well with the results of the previous two subsections. A more representative

error gives about 0.2 when calculated over the length of the sequence. The

POV-Ray sequence has a greater RMSE than the previous results, but the

variance is quite low. We investigate the reasons for the larger reconstruction

error. The culprits are `3 = 1.2475 and `4 = 0.8824—the associated lengths

are shown in Figure 7.19(b) together with the reconstruction in Figure 7.19(a).

The erroneous estimates of the rotation and translation parameters contribute

to this error. A more subtle factor that contributes to the reconstruction error

is the calculation of the initial centroid t0 from the initial observation y0 via

(5.3.4) as

t0 =









yx,0

yy,0

0









(7.2.1)

=









0.2859

0.4951

0.0000









. (7.2.2)

The actual centroid is given by

t
ref
0 =









0.2500

0.5000

0.0000









. (7.2.3)

Calculating the RMSE yields a value of 0.0256, which is quite significant. The

initial observation itself may be inaccurate. If the RMSE between the detected

vertices and the true vertices is calculated, it yields an error of 0.0073, which

also contributes to the reconstruction error. The initial observation y0 is never

updated for the length of a sequence—refer to Section 5.1. Consequently, any

initial observation error is propagated to all future estimates. Due to this,

the translation is now biased and the rotation occur about an incorrect origin.

The reconstruction results are none the less considered good.
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(f) Frame 230.

Figure 7.20: Extract from the reconstruction sequence of the POV-Ray cube.
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Parameter/Result Synthetic Noisy synthetic Quasi-real

Initial state covariance P0 0.0500 0.0500 0.0500

Structure covariance Qs 0.0100 0.0100 0.0010

Motion covariance Qr,t 0.0010 0.0010 0.0010

Observation covariance R 0.0010 0.0010 0.0030

Number of features m 8 8 6

Frame of evaluation 175 370 229

RMSE of structure es 0.0167 0.0488 0.1153

Variance of structure σ2
s <0.0001 0.0014 0.0089

Table 7.1: Parameters and results for cube sequences.

7.2.4 Results

The results of the experiments of this section is summarised in Table 7.1 for

easy comparison. We include the exact setup, number of features and the

frames at which the reconstruction errors were calculated. As the experiments

become less ideal, the RMSE increases as expected. The respective variances

are satisfactory, being less than one percent.
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(a) Frame 50. (b) Detected features.

Figure 7.21: One frame from the hotel sequence.

7.3 Real sequences

This section covers two more experiments on real sequences, using the complete

SfM system. The first experiment is performed on a sequence of a toy hotel.

The purpose of this experiment is to test on a sequence not obtained by us

to show the versatility of our algorithm. The final experiment is our attempt

to perform facial feature reconstruction and is the main experiment of this

thesis. We show that facial feature reconstruction is indeed possible using

simple modelling.

7.3.1 Hotel sequence

This experiment is performed on a toy hotel sequence. The original can

be obtained from Carnegie Mellon University’s Computer Vision Homepage

http://www-2.cs.cmu.edu/~cil/vision.html. No ground truth data is avail-

able for this sequence and we give only a rendered representation of the re-

constructed model. This experiment serves as basis for the discussion about

feature occlusion—refer to Section 6.3 for more details.

As for the previous sequences, we show one of the frames from the sequence

in Figure 7.21. Two different views of the reconstructed model is presented

in Figure 7.22. The roof and walls can clearly be identified—we rely on

the results of the previous experiments to assume that the reconstruction is

accurate. A total of 40 features is tracked throughout this sequence.

http://www-2.cs.cmu.edu/~cil/vision.html
http://www-2.cs.cmu.edu/~cil/vision.html
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Figure 7.22: Two different views of reconstructed hotel.

(a) Frame 20. (b) Detected features.

Figure 7.23: One frame from the face sequence.

7.3.2 Face sequence

This experiment forms the focus of this chapter. We test our algorithm on a

sequence of a face in an attempt to accurately reconstruct the 3D model from

its 2D motion.

A total of 180 features are tracked throughout this 120 frame sequence—

the estimated structure parameters are shown in Figure 7.24. A number of

markers were placed on the face using a black marker to ease the detection of

point-wise features by the KLT feature tracker. The frames has a resolution

of 384 × 288 pixels. The motion is from left to right and back to the point of

origin. This translation is confirmed by Figure 7.26—the parameters ty and

tz are constant as expected. We note that the estimated translation is less
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Figure 7.24: Estimated structure parameters of the face.
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Figure 7.25: Estimated rotation of the face.
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Figure 7.26: Estimated translation of the face.
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sensitive to motion along the zccs-axis than in the previous experiments. A

small rotation error is observed in Figure 7.25. The parameter θy reaches a

maximum deviation of −3◦, although the estimated rotation parameters should

ideally be zero throughout the sequence, since the true motion contains only

a translation component.

Let us now discuss the reconstruction results. A head-on view of the 3D

reconstructed face is presented in Figure 7.27. We are aware that the human

brain interprets the 2D reference image, adding 3D information not necessarily

present in the reconstructed model. Thus, the usual texture map is not applied

to the reconstructed model for this figure. Instead, we added a light source

and applied a reflective material as texture map. This is done to convince the

reader from a visual point of view that what is observed really is a face. The

most prominent facial regions such as the forehead, eyes, nose and mouth can

clearly be identified. Figure 7.28 shows two more views of the reconstructed

face. An extract from the reconstruction sequence is depicted in Figure 7.29.

The RMSE of the reconstruction is calculated as es = 0.1132 with a variance

of σ2
s = 0.0129.

The ground truth structure is obtained from a mechanically scanned ver-

sion of the face at a horizontal and vertical step-size of 1 mm, containing about

220 000 reference points.

A subtle factor that contributes to the reconstruction error is the effect

of radial lens distortion. This kind of distortion is more severe at short focal

lengths, which is the case for this experiment. It causes the actual projection

to differ from the ideal projection—radial lens distortion is discussed in Sec-

tion 6.4. Thus, the reconstructed model differs from the real structure. We

conclude that our generalised structure model prevents us from achieving a

better reconstruction result.
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Figure 7.27: Head-on view of the reconstructed face without the reference frame as

texture map.
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Figure 7.28: Two different views of reconstructed face.
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Figure 7.29: Extract from the reconstruction sequence of the face.
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Parameter/Result Face sequence

Initial state covariance P0 0.0010

Structure covariance Qs 0.0010

Motion covariance Qr,t 0.0001

Observation covariance R 0.0001

Number of features m 180

Frame of evaluation 120

RMSE of structure es 0.1132

Variance of structure σ2
s 0.0129

Table 7.2: Parameters and results for face sequence.

7.3.3 Results

The results and setup for the face sequence is summarised in Table 7.2. The

results of the POV-Ray cube sequence in Table 7.1 is comparable to these

results, since both experiments utilise the full SfM system. The only difference

is the effect of radial lens distortion.
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7.4 Summary

Several aspects of the inner workings of our SfM system were covered in this

chapter, using a variety of experiments. We focused on facial feature recon-

struction. The system is particularly sensitive to translation along the zccs-

axis. Future improvements should consider the decoupling of s and tz to

prohibit or limit the interaction between these two parameters. The system’s

greatest limitation lies in its structure model, which may be improved by in-

corporating prior knowledge about the structure.

The system strongly depends on the initial observation, which influences

the estimation of the structure and motion. The structure parameters rely on

the initial observation to calculate the best estimate of the structure as calcu-

lated within the observation model. More consequences of a initial observation

error is an incorrect centre of rotation and a biased translation.

The system’s performance can potentially be influenced by the performance

of the KLT feature tracker, since it may introduce observation noise additional

to the discretisation of each frame. However, if configured well, it should not

pose a problem.

Some of the practical issues involved when implementing a system like this

were discussed in Chapter 6. Supplementary material is provided on CD in

Appendix B. It contains the reconstruction sequences as short video clips,

as well as the 3D models, including the POV-Ray cube, the toy hotel and

especially the reconstructed face, among other results and demonstrations.
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Conclusions

Education is what survives when what has been learnt has been forgotten.

Burrhus Frederoc Skinner

Given a set of two-dimensional (2D) observations, we have shown that accurate

three-dimensional (3D) structure and motion estimation can be achieved, using

the popular Structure from Motion (SfM) approach. Previous implementations

(Azarbayejani and Pentland, 1995; Jebara et al., 1999; Jebara and Pentland,

1996; Ström et al., 1999) are based on the Extended Kalman Filter (EKF), but

we opted for the Unscented Kalman Filter (UKF), due to its ease of implemen-

tation and higher statistical accuracy. Several aspects were considered during

the course of this thesis. We summarise in terms of the theory discussed, the

results achieved and the system’s limitations. This thesis is concluded with

some improvements and extensions for future research.

Quaternions provide a simple and efficient way to represent rotations. A

formula, based on the derivation by Wertz (1986), for the time-derivative of a

quaternion was derived in Section 3.5 for use in the motion dynamics. We gave

special attention to the theoretical comparison of the EKF to the UKF—refer

to Subsection 4.1.3. The UKF proves to be superior to the EKF, based on

prediction methods and modelling, computational complexity and statistical

accuracy (Table 4.6). The UKF’s only drawback is the increased overhead due

to an increase in the number of sigma points. This is induced by an increase

in the number of features, which consequently increases the state dimension,

84
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but that is a small price to pay for improved accuracy. The final theoretical

chapter covered the motion dynamics of a rigid object and the formulation of

the linear perspective projection model for a pinhole camera (Chapter 5). This

formulation decouples the focal length from the structure depth.

Chapter 6 covered the implementation issues, regarding the implementa-

tion of the UKF and its integration with the Kanade-Lucas-Tomasi (KLT)

feature tracker. We also discussed feature occlusion. One way to handle fea-

ture occlusion is to predict the occluded feature’s 3D location, based on its best

visible estimate of its structure parameter. We came to the conclusion that

this approach only works after the UKF has converged. Another method is to

reject the occluded feature and replace it with another non-occluded feature

(Section 6.3). Radial lens distortion has a significant effect on real sequences

at short focal lengths (Section 6.4). Correction of this kind of distortion is

compulsory to find the true structure.

The experiments in Chapter 7 covered a wide range of sequences, ranging

from pure synthetic sequences to real sequences. The pure synthetic sequences

tested only our implementation of the UKF and showed the dependence on

good features. The structure and motion results for the synthetic sequences

are extremely accurate, even under noisy conditions. Recall that our approach

is sensitive to motion perpendicular to the image plane.

The next natural step was to integrate the KLT feature tracker with the

UKF to form the complete SfM system. The system was tested on a quasi-

real sequence, which proved to be successful, except that the reconstruction is

skewed due to initialisation errors: any errors introduced by the initial observa-

tion, which is used to do the reconstruction, propagates to all future estimates,

since this information is never updated for the length of a sequence—this is

one of the limitations of our approach. One factor that contributes to the

reconstruction error is the feature measurement error. Another factor is an in-

correct centroid, due to the distribution of the initially observed features. This

results in a biased translation and an incorrect centre of rotation, as discussed

in Subsection 7.2.3. The choice of the initial state covariance may prevent

the UKF from converging. The final and most significant experiment to put

the SfM system to the real test, was to perform facial feature reconstruction.

In our view, the reconstruction proved to be successful, with a reconstruc-
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tion error of about 10% —refer to Figure 7.27 for the reconstructed face and

Table 7.2 for the numerical results.

The approach presented in this thesis is subjected to the following con-

straints:

• tracking of a single object only

• the object is assumed to be rigid

• tracking is performed in a clutter-free environment.

Thus, this thesis leaves much space for future research. We make a few sug-

gestions for improvement, regarding these limitations.

The motion modelling can be improved in a number of ways:

• Particle Filter hybrid systems

• integration of inertial parameters

• improve feature tracking

• segmentation using HMMs and parametric curves

• segment deformable object into smaller rigid objects

The Particle Filter (PF) provides better statistical modelling when compared

to the UKF, since it is not limited to unimodal Gaussian Probability Density

Functions (PDFs) only. The PF is a nonparametric method and has the ability

to estimate a nonparametric PDF, defined by a discrete set of particles. It is

common to integrate a PF with a Kalman Filter (KF). It must be stressed

that PFs are computationally expensive. The motion model can be extended

by integrating inertial parameters. This will of course only enhance the per-

formance if inertia plays a significant role. By suggesting to improve feature

tracking, we imply that better tracking can be achieved if the estimator and

the feature tracker are more tightly integrated in terms of feedback. Paramet-

ric curves are often used to segment an image to distinguish an object from its

cluttered background. A trained Hidden Markov Model (HMM) can be used to

identify the object to be tracked. Point-wise features for structure estimation

can then be selected within this region. Object tracking is not limited to rigid
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objects only —a deformable object can in some cases be defined by smaller

interconnected objects.

The following suggestions are made to improve reconstruction:

• initialisation using prior structure knowledge

• prohibit or limit the interaction between the structure parameters and

the translation’s z-parameter.

If prior knowledge about the structure is available, it can be used to initialise

the structure parameters. For example, the reconstructed face presented in

this thesis can be used as a generic model for a face—this should improve

convergence if this properly initialised system is used to reconstruct a human

face. We saw in Chapter 7 that our approach suffers from interaction be-

tween the structure parameters and the z-parameter of the translation, since

both encodes information about depth. If this interaction can in any way be

prohibited or limited, it should improve reconstruction results.

As a final remark, we suggest that a highly accurate SfM system can be

combined with a high quality face recognition system to perform 3D recogni-

tion.

This thesis covered some of the vast number of possibilities in the field of

Computer Vision to gain a better understanding of the inner structure and

motion of SfM.
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Supplementary information

The supplementary information provided in thesis

devel

gLinear

patrecII

obj.i386

bin

docs

scripts

klt

doc

matlab
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povray

python

clips

latex

app

chap

fig

math

other

sty

resource

data

data

html

papers

src

src

src

Figure A.1: Directory struc-

ture of the project.

this appendix acts as guide for the project as

supplied on CD in Appendix B. The CD con-

tains all resources, including the sequences and

literature used in this thesis (Section A.1). The

most important MATLAB scripts are discussed

in Section A.2. Section A.3 discusses the li-

braries needed to run the filter software discussed

in Section A.4. Section A.5 explains how to

setup and invoke an experiment, using the fa-

cial feature reconstruction experiment as exam-

ple. The directory structure of the project is

shown in Figure A.1 for easy navigation.

This thesis, typeset with LATEX2ε, is located

under latex/ as thesis.tex and can be com-

piled by invoking the command make from a ter-

minal on a Unix or Linux system.

A.1 Resources

The literature used in this thesis is provided under papers/ in electronic for-

mat. Additional material is provided under html/.

88
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The hotel and face sequences are located under resource/data/ as short

video clips. The separate frames used by the respective experiments are located

under obj.i386/data/. The scripts necessary to render the POV-Ray cube

sequence is located under povray/. The following version of POV-Ray was

used:

Persistence of Vision(tm) Ray Tracer Version 3.5.0c-9

(Debian i386-linux-gcc)

This is an unofficial version compiled by:

Jeroen van Wolffelaar <jeroen@wolffelaar.nl> for Debian

(www.debian.org)

The POV-Ray Team(tm) is not responsible for supporting this

version.

Copyright 1991-2002 POV-Ray Team(tm).

Invoke POV-Ray from a terminal with povray +Idata.pov data.ini. This

will produce a set of png images. The KLT feature tracker software accepts

only pgm images. A robust Python script to do batch image conversions, using

ImageMagick’s convert utility, is located under python/. Use ./bconvert -e

png -f pgm to convert from png to pgm, where the -e switch indicates the

input format and the -f switch the output format.

A.2 MATLAB scripts

The following MATLAB scripts are used to convert between various rotation

representations:

• quattorotm.m converts a quaternion to a rotation matrix

• rotR.m creates a rotation matrix from Euler angles in degrees

• quattoeuler3.m converts a quaternion to Euler angles in radians

• eulertoquat.m converts an Euler axis-and-angle to a quaternion.

The graphical comparison of the EKF to the UKF in Subsection 4.1.3 was

created with the script sigma.m.
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The following function reconstructs point-wise features from a set of struc-

ture parameters (beta), given the focal length f, the initial observation yInit

and a centroid cen.

function obj3D = sfmreconstruct(f, yInit, beta, cen, varargin)

Additional parameters may be supplied via varargin, such as a rotation ma-

trix, translation vector and a scale factor.

The directory kalman/ contains a 2D UKF demonstration (ukf.m), which

shows the UKF’s ability to track a number of different curves. The data sets

are created within this script.

The synthetic cube scripts are located under cubedemo/. Use the script

rot_cube.m to simulate the linear motion of the cube’s vertices. The transla-

tion and rotation parameters are set within. Invoke the UKF with ukf_cube.m.

This script relies on the state transition and observation models.

function ptsup = ffun_cube_n(pts, noise)

function ptsm = hfun_cube_n(pts, noise, yInit, cen, f)

The arguments pts and noise denotes the sigma point matrices as depicted

by the algorithm in Table 4.5. The results are viewed via ukf_res.m. A

reconstruction video clip, cube500_xvid.avi, is located under clips/.

A.3 Libraries

The following version of the gcc compiler was used to compile the different

libraries and software.

gcc (GCC) 3.3.4 (Debian 1:3.3.4-3)

Copyright (C) 2003 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE.

The filter software relies on the following C/C++ libraries:

• libgLinear.so or libgLinear.a
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Figure A.2: DTFilter_N class hierarchy.

• libgpatrecII.so or libpatrecII.a

• libklt.a

Invoke make from gLinear/ to create the necessary matrix algebra library.

The KLT feature tracker library is built by invoking make from klt/—its

documentation is available under klt/doc/. Invoke make lib from obj.i386/

to build the patrecII library. The mentioned libraries should all reside under

lib/.

The newest source of the KLT feature tracker can be obtained from the web-

site http://www.ces.clemson.edu/~stb/klt/. The newest source of gLinear

and patrecII can be obtained via CVS. Note that the Stellenbosch University

retains copyright on all software.

A.4 Filter software

The filter hierarchy is depicted in Figure A.2— it forms part of the greater

patrecII hierarchy. The discrete-time n-dimensional filter class DTFilter_N

is pure virtual. Both the classes LKFilter_N and AUKFilter_N derive from

it. The class AUKFilter_N is an abstract class and has two children. The

http://www.ces.clemson.edu/~stb/klt/
http://www.ces.clemson.edu/~stb/klt/


Appendix A. Supplementary information 92

Figure A.3: UKFFunction class hierarchy.

class UKFilter_N is a generalised UKF and the class SfMFilter_N contains an

instance of UKFilter_N and the state transition and observation models. These

models are derived from UKFFunction as depicted in Figure A.3. The class

UKFSRT implements the structure, rotation and translation submodels and the

class UKFCMM implements the camera model. The full patrecII documentation

is available under patrecII/docs/html/.

The source of the complete SfM system is provided under patrecII/src/

as sfmnew.cc. It combines the SfMFilter_N with the KLT feature tracker. To

build the application, invoke make sfmnew from obj.i386/. The application

should reside under bin/.

The application assumes that the sequence is available as a set of pgm im-

ages located in obj.i386/data/, named data001.pgm to data999.pgm. Un-

compress one of the subdirectories under obj.i386/data/. The application

can be executed interactively or setup via a configuration file. To use the inter-

active option, execute ./bin/sfmnew from obj.i386/ in a terminal. Table A.2

shows an example. To use a configuration file, pass the configuration file as

argument to the application, for example ./bin/sfmnew ./data/data.txt. A

typical configuration file is shown in Table A.1. Note that the comments are to

describe each field and should not be part of the file. The tf field has no effect
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SFMIO_v0 // header

vf: 180 // number of visible features

tf: 180 // number of trackable features

frames: 120 // number of frames

vsu: 0.001 // visible structure uncertainty

tsu: 0.001 // trackable structure uncertainty

rtu: 0.0001 // motion uncertainty

f: 10 // focal length

isu: 0.001 // initial state uncertainty

mu: 1e-4 // observation uncertainty

fd: 7 // minimum feature distance

ww: 5 // feature window width

wh: 5 // feature window height

Table A.1: A sample configuration file.

Running SfM:

Number of visible features (vf): 180

Number of trackable features (tf >= vf): 180

Number of frames: 120

Process uncertainty (structure): 0.001

Process uncertainty (rotation and translation): 0.0001

Would you like to configure more parameters? (y/n): y

Type 0 to select a default value.

Camera focal length (default 10): 10

UKF Initial state uncertainty (default 0.005): 0.001

UKF Measurement uncertainty (default 1e-4): 0.0001

KLT Minimum distance among features (default 15): 7

KLT Window width (default 7): 5

KLT Window height (default 7): 5

Table A.2: A sample configuration prompt.
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and should be set equal to vf. A distinction was made between visible features

and occluded features during the course of this thesis when implementing a

method to predict occluded features. Although this approach did not work,

the framework was left intact. The same holds for the vsu and tsu fields.

The KLT feature tracker outputs a number of files to obj.i386/data.

The files named feat001.ppm to feat999.ppm are the original images over-

laid with the tracked features. The files named feat001.mat to feat999.mat

are text files which contain the pixel coordinates of each tracked feature—

refer to the documentation of the KLT feature tracker for more information.

The normalised input and output of the UKF are respectively written to

input.mat and output.mat. The estimated state at each time-step is written

to state.mat. A file named norm.mat is also produced and contains the norm

of the state covariance matrix. The results for a specific sequence are viewed

with the sfmshowcpp.m script located in scripts/.

A.5 Facial feature reconstruction

We will now show how to run the facial feature reconstruction experiment. The

face sequence is located under obj.i386/data/doll/. Execute the application

as described in Section A.4 as ./bin/sfmnew ./data/doll.txt. Wait an hour

or two. The radial lens distortion is corrected with the script run_face_rdc.m.

The 2D control points between the scanned face and the reconstructed face

must be selected by hand. The scanned data is available in a text format under

resource/data/ as face_ud_ref.asc. The following function can be used to

correct radial lens distortion, where T denotes the input image, cen the centre

of distortion and k the k-coefficients.

function Tc = rdc_image(T, cen, k, m)

Finally, to view the 3D reconstructed model, run the script sfmfit2.m. A

number of clips are available under demo/, but the most significant one prob-

ably is face_rec_demo.avi.
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Supplementary CD

Refer to Appendix A for an exposition and explanation of the contents of the

CD. Feel free to contact the author.
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We must not cease from exploration and the end of all our exploring will

be to arrive where we began and to know the place for the first time.

TS Elliot
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