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Abstract 

A detailed high resolution 195Pt and 119Sn NMR study of the series of heteroleptic 

[Pt(Sn5ClnBr15-n)]
3- (n = 0 - 15) complexes has been conducted. During this study, all 16 

possible species in this series have successfully been synthesized and characterized by means 

of high resolution 195Pt NMR spectroscopy proving what a powerful tool 195Pt NMR is to 

study the speciation of these species in solution.  

The 195Pt NMR spectra of the homoleptic [Pt(SnX3)5]
3- (X = Cl-/Br-) species in Aliquat-336 

(20 % v/v) in CDCl3 were studied first. The 195Pt NMR spectra of the homoleptic 

[Pt(SnX3)5]
3- (X = Cl-/Br-) complex anions are assigned to 18 isotopologues of the complex 

anions, 10 of which have never been reported before. The unambiguous assignment of the 

respective 1J(119/117/115Sn-195Pt) satellites are based on the excellent agreements obtained when 

the calculated NSA’s of each of the 112 possible isotopologues are compared to the 

experimental 195Pt NMR signal areas. Moreover, these assignments are confirmed by the 

great agreement between the respective 1J(119/117Sn-195Pt)/ 1J(117/115Sn-195Pt) ratios and the 

γ(119/117Sn)/γ(117/115Sn) ratios.  

The 195Pt NMR spectra of the heteroleptic [Pt(Sn5ClnBr15-n)]
3- (n = 0 - 15) showed 

unprecedented resolution which allowed for the unambiguous assignment of all sixteen main 
195Pt NMR signals to the sixteen possible species. Moreover, each set of 1J(119/117/115Sn -195Pt) 

satellites are unambiguously assigned to a particular isotopologue/isotopomer of a 

[Pt(Sn5ClnBr15-n)]
3- (n = 0 - 15) species. In this manner more than 600 isotopologue and 

isotopomer species are identified. Moreover, the 1J(195Pt-119/117/115Sn) coupling constants of 

each species are dependent on the configuration of the tin-halide ligands and decrease in the 

order SnCl3
- > SnCl2Br- > SnClBr2

- > SnBr3
-. Thus separate sets of signals are observed for 

the respective isotopologues and isotopomers of each species which implies that intra- or 

inter- molecular halide exchange does not occur on the 195Pt NMR acquisition time scale.  

Furthermore, with the information obtained from the 195Pt NMR spectra recorded for the 

solutions, the 119Sn NMR spectra could be fully elucidated, despite of the bad signal-to-noise 

ratio. The 119Sn NMR spectra showed sets of resonances that were tentatively assigned to 

species with SnCl3
-, SnCl2Br-, SnClBr2

- and SnBr3
- as ligands on average. However, each set 

of resonances consisted of 5 – 6 individual lines, which, with the help of 195Pt NMR could 

now be assigned to the [Pt(119SnCl3)(Sn4ClnBr12-n)]
3-,  [Pt(119SnCl2Br)(Sn4ClnBr12-n)]

3-, 
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[Pt(119SnClBr2)(Sn4ClnBr12-n)]
3- and [Pt(119SnBr3)(Sn4ClnBr12-n)]

3- (n = 0 – 12) species, where 

each individual line is assigned to a species with a different value of ‘n’.  This implies that 

separate resonances are observed for respective isotopomers of a species, thus again implying 

that intra- or inter- molecular halide exchange does not occur on the NMR acquisition time 

scale. On the other hand, single resonances are observed, which means that intra- molecular 

site-exchange, such as Berry-pseudo rotation, occurs rapidly on the 119Sn NMR acquisition 

time-scale, and that no distinction can be made between equatorial and axial tin ligands.     

High-resolution 195Pt NMR spectroscopy has enabled the unambiguous assignment of all 16 

heteroleptic [Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) complex anions with unprecedented resolution. 

Furthermore, 195Pt NMR shows significantly higher resolution compared to 119Sn NMR for 

these systems, allowing for the complete assignment of all 119Sn/117Sn/115Sn chlorido-

bromido isotopologues and isotopomers of these species. 
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Opsomming 

‘n Gedetailleerde studie van die reeks heteroleptiese [Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) 

kompleks anione  is uitgevoer deur middel van hoë resolusie 195Pt en 119Sn KMR. Tydens 

hierdie studie is al die sestien moontlike spesies in hierdie reeks geïdentifiseer en 

gekarakteriseer met hoë resolusie 195Pt KMR, wat bewys lewer van wat ‘n magtige tegniek 
195Pt KMR is vir die studie van die soortvorming van hierdie spesies in oplossing. 

Eerstens is die 195Pt KMR spektra van die homoleptiese [Pt(SnX3)5]
3- (X = Cl-/Br-) spesies 

in“Aliqaut-336” (20 % v/v) in CDCl3 ondersoek. Die ondersoek het gelei tot die 

identifesering van 18 “isotopologues”, waarvan 10 nog nooit van te vore gepubliseer is nie. 

Die toedelings van die 1J(119/117/115Sn–195Pt) satelliete is gebasseer op die goeie verwantskap 

wat verkry is tussen die berekende natuurlike statistiese volopheid (NSV) van elk van die 112 

moontlike ‘isotopologues” met die eksperimenteel verkryde areas van die 195Pt KMR seine. 

Hierdie toedelings is bevestig deur die besondere verwantskap wat verkry is wanneer die 

onderskeidelike 1J(119/117Sn–195Pt)/1J(117/115Sn–195Pt) verhoudings met die 

γ(119/117Sn)/γ(117/119Sn) verhoudings vergelyk word.  

Die ongeëwenaarde resolusie wat verkry is in die 195Pt KMR spektra van die heteroleptiese  

[Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) spesies in “Aliqaut-336” (20 % v/v) in CDCl3 het die 

eenduidige toedeling van elkeen van die sestien 195Pt KMR seine tot ‘n spesifieke spesies 

moonlik gemaak. Daarenbowe is elke stel 1J(119/117/115Sn–195Pt) satelliete van  ‘n bepaalde 

spesies toegeskryf aan ‘n bepaalde ‘isotopologue” of “isotopomer” van ‘n  [Pt(Sn5ClnBr15-

n)]
3- (n = 0 – 15)  spesies. Meer as 600 “isotopologue” and isotopomeer spesies is op hierdie 

manier geïdentifiseer. Verder is ook gevind dat die grootte van die 1J(119/117/115Sn–195Pt) 

koppelings-konstantes aangewese is op die samestelling van die (SnClnBr3-n)
- (n = 0 – 3) 

ligande en afneem in die orde SnCl3
- > SnCl2Br- > SnClBr2

- > SnBr3
-. Die aparte 195Pt KMR 

seine wat dus verkry is vir “isotopologues” en isotopomere van ‘n bepaalde spesies impliseer 

dat intra- en inter- molekulere halied uitruiling nie op die 195Pt KMR tyd-skaal plaasvind nie. 

Met behulp van die informasie verkry met 195Pt KMR is elke individuele 119Sn KMR sein 

binne die vier stelle seine van die [Pt(Sn5ClnBr15-n)]
3- (n = 10 – 15) spesies identifiseerbaar, 

ten spyte van die lae ‘S/N’ verhouding. Ongelukkig is die resolusie van die 119Sn KMR 

spektra van die [Pt(Sn5ClnBr15-n)]
3- (n = 0 – 9) spesies nie goed genoeg om toedelings van 

elke individuele sein te maak nie. Nie te min, dit is bevestig dat die vier stelle 119Sn KMR 
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seine toegeskryf kan word aan die [Pt(119SnCl3)(Sn4ClnBr12-n)]
3-,  [Pt(119SnCl2Br)(Sn4ClnBr12-

n)]
3-, [Pt(119SnClBr2)(Sn4ClnBr12-n)]

3- and [Pt(119SnBr3)(Sn4ClnBr12-n)]
3- (n = 0 – 12) spesies, 

waar elke indivduele sein  binne ‘n stel toegeskryf kan word aan ‘n spesies met ander waarde 

“n”. Die aparte 119Sn KMR seine verkry vir twee isomere van ‘n spesies impliseer dat intra- 

en inter- molekulêre halied uitruiling ook nie plaasvind op die 119Sn KMR tydskaal nie. Tog 

word enkele 119Sn KMR seine steeds verkry wat daarop dui dat intra-molekulêre “site”-

uitruiling steeds vinnig plaasvind op die 119Sn KMR tydskaal en dat daar nie tussen 119Sn 

ligande in die ekwatoriale en aksiale  posisies kan onderskei word nie.  

Hoë-resolusie 195Pt KMR spektroskopie het dit dus moontlik gemaak om al sestien  

heteroleptiese [Pt(Sn5ClnBr15-n)]
3- (n = 10 – 15) spesies eenduidig te identifeseer en te 

karakteriseer in oplossing. 195Pt KMR toon baie beter resolusie en is ook baie meer sensitief 

as 119Sn KMR wat dit ‘n uitmuntende tegniek maak vir die studie van die soortvorming van 

hierdie spesies.   
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Scheme 1.1: Anionic complexes of Ru(II), Rh(I), Ir(III) and Pt(II) characterized by Young 

and co-workers. 

Scheme 2.1: Reaction scheme for the synthesis of the homoleptic [Pt(SnCl3)5]
3- complex 

anion. 

Scheme 2.2: Structure of the ion-exchanger, trioctylammonium chloride, used to extract 

[Pt(SnCl3)5]
3- into chloroform-d. 

Scheme 3.1: Single Crystal structure obtained by Alcock and Nelson for the red 

[Pt(SnCl3)5]
3- complex anion. 

Scheme 3.2: A schematic representation of different isotopologues that are possible for the 

[Pt(SnX3)5]
3- (X = Cl-/Br-) complex anions. Replacement of any of the five tin 

atoms and/or the platinum atom with another isotope of Sn and/or Pt, 

respectively, results in a different isotopologue. All Cl-/Br- are left out for 

clarity. 

Scheme 3.3: A schematic representation of different isotopomers of the [Pt(SnX3)5]
3-  

(X = Cl-/Br-) complex anions. (a) and (b) are isotopomers of each other as they 

have the same number of each isotopic atom, but in (a) ySn is in the equatorial 

position and in (b) ySn is in the axial position.  

Scheme 3.4: Isotopologues of the [Pt(SnCl3)5]
3- complex anion with the general formula 

[iPt(119SnCl3)n(
iSnCl3)5-n]

3- (n = 1 = 5) that are collectively referred to as 

isotopologue G1 (Pt ≠ 195Pt). 

Scheme 3.5: Various isotopologues observed in the 119Sn NMR spectrum recorded for the 

[Pt(SnCl3)5]
3- complex anion. Due to rapid Berry-pseudo rotation on the NMR 

acquisition time scale, it is not possible to distinguish between isotopomers 

and isotopologues. All chlorides were left out for clarity. Isotopologues 3, 5 

and 6 have not previously been observed with 119Sn NMR. 
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Scheme 3.6: Isotopologues of the [Pt(SnCl3)5]
3- complex anion with the general formula 

[195Pt(119SnCl3)n(
iSnCl3)5-n]

3- (n = 1 = 5) that are collectively referred to as 

isotopologue G2 (Pt = 195Pt). 

Scheme 3.7: Various isotopologues of [Pt(SnBr3)5]
3- observed with 119Sn NMR. Due to 

rapid Berry-pseudo rotation on the NMR acquisition time scale, it is not 

possible to distinguish between isotopomers and isotopologues. All Br were 

left out for clarity. 

Scheme 3.8: Isotopologues of [Pt(SnCl3)5]
3- observed with 195Pt NMR. Due to the rapid 

Berry-pseudo rotations, it is not possible to distinguish isotopomers from 

isotopologues. All Cl- were left out for clarity. Isotopologues 2.2, 3, 9 and 10 

have not been reported in literature. 

Scheme 3.9: Isotopologues of [Pt(SnBr3)5]
3- observed with 195Pt NMR. Isotopologues IX, 

II.2, X and III have not been reported in literature. 

Scheme 4.1: Structure of the heteroleptic [Pt(Sn5Cl14Br)]3- species, showing the two types 

of coordinating tin ligands, SnCl3
- and SnCl2Br-. 

Scheme 4.2: Structures of the various isotopologues and isotopomers possible for the 

[Pt(Sn5Cl14Br)]3 – complex anion. Only isotopologues with one spin-active Sn 

nucleus is shown. Structures a to c, and d to f are isotopologues of each other, 

whereas a and d, b and e, c and f are isotopomer pairs. 

Scheme 4.3: The isotopologues of the 14 heteroleptic species responsible for the 195Pt NMR 

signals numbered 2 – 15 in Figure 4.2. All the isotopologues contain 195Pt and 

no magnetically-active Sn nuclei. Several isotopomers are also possible for 

these species and are illustrated in Appendix B. These 14 particular 

isotopologues/isotopomers are encircled in Appendix B.    

Scheme 4.4: The 14 isotopologues and isotopomers possible for the [Pt(Sn5Cl14Br)]3- 

complex anion. The double headed arrows show isotopomers associated with a 

particular isotopologue. For example 28 is an isotopomer of 25 in the sense 

that in 25 three Cl- are bonded to 119Sn compared to the two Cl- and one Br- 

bonded to 119Sn in 28. 
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Scheme 4.5: The 7 mixed halide complex anions, known from the 195Pt NMR spectrum, to 

be present in the solution with a [Pt(SnCl3)5]
3- to [Pt(SnBr3)5]

3-ratio of 2 to 1. It 

should be noted that only one representative isomer of each species is shown 

here, though many more are possible. 

Scheme 4.6: Isotopomers of the 6 [Pt(Sn5ClnBr15-n)]
3- (n = 10 – 15) heteroleptic complex 

anions with the general formula [iPt(119SnCl3)(Sn4ClnBr12-n)]
3- (n = 7 – 12). In 

parenthesis are given the corresponding isotopologues that contain the 

magnetically-active 195Pt nucleus and are illustrated in Schemes 3.6, 4.4 and 

the Schemes shown in Appendix B. 

Scheme 4.7: Isotopomers of the 5 [Pt(Sn5ClnBr15-n)]
3- (n = 11 – 15) heteroleptic complex 

anions with the general formula [iPt(119SnCl2Br)(Sn4ClnBr12-n)]
3- (n = 8 – 12). 

In parenthesis are given the corresponding isotopologues that contain the 

magnetically-active 195Pt nucleus and are illustrated in Scheme 4.4 and the 

Schemes shown in Appendix B. 
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Chapter I 

General Introduction, Background and Objectives of Study 

 

The reaction of stannous chloride with the ions or complexes of the platinum group metals 

(Pt, Rh, Ir, Pd, Ru and Os) in solution was a key chemical reaction in the discovery of these 

noble elements, in that trace levels of these metal ions could be determined by their 

characteristic colours. 1 The interest of these complexes increased with the discovery of their 

high catalytic activity toward hydrogenation and isomerization reactions.  

1.1. Reactions of Platinum with Stannous Chloride in Hydrochloric Acid 

Medium  

The reaction of platinum group metals (PGM) with stannous chloride in hydrochloric acid 

has thus a long and interesting history.1-3 These reactions are characteristic for the intense 

colours they produce ranging from blue to green, yellow and blood-red in 1 - 6 M HCl 

solution. This phenomenon was first observed more than two centuries ago, in 1804, by  

W. H. Wollaston1 who reported a colour change from pale yellow to intense blood-red when 

an acid solution of platinum(II/IV) was treated with excess stannous chloride. This reaction 

greatly resembled that of “Purple of Cassius”, wherein the reaction of Sn(II) chloride with 

Au(III) produces a purple colour ascribed to finely dispersed metallic gold that is absorbed 

onto an insoluble form of hydrous stannic oxide. “Purple of Cassius” is recognised as one of 

the earliest qualitative colorimetric methods for the determination of trace levels of Au.4,5 

Due to the similarities between these two reactions, the reaction between Pt(IV) and stannous 

chloride was readily adopted as a qualitative spot test for trace levels of platinum.6,7,8 

However, the nature of the species responsible for these coloured solutions was not clear until 

the late 1950’s.6–11 

1 

1 
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1.1.1. Nature of coloured Pt-Sn species 

In 1907, Wöhler reported the formation of an intense blood-red colour when Pt(IV) reacted 

with stannous chloride in a diluted hydrochloric medium.9,10 As this reaction is analogous to 

the reaction of “purple of Cassius”, it was assumed that the intense blood-red colour was 

obtained due to the reduction of Pt(IV) to colloidal platinum. Other authors attributed the 

colour formation to chloroplatinous acid,11,12 while others still claimed it to form due to a 

simple reduction of Pt(IV) to Pt(II) by tin(II)chloride.13,14 In 1934 H. Wölbing demonstrated 

the extractability of the red Pt-Sn compounds into ethyl acetate, and thus disproved the 

proposed formation of colloidal platinum as in the case of “purple of Cassius”.6 Furthermore, 

Wölbing demonstrated a quantitative colorimetric method for the determination of trace 

levels of Platinum.6  

In an attempt to elucidate the correct nature of the species responsible for the intense colour 

formed between Sn(II) chloride and platinum7,8,15, paladium8, rhodium8 in HCl, Ayres and 

Meyer undertook a series of detailed spectrophotometric investigations. During these studies 

it was shown that the coloured material readily passes through a semi-permeable membrane, 

and that it is rapidly and completely extracted into organic solvents, ruling out the formation 

of colloidal platinum.7,8 Ayres and Meyer postulated that the predominant species formed in 3 

M HCl is a cation, [Pt0Sn4Cl4]
4+, in which the platinum was thought to be reduced to the 

zerovalent state.7,8,15 This postulate was based on the observation that tin(IV) was found in 

solutions of PtCl4
2-/PtCl6

2- treated with stannous chloride.15 Elizarova and Matvienko16 

studied the same system by means of potentiometric and polarographic methods and came to 

similar conclusions as Ayres and Meyer. 

The existence of a cationic [Pt0Sn4Cl4]
4+ species was however readily disproved by  

Shukla17,18 who showed by means of electrophoresis that anionic species are present in dilute 

hydrochloric solutions in both the rhodium and the platinum-tin systems. Young and co-

workers19,20 came to similar conclusions in their study of platinum group metals with tin(II) 

chloride. From this study it was found that rhodium, platinum, ruthenium and iridium all 

formed coloured solutions in the presence of Sn(II) chloride. Furthermore it was shown that 

on addition of large cations such as tetramethyl ammoniumchloride all the solutions readily 

formed precipitates, suggesting that the anionic complexes of Pt(II), Rh(I), Ir(III) and Ru(I) 

shown in Scheme 1.1 are formed. 
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dπ-dπ bonding between tin and platinum in the yellow isomer compared to relatively weaker 

π-back bonding within the red isomer, due to competition between the two SnCl3
- groups for 

the same d-orbitals of the Pt(II) ion. Young et al19 suggested that several equilibria exist 

simultaneously in solution:  

 

SnCl2 + Cl-  SnCl3
- 

     PtCl4
2- + SnCl3

-  PtCl3(SnCl3)
2- + Cl- 

   [PtCl3(SnCl3)]
2- + SnCl3

-  trans-[PtCl2(SnCl3)2]
2- + Cl-  

                      trans-[PtCl2(SnCl3)2]
2-    

                      cis-[PtCl2(SnCl3)2]
2- 

cis- and trans-[PtCl2(SnCl3)2]
2- + SnCl3

-  [Pt(SnCl3)5]
3- + 2Cl-    

 

Both the groups of Young et al19 and Stolberg et al25 suggested that the initial formation of 

the trans-isomer was favored due to the stronger trans-effect of SnCl3
- compared to Cl-. More 

than a decade later, Parish and Rowbotham26 showed by means of 119Sn NMR and Mossbauer 

spectroscopy that only two Pt-Sn species exist in solution, the one being cis-[PtCl2(SnCl3)2]
2- 

and the other being either the trans-isomer or the five-coordinate [Pt(SnCl3)5]
3- species. It 

was found that in the presence of excess tin(II) chloride, the yellow solution turns red, 

indicating that the species formed in solution are dependent on the concentration of tin(II) 

added to the solution. As an isomerization equilibrium do not depend on the concentration of 

tin(II), Parish and Rowbotham26 suggested that the substance responsible for the intense red 

colour in solution is the [Pt(SnCl3)5]
3- species. Since then, several authors have confirmed by 

means of 119Sn and 195Pt NMR that the [Pt(SnCl3)5]
3- species are responsible for the blood-red 

colour.2,27,28,29 In addition to the [PtCl3(SnCl3)]
2-, cis-[PtCl2(SnCl3)2]

2- and [Pt(SnCl3)5]
3- 

complex anions, Pregosin and Rüegger28 showed that the [PtCl(SnCl3)]
2- and [Pt(SnCl3)4]

2- 

complex anions also exist in solution. Thus, several Pt-Sn complex anions are in equilibrium 

in solutions of tin(II)chloride and platinum(II/IV)chloride, depending on the concentration of 

tin(II) added. Moreover, unlike for gold(III/I) ions which are completely reduced to metallic 

gold nano-particles (‘purple of Cassius”) by stannous chloride, Pt(IV/II) forms complexes 

with tin(II) chloride in which the SnCl3
- acts as a ligand to Pt(II).  
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1.2. The nature of SnX3
- (X = Cl-/Br-) as a ligand 

In the reactions of Pt(II/IV) with tin(II)chloride, the tin(II)chloride acts as both reducing 

agent and as ligand in the form of the SnCl3
- moiety.2,3,30-37 Relative little work has been done 

pertaining to the redox reactions with the platinum group metals in general.3 Moodley and 

Nicol30 showed that Pt(IV) in HCl is rapidly reduced by tin(II) chloride according to the 

overall rate law:30 

-d[Pt(IV)]/dt = kobs[Pt(IV)][Sn(II)]  …(1.1) 

 

Where kobs = 473±22 dm3 mol-1 s-1 at 297 K.  It was shown that the rate of reduction of Pt(IV) 

by Sn(II)chloride is much faster that the rate of formation of a complex with Pt:Sn 1:1. 

Several studies have been done on the SnCl3
- moiety as a ligand.2,31,32,33 The SnCl3

- ligands 

are usually coordinated to the metal ion through the tin atom.23,24,31-33 However, the electronic 

nature of the trichlorostannato anion and its unusual ability to stabilize the five-coordinate 

platinum is surrounded by some controversy. Parshall34 studied the σ-donor and π-acceptor 

ability of the SnCl3
- ligand by analyzing the 19F NMR shielding parameters of fluorophenyl 

platinum complexes, where the SnCl3
- ligand is trans to the phenyl group. With this method 

Parshall characterized SnCl3
- as weak σ-donors and strong π-acceptors. Graham et al35,36 

came to similar conclusions as Parshall by analyzing the carbonyl force constants of 

(SnCl3)Mn(CO)5 (obtained by the Cotton and Kraihanzel method37). However, there are 

differences of opinion regarding the relative σ-donor and π-acceptor abilities of SnCl3
- 

compared to SnBr3
-.29,32,38 From the identical Fe-Sn bond lengths obtained in the  

(η5-C5H5)Fe(CO)2(SnX3) (X = Cl-/Br-) compounds, Stokely et al suggested that there is not a 

difference in the relative σ-donor and π-acceptor abilities of SnCl3
- and SnBr3

-.38 In contrast, 

Antonov et al32 found, by anaysis of the relative change in Mössbauer (119Sn) isomer shifts 

(Δδ) and qaudropole splittings (Δ�) of the free ion in Et4N[SnX3] (X = Cl-/Br-) as compared 

to the coordinated ligand in the trans-[XPt(SnX3)(PPh3)2] and trans-[HPt(SnX3)(PPh3)2]  

(X = Cl-/Br-) complexes, that the SnBr3
- ligand is a stronger σ-donor, as well as a slightly 

stronger π-acceptor than SnCl3
-. Yet another opinion, by Nelson et al, is that SnCl3

- is a better 

σ-donor and/or π-acceptor toward Pt(II) than is SnBr3
-.29 Nelson et al based their argument on 

the X-ray data obtained for the cis-[PtX2(SnX3)]
2- (X = Cl-/Br-) complex anions, as well as on 

119Sn and 195Pt NMR data obtained for cis-[PtX2(SnX3)]
2- and [Pt(SnX3)5]

3- (X = Cl-/Br-) 
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complex anions. The X-ray data showed that Pt-Sn bondlenghts are elongated for the SnBr3
- 

complexes, and the 119Sn NMR data showed that the platinum-tin coupling constants are 

larger for the SnCl3
- complexes than for the SnBr3

- complexes.  

Even though the relative π-acceptor abilities of the SnCl3
- and SnBr3

- ligands differ, both are 

shown to be strong π-acceptors. As it has been shown that other strong π-acceptors, such as 

CO and CN-, are strong trans directors39,40,41 it is suggested that it is the combination of 

SnCl3
- ions being weak σ-donors and strong π-acceptors that causes the trans directing 

behavior thereof.25 Furthermore, the dπ-dπ overlap between transition metals and tin(II) is 

responsible for the trans activating nature of the SnCl3
- anion.19,42 Care should be taken to 

avoid ambiguity when referring to the trans influence and trans effect. The former is an 

thermodynamic concept, describing the extent to which that ligand weakens the bond trans to 

it in the equilibrium state of the substrate, where as the latter is an kinetic effect that relates to 

the influence of a coordinated group upon the rate of substitution of ligands trans to it.41 

Lindsey et al25 studied the trans effect of the SnCl3
- ligand  by criteria described by Chatt and 

co-workers.43,44 These investigators set up a trans series by ranking ligands (X) in terms of 

their ability to shift the Pt-H infrared stretching frequency and 1H NMR frequency in trans-

[(C2H5)3P]2PtHX compounds. Lindsey et al25 showed that the SnCl3
- ligand lies between 

NCS- and CN-, the two most powerful ligands in the Chatt series: 

Cl < Br < I < NCS < SnCl3 < CN 

Conversely to its high trans effect, SnCl3
- appears to have a moderate trans influence, as 

evidenced by the trans influence series derived by Rüegger et al45 based on 1J(119Sn-195Pt) 

coupling constants of (PPN)[Pt(SnCl3)3L2] containing similar L ligands: 

H- > PR3 > AsR3 > SnCl3
- > olefin > Cl- 

A separate study done by Albinati et al46 on the effect of SnCl3
- on the 2J(Pt-CH3) of the 

trans-[Pt(SnCl3)(CH3)(PEt3)2] complex, supported the findings of Rüegger et al45 in that they 

also suggested the trans influence of SnCl3
- to be similar to that of an olefin. This low trans 

influence of the SnCl3
- ligand agrees with the weak σ-donor properties suggested earlier. 

Furthermore, the mutual influence of the ligands in trans-[HPtX(PPh3)2] and trans-

[XPt(SnX3)(PPh3)2] (X = Cl-, Br-, SnCl3
-, or SnBr3

-) has been studied Antonov et al.32 From 

the υ(Pt-H) wavenumbers and the δ(Pt-H) chemical shifts, ligands X can be arranged in order 

of trans influence:  
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Cl- < Br- << SnBr3
- < SnCl3

- 

The strong trans-activation of SnCl3
-/SnBr3

- undoubtedly plays an important role in the 

catalytic activity and facile ligand-exchange reactions observed for platinum metal-tin halide 

complexes. The strong π-acceptor ability of the SnX3
- (X = Cl-/Br-) removes electron density 

from the Pt(II) centre and so protects Pt(II) against reduction to the metal form as is the case 

with “Purple of Cassius”.23,25 In the presence of excess SnX3
- (X = Cl-/Br-) the five-

coordinate [Pt(SnX3)5]
3- complex anion is predominant in solution. 

1.3. Application of 119Sn and 195Pt NMR Spectroscopy as a tool to study 

the Nature of Pt-Sn complexes  

119Sn and 195 Pt NMR spectroscopy has proven to be an indispensable tool for determining the 

stoichiometry and geometry of transition-metal tin complexes.2 Tin has ten natural occurring 

isotopes, of which three have spin, I = ½, 119Sn, 117Sn and 115Sn.  Platinum only has one 

nucleus suitable for NMR observation, 195Pt. The magnetic properties of the NMR-active Pt 

and Sn nuclei are given in Table 1.1. 47  

 

Table 1.1: Magnetic Properties of Pt and Sn Isotopes with I = ½.    

NMR-active 

isotope 

Natural 

Abundance / % 
Spin 

Gyromagnetic 

Ratioa γ/2π  

MHz T-1 

Receptivity  

(13C = 1) 

195Pt 33.7 ½ 9.1534 19.1 

119Sn 8.58 ½ -15.869 25.6 

117Sn 7.61 ½ -15.168 19.9 

115Sn 0.35 ½ -13.922 0.715 
a γ/2π 1H is 42.467 

 

Although both 119Sn and 117Sn can be detected using NMR to characterize tin complexes, 
119Sn has a slightly higher receptivity (natural abundance x sensitivity), Table 1.1, and is 

therefore usually preferred. Due to the low natural abundance of 115Sn, it has been ignored in 
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literature. The natural abundance of the 195Pt isotope (33.7%), together with an NMR 

receptivity of 19.1 relative to 13C implies that 195Pt NMR spectra are easily obtainable.47 

Furthermore 195Pt shieldings are especially sensitive to the oxidation state and among other 

things the molecular structure of the complex in solution. This together with the extremely 

large 195Pt chemical shift range (195Pt > 13000 ppm) makes 195Pt NMR an ideal method for 

speciation studies.48 In view of this, 119Sn and 195Pt NMR are mostly utilized to elucidate the 

structures of these Pt-Sn complexes in solution. The three types of measurable quantities in 

NMR that are of importance for structure elucidation are chemical shifts, coupling constants 

and relaxation times.49  

The chemical shift measured for a particular compound is an indication of the degree of 

shielding experienced by the nucleus in question, which in turns gives information about the 

electron cloud surrounding that nucleus.47 The relationship between υA, the Larmour 

Frequency, B0, the applied magnetic field, σA, the magnetic shielding constant of nucleus A 

and the gyromagnetic ratio, γ, is:  

 

	஺ߥ ൌ 	
ఊ

ଶగ
଴ሺ1ܤ െ	ߪ஺ሻ  …(1.2) 

 

However, this analysis is complicated by the fact that there are several factors that may 

contribute to the shielding, σA, of a nucleus in a molecular environment.  

 
஺ߪ ൌ ௗߪ ൅ ௣ߪ ൅  ௡  …(1.3)ߪ

 
 Where σd and σp represent the diamagnetic and paramagnetic contributions to the shielding 

arising from the local electron cloud, and σn represents all the contributions from remote 

sources. In the case of tin-transition metal complexes, the complex bonding interactions 

between tin-based ligands and transition metals result in an unusually large chemical shift 

range (> 2000 ppm) in the 119Sn NMR spectrum.2,47 This is interpreted as being due to σp 

being the controlling factor in 119Sn chemical shifts and σp being greatly affected by a ligand 

such as SnCl3
- bonding with a transition metal. The reason for this is that SnCl3

- acts as a 

weak σ- donor, but a strong π-acceptor. These π-interactions provide a low-energy electronic 

state, thereby reducing the magnitude of the average excitation energy, ΔE, which in turn 

affects the shielding arising from the local electron cloud, σp. However, many more factors 
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come into play, such as the solvent, concentration and temperature effects that might affect 

the chemical shift. Therefore, interpretation of the chemical shift obtained for 119Sn is limited 

to a qualitative level. Nonetheless, the stoichiometry of the complex and the chemical 

environment of the respective nuclei can still be determined from the chemical shifts 

observed for the NMR-active nuclei, as well as from the relative signal intensities measured.2  

The 195Pt chemical shift values of compounds (δ(195Pt)) is exceptionally sensitive to changes 

within the coordination sphere of the compound.45,48 This is evidenced by the large upfield 

shifts of the 195Pt resonances obtained for catalytically active Pt-Sn complexes such trans-

[PtH(SnCl3)(PEt3)], trans-[Pt(SnCl3)2(PEt3)2] and [PtCl(SnCl3)(PEt3)2] on replacing Cl- with 

SnCl3
-.45,49 Therefore 195Pt chemical shifts provide important information regarding the 

stoichiometry of compounds and the chemical environment of the 195Pt nuclei. However, 

when it comes to the assignment of structures to tin-transition metal complexes, coupling 

constants are usually more important than the chemical shifts measured.51,52,53 Unusually 

large spin-spin couplings are obtained for these Pt(II)-Sn(II) complexes,2,27,49,50  including the 

largest one bond spin-spin coupling ever measured, 1J(119Sn-195Pt) = 28 954 Hz, which was 

measured for the trans-[PtCl(SnCl3)(PEt3)2] complex by Ostoja Starzewski and Pregosin.49,50 

These extremely large one bond couplings between Pt and Sn can be understood in terms of 

the Fermi contact expression used by Pople and Santry:54 

,ܣሺܬ ሻܤ ∝ ௡௦ಲሺ0ሻหߖ஻หߛ஺ߛ	
ଶ
หߖ௡௦ಳሺ0ሻห

ଶ
	஺,஻ߨ

ଵ   …(1.4) 
 

஺,஻ߨ ൌ ∑ ∑ ሺ ௝߳ െ ߳௜ሻିଵܿ௜,஺ ௝ܿ,஺ܿ௜,஻ ௝ܿ,஻
௨௡௢௖௖
௝

௢௖௖
௜  …(1.5) 

 
The symbols γ represent the gyromagnetic ratios of nuclei, the terms |Ψnsሺ0ሻ|2	 are	 the	

valence	s‐electron	densities	at	 the	nuclei,	A	and	B,	and	πA,	 B	 is the mutual polarizability. 

The πA,	B	expression	contains	the	s	coefficients	of	the	atomic	orbitals	used	in	the	linear	

combinations	that	make	up	the	occupied	and	unoccupied	molecular	orbitals,	as	well	as	a	

difference	 term	 ሺϵj	 ‐	 �i) where �i is the energy of an occupied and �j an unoccupied 

molecular orbital. The amount of s-character in the metal-metal bond is presumably increased 

by the presence of the three electron-withdrawing chlorido substituents on the tin. Thus, in 

view of this expression, the high mutual polarizability of the s-orbitals on Pt and Sn, a high s-

character in the bond, and the relatively large gyromagnetic ratios of Sn and Pt all account for 
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the unusually large spin-spin couplings of these complexes. The 119Sn and 195Pt NMR data 

obtained by several groups45–62 for Pt-Sn species has led to the following empiricisms:57,59  

1. Increasing the number of coordinated SnCl3
- ligands shifts δ(195Pt) to successively higher 

field 

2. Increasing the number of coordinated SnCl3
- ligands shifts δ(119Sn) to successively lower 

field 

3. SnCl3
- has an cis effect on 1J(195Pt-119Sn) 

4. 2J(119Sn-117Sn)trans > 2J(119Sn-117Sn)cis 

5. 2J(119Sn-117Sn): larger in five-coordinate complexes than in four coordinate cis complexes 

Moreover, 1J(195Pt-119Sn) is in the order of kHz (sometimes > 30 kHz) and depends on the 

trans ligand. 2J(119Sn-117Sn) is also in the order of kHz with 2J(119Sn-117Sn)trans routinely 

exceeding 20 000 Hz,45,50 whereas 2J(119Sn-117Sn)cis show much more ‘modest’ values of less 

than 10 000 Hz. Even more, Seddon et al63 reported the remarkably large 3J(117Sn-119Sn) 

coupling constant of 24 300 Hz obtained for [Pt2(SnCl3)2(μ-dppm)2] by means of 119Sn and 
117Sn NMR.  

1.4. Catalytic Properties of Trichlorostannato-Platinum Complexes 

The early interest in solutions of chloroplatanic acid and stannous chloride as catalyst was 

sparked by the discovery that these systems catalyzed the homogeneous hydrogenation of 

ethylene and acetylene at room temperature and atmospheric pressure of hydrogen.23 Cramer 

et al showed that the reaction of ethylene at atmospheric pressure with a solution of K2PtCl4 

in the presence of stannous chloride in HCl gave quantitative conversion to Zeise’s salt, 

KPtCl3C2H4.H20 within 1.5 h. In the absence of stannous chloride, no Zeise’s salt was 

formed. On the other hand, it is known that simple chloro-complexes of platinum catalyzes 

the formation of [Pt(olefin)Cl3]
- complexes. However, under catalytic conditions, these 

reactions go hand-in-hand with the formation of colloidal metal deposits, which decreases the 

rate of the reaction. The catalytic effectiveness of complexes of the type ML2X2  

(L = PR3/AsR3, M = Pd/Pt and X = halide/pseudohalide) is enhanced by the presence of 

chlorides of group IVB (Si, Ge, Sn) which are believed to form metal-metal bonded 

compounds.64 For example, the addition of ethylene to [PtCl2(SnCl3)2]
2- is almost thirty times 

easier than to PtCl4
2-. This phenomenon is ascribed to the higher trans effect of SnCl3

- 

Stellenbosch University http://scholar.sun.ac.za



Chapter 1| General Introduction, Background and Objectives 

11 
 

compared to Cl- and thus the more pronounced π-acceptor character of SnCl3
- bonded to Pt(II) 

as discussed earlier.25,29,34-36  

The rate of homogeneous hydrogenation is found to be maximum with a Pt:Sn ratio of more 

than 1:5, conditions that has proven favourable for the [Pt(SnCl3)5]
3- species to be 

predominant.64 However, as the formation of a Pt-olefin complex is a necessary step in 

hydrogenation reactions, and considering that cis-[PtCl2(SnCl3)2]
2- is the only active species 

for absorption of ethylene, the cis – trans isomerization is the rate determining step in the 

reaction. These reactions are to a great extent influenced by solvent effects.65,66 Moreover, 

Cramer et al showed that the [Pt(SnCl3)5]
3- complex cleaves dihydrogen to form 

[PtH(SnCl3)4]
3-, a species that, under preparative conditions, promote homogeneous 

hydrogenation of olefins.24 Again, these results are thought to be due to the high trans effect 

of the (SnCl3)
- ligand, which in turn is attributed to its high π-acceptor ability. Furthermore, 

Clark and Halpern67 showed that tin(II) catalyzes the insertion of ethylene into the platinum-

hydride bond of HPtL2Cl. Shirshikova et al68 showed that for the complexes of the type 

[MX(SnX3)5]
n- (X = Cl-/Br-, and M = Pt/Ru/Os/Rh/Ir) the Pt compounds are extremely 

reactive for the isomerization of ally benzene, whereas rhodium and iridium show lower 

activity and ruthenium and osmium are inert. Moreover, the catalytic activity of these 

complex anions is increased when Cl- is replaced by Br- in the SnX3
- ligand. This 

phenomenon is due to the rise in labiality of the coordinated link between the ligand and the 

metal centre which increases the concentration of the intermediate metal hydride and 

therefore increases the catalytic activity of the complex anion.68  

Thus, even though the role of tin(II) chloride in these catalytic systems is not completely 

understood, it is generally agreed that the SnCl3
- ligand stabilizes reduction of Pt(II) by H2 to 

the metallic state with the formation of complex hydride species. What is more is that the 

strongly “π-acid” nature thereof labializes the often kinetically inert complexes of PGM to 

ligand substitution.3,24, This, together with the wide variety of readily available organotin 

compounds, increases the scope of many catalytic systems.  
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1.5.  Aims and Objectives of this study 

The species responsible for the formation of the blood red colour when SnCl3
- is added to a 

dilute hydrochloric acid solution of PtCl4
2- was first characterized by single crystal X-ray 

diffraction as the trigonal bipyramidal [Pt(SnCl3)5]
3- complex anion.19,23 It was later 

confirmed by 119Sn NMR and 195Pt NMR spectroscopy that these species retain its trigonal 

bipyramidal structure in solution.29  To date a crystal structure of the species formed when 

SnBr3
- is added to a dilute hydrobromic acid solution of PtBr4

2- could not be obtained. 

However, 119Sn NMR and 195Pt NMR studies have confirmed that the predominant species 

formed in these solutions are the homoleptic bromido complex anion, [Pt(SnBr3)5]
3-.2,29,69 

Thus, 119Sn and 195Pt NMR are proven to be powerful tools for the characterization of Pt-Sn 

species in solution. In view of this, it is envisaged that high resolution 195Pt and 119Sn NMR 

can be used to study the speciation of the heteroleptic [Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) 

complex anions that may exist in mixed halide Pt-Sn solutions.  

In this context, this study involves a detailed high resolution 195Pt and 119Sn NMR 

investigation of the possible isotopologues and isotopomers of the homoleptic [Pt(SnBr3)5]
3- 

(X = Cl-/Br-) complex anions, as well as those of the heteroleptic [Pt(Sn5ClnBr15-n)]
3-  

(n = 0 – 15) species possible in solution.  

 

Therefore, the specific objectives of this study are: 

i) to re-investigate the homoleptic [Pt(SnX3)5]
3- (X = Cl-/Br-) complex anions by 

means of 119Sn and 195Pt NMR  spectroscopy, with specific focus on the 

identification of all the isotopologues obtained for these species,  

 

ii) to do a detailed analysis of all the heteroleptic [Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) 

complex anions obtained in solution and its respective isotopologues and 

isotopomers by means of high-resolution 195Pt and 119Sn NMR  spectroscopy. 
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Chapter II 

Experimental, Methods of analysis and Preliminary investigations 

In this chapter the synthesis of the homoleptic [Pt(SnX3)5]
3- (X = Cl-/Br-) and the heteroleptic 

[Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) complex anions, as well as the methods used to characterize 

them are described. These complexes were synthesized in acidic aqueous solutions from 

which the anionic complexes were extracted into chloroform-d by means of an ion-pair 

solvent extraction reaction using methyltrioctylammonium chloride (Aliquat-336) as ion-

paring reagent. Moreover, in order to establish the optimal experimental conditions under 

which the 5-coordinate, trigonal bipyramidal species predominates, preliminary UV-Vis 

spectroscopy experiments were carried out, the results of which are discussed here.  

2.1. Synthesis of the [Pt(Sn5ClnBr15-n)]3- (n = 0 – 15) complex anions 

All solutions were prepared using boiled-out ultrapure Milli-Q water (MQ › 18MΩ) which 

was cooled and stored under nitrogen. Concentrated hydrochloric acid (analytical grade) and 

hydrobromic acid were also saturated with nitrogen by bubbling the gas through the acid for 

at least 15 minutes prior to use. 

2.1.1. Synthesis and extraction of [Pt(SnCl3)5]
3- complex anions 

The homoleptic chlorido species prepared for the UV-vis and the NMR experiments were 

prepared in the same manner, with only varying the initial concentrations of the respective 

reagents used.  

To prepare the solutions for UV-Vis analysis, the platinum(II) concentration was always kept 

constant at 1 x 10-4 mM, while the HCl concentration was changed from 0.5 to 3 M (Figure 

2.1) and the Pt(II):Sn(II) ratio was varied from  1:1 to 1:15 (Figure 2.2). Moreover, separate 

Pt and Sn solutions was prepared separately and then added together. The orange K2PtCl4 salt 

was first weighed and dissolved in diluted hydrochloric acid (0.5 M or 3 M). Secondly the 

13 
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to the blood-red aqueous phase, stirred for 15 minutes and left overnight until essentially all 

the coloured species was extracted into the organic phase.  

2.1.3. Synthesis of the heteroleptic [Pt(Sn5ClnBr15-n)]3- (n = 1 - 14) complex anions 

The heteroleptic species were prepared using two methods. For the first method, the 

homoleptic chlorido species were synthesized as described above. The total Cl- concentration 

of the solution was calculated and appropriate amount of KBr was weighed off and added to 

the solution in order to obtain the required Cl:Br ratios; 9:1, 6:1. 3:1 and 1:1. However, this 

was problematic as not all the KBr dissolved in the solution and which prohibited the 

accurate determination of the Cl:Br ratio in solution. To overcome this problem, a second 

method of synthesis was used wherein the homoleptic chlorido and bromido species were 

both synthesized and extracted into chloroform-d as described above, both solutions having 

the same Pt, Sn and acid concentrations. These solutions were then added together to obtain 

final (R3NMe)3[Pt(SnCl3)5]:(R3NMe)3[Pt(SnBr3)5] volume ratios of 2:1, 1:1 and 1:2 

respectively. These solutions were left overnight before using them for NMR experiments. 

UV-vis spectra were recorded of the solution prepared using the first method. For these 

solutions the same method that was used to synthesize the [Pt(SnCl3)5]
3- species, as described 

in Section 2.1.1, was used to synthesize these solutions where the solutions are in 3 M HCl 

and have Pt:Sn ratios of 1:7. 

2.2. Preliminary UV/Vis investigations 

The reaction of Pt(II/IV) with SnCl2 in acidic aqueous media can yield several 4-coordinated 

[PtCln(SnCl3)4-n]
2- (n = 1 – 4) complex anions, as well as the trigonal bipyramidal 

[Pt(SnCl3)5]
3- complex anions, depending on the specific experimental conditions  

used. 2,8,19,23,26,27,58,59,70,71 As the aim of this study is to investigate the trigonal bipyramidal 

species, preliminary UV-Vis experiments were conducted in order to establish the 

experimental conditions under which the [Pt(SnCl3)5]
3- species prevails.  

The main parameters that influence the preferred formation of [Pt(SnCl3)5]
3- at constant 

temperature (298 K) and pressure (1 atm) are the HCl concentration and the Pt(II):Sn ratio. 
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2.3.2. Instrumentation 

2.3.2.1. UV/Vis spectroscopy 

All UV-Vis spectra were recorded on an Agilent 8453 Ultraviolet-visible spectrometer at  

20 °C using a 0.5 cm quartz cell. Solutions in the sample and blank cells were similar in 

every respect except that the latter contained no platinum-stannous chloride solutions. The 

spectra were run between 190 and 1500 nm at a scan speed of 200 nm/min.  

2.3.2.2. 119Sn NMR and 195Pt NMR spectroscopy 

All 119Sn NMR spectra were recorded at 223.7 MHz using a Varian INOVA 600 MHz 

spectrometer at 20 °C and a 5 mm broad-band probe. All chemical shifts are quoted relative 

to an external reference of neat Sn(CH3)4 sealed in a 1 mm capillary surrounded by 2H2O. 

Spectra were recorded under conditions of optimal resolution using an excitation pulse of  

2.0 μs, with an acquisition time 1.016 s, and no relaxation delay was applied. The T1 values 

for the 119Sn NMR nuclei in these systems were measured to be 0.1 – 0.5 s, so that essentially 

quantitative resonance intensities are obtained.  

195Pt NMR spectra were recorded at 128.7 MHz using a Varian INOVA 600 MHz 

spectrometer at 20 °C and a 5 mm broad-band probe. A 1 mm coaxial insert tube containing a 

0.1 M [PtCN4]
2- solution (δ195Pt = - 4 700 ppm relative to PtCl6

2- (δ195Pt = 0.0 ppm), 500 mg 

cm-3 K2PtCN4 in 30% v/v D2O/ 1 M HCl)  was used as a reference. The spectra were recorded 

under the same conditions as 119Sn NMR. The T1 relaxation times of 195Pt NMR nuclei in 

these systems were measured to be less than 2 s. 

In both cases broad band 1H-decoupling was applied in all measurements. A line broadening 

factor of 20 Hz was applied in processing, resulting in an effective line-width at half height. 

Spectral widths of up to 2000 ppm were used.  
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Chapter III  

Characterization of the homoleptic [Pt(SnX3)5]3- ( where X = Cl- or Br-) complex 
anions by means of 119Sn and high resolution 195Pt NMR spectroscopy 

3.1. Introduction  

The correct nature of the intense red species formed by the reaction of platinum(II) with 

excess tin(II) chloride was first elucidated by Young et al19 and Cramer et al.23,24 In order to 

precipitate the (NMe4)3[Pt(SnCl3)5] solid, Young et al19 added tetramethylammonium 

chloride to hydrochloric acid solutions with Pt:Sn ratios ranging from 1:2 up to 1:10. Cramer 

et al23,24 prepared the same complex anion using [(C6H5)3PCH3]
+ as the counter cation. From 

the X-ray diffraction data obtained23 it was concluded that the [Pt(SnCl3)5]
3- complex anion 

has an unusual trigonal bipyramidal configuration. According to the structural data23,24 all 

five platinum-tin bonds have the same length which is ‘unusual’ for d8 trigonal bipyramidal 

complexes since the axial bonds are expected to be somewhat shorter than the equatorial 

bonds.72,73 This was subsequently confirmed by Alcock and Nelson60 two decades later by 

single crystal X-ray diffraction, Scheme 3.1, where a  difference of 0.0192 (12) Å between 

the axial and equatorial Pt-Sn bond lengths was observed in the solid state. Interestingly, this 

is a small difference in bond length by comparison to structurally analogous compounds such 

as [Pt(GeCl3)5]
3- (Δd = 0.034 Å), [CuCl5]

3- (Δd = 0.095 Å), [CuBr5]
3- (Δd = 0.069 Å), and 

[Fe(CO)5]
3- (Δd = 0.027 Å).38 

From a 119Sn NMR spectroscopy perspective the difference in the Pt-Sn axial and equatorial 

bond lengths suggests that the electronic environment would differ for the 119Sn nuclei in the 

axial with respect to the equatorial coordination position. This in turn might be expected to 

result in a difference in the extent of shielding experienced by the 119Sn nuclei yielding 119Sn 

NMR chemical shifts that differ. However, in two separate studies26,69 the 119Sn NMR spectra 

recorded for the [Pt(SnCl3)5]
3- and [Pt(SnBr3)5]

3- species only show a single main 119Sn NMR 

signal at – 130.7 ppm and – 234.3 ppm respectively, Figure 3.1. This suggests that the SnX3
- 

(X = Cl-/Br-) ligands undergo rapid intra-molecular site-exchange on the NMR acquisition 

21 
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In this study a detailed investigation of the possible isotopologues/isotopomers of the 

homoleptic [Pt(SnX3)5]
3- (X = Cl-/Br-) complex anions are performed by means of high 

resolution 119Sn and 195Pt NMR spectroscopy. In view of this, the investigation is partially 

limited to 224 isotopologues of the [Pt(SnX3)5]
3- (X = Cl-/Br-) complex anions as only one Pt 

isotope and three Sn isotopes are magnetically-active, Table 3.1. Furthermore, the rapid intra-

molecular site-exchange of the equatorial and axial SnX3
- (X = Cl-/Br-) ligands on the 119Sn 

NMR time-scale will probably prevent the observation of 119Sn NMR signals due to 

isotopomers. 

3.2. Results and Discussion 

3.2.1. 119Sn NMR of the homoleptic [Pt(SnCl3)5]
3- complex anion 

The high-resolution 119Sn NMR spectrum obtained for [Pt(SnCl3)5]
3- extracted into 

chloroform-d (20% (v/v) Aliquat-336) is shown in Figure 3.2. The main features of this 

spectrum is a single main 119Sn NMR signal (line width at half height (Δv½) = 104.311 Hz) at 

-124.3 ppm, flanked by its respective 1J(195Pt-119Sn) and 2J(117Sn-119Sn) “satellites”, due to 

coupling.  

In order to facilitate the discussion of these results the manner in which the natural statistical 

abundance (NSA) of the possible 112 isotopologues of the [Pt(SnCl3)5]
3- complex anion is 

calculated (see Appendix A)* is covered first.† The NSA of an isotopologue may be 

calculated using Equation 3.1,2 where nx is the number of isotope x present in the specific 

isotopologue (e.g. x = 119Sn) and ρx is the natural abundance of isotope x (e.g. ρx = 0.0858).  

 

ሺ݊ଵ݊ଶߩ  …݊௫ሻ ൌ 	
ሺ∑ ௡೔ሻ!

ೣ
೔సభ 	

	

௡భ!௡మ!…௡ೣ!
ଵߩ
௡భ ∙ ଶߩ

௡మ ∙ ௫ߩ
௡ೣ  ... (3.1)

                                                 
* The NSA’s calculated for the 112 possible isotopologues of the [Pt(SnCl3)5]

3- complex anion using Equation 
3.1 are listed in Table A1 in Appendix A. 
† The relative experimental signal areas obtained with 119Sn and 195Pt NMR for different isotopologues should to 
a good approximation be equal to the NSA of the respective isotopologues as the change in standard reaction 
Gibbs energy for the interconvertion between isotopologues of the [Pt(SnX3)5]

3- (X = Cl-/Br-) complex anions is 
relatively small. 
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Figure 3.2: The 119Sn NMR spectrum obtained for [Pt(SnCl3)5]

3- in CDCl3 (20% AQ-336) at 293 K. The respective satellites are observed due to (a) 1J(119Sn-195Pt) coupling 
in isotopologue 2, (b)  1J(119Sn-195Pt) and 2J(119Sn-117Sn) coupling within isotopologue 3, (c) 2J(119Sn-117Sn) coupling in both  isotopologues 4 and 5, and (d) 
 2J(119Sn-117Sn) coupling in isotopologue 6. 

(a) (c) 

(d) (b) (d) 

(a) 

(b) (b) (b) 

(c) 

(d) 

(a) = 1J(195Pt-119Sn) coupling in isotopologue 2 
(b) = 2J(117Sn-119Sn) coupling in isotopologue 3 
(c) = 2J(117Sn-119Sn) coupling in isotopologues 4 and 5 
(d) = 2J(117Sn-119Sn) coupling in isotopologue 6 

δ(119Sn) = -124.3 ppm, 1 
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NMR in a reasonable experimental time. As expected, due to rapid Berry-pseudo rotation, 

isotopomers of the homoleptic chlorido species are not observed in the 119Sn NMR spectrum. 

3.2.2. 119Sn NMR of the homoleptic [Pt(SnBr3)5]
3- complex anion 

In contrast to the sharp 119Sn NMR signals of the homoleptic chlorido [Pt(SnCl3)5]
3- species, 

the 119Sn NMR spectrum of [Pt(SnBr3)5]
3- extracted into chloroform-d (20% (v/v) Aliquat-

336), shown in Figure 3.3, shows broad peaks with an average width at half peak height of 

1 500 Hz or more. Several attempts to get sharper 119Sn resonances were not successful, for 

reasons not entirely clear. It is possible that either chemical exchange rates are slow29 or some 

radicals (Sn˙) are present in solution. The main 119Sn NMR signal at δ(119Sn) = ± - 232 ppm 

compares well with the chemical shift reported by Koch69 (δ(119Sn) = ± - 234.3 ppm) and are 

tentatively assigned to isotopologue GI of the [Pt(SnBr3)5]
3- complex anion, Scheme 3.7. ‡  

 

 
Figure 3.3: 119Sn NMR spectrum obtained for [Pt(SnBr3)5]

3- in CDCl3 (20% AQ-336(Br) at 293 K. Chemical 
shifts in ppm relative to Me4Sn (neat). 
 

From the unambiguous assignments of the 1J(195Pt-119Sn) and 2J(119Sn-117Sn) satellites 

obtained in the 119Sn NMR spectrum of the [Pt(SnCl3)5]
3- species, it is reasonable to assign 

the satellites indicated by (a) in Figure 3.3 to 1J(195Pt-119Sn) coupling in isotopologue GII 

shown in Scheme 3.7. By the same reasoning, the satellites indicated by (b) in Figure 3.3 are 

assigned to 2J(117Sn-119Sn) coupling in isotopologues IV and V, Scheme 3.7.  

                                                 
‡ In order to distinguish between isotopologues containing Cl- and Br-, Roman numerals are used for Br- 
containing isotopologues. 

δ(119Sn) = -232 ppm, GI 

a

b

(a) = 1J(195Pt-119Sn) coupling in isotopologue GII 
(b) = 2J(117Sn-119Sn) coupling in isotopologue III 
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Figure 3.4: 195Pt NMR spectrum obtained for [Pt(SnCl3)5]

3- in CDCl3 (20% AQ-336) at 293 K. Chemical shifts in ppm relative to K2PtCN4 (in D2O) at δ195Pt = -4 700.0 ppm. 
Where (a) and (b) represent the respective 1J(195Pt-119Sn) and 1J(195Pt-117Sn) satellites observed for isotopologues 1.1 and 8 in Scheme 3.7. The encircled signals have not been 
reported in literature. 

δ(195Pt) = - 5 904.6 ppm 
(7)

(a) 

(b) 

(c) 

1J (119Sn-195Pt) = 15 864 Hz 

1J (117Sn-195Pt) = 15 160 Hz 

1J = 13 921 Hz 
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constants of satellites (a) to (b), Table 3.5, to the γ(119Sn)/γ(117Sn) ratio. Moreover, the 

assignment of these two sets of satellites to 1J(119Sn-195Pt) and 1J(117Sn-195Pt) couplings is in 

accordance with the assignments given in the literature.2,27,29 In addition to the 1J(119Sn-195Pt) 

and 1J(117Sn-195Pt) satellites a third set of relatively low intensity satellites indicated by (c) in 

Figure 3.4, 1J = 13 920.5 Hz, is observed. These signals have not been previously reported in 

the literature to our knowledge! The relative 195Pt NMR signal area of each satellite is 0.01 

and the sum of the satellite areas is equal to the NSA of isotopologue 9 illustrated in Scheme 

3.8, Table 3.4. Moreover, the ratio of the coupling constants of satellites (b) to (c) is equal to 

the γ(117Sn)/γ(115Sn) ratio as shown in Table 3.5, confirming that the 1J satellites indicated by 

the symbol (c) in Figure 3.4 are due to 1J(115Sn-195Pt) coupling in isotopologue 9, not 

previously reported. 

 
Table 3.4: Comparison of the 195Pt NMR signal areas obtained experimentally with those of the calculated 
NSA’s of the possible isotopologues of the [Pt(SnCl3)5]

3-complex anion 

1J 
sat 

Isotopologue 
NSAa 195Pt NMR signal areasd

Statisticalb Normalizedc Statistical Experimental

 7 [195Pt(iSnCl3)5]
3-  0.139 1.00 1.00 1.00 

a 2.1 [195Pt(iSnCl3)4(
119SnCl3)]

3-  0.072 0.512 0.256 0.24±0.01 

b 8 [195Pt(iSnCl3)4(
117SnCl3)]

3-  0.063 0.454 0.227 0.21±0.01 

c 9 [195Pt(iSnCl3)3(
115SnCl3)]

3-  0.003 0.020 0.010 0.01±0.002 

d 2.2 [195Pt(iSnCl3)3(
119SnCl3)2]

3-  0.014 0.105 0.026 0.024±0.01 

e 10 [195Pt(iSnCl3)3(
117SnCl3)2]

3-  0.011 0.082 0.021 0.02±0.001 

f 3 [195Pt(iSnCl3)3(
119SnCl3)(

117SnCl3)]
3- 0.026 0.186 0.046 0.04±0.003 

 5 [195Pt(iSnCl3)2(
119SnX3)2(

117SnCl3)]
3- 0.004 0.029 0.005 - 

 6 [195Pt(iSnCl3)2(
119SnX3)(

117SnCl3)2]
3- 0.003 0.025 0.004 - 

a Natural Statistical Abundance of the respective isotopologues. b The NSA of the isotopologues calculated using Eq. 
3.1 does not take into account that 195Pt is magnetically-active, thus only 33.7 % of the NSA’s calculated for the 
isotopologues using Eq. 3.1 are observed with 195Pt NMR. c Normalized values of NSA’s for ease of comparing 195Pt 
NMR signal areas and should be equal to the sum of the satellites. d Area of each respective 195Pt NMR signal. 
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Table 3.5: Comparison of the ratio of 1J coupling constants of respective 1J satellites to the ratio of 
gyromagnetic ratios of magnetically-active Sn isotopes present in respective isotopologues  

1J 
sat 

Isotopologue 1J(119/117/115Sn-195Pt) / Hz 1J ratios γ(xSn)/γ(ySn)

a 2.1 [195Pt(iSnCl3)4(
119SnCl3)]

3- 15 864 
1.046 a 1.046 c 

b 8 [195Pt(iSnCl3)4(
117SnCl3)]

3- 15 160 

c 9 [195Pt(iSnCl3)4(
115SnCl3)]

3- 13 921 1.089 b 1.089 d 

a Ratio of 1J coupling constants of satellites (a) to (b) illustrated in Figure 3.4. b Ratio of 1J coupling constants of 
satellites (b) to (c) illustrated in Figure 3.4. c xSn = 119Sn and ySn = 117Sn. d xSn = 117Sn and ySn = 115Sn. The 
uncertainties on coupling constants are estimated to be ± 15 Hz 
 

Each set of 195Pt NMR signals indicated by a circle in Figure 3.5A at first appears to resemble 

a set of ‘triplets’ with signal area ratios of 1:2:1. However, after careful and accurate 

integration it was found that these sets of signals are not consistent with a simple 1st order 

‘triplet’ structure. Rather, these are sets of satellites which originate from isotopologues with 

more than one magnetically-active tin nuclei, illustrated in Scheme 3.8. First consider 

isotopologue 2.2 shown in Scheme 3.8 which contains two 119Sn isotopes and the 195Pt 

nucleus. Applying the method of successive splitting, the 195Pt NMR signal is split into a 

doublet by one 119Sn isotope, 1J(119Sn-195Pt) = 15 864.2 Hz, as indicated by the symbol (a) in 

Figure 3.5B. The doublet is split again by a second 119Sn isotope with the same 1J(119Sn-195Pt) 

coupling constant 15 864.2 Hz, and results in the triplet indicated by the symbol (d) in  

Figure 3.5C. The central line of the triplet overlaps exactly with the 195Pt signal due to 

isotopologue 7, which prevents the integration of thereof. Nevertheless, as this is a 1st order 

triplet**, the relative 195Pt NMR signal area ratio of the triplet indicated by (d) in Figure 3.5C 

is estimated to be 0.024:0.048:0.024, giving a sum total of 0.096 which is quantitatively 

consistent with the NSA calculated for isotopologue 2.2 shown in Scheme 3.8 and thus 

assigned accordingly. Similarly, the sum of the relative 195Pt NMR signal areas of the triplet 

indicated by the symbol (e) in Figure 3.5C agree remarkably well with the NSA calculated 

for isotopologue 10 illustrated in Scheme 3.8 and is thus assigned to isotopologue 10. The 

sum of the relative 195Pt NMR signal areas indicated by the symbol (f) in Figure 3.5C agree 

exceptionally well with the NSA calculated for isotopologue 3, Scheme 3.8. The doublet of 

doublets indicated by the symbol (f) in Figure 3.5C is due to both 1J(119Sn-195Pt)  and  
1J(117Sn-195Pt) coupling in isotopologue 3.  

                                                 
** Using the method of successive splitting J coupling between 119/117/115Sn and 195Pt follow by definition 1st 
order rules, hence it is a ‘true’ triplet. 
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To summarize, all the respective 1J(119/117/115Sn-195Pt) satellites observed in the 195Pt NMR 

spectrum of the [Pt(SnCl3)5]
3- complex anion, indicated by (a) to (f) in Figure 3.5, have been 

unambiguously assigned to the respective isotopologues shown in Scheme 3.8. To our 

knowledge, 195Pt NMR signals of isotopologues 2.2, 3, 9 and 10 have not been reported in the 

literature and this shows the value and sensitivity of 195Pt NMR compared to 119Sn NMR for 

such structural assignments in solution.  

3.2.4. 195Pt NMR of the homoleptic [Pt(SnBr3)5]
3-complex anions 

The corresponding 195Pt NMR spectrum of [Pt(SnBr3)5]
3- extracted into chloroform-d (20% 

(v/v) Aliquat-336) is shown in Figure 3.6. Compared to the 119Sn NMR spectrum (Figure 3.3) 

which is broad, the 195Pt NMR spectrum shows a remarkable resemblance to the 195Pt NMR 

spectrum of the [Pt(SnCl3)5]
3- species (Figure 3.4). The central 195Pt NMR signal at  

δ(195Pt) = - 5 483.5 ppm has a width at half peak height of 63.72 Hz and is flanked by several 
1J satellites. Note that due to relatively small amounts of chloride unavoidably in the sample 

(see experimental Chapter 2.1.2, p 15) species such as [Pt(SnBr3)4(SnBr2Cl)]3- are also 

present in this solution and give rise to the 195Pt NMR signals encircled in Figure 3.6. A 

detailed discussion of the heteroleptic species will be done in Chapter 4.  

The same methodology used to elucidate the 195Pt NMR spectrum of the homoleptic chlorido 

species in Section 3.2.3 was used to assign the spectrum and identity the possible NMR 

active isotopologues of the [Pt(SnBr3)5]
3- complex anion. The central 195Pt NMR signal is 

assigned to isotopologue VII, Table 3.6, which does not contain any 119/117/115Sn nuclei, 

summarized in Scheme 3.9. From the good agreement between the NSA’s of the respective 

isotopologues given in Scheme 3.9 and the relative 195Pt NMR signal areas of each set of 
1J(119/117/115Sn-195Pt) satellites (Table 3.6), assignments were made accordingly as illustrated 

in Figure 3.6. Moreover, confirmation of assignments of isotopologues X.1, VIII and IX is 

obtained from the excellent agreement of the ratios of the 1J(119/117/115Sn-195Pt) coupling 

constants with the γ(119/117Sn)/γ(117/115Sn) ratios, Table 3.7. As for the [Pt(SnCl3)5]
3- complex 

anion, the assignment of the triplets indicated by symbols (d) and (e) are ascribed to 
1(119/119Sn-195Pt) and 1J(117/117Sn-195Pt) satellites due to isotopologues II.2 and X respectively, 

and the doublet of doublet indicated by the symbol (f) is assigned  satellites due to 
1J(119/117Sn-195Pt) coupling in isotopologue III as shown in  Figure 3.6.  
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Figure 3.6: 195Pt NMR spectrum obtained for [Pt(SnBr3)5]
3- in CDCl3 (20% AQ-336(Br) at 293 K. The 1J satellites indicated by (a) to (f) is assigned to 1J(119/117/115Sn-195Pt) 

couplings of the isotopologues shown in Scheme 3.9. Similarly to the analogous chlorido species, the 1J(119/117Sn-195Pt) satellites obtained for isotopologues II.2, X and III 
result from successive splitting. The encircled 195Pt NMR signals are due to the [Pt(Sn5Cl14Br)]3- complex anion.  

(d) (e) (f) (d) (e) (f) 
[Pt(Sn5Cl14Br3)]

3- 

(a) 1J(119Sn-195Pt) =  14 654 Hz 

(b) 1J(117Sn-195Pt) =  14 003 Hz  

(c) 1J(115Sn-195Pt) =  12 871 Hz 

 

(a) 

(d) 

1J(119Sn-195Pt)  

(d) = 1J(119Sn-195Pt) coupling in isotopologues II.2

(e) = 2J(117Sn-195Pt) coupling in isotopologue X 

(f) = 2J(117Sn-195Pt) coupling in isotopologue III 

(a) = 1J(119Sn-195Pt) coupling in isotopologues II.1

(b) = 2J(117Sn-195Pt) coupling in isotopologue VIII 

(c) = 2J(115Sn-195Pt) coupling in isotopologue IX 

δ(195Pt) = - 5 484.5 ppm 
(VII) 

1J(117Sn-195Pt)  

(a) 

(f) 

(b) 

(e) 
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Table 3.7: Comparison of the ratio of 1J coupling constants of respective 1J satellites to the ratio of 
gyromagnetic ratios of magnetically-active Sn isotopes present in respective isotopologues  

1J 
sat 

Isotopologue 
1J(119/117/115Sn-195Pt) / 

 Hz 

1J 
ratios 

γ(xSn)/γ(ySn
) 

a II.1 [195Pt(iSnBr3)4(
119SnBr3)]

3- 14 654 
1.046 a 1.046 c 

b VIII [195Pt(iSnBr3)4(
117SnBr3)]

3- 14 003 

c IX [195Pt(iSnBr3)4(
115SnBr3)]

3- 12 871 1.089 b 1.089 d 

a Ratio of 1J coupling constants of satellites (a) to (b) illustrated in Figure 3.6. b Ratio of 1J coupling constants of 
satellites (b) to (c) illustrated in Figure 3.6. c xSn = 119Sn and ySn = 117Sn. d xSn = 117Sn and ySn = 115Sn. The 
uncertainties on coupling constants are estimated to be ± 15 Hz 
 
 
All the respective 1J(119/117/115Sn-195Pt) satellites observed in the 195Pt NMR spectrum of the 

[Pt(SnBr3)5]
3- complex anion, indicated by (a) to (f) in Figure 3.6, are unambiguously 

assigned to the respective isotopologues shown in Scheme 3.9. Isotopologues II.2, III, IX 

and X have, to our knowledge, not been reported in the literature.  

There are several apparent differences when comparing the 195Pt NMR spectrum of the 

[Pt(SnBr3)5]
3- complex anion to that of the chlorido analogue. Firstly, a downfield shift of  

421 ± 3 ppm is obtained when comparing the chemical shift of the 195Pt NMR signal of 

isotopologue VII to 7, Table 3.8. Secondly, the value of the 1J(119/117/115Sn-195Pt) coupling 

constants of the Pt(SnX3)5]
3- complex anions decreases by ca. 8% on passing from X = Cl- to 

Br-, Table 3.8.  

 
Table 3.8: 195Pt NMR data obtained for the [Pt(SnCl3)5]

3- and the [Pt(SnBr3)5]
3- complex anionsa 

 
δ195Pt 
(ppm) 

1J(119Sn-195Pt) / Hz 1J(117Sn-195Pt) / Hz 1J(115Sn-195Pt) / Hz 

[Pt(SnCl3)5]
3- -5904.6 15864 15160 13921 

[Pt(SnBr3)5]
3

- 
-5483.5 14659 14009 12862 

a Chemical shifts in ppm relative to K2PtCN4 (in D2O). The uncertainties on chemical shifts and coupling 
constants are estimated to be ± 3 ppm and ± 10 Hz, respectively. 

 

In a study of the [Pt(Xn(SnX3)4-n]
2- (X = Cl-/Br-, n = 1 – 4) and [Pt(SnX3)5]

3- (X = Cl-/Br-) 

complex anions by means of 119Sn NMR, 195Pt NMR as well as X-ray diffraction,  

Nelson et al29 showed that the Pt-Sn bond lengths increased in the order cis-[PtCl2(SnCl3)2]
2- 

< [Pt(Br3(SnBr3)]
2- < cis-[PtBr2(SnBr3)2]

2-.  It thus appears as though elongation of the Pt-Sn 

bond occurs upon substitution of Cl with Br in Pt-Sn complexes. Extrapolating this ‘trend’ to 
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the [Pt(SnX3)5]
3-  (X = Cl-/Br-) species studied here, one would expect the Pt-Sn bond to 

elongate upon substitution of Cl- with Br-, which supports the trend observed in 1J coupling 

constants seen here. However, further studies are needed to confirm whether this is the only 

reason for the trend.  

Preliminary DFT calculations†† (using the Amsterdam density functional, ADF, software 

package) performed on the [Pt(SnX3)5]
3- (X = Cl-/Br-) species does show an elongation of the 

Pt-Sn bond length upon substitution of Cl- by Br-, Table 3.9. This is consistent with the 

prediction derived from the trend observed by Nelson et al.29 The 195Pt nucleus thus becomes 

less shielded for the homoleptic bromido complex anion, yielding the ‘downfield’ shift of the 
195Pt NMR signals as shown in Table 3.8. Furthermore, the elongated Pt-Sn bond length of 

the homoleptic bromido species also explains the decrease in 1J(119/117/115Sn-195Pt) coupling 

constants, Table 3.8.  

 

Table 3.9: Comparative Pt-Sn and Sn-X bond lengths for [Pt(SnX3)5]
3- (X = Cl- or Br-) determined by DFT 

calculations  

Pt-Sn bond length / Å Sn-X bond length / Å 
Exp.a DFT calc. Exp.a DFT calc.

axial equatorial axial equatorial ax. eq. ax. eq. 

[Pt(SnCl3)5]
3- 2.553 2.577 2.561 2.585 2.363b 2.364 2.393 

[Pt(SnBr3)5]
3- 

 
 2.573 2.597  2.517 2.549 

a The experimental Pt-Sn and Sn-Cl bond lengths were obtained by Nelson et al. 29 b Nelson et al only reported 
an average Sn-Cl bond length. 

 

Finally, greater 195Pt NMR signal line widths are obtained for the [Pt(SnBr3)5]
3- species 

compared to the [Pt(SnCl3)5]
3- species which suggests that the intra-molecular site-exchange 

process mentioned previously (by a Berry-pseudo mechanism) occurs slower on the 195Pt 

NMR acquisition time-scale for the homoleptic bromido species.  

                                                 
†† The basic parameters used for the DFT calculations performed by Dr. W. J. Gerber: the Local Density 
Approximation (LDA) was used as Exchange Correlation functional in the SCF calculations for Geometry 
optimization. Vibrational Frequency calculations confirmed that the optimized geometries are a true minimum 
on the potential energy surface. The QZ4P basis set was used for all atoms. Moreover, scalar relativistic effects 
were taken into account as set out in the ZORA formalism.  
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3.3. Conclusion 

Comparison of the NSA’s calculated for each possible isotopologue to the areas of the 119Sn 

or 195Pt NMR signals, together with the comparison of the 1J/1J ratios of respective 1J 

satellites to the ratio of gyromagnetic ratios of the related magnetically-active tin nuclei and 

the application of the method of successive splitting allowed for the unambiguous 

identification of 20 isotopologues of the [Pt(SnX3)5]
3- (X = Cl-/Br-) complex anions, Schemes 

3.5, 3.7, 3.8 and 3.9. Moreover, high-resolution 119Sn and 195Pt NMR facilitated the 

identification of ten isotopologues, 2.2, 3, 5, 6, 9, 10, II.2, III, IX and X, that have never 

been reported in literature.    

Replacement of all the Cl- with Br- in the [Pt(SnX3)5]
3- (X = Cl-/Br-) complex anions resulted 

in an ‘upfield’ shift of 110 ppm of the 119Sn NMR signals compared to the ‘downfield’ shift 

of 421 ppm of the 195Pt NMR signals. This is indicative of the chemical shift of the 195Pt 

NMR signals being much more sensitive to a change in the electronic environment compared 

to 119Sn NMR signals. As was expected, no isotopomers were observed in either the 119Sn or 

the 195Pt NMR spectrum, confirming that the Berry-pseudo rotation of these trigonal 

bipyramidal species occurs rapidly on the NMR acquisition time-scale. Furthermore, the 
119Sn NMR spectrum of the [Pt(SnBr3)5]

3- complex anion only resulted in only very broad 
119Sn NMR signals that could not be elucidated. The 195Pt NMR spectrum of the same 

solution reveals the presence of an heteroleptic species, [Pt(Sn5Cl14Br)]3-, in solution. From 

the separate 195Pt NMR signals observed, the broad 119Sn NMR signal cannot be ascribed to 

intra- or inter- molecular halide scrambling occurring in solution as suggested in literature, 

and might rather be due to overlap of the 119Sn NMR signals of the two respective species. 

However, further investigation is required. It is thus clear that high resolution 195Pt NMR by 

comparison to 119Sn NMR is a much more powerful tool to assign these structures as (1) 

shielding of the 195Pt nucleus shows much higher sensitivity to small changes in the SnX3
- (X 

= Cl-/Br-) ligand and (2) narrower 195Pt NMR lines are obtained. 

Having fully assigned the 119Sn and 195Pt NMR spectra obtained for the homoleptic chlorido 

and bromido species, the next chapter will concentrate on a detailed study of the  much more 

complex heteroleptic [Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) complex anions by means of high 

resolution 195Pt NMR and 119Sn NMR. 
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Chapter IV 

Characterization of the heteroleptic [Pt(Sn5ClnBr15-n)]3- (n = 0 – 15) species by 
means of 119Sn and high resolution 195Pt NMR 

4.1. Introduction 

The heteroleptic [Pt(SnClnBr3-n)5]
3- (n = 0 – 3) complex anions have not received much 

attention in the literature unlike the analogous homoleptic chlorido and bromido species. 

However, mixed halide tin(IV) species76 and trihalostannato anions77 have been investigated 

to some degree. Burke and Lauterbur76 were the first to study mixed halide tin(IV)  

SnClnBr4-n (n = 1 – 3) species by means of 119Sn NMR obtained from mixtures of SnCl4 and 

SnBr4, as well as similar results for mixtures of SnCl4 and SnI4 and of SnBr4 and SnI4. These 

mixed halide complexes are formed by halogen scrambling. The trihalogenotin SnX3
-  

(X = Cl-/Br-) group is a well known ligand in transition-metal compounds as it formally has a 

‘lone’ pair of electrons that can act as a σ-donor. Coddington and Taylor77 investigated 

diethyl ether extracts containing the trihalogenostannate(II) anions [SnX3]
-, [SnX2Y]-, 

[SnXY2]
-, [SnY3]

- and [SnX(Y)Z]- ( where X, Y, and Z = Cl, Br or I) and with (H3O)+ as 

cation by means of 119Sn NMR. At – 60 °C the 119Sn chemical shifts of all ten 

trihalogenostannate(II) anions, [SnClxBryIz]
- (x + y + z = 3) could be assigned. Garralda  

et al78 and Koch69 both observed halogen scrambling within transition-metal tin(II)halide 

complexes. Garralda et al78 studied the five-coordinate [Rh(SnClnBr(3-n))(norbornadiene)-

tertiary phosphine)2] complexes by means of 31P and 119Sn NMR spectroscopy. The NMR 

data Garralda et al obtained showed the existence of a mixture of complexes containing 

SnCl3
-, SnCl2Br-, SnClBr2

- and SnBr3
- ligands bound to Rh(I). Moreover, the 119Sn NMR 

spectrum showed that the complexes with the mixed halide ligands, SnCl2Br-, SnClBr2
-, had 

δ(119Sn) shifts between the δ(119Sn) shifts of the complexes with SnCl3
- and SnBr3

- as ligands 

respectively. Similar results were obtained by Koch69 by 119Sn NMR of the series of 

[Pt(SnClxBry)5]
3- (x + y = 3) complex anions extracted into chloroform with 20% (v/v) 

Aliquat-336. The 119Sn spectrum reported from mixing equal volumes of solutions containing 

the [Pt(SnCl3)5]
3- and [Pt(SnBr3)5]

3- complexes is shown in Figure 4.1. Four sets of 

resonances, each set consisting out of 5 – 8 resolved 119Sn lines, were obtained. These were 

43
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4.2. Results and Discussion 

4.2.1. 195Pt NMR of the series of [Pt(Sn5ClnBr15-n)]3- (n = 0 – 15) complex anions 

In previous studies57,69  it was shown that when homoleptic transition-metal (Pt and Rh) 

tin(II)halide (halide = Cl- and Br-) complexes are mixed, halide exchange occurs to form the 

corresponding heteroleptic species. In this study therefore equimolar (R3NCH3
+)3-

[Pt(SnCl3)5]
3- and (R3NCH3

+)3[Pt(SnBr3)5]
3- (R = (CH2)7CH3) solutions in CDCl3 were mixed 

in several volume ratios and left for one day to equilibrate before acquiring the 195Pt NMR 

spectra.‡‡ Shown in Figure 4.2 are the 195Pt NMR spectra of the ‘pure’ homoleptic complexes 

[Pt(SnCl3)5]
3- and [Pt(SnBr3)5]

3- together with representative mixtures of the heteroleptic 

species. The 195Pt NMR spectra are truly remarkable showing groups of highly resolved and 

complex spectra. Due to halide scrambling in these mixed [Pt(SnCl3)5]
3- and [Pt(SnBr3)5]

3- 

extract solutions there are now four possible trihalostannato ligands (SnCl3
-, SnCl2Br-, 

SnClBr2
-, SnBr3

-) which appear to coordinate to Pt(II). Thus 14 heteroleptic [Pt(Sn5Cln- 

Br15-n)]
3- (n = 1 – 14) species are possible in addition to the 2 homoleptic species. The 195Pt 

NMR spectra of the homoleptic chlorido and bromido species are shown in Figures 4.2 (A) 

and (E) respectively, whereas the 195Pt NMR spectra of the heteroleptic species, 

[Pt(Sn5ClnBr15-n)]
3- (n = 1 - 14) are shown in Figures 4.2 (B), (C) and (D). 

A total of sixteen separate sets of 195Pt NMR signals with a complex set of satellites due to J 

coupling and relatively high intensity are observed in Figure 4.2, numbered 1 – 16 for clarity. 

Signals 1 and 16 are clearly assigned to the homoleptic isotopologues 7 and VII as discussed 

in Chapter 3. In several previous hetero-nuclear NMR studies it was shown that the resonance 

frequencies of the heteroleptic species are expected to occur between those of the homoleptic 

species.48,57,74 It is thus reasonable to suggest that the 14 195Pt NMR signals, numbered 2 – 15 

in Figure 4.2, originate from the 14 possible heteroleptic [Pt(Sn5ClnBr15-n)]
3- (n = 1 – 14) 

complex anions corresponding to the isotopologues that contain the 195Pt nucleus but no 

magnetically-active Sn nuclei, illustrated in Scheme 4.3.  

 

 

                                                 
‡‡ Detailed experimental procedure in Chapter 2, Section 2.1.3, p 16 
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Figure 4.2: 195Pt NMR spectra (128.93 MHz) obtained at 20 °C for (A) [Pt(SnCl3)5]

3- and (E) [Pt(SnBr3)5]
3- in 

CDCl3 (20% AQ-336). The spectra shown in (B), (C) and (D) are those of the mixtures of [Pt(SnCl3)5]
3- and 

[Pt(SnBr3)5]
3- with volume ratios of 2:1, 1:1 and 1:2 respectively. Expansions of these 195Pt NMR spectra are 

given in Appendix C. 
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Table 4.1: 195Pt NMR Chemical shifts and tentative assignments of the [Pt(SnClnBr15-n)]
3- (n = 0 – 15) species a 

195Pt NMR signal δ(195Pt)/ppm Tentative assignments Isotopologue 

1 -5904.64 [195Pt(iSnCl3)5]
3- 7 

2 -5862.16 [195Pt(iSn5Cl14Br)]3- 11 

3 -5823.98 [195Pt(iSn5Cl13Br2)]
3- 12 

4 -5787.40 [195Pt(iSn5Cl12Br3)]
3- 13 

5 -5754.37 [195Pt(iSn5Cl11Br4)]
3- 14 

6 -5719.98 [195Pt(iSn5Cl10Br5)]
3- 15 

7  -5688.59 [195Pt(iSn5Cl9Br6)]
3- 16 

8  -5658.49 [195Pt(iSn5Cl8Br7)]
3- 17 

9 -5630.58 [195Pt(iSn5Cl7Br8)]
3- 18 

10 -5603.75 [195Pt(iSn5Cl6Br9)]
3- 19 

11 -5578.44 [195Pt(iSn5Cl5Br10)]
3- 20 

12 -5555.32 [195Pt(iSn5Cl4Br11)]
3- 21 

13 -5534.02 [195Pt(iSn5Cl3Br12)]
3- 22 

14 -5514.59 [195Pt(iSn5Cl2Br13)]
3- 23 

15  -5498.16 [195Pt(iSn5ClBr14)]
3- 24 

16 -5483.54 [195Pt(iSnBr3)5]
3- VII 

a All the 195Pt NMR resonance frequencies are reported relative to a 1 mm co-axial insert containing 0.1 M 
K2PtCN4 as reference solution (δ(195Pt) = – 4 700.0 ppm ). The uncertainties on 195Pt chemical shifts are 
estimated to be ± 3 ppm. 
 

However, for the unambiguous identification and confirmation of the assignment of all 14 

heteroleptic species a detailed analysis of the 1J(119/117/115Sn-195Pt) coupling constants and 
1J(119/117/115Sn-195Pt) satellite signal areas of isotopologues is required. Moreover, assignment 

of the heteroleptic species is made more challenging due to the presence of isotopomers (vida 

infra) in addition to isotopologues as illustrated in Scheme 4.2.§§  

Figure 4.4 shows an expansion of the set of 195Pt NMR signals tentatively assigned to the 

[Pt(Sn5Cl14Br)]3- heteroleptic species (11) showing the numerous coupling satellites. The 

isotopologues and isotopomers possible for this species are illustrated in Scheme 4.4. The 
195Pt NMR signal at δ(195Pt) = – 5 862.2 ppm is assigned to the isotopologue of the 

[Pt(Sn5Cl14Br)]3- complex anion which contains a 195Pt nucleus but no magnetically-active Sn 

isotopes and therefore is the most abundant isotopologue, 11 in Scheme 4.4. The respective 
1J(119/117/115Sn - 195Pt) satellites, encircled in Figure 4.4, are due to the isotopologues and 

isotopomers which contain a 195Pt nucleus and one magnetically-active tin isotope, 25 – 30 in 

                                                 
§§ In order to avoid multiple numbering schemes, numbering of each new isotopologue and isotopomer of the 
heteroleptic species continues with the numbering scheme used for the isotopologues of the homoleptic species.   
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Scheme 4.4. Interestingly, in addition to the 3 three sets of 1J(119/117/115Sn-195Pt) satellites 

observed in the 195Pt NMR spectrum of the [Pt(SnCl3)5]
3- complex anion, shown in Figure 3.5 

in Chapter 3, a fourth set of 1J(xSn-195Pt) satellites with a coupling constant of 14 562 Hz 

(Table 4.2) is observed and is indicated by the symbol (c) in Figure 4.4. The ratio of the 

coupling constants of 1J satellites (a) to (b) (15 933 Hz/15 228 Hz = 1.046) is equal to the 

γ(119Sn)/γ(117Sn) ratio (1.046), shown in Table 4.2. Similarly, the ratio of the coupling 

constants of 1J satellites (b) to (d) (15 228 Hz/14 079 Hz = 1.089) is equal to the 

γ(117Sn)/γ(115Sn) ratio (1.089), Table 4.2. The satellites indicated by (a), (b) and (d)  

(Figure 4.4) are therefore clearly assigned to 1J(119Sn-195Pt), 1J(117Sn-195Pt) and 1J(115Sn-195Pt) 

couplings and correspond (vida infra) to the isotopologues listed in Table 4.2. Furthermore, 

the ratio of coupling constants of satellites (b) to (c) (15 228 Hz/14 562 Hz = 1.046)  

(Figure 4.4) is equal to the γ(119Sn)/γ(117Sn) ratio (1.046), Table 4.2. This implies that the 

satellites indicated by (b) in Figure 4.4 originates from both 1J(119Sn-195Pt) and 1J(117Sn-195Pt) 

couplings and the satellites indicated by (c) originates from 1J(117Sn-195Pt) coupling. Taking 

into consideration that there are two tin ligands (SnCl3
-, SnCl2Br-) it is reasonable to suggest 

that two different 1J(119SnCl3
--195Pt) and 1J(119SnCl2Br--195Pt) couplings should be observed, 

which can be attributed to isotopomers 25 and 28, shown in Scheme 4.4. If this is the case, it 

implies that the relative chemical shift difference between the two chemical shifts of the 

exchanging species (νA – νB) relative to the actual reaction rate constant (κ) is larger than 2.2 

(κ/Δν > 2.2) and thus that intra- and inter- molecular halide exchange is slow on the 195Pt 

NMR acquisition time-scale. Similarly, it is possible to observe two different 1J(Sn-195Pt) 

couplings for isotopomers 26 and 29 and for isotopomers 27 and 30. This should be reflected 

in the relative signal peak areas of the respective 1J(119/117/115Sn-195Pt) satellites as the 

[Pt(Sn5Cl14Br)]3- complex anion has four SnCl3
- ligands and one SnCl2Br- ligand. In  

Figure 4.4 it is clearly seen that the relative 1J(119Sn-195Pt) satellite signal areas are now lower 

in intensity than the 1J(117Sn-195Pt) satellites. The relative experimental 195Pt NMR signal 

areas and the NSA’s calculated for each isotopologue and isotopomer are listed in Table 4.3. 

The excellent agreement of the experimental 1J(119/117/115Sn-195Pt) satellite signal areas with 

the NSA’s of isotopologues/ isotopomers (Table 4.3) confirms that the 1J satellite indicated 

by the symbols (a), (b), (c) and (d) in Figure 4.4 are due to the isotopologues and isotopomers 

25, 26/28, 29 and 27 in Scheme 4.4, respectively. Moreover, the data in Table 4.3 is in 

agreement with the notion that intra- and inter- molecular halide exchange is slow on the 
195Pt NMR acquisition time-scale. 
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Figure 4.4: 195Pt NMR spectrum obtained for solution with [Pt(SnCl3)5]

3- to [Pt(SnBr3)5]
3-ratio of 2:1. Only a partial part of the spectrum is shown as to focus specifically on 

the 195Pt NMR signal obtained for [Pt(Sn5Cl14Br)]3- (δ(195Pt) = - 5 862 ppm) and its respective 1J satellites. The main resonance signals, as well as the 1J satellites observed 
due to coupling in isotopologues/isotopomers with one magnetically active tin nucleus, are encircled. The expansion focuses specifically on these 1J satellites.   

-5970-5950-5930-5910-5890-5870-5850-5830-5810-5790-5770-5750
ppm

c 

a 

b 

15 933 Hz 

15 228 Hz 

14 562 Hz

d 14 079 Hz 

a = 1J(119SnCl3
--195Pt) coupling in isotopologue 25 

b = 1J(117SnCl3
--195Pt) coupling in isotopologue 26 and 

         1J(119SnCl2Br--195Pt) coupling in isotopologue 28  

c = 1J(117SnCl2Br--195Pt) coupling in isotopologue 29 

d = 1J(115SnCl3
--195Pt) coupling in isotopologue 27 
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Table 4.2: Comparison of the ratio of 1J coupling constants of respective 1J satellites to the ratio of 
gyromagnetic ratios of magnetically-active Sn isotopes present in respective isotopologues 

1J 
sat. 

 Isotopologue/isotopomer 
1J(119/117/115Sn-195Pt) 

/ Hz 

1J 
ratios 

γ(xSn)/ 
γ(ySn) 

a 25 [195Pt(119SnCl3)(
iSnCl3)3(

iSnCl2Br)]3- 15 933  
 

b 26 [195Pt(117SnCl3)(
iSnCl3)3(

iSnCl2Br)]3- 15 228 1.046 a 1.046 d 

b 28 [195Pt(119SnCl2Br)(iSnCl3)4]
3- 15 228 1.046 a 1.046 d 

c 29 [195Pt(117SnCl2Br)(iSnCl3)4]
3-  14 562 1.046 b 1.046 d 

d 27 [195Pt(115SnCl3)(
iSnCl3)3(

iSnCl2Br)]3-  14 079 1.089 c 1.089 e 

 30 [195Pt(115SnCl2Br)(iSnCl3)4]
3- - f 

 
 

a Ratio of 1J coupling constants of satellites (a) to (b) illustrated in Figure 4.4. b Ratio of 1J coupling constants of 
satellites (b) to (c) illustrated in Figure 4.4. c Ratio of 1J coupling constants of satellites (b) to (d) illustrated in 
Figure 4.4. d γ(xSn) = γ(119Sn) and γ(ySn) = γ(117Sn). e γ(xSn) = γ(117Sn) and γ(ySn) = γ(115Sn). f Due to the low 
NSA of isotopologue/isotopomer 30, the 1J(115SnCl2Br-195Pt) satellites could not be observed. 

 

Table 4.3: Comparison of the 195Pt NMR signal areas experimentally obtained for [Pt(SnCl3)5]
3- and 

[Pt(SnCl3)4(SnCl2Br)]3- with 195Pt NMR to the calculated NSA’s of the possible isotopologues/isotopomers of 
the species 

1J 
sat. 

 

Isotopologue/Isotopomer 

[Pt(SnCl3)5]
3- 

[Pt(SnCl3)4 

(SnCl2Br)]3-

 NSAa 

195Pt 
signal 
area 

NSAb 

195Pt 
signal 
area 

 11 [195Pt(iSnCl3)4(
iSnCl2Br)]3- 1.00 1.00 1.00 1.00 

a 25 [195Pt(119SnCl3)(
iSnCl3)3(

iSnCl2Br)]3- 0.256 0.24 0.20 0.19 

b 26 [195Pt(117SnCl3)(
iSnCl3)3(

iSnCl2Br)]3- 0.227 0.21 0.18 
0.212 c  

b 28 [195Pt(119SnCl2Br)(iSnCl3)4]
3- - - 0.056 

c 29 [195Pt(117SnCl2Br)(iSnCl3)4]
3- - - 0.047 0.042 

d 27 [195Pt(115SnCl3)(
iSnCl3)3(

iSnCl2Br)]3- 0.01 0.01 0.008 0.006 

 30 [195Pt(115SnCl2Br)(iSnCl3)4]
3- - - - - d 

a NSA calculated for respective isotopologues divided by 2 for ease of comparison to the 195Pt NMR signal area. 
b 80% of the NSA calculated for the isotopologues of the homoleptic chlorido species with 5 SnCl3

- ligands.  
c Note, isotopologues 26 and 28 have the same splitting pattern, thus both these isotopologues/isotopomers 
contribute to the signal areas of satellites indicated by (c) in Figure 4.4. d Due to the low NSA of isotopologue/ 
isotopomer 30, the 1J(115SnCl2Br-195Pt) satellites could not be observed. 
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When the [Pt(Sn5Cl14Br)]3- complex anion contains a 195Pt nucleus and two magnetically-

active tin nuclei an even more complex 1J splitting pattern is expected, as shown in Figure 

4.5. In this case the two magnetically-active Sn nuclei can either both be present in the SnCl3
- 

ligands or one can be present in the SnCl3
- ligand and the other in the SnCl2Br- ligand. This 

result in the seven possible combinations of isotopologues and isotopomers listed in Table 

4.4. In order to unambiguously assign the respective 1J(119/117Sn-195Pt) satellites the method of 

successive splitting was applied, as illustrated in Figure 4.5. As established above the 

respective 1J coupling constants decrease in the order 1J(119SnCl3-
195Pt) > 1J(117SnCl3-

195Pt) = 
1J(119SnCl2Br-195Pt)  > 1J(117SnCl2Br-195Pt). In view of this, the 1J coupling in isotopologues 

31, 33 and 35 (Scheme 4.4) result in triplet splitting patterns, shown by (e), (i) and (j) in 

Figure 4.5, respectively. Moreover, the 1J couplings of isotopologues/ isotopomers 32, 34, 36 

and 37 (Scheme 4.4) result in doublet of doublets splitting patterns, shown by (f), (g), (h) and 

(k) in Figure 4.5. However, as the 1J(117SnCl3-
195Pt) and 1J(119SnCl2Br-195Pt) coupling 

constants are equal the 1J satellites due to isotopologues 32 (f) and 34 (g) overlap. This is also 

the case for the 1J satellites due to isotopologues 33 (i) and 35 (j) as illustrated in Figure 4.5. 

Unfortunately, the 195Pt NMR signals of these 1J(119/117Sn-195Pt) satellites are too low to 

accurately measure the areas which prevents the comparison thereof to the NSA’s of the 

isotopologues/isotopomers. 

 

Table 4.4: Coupling constants measured for the 1J(119/117Sn-195Pt)  satellites of isotopologues/isotopomers 7 to 
13 of the [Pt(Sn5Cl14Br)]3- complex anion 
1J 
Sat. 

 
Isotopologue/ 
Isotopomer 

Xa 
1J(X-

95Pt) / Hz 
Yb 

1J(Y-
95Pt) / Hz 

e 
3
1 

[Pt(119SnCl3)2(
iSnCl3)2(

iSnCl2Br)
]3- 

119SnCl3 15933 119SnCl3 15933 

f 
3
2 

[Pt(119SnCl3)(
117SnCl3)(

iSnCl3)2-
(iSnCl2Br)]3- 

119SnCl3 15933 117SnCl3 15228 

i 
3
3 

[Pt(117SnCl3)2(
iSnCl3)2(

iSnCl2Br)
]3- 

117SnCl3 15228 117SnCl3 15228 

g 
3
4 

[Pt(119SnCl3)(
119SnCl2Br)(iSnCl3)

3]
3- 

119SnCl3 15933 
119SnCl2B
r 

15228 

j 
3
5 

[Pt(117SnCl3)(
119SnCl2Br)(iSnCl3)

3]
3- 

117SnCl3 15228 
119SnCl2B
r 

15228 

h 
3
6 

[Pt(119SnCl3)(
117SnCl2Br)(iSnCl3)

3]
3- 

119SnCl3 15933 
117SnCl2B
r 

14562 

k 
3
7 

[Pt(117SnCl3)(
117SnCl2Br)(iSnCl3)

3]
3- 

117SnCl3 15228 
117SnCl2B
r 

14562 
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a X represents the tin ligand that 195Pt couples to, resulting in the first splitting of the main resonance signal into 
a doublets. b Y represents the second tin ligand that 195Pt couples to, resulting in further splitting into either a 
triplet (t) or a doublet of doublet (dd). 
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In this way the respective 1J(119/117/115Sn-195Pt) satellites indicated by the symbols (a) – (k) in  

the 195Pt NMR spectrum shown in Figure 4.5 are thus unambiguously assigned to 

isotopologues and isotopomers 11 and 25 – 37 of the [Pt(Sn5Cl14Br)]3- complex anion 

(Scheme 4.4).  

The same methodology was used to assign all the 195Pt NMR signals numbered 3 – 15 in 

Figure 4.2 to the remaining 13 heteroleptic [Pt(SnClnBr15-n)]
3- (n = 1 – 13) species  

(Appendix B lists the possible isotopologues and isotopomers of the [Pt(SnClnBr15-n)]
3-  

(n = 10 – 13) species and the splitting patterns obtained with 195Pt NMR for the 

[Pt(SnClnBr15-n)]
3- (n = 11 – 13) species are shown in Appendix C). The 1J(119/117Sn-195Pt) 

coupling constants measured for the respective isotopologues and isotopomers (containing 

the 195Pt nucleus and one spin-active tin nucleus) of each heteroleptic species are listed in 

Table 4.5.*** Regardless of the fact that there are four possible trihalostannato ligands  

(SnCl3
-, SnCl2Br-, SnClBr2

-, SnBr3
-) which may coordinate to the Pt(II) centre in the 

heteroleptic species, a maximum of five 1J(119/117Sn-195Pt) satellites for any given species is 

observed (195Pt NMR signals numbered 4 – 10 in Figure 4.2). It was shown for the 

[Pt(Sn5Cl14Br)]3- complex anion that due to slow intra- and inter- molecular halide exchange 

on the 195Pt NMR acquisition time-scale, the 1J satellites for the respective isotopomers are 

not averaged.  

Moreover, at 128.7 MHz (14.03 T) the satellites obtained due to 1J(117SnCl3-
195Pt) and 

1J(119SnCl2Br-195Pt) couplings of the respective isotopologues (26 and 28) are not resolved 

and are considered to have equal coupling constants. However, at higher magnetic field 

strengths one might be able to distinguish between the two sets of satellites. With this in 

mind, it is reasonable to suggest that the 1J(119/117Sn-195Pt) satellites of the 195Pt NMR signals 

numbered 3 – 15 in Figure 4.2 arise from 1J couplings that decrease in the order  
1J(195Pt-119SnCl3) > 1J(195Pt-117SnCl3) = 1J(195Pt-119SnCl2Br) > 1J(195Pt-117SnCl2Br) =  
1J(195Pt-119SnClBr2) > 1J(195Pt-117SnClBr2) = 1J(195Pt-119SnBr3) > 1J(195Pt-117SnBr3). In 

confirmation of the assignments of the satellites shown in Table 4.6, and thus also the 

proposed trend of the satellites, the 1J(119Sn195Pt)/1J(117Sn195Pt) ratios calculated for each 

isotopologue/isotopomer given in Table 4.6 and show excellent agreement to the 

γ(119Sn)/γ(117Sn) ratio, 1.046.  

                                                 
*** Due to the low NSA of the 195Pt-115Sn isotopologues the 1J(115Sn-195Pt) satellites will not be discussed in this 
section. 
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Table 4.5: 195Pt NMR δ(195Pt) and 1J(xSn-195Pt) parameters and assignments of the [Pt(SnClnBr15-n)]
3- (n = 0 – 15) signals 

 

  δ195Pt / ppm  1J(119Sn-195Pt) / Hz 1J(117Sn-195Pt) / Hz 

    119SnCl3 119SnCl2Br 119SnClBr2 119SnBr3 117SnCl3 117SnCl2Br 117SnClBr2
117SnBr3 

1 7 [Pt(SnCl3)5]
3- -5905 15864 15160 

2 11 [PtSn5Cl14Br]3- -5862 15933 15228 15228 14563 

3 12 [PtSn5Cl13Br2]
3- -5824 15995 15295 14633 15295 14633 13983 

4 13 [PtSn5Cl12Br3]
3- -5787 16050 15351 14683 14057 15351 14683 14057 13451 

5 14 [PtSn5Cl11Br4]
3- -5754 16105 15406 14738 14104 15406 14738 14105 13544 

6 15 [PtSn5Cl10Br5]
3- -5720 16163 15464 14787 14144 15464 14787 14144 13539 

7 16 [PtSn5Cl9Br6]
3- -5689 16228 15520 14840 14187 15520 14840 14187 13552 

8 17 [PtSn5Cl8Br7]
3- -5659 16269 15584 14898 14198 15584 14898 14198 13581 

9 18 [PtSn5Cl7Br8]
3- -5631 16332 15620 14955 14278 15620 14955 14278 13643 

10 19 [PtSn5Cl6Br9]
3- -5603 16419 15685 14989 14326 15686 14989 14326 13678 

11 20 [PtSn5Cl5Br10]
3- -5578 - 15753 15057 14376 15753 15057 14376 13728 

12 21 [PtSn5Cl4Br11]
3- -5555 - 15822 15111 14435 15822 15111 14435 13781 

13 22 [PtSn5Cl3Br12]
3- -5534 - 15825 15178 14482 15825 15178 14482 13841 

14 23 [PtSn5Cl2Br13]
3- -5515 15911 15233 14548 15233 14548 13876 

15 24 [PtSn5ClBr14]
3- -5498 15302 14592 14592 13940 

16 VII [Pt(SnBr3)5]
3- -5483 14659 14009 
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Table 4.6: Ratios calculated for respective 1J(119Sn-195Pt)/1J(117Sn-195Pt) to be compared to the γ(119Sn)/γ(117Sn) 
ratio, 1.046. 

 
1J(119Sn -195Pt)/( 117Sn-195Pt) 

SnCl3 SnCl2Br SnClBr2 SnBr3 

[Pt(SnCl3)5]
3- 1.046 

[PtSn5Cl14Br]3- 1.046 1.046 

[PtSn5Cl13Br2]
3- 1.046 1.045 1.046 

[PtSn5Cl12Br3]
3- 1.046 1.045 1.045 1.045 

[PtSn5Cl11Br4]
3- 1.045 1.045 1.045 1.041 

[PtSn5Cl10Br5]
3- 1.045 1.046 1.045 1.045 

[PtSn5Cl9Br6]
3- 1.046 1.046 1.046 1.047 

[PtSn5Cl8Br7]
3- 1.044 1.046 1.049 1.045 

[PtSn5Cl7Br8]
3- 1.046 1.045 1.047 1.046 

[PtSn5Cl6Br9]
3- 1.047 1.046 1.046 1.047 

[PtSn5Cl5Br10]
3- - 1.046 1.047 1.047 

[PtSn5Cl4Br11]
3- - 1.047 1.047 1.047 

[PtSn5Cl3Br12]
3- 1.043 1.048 1.046 

[PtSn5Cl2Br13]
3- 1.045 1.047 1.048 

[PtSn5ClBr14]
3- 1.049 1.047 

[Pt(SnBr3)5]
3- 1.046 

 

 

Based on the above analysis and good agreement between 1J(119/117Sn-195Pt) values and 

γ(119Sn)/γ(117Sn) ratios, the assignments of all the respective 1J(119/117Sn-195Pt) satellites 

observed for each of the many species support the assignments made earlier based on the 
195Pt NMR chemical shift trend obtained (Figure 4.3 and Table 4.1) and it is reasonable to 

conclude that ambiguity regarding the assignments of the 16 [Pt(SnClnBr15-n)]
3- (n = 0 – 15) 

species has been eradicated, based on the well resolved 195Pt NMR spectra.  

Interestingly the systematic trends obtained by plotting the 1J coupling constants measured 

for each species against the corresponding δ(195Pt) of a given species, Figure 4.7, lends 

confidence to these assignments. Moreover, the trends observed show that the substitution of 

Cl- by Br- affects both the magnitude of the 1J(119/117Sn-195Pt) coupling constants measured 

and the δ(195Pt) of that particular species.  
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4.2.2. Revisiting the 119Sn NMR Spectra acquired for the heteroleptic [Pt(Sn5ClnBr15-n)]3- 

(n = 0 – 15) species 

The corresponding 119Sn NMR spectra acquired for the mixed (R3NCH3
+)3[Pt(SnCl3)5]

3- and 

(R3NCH3
+)3[Pt(SnBr3)5]

3- (R = (CH2)7CH3) extracts are shown in Figure 4.7, where  

(A) and (D) show the 119Sn NMR spectra of the homoleptic chlorido and bromido species 

respectively, and (B) and (C) show the 119Sn NMR spectra of the heteroleptic species, 

[Pt(SnClnBr15-n)]
3- (n = 1 – 14). Four main sets of 119Sn NMR signals observed with each set 

consisting of several individual resonances are shown in Figure 4.7. The 119Sn NMR 

chemical shifts of these sets of signals compare well to the chemical shifts of the sets of 119Sn 

NMR signals tentatively assigned to the [Pt(SnCl3)5]
3-, [Pt(SnCl2Br)5]

3-, [Pt(SnClBr2)5]
3- and 

[Pt(SnBr3)5]
3- complex anions by Koch69 (Figure 4.1). Unfortunately, elucidation of each 

individual 119Sn NMR signal within the set of signals is made difficult by the low signal-to-

noise ratio and the extent of signal-overlap obtained in the 119Sn NMR spectrum. Since 

fortunately the high-resolution 195Pt NMR described above has enabled the identification of 

each [Pt(SnClnBr15-n)]
3- (n = 0 – 15) species present in these solutions, this knowledge can 

now be used to re-interpret the 119Sn NMR spectra acquired for these solutions. 
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An expansion of the 119Sn NMR spectrum of the solution with a to (R3NCH3
+)3[Pt(SnBr3)5]

3- 

ratio of 2:1 (v/v) is shown in Figure 4.8.  

 

 
Figure 4.8: 119Sn NMR spectrum recorded for the solution with a [Pt(SnCl3)5]

3- to [Pt(SnBr3)5]
3- volume ratio of 

2 to 1. The arrows represent the 1J and 2J couplings obtained for the 119SnCl3
- and 119SnCl2Br- ligands, 

respectively. 
 

The main features of this spectrum are two sets of signals centred at δ(119Sn) = – 123 ppm 

and – 170 ppm respectively, each set flanked by its respective 1J(195Pt-119Sn) and 2J(117Sn-
119Sn) satellites. Moreover, each set of signals, as well as its corresponding 1J and 2J satellites, 

consist of approximately 5 to 6 individually resolved 119Sn NMR signals. From the 195Pt 

NMR spectrum recorded for this solution, Figure 4.2 B, it is known that the 7 heteroleptic 

[Pt(SnClnBr15-n)]
3- (n = 8 – 15) species shown in Scheme 4.5 are present in this solution. 

Therefore the 119Sn NMR signals observed in the 119Sn NMR spectrum acquired for this 

solution, Figure 4.8, are most likely to originate from these 7 species. 

 

 

 

 

1J(195Pt -119Sn) 

2J(117Sn- 119Sn) 

1J(195Pt -119Sn) 

2J(117Sn- 119Sn) 

119SnCl3
- 

119SnCl2Br- 
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An expansion of the main set of 119Sn NMR signals centred at -123 ppm, flanked by its 
1J(195Pt-119Sn) satellites, is shown in Figure 4.9. Both the main set of signals and its 1J 

satellites consist of 5 resolved individual 119Sn NMR signals.††† The 1J(195Pt-119Sn) coupling 

constants measured for the satellites indicated by the symbols (a), (b), (c), (d) and (e) in 

Figure 4.9 compare very well to the 1J(119SnCl3-
195Pt) coupling constants obtained with 195Pt 

NMR for isotopologues/isotopomers 2, 25, 39/48, 70/71/72 and 118/119/120 (illustrated in 

Scheme 4.6) as shown in Table 4.7. Thus, each individual 119Sn NMR signal within the set of 

signals centred at – 123 ppm (Figure 4.9) can be unambiguously assigned to an 

isotopologue/isotopomer which contains a magnetically-active 119Sn isotope and a 

magnetically-inactive 195Pt isotope (1 and 259 – 267 in Scheme 4.6) as shown in  

Table 4.8.  

The same methodology is used to assign the individual resonances obtained in the set of 

resonances centred at δ(119Sn) = -170.4 ppm, which was tentatively assigned to the SnCl2Br- 

ligand by Koch.69 Figure 4.10 shows an expansion of this set of 119Sn NMR signals, flanked 

by the 1J(195Pt-119Sn) satellites, the main set of signals consisting of 5 resolved individual 
119Sn NMR signals. The respective 1J(195Pt-119Sn) satellites indicated by the symbols (f), (g), 

(h) and (i) in Figure 4.10 again agree well with the 1J(195Pt-119SnCl2Br) coupling constants 

obtained with 195Pt NMR for isotopologues/isotopomers 28, 42, 73/ 74 and 121/122/123 

illustrated in Scheme 4.7 and are thus assigned accordingly (Table 4.9). In view of these 

assignments the individual 119Sn NMR signals within the set of signals centred at  

δ(119Sn) = -170.4 ppm are assigned to the respective isotopologues/isotopomers illustrated in 

Scheme 4.7 that contain the magnetically-active 119Sn isotope and the magnetically-inactive 
iPt isotope and are listed in Table 4.10.  Unfortunately the signal-to-noise ratio is too low to 

allow for accurate measurement of 1J(195Pt-119Sn) coupling constants due the satellites 

indicated by (j) in Figure 4.10. From the assignments listed in Table 4.10 it reasonable to 

tentatively assign the 119Sn NMR signal at δ(119Sn) = - 165.9 ppm to isotopomers 279 – 282 

illustrated in Scheme 4.7, however further studies are needed to confirm this. 

 

                                                 
††† Unfortunately, due to signal-overlap and the low signal-to-noise ratio, accurate measurement of the  
2J(117Sn-119Sn) couplings are not possible.   
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Figure 4.9: An expansion of the 119Sn NMR spectrum recorded for the solution with a [Pt(SnCl3)5]

3- to [Pt(SnBr3)5]
3- volume ratio of 2 to 1 to focus on the 119Sn NMR signals 

centred at – 123 ppm. The symbols (a) to (e) indicate the1J(195Pt-119Sn) satellites due to the respective isotopologues. The isotopologues/ isotopomers responsible for the 
individual 119Sn NMR signals in the main set of signals are indicated by the arrows. 

-165-160-155-150-145-140-135-130-125-120-115-110-105-100-95-90-85
ppm

a b c d e a b c d e 

1  

259 

260,  
261 

262,  
263, 
264 

265,  
266, 
267 

a = 1J(195Pt-119SnCl3) coupling in isotopologue 2 

b = 1J(195Pt-119SnCl3) coupling in isotopologue 25  
c = 1J(195Pt-119SnCl3) coupling in isotopologues/   
      isotopomers 39, 48 

d = 1J(195Pt-119SnCl3) coupling in isotopologues/   
      isotopomers 70, 71, 72 

e = 1J(195Pt-119SnCl3) coupling in isotopologues/   
     isotopomers 118, 119, 120

a = 15 890 Hz 

b = 15 935 Hz 
c = 15 981 Hz 
d = 16 036 Hz 
e = 16 078 Hz 
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Table 4.7: 1J(195Pt-119Sn) coupling constantsa measured for 1J satellites of the set of 119Sn NMR signals centred 
at -123 ppm obtained with 195Pt NMR compared to those obtained with 119Sn NMR.  

 

Isotopologue/ Isotopomer 

195Pt NMR 119Sn NMR 

 1J(195Pt-119Sn)/ 
Hz 

1J(195Pt-119Sn)/ 
Hz 

a 2 [195Pt(119SnCl3)(Sn4Cl12)]
3- 15889 15890 

b 25 [195Pt(119SnCl3)(Sn4Cl11Br)]3- 15933 15935 

c 39, 48 [195Pt(119SnCl3)(Sn4Cl10Br2)]
3- 15995 15981 

d 70, 71, 72 [195Pt(119SnCl3)(Sn4Cl9Br3)]
3- 16050 16036 

e 118, 119, 120 [195Pt(119SnCl3)(Sn4Cl8Br4)]
3- 16105 16078 

a The uncertainties on coupling constants are estimated to be ± 15 Hz. 

 

Table 4.8: Assignment of each individual 119Sn NMR signal in the set of signals centred at – 123.0 ppm to a 
isotopologue/isotopomer of the respective heteroleptic [Pt(Sn5ClnBr15-n)]

3- (n = 11 – 15) species. 

Isotopologue/ Isotopomer 
δ(119Sn)/ 

ppma 

1 [iPt(119SnCl3)(Sn4Cl12)]
3- - 124.8 

259 [iPt(119SnCl3)(Sn4Cl11Br)]3- - 123.8 

260, 261 [iPt(119SnCl3)(Sn4Cl10Br2)]
3- - 123.0 

262, 263, 264 [iPt(119SnCl3)(Sn4Cl9Br3)]
3- - 122.2 

265, 266, 267 [iPt(119SnCl3)(Sn4Cl8Br4)]
3- - 121.4 

a The uncertainties on chemicals shifts are estimated to be ± 3 ppm. 
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Figure 4.10: An expansion of the 119Sn NMR spectrum recorded for the solution with a [Pt(SnCl3)5]

3- to [Pt(SnBr3)5]
3- volume ratio of 2 to 1 to focus on the 119Sn NMR 

signals centred at – 170 ppm. The symbols (f) to (j) indicate the 1J(195Pt-119Sn) satellites due to the respective isotopologues. The isotopologues/ isotopomers responsible for 
the individual 119Sn NMR signals in the main set of signals are indicated by the arrows. 

-205-200-195-190-185-180-175-170-165-160-155-150-145-140-135-130
ppm

272  

273 

274,  
275 

276,  
277, 
278 

279,  
280, 
281, 
282 

f = 1J(195Pt-119Sn) coupling in isotopologue 28 

g = 1J(195Pt-119Sn) coupling in isotopologue 42  
h = 1J(195Pt-119Sn) coupling in isotopologues/   
      isotopomers 73, 74 

i = 1J(195Pt-119Sn) coupling in isotopologues/   
      isotopomers 121, 122, 123 

f = 15 250.5 Hz 
g = 15 292.4 Hz 
h = 15 380.3 Hz 
 i = 15 454.5 Hz 

f g h i f g h i j j 
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Table 4.9: 1J(195Pt-119Sn) coupling constantsa measured for 1J satellites of the set of 119Sn NMR signals centred 
at -170 ppm obtained with 195Pt NMR compared to those obtained with 119Sn NMR. 

 

Isotopologue/ Isotopomer 

195Pt NMR 119Sn NMR 

 1J(195Pt-119Sn)/ 
Hz 

1J(195Pt-119Sn)/ 
Hz 

f 28 [195Pt(119SnCl2Br)(Sn4Cl12)]
3- 15 228 15 250 

g 42 [195Pt(119SnCl2Br)(Sn4Cl11Br)]3- 15 294 15 292 

h 73, 74 [195Pt(119SnCl2Br)(Sn4Cl10Br2)]
3- 15 351 15 380 

i 121, 122, 123 [195Pt(119SnCl2Br)(Sn4Cl9Br3)]
3- 15 406 15 405 

a The uncertainties for coupling constants are estimated to be ± 15 Hz. 

 

 

Table 4.10: Assignment of each individual 119Sn NMR signal in the set of signals centred at – 170.0 ppm to a 
isotopologue/isotopomer of the respective heteroleptic [Pt(Sn5ClnBr15-n)]

3- (n = 11 – 14) species. 

Isotopologue/ Isotopomer 
δ(119Sn)/ 

ppma 

272 [iPt(119SnCl2Br)(Sn4Cl12)]
3- - 172.8 

273 [iPt(119SnCl2Br)(Sn4Cl11Br)]3- - 170.8 

274, 275 [iPt(119SnCl2Br)(Sn4Cl10Br2)]
3- - 169.0 

276, 277, 278 [iPt(119SnCl2Br)(Sn4Cl9Br3)]
3- - 167.2 

a The uncertainties for chemicals shifts are estimated to be ± 3 ppm. 

 

Each individual 119Sn NMR signal obtained within the set of signals centred at  

δ(119Sn) = - 123 and -170 ppm respectively, is thus unambiguously assigned to a specific 

isotopologue/isotopomer of the respective [Pt(SnClnBr15-n)]
3- (n = 10 – 15) species present in 

solution. From these assignments, listed in Tables 4.8 and 4.10, it is clear that the effect of 

substitution of Cl- with Br- on the chemical shift of the 119Sn signal depends on the position 

where the substitution occurs. For example, the substitution of a Cl- with a Br- on the 
119SnCl3

- ligand of isotopologue 1 to give isotopologue/isotopomer 272 results in an upfield 

shift of ± 48.3 ppm of the 119Sn NMR signal, Figure 4.11, which is indicative of the increased 

shielding experienced by the 119Sn nucleus. This is in agreement with Br- being less 

electronegative than Cl-, and thus shielding the 119Sn nucleus to a greater extent. Conversely a 

downfield shift of ±1 ppm is observed when a Cl- is substituted by a Br- on the iSnCl3
- ligand 

of isotopologue 1 to give isotopologue/isotopomer 259, which implies that the 119Sn nucleus 

Stellenbosch University http://scholar.sun.ac.za



Chapter

 

become

due to 

coordin

confirm

272 wh

NMR a

with 195

  

Figure 4
partial pa
119Sn liga
 

Unfortu

increase

spectra 

This stu

Koch,69

Tesla) s

 

-118

r 4| 

es less shiel

Br- being 

nation spher

m this. More

hich imply t

acquisition 
5Pt NMR.  

4.11: 119Sn NM
art of the spec
and, as suppos

unately, as t

es, only bro

given in Fi

udy has not 
9 but has al

significantly

-126-122

ded. It is re

sterically m

re of the c

eover, sepa

that intra- 

time scale 

MR spectrum 
ctrum is show
se to adding to

the volume

oad, unresol

gures 4.7 (C

only helpe

so shown th

y more deta

-134-130

1 

259 

Heterol

asonable to

more bulky

omplex ani

rate 119Sn N

or inter- m

to be obser

of the solutio
wn as to focus 
o an NMR ina

e ratio of (R

lved 119Sn N

C) and (D). 

d confirm th

hat with the

ailed underst

-142-138

leptic [Pt(S

o suggest tha

y than Cl- w

ion. Howev

NMR signa

molecular ha

rved. This 

on with a [Pt(
on the upfield

active tin ligan

R3NCH3
+)3[

NMR signa

 

the original 

e power of 

tanding of t

--1462
ppm

SnClnBr15-n)]

at this deshi

which migh

ver, further

als are obse

alide exchan

is in agreem

(SnCl3)5]
3- to 

d shift obtaine
nd. 

Pt(SnBr3)5]

ls are obser

assignment
195Pt NMR

these system

-154150

δ(119Sn) 

]3- (n = 0 - 1

ielding expe

ht cause an

r investigati

rved for iso

nge are too

ment with w

[Pt(SnBr3)5]
3-

ed when Br- a

3- to (R3NC

rved, shown

ts of the 119S

R at high ma

ms has been

-162-158

15) complex

erienced by

n expansion

ions are ne

otopomers 

o slow on th

what was o

-ratio of 2 to 
adds to the NM

CH3
+)3[Pt(Sn

n in the 119S

Sn NMR sp

agnetic fiel

n obtained. 

-170-166

272 

x anions  

73 

y 119Sn is 

n of the 

eeded to 

259 and 

he 119Sn 

observed 

 

1. Only a 
MR active 

nCl3)5]
3-

Sn NMR 

pectra of 

ds (14.3 

-174

Stellenbosch University http://scholar.sun.ac.za



Chapter 4| Heteroleptic [Pt(SnClnBr15-n)]
3- (n = 0 - 15) complex anions  

74 
 

4.3. Conclusions 

Excellent second order correlation is obtained when plotting the δ(195Pt) of the sixteen 195Pt 

NMR signals observed for the mixed halide solutions as a function of the number of Br- 

present in the [Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15)  complex. This suggests that 16 heteroleptic 

species can be identified by 195Pt NMR signals in solution of which the 14 [Pt(Sn5ClnBr15-n)]
3-  

(n = 1 – 14) have not been identified in the literature. This proposal is supported by the the 

good agreement obtained between the calculated NSA’s for each possible isotopologue and 

isotopomer of the [Pt(Sn5Cl14Br)]3- complex anion in particular and the experimental 195Pt 

NMR peak integrals, as well as between the 1J(119/117Sn-195Pt)/1J(117/115Sn-195Pt) ratios of 

respective 1J satellites and the γ(119/117Sn)/γ(117/115Sn) ratios which allowed for the 

unambiguous assignment of all 14 possible isotopologues and isotopomers of this species 

(11, 25 – 36). By applying the method of successive splitting to the remaining 13 main 195Pt 

NMR signals (due to isotopologues/isotopomers 12 – 24) of the heteroleptic species more 

than 500 isotopologues and isotopomers of the [Pt(Sn5ClnBr15-n)]
3- (n = 2 – 14) complex 

anions are observed and identified in the solution by means of 195Pt NMR.  

Compared to the unprecedented resolution obtained with 195Pt NMR for these heteroleptic 

species, the corresponding 119Sn NMR spectra showed four sets 119Sn NMR signals, each set 

consisting of 5 – 7 individually resolved resonances. The knowledge of which [Pt(Sn5ClnBr15-

n)]
3- (n = 0 - 15) complex anions are present in the solutions, as well as the magnitude of the 

respective 1J(195Pt-119SnCl3) and 1J(195Pt-119SnCl2Br) coupling constants obtained with 195Pt 

NMR allowed for the assignment of each individual 119Sn NMR signals within the respective 

sets of signals to isotopologues/isotopomers 1.1, 259 – 282 of the [Pt(Sn5ClnBr15-n)]
3- (n = 10 

– 15) complex anions. High resolution 195Pt NMR thus proved to be an indispensable tool for 

the unambiguous assignment of each resolved individual 119Sn NMR signal observed in the 
119Sn NMR spectrum of this solution. These assignments made support the speculative 

assignments by Koch69 in that each of the four sets of 119Sn NMR signals are due to a 

particular (SnClnBr3-n)
- (n = 0 – 3) ligand. However, in contrast to Koch69 who assigned a the 

set of 119Sn signals to a [Pt(SnClnBr3-n)5]
3- complex anion, it is showed in this study that each 

individual 119Sn NMR signal within a set is due to a particular isotopomer of a 

[Pt(Sn5ClnBr15-n)]
3- (n = 0 -15) species.  
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Chapter V 

Conclusions 

The detailed 119Sn and high-resolution 195Pt NMR study performed on the series of 

[Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) complex anions emphasized the power of 195Pt NMR 

spectroscopy in that it provided data not obtainable by any other means.  

The greater nuclear shielding range and sensitivity of 195Pt NMR allow for much greater 

detail to be obtained with respect to the distribution of isotopomers and isotopologues of 

[Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) complex anions extracted into a relatively non-polar solvent 

such as CDCl3 by Aliquat-336. While 119Sn NMR suggests the extraordinary number and 

complexity of these species the 119Sn NMR signals are too broad and the shielding range is 

too insensitive to allow for similar detailed analysis. This is clearly evidenced by all sixteen 

possible [Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) species being observed and identified by means of 

195Pt NMR compared to only the 6 [Pt(Sn5ClnBr15-n)]
3- (n = 10 – 15) species identified by 

means of 119Sn NMR. 195Pt NMR is thus an ideal method to study the speciation of these 

complex anions.  

The unprecedented resolution obtained with 195Pt NMR has allowed for the assignment of all 

the respective 1J(119/117/115Sn-195Pt) satellites of each of the 16 [Pt(Sn5ClnBr15-n)]
3- (n = 0 - 15) 

respective species. From these assignments it is clear that the 1J(195Pt-119/117/115Sn) coupling 

constants for each species depend on the configuration of the SnClnBr3-n
- (n = 0 - 3) ligand 

and decreases in the order 1J(119/117/115SnCl3-
195Pt) > 1J(119/117/115SnCl2Br-195Pt) > 

1J(119/117/115SnClBr2-
195Pt)  > 1J(119/117/115SnBr3-

195Pt) with 1J(119SnCl3
--195Pt) couplings for 

example ranges from 15 864 to 16 419 Hz compared to 1J(119SnBr3
--195Pt) couplings that 

ranges from 14 057 to 14659 Hz.  

Moreover, intra- or inter- molecular halide scrambling/exchange does not occur on either the 
195Pt NMR or the 119Sn NMR time scale as is confirmed by the separate sets of 1J(119/117/115Sn-
195Pt) satellites obtained with 195Pt NMR for respective isotopologues and isotopomers of 

each species and the separate 119Sn NMR signals obtained for isotopomers a particular 

[Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) species.   

74 
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The value of considering all possible magnetically-active isotopologues and isotopomers of 

deceptively simple complex anions such as [Pt(Sn5ClnBr15-n)]
3- (n = 0 – 15) is nicely 

demonstrated by this system, provided the species are not in fast chemical exchange and 

adequate resolution is obtained. This is achieved by extracting these trigonal-bipyramidal 

anions into an appropriate non-polar solvent as demonstrated here. 

Further DFT computational work on these complexes is required to contribute to the question 

of why the coordination preference of the Pt(II) (d8) metal centre, which are normally 4-

coordinate square planar complexes, tends with SnCl3
-/SnBr3

- ligands to form 5-coordinate 

homoleptic [Pt(SnCl3)5]
3- or [Pt(SnBr3)5]

3- and the numerous heteroleptic [Pt(Sn5ClnBr15-n)]
3- 

(n = 0 – 15) complexes.   
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Table A1: Calculated NSA’s of all 56 possible isotopologues of the [Pt(SnCl3)5]
3- complex anion.  

119Sn 117Sn 115Sn iSn NSA 

5 0 0 0 4.65E-06 

0 5 0 0 2.55E-06 

0 0 5 0 4.54E-13 

0 0 0 5 0.4135 

4 1 0 0 2.06E-05 

4 0 1 0 9.21E-07 

4 0 0 1 2.27E-04 

1 4 0 0 1.44E-05 

1 0 4 0 5.73E-11 

1 0 0 4 0.2117 

0 4 1 0 5.70E-07 

0 1 4 0 5.08E-11 

0 1 0 4 0.1877 

0 0 4 1 5.60E-10 

0 0 1 4 0.0084 

0 4 0 1 1.41E-04 

3 2 0 0 3.66E-05 

3 0 2 0 2.98E-05 

3 0 0 2 4.44E-03 

2 3 0 0 3.24E-05 

2 0 3 0 2.89E-09 

2 0 0 3 0.0433 

0 3 2 0 5.09E-08 

0 2 3 0 2.28E-09 

0 0 3 2 2.76E-07 

0 0 2 3 6.81E-05 

0 2 0 3 0.0341 

0 3 0 2 3.10E-03 

3 1 1 0 3.27E-06 

3 1 0 1 8.06E-04 

3 0 1 1 3.60E-05 

1 3 1 0 2.57E-06 

1 3 0 1 6.34E-04 

1 0 3 1 5.65E-08 

1 0 1 3 3.43E-03 

1 1 3 0 5.13E-09 

1 1 0 3 0.0769 

0 3 1 1 2.51E-05 

0 1 3 1 5.01E-08 
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119Sn 117Sn 115Sn iSn NSA 

0 1 1 3 3.05E-03 

2 1 2 0 1.94E-07 

2 1 0 2 0.0118 

2 0 1 2 5.27E-04 

2 0 2 1 2.14E-06 

2 2 0 1 1.07E-03 

2 2 1 0 4.35E-06 

1 2 2 0 1.72E-07 

1 2 0 2 0.0105 

1 0 2 2 2.09E-05 

0 2 2 1 1.68E-06 

0 1 2 2 1.85E-05 

0 2 1 2 4.15E-04 

1 2 1 1 8.50E-05 

1 1 2 1 3.80E-06 

1 1 1 2 9.36E-04 

2 1 1 1 9.58E-05 

Stellenbosch University http://scholar.sun.ac.za



 

 

 

 

Appendix B 

Isotopologues and isotopomers of the [Pt(SnClnBr15-n)]
3- (n = 0, 10 – 15) 

heteroleptic complex anions 
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Figure C1: Expansion of the 195Pt NMR spectrum shown in Figure 4.2B. 
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Figure C2: Expansion of the 195Pt NMR spectrum shown in Figure 4.2C. 
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Figure C3: Expansion of the 195Pt NMR spectrum shown in Figure 4.2D. 
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