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Abstract

The sustainable and cost-effective management of the notorious water hyacinth weed remains a
challenge in South Africa. In this study, a reaction-diffusion model, consisting of a system of
delayed partial differential equations, is developed to mathematically describe the population
growth and dispersal of water hyacinth and the interacting populations of the various life stages
of the Neochetina eichhorniae weevil as a biological control agent (BCA) in a temporally variable
and spatially heterogeneous environment, subject to homogeneous Neumann boundary condi-
tions on a bounded two-dimensional spatial domain. The primary objectives are to establish
a spatio-temporal model which may be used to investigate the efficiency of different biological
control release strategies, providing guidance towards the optimal magnitude, frequency, timing
and distribution of BCA releases, and to evaluate the cost-effectiveness of local mass rearing
programmes in biological control. Although previous studies have started to examine the influ-
ence of temperature on the population dynamics of the two species and the control of the weed
under constant conditions, the model developed in this study is the first to evaluate the effect of
introducing spatial dynamics. In addition, for the first time in research of water hyacinth man-
agement, different BCA release strategies are compared by means of mathematical modelling
to provide practical recommendations for efficient and cost-effective biological control of water
hyacinth in South Africa without having to conduct formal field experiments.

Numerical solutions emphasise the benefit of frequent releases of N. eichhorniae compared to
a once-off release in the long term, as well as the advantage of more distributed releases along
the edges of an infested water body. Furthermore, releases commencing in summer appear to be
significantly more efficient and cost-effective than releases commencing in winter. The model is
applied to a real-world release site in order to illustrate how the model may be utilised to provide
guidance towards suitable BCA release strategies, which may minimise costs while maximising
the benefit for a specific site.
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Uittreksel

Die volhoubare en koste-effektiewe bestuur van die berugte waterhiasint onkruid bly ’n uitdaging
in Suid-Afrika. In hierdie studie word ’n reaksie-diffusiemodel, wat bestaan uit ’n stelsel van
vertraagde parsiële differensiaalvergelykings, ontwikkel om die bevolkingsaanwas en verspreid-
ing van die waterhiasint en die interaktiewe bevolkings van die verskillende lewenstadiums van
die Neochetina eichhorniae-kewer as ’n biologiese beheeragent in ’n dinamiese en ruimtelik-
heterogene omgewing wiskundig te beskryf, onderhewig aan homogene Neumann-randwaardes
op ’n begrensde, tweedimensionele ruimtelike gebied. Die primêre doelstellings is om ’n model
tot stand te bring wat gebruik kan word om die doeltreffendheid van verskillende biologiese
beheervrylatingstrategieë te ondersoek, om leiding te verskaf met betrekking tot die optimale
omvang, frekwensie, tydsberekening en verspreiding van beheeragentvrylatings, en om die koste-
effektiwiteit van plaaslike massakweekprogramme in biologiese beheer te evalueer. Alhoewel
vorige studies begin het om die invloed van temperatuur op die bevolkingsdinamika van die
twee spesies en die beheer van die onkruid onder konstante toestande te ondersoek, is die model
wat in hierdie studie ontwikkel is die eerste om die effek van die bekendstelling van ruimte-
like dinamika te evalueer. Bykomend, vir die eerste keer in navorsing van waterhiasintbestuur,
is verskillende biologiese beheeragentvrylatingstrategieë met mekaar vergelyk met behulp van
wiskundige modellering om praktiese aanbevelings vir doeltreffende en koste-effektiewe biologiese
beheer van waterhiasint in Suid-Afrika te voorsien sonder om formele veldeksperimente uit te
voer.

Numeriese oplossings beklemtoon die voordeel van gereelde vrylatings van N. eichhorniae in
vergelyking met ’n eenmalige vrylating in die langtermyn, asook die voordeel van meer verspreide
vrylatings langs die kante van ’n besmette waterliggaam. Verder vertoon vrylatings wat in die
somer begin om aansienlik meer doeltreffend en koste-effektief te wees as vrylatings wat in
die winter begin. Die model word toegepas op ’n werklike vrylatingsgebied om te illustreer
hoe die model gebruik kan word om leiding te verskaf met betrekking tot geskikte biologiese
beheeragentvrylatingstrategieë, wat kostes mag minimeer terwyl die voordeel gemaksimeer word
vir ’n spesifieke scenario.
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Introduction
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The Amazonian water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederi-
aceae), has since the 1880s spread its roots across the USA and eventually the world, where
it is now notorious for being one of the world’s, as well as South Africa’s, worst aquatic weeds.
Initially distributed for its ornamental value, water hyacinth now rules water masses in tropical
and warm regions of the world by forming dense impenetrable layers across the surfaces, as il-
lustrated in Figure 1.1. Invasive alien plants have globally been recognised as the second largest
threat to biodiversity [20]. Man and animal suffer severely under its reign. Natural habitat
is abducted. Ecosystems are threatened as native plants are being displaced. Travelling on
water and fishing are hampered. Water sports areas are limited. Irrigation systems are blocked.
Hydro-electric turbine intakes are obstructed. Water loss rates drastically increase due to the
higher evapotranspiration rate of water hyacinth, leading to higher water supply costs. Water
quality is reduced. Health risks arise with the plants providing breeding grounds for mosquitoes
and other disease carriers. Communities relying on invaded water bodies for transport and basic
needs are devastatingly affected [31, 38, 69].

Figure 1.1: Water hyacinth blankets the Kuilsriver in Cape Town, June 2015.

1
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2 Chapter 1. Introduction

Since the early 1900s, several initiatives to counteract this invasive alien plant species’ growth
have been investigated. Chemical, mechanical and manual control methods proved both very
expensive and ineffective, especially for large infested water bodies. These concerns motivated
a more serious consideration of the use of biological control methods [38].

1.1 Background

Water hyacinth, existing in still or slow-moving fresh water, is a floating water plant which
reproduces by budding and/or the spreading of seeds. Budding entails the process of growing
long shoots or the breaking off of parts of the plant that develop into new plants. The plant
also produces thousands of seeds several times a year after flowering. Seeds can produce flowers
as early as 10 - 15 weeks after it started to grow in warm, shallow water or moist silt. Wind,
water streams, boats, birds and other animals may unintentionally assist in spreading the plant
into other areas. Water hyacinth has an exponentially high growth rate, especially under ideal
conditions, such as tropical weather, warm temperatures and water with high nutrient levels
(particularly nitrogen and phosphorous). It can double its size in the matter of a week. Seeds
can still reproduce after 15 - 20 years of remaining in water sediments. These qualities make it
extremely difficult to control this determined weed [37, 69].

1.1.1 History of water hyacinth control globally

Research conducted during the past few decades have investigated possible uses of the plant,
such as a fertilizer, fodder, paper and fibre source, or for mineral nutrient removal from polluted
water. Eradicating the weed therefore involves a potential conflict of interests. However, these
uses seldom develop into sustainable activities and the cost of water hyacinth to communities
far outweighs any benefits [38].

One of the more successful methods of control is biological control. Natural enemies are sought
in the weed’s native land and put through quarantine where their host specificity is assessed.
If proven to be host specific, they are certified for release as biological control agents (BCAs)
for the specific weed. Candidate species are then released in the new habitat where they attack
the weed by feeding on it, thereby contributing to the suppression of the plant population.
In its natural habitat, water hyacinth is attacked by a large number of arthropods. Study of
the ecology of some of these as possible BCAs began in Argentina in 1961. The first natural
enemies were released as BCAs in the USA in early 1970s. Since then several agents have been
released in 33 countries [38]. While mechanical and herbicidal control are viewed as short-
term or immediate control options, biological control outranks other methods by offering a
more sustainable, environment-friendly, long-termed and possibly more affordable solution to
the problem, even for large or inaccessible areas [31, 32].

Different biological control methods have been developed. Classical biological control consists of
releasing the host specific BCAs that survived quarantine directly in the new habitat [38]. This
process consists of a once-off release of BCAs and yields a relatively small number of agents
to be released at any one time. Even though successful biological control of water hyacinth
has been achieved, this method takes a long time to be effective. Another biological control
approach, where BCAs that have been cleared from quarantine are taken to a mass rearing
facility, has evolved. With the use of mass rearing technology, the BCAs can be reared in large
numbers before they are released. As a result, more BCAs may be frequently released to speed
up biological control [12].
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1.1.2 History of water hyacinth control in South Africa

In South Africa, water hyacinth was first documented in 1908 on the Cape Flats and was
introduced into KwaZulu-Natal at about the same time, supposedly as an ornamental aquatic
plant for garden ponds and aquaria. Since then it has spread to water bodies all over the country.
In Figure 1.2, the distribution of the weed in South Africa in 2002 is given. In 2002, this invasive
alien plant was already widespread throughout the country, impacting rivers and water bodies
in six provinces [31]. A warning of what was likely to happen with water hyacinth was printed
as early as 1913 [37].

Figure 1.2: Distribution of water hyacinth, Eichhornia crassipes, in South Africa in 2002 [31].

Available control methods include mechanical control, physical removal, application of herbicides
and the importation and release of BCAs [38]. Since the 1970s, South African control options
have largely focussed on the use of herbicides, consisting of target-specific chemical pesticides
used to kill or control unwanted plants [64]. Opposed to this, is these early years, biological and
integrated control1 have received much less effort and investment, despite the fact that these
methods proved highly successful in other parts of Africa and the world. Currently, the main
focus of integrated control in South Africa is a combination of biological and herbicidal control.
With the exception of cables spanned across rivers to collect the weed, no large scale mechanical
control is practised at this stage [38].

One of the Working for Water (now known as Natural Resource Management Programmes of
the South African Department of Environment Affairs) funded mass rearing centres for weed
BCAs in South Africa is based at the South African Sugarcane Research Institute (SASRI) in
Mount Edgecombe in KwaZulu-Natal [69]. Aquatic weed BCAs are reared on their host plants
in portable pools (see Figure 1.3). Mass rearing and re-releases are aimed at establishing the full
suite of natural enemies at all sites throughout the country, to ensure that inappropriate release
methods used previously were not the cause of non-establishment [32]. Another mass rearing
facility is situated at the Invasive Species Unit in Westlake, Cape Town. Currently, the Cape
Town unit is mainly focusing on rearing Megamelus scutellaris Berg (Hemiptera: Delphacidae)
as BCAs for water hyacinth due to resource constraints. The unit is collecting about 50 000 M.
scutellaris per month which need to be distributed between four water hyacinth infested sites in
the area [52, 60]. Weekly releases of BCAs have commenced in September 2014 [36], however,

1Integrated control involves the use of two or more control methods to achieve better control of invasive alien
species.
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little to no success could be observed by June 2015.

Figure 1.3: Mass rearing centre for weed BCAs at SASRI, KwaZulu-Natal.

The biological control of water hyacinth in South Africa currently relies on six established
agents, the largest number in all countries involved in such programmes against water hyacinth,
of which the popular Neochetina eichhorniae Warner (Coleoptera: Curculionidae) weevil species
is considered in this study (see Figure 1.4). After years of thorough research, these agents can
now be easily and relatively cheaply distributed worldwide [38].

Figure 1.4: The N. eichhorniae adult weevil.

Biological control in South Africa has been effective in certain areas such as the New Year’s
Dam in the Eastern Cape (see Figure 1.5), but remains hampered by certain restrictions [31,
32]. Firstly, unsuitable climatic conditions like cold winters and frequent frost may restrict some
of the species to become abundant and control the weed. Successful biological control of water
hyacinth elsewhere in the world highly correlates with tropical or subtropical climates. Secondly,
high nitrogen and phosphorus levels in infested waters allow the weed to thrive and reproduce
rapidly. BCAs are often unable to suppress the resulting sudden and massive growth of the host
plant. Measures to limit the plant growth rate, such as the upgrading of waste-water treatment
works and investigation into industrial effluent (and therefore nutrient control), is an ongoing
process. Finally, flooding, herbicide application and mechanical removal programmes regularly
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remove the natural enemy populations as well as the water hyacinth infestations, limiting the
success of biological control. When cleared or treated water bodies are re-infested after these
removals, the enemies are absent, resulting in rapid and abundant growth of the weed [31, 32,
81].

Figure 1.5: New Year’s Dam, South Africa, where N. eichhorniae was released in 1990 and by 2000
had reduced the infestation to 10% cover. In 1997 (left), the dam was more then 90% covered by water
hyacinth. In 2003 (right), water hyacinth covered less than 10% of the dam [20, 49].

1.1.3 Costs and benefits of biological control

The global phenomenon of ecosystems being invaded by alien plants is a serious environmental
problem that threatens the sustainable use of benefits derived from such ecosystems [20, 76].
More than 9 000 plant species have been introduced to the South African ecosystem of which
more than 160 species rank as serious pest weeds, although many more may become weeds in
the future [56, 73, 76]. In 2000, Le Maitre et al. [43] reported that an estimated 10.1 million
hectares of South Africa and Lesotho had been invaded to some degree by a wide range of
alien plants, mainly trees and woody shrubs, with undoubtedly significant impacts, yielding
substantial costs. According to their research, the Western Cape was the most heavily invaded
at about a third of the total area at that stage, followed by Mpumalanga, KwaZulu-Natal and
the Northern Province [43]. In 2011, Pimentel [56] reported an estimated annual environmental
loss of just more than US$1 billion per year for all weeds in South Africa, equal to 2.5% of the
2009 South African gross domestic product.

Relatively little research has been done on the economic aspects and consequences of invasions.
Van Wilgen et al. [76] reviewed what was known of the economic consequences of alien plant
invasions in South Africa in 2001. Economic arguments by Le Maitre et al. [42], Van Wilgen et
al. [77] and Van Wilgen et al. [80] have been used to successfully launch the largest environ-
mental management programme in Africa, namely the Working for Water programme [76, 79].
In addition to the obvious environmental and economic advantages, invasive plant control pro-
grammes in South Africa have leveraged further benefits (mainly through engaging unemployed
people in labour-intensive clearing, follow-up and rehabilitation projects) for the expensive con-
trol programmes from the government’s poverty relief budget [76]. These benefits justified the
spending of more than US$100 million by the South African government on the Working for
Water programme between 1995 and 2000. Biological control of invasive species is a solution
that appears to offer considerable benefits, which far outweigh the costs. Biological control is
considered as one of the best and most cost-effective interventions for addressing the problem
for most invasive alien plant species in South Africa [56, 76]. Most of the benefits of control
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are derived from restricting the invasive species’ spread and reducing their densities, thereby
avoiding or reducing future negative impacts. The challenge is to justify the expenditure that
will avoid or reduce these losses [56].

South Africa is regarded as a water-scarce, drought prone region. Water shortages may have
a significant influence on economic development and productivity, highlighting the imperative
need to manage water as a national asset and for overall social benefit [51]. Water hyacinth is
known to degrade aquatic ecosystems and to change river flows [76]. The loss of water due to
excessive evapotranspiration from water hyacinth, which averages about 3.7 (2.6 to 6.6) times
that of evaporation from open water surfaces [54, 71], accounts for the largest part of the
economic consequences of the weed in South Africa. Consequently, the management of water
hyacinth in South Africa is vital given its impact on water loss. However, few studies have
quantified the impact of this weed economically and ecologically and even fewer studies have
quantified the benefits of its control [20]. The only alternative sources of water are through
recycling and desalination, both of which are very expensive. Besides the gains to be obtained
from the effective control of alien plants in terms of water conservation and quality, there are
many other advantages. These include the conservation of biodiversity, increased catchment
stability, a greater potential for ecotourism, reduction in health risks, an increase in quality
of life for communities relying on invaded water bodies for basic needs and direct job creation
through the control programmes [42].

The need to validate the continued funding for clearing, controlling and researching of alien
plants serves as motivation for recent studies around the economic impacts of alien invasive
plants in South Africa [20, 73]. Turpie [73] noted that only a few studies have investigated
aquatic alien plants such as water hyacinth and that most studies have focused on terrestrial or
riparian invaders, despite the fact that aquatic weeds have equally severe negative effects on the
environment and economy [20].

The most widely used economic approach to determine the feasibility of biological control pro-
grammes is the cost-benefit analysis [20]. However, limited resources in South Africa have
meant that scientists have concentrated their efforts on the identification, screening, release and
establishment of BCAs, without further investigations of the effects on a large scale, making
cost-benefit studies the exception rather than the norm [78]. Cost-benefit studies involve quan-
tifying the effects of biological control efforts by comparing the benefits with the costs of the
programmes. This includes the full financial costs accumulated to control the alien invasive
species, accounting for costs associated with research and technology, with salaries of biological
control practitioners according to their time dedicated to the programme, with maintenance
and monitoring, as well as with administration and travelling expenses [20]. These costs vary
amongst projects. The start-up costs for biological control programmes are usually relatively
high, with subsequent costs generally decreasing over time [20, 52]. The benefits of the pro-
gramme will be determined by quantifying the benefits associated with preventing or reducing
invasions [20]. Each site may have its own risks and consequences associated with water hy-
acinth infestations. Research has shown that as much as 70% of benefits obtained relate to water,
thereby emphasising how biological control programmes of invasive species greatly contribute
towards water conservation [78].

Water hyacinth’s impacts on water resource utilisation [31] and biodiversity [11, 47] have been
investigated, but its impact on water loss through extensive transpiration created by its dense
mats has not been studied in South Africa, except for a case study presented by Fraser et al.
[20] earlier this year, where they quantified the benefit/cost ratio of water saving due to the
biological control of water hyacinth on the New Year’s Dam, Alicedale, South Africa. Fraser et
al.’s cost-benefit study, which considered the costs of the programme and the loss of water from
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evapotranspiration due to water hyacinth, highlighted significant social and economic benefits
for the local community of Alicedale [20], even though they used an aggregated approach. The
economic evaluation of biological control programmes allows for the efficient allocation of scarce
resources between competing control and management programmes [20]. The future funding of
control programmes will depend on the demonstration of its full socio-economic worth, which,
in turn, will depend on how efficiently its resources have been allocated. Until now, the total
economic benefits have not been adequately described in economical terms, nor has there been
any prioritisation strategy in place to ensure that the benefits of the control programmes’ current
activities are maximised [73].

1.2 Problem description

The sound and cost-effective management of the water hyacinth weed remains a challenge in
South Africa [81]. Managers of water hyacinth control programmes in South Africa may benefit
from a thorough analysis of the options for control. The success of biological control alone in
other parts of Africa raises questions as to why it has not been as successful in South Africa.
Unsuitable climatic conditions like cold winters may restrict some of the species to become
abundant and control the weed. Many of the management decisions that have been taken in
the past have been taken in the absence of clear guidelines with regard to the relative results of
different control options. Critical assessments of the approaches may therefore assist managers
in making better-informed decisions in the use of control options [81]. More research is needed
to determine the optimal effort for biological control. In Australia, for example, research has
indicated the marginal value of extra funds for weed control and where and how additional
releases of BCAs are economically justified to speed up control [73]. At the moment, managers
of biological control programmes in South Africa are releasing as many BCAs as possible at
a time. The cost of rearing these agents makes it worth the while to investigate the releasing
process in order to determine whether there exists a release strategy that would yield optimum
results [12].

The Cape Town Invasive Species Unit has started with weekly releases of BCAs (M. scutellaris)
at four water hyacinth infested sites in September 2014 [36]. BCAs are released by hand at the
edges of the infested water bodies. Upon a field visit during June 2015, no BCA establishment
or influence could be observed at the Kuilsriver site. Suggestions towards more effective release
strategies for different temperatures may aid in improving the control of water hyacinth. Byrne
et al. [8] concurs with the hypothesis that flawed release procedures contribute to the variable
success of biological control programmes for water hyacinth.

In this study, mathematical modelling is used to investigate the efficiency and cost-effectiveness
of different BCA release strategies to water hyacinth management for different temperatures and
climates in South Africa. Model simulations may aid in improving the control of water hyacinth
by providing suggestions towards more effective release strategies for specific sites. Additionally,
mathematical modelling may be used to indicate prior to release that a specific agent may not
be able to develop or establish under a certain temperature threshold and that a different agent
should be considered for that area, saving on costly in-field experimentation. Previous models
have started to examine the influence of temperature on the population dynamics of the two
species and the control of the weed under constant conditions [74, 91, 93, 94], but the effect of
introducing spatial dynamics is yet to be investigated.
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1.3 Scope and objectives

The scope of the research will only consider biological control of water hyacinth in South Africa.
This narrows the temperature range that will be taken into account down to the applicable pos-
sible temperatures in this country. The main contribution is the development of a mathematical
model which is able to describe the water hyacinth and N. eichhorniae population growth, dis-
persal and interaction in various scenarios. The scope is limited to the N. eichhorniae weevil
species and how it can be optimally utilised as BCA in South Africa. The primary objectives
of this study are to:

Objective I: Perform a literature survey of the life cycles of the water hyacinth and the N.
eichhorniae weevil, as well as the impact which they have on each other. This should
provide the necessary biological background to formulate a realistic mathematical model
of the population growth and interaction of the two species.

Objective II: Perform a literature survey of

a) mathematical models previously formulated to describe the interaction between water
hyacinth and the N. eichhorniae weevil;

b) spatio-temporal modelling approaches which may be adopted to model the dispersal
along with the population growth of the two species.

Objective III: Construct a model to mathematically describe the population growth and dis-
persal of water hyacinth and the interacting populations of the various life stages of the
N. eichhorniae weevil as BCA in a temporally variable and spatially heterogeneous envi-
ronment by

a) constructing suitable equations;

b) determining suitable parameters and parameter values for the growth and dispersal
of the two species by means of model calibration2;

c) validating the parameter values and mathematical content.

The spatio-temporal model may be used to investigate the efficiency of different release
strategies for various temperatures and water hyacinth distributions, providing guidance
towards the optimal magnitude, frequency, timing and distribution of BCA releases.

Objective IV: Develop a cost-benefit function which may be utilised to

a) evaluate the cost-effectiveness of local mass rearing programmes in biological control,
determining whether the benefit of a faster decrease in water loss due to greater
and more frequent BCA releases is worth the expenses pertaining to the rearing and
releasing of more BCAs;

b) provide guidance towards the most cost-effective release strategy of BCAs in the short
and long term.

Objective V: Apply the model presented in Objective III to a real-world release site in order to
illustrate how the model may be utilised to provide guidance towards suitable magnitudes,
frequencies, timing and distributions of BCA releases for a specific site.

Objective VI: Provide direction for possible future studies.

2Calibration is the process of fitting the model to the observed data by adjusting the parameters [39]
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1.4 Thesis organisation

This introductory chapter forms the first of seven chapters contained in this thesis. Chapter 2
provides the basic biological background of water hyacinth and the N. eichhorniae weevil, which
is necessary in order to understand the assumptions made during the construction of the model
in subsequent chapters.

Chapter 3 provides the reader with the mathematical background with respect to the modelling
of water hyacinth and N. eichhorniae weevil population growth and interaction, together with
the shortcomings of current modelling approaches. The chapter also provides a discussion on
the main modelling approach adopted in this study.

Chapter 4 comprises of a detailed description of the construction of the spatio-temporal model
used to mathematically describe the population dynamics of the water hyacinth and weevil
system in a temporally variable and spatially heterogeneous environment, as well as detailed
discussions and derivations of the model input and output parameters, including the derivation of
a cost-benefit function which may be used to determine the most cost-effective release strategy for
a specific scenario. An elaborate description of the implementation of the model in Matlab 9.0
is also provided, followed by various model validation tests.

The main purpose of Chapter 5 is to investigate the efficiency and cost-effectiveness of different
water hyacinth BCA release strategies for both short-term and long-term scenarios by means of
numerical simulation of the model presented in Chapter 4 in order to be able to provide guidance
towards the optimal timing, frequency, distribution and magnitude of BCA releases. Chapter 5
closes with sensitivity analyses, ascertaining the robustness of the model output.

In Chapter 6, the model is applied to a real-world release site in order to illustrate how the
model may be utilised to provide guidance towards suitable magnitudes, frequencies, timing
and distributions of BCA releases, which will minimise costs and maximise the benefit for a
specific site. Practical site-specific recommendations for efficient and cost-effective BCA release
strategies are provided.

Finally, Chapter 7 contains a brief summary of the work presented in this study, as well as an
overview of the main contributions of the study with respect to the mathematical modelling
of biological control strategies for water hyacinth. The chapter concludes with suggestions for
possible future work to further this research.
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In this chapter, the necessary biological background of the water hyacinth and the N. eichhorniae
weevil is provided. In order to model biological control strategies for water hyacinth and to
understand the assumptions made during the construction of the model, it is necessary to
investigate the life cycles of the plant and its enemies as well as the way they influence each
other.

2.1 Origin and distribution of water hyacinth

In 1823, the German naturalist C. von Martius discovered the species while carrying out botan-
ical surveys in Brazil. He named it Pontederia crassipes. Sixty years later, it was included
in the Eichhornia genus. The reason for the world-wide distribution of this weed is generally
accepted to be due to its ornamental value or as animal feed while totally ignorant of the plant’s
invasive capabilities and the enormous negative ecological impact it would have on fresh water
ecosystems. The native range of E. crassipes is spread throughout South America and parts of
central America [37].

In North America, water hyacinth is believed to have been introduced in 1884 at the Cotton
States Exposition in New Orleans, Louisiana. Since its introduction to Louisiana, it has spread
to about 50% of the states in the USA [37].

Asia was invaded towards the end of the 19th century via Japan and Indonesia where the weed
grew in rice fields and as an ornamental plant in botanical gardens. In India it first appeared in
Bengal at the beginning of 1890. It has also established in Taiwan and China as early as 1901
as a good fodder plant [37].

Water hyacinth was first noticed in Australia in Brisbane, Sydney and Grafton in the 1890s and
has since spread to all mainland states. In 1962, it expanded its territory to Papua New Guinea.
New Zealand, Bangladesh and many islands in the Pacific Ocean [37].

11
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12 Chapter 2. Biological literature survey

Europe has been affected by water hyacinth through Portugal since 1939. JF Potter commented
in The Environmentalist that water hyacinth has also been observed in the wild in Britain and
quoted: “Invasive species, particularly those associated with aquatic habitats, are outcompeting
many of Britain’s native plants and the law is doing nothing to stop them. . . ” [58].

In recent times, the lack of relevant legislation or the enforcement thereof, the lack of general
public awareness or the lack of political will-power to step in have assisted in allowing the weed to
disperse. Africa has been particularly affected by the introduction and spread of water hyacinth
[37].

2.2 The life cycle of water hyacinth (Eichhornia crassipes)

Floating on water surfaces or anchoring itself with long, feather-like roots, water hyacinth ex-
ists in still or slow-moving fresh water and presents beautiful light blue or violet flowers (see
Figure 2.1). The upper petal has a characteristic dark blue patch with a yellow centre. Flowers
grow together in flower spikes in clusters of eight to ten flowers, with each flower measuring
about 5 cm in diameter. Adult plants are normally 10 - 20 cm high, but can extend to one
meter when growing together in dense mats. The leaves are rounded and shiny, dark-green in
colour, with distinctive upright or bulbous petioles [37, 69].

Figure 2.1: Water hyacinth flowers.

Water hyacinth, growing in ideal conditions, has an incredible mechanism to outgrow any native
species occurring in the system. The presence of excess nitrogen and phosphorus in water bodies
encourages an even faster growth of the plant. It can reproduce in two ways: vegetatively and
sexually.

• The main method of reproduction is vegetatively [3, 10, 37, 54]. The “mother” plant
produces new plants from stolons (see Figure 2.2). Winds, currents and wave actions
help to spread the plant to other areas [37]. Given enough space and favourable growing
conditions, the number of plants may double at an average rate of once every two weeks
(range 11 – 18 days, depending on the weather). From ten adult plants, a total of about
655 360 daughter plants may thus be produced in a single growing season of eight months
(32 weeks). The edge of the surface mat may extend by 60 cm per month under good
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growing conditions [54]. Other studies report that the surface area may increase by an
average of 8% per day, doubling the surface mat in as little as a week (every 6.2 – 9
days) [37].

• Sexual reproduction is known to be limited. In an extensive survey performed by Barrett
[3], only 45.9% of the flowers sampled produced capsules. The ovary of one plant may
produce up to 500 ovules, with an average of 44.2 and a maximum of 50 seeds per capsule
[3, 54]. Up to 900 000 capsules have been observed in an area of 0.405 ha [54], equating
to about 40 million seeds. Seeds are produced several times a year following flowering.
Plants may flower throughout the year, given the climate and environmental conditions
are suitable [37]. Flowering season in North America, however, only lasts for five to nine
months [3]. Pollination by insects rarely occurs, but when the plant starts to wilt, self-
pollination is common. Water hyacinth seeds may remain dormant for up to twenty years
until the correct climatic conditions arise for it to germinate. Seeds only germinate in
warm, shallow water or on moist sediments. Out of nineteen water hyacinth populations
surveyed by Barrett [3], seed production occurred in all of them, but only three of the
populations produced seedlings, occurring only on saturated soil at the edges of the water
hyacinth populations. Very few seeds germinate on the mat, as they may either be lost
in plant debris or sink. Further tests indicate that when appropriate field conditions
occur, a seed germination rate of as high as 87.5% is possible. Flowering may occur ten
to fifteen weeks after germination. Experiments performed by Penfound and Earle [54],
however, suggested that the life cycle from seed to seed is a much slower process in nature
since none of their sampled plant succeeded in completing the life cycle in five months.
If suitable ecological conditions for seed germination and seedling establishment occur,
sexual reproduction could be a potential problem resulting in the re-infestation of cleared
areas [3].

Figure 2.2: Water hyacinth plants with (A) slender petioles and (B) bulbous petioles [38].

Stellenbosch University  https://scholar.sun.ac.za
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2.3 The life cycle of the mottled water hyacinth weevil (N. eich-
horniae)

The Neochetina genus of semi-aquatic weevils uses plants in the Pontederiaceae family as hosts
for development. Specifically, the Neochetina eichhorniae weevil develops exclusively on water
hyacinth, E. crassipes [10]. A generalised life cycle of the N. eichhorniae weevil may be seen in
Figure 2.3. A more detailed discussion of the weevil’s various life stages is given below.

Eggs: Slender, soft, single eggs are laid under the epidermal layers of the young central leaves.
Under temperatures of 25 − 30◦C, females lay between 5 and 7.3 eggs per day. A female can
lay a total of approximately 300 eggs in her lifetime. Eggs need high temperatures to develop
normally and will not hatch at temperatures under 15◦C [18, 38].

Larvae: Larvae develop through three instars. Newly hatched, they tunnel through the lower
parts of the petioles and find themselves in the crown of the plant where they dig small pockets
and feed on new buds. As the plant grows, the more matured instar larvae, now established
in the older outer leaves, sometimes make their way back to younger leaves where their feeding
causes severe damage. Their development rates depend highly on the quality of the plant and
the temperature [38].

Wilson [91] observed that third instar larvae (referred to as old larvae) are able to move between
connected plants, while Wilson et al. [92] observed that first and second instar larvae (referred to
as young larvae) do not move from the petioles in which they were laid, let alone between plants.
Young larvae are thus assumed to be immobile. Wilson et al. [92] further noted that the survival
of first and second instar larvae declines as larval density increases, but third instar larvae are not
affected by density dependence1. It is assumed that the greater mobility of the old larvae makes
them less subject to competition for food and/or to be affected by plant mortality [92]. Density
dependence in insects has been reported more frequently for larval stages than for adult, egg
or pupal stages as larvae originate from within the plant and their growth may become limited
by food quality or quantity [91]. In accordance with this, Wilson et al. [92] argued that the
density dependence operating in N. eichhorniae occurs through an interaction between young
larvae and leaf longevity. Disruption of water hyacinth leaf dynamics will consequently have a
significant effect on the weevils and may reduce the level of control imposed on the plant [92].

Pupae: Fully grown larvae exit the crown and make their way down to the living roots where
they pupate under water [17]. They build a cocoon out of pieces of root hair and attach it to
larger established roots. They can remain in the cocoon for several months [38].

Adults: Adults are nocturnal and hide themselves during the day near the crown of the plant to
protect themselves against severe heat which may reduce egg production and even cause death.
They start feeding on the outside of the plant within 24 hours of their appearance whereafter
the production of eggs commences about six days later. Maximum feeding and oviposition occur
at 30◦C and N. eichhorniae typically produce three or four generations per year [17, 18, 65].
The male and female ratio is generally close to one [26, 38], although in South Africa females
seem to dominate on healthy plants while there is an excess of males on unhealthy plants [38].
Adult life span ranges from 28 to 88 days with an average of 57.8 ± 9.6 days, depending on
temperature, although life spans of between three and four months have been recorded [38, 65].

Movement behaviour of adults: During certain seasons or under specific physiological con-

1Density dependence occurs when the per capita growth rate of a population is dependent on its own density.
Either the mortality rate at some stage of the life cycle increases or the reproduction or input rate decreases as
density increases [62].
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ditions, adults may develop flight muscles and be able to fly [16]. This seems to be quite rare and
the exact factors influencing wing muscle development remain difficult to pinpoint. Previous
attempts by Stark and Goyer [65] to stimulate adults to fly in laboratory experiments proved
unsuccessful, although reports of large numbers of N. eichhorniae flying at night to bright lights
in Louisiana during July 1980 confirmed the existence of cases where the weevils are able to fly
[65]. The wide distribution of N. eichhorniae in North America in the 1980s further suggested
that they are strong fliers [7].

Buckingham and Passoa [7] discovered during a study in Florida in 1982–1983 that some N.
eichhorniae weevils exposed to temperatures ranging 21 − 32◦C in laboratory experiments de-
veloped flight muscles. The percentage weevils with developed flight muscles was directly related
to temperature and time period. No flight muscles developed at 37.8◦C and the muscles were
also underdeveloped during winter with an assumed lower threshold of about 18.3◦C. Fifty per-
cent of the considered newly emerged N. eichhorniae weevils held at 26.7◦C developed flight
muscles after 13 days. The development of flight muscles in field-collected weevils were more
variable due to the variation within the population in the number of new weevils that had not
previously flown or already lost their wing muscles. Flight muscles and eggs were almost always
mutually exclusive for individuals. Under certain conditions female adults may switch from egg
production to flight muscle development or vice versa [7].

The phenomenon of wing muscles regenerating and degenerating, similar to the related rice
water weevil, Lissorhoptrus oryzophilus Kuschel, where flight muscles develop in spring prior to
migration to new sites and degenerate soon after arrival as females begin to oviposit [48], offers a
ready explanation for the previous failure of researchers to observe flight in the weevils. Weevils
without flight muscles cannot be forced to fly. The influence of weevil density, sex, source location
and food quality on flight muscle development proved to be both insignificant and inconsistent
[7]. Grodowitz et al. [26] reported a case of possible immigration of adult weevils to a study
site in Texas from nearby (60 m) areas infested with water hyacinth, supporting high numbers
of N. eichhorniae weevils from 1987 to 1988.

Experiments with herbicide treatment of water hyacinth, which limits the weevil’s food supply
and forces them to either migrate or die, indicate that herbicides may speed up wing muscle
development of weevils already developing muscles due to seasonal factors, but will not stimulate
such development of older weevils not already in the process of wing muscle development [7, 30].
If conservation of the weevils is desired, herbicides should thus be applied when the greatest
number of newly emerged weevils are present [7]. Haag [30] also suggests that it may be possible
to time field herbicide applications to coincide with periods of time during which the weevils
may potentially develop flight muscles and migrate to unsprayed areas of healthy plants.

During aquarium trials with herbicide application to water hyacinth, Haag [30] further dis-
covered that even if flight muscles are absent, adult weevils are able to crawl from sprayed,
decaying plants to adjacent healthy plants, if available, at least over a distance of 4 m. Disper-
sal experiments on unsprayed 1 m by 4 m water hyacinth mats indicated that weevils distributed
themselves randomly throughout the weed mat in a course of one month. There was no apparent
preference by weevils for any particular area of the weed mat and weevils were close to uniformly
distributed throughout the considered area after the one month period [30].
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Adults
(4-5 mm long)

Pupae
(2 mm diameter)

Eggs
(0.8 mm × 0.6 mm)

Larvae
(1-4 mm long)

7-14 days

8-44 days

30-82 days

15-33 days

Figure 2.3: Life cycle and development duration for each stage of the N. eichhorniae weevil and its
occurrence on different organs of the water hyacinth [38, 91].

2.4 The impact of N. eichhorniae weevils on water hyacinth

Figure 2.4: Leaf feeding scars caused by N.
eichhorniae adults.

Both the N. eichhorniae larvae and adults feed on
water hyacinth. Adult beetles feed externally on
the epidermal layers of the leaves leaving behind
its trademark of small, semi circular scars, as may
be seen in Figure 2.4. These feeding scars do not
usually penetrate the leaves, unless a scar on one
side of the leaf is aligned with a scar on the opposite
surface of the leaf [65]. Heavy feeding by adults on
the lamina causes leaves to dry out and curl [26].
The larvae’s tunnelling into the petioles and the
crown of the plant does extensive damage [9, 17,
18], causing the petioles to become thin and fragile
and plants to become waterlogged until they even-
tually sink and die [38, 82]. Some trapped larvae

and pupae attached to roots will sink and drown with dying plants [91].

In the long term, herbivore pressure from the weevils results in a reduction of production of
flowers, leaves, daughter plants and plant biomass and reduces the overall vigour of plants [10,
38, 69]. Especially the larval damage that hinders the production of new daughter plants,
interfering with vegetative reproduction, has a definite effect on the water hyacinth productivity
[25, 26]. At 1 kg of plant biomass/m2 the water surface can still be completely covered by
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water hyacinth [91]. Dense mats of water hyacinth eventually start to break up as plants die
and sink, with patches of water becoming visible between the plants. New areas of growth and
small plants are affected first by BCAs, leaving behind a stand of plants with more uniform size
and structure. As the sizes of the mats decrease over time, it becomes easier to eliminate them.
However, feeding is assumed to be reduced when there is open water between plants. Although
the adult weevils are strong swimmers and mobile [19, 94], they tend not to move between open
water bodies [91]. Some plants may thus temporally escape attack and low plant densities are
given a chance to increase again [9, 82, 91]. It would therefore be expected that the reduction
of water hyacinth populations in a large water body would be relatively less and slower than in
a similar smaller water body [94].

During a field study in southern Louisiana in 1980, Goyer and Stark [25] noted that due to the
extremely high reproductive rate of water hyacinth and lags in the weevil population, the plants
grew much faster than weevils could incur damage and plants re-covered open water surfaces
until weevil populations increased again. A cycle may develop wherein high weevil populations
and resultant low plant populations alternate. A cumulative effect over several seasons of weevil
damage may be necessary to decrease water hyacinth mats [25].

The speed and efficiency with which control is achieved depends, amongst other factors, on the
number of insects released and their distribution through the infested areas [38, 69]. Plant growth
may limit the effectiveness of biological control at low weevil densities [9]. DeLoach and Cordo
[17] performed a two-year field study in Argentina from 1972 to 1974 and found that the weevils
damaged the plant throughout the year, but maximum damage by larvae tunnelling inside the
petioles occurred during summer and was lowest during spring. Although N. eichhorniae is the
most popular of the introduced host-specific biological control agents, its effectiveness is reduced
by floods, frost, physical removal of plants and herbicide sprays [69].

2.5 Chapter summary

In this chapter, a review of the origin and the global spread of water hyacinth has been given
together with the necessary biological background information of the water hyacinth weed and
the N. eichhorniae weevil, consisting of the life cycles of the plant and insects, the movement
behaviour, as well as the way they influence each other. Understanding the biology of the two
species is important in order to formulate a realistic mathematical model of the population
dynamics.
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“If the Lord Almighty had consulted me
before embarking on creation, I should have
recommended something simpler.”

– Alfonso X of Castile (1221 – 1284)

The increasing use of mathematical models in population biology, whether dealing with a hu-
man population, a population of an endangered species and/or bacterial or viral growth, has
helped in understanding the dynamic processes involved in the field and in making practical
recommendations. The study of population change has a very long history. In 1202, an exercise
in an arithmetic book written by Leonardo of Pisa involved building a mathematical model for
a growing rabbit population. Many examples followed in later decades, for example, the well
known Lotka-Volterra equations for describing predator-prey interactions in ecology1 [50, 66].
Mathematical models have also been applied to competition interactions, renewable resource
management, evolution of pesticide resistant strains, ecological and genetically engineered con-
trol of pests, multi-species societies and plant-herbivore interactions [50].

In this chapter the mathematical background with respect to modelling water hyacinth popula-
tion growth and interaction models of water hyacinth and the N. eichhorniae weevil is discussed
and methods which may be used to describe spatial dynamics are provided.

3.1 Differential equations and predator-prey systems

Differential equations relate unknown functions of variables with their derivatives. These equa-
tions may be used when the relationship between the varying quantities of the solutions (ex-

1Ecology refers to the study of the interrelationship between species and their environment.
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pressed as the set of functions that satisfies the equations) and their rates of change over time
(expressed as the functions’ derivatives) are known or assumed [85]. Differential equations thus
come in handy where changes are noticed in real-world problems and predictions about future
behaviour, on the basis of how current values change, are required [66].

Consider the situation where one species, the prey, has an unrestricted supply of food and the
other species, the predator, feeds on the prey. An example of this is where rabbits represent
the prey and foxes the predators. When species interact, the population dynamics of each
species are affected. Predator-prey relationships such as these may be modelled as a pair of
linked differential equations. This will yield a model of two dependent variables where both
are functions of time. Let R(t) be the number of rabbits (prey) and F (t) the number of foxes
(predators) at time t. In the absence of predators, the abundant supply of food will support
exponential growth of the prey, that is,

dR(t)

dt
= βR(t),

where β is a positive constant. In the absence of prey, the predator population will decline at a
rate proportional to itself, that is,

dF (t)

dt
= −δF (t),

where δ is a positive constant. In the case where both species are present, the primary cause
of death among the prey is being eaten by a predator, while the birth and survival rates of the
predators depend on the availability of food, that is, the prey. It is assumed that the two species
encounter each other at a rate that is proportional to both populations, that is, proportional to
the product R(t)F (t). The more there are of either population, the more encounters there are
likely to be. The system of two differential equations governing this scenario is given by

dR(t)

dt
= βR(t)− aR(t)F (t) and (3.1)

dF (t)

dt
= −δF (t) + bR(t)F (t), (3.2)

where a and b are positive constants. The term −aR(t)F (t) decreases the natural growth rate
of the prey and the term bR(t)F (t) increases the natural growth rate of the predators [50,
66]. Equations (3.1) and (3.2) are known as the predator-prey equations or the Lotka-Volterra
equations. A solution of this system of equations is a pair of functions R(t) and F (t) that describe
the populations of prey and predators as functions of time. Because R(t) and F (t) occur in both
equations, the system is coupled and the equations have to be solved simultaneously [66].

Another population modelling approach comprises of the use of individual-based models (IBMs),
also referred to as agent-based models, which incorporate a high degree of complexity of individ-
uals and of interactions among individuals. IBMs simulate populations or systems of populations
as discrete individual organisms, where each individual has a unique set of attributes and be-
haviours. In contrast to traditional differential equation population models, which are described
in terms of top-down population parameters (such as birth and death rates), IBMs are bottom-up
models in which population-level behaviours emerge from the interactions among independent
individuals with each other and their environment [15]. Although a lot can be learned from
IBMs, it is time consuming to track every microscopic birth and death event. Moreover, the
ecological signal may be hard to discern beneath the stochastic variation, as well as difficult to
analyse mathematically. An approach that deals with the dynamics of large-scale variables like
population density, such as the differential equation population model described in this section,
may be preferred [41].
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In this study, two-species population density models are considered. More specifically, plant-
herbivore interactions, which resemble predator-prey interactions to a certain extent, however,
with one species being static, are considered.

3.2 Time delays and stage-structured models

Population models as discussed in §3.1 assume that births occur instantaneously and do not
account for possible time delays due to, for example, a gestation period, the time it takes for
eggs to hatch or the time to reach maturity. Discrete delay involves the evaluation of a population
exactly a certain number of time units ago [24]. As shown in Nicholson’s blowflies equation,
such discrete time delays can be incorporated by using a delay differential equation2 (DDE) of
the form

dN(t)

dt
= −δN(t) + βN(t− τ)e−aN(t−τ),

where δ, β, a and τ are positive constants, with δ representing the per capita daily death
rate, β the maximum per capita daily reproduction rate, 1/a the size at which the population
reproduces at its maximum rate and τ the generation time, or the time taken from birth to
maturity [4, 5, 24]. This equation was first proposed by Gurney et al. [27] to mathematically
describe the population of the Australian sheep-blowfly, Lucilia cuprina Wiedemann (Diptera:
Calliphoridae) .

Age or stage-structured models make use of time delays. Gurney et al. [28] developed a set
of coupled ordinary DDEs to describe an age-structured population in which the life-history
of a species is divided into age classes of arbitrary duration, assuming that all individuals in
a particular age class have the same birth and death rates. By adding age or stage-structure,
a model is able to account for more biological detail of a species, making it a more realistic
representation. The proposed model in [28] is given by

dNi(t)

dt
= Ri(t)−Ri(t− τi)Pi(t)− δi(t)Ni(t),

dPi(t)

dt
= Pi(t) [δi(t− τi)− δi(t)] ,

(3.3)

where Ni is defined as the number of individuals in age class i, Ri the rate of recruitment into
class i, Pi the through age class survival rate of class i, τi the duration of age class i and δi the
per capita death rate of class i. System (3.3) is linked to the set of algebraic equations given by

Ri(t) =


∑Q

i=1 βi(t)Ni(t) + I1(t) i = 1

Ri−1(t− τi−1)Pi−1(t) + Ii(t) i = 2, . . . , Q,
(3.4)

where Ii(t) is defined as the rate at which individuals aged exactly ai are added to age class i at
time t, βi the reproduction rate of class i and Q the total number of age classes of the species
under consideration [28]. The system is to be solved subject to the initial conditions

Ni(t)=Ri(t)=Ii(t)=0, for −max(τi) ≤ t ≤ 0 and Pi(0) =

∫ 0

−τi
δi(x)dx, ∀i.

The formalisation is also described in [29].

2A delay differential equation is a differential equation in which the derivative of the unknown function at a
certain time depends on the values of the function at previous times [84].
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3.3 Partial differential equations and reaction-diffusion systems

Partial differential equations (PDEs) is one of the major mathematical tools used to model and
analyse spatio-temporal processes in ecology. PDEs that are sufficiently realistic to describe eco-
logical systems are usually more difficult to solve than ordinary differential equations, but they
offer the significant advantage of incorporating temporal and spatial processes simultaneously
in equations governing population dynamics. Although PDE models understandably cannot
describe all ecological aspects, they are useful to lend insight into many fundamental population
processes such as dispersal, ecological invasions and the effect of habitat geometry and size [34].

In the classical applications of PDE models to population ecology and dispersal, organisms are
assumed to have Brownian random motion, the rate of which is invariant in time and space. In
a two-dimensional environment, this leads to the classical diffusion model

∂u(ξ1, ξ2, t)

∂t
= d

(
∂2u

∂ξ21
+
∂2u

∂ξ22

)
,

where u(ξ1, ξ2, t) represents the concentration of organisms at spatial coordinates (ξ1, ξ2) at time

t and d the diffusion coefficient that measures the dispersal rate of the organisms in distance2

time [34,
50]. This approach is known as Fickian diffusion where the flux of material is proportional to
the gradient of the concentration of the material [50].

Reaction-diffusion equations, a special class of PDEs, are frequently used to model interaction
in biology, geology, physics and ecology. These systems are mathematical models describing the
movement or change in concentration of one or more substances distributed in an environment.
The change in concentration results from two processes, namely local reactions and diffusion.
The local reactions process consists of the production and decay of the substances as well as
the particles (individuals) of the different substances interacting with each other, while diffusion
causes the particles to spread out across the spatial domain without involving external forces.
Reaction-diffusion systems are generally of the form

∂u(ξ, t)

∂t
= f(ξ, t, u) +∇ · [D(ξ, t)∇u(ξ, t)], (3.5)

where the components of the vector u(ξ, t) denote the densities of the substances at loca-

tion ξ at time t, where ξ = [ξ1, ..., ξm]T ∈ D, where D is a closed spatial domain. Further-
more, f contains expressions describing the interaction between the different particles, while
D(ξ, t) = diag{d1(ξ, t), ..., dm(ξ, t)} denotes the diffusion matrix where di(ξ, t) is the diffusion
coefficient of substance i, indicating how effectively particles diffuse from a high to a low con-
centration area in D at location ξ at time t. The first term of the reaction-diffusion equation in
(3.5) governs all the local reactions of the different particles and the second term governs the
diffusion of the substances [40, 57, 75, 90].

3.3.1 Derivation of reaction-diffusion equations

The reactions process, where the number of particles at any location ξ may change over time due
to birth, death or chemical reaction, is considered first. It is assumed that the rate of change in
the density of substance i as a result of local reactions is fi(ξ, t, u1...., um) [61]. The net growth
of substance i inside any region V which is a subset of D is then given by∫

V
fi(ξ, t, u1...., um)dv.
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Secondly, the way that the particles move due to the diffusion process, is based on the natural
phenomenon that substances move from high density areas to low density area. This movement
is known as the flux of the population density. The flux is a vector which always points to
the most rapid decreasing direction or most negative gradient of the population density vector,
ui(ξ, t). This principle is known as Fick’s law and may be denoted as

J i(ξ, t) = −di(ξ, t)∇ui(ξ, t), (3.6)

where J i(ξ, t) denotes the flux vector of the population density of substance i and di(ξ, t) the
diffusion coefficient as defined above [87]. The total out flux of substance i is thus given by∫

∂V
J i(ξ, t) · ds,

where ∂V is the boundary of V and ds is a unit vector orthogonal to ∂V and points outwards
[50, 57, 61].

According to the general conservation equation, which states that the rate of change in the
density of a substance in any subset V ∈ D equates to the rate of flow of the substance across
the boundary of V plus the amount of that substance created in V [50], the total rate of change
in the density of substance i in any subset V ∈ D is given by

∂

∂t

∫
V
ui(ξ, t)dv =

∫
V
fi(ξ, t, u1...., um)dv −

∫
∂V
J i(ξ, t) · ds. (3.7)

Furthermore, the divergence theorem3 [61] states that∫
∂V
J i(ξ, t) · ds =

∫
V
∇ · J i(ξ, t)dv. (3.8)

Substituting equations (3.6) and (3.8) into (3.7), and interchanging the order of differentiation
and integration, obtains∫

V

∂

∂t
ui(ξ, t)dv =

∫
V

(
fi(ξ, t, u1...., um) +∇ · [di(ξ, t)∇ui(ξ, t)]

)
dv.

Since the region V was chosen arbitrarily, the differential equation

∂ui(ξ, t)

∂t
= fi(ξ, t, u1...., um) +∇ · [di(ξ, t)∇ui(ξ, t)]

holds for any (ξ, t) and is known as the reaction-diffusion equation, corresponding to equation
(3.5) [61]. In the case of no local reactions occurring, the equation is simplified to the diffusion
equation denoted by

∂u(ξ, t)

∂t
= ∇ · [D(ξ, t)∇u(ξ, t)].

3.3.2 Partial differential equations in ecology

Ecological invasions have been formally modelled via reaction-diffusion equations since the early
1950s. These mathematical models have been successfully used to describe the historical range

3The divergence theorem states that the outward flux of a vector field through a closed surface is equal to the
volume integral of the divergence over the region inside the surface [86].
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expansion of several animal species over the last few decades [34]. The classic reaction-diffusion
model of ecological importance is the Fisher model, which represents logistic population growth
of a single species, where population growth is regulated by density-dependent mortality, plus
Brownian random dispersal. In a two-dimensional environment, this leads to the model given by

∂u(ξ1, ξ2, t)

∂t
= ru(1− u

K
) + d

(
∂2u

∂ξ21
+
∂2u

∂ξ22

)
,

where r denotes a population’s intrinsic growth rate and K the carrying capacity [34]. These
models, where populations disperse outward and reproduce, produce travelling waves of species
that spread out from their initial point of invasion at a constant velocity and shape into previ-
ously unoccupied areas (see Figure 3.1).

(a) (b)

Figure 3.1: An example of the population growth and dispersal of an invasive species in one dimension
(a) and two dimensions (b). Arrows indicate the direction of dispersal. The lines that are further from
the initial point of invasion (*) are later in time [34].

The concept of modelling population reproduction together with dispersal has also been applied
to interacting species, generally restricted to pairwise interactions. An example of this is the ap-
plication to two-species predator-prey interactions, using a Lotka-Volterra predator-prey model
with diffusion terms in two dimensions, which yields a system of coupled PDEs given by

∂u(ξ1, ξ2, t)

∂t
= du

(
∂2u

∂ξ21
+
∂2u

∂ξ22

)
+ ru(1− u

K
)− αuvuv,

∂v(ξ1, ξ2, t)

∂t
= dv

(
∂2v

∂ξ21
+
∂2v

∂ξ22

)
− δv + αvuuv,

where u and v denote the densities of the two species, du and dv the species-specific diffusion
rates, δ the per capita mortality rate of predators in the absence of prey, αuv the rate at which
predators consume prey, αvu the rate at which predators convert prey into new predators [34].

Reaction-diffusion models have also been used to successfully model the spread of plant popula-
tions [55], even though the redistribution or invasion or colonisation of plant populations in space
takes place through seeds or offshoots forming and not through individuals physically moving
from one position in space to another. When the plant growth rate is large enough, reaction-
diffusion models succeed to model this spread. For populations where the stages of dispersal and
reproduction are clearly distinguished and occur at discrete intervals, reaction-diffusion models
appear to give unrealistic representations of the population dynamics. In these cases, another
type of mathematical model based on integro-difference or integro-differential equations may
yield a more realistic description [55].
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3.4 Modelling time delay and diffusion simultaneously

In recent years, some progress has been made towards the modelling and analysis of ecological
systems involving both time delay and diffusion. When incorporating diffusion into a time-delay
model, a diffusion term is often simply added to the corresponding delayed ordinary differential
equation model, however, there are modelling difficulties with this approach. The difficulty is
that diffusion and time delays, even though they are associated with space and time respectively,
are not independent of each other, since individuals have not been at the same point in space
at previous times [22, 24].

Britton [6] was the first to address this difficulty for a delayed Fisher equation on an infinite
spatial domain. He suggested that to account for the drift of individuals to their present position
from all possible positions at previous times, the delay term has to involve a weighted spatial
averaging over the entire domain, the weighting to be properly derived using probabilistic argu-
ments and the assumptions made about the motion of the individuals. Gourley and Kuang [21]
used a weighted spatial averaging technique (also used by [63]) to formulate and study a delay
reaction-diffusion model of the spread of bacteriophage infection on an infinite one-dimensional
domain. Gourley and So [23] illustrated how to correctly model and analyse such delay-induced
spatial averaging on a finite spatial domain in one dimension. This introduces additional diffi-
culties in that the individuals, as well as having been drifting around in the past, may also have
been interacting with the domain’s boundaries.

This modelling technique will be explained at the hand of Gourley and Kuang’s [22] derivation
of a reaction-diffusion extension of Aiello and Freedman’s [1] stage-structured model for single
species in a finite spatial domain with homogeneous Neumann boundary conditions, where they
used the Britton approach. The techniques described may be carried over to the case of an
n-dimensional spatial domain [2, 24]. Consider Aiello and Freedman’s system given by

dui(t)

dt
= αum(t)− γui(t)− αe−γτum(t− τ),

dum(t)

dt
= αe−γτum(t− τ)− βu2m(t),

(3.9)

where α, β, γ and τ are positive constants and ui and um denote the densities of immature and
mature individuals of the population, respectively. The parameter α denotes the birth rate, γ
the death rate of immatures and β the death rate of mature individuals. The delay τ denotes
the time from birth to maturity. The birth rate of immatures, αum(t), is proportional to the
number of mature individuals present at a time and the mortality of immatures is denoted by
γui(t). Death of matures is modelled by a quadratic term, as in the logistic equation. The term
αe−γτum(t−τ) represents the rate at which individuals, who were born at time t−τ and are still
alive now, leave the immature stage and enter the mature stage. The term e−γτ thus represents
the through-stage survival rate [2, 22].

When motion is allowed for, the derivation of the time-delayed term in system (3.9) has to be
altered to take proper account of the motion. If immatures move, individuals are expected to
enter the mature population stage at a point in space different from where they were born. The
re-deriving of the time-delayed term depends on the assumptions being made about the motion
and also on the spatial domain. Gourley and Kuang [22] considered the case of an infinite as well
as a finite spatial domain, of which the latter is applicable to this study. The additional possible
interactions of individuals with the boundaries of the domain make the bounded case slightly
more difficult to model. For simplicity’s sake, the authors assumed individuals to perform an
unbiased random walk, modelling motion in terms of Fickian diffusion as described in Murray
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[50]. Under this assumption, diffusion is approximated by adding Laplacian diffusion terms to
the original system in (3.9) and re-deriving the delay term as described below.

For the case of a finite one-dimensional spatial domain 0 ≤ x ≤ π with homogeneous Neumann
boundary conditions, the immature and mature population densities are now denoted by ui(x, t)
and um(x, t), respectively. Such boundary conditions model a closed environment with reflecting
boundaries, i.e. individuals cannot leave the domain. Gourley and Kuang [22] argued that the
delayed term, αe−γτum(t− τ), appearing twice in system (3.9), may be replaced by∫ π

0
G(x, y, τ)e−γταum(y, t− τ)dy, (3.10)

where the total rate of entering the mature stage at time t and position x follows from

αum(y, t− τ) = number born at y,

e−γταum(y, t− τ) = number born at y and still alive now,

G(x, y, τ)e−γταum(y, t− τ) = number born at y, still alive and now at x,

and the integral totals up the contributions from all parts of the domain. Expression (3.10)
allows for the fact that an individual that enters the mature stage at position x will most
likely have been born at some other point y. The population is evaluated at time t − τ and is
averaged in space in a way that explicitly involves τ through the fact that the function G(x, y, t)
is evaluated at time t = τ [24]. Note that the delay effect only involves the population exactly
τ time units ago as this is the only population contributing to the current growth rate. The
spatial distribution kernel G(x, y, t) in (3.10) is the solution of

∂G

∂t
= di

∂2G

∂x2
, 0 < x < π, (3.11)

subject to homogeneous Neumann boundary conditions and initial conditions given by

∂G

∂x
= 0 at x = 0, π and G(x, y, 0) = δ(x− y), (3.12)

where di > 0 is the diffusion rate of the immature species. It should be noted that the function
G(x, y, t) > 0 for all x, y if t > 0 and satisfies (3.11) and (3.12) with x and y interchanged.
Although an explicit expression for G(x, y, t) exists in the one-dimensional case, it is only nec-
essary to know that the function G is the solution of equation (3.11) subject to (3.12). This
observation indicates that this method may still be applied in higher space dimensions where
G(x, y, t) becomes G(x, y, t) and there may no longer exist an explicit expression for it [24].

The diffusion version of system (3.9) in a finite one-dimensional spatial domain 0 ≤ x ≤ π may
thus be given by

∂ui
∂t

= di
∂2ui
∂x2

+ αum − γui − αe−γτ ūm(x, t),

∂um
∂t

= dm
∂2um
∂x2

+ αe−γτ ūm(x, t)− βu2m, t > 0, 0 < x < π,

where

ūm(x, t) =

∫ π

0
G(x, y, τ)um(y, t− τ)dy,

with boundary conditions

∂um
∂x

(0, t) =
∂um
∂x

(π, t) = 0, t > 0,
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and initial conditions

um(x, t) = φ(x, t) for (x, t) ∈ [0, π]× [−τ, 0].

Note that if um(x, s) ≥ 0 for all x ∈ [0, π] and s ≤ t, then ūm(x, t) > 0. This follows from the
positivity of G. Note also that G satisfies∫ π

0
G(x, y, t)dy = 1, ∀t ≥ 0.

Thus ūm is a weighted average of um at an earlier time [22].

3.5 Modelling water hyacinth population growth and weevil in-
teraction

Wilson et al. [93] have modelled water hyacinth population growth (excluding weevil interaction)
using a logistic model

dP

dt
= rP

(
1− P

K

)
, (3.13)

where P denotes the biomass density of water hyacinth plant material (kg/m2), r the intrinsic
daily growth rate of the plant and K the carrying capacity (kg/m2). At low plant densities,
the population will increase at its intrinsic growth rate. As the density of plants approaches the
carrying capacity, the rate of increase in water hyacinth population tends linearly to zero (see
Figure 3.2). If the density is above the carrying capacity, the population will decrease to K [93].

Figure 3.2: Water hyacinth population (biomass) plotted against time.

The logistic model succeeds in accurately predicting water hyacinth growth under different
abiotic conditions in a spatially homogeneous environment, although predictions of the change
in coverage over time cannot be made as information on the spatial dynamics is lacking [91].

Wilson et al. [94] presented a plant–herbivore model to investigate the introduction of the N.
eichhorniae weevil as a BCA for water hyacinth in a spatially homogeneous environment. The
model is given by

dP

dt
= rP

(
1− P

K

)
− c1A

(
1− e−d1P

)
(3.14)

dA

dt
= A

(
−a+ c2

(
1− e−d2P

))
, (3.15)
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where the first term of equation (3.14) represents the logistic growth of the plant as described
in (3.13), the second term of equation (3.14) represents the plant’s interaction with the weevil
and equation (3.15) represents the population growth of the weevil, dependant on the density of
the plant. Here A denotes the weevil population, −a+ c2 the maximum rate of increase for the
weevil population when there are many plants (e−d2P is approximately zero) and a the maximum
rate of decline for the weevil population, when there are few plants (e−d2P is approximately 1)
[94]. This model does not include the different stages of the weevil’s life cycle. It is assumed
that all weevils have the same effect on the plant, while in reality late larval stages are the most
damaging. To account for this, a time delay was added to the growth of the weevil population
[94]. Under these conditions, the plant-weevil system undergoes large amplitude cycles, as shown
in Figure 3.3.

Figure 3.3: Plant-herbivore model output with a time delay added to the growth of the weevil popula-
tion [94].

In order to improve the realism, Wilson [91] developed and investigated temporal models where
stage structure has been added to the weevil population, formulated as a system of coupled
DDEs, making use of techniques similar to descriptions in §3.2. The model which gave predic-
tions closest to field observation in terms of the level and stability of control, is given by

dW

dt
= rW

(
1− W

K

)
− cL2L2

(
W

W +H

)
,

dL1

dt
= qA(t−tE)σE − µL1L1 − JL1

L1

W
L1 − qA(t−tE−tL1)σEσL1S,

dL2

dt
= qA(t−tE−tL1)σEσL1S − µL2L2 − qA(t−tE−tL1−tL2)σEσL1S(t−tL2)σL2 ,

dA

dt
= qA(t−tE−tL1−tL2−tP )σEσL1S(t−tL2−tP )σL2σP − µAA,

dS

dt
= SJL1

(
L1(t−tL1)

W (t−tL1)
− L1(t)

W (t)

)
,

where the state variable W denotes the biomass density of water hyacinth, while L1, L2 and
A denote the density of young larvae, old larvae and adult weevils, respectively. These three
development stages with density-dependent processes were considered sufficient to represent the
weevil population. The final state variable, S, denotes the density-dependent through stage
survival rate for young larvae. Furthermore, r denotes the intrinsic growth rate of the plant, K
the carrying capacity, cL2 the rate of damage caused by the older larvae and H the plant density
at which herbivore feeding is reduced by half. Parameter, q denotes the weevil oviposition rate,
ti the development duration of stage i of the weevil’s life cycle, σi the density-independent
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through stage survival probability for stage i, µi the daily density-independent mortality rate
for stage i and JL1 the density-dependent scaling parameter for young larvae [91]. The models
presented by Wilson [91] exclude spatial dynamics and predict that, given stable conditions,
water hyacinth will always be controlled. However, from field observations, this prediction is
known to be incorrect. The models appear to overemphasise the effect of the weevils on water
hyacinth growth and in some way fail to capture an important aspect of water hyacinth and
weevil interaction [93]. The research done by Wilson [91] provides support for some important
assumptions in the modelling of water hyacinth and weevil interaction and highlights the lack
of information on certain important parameter values.

Van Schalkwyk and Potgieter [74] built on Wilson [91] and Wilson et al.’s [93, 94] work by
developing a model to compare different biological control release strategies for water hyacinth
in terms of cost-effectiveness in a spatially homogeneous environment. In contrast to Wilson’s
[91] model, a more detailed temperature dependence was incorporated in the model, as well as a
term making more frequent releases of BCAs possible. In addition, a different approach towards
the modelling of mortality and maturation through the stages of the weevil’s life cycle was
followed and the output of the model was translated by a cost function to reflect the total cost,
in terms of mass rearing expenses and water loss, for a specific release strategy. Van Schalkwyk
and Potgieter’s [74] mean-field model predicted that once-off and frequent BCA releases will
be able to drive water hyacinth populations to complete extinction and clear an entire water
body of any size in less than 150 days, subject to constant temperature conditions, ranging
from 20◦C to 35◦C. Low frequency releases proved to be more cost-effective than high frequency
releases, while once-off releases appeared to be more efficient and cost-effective than frequent
releases over a time period of 300 days. However, over an extended period of time, the weed
would grow back, and re-releases will be required. Sensitivity analyses indicated that the most
cost-effective strategy will be to release BCAs during the time of the year when the climate is
optimal (30◦C) for maximum weevil development. Furthermore, the average plant population
density appeared to be more sensitive when the number of BCAs released was decreased than
when it was increased. In order to minimise the average plant population density, accounting
for cases where BCAs may struggle to adapt in a new habitat or a disaster hits and a lot of them
die, it was recommended to release a slightly larger number of BCAs than the optimal number.

A limitation of the respective models developed by Wilson [91] and Van Schalkwyk and Potgieter
[74], is the assumption that BCAs are uniformly distributed throughout an area, where in a real-
life scenario, BCAs are released at the edges of an infested water body and take time to spread
out. This mean-field approximation may have indicated faster control of water hyacinth than
in reality. In order to improve on realism, spatial dynamics may be added to the model in
order to give a more realistic representation of the impact of the N. eichhorniae weevil on water
hyacinth populations, using modelling techniques derived from §3.3 and §3.4. Furthermore, the
model may be expanded to incorporate fluctuating temperatures over a period of time. It is
unrealistic to assume a constant temperature over a period of time. More thorough investigations
of the costs and benefits of biological control release strategies may also add to the validity and
generality of conclusions drawn from the model. Van Schalkwyk and Potgieter [74] considered a
fixed cost per BCA pertaining to a specific mass rearing facility, whereas, in reality, the cost of
biological control does not necessarily follow a linear relationship with the number of BCAs used.
Furthermore, the benefit of water saving as a result of the control of water hyacinth was measured
in terms of the cost of water for household consumption, whereas modified representative value
estimates for water usage, based on its use as serviced (treated and generally supplied in bulk to
the consumers) or unserviced water (generally supplied directly from a river, storage reservoir
or canal system for irrigation or other bulk use), may be considered as more realistic unit-price
estimates for water [56].
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3.6 Chapter summary

In this chapter, a review of general population modelling approaches together with a discussion
on reaction-diffusion theory, which is the main modelling approach adopted in this study to
describe spatial dynamics in a heterogeneous environment, and its application in ecology, has
been given. The chapter concluded with a review of the mathematical background with respect
to the modelling of water hyacinth population growth and interaction with the N. eichhorniae
weevil as a BCA specifically, as well as the limitations of current spatially implicit modelling
approaches.
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The spatio-temporal model
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In this chapter, a reaction-diffusion model for a temporally variable and spatially heterogeneous
environment, consisting of a system of coupled delay partial differential equations, is developed
to mathematically describe the spatio-temporal dynamics of water hyacinth populations and the
interacting populations of the various life stages of the N. eichhorniae weevil as a BCA on an
isolated and bounded spatial domain. The temporal mean-field model developed by Wilson [91]
is not realistic in the context of assuming that weevils are uniformly distributed throughout an
area while in reality BCAs are released by hand along the edges of an infested water body. A
spatially explicit model is therefore required to model the distribution of water hyacinth and the
weevils in a heterogeneous environment. After various model assumptions are discussed in §4.1,
the development and mathematical formulation of the reaction-diffusion model is given in §4.2,
followed by detailed discussions and, in some cases, derivations of the model input and output
parameters in §4.3 and §4.4, respectively. An elaborate description of the implementation of the
model in Matlab 9.0 is given in §4.5. Finally, simulations are performed in order to validate
the model output by means of testing various model responses and comparing the model output
to real-world data in §4.6.

4.1 Model assumptions

In order to translate the biological background information provided in Chapter 2 to a mathe-
matical model that represents the population dynamics of the water hyacinth and weevil species,
a number of simplifying assumptions, as discussed in §4.1.1 – §4.1.9, are made.

31
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4.1.1 Stage-structure

For the purpose of this study, the weevil population is subdivided into different stages, while
the water hyacinth population is only considered at its mature stage to evaluate the influence of
the weevils on an established water hyacinth population. The N. eichhorniae weevil population
is represented by five development stages: eggs, young larvae (first and second instar larvae),
old larvae (third instar larvae), pupae and adults. All individuals within each of these stages
may be regarded as functionally identical by having the same per capita vital rates. Individuals
enter a stage by developing from the previous stage or by reproduction from the mature stage
and leave a stage through death or maturation (see Figure 4.1). The number of eggs laid at a
specific time is considered as a cohort and the model keeps track of how each cohort matures
through the weevil life stages.

By adding the stage-structure, the model accounts for more biological detail of the weevils and
allows for the explicit modelling of processes pertaining only to specific development stages,
making it a more realistic representation. The number of equations necessary to represent the
weevil population is limited to the number of development stages that have density-dependent
processes (mortality, feeding or fecundity). In this study, similar to the temporal model de-
veloped by Wilson [91], the two larval stages and the adult stage are considered sufficient to
represent the weevil population.

Eggs

(E)

Young

larvae

(L1)

Old

larvae

(L2)

Pupae

(P )

Adults

(A)

mature mature mature mature

mortality mortality mortality mortality mortality

reproduce

Figure 4.1: Diagram of the N. eichhorniae weevil’s development stages as used in model development.

4.1.2 Plant growth

Several factors affecting the growth of the water hyacinth are not included in the model as it
is difficult to quantify. These factors include frost, diseases, saltiness of water, wind, humidity,
water currents, floods, light and carbon dioxide concentration [37, 91]. Constant nitrogen and
phosphorus levels are assumed throughout the study.

4.1.3 Damage factor

While both the N. eichhorniae larvae and adults feed on water hyacinth, it is assumed that
only the old larvae cause actual damage to the plant. In addition to the removal of biomass,
tunnelling of larvae into the petioles and the crown of the plant can cause nutrient deficiency as
well as provide a route of entry for disease-causing micro-organisms. The movement of larvae
between leaves and the crown of the plant may also lead to flooding of old larval tunnels and a
reduction in plant buoyancy [91]. Larval feeding thus causes more damage than just the removal
of plant biomass.

Since adults can remove over 50% of the laminar area, it is possible that adult feeding reduces
the plant’s rate of photosynthesis. Moreover, adults prefer to feed on the youngest leaves and
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so damage may disrupt leaf development. Still, this does not directly affect the rhizome or
the meristem, both of which can be damaged by larval feeding. In most cases, adult feeding
appears to be much less destructive to water hyacinth and is thought to be negligible compared
to damage caused by old larvae [18, 91].

Other aspects of the weevil life are unlikely to cause much damage. Oviposition scars may provide
a route for pathogen entry, but the risk from this should be much less than the tunnelling scars
caused by mobile larvae. Pre-pupae are not particularly destructive, as only a few root hairs are
required to create the pupal cocoons [91].

4.1.4 Ovipositing

The adult male and female ratio is assumed to be 1 in the released weevil populations as well
as the generations to follow. Therefore, the oviposition rate may be determined as an average
rate per weevil. Adult weevils are assumed to start laying eggs immediately after they enter
the system, via a release or maturation from immature stages, and continue to oviposit at a
constant rate throughout their lifetime. The oviposition rate is adjusted accordingly to allow
females to lay the approximated maximum amount of eggs during their lifetime when exposed
to favourable temperature conditions.

4.1.5 Reproduction

When adult density within a considered area decreases below a minimum threshold, it is assumed
that they will not be able to reproduce any longer. There has to be a large enough number of
adults within a reachable range of each other for reproduction to occur. This is the typical case
of an Allee-effect [68].

4.1.6 Density dependence

From experiments and personal observations, Wilson [91] found it reasonable to assume that
due to adult weevil mobility, the female weevils will oviposit regardless of density, resulting in
density-independent oviposition and egg survival rates for any realistic density of adults per
plant. Due to the relative mobility of old larvae, the through stage survival rates of the old
larval and pupal stages of the weevil’s life cycle are also assumed to be unaffected by density.
Density-dependent mortality is only added to the young larval population as Wilson [91] found
that most density-dependent effects occur before damage is caused to the plant. At high larval
densities, young larvae may have a higher probability of being stranded in dead and dying
petioles [91]. It is assumed that adults have abundant supplies of any limiting nutrient.

4.1.7 Dispersal

The presented spatio-temporal model assumes that individuals in the mobile instars of the
weevil’s life cycle perform an unbiased random walk. This assumption concurs with previous
studies which found that weevils randomly disperse throughout a water hyacinth mat without
any apparent preference for particular areas of the plants [30], or influence by external forces
causing attraction or repulsion. During each time unit, a proportion of old larvae and adult
weevils are assumed to leave the location at which they emerged or from where they were released
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to inhabit neighbouring sites within their range of motion. This motion can be modelled in terms
of Fickian diffusion and is approximated by using the Laplacian operator.

The water hyacinth dispersal is also described by Fickian diffusion as weed mats randomly
expand to neighbouring sites. Dispersal will only occur within the spatial domain as it is
assumed that neither plant nor weevil enters or exits the domain as a result of the assumed land
use categories surrounding the considered water body.

4.1.8 Domain

For the purpose of this study, the spatial domain is assumed to be an isolated water body in-
fested with water hyacinth to its carrying capacity, surrounded by land use categories considered
unsuitable habitat for water hyacinth or N. eichhorniae weevils. It is thus assumed that neither
plant nor weevil enters or exits the domain. The spatial domain is considered heterogeneous as
the plant density may vary for different locations, resulting in variant per capita growth rates
for the BCAs.

4.1.9 Releases

Adult weevils are released by hand from small plastic containers at the accessible edges of an
infested water body and take time to disperse to neighbouring sites. In some cases, boats may
be used for releases on larger water bodies where there are sufficient open water areas for boats
to move. Releases are assumed to occur once off or at a constant rate over the period of release.
The distribution of the releases is up to the field workers performing the releases and may be
influenced by the accessibility to the infested area and the number of BCAs available for release.

4.2 Model formulation and notation

Let W (ξ, t) denote the biomass density of water hyacinth material (in kg/unit2) at location

ξ = [ξ1, ξ2]
T ∈ D at time t, where D is a closed, two-dimensional spatial domain, and E(ξ, t),

L1(ξ, t), L2(ξ, t), P (ξ, t) and A(ξ, t) denote the densities of eggs, young larvae, old larvae, pupae
and adult weevils at location ξ at time t, respectively. Similar to the modelling approach for a
variable survival rate used in previous studies [28, 91], let SL1(ξ, t) denote the density-dependent
through stage survival rate for young larvae at location ξ at time t. All other development stages
are assumed to have density-independent per capita death rates, yielding constant survival rates.
Time delays are modelled as differences from the current time t and subscripts indicate the stage
involved, e.g. the development duration of the egg stage is denoted by tE . The time spent in
each stage of the weevil’s life cycle is temperature-dependent.

4.2.1 A spatial implementation of the Wilson model

In order to model the spatial dynamics of the water hyacinth and weevil system in a bounded
two-dimensional spatial domain, diffusion terms are added to the applicable ordinary delay dif-
ferential equations in the temporal model presented by Wilson [91]. Let the diffusion coefficients
dW , dL2(θ) and dA be a measure of how effectively water hyacinth, old larvae and adult weevils
disperse to neighbouring locations, respectively, invariant in time and space. The change in the
population density of the young larval population per time unit at a certain location is assumed
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equal to the local reactions occurring at that location with no dispersal occurring. In addition,
an Allee-effect and a term allowing for frequent releases of adult weevils are included, a more
detailed temperature dependence is incorporated, as well as slight changes to the modelling of
the through stage survival probabilities.

A provisional reaction-diffusion model for the interacting species, formulated as a system of
coupled delay partial differential equations, is given by

∂W (ξ, t)

∂t
= dW∇2W (ξ, t) + r(θ)W (ξ, t)

(
1−

W (ξ, t)

K

)
− cL2(θ)L2(ξ, t)

(
W (ξ, t)

W (ξ, t) +H

)
, (4.1)

∂L1(ξ, t)

∂t
= q(θ)A

(
ξ, t−tE(θ)

)
σE(θ)

(
A
(
ξ, t− tE(θ)

)
− a

A
(
ξ, t− tE(θ)

) )
−
(
µL1

(θ) +
JL1

W (ξ, t)
L1(ξ, t)

)
L1(ξ, t)

− q(θ)A
(
ξ, t−tE(θ)−tL1(θ)

)
σE(θ)SL1

(
ξ, t
)
,

(4.2)

∂L2(ξ, t)

∂t
= dL2

(θ)∇2L2(ξ, t) + q(θ)A
(
ξ, t−tE(θ)−tL1

(θ)
)
σE(θ)SL1

(
ξ, t
)
− µL2

(θ)L2(ξ, t)

− q(θ)A
(
ξ, t−tE(θ)−tL1(θ)−tL2(θ)

)
σE(θ)SL1

(
ξ, t−tL2(θ)

)
σL2(θ),

(4.3)

∂A(ξ, t)

∂t
= dA∇2A(ξ, t)− µA(θ)A

(
ξ, t
)

+ IX(ξ, t)

+ q(θ)A
(
ξ, t−tE(θ)−tL1

(θ)−tL2
(θ)−tP (θ)

)
σE(θ)SL1

(
ξ, t−tL2

(θ)−tP (θ)
)
σL2

(θ)σP (θ),

(4.4)

∂SL1
(ξ, t)

∂t
= SL1

(
ξ, t
)
JL1

(
L1(ξ, t−tL1

(θ))

W (ξ, t−tL1
(θ))

−
L1(ξ, t)

W (ξ, t)

)
, (4.5)

where ∇2 ≡ ∂2

∂ξ1
2 + ∂2

∂ξ2
2 denotes the Laplacian operator for diffusion, θ the temperature (◦C),

r(θ) the daily intrinsic growth rate of the plant at temperature θ and K the carrying capacity
(kg/unit2) of the water resource. Furthermore, cL2(θ) denotes the rate of damage caused by the
older larvae at temperature θ and H the plant density at which herbivore feeding is reduced by
half. Parameters r(θ),K, cL2(θ), H, q(θ) and JL1 were obtained from Wilson [91].

In equations (4.2) – (4.4), q(θ) denotes the rate of oviposition of viable eggs at temperature θ,
ti(θ) the development duration in days of stage i of the weevil’s life cycle at temperature θ and
σi(θ) the density-independent through stage survival probability for stage i at temperature θ.

In equation (4.2), the rate of recruitment into the young larval stage at location ξ at time t is
equal to the number of eggs maturing at the corresponding location and time. The number of
eggs maturing is the number of eggs laid at location ξ and tE(θ) days ago – the number of adults
present at that location tE(θ) days ago multiplied by the oviposition rate – multiplied by the
probability of surviving through the egg stage. An Allee-effect, resulting in a decrease of the
young larval population growth rate at low adult weevil densities, is added to this term. Once
the adult population within a considered area of 1 m2 falls below the minimum threshold for re-
production, a, the negative instantaneous growth rate of the young larvae leads to the extinction
of the population. The Allee-effect may cause slower spread and decreased establishment likeli-
hood of the BCAs, thus influencing the efficacy and cost of biological control. Expected spatial
ranges, distributions and patterns of species may be altered when an Allee-effect is present [68],
making this an important effect to consider.

The number of young larvae maturing to the next stage at location ξ at time t is equal to the num-
ber of eggs laid at location ξ and tE(θ)+tL1(θ) days ago, represented by q(θ)A(ξ, t−tE(θ)−tL1(θ)),
multiplied by the probability of surviving through the egg stage and the probability of surviving
through the young larvae stage. The number of old larvae entering the system at location ξ at
time t is equal to the number of young larvae maturing at that location and time. The same
logic is followed for individuals entering other stages and maturing from immature stages.

Assuming a given young larva competes equally with all other young larvae for limited resources,

Stellenbosch University  https://scholar.sun.ac.za



36 Chapter 4. The spatio-temporal model

Gurney et al. [28] suggested to reflect this limitation by choosing a per capita young larval
death rate which varies linearly with young larval population. In line with Wilson’s application
of this modelling approach [91], the young larval density-dependent mortality rate is given by
JL1
W (ξ,t)L1(ξ, t), where JL1 denotes the density-dependent scaling parameter for young larvae which

is equal to the number of kilogrammes of plant material per young larva at which the young
larval population growth rate is zero. In equations (4.2) – (4.4), µi(θ) denotes the daily density-
independent mortality rate for stage i (i = L1, L2 or A) of the weevil’s life cycle at temperature
θ.

Finally, I denotes the number of new adult weevils released per location at any time and

X(ξ, t) =

{
1 if adults are released at location ξ at time t

0 otherwise.
(4.6)

A limitation of the time-delayed modelling approach is that time lags allow weevil populations to
still exist for a period of time at a specific location after the plant has been driven to extinction
at that point in space, as density dependence in terms of limiting resources is only added to the
young larval stage. There is a delayed density dependence effect on the other weevil development
stages. In the long term, these delayed effects become negligible and the model still succeeds in
providing good estimates of the overall population dynamics.

A further limitation in the modelling approach presented above is that, due to the spatial
dispersal of old larvae, the maturation rate out of the old larval stage at time t at location ξ
in equation (4.3) should depend on the old larval recruitment rate at time t − tL2(θ) at other
spatial points. Individuals will have entered the system at various locations in D and will have
moved around, being at point ξ on maturing to the next stage. A sufficient expression should
therefore be derived for the old larval distributed maturation delay term.

Another shortcoming in this model is the prolonged delay before the limitation on the young
larval growth rate, as a result of the Allee-effect, has an influence on the growth rates of the sub-
sequent stages of the weevil population. Due to through-stage transition always being calculated
from adults, the model allows the populations of the other weevil stages to continue to grow at
their usual rates based on the number of adults that were present at previous times, regardless
of whether young larval production was limited or not, which should, from a biological point of
view, directly affect the population growth rate of subsequent weevil life stages.

4.2.2 The final model

In this section, a different approach towards the modelling of the recruitment and maturation
terms for the weevil population is followed and a sufficient expression for the old larval matura-
tion term is derived.

Let Ri(ξ, t) denote the rate of recruitment into stage i of the weevil’s life cycle at location ξ at
time t. The rate of recruitment into the young larval stage at location ξ at time t is equal to the
number of eggs maturing at the corresponding location and time, limited by an Allee-effect, as
explained in §4.2.1. The rate of maturation out of the young larval stage at location ξ at time t,
which is equal to the recruitment rate into the old larval stage at location ξ at time t, is simply
the recruitment rate into the young larval stage at time t− tL1(θ) multiplied by the probability
of surviving through the young larval stage. The same logic is followed for the recruitment and
maturation rates of the other weevil development stages, except for the maturation rate out of
the old larval stage where diffusion is involved. The time-delay term for the rate of maturation
out of the old larval stage must be derived in a different way. This is necessary because an old
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larva can move during the period between entering the system and maturing to the next stage
and is therefore expected to enter the pupal stage at a different point in space from where it
originally emerged. The recruitment rates used in the model are given by

RL1

(
ξ, t
)

= q(θ)A
(
ξ, t−tE(θ)

)
σE(θ)

(
A
(
ξ, t− tE(θ)

)
− a

A
(
ξ, t− tE(θ)

) )
, (4.7)

RL2

(
ξ, t
)

=

{
RL1

(
ξ, t−tL1(θ)

)
SL1

(
ξ, t
)

if RL1

(
ξ, t−tL1(θ)

)
> 0

0 otherwise,
(4.8)

RP
(
ξ, t
)

= {a weighted average of RL2 at an earlier time} σL2(θ)

= R̄L2

(
ξ, t
)
σL2(θ),

(4.9)

RA
(
ξ, t
)

= RP
(
ξ, t−tP (θ)

)
σP (θ), (4.10)

with parameters defined similar to the descriptions in §4.2.1. In equation (4.8), young larvae
are only able to mature to the old larval stage if a positive amount of young larvae entered the
system tL1(θ) days ago.

These modifications lead to the refined reaction-diffusion model given by

∂W (ξ, t)

∂t
= dW∇2W (ξ, t) + r(θ)W (ξ, t)

(
1−

W (ξ, t)

K

)
− cL2(θ)L2(ξ, t)

(
W (ξ, t)

W (ξ, t) +H

)
, (4.11)

∂L1(ξ, t)

∂t
= RL1

(
ξ, t
)
−
(
µL1(θ) +

JL1

W (ξ, t)
L1(ξ, t)

)
L1(ξ, t)−RL2

(
ξ, t
)
, (4.12)

∂L2(ξ, t)

∂t
= dL2(θ)∇2L2

(
ξ, t
)

+RL2

(
ξ, t
)
− µL2(θ)L2(ξ, t)−RP

(
ξ, t
)
, (4.13)

∂A(ξ, t)

∂t
= dA∇2A

(
ξ, t
)

+RA
(
ξ, t
)
− µA(θ)A

(
ξ, t
)

+ IX
(
ξ, t
)
, (4.14)

∂SL1(ξ, t)

∂t
= SL1

(
ξ, t
)
JL1

(
L1(ξ, t−tL1(θ))

W (ξ, t−tL1(θ))
−
L1(ξ, t)

W (ξ, t)

)
, (4.15)

linked to the set of algebraic equations (4.7) – (4.10).

Since the state variables W (ξ, t), L1(ξ, t), L2(ξ, t) and A(ξ, t) represent population densities, they
are set to be non-negative real numbers for obvious reasons. The density-dependent survival
rate, SL1(ξ, t), is assumed to have a lower bound of zero and an upper bound equal to the
density-independent through stage survival rate for young larvae, σL1(θ).

Based on Gourley and Kuang’s [22] formulation of a bounded one-dimensional single-species
diffusive-delay population model, the time-delayed maturation term for the old larval stage
where there is diffusion is derived for the model in a closed, two-dimensional spatial domain
D with homogeneous Neumann boundary conditions. For simplicity’s sake, studies in litera-
ture only demonstrate the derivation of the delay term for a one-dimensional domain [22, 24],
only mentioning that it should be possible to carry out numerical simulations in higher space
dimensions.

In algebraic equation (4.9), the weighted average of RL2 at an earlier time is given by

R̄L2

(
ξ, t
)

=

∫
D
G(ξ, x, tL2(θ))RL2 (x, t−tL2(θ)) dx, (4.16)

where x is another point in space. Old larvae will have emerged at various locations (x) in
domain D and may have moved around, being at point ξ on maturing to the pupal stage. The
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quantity R̄L2

(
ξ, t
)
σL2(θ) gives the rate at which old larvae mature into the pupal stage at location

ξ and time t, having taken tL2(θ) days to mature. The spatial averaging kernel G(ξ, x, t) is the
solution of

∂G

∂t
= dL2(θ)∇2G, (4.17)

subject to homogeneous Neumann boundary conditions and initial conditions given by

G(ξ, x, 0) = δ(ξ − x), (4.18)

where δ is the Dirac delta function and ∇2 the Laplacian computed with respect to the first
argument of G(ξ, x, t). The Dirac delta function, δ(ξ − x), has the value 0 for all ξ 6= x and 1

for ξ = x. Furthermore, function G(ξ, x, t) > 0 for all t > 0. If RL2

(
ξ, s
)
≥ 0 for all ξ ∈ D and

s ≤ t, then R̄L2

(
ξ, t
)
≥ 0. This follows from the positivity of G. It can also be noted that∫

D
G(ξ, x, t)dξ =

∫
D
G(ξ, x, t)dx = 1, ∀t ≥ 0.

Although the explicit expression of the spatial averaging kernel G(ξ, x, t) is difficult to compute
(or unknown) for the bounded two-dimensional case, literature indicates that it is only necessary
to know that the function G is the solution of equation (4.17) subject to (4.18) [2, 24].

According to Gourley and Kuang [21], the existence of solutions to one-dimensional delay
reaction-diffusion systems, similar to the one described in equations (4.11) – (4.15), which is
already more complex due to being in two dimensions, have yet to be established. It is therefore
assumed that a solution to the presented model exists and the focus in the rest of the thesis
is turned towards how the model may be applied to optimise water hyacinth biological control
release strategies.

Boundary conditions

Since water hyacinth cannot exist on land and the N. eichhorniae weevils are host–specific BCAs,
only able to survive on water hyacinth, it is assumed that neither plant nor weevil enters or exits
the domain. System (4.11) – (4.15) is therefore subject to homogeneous Neumann boundary
conditions given by

n · (D⊗∇u) = 0, ∀ξ ∈ ∂D, (4.19)

where n is the outward normal vector on the boundary, D the diffusion coefficient matrix, u the
solution of the system and ∂D the boundary of D.

Initial conditions

Initially, the water hyacinth density is assumed to be at carrying capacity (K = 70 kg/m2)
throughout the entire domain under consideration (D) and all weevil stages are assumed absent
prior to BCA releases. A certain amount of adult weevils will be released at specific locations
at the edges of the domain at time t = 0. The initial conditions for system (4.11) – (4.15) are
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thus given by
W (ξ, t) = K, for t ≤ 0, ∀ξ ∈ D
L1(ξ, t) = 0, for t ≤ 0, ∀ξ ∈ D
L2(ξ, t) = 0, for t ≤ 0, ∀ξ ∈ D
A(ξ, t) = 0, for t < 0, ∀ξ ∈ D

A(ξ, 0) =

{
I if X(ξ, 0) = 1

0 otherwise

SL1(ξ, t) = σL1(θ), for t ≤ 0, ∀ξ ∈ D,

(4.20)

where K, I and σL1(θ) are assumed to be positive real numbers.

4.3 Model input parameters

The values of the parameters used in the model described in §4.2 have all been obtained, derived
or estimated from previous studies [7, 18, 30, 38, 72, 91, 92, 93], with the exception of the
threshold for the Allee-effect, a.

4.3.1 Intrinsic growth rate of water hyacinth

The growth rate of water hyacinth, r(θ), is given by

r(θ) = rmaxf(nwa, pwa)g(θ),

where rmax denotes the maximum daily growth rate of the plant, f and g are scaling factors
between 0 and 1, nwa and pwa denote the concentration of nitrogen and phosphorus in the
water (mg/`), respectively, and θ the water temperature (◦C) [93]. Wilson et al. [93] proposed
that the growth rate of water hyacinth increases linearly with temperature above the threshold
and up to an optimum and decreases linearly with temperatures above that. He also described
the relationship between the concentration of limiting nutrients and the growth rate of water
hyacinth as a hyperbolic function [93]. In line with the parameter values used in studies by Tucker
and DeBusk [72] and Wilson et al. [93], constant low nitrogen and phosphorus concentrations,
yielding a scaling factor of f(nwa, pwa) = 0.875 for the effect of the water nutrient level, are
assumed, together with a parameter value of rmax = 0.11/day. The water hyacinth daily growth
rate, r(θ), measured at different temperatures, is then as given in Figure 4.2.
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Figure 4.2: Water hyacinth daily growth rate, r(θ), measured at different temperatures [93].
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4.3.2 Development duration of the life stages of the weevil

Similar to Wilson’s [91] approach, time lags are used to account for the time it takes for the weevil
to develop from one stage in its life cycle to the next. At time t = 0, following a release, there are
only adult weevils present in the system. It is assumed that the adults immediately start laying
eggs, leading to young larvae entering the system after tE(θ) days. Old larvae are expected
to start appearing tL1(θ) days thereafter. Similar to most temperature-dependent development
studies [8], Wilson [91] suggested that the daily development rate of each stage increases linearly
with temperature up to an optimum (θopti ) and decreases linearly with temperatures above that
up to a maximum temperature (θmaxi ). Assuming the minimum and maximum development
durations provided by Wilson [91], the development rate, αi(θ), with i = E,L1, L2 or P , is given
by

αi(θ) = αmaxi hi(θ),

where αmaxi denotes the maximum daily development rate of stage i and hi(θ) denotes the
temperature function presented by Wilson [91], given by

hi(θ) =


θ−θmin

i

θopti −θmin
i

if θmini < θ ≤ θopti

θmax
i −θ

θmax
i −θopti

if θopti < θ < θmaxi

0 otherwise.

(4.21)

The development rate of a stage will be zero for all temperatures below θmini or above θmaxi .
The average development duration (in days) of each stage, ti(θ), is then given by

ti(θ) =


1

αi(θ)
if 1

αi(θ)
< tmaxi and αi(θ) > 0

tmaxi if 1
αi(θ)

≥ tmaxi and αi(θ) > 0

∞ if αi(θ) = 0.

The assumed development durations of immature stages at different temperatures are given in
Table 4.1.

Development duration (in days)
Temperature (◦C) Eggs (tE) Young larvae (tL1) Old larvae (tL2) Pupae (tP )

16 44 47 35 33
20 24 47 25.87 29.85
25 12 28.85 14.42 19.90
30 8 20 10 14.93
35 16 40 20 29.85
39 44 47 35 33

Table 4.1: Average development duration of weevil life stage, measured at different temperatures.

4.3.3 Oviposition rate

Wilson [91] found the effect of temperature on the oviposition rate to appear similar to the effect
of temperature on the development rates. The oviposition rate of viable eggs, q(θ), is therefore
assumed to be given by

q(θ) = qmaxhq(θ),
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where qmax denotes the maximum number of eggs laid per adult per day. The temperature func-
tion, hq(θ), is assumed similar to the temperature function given in equation (4.21), but using
different minimum (θminq ), optimum (θoptq ) and maximum (θmaxq ) temperatures for oviposition.

4.3.4 Rate of damage caused by old larvae

Wilson [91] suggested that the rate of damage caused by old larvae, cL2(θ), is affected by
temperature in the same way as the oviposition rate and development rates. Some studies found
no significant effect of low water nutrient concentrations (0.1 – 4 mg/l) on the damage rate [92]
and that the weevil consumption rate may increase exponentially with increasing water nutrient
levels [91]. Since a constant low water nutrient concentration of less that 2 mg/l is assumed
in this study, the interaction between the water nutrient concentration and the damage rate is
assumed to be negligible. The rate of damage used in this study is given by

cL2(θ) = cmaxL2
hcL2

(θ),

where cmaxL2
denotes the maximum rate of damage caused by old larvae and hcL2

(θ) is assumed
similar to the temperature function given in equation (4.21), but using the same minimum,
optimum and maximum temperatures as for ovipositing [91].

4.3.5 Through stage survival probabilities

The density-independent through stage survival probability for weevil development stage i is de-
noted by σi(θ). Provided the maximum probability of surviving through stage i, σmaxi , attained
from Wilson [91], the temperature dependent probability of surviving through stage i used in
this study is assumed to be

σi(θ) = σmaxi hi(θ).

The temperature function, hi(θ), is assumed similar to the temperature function given in equa-
tion (4.21). The change in the survival probabilities σi(θ) as a result of changes in temperature
is shown in Figure 4.3.
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Figure 4.3: Through stage survival probabilities, measured at different temperatures.
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4.3.6 Stage-specific mortality rates

The daily density-independent mortality rate, µi(θ), for weevil development stage i (i = L1 or
L2), is a function of temperature and is given by

µi(θ) =

 −
ln(σi(θ))
ti(θ)

if σi(θ) > 0

1 otherwise.
(4.22)

This expression is derived from the well known relationship between the through stage survival
probability and the density-independent mortality rate given by

σi(θ) = exp{−ti(θ)µi(θ)},

where σi(θ) is a constant [28, 91]. Since parameter values for the through stage survival prob-
abilities could be obtained from literature, but not the mortality rates, the inverse relationship
is used to determine the mortality rates as described in equation (4.22).

As temperature deviates from the optimal temperature for weevil survival and development,
both the numerator and the denominator of the daily mortality rate are adjusted. The value of
the survival probability, σi(θ), decreases with deviations from the optimal temperature, leading
to an increase in the negative natural logarithm term and thus an increase in the numerator,
while the value of the development duration, ti(θ), in the denominator also increases with
temperature deviations. The overall change in the daily mortality rate µi(θ) as a result of
changes in temperature is shown in Figure 4.4.

15 20 25 30 35 40

0.02

0.04

0.06

0.08

Temperature (◦C)

D
a
il
y
m
o
rt
a
li
ty

ra
te

Young larvae

Old larvae

Figure 4.4: Stage-specific daily mortality rates, measured at different temperatures.

Furthermore, the temperature-dependent daily mortality rate for adult weevils, µA(θ), is as-
sumed to be the inverse of adult life expectancy, measured at different temperatures. The
average adult life span, tA(θ), at different temperatures was obtained from previous studies in
literature [7, 18, 91] and is given in Table 4.2, together with the corresponding mortality rates
(1/tA(θ)). This data is used as collocation points for the adult mortality function.

The temperature-dependent mortality function for adult weevils is determined by assuming
linear relationships between adjacent collocation points given in Table 4.2. Adult mortality is
assumed to be independent of density due to adult mobility. The daily adult mortality rate is
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Temperature
-5◦C 0◦C 5◦C 20◦C 25◦C 30◦C 35◦C 40◦C

Average adult life span (in days) 0 [18] 60 [18] 70 [91] 88 [91] 60 [91] 12 [91] 0 [91]
Daily adult mortality rate 1 0.0273 [18] 0.0167 0.0143 0.0114 0.0167 0.0833 1

Table 4.2: Average adult life span and corresponding daily mortality rates, measured at different tem-
peratures.

thus given by

µA(θ) =



1 if θ ≤ −5
−0.19455θ + 0.0273 if − 5 < θ ≤ 0
−0.00212θ + 0.0273 if 0 < θ ≤ 5
−0.00016θ + 0.0175 if 5 < θ ≤ 20
−0.00058θ + 0.0260 if 20 < θ ≤ 25

0.00106θ − 0.0151 if 25 < θ ≤ 30
0.01333θ − 0.3833 if 30 < θ ≤ 35
0.18333θ − 6.3333 if 35 < θ ≤ 40
1 if θ > 40.

The change in the adult mortality rate µA(θ) as a result of changes in temperature is shown in
Figure 4.5.
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Figure 4.5: Daily adult mortality rates measured at different temperatures.

No losses from predators are assumed for the weevil populations. Although instances of birds
attacking adults or fish feeding upon pupae have been observed, weevils are unlikely to have
any specialist natural enemies in their introduced ranges [91]. These sources of mortality may
reduce the effectiveness of weevils in controlling water hyacinth, but these exceptional scenarios
are too unpredictable and variable to model.

4.3.7 Diffusion coefficients

Crank [14] defines the diffusion coefficient as the rate of transfer of the diffusing substance
across a unit area of a section, divided by the space gradient of concentration at the section.
At the time of this study, information regarding the effectiveness with which old larvae and
adult weevils disperse between neighbouring locations was limited. Suitable parameter values
for the diffusion coefficients for the N. eichhorniae weevils and water hyacinth were therefore
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determined by means of reverse engineering1, using the limited information available on the
respective dispersal patterns from previous studies.

1. Old larvae. Wilson [91] observed the probability of third instar larvae moving between
plants to be p = 0.065, assuming larvae move randomly between plants independent of
plant size or nutrients. If plants are not in contact, larvae cannot move between plants [91].
The possible range of movement and the rate of dispersal were not available. The diffusion
coefficient for old larvae, dL2(θ), is thus assumed to be equal to the movement probability
divided by the number of days spent in the old larval stage in order to determine a daily
rate. The old larval diffusion coefficient (in m2/day) is thus temperature dependent and
given by

dL2(θ) =
0.065

tL2(θ)
.

2. Adults. By means of dispersal experiments, Haag [30] determined that even in the absence
of flight muscles, adult weevils are able to move between adjacent plants over a distance
of at least 4 m in a course of one month. Information about adult movement over longer
distances is still lacking. It is therefore assumed that adult weevils travel a maximum
distance of 4 m per month. By means of reverse engineering, a diffusion coefficient of
dA = 0.09 m2/day was obtained. In Figure 4.6, the dispersal of adult weevils released
within a 1 m2 area at the edge of an infested water body at time 0, with dA = 0.09
m2/day, is shown as obtained from the simulation output.
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(a) Initial population.
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(b) Dispersal after one month.

Figure 4.6: Adult weevil dispersal over one month with the derived diffusion coefficient of
dA = 0.09 m2/day.

3. Water hyacinth. As reported in Chapter 2, literature indicates that the water hyacinth
surface area may increase by an average of 8% per day under good growing conditions [37].
A diffusion coefficient of dW = 0.08 m2/day reflects this assumed daily surface expansion.
Figure 4.7 illustrates the population growth of the weed with the obtained diffusion rate
without the influence of the BCAs. The red line indicates the carrying capacity of the
water body. Once the plant density at a certain location reaches the carrying capacity,
local reactions can no longer contribute to the population growth at that location, but the
mat continues to expand sideways through diffusion. The model therefore yields realistic
results for water hyacinth growth.

1The process of analysing an operation, extracting knowledge from it and reproducing something that would
yield a similar outcome [64].
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(c) After four weeks.
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Figure 4.7: Water hyacinth population growth over eight weeks without BCA releases.

4.3.8 Temperature data

Temperature data was obtained from the weather website, WeatherSpark, where reports sum-
marise typical weather for a region based on historical records from 1994 to 2012 [83]. For
simplicity’s sake, a constant mean temperature is assigned to each month. The monthly mean
maximum temperatures and dew point temperatures at the Cape Town International Airport
weather station, which will be used in this study, unless otherwise stated, are given in Fig-
ure 4.8. The dew points will be needed for evaporation rate calculations later in the study.
Since N. eichhorniae weevils only develop at sufficiently high temperatures, only the mean max-
imum temperatures are considered. It is assumed that during each day, weevils will be exposed
to temperatures around the mean maximum temperature of the applicable month for a suffi-
cient period of time to allow for daily weevil development to occur at a rate based on the mean
maximum temperature.
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Figure 4.8: Monthly mean maximum and dew point temperatures for the Cape Town region [83].
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4.3.9 Parameterisation

The parameter values and ranges given in Table 4.3 are assumed in this study.

Parameter Description
Estimated Value

(Range)
References

K carrying capacity of water resource 70 kg/m2 [93]

H
plant density at which herbivore
feeding is reduced by half

0.2 kg/m2 [91]

cmax
L2

max rate of damage caused by old larvae/day 0.0951 kg/L2 [91]
JL1 density-dependent mortality scaling parameter 0.0054 kg/L1 [91]
qmax max oviposition rate of viable eggs/day 4.4 eggs/adult [91]
θmin
h min temperature for water hyacinth growth 8◦C [93]

θopth optimum temperature for water hyacinth growth 30◦C [93]
θmax
h max temperature for water hyacinth growth 40◦C [93]
θmin
q min temperature for oviposition 10◦C [91]
θoptq optimum temperature for oviposition 30◦C [18, 38, 91]
θmax
q max temperature for oviposition 40◦C [91]
θmin
E min temperature for egg development 15◦C [38]

θoptE optimum temperature for egg development 30◦C [91]
θmax
E max temperature for egg development 40◦C [91]
θmin
L1,L2

min temperature for larval development 13.7◦C [91]

θoptL1,L2
optimum temperature for larval development 30◦C [91]

θmax
L1,L2

max temperature for larval development 40◦C [91]
θmin
P min temperature for pupal development 10◦C §4.3.2

θoptP optimum temperature for pupal development 30◦C §4.3.2
θmax
P max temperature for pupal development 40◦C §4.3.2
αmax
E max daily development rate for eggs 0.125 §4.3.2
αmax
L1

max daily development rate for young larvae 0.05 §4.3.2
αmax
L2

max daily development rate for old larvae 0.1 §4.3.2
αmax
P max daily development rate for pupae 0.067 §4.3.2
tE(θ) duration from oviposition to hatching of eggs 8-44 days [91]
tL1(θ) duration of young larval stage 20-47 days [91]
tL2(θ) duration of older larval stage 10-35 days [91]
tP (θ) duration of pupae stage 15-33 days [91]
tmax
E max duration from oviposition to hatching of eggs 44 days [91]
tmax
L1

max duration of young larval stage 47 days [91]
tmax
L2

max duration of older larval stage 35 days [91]
tmax
P max duration of pupae stage 33 days [91]
σmax
E max probability of surviving the egg stage 0.95 [91]
σmax
L1

max probability of surviving the young larval stage 0.6 [91]
σmax
L2

max probability of surviving the older larval stage 0.83 [91]
σmax
P max probability of surviving the pupal stage 0.96 [91]

Table 4.3: Model parameters and their corresponding values assumed in this study.

4.4 Model output parameters

In this section, a cost-benefit function is derived in order to estimate the strengths and weak-
nesses of alternative biological control release strategies. The model output provides the densities
of all the considered populations at every location at every time increment, which may be aver-
aged over space and/or time for each population, as well as the total cost/benefit of each BCA
release strategy. The average plant population size may be used to indicate the extent to which
BCAs succeeded in suppressing weed populations for a specific release strategy, area and its
temperature conditions over a period of time, while the cost-benefit function may be used to
determine the most cost-effective release strategy for the specific scenario.

Stellenbosch University  https://scholar.sun.ac.za



4.4. Model output parameters 47

4.4.1 Release strategy

The decision variables for a release strategy are the number of weevils per release, I, the fre-
quency of releases (defined as the number of days between two consecutive releases), f , the
timing (specified as the starting season of releases) and the distribution of releases. Releases are
assumed to occur once-off or at a constant rate of weekly, two weekly or four weekly over the
period of release. A release may be concentrated at one point of an infested area or distributed
among multiple accessible locations of the water body. An optimal release strategy is defined as
a strategy which maximises the benefit. In order to maximise the total benefit, water hyacinth
infestation has to be minimised together with the cost of releasing BCAs. The optimal strategy
for a specific scenario is obtained by means of simulation.

4.4.2 Cost-benefit function

In order to estimate the cost-effectiveness of a release strategy, a cost-benefit function, which
considers the daily cost of BCA releases and the daily benefit of water saved, is constructed.
Even though there are many other advantages to effective control of water hyacinth, like the
conservation of biodiversity, increased catchment stability, a greater potential for ecotourism and
job creation through control programmes [42], only the gains to be obtained in terms of water are
considered in this study. The amount of water saved is measured in terms of evapotranspiration
from the plants. Significant amounts of water are being lost through water hyacinth infestations
since the evapotranspiration rate from the plant averages about 3.7 (2.6 to 6.6) times that
of evaporation from open water surfaces [54, 71], making it worth the while to investigate the
benefit of the control of the weed in terms of water saving. The value of water saved will increase
as water hyacinth densities are reduced by BCAs. The cost-benefit function will be used during
analyses in the next chapter to determine whether the increase in the value of water saved due
to a faster suppression of water hyacinth population densities as a result of greater amounts of
BCAs being released, is worth the costs pertaining to the rearing and releasing of more BCAs.
The cost/benefit, CB, of a release strategy is given by

CB =
∑
t

∑
D

[daily value of water saved]−
∑
t

∑
D

[daily cost of BCA releases]

=
∑
t

∑
D

[
cwa

(
eW (K)− eW

(
W (ξ, t)

))]
−
∑
t

∑
D

[
cweIX(ξ, t)

]
,

where cwa denotes the value of water per litre, cwe the cost of rearing and releasing a weevil and
eW
(
W (ξ, t)

)
the evapotranspiration rate of water hyacinth at location ξ. When water hyacinth

population density is suppressed below carrying capacity K, water is being saved. In the case
where the total value of water saved is greater than the total cost pertaining to BCA releases,
the release strategy yields an overall benefit. The cost-benefit function may be used to determine
the break-even cost per BCA at which the cost of rearing and releasing BCAs will be justified
by the amount of water saved. Such a break-even cost may serve as a target value for mass
rearing programmes.

The relationship between the plant evapotranspiration rate and the density of the plant is
assumed to be as illustrated in Figure 4.9. When the plant density is equal to 0 kg at location
ξ, the evapotranspiration rate is equal to the evaporation rate of open water at that location.
At low plant densities, an increase in plant density will result in a high rate of increase in
the plant evapotranspiration rate. The rate of increase in the plant evapotranspiration rate
will decrease as the plant approaches carrying capacity at a certain location, where the plant
evapotranspiration rate will be 3.7 times the normal evaporation rate of open water. The
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evapotranspiration rate of water hyacinth at location ξ at time t is, therefore, assumed to

be given by eW
(
W (ξ, t)

)
= en(θ) + (1 − 0.37)en(θ) ln

(
W (ξ, t) + 1

)
, where en(θ) denotes the

evaporation rate of open water at temperature θ.
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Figure 4.9: Plant evapotranspiration rate for different plant densities.

A formula for estimating the evaporation rate of open water surfaces like lakes, requiring only
temperature and location data, was obtained from Linacre [44]. The assumed formula for the
daily evaporation rate (in `/m2) from open water at temperature θ is given by

en(θ) =
700(θ + 0.006h)/(100− l) + 15(θ − θd)

80− θ , (4.23)

where h denotes the elevation (meters) of the considered location, l the latitude (degrees), θ
the mean temperature and θd the mean dew point [44]. When simulations are performed for
areas within the Cape Town region, an elevation of h = 42 m and a latitude of l = 34◦S are
used. The average temperatures given in §4.3.8 are used as the values for parameters θ and θd.
Substituting these parameter values into equation (4.23), the monthly average evaporation rates
for open water for the Cape Town region, given in Table 4.4, were obtained.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Average en(θ) (`/m2/day) 8.35 8.99 8.49 7.22 5.95 5.42 5.05 5.42 5.81 6.49 7.35 8.14

Table 4.4: Monthly average evaporation rates for open water for the Cape Town region.

The costs pertaining to the rearing and release of BCAs are site specific and will depend on the
mass rearing facility involved. For the sake of generality, the model will primarily be used to
provide target values for cwe. When real-world case studies are investigated, the value of cwe
will be determined for a specific scenario. Unit-price estimates for water are normally based
on modified representative value estimates for water usage, assuming that the value of water is
derived from its use [56]. As a rule, the two broadly defined water-use categories are serviced
and unserviced water. The primary distinction is that the cost of the serviced water includes the
treatment and delivery costs in addition to the costs of capturing and storing the water. In a
study where the value of water losses due to invasive alien plants in South Africa was estimated,
Pimentel [56] reported that about 64% of the total surface water supplied to consumers in South
Africa is sold as unserviced water with a marginal value of R0,00014/` in 2011 Rand, while the
remaining 36% is supplied as serviced water which is sold at R0,0052/`. In 2011, Pimentel [56]
took the weighted average value of water as R0,0018/` for South Africa in his ecological and
economic analysis. By means of inflation adjustment2, using the South Africa Consumer Price

2The adjustment of prices to be measured in a constant currency over time by dividing monetary values by a
price index and thereby removing the effect of inflation.

Stellenbosch University  https://scholar.sun.ac.za



4.5. Software implementation 49

Index (CPI), the value was adjusted to 2016 Rand values. Considering this as a proxy value for
water, the value of water saved, cwa, is assumed to be equal to R0,00235/` in 2016 Rand.

4.5 Software implementation

The model was implemented in Matlab 9.0 (R2016a) where the system of delayed PDEs in
a bounded two-dimensional spatial domain is solved using tools from the PDE toolbox and its
built-in functions [70]. Various difficulties encountered during the implementation process are
discussed below.

1. System formulation. Firstly, the equations had to be put in the correct form in order
to be able to use the tools from Matlab’s PDE toolbox to solve the system of PDEs,
since the toolbox does not have the option for solving nonlinear parabolic PDEs. For each
equation, the linear part is put on the left-hand side and the nonlinear part on the right-
hand side of the equation. Similar to an approach used by Howard [35], the nonlinearity
is taken as a driving term from the previous time step and the remaining linear equations
are decoupled so that five single equations are solved rather than a system. Provided the
initial conditions, solution times, boundary conditions, mesh parameters and various PDE
coefficients are supplied, the built-in parabolic function produces the solution to the finite
element method3 formulation of the PDE problem. The parabolic function creates finite
element matrices corresponding to the problem internally and calls ode15s to solve the
resulting system of ordinary differential equations.

2. Time lags. Since the built-in functions do not allow for time lags, history matrices con-
taining the solutions to the system at all previous time increments are constructed to
determine the partial derivative of a function where the solution at a certain time depends
on the values of the function at previous times.

3. Spatial averaging. Spatial averaging for the old larval stage, involving both time delay
and diffusion, had to be implemented. An explicit expression for the spatial averaging
kernel G(ξ, x, tL2(θ)) in equation (4.16) in the bounded two-dimensional case does not
exist. Therefore, the expression for the spatial averaging kernel for the unbounded case
is used in the implementation and the effect of each reflecting boundary (homogeneous
Neumann boundary conditions) is accounted for manually. Following an approach used by
Powell [59], the effect of reflecting boundaries is simulated by creating artificial populations
of dispersers on the outsides of the boundaries, which, when they disperse back toward the
original grid, will add to the original population the individuals that “reflected” from the
boundaries. This is accomplished by first reflecting the data of the original grid over each
boundary, storing the reflections together with the original grid (nine grids in total) in an
artificial grid and considering the new grid as an infinite domain. Spatial averaging is then
performed over the entire new grid. Finally, the original grid is extracted to obtain the
population of interest. The effect of what happens at each boundary of the original grid
is illustrated in Figure 4.10, with a reflecting boundary at 0. The red line resembles the
initial population at time 0, blue the dispersal of the original population after a certain time
period, green the dispersal of the reflected population and magenta the final population
of interest, which is the population after dispersal, taking the reflecting boundaries into

3The finite element method (FEM) is a numerical technique for finding approximate solutions to PDEs when
finding their solutions by analytical means is impossible. FEM subdivides a large problem into smaller, simpler
parts and approximates a solution to the problem by minimising an associated error function [67, 88].
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account. The final population distribution (magenta) is the sum of the original (blue) and
reflected (green) population densities for each location within the original grid.
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Figure 4.10: Illustration of how the effect of a reflecting boundary is accounted for in the model.

The recruitment rate, RL2 (x, t−tL2(θ)), is considered as the initial population for the old
larval stage. The individuals disperse randomly according to the distribution g. Derived
from the one-dimensional unbounded expression provided in [21, 22] and similar to an
expression used by [59], the spatial averaging Gaussian kernel g for the two-dimensional
unbounded case is given by

g(ξ, tL2(θ)) =
1

4πdL2(θ)tL2(θ)
e−(ξ

2
1+ξ

2
2)/4dL2

(θ)tL2
(θ), (4.24)

with parameters as defined in §4.2. The final population distribution after tL2(θ) days is
given by∫ ∞

−∞

∫ ∞
−∞

g(ξ, x, tL2(θ))RL2 (x, t−tL2(θ)) dx = RL2(ξ, t−tL2(θ)) ∗ g(ξ, tL2(θ)), (4.25)

where the latter operation is called the convolution. Algorithm 4.1 describes the spatial
averaging process.

Algorithm 4.1: Spatial averaging for old larval stage

Input : Distribution of old larvae as they enter the stage at an earlier time, mesh coefficients,
development duration of old larval stage, old larval diffusion rate.

Output: Distribution of old larvae ready to mature at current time.

Create two-dimensional a× b grid of geometry;1

Create triangular mesh of grid;2

Set RL2
(i, t−tL2

(θ)) as initial population for each node i of the grid;3

Define expression g given in Eq. (4.24) for spatial averaging kernel over entire mesh;4

Normalise kernel using the built-in trapz function; // g/trapz(trapz(g))5

Perform Fast Fourier Transform of g in 2 dimensions for convolution in Eq. (4.25); // fft2(g)6

Create reflections of the original grid data over each boundary;7

Store the reflected grids together with the original grid in a new 3a× 3b grid in their8

corresponding positions;
Perform dispersal on the entire 3a× 3b grid;9

Extract the original grid’s data;10

4. Frequent releases. Implementing frequent releases for the spatially explicit domain proved
to be more challenging than for the spatially implicit case, especially concerning the loca-
tions of releases. Releases cannot occur at constant points in the spatial domain as after
a period of time the plant may not exist at those points anymore, making it senseless to
continue releases at the original points. To account for this, the function of the variable
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X(ξ, t) in equation (4.14), indicating whether or not a release occurs at location ξ at time
t, is implemented by executing two separate procedures. The first procedure determines
the time increments at which releases are permitted (1 if permitted, 0 otherwise) and
the second procedure validates the locations of releases (1 for a valid location, 0 other-
wise). Concerning the latter procedure, an algorithm was constructed to search for the
closest points to the original points of release where there exist sufficient plant densities
for releases. The search may be conducted either straight in the direction of the centre of
the domain (Figure 4.11(a)), or first to the right of the original points of release before
it proceeds to the next row towards the centre of the domain, where it again will search
to the right and so the process will continue until it reaches the centre of the domain
(Figure 4.11(b)). Figure 4.11 illustrates an example of adult releases at the midpoints of
each of the four edges of a square domain, with arrows indicating the two options for the
directions in which the algorithm may proceed when searching for feasible points of release
at each edge of the geometry once plant densities become insufficient at the original points
of release. Since there was not a significant difference in the outcome between the two
search options, the search straight to the centre of the domain was implemented in the
interest of multiple releases per edge, where BCAs are already distributed along an edge
and releases to the sides of the original positions become redundant.
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(b) First to the right of every point.

Figure 4.11: The two options for the direction in which searches for feasible points of release may be
conducted when frequent releases are involved.

Algorithm 4.2 demonstrates the procedure being followed for obtaining feasible points of
release for the case illustrated in Figure 4.11(a), where BCAs will be released every f days
at each of a four edges of a square domain.

Algorithm 4.2: Frequent releases

Input : Water hyacinth population density, mesh coefficients.
Output: Coordinate points of additions to adult population.

for every edge of the grid do1

for every node in the median column/row perpendicular to the edge do2

Determine plant density;3

if plant density > 0 then4

Allow addition to adult population at the current node;5

Terminate execution of the loop;6

end7

end8

end9

In the main algorithm where the system of PDEs is solved (Algorithm 4.3), a release is
implemented as an addition of I to the right-hand side of the adult weevil population
equation if both the required constraints are met at the considered time and location.

In light of these difficulties, let equations (4.11) – (4.15), governing the change in W (ξ, t), L1(ξ, t),
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L2(ξ, t), A(ξ, t) and SL1(ξ, t), respectively, be the five PDEs being solved in the main procedure
(Algorithm 4.3), assuming parameters and variables as defined in §4.2. Let Un be the history
matrix for the time-dependent results of the nth PDE.

Algorithm 4.3: Solving the system of PDEs

Input : Total running time, starting month, Allee-effect threshold, magnitude of releases,
frequency of releases, points of release, initial conditions.

Output: Solutions to the PDEs at every node for every time increment.

Create two-dimensional grid of geometry;1

Assign boundary conditions given in Eq. (4.19) to edges;2

Create triangular mesh with m nodes;3

Create time vector with M time-stepping increments;4

Assign constant parameter values to K and JL1
used in Eqs. (4.11)–(4.15);5

Call temperature-dependent parameter values for starting month; // TempDep(month,1)6

for i← 1 to m do7

Set initial conditions given in (4.20) for Eqs. (4.11)–(4.15);8

end9

Set applicable initial conditions as first column of each Un;10

for t← 1 to M do11

if time increment a multiple of 30 then // mod(t,30)==012

Update temp. dependent parameter values for new month; // TempDep(month,t)13

end14

if (t−tE(θ)−tL1(θ)−tL2(θ)) > 0 then15

Perform spatial averaging for L2 stage; // Algorithm 4.116

end17

if time increment a multiple of frequency f then // mod(t,f )==018

Allow additions to adult population A at time t (1st procedure for Eq. (4.6));19

end20

Determine coordinates for additions to adult population A (2nd procedure for Eq. (4.6));21

// Algorithm 4.2

for i← 1 to m do22

Determine nonlinear interactions for plant population W using Eq. (4.11);23

if (t−tE(θ)) > 0 then calculate RL1
(i, t) using Eq. (4.7);24

else RL1(i, t) = 0;25

if (t−tE(θ)−tL1(θ)) > 0 & RL1(i, t−tL1(θ)) > 0 then calculate RL2(i, t) using Eq. (4.8);26

else RL2
(i, t) = 0;27

if (t−tE(θ)−tL1
(θ)−tL2

(θ)) > 0 then calculate RP (i, t) using Eq. (4.9);28

else RP (i, t) = 0;29

if (t−tE(θ)) > 0 then determine nonlinear interactions for L1 using Eq. (4.12);30

else nonlinear interactions for L1 = 0;31

if (t−tE(θ)−tL1
(θ)) > 0 then determine nonlinear interactions for L2 using Eq. (4.13);32

else nonlinear interactions for L2 = 0;33

if (t−tE(θ)−tL1
(θ)−tL2

(θ)−tP (θ)) > 0 then determine nonlinear interactions for A using34

Eq. (4.14);
else nonlinear interactions for A = 0;35

if (t−tE(θ)−tL1(θ)) > 0 then determine nonlinear interactions for SL1 using Eq. (4.15);36

else nonlinear interactions for SL1
= 0;37

end38

Define nonlinear interaction terms for all n PDEs at centerpoints of mesh triangles by39

interpolation using the built-in pdeintrp function;
Solve all n PDEs with the built-in parabolic function;40

Set zero as a lower bound for solutions of all n PDEs;41

Append new solutions to each Un for all n PDEs;42

end43
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The water hyacinth and weevil system incorporates variable temperature. Algorithm 4.4 gives
more insight into the process being carried out when the TempDep function is called in lines 6 and
13 of the main algorithm. The temperature-dependent parameters used in system (4.11) – (4.15)
are r(θ), cL2(θ), q(θ), dL2(θ), tE(θ), tL1(θ), tL2(θ), tP (θ), σE(θ), σL1(θ), σL2(θ), σP (θ), µL1(θ),
µL2(θ) and µA(θ). As described in Algorithm 4.4, the values of these parameters are updated
at the beginning of each month when a new average temperature is set.

Algorithm 4.4: Temperature dependent parameters

Input : Starting month, time increments.
Output: Temperature-dependent parameter values, linear interactions and diffusion rates.

Set vector with monthly average temperatures, depending on starting month;1

if first time increment then // t==12

Set average temperature θ for first month;3

Calculate temp. dependent parameter values;4

Calculate temp. dependent linear interactions for Eqs. (4.11)–(4.15);5

Calculate temp. dependent diffusion coefficients for Eqs. (4.11)–(4.15);6

else if time increment a multiple of 30 then // mod(t,30)==07

Update average temperature θ for new month;8

Calculate temp. dependent parameter values;9

Calculate temp. dependent linear interactions for Eqs. (4.11)–(4.15);10

Calculate temp. dependent diffusion coefficients for Eqs. (4.11)–(4.15);11

end12

4.6 Model validation

Model validation may be described as the process of proving that a model yields results within
a sufficient range of accuracy in accordance with the intended application of the model [33, 57].
A series of tests were performed to determine whether changes in certain parameter values yield
the expected outcome. All simulations reported here were performed for an area of 10 m × 10 m,
assumed to be entirely infested with water hyacinth to carrying capacity prior to BCA releases,
unless otherwise stated.

The parameter θ has an effect on the growth rate of the plant, the weevil oviposition rate, damage
rate, survival probabilities, mortality rates and development duration of the weevil stages, as
well as the diffusion rate of the old larval stage. For values of θ close to 30◦C, the plant will grow
at a fast rate, accompanied by a high rate of ovipositing for adult weevils. The development
time in each weevil life stage will be shorter than for values of θ deviating from 30◦C, with
high surviving probabilities and a high old larval daily diffusion rate, resulting in initial weevil
infestation levels increasing faster. Since old larvae will cause maximum damage at this level
of θ, plant populations are expected to decrease fast once old larvae enter the system. Due to
density dependence, this will in time result in faster decreases in weevil populations, yielding
greater oscillations of population densities.

As a result of more BCAs being present to cause damage, an increase in the parameter I is
expected to result in a faster decrease in initial plant density in the short term. For high levels
of I, density dependence in the young larval stage is expected to result in a faster decrease
in weevil population densities compared to lower values of I. In time, decreases in the weevil
populations will result in increases in the plant population densities again.

The parameters a and f have immediate effects on the weevil population densities, while
parameter cmaxL2

immediately affects the water hyacinth population density. An inverse relation-
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ship between a and the weevil population densities over time is expected due to the reduction in
adult reproduction, while a direct relationship between the frequency f of BCA releases and the
adult weevil population densities is expected. An inverse relationship between the maximum
rate of damage caused by weevils, cmaxL2

, and the total water hyacinth population over time is
expected. Any parameter influencing the weevil populations, indirectly influences the water
hyacinth population and vice versa, due to the interaction between the two species.

Diffusion on a homogeneous domain with constant positive diffusion coefficients is expected to
result in a gradual spread over time. Dispersal of the applicable population is expected to occur
faster for higher values of dA, dL2(θ) and dW , respectively.

4.6.1 Model response to changes in θ

In order to test whether the model responds correctly in the short term and the long term to
changes in temperature, simulations were performed with once-off BCA releases of 100 adults
at time 0 at each of the four edges of the considered domain, with temperature held constant at
15◦C, 20◦C, 25◦C, 30◦C and 35◦C over a period of three months and one year, respectively.

The short term model responses are given in Table 4.5, where it may been seen that the total
plant density averaged over time, is lowest at the optimal temperature for weevil development
(30◦C) and the average weevil density reaches a maximum at this temperature, as expected.
Average plant and weevil densities increase and decrease, respectively, at temperatures below or
above the optimum temperature, as expected. It may be noted that the model output succeeds to
accurately reflect the absence of larvae populations at a temperature of 15◦C, since, in practice,
weevil development is severely restricted at such low temperatures. At low temperatures, model
responses correctly indicate that the weed will continue to flourish without any damage being
caused by larvae. Model responses in the long term, documented in Table 4.6, indicate that
the average total plant density will still reach a minimum at the optimal temperature for weevil
development (30◦C) over a longer period of time, but due to weevils being exposed to low plant
densities for a longer period of time, density dependence is expected to result in sub-maximal
weevil population densities at 30◦C, as is reflected by model output. In Table 4.6 it may be
noted that long term persistence of BCAs is only ensured at temperatures of 25◦C and 30◦C.

θ (◦C)
Av. plant density

(kg/100 m2)
Av. young larval density

(/100 m2)
Av. old larval density

(/100 m2)
Av. adult density

(/100 m2)

15 7 000 0 0 212
20 6 988 410 46 218
25 6 666 1 016 350 316
30 6 053 21 909 823 1 469
35 6 959 215 70 55

Table 4.5: Model response to varying temperatures over three months.

θ (◦C)
Av. plant density

(kg/100 m2)
Av. young larval density

(/100 m2)
Av. old larval density

(/100 m2)
Av. adult density

(/100 m2)

15 7 000 0 0 70
20 6 983 101 20 85
25 4 044 22 834 1 202 2 081
30 3 241 18 252 940 1 357
35 6 983 53 18 16

Table 4.6: Model response to varying temperatures over one year.
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4.6.2 Model response to changes in I

In order to test whether the model responds correctly in the short term and the long term to
changes in the number of adult weevils released, simulations were performed with once-off BCA
releases of different magnitudes at time 0 at each of the four edges of the considered domain and
with temperature held constant at 30◦C over a period of three months and one year, respectively.

As expected, average short term plant densities decrease with increases in the number of adult
weevils released at time 0 as a result of more weevils (old larvae) being present to cause damage
and help to suppress weed population densities (see Figure 4.12).
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Figure 4.12: Total plant population densities averaged over three months for varying magnitudes of
once-off adult releases at each of the four edges of a 10 m × 10 m area infested with water hyacinth at
time 0.

Long term model responses to changes in the number of adult weevils released at time 0 are
given in Table 4.7. Due to populations being exposed to density-dependent interactions for a
longer period of time and averages being taken over a heterogeneous domain, the long term plant
and weevil densities responses are more variable, as expected. The model correctly reflects the
hydra effect where an increase in the number of BCAs released does not always result in lower
average plant density in the long term due to a greater impact of density dependence on the
larval stages when more BCAs are released, yielding less damage-causing old larvae to suppress
weed densities. Lower old larvae population densities result in higher plant densities.

I
Av. plant density

(kg/100 m2)
Av. young larval density

(/100 m2)
Av. old larval density

(/100 m2)
Av. adult density

(/100 m2)

20 5 168 9 468 521 1 096
50 2 095 8 852 669 1 295
100 3 241 18 252 940 1 357
200 1 481 15 886 867 2 048
300 990 8 953 823 2 713
400 847 7 333 883 2 150
500 1 014 10 282 996 1 554
600 890 7 319 929 1 581
700 1 687 7 000 1 109 714
800 799 8 002 1 119 2 610
900 1 455 16 208 1 458 1 651

1 000 2 412 8 373 1 281 1 060
1 100 1 010 9 824 1 373 1 641
1 200 992 9 955 1 365 1 792
1 500 951 9 874 1 328 1 718
2 000 1 211 13 600 1 798 1 662

Table 4.7: Model response to varying magnitudes of adult releases over one year.
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4.6.3 Model response to changes in a

In order to test whether the model responds correctly to changes in the Allee-effect threshold,
simulations were performed with threshold values of 3, 4 and 5, respectively, with once-off BCA
releases of 100 adult weevils at time 0 at each of the four edges of the considered domain and
with temperature held constant at 30◦C over a period of one year. As expected, model output
indicates that the average total population densities for all the weevil life stages decrease with an
increase in the Allee-effect threshold, due to a stricter limitation on weevil reproduction. Model
output further indicates that these decreases in weevil population densities result in increases
in the total plant population densities averaged over time, as expected.

a
Av. plant density

(kg/100 m2)
Av. young larval density

(/100 m2)
Av. old larval density

(/100 m2)
Av. adult density

(/100 m2)

3 3 241 18 252 940 1 357
4 3 798 9 589 755 954
5 4 241 7 030 633 719

Table 4.8: Model response to changes in the Allee-effect threshold, a < 6, over a period of one year.
The parameter value used in the model is a = 3.

4.6.4 Model response to changes in cmaxL2

In order to test whether the model responds correctly in the short term and the long term to
changes in the maximum rate of damage caused by old larvae, simulations were performed with
varying damage rates, with once-off BCA releases of 100 adult weevils at time 0 at each of the
four edges of the considered domain and with temperature held constant at 30◦C over a period
of three months and one year, respectively.

Figure 4.13 illustrates how, in the short term, an increase in the old larval damage rate results
in a decrease in the total plant population densities averaged over time, as well as a decrease in
total weevil population densities due to the density-dependent interaction between the plant and
weevil species, as one would expect. The total weevil population densities decrease as host-plant
densities are suppressed faster in the short term.
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(a) Plant population responses.
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(b) Weevils populations responses.

Figure 4.13: Model response to changes in the maximum rate of damage caused by older larvae over a
period of three months. The parameter value used in the model is cmax

L2
= 0.0951.

Long term model responses to changes in the maximum rate of damage caused by older larvae
over a period of one year are given in Table 4.7. Due to populations being exposed to density
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dependent interactions for a longer period of time and averages being taken over a heterogeneous
domain, the long term plant and weevil densities responses are more variable, as expected.

cmax
L2

Av. plant density
(kg/100 m2)

Av. young larval density
(/100 m2)

Av. old larval density
(/100 m2)

Av. adult density
(/100 m2)

0.05 3 108 10 240 816 1 062
0.0951 3 241 18 252 940 1 357
0.15 2 396 10 214 653 938
0.20 2 535 6 271 393 684

Table 4.9: Model response to changes in the maximum rate of damage caused by older larvae over a
period of one year. The parameter value used in the model is cmax

L2
= 0.0951.

4.6.5 Model response to changes in dA and dL2(θ)

In order to test whether the implementation of the weevil dispersal process with constant dif-
fusion coefficients responds correctly, simulations were performed with once-off BCA releases
at time 0 at the centre of the considered domain, with varying diffusion coefficients and with
temperature held constant at 30◦C over a period of three months. Homogeneous initial water
hyacinth population densities at carrying capacity K over the entire 30 m × 30 m domain were
assumed.

As expected, gradual spreading of adult weevils occurred, with faster dispersal over time as
the diffusion coefficient was increased (see Figure 4.14). Similar responses to changes in the
old larval diffusion coefficient occurred, as expected for a population with a constant positive
diffusion coefficient.
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(a) Initial adult population.
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(b) Final densities with dA = 0.09.
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(c) Final densities with dA = 0.19.
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(d) Final densities with dA = 0.29.

Figure 4.14: Adult weevil population densities for different diffusion coefficients over three months.
The parameter used in the model is dA = 0.09.
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4.6.6 Model response to changes in dW

In order to test whether the implementation of the water hyacinth dispersal process responds
correctly, simulations were performed with varying diffusion coefficients, with temperature held
constant at 30◦C over a period of three months and without BCA releases. Initial water hyacinth
population densities were concentrated at the centre of a 30 m × 30 m domain.

As expected, the plant gradually spread out over the domain, with faster dispersal over time as
the diffusion coefficient was increased (see Figure 4.15). The differences between adjacent sites
tended to zero as t increased, as expected for a model with positive diffusion coefficients. The
model thus responds correctly to changes in the water hyacinth diffusion coefficient.
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(b) Final densities with dW = 0.08.
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(c) Final densities with dW = 0.18.
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(d) Final densities with dW = 0.28.

Figure 4.15: Plant population densities for different diffusion coefficients without BCA releases over
three months. The parameter used in the model is dW = 0.08.

4.6.7 Model response to changes in f

In order to test whether the implementation of the frequent BCA release process responds
correctly, simulations were performed with once-off, weekly, two-weekly and four-weekly releases,
respectively, with a magnitude of 100 adult weevils per release at each of the four edges of the
considered 10 m × 10 m domain and with temperature held constant at 30◦C over a period of
one year.

As expected, model responses indicate a decrease in the average plant population density over
time when BCAs are released more often (see Table 4.10). In Figure 4.16, the plant and adult
population densities, subject to once-off (f = 0), low frequency (f = 28) and high frequency
(f = 7) releases over the period of one year, are shown. Water hyacinth populations are sup-
pressed faster the more often adult weevils are released, as expected. The model implementation
succeeds to accurately reflect the regrowth of the weed after a period of time, subsequent to
being suppressed to very low densities over the entire domain. Frequent adult weevil releases
are ceased once the weed is suppressed below a certain threshold and resumed when the weed
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grows back to sufficient densities for releases. As expected, higher frequencies of releases result
in more effective weed suppressions after regrowth.

f (days) Av. plant density (kg/100 m2)

0 3 241
28 1 688
14 1 300
7 1 014

Table 4.10: Model response to changes in the frequency of BCA releases, f , over a period of one year.
The average plant density for a once-off release at time 0 (f = 0) is compared to average plant densities
for four-weekly (f = 28), two-weekly (f = 14) and weekly (f = 7) releases.
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(a) Plant densities with f = 0.

0 100 200 300
0

2000

4000

t (days)

A
d
u
lt

d
en

si
ty

(/
1
0
0
m

2
)

(b) Adult densities with f = 0.
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(c) Plant densities with f = 28.
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(d) Adult densities with f = 28.

0 100 200 300
0

3500

7000

t (days)

P
la
n
t
d
en

si
ty

(k
g
/
1
0
0
m

2
)

(e) Plant densities with f = 7.

0 100 200 300
0

2000

4000

6000

t (days)

A
d
u
lt

d
en

si
ty

(/
1
0
0
m

2
)

(f) Adult densities with f = 7.

Figure 4.16: Plant and adult population densities for once-off (f = 0), low frequency (f = 28) and
high frequency (f = 7) releases over a time period of one year.

4.6.8 Model response to timing of BCA releases

Simulations were performed to investigate the effect on water hyacinth populations in the Cape
Town region when adult weevils are released once-off in summer (December, with an average
high temperature of 25◦C) or winter (June, with an average high temperature of 18◦C), sub-
ject to monthly varying temperatures corresponding with historical weather data of the Cape
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Town region [83]. Once-off releases of 1 000 BCAs at time t = 0 at each of the four edges of a
30 m × 30 m infested water body were simulated. Figures 4.17 and 4.18 illustrate the different
spatial dynamics over two, four and six months for summer and winter releases, respectively,
corresponding with the change in the total plant density over the entire domain, given in Fig-
ure 4.19. In Figure 4.19(a), it may be seen that the delay between subsequent damage-causing
old larval generations gives the weed a chance to grow back (Figure 4.17(b)). Six months later,
the BCAs that were released during summer are exposed to colder winter temperatures (Fig-
ure 4.17(c)), but favourable weather conditions during the first months after releases supported
establishment and BCAs could still contribute towards the suppression of weed populations dur-
ing subsequent colder seasons. Confirming what happens in practice, Figures 4.18 and 4.19(b)
indicate that BCAs may not be able to establish under certain temperature thresholds due to
slower development and higher mortality.

0

40

80

ξ1ξ2

P
la
n
t
d
en

si
ty

(k
g
/
m

2
)

(a) After two months.

0

40

80

ξ1ξ2

(b) After four months.

0

40

80

ξ1ξ2

(c) After six months.

Figure 4.17: Water hyacinth population dynamics after once-off BCA releases in December.
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Figure 4.18: Water hyacinth population dynamics after once-off BCA releases in June.
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(a) Summer release.
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(b) Winter release.

Figure 4.19: The change in the total plant density over a time period of six months after once-off
releases of 1 000 BCAs at four edges in December (a) and June (b), respectively.
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4.6.9 Comparison with real-world data

At the time of this study, information regarding the detailed impact of real-life BCA releases
in infested water hyacinth areas, especially the N. eichhorniae weevils as BCAs, has not been
thoroughly recorded. Validating the model using real-world data was therefore quite challenging.
The accuracy of the model presented in this study is evaluated by means of comparing the model
output to the limited data available from the real-life BCA release scenario which took place at
the Mkhadzi Spruit in the Kruger National Park in the Limpopo province of South Africa at
the end of 2008 (geographical coordinates: 23◦50’21”S 31◦38’14”E).

The Mkhadzi Spruit forms part of the Engelhard Dam and is an example of a site where bio-
logical control of water hyacinth has been successful [13]. The Mkhadzi Spruit is classified as a
medium nutrient and warm site, where BCAs are able to abound and cause significant damage
to weeds. The demarcated region of interest is estimated to be an approximated surface area
of 100 m × 50 m. The site was covered with water hyacinth prior to releases of a total of
20 000 water hyacinth BCAs, namely Neochetina bruchi Hustache (Coleoptera: Curculionidae)
and Eccritotarsus catarinensis Carvalho (Heteroptera: Miridae), on 27 October 2008. Based on
the available information, it is assumed that BCAs were released along one of the edges of the
domain. After 72 days, openings in the water hyacinth mat confirmed the impact of the BCAs
on the weed [13]. No information on whether the area was eventually completely cleared from
water hyacinth or not, could be found.

A simulation of a once-off release of a total of 20 000 N. eichhorniae adult weevils distributed
along one of the edges of a 100 m × 50 m domain (see Figure 4.20), with initial water hyacinth
infestations at carrying capacity of the water body (70 kg/m2), was performed over a time period
of 72 days. Historical weather data for the year 2008 – 2009 for the Limpopo region was used
to obtain the average monthly high temperatures of 27◦C, 26◦C, 26◦C and 27◦C for the months
of October, November, December and January, respectively [83].
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Figure 4.20: Distribution of adult releases at time 0 for the simulation of the Mkhadzi Spruit release
scenario.

Since the exact surface area of the Mkhadzi Spruit on which the BCAs were released had to be
estimated and different BCAs, which most probably possess different biological traits, were re-
leased, results are expected to differ somewhat. The BCAs may, for example, have different
development rates, damage rates or movement behaviour from the N. eichhorniae weevils.
Nevertheless, the simulation output reflects a realistic decrease in the total plant population
densities over the considered period, as shown in Figure 4.21, as well as areas where the weed
has been driven to extinction, as shown in Figure 4.22(c), reflecting the openings in the water
hyacinth mat at the end of the 72-day investigation at the Mkhadzi Spruit. The model is there-
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fore considered valid to describe the water hyacinth and weevil interactions in a temporally and
spatially variable environment.
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Figure 4.21: Total plant population densities of the simulation over a period of 72 days.

Simulation output of the water hyacinth density at time t = 0, t = 40 and t = 72 for the
Mkhadzi Spruit scenario is given in Figure 4.22. Given the applicable temperatures, old larvae
emerged 40 days after adult releases, starting to suppress plant density at their locations, as
shown in Figure 4.22(b). Simulation results indicate that, after 72 days, the N. eichhorniae
weevils succeeded to suppress plant density to extinction at areas surrounding the initial release
sites, as shown in Figure 4.22(c).
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(a) Initial plant density.
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(b) Plant density after 40 days.
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(c) Plant density after 72 days.

Figure 4.22: Simulation of the suppression of water hyacinth population density at the Mkhadzi Spruit
after a release of 20 000 N. eichhorniae weevils distributed along one edge of the infested domain.
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4.7 Chapter summary

In this chapter, a reaction-diffusion model for a temporally and spatially variable environment,
consisting of a system of coupled delay PDEs, has been developed to mathematically describe
the spatio-temporal dynamics of water hyacinth populations and the interacting populations
of the various life stages of the N. eichhorniae weevil as BCA on an isolated and bounded
two-dimensional spatial domain. A number of simplifying model assumptions were discussed
in §4.1, followed by the development and mathematical formulation of the reaction-diffusion
model in §4.2. In §4.2.1, as a first step towards the modelling of the spatial dynamics of
the water hyacinth and weevil system, diffusion terms were added to the applicable ordinary
DDEs in the temporal model presented in previous studies, with the additions of an Allee-
effect and a term allowing for frequent releases of adult weevils, a more detailed temperature
dependence, as well as slight changes to the modelling of the through stage survival probabilities.
Limitations of this modelling approach motivated the development of the final model formulated
in §4.2.2, with a different approach towards the modelling of the recruitment and maturation
terms for the weevil population and the derivation of a more accurate expression for the old
larval maturation term, which includes spatial averaging. Subsequently, detailed descriptions
of parameters incorporated into the model, namely the plant growth rate, durations of the
weevil development stages, oviposition rate, damage rate, survival probabilities, mortality rates
and temperature were provided in §4.3 together with the derivation of the respective diffusion
coefficients. Model output parameters were discussed in §4.4 together with the derivation of a
cost-benefit function which may be used to determine the most cost-effective release strategy
for a specific scenario.

An elaborate description of the implementation of the model in Matlab 9.0 has been given
in §4.5 together with discussions on difficulties encountered during this process, regarding the
appropriate system formulation, the incorporation of time lags, spatial averaging for a bounded
two-dimensional spatial domain and frequent releases of BCAs.

Finally, numerous simulations were performed in order to validate the model output by means
of testing various model responses and comparing the model output to real-world observations
in §4.6. The model responded as expected to changes in θ, I, a, cmaxL2

, dA, dL2(θ), dW , f
and the timing of BCA releases. Model simulation output realistically corresponded with field
observations from a real-life BCA release scenario which took place at the Mkhadzi Spruit
at the end of 2008. The spatially explicit model was therefore deemed valid to be used to
provide guidance towards suitable BCA release strategies in a temporally and spatially variable
environment.
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In this chapter, an investigation into the cost-effectiveness of different water hyacinth biological
control release strategies is presented in §5.1 for both short term (§5.1.1) and long term (§5.1.2)
scenarios, after which a sensitivity analysis is performed in §5.2 in order to ascertain how robust
the model output is to changes in parameter values.

5.1 Numerical solutions

The cost-effective control of water hyacinth was analysed for different release strategies by means
of simulation runs in Matlab. Release strategies for the short term (six months) and the long
term (two years) were examined. The effect of commencing with biological control in different
seasons of the year was investigated. For each starting season, the minimum number of BCAs
required to reduce the total water hyacinth biomass (referred to as density) to 50% of the original
plant population, in the short term, and 5% in the long term, for each release frequency and
distribution, were obtained. Since the extent of damage caused by BCAs is not fully reflected
when only the percentage surface area covered with weed is taken into account, the change in
plant density was considered as the primary indication of the impact of BCAs on water hyacinth
in this study. BCAs may cause much damage to the plant before open water patches appear.
The total monetary value of water saved for each release strategy was reported. These values
were used to determine the break-even cost per BCA, or the existence thereof, at which the cost
of rearing and releasing BCAs in a mass rearing programme would be justified by the amount of
water saved. Optimal release strategies for the short term and the long term were determined
by comparing the break-even costs obtained at the optimal magnitudes of BCAs for the different
release frequencies and distributions for each starting season. Short-term results were used to
determine which long-term strategies should be investigated. All simulations were performed
for a 30 m × 30 m isolated domain over a time period of either six months or two years, with
an initial water hyacinth population density at carrying capacity of the water body (70 kg/m2)
over the entire domain. BCAs were assumed absent prior to releases for all simulations. The
domain was assumed to be located in the Cape Town region, assuming parameter values as given
in Chapter 4.

65
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For all simulations, releases were assumed to occur at either one, two or all four edges of the
domain, with possible release distributions of every 15 m (one release per 30 m), every 10 m
(two releases per 30 m) or every 7.5 m (three releases per 30 m) along each of the considered
edges. The nine release distribution options are illustrated in Figures 5.1 – 5.3. In real-world
scenarios, the accessibility to edges of an infested domain may limit the options of possible
release distributions. If, for example, a certain site is only accessible from one of its edges, the
researchers will have to determine the best release strategy for one-edge releases. Because of the
nature of weed infestations, biological control practitioners will consider long-term solutions in
real-life release scenarios rather than short-term strategies. Short-term release strategies were
merely investigated for analysis purposes.
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(c) One edge, every 7.5 m.

Figure 5.1: Distribution options for releases occurring at one edge of the domain only.
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(a) Two edges, every 15 m.
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(b) Two edges, every 10 m.
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(c) Two edges, every 7.5 m.

Figure 5.2: Distribution options for releases occurring at two edges of the domain.
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(a) Four edges, every 15 m.
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(b) Four edges, every 10 m.
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(c) Four edges, every 7.5 m.

Figure 5.3: Distribution options for releases occurring at four edges of the domain.
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5.1.1 Short-term release strategies

The effect on the control of water hyacinth and the cost/benefit involved over a six-month time
period for biological control commencing in summer or winter was investigated. For each starting
season, the minimum number of BCAs required to reduce water hyacinth density to 50% of its
original density within six months for each release frequency and distribution was obtained. At
each release opportunity, which was determined by the release frequency, there was a maximum
number of BCAs available to be released according to different distributions. Based on mass
rearing data from the Invasive Species Unit in Cape Town [52, 60], a realistic maximum number
of available BCAs of 48 000 per four-week time period was assumed to reflect possible resource
constraints. Since N. eichhorniae adults live an average of only 58 days and lay most of their
eggs during the early stages of their lives, it was assumed that all reared BCAs will be released
within the four-week time period in order to maximise the efficiency of biological control. Since
it is assumed that BCAs will not be kept at mass rearing facilities for longer than four weeks,
release frequencies of less than every four weeks were not considered.

Summer

For the assumed parameter values, the total value of water loss through plant evapotranspiration
would be R8 400 for the considered 30 m × 30 m water body covered with water hyacinth for
the six-month time period from December (the first month of summer) to May, if no BCAs
were released. The minimum number, I, of BCAs per release required to reduce water hyacinth
population density to 50% within the six-month time period from December to May, for each
frequency of once-off (f = 0), weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28)
releases, and for each possible release distribution, is given in Tables 5.1 – 5.4, along with the
monetary value of water saved due to the control of the weed for each biological control release
strategy. In the case where, given a certain release strategy, the assumed maximum number of
available BCAs was not sufficient to suppress water hyacinth population density to 50% of the
original density within six months, the best suppression that could be obtained for that release
strategy, subject to the constraints, is given.

It may be noted that for all release frequencies, none of the releases performed at only one edge
of the domain, using the maximum number of available BCAs, were sufficient to suppress weed
density to 50% in the short term (see Tables 5.1 – 5.4). For all frequencies, releases at at least
two edges were required to achieve such suppression within six months (see Tables 5.1 – 5.4).
However, in all cases where one-edge releases were more distributed along the edge, greater
suppression was obtained, even if it did not reach 50% of the original weed density within the
considered amount of time.

1. With once-off releases, it would not be possible to release more BCAs than the maximum
number of BCAs that can be produced within one month. Provided the assumed resource
constraints, a maximum of 48 000 BCAs would therefore be available for any once-off
release strategy. In Table 5.1, it may be noted that where once-off releases were more
distributed for two-edge and four-edge releases, less BCAs were required to achieve 50%
control of the weed in the short term. From a water conservation point of view, for
the assumed parameter values, a distribution of releases at two edges with releases every
7.5 m appeared to save the most water for once-off releases in summer, while succeeding
to suppress the weed to 50% within six months (see Table 5.1). A distribution of releases
at four edges with releases every 7.5 m, however, appeared to yield the most reachable
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break-even cost per BCA for once-off releases in summer, requiring the smallest number of
BCAs to successfully suppress the weed to 50% of its original density within six months.

Distribution
Min. I

per release
Total released Saved

Final
plant density

Break-even
cost/BCA

1 edge, every 15 m 48 000 48 000 R460 79% R0,01
1 edge, every 10 m 24 000 48 000 R746 71% R0,02
1 edge, every 7.5 m 16 000 48 000 R902 68% R0,02

2 edges, every 15 m 24 000 48 000 R867 63% R0,02
2 edges, every 10 m 11 600 46 400 R1 370 50% R0,03
2 edges, every 7.5 m 4 800 28 800 R1 433 50% R0,05

4 edges, every 15 m 7 500 30 000 R1 169 50% R0,04
4 edges, every 10 m 890 7 120 R680 50% R0,10
4 edges, every 7.5 m 240 2 880 R391 50% R0,14

Table 5.1: For once-off releases in summer, the minimum number, I, of BCAs per release required to
reduce water hyacinth density to 50%, or as low as possible, and the value of water saved using that
strategy, for each release distribution over the six-month time period from December to May.

As illustration, Figure 5.4(a) shows how the minimum number, I, of BCAs per release
required to reduce water hyacinth population density to 50% within the six-month time
period from December to May for once-off releases at four edges of the domain with
releases every 7.5 m was determined. The same procedure was followed to determine the
minimum required number of BCAs for all other release frequencies and distributions. It
may be noted that a much larger increase in the number of BCAs was required to achieve
a lower weed suppression for the interval of 50% to 40% than for 60% to 50% in the short
term, indicating that a suppression of 50% was a good short-term benchmark. For the
minimum required number of BCAs per once-off release at four edges with releases every
7.5 m, determined in Figure 5.4(a), the change in the percentage plant density over the
six-month time period from December to May is shown in Figure 5.4(b). After the first
generation of BCAs, there was a delay before the second generation of damage-causing old
larvae emerged, giving the weed a chance to grow back. Just before the 120-day mark,
the second generation of old larvae emerged, continuing the suppression of weed density.
After six months, the 240 BCAs that were released at each of the twelve locations at time
t = 0 succeeded to decrease plant density from 100% to 50%.
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Figure 5.4: (a) The percentage plant density at six month after the release of different numbers of
BCAs for once-off releases in the first month of summer at four edges of the domain with releases every
7.5 m. (b) The change in the percentage plant density over a period of six months after once-off releases
of 240 BCAs each at four edges of the domain with releases every 7.5 m.
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2. For weekly releases, the maximum number of available BCAs per release opportunity was
limited to 12 000 BCAs (48 000/4) per weekly release. In Table 5.2, it may be seen that,
for certain release distributions, when only the benefit of saved water was considered, a
break-even cost per BCA did not exist for weekly releases in summer, when attempting
to suppress water hyacinth density to 50% within the six-month time period. For those
strategies, no cost pertaining to BCA releases would be justified by the amount of water
saved, resulting in an overall loss in the short term. Only the last four release distributions
reported in Table 5.2 were able to suppress weed density to 50% of its original density
within six months. Even with frequent releases, none of the releases performed at only
one edge succeeded in suppressing the weed to 50% within the considered period of time.
Weekly releases appeared to have a smaller effect on the weed in the short term compared
to bulky once-off releases. This indicates that, in the short term, a large initial impact on
the weed may be more effective than smaller continuous impacts from BCAs. Similar to
once-off releases, a distribution of releases at two edges with releases every 7.5 m appeared
to save the most water for weekly releases in summer, while succeeding to suppress the
weed to 50% of its original density within six months. For the considered domain and the
assumed parameter values, only release distributions at four edges appeared to be able to
break even for weekly releases in summer, but the best break-even cost was lower than the
best break-even cost for once-off releases, making it more difficult to attain.

Distribution
Min. I

per release
Total released

per opportunity
Grand
total

Saved
Final

plant density
Break-even
cost/BCA

1 edge, every 15 m 12 000 12 000 312 000 R136 84% None
1 edge, every 10 m 6 000 12 000 312 000 R348 73% None
1 edge, every 7.5 m 4 000 12 000 312 000 R494 70% None

2 edges, every 15 m 6 000 12 000 312 000 R400 67% None
2 edges, every 10 m 3 000 12 000 312 000 R783 53% None
2 edges, every 7.5 m 1 330 7 980 207 480 R993 50% None

4 edges, every 15 m 1 350 5 400 140 400 R823 50% R0,01
4 edges, every 10 m 235 1 880 48 880 R720 50% R0,01
4 edges, every 7.5 m 150 1 800 46 800 R850 50% R0,02

Table 5.2: For weekly releases commencing in summer, the minimum number, I, of BCAs per release
required to reduce plant density to 50%, or as low as possible, and the value of water saved using that
strategy, for each release distribution over the six-month time period from December to May.

3. For releases performed every second week, the available 48 000 BCAs at the beginning of
each four-week cycle were split in half, yielding a maximum of 24 000 available BCAs every
two weeks. The outcome of different release distributions of these 24 000 BCAs at each
release opportunity is given in Table 5.3, where it may be seen that, for two-weekly releases
also, none of the releases performed at only one edge of the domain succeeded in suppressing
the weed to 50% of its original density within the six month period. Releases of BCAs at
two edges, with releases at least every 10 m, or four edges, with any release distribution,
were required to achieve such suppression within six months. For the assumed parameter
values, similar to once-off and weekly releases commencing in summer, a distribution of
releases at two edges with releases every 7.5 m appeared to save the most water for releases
performed every second week, while succeeding to suppress the weed to 50% of its original
density within six months. Again, for some release strategies, no cost pertaining to BCA
releases would be justified by the amount of water saved in the short term. A distribution
of releases at four edges with releases every 10 m or 7.5 m yielded the most reachable
break-even cost per BCA for two-weekly releases in summer, requiring the smallest total
number of BCAs to successfully suppress the weed to 50% within six months. The best
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break-even cost for two-weekly releases was the same as for weekly releases, but still much
lower than the best break-even cost for once-off releases, making it more difficult to achieve.

Distribution
Min. I

per release
Total released

per opportunity
Grand
total

Saved
Final

plant density
Break-even
cost/BCA

1 edge, every 15 m 24 000 24 000 312 000 R367 76% None
1 edge, every 10 m 12 000 24 000 312 000 R431 72% None
1 edge, every 7.5 m 8 000 24 000 312 000 R632 70% None

2 edges, every 15 m 12 000 24 000 312 000 R510 65% None
2 edges, every 10 m 5 400 21 600 280 800 R980 50% None
2 edges, every 7.5 m 1 650 9 900 128 700 R1 105 50% R0,01

4 edges, every 15 m 2 150 8 600 111 800 R881 50% R0,01
4 edges, every 10 m 400 3 200 41 600 R741 50% R0,02
4 edges, every 7.5 m 200 2 400 31 200 R724 50% R0,02

Table 5.3: For two-weekly releases commencing in summer, the minimum number, I, of BCAs per
release required to reduce plant density to 50%, or as low as possible, and the value of water saved using
that strategy, for each release distribution over the six-month time period from December to May.

4. For releases performed every fourth week, a maximum of 48 000 BCAs was available at
the beginning of each four-week cycle. The outcome of different release distributions of
these 48 000 BCAs at each release opportunity is given in Table 5.4. Releases performed
at only one edge of the domain still did not succeed in suppressing the weed to 50% of its
original density within the six month period, but did yield the best suppressions of the
weed out of all the considered release frequencies in the short term. Similar to two-weekly
releases, releases of BCAs at two edges, with releases at least every 10 m, or four edges,
with any release distribution, were required to achieve 50% suppression within six months.
For the assumed parameter values, similar to all considered release frequencies for summer,
a distribution of releases at two edges with releases every 7.5 m appeared to save the most
water for releases performed every fourth week, while succeeding to suppress the weed to
50% of its original density within six months. Again, for some release distributions, no cost
pertaining to BCA releases would be justified by the amount of water saved in the short
term. A distribution of releases at four edges with releases every 7.5 m yielded the best
break-even cost per BCA for four-weekly releases in summer, requiring the smallest total
number of BCAs to successfully suppress the weed to 50% of its original density within
six months. The best break-even cost for four-weekly releases was slightly higher than for
weekly and two-weekly releases, but still lower than the best break-even cost for once-off
releases, making it more difficult to achieve.

A comparison in terms of the change in the percentage plant density over six months
for four-weekly releases of the minimum required number of BCAs between releases at
two edges and four edges, respectively, both with releases every 7.5 m, may be seen in
Figure 5.5. Both release distributions succeeded to achieve 50% control of the weed within
six months, but because releases at two edges had a steady gradual decrease in plant
density, with plant density being lower during the time period leading up to the six months
mark, versus a sharp decrease at the end of the time period with releases at four edges,
more water was saved for the release distribution at two edges with releases every 7.5 m.
The better average suppression obtained with two-edge releases over the six month time
period may be ascribed to the larger number of BCAs being released per opportunity. The
release distribution at four edges with releases every 7.5 m, however, yielded a slightly
better break-even cost per BCA as only a quarter of the BCAs were needed to achieve the
same control after six months compared to the two-edge strategy.
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Distribution
Min. I

per release
Total released

per opportunity
Grand
total

Saved
Final

plant density
Break-even
cost/BCA

1 edge, every 15 m 48 000 48 000 336 000 R421 74% None
1 edge, every 10 m 24 000 48 000 336 000 R522 68% None
1 edge, every 7.5 m 16 000 48 000 336 000 R820 65% None

2 edges, every 15 m 24000 48 000 336 000 R737 59% None
2 edges, every 10 m 6 000 24 000 168 000 R1 024 50% R0,01
2 edges, every 7.5 m 2 000 12 000 84 000 R1 094 50% R0,01

4 edges, every 15 m 3 450 13 800 96 600 R920 50% R0,01
4 edges, every 10 m 600 4 800 33 600 R693 50% R0,02
4 edges, every 7.5 m 260 3 120 21 840 R567 50% R0,03

Table 5.4: For four-weekly releases commencing in summer, the minimum number, I, of BCAs per
release required to reduce plant density to 50%, or as low as possible, and the value of water saved using
that strategy, for each release distribution over the six-month time period from December to May.
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Figure 5.5: The change in the percentage plant density over a period of six months after four-weekly
releases of the minimum required number of BCAs for releases at two edges and four edges, respectively,
both with releases every 7.5 m.

Winter

For the assumed parameter values, the total value of water loss through plant evapotranspiration
would be R6 335,40 for the considered 30 m × 30 m water body covered with water hyacinth for
the six-month time period from June (the first month of winter) to November, if no BCAs were
released. For releases commencing in winter, simulation results indicated that no release strategy
for any release frequency or distribution, using the assumed maximum number of available BCAs,
succeeded to suppress the weed density to 70% in the short term, let alone 50%. This may be
explained by the fact that BCA development is much slower and mortality rates much higher
when exposed to low temperatures, resulting in a delayed impact on the plant and less BCAs to
cause damage to the weed. The best suppressions that could be obtained within the six-month
time period from June to November, using the maximum number of available BCAs, for once-off
(f = 0), weekly (f = 7), two weekly (f = 14) and four weekly (f = 28) releases, and for each
possible release distribution, are given in Tables 5.5 – 5.8, along with the monetary value of
water saved due to the control of the weed for each biological control release strategy. With
once-off releases in winter, the lowest plant density was not always reached at the end of the
six-month time period. In some cases, the oscillation reached a low point at the five-month mark
due to the development cycle of the BCAs. For those cases, the lowest plant density percentage
is given along with the final plant density percentage, where in all other cases, the weed density
reached its lowest point for the considered period of time at the final time increment.

In Tables 5.5 – 5.8, it may be noted that, whether releases were performed at one, two or four
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edges of the domain, in all cases where releases were more distributed along the edges, greater
suppression was obtained for all release frequencies. Furthermore, model output suggested that,
for all winter release strategies, when only the benefit of water saved is considered, a break-even
cost for BCAs did not exist for any release frequency when attempting to suppress plant density
as low as possible within six months. Therefore, no cost pertaining to BCA releases in winter
would be justified by the amount of water saved, resulting in a loss in the short term.

Distribution
I per

release
Total

released
Saved

Final
plant density

Lowest
plant density

Break-even
cost/BCA

1 edge, every 15 m 48 000 48 000 R48 94% 94% (at 6 months) None
1 edge, every 10 m 24 000 48 000 R77 92% 92% (at 5 months) None
1 edge, every 7.5 m 16 000 48 000 R108 91% 89% (at 5 months) None

2 edges, every 15 m 24 000 48 000 R82 92% 91% (at 5 months) None
2 edges, every 10 m 12 000 48 000 R129 89% 86% (at 5 months) None
2 edges, every 7.5 m 8 000 48 000 R168 86% 82% (at 5 months) None

4 edges, every 15 m 12 000 48 000 R131 89% 85% (at 5 months) None
4 edges, every 10 m 6 000 48 000 R169 85% 79% (at 5 months) None
4 edges, every 7.5 m 4 000 48 000 R182 82% 76% (at 5 months) None

Table 5.5: For once-off (f = 0) releases in winter, the best suppressions that could be obtained, using
the maximum number of available BCAs, and the value of water saved, for each release distribution over
the six-month time period from June to November.

Distribution
I per

release
Total released

per opportunity
Grand
total

Saved
Final

plant density
Break-even
cost/BCA

1 edge, every 15 m 12 000 12 000 312 000 R4 99% None
1 edge, every 10 m 6 000 12 000 312 000 R8 98% None
1 edge, every 7.5 m 4 000 12 000 312 000 R10 98% None

2 edges, every 15 m 6 000 12 000 312 000 R9 97% None
2 edges, every 10 m 3 000 12 000 312 000 R17 96% None
2 edges, every 7.5 m 2 000 12 000 312 000 R21 95% None

4 edges, every 15 m 3 000 12 000 312 000 R19 95% None
4 edges, every 10 m 1 500 12 000 312 000 R33 92% None
4 edges, every 7.5 m 1 000 12 000 312 000 R39 92% None

Table 5.6: For weekly (f = 7) releases commencing in winter, the best suppressions that could be
obtained, using the maximum number of available BCAs, and the value of water saved, for each release
distribution over the six-month time period from June to November.

Distribution
I per

release
Total released

per opportunity
Grand
total

Saved
Final

plant density
Break-even
cost/BCA

1 edge, every 15 m 24 000 24 000 312 000 R5 99% None
1 edge, every 10 m 12 000 24 000 312 000 R10 98% None
1 edge, every 7.5 m 8 000 24 000 312 000 R13 98% None

2 edges, every 15 m 12 000 24 000 312 000 R11 97% None
2 edges, every 10 m 6 000 24 000 312 000 R21 96% None
2 edges, every 7.5 m 4 000 24 000 312 000 R26 95% None

4 edges, every 15 m 6 000 24 000 312 000 R23 94% None
4 edges, every 10 m 3 000 24 000 312 000 R39 92% None
4 edges, every 7.5 m 2 000 24 000 312 000 R46 92% None

Table 5.7: For two-weekly (f = 14) releases commencing in winter, the best suppressions that could be
obtained, using the maximum number of available BCAs, and the value of water saved, for each release
distribution over the six-month time period from June to November.
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Distribution
I per

release
Total released

per opportunity
Grand
total

Saved
Final

plant density
Break-even
cost/BCA

1 edge, every 15 m 48 000 48 000 336 000 R7 98% None
1 edge, every 10 m 24 000 48 000 336 000 R19 98% None
1 edge, every 7.5 m 16 000 48 000 336 000 R23 97% None

2 edges, every 15 m 24000 48 000 336 000 R18 97% None
2 edges, every 10 m 12 000 48 000 336 000 R34 95% None
2 edges, every 7.5 m 8 000 48 000 336 000 R41 95% None

4 edges, every 15 m 12 000 48 000 336 000 R36 94% None
4 edges, every 10 m 6 000 48 000 336 000 R56 91% None
4 edges, every 7.5 m 4 000 48 000 336 000 R65 91% None

Table 5.8: For four-weekly (f = 28) releases commencing in winter, the best suppressions that could be
obtained, using the maximum number of available BCAs, and the value of water saved, for each release
distribution over the six-month time period from June to November.

In Figure 5.6, the change in the percentage plant density and old larval density over the six-
month time period from June to November for once-off and four-weekly releases is compared for
one-edge, two-edge and four-edge release distributions, respectively. Only the best distribution
for each option is shown, which was releases every 7.5 m for one-edge, two-edge and four-edge
releases for both the considered release frequencies. In Table 5.8 it may be noted that for
four-weekly releases (f = 28), the total number of BCAs that were released at time t = 0 for
once-off releases in winter, were released at the beginning of every four-week cycle. One would
thus expect four-weekly releases to result in a greater suppression of weed densities than once-off
releases, but due to a greater impact of density dependence on the larval stages when more BCAs
were released, less damage-causing old larvae developed to suppress weed densities. Figure 5.6
shows that this is the case for one-edge, two-edge and four-edge release distributions. Lower old
larvae population densities therefore resulted in higher plant densities for four-weekly releases,
yielding a lower value of water saved than once-off releases in the short term. It is important
to investigate the long-term effect of once-off winter releases since at the end of the considered
six-month time period, water hyacinth densities were increasing again, while the plant densities
subject to four-weekly releases started to form a downward slope (see Figure 5.6). More frequent
releases may play an important role in the long term.

Optimal short-term release strategies

Since it was not possible to break-even with costs pertaining to the rearing and release of BCAs
for winter releases in the short term, only the process of determining the best break-even cost
per BCA for summer releases is discussed. The accessibility to the edges of an infested domain
may limit the options of release distributions. Therefore, the most cost-effective short-term
biological control release strategy for each case of having access to one, two or all four edges is
discussed next, with a summary of the suggestions given in Table 5.9.

1. One-edge releases. For each release frequency of once-off, weekly, two-weekly and four-
weekly releases at one edge of the domain, a distribution of releases every 7.5 m resulted
in the lowest final plant density and yielded the highest value of water saved, even though
one-edge release strategies did not succeed to suppress weed density to 50% in the short
term. Since all one-edge release strategies for a specific release frequency used the same
number of BCAs, the most cost-effective strategy for each frequency was the one that
saved the most water during the six-month time period, even though it still resulted in an
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(b) One-edge releases.
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(c) Two-edge releases.

0 30 60 90 120 150 180
0

4000

8000

12000

16000

t (days)

O
ld

la
rv
a
l
d
en

si
ty

(/
9
0
0
m

2
)

f = 0

f = 28

(d) Two-edge releases.
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(e) Four-edge releases.
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(f) Four-edge releases.

Figure 5.6: Comparisons of the change in percentage plant density and old larval density over the six-
month time period from June to November between once-off (f = 0) and four-weekly (f = 28) releases,
for one-edge, two-edge and four-edge release distributions, respectively.

overall loss. For short-term summer releases at only one edge of the domain, only once-off
releases yielded possible break-even points for costs pertaining to BCA releases. All other
frequencies for one-edge releases resulted in a definite loss and were less cost-effective.
Provided field workers had access to only one edge of the considered infested domain, the
optimal short-term summer release strategy was to release once-off with releases every
7.5 m along the edge, with 16 000 BCAs per point, suppressing water hyacinth density to
68% of its original density within the six-month time period.

2. Two-edge releases. In order to determine the optimal, most cost-effective short-term sum-
mer release strategy for the case where field workers had access to two edges of the consid-
ered infested domain, a comparison of the best break-even cost per BCA for each release
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frequency for releases at two edges is shown in Figure 5.7. It may be seen that once-off re-
leases outperformed other frequencies by yielding the highest break-even cost for two-edge
releases. Provided field workers had access to two edges of the considered infested domain,
they had the option of releasing at either one or two edges. Assuming the main priority
was to suppress the weed to 50% of its original density within the given amount of time,
the one-edge release option was disqualified. In this case, the optimal short-term summer
release strategy was to release once off with releases every 7.5 m along both edges, with
4 800 BCAs per point, suppressing water hyacinth density to 50% of its original density
within the six-month time period.
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Figure 5.7: Comparison of the best break-even cost per BCA for short-term summer releases at two or
four edges for different release frequencies.

3. Four-edge releases. In order to determine the optimal, most cost-effective short-term
summer release strategy for the case where field workers had access to four edges of the
considered infested domain, a comparison of the best break-even cost per BCA for each
release frequency for releases at four edges is shown in Figure 5.7. It may be seen that
once-off releases again outperformed other frequencies by yielding the highest break-even
cost for four-edge releases. Provided field workers had access to all four edges of the
considered infested domain and attempted to suppress water hyacinth density to 50% of
its original density within the six-month time period, they had the option of releasing at
either two or four edges. From Figure 5.7 it may be concluded that the optimal short-term
summer release strategy in this case was to release once off with releases every 7.5 m along
the four edges, with 240 BCAs per point, to successfully suppress water hyacinth density
to 50% within the given amount of time.

In light of these investigations, the suggested most cost-effective short-term release strategies,
consisting of a release frequency, distribution and magnitude, for summer and winter, is given in
Table 5.9. It may not always be possible to wait for the appropriate season to commence with
BCA releases and water loss costs will accumulate during the waiting period. Therefore, based
on simulation results, release strategies for summer and winter were suggested for the considered
scenario. When researchers identify a real-world problem where biological control needs to be
applied to a water hyacinth infested area, the model may be used to determine the optimal time
to commence with BCA releases, subject to the costs applicable to that specific scenario and
the cost of delaying releases. The urgency of the matter may determine whether researchers will
consider the short-term or long-term costs as a decision aid. Nevertheless, simulation results
suggested that the optimal short-term strategy, yielding the most reachable break-even cost per
BCA for the assumed parameter values applicable to the considered scenario, was to perform
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a once-off release of 240 BCAs per point at four edges with releases every 7.5 m (2 880 BCAs
in total) in the first month of summer in order to suppress weed density to 50%. If the rearing
and release of the BCAs could be conducted at a cost of R0,14 per BCA or lower, this release
strategy might yield a profit in terms of the value of water saved. It should be noted that, in
reality, the classical biological control approach, in which BCAs that survived quarantine are
released directly in a new habitat, may also be used for once-off releases. This method yields a
relatively small number of agents to be released, in comparison with large bulk releases made
possible via mass rearing programmes. However, the analyses performed in this study assumed
the availability of large numbers of BCAs via mass rearing, even for once-off releases, since the
main focus of the study is to evaluate the efficiency and cost-effectiveness within local mass
rearing programmes.

Season
Accessible

edges
Optimal

frequency
Optimal

distribution
Optimal I
per release

Grand
total

Saved
Suppressed

density
Break-even
cost/BCA

Summer 1 once-off every 7.5 m 16 000 48 000 R902 68% R0,02
2 once-off every 7.5 m 4 800 28 800 R1433 50% R0,05
4 once-off every 7.5 m 240 2 880 R391 50% R0,14

Winter 1 once-off every 7.5 m 16 000 48 000 R108 89% None
2 once-off every 7.5 m 8 000 48 000 R168 82% None
4 once-off every 7.5 m 4 000 48 000 R182 76% None

Table 5.9: The optimal short-term release strategies for releases commencing in summer or winter,
respectively, as predicted by the model.

5.1.2 Long-term release strategies

The effect on the control of water hyacinth and the cost-effectiveness of the involved release
strategies over a two-year time period for biological control commencing in summer or winter
was investigated. For each starting season, the minimum number of BCAs required to reduce
water hyacinth density to 5% of its original biomass at some time increment over the two-year
time period for one-edge, two-edge and four-edge release distributions, with once-off (f = 0),
weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases, respectively, was
obtained. In real-world scenarios, water hyacinth plants exposed to long-term biological control
often end up being small (10 – 20 cm tall) and unable to sink in the case of shallow water [81].
A plant density of 0% may therefore be considered unrealistic in some cases, making 5% a more
reasonable benchmark for control. Furthermore, a plant cover of 5% of a water body’s surface
area has been recognised as an acceptable level of control where the ecological well-being of
an area may be preserved [20]. Although the surface coverage and plant density are not the
same, plant density is also used to measure the effectiveness of biological control [52], giving a
good indication of the continuous impact of BCAs. Even though BCAs may succeed to suppress
water hyacinth population density to very low levels or even extinction, the plant is infamous
for regrowing at its exponential rate due to seeds remaining viable in water sediment or budding
from remaining small plants [37, 69], making water hyacinth control/management an ongoing,
long-term process. Since releases every 7.5 m along an edge proved to be most efficient and cost-
effective for all short-term release strategies, for one-edge, two-edge and four-edge releases in
both summer and winter, only this distribution was investigated for long-term release strategies.
Similar to short-term releases, a resource constraint of a maximum of 48 000 BCAs per four-week
time period was assumed. For the sake of practicality, only multiples of 100 BCAs per point of
release were considered.
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Summer

For the assumed parameter values, the total value of water loss through plant evapotranspiration
would be R29 600 for the considered 30 m × 30 m water body covered with water hyacinth for
the two-year time period starting in December (the first month of summer), if no BCAs were
released.

In Table 5.10, the minimum number, I, of BCAs per release required to reduce water hyacinth
population density to 5% of its original biomass at some time increment over the two-year time
period, for one-edge, two-edge and four-edge release distributions, with releases every 7.5 m
along an edge, for once-off, weekly, two-weekly and four-weekly releases, respectively, is given.
In the case where the assumed maximum number of available BCAs was insufficient to suppress
water hyacinth density to 5% within two years with a certain release strategy, the best (lowest)
suppression that could be obtained for that strategy is given, along with the time at which the
lowest suppression was obtained. The monetary value of water saved over the two-year time
period due to the control of the weed for each biological control release strategy is also reported.
This value, along with the grand total of BCAs released over the entire period, was used to
determine the break-even cost per BCA for each strategy.

It may be noted that, for all release frequencies, none of the releases performed at only one
edge of the domain succeeded to suppress the weed density to 5% at some time increment over
the two-year time period. The same goes for once-off releases at any number of edges. More
frequent releases at at least two edges were required to achieve sufficient suppression at some
point within the two-year time period, starting in December.

Number
of edges

Freq.
I per

release
Total per

opportunity
Grand
total

Av. plant
density

Lowest
plant density

Saved
Break-even
cost/BCA

1 edge once 16 000 48 000 48 000 80% 66% (8 months) R2 832 R0,06
1 edge f = 7 4 000 12 000 1 236 000 54% 23% (24 months) R9 151 R0,01
1 edge f = 14 8 000 24 000 1 248 000 51% 22% (21 months) R9 498 R0,01
1 edge f = 28 16 000 48 000 1 248 000 51% 21% (24 months) R9 638 R0,01

2 edges once 8 000 48 000 48 000 64% 40% (8 months) R4 916 R0,10
2 edges f = 7 900 5 400 550 800 41% 5% (21 months) R10 913 R0,02
2 edges f = 14 1 500 9 000 468 000 41% 5% (21 months) R10 462 R0,02
2 edges f = 28 2 500 15 000 390 000 40% 5% (21 months) R11 094 R0,03

4 edges once 4 000 48 000 48 000 50% 18% (7 months) R7 736 R0,16
4 edges f = 7 300 3 600 362 800 32% 2% (21 months) R12 137 R0,03
4 edges f = 14 500 6 000 304 250 33% 4% (20 months) R11 961 R0,04
4 edges f = 28 800 9 600 245 070 35% 5% (21 months) R10 978 R0,04

Table 5.10: For releases commencing in summer, the minimum number of BCAs required to reduce
plant density to 5%, or as low as possible, over the two-year time period, as well as the average plant
density, the lowest plant density obtained, the value of water saved and the break-even cost per BCA for
releases at one, two or four edges, with releases every 7.5 m along an edge, for once-off, weekly (f = 7),
two-weekly (f = 14) and four-weekly (f = 28) releases, respectively.

The long-term strategies for each release option – that is one-edge, two-edge and four-edge
releases – commencing in the first month of summer, given in Table 5.10, are discussed below.

1. One-edge releases. Even though none of the one-edge release strategies succeeded to sup-
press weed density to 5% in the given amount of time, frequent releases had a significantly
greater impact on the suppression of weed density in the long-term when compared to
once-off releases. Simulation results indicated that frequent releases along one edge sup-
pressed weed density to below 25% of the original density at some point within the two
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years, while a once-off release reached a mere 66% at its best (see Table 5.10). In Fig-
ure 5.8, the change in the percentage plant density for once-off releases (f = 0) at one
edge is compared to the change in the percentage plant density for four-weekly releases
(f = 28) at one edge over the two-year time period, starting in summer. Even though
there was not a major difference in the outcome of weekly, two-weekly and four-weekly
releases, the latter proved to be the best frequency for one-edge releases by succeeding to
suppress water hyacinth to the lowest density over the considered period of time, while
yielding the highest value of water saved. Therefore, provided field workers had access
to only one edge of the considered infested domain, the optimal long-term strategy for
releases commencing in summer was to release 16 000 BCAs every 7.5 m along the edge
every four weeks, suppressing water hyacinth density to 21% of the original density within
the two-year time period, with a break-even cost of R0,01 per BCA.
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Figure 5.8: The change in the percentage plant density over a period of two years, starting in December,
for once-off (f = 0) and four-weekly (f = 28) releases of the minimum required number of BCAs at one
edge of the domain, both with releases every 7.5 m along the edge.

2. Two-edge releases. For once-off releases at two edges, the maximum number of available
BCAs was required to suppress plant density as low as possible over the considered period
of time, even though the bench mark of 5% was not reached. Multiple releases of weekly,
two-weekly or four-weekly releases were required to achieve the desired control at some
time increment over the two-year time period, highlighting the value of frequent releases.
Once-off releases yielded a more reachable break-even cost per BCA since less BCAs were
used, even though the total value of water saved was significantly lower than for frequent
releases. However, since once-off releases yielded insufficient control in the long term, this
release option was regarded as inadequate.

Weekly, two-weekly and four-weekly releases at two edges for a two-year time period yielded
results in close proximity to each other in terms of the value of water saved, the average
plant density and the break-even cost per BCA (see Table 5.10 and Figure 5.9). Since four-
weekly releases used the smallest total number of BCAs, yielded a slightly lower average
plant density than weekly and two-weekly releases, a slightly higher value of water saved,
as well as a slightly higher break-even cost per BCA, the optimal suggested long-term
strategy for two-edge releases commencing in summer was to release 2 500 BCAs every
7.5 m along the edges every four weeks, suppressing water hyacinth density to 5% of the
original density within the two-year time period, with a break-even cost of R0,03 per BCA.

Additional simulation runs over a time period of five years were performed in order to
determine whether the optimal strategy according to the two-year simulation results re-
mained dominant over an extended period of time. From Table 5.11 it may be seen that
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Figure 5.9: The change in the percentage plant density over a period of two years, starting in December,
for once-off (f = 0), weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases of the
minimum required number of BCAs at two edges of the domain, with releases every 7.5 m along the
considered edges.

once-off releases at two edges remained insufficient to suppress water hyacinth populations
to the desired density over the extended period of time. Again, results for frequent re-
leases were relatively closely related. Two-weekly releases yielded the lowest average plant
density over the extended period of time, accompanied by the highest total value of water
saved. However, since four-weekly releases required 172 500 BCAs less than two-weekly
releases over the extended period of time, this strategy resulted in the same break-even
cost per BCA as two-weekly releases, even though the value of water saved was slightly
lower. Four-weekly releases had the additional benefit of yielding lower travel expenses
since field-workers only had to travel to the considered site every fourth week to perform re-
leases instead of every second week, adding to the cost-effectiveness of four-weekly releases.
These considerations confirm that four-weekly releases may be suggested as the optimal,
most cost-effective long-term strategy for two-edge releases commencing in summer.

Number
of edges

Freq.
I per

release
Total per

opportunity
Grand
total

Av. plant
density

Lowest
plant density

Saved
Break-even
cost/BCA

2 edges once 8 000 48 000 48 000 52% 12% (45 months) R16 905 R0,35
2 edges f = 7 900 5 400 1 325 700 25% 1% (30 months) R36 518 R0,03
2 edges f = 14 1 500 9 000 1 125 000 22% 1% (55 months) R39 809 R0,04
2 edges f = 28 2 500 15 000 952 500 24% 1% (31 months) R37 695 R0,04

Table 5.11: Model output for five-year simulations of releases at two edges, with releases every 7.5 m
along an edge, for once-off, weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases,
commencing in summer.

3. Four-edge releases. For once-off releases at four edges, similar to one-edge and two-edge
releases, the maximum number of available BCAs was required to suppress plant density
as low as possible over the considered period of time, even though the benchmark of 5%
was not reached. Repetitions of weekly, two-weekly or four-weekly releases were required
to achieve the desired control. Figure 5.10 shows how the minimum number of BCAs per
point of release required to reduce plant density to 5% at some time increment within the
two-year time period (starting in December) was determined for weekly, two-weekly and
four-weekly releases, respectively, at four edges of the domain, with releases every 7.5 m.
Since only multiples of 100 BCAs per release were considered, the lowest plant density
obtained may be slightly lower than 5% when the previous multiple yielded an insufficient
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suppression, but the subsequent multiple resulted in a minimum plant density of less than
5%.
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(a) Weekly releases.
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(b) Two-weekly releases.
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(c) Four-weekly releases.

Figure 5.10: Determining the minimum required number of BCAs for weekly, two-weekly and four-
weekly releases at four edges of the domain with releases every 7.5 m, by evaluating the lowest percentage
plant density obtained at some time increment over the two-year time period for different numbers of
BCAs per release, for releases commencing in the first month of summer.

In Table 5.10 it may be seen that weekly releases yielded a slightly lower average plant
density in comparison with two-weekly and four-weekly releases and thus resulted in the
highest total value of water saved over the considered period of time, but also a worse
break-even cost per BCA since more BCAs were used. Four-weekly releases, on the other
hand, required a smaller total number of BCAs, yielding a break-even cost per BCA
equivalent to two-weekly releases.

Since two-year simulation results did not indicate a clearly dominant strategy in all consid-
ered categories between weekly, two-weekly and four-weekly releases, additional simulation
runs over a time period of five years were performed for these strategies in order to deter-
mine if the one outperformed the other in an extended amount of time. In Figure 5.11, the
change in the percentage plant density over a period of five years, starting in December,
for weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases of the minimum
required number of BCAs at four edges of the domain, with releases every 7.5 m along
the considered edges, is given. Oscillations formed as BCA generations passed through
the system. It may be seen that the three considered four-edge release strategies followed
a similar pattern in the extended amount of time, alternating between better weed sup-
pressions at different times, with more significant differences in plant density after the
three-year mark (1 080 days).
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Figure 5.11: The change in the percentage plant density over a period of five years, starting in December,
for weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases of the minimum required
number of BCAs at four edges of the domain, with releases every 7.5 m along the edges.

From Table 5.12 it may be seen that weekly, two-weekly and four-weekly releases at four
edges still yielded results in close proximity to each other in terms of the value of water
saved and the average plant density over the extended period of time. Four-weekly releases,
however, outperformed the other considered four-edge release strategies in terms of the
break-even cost per BCA in the extended amount of time. The four-weekly release strategy
required about 280 000 BCAs less than weekly releases and about 150 000 BCAs less than
two-weekly releases, while achieving very similar control over the five-year time period,
yielding the best break-even cost per BCA. In light of these results, provided field workers
had access to four edges of the considered infested domain, the optimal, most cost-effective
long-term strategy for releases commencing in summer was to release 800 BCAs every 7.5 m
along the edges every four weeks, sufficiently suppressing water hyacinth populations to
the desired density within the two-year time period.

Number
of edges

Freq.
I per

release
Total per

opportunity
Grand
total

Av. plant
density

Lowest
plant density

Saved
Break-even
cost/BCA

4 edges f = 7 300 3 600 895 900 24% 1% (32 months) R36 332 R0,04
4 edges f = 14 500 6 000 759 830 26% 1% (56 months) R34 039 R0,04
4 edges f = 28 800 9 600 608 270 26% 1% (32 months) R34 336 R0,06

Table 5.12: Model output for five-year simulations of releases at four edges, with releases every 7.5 m
along an edge, for weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases, commencing
in summer.

Winter

For the assumed parameter values, the total value of water loss through plant evapotranspiration
would be R29 600 for the considered 30 m × 30 m water body covered with water hyacinth for
the two-year time period starting in June (the first month of winter), if no BCAs were released.
This is equivalent to the value of water loss for the two-year time period starting in December,
since both will be exposed to the same temperatures (seasons) for the same amount of time,
just in a different order.

In Table 5.13, the minimum number, I, of BCAs per release required to reduce water hyacinth
population density to 5% of its original biomass at some time increment over the two-year time
period, for one-edge, two-edge and four-edge release distributions, with releases every 7.5 m
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along an edge, for once-off, weekly, two-weekly and four-weekly releases commencing in winter,
is given. In the case where the assumed maximum number of available BCAs was insufficient to
suppress water hyacinth density to 5% within two years with a certain release strategy, the best
(lowest) suppression that could be obtained for that strategy is given. For releases commencing
in winter, the lowest plant density was reached at the end of the two-year time period for all
release distributions and frequencies. The monetary value of water saved over the two-year time
period due to the control of the weed for each biological control release strategy is also reported.
This value, along with the grand total of BCAs released over the entire period, was used to
determine the break-even cost per BCA, or the lack thereof, for each strategy.

It may be noted that, similar to long-term releases commencing in summer, none of the releases
performed at only one edge of the domain succeeded to suppress the weed density to 5% at
some time increment over the two-year time period. The same goes for once-off releases at
any number of edges. More frequent releases at at least two edges were required to achieve
sufficient suppression at some point within the two-year time period, starting in June. However,
simulation results indicated that the total value of water saved in the long term as a result
of biological control commencing in winter was, for all strategies, considerably lower than for
releases commencing in summer.

Number
of edges

Freq.
I per

release
Total per

opportunity
Grand
total

Av. plant
density

Lowest
plant density

Saved
Break-even
cost/BCA

1 edge once 16 000 48 000 48 000 84% 69% R2 114 R0,04
1 edge f = 7 4 000 12 000 1 236 000 77% 36% R3 979 None
1 edge f = 14 8 000 24 000 1 248 000 77% 34% R4 207 None
1 edge f = 28 16 000 48 000 1 248 000 76% 32% R4 224 None

2 edges once 8 000 48 000 48 000 80% 56% R2 183 R0,05
2 edges f = 7 2 000 12 000 1 236 000 65% 7% R5 391 None
2 edges f = 14 3 800 22 800 1 185 600 65% 5% R5 485 None
2 edges f = 28 6 900 41 400 1 076 400 64% 5% R5 876 R0,01

4 edges once 4 000 48 000 48 000 70% 31% R3 445 R0,07
4 edges f = 7 800 9 600 942 930 58% 4% R6 864 R0,01
4 edges f = 14 1 400 16 800 840 930 59% 5% R6 465 R0,01
4 edges f = 28 1 900 22 800 586 470 60% 5% R6 052 R0,01

Table 5.13: For releases commencing in winter, the minimum number of BCAs required to reduce plant
density to 5%, or as low as possible, over the two-year time period, as well as the average plant density,
the lowest plant density obtained, the value of water saved and the break-even cost per BCA for releases
at one, two or four edges, with releases every 7.5 m along an edge, for once-off, weekly (f = 7), two-weekly
(f = 14) and four-weekly (f = 28) releases, respectively.

The long-term strategies for each release option – that is one-edge, two-edge and four-edge
releases – commencing in the first month of winter, given in Table 5.13, are discussed below.

1. One-edge releases. Once again, none of the one-edge release strategies succeeded to sup-
press weed density to 5% in the given amount of time and the best suppressions reached
for releases commencing in winter were worse (higher) than for releases commencing in
summer, for all one-edge strategies. Similar to summer commencements, frequent releases
commencing in winter also had a significantly greater impact on the suppression of weed
density in the long-term in comparison with once-off releases. Four-weekly releases were
the one-edge strategy with the greatest impact on the weed, yielding a suppression of 32%
of the original density, accompanied by the highest value of water saved for one-edge re-
leases commencing in winter. However, long-term simulation results indicated that, when
commencing in winter, there was no break-even cost per BCA for frequent releases at
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one edge over the two-year time period. Consequently, the most cost-effective long-term
strategy for one-edge releases commencing in winter was to release 16 000 BCAs once-off
every 7.5 m along the edge, suppressing weed density to 69% of the original density over
the two-year time period, with a break-even cost of R0,04 per BCA.

In Figure 5.12, the change in the percentage plant density for once-off releases (f = 0)
at one edge is compared to the change in the percentage plant density for four-weekly
releases (f = 28) at one edge over the two-year time period, starting in winter. The red line
indicates where the short-term investigations stopped (see Figure 5.6(a)). From Figure 5.12
it may be noted that, for winter commencement of biological control, four-weekly releases
only started to outperform once-off releases after a year, resulting in significantly greater
weed suppressions than once-off releases in the long term. Therefore it is important to not
only consider short-term effects. Once-off releases were still more cost-effective due to the
relatively small amount of water saved for releases commencing in winter, which was not
able to justify the cost pertaining to the large number of BCAs used with frequent releases
in the long term.
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Figure 5.12: The change in the percentage plant density over a period of two years, starting in June,
for once-off (f = 0) and four-weekly (f = 28) releases of the minimum required number of BCAs at one
edge of the domain, both with releases every 7.5 m along the edge.

2. Two-edge releases. For two-edge releases commencing in winter, only once-off and four-
weekly releases yielded feasible break-even costs, where the former dis not succeed to
suppress water hyacinth density to the desired level within the two-year time period.
Two-weekly and four-weekly releases were the only two-edge release strategies succeeding
to suppress weed density to the desired level of control within the considered period of
time. Furthermore, four-weekly releases outranked other two-edge release strategies by
using the smallest total number of BCAs, while obtaining the lowest average plant density
and the highest value of water saved over the considered period of time (see Table 5.13).

For the minimum required number of BCAs per four-weekly release at two edges, with
releases every 7.5 m, the change in the percentage plant density and the total old larval
density over the two-year time period, starting in June, is shown in Figure 5.13. It may be
noted that, as the simulation approached the colder winter temperatures a year later (just
before the 360-day mark), the total old larval population started to increase significantly.
Due to large numbers of young larvae emerging and thriving at higher temperatures,
density dependence strongly limited the number of individuals maturing to the old larval
stage. As the decrease in temperature limited the number of emerging young larvae, the
resistance from density dependence was lifted and more old larvae developed to suppress
weed density. This highlights the undeniably significant effect of density dependence that
should be taken into account when suggesting effective biological control release strategies.
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As plant density became low, i.e. BCA food resources became scarce, the total old larval
population density decreased, giving the weed time to redeem itself. Provided field workers
had access to two edges of the considered infested domain and wanted to start releases
in winter, the optimal long-term strategy was to release 6 900 BCAs every 7.5 m along
the two edges every four weeks, obtaining a final plant density of 5% at the end of the
two-year time period, with a break-even cost of R0,01 per BCA (see Table 5.13).
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Figure 5.13: The change in the percentage plant density (a) and the total old larval density (b) over
a period of two years for four-weekly releases of the minimum required number of BCAs per point of
release (6 900) for releases at two edges of the domain, with releases every 7.5 m, commencing in winter.

Additional simulation runs over a time period of five years were performed in order to
determine whether the optimal strategy according to the two-year simulation results re-
mained dominant over an extended period of time. From Table 5.14 it may be seen that
once-off releases at two edges remained insufficient to suppress water hyacinth populations
to the desired density over the extended period of time, with an average plant density
of more than double the average plant density obtained with frequent releases. Again,
results for frequent releases were in close proximity to each other in terms of the value of
water saved and the average plant density over the extended period of time. Four-weekly
releases, however, outperformed the other considered two-edge frequent release strategies
in terms of the break-even cost per BCA in the extended amount of time. These results
confirm that four-weekly releases may be suggested as the optimal, most cost-effective
long-term strategy for two-edge releases commencing in winter.

Number
of edges

Freq.
I per

release
Total per

opportunity
Grand
total

Av. plant
density

Lowest
plant density

Saved
Break-even
cost/BCA

2 edges once 8 000 48 000 48 000 61% 8% R13 152 R0,27
2 edges f = 7 2 000 12 000 2 680 000 29% 0% R37 551 R0,01
2 edges f = 14 3 800 22 800 2 574 500 29% 0% R37 693 R0,01
2 edges f = 28 6 900 41 400 2 401 200 30% 0% R36 222 R0,02

Table 5.14: Model output for five-year simulations of releases at two edges, with releases every 7.5 m
along an edge, for once-off, weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases,
commencing in winter.

3. Four-edge releases. For four-edge releases commencing in winter, all considered strategies
yielded feasible break-even costs, but only frequent releases of weekly, two-weekly and four-
weekly releases succeeded to suppress weed density to the desired level of control within the
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two-year time period. From Table 5.13 it may be seen that weekly and two-weekly releases
yielded a slightly lower average plant density in comparison with four-weekly releases and
thus resulted in a higher total value of water saved over the considered period of time,
but four-weekly releases used a smaller total number of BCAs, yielding a break-even cost
per BCA equivalent to weekly and two-weekly releases. Since two-year simulation results
did not indicate a clearly dominant strategy between weekly, two-weekly and four-weekly
releases, additional simulation runs over a time period of five years were performed for these
three strategies in order to determine if the one outperformed the other in an extended
amount of time (see Table 5.15).

In Figure 5.14, the change in the percentage plant density over a period of five years,
starting in June, for weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases
of the minimum required number of BCAs at four edges of the domain, with releases every
7.5 m along the considered edges, is given. It may be noted that the considered four-
edge release strategies followed a similar pattern in the extended amount of time, until
just before the three and a half year mark (1 260 days), where plant density subject to
different frequencies of BCA releases started to differ significantly.
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Figure 5.14: The change in the percentage plant density over a period of five years, starting in June,
for weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases of the minimum required
number of BCAs at four edges of the domain, with releases every 7.5 m along the considered edges.

From Table 5.15 it may be seen that the weekly release strategy (f = 7) was dominated
by the two-weekly release strategy (f = 14) over the five-year time period, since two-
weekly releases yielded a slightly lower average plant density, a higher total value of water
saved, while using a lower total number of BCAs in comparison with weekly releases. Even
though two-weekly releases also yielded a lower average plant density in comparison with
four-weekly releases (f = 28) and thus resulted in the higher total value of water saved
over the extended period of time, four-weekly releases again used a smaller total number
of BCAs, with a break-even cost equivalent to the two-weekly release strategy, still not
resulting in a clearly dominant strategy between two-weekly and four-weekly releases over
the extended period of time. Since there was not a major difference between the outcome of
two-weekly and four-weekly releases and the value of water saved with two-weekly releases
was only about R3 500 greater than with four-weekly releases over a period of five years,
the strategy with less frequent releases was preferred in order to minimise travel expenses
pertaining to each release opportunity. In addition to the benefit of lower travel expenses,
four-weekly releases also used about 560 000 BCAs less than two-weekly releases to achieve
quite similar control over the five-year time period. Therefore, provided field workers had
access to four edges of the considered infested domain and wanted to start releases in
winter, the optimal, most cost-effective long-term strategy was to release 1 900 BCAs
every 7.5 m along the four edges every four weeks.
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Number
of edges

Freq.
I per

release
Total per

opportunity
Grand
total

Av. plant
density

Lowest
plant density

Saved
Break-even
cost/BCA

4 edges f = 7 800 9 600 2 198 500 30% 0% (60 months) R35 439 R0,02
4 edges f = 14 1 400 16 800 1 970 500 29% 0% (46 months) R35 893 R0,02
4 edges f = 28 1 900 22 800 1 407 900 33% 1% (47 months) R32 350 R0,02

Table 5.15: Model output for five-year simulations of releases at four edges, with releases every 7.5 m
along an edge, for weekly (f = 7), two-weekly (f = 14) and four-weekly (f = 28) releases, commencing
in winter.

Optimal long-term release strategies

The long-term release strategies commencing in summer were compared to the long-term release
strategies commencing in winter, with the total value of water saved, the minimum required
number of BCAs and the break-even cost per BCAs for different release strategies as the bases
of comparison. In Figure 5.15, it may be seen that, for all considered biological control strategies,
simulation results indicated that releases commencing in summer saved significantly more water
than releases commencing in winter over a two-year time period. On average, for one-edge and
two-edge releases, the ratio of the value of water saved for releases commencing in summer to
the value of water saved for releases commencing in winter was 2:1 and for four-edge releases,
the ratio was 1.9:1.
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(c) Four-edge releases.

Figure 5.15: Comparison of the total value of water saved between long-term summer and winter release
strategies at one, two or four edges for different release frequencies over a time period of two years.

Furthermore, in Figure 5.16, it may be seen that, in addition to the benefit of yielding signif-
icantly higher values of water saved, releases commencing in summer also required less BCAs
than winter commencements to obtain the desired weed suppression, or as close to it as possi-
ble, for all considered long-term release strategies, with the exception of one-edge releases, where
both summer and winter release strategies required the maximum available number of BCAs.

In concurrence with conclusions drawn from Figures 5.15 and 5.16, Figure 5.17 indicates that the
break-even cost per BCA for releases commencing in summer was more reachable than for winter
commencements, for all considered long-term release strategies. For the considered scenario and
the assumed parameter values, simulation results therefore indicated that releases commencing
in summer were always more cost-effective than releases commencing in winter, over a two-year
period of time. These conclusions emphasise the importance of the timing of releases, when
determining cost-effective biological control release strategies.

Stellenbosch University  https://scholar.sun.ac.za



5.1. Numerical solutions 87

0 7 14 28

0

250

500

750

1000

1250

·103

Release frequency (f)

T
ot
a
l
n
u
m
b
er

of
B
C
A
s summer winter

(a) One-edge releases.
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(b) Two-edge releases.
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(c) Four-edge releases.

Figure 5.16: Comparison of the total required number of BCAs between long-term summer and winter
release strategies at one, two or four edges for different release frequencies over a time period of two years.
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(b) Two-edge releases.
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(c) Four-edge releases.

Figure 5.17: Comparison of the break-even cost per BCA between long-term summer and winter release
strategies at one, two or four edges for different release frequencies over a time period of two years.

Earlier in §5.1.2, it was determined that out of all the considered long-term summer release
strategies, only frequent releases (weekly, two-weekly or four-weekly releases) at two or four
edges succeeded to suppress water hyacinth populations to the desired density at some point in
time within the considered two-year period, while for long-term winter release strategies, only
two-weekly or four-weekly releases at two edges or weekly, two-weekly or four-weekly releases at
four edges proved to be adequate. These results accentuated the beneficial impact of releasing
at more than one edge of an infested domain, with releases being more distributed. The model
showed that the closer the distribution of BCAs got to a uniform distribution over the infested
domain, the better the control of water hyacinth was. Additionally, the value of frequent releases
over an extended period of time compared to a once-off release was also highlighted. While short-
term results indicated that once-off releases were optimal for all considered scenarios, long-term
results clearly pointed out that once-off releases were inadequate to achieve the desire weed
suppression over a longer period of time.

In Figure 5.18, the change in the percentage plant density over a period of two years, for the
optimal, most cost-effective long-term one-edge, two-edge and four-edge release strategies, for
releases commencing in summer and winter, respectively, is given. All the suggested optimal
strategies consisted of four-weekly releases, except for the one-edge winter release strategy, where
a once-off release was suggested to be most cost-effective, since, for the considered scenario and
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assumed parameter values, a break-even cost per BCA did not exist for frequent release strategies
in that case. Weekly, two-weekly and four-weekly release frequencies proved to yield results in
a close proximity to each other in the long term for all the considered release distributions.
The fact that four-weekly releases in some cases slightly outperformed weekly and two-weekly
releases regarding the average plant suppression obtained, while using lower total numbers of
BCAs, but greater numbers per point of release, indicated that a bigger impact from BCAs
once every four weeks tended to be more effective than smaller impacts every week or second
week in these cases. In other cases, where results did not indicate a clearly dominant strategy,
four-weekly releases were preferred simply on the basis of saving on travelling expenses due to
releases being performed less often.
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(a) Optimal one-edge strategy (summer).
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(b) Optimal one-edge strategy (winter).
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(c) Optimal two-edge strategy (summer).
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(d) Optimal two-edge strategy (winter).

0 180 360 540 720
0

20

40

60

80

100

average

t (days)

%
P
la
n
t
d
en

si
ty

(e) Optimal four-edge strategy (summer).
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(f) Optimal four-edge strategy (winter).

Figure 5.18: The change in the percentage plant density over a period of two years, for the optimal
one-edge, two-edge and four-edge release strategies, for releases commencing in summer and winter,
respectively.

Once again, in Figure 5.18, it may be noted that, even though the considered two-edge and
four-edge release strategies reached the desired level of suppression at some point in time over
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the two years for both summer and winter strategies, the average plant densities for releases
commencing in summer were lower than for winter strategies for all considered cases. This may
be partly ascribed to the extended initial delay before damage-causing larvae emerged as a result
of low winter temperatures. Furthermore, once young larvae emerged, density dependence had
a greater effect on winter release strategies than on summer strategies because more BCAs were
required for releases commencing in winter to obtain the desired level of control, resulting in a
stronger limitation on the number of individuals maturing to the damage-causing old larval stage.
Once more, the undeniably significant effect of density dependence in the BCA populations was
pointed out – an important factor that should be taken into account when suggesting effective
biological control release strategies.

In conclusion, simulation results suggested that, for the considered scenario, the overall optimal,
most cost-effective long-term release strategy was to commence with four-weekly releases at
four edges in summer, with 800 BCAs per point of release, every 7.5 m along the edges, while
sufficiently suppressing water hyacinth populations to the desired density within a time period
of two years.

5.2 Sensitivity analysis

As with the construction of any mathematical model, parameter values and assumptions are
subject to change and error since simplifying assumptions are made in order to describe a part of
a real-world process [53]. The procedure of investigating the impacts that these potential changes
and errors may have on the conclusions drawn from the model, is known as a sensitivity analysis
[53]. For simulation models used for decision support, sensitivity analyses may aid in making
recommendations more credible, understandable, compelling or persuasive or in prioritising the
acquisition of information [53].

Some of the input parameter values used in the model were assumed or derived based on lab-
oratory experiments or experiments performed in different parts of the world under different
conditions. This data may differ from data in actual field behaviour in South Africa. For some
other parameter values, i.e. the Allee-effect threshold, a, no experimental values were available
at the time of the study and certain values and relationships had to be assumed.

In order to test whether the model output is reliable, single input parameters were varied
either side of their standard values by percentages reflecting their realistic possible ranges, while
keeping all other parameters constant. The percentage change in the input parameter was then
compared to a percentage change in an output parameter in order to ascertain how robust the
output is in the face of different parameter values. If the model output is robust (insensitive to
changes in parameter values), confidence in the implementation or recommendation of certain
strategies is increased, while if it is not robust, sensitivity analysis may be used to assess the
risk involved in implementing a suggested strategy. For the purposes of decision aid, this basic
approach is considered adequate [53].

5.2.1 Sensitivity of the average plant population density

Sensitivity analyses of the average plant density over the entire domain were performed. Single
input parameters were varied for simulations of a once-off release of 100 BCAs at time t = 0 at
the midpoint of one edge of a 30 m × 30 m domain, with the daily temperature and dew point
temperature held constant over a considered period of time.
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Short-term analysis

The sensitivity of the model output was firstly analysed over a time period of six months, with
the daily temperature held constant at 30◦C and the dew point temperature held constant at
14.5◦C. In Figure 5.19, it may be seen that the average plant density over the entire domain
is most sensitive to changes in the carrying capacity of water, K, in the short term. The
Allee-effect threshold, a, was varied by 33,33% and 66,66% on either side of the standard value,
which is a = 3, to reflect the realistic possible range of a = 1 to a = 5. Even these significant
variations yielded a change in the average plant density of less than 2% on either side of the
original average plant density over a time period of six months. In the short term, the average
plant density over the entire domain is more sensitive to a decrease in the Allee-effect threshold
than an increase. The values of parameters σmaxE and σmaxP were increased by a maximum of
5%, since a larger increase would yield unrealistic survival probabilities of greater than 1. For all
other input parameters, variations of up to 20% on either side of their standard values resulted
in a change in the average plant density of less than 1% over a time period of six months.

Long-term analysis at a high constant daily temperature

Subsequently, the sensitivity of the average plant density over the entire domain was analysed
over a time period of two years, with the daily temperature held constant at 30◦C and the
dew point temperature held constant at 14.5◦C. From Figure 5.20 it may be seen that, for the
assumed temperatures, the sensitivity of the average plant density is more capricious in the long
term than in the short term and does not yield monotone decreasing or increasing functions
as with the short-term sensitivity analysis. Perturbations in input parameters may result in
altered oscillations in the plant and weevil population cycles, even for different perturbations in
the same input parameter, yielding more variable averages of the plant density when averaged
over a longer period of time.

In the long term, with the daily temperature held constant at 30◦C and the dew point temper-
ature at 14.5◦C, the average plant density appears to be most sensitive to changes in the input
parameters K, a, αmaxL1

and µA, with at least one of the considered variations in each of these
respective parameters resulting in a change in the average plant density of more than 10% (see
Figure 5.20). Perturbations in the other input parameter values yield changes of less than 10%.
The average plant density is more sensitive to a decrease in the maximum daily development
rate of the young larval stage, αmaxL1

, than an increase. A decrease in the daily development
rate of the young larval stage leads to an increase in the development duration of the young
larval stage, delaying the emergence of damage-causing old larvae, explaining the increase in the
average plant density. Furthermore, the average plant density is more sensitive to an increase in
the adult weevil mortality rate, µA, than a decrease. In the case that the model overestimates
the adult weevil mortality rate, the average plant density will not be influenced that much. In
order to minimise the average plant density over the long term, the model predicts that BCAs
should be released during the time of the year when the climate is optimal for the development
of young larvae and the survival of adult weevils. It may particularly be noted that, at this high
temperature, the average plant density appears to be relatively insensitive to a change in the
number of BCAs released, I. In the case that the model over– or underestimates the optimal
number of BCAs to be released, the average plant density will not be affected that much (less
than 4% over a time period of two years).
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Figure 5.19: Short-term sensitivity analysis of the average plant density, with respect to percentage
changes in various parameters, with daily temperature held constant at 30◦C and dew point temperature
held constant at 14.5◦C over a time period of six months.

Stellenbosch University  https://scholar.sun.ac.za



92 Chapter 5. Results

–20 –10 0 +10 +20
−9

−4.5

0

4.5

9

Parameter change (% from base)

%
ch
a
n
g
e
in

p
la
n
t
d
en

si
ty rmax

H

JL1

–20 –10 0 +10 +20
−9

−4.5

0

4.5

9

Parameter change (% from base)

%
ch
a
n
g
e
in

p
la
n
t
d
en

si
ty cmax

L2
qmax

I

–20 –10 0 +10 +20
−25

−12.5

0

12.5

25

Parameter change (% from base)

%
ch
a
n
g
e
in

p
la
n
t
d
en

si
ty K

–66.66 –33.33 0 +33.33 +66.66
−15

−7.5

0

7.5

15

Parameter change (% from base)

%
ch
a
n
g
e
in

p
la
n
t
d
en

si
ty a

–20 –10 0 +10 +20

−6

−3

0

3

6

Parameter change (% from base)

%
ch
a
n
g
e
in

p
la
n
t
d
en

si
ty dW

dA

dL2

–20 –10 0 +10 +20
−12

−6

0

6

12

Parameter change (% from base)

%
ch
a
n
g
e
in

p
la
n
t
d
en

si
ty

αmax
E

αmax
L1

αmax
L2

αmax
P

–20 –10 0 +5
−9

−4.5

0

4.5

9

Parameter change (% from base)

%
ch
a
n
g
e
in

p
la
n
t
d
en

si
ty σmax

E

σmax
P

–20 –10 0 +10 +20
−12

−6

0

6

12

Parameter change (% from base)

%
ch
a
n
g
e
in

p
la
n
t
d
en

si
ty

σmax
L1

σmax
L2

µA

Figure 5.20: Long-term sensitivity analysis of the average plant density, with respect to percentage
changes in various parameters, with daily temperature held constant at 30◦C and dew point temperature
held constant at 14.5◦C over a time period of two years.
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Long-term analysis at a lower constant daily temperature

The sensitivity of the average plant density over the entire domain was further analysed over
a time period of two years, with the daily temperature held constant at 25◦C and the dew
point temperature held constant at 13◦C. From Figure 5.21 it may be seen that the long-term
sensitivity of the average plant density is generally more stable at the lower temperature than
at the higher one. At this lower temperature, the average plant density is mostly less sensitive
to changes in parameter values, with the exceptions of an extreme increase (+20%) in the value
of parameter JL1 or an extreme decrease (–20%) in the values of parameters cmaxL2

, K, a, σmaxL1

and σmaxL2
, where the average plant density is somewhat more sensitive at the lower temperature

than at the higher one over a time period of two years. At a constant daily temperature of 25◦C
and a dew point temperature of 13◦C, the average plant density appears to be most sensitive to
changes in the input parameters K and a, with at least one of the considered variations in each
of these respective parameters resulting in a change in the average plant density of more than
10% over a time period of two years, while perturbations in the other input parameter values
yield changes of less than 10% (see Figure 5.21). The average plant density is more sensitive
when decreasing the values of K and a than when these parameter values are increased.

Again it may be noted that, even at this lower temperature, the average plant density appears
to be relatively insensitive to a change in the number of BCAs released, I. In the case that the
model over– or underestimates the optimal number of BCAs to be released, the average plant
density will not be affected that much (less than 4% over a time period of two years), increasing
the confidence in recommended release strategies. At this temperature, the average plant density
seems to be slightly more sensitive when the number of BCAs released is decreased than when
it is increased. In order to minimise the average plant density in the case where BCAs possibly
struggle to adapt in a new habitat or a disaster hits and a lot of them die (larger adult mortality,
µA, which consequently decreases I), it is recommended to release a slightly larger number of
BCAs than the optimal number.
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Figure 5.21: Long-term sensitivity analysis of the average plant density, with respect to percentage
changes in various parameters, with daily temperature held constant at 25◦C and dew point temperature
held constant at 13◦C over a time period of two years.
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5.2.2 Sensitivity of the benefit of biological control release strategies

Sensitivity analyses of the total value of water saved were performed. Single input parameters
were varied for a simulation of a once-off release of 100 BCAs at time t = 0 at the midpoint of
one edge of a 30 m × 30 m domain, with the daily temperature and dew point temperature held
constant over a considered period of time.

Short-term analysis

Firstly, the sensitivity of the total value of water saved was analysed over a time period of six
months, with the daily temperature held constant at 30◦C and the dew point temperature held
constant at 14.5◦C. In Figure 5.22, it may be seen that the total value of water saved is most
sensitive to changes in the parameters I, a, αmaxL1

, σmaxL1
, cwa and en, with at least one of the

considered variations in each of these respective parameters resulting in a change in the total
value of water saved of more than 15% in the short term. Furthermore, the total value of water
saved is relatively sensitive to changes in the parameters cmaxL2

, qmax, αmaxP , σmaxE and σmaxL2
, with

at least one of the considered variations in each of these respective parameters resulting in a
change in the total value of water saved of between 10% and 15% in the short term, but relatively
insensitive to changes in the rest of the input parameters. As expected, analyses indicate that
there exists an inverse relationship between the sensitivity of the average plant density and the
sensitivity of the value of water saved in the short term. When a perturbation in a certain
parameter value results in a lower average plant density, the value of water saved is higher for
that same perturbation in the short term.

Long-term analysis at a high constant daily temperature

Subsequently, the sensitivity of the total value of water saved was analysed over a time period
of two years, with the daily temperature held constant at 30◦C and the dew point temperature
held constant at 14.5◦C. From Figure 5.23 it may be seen that, for the assumed temperatures,
the total value of water saved is most sensitive to changes in the input parameters σmaxL2

, cwa
and en, with at least one of the considered variations in each of these respective parameters
resulting in a change in the total value of water saved of more than 20% in the long term. At a
constant daily temperature of 30◦C and a dew point temperature of 14.5◦C, the value of water
saved appears to be more sensitive when decreasing the value of water, cwa, and the value of
the evaporation rate of open water, en, than when these parameter values are increased, and
when σmaxL2

is increased than when it is decreased. Therefore, in the case that the values of cwa
and en are underestimated, the total value of water saved will not be affected as much as an
overestimation. Additionally, the total value of water saved is relatively sensitive to changes in
the parameters JL1 , K, I, a, dW , dA, αmaxL1

, αmaxL2
, αmaxP , σmaxL1

and µA, with at least one of the
considered variations in each of these respective parameters resulting in a change in the total
value of water saved of between 10% and 15% in the long term, and relatively insensitive to
the rest of the input parameter values. It may be noted that the sensitivity of the total value
of water saved as a result of perturbations in cwa and en in the long term is equivalent to the
sensitivity of the total value of water saved as a result of similar perturbations in the short term.
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Figure 5.22: Short-term sensitivity analysis of the total value of water saved, with respect to percentage
changes in various parameters, with daily temperature held constant at 30◦C and dew point temperature
held constant at 14.5◦C over a time period of six months.
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Figure 5.23: Long-term sensitivity analysis of the total value of water saved, with respect to percentage
changes in various parameters, with daily temperature held constant at 30◦C and dew point temperature
held constant at 14.5◦C over a time period of two years.
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Long-term analysis at a lower constant daily temperature

The sensitivity of the total value of water saved was further analysed over a time period of two
years, with the daily temperature held constant at 25◦C and the dew point temperature held
constant at 13◦C. From Figure 5.24 it may be seen that, similar to the analysis of the average
plant density, the sensitivity of the value of water saved is also generally more stable at the
lower temperature than at the higher one. At this lower temperature, the value of water saved
is mostly more sensitive to changes in parameter values, with the exceptions of changes in the
values of parameters H, dA and dL2 , or increases in σmaxL2

, where the value of water saved is
somewhat less sensitive at the lower temperature than at the higher one, over a time period of
two years, or for perturbations in cwa and en, where the sensitivity of the value of water saved
at the lower temperature remains equivalent to the sensitivity of the value of water saved as a
result of similar perturbations at the higher temperature. For the assumed lower temperatures,
the value of water saved is especially sensitive to extreme increases (+20% or more) in the
values of parameters JL1 and a, or extreme decreases (–20%) in the values of parameters cmaxL2

,
αmaxL1

, σmaxL1
and σmaxL2

over a time period of two years. For all parameters, except for K, the
value of water saved is significantly more sensitive than the average plant density at this lower
temperature, over a time period of two years.

At a constant daily temperature of 25◦C and a dew point temperature of 13◦C, the total value
of water saved appears to be most sensitive to changes in the input parameters JL1 , cmaxL2

, qmax,
I, a, αmaxL1

, αmaxL2
, σmaxE , σmaxL1

, σmaxL2
, σmaxP , cwa and en, with at least one of the considered

variations in each of these respective input parameters resulting in a change in the total value
of water saved of more than 20% over a time period of two years, while perturbations in the
other input parameter values yield changes of less than 20% (see Figure 5.24). At a constant
daily temperature of 30◦C, the value of water saved was most sensitive to changes in only three
parameter values, namely σmaxL2

, cwa and en. These analyses indicate that temperature plays a
vital role in the sensitivity of the total value of water saved.

It may be noted that, at this lower temperature, the total value of water saved seems to be slightly
more sensitive when I, the number of BCAs released, is decreased than when it is increased. In
order to maximise the total value of water saved in the case where BCAs possibly struggle to
adapt in a new habitat or a disaster hits and a lot of them die (larger adult mortality, µA, which
consequently decreases I), it may again be recommended to release a slightly larger number of
BCAs than the optimal number. Furthermore, to obtain maximum benefit, it is recommended to
release BCAs during the time of the year when temperatures are as close as possible to optimum
(30◦C) in order to maximise the old larval damage rate, cmaxL2

, the oviposition rate, qmax, larval
development rates, αmaxL1

and αmaxL2
, as well as survival rates, σmaxE , σmaxL1

, σmaxL2
and σmaxP , since

suboptimal temperatures may significantly affect these parameter values, resulting in drastic
decreases in the benefit obtained through biological control, in terms of water saving.

Stellenbosch University  https://scholar.sun.ac.za



5.2. Sensitivity analysis 99

–20 –10 0 +10 +20
−100

−50

0

50

100

Parameter change (% from base)

%
ch

a
n
g
e

in
b

en
efi

t

rmax

H

JL1

K

–20 –10 0 +10 +20
−250

−125

0

125

250

Parameter change (% from base)

%
ch

a
n
g
e

in
b

en
efi

t

cmax
L2

qmax

I

–66.66 –33.33 0 +33.33 +66.66
−550

−275

0

275

550

Parameter change (% from base)

%
ch

a
n
g
e

in
b

en
efi

t

a

–20 –10 0 +10 +20

−7

−3.5

0

3.5

7

Parameter change (% from base)

%
ch

a
n
g
e

in
b

en
efi

t

dW

dA

dL2

–20 –10 0 +10 +20
−540

−270

0

270

540

Parameter change (% from base)

%
ch

a
n
g
e

in
b

en
efi

t

αmax
E

αmax
L1

αmax
L2

αmax
P

–20 –10 0 +5
−40

−20

0

20

40

Parameter change (% from base)

%
ch

a
n
g
e

in
b

en
efi

t

σmax
E

σmax
P

–20 –10 0 +10 +20
−280

−140

0

140

280

Parameter change (% from base)

%
ch

a
n
g
e

in
b

en
efi

t

σmax
L1

σmax
L2

µA

–20 –10 0 +10 +20
−30

−15

0

15

30

Parameter change (% from base)

%
ch

a
n
g
e

in
b

en
efi

t

cwa

en

Figure 5.24: Long-term sensitivity analysis of the total value of water saved, with respect to percentage
changes in various parameters, with daily temperature held constant at 25◦C and dew point temperature
held constant at 13◦C over a time period of two years.
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5.3 Chapter summary

In §5.1, the cost-effectiveness of different water hyacinth biological control release strategies
for both short-term (six months) and long-term (two years) scenarios were investigated by
means of numerical simulation. From short-term analyses in §5.1.1, it was concluded that,
for a 30 m × 30 m domain located in the Cape Town region, once-off releases were more cost-
effective than frequent releases over a time period of six months and that summer releases were,
for all considered release strategies, more efficient and cost-effective than winter releases. Sum-
mer releases at at least two edges were required to obtain the desired level of weed suppression
in the short term. Cases where releases were more distributed along an edge yielded greater
suppression of weed density and therefore proved to be more cost-effective. Simulation results
suggested that the optimal short-term strategy, yielding the most reachable break-even cost per
BCA for the assumed parameter values, was to perform a once-off release at four edges with
releases every 7.5 m along the edges in the first month of summer, with 240 BCAs per point
of release, in order to suppress weed density to the desired level of control within six months.
This number of BCAs correlates with the smaller numbers of BCAs released in real-life scenarios
when mass rearing is not available.

Long-term analyses in §5.1.2 indicated that releases commencing in summer yielded significantly
higher benefits (in terms of water saving) over a two-year time period, while requiring lower total
numbers of BCAs to obtain the desired weed suppression in comparison with releases commenc-
ing in winter. Additionally, it was concluded that only frequent releases (weekly, two-weekly
or four-weekly releases) at two or four edges succeeded to obtain the desired weed suppression
within the considered two-year period, accentuating the benefit of releasing at more than one
edge of an infested domain, as well as the value of frequent releases compared to a once-off re-
lease in the long term. Frequent releases yielded results in a close proximity to each other in the
long term. In some cases, however, four-weekly releases slightly outperformed weekly and two-
weekly releases by obtaining better weed suppression, suggesting that releases of larger numbers
of BCAs once every four weeks tended to be more effective than releases of smaller numbers more
regularly. In other cases, where results did not indicate a clearly dominant strategy, four-weekly
releases were preferred simply on the basis of saving on travelling expenses due to releases being
performed less often. When large numbers of BCAs were released at the same position, a strong
limitation on the number of individuals maturing to the damage-causing old larval stage due
to density dependence reduced the success of water hyacinth control. These results emphasised
the importance of taking density dependence into account when suggesting effective biological
control release strategies, confirming that it will be more effective to distribute BCA releases
along edges, striving towards a uniform distribution of BCAs over the entire domain, rather
than releasing at a singular point.

From sensitivity analyses in §5.2.1, it was concluded that the average plant density appeared to
be relatively insensitive to changes in the number of BCAs released, increasing the confidence in
recommended release strategies. Similar to results obtained from sensitivity analyses performed
by Van Schalkwyk and Potgieter [74] on a mean-field model, the model output was slightly
more sensitive when the number of BCAs released was decreased than when it was increased.
In order to minimise the average plant density in the case where BCAs may struggle to adapt in
a new habitat or a disaster hits and a lot of them die, it was recommended to release a slightly
larger number of BCAs than the optimal number, as well as to release during the time of the
year when the climate is optimal for the development of young larvae and the survival of adult
weevils. Further analyses in §5.2.2 revealed that the total value of water saved is more sensitive
at a lower constant temperature (25◦C) than a higher one (30◦C). In order to obtain maximum
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benefit, it was recommended to release BCAs during the time of the year when temperatures
are as close as possible to optimum (30◦C) in order to maximise the old larval damage rate,
the oviposition rate, larval development rates, as well as weevil survival rates, concurring with
suggestions from Van Schalkwyk and Potgieter [74]. Suboptimal temperatures may significantly
affect these parameter values, resulting in drastic decreases in the benefit obtained through
biological control, in terms of water saving.
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CHAPTER 6

Real-world application
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In this chapter, the model is applied to a real-world release site in order to illustrate how the
model may be utilised to provide guidance towards the optimal magnitude, frequency, timing
and distribution of BCA releases, which may minimise costs while maximising the benefit for a
specific site.

6.1 Background and description of release site

The model developed in §4.2 was applied to the Kuilsriver site (33◦57’17”S 18◦39’47”E), where
a real-life BCA release programme commenced in March 2015 when the site was completely
invaded by water hyacinth. The Kuilsriver site is situated in a suburb of Cape Town. The
original BCA release programme for this site has not been very successful. After one and a half
years of BCA releases, consisting of mostly M. scutellaris (about 380 000 from March 2015 to
May 2016), but also a few N. bruchi weevils (about 2 600), the site was still completely covered
with water hyacinth, with little evidence of the impact of BCAs. Releases mostly occurred
weekly or two-weekly on Fridays over the considered period of time, with the exception of three
incidents where releases were interrupted for about two months on end, due to other sites getting
priority over the Kuilsriver site or workers being away on holiday [52]. The unsuccessful control
of water hyacinth at this site may be ascribed to the cold, unfavourable Cape Town weather
conditions under which species may not be able to become abundant and control the weed,
inadequate BCAs or flawed release procedures.

During the first week of August 2016, the entire water hyacinth infestation along with the BCAs
at the Kuilsriver site were washed away by flood waters, leaving the site cleared of mature
weeds. This is a classic example of how the success of biological control may often be limited
by unpredictable circumstances which cannot be prevented or controlled [31, 32]. The weed
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is expected to grow back once seeds that remained in the water sediment start to germinate.
BCAs will have to be re-established at the site. Model simulations may aid in improving the
cost-effective control of water hyacinth, especially in the colder Cape Town area where BCAs
often struggle to establish, by providing suggestions towards more effective release strategies

Simulations of different release strategies for N. eichhorniae weevils at the Kuilsriver site over a
period of two years were performed in order to determine the best cost-effective water hyacinth
biological control release strategy for this site. Parameter values as given in Chapter 4 were
assumed for all simulations. The demarcated area where biological control was being performed
by the Invasive Species Unit in Cape Town [52, 60], is about 60 m × 30 m. For the purpose
of this investigation, initial water hyacinth population density was assumed to be at carrying
capacity of the water body (70 kg/m2) over the entire domain and BCAs were assumed absent
prior to release for all simulations. Field workers had access to only one edge of the considered
infested domain and were therefore limited to performing releases at this one edge only. Access to
other edges was hampered by water, as well as reeds and other plants growing in the wetlands,
creating obstruction (see Figure 6.1). In light of these physical constraints, one-edge release
strategies were first investigated in order to be able to suggest suitable release strategies, which
take the limitations pertaining to the specific site into account. Thereafter, the potential benefit
of clearing another edge to enable releases at two edges of the infested domain, was explored.
In §5.1, it was concluded that biological control commencing in summer will always be more
efficient and cost-effective in comparison with releases commencing in winter over a time period
of two years. Therefore, all simulations of releases at the Kuilsriver site were performed for
releases commencing in December, the first month of summer. Based on mass rearing data from
the Invasive Species Unit in Cape Town [52, 60], a realistic maximum number of available BCAs
of 48 000 per four-week time period was assumed to reflect possible resource constraints. For
the sake of practicality, only multiples of 100 BCAs per point of release were considered.

Figure 6.1: Water hyacinth blankets the Kuilsriver site in Cape Town, June 2015.
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6.2 Cost of biological control at the Invasive Species Unit in
Cape Town

The Invasive Species Unit in Cape Town had several once-off start-up expenses when the mass
rearing facility was established in 2014. The initial costs pertaining specifically to the rearing
of water hyacinth BCAs are given in Table 6.1. At the time of this study, water hyacinth BCAs
were reared in four portable pools. Clicker counters are used to count the number of BCAs
when they are harvested for in-field releases. Pill holders and small pipes are also used during
the harvesting process.

Item Quantity Cost per item Total cost1

Portable pools 4 R1 295,48 R5 181,92
Clicker counters 4 R859,28 R3 437,10
Pill holders R7,95
Pipes R36,00
Total R9 958,45

Table 6.1: Start-up costs for mass rearing facility at Invasive Species Unit in Cape Town in 2014.

In Table 6.2, the fixed running costs per four-week cycle pertaining to the mass rearing of water
hyacinth BCAs at the Invasive Species Unit in Cape Town is given. Apart from the salaries of
the five staff members working 20 days per four-week cycle on mass rearing related tasks, the
running costs pertaining to mass rearing at the facility are marginal, since they mainly make use
of recycled material and retrieve new water hyacinth plants from the field when old ones become
unhealthy. Fertiliser is changed once in three months, yielding a cost of R195,65 per four-week
cycle. Harvested BCAs are transported in small recycled plastic containers on paper towels. In
addition to the fixed running costs per four-week cycle, there is a variable expense for travelling
between the mass rearing facility and the release site. Every time releases are performed, field
workers travel a total of 74 km by car to and from the Kuilsriver site, at R4,10/km in 2016
Rand values. Travelling expenses thus amount to R303,40 per release opportunity. Since the
mass rearing facility is already established at the Invasive Species Unit in Cape Town, the initial
start-up expenses of the facility will not be taken into account when the cost of a release strategy
is determined. Only the running costs will be considered.

Item Quantity Cost per item Total cost2

Salaries 5 R2 704,60 R13 523,00
Fertiliser R195,65
Paper towels R10,00
Total R13 728,65

Table 6.2: Fixed running costs per four-week cycle for mass rearing facility at Invasive Species Unit in
Cape Town.

1Costs are given in 2014 Rand values, since it was once-off expenses which occurred in 2014.
2Costs are given in 2016 Rand values.

Stellenbosch University  https://scholar.sun.ac.za



106 Chapter 6. Real-world application

6.3 Numerical results pertaining to one-edge release strategies
for the Kuilsriver site

For the assumed parameter values, the total value of water loss through plant evapotranspiration
will be R58 436 for the considered 60 m × 30 m water body at the Kuilsriver site covered with
water hyacinth for a time period of two years, if no control method is being applied. The
number, I, of N. eichhorniae weevils per point of release which yields the best suppression of
water hyacinth population density over a time period of two years, commencing in December, for
once-off, weekly (f = 7), two-weekly (f = 14), and four-weekly (f = 28) releases, respectively,
at one of the long edges of the domain, was determined.

In Table 6.3, this number, I, of BCAs per point of release is given for releases every 7.5 m
along the edge (seven releases per edge - see Figure 6.2), together with the total number of
BCAs used, the average plant density, the lowest plant density obtained, the total value of
water saved, the total cost and cost/benefit, CB, for each considered release frequency. The
lowest plant density over the entire domain was reached between 20 and 21 months for the
considered release strategies. Firstly, it may be noted that frequent releases are significantly
more effective to suppress plant density in comparison with once-off releases over a time period
of two years. Secondly, it may be seen that four-weekly releases at one edge yield better weed
suppression than weekly and two-weekly releases, suggesting that, for this site, it is more effective
to release all the available number of BCAs during a single release opportunity every four
weeks, with a larger magnitude per point of release, rather than to divide the BCAs between
more regular releases with smaller magnitudes per point of release. As a result of greater
plant suppression, four-weekly releases also yield the highest total value of water saved between
all the other considered release strategies. Finally, four-weekly releases additionally result in
the lowest total cost amongst the considered frequent release strategies, by requiring only 26
expeditions to and from the release site, while weekly and two-weekly releases require 103 and 52
trips, respectively, amounting to significantly greater travelling expenses over the two-year time
period. With the highest value of water saved and the lowest total cost amongst the frequent
release strategies, four-weekly releases is considered the most cost-effective strategy, with the
best CB-value between the considered frequent release strategies. In contrast to previous control
strategies for this site, which consisted of weekly or two-weekly releases, this suggestion of less
frequent releases may aid in improving the efficient and cost-effective control of water hyacinth
at the Kuilsriver site.

When only considering the benefit of water saving due to the biological control of water hy-
acinth for the Kuilsriver site, once-off releases appear to be more cost-effective than frequent
releases, even though the former is remarkably less efficient in suppressing water hyacinth pop-
ulations. On the surface, the high costs pertaining to biological control appear to outweigh the
benefits. However, in the bigger picture, it should be noted that additional advantages of the
effective control of water hyacinth, applicable to the Kuilsriver site, include the conservation of
biodiversity and reduction in health risks [42]. Water hyacinth has an incredible mechanism to
outgrow any native species occurring in the system, resulting in a decline in biodiversity [37,
69, 76]. Health risks arise with the plants providing breeding grounds for mosquitoes and other
disease carriers, as well as reducing water quality, affecting nearby communities [31, 38, 69]. The
sooner the weed populations are suppressed, the greater the benefit. These benefits are difficult
to quantify, but should not be ignored. Furthermore, job creation through engaging otherwise
unemployed people in control programmes may in fact be considered as a socio-economic benefit
of biological control [42]. Where it is assumed that once-off releases only require employment of
workers for one month, frequent release strategies involve long-term employment, yielding a sig-

Stellenbosch University  https://scholar.sun.ac.za



6.3. Numerical results pertaining to one-edge release strategies for the Kuilsriver site 107

nificantly greater socio-economic benefit in comparison with once-off release strategies. Salaries
account for 90%, 94% and 96,2% of the total cost of weekly, two-weekly and four-weekly releases,
respectively, for the considered one-edge release strategy (see Tables 6.2 – 6.3). Consequently,
90%, 94% and 96,2% of the costs pertaining to the respective frequent release strategies, may
in fact be seen as investments in the socio-economic development of the country, making bio-
logical control an even more appealing solution to the problem of water hyacinth. When these
factors are taken into consideration, four-weekly releases, which yield a significantly higher socio-
economic benefit together with the more effective control of water hyacinth over the considered
two-year time period, may be recommended above once-off releases for one-edge releases at the
Kuilsriver site. In the end, the focus may shift from breaking even with costs, to determining
the investment society is willing to make for the sake of the environment, biodiversity, health
and quality of life.
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Figure 6.2: One-edge releases every 7.5 m at the Kuilsriver site.

Freq.
I per

release
Total per

opportunity
Grand
total

Average
plant

density

Lowest
plant

density
Saved Total cost CB

once 6 800 47 600 47 600 76% 63% R7 295 R14 032,05 -R6 737,50
f = 7 1 700 11 900 1 225 700 61% 38% R14 562 R360 737,80 -R346 175,80
f = 14 3 400 23 800 1 237 600 60% 37% R15 320 R345 264,40 -R329 944,40
f = 28 6 800 47 600 1 237 600 57% 34% R16 082 R337 376,00 -R321 294,00

Table 6.3: For releases every 7.5 m along one edge of the infested Kuilsriver site, the number of BCAs
yielding the best suppression, the average plant density, the lowest plant density obtained, as well as the
total value of water saved, the total cost and cost/benefit (CB) for once-off, weekly (f = 7), two-weekly
(f = 14) and four-weekly (f = 28) release strategies over a time period of two years, commencing in
December, as determined from the simulation.

Model output of the initial water hyacinth density, as well as the plant density after one year,
one and a half years and two years for the Kuilsriver simulation of four-weekly releases of 6 800
BCAs every 7.5 m along one of the long edges of the domain, is given in Figure 6.3. The best
weed suppression was obtained just after the one and a half year mark (see Figure 6.3(c)), where
the total water hyacinth population density for the entire domain reached 34% of the original
plant density. Once open water appears at the edges where BCAs were initially released, field
workers will have to move through the water to reach the water hyacinth plants where releases
need to be performed. When the plants are no longer accessible from the edges of the land,
small boats or other flotation devices may be used to reach the plants in order to be able to
continue with frequent releases along the edge of the water hyacinth mat. As BCAs generations
pass, plants grow back, yielding a final plant density, as shown in Figure 6.3(d), at the end of the
considered two-year time period. This indicates that biological control is a long-term process
and will have to be continued after two years at the Kuilsriver site.
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(a) Initial plant density.
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(b) After one year.
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(c) After one and a half years.
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(d) After two years.

Figure 6.3: Water hyacinth population dynamics for four-weekly releases of 6 800 BCAs every 7.5 m
along one edge of the Kuilsriver site over a time period of two years, commencing in December.

In Table 6.4, the number, I, of BCAs per point of release is given for releases every 15 m along
the long edge (three releases per edge – see Figure 6.4), together with the total number of BCAs
used, the average plant density, the lowest plant density obtained, the total value of water saved,
the total cost and cost/benefit, CB, for each considered release frequency. The lowest total plant
density over the entire domain was reached at some point in time between 19 and 21 months for
the considered release strategies. The total cost per release strategy remains the same as with
one-edge releases every 7.5 m along the edge, since only the distribution per release opportunity
differs, while the running expenses remain unchanged. With the available number of BCAs now
being equally distributed between only three points of release instead of seven, more BCAs may
be released per point. In accordance with conclusions drawn from results in §5.1, model output
indicates that strategies where releases are more distributed along an edge will yield better
average weed suppressions and higher total values of water saved in comparison with strategies
where releases are less spread out, even though the latter may use greater magnitudes of BCAs
per point of release. Consequently, releases every 15 m yield lower CB-values than releases every
7.5 m for all considered one-edge release strategies. Releases every 7.5 m along the edge will
thus be preferred to releases every 15 m for all considered one-edge release frequencies for this
domain, yielding more efficient and cost-effective results.
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Figure 6.4: One-edge releases every 15 m at the Kuilsriver site.

Freq.
I per

release
Total per

opportunity
Grand
total

Average
plant

density

Lowest
plant

density
Saved Total cost CB

once 16 000 48 000 48 000 84% 73% R4 161 R14 032,05 -R9 871,05
f = 7 4 000 12 000 1 236 000 64% 37% R12 955 R360 737,80 -R347 782,80
f = 14 8 000 24 000 1 248 000 64% 39% R13 101 R345 264,40 -R332 163,40
f = 28 14 500 43 500 1 131 000 62% 37% R13 953 R337 376,00 -R323 423,00

Table 6.4: For releases every 15 m along one edge of the infested Kuilsriver site, the number of BCAs
yielding the best suppression, the average plant density, the lowest plant density obtained, as well as the
total value of water saved, the total cost and cost/benefit (CB) for once-off, weekly (f = 7), two-weekly
(f = 14) and four-weekly (f = 28) release strategies over a time period of two years, commencing in
December, as determined from the simulation.

It is interesting to note that four-weekly releases every 15 m along the edge is the only one-edge
release strategy where the maximum number of available BCAs (16 000 per point of release)
does not yield the best weed suppression and highest total value of water saved for the domain
under consideration. When the average plant density obtained by different release magnitudes
does not indicate a clearly optimal strategy, the value of water saved is used as an indication
to determine the optimal magnitude (see Figure 6.5). The hydra effect is evident here. When
more than 14 500 BCAs per point are being released every four weeks, density dependence in
the weevil life stages has a great impact on the number of individuals that survive through the
young larval stage to the damage-causing old larval stage, resulting in a smaller overall impact
on water hyacinth and therefore a lower value of water saved. The BCA density per area plays
a vital role in the effectiveness of the release strategy.
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Figure 6.5: Determining the number of BCAs per point of release which yields the highest value of
water saved over a time period of two years, commencing in December, for four-weekly one-edge releases
every 15 m along the edge at the Kuilsriver site.
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6.4 Numerical results pertaining to two-edge release strategies
for the Kuilsriver site

Two-edge release strategies were investigated to determine the potential benefit of getting access
to another edge of the infested area in order to improve the cost-effectiveness of biological control
at the Kuilsriver site. The number, I, of N. eichhorniae weevils per point of release which yields
the best suppression of water hyacinth population density over a time period of two years,
commencing in December, for once-off, weekly (f = 7), two-weekly (f = 14), and four-weekly
(f = 28) releases, respectively, at the two long edges of the domain, was determined. In Table 6.5,
the number, I, of BCAs per point of release is given for releases every 7.5 m along the edges
(seven releases per edge, fourteen in total - see Figure 6.6), together with the total number of
BCAs used, the average plant density, the lowest plant density obtained, the total value of water
saved, the total cost and cost/benefit, CB, for each considered release frequency. The lowest
total plant density over the entire domain was reached at some point in time between 19 and
20 months for the considered two-edge release strategies. The total cost per release strategy
remains the same as with one-edge releases, since only the distribution per release opportunity
differs, while the running expenses remain unchanged. With the available number of BCAs now
being equally distributed between fourteen points of release instead of three or seven, smaller
magnitudes of BCAs are released per point than with one-edge releases. Four-weekly releases still
outperform other frequent release strategies at two edges by yielding a better weed suppression
and higher total value of water saved in comparison with weekly and two-weekly releases.

Similar to one-edge releases, if only the benefit of water saving due to the biological control
of water hyacinth is considered, once-off releases at two edges appear to be more cost-effective
than frequent releases at two edges, even though the former is remarkably less efficient in sup-
pressing water hyacinth populations. However, the effective control of water hyacinth offers
additional advantages which include the conservation of biodiversity and reduction in health
risks. Furthermore, the job creation through long-term, labour-intensive control programmes
may again be seen as a socio-economic benefit, with frequent releases yielding a significantly
greater socio-economic benefit through employment in comparison with once-off release strate-
gies. When these factors are taken into consideration, four-weekly releases may be recommended
above once-off releases for two-edge releases at the Kuilsriver site.
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Figure 6.6: Two-edge releases every 7.5 m at the Kuilsriver site.

In Figure 6.7, model output of the initial water hyacinth density, as well as the plant density
after one year, one and a half years and two years for the Kuilsriver simulation of four-weekly
releases of 3 400 BCAs every 7.5 m along the two long edges of the domain, is given. The best
weed suppression for this two-edge release strategy was obtained just after the one and a half
year mark (see Figure 6.7(c)), where the total water hyacinth population density for the entire
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Freq.
I per

release
Total per

opportunity
Grand
total

Average
plant

density

Lowest
plant

density
Saved Total cost CB

once 3 400 47 600 47 600 61% 39% R10 938 R14 032,05 -R3 094,05
f = 7 800 11 200 1 111 200 35% 2% R25 012 R360 737,80 -R335 725,80
f = 14 1 700 23 800 1 167 000 34% 1% R25 940 R345 264,40 -R319 324,40
f = 28 3 400 47 600 1 183 200 30% 1% R27 618 R337 376,00 -R309 758,00

Table 6.5: For releases every 7.5 m along the two long edges of the infested Kuilsriver site, the number of
BCAs yielding the best suppression, the average plant density, the lowest plant density obtained, as well
as the total value of water saved, the total cost and cost/benefit (CB) for once-off, weekly (f = 7), two-
weekly (f = 14) and four-weekly (f = 28) release strategies over a time period of two years, commencing
in December, as determined from the simulation.

domain reached 1% of the original plant density. Similar to one-edge releases, plants grow back
as BCAs generations pass, yielding a final plant density, as shown in Figure 6.7(d), at the end
of the considered two-year time period. Simulation results indicate that even if releases are
performed at two edges, biological control will have to be continued for more than two years in
order to maintain water hyacinth control at the Kuilsriver site.
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(a) Initial plant density.
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(b) After one year.
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(c) After one and a half years.
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(d) After two years.

Figure 6.7: Water hyacinth population dynamics for four-weekly releases of 3 400 BCAs every 7.5 m
along the two long edges of the Kuilsriver site over a time period of two years, commencing in December.
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6.5 Comparison between one-edge and two-edge release strate-
gies

Two-edge releases yield significantly better water hyacinth suppressions in comparison with one-
edge releases, with the same number of available BCAs per four-week cycle over a time period of
two years (see Figure 6.8(a)). Even though two-edge releases use smaller magnitudes of BCAs per
point of release, the impact of attacking the weed from two sides instead of waiting for the BCAs
to spread to the other side in their own time, is significant. Furthermore, for once-off releases,
releases at two edges yield a value of water saved of 1.5 times the value obtained with releases at
one edge, while frequent releases at two edges yield a value of water saved of 1.7 times the value
obtained with releases at one edge (see Figure 6.8(b)). Since the costs pertaining to one-edge
and two-edge release strategies remain the same, while the benefits increase significantly for two-
edge releases, it is clear that the latter will be considerably more cost-effective in comparison
with one-edge releases over a time period of two years. It will therefore be worth it for biological
control practitioners from the Invasive Species Unit in Cape Town to investigate the option of
getting access to the other long edge at the Kuilsriver site, while maintaining biodiversity on
the banks, in order to enable releases at two edges.
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Figure 6.8: Comparison of the average plant density obtained (a) and the total value of water saved
(b) between one-edge and two-edge releases every 7.5 m along the considered edges, for different release
frequencies over a time period of two years.

6.6 Recommendations

For the current model assumptions, simulation results indicate that N. eichhorniae weevils may
be able to sufficiently develop and establish at the Kuilsriver site, under the assumed weather
conditions for Cape Town. BCAs may suppress water hyacinth populations to a minimum of 34%
of the original total plant density at some point in time over a period of two years, commencing
in December, with one-edge releases every four weeks with releases every 7.5 m along the edge,
or to a minimum of 1% of the original total plant density at some point in time over a period
of two years, with two-edge releases every four weeks with releases every 7.5 m along the edges.
Two-edge releases will be more cost-effective in comparison with one-edge releases and once-off
releases will be more cost-effective in comparison with frequent releases, when only the benefit
of water saving is considered and if there is not a desired level of control that needs to be
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obtained within a time period of two years. Since salaries account for by far the largest part
of the expenses pertaining to the rearing and releasing of BCAs at the Invasive Species Unit in
Cape Town, the programme managers are encouraged to review the efficiency of their current
employment situation, re-evaluating the necessary and sufficient number of employees and hours
allocated to the programme.

In the bigger picture, further benefits of the effective control of water hyacinth, including the
conservation of biodiversity, reduction in health risks and increase in quality of life for nearby
communities, should be considered. This may shift the focus from aiming to break even with
costs, to regarding the expenses as an investment for the sake of the environment and society.

6.7 Chapter summary

In this chapter, the model was applied to a real-world release site in order to illustrate how
the model may be utilised to provide guidance towards suitable BCA release strategies, which
will minimise costs and maximise the benefit for a specific site. A description of the site was
provided in §6.1, followed by a review of the costs involved with the rearing and releasing of
BCAs by the Invasive Species Unit in Cape Town in §6.2.

Simulation results in §6.3 indicated that, for the assumed parameter values, four-weekly releases
commencing in summer, with releases of 6 800 BCAs every 7.5 m along the edge, will be the
most efficient one-edge release strategy for the Kuilsriver site. In contrast to previous control
strategies for this site, which consisted of weekly or two-weekly releases, this suggestion of less
frequent releases may aid in improving the efficient and cost-effective control of water hyacinth
at the Kuilsriver site. However, when only the benefit of water saving due to the biological
control of water hyacinth is considered, once-off releases appeared to be more cost-effective than
frequent releases, even though once-off releases were remarkably less efficient in suppressing
plant populations. It was emphasised that further benefits of biological control, including the
conservation of biodiversity and reduction in health risks, should also be considered to be able
to perform a more encompassing cost-benefit analysis.

Numerical results for two-edge release strategies in §6.4 were compared to one-edge release strate-
gies in §6.5, where it was found that two-edge releases yielded significantly better water hyacinth
suppressions in comparison with one-edge releases, with the same number of available BCAs per
four-week cycle over a time period of two years. Furthermore, releases at two edges yielded a
value of water saved of up to 1.7 times the value obtained with releases at one edge, predicting
that two-edge release strategies will be considerably more cost-effective in comparison with the
current one-edge releases at the Kuilsriver site, suggesting that it will be worth it for biological
control practitioners to investigate the option of getting access to another edge at the Kuilsriver
site, while maintaining biodiversity. The chapter closed with practical recommendations towards
how the Invasive Species Unit in Cape Town may improve the efficient and cost-effective control
of water hyacinth at the Kuilsriver site in §6.6.
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This chapter consists of a brief summary of the work presented in this study, as well as an
overview of the main contributions of the study with respect to the mathematical modelling
of biological control strategies for water hyacinth. The chapter concludes with suggestions for
possible future work to further this research.

7.1 Thesis summary

In the introduction of this study, the serious problems posed by water hyacinth were shortly dis-
cussed, followed by a brief history of the control of water hyacinth globally and in South Africa.
After the national importance of water management and the economic and social benefits that
could be drawn from biological control programmes were emphasised, the current challenges
experienced in the sound and cost-effective management of the weed in South Africa were pro-
vided. The scope of and objectives pursued in this study also form part of the introductory
chapter.

In Chapter 2, the necessary biological background of the water hyacinth, Eichhornia crassipes,
and the Neochetina eichhorniae weevil, consisting of the life cycles of the plant and its enemies,
as well as the way they influence each other, was provided. This provided the necessary bio-
logical foundation in order to model the interaction of the two species and to understand the
assumptions made during the construction of the model in subsequent chapters (in fulfillment
of Thesis Objective I).

The mathematical background with respect to the modelling of water hyacinth population
growth and interaction models of water hyacinth and the N. eichhorniae weevil, together with the
limitations of current modelling approaches, was discussed in Chapter 3 (in fulfillment of Thesis
Objective II(a)). Previous temporal mean-field models proved to be unrealistic in the context of
assuming that BCAs are uniformly distributed throughout an area. A spatially explicit model
was therefore required to model the distribution of water hyacinth and the weevils in a hetero-
geneous environment. A discussion on reaction-diffusion theory, which is the main modelling
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approach adopted in this study, and its application in ecology, was given (in fulfillment of Thesis
Objective II(b)).

In Chapter 4, a reaction-diffusion model for a temporally variable and spatially heterogeneous
environment, consisting of a system of coupled delay PDEs, was developed to mathemati-
cally describe the spatio-temporal dynamics of water hyacinth populations and the interacting
populations of the various life stages of the N. eichhorniae weevil as BCA on an isolated and
bounded two-dimensional spatial domain. In order to translate the biological background pro-
vided in Chapter 2 to a mathematical model that represents the population dynamics of the
plant and weevil species, a number of simplifying assumptions was discussed in §4.1, followed by
the development and mathematical formulation of the reaction-diffusion model in §4.2. As a first
attempt to model the spatial dynamics of the water hyacinth and weevil system, diffusion terms
were added to the applicable ordinary DDEs in the temporal model presented in previous studies,
with the additions of an Allee-effect and a term allowing for frequent releases of adult weevils, a
more detailed temperature dependence, as well as slight changes to the modelling of the through
stage survival probabilities (in partial fulfillment of Thesis Objective III(a)). Limitations of this
modelling approach motivated the development of the final model formulated in §4.2.2, with a
different approach towards the modelling of the recruitment and maturation terms for the weevil
population and the derivation of a more accurate expression for the old larval maturation term,
which includes spatial averaging (in final fulfillment of Thesis Objective III(a)). Subsequently,
detailed discussions and derivations of the model input and output parameters were provided in
§4.3 and §4.4, respectively (in fulfillment of Thesis Objective III(b)), including the derivation of
a cost-benefit function which may be used to determine the most cost-effective release strategy
for a specific scenario (in partial fulfillment of Thesis Objective IV). An elaborate description of
the implementation of the model in Matlab 9.0, together with difficulties encountered during
this process, was given in §4.5. Finally, numerous simulations were performed in order to vali-
date the model output by means of testing various model responses and comparing the model
output to real-world data in §4.6 (in fulfillment of Thesis Objective III(c)). The model re-
sponded as expected to changes in θ, I, a, cmaxL2

, dA, dL2(θ), dW , f and the timing of BCA
releases. Furthermore, model simulation output reflected a realistic decrease in the total plant
population densities over the considered period, corresponding to field observations from the
real-life BCA release scenario which took place at the Mkhadzi Spruit at the end of 2008. The
spatially explicit model was therefore considered valid to be used to provide guidance towards
the optimal magnitude, frequency, timing and distribution of BCA releases in a temporally and
spatially variable environment.

Chapter 5 contains investigations into the cost-effectiveness of different water hyacinth biological
control release strategies for both short-term (six months) and long-term (two years) scenarios
by means of numerical simulation, as provided in §5.1 (in fulfillment of Thesis Objective IV(a)).
In §5.1.1, it was concluded that, for a 30 m × 30 m domain located in the Cape Town region,
once-off releases were more cost-effective than frequent releases in the short term and that
summer releases were, for all considered release strategies, more efficient and cost-effective than
winter releases in the short term. Summer releases at at least two edges were required to
obtain the desired level of weed suppression in the short term. Cases where releases were more
distributed along an edge yielded greater suppression of weed density and therefore proved
to be more cost-effective. Simulation results suggested that the optimal short-term strategy,
yielding the most reachable break-even cost per BCA for the assumed parameter values, was
to perform a once-off release at four edges with releases every 7.5 m along the edges in the
first month of summer in order to suppress weed density to the desired level of control within
six months (in partial fulfillment of Thesis Objective IV(b)). Long-term analyses in §5.1.2
indicated that releases commencing in summer yielded significantly higher benefits (in terms of
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water saving) over a two-year time period, while requiring lower total numbers of BCAs to obtain
the desired weed suppression in comparison with releases commencing in winter. Additionally, it
was concluded that only frequent releases (weekly, two-weekly or four-weekly releases) at two or
four edges succeeded to obtain sufficient weed suppression within the considered two-year period,
accentuating the benefit of releasing at more than one edge of an infested domain, as well as
the value of frequent releases compared to a once-off release in the long term. Frequent releases
yielded results in a close proximity to each other in the long term. In some cases, however,
four-weekly releases slightly outperformed weekly and two-weekly releases by obtaining better
weed suppression, indicating that releases of larger numbers of BCAs once every four weeks
tended to be more effective than releases of smaller numbers more regularly. In other cases,
where results did not indicate a clearly dominant strategy, four-weekly releases were preferred
simply on the basis of saving on travelling expenses due to releases being performed less often.
When large numbers of BCAs were released at the same position, a strong limitation on the
number of individuals maturing to the damage-causing old larval stage due to density dependence
reduced the success of water hyacinth control. These results emphasised the importance of taking
density dependence into account when suggesting effective biological control release strategies,
confirming that it will be more effective to distribute BCA releases along edges, rather than
releasing at a singular point (in final fulfillment of Thesis Objective IV(b)).

Sensitivity analyses in §5.2 revealed that the total value of water saved is generally significantly
more sensitive to changes in parameter values in comparison with the sensitivity of the average
plant density for similar perturbations in input parameters, especially at a lower constant tem-
perature (25◦C). In §5.2.1, it was concluded that the average plant density appeared to be
relatively insensitive to changes in the number of BCAs released, I, increasing the confidence in
recommended release strategies. Similar to results obtained from sensitivity analyses performed
by Van Schalkwyk and Potgieter [74] on a mean-field model, the model output was slightly
more sensitive when the number of BCAs released was decreased than when it was increased. In
order to minimise the average plant density in the case where BCAs may struggle to adapt in a
new habitat or a disaster hits and a lot of them die (larger adult mortality, which consequently
decreases I), it was recommended to release a slightly larger number of BCAs than the optimal
number, as well as to release during the time of the year when the climate is optimal for the de-
velopment of young larvae and the survival of adult weevils. Further analyses in §5.2.2 revealed
that the total value of water saved is more sensitive at a lower constant temperature (25◦C)
than a higher one (30◦C). In order to obtain maximum benefit, it was recommended to release
BCAs during the time of the year when temperatures are as close as possible to optimum (30◦C)
in order to maximise the old larval damage rate, the oviposition rate, larval development rates,
as well as survival rates, concurring with suggestions from Van Schalkwyk and Potgieter [74].
Suboptimal temperatures may significantly affect these parameter values, resulting in drastic
decreases in the benefit obtained through biological control, in terms of water saving.

In Chapter 6, the model was applied to a real-world release site in order to illustrate how the
model may be utilised to provide guidance towards suitable BCA release strategies, which will
minimise costs and maximise the benefit for a specific site (in fulfillment of Thesis Objective V).
The results of simulations performed on this domain were given in §6.3 – §6.5, with resulting
recommendations in §6.6.

7.2 Main contributions

The main contributions of this study within the context of research on the biological control of
water hyacinth in South Africa are discussed in this section.
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1. The development of a spatio-temporal model describing the water hyacinth and N. eichhor-
niae weevil interactions.

A reaction-diffusion model was applied to water hyacinth and N. eichhorniae weevil pop-
ulation growth, dispersal and interaction in a temporally variable and spatially heteroge-
neous environment. Although previous studies have started to examine the influence of
temperature on the population dynamics of the two species and the control of the weed
under constant conditions, the introduction of spatial dynamics is a new contribution.
For the first time in research of biological control of water hyacinth, different BCA re-
lease strategies were compared by means of mathematical modelling to provide guidance
towards how the weevils can be optimally utilised as BCAs in a spatially heterogeneous
environment in South Africa.

2. The construction of a complex spatially explicit stage-structured time-delay plant-herbivore
model.

A complex two-species spatial model, with spatial terms for both species, incorporating
stage structure, time delays, an Allee-effect, variable temperature and external additions
to one of the species was developed. An encompassing expression for the time-delayed
maturation term for the old larval stage, where there is diffusion and time delay simul-
taneously, was derived for the model in a bounded, two-dimensional spatial domain with
homogeneous Neumann boundary conditions. This involved intricate spatial averaging.
For simplicity’s sake, studies in literature only demonstrate the derivation of the delay
term for a one-dimensional domain, only mentioning that it should be possible to carry
out numerical simulations in higher space dimensions. At the time of writing, the author
could find no other examples in literature of a mathematical model incorporating such
a range of complexities for two interacting species. This study therefore contributes to
the body of knowledge by understanding the aspects involved in the modelling of inter-
acting species in general, not just specific to the modelling of water hyacinth and weevil
interactions.

3. The derivation of suitable plant and weevil diffusion coefficients.

At the time of this study, no explicit measurements of the dispersal rates of the plant
and weevil species over time could be obtained from literature. The derivation of suitable
parameter values for the diffusion coefficients for water hyacinth and the mobile stages
of the N. eichhorniae weevils from the limited information available on the respective
dispersal patterns from previous studies, may therefore be deemed as a new contribution.

4. The detailed description of the implementation of the spatio-temporal model in Matlab.

The detailed discussion of the implementation of the spatio-temporal model in a bounded,
two-dimensional spatial domain in Matlab may aid as a valuable foundation for future
implementations of mathematical models describing similar plant-herbivore interactions.
At the time of this study, studies in literature in which the implementation of a two-species
spatio-temporal model in a bounded, two-dimensional spatial domain was discussed, were
very limited. The author addressed the challenge of implementing time-dependent so-
lutions for partial derivatives and provided a method for implementing two-dimensional
spatial averaging for a bounded domain by means of using the spatial averaging kernel for
the unbounded case and manually accounting for the effect of each reflecting boundary.
The implementation of frequent releases and fluctuating temperatures was also discussed.

5. The construction of a cost-benefit function for water hyacinth biological control.
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A cost-benefit function was constructed, in which the cost of a specific BCA release strategy
was compared to the benefit of that strategy, in terms of the value of water saved. The
daily amount of water saved was measured in terms of the difference in evapotranspiration
from the initial water hyacinth population, prior to the application of biological control,
and the current water hyacinth population. In a recent study, only estimates of the aver-
age evapotranspiration from water hyacinth populations in the long term has been used
in cost-benefit analyses. The contribution of a detailed daily measurement of the evapo-
transpiration from water hyacinth used in the cost-benefit analysis in this study provides
a more accurate representation of the benefit that may be drawn from biological control
of water hyacinth.

6. Practical recommendations for efficient and cost-effective BCA release strategies in water
hyacinth management.

Numerical and sensitivity analyses resulted in easily interpretable results and practical
recommendations for BCA releases in water hyacinth infested areas, which include sugges-
tions on when releases should be commenced, as well as the best frequency, distribution
and magnitude of BCA releases, yielding cost-effective control of the water hyacinth weed
in the Cape Town region. The model may easily be adapted to obtain release suggestions
for other regions as well. Analyses further provided target values for the cost per BCA
which may yield economically viable results for researchers when the value of water saved
is considered as a benefit of biological control.

7.3 Possible future work

Several suggestions are made with respect to possible future research emanating from the work
presented in this thesis (in fulfillment of Thesis Objective VI).

7.3.1 Recommendations for future entomological research

The collection of more thorough field data or data from laboratory experiments may assist to
more accurately estimate some of the parameter values assumed in the spatio-temporal model
presented in Chapter 4.

Investigate the movement behaviour and dispersal rate of N. eichhorniae weevils

The model presented in this study assumes that, based on previous studies [91] and field observa-
tion, only the old larval and adult stages of the weevil’s life cycle are mobile. At the time of this
study, information regarding the effectiveness with which old larvae and adult weevils disperse
between neighbouring locations was limited. The old larval diffusion coefficient was derived from
a study by Wilson [91] in which the observation was made that third instar larvae move between
plants with a probability of p = 0.065, independent of plant size or nutrients, while the adult
diffusion coefficient was derived from a study by Haag [30] where it was observed that, even
in the absence of flight muscles, adult weevils are able to move between adjacent plants over
a distance of at least 4 m in a course of one month. Information about adult movement over
longer distances is still lacking. The studies, however, did not explicitly measure dispersal rates
over time, and therefore the assumed values for the diffusion coefficients used in this thesis are
only rough estimates. In order to incorporate a higher level of biological realism into the model,
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more information with respect to the possible range of movement, as well as how fast weevils
disperse over some spatial domain and how it is influenced by temperature, is required.

Measure the Allee-effect threshold

At the time of this study, no experimental values were available for the Allee-effect threshold
and a conservative minimum threshold for weevil reproduction of a = 3 adults/m2 had to be
assumed. More information on the minimum required number of BCAs/m2 for reproduction is
needed in order to be able to measure the efficiency of different BCA release strategies more
accurately.

Acquire more in-depth information on the old larval damage rate and density-
dependent factor

Parameter values for the rate of damage caused by old larvae, cL2(θ), and density-dependent
scaling factor, JL1 , were obtained from previous studies by Wilson [91]. These values, however,
were only estimates. While the addition of stage-specific processes makes the model more
biologically realistic, the accuracy of the model may be improved when more information on
these parameters is obtained.

7.3.2 Recommendations for possible future modelling work

During the construction of the mathematical model presented in Chapter 4, simplifying assump-
tions were made in order to describe a part of a real-world process. The model should therefore
not be considered as a complete or exact representation of real-world water hyacinth and weevil
interactions, but rather as an approximation. The model may be refined by improving on the
assumptions made or using better techniques or modelling approaches. Possible future modelling
work may include the following suggestions.

Incorporate stochasticity into temperature fluctuations

The growth, oviposition, damage, development, survival, mortality and evaporation rates used
in the model are temperature dependent. In this study, however, a constant average temperature
was assigned to each month without any fluctuations within a given month. The temperature
on a specific day may rather be estimated by means of a probability distribution of temperature
for each month.

Incorporate long-range dispersal of water hyacinth and adult weevils

The spatio-temporal model developed in Chapter 4 assumes only local dispersal of water hyacinth
and adult weevils within a bounded, isolated, continuous spatial domain, while no dispersal
between different spatial domains was considered. During certain seasons or under specific
physiological conditions, N. eichhorniae adult weevils may develop flight muscles and be able
to fly and migrate between different spatial domains infested with water hyacinth [16, 26, 65].
This seems to be quite rare and, even after extensive research, the exact factors influencing wing
muscle development remain difficult to pinpoint [7]. Furthermore, wind, water streams, boats,
birds and other animals may unintentionally assist in spreading water hyacinth plants into other
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areas [37, 69]. Although it is reasonable to assume local dispersal of water hyacinth and adult
weevils, some individuals may disperse over considerable distances across different domains. A
case of possible immigration of N. eichhorniae adult weevils to a study site in Texas from nearby
(60 m) areas infested with water hyacinth has been reported [26]. An understanding of the
development of flight muscles is necessary to be able to manage weevils effectively. Adjustments
may be made to the model in order to account for the possibility of plant and weevil dispersal
between fragmented landscapes.

Investigate alternative modelling approach for distinct stages of growth and disper-
sal

The reaction-diffusion model presented in Chapter 4 assumes plant growth and dispersal, as
well as weevil reproduction and dispersal, occur simultaneously. Reaction-diffusion models have
been successfully used to model the spread of plant and animal populations [55]. However,
for populations where the stages of dispersal and reproduction are clearly distinguished and
occur at discrete intervals, reaction-diffusion models appear to give unrealistic representations
of the population dynamics. In these cases, another type of mathematical model based on
integro-difference or integro-differential equations1 may yield a more realistic description of the
spatial dynamics [55]. In these models, an integral represents dispersal or interaction between
spatial locations. A weight function (known as a kernel), describing the relative importance of
nearby individuals compared with distance ones, is assigned to the integral [46]. When model
assumptions are adjusted to incorporate the possibility of distinct stages of reproduction and
dispersal for both plant and weevil, the use of an integro-differential equation modelling approach
may be investigated in order to accurately represent these discrete processes.

Explore new options for the locations of recurring releases

The frequent release approach adopted in this study consists of re-releasing BCAs at constant
points in the domain for as long as there exist sufficient plant densities before releasing at a
neighbouring position. Since numerical solutions in Chapter 5 indicated that density dependence
limits the success of biological control release strategies when large numbers of N. eichhorniae
weevils occur at the same position, it may be insightful to explore the outcome of avoiding
previous points of release as far as possible by performing recurring releases at different positions
of the domain instead of at the same location until the weed is eradicated at that location, aiming
to get as close as possible to a uniform distribution of BCAs across the water hyacinth infested
area, while still accounting for accessibility constraints.

Expand on the characteristics of the domain

In this study, only domains of rectangular shape are considered as representative approximations
of the considered water hyacinth infested areas. In order to expand on realism, the model may
be adapted to incorporate domains of different shapes or fragments, where the large, continuous
domain is divided into a number of smaller patches of lower total area, isolated from each
other by areas of dissimilar habitat. The use of geographic information system (GIS) to import
detailed spatial and geographical data of a specific release site may be considered.

1An integro-differential equation is an equation that involves both integrals and derivatives of a function [89].
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Quantify and incorporate further benefits of biological control

Besides the gains to be obtained from the effective control of water hyacinth in terms of wa-
ter saving, there are many other advantages, which include the conservation of biodiversity,
increased catchment stability, a greater potential for ecotourism, reduction in health risks and
direct job creation through the control programmes [42]. These benefits are difficult to quan-
tify and, until now, the total economic and socio-economic benefits of water hyacinth control
programmes are yet to be adequately described in economical terms [73]. The incorporation of
further benefits pertaining to the control of water hyacinth in the cost-benefit analysis presented
in this study may support a more comprehensive assessment of cost-effective biological control
strategies, as well as a demonstration of the full socio-economic worth of control programmes,
which in turn may validate the continued funding of such programmes.

Determine the existence of equilibrium states and/or limit cycles in the system

Due to the complexity of the model presented in this study, the equilibrium states, where the
population densities remain unchanged over time, are yet to be determined. Seasonal variation
may mean that the densities observed are not the same as the equilibrium densities that would
be observed in a stable environment. The existence of limit cycles, wherein the population
densities undergo well-defined cyclic changes in time with fixed amplitudes [45], may also be an
insightful subject of investigation.

Consider integrated control strategies

In practice, two or more control methods are often applied in an attempt to achieve better
control of water hyacinth. In South Africa, integrated control of water hyacinth often consists
of a combination of biological and herbicidal or mechanical control. Herbicide application and
mechanical removal programmes are known to limit the success of biological control by removing
the BCA populations along with the water hyacinth infestations. When cleared or treated
water bodies are re-infested after these removals, the enemies are absent, resulting in rapid and
abundant growth of the weed [31, 32, 81]. The incorporation of integrated control strategies into
the mathematical model may aid in determining the optimal, most cost-effective combination
of control methods.

Adapt model to compare the effect of different BCAs

The model presented in this study only considers the interaction between water hyacinth and
the N. eichhorniae weevil as BCA. The model may be adapted for different water hyacinth BCA
species in order to evaluate the efficiency of and determine cost-effective release strategies for
different BCAs in the control of water hyacinth.
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