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Abstract

The Finite Element Method (FEM) as applied to Computational Electro-
magnetics (CEM), can be used to solve a large class of Electromagnetics
problems with high accuracy, and good computational efficiency. Computa-
tional efficiency can be improved by using element basis functions of higher
order. If, however, the chosen element type is not able to accurately dis-
cretise the computational domain, the converse might be true. This paper
investigates the application of elements with curved sides, and higher or-
der basis functions, to computational domains with curved boundaries. It
is shown that these elements greatly improve the computational efficiency
of the FEM applied to such domains, as compared to using elements with
straight sides, and/or low order bases.
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Opsomming

Die Eindige Element Metode (EEM) kan breedvoerig op Numeriese Elek-
tromagnetika toegepas word, met uitstekende akkuraatheid en 'n hoë doel-
treffendheids vlak. Numeriese doeltreffendheid kan verbeter word deur van
hoër orde element basisfunksies gebruik te maak. Indien die element egter
nie die numeriese domein effektief kan diskretiseer nie, mag die omgekeerde
geld. Hierdie tesis ondersoek die toepassing van elemente met geboë sye,
en hoër orde basisfunksies, op numeriese domeine met geboë grense. Daar
word getoon dat sulke elemente 'n noemenswaardinge verbetering in die nu-
meriese doeltreffendheid van die EEM meebring, vergeleke met reguit- en/of
laer-orde elemente.
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Chapter 1

Intrad uct.ion

The Finite Element Method (FEM) is well established as an effective Com-
putational Electromagnetics (CEM) method. The application of FEM to
CEM is described in detail in texts such as [1], [2] and [3]. While the field is
currently fairly well developed, developments which improve computational
efficiency will always be sought.

In this paper, two relatively recent, such developments in the field are
investigated, viz. using higher order vector element basis functions, and
using curvilinear elements. While neither of these techniques are new to
FEM in general, the latter is not widely described in the current electronic
engineering literature.

1.1 Motivation for Higher Order Elements

It is well established that using vectorial, edge-based, curl conforming el-
ements is currently the best approach for applying the FEM to most mi-
crowave problems [4], [1, §7.5], [2, §8]. These elements ameliorate the issues
of spurious modal solutions, and poor modelling of singularities at metallic
edges, commonly encountered when standard, node-based, scalar elements
are extended to model vector valued EM field problems.

From conventional, scalar FEM experience, it is known that using basis
functions of higher polynomial order, result in faster convergence with mesh
size, and hence leads to better computational efficiency [5, §8]. Initially, the
lowest-order vector elements, known as Whitney, or Constant Tangential
Linear Normal (CT jLN) elements were most widely studied.

Defining higher order basis functions for vector elements are, however,
somewhat more complex than for scalar elements. Initially, higher order
basis functions were found in a somewhat ad hoc manner (ie. [6], [7].) More
recently, systematic methods of defining interpolatory [8], and hierarchal [9],
vector basis functions of arbitrary order have been published.

Higher order vector elements are very efficient. An element with a field
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1.2 Motivation for Curvilinear Elements

CHAPTER 1: Introduction

which has curl complete to polynomial order (p - 1), will show an energy
error that is of order O(h2P), where h is the element edge length used to
discretise the problem [9].

With higher order elements being more efficient, simpler meshes may be
used for a given level of accuracy. Since mesh generation, and processing, can
be fairly time, and memory, consuming in its own right, this is a desirable
property.

If a hierarchal basis is used, each element in a mesh need not have the
same order of basis functions. Higher order elements may then be used only
in the parts of a mesh where they yield the greatest benefit (p-adaption)
[10] [11].

In the previous section, it has been presupposed that the mesh used to
discretise a computational domain, models the geometry of the problem
exactly. Most published vector elements have straight sides. They are,
therefore, incapable of modelling the geometry of any curved domain exactly.

High order bases stand to gain the most from using curved elements.
With lower order elements, the improvement of the geometrical modelling
error with h, is often commensurate with that of the field modelling.

The field modelling of higher order elements, on the other hand, is likely
to converge much faster than the geometrical modelling provided by straight
edges. Consequently, the rather rough geometrical modelling provided by
straight elements dominates the solution accuracy [12], [13], [14].

Geometrical approximation error will also adversely affect p-adaption. P-
adaption depends on the field being modelled more accurately over a given
element, as the basis order is increased on that element. If the element lies
on the edge of a curved domain, there is no escaping the geometrical error
without refining the mesh.

1.3 Chapter Summary

Chapter 2 The basic FEM variational formulation is introduced, and the
basics of implementing a vector FEM code is discussed.

Chapter 3 Curvilinear coordinates are introduced. It is shown how Co-
variant Projection Mapping may be used to construct curl-conforming
vector elements.

Chapter 4 Discussion of the theory and implementation of higher order
bases.

7
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CHAPTER 1: Introduction

Chapter 5 Mappings that may be used with the theory of Chapter 3 are
introduced.

Chapter 6 Description of parametric curves is given. They complement
some of the methods described in Chapter 5.

Chapter 7 Results are presented, and analysed.

Chapter 8 The conclusion is presented.
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Chapter 2

The Finite Element Method
for Computational
Electromagnetics: Theory
and Implementation

This chapter presents an overview of the FEM, and the theory of its appli-
cation to EM problems, given a variational formulation. Furthermore, the
implementation of a basic 2-D vector-element FEM code, applicable to ar-
bitrary shaped, homogeneous waveguides, is detailed. The rest of the work
described in this document builds on the theory described in this chapter.

2.1 Finite Element Method Theory

The Finite Element Method (FEM) is a widely used and effective technique,
for numerically obtaining approximate solutions to problems posed by the
equations of calculus [5]. In particular, it is effective at the solution of
partial-differential, boundary-value problems, such as those posed by many
problems in electromagnetics.

2.1.1 A Brief History of the FEM

The basic principles on which the FEM is based, were first studied in the
early 1940's. It was initially applied to mechanical problems such as heat
conduction, mechanical stress/strain, and fluid-dynamics. As computers be-
came cheaper, more powerful, and more plentiful, and sophisticated matrix
techniques were developed, the FEM became very widely used.

In the mid-1960s, it was realised that the FEM was, in fact, a very broad
numerical technique. Through the 1970's its mathematical basis was more
rigorously established. This brought to light its applicability to any problem

9
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(2.1 )

CHAPTER 2: The FEM for Computational Electromagnetics

that could be placed in variational form, or be defined by weighted residuals,
or global energy balance principles.

Electromagetic field problems are defined in terms of partial differential
equations, for which variational formulations are known. This led naturally
to the FEM being applied to this field.

Straight forward application of previous FEM techniques (ie. nodal,
scalar, elements) yielded some difficulties, most notably spurious, non-physical,
mode solutions. These were overcome in the mid 1980's to early 1990's, with
the introduction of vector elements [4], [15], [16], [17].

2.1.2 Variational Formulation of the Vector Helmholtz Equa-
tion for 2D Lossless Homogeneous Waveguide Field
Problems

The starting point of a vector CEM FEM code is usually the vector wave
equation, here in terms of the electric field, E,

where /-L and Ec are, respectively, the permeability, and the complex per-
mittivity, of the medium, .h the impressed current, and w the frequency in
radians per second. Ec = E - ja/w includes the result of, both the induced
conduction current (aË), with a the conductivity of the medium, and the
displacement current.

In the case of a source-free, lossless, inhomogeneous waveguide, with
boundary conditions

ft x E = 0 on r1
ft x (V' x Ë) = 0 on r2,

(2.2)

(2.3)

where r1 and r2 refer, respectively, to electric and magnetic walls, we get

(2.4)

where /-Lr and Er refer to, respectively, the relative permeability, and permit-
tivity, of the medium, and the free space wave number, ko = WV(EO/-LO), has
been substituted.

The equivalent variational problem, given real Er and J.lr, is solved by
satisfying [2, §8.2]

ft x E = 0 on r1 ,
and rendering stationary the functional

(2.5)

F(E) = ~JJ [:r (V' x Ë). (V' x E)* - k6ErË· E*] dD. (2.6)
n

10
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Ë~= LHiieE~i = (wefE~,
i=l

(2.9)

CHAPTER 2: The FEM for Computational Electromagnetics

Assuming a known z-dependence as Ë(x, y, z) = Ë(x, y)e-jkzz, where kz is
the propagation constant, (2.6) can be written as

- lJrr[l - - 2 - -F(E) ="2 J f.1-rrv, x Et) . rv, x Et)* - koErE· E*
fl (2.7)

where V't denotes the transverse curl operator, and ii, the transverse electric
field. This formulation allows one to solve ko, given a value of kz. By solving
for kz = 0, ie. the cutoff wave numbers of the guide, and setting Ez = 0,
the functional is simplified to

(2.8)

Having set E; = 0, we are limited to solving the Transverse Electrical (TE)
modes of a waveguide. By using the dual of the above functional, we may
also solve the Transverse Magnetic (TM) modes of a waveguide. This limits
the solution to, either homogeneous waveguides, or a limited number of
loaded waveguide configurations.

Loaded waveguides which satisfy certain symmetry constraints [18] [19],
have modes which are pure TE, or TM, modes. General inhomogeneous
waveguides have, in addition to TE and TM modes, modes which contain
both electric, and magnetic, longitudinal field components, simultaneously.
Inhomogeneous waveguides are, however, not considered further.

2.1.3 Discretising the Domain

In order to apply the FEM, the domain must be discretised, and the field
represented by basis functions defined on the individual elements.

Assuming the domain is discretised into M elements, within each ele-
ment, e, the vector transverse field can be expanded as

where n is the number of basis functions defined on the element, Hit is
the ith basis function, and E~i is the coefficient of the ith basis function.
Substituting this expansion into (2.8), one obtains

M

F = ~L ([E~fse[E~]*- k5Er[Et]TTe[Et]*) ,
e=l

(2.10)

11
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F 1ETSE* 1k2 ETTE*=2" t t-2" 0 t t :

Applying the Ritz procedure[2], the generalised eigenvalue problem

SEt = k6TEt

(2.13)

CHAPTER 2: The FEM for Computational Electromagnetics

where the elemental matrices are given by

Sfj = :~ f fC\lt x Wn· ('Vt x Wj) dn,
ne

(2.11)

and

i; = f~ f f Wi .Wj dn.
ne

(2.12)

Using global notation, (2.10) may be re-written as

(2.14)

is obtained. This may now be solved using linear algebra techniques.

2.2 Implementation of a 2D Vector FEM for Ho-
mogeneous Waveguides of Arbitrary Cross-section

The FEM, using the variational formulation described in the previous sec-
tion, may now be applied to the problem of solving the modes, and mode
cut-off wave-numbers, of a 2D, homogeneous wave guide, of arbitrary cross-
section. The implementation of a FEM code is described, using basic, tri-
angular Whitney (CTjLN) elements[2, §8]. The extension to higher order
bases, and curved elements, are described in the following chapters.

2.2.1 Discretisation: Tr iangular Whitney Elements

Triangular elements are used to discretise the computational domain. Tri-
angles are able to model any 2D, polygonal, domain exactly [20]. This
property, and the fact that computer methods which automatically mesh
such domains have long been known, has lent them wide-spread use in the
CEM communityj I].

The Whitney (CT jLN) basis functions used, constitutes the simplest
vector basis applicable to triangular elements. It assigns a basis function,
and hence degree of freedom, to each edge of the triangle. In simplex coor-
dinates, the basis functions are given by

WI = )'1Y'A2 - A2 Y'Al

W2 = A2Y'A3 - A3 Y'A2

W3 = Al Y'A3 - A3 'VAl,

(2.15)

12
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The numbering convention is such that vVn is associated with an edge vec-
tor en, directed from node n to, node n + 1 mod 3. The tangential field
component, at the edge associated with vVn, is directed along en·

At each edge of the element, each basis function has a zero tangential field
component, except for the basis function assigned to the edge in question.
Since the tangential field at each edge is constant, the degrees of freedom of
an element, equate to the tangential field component, at each of the elements
edges.

Tangential field continuity, or curl conformance, between two elements
sharing an edge, is assured by assigning the same magnitude, and edge
orientation, to the basis functions from both elements. Achieving this in
practice, is discussed in the following subsection.

Integration of the elemental matrices may, at this point, be evaluated
analytically. The resulting matrices may be found, for example, in [2, §8].

Decomposition of the computational domain into discrete elements, was
achieved using the GRUMMP[21] 2D, and 3D, mesher.

2.2.2 Global Matrix Assembly and Solution

After the domain has been discretised, the contributions of the individual
elements have to be assembled into the global Sand T matrices, as used by
(2.13).

In the case of scalar elements, this is simply achieved, by assigning the
same variable to nodes shared by neighbouring elements. Vector elements,
however, add the complication of the edge vector direction.

On a shared edge, the edge vectors of each element will lie on the same
line. They might, however, be directed in opposite directions. When this
occurs, the two basis functions will differ by a factor of -l.

This problem may solved in two ways. Either, by ensuring that all
elements have consistent edge orientation, or by assuming a global edge
orientation, and multiplying the applicable local matrix row and column by
-1 if it differs[9].

The former method was implemented, by using a specific edge, and node,
numbering convention within each triangle[22]. The nodes on the refer-
ence element, shown in Fig. 2.1, are chosen such that A < B < C, where
A, Band C are the global numbers of the respective nodes. The edges are
now defined so that they always point from lower, to higher numbered nodes.
The edges are then el = AB, e2 = BG, e3 = Ac.

Now it might be noted that the direction of e3 is opposite to the definition
of edge directions in the previous section. To take this into account, the
negative of the third basis function must be used.

The global matrix assembly is now fairly straight forward. The elemental
matrix entries are simply added to the global matrix rows/columns corre-
sponding to edges el, e2 and e3. The global edge numbers were taken as

Stellenbosch University http://scholar.sun.ac.za
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C

ei

Figure 2.1: Reference Element

provided by the mesher .
The edge numbering supplied by the mesher is somewhat arbitrary, so

it is likely that the edge numbers on a given triangle might be fairly widely
spread. However, since a direct full matrix solver is used, there is no need
to try and optimise the bandedness of the resulting global matrices.

The generalised eigen-system, posed in (2.13), is now solved using stan-
dard linear algebra routines. The resulting eigenvalues are the square of the
cut-off wave number, for various modes of the waveguide. The eigenvec-
tors represent the field distribution of a given mode, in terms of the basis
functions used to discretise the computational domain.

In order to make full use of the FEM, sparse matrix techniques would
typically be used. However, a direct solver is used, since it is desired to
measure the effectiveness of the elements, and mappings, independently of
other issues. Additionally, very few, if any, sparse eigen-solvers suitable for
FEM CEM use, are currently publicly available.

The code was programmed in Python [23J,using the Numerical Python[24]
extension. Numerical Python provides, amongst other features, an efficient
data array type, and an interface to the standard LAPACK[25] routines.
LAPACK was set up to use the ATLAS[26] BLAS routines.

2.3 Conclusion

In this chapter, the finite element method was briefly described. The varia-
tional formulation used throughout this paper was presented, and discretisa-
tion of the computational domain discussed. Discussion of a basic FEM im-
plementation using the above formulation and discretisation was presented.

14
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Chapter 3

Curvilinear Coordinate
Systems and Elements

This chapter discusses curvilinear coordinate systems, and how they may be
used to define triangular, curved, curl conforming, vector elements. Unitary
vectors are introduced, as the equivalent of unit vectors in standard, orthog-
onal, coordinates. Covariant-projection elements are defined as a means of
mapping conventional elements to curved elements. Some practical issues,
that affect the performance of curved elements, are discussed, followed by a
description of how one might implement a curved element.

3.1 Literature Survey

The first real account of curved, vector, elements, as applied to the FEM
in CEM, was by Crowley et al. [27]. His elements are, basically, extended
scalar, interpolatory, quadrilateral and hexahedral, elements, with a Degree
of Freedom (DOF) for each dimension of the element at each node, and were
dubbed covariant projection elements. They are also discussed in [1, §7.6].

The chief contribution, is the use of the unitary vectors (discussed in the
following sections), which are local to each element, rather than the con-
ventional Cartesian unit vectors, in the definition of basis functions. Since
unitary vectors define vectors tangential to element edges, this allows both
mixed order basis functions, and curl conformance, to be built into these
elements.

These elements may then be considered as proper vector, edge elements,
and do indeed eliminate spurious solutions. In [27], the inclusion condition is
postulated as a sufficient condition for the elimination of spurious solutions.
It is also stated that these elements satisfy the inclusion condition. However,
it has since been shown that covariant projection elements do not satisfy the
inclusion condition [28].

Several researchers have applied these elements to different CEM prob-
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CHAPTER 3: Curvilinear Coordinate Systems and Elements

lems [29], [30], [31], [32], [33]. The first two papers also describe some as-
pects of the derivation of the elements that are not discussed in [27]. They
all found these elements to be effective, producing spurious solutions in only
one specific case [30]. In [30], these elements were found to be adept at
modelling singularities. When full-order basis functions were used with a
loaded waveguide, spurious modes were however encountered. Mixed-order
elements did not exhibit spurious modes.

In [34], Wang and Ida introduce elements which are generalised forms of
the elements described in [15]. Their methodology is applied to hexahedral,
and tetrahedral, elements. Their higher order elements are also interpola-
tory.

The paper by Graglia et al. [8], which is ostensibly about higher order
interpolatory bases, additionally provides a fair amount of detail pertaining
to the application of curvilinear elements in an appendix. This paper could
be seen as a generalisation of Crowley's work mentioned above.

The elements of Graglia et al. in curvilinear form are used by [35] and
[36]. The former paper uses these elements in the context of implementing a
curved, perfectly matched, layer. The latter paper mentions curved elements
in passing, and is mainly focused on a special, efficient, FEM technique for
calculating the scattering from deep cavities.

In [37] the application of covariant projection mapping is explained quite
succinctly. It shows all the required definitions for mapping between an arbi-
trary reference coordinate system, and Cartesian coordinates. Furthermore,
the curl operator in the reference coordinates is derived, and it is shown how
the typical FEM elemental matrices may be formulated using these results.

3.2 Theory

In order to use a given finite element, one has to be able to determine the
entries of the Sand T elemental matrices. Furthermore, the element has
to have the right kind of continuity, in order to be compatible with other
elements in a mesh, and to allow an accurate solution to be obtained.

In this section, the theory neccesary to assemble the S, and T, matrices
for a curved element is discussed. The element may be of arbitrary shape,
using arbitrary basis functions, defined in terms of the reference coordinates,
(u, v).

The derivation is done in 2D here, in order to keep it as simple as possi-
ble. Application to three dimensional coordinates is similar, with the main
difference being the size of the Jacobian, and a more complicated expression
for the vector operators.

Specific mappings, continuity conditions, and compatibility with other
elements will be further discussed in chapter 5.

16
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I = JJ Wmn(u, v) det(J)dudv
A

(3.4)

CHAPTER 3: Curvilinear Coordinate Systems and Elements

3.2.1 Introduction of the Reference Coordinates

A reference cell, described in (u, v) coordinates, will be mapped onto physical
(x, y) space, to yield an element of the desired shape. We can map from
(u, v) --t (x, y) by making formulas

x = x(u,v)
y = y(u, v),

(3.1)

and inverting the relation to obtain (x, y) --t (u, v):

u = u(x,y)
v = v(x, y).

(3.2)

The mapping is shown graphically in Fig. 3.1

(X2; Y2)

Figure 3.1: Reference (u, v) triangle mapped to (x, y) triangle

3.2.2 Change of Coordinates in the Integrand

In the case of a FEM solution, functions, Wmn, have to be integrated over
the area of the element in real, geometric (x, y) space. Given an integral
defined in (x, y),

I = JJ Wmn(x, y)dA
A

= JJ Wmn(x, y)dxdy,
A

it may be integrated in (u, v) using the Jacobian of the coordinate transform
[38, §8.17]:

(3.3)

17
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_ óf
au= -Óu_ óf
av = Óv'

Reciprocal unitary vectors are, in turn, defined as

(3.8)

CHAPTER 3: Curvilinear Coordinate Systems and Elements

There are some restrictions, mainly that the determinant should never be
zero, and the transformation be one to one, over the domain of interest.

The Jacobian matrix of the transformation ~, from (x, y) ---. (u, v) is
defined as

J(~) = [* ~],or
¥V ?v

J (~)= [~I~:~~].
(3.5)

The Jacobian itself, is det(J). A Jacobian matrix for the inverse transfor-
mation, ~-I, from Cu,v) ---. (x, y), may be defined as

J(~-l) = [~~ rx], or
8u 8v
8y ;;y

J(~-l) = [8(U,v)] .
8(x,y)

(3.6)

Fortunately [1, P. 280],

(3.7)

This means that, irrespective of which transformation's Jacobian is most
convenient to determine, the inverse Jacobian at a given point can be deter-
mined by numeric inversion.

Once the Jacobian matrix is known, the integration can be performed
fairly simply when one is dealing with scalar functions. Vector valued func-
tions are somewhat more complex, since the vector direction senses need to
be taken into account.

3.2.3 Curvilinear (General) Coordinates

In order to make sense of vector quantities across the coordinate transforma-
tion, general or curvilinear coordinates are needed, as show by Stratton[39].
Defining f as the vector from an arbitrary origin, to a variable point P( x, y),
unitary vectors, are defined as

-u 1(_ ")a =Aavxz

-v 1 (" _)a = A z x au ,
(3.9)

18
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(3.12)
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where A = z . (au x av). Similarly, the unitary vectors may be defined in
tenn of the reciprocal unitary vectors

_ l(_v')aU=Aa x z

_ 1(' -U)aV=Azxa.
(3.10)

The unitary, and reciprocal unitary vectors are bi-orthogonal:

(3.11)

Using these properties, any vector quantity vV may now be expressed in
curvilinear coordinates as

or

(3.13)

(vV. au,v) and (vV. aU,V) are referred to as, respectively, the covariant and
contravariant components of the vector vV.

When (x, y) refer to Cartesian coordinates, (3.8) and (3.9) may be writ-
ten as[37]

_ t5x , t5y ,
au = t5u x + t5u y
_ S» , t5y ,
av = t5v x + t5v y

(3.14)

and

ii" = Vu
aV = Vv. (3.15)

3.2.4 Mapping the Element: Covariant Projection Mapping

Since the elements are required to be curl-conforming, one has to be able to
ensure tangential continuity of basis functions at the edges of an element.
Looking again at (3.14) and (3.15), we see that unitary vectors are directed
along lines of constant coordinate (ie. au points in the direction of constant
v), while the reciprocal unitary vectors point in the direction of steepest
reference coordinate ascent, in physical coordinates.

Since the tangents of the reference triangle edges lie along lines of con-
stant u, v, or (u + v), the unitary vectors represent tangents at the edges.
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Conversely, the reciprocal unitary vectors represent normals, due to the bi-
orthogonality property (3.11).

By defining the basis functions in terms of their covariant component
projections, the tangential continuity properties they possess on the refer-
ence element, will be maintained once they are mapped to (x, y) coordinates.

To see this, consider the bottom edge of the reference triangle. This edge
is represented by constant v = O. Since au is directed along lines of constant
v, it is thus tangential to the edge v = O. Since the u covariant component
of lV is Wu = (lV . au), it represents the component of lV tangential to
the bottom edge of the reference triangle, in both reference, and physical,
coordinates. Fig. 3.2 shows lines of constant coordinate.

(a) Unmapped Reference Triangle (b) Mapped Triangle
u+v=l

1v="2

~
f--::::::""""'__

.""" "<, u + v - 1"'" --, '<.
<,

<,
<,

<,

~ <,
I r-,0 -, I 1 1"'-.

/ \ v=O
u=

V-1- 2

v=O 'U - 1- 2

Figure 3.2: Lines of Constant Coordinate

Similarly, defining basis functions in terms of their contravariant compo-
nents, normal continuity properties are preserved. In the former case, the re-
sultant mapping will be useful for applications that require curl-conforming
elements, such as the FEM under consideration in this document. In the
latter case, divergence conforming elements may be constructed, for use in,
eg. Method of Moments [8] [40].

Since covariant components will henceforth be used to represent vector
basis functions in the reference coordinates, it is convenient to redefine (3.15)
as

ft = \lu
v = \lv.

(3.16)

Consistent with the above convention, the covariant components of a vector,
lV, can be defined as

Wu = (lV. au)

w, = (lV. av).

Noting the relation between (3.14) and the Jacobian matrix, we may

(3.17)

now write

20

Stellenbosch University http://scholar.sun.ac.za



T = JJ Wm· Wn dxdy = JJ [Wm(x) Wm(y)] [Wn(X)] dxdy
A A Wn(y)

Jl J1-U[ w] J-T J-1 [Wn(u)] det(J)dvdu
= Wm(u) m(v) W '

o 0 n(v)

where Wn represents the nth basis function, and Wn(x) the i: component of
the same function.

This means that, in order to perform a coordinate mapping, we need:

(3.22)
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(3.18)

and similarly

(3.19)

The curl operator is needed in order to evaluate the elemental matrices. Us-
ing (3.18) and (3.19), and taking the analytical inverse of J, the curl operator
may be expressed using only covariant components and their derivatives in
(u, v):

z . \7 x W = [8Wy _ 8Wx] = _1_ [8Wv _ 8Wu] .
8x 8y det(J) 8u 8v

(3.20)

3.2.5 Evaluation of the Elemental Matrices

Using (3.20), we can now write the integrals for the Sand T matrices
completely in terms of (u, v) [37]:

S = JJ \7 x Wm . \7 X Wn dxdy
A
1 I-u (3.21)_ J J 1 [8W m(v) 8W m(u)] [8Wn(v) 8Wn(u)]- -- - - dvdu

det(J) 8u 8v 8u 8v
o 0

and

• functions with continuous partial derivatives, forming a one to one
mapping (u, v) -t (x, y), or vice versa,

• an expression for J, or J-1 in terms of (u, v),

• the required partial derivatives of the covariant components of the
basis functions in terms of (u, v).
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3.3 Application of CovariantMapping to Elements
Defined in Simplex Coordinates

Triangular vector basis functions are typically expressed in term of simplex
coordinates, and the gradient of simplex coordinates. Taking, for example,
the Whitney basis

H\ = AIV'A2 - A2V'AI

W2 = A2V'A3 - A3V'A2

W3 = A I V' A3 - A3V' A I,

(3.23)

it now has to be cast into a form amenable to being mapped. Defining

(3.24)

and using the linear dependence of A3 on Al and A2,

we see that casting (3.23) into covariant components is surprisingly simple,
since (3.16) show us that 'VAl = ft,V'A2 = vand 'VA3 = -(ft + D).

Writing (3.23) in covariant components, we now have:

WI = -vft+uv

W2= -vft+ (u-1)v

W3=(v-1)ft-uv.

(3.26)

Casting any basis defined in terms of simplex coordinates and their gradients
into covariant components, is easily achieved using this process.

In addition to the basis functions in covariant components, some deriva-
tives are needed to evaluate the curl operator. From (3.20) we see that the
partial derivatives

JWn(v) JWn(u)
Ju and Jv

are also needed.

3.4 Basis Function Distortion

Applying a non-linear mapping to a basis will inevitably result in some level
of distortion. Even a polynomial mapping will cause the basis function to
be non-polynomial, since rational polynomial functions will be involved in
the Jacobian.
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When polynomial basis functions are mapped, they will no longer span
the expected polynomial space (see §4.2). Rather, one could say that [8], if
pth order basis functions are defined on the reference element, the resulting
basis in real space is complete to order p, with respect to n/ det(J) as a
weighting factor.

In [5, §8.3, §13.3] it is qualitatively shown how distortion from the
original element shape affects the basis function. A highly distorted ba-
sis function could become non-sensical. Avoiding this essentially entails
ensuring that the mapping remains one to one, and that the Jacobian is
non-vanishing.

Supposing that the mapping is one to one, and has a non-vanishing
Jacobian, it is desirable to know how element distortion affects the accuracy
of a solution. In [12] it is shown how distorted basis functions can affect
solution accuracy negatively. They do, however, take the rather extreme
example of a parallel plate capacitor meshed with two triangular, linear
elements. The elements used are able to obtain an exact solution when
undistorted. This is discussed further in §5.3.

Another issue potentially affecting accuracy, independent of the distorted
basis functions ability to model the required field, exists. When an element is
highly distorted, vectors which would have been orthogonal on the reference
element, might be close to co-linear once mapped. This could result in poor
matrix conditioning.

3.5 Conclusion

In this chapter, a survey of the electronic engineering literature concerning
the FEM in curved domains was presented. Coordinates for a reference tri-
angle were introduced. Integration over the reference triangle was described
in terms of the Jacobian of a coordinate transform. Curvilinear coordinates
were described, along with the covariant projection mapping, which allows
tangential continuity to be proscribed in real, as well as reference, coordi-
nates. Evaluation of the FEM elemental matrices in reference coordinates
were described. It was shown how, simply, basis functions defined in terms
of simplex elements may be mapped onto curved shapes. The effect of curvi-
linear mappings on basis function performance was briefly discussed.
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Chapter 4

Higher Order FEM Basis
Functions

This chapter discusses the theory behind, and implementation of, higher
order, vector elements for the FEM. Some theoretical aspects of polynomial
vector bases, and how they affect solution efficiency are discussed. The au-
tomation of the derivations needed to implement Webb's [9] basis functions
of arbitrary order is described for triangular elements. Finally, practical
implementation of such basis functions is described.

4.1 Element Requirements

An element used to discretise a domain for the FEM, needs to fulfil certain
requirements. The basis functions defined on the element should approx-
imate the physical field well. Certain inter-element continuity conditions
should also be taken into account. The physical shape of the element should
be able to fit the geometry of the problem well, though this is covered in
chapter 3.

4.1.1 Elemental Approximation Efficiency

An efficient element would be one that provides a good level of approxi-
mation per DOF used in its representation. Computational cost is largely
proportional to the number of DOFs, so an efficient element will obviously
be desirable.

The good ability of higher-order, piecewise-polynomial functions to fit
arbitrary functions is well known [2]. In general, piecewise-polynomial ap-
proximations' efficiency improve with increasing polynomial order, but the
exact rate of convergence depends on the nature of the differential equation
being solved [5].
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4.1.2 Continuity Conditions

Accurate modelling of the field in an inhomogeneous domain therefore re-
quires that tangential-, but not normal continuity be enforced between ele-
ments. This is further discussed in §4.3.3.

Enforcing continuity of any kind between different elements, requires
that they are compatible. Considering tangential continuity, this means that
the tangential field on an edge, should be determined only by parameters
on the edge itself.

In other words, the interior configuration of an element, should have no
effect on the tangential field on element edges. Furthermore, given the same
set of edge parameters, both elements should have the same tangential field
along the common edge.

4.2 Polynomial Vector Function Spaces

The discussion of function spaces is limited to the 2D case here. The ex-
tension to 3D is similar, and is discussed, along with 1D and 2D spaces, in
[9].

4.2.1 ID Vector Polynomial Spaces

We define vector polynomials on a 1D simplex, using the variables )'1, A2,
where Al + A2 = 1, Al = 0 at node 1, and similarly A2 = 0 at node 2. We
define Vp as the set of all polynomials of at most degree p in Al and A2. The
dimension of Vp is p + 1, the same as the number of linearly independent
scalar polynomials of degree p.

Any function in Vp may be written in the form

(4.1)

Here PI and P2 are polynomials of degree p - 1, and 'V = xix.
Vp may be split into the subspaces, Cp and Wp. Cp contains all the

vector functions that are the gradients of scalars polynomials of order p + 1
that vanish at both nodes. There are p such scalar polynomials, so the
dimension of Cp is p. This leaves the subspace Wp with a dimension of l.
A basis for Wp is given by

It can be seen that Wp coves a space identical to the original Whitney basis.

4.2.2 2D Vector Polynomial Spaces

Now we define vector polynomials on the triangular 2D simplex. The stan-
dard 2D simplex coordinates, Al, A2 and A3, as defined in eg. [1] are used.
Now, at node n, An = 1, and at the edge opposite node n, An = o.
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Vp is defined as the space of all 2D polynomial vector functions of degree
p or less. There are (p + 1)(p + 2)/2 linearly independent scalar polynomials
in 2D. Hence, there are (p+ 1)(p+2) 2D vector valued polynomials functions,
and the dimension of Vp is therefore also (p + 1)(p + 2).

Taking a basis function from the ID Vp space, written in the form (4.1),
as a 2D vector function, it has the following properties:

• its tangential component vanishes on the edges Al = 0 and A2 = 0
(due to '\1Ai being perpendicular to the edge Ai = 0)

• its tangential component on the edge A3 = 0 is identical to the ID
basis function.

The second property ensures that the 2D functions generated in this way are
linearly independent. A ID basis taken into 2D space thus forms a subspace
of Vp, of dimension p + 1, now defined to be the edge space Vp(e). Vp(e) may
be subdivided into WJe) and Cp(e) as in §4.2.1.

By permuting the variable subscripts of Vp(e) through (1 --+ 2 --+ 3 --+ 1),
two similar edge spaces may be obtained. The combination of these three
spaces will be referred to as 3Vp(e).

The rest of Vp is made up of polynomial vector functions, of degree no
more than p, with vanishing tangential components at all the edges. Since
these functions are not associated with any edges, they are dubbed, face
functions, and the subspace containing them, defined as vF).

Functions in vF) may be written as

A) A2P3 (Al, A2, A3) '\1A3 + A2A3PI (Al, A2, A3) '\1Al
+ A3AIP2(AI, A2, A3)'\1 A2, (4.3)

where PI, P2 and P3 are polynomials of degree p - 2. vF) has dimension
(p - 1)(p + 1). Similar to the Vp(e) split, we can partition V~J) into subspaces
C1J) and mJ).

Let C1J) be the subspace of Vp(f) containing functions that are the gra-
dient of scalar polynomials of degree p + 1. Since there are p(p - 1)/2 such
functions, the dimension of CpU) is p(p - 1)/2. Functions in C~J) may be
written in the form

where P is a polynomial of degree p - 2. Since there are p(p - 1)/2 such
polynomials, cV) has dimension p(p - 1)/2.

The remaining functions of Vp(f) then belong to R1J). Since no functions
in mJ) may be written as. the gradient of a scalar, they must all have non-
zero curl. Thus, mJ) is the space of rotational functions. The dimension of
this space is (p - 1)(p + 2)/2.
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F(E) = ~JJ [:r (vrt x Et) . (vrt X Et)* - k6ErËt . Ë;] dO,

n
it can be seen that the field, as well as the curl of the field, is involved. Since
curl is a derivative operator, taking the curl of a polynomial will reduce its
order. The full order of curl approximated by a pth order base is therefore
p - 1.

A field represented by a polynomial vector basis of order p, clearly has a
curl approximation of the field that will no longer be of full order. The curl
approximation will therefore converge as O(hP).

In microwave problems, the importance of the curl of a field is typically
as important as the field itself. The result is that the functional convergence
is dominated by the convergence of the curl. Since the functional contains
the square of the curl, the resultant convergence is as O(h2p).

(4.7)
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While G~J)and I4J) split the face functions into gradient, and rotational
subspaces, the same is not quite true for 3G~e) and 3WJe). While 3G~e)
certainly contains only gradient functions, 3WJe) spans a space containing
a rotational function, and the two constant functions, which are gradients.

4.3 Basis Efficiency Considerations

4.3.1 Expected Convergence Rate vs. Basis Order

A field approximated by a polynomial may be considered as a pth order
truncated Taylor series of the true field. A truncated Taylor series expansion,
of a function J, expanded around a, is given by

n J(k)(a)
J(x) =L k! (x - a) + Rp(x).

k=O
(4.5)

Rp(x) is the remainder of order p. The remainder is bounded as

Ix - a1P+1

IRp(x)1 < M (p + 1)! ' (4.6)

where M is a positive constant such that IJ(P+l)(t)1 < M for all t such that
lt - al :S Ix - c].

It is clear that lx-al is directly proportional to the maximum mesh edge
size, h. The order of the approximation error made by a pth order base, is
thus given by O(h(p+l)). A similar result applies in the case of a multi-
variate polynomial, where p is the highest full order of the approximating
polynomial [41].

Looking at the functional used to solve the vector Helmholtz equation
(2.8), repeated here for convenience,
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4.3.2 Mixed Order Bases

In §4.2.2 it was shown that a basis may be split into a subspace represent-
ing gradient functions, which have zero curl, 3G1e) EBG1f), a subspace of
rotational face functions, 141), and the original Whitney base 3W~e). Since
the gradient functions do not contribute to the curl, some of them may
be removed, provided the resulting approximation is still complete to order
p - 1.

While the number of DOFs have been reduced, the integrand of the
functional is still complete to order p - 1. Thus, the asymptotic convergence
rate is the same as for the full order element. Bases which has had the
highest order gradient DOFs removed, are referred to as mixed-order, or
reduced, bases.

The former name is after the fact that, on the edges of an element,
these bases will interpolate the tangential, and normal, field components to
different orders. This can be seen from the fact that, barring 3W~e), all the
edge functions are gradient functions. Furthermore, the functions in G1f)
vanishes at all the edges of an element.

Thus, at the edges, the only field contributions come from the edge
functions, and the rotational face functions. Since the edge functions are of
reduced order, and are the only functions that contribute to the tangential
field at the edges, it is clear that the tangential field component will be of
reduced order, relative to the normal component.

While mixed order elements result in the same rate of convergence as
full order elements, there are situations where its beneficial to use full order
elements. This happens when, in the domain being modelled, the curl of a
field is significantly less important than the field itself [9]. In the electro-
quasistatic limit, the curl will be of vanishing importance. Similarly, using
the dual (ie H) formulation, in the magnetoquasistatie limit.

4.3.3 Spurious Modal Solutions

Spurious modal solutions were the bane of early CEM FEM work. The
introduction of vector elements, seems to have made them a thing of the
past.

To see why, consider that Ë and H fields are not necessarily continuous
everywhere. A discontinuity in the physical properties of a domain, results
in discontinuity in the field components, normal to the boundary of the
physical discontinuity.

At first glance, this would seem to intimate that full continuity should
be enforced in homogeneous regions, but this is not true. Qualitatively
speaking, one might imagine the border between each element being a dis-
continuity, due to the imperfect modelling of the field on each element.
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Solutions of (4.8) represent fields that may be split into two categories [37],

(4.8)
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When the FEM was initially applied to vector CEM problems, elements
with full continuity were used. As mentioned earlier, this is physically in-
correct in inhomogeneous domains.

Spurious modes in homogeneous domains require a slightly more complex
explanation. The vector Helmholtz equation for a source free homogeneous
region (2.4) is

1. valid electromagnetic fields, of the form Ë = \7 x if, where V is pro-
portional to the magnetic field ii

Solutions of the second kind are valid solutions of (4.8) in the case of ko = 0,
since \7 x \7<I>= 0, but do not represent physical solutions of an electromag-
netic field in a source free region. Solutions of this form are said to form the
null-space of the curl-curl operator.

Since the non-physical solutions correspond to zero eigenvalues, they
should be easy to tell apart from the physical solutions. Enforcing full
inter-element continuity, however, distorts the modelling of this null-space
to such an extent, that the computed eigenvalues of this space is of the same
magnitude as the eigenvalues corresponding to physical solutions [37] [8].

Sometimes, however, this is not enough. Further precautions are necce-
sary for brick elements [37]. In [30], spurious modes were encountered when
using full order quadrilateral covariant-projection elements.

In [42], a somewhat dissenting view is taken by Mur. He takes to task
the belief that edge elements are panacea. An alternative element is also
proposed in [43]. While edge elements do have their limitations, it is clear,
all the same, that they work much better than what was available before.

4.4 Implementation of Arbitrary Order Basis Func-
tions using a CAS

Hierarchal vector basis functions were chosen for implementation, since they
would involve less work for each additional order of base, than using inter-
polatory bases.

In [9], explicit formulas are given for hierarchal basis functions of ar-
bitrary order. Manually expanding these formulas into a form suitable for
computation would be very tedious, and error prone, especially for higher
order bases. For this reason, they were implemented using the Maxima [44]
Computer Algebra System (CAS).
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4.4.1 Expansion of the Edge Basis FUnctions G1e)
The ID gradient space Gp requires p basis functions. Increasing the order
from p - 1 to p, thus requires 1 extra basis function.

The 2D edge gradient space G1e) may be obtained by cyclic permutation
of the variables subscripts. Increasing the order from p-l to p will therefore
result in 3 additional basis functions.

The additional function required for order p is given by

In the CAS system, (u, v) is substituted for (Al, A2)' The V operator is
applied by using the CAS systems' total derivative function. The result is
then in terms of u, vand Vu, Vv, which is exactly what is required.

The basis function for·the first edge has now been obtained. Obtaining
the remaining two edge functions is easily managed by substitution. By
applying the substitution u = v, v = w, w = u twice, the basis function
pertaining to edge two, and three, are obtained in order. These functions
are then simplified by the substitution w = (l-u-v) and Vw = -(Vu+ Vv).

4.4.2 Face FUnction Triplets

The face functions below, are defined in terms of triplets of a scalar function,
Fpi' This function generates T triplets of order p, where T = floor(pj3). The
first function of the ith triplet is

i = 1, ... , T - 1 (4.10)

and
if p mod 3 = 0
if P mod 3 = 1
if p mod 3 = 2.

(4.11)

When p mod 3 = 0, all three functions in the rth triplet are identical,
thus only one must be used. When p mod 3 = 1, there are only two linearly
independent functions in the Tth triplet, thus only two must be used. Lastly,
p mod 3 = 2 results in three independent equations. In total, each Fpi

generates (p - 2) new scalar polynomials.

4.4.3 Expansion of the Face Basis FUnctions G1J) and R1J)
The first function in the ith triplet of gradient face functions is given by

. (p + 1)~= 0, ... , floor -3- - 1. (4.12)
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Since we are using Fp+1, the required (p - 1) new basis functions are gener-
ated, going from order p - 1 to p.

The first function in the ith triplet of rotational face functions are given
by

-(J)Rpi = FpiV'A3, i = O, ... .a - 1, (4.13)

where a = floor(Sl) ((4.10) extended to include the case i = 0) and

R(J)=pa

(Fpa)V' A3
(AIA2A3)a[(Al - A2)V'A3
+ (A2 - A3)V'A3 + (A3 - AI)V'A2l

(AIA2A3f[-2AIA2 V'A3
+ A2A3 V'Al + A3AlV'A2l

if p mod 3 = 0

if p mod 3 = 2.

When p mod 3 is respectively one and two, the o th triplet consists of,
respectively, one and two distinct functions. This results in the required p
additional basis functions, when going from order p - 1 to p.

The substitution 'U = Al, V = A2, W = A3 was made. As in §4.4.1, the
variables were permuted, and the correct substitutions for wand V'w were
made.

When these equations are programmed, the right number of equations
must be discarded from the last triplet. In the case of tetrahedral elements,
it would have been slightly more complicated than just throwing a number
of functions away, since the tangential components on faces would also have
to match.

4.4.4 Even and Odd Basis Function Symmetry

One of the requirements on our elements was that they should be able to
enforce tangential continuity. As was seen in §2.2.2, the relative orientation
of a shared edge affects the sign of the basis function along this edge.

Generally speaking, the edge functions used here have either even or
odd symmetry under exchange of their edge variables. Those that have odd
symmetry, such as the Whitney base, require under the edge orientation
scheme used here, that the sign of every function corresponding to the third
edge of a given triangle, be inverted. Functions that have even symmetry,
may be left unchanged.

The edge functions G~e) have even symmetry when p mod 2 = 1, and odd
symmetry when p mod 2 = o. It is thus easy to determine when a function
needs to be negated.

31

Stellenbosch University http://scholar.sun.ac.za



32

CHAPTER 4: Higher Order FEM Basis Functions

4.5 Conclusion

This chapter, in general discussed higher order basis functions, and their im-
plementation. Desirable qualities for an element to possess were discussed.
The polynomial spaces covered by the bases here considered were discussed.
The order of base, and the continuity conditions enforced over the elements
used were discussed W.r.t. solution efficiency, and spurious modes. The im-
plementation of arbitrary order bases, derived from the general basis func-
tion equations of Webb, using a CAS, was described.
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x = L XijkQijk

Y = LYijkQijk,
(5.1 )

Chapter 5

Coordinate Mappings

In chapter 3, it was shown how elements defined in terms of simplex co-
ordinates may be mapped onto elements of arbitrary shape. No suitable
mappings were, however, mentioned. This chapter discusses some coordi-
nate transforms that may be used as mappings.

5.1 Simplex Polynomial Interpolation Mappings

In scalar FEM methods, Lagrange interpolation polynomials are often used
as basis functions, and as coordinate mappings. Most frequently, they are
used to create isoparametrie elements (eg. [1, §7.4]), where the same func-
tions are used as basis functions, and as mapping functions.

5.1.1 Mapping Definition

Using the Silvester polynomials to effect Lagrangian interpolation over the
simplex element, a coordinate mapping is defined as

where
i + j + k = n, (5.2)

ti is the polynomial approximation order, and R; is as defined in [1, §4.2].
This mapping has the effect of mapping the nodes ijk on the reference

triangle, to arbitrary nodes, (Xijk, Yijk) in the physical coordinates, while
interpolating between them over the rest of the triangle. The position of
nodes ijk on the reference triangle is shown in Fig. 5.1.
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200

Figure 5.1: Quadratic Simplex Interpolation Reference Triangle

5.1.2 Mapping Compatibility

When mapped elements are used, it is neccesary that they are compatible
with other elements used in the same mesh, as described in §4.1.2. In §3.2.4
it is shown that tangential field components defined on the reference trian-
gle, remain tangential when projected onto a mapped element as covariant
components. In order to ensure tangential continuity between elements,
their tangential unitary vectors must be the same over the whole edge.

Since they use polynomial interpolation, these elements are able to rep-
resent a straight line exactly. It can easily be shown that, if the edge in-
terpolation vertices are mapped to equally spaced vertices on the edge of
the mapped element, the mapping is identical to that of a linearly mapped
triangle on the applicable edge.

In the case of same-order mapping elements bordering, it is enough to
ensure the same interpolation points are used for both elements. When
differing order elements are bordering, the edge of the higher order element
may be made to conform to the edge of the lower order element, by placing
its interpolation points on the interpolation curve generated by the lower
order element.

5.1.3 Obtaining the Jacobian

Casting these polynomials into functions of only u and v is done by substi-
tuting Al = u, A2 = v, and A3 = 1 - u-v. Obtaining the inverse Jacobian
matrix of such a mapping may, for arbitrary mapping order, be simply
achieved using simplex differentiation matrices. In the case of lower order
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(</>(0), 'lji(0)) = (X3, Y3)

(</>(1), 'lji(1)) = (X2, Y2).
(5.6)

CHAPTER 5: Coordinate Mappings

mappings, it is less work to directly differentiate the mapping polynomials
by 'u and v, to yield the Jacobian matrix.

5.2 Parametric Mappings

The interpolatory mappings described in the previous section are not able
to fit arbitrary geometries exactly. Mappings exists which allow a mapped
element to perfectly fit any curved shape [13], [45], [12].

These papers all describe means of mapping triangles, of which two sides
are straight, and one side is described by a parametric curve, onto a straight
triangle. Parametric curves are discussed more thoroughly in chapter 6.

The mappings of Zlámal [13] and Mejak [45J are essentially the same,
but Zlámal's paper is focused only on the mapping, and hence easier to
follow. Villeneuve and Webb's paper [12] defines an alternate mapping, and
a re-parameterisation method which reduces basis function distortion. They
found their mapping to perform better than Zlámal's.

5.2.1 Mapping Definition

The mapping of Zlámal [13] was implemented. Given a parametrised curve,
with

x = </>(8)}
y='lji(8) , o ~ 8 ~ 1, (5.3)

Zlámal's mapping is given by

X = X3 + (X3 - xI)u + (X3 - X2)V + (1 - u - v)<I>(v)

Y = Y3 + (Y3 - yI)u + (Y3 - Y2)V + (1 - u - v)\lI(v),
(5.4)

where Xi, Yi are as defined in Fig. 5.2,

<I> = </>(v) - X3 - (X2 - X3)V
1-v

\li = 'lji(v) - Y3 - (Y2 - Y3)V
1-v '

(5.5)

and it it has been assumed that

While (5.5) appears to be singular at v = 1, applying L'Hópital's rule yields

(5.7)
lim \lI(v) = (Y2 - Y3) - 'lji'(1).
v-+l-
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(<p I (s), 'lh (s )) = (<P2 (S), 1/12 (S )) or,

( <PI (S ), ~1 (s )) = (<P2 (1 - s), ~2 (1 - s))
(5.8)
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(a) Reference Triangle (b) Mapped Triangle

R3 u,~------------------------~
(X3; Y3)

Figure 5.2: Zlámal's Mapping

This mapping maps the reference triangle RIR2R3 onto the "curved"
triangle P1P2P3. R3RI and RlR2 are respectively mapped to straight lines
P3Pl and PlP2. It can also be seen that, by omitting the mapping terms, (l-
u - v)(<I> or \IJ) from (5.4), it degenerates into a linear triangular mapping.

5.2.2 Obtaining the Jacobian

The mapping given by (5.4) is defined in terms of unknown parametric curve
functions. By formal differentiation, a general expression for the Jacobian
matrix, in terms of 'U, v, the parametric curve functions, and their deriva-
tives may be obtained. This general expression may then be utilised for
any parametric curve, provided that the curve functions are at least once
differentiable.

5.2.3 Mapping Compatibility

The inter-element compatibility constraints, as described in §5.1.2, is now
considered. Compatibility with other elements on the straight edges, re-
quires the mapping on those edges to be linear. On edge R3RI' (5.5) degen-
erates to 0, and on edge RlR2, (1 - u - v) = O. In both cases the mapping
term is zero, and the mapping becomes linear on the edge.

It is possible to ensure conformance when two "curved" triangles share
a common curved edge. In this case,

is required, where the subscripts refer to the respective triangles. The 1 - s
case applies when the triangles relative edge orderings are opposite.
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5.3 Validity of a Mapping

In the previous sections, potential coordinate mappings have been discussed.
It was stated in §3.2.2 that a valid mapping must be one to one, and that
its Jacobian should be non-vanishing.

The requirement that the Jacobian must be one to one, and non-vanishing,
or at least, finite everywhere, is essentially the same. The Jacobian repre-
sents the dilation of area, as one set of coordinates is mapped to another.
Where the Jacobian vanishes, it means that a finite area of the one domain,
is mapped onto one point in the other. This clearly precludes the mapping
from being one to one. A similar argument holds when the magnitude of
the Jacobian approaches infinity.

With the Jacobian having been obtained, it is still unknown if a given
mapping will have a non-vanishing Jacobian, and be one to one. There are
no hard and fast rules describing when a polynomial mapping will satisfy
these requirements[l, §4.2]. Similarly, Zlámal's mapping is claimed to have a
non-zero Jacobian provided that the triangulation is fine enough. No bounds
are, however, specified.

One may form a graphical picture of a mapping's validity, and the level of
distortion it introduces, by plotting lines of constant coordinate in reference,
and mapped, coordinates. The change in area of the grid squares, after
having been mapped, represent the magnitude of the Jacobian.

Should any of the mapped squares shrink to a dot, the Jacobian would
tend to zero there, and the mapping is probably unusable. Smoothly chang-
ing coordinate lines, and roughly constant mapped square area, would indi-
cate a workable mapping.

Fig. 5.3 shows several possible mappings, using the quadratic simplex
interpolation as an example. Fig. 5.3b shows an acceptable mapping. It
can be seen that the lines of constant coordinate are smooth, and that
the magnitude of the Jacobian is finite. Fig. 5.3c shows a mapping that is
clearly unacceptable. This mapping was obtained by swapping interpolation
nodes 2 and 3 of the previous mapping. Fig. 5.3d shown a mapping with
straight sides, but non-uniform interpolation node placement. This should
be avoided, since it is clear that the coordinates are highly distorted near
node 4, yet no improvement in geometry modelling is to be had.
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Figure 5.3: Quadratic Mappings: the Good, the Bad and the Ugly...

38

Stellenbosch University http://scholar.sun.ac.za



x = ¢(s)
y = 'IjJ(s)

z = X(s),
(6.1 )

Chapter 6

Parametric Curves

In chapter 5, coordinate mappings involving parametric curves were defined.
No suitable curves were, however, mentioned. This chapter discusses para-
metric curves, which are well known in the field of computer graphics.

6.1 General Parametric Curves

Parametric curves are defined in terms of a single parameter, hence their
name. A parametric curve in 3D, is expressed in tenus of functions of the
single parameter, s,

where ¢, 'IjJ and X are arbitrary functions of s. For a 20 curve, the z function
is simply omitted. The notation

[

¢(s)]
p(s) = 'IjJ(s)

X(s)

(6.2)

may also be used.
The parameter, s, is often taken to represent a quantity of physical

significance, such as time in the case of the curve describing motion in space.
In other cases, this parameter is of no importance, such as when parametric
curves are used as a well defined way of describing a curve geometry, such
as might be used in a CAD system, eg. [46].

In the context of element mapping, it is merely the geometrical descrip-
tion that is of interest. In a particular region of interest, s is usually nor-
malised such that it runs from 0 to 1 along the section of a curve in this
region.

39

Stellenbosch University http://scholar.sun.ac.za



p(s) = UA, (6.6)
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6.1.1 Parametric and Geometric Continuity

When multiple parametric curves are joined, various continuity conditions
may be imposed where they join. Supposing the two curves join at a point,
Pj, the most basic continuity would require that they actually meet at Pj.
This is known as CO parametric continuity.

Higher orders of parametric continuity is related to the parametric deriva-
tives of the curves at Pj. Defining the parametric derivatives at point Pn
as

(6.3)

Cl continuity would require, in addition to CO continuity, that pj is equal
for both curves. Additionally, C2 continuity requires that Py be equal for
both curves. Higher order en continuity is similarly specified.

Parametric continuity is needed when, for instance, the parametric curve
is used to describe a smooth motion along a curve. When parametric curves
are used only for geometrical modelling, parametric continuity is unneces-
sarily restrictive.

A less restrictive form of continuity is described by geometric continuity.
CO continuity requires that the two curves meet at Pj, and is essentially the
same as CO continuity. Cl continuity indicates that the two curves should,
additionally, have a common tangent at Pj. C2 continuity furthermore re-
quires that, the two curves have a common radius of curvature at this point.

6.2 Polynomial Parametric Curves

Polynomial Parametric Curves (PPC) are defined in terms of polynomials
of a single parameter. In 2D, a PPC is defined as,

x = Px(s)
y = Py(s),

(6.4)

where Px and Py are polynomials in s. When dealing with fixed order
polynomial curves, they may, in the case of cubic polynomials, be written
as

x(s) = axs3 + bxs2 + cxs + dx

y(s) = ays3 + bys2 + Cys + dy.
(6.5)

Equation (6.5) may be written more compactly in matrix form
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p(s) = VMB, (6.7)
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where V = [S3 S2 s 1], A = [a b c djT. The entries of A completely define
a PPC.

While the entries in A completely specify the PPC, it is quite inconve-
nient to use the algebraic coefficients to specify a curve. Other polynomial
bases, which allow the properties of a curve to be more conveniently ex-
pressed may be used. The functions used are often referred to as blending
functions, as they describe the way different control points are blended to-
gether.

6.2.1 Hermite Interpolatory Curves

Using Hermite polynomials as the blending functions, it is possible to di-
rectly control the position, as well as the parametric derivatives, and hence,
tangent, of the curve at its endpoints.

A Hermite curve may be written in terms of (6.6) as

where B = [Po PI pg p~]T, and M transforms the coefficients of the Hermite
functions into algebraic form. While obtaining M is fairly easy, it may be
found in computer graphics texts, such as [47].

It should be noted that using the tangents at Po and PI to specify the
parametric derivatives pg and PI' does not completely specify the curve. The
magnitudes of the respective derivatives are additional degrees of freedom.

Furthermore, the cubic Hermite curve has the property that p(O.5)
(po + pI}j2 + (pg - pf)j8.

6.2.2 Bézier Curves

Bézier curves were invented by Piere Bézier at Renault, for use in CAD
modelling. A Bézier curve of degree n is defined in terms of n + 1 control
points, Po, PI, ... , Pn, and the Bernstein polynomials

(6.8)

where C(n, k) are the binomial coefficients,

n!
C(n, k) = k!(n _ k)! (6.9)

In matrix notation, Bézier curves are given as

p(s) = BP, (6.10)

where B = [~O,n ~I,n ... ~n,n], and P = [Po PI ... PnjT. It may be written
in terms of (6.6), by finding a suitable transform matrix M, such that

p(s) = VMP. (6.11)
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Once again, obtaining M is not difficult, but is listed for various orders of
Bézier function in [47]. The points Po, PI, ... ,Pn define the control polygon
of the Bézier curve. The control polygon for a quadratic Bézier curve is
shown in Fig. 6.l.

PI...
/

/

/
/

/

/

/
/

/

/

/

Po

Figure 6.1: Quadratic Bézier Control Polygon

Bézier curves have some useful properties, which make them well suited
to CAD work. Some of them are

l. Bézier curves always interpolate their first(po), and last(Pn), control
points, when s is respectively zero, and one;

2. parametric derivatives at Po and p., are respectively given by PI - Po
and Pn - Pn-l;

3. the rth parametric derivative at the endpoints, are defined by the r

control points neighbouring the endpoints.

These properties allow a designer much freedom in specifying the shape of
a curve, while also allowing Cl continuity to be specified graphically.

6.2.3 Interpolatory Spline Curves

The word spline originally referred to a flexible strip draftsmen use to
smoothly interpolate a set of points on a drawing. A spline curve is, in gen-
eral, a curve that can smoothly interpolate an arbitrary number of points
in sequence.

Splines are usually defined as a number of piecewise polynomial para-
metric curves, that meet certain continuity conditions at the points where
they meet. One of the first spline curves to be developed was the natural
cubic spline, which enforced C2 continuity at each interpolation point. This
is a mathematical representation of the original drafting spline. Many types
of splines have been derived, that may be used to satisfy various continuity
conditions, and may be found in computer graphics texts, such as [20].

Spline curves are useful when a relatively long curve needs to be inter-
polated. They provide more accuracy than a single parametric curve of the
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B = [po PI q(P2 - PO) q(PI - P2)]. (6.12)
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same order would have, without requiring the complexity of a higher order
curve representation. For this reason, they are often used in CAD systems
to represent large structures.

6.2.4 PPC Approximation of Conic Sections

An approximation of conic sections, in terms of the Hermite cubic parametric
curve as defined in §6.2.1, is given by [47]. Three control points, Po, PI and
P2, as defined in Fig. 6.2 are used.

P2

Po

Figure 6.2: Cubic Hermite Parametric Conic Approximation

The tangent of the curve at the end points Po, PI, are respectively pro-
portional to P2 - Po and PI - P2. As noted in §6.2.1, the specification of
the tangents at the endpoints still leave two degrees of freedom.

Using B as defined in §6.2.1, and the property p(O.5) = (Po + pI}/2 +
(pg - pI) /8, we write

The value of q is then chosen such that the approximate curve interpolates
the real curve at p(O.5).

For parabolas, this curve is exact. For a circle arc sub-tending less than
45°, [47] claims flR/ R < 5 X 10-6, where flR is the error in radius. In
general, the approximation error should be of order O(hP+1), where p is
the order of the approximation, and h the distance between interpolation
points[41].

6.3 Rational Parametric Curves

Rational parametric curves may be defined as the ratio of two PPC functions.
Quadratic rational splines have the desirable property that they are able
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( t) = 2::0 2:j=O PijWij~i,m(S)~j,n(t)
P s, 2::0 2:j=O Wij~i,m(S)~j,n(t)

(6.17)
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to exactly represent any conic section. They may be written in terms of
quadratic Bézier curves

p(s) = wOPO~0,2(S) + WIPI~I,2(S) + W2P2~2,2(S)
WO~0,2(S) + WI~I,2(S) + W2~2,2(S)

While the weights, Wn, seein to represent three additional degrees of freedom,
any quadratic rational curve may be written as [48]

(6.13)

p(S) = PO~0,2(S) + WIPI~I,2(S) + P2~2,2(S).
~0,2(S) + WI~I,2(S) + ~2,2(S)

The control points define the start and end points, as well as the tangent
of the curve at the end points in the same way as a normal Bézier curve.
The weight, WI, pulls the curve towards Pl. Setting WI = 1 recovers the
quadratic Bézier curve, since the sum of the Bernstein functions is one.

In order to exactly represent a conic section, the control polygon needs
to be set up, which is quite straight forward, and a suitable weight, WI must
be found. This may be done, by noting that the curvatures "'0 and "'I at Po
and P2 is given by[48]

(6.14)

WOW2 A
"'0= --2-/3

wI 0
wow2A

"'I = --2-/3'
WI 1

where A is the area of the triangle formed by the control polygon, and /0 and
iI represent the length of, respectively, the first and second control polygon
leg.

(6.15)

6.4 Application to 3D

Parametric curve concepts may also be generalised to higher dimensional
objects, such as surfaces, and volumes. Parametric surfaces, also called
patches, may be defined as the function of two parameters. They are usually
defined as polynomial tensor products of the curves described above.

A Bézier patch, for instance, is defined as
m n

p (s, t) =L L Pij~i,m(S)~j,n(t).
i=O j=O

~i,m, ~j,n are the Bernstein polynomials, as before, and the points Pij form
a (m + 1) x (n + 1) rectangular array of control points. These control points
make up the vertices of the characteristic Bézier polyhedron. A rational
surface may, similarly, be defined as

(6.16)
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These patches only describe one surface, as the function of two parame-
ters. If the tetrahedral equivalent to Zlámal's mapping could be found, one
might mesh a domain in such a way that only one triangle on each tetra-
hedron is curved, and use these patches to define a surface on the curved
tetrahedron.

Another approach would be to use hyper-patches. Analogous to the
surface patches described above, they may be used to represent "volumes"
in 4D hyper-space. Ignoring the fourth dimension, they may be used to
describe volumes in 3D space. Such a Bézier form is, in fact, suggested in
[14]. Similarly, the 3D surface patches previously described may be applied
to 2D problems.

Stellenbosch University http://scholar.sun.ac.za



(7.2)

Chapter 7

Results

This chapter presents the results obtained using the code previously out-
lined. The code was applied to four waveguide geometries that have known
analytical solutions. These are, the rectangular, circular, and elliptic waveg-
uides, and the higher order modes of a circular coaxial structure.

7.1 Waveguide Geometries and Solutions

This section discusses the analytical solutions of the waveguides under con-
sideration in this chapter. These results are the basis of comparison used to
evaluate the efficiency of the implemented FEM code.

All the waveguides considered here support modes which are, either pure
TE waves, or pure TM modes. A TE mode may be completely characterised
by its i directed ii field, and its i directed cutoff wave number. The same
applies for the i directed Ë field of a TM mode.

7.1.1 TE and TM Modes

TE waves are characterised by E; = 0, and Hz i- O. The TE modes of a
constant cross-section waveguide may be obtainedjl S] by assuming an Hz Z

dependence of e-jf3z, hence

Hz(x, y, z) = hz(x, y)e-jf3z, (7.1)

where f3 = Jk2 - k~, and kc is the cutoff wave number. Now the 3D
Helmholtz equation is reduced to

Now (7.2) may be solved subject to the boundary conditions of the spe-
cific guide geometry. Once Hz has been solved, the other field components
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may be found:

TM waves are characterised by Hz = 0 and E; =I O. Assuming again a
z dependence, this time for Ez, of e-j(3z,

(7.4)

As before, (3 = Jk2 - k~. The 3D Helmholtz equation is now reduced to

(7.5)

Once E, has been solved, the other field components may be found:

H _ jWf.I5Ez
x - k~ l5y'

H _ -jwf.I5Ez
y - k2 I5x'

c

E _ -j(3I5Ez
x - k~ I5x'

E _ -j(3I5Ez
y - k~ l5y'

(7.6)

Throughout this section, the convention

Ex(x,y,z) = ex(x,y)e-j(3z,
Ey(x, y, z) = ey(x, y)e-j(3z,
Ez(x, y, z) = ez(x, y)e-j(3z,

(7.7)

is used.

7.1.2 Rectangular Waveguide

A rectangular waveguide geometry, with breadth a, and height b is shown
in Fig. 7.1. The waveguide is assumed to be homogeneously filled with
a material of permitivity f. and permiability IL. The waveguide walls are
assumed to be perfect conductors.
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( z ) _ (m7rx) (n7rY) -jf3zHz x,y,.G - Amn cos -a- cos -b- e , (7.9)
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b

a

Figure 7.1: Rectangular Waveguide Geometry

For TE and TM modes, (7.2) and (7.5) are, respectively, to be solved.
They may be solved by the method of separation of variables in Cartesian
coordinates.

The boundary conditions for TE modes are

ex(x, y) = 0,
ey(x, y) = 0,

at y = 0, b,
at x = O,a.

(7.8)

The solution of Hz, for the TEmn mode, is found as

where {J = Jk2 - kc2 ,and
mn

k = J(m7r)2 (n7r)2
Crn n a + b ' (7.10)

and Amn is an arbitrary magnitude constant. When k > kcrnn, (J is real, and
the TEmn mode propagates.

Using (7.3), the transverse E field components may be found as

jWJ.Ln7r (m7rx) . (n7rY)
Ex = k~b Amn cos -a- sin -b- ,

-JwJ.Lm7r . (m7rx) (n7rY)Ey = k2 Amn sin -- cos -b- .
ca a

(7.11)

From these transverse E field expressions, and the boundary conditions
(7.8), the cutoff wave number (7.10), and assuming a > b, it can be seen
that the non-vanishing TE mode, with the lowest cutoff frequency, is the
TElO mode. The cutoff frequency of this modes, corresponds to a = >"/2 in
the wave-guide medium.

The boundary conditions for the TM modes are

ez(x, y) = 0,

ez(x,y) = 0,

at y = 0, b,

at x = O,a.
(7.12)

48

Stellenbosch University http://scholar.sun.ac.za



E ( z ) - B . (mnx) . (nny) -j/3zz x,y, '" - mn SIn -a- S111 -b- e , (7.13)

CHAPTER 7: Results

The solution of E, for the TMmn mode, is found as

where (J and kernn is as for the TE modes.
From the boundary conditions (7.12), the cutoff wave number (7.10),

and the assumption a > b, it can be seen that the non-vanishing TM mode,
with the lowest cutoff frequency, is the TMll mode. Since this mode has a
higher cutoff frequency than the TEw mode, the TEw mode is the dominant
mode of the waveguide.

7.1.3 Circular Waveguide

A circular waveguide geometry, with radius a is shown in Fig. 7.2. The
waveguide is assumed to be homogeneously filled with a material of penni-
tivity lO and permiability J-l. The waveguide walls are assumed to be perfect
conductors.

10,J-l

a

Figure 7.2: Circular Waveguide Geometry

Writing (7.2) and (7.5) in cylindrical coordinates, it is possible to solve
them using the method of separation of variables. From the solution of the
respective equations, the TE and TM modes may be found.

The equivalent of (7.3) and (7.6) in cylindrical coordinates are

E = -j ((Jt5Ez WJ-l 15Hz)
P k2 15 + t5A.'e P P <fJ

E _-j((Jt5Ez 15Hz)
¢> - -- -WJ-l--- k~ P t5¢ t5p'

H _ .i (WE t5Ez _ (Jt5Hz)
P - k~ p t5¢ t5p'

-j ( se, (J 15Hz)
H¢>= k~ WE t5p + P t5¢ ,

(7.14)
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(7.22)
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where, as before, f3 = Jk2 - k~.
For TE modes, the boundary condition is

E¢(p, <P, z) = 0, at p = a. (7.15)

The solution of Hz for the TEnm modes, is found as

Hz(p, <p,z) = (Anm sin(n<p) + Bnm cos(n<p))ln(kcnmp)e-j{3z, (7.16)

where In are Bessel functions of the first kind, Anm and Bnm are arbitrary
magnitude constants, and kCnm the cutoff wavenumber for the TEnm mode.

Using (7.14) to find

(7.17)

the boundary condition (7.15) may be satisfied by setting

(7.18)

Defining the roots of l~(x) as P~m' so that l~(P;lm) = 0, where P;lm is the
mth root of /1' the cutoff wavenumber may be found as

I

k - Pnm
Cnm - a . (7.19)

Values of P~m are given in mathematical tables, or may be numerically
determined using a suitable software package.

From the form of the solutions, it can be seen that n refers to the number
of circumferential (<p)field variations, and m refers to the number of radial
(p) field variations. Since m 2:: 1, there is no TElO mode.

For TM modes, the boundary condition is

Ez(p, <p,z) = 0, at p = a. (7.20)

The solution of E, for the TMnm modes, is the same as Hz for the TE
modes,

Ez(p, <p,z) = (Anmsin(n<p) + Bnm cos(n<p))ln(kcnmp)e-jf]z.

The boundary condition, (7.20) may be satisfied by setting

In(kcnma) = O.

(7.21)

Defining the roots of In(x) as Pnm, so that In(Pnm) = 0, where Pnm is the
mth root of In, the cutoff wavenumber may be found as

k _ Pnm
C - •nm a (7.23)

The mode with the lowest frequency cutoff wave-number, is the TEll
mode. This is due to the properties of Bessel functions.

The ratio of Anm to Bnm is arbitrary. By rotating the waveguide, it is
always possible to set either Anm or Bnm to zero.
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d2f
du2 - (r - 2X cosh 2u)f = O. (7.26)
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7.1.4 Elliptic Waveguide

An elliptic waveguide geometry, with semi-major axis a, semi-minor axis b,
and focal distance 2q is shown in Fig. 7.3. The waveguide is assumed to be
homogeneously filled with a material of permitivity € and permiability /-L.
The waveguide walls are assumed to be perfect conductors.

b
q q

a a

b

Figure 7.3: Elliptic Waveguide Geometry

It is possible to solve (7.2) and (7.5), by writing them in an elliptic
coordinate system. An elliptic coordinate system may be defined by the
transform

z = q cosh ~ cos TI
y = qsinh~sinTl,

(7.24)

where 2q is the focal distance. The ~ coordinate represents con-focal ellipses,
and the TI coordinate represents con focal hyperbolas. If the bounding ellipse
is given by ~ = ~o, the eccentricity of the boundary is e = cosh -1 1/ ~o.

Elliptic cylindrical waves may be expanded in terms of the Mathieu
functions[39]. Mathieu functions are solutions of the differential equation[49]

d2y
dv2 + (r - 2xcos2v)y = O. (7.25)

Modified Mathieu functions are given by the solutions to

Solutions of (7.26) may be obtained by substituting u = jv into solutions of
(7.25).

Solutions to (7.25) are periodic with periodicity 71"or 271",for certain spe-
cific values of t , called characteristic values. Periodic solutions are required
for the angular dependence, i.o.w. in the TI coordinate. The values of r

depends on q, and whether the solution is even, or odd.
Mathieu functions can have odd, or even symmetry. The, respectively

even and odd, Mathieu functions are written as cem(rm, X, 0 and ces(rm, x, O·
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Xi
kei = -.q (7.34)
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The respective modified Mathieu functions are written as Cem(rm, X, ry) and
Ces(rm, X, ry). Note that rm differs between the even and odd functions. The
subscript m refers to the function of the mth characteristic value. The Trri

will hence be dropped form the functional notation. A function of rm will
be referred to as a Mathieu function of order m.

For TE modes, the boundary conditions are

at ( = (0. (7.27)

Even eTEmn mode solutions may be found as[19]

E, =« AmnCec(eXmn, ()cee(eXmn, ry)e-jf3z, (7.28)

where eAmn is an arbitrary magnitude constant, and (3 is as before. The
odd 0TEmn mode solutions are the same, except for the substitution of the
odd Mathieu functions.

From Ez, the solution of Er., may be found as

EI1 = eAmnCe~(eX~n, Ocem(eX~n, ry). (7.29)
-jkqJcosh2 (- cos2ry

From 7.29, the boundary condition (7.27) may be satisfied for a waveguide
of given eccentricity by setting[50]

(7.30)

where eX~n refers to the nth root of the derivative of the mth order even
Mathieu function.

For TM modes, the boundary condition is

at ( = (0. (7.31)

Even eTMmn mode solutions may be found as

Ez =e BmnCec(eXmn, Ocec(eXmn, ry)e-jf3z, (7.32)

where eBmn is an arbitrary magnitude constant, and {3 is as before. The
odd 0TMmn mode solutions are the same, except for the substitution of the
odd Mathieu functions.

The boundary condition (7.31) may be satisfied for a waveguide of given
eccentricity by setting

(7.33)

where eXmn refers to the nth root of the mth order even Mathieu function.
The cut-off wavenumbers may be found in terms of the various X roots.

On omission of the mode designations[19],

An efficient evaluation method for Mathieu functions is presented in
[51]. The only general purpose mathematical package that supports the
evaluation of Mathieu functions, is Mathematica[52].
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E¢(p, ¢J, z) = 0, at p = a, b. (7.35)

CHAPTER 7: Results

7.1.5 Circular Coaxial Waveguide

A circular, coaxial waveguide geometry with inner radius a, and outer radius
b is shown in Fig. 7.4. The waveguide is assumed to be homogeneously filled
with a material of permitivity E and permiability J.L. The waveguide walls
are assumed to be perfect conductors. Coaxial waveguides have a dominant

b

Figure 7.4: Coaxial Circular Waveguide Geometry

Transverse Electro-Magnetic (TEM) mode, with zero cutoff frequency. This
mode is the one typically used for applications. The TEM mode is easily
determined, since TEM modes have the same field distribution as the static
field of a given structure.

The TEM modes are easy to determine analytically, and is in any case
not solved by the high-frequency formulation used here. Higher-order TE
and TM modes are, however, also supported by a coaxial structure. It is of
practical interest to know what the cutoff frequency of the lowest-order TE
or TM mode is, since this typically sets the operational frequency limits of
a coaxial structure.

As for the circular waveguide, (7.2) and (7.5) may be solved by writ-
ing them in cylindrical coordinates. From the solution of the respective
equations, the TE and TM modes may be found.

For TE modes, the boundary conditions are

The solution of Hz for the TEnm modes, is found as

Hz(p, ¢J, z) = (Anm sin(n¢J)+Bnm cos(n¢J))(CnmJn(kcnmp)+DnmYn(kcnmP)),
(7.36)

where In and Yn are respectively, Bessel functions of the first and second
kind, Anm, Bnm, Cnm, and Dnm are arbitrary magnitude constants, and
kCnm the cutoff wavenumber for the TEnm mode.

53

Stellenbosch University http://scholar.sun.ac.za



Ez(p, ¢, z) = 0, at p = a, b. (7.40)
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Using (7.14) to find

E¢ = J;: (Anm sin(n¢) + Bnmcos(n¢))(CnmJ~(kcP) + DnmYn(kcllmp)e-j(3z,
(7.37)

the boundary condition (7.35) may be satisfied by setting

CnmJ~(kCnma) + DnmY~(kcnma) = 0,

CnmJ~(kcnmb) + DnmY~(kcnmb) = O.
(7.38)

Since this is a homogeneous set of equations, the only nontrivial (C i- 0,D i-
0) solution occurs when the determinant is zero. Thus,

(7.39)

Since (7.35) is a transcendental equation, it has to be solved numerically.
The solution of the TM modes is identical, excepting the boundary con-

ditions. For TM modes, the boundary conditions are

The solution of E; for the TMnm modes, is found as

Ez(p, ¢, z) = (Anm sin(n¢)+Bnm cos(n¢))(CnmJn(kcnmp)+DnmYn(kcnmP))·
(7.41)

The boundary condition (7.40) may be satisfied by setting

CnmJn(kcnma) + DnmYn(kcnma) = 0,
CnmJn(kcnmb) + DnmYn(kcnmb) = O.

(7.42)

Similar to the TE case, this yields the transcendental equation

(7.43)

As for the circular waveguide, the ratio of Anm to Bnm is arbitrary.
Similarly, the waveguide may be rotated to set either to zero.

7.2 Performance of Unmapped Elements

The performance of unmapped (straight) elements are investigated in this
section. In order to establish the best possible performance of a given base,
a geometry with straight sides is solved. In order to provide a base of
comparison for mapped elements, a curved geometry is also investigated.
The basis name contractions used throughout, are shown in table 7.1.
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Contraction Tangential Order Normal Order

CT/LN Constant Linear

LT/LN Linear Linear

LT/QN Linear Quadratic

QT/QN Quadratic Quadratic

QT/CuN Quadratic Cubic

CuT/CuN Cubic Cubic

CuT/Q4N Cubic Quadric

Q4N/Q4N Quadric Quadric

Q4T/Q5N Quadric Quintic

Q5N/Q5N Quintic Quintic

Table 7.1: Basis Name Contractions

1 2 3 4 5 6 7 8 9 10 11 12

TE k~/1f2 1 4 4 5 8 9 13 16 16 17 20 20

TM k~/1f2 5 8 13 17 20 20 25 29 32 37 40 40

Table 7.2: First 12 cutoff wave numbers kc of a rectangular waveguide, with
breadth a = 1 m and height b = 0.5 m.
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7.2.1 Domains with Straight Boundaries

A rectangular waveguide geometry, as described in §7.1.2 is investigated.
The results are for a waveguide with a breadth a = 1 m, and a height
b = 0.5 m. The first 12 cutoff wavenumbers of the TE and TM modes for
this waveguide is given in table 7.2

The RMS error over these 12 modes are shown in Fig. 7.5. From the
gradients of each basis' error, it can be seen that the convergence is faster,
as higher order basis functions are used. Use of a higher order base results
in better solution efficiency w.r.t. DOFs in almost all cases.

(a) RMS Error over 12 TE modes (b) RMS Error over 12 TM modes

........•.

-1
~""'-

"-"'Q, ... ~______-2
:....o
t:: -3
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~ -4
~-5
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-7
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.............
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QT/CuN
CuT/Q4N
Q4T/Q5N

'.,
-,

'...
1.5 2 432.5 3,5

10glQ(Degrees of Freedom) 10glQ(Degrees of Freedom)

Figure 7,5: Performance of Unmapped Elements: Rectangular Waveguide

The trends for the TE and TM modes are very similar. The TE solu-
tions have smaller errors than the TM, and the TM LT/QN solution is not
uniformly superior to CT /LN, as it was for the TE modes, The larger TM
mode errors may be ascribed to the natural, rather than enforced, boundary
conditions, and the fact that the TM modes correspond to somewhat higher
frequencies,

7.2.2 Mixed vs. Full-order Elements

In §4.3,2, it was shown that mixed order elements have the same asymptotic
behaviour as full-order elements, In some cases, it might still be beneficial
to use full-order elements.

For the rectangular waveguide, the curl, and the field itself, should be
of similar importance, To confirm this, mixed-order bases are compared to
full-order bases, Fig, 7.6 shows the comparative results.

In general, the full- and mixed-order bases converge at the same rate.
The full-order bases are, however, less efficient than the mixed-order bases.
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Figure 7.6: Comparison of Full- and Mixed Order Elements: Rectangular
Waveguide
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Somewhat surprisingly, the full-order bases also show a larger error when
exactly the same discretisation is used. The exception to the general rule,
is the LT /QN and QT /QN pair, which perform most similarly.

7.2.3 Domains with Curved Boundaries

In order to test the efficiency of unmapped elements in curved domains,
they were applied to the circular waveguide geometry described in §7.1.3.
The results are for a waveguide with a radius of 1 m. The first 12 cutoff
wavenumbers of the TE and TM modes for this waveguide is given in table
7.3. Since the best rectangular waveguide result obtained is accurate to more

TE kc TM kc

1 1.84118378134066 2.40482555769570

2 1.84118378134066 3.83170597020752

3 3.05423692822714 3.83170597020752

4 3.05423692822714 5.13562230184026

5 3.83170597020751 5.13562230184026

6 4.20118894121053 5.52007811028631

7 4.20118894121053 6.38016189592398

8 5.31755312608399 6.38016189592398

9 5.31755312608399 7.01558666981560

10 5.33144277352504 7.01558666981560

11 5.33144277352504 7.58834243450380

12 6.41561637570009 7.58834243450380

Table 7.3: First 12 cutoff wave numbers kc of a circular waveguide of radius
1 m.

than nine significant digits, great care has to be taken to obtain accurate
analytical results. For this reason, the wave numbers are tabulated to double
precision.

The RMS error over the first 12 modes is shown in Fig. 7.7. It is clear
that the geometrical error made by the straight elements, dominate the
results of all the basis functions, bar the CT /LN result.

The CT /LN result shows a similar error, and rate of convergence to the
CT /LN result of the rectangular waveguide. All the other basis functions
converge at the same rate as the CT /LN basis, while being less efficient, due
to the DOFs wasted modelling the "wrong" geometry. From this one may
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Figure 7.7: Performance of Unmapped Elements: Circular Waveguide

conclude that the error made by the straight sided geometry, converges at
a similar rate to the error made by the CT /LN basis.

7.3 Mapped Elements in Domains with Curved
Boundaries

The performance of mapped (curved) elements are investigated in this sec-
tion. In addition to the circular geometry considered in §7.2.3, mapped
elements were also applied to a coaxial geometry, and an elliptic geometry,
as respectively described in §7.1.5 and §7.1.4.

The coaxial geometry considered has alm inner radius. The outer
radius was chosen to give it a TEM mode, characteristic impedance of 50 n.
The elliptical geometry considered, has alm major axis, and an ellipticity
of 0.5. Their respective modes are given in table 7.4. Only the TE modes
of the elliptic waveguide are considered.

7.3.1 Mapped Mixed Order Elements

The performance of various coordinate mappings and bases are shown in
figures 7.8, 7.9 and 7.10. The figures show, respectively, the circular, coaxial,
and elliptic waveguide results.

The results of the QT /CuN and higher order bases are, in all cases,
many orders of magnitude better than for the unmapped case. Note that
the coarsest circular mesh did not have enough DOFs to produce 12 modes
when used with the CT /LN elements.
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Coaxial Waveguide EllipticWaveguide
TE kc TM kc TE kc

1 0.61863226004627 2.39625474992949 1.8510019462685945
2 0.61863226004627 2.47655373692904 2.1123640507905401
3 1.21239089155961 2.47655373692904 3.2226614791568795
4 1.21239089155961 2.70147634821676 3.2931582100347194
5 1.76718273849640 2.70147634821676 4.1904957369323785
6 1.76718273849640 3.03469737821871 4.4791693782254374
7 2.28529661776413 3.03469737821871 4.4947066374670666
8 2.28529661776413 3.43896312988662 5.5684326331812635
9 2.47655373692904 3.43896312988662 5.6816345961913068
10 2.57609903043474 3.88570073354709 5.684645915921319
II 2.57609903043474 3.88570073354709 5.9962093718266454
12 2.77837104064020 4.35575183555213 6.8588358186039224

Table 7.4: First 12 cutoff wave numbers kc of a coaxial, and an elliptic
waveguide. The coaxial waveguide has an inner radius of a = 1 m and a
50 = n TEM characteristicimpedance. The ellipticwaveguide has a major
axis a = 1 m, and an ellipticityof 0.5.
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Figure 7.8: Performance of Mapped Elements: Circular Waveguide
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Figure 7.9: Performance of Mapped Elements: Elliptic Waveguide
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An exception to the generally better performance of the mapped ele-
ments, is shown by the performance of the LT IQN basis functions on the
two coarsest meshes. Table 7.5 shows the errors for the RMS error over
12 modes, and the individual errors for the first four modes of the circular
waveguide. The RMS error is greater for the mapped elements when the two
coarsest meshes are used. The individual errors of the lower order modes
are, however, much smaller when the mapped elements are used.

10glO Error percentage

Map DOFs RMS error Mode 1 Mode 2 Mode 3 Mode 4

Unmapped 24 -0.7247 5.8683 5.8683 -4.6273 -4.6273

Quadratic 24 -0.5040 -0.2419 -0.2419 -6.6576 -6.6576

Unmapped 396 -2.3061 0.5504 0.5506 0.5047 0.5069

Quadratic 396 -2.2640 -0.0031 -0.0029 -0.0352 -0.0336

Unmapped 780 -2.3340 0.4501 0.4503 0.4270 0.4281

Quadratic 780 -2.8934 -0.0013 -0.0010 -0.0076 -0.0071

Table 7.5: Circular waveguide LT IQN TE errors, mapped vs. unmapped

The quadratic mapping seems to be inadequate for bases of order higher
than QT leuN. The coaxial waveguide shows this especially clearly. The cu-
bic parametric mapping performs almost identically to the exact, quadratic
rational parametric mapping.

62

3.5 4

Stellenbosch University http://scholar.sun.ac.za



-1

~-2
5.....3[)-

~ -4
E--5
o....
b.()-6
...9

-1

~-2
5
t:: -3
<lJ

~ -4
E--5
b.() 6...9-
-7
-8

1.5

-7
-8

1.5

(a) Quadratic Mapping, TE Modes

Figure 7.10: Performance of Mapped Elements: Coaxial Waveguide
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CHAPTER 7: Results

Mapped bases of order QT/CuN and lower show, on curved geometries,
a performance on par with that of unmapped bases on straight geometries.
The best results the higher order mapped bases achieve on curved geome-
tries, are similar to that of the QT /CuN base, and they do not show the
expected order of asymptotic convergence.

The best results achieved for curved geometries, have an RMS error of
about 10-7. This is a significantly worse than the RMS error of about
10-9 achieved for the rectangular guide, and a similar number of DOFs.
This seems to be the result of the mesher used, which exports mesh node
positions with only five significant figures.

Rectangular Circular Coaxial

TE TM TE TM TE TM

CT/LN 0.93 0.83 0.85 1.21 0.81 0.68

LT/QN 1.89 2.27 1.61 1.55 2.38 1.70

QT/CuN 2.96 2.93 2.37 2.65 2.43 3.21

CuT/Q4N 3.91 4.40 2.54 3.57 1.34 2.53

Q4T/Q5N 4.63 4.20 2.10 3.41 1.03 0.75

Table 7.6: Convergence Rates of Various Bases

The convergence rates (ie. gradient of the error graph) of the various
bases, are shown for several geometries in table 7.6. The triangle edge length
h is inversely proportional to the square root of the number of triangles on
a 2D domain. The convergence rate with respect to h is thus twice as fast
as the convergence shown in table 7.6.

The rectangular results show close to the expected O(h2p) convergence
result. The mapped elements maintain the expected convergence rate for
bases of order QT / CuN and lower.

7.3.2 Effects of Using Higher Order Integration

The quadrature scheme used to integrate the basis functions, are capable of
exactly calculating polynomial integrands of a given order. As mentioned in
§3.4, the basis functions of a mapped element are no longer polynomial. In
light of this, it might be beneficial to use a higher order integration scheme
than would be needed to integrate the unmapped basis functions exactly.

Since the Jacobian of a valid mapping is bounded from above, and be-
low, the asymptotic behaviour of a given base is expected to be unchanged
once mapped. Once might expect some improvement in the pre-asymptotic
region, however.
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Fig. 7.11 shows the performance of some lower order bases, with higher
order integration. The notation LT/LN+2 refers to the fact that an inte-
gration order higher by two than required was used. The results with, and
without, the higher order integration was almost identical. There does not
seem to any advantage to using higher order integration than needed for the
unmapped elements.

(g) Cubic Parametric Mapping, TE modes (h) Cubic Parametric Mapping, TM modes
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Figure 7.11: Performance of Mapped Elements with Higher Order Integra-
tion: Circular Waveguide

7.3.3 Conclusion

In this chapter, the performance of the higher order curvilinear elements
developed in the previous chapters were evaluated. They were evaluated
w.r.t. solution efficiency, on three curved, and one straight geometry, all of
which have known analytical solutions.

It was shown that straight elements are woefully inadequate for higher
order bases in curved geometries. It was shown that curvilinear elements
can overcome the difficulty of modelling a curved geometry, and is able
to match the performance of unmapped elements in domains with straight
sides, provided the provided mesh is accurate enough.

It was seen that even very coarse meshes can provide accurate results,
with higher-order, curved elements. In the case of the circular waveguide,
the coarsest mesh used, consisted of only seven triangles.

It was established that a quadratic geometry mapping is adequate to
maintain the performance of bases up to a curl order of 2 (QT ICuN). The
requirements of the higher order bases could not be established, due to
inaccuracies in the output of the mesher used.
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Chapter 8

Conclusion

In the introduction, the need for higher order bases, and curvilinear elements
was established. The aim of implementing both higher order bases, and
curvilinear elements was set. Both goals were met.

The basic FEM formulation used was laid out. It was shown how one
might apply basic vector elements to the functional formulation given by
Jin. This provided a base for the rest of the work to build upon.

The theory of curvilinear, or general, coordinate systems were discussed,
in light of a literature survey of the Electronic Engineering literature. A
relative paucity of literature covering curved vector elements were found.

The reference triangle cell to be mapped onto curved geometries was
presented. It was shown how covariant projection mapping could be used
to construct curl-conforming, curved elements, using basis functions defined
for vector simplexes.

The theory of polynomial functional spaces was discussed, in light of
implementing basis functions of theoretically infinite order. This theory was
implemented using a CAS, which resulted in high order bases being very
easy to implement.

Bases up to full fifth order was implemented. These bases were first
tested in a domain with straight sides, using plain simplexes with straight
sides. The basis functions exhibited rates of convergence which were in
agreement with the theoretical predictions.

Various mappings were applied to the previously developed bases. These
mapped elements were tested with several curved geometries for which an-
alytical solutions are known. They showed an improvement in performance
of several orders of magnitude, as compared to unmapped elements in the
same domains. Their ultimate performance was somewhat worse than that
of the unmapped elements in straight domains, due to limitations of the
mesher used.
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