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Abstract  

 

 

The purpose of this study was to evaluate whether an autologous vein graft supported by 

expanded polytetrafluoroethylene (Gore-Tex) chordae can be used to replace an anterior 

mitral valve leaflet and whether the vein will be able to withstand the stress and strain of 

deformation, remain viable in the intracardiac environment and be able to adapt 

morphologically and grow as a valve leaflet. 

 

An autologous jugular vein graft, used as a double layer, supported by Gore-Tex chordae was 

used to create a functional anterior mitral valve leaflet in 21 sheep. No ring annuloplasty was 

used to support the annulus. The average cross-clamp time was 99 minutes (76 to 151 min) 

and the average bypass time was 137 minutes (109 to 188 min). One sheep died intra-

operatively. The post-operative echocardiogram demonstrated laminar diastolic flow across 

the mitral valve with an average opening area of 2.8cm². Fourteen sheep had trace to mild 

mitral regurgitation (MR), 5 sheep had mild to moderate MR and 1 sheep had moderate to 

severe MR. The body of the vein leaflet tends to billow during systole which increases stress 

on the Gore-Tex chordae.  

 

Three sheep died 2 to 3 days postoperatively from mitral regurgitation due to Gore-Tex 

chordae that were too long, causing prolapse in 2 cases and 1 case developed a hematoma 

between the 2 vein layers.  Seven sheep died between 1 and 6 months. Four sheep developed 

infective endocarditis on the mitral valve. 

 

Echocardiography at 6 months showed that the mitral regurgitation (MR) progressed with time 

in most of the sheep: 3 out of 11 sheep had mild MR, 5 had mild to moderate MR and 3 had 

moderate to severe MR. The progression of MR was due to lack of secondary chordal support 

of the vein leaflet and mitral annulus, leading to progressive annular dilatation, decreased 

leaflet coaptation length and increased tension on the primary Gore-Tex chordae. Durability 

of the valve should be improved by adding an annuloplasty ring and supporting the leaflet with 

secondary chordae. The 10 surviving sheep were euthanized between 6 to 10 months. All vein 

implants were examined histologically. 

 

The vein leaflet developed intimal fibroplasia and fibrous proliferation between the 2 vein 

layers as a response to the increased stress upon the tissue. This caused leaflet thickening, 

but the vein remained flexible without shortening or contracture. The 6 to 10 month vein 
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implants showed viable endothelium and the underlying vein layers clearly showed viability 

with myofibroblasts, collagen and elastin. A normal healing pattern was seen at the suture 

lines and no calcification was seen in the vein leaflet apart from the Gore-Tex sutures. No vein 

growth was demonstrated. 

 

Autologous vein has the potential to be used as a valve leaflet substitute, because it remains 

viable in the intracardiac position for up to 10 months and is able to withstand the stress and 

deformation of a valve leaflet. Histologically it showed the ability to heal and to morphologically 

adapt to the new environment.  
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Opsomming 

 

Die doel van hierdie studie was om te sien of outologiese lewendige vene weefsel, ondersteun 

deur politetrafluoroetileen (Gore-Tex) chordae, gebruik kan word om die anterior 

mitraalklepsuil te vervang. Daar wou gesien word of die vene die druk, spanning en 

vervorming in die mitraalklep posisie sal kan hanteer en of die vene lewensvatbaar sal bly en 

morfologies sal aanpas en groei.  

 

ŉ Outologiese jugulêre veen transplantaat is gebruik, as ŉ dubbel laag, ondersteun deur Gore-

Tex chordae om ŉ funksionele anterior mitraalklepsuil te skep in 21 skape. Geen ring 

annuloplastiek is gedoen om die mitraalklep annulus te ondersteun nie. Die gemiddelde klem 

tyd was 99 minute en die gemiddelde kardiopulmonale omleiding tyd was 137 minute. Een 

skaap is intra-operatief dood. Post-operatiewe eggokardiografie het laminêre diastoliese vloei 

oor die mitraalklep demonstreer met ŉ gemiddelde kleparea van 2.8 cm². Veertien skape het 

baie geringe tot geringe mitraal inkompetensie (MI) gehad, 5 skape het gering tot matige MI 

getoon en 1 skaap het matig tot strawwe MI gehad. Die veenklep was geneig om uit te bult na 

die linker atrium tydens ventrikulêre sistolie wat spanning op die primêre Gore-Tex chordae 

verhoog het. 

 

Drie skape is 2 tot 3 dae post-operatief dood as gevolg van mitraal inkompetensie omdat die 

Gore-Tex chordae te lank was in 2 skape met veenklep prolaps en ŉ hematoom het gevorm 

in een klepsuil tussen die 2 veen lae. Sewe skape is dood tussen 1 tot 6 maande.  Vier skape 

het infektiewe endokarditis op die mitraalklep ontwikkel. 

 

Eggokardiografie op 6 maande het getoon dat die mitraalinkompetensie (MI) progressief 

vererger het in die meeste skape met 3 uit 11 skape wat geringe MI getoon het tussen 6 en 

10 maande. Die progressie van die MI was as gevolg van die verlies van sekondêre Gore-Tex 

chordae wat die veenklep en die mitraalklep annulus ondersteun het. Dit het gelei tot 

progressiewe annulus dilatasie, verminderde koaptasie lengte en verhoogde spanning op die 

primêre Gore-Tex chordae. Die klepfunksie behoort beter behou te word deur die veenklep te 

ondersteun met ŉ klepring annuloplastiek en sekondêre Gore-Tex chordae. Die 10 

oorlewende skape het eutanasie ondergaan tussen 6 tot 10 maande. Alle veen klepsuile is 

histologies evalueer. 
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Die veen klep het intimale fibroplasie ontwikkel met fibreuse proliferasie tussen die 2 veen lae 

as aanpassing tot die verhoogde drukspanning op die weefsel. Dit het verdikking van die 

klepsuil veroorsaak, maar die klepsuil was steeds vervormbaar sonder verkorting of 

kontrakture. Die 6 tot 10 maande veen oorplantings het lewensvatbare endoteel getoon en die 

onderliggende veen lae was lewensvatbaar met miofibroblaste, kollageen en elastien. ŉ 

Normale genesingsproses is gesien by die steke lyne en geen kalsifikasie is in die vene gesien 

nie, behalwe by van die Gore-Tex steke. Veen groei is nie gedemonstreer nie. 

 

Outologiese veen het die potensiaal om gebruik te word vir die vervanging van ŉ klepsuil, want 

dit bly lewensvatbaar in die hart vir tot 10 maande. Die veenklep kan die druk, spanning en 

vervorming van ŉ klepsuil hanteer en histologies toon die veen die potensiaal om te genees 

en morfologies aan te pas by die intra-kardiale milieu.  
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1.Literature review. 

 

1.1 Mitral valve anatomy 

 

The mitral valve is a remarkable structure which regulates unidirectional blood flow from the 

left atrium to the left ventricle. The valve is a functional complex which consists of the left 

atrium, mitral annulus, valve leaflets, chordae tendineae, papillary muscles and left ventricle. 

Each part of this complex plays an important role for the mitral valve to function properly. 

 

Since the development of mitral valve surgery in the late 1950’s and early 1960’s there has 

been renewed interest in the detailed anatomy and function of the mitral valve (Du Plessis and 

Marchand 1964). Understanding the normal valve structure and ultrastructure gives us better 

insight into mitral valve function, valve dynamics, mitral valve disease and the surgical 

treatment of valve pathology. 

 

 

1.1.1 The fibrous skeleton of the heart: 

 

The fibrous skeleton of the heart provides the key to understanding the anatomical 

relationships of the mitral valve (Du Plessis and Marchand 1964). It is found at the base of the 

heart and consists of densely collagenous fibres with the aortic annulus forming the central 

part of the skeleton. Fibrous extensions from the aortic annulus form the scaffold for the 

pulmonary, tricuspid and mitral rings (Fig 1.1 and Fig 1.2). The fibrous skeleton is anchored 

to the myocardium in a similar way as tendons are attached to muscles (Misfeld and Sievers 

2007).  
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Fig 1.1: Diagram of the fibrous skeleton of the heart (Du Plessis and Marchand 1964). 

 

 

 

 

Fig 1.2: Fibrous skeleton of the heart showing the close relationship of the aortic, mitral and 

tricuspid valve. The AV node lies in the central fibrous body. The intervalvular fibrosa (aortic 

mitral curtain) is bordered on the left and right by the left fibrous trigone (LFT) and right fibrous 

trigone (RFT) (Netter 2010). 
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The position of the valves in the fibrous skeleton shows the close relationship of the four heart 

valves to each other. The tricuspid and pulmonary valves occupy two openings within the right 

ventricle and are separated by ventricular muscle called the conus arteriosus or infundibulum. 

The aortic and mitral valve occupy the same opening in the left ventricular myocardium (Du 

Plessis and Marchand 1964). The aortic and mitral valves are connected by the intervalvular 

fibrosa or aortic mitral curtain which stretches from the base of the left and non-coronary aortic 

cusps to the anterior mitral annulus (Silbiger and Bazaz 2009) (Fig 1.1, 1.2, 1.3).  

 

 

 

Fig 1.3: Left ventricular view of the aortic and mitral valve which are opened up to show the 

aortic mitral curtain (Du Plessis and Marchand 1964, Carpentier et al 2010). The aortic mitral 

curtain stretches from the base of the left coronary aortic cusp (LCC) and non-coronary aortic 

cusps (NCC) to the anterior mitral annulus. 

 

 

 

 

 

The anterior mitral leaflet forms a divide between the left ventricular inflow and outflow 

streams. The angle between the aortic and mitral valve, also called the aortic-mitral angle is 

about 120 degrees in diastole and 110 degrees during systole (Fig 1.4) (Komoda et al. 1997). 
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Fig 1.4: Left ventricular inflow and outflow with aortic-mitral angle (Komoda et al 1997). 

 

 

 

 

1.1.2 The mitral annulus 

 

The mitral annulus forms the hinge point from where the valve leaflets arise. It is at the annulus 

where the valve leaflets are anchored to the myocardium by the elastic and collagenous fibres 

that radiate into the myocardium (Misfeld and Sievers 2007). The shape of the mitral annulus 

resembles a hyperbolic paraboloid, a geometric shape which looks like a riding saddle, with 

its peaks located anteriorly and posteriorly and its valleys located medially and laterally at the 

commissures (Silbiger and Bazaz 2009). This three-dimensional shape of the annulus reduces 

the mechanical stress on the valve leaflets (Fig 1.5) (Salgo et al. 2002; Jimenez et al. 2007).   
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Fig 1.5: Saddle shape of the mitral annulus (Salgo et al. 2002).  

 

 

 

 

 

The mitral annulus can be divided into an anterior third to which the base of the anterior leaflet 

is attached and the posterior two thirds from where the posterior leaflet arises. The anterior 

annulus is connected to the aorta by the intervalvular fibrosa which is bordered on the left and 

right side by the left and right fibrous trigones (Fig 1.1 and Fig 1.2). The right fibrous trigone is 

continuous with the membranous part of the interventricular septum and these two 

components together form the central fibrous body which is the strongest part of the fibrous 

skeleton of the heart (Fig 1.2) (Wilcox et al. 2005). The atrioventricular conduction bundle 

passes through the right fibrous trigone. The posterior two thirds of the annulus is a fibrous 

thickening at the base of the left ventricle extending from the left to the right fibrous trigone, 

but this part of the fibrous annulus is often incomplete where the leaflets are attached directly 

to the endocardium of the left ventricle (Angelini et al 1988). 

  

The annulus is not a rigid structure but changes shape during the cardiac cycle. The posterior 

mitral annulus contracts during atrial and ventricular systole with maximal shortening at the 

midportion of the posterior annulus (Glasson et al. 1996). The anterior annulus lengthens 

slightly during systole, with movement of the anterior annulus towards the posterior annulus 

and towards the left atrium. This movement happens because the anterior part of the annulus 

is closely connected to the aorta and it stretches passively with systole and gets pushed 

towards the posterior annulus (Fig 1.6) (Lansac et al. 2001; Timek et al. 2003). The total effect 

is an increase in aortic diameter with reduction of the mitral annular circumference and the 
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mitral orifice area during systole (Fig 1.6). This results in a larger aortic diameter which 

facilitates ventricular ejection and a smaller mitral orifice area which gives better mitral leaflet 

coaptation during systole.  

 

During early diastole the posterior mitral annulus dilates as the ventricle relaxes and the 

anterior annulus shifts towards the aorta and left ventricle (Fig 1.6) (Lansac et al. 2001; Timek 

et al. 2003).  This causes a larger mitral annular area during diastole to allow for more efficient 

filling of the left ventricle.  The normal mitral annular area index changes from 2.8 cm²/ m² in 

systole to 3.85 cm²/ m² in diastole, an increase of about 25% (Fig 1.7) (Orniston et al 1981). 

Prosthetic devices and rigid mitral rings fixate the mitral annulus and do not allow for systolic 

and diastolic changes in the mitral annular diameter (Timek and Miller 2001). 
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Fig 1.6: The mitral annulus changes shape during the cardiac cycle so that the mitral orifice 

area is smaller in systole than diastole (Lansac et al. 2001; Timek et al. 2003). 

 

a) Systole: 

 

 

 

 

 

 

 

b) Diastole: 

 

 

 

  

 
 
 
Aortic valve open 

 
Anterior annulus pushed 
towards posterior annulus 
during ejection phase 
 
 
Posterior annulus contracts  

 
 
Aortic valve closed 
 
Anterior annulus shifts towards 
aorta and left ventricular 
outflow tract. 
 
 
 
 
Posterior annulus dilates 

Stellenbosch University  https://scholar.sun.ac.za



 
 
 

17 
 

Fig 1.7: Changes in mitral annular area index during the cardiac cycle in 11 normal subjects 

(Ormiston et al 1981).  
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1.1.3 The mitral leaflets: 

 

The mitral valve has 2 leaflets, an anterior leaflet which arises from the anterior third of the 

mitral annulus and a posterior leaflet which arises from the posterior two thirds of the annulus. 

The 2 leaflets are actually a single continuous structure which hangs into the left ventricle like 

a veil with indentations at the commissures. These indentations are partial and do not extend 

all the way to the annulus, which leaves bridging commissural tissue between the anterior and 

posterior leaflets (Fig 1.8) (Silverman and Hurst 1968; Silbiger and Bazaz 2009). 

 

 

Fig 1.8: Anatomy of the mitral commissures. The commissural leaflet has its own chordae 

(Carpentier et al 2011).  
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The anterior leaflet is roughly triangular in shape with a rounded free edge and the leaflet 

depth is about twice as long as the posterior leaflet. This gives the anterior and posterior leaflet 

about the same surface area, because the posterior leaflet is attached to two thirds of the 

annular circumference (Fig 1.9 and Fig 1.10). 

 

 

The posterior valve leaflet can be divided into 3 parts namely, P1, P2 and P3 (Carpentier et al 

2010). There are indentations between P1, P2 and P3 and these indentations are important 

for the valve to open properly during diastole (Fig 1.6).  The anterior leaflet is also divided into 

3 parts A1, A2 and A3 which corresponds to the area which coapts with the posterior leaflet 

(Fig 1.9). This is very useful when describing valve pathology for example a valve may be 

leaking at the level of P2 and A2 with prolapse of P2. The atrial surface of both leaflets has a 

smooth zone and a rough zone. The rough zone is the area where both leaflets coapt (Fig 

1.10).  
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Fig 1.9: Different parts of the anterior and posterior leaflets (Carpentier et al 2010). 

   

  

 

 

 

Fig 1.10: Mitral annulus opened between P1 and P2 showing the smooth zone and the rough 

zone where the leaflets coapt. Also note the indentations between P1, P2, and P3: 
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Ultrastructurally the mitral valve leaflets are metabolically active and consist of an extracellular 

fibro-elastic matrix filled with valvular interstitial cells which is covered with a continuous 

monolayer of valvular endocardial cells (Fig 1.11) (Fenoglio et al 1972). These cells also cover 

the chordae tendinae (Fig 1.12). The proximal third of the valve leaflets also have smooth 

muscle, cardiac muscle and nerve cells present (Filip et al. 1986). Capillaries may be present 

at the bases of the leaflets but the body of the leaflets do not have any capillaries which means 

the valvular interstitial cells receive their gas exchange and nutrition directly from the 

intracardiac blood that bathes the leaflets (Gross and Kugel, 1931).  
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Fig 1.11: Electron micrograph of a mitral valve leaflet. Note the endocardial cells on the atrial 

side (AE) and the ventricular side (VE). The valvular interstitial cells are also seen in the 

extracellular matrix which contains collagen, elastin, proteoglycans and glycoproteins 

(Fenoflio et al 1972). 
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Fig 1.12: Electron micrograph cross section of a chorda tendinae. Note the endocardial cell 

lining (E) with a distinct basal lamina (arrows). The spongiosa contains scattered collagen 

fibres (C) and elastic fibres (El). The central core of the chorda consists of densely packed 

parallel collagen fibres and fibroblasts (Fenoglio et al 1972). 

 

 

 

 

The extracellular matrix consists of the fibrous macromolecules collagen and elastin, 

proteoglycans and glycoproteins. The collagen provides most of the mechanical strength of 

the valve and is mostly type I and III collagen. The collagen fibres are surrounded by an elastin 

matrix which provides interconnections with collagen fibres (Fig 1.11) (Flanagan and Pandit 

2003). 
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Valvular interstitial cells (fibroblasts, myofibroblasts, and undifferentiated mesenchymal cells) 

are numerous elongated cells with many long, slender processes. They connect to each other 

to form a three dimensional network throughout the entire valve matrix. They have the 

following characteristics: 

 

- Are coupled by communicating junctions which connect them functionally,  

- Are innervated and closely related to motor nerve terminals (Marron et al. 1996) 

- Show secretory properties, forming collagen, elastin, laminin, fibronectin, chondroitin 

sulphate to help with extracellular matrix formation (Flanagan & Pandit, 2003) 

- Show mitogenic activity to platelet derived growth factor (PDGF) (Johnson et al. 1987) 

- Possess characteristics similar to smooth muscle cells in the media of arteries and 

veins cells, namely, abundance of actomyosin filaments, cGMP dependent 

proteinkinase and contractile response to epinephrine and angiotensin II. (Filip et al. 

1986, Della Rocca et al 2000).  

 

The valvular interstitial cells are believed to be responsible for the maintenance and repair of 

valvular structure. The constant motion of the valve leaflets during the cardiac cycle produces 

deformation and damage in the cell matrix. The interstitial cells respond to these changes and 

maintain valvular integrity. They are connected to each other and with the extracellular matrix 

through focal adhesion molecules and these cell-matrix attachment sites link the cytoskeleton 

to matrix proteins via integrins. This also acts as signal transduction sites which transmit 

mechanical information from the extracellular matrix to the valvular interstitial cells. This 

information then elicits a response such as matrix secretion, migration, cell adhesion, growth 

and differentiation. The latter being very important for valvular integrity, valve repair and 

regeneration (Flanagan and Pandit 2003). A major drawback of current bioprosthetic valves 

is that the valve leaflets are not living tissue and do not possess the regenerative potential of 

a living native valve (Hopkins 2007).  

 

The cell biology of valvular interstitial cells is not fully understood, but it is key to understand 

how these cells interact with each other and their environment. Knowledge of this cellular 

biology is especially important for tissue engineering of heart valves (Hopkins 2007). The 

precise balance between stiffness and flexibility of the leaflets depends heavily on the correct 

distribution of the extracellular matrix components (collagen, elastin, glycoproteins and 

proteoglycans) and this is regulated by the valvular interstitial cells. This is critical for proper 

valve function and there is growing evidence that valvular heart disease is the consequence 

of abnormal remodelling and regeneration of heart valve extracellular matrix (Hinton and Yutsi 
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2011). Biochemical studies of normal and diseased valves showed that collagen content is 

increased in rheumatic mitral valves and myxomatous valves (Lis et al. 1987). The 

abnormalities in myxomatous valves include disorganization of the bundles of collagen fibrils, 

alterations in the aggregation and organization of the amorphous components and microfibrils 

of the elastic fibers and accumulation of proteoglycans (Tamura et al. 1995). These changes 

are seen in the leaflets and the chordae tendinae. 

 
 
The valvular endocardial cells form a functional envelope around the mitral leaflets. These 

cells function to maintain a non-thrombogenic valve surface, similar to vascular endothelium 

(Frater et al. 1992). They are linked together by tight junctions and gap junctions and have 

overlapping marginal edges (Flanagan and Pandit 2003). The cells secrete nitric oxide (NO), 

endothelium-derived relaxing factor (EDRF) and vasodilatory prostanoids. NO and EDRF 

have both been shown to be potent inhibitors of platelet aggregation (Furlong et al. 1987), 

(Radomski et al. 1987). The valvular endocardial cells also regulate the underlying interstitial 

cells by secreting soluble factors. This is similar to vascular endothelium regulating the 

underlying smooth muscle (Mullholland and Gotlieb 1997). They may also play a sensory role 

as they present a large surface area which is exposed to metabolites in the circulating blood 

(Flanagan and Pandit 2003). 

 

The metabolically active valve leaflets are in stark contrast to current biological prostheses 

which is either a glutaraldehyde treated xenograft or cryopreserved homograft. These 

treatments remove cells and debris from the graft to lower the immune response between the 

host and the graft. The graft then gets colonized with a neointima and pseudo intima of 

fibroblasts and smooth muscle cells from the host. This acellular graft is not capable of 

regeneration and repair and degenerates with time with fibrosis and calcification (Hopkins 

2007) 

 

Histologically, the mitral valve leaflets can be divided into 4 layers (Fig 1.13) (Gross and Kugel 

1931): 

1. Auricularis or atrialis 

2. Spongiosa 

3. Fibrosa 

4. Ventricularis  
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Fig 1.13: Histological section of a normal mitral valve (Tamura et al 1995) 

 

 

 

The fibrosa forms the structural core of the mitral valve leaflets and is covered by the 

spongiosa and atrialis on the atrial side and the ventricularis on the ventricular side. The 

fibrosa consists of dense collagen fibres which are arranged in an orderly and parallel pattern. 

These collagen fibres are continuous with the annulus and fibrous skeleton of the heart and 

also continuous with the core of the chordae tendinae which connect the leaflet to the papillary 

muscles (Fig 1.14). Small numbers of elastic fibres are found in the fibrosa between the dense 

collagen fibres. (Tamura et al. 1995) 
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Fig 1.14: Electron micrograph of the ventricular surface of the mitral leaflet near the insertion 

of a chorda tendinae. Note the endocardial cell and the underlying stroma with collagen (C), 

elastic fibres (El) and fibroblasts (F). The fibrosa contains a band of dense, wavy collagen 

which is an extension of the core of the chorda tendinae (Fenoglio et al 1972). 

 

 

 

The atrialis layer consists of an endothelial layer of valvular endocardial cells. Between the 

endothelial layer and the most superficial elastic fibres lies a layer of extracellular matrix with 

very few collagenous fibres and a gelatinous consistency. (Gross and Kugel, 1931). This layer 

is more prominent at the leaflet tips or coaptation zone and facilitates a good seal during valve 

closure. The elastic fibres in the atrialis run in a radial direction between the valve ring and 

free edge of the leaflet. The atrialis also contains some smooth muscle cells. (Tamura et al. 

1995) 

 
The valvular interstitial cells are mainly found in the spongiosa. The spongiosa is also rich in 

proteoglycan and contains small amounts of elastic fibres and collagen. Near the valvular 

annulus the spongiosa contains some cardiac muscle cells which are a continuation of the left 

atrial myocardium (Tamura et al. 1995).  

 

The ventricularis layer is covered with endocardium on the ventricular side and contains a thin 

layer of linearly arranged elastic fibres. This layer is continuous with the elastic layer of the 

chordae tendinae (Tamura et al. 1995).  
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The interconnected sheets of collagen and layers and tubes of elastin give the valve tissue 

viscoelasticity, anisotropy and highly non-linear mechanics (Sacks and Yoganathan 2007). 

The valve leaflets stretches during closure and once the valve is closed, further leaflet 

deformation ceases. The closing deformation reverses again during valve opening.  

 

Anisotropy is a term used to describe the direction-dependent properties of materials and 

valve tissue show larger strain in the radial direction than in the circumferential direction (Fig 

1.15). The maximum anterior mitral valve leaflet extension ratio is 1.18 in the circumferential 

direction and 1.34 in the radial direction (May-Newman and Yin 1995). In vivo studies on sheep 

have been done to measure the strain of the anterior mitral valve leaflet (Sacks et al 2006). 

Nine 1mm hemispherical piezo-electric transducers were implanted on the anterior mitral 

valve leaflet in a 15 mm square array (Fig 1.15). Three-dimensional crystal spatial positions 

were recorded at 250 Hz over several cardiac cycles. Mean peak strain rates were 

approximately 300–400% per second in the radial direction and 100–130% per second in the 

circumferential direction. 

 

 

Fig 1.15: Mitral valve strain measured with piezo-electric transducers on the anterior mitral 

valve leaflet during the cardiac cycle. Peak radial strain is 16-22% and peak circumferential 

strain is 2.5-3.3% (Sacks et al 2006). 
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1.1.4 The subvalvular apparatus: 

 

Both leaflets are attached to the ventricular cavity by the subvalvular apparatus which consist 

of chordae tendinae and the papillary muscles. The papillary muscles provide a contractile 

element and the chordae tendinae have elastic properties. 

 

Chordae tendinae attach to the free edge and ventricular surface of the leaflets and then insert 

into 2 well defined anterior and posterior papillary muscles which form part of the left 

ventricular myocardium. Functionally the anterior and posterior mitral valve leaflets can be 

divided into lateral and medial halves by an imaginary mid-mitral line. The lateral halves are 

anchored by chordae from the anterior papillary muscle and the medial halves are anchored 

by chordae from the posterior papillary muscle (Kumar et al 1995). 

 

The chordae tendinae are composed of collagenous and elastic fibres and are covered with a 

smooth layer of endothelial cells (Fig 1.12, Fig 1.14). They support the free edge of the mitral 

valve during closure and also help to maintain left ventricular geometry during systole. The 

chordae branch out in a fan like configuration from the papillary muscles and form a 

sophisticated network which transmits the contractions of the papillary muscles to the valve 

leaflets (Fig 1.16) (Misfeld and Sievers, 2007).  

 

 

Three types of chords have been described: primary, secondary and tertiary (Lam et al 1970). 

Primary chordae attach to the free margin of the leaflet and secondary chordae to the 

ventricular surface of the mitral leaflet. Tertiary chords arise directly from the left ventricular 

wall and insert only to the posterior mitral leaflet. Primary and secondary chordae have very 

distinct functions. The thinner primary chordae maintain leaflet apposition and facilitate valve 

closure. When primary chords are sectioned or rupture, it results in acute mitral regurgitation. 

Sectioning of secondary chordae does not produce mitral regurgitation, but they do serve an 

important function in maintaining left ventricular size, geometry and function (Silbiger and 

Bazaz 2009).  The anterior leaflet has some thick secondary chordae, also called strut chordae 

which insert into the 4 o’clock and 8 o’clock positions on the under surface of the leaflet to the 

dense collagen network that ultimately terminates at the fibrous trigones (Fig 1.16). No strut 

chordae attach to the posterior mitral leaflet. The strut chordae connect the musculature of the 

left ventricle (at the papillary muscles) to the mitral annulus (at the fibrous trigones) and 

maintains papillary-annular continuity (David 1994). The strut chords are under continuous 
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tension, like a stretched rubber band, and this tension is transmitted to the papillary muscles 

and the fibrous trigones (Nielsen et al 2003). When these strut chordae are severed it results 

in papillary muscle retraction and change in left ventricular geometry with decreased systolic 

function. 
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Fig 1.16: Photo of a porcine mitral valve to show the anterior mitral leaflet with its primary and 

secondary chordae 

 

 

 

 

 

 

1.2 Blood flow through the normal mitral valve: 

 

The left atrium, left ventricle, mitral valve leaflets, chordae tendinae and papillary muscles all 

play an important role to ensure normal functioning of the mitral valve. Blood flow through the 

mitral valve is biphasic during diastole. The first peak, called the E-wave (early ventricular 

filling), is due to ventricular relaxation. The second peak, the A-wave (atrial contraction) is 

caused by contraction of the left atrium (Fig 1.17) (Yoganathan et al. 2004). During isovolumic 

relaxation the pressure in the left ventricle drops to below that of the left atrium which causes 

the mitral valve leaflets to open. The initial filling is enhanced by the active relaxation of the 

ventricle and results in the E-wave of the mitral flow curve. The peak velocity in the normal E-

wave range from 0.5-0.8 m/s (Oh et al. 1997). After active ventricular relaxation, the fluid 

begins to decelerate and the mitral valve closes partially. The atrium then contracts and blood 

flow through the mitral valve increases and gives rise to the A-wave in the mitral flow curve. 

This increased flow opens the mitral valve again. The peak velocity in the normal A-wave is 

typically lower than the E-wave.  
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Magnetic resonance phase-velocity mapping of normal human hearts has expanded our 

knowledge of blood flow through the heart (Kilner et al 2000, Markl 2011). The left atrium 

functions as a conduit during ventricular diastole and a reservoir during ventricular systole.  

Flow patterns of left atrial filling revealed vortical flow during systole and diastole. The principal 

vortex originated mainly from the left pulmonary veins and inflow from the right pulmonary 

veins joined the vortex periphery between the vortex and the atrial wall. These consistent 

patterns and their progression through the cardiac cycle may help to minimize stasis and 

energy dissipation and allows the momentum of the inflowing streams to be redirected towards 

the mitral valve (Kilner et al 2000, Markl et al 2011). 

 

Fig 1.17: Pressure flow curves of the aortic and mitral valve (Yoganathan et al 2004). 
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The mitral valve starts closing at the end of atrial contraction because of the changing pressure 

gradient from the left ventricle to left atrium as the left ventricular pressure increases (Reul et 

al 1981). With ventricular contraction, the mitral annulus diameter decreases, mainly the 

posterior annulus and this helps to give better leaflet coaptation (Glasson et al. 1996). The 

anterior part of the annulus is closely connected to the aorta and it stretches passively with 

systole and gets pushed towards the posterior annulus as discussed before (Fig 1.6). 

 

The anterior and posterior leaflets coapt and the chordae tendinae and papillary muscles 

prevent the leaflets from prolapsing into the atrium. The papillary muscles shorten during 

systole and this maintains a constant distance between the papillary muscle tips and the mitral 

annulus as the ventricle contracts. The papillary muscles can be seen as the shock absorber 

of the mitral valve complex, keeping the chordae tendinae tension constant. (Joudinaud et al 

2007). In patients with mitral valve prolapse the papillary muscles do not shorten as efficiently 

and this shortens the distance between the papillary muscle tips and the mitral annulus, 

causing leaflet prolapse and eventually regurgitation (Sanfilippo et al 1992). 

 

The mitral valve is exposed to high ventricular pressures during systole which can be as high 

as 150 mm Hg in normal individuals. Three basic loading states affect the valve tissue during 

the cardiac cycle: flexure, shear and tension (Hinton and Yutsey 2011). Flexure occurs when 

the valve leaflets are opening or closing, shear occurs when blood flows through the open 

valve and tension occurs when the valve is closed and exposed to ventricular pressure.  Mitral 

valve tissue has exceptionally high strain because the tissue cycles from a completely 

unloaded state in diastole to the high tension during left ventricular systole (Sacks and 

Yoganathan 2007). 

 
 
 

1.3 The burden of mitral valve disease: 

 

Mitral valve disease may manifest as stenosis or obstruction of outflow, or as regurgitation 

from defective closure. Since 1950, the predominance of mitral valvular disease in 

industrialised countries has shifted from a rheumatic origin to a degenerative etiology (Iung 

and Vahanian 2011). The incidence of rheumatic heart disease in industrialised countries 

declined since the widespread use of penicillin and the incidence of degenerative mitral valve 

disease became better known with the introduction of cardiac imaging such as 

echocardiography. In developing countries valvular disease is still mainly caused by rheumatic 

heart disease (Soler-Soler and Galve 2000, Iung and Vahanian 2011). 
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Mitral stenosis occurs mainly as a result of rheumatic heart disease and is the least common 

valvular disease in industrialised countries. It is, however, the most common form of valvular 

disease in developing countries. Degenerative calcification of the mitral annulus can cause 

mitral stenosis in older patients, but seldom causes clinically important mitral stenosis. 

 

Mitral regurgitation can be caused by primary abnormalities of the valvular apparatus (organic 

mitral regurgitation) or by left ventricular remodelling, which causes incomplete valvular 

coaptation (functional mitral regurgitation). Functional mitral regurgitation is caused by the 

incomplete closure of a structurally normal valve because of valve tethering by the subvalvular 

apparatus due to left ventricular remodelling or dysfunction (Iung and Vahanian 2011). 

Functional mitral regurgitation is a good example of how the whole mitral valve complex needs 

to work together to create a competent mitral valve. Even with normal leaflets, a valve can still 

leak if the subvalvular apparatus or left ventricle is tethering the valve. Techniques to repair 

functional mitral regurgitation have all been suboptimal, because none can address the 

primary problem which is left ventricular dysfunction, remodelling or dilatation. Instead, repair 

techniques have focused on decreasing the septolateral distance of the mitral annulus or 

resuspending the papillary muscles to create better leaflet coaptation (Langer et al. 2009).  
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Carpentier’s classification for mitral regurgitation is useful for understanding the different 

causes of mitral regurgitation (Table 1.1). It is very important to understand the mechanism of 

regurgitation and have a systematic approach when repairing a valve (Carpentier 1983). 

 

 

Table 1.1 Carpentier's classification of mitral regurgitation (Carpentier 1983). 

 

Functional 

type Pathology Leaflet motion 

Regurgitation 

jet 

I Annular dilatation Normal Central 

 Leaflet perforation   

 Dilated left ventricle   

II Chordal 

rupture/elongation 

Excessive (anterior, posterior or 

bileaflet leaflet prolapse) 

Eccentric 

 Papillary muscle rupture   

IIIa Commissural fusion, 

Leaflet thickening 

Restricted leaflet motion in 

systole and diastole (Rheumatic 

heart disease) 

Eccentric 

IIIb Papillary muscle 

displacement 

Restricted leaflet motion in 

systole (Ischaemic mitral 

regurgitation) 

Eccentric 

 

 

 

The main etiology for organic mitral regurgitation in industrialised countries is mitral valve 

prolapse caused by myxomatous degeneration of the mitral valve (Iung and Vahanian 2011). 

This is a degenerative disease of the mitral valve with leaflet billowing and shift of leaflet 

coaptation above the level of the annulus. The leaflet billowing and shortening of the 

coaptation distance between the leaflets places more stress on the chordae tendinae.  This 

causes the chordae to elongate and rupture, leading to mitral regurgitation. The prevalence of 

myxomatous mitral valve disease was 2.4% in a USA population based study of 3491 people 

with only 3.5 % of these cases having severe mitral regurgitation (Freed et al. 1999). The 
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prevalence of degenerative mitral valve disease increases significantly with age, with a 

prevalence of over 6% above the age of 65 (Nkomo et al 2006). 

 

The prognosis of myxomatous mitral valve disease depends on the severity of the mitral 

regurgitation and the left ventricular function. An ejection fraction less than 50% and severe 

mitral regurgitation is associated with a higher mortality and higher cardiovascular events such 

as heart failure, endocarditis, atrial fibrillation and mitral valve surgery (Avierinos et al. 2002).  

Asymptomatic patients with myxomatous mitral valve disease and severe mitral regurgitation 

at initial diagnosis (effective regurgitant orifice >0.4cm²) have a 80-100% chance of having a 

cardiovascular event over 10 years, that is a risk of 8-10% per year (Topilsky et al. 2010). 

Valve repair is possible in most patients with myxomatous mitral valve prolapse, with 

experienced centres achieving successful repair rates of 85-95% in patients referred for mitral 

valve surgery. The following repair techniques can be used during mitral valve repair 

(Carpentier 1983, Filsoufi & Carpentier 2007, Carpentier et al 2011): 

 

1. Annuloplasty with a mitral valve ring. This reduces the mitral annulus and restores the 

normal antero-posterior dimension during systole. The mitral valve annuloplasty ring 

is very important to strengthen and stabilize any repair (Fig 1.18). 

2. Quadrangular resection of the prolapsing segment of the posterior leaflet (Fig 1.18). 

3. Quadrangular resection and sliding plasty for excision of a larger prolapsing segment 

of the posterior leaflet (Fig 1.19). 

4. Chordal transfer from posterior leaflet to anterior leaflet (Fig 1.20) (Gillinov & Cosgrove 

2004). 

5. Chordal shortening was used in the past, but fell out of favour because of the risk of 

chordal rupture (Fig 1.21) (Smedira et al 1996). 

6. Papillary muscle shortening or papillary muscle sliding plasty (Fig 1.22) (Dreyfus et al 

2001).   

7. Replacement of ruptured or elongated chordae with artificial PTFE (Gore-Tex) sutures 

(David 2004) (Fig 1.23). 

8. A commissural leaflet prolapse can often be repaired with a commisuroplasty. This 

means suturing the anterior leaflet to the posterior leaflet at the commissure. For this 

technique to work, one of the leaflets must be normal without prolapse to support the 

prolapsing leaflet (Fig 1.24). 
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Fig 1.18: Quadrangular resection of the posterior leaflet and annuloplasty with mitral ring 

(Carpentier and Filsoufi 2007). 
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Fig 1.19: Quadrangular resection and sliding plasty (Carpentier and Filsoufi 2007) 

 

 

 

Fig 1.20: Chordal transfer (Gillinov & Cosgrove 2004). 
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Fig 1.21: Chordal shortening (Smedira et al 1996). 

 

 

 

 

 

Fig 1.22: Papillary muscle shortening (Dreyfus et al 2001). 
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Fig 1.23: Artificial chordae with Gore-Tex sutures (David 2004). 

 

 

 

 

 

 

Fig 1.24: Commisuroplasty (Gillinov et al 2005). 
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There is a growing body of evidence supporting the American College of Cardiology (ACC)/ 

American Heart Association (AHA) guidelines’ recommendation of early surgery for severe 

mitral regurgitation, in asymptomatic patients (Guyton et al 2014). Early surgery can restore 

normal life expectancy when it is done in an advanced repair centre that can provide an 

operative risk of less than 1%, high repair rates (85%-90%) and high durability of repair (5-

10% reoperation rate after 10 years) (David et al 2003, Adams & Anyanwu 2009, Gillinov et 

al 2010, Topilsky 2010). Repair of posterior leaflet prolapse have a better durability than 

anterior and bileaflet prolapse. In a long term follow-up from Toronto the freedom from 

moderate to severe MR was 80% at 12 years for posterior leaflet prolapse and 65% and 67% 

for anterior and bileaflet prolapse. The introduction of Gore-Tex chordae to repair a prolapsing 

leaflet has improved the durability of anterior leaflet repair (David et al 2005). Gore-Tex 

chordae have made it possible to do complex repairs where the mitral valve have multiple 

segments of prolapse. Extensive leaflet resections, chordal shortening and papillary muscle 

shortening have largely been abandoned in favour of supporting prolapsing segments with 

Gore-Tex chords (Perier et al 2008, Lawrie et al 2011, David et al 2013). 

 

 

Long term survival for mitral valve repair is reduced with increasing NYHA functional class, 

impaired left ventricular function, pulmonary hypertension, atrial fibrillation and tricuspid 

regurgitation (Gillinov et al 2010). It is still beneficial to offer these symptomatic patients with 

mitral valve prolapse and regurgitation valve repair surgery since they have less morbidity and 

mortality compared to the natural history of the disease (Topilsky 2010). 

 

 

Studies have shown that all the connective tissue components of the mitral valve are abnormal 

in patients with myxomatous mitral valve disease (Tamura et al. 1995, Lis et al 1987). These 

abnormalities are:  

 

1. Spiralling collagen fibrils and alteration in the pattern of arrangement of collagen 

bundles.  

2. Structural changes in the arrangement of the amorphous components and microfibrils 

of elastic fibres.  

3. Increase in the number of elastic fibres and decrease in the size of elastic fibres. 

4. Extensive accumulations of proteoglycans.  
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Myxomatous mitral valve disease is more common in patients with gene mutations that affect 

connective tissue homeostasis such as Marfan syndrome, Williams syndrome, Loeys-Dietz 

syndrome, Osteogenesis imperfecta, Ehlers-Danlos syndrome type IV (Iung and Vahanian 

2011, Hinton and Yutsi 2011). 

 

Family based linkage studies have identified disease loci on chromosomes 16p, 11p and 13q 

for mitral valve prolapse. Current evidence suggest that valve malformation may be the result 

of multiple predisposing genotypes in combination with maladaptive valve tissue maintenance 

which leads to valve disease (Hinton and Yutsi 2011). 

 

Other causes of organic mitral regurgitation are rheumatic heart disease, infective 

endocarditis, and congenital heart disease such as atrioventricular septal defects.  

 

Rheumatic heart disease (RHD) is the leading cause of valvular heart disease in children and 

young adults in Africa. It is estimated that globally between 15.6 million and 19.6 million people 

suffer from RHD (Nkomo 2007). The highest prevalence of RHD is in sub-Saharan Africa with 

a prevalence of 5.7 per 1000, compared with 1.8 per 1000 in North Africa, and 0.3 per 1000 

in economically developed countries (Carapetis and Steer 2005). In South Africa, rheumatic 

valvular disease complicates 0.6% of pregnancies of black women from low socioeconomic 

background, with a maternal mortality rate of 9.5%. (Schoon et al. 1997) 

 

Rheumatic heart disease is a late consequence of acute rheumatic fever with carditis which is 

initiated by a pharyngeal infection by group A beta-hemolytic Streptococci. An exaggerated 

immune response to specific bacterial epitopes in a susceptible host leads to acute rheumatic 

fever with multi-organ involvement and valvular inflammation. (Carapetis et al 2005) (Iung and 

Vahanian 2011). There are more than 60 rheumatogenic serologic types of group A 

Streptococci (Denny 1987). 

 

Streptococcal pharyngitis typically occurs in school-age children with the peak between 6 and 

14 years (Denny 1986). In susceptible individuals, acute rheumatic fever will then follow after 

10 to 35 days (average 3 weeks) after untreated infections. The risk of a first attack of acute 

rheumatic fever is 2-3% but the risk increases to 25-75% for subsequent streptococcal 

infections (Denny 1987). 
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Rheumatic heart disease can result from a single attack of acute rheumatic fever with carditis, 

but more commonly it is caused from cumulative damage from repeated attacks of rheumatic 

fever. Repeated attacks of rheumatic fever can be prevented by secondary prophylaxis 

programmes. These programmes have been successful in New Zealand and India, where 

they have resulted in lower rates of acute rheumatic fever recurrences and also ensuring good 

clinical follow up of patients with acute rheumatic fever and rheumatic heart disease. 

(Carapetis et al 2005).  

 

There has been an initiative by the Pan African Society of Cardiology (PASCAR) in 2005 at 

the first All Africa Workshop on Rheumatic Fever and Rheumatic Heart disease to launch an 

effective prevention strategy for rheumatic fever and rheumatic heart disease in Africa. The 

programme in Africa is similar to the World Heart Federation Pacific Islands Rheumatic Heart 

Disease Control Programme (World Heart Federation 2014). Children are screened for heart 

valve damage and those found to have RHD are provided the monthly penicillin injections that 

prevent the progression of the disease. The strategy focuses on Awareness, Surveillance, 

Advocacy and Prevention (A.S.A.P) (Robertson et al 2006).  

 

A. Awareness: raising the awareness of the public and health care workers on the impact 

of rheumatic heart disease. 

S. Surveillance: improving the quality of information available on the incidence, 

prevalence and burden of rheumatic heart disease through epidemiological 

surveillance. 

A. Advocate: working together as advocates to change public policy for the improvement 

of health care facilities to treat and prevent the disease 

P. Prevention: working towards the establishment of national primary and secondary       

prevention programmes.  

 

The programme is setting up demonstration sites in Egypt, Eritrea, Ethiopia, Ghana, Kenya, 

Mozambique, Nigeria, Rwanda, South Africa and Zambia (World Heart Federation 2014). 

The prevalence of RHD increases with age, peaking in adults aged 25-34 years. In young 

patients mitral regurgitation is the predominant lesion with annular dilatation, chordal 

elongation or rupture and anterior leaflet prolapse. With increasing age and progression of the 

valvular inflammation and fibrosis the leaflets thicken, shorten and valve commissures fuse. 

This results in mitral stenosis with or without incompetence (Carapetis et al 2005). 
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Rheumatic heart disease with mitral incompetence or stenosis affects a patient’s quality of life 

and also life expectancy. The prognosis of a patient depends on the severity of the valvular 

lesion. The natural history of mitral valve disease has been described in the era before cardiac 

surgery was available.  

 

In a series of 271 patients from Denmark with mitral stenosis the 10 year survival after first 

diagnosis was a dismal 34% and 20 year survival was 14% for the whole group. Patients with 

NYHA class II symptoms in sinus rhythm had an 82% 10 year survival. Those patients with 

NYHA class II symptoms with atrial fibrillation and NYHA class III symptoms had a 10 year 

survival of 34% and 35% respectively. There were no survivors after 10 years in patients with 

NYHA class IV symptoms (Olesen 1962).  

 

In a study from California, patients with mitral incompetence and stenosis were followed for 

10 years on medical treatment. Seventy patients with mitral incompetence had a 10 year 

survival of 60%. Another group of 102 patients with combined mitral stenosis and 

incompetence had a 10 year survival of only 33% (Rapaport 1975). A study from France 

showed an 8 year survival in patients with severe mitral regurgitation of 33% (Delahaye 1991). 

 

Mitral valve repair and replacement have improved the quality of life and the prognosis of 

patients with RHD. Percutaneous balloon valvuloplasty is the procedure of choice for patients 

with mitral stenosis and favourable valvular morphology (Reyes et al. 1994). The mitral valve 

morphology is scored echocardiographically using the Wilkins score (Table 1.2). This scoring 

system looks at leaflet mobility, leaflet thickening, subvalvular thickening and calcification 

(Wilkins et al. 1988). If the valve scores favourable on all these criteria, that is a Wilkins score 

of 8 or less out of 16, it is a good predictor that a balloon valvuloplasty will be successful. 
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Table 1.2 Wilkins score: Grading of mitral valve characteristics from the echocardiographic 

examination (Wilkins et al. 1988). 

 

Grade  Mobility  Subvalvular 
thickening  

Thickening  Calcification 

1 Highly mobile valve 
with only leaflet tips 
restricted 

Minimal 
thickening just 
below the mitral 
leaflets 

Leaflets near 
normal in 
thickness (4-5mm) 

A single area of 
increased echo 
brightness 

2 Leaflet mid and base 

portions have normal 

mobility 

Thickening of 

chordal structures 

extending up to 

one third of the 

chordal length 

Mid-leaflets 

normal, 

considerable 

thickening of 

margins (5-8mm) 

Scattered areas 

of brightness 

confined to 

leaflet margins 

3 Valve continues to 

move forward in 

diastole, mainly from 

the base 

Thickening 

extending to the 

distal third of the 

chords 

Thickening 

extending through 

the entire leaflet 

(5-8 mm) 

Brightness 

extending into 

the mid-portion 

of the leaflets 

4 No or minimal forward 

movement of the 

leaflets in diastole 

Extensive 

thickening and 

shortening of all 

chordal structures 

extending down to 

the papillary 

muscles  

Considerable 

thickening of all 

leaflet tissue 

Extensive 

brightness 

throughout 

much of the 

leaflet tissue 

 

 

 

Long term results of mitral valve balloon valvuloplasty in patients with rheumatic mitral stenosis 

show an event free survival of 88% at 10 years and 60% at 15 years. (Fawzy 2009). Open 

surgical mitral commisurotomy is indicated in patients with favourable valvular anatomy, but 

have a contra-indication to balloon valvuloplasty such as a left atrial thrombus, significant 

subvalvular disease, mitral valve calcification or concomitant cardiac pathology that requires 

corrective surgery (Choudhary 2003). Operative mortality for open mitral commisurotomy is 

less than 0.5% and the 10 year survival is 87% (Gross 1981). Freedom from reoperation at 

10 years ranges from 78%-87% and by 20 years about half of the patients need a reoperation 

(Choudhary 2003, Hickey 1991).This means that a significant number of these patients require 
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a second procedure which is most often a valve replacement, because the valvular fibrosis 

and calcification progress and the valve becomes unsuitable for a valvuloplasty. 

 

Patients with rheumatic mitral regurgitation can be treated with mitral valve repair if the valve 

is suitable for repair. That means there must be sufficient leaflet tissue and mobility to ensure 

a proper coaptation surface (Kumar et al 1995). Operative mortality for rheumatic mitral valve 

repair is superior to that of mitral valve replacement, ranging from 0.7-4% (Duran et al 1991). 

Five and 10 year survival for rheumatic mitral repair is 97% and 88% respectively and is better 

than the  survival of mitral valve replacement which is between 60 and 70% at 10 years. (Yau 

et al 2000, Baudet 1995). At Tygerberg Hospital (Cape Town, South Africa) a 5 year survival 

of 81% was found after mitral valve replacement (Barnard et al 2010).  

 

Unfortunately not all rheumatic mitral valves are suitable for repair and even if they can be 

repaired, there is often a progression of RHD, which is the main indication for re-operation 

(Chauvaud et al 2001). The freedom from re-operation ranges from 66%-82% at 10 years and 

55% at 20 years (Chauvaud et al 2001, Yau et al 2000, Di Bardino et al 2010). Repaired 

degenerative mitral valves (myxomatous valves) have a higher freedom of reoperation which 

ranges from 90-95% at 10 years (David et al 2013, Di Bardino et al 2010). 

 

A large portion of patients with rheumatic mitral valve disease will not be suitable for a repair 

and will need a mitral valve replacement. At Tygerberg Hospital 497 mitral valve procedures 

were done from 2006-2013 of which only 91 (18%) of the mitral valves could be repaired and 

82% needed replacement (Janson 2013). This is because of the high prevalence of rheumatic 

heart disease.  

 

 

1.4 Current valve prostheses: 

 

Diseased cardiac valves are replaced with either mechanical or biological tissue prostheses. 

Mechanical valves are more durable, but require long-term anticoagulation therapy with 

warfarin to prevent surface clotting. Bioprosthetic valves do not require anticoagulation 

therapy, but have limited durability secondary to structural degeneration and calcification 

(Edmunds et al 1996). The long term outcome of a mitral valve replacement is inferior to that 

of a valvuloplasty or repair. (Baudet et al 1995, Duran et al 1991, Yau et al 2000, Kim et al 

2010).  This is because current mechanical and bioprosthetic valves are not ideal substitutes 

for a functioning native valve and have prosthetic related complications.  
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Heart valve prostheses have been used successfully since the first complete replacement of 

the mitral valve in 1960 (Braunwald et al 1960). In the sixties mechanical valves were popular 

and saw the development of many mechanical designs. The 3 main mechanical designs were 

the ball and cage, tilting disc and bileaflet designs. All these valves create turbulent blood flow 

with increased fluid stresses. It is very complex to model the flow across these valves, because 

of the complex geometric shapes and the pulsatile nature of blood flow (Yoganathan 2005). 

This can cause platelet destruction and activation and hemolysis of red blood cells.  Direct 

mechanical trauma of blood cells and platelets by impact with the prosthetic valve structure 

and leaflets and the shearing forces of the turbulent flow across these valves are the possible 

mechanisms for this destruction. The same fluid stresses which can lead to the damage of red 

cells and platelets can also affect the endothelial cells. When the endothelial cells are stripped 

from their biological substrates by high fluid shear stress, it exposes the extracellular matrix 

proteins lining the surface. This can lead to the adherence, activation and aggregation of 

platelets causing thrombo-emboli (Yoganathan et al 2005). The presence and severity of 

hemolysis in patients can be correlated with elevated concentrations of serum LDH, serum 

haptoglobin and blood haemoglobin (Skoularigis 1993). 

 

The introduction of pyrolytic carbon in the late 1960’s as a valve material and the design of 

bileaflet valves in the 1970’s were developmental milestones that contributed to improvements 

in the durability and performance of mechanical prosthetic heart valves (Giddens et al 1993, 

Bokros 1989). Today, almost 50 years after the introduction of pyrolytic carbon as a valve 

material, there is not another rigid biomaterial available that has more thromboresistant 

properties. Unfortunately, even pyrolytic carbon is not perfect as a valve substitute and 

patients with mechanical valves need to take lifelong anticoagulation to prevent prosthetic 

valvular thrombo-emboli.  

 

Prosthetic heart valves not only have the risk of hemolysis, thrombo-embolism and valve 

thrombosis. There is also the risk of anticoagulant related bleeding, tissue overgrowth over 

the valve sewing ring (pannus formation) with valve dysfunction, prosthetic valve endocarditis 

and paravalvular leaks (Baudet 1995, Giddens et al 1993).  
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There are 6 categories of prosthetic valve related morbidities which are specified in the 

Southern Thoracic Society (STS)/ American Association for Thoracic Surgery (AATS) 

guidelines for reporting morbidity and mortality after cardiac valvular operations (Edmunds et 

al. 1996): 

  

1. Structural valvular deterioration,  

2. Non-structural dysfunction, 

3. Valve thrombosis,  

4. Embolism,  

5. Bleeding and  

6. Endocarditis.  

 

All these events, except structural valve deterioration, have a relatively constant rate (hazard 

function) after the first postoperative month and are reported as a linearized rate in the surgical 

literature. Linearized rates are calculated as follows (Grunkemeier et al 2000): 

 

Number of events 

------------------------   X 100 = Events per 100 patient-years or percent per year (%/y) 

 

Follow up years 

 

 

A comprehensive literature review covering 165 reported series, 61 455 valve implants and 

319 749 patient-years of follow-up showed the following rates of these complications: 

(Grunkemeier et al 2000) 

 

The risk of thromboembolism is 0.5-3% per year for mechanical mitral valves and 0.5-2% per 

year for biological valves. The risk for mechanical valves is for patients on anticoagulation 

therapy and this rate would be even higher if the patient is not using anticoagulants or if the 

anticoagulant therapy is not well controlled.  

 

Valve thrombosis is a serious complication which can cause valve obstruction and death, or it 

will require an intervention, such as redo valve replacement or thrombolytic therapy. The risk 

of valve thrombosis is less than 0.5% per year for mechanical mitral valves and less than 0.2% 

per year for tissue mitral valves. 
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The bleeding rate for mechanical mitral valves is between 0.5-3% per year and less than 1.5% 

per year for biological valves.  

 

Endocarditis risk for mechanical and biological mitral valves is below 1% per year. 

 

Paravalvular leak rates are below 1% per year for both mechanical and biological valves. 

 

These valve related complications add morbidity and mortality to a patient, because each of 

these complication risks are additive. Over 10 years a patient has a 5-30% chance of 

thromboembolism and a 5-30% chance of bleeding with a mechanical valve, according to the 

above complication rates. 

 

Structural valve failure with current mechanical valves is very low and almost all studies report 

a 0% incidence. The most notorious example of mechanical valve failure was the Bjork-Shiley 

Convexo-Concave tilting disc valve. Modest design changes from the previous model led to 

increased stress on the welded outflow strut. This resulted in strut fracture and disc escape 

which was first described in 1978 with a peak incidence in 1984 (Harrison et al 2013). These 

valves were withdrawn from the market in 1986. Today most mechanical valves implanted are 

bileaflet valves with excellent durability (Grunkemeier et al 2000). 

 

In the 1970’s there was an increased interest in bioprosthetic valves. Three types of 

bioprosthetic valves are available commercially: 

  

1. Porcine xenografts (porcine aortic valves mounted on a stent or stentless),  

2. Bovine pericardial valves (bovine pericardial tissue is used to shape 3 valve leaflets 

which are mounted on a stent). 

3. Homograft or allograft valves (aortic valves from human cadavers).   

 

It was realised that bioprosthetic valves have less risk of thrombo-embolism and patients did 

not need anticoagulation with these valves. This lowered the incidence of anticoagulant related 

bleeding. Unfortunately tissue valves degenerate and calcify with time and this degeneration 

leads to structural valve failure with stenosis or incompetence of the valve. This degeneration 

is accelerated in young patients and often requires a reoperation and a new prosthetic valve 

implant (Grunkemeier et al 2006). 
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Early experience with xenografts (porcine aortic valves and bovine pericardial valves) showed 

that the host mounted a strong humoral and cellular immune response to the graft that led to 

collagen denaturation and early graft failure (Carpentier 1969). To reduce the immune 

response porcine and bovine pericardial tissue is treated in low concentrations (0.625%) of 

glutaraldehyde (Carpentier 1969). Collagen is cross-linked by glutaraldehyde in an inter- and 

intramolecular fashion by the formation of covalent bonds. This can occur in 2 ways: formation 

of Schiff bases by reaction of an aldehyde group with an amino group of lysine or hydroxylysine 

or an aldol condensation between 2 adjacent aldehydes.  The Schiff base linkage is not a very 

stable bond, but the aldol condensation is stable (Jayakrishnan 1996). Compared to other 

aldehydes that can be used to cross-link, glutaraldehyde has the advantage that it reacts 

relatively quickly, can span various distances between the protein molecule and is able to 

react with a larger number of amino groups in the protein molecule. This creates a more tightly 

cross-linked network which stabilizes the collagen proteins and decreases the antigenicity of 

the graft (Carpentier 1969, Jayakrishnan 1996, Vesely 2005). 

 

Glutaraldehyde also creates a cytotoxic film on the graft which reduces cellular adhesion and 

causes apoptosis which is programmed cell death without an immune response (Gough et al 

2002). The leaflets show some loss of pliability and flexibility, but retain excellent tensile 

strength. Cross-linking of collagen fibres stiffens the collagen bundles and reduces the 

possibility of gliding movements of fibres upon itself. After glutaraldehyde treatment, the 

xenograft is an acellular, nonviable structure with cross-linked collagen leaflets. This can be 

appreciated when comparing the ultrastructure of fresh porcine valves with glutaraldehyde 

treated porcine valves (Ferrans et al 1978). The most important alteration is disruption of the 

endothelial cell layer in the treated valves (Fig 1.25, Fig 1.26). There is also loss of the ground 

substance of connective tissue including the dense spicules of acid mucopolisaccharides and 

the network of finely filamentous components. As a consequence the collagen and elastic 

fibres, which remain structurally normal, appear to be surrounded with less support of the 

ground substance and with some “loosening” in their arrangement (Fig 1.25, Fig 1.26 and Fig 

1.27). The fibroblasts show loss of integrity of cytoplasmic membranes and disruption of 

organelles (Fig 1.26). Histological examination of valves that have been implanted in humans 

show disruption of collagen fibres and the formation of a homogenous pale-staining matrix 

without fibrillary elements. The surface of these valves gets covered with a layer of fibrin with 

variable numbers of erythrocytes, macrophages and giant cells (Fig 1.28). These structural 

changes eventually lead to progressive breakdown of the collagen framework with structural 

failure (Ferrans et al 1978). 
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Fig 1.25: Light microscopy of a normal untreated aortic porcine valve stained with alkaline 

toluidine blue (Ferrans et al 1978). Note the endothelial cell layer on both surfaces and the 

distinct layers of the fibrosa, spongiosa and ventricularis. 

 

 

 

 

 

Fig 1.26: Light microscopy of a glutaraldehyde treated valve stained with alkaline toluidine 

blue (Ferrans et al 1978). The fibrosa appears dense and the spongiosa is more loosely 

arranged than normal. The ventricularis is not well defined. Both surfaces are denuded of 

endothelium. 
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Fig 1.27: Electron micrograph of a glutaraldehyde treated porcine valve. The surface lacks an 

endothelial covering and is composed of loose bundles of collagen and deeper elastic fibres. 

The morphological features of the valve fibroblast is poorly preserved (arrows) with disrupted 

organelles (Ferrans 1978). 

 

 

 

 

 

Fig1.28: Light microscopy of the surface of a glutaraldehyde treated porcine valve that has 

been implanted for 21 months. Note the layer of incompletely organised thrombus and fibrin 

on the collagen fibres. Collagen bundles next to the thrombus are fragmented. This specimen 

shows a thin layer of neointima (endothelial cells) on the surface of the thrombus (Ferrans et 

al 1978).  
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There is growing evidence that, despite glutaraldehyde treatment of xenografts, there may still 

be a host cellular and humoral immune response against the xenograft. (Dahm et al 1995, 

Human and Zilla 2001, Manji et al 2006). Not all the antigens on the xenograft are necessarily 

masked by cross-linking and some antigens may remain unaffected.  Devitalized cells and 

cellular debris remain on the graft. This may explain why tissue valves degenerate and calcify 

earlier in younger patients, because they have a more reactive immune system and mount a 

stronger immune response (Manji et al 2006). It could also be that younger patients have a 

more active calcium metabolism and have more mechanical stress on the leaflets (Schoen 

and Levy 2005).  

 

Dystrophic calcification of bioprosthetic implants is a clinically important pathologic process 

that limits the durability and clinical use of these valves in especially younger patients. 

Dystrophic calcification is seen in soft tissues as a result of injury, disease and aging and these 

sites often show evidence of tissue alteration or necrosis (Giachelli 1999). Most tissues can 

undergo calcification but skin, kidney, tendons and cardiovascular tissues are particularly 

prone to calcification (Giachelli 1999).  

 

The pathophysiology of dystrophic calcification is not fully understood and the sheep model 

has been used extensively to study the calcification of bioprosthetic valves (Schoen et al 1994, 

Ozaki et al 2004, Flameng et al 2005). Accelerated calcification is seen in the juvenile sheep 

model which makes it an ideal model to identify early calcification in bioprostheses. The 

amount of calcification seen in a bioprosthesis implanted in a sheep for 3 months correlates 

well with the amount of calcification seen in a bioprosthesis implanted in an elderly person for 

10 years (Ozaki et al 2004).  

 

Calcification of bioprosthetic valves is more common in younger age and more pronounced in 

areas of increased mechanical stress and strain with the highest calcium concentrations 

shown in the cusps of mitral valve implants where the mechanical stress is higher than in the 

aortic or pulmonary position (Flameng et al 2005). Glutaraldehyde treatment of tissue also 

makes it more prone to calcification, because of devitalized connective tissue cells and debris 

that remain on the valves.  (Valente et al 1985, Tamura et al 1995, Flameng et al 2005, Schoen 

and Levy 2005). Devitalized cells and cell remnants are important foci for early mineralization 

and calcification. Dystrophic calcification involves the reaction of calcium-containing 

extracellular fluid with membrane-associated phosphorus, causing calcium phosphate 

(hydroxyapatite) crystal nucleation. This occurs because the normal extrusion of calcium ions 

is disrupted in the cells that have been devitalized by glutaraldehyde fixation and calcium 

Stellenbosch University  https://scholar.sun.ac.za



 
 
 

54 
 

accumulates in the cells (Kim et al 1999). The affinity of cytoplasmic membranes for calcium 

is related to the high phospholipid component in the membranes. Early detectable crystals of 

apatite are seen ultrastructurally within matrix vesicles or organelles in close apposition to the 

inner membrane layer (Fig 1.29) (Valente et al 1985, Schoen and Levy 2005).  

 

Living tissue have the capacity to curb the spread of calcification, by secreting inhibitors of 

appatite growth and that is why osteocytes can survive in densely calcified bone (Kim et al 

1999).  A variety of calcification inhibitors have been identified in tissue fluid and it has been 

shown that fibroblasts can inhibit calcification of bone cells that are cultured in the same dish 

through soluble factors including prostaglandins (Kim et al 1999, Ogiso et al 1991). Cells 

appear to play an active role in regulating mineral deposition and balance between the pro- 

and anti- calcification mechanisms will dictate the formation of ectopic calcification at a given 

site (Giachelli 1999). 

 

Elastin and elastolysis with subsequent calcification of the elastic fibres is also an important 

trigger for calcification as is seen in the aortic wall of stentless valves (Flameng et al 2005). 

Ultrastructural examination of calcified bioprosthetic valves shows that alteration in collagen 

plays a role in the progression of calcium deposits. Proteoglycans in the valve matrix act as 

inhibitors of calcification and removal of proteoglycans during tissue processing may enhance 

the calcification process (Valente et al 1984).  

 

In an attempt to reduce calcification of the glutaraldehyde treated xenografts, tissue is also 

treated with calcification inhibitors and other chemical agents to modify or remove calcifiable 

components and cell debris (Schoen and Levy 2005). 
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Fig 1.29: Electron micrographs of calcific bodies in porcine xenografts. The earliest sign of 

calcification, before radiological or macroscopic evidence of calcification is seen, is calcific 

deposits in the form of needle like crystals that occur upon membrane fragments and 

organelles (x 45000) (Valente et al 1985). 

 

 

 

 

Calcific deposits  

Stellenbosch University  https://scholar.sun.ac.za



 
 
 

56 
 

Homografts or allografts obtained from cadaver aortic valves are prepared differently. Viability 

is reduced and necrotic cells removed by saline washing, leaving behind only the deeply 

buried myofibroblasts that are viable. This is done to reduce the antigens on the graft and the 

immune response between the host and the graft. No glutaraldehyde cross-linking is done. It 

is then stored cryopreserved and when it needs to be used, it is thawed. The allograft then 

functions as a nonviable, non cellularized scaffold that gets covered by the patient’s own 

neointima and pseudointima which is a fibroblast and smooth muscle sheathing (Hopkins 

2007). The homograft can last up to 20 years, as a nonviable piece of tissue, free form 

mechanical reinforcement by cross-linking agents (Matsuki et al 1988). This shows how 

remarkable the microstructure and composition of the native aortic valve is. The 

interconnected sheets of collagen and layers and tubes of elastin give the valve tissue 

viscoelasticity, anisotropy and highly non-linear mechanics which makes homografts last 

better than xenografts. The host immune response is also less with homografts than with 

xenografts. Unfortunately homografts are also unable to regenerate and repair itself from the 

repeated deformation during systole and diastole and eventually fail, usually by calcification 

and stenosis (Davila 1989, Vesely 2005). 

 

Bioprosthetic valves show structural degeneration and calcification with a 10% to 20% chance 

of homograft failure and a 30% chance of xenograft failure within 10 to 15 years 

(Vongpatanasin et al 1996). A recent study looked at the durability of a porcine aortic 

bioprosthesis in young patients and showed that patients under 40 years have a 20-year 

freedom from reoperation due to structural valve failure of only 14 % and patients between 

40-49 years have a freedom from reoperation of 21% (Une et al 2014).  Young patients with 

xenograft prostheses and prostheses in the mitral position have a particular high valve failure 

rate (Vongpatanasin et al 1996).  Mitral valve allografts have been tried and tested in animal 

studies and in humans where a cadaver mitral valve with its papillary muscles are transplanted 

into the host. The results for mitral homografts in humans were very poor with a 14% early 

mortality and 85% failure in 5 years (Kumar et al 2000). Early failure occurred because of 

disruption of one of the donor papillary muscles and late failure occurred because of leaflet 

and chordal degeneration with calcification. This was also found in other human and animal 

studies. (Fig 1.30) (Tamura et al 1995).  
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Fig 1.30: Allograft implanted in the mitral position in sheep for 12 weeks show extensive 

calcium deposits on the thickened leaflets and some of the chordae are ruptured. (Tamura et 

al 1995).  

 

 

 

 

Over the last 30 years, research focused on ways to improve the durability of bioprosthetic 

valves. The new generation bovine pericardial valves showed some improved durability due 

to infrastent tissue-mounting, flexible and distendable struts, and better tissue orientation of 

the leaflets combined with improved tissue preservation techniques, but there is still structural 

degeneration with time (Aupart et al 2006, Guangqiang et al 2004). The bioprosthetic 

xenografts and allografts are unable to regenerate and repair the degradation and aging of 

the collagen fibres which comes from repeated stress and strain and the immune response 

from the host (Davila 1989, Liao 2008). 

 

 

Tissue engineered heart valves have been proposed by physicians and scientists to be the 

ultimate solution for treating heart valve disease. Ideally a tissue engineered valve would be 

a living tissue valve that would be able to grow, adapt to physiological forces and be able to 

regenerate and repair itself. (Vesely 2005).  
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1.5 Tissue engineering of heart valves: 

 

The principle of cardiac valve tissue engineering is seeding a scaffold matrix with cells that 

can differentiate into various cells that are normally found on the native valve. These cells then 

need to migrate, proliferate and express proteins to regenerate and maintain the extracellular 

matrix. (Hopkins 2007, Bouten et al 2011). 

 

The scaffold for tissue engineering is a 3-dimensional acellular structure onto which cells are 

implanted or seeded. The purpose of the scaffold is to give the valve functional structural 

design, enhance structural properties, deliver biochemical factors for the cells and ensure 

access to vital nutrients for the cells (Hopkins 2007). Scaffolds that are being used for this 

purpose are acellular xenograft tissue and bioresorbable synthetic scaffolds. Synthetic 

scaffolds eventually need to degrade as the endogenous extracellular matrix increases to 

maintain tissue strength (Bouten et al 2011). 

 

Decellularization of xenografts are made by first breaking apart the cell membranes through 

lysis in hypertonic and hypotonic solutions. This is followed by extraction with various 

solutions. Enzymes such as trypsin and nucleases that accompany these detergent 

treatments have focused mainly on cleaving and removing the DNA that is part of the cellular 

debris. The entire extraction procedure can last up to a week. The agents that are used for 

the cell extraction can be detrimental to the matrix by denaturing the matrix proteins or leaving 

toxic residues. This can affect the mechanical function of the matrix and the cellular seeding. 

Many studies and patents describe the creation of these acellular matrixes and they vary in 

the specific detergents used, the sequence of steps and soaking periods in the different 

solutions (Vesely 2005). Mechanical testing is used to determine the mechanical integrity of 

the processed tissue. This is then compared to unprocessed controls (Spina et al 2003). The 

histological morphology of the matrix varies greatly between the different decellularization 

processes but most of these processes induce mechanical and microstructural defects in the 

valve matrix and this may impact the durability of the valves (Vesely 2005, Liao et al 2008).  

 

Small intestine submucosa (CorMatrix®) is another popular bio-derived substrate and consists 

almost entirely of acellular collagen. It does not need to undergo extensive decellularization 

procedures and have been used in single valve leaflet replacements and even complete valve 

replacements in animals. (White et al 2005). In a recent study where CorMatrix was used for 

valvuloplasty in patients with congenital heart defects, the CorMatrix induced an intense 
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inflammatory reaction, but little or no remodelling of the tissue. It was hoped that the 

CorMatrix® would remodel into valve tissue, but the tissue did not show resemblance to the 3 

layered nature of native valve tissue (Zaidi et al 2014).  

 

The acellular substrates are implanted in vivo or are pre-seeded with various types of cells in 

vitro and then implanted. Many animal studies have reported repopulation of decellularized 

matrixes, demonstrating the potential for growth and remodelling, but actual growth has not 

been reported (Bouten et al 2011). Intra-peritoneal implantation of the grafts have also been 

done to seed the grafts but it is questionable whether this approach gives the correct cell types 

for proper in vivo tissue development and remodelling (De Visscher et al 2008). 

 

Synthetic polymers are also being used as substrates for valvular tissue engineering. The 

most commonly used biodegradable substrates are polylactide (PLA), polyglycolide (PGA), 

polycaprolacton (PCL) or their co-polymers which can be tailored to meet the mechanical 

performance and the resorption rates that are required. These scaffolds are biodegradable 

and give the artificial valve its structure until cells are seeded onto the scaffold in vivo (Fig 

1.31) (Bouten et al 2011). With the goal of achieving a fully autologous engineered valve, 

substrates will have to provide bioactive microenvironments with bioactive molecules that 

control the adhesion and recruitment of endogenous circulating progenitor cells, cellular 

differentiation and tissue organisation (Bouten et al 2011). 

 

 

Fig 1.31: An Electrospun polycaprolacton (PCL) valve which is a biodegradable substrate 

(Bouten et al 2011). 

 

 

 

 

Considerable work still needs to be done to optimize matrix materials and biomolecular 

approaches to imitate the complex signalling pathways of tissue development and 

regeneration. This will require collaborative scientific efforts from material scientists, chemists, 

developmental and cell biologists, tissue engineers and clinicians. Current tissue engineered 
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heart valves do not possess the strength, durability, growth and remodelling potential of the 

natural heart valve (Bouten et al 2011, Duan et al 2013, Hinderer et al 2014). 

 

 

 

1.6 The pulmonary autograft: 

 

In many ways the pulmonary autograft (replacing the aortic valve with the native pulmonary 

valve) can be seen as the ideal valve replacement. It has the same architecture as the aortic 

valve with 3 leaflets, has the same cellular and extra-cellular composition and is a living valve 

with the potential to grow and remodel. In 1960 the feasibility of replacing the aortic valve with 

the pulmonary valve was tested and described in dogs (Lower et al 1960). This procedure was 

first done in humans by Donald Ross in 1967, from there the Ross procedure (Ross 1967). 

There are 2 ways to implant the pulmonary valve into the aortic position, one is an aortic 

inclusion technique where the pulmonary valve is implanted in a subcoronary position in the 

aortic root. The other technique is an aortic root replacement with reimplantation of the 

coronary arteries into the neoaortic root.  

 

Long term survival rates for the Ross procedure in the aortic position are very good with 10 

year survival similar to the general population when matched for age and gender because of 

the low rate of valve related complications with the pulmonary autograft (David et al 2000, 

Elkins et al 2008, Yacoub et al 2006). The valve performs like a normal aortic valve with 

excellent hemodynamics and no degeneration. 

 

There are drawbacks of the Ross procedure. It is a complex procedure that requires 2 valve 

replacements because the pulmonary valve that is being harvested for the aortic valve needs 

to be replaced with a pulmonary homograft. This complexity makes the Ross procedure more 

difficult and the operative mortality for the Ross procedure is higher than for an aortic valve 

replacement (3% vs 1%) (David 2009). The pulmonary autograft in the aortic position can 

dilate and develop late regurgitation in 10-14% of patients over 10-16 years follow-up (Elkins 

et al. 2008, David 2009).  

 

The pulmonary autograft has also been used to replace the mitral valve on a much smaller 

scale by placing the autograft in a rigid Dacron tubing and suturing the proximal and distal 

ends to the tubing (Ross 1967, Ross and Kabbani 1997). The distal end of the autograft and 

Dacron tubing is sutured to the mitral valve annulus and the proximal end is sutured to the left 
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atrium with a pericardial skirt. There is a risk of conduit kinking and valve obstruction with this 

technique which is improved by using stiffer Dacron tubing. Freedom from degeneration of the 

autograft was 93% at 5 years in 92 patients (Kabbani et al 2007).  

 

 

The pulmonary homograft (from a human cadaver) is a tissue valve that can degenerate and 

cause pulmonary stenosis. Between 10-15% of the pulmonary homografts need to be replaced 

by 10 years (Kouchoukos et al 2004, David 2009).  

 

Mechanical valves, biological valves, tissue engineered valves and the pulmonary autograft 

are all valve substitutes that palliate the original valve disease, but none of them are perfect 

substitutes to a normal functioning valve. What are we looking for in the ideal prosthetic valve? 

 

 

1.7 The ideal prosthetic valve: 

 

The ideal prosthetic heart valve should have the following characteristics (Davila 1989, Harken 

1989): 

 

1. It must be safely and easily implantable and the procedure must be reproducible. 

2. Implantation should be secure with a permanent linkage between the prosthesis and 

the host. 

3. It must be a unidirectional valve that, within a physiological flow range, offers minimal 

opening resistance and minimal resistance to forward flow without turbulence. 

4. It must close without regurgitation. 

5. It must not activate the coagulation system.  

6. It must be chemically inert and not damage blood elements. 

7. It must be durable and function normally for the rest of the patient’s life. 

 

This ideal valve has been eluding scientists and the medical profession for the last 60 years. 

A living tissue valve that can grow and remodel would fit many of the above criteria. Tissue 

engineering has not yet been able to produce such a valve. The pulmonary autograft is the 

most ideal valve replacement with all the characteristics of the original valve, but unfortunately 

it comes at the cost of sacrificing the native pulmonary valve and having to replace it with a 

homograft. 
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1.8 Creating a prosthetic valve from autologous tissue  

 

Several investigators have made intra-operative valve prostheses from autologous tissue in 

an attempt to avoid the immune response (Bjork and Hultquist 1964, Senning 1967, Ionescu 

and Ross 1969, Fabiani et al 1995, Love 1998). Untreated autologous fascia lata and 

pericardium have been used to create a biological valve. There are several constraints when 

making an intra-operative autologous valve (Fabiani 1995). The valve cannot be constructed 

ahead of time and there is a time constraint when making the valve. There must be a 

mechanism of quality control after the valve is created and it must be possible to reproduce a 

comparable valve each time. The method must be simple enough to be taught and learned.  

There must also be enough autologous tissue available. That is why pericardium has been 

very popular, because it is easily accessible and it gives enough tissue to build a valve.  

 

Long term results of autologous valves were largely unsuccessful due to tissue shrinkage and 

thickening. Pericardium and fascia lata do not have an endothelial covering or the 

viscoelasticity, anisotropy and non-linear mechanics of valvular tissue and cannot sustain the 

stress and strain of repeated deformations during the cardiac cycle (Fabiani et al 1995, Sacks 

and Yoganathan 2007). In an attempt to improve these results, autologous pericardium was 

treated with glutaraldehyde (Fabiani 1995, Love 1998). This helped to improve the tissue 

shrinkage and thickening but it also fixated the tissue and made it non-viable with an inability 

to regenerate and repair itself. 

 

Can autologous vein tissue be a suitable substitute for replacing a valve leaflet or a complete 

valve?  When comparing the histology of a vein and a valve leaflet, it can be appreciated that 

there are many similarities between the two (Fig 1.32, Fig 1.33, Fig 1.34 and Table 1.3). The 

vein has an endothelial layer, smooth muscle cells (which share many characteristics of the 

valvular interstitial cells), layers of collagen and elastin. (Jones et al 1973). 
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1.9 The autologous vein graft. 

 

A medium sized vein such as the saphenous vein contains 3 layers (Fig 1.32, Fig 1.33) (Jones 

et al 1973):  

 

1.  The tunica intima which consists of endothelial cells resting on a fenestrated basal 

membrane and a subendothelial matrix of glycoproteins and connective tissue 

elements. 

2.  The tunica media which is well developed and contains concentric layers of smooth 

muscle cells, collagen fibres and ground substance. The smooth muscle cells contain 

contractile fibres with dense bodies and the usual organelles. The media contains only 

scant elastic fibres which are predominantly orientated in a longitudinal direction 

3. The adventitia forms the bulk of the vein wall and consists of collagen and elastic fibres. 

It also contains longitudinal smooth muscle cells and vasa vasorum is also present in 

this layer.  

 

 

 

Fig 1.32: Histological cross section (low magnification x52) of a normal canine saphenous 

vein with Van Gieson stain (elastic fibres stain black). (Jones et al 1973). 

 

 

 

 
 
 
Intima 
 
 
 
Media 
 
 
 
 
 
 
 
 
 
Adventitia 
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Fig 1.33: Histological section (high magnification x 200) of a normal canine saphenous vein 

with Van Gieson stain. (Jones et al 1973). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Intima with endothelial covering 
 
 
 
 
 
 
Media with smooth muscle cells, collagen 
fibres and a few elastic fibres (black) 
 
 
 
 
 
 
 
 
 
Vasa vasorum 
 
 
Adventitia with prominent elastic fibres 
(black) interlacing with bands of collagen 
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Table 1.3: Comparison of the histology of a medium sized vein and a mitral valve leaflet. The 

histological layers of the mitral valve leaflet are Atrialis/Auricularis (A), Spongiosa (S), Fibrosa 

(F) and Ventricularis (V)  

 

Mitral valve leaflet (Tamura et al 1995) 

 

 

Vein (Jones et al 1973) 

 

Valvular endocardial cell layer on atrial side 

and ventricular side 

Endothelial cell layer only on intimal side.  

Auricularis (A) and spongiosa (S) contains 

elastic fibres and some collagen fibres which 

are more loosely arranged. The spongiosa 

also contains the most valvular interstitial 

cells (fibroblasts, myofibroblasts, and 

undifferentiated mesenchymal cells). 

Media contains smooth muscle cells (which 

shows similarities with the valvular interstitial 

cells) collagen fibres, ground substance and 

few elastic fibres. The collagen fibres are 

more loosely arranged in the media 

Fibrosa (F) contains, valvular interstitial 

cells, dense collagen fibres which are 

arranged in an orderly and parallel pattern 

and few elastic fibres 

Adventitia contains prominent elastic fibres 

and bands of collagen which gives strength 

to the vein wall 
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Veins have been used extensively for coronary artery bypass grafts since the 1960’s and also 

for vascular arterial grafts. The morphological changes observed in saphenous veins when 

used as an arterial graft have been well described in the literature (Brody et al 1972, Jones et 

al 1973, Spray and Roberts 1977, Davies and Hagan 1995, O’Brien et al 1997, Kouzi-Koliakos 

et al 2006). Veins can undergo the following changes: 

 

1. Endothelial damage and disruption 

2. Intimal thickening 

3. Medial hypertrophy 

4. Medial necrosis 

5. Graft wall fibrosis 

6. Lipid deposition 

7. Aneurysmal dilatation 

 

Vein harvesting and preservation may cause mechanical, chemical and ischemic injuries that 

can cause significant tissue damage. This may result in endothelial cell denudation, 

endothelial cell injury and smooth muscle cell injury which are important factors for the 

initiation of intimal hyperplasia. (Davies and Hagan 1995, Cavallari et al 1997, Kalra and Miller 

2000). It is very important to handle the vein graft with extreme care during harvesting with 

minimal instrument contact to the vein wall (Davies and Hagan 1995, Owens 2010). The basic 

principles of optimal saphenous vein procurement have been established by many studies 

and includes the use of an appropriate physiological storage solution with a smooth muscle 

relaxant (Glyceryl trinitrate-verapamil combination or Papaverine) and control of distention 

pressures to less than 100mm Hg (Gundry et al 1980, Davies and Hagan 1995, Rosenfeldt et 

al 1999).  When the ischemic time of the vein is longer than 90 minutes before transplant, 

there is significant endothelial cell loss with exposed subendothelial collagen fibres that may 

aggregate and activate platelets and trigger vascular inflammation (Zou et al 2012).  

 

Veins are highly compliant over the range of venous pressures, but vein tissue loses most of 

its elasticity at arterial pressure (40 mm Hg for jugular veins and 120mm Hg for saphenous 

veins) when used as an arterial graft, because its elastic fibres are stretched to the maximum 

and the inextensible collagen fibres come into play (Wesly et al. 1975). This increase in wall 

tension and laminar shear stress causes remodeling of the vein wall through endothelium-

dependent mechanisms resulting in changes in lumen caliber, wall thickness, composition of 
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matrix proteins and endothelial cell reactivity (Epstein et al 1994, Owens 2010). This 

remodeling of the vein is dependent on locally and remotely generated growth factors, 

vasoactive substances and hemodynamic stimuli. 

 

Intimal thickening of veins implanted in the arterial circulation of dogs was first described in 

1906 by Alexis Carrel (Spray and Roberts 1977). This is a universal response of a vein graft 

implanted in an arterial system and is the result of the migration and proliferation of smooth 

muscle cells from the media. These smooth muscle cells also deposit an extracellular matrix 

(Fig 1.33). These hyperplastic lesions appear smooth, firm and homogenous and are located 

between the endothelium and the medial smooth muscle layer of the vein graft (Davies and 

Hagan 1995). This intimal hyperplasia is usually a self-limiting process that stabilizes within 2 

years after graft insertion, but in focal areas the intimal hyperplastic process can cause 

significant stenoses in vein grafts (Davies and Hagan 1995).  

 

Early after bypass grafting, the vein graft undergoes significant changes (Brody et al 1972). 

During the first week there is endothelial cell damage, fibrin deposition, subendothelial edema 

and necrosis of medial smooth muscle cells with inflammatory cell infiltration. The medial 

changes are probably initiated by changes in mechanical and chemical stimuli when the vein 

is transplanted in the arterial system. There is also disruption of vasa vasorum with vascular 

wall ischemia and denervation of the vascular wall. (Kalra and Miller 2000). With time, the 

medial smooth muscle cells either undergoes necrosis or fibroblastic transformation which 

results in medial and intimal fibrous proliferation (Brody et al 1972, Spray and Roberts 1977). 

 

Immunohistochemistry has shed new light on the cellular processes during vein remodeling 

after arterial grafting (Kalra and Miller 2000). Cell proliferation markers such as MIB-1 

immunohistochemistry show increased proliferation of medial and adventitial cells from day 2 

in the transplanted vein. This cell proliferation reaches a maximum at 5 days after 

transplantation and then decreases to minimal levels by 14 days. Phenotypic characterization 

of proliferating cells by double immunohistochemistry for cytoskeletal markers identifies them 

as fibroblasts in the adventitia on day 2 (only vimentin positive) and at 5 to 7 the cells appear 

as myofibroblasts (α-SM actin positive). This early proliferation of medial and adventitial cells 

which have phenotypic characteristics of myofibroblasts contribute to the neointimal fibrous 

proliferation because these cells migrate from the media and adventitia to the neointima by 7-

14 days after grafting   Apoptosis was also identified in the vein wall by apoptosis markers and 

occurred simultaneously with the proliferation and migration (day 2 to 14) which suggests a 

remodeling process of the vascular wall after arterial transplantation (Kalra and Miller 2000). 
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Fig 1.33: Serial histologic changes in saphenous veins used as aorto-coronary bypass grafts. 

(Spray and Roberts 1977). Arrows indicate the original vein and thickness.  

0 days: Thin intima with marked smooth muscle cell layers.   

4 days: Large fibrin deposit over slightly thickened intima. Severe loss of smooth muscle cells 

in media with cellular infiltration.  

56 days: Thickened vein wall with severe intimal fibrous proliferation. Media and adventitia 

show loss of smooth muscle cells and fibrosis 
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1.10 The proposed study. 

 

The purpose of this study is to evaluate whether an autologous vein graft can be used to 

replace a mitral valve leaflet. The fibrous proliferation seen in transplanted vein grafts can 

cause luminal narrowing when used as a bypass graft, but it might be a useful adaptation 

when the vein is used to replace a heart valve leaflet by giving the vein extra strength. The 

questions are: 

  

 Is it technically possible to create a functioning mitral valve leaflet from autologous 

vein supported by Gore-Tex chordae? 

 Will a vein be able to withstand the stress and strain of deformation when used as a 

valve leaflet and maintain its flexibility? 

 Will a vein remain viable in the intracardiac environment when used as a valve leaflet 

and be able to adapt morphologically and grow? 

 

 

There is no literature available on the replacement of a heart valve with an autologous vein. 

In this study a sheep model will be used to replace the anterior leaflet of the mitral valve with 

an autologous jugular vein and supporting it with Gore-Tex chordae in an attempt to answer 

the above questions.  

 

 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



 
 
 

70 
 

2. Methods: 

 

The research was done at the Animal Research Facility at the Tygerberg Campus of the 

University of Stellenbosch. Animals received humane care in compliance with the Principles 

of Laboratory Animals Care (NIH 1985). Ethical approval was obtained from the Research 

Ethics Committee: Animal Care and Use (REC:ACU) of the University of Stellenbosch. (Ref: 

11GF_Jan01). 

Twenty one sheep (14 Dorper and 7 Merino) of age 4 to 9 months weighing 26-42 kg were 

used in the protocol. All animals were fasted for 24 hours prior to surgery with only water given. 

A pre-operative transthoracic echocardiogram was done as a baseline to measure left 

ventricular size and function as well as mitral valve function. 

 

2.1 Anaesthesia. 

The sheep were premedicated with Ketamine 6-8mg/kg via intramuscular injection. 

Intravenous access was obtained with an 18 gauge cannula in the right internal jugular vein. 

This cannula was replaced with a central venous catheter after induction of anaesthesia. 

Thiopentone 10-14mg/kg was used for induction of anaesthesia. The sheep were then placed 

in the supine position and intubated with an endotracheal tube and ventilated. Pancuronium 

bromide 1mg/kg was given as muscle relaxant.  

An arterial line was placed in the left or right front leg. The sheep was ventilated with 40% 

oxygen and alveolar ventilation was monitored with the end-tidal CO2, saturation monitoring 

and arterial blood sampling. The electrocardiogram and temperature were monitored. The 

sheep’s normal temperature is 38.5°C. The sheep’s temperature was allowed to drift down 

before cardiopulmonary bypass and after cardiopulmonary bypass it was controlled by a 

warming blanket. Intra-operative anaesthesia was maintained with Isoflurane 1.5-2.8% and 

Pethidien 2-3mg/kg were given for analgesia. Potassium chloride (40mmol) and Magnesium 

sulphate (1g) were added to the Balsol intravenous fluid and the electrolytes were monitored 

with arterial bloodgas sampling. Intravenous fluid was limited to 1 litre to avoid hemodilution. 
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2.2 Surgical procedure 

2.2.1 Harvesting of the internal jugular vein. 

The sheep was turned onto its right side with the left neck and chest shaved and cleaned with 

Hibitane and alcohol solution. Sterile drapes are placed (Fig 2.1). A left sided neck incision 

was made over the internal jugular vein. The internal jugular vein was exposed for 12 cm, 

branches were tied and the vein harvested (Fig 2.2). Care was taken not to injure the 

endothelium. The vein was placed in a 200 ml saline solution with 4000 IU Heparin, 5 mg 

Verapamil, 2ml Sodium bicarbonate 4.2% and 20 ml autologous blood. The neck incision was 

closed with 3-0 Vicryl. 

 

Fig 2.1: The sheep is anaesthetised, cleaned and draped for the left neck incision and left 

thoracotomy. 

 

 

 

 

 

 

 

 
 
 
 
Left thoracotomy incision 
 
Left neck incision 
 
Head 
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Fig 2.2: Left internal jugular vein used for harvesting. 

 

 

 

2.2.2 Creating the anterior mitral leaflet from the internal jugular vein. 

 

The vein was then fashioned to form an anterior mitral valve leaflet. The vein was cut open 

along its length and then folded lengthwise to create a rectangular shaped vein with the 

endothelial layer on the outside and adventitial layer on the inside (Fig 2.3 to Fig 2.5).  
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Fig 2.3: Left internal jugular vein after harvesting. 

 

 

 

Fig 2.4: Liga clips removed and vein cut open along its entire length and opened with intima 

facing up. 
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Fig 2.5: Vein folded lengthwise with the endothelial layer on the outside and adventitial layer 

on the inside. 

  

 

The folded vein was then cut in half (Fig 2.6) and the 2 halves were sewn together side by 

side with Gore-Tex CV-8  (Fig 2.7) to create an anterior leaflet which measures about 30mm 

x 20mm or the size of a 28 mitral ring (Fig 2.8).  
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Fig 2.6: The double layered vein is cut in half (along dashed line), creating 2 double layered 

pieces of vein of about 25mmx14mm 

 

 

Fig 2.7: The 2 double layered halves are sewn together side by side with a Gortex CV-8 

suture. Holding sutures on the corners of the vein help with suturing.  
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Fig 2.8: After suturing the 2 halves together, an anterior leaflet is created that is about the size 

of a 28mm mitral valve ring.  

 

 

 

A simple running suture of Gore-Tex CV-8 was used on the edge of the new vein leaflet around 

the whole circumference to keep the 2 layers together and strengthen the leaflet edge. All 

branches were also closed with interrupted Gore-Tex CV-8 sutures. The vein leaflet was then 

placed in the blood and saline vein mixture. 
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Fig 2.9: A running suture of Gore-Tex CV-8 is used on the edge of the new vein leaflet to keep 

the 2 layers together and strengthen the leaflet edge.  

 

 

 

2.2.3 Insertion of the vein leaflet. 

 

A left sided thoracotomy was performed in the fourth intercostal space. The pleura was opened 

and Heparin 1mg/kg was given to raise the activated clotting time (ACT) above 400 seconds. 

Arterial cannulation of the descending aorta was done with a Medtronic 18 French EOPA 

cannula (6mm diameter). The ascending aorta in sheep is very short and there was not 

enough space on the ascending aorta for the aortic cannula, cardioplegia needle and the aortic 

cross-clamp. The ascending aortic tissue is also delicate and tears easily (as we found during 

the learning curve).  

The pericardium was opened anterior to the phrenic nerve and pericardial stay sutures were 

placed. A dual stage venous cannula (Medtronic 29/29 French) was placed in the right atrial 

auricle. This was a challenging exercise because only the tip of the auricle can be seen via 

the left thoracotomy. Care was taken to guide the cannula down the inferior vena cava, 
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because the cannula had a tendency to slip through the tricuspid valve into the right ventricle. 

(Fig 2.10). 

 

Fig 2.10: Cardiopulmonary bypass through left thoracotomy. 

 

 

The cardiopulmonary bypass circuit was primed with one litre of Balsol. Cardiopulmonary 

bypass was started and the sheep was cooled to 32°C. A cardioplegia needle was placed in 

the ascending aorta and the aorta was cross-clamped. Cold blood cardioplegia (a mixture of 

50% autologous blood and 50% St Thomas cardioplegic solution) was given at 8-10°C. 

Sixteen mmol of Potassium chloride was added to the first bottle of St Thomas solution to 

raise the potassium concentration of the first dose to 16 mmol/l. Thereafter, the potassium 

concentration in the cardioplegia was 8mmol/l. The left atrium was opened and a left 

ventricular vent cannula was placed through the mitral valve to keep the left ventricle empty 

during cardioplegia. Cardioplegia was given slowly to prevent the delicate aortic valve from 

becoming incompetent. Cold saline was poured on the heart after asystole was achieved. The 

surgical field was flooded with carbon dioxide to limit the possible effects of air-embolism. 

 
 
Venous cannula into right atrium 
 
 
 
 
 
 
 
 
Cardioplegia cannula in ascending 
aorta 
 
 
 
 
 
 
Left ventricular vent through left 
atrium 
 
 
Arterial cannula in descending aorta 
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The left atrium was opened and the mitral valve was inspected and tested with normal saline 

in a bulb syringe. Three annular stitches were placed to improve exposure of the mitral valve. 

The length of the anterior chordae from the anterior and posterior papillary muscle to the leaflet 

edge was measured with a calliper. The chordal length of the sheep measured between 15mm 

to 18mm.  

The anterior leaflet was then resected 3mm from the mitral annulus to avoid injury to the aortic 

valve. The anterior leaflet with its chordae was resected up to the level of the commissural 

leaflets at both commissures. The chordal attachments of the commissural leaflets were left 

intact (Fig 2.11 and Fig 2.12). The posterior leaflet was left intact and would serve as the 

control leaflet for this study.  

 

Fig 2.11: View of mitral valve from left atrial side. 
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Fig 2.12: Anterior mitral leaflet and chordae excised. 

 

 

The excised anterior mitral valve leaflet dimensions were measured and the newly created 

vein leaflet was sutured to the anterior mitral annulus with a Gore-Tex CV6 suture (Fig 2.13). 

The vein was also sutured to the commissural leaflets at both commissures. The free edge of 

the new vein leaflet was then supported by Gore-Tex chordae. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Resection margin of 
anterior mitral valve leaflet 
and chordae 
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Fig 2.13: Vein leaflet sutured to anterior mitral annulus. The free edge is not supported with 

Gore-Tex chordae yet and is protruding into the left atrium.  

 

 

Gore-Tex chordal loops were made intra-operatively from a Gore-Tex CV5 suture according 

to the length of the native chordae (Fig 2.14 and Fig 2.15). The Gore-Tex loops were tied 

around a Hegar dilator of the correct size. The principle of obtaining the correct chordal length 

with a Hegar dilator is as follows: the length of a flattened loop is equal to half the 

circumference of the Hegar dilator.  
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Free edge of vein leaflet 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 
 

82 
 

The diameter of the correct Hegar dilator needed is calculated from the formula: 

 

                                          2L = 2𝜋r 

                                          2L   =𝝅D 

                                            D= 
2𝐿

𝜋
 

                                             =  
2

3
 L 

 

(D=diameter of the Hegar dilator, L=length of the chordae needed and because it is a loop, 

the length would be 2L, 𝝅 =
22

7
). 

To simplify the equation, 𝝅 is rounded off to 3 and the diameter of the Hegar dilator needed is 

then 2/3 of the length of the chordae. If the chordae length is 18 mm, the Hegar dilator diameter 

would be 
2

3
 x18 = 12mm. (Cagli 2009).  
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Fig 2.14: Gore-Tex loops made intra-operatively with a Hegar dilator. 

 

 

Fig 2.15: Completed Gore-Tex loops on a felt pledget ready for implantation. 
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Six Gore-Tex loops were anchored to the fibrous tip of the anterior papillary muscle with felt 

pledgets and 6 Gore-Tex-loops were anchored to the posterior papillary muscle. The principles 

of mitral valve repair were then used to support the edge of the new vein leaflet. The antero-

lateral half of the leaflet (A1 and half of A2) was supported with the chordal loops from the 

anterior papillary muscle and the postero-medial half (half of A2 and A3) was supported with 

the chordal loops from the posterior papillary muscle (Fig 2.15). Interrupted Gore-Tex CV 5 

sutures were used to attach the chordal loops to the free edge of the leaflet.  

 

Fig 2.16: Gore-Tex loops support the new mitral valve vein leaflet. Six chordal loops from the 

anterior papillary muscle support the lateral half of the leaflet and 6 chordal loops from the 

posterior papillary muscle support the medial half of the leaflet. 
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Fig 2.17: Vein leaflet supported with Gore-Tex chordae: 

 

 

 

The valve was then tested for competence with normal saline. No ring annuloplasty was 

performed, however 2 sheep had plicating annular sutures in the posterior annulus to improve 

coaptation. This was done with 2 to 3 Tycron sutures with pledgets.  

After the saline test showed the valve to be competent (Fig 2.18), the left ventricular vent was 

placed through the mitral valve and the left atrium was closed with 5-0 Prolene. The heart was 

de-aired and the aortic cross-clamp removed. If fibrillation occurred, the heart was defibrillated 

with internal paddles at 10 Joules and temporary ventricular pacing wires were placed when 

needed.  After 10 minutes of reperfusion, the heart was weaned from cardiopulmonary bypass 

with a low dose of Adrenalin and Nitrogliserine infusion. The left atrial pressure was measured 

with a left atrial cannula and then removed.  All cannulas were removed and Protamine 

sulphate (1mg/kg) was given. A pleural drain was placed. An intercostal block was done with 

0.5% Bupivacaine (2ml/kg) to help with post-operative analgesia. The pericardium was 

sutured and the thoracotomy incision was closed. All the blood in the cardiopulmonary bypass 

circuit was transfused back to the sheep. 
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Vein leaflet 
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Fig 2.18: New anterior mitral valve leaflet tested for competence with saline.  

 

 

 

 

2.2.4 Postoperative care 

 

The sheep was monitored and ventilated in theatre until it was awake and breathing 

spontaneously. The muscle relaxant was reversed with neostigmine (0.04mg/kg) and atropine 

(0.02mg/kg).  Awake extubation was performed, the pleural drain, pacing wires, intra-arterial 

and intravenous lines were removed (Fig 2.19). The sheep was then transferred to a warm 

pen with a blanket, food and water (Fig 2.20). 

The sheep received Meloxicam 0.5mg/kg per day for analgesia. A long acting opiate was given 

for the first 2 nights post-operatively (Buprenorphine 0.05mg/kg) and Pethidine 1-2mg/kg 

every 8 hours during the day. Intramuscular Enrofloxacin was given as an antibiotic for 3 days. 

 

 

 
 
 
 
Posterior mitral valve leaflet 
 
Vein leaflet showing good 
competence with saline test 
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Fig 2.19: The sheep was extubated when fully awake and breathing spontaneously. All lines 

were removed. 

 

 

Fig 2.20: The sheep was transferred to a warm pen after surgery: 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 
 

88 
 

 

2.4 Echocardiography 

 

A transthoracic echocardiogram was done post-operatively by Dr Pieter Rossouw a 

Cardiologist from the Cardiology department at the University of Stellenbosch to evaluate the 

mitral valve function and cardiac function. The following parameters were recorded: 

- Amount of mitral regurgitation 

- Position of regurgitation 

- Movement of the anterior vein leaflet during the cardiac cycle 

- Valve opening area and diastolic flow through the valve 

- Left ventricular size 

- Left ventricular function 

The sheep was kept at the animal laboratory for 1 to 2 weeks and then transferred to the 

University of Stellenbosch’s experimental farm in Stellenbosch (Fig 2.21). 

The sheep were monitored on the farm and serial echocardiograms were also done at 1 

month, 3months, 6 months and 9 months to evaluate the mitral valve and cardiac function (Fig 

2.22)  

 

Fig 2.21: On the farm the sheep grazed in the field during the day and were kept in a shed at 

night.  
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Fig 2.22: Serial echocardiograms were done on the sheep to evaluate mitral valve and cardiac 

function. 
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2.5 Pathology and histology 

 

The sheep were followed up post-operatively for 6 to 10 months. At the time of euthanasia the 

sheep were first anaesthetised (see before) and a small laparotomy incision was done to do 

a trans-diaphragmatic echocardiogram. This was done to get better echocardiographic views 

of the heart and mitral valve. After the echocardiogram was done, the sheep were euthanized 

with an intravenous bolus of potassium chloride (20 mmol).  

 

The heart and lungs were excised, inspected and photographed. The heart was weighed and 

the annulus circumference was measured. The vein leaflet was examined for mobility, signs 

of fibrosis, prolapse and calcification. The Gore-Tex chords and its attachment sites to the free 

edge of the vein leaflet and papillary muscles were examined and photographed. The lung 

was examined for signs of pulmonary edema. The hearts and lungs were also retrieved from 

sheep that died early. The specimens were fixed in a 10% buffered formalin solution for at 

least 24 hours. Histology was done by Dr Izak Loftus (MBChB, MMed (Forens Path), FForPath 

(SA), MMed (Anat Path)) from Pathcare. 

 

Histological samples were taken from the following areas: 

1. Left ventricular muscle. 

2. Vein leaflet from the leaflet tip to the annulus. 

3. Posterior leaflet (control). 

4. Gore-Tex chords and its attachments to the papillary muscle and free edge of the vein 

leaflet.  

5. Lungs. 

The tissue sections were processed as paraffin blocks and histological sections of 5-6 μm 

thickness were cut from the paraffin blocks. 

Haematoxylin and Eosin (H and E) stains were done routinely on all sections. Special stains 

were also done on the vein and posterior leaflet (control) to stain for specific connective tissue 

components: 

- Alcian blue Periodic Acid Schiff (APAS) stain for acid mucopolisaccharide, 

proteoglycans and extracellular matrix. 

- Verhoeff and Van Gieson stain for collagen and elastic fibres. 
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- Masson’s Trichrome stain for collagen and fibrin. 

- Von Kossa stain to identify and quantify calcification.  

A gram stain and an APAS stain was used on certain sections where infective endocarditis 

was suspected. Microbiological culture was also done from valve tissue when infective 

vegetations were suspected. 

Monoclonal Mouse anti-human Ki-67 antigen (clone MIB-1, M7240, Dako Denmark A/S) 

immunohistochemistry was used in some histological specimens of the vein leaflet as a 

proliferation marker to identify cell proliferation in the vein leaflet and also to assist indirectly 

in the distinction between viable and necrotic areas. 

Muscle specific Actin (MSA) mouse monoclonal antibody (clone HHF35, NCL-MSA, 

Novacastra UK) immunohistochemistry was used in some histological specimens of the vein 

leaflet as an alpha actin marker to identify myofibroblasts and smooth muscle cells in the 

tunica media and tunica adventitia.  

 

The histological specimens of each vein leaflet were examined for the following: 

- Amount of overlying fibrin on the leaflet 

- Presence and viability of endothelial cells 

- Presence and amount of calcification in the vein leaflet 

- Whether the space between the 2 layers of the vein leaflet was obliterated or not and 

the nature of the obliteration (fibrin, fibrous proliferation, fluid) 

- Thickness of the valve 

- Presence of infective vegetation 

- Presence and amount of calcification and endothelialisation of chordae tendinae  

- Presence and amount of calcium in the annulus 

 

 

The magnification given in the histological sections is the original magnification of the slide 

with an ocular magnification of 10x multiplied by the objective magnification of 2x, 4x, 10x, 20x 

or 40x.  
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3. Results 

 

3.1 General remarks 

3.1.1 Twenty one sheep (14 Dorper and 7 Merino) of age 4 to 8 months weighing between 26-

42kg had replacement of the anterior mitral valve leaflet with an autologous jugular vein leaflet. 

The average cross-clamp time was 99 minutes (76 to 151 min) and the average bypass time 

was 137 minutes (109 to 188 min) (Table 3.1). 

3.1.2 Left atrial pressure before cardiopulmonary bypass was between 6-12 mm Hg. After 

weaning from cardiopulmonary bypass the left atrial pressure was between 14-23 mm Hg. A 

left atrial pressure above 20 mm Hg was associated with early mortality (Table 3.1). 
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Table 3.1: Peri- and post-operative data: 

 

 

Sheep 

Cross-

clamp time 

(min)  

Bypass time 

(min) 

Intra-operative saline 

test 

Left atrial 

pressure 

after 

Bypass 

(mm Hg)  

Post–op echocardiography 

Amount of Mitral regurgitation 

(MR) 

(Trace, mild, moderate, Severe) 

 

Lifespan 

after 

surgery 

Cause of death 

1 

115 145 Mild MR at commissures 

14 

Mild to moderate  

4.1 months 2 loose Gore-Tex Chordae with A2 prolapse, severe 

MR 

2 

111 144 Mild MR at A3/P3 

18 

Mild to moderate  

1 month Hematoma in vein at A3. A3 prolapsing segment with 

Gore-Tex chords loose at A3 

3 123 165 Mild MR at commissures 14 Trace  9.7 months Euthanasia 

4 

129 154 Mild MR at commissures 

18 

Moderate to severe 

2 days Leaflet prolapse because Gore-Tex chordae were too 

long. 

5 

117 140 

Very mild MR at 

commissures 

14 

Trace  

8.3 months 

Euthanasia 

6 89 119 mild MR at commissures 15 Mild  7.2 months Euthanasia 

7 100 125 Mild MR 20 Moderate  2 days Vein leaflet folded in at P3 by chordal knot 

8 93 155 Mild MR 18 Mild  6 months Euthanasia, SBE 

9 

82 115 

Very mild MR at 

commissures 

18 

Mild  

6.5 months 

SBE, with severe MR 

10 

112 149 

Commissural MR 

Annuloplasty done  

14 

Mild 

6.5 months 

Euthanasia 

11 

151 183 

Commissural MR 

Annuloplasty done  

23 

Moderate 

1 month Euthanasia for dyspnea. SBE found on histology. 

Organised hematoma at A2. 

12 

80 122 

Very mild MR at 

commissures 

14 

No echo was done  

Intra-

operative 

death 

Air embolism after bypass when transfusing blood into 

left atrium. 

13 

100 188 

Very mild MR at 

commissures 

14 

Trace  

6.4 months 

Euthanasia 
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Sheep 

Cross-

clamp time 

(min)  

Bypass time 

(min) 

Intra-operative saline 

test 

Left atrial 

pressure 

after 

Bypass 

(mm Hg)  

Post–op echocardiography 

Amount of Mitral regurgitation 

(MR) 

(Trace, mild, moderate, Severe) 

 

Lifespan 

after 

surgery 

Cause of death 

14 

76 157 

Very mild MR at 

commissures 

14 

Trace  

6 months 

Euthanasia 

15 

78 110 

Mild MR at lateral 

commissure 

19 Trace  4 months Calcification of the Gore-Tex chords and the Gore-Tex 

chords from the medial papillary muscle showed a 

partial disruption from A2 

16 

76 109 

Very mild MR at 

commissures 

17 Mild 6 months 

Euthanasia 

17 

79 111 

Very mild MR at 

commissures 

15 

Trace  

6 months 

Euthanasia 

18 89 119 Mild MR 18 Mild  4 months SBE, rupture of chord from A2, A3 

19 

90 120 Mild MR at commissures 

21 

Moderate 

3 days Anterior leaflet prolapse from Gore-Tex chordae that 

were too long 

20 

82 115 

Mild MR at P3/A3 

commissure 

15 

Mild 

3 months 

Tear in leaflet at Gore-Tex suture line 

21 

116 154 

Mild MR at medial 

commissures 

18 

Mild  

6 months 

Euthanasia 

 

MR = Mitral regurgitation 

SBE = Infective endocarditis 
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3.2 Echocardiographic results 

 

 The immediate post-operative echocardiogram showed trace mitral regurgitation (MR) in 6 

sheep, mild MR in 8 sheep, mild to moderate MR in 2 sheep, moderate MR in 3 sheep and 

moderate to severe MR in 1 sheep (Table 3.1). The MR was almost always at one or both of 

the commissures (Fig 3.1) (Table 3.2). The amount of commissural MR was determined by 

the chordal length of the commissural Gore-Tex chordae.  All the Gore-Tex chordae to one 

half of each leaflet were anchored to one papillary muscle and then fanned out to the leaflet 

edge (Fig 3.2). When the Gore-Tex chordae length to the commissural areas were not perfect, 

the vein leaflet would either be tethered slightly or prolapse slightly. The margin for error at 

the commissures is the smallest because there is a small area of coaptation between the vein 

leaflet and the commissural leaflet. Native chordae tendinae fan out from the distal part of the 

chordae and not from the papillary muscle, thus creating a leaflet edge that is aligned in a 

single plane. This is difficult to recreate with Gore-Tex chords that fan out from the papillary 

muscle (Fig 3.2).  

 

The vein leaflet opened well during diastole (Fig 3.4 and Fig 3.5) and the diastolic flow through 

the valves was laminar on colour flow. The opening valve area was measured with planimetry 

and measured from 2.2 cm² to 3.7cm² (Average 2.8 cm²). 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

96 
 

Fig 3.1: Echocardiogram of sheep 13 with colour flow Doppler shows 2 incompetence jets at 

the commissures that was seen in most of the valves. 
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Fig 3.2: Suture technique of the Gore-Tex chordae showing the diffference in the Gore-Tex 

chordae and the native chordae tendinae. 

 

 

 

 

The post-operative echocardiogram also showed that the central part of the vein leaflet tends 

to billow (Fig 3.3 to Fig 3.7). The vein leaflet appears thicker than the posterior leaflet and 

shows elasticity during the cardiac cycle (Fig 3.4 to Fig 3.6). In diastole it recoils and appears 

shorter and thicker while in systole it is stretched out, and billows into the left atrium. The 

billowing of each valve was graded mild, moderate and severe according to the amount of the 

leaflet body that billows above the mitral annulus (Fig 3.3 to Fig 3.7) (Table 3.2).  Although the 

billowing does not cause prolapse in itself, it does put all the tension on the primary Gore-Tex 

chordae at the leaflet edge during systole.  

 

 

 
 
Vein leaflet sutured to anterior annulus and 
commissural leaflets 
 
Commisural leaflet 
 
Native chordae tendinae fan out from the distal 
part of the chordae to support the leaflet edge 
 
 
Gore-Tex loops fan out from the papillary 
muscle 
 
Cut chordae 
 
 
 
Gore-Tex loops anchored to posterior papillary 
muscle 
 
Anterior papillary muscle 
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Fig 3.3: Echocardiogram of sheep 8 to show severe billowing of the belly of the vein leaflet 

(red arrow) during systole. The level of the annulus is shown by the yellow line. The left 

ventricle (LV) and left atrium (LA) is marked. 

 

 

 

Fig 3.4: Echocardiogram of sheep 8 at 6 months post op to show the motion of the anterior 

vein leaflet during the cardiac cycle. Notice the change in shape of the leaflet and how flexible 

the leaflet is. 

Valve is open in 

diastole 

Valve closing during 

end of diastole 

Valve starting to 

billow with systole 

Final position in 

systole with even 

more billowing 

    

LV 

LA
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Fig 3.5: Echocardiogram of sheep 10 shows moderate billowing of the anterior mitral valve 

leaflet   

Valve open in diastole 

 

 

Valve closing during end of 

diastole  

 

 

Valve billowing during late systole 

 

 

Posterior leaflet 
 
 
 
 
Vein leaflet starting to billow 

Left atrium 
 
 
Anterior vein leaflet open in 
diastole 
 
Left ventricular outflow and aortic 
valve 

Gore-Tex chordae attachment to 
the leaflet 
 
Vein leaflet billowing 
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Fig 3.6: Echocardiogram of sheep 16 at 6 months to show the elasticity of the leaflet during 

the cardiac cycle.  

 

 

 

 

Left atrium 
 
 
Anterior vein leaflet recoils during 
diastole in the open position  
 
 
Left ventricular outflow tract 

 
Gore-Tex chordae attachment site 
 
 
 
Anterior vein leaflet is stretched during 
systole and billowing. Part of the leaflet belly 
is out of the echo window but the course of 
the leaflet is indicated by the yellow line. 
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Fig 3.7: Echocardiogram of Sheep 3 at 10 months shows mild billowing during systole (red 

arrow). This sheep had mild MR. Left ventricular outflow tract is shown as LVOT 

(a) Diastole  

 

(b) Systole 

  

Left 
Atrium 

LVO
T 
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The serial echocardiographic results are summarised in Table 3.2. The 3 month and 6 month 

echocardiograms showed that the mitral regurgitation (MR) progressed with time in most of 

the sheep. Fifteen sheep had a 3 month echocardiogram which showed that 7 sheep had mild 

MR, 4 sheep had mild to moderate MR and 4 sheep had moderate MR.   

Eleven sheep had an echocardiogram at 6 months which showed that 3 had mild MR, 1 had 

mild to moderate MR, 4 had moderate MR and 3 had moderate to severe MR. The increase 

in MR was most often seen at either one or both of the commissures (Table 3.2).  

The left ventricular function remained good in all the sheep except sheep 16 showed poor 

function from the 3 month echocardiogram with a dilated ventricle. The MR in this sheep was 

mild and was not the cause of the poor left ventricular function.  

The left ventricular end diastolic diameter (LVED) increased in all sheep with time, but was 

more pronounced in the sheep with moderate and severe MR.  The sheep with mild MR at 6 

months had an increase in LVED of about 10 mm. This could be attributed to somatic growth 

of the sheep, because the sheep gained about 7-10 kg in 6 months.  
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Table 3.2: Echocardiographic results directly after surgery and at 3 and 6 months. 

 Amount of mitral regurgitation 

(MR) 

Left ventricular end diastiolic 

diameter (mm) 

Area of MR 

Anterolateral commissure 

(ALC) 

Posteromedial 

commissure (PMC)  

Amount 

of vein 

leaflet 

billowing 

Ejection 

fraction on 

last echo 

(%) 

Sheep Post -
operatively 

3 months 6 months Post- 
operatively 

3 months 6 months 

1 Mild to 

moderate 

Mild to 

moderate  

40 45  ALC Moderate 65 

2 Mild to 

moderate    

36   ALC Moderate 65 

3 Trace  Mild Mild 42 50 52 PMC Mild 65 

4 Moderate to 

severe   

38   ALC Moderate 60 

5 Trace  Mild Moderate 41 48 52 PMC Moderate 65 

6 
Mild  

Mild to 

moderate 

Moderate to 

severe 

43 55 60 PMC Moderate 60 

7 Moderate     41 49  PMC Moderate 60 

8 
Mild  

Mild to 

moderate 

Moderate to 

severe 

32 50 60 ALC and PMC Severe 65 

9 
Mild  

Mild to 

moderate 

Moderate to 

severe 

40 51 57 ALC Moderate 65 

10 Mild Mild Mild  34 42 43 ALC Moderate 65 

11 Moderate   44   ALC and PMC Mild 55 

12 No echo was 

done    
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 Amount of mitral regurgitation 

(MR) 

Left ventricular end diastiolic 

diameter (mm) 

Area of MR 

Anterolateral commissure 

(ALC) 

Posteromedial 

commissure (PMC)  

Amount 

of vein 

leaflet 

billowing 

Ejection 

fraction on 

last echo 

(%) 

Sheep Post -
operatively 

3 months 6 months Post- 
operatively 

3 months 6 months 

13 
Trace  Mild 

Mild to 

moderate 

40 53 52 ALC Moderate 60 

14 Trace  Mild  Moderate 41 55 58 ALC and PMC Moderate 55 

15 Trace  Moderate  35 54  ALC and PMC Severe 65 

16 Mild Mild Moderate 44 58 66 ALC Moderate 20 

17 Trace  Moderate  Moderate 39 44 46 ALC Moderate 55 

18 Mild  Moderate  38 65  ALC Severe 60 

19 Mild   40   PMC Moderate 65 

20 Mild Moderate  42 52  ALC Severe 65 

21 Mild  Mild  Mild  39 46 48 ALC Moderate 65 
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3.3 Early post-operative mortality (0-3 days) (Table 3.3) 

 

Table 3.3: Results of sheep that died within the first 3 days.  

Sheep 

nr 

Time 

between 

surgery and 

death 

Lung histology   Vein leaflet morphology Heart 

weight (gm) 

Annulus 

length (mm) 

4 2 days Congestion, Edema Anterior leaflet prolapse from Gore-

Tex chordae that were too long 

187 63 

7 2 days Congestion Restriction of the anterior mitral leaflet 

due to a Gore-Tex suture catching the 

opposite leaflet edge 

215 72 

12 Intraoperative 

death  

Congestion  Freshly implanted valve leaflet 

 

179 60 

19 3 days Congestion  Anterior leaflet prolapse at A3 from 

Gore-Tex chordae that were too long 

348 83 

 

 

Sheep 12 died intra-operatively after being weaned from cardiopulmonary bypass. There was 

bleeding from the descending aortic cannulation site with the purse string suture tearing out. 

The bleeding was controlled and blood from the bypass pump was transfused into the left 

atrium with the arterial cannula. Unfortunately a large air embolism from the bypass circuit 

went into the left atrium, causing ventricular fibrillation. The heart was massaged and air was 

aspirated, but the heart could not be resuscitated.  

 

Three sheep died within 3 days after surgery. The cause of death was severe mitral 

regurgitation. Sheep 4 had anterior leaflet prolapse at A1 from Gore-Tex chordae that were 

too long and there was also a hematoma between the 2 layers of vein tissue in A3 which 

caused restriction of the leaflet in A3 (Fig 3.8).  Blood entered the space between the veins at 

the leaflet edge where the 2 veins were sutured together. After seeing this hematoma develop 

in the leaflet, we were meticulous when suturing the 2 vein layers together to prevent this 

complication.   
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Sheep 7 had restriction of the anterior mitral leaflet due to a Gore-Tex suture catching the 

opposite leaflet edge. This caused an infolding of the leaflet that could not be seen during 

surgery, because it was on the underside of the leaflet and was obscured from the atrial view 

(Fig 3.9).  

 

Sheep 19 had a large pericardial and pleural effusion. This sheep’s heart weighed 348gm 

which is 150 gm more than what is expected for the weight of this sheep (37kg). The normal 

heart weight for a sheep between 37-38kg is 155-165gm (Fourie et al 2009). On examination 

of the valve it seemed as if the Gore-Tex chordae were too long and the vein leaflet was 

prolapsing, especially at the A3 area (Fig 3.10).  

 

The mitral annulus measurements are shown in Table 3.2 and give an idea of the baseline 

annulus length, since the annulus would not have had a chance to dilate.  

 

The lung histology showed lung congestion (congested capillary vessels and increased 

interstitial fluid in the alveolar septae) in all the specimens and congestion and lung edema 

(fluid in the alveolar space) in sheep 4 (Table 3.3). 
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Fig 3.8: Mitral valve of sheep 4 shows some Gore-Tex chordae were too long at A1 causing 

leaflet prolapse. There was also a hematoma that formed between the 2 vein layers at A3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Hematoma between the 2 vein 
layers causing leaflet restriction 
 
Gore-Tex chordae to long which 
caused prolapse of the A1 
segment 
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Fig 3.9: Sheep 7 died 2 days after surgery from mitral regurgitation due to a restricted anterior 

mitral valve leaflet. One Gore-Tex suture that was used to tie the Gore-Tex loop to the leaflet 

edge caught the opposite edge of the underside of the vein leaflet and pulled in the A1 and 

A3 leaflet edge causing leaflet restriction. Subendocardial hemorrhage is noted in the left 

ventricle which could be from myocardial ischemia during cardiopulmonary bypass and 

cardiac arrest. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Gore-Tex suture caught the 
underside of the opposite 
leaflet edge 

 
 
Subendocardial hemorrhage 

Stellenbosch University  https://scholar.sun.ac.za



 

109 
 

 

Fig 3.10: Sheep 19 died 3 days after surgery from mitral regurgitation due to prolapse of the 

vein leaflet due to Gore-Tex chordae that were too long in the A3 area (arrow). Notice how the 

leaflet is prolapsing above to the annulus height (dashed line). 
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3.4 Intermediate mortality (1-6 months)  

Seven sheep died between 1 and 6 months (Table 3.4). The lung histology showed pulmonary 

congestion in all the specimens and sheep 9 had congestion and pulmonary edema (Table 

3.4).  The hearts of these sheep were enlarged as measured by increased weight and a dilated 

annulus (Table 3.4). The histology of the left ventricular myocardium in the enlarged hearts 

showed pleomorphism and enlargement of the cardiomyocytes as a result of volume overload 

of the left ventricle. 

 

Sheep 1 died 4 months after surgery. The post mortem showed an enlarged heart with 

increased weight and a dilated mitral annulus (Table 3.4). Two Gore-Tex chordae from the A2 

segment pulled loose from the leaflet edge, creating a flail segment (Fig 3.11 and Fig 3.12). 

Examination of the vein leaflet showed that there was significant tension on the leaflet edge 

from the primary Gore-Tex chordae (Fig 3.12). As the annulus dilated and the coaptation 

between the 2 leaflets decreased, the tension on the Gore-Tex chords increased with eventual 

disruption of the attachment site at the A2 segment. 
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Table 3.4: Results of sheep that died between 1 and 6 months: 

Sheep 

nr 

Time 

between 

surgery and 

death 

Lung histology  Vein leaflet morphology Heart 

weight  

(gm) 

Annulus 

length 

1 4 months Congestion Two Gore-Tex chordae from the A2 segment 

pulled loose from the leaflet edge, creating a 

flail segment (Fig 3.2 and Fig 3.3). 

592 102 

2 1 month  Congestion Hematoma at A3 between the 2 layers of the 

vein and all the Gore-Tex chords from the 

medial papillary muscle pulled loose from A2 

and A3 creating a large flail segment (Fig 3.4).  

625 105 

9 6 months Congestion, Edema Vegetations on the leaflet tip at A2 and 

disruption of the Gore-Tex chordae from the 

medial papillary muscle (Figs 3.11 and 3.12).   

240 100 

15 4 months Congestion Calcification of the Gore-Tex chords and the 

Gore-Tex chords from the medial papillary 

muscle showed a partial disruption from A2 

(Figs 3.6 and 3.7). The vein leaflet showed 

good mobility and no calcification. 

311 75 

18 4 months Congestion Severe infection with vegetations over the 

whole vein leaflet and the native leaflets (Fig 

3.13) The medial papillary muscle with its 

attachments were destroyed 

446 85 

20 3.2 months  Congestion Tear in the central suture line between the 

vein halves at the leaflet edge (Fig 3.8). 

Thickening of A1 part of leaflet due to 

organised fibrin between 2 vein layers. The 

central suture line close to the annulus healed 

well. 

434 85 
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Fig 3.11: Sheep 1 died 4 months after surgery. Gore-Tex chordae pulled loose from the A2 

segment on the vein leaflet. The vein leaflet is flexible and the 2 layers of the vein have fused 

completely at 4 months. 

 

 

 

Fig 3.12: The same valve as Fig 3.11 (Sheep 1). Note the commissural gap at A1 and the 

commissural leaflet. The Gore-Tex suture (CV 8) line in the vein leaflet healed well. 
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Sheep 2 died 1 month after surgery from mitral regurgitation. The post mortem showed an 

enlarged heart and a dilated annulus. The mitral valve showed a hematoma at A3 between 

the 2 layers of the vein and all the Gore-Tex chords from the medial papillary muscle pulled 

loose from A2 and A3 creating a large flail segment (Fig 3.13).  

The hematoma was fresh and was most likely caused by blood entering the ventricular side 

of the vein leaflet where the branches were sutured with Gore-Tex CV-8 (Fig 3.14). The suture 

line between the vein leaflet and the commissural native leaflet at A3 also disrupted. The vein 

leaflet was sutured to the annulus with 5-0 Prolene in this sheep, but we switched to Gore-Tex 

CV-6 for the annular suture as it would be less likely to cut through the delicate commissural 

leaflet. The rest of the vein leaflet, apart from the hematoma, was mobile.  

 

Fig 3.13: Sheep 2 died 1 month after surgery. Hematoma formed between the 2 layers of the 

vein. The Gore-Tex chords from the medial papillary muscle pulled loose from the leaflet edge 

at A2 and A3, creating a large flail segment. The suture line between the commissural leaflet 

and vein leaflet also pulled loose. 
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Fig 3.14: Sheep 2 underside of vein leaflet to show the sites where the vein branches were 

closed with Gore-Tex CV 8 sutures. This was the most likely entry point of blood from the left 

ventricle to cause the hematoma in the leaflet.  

 

 

Sheep 15 died 4 months after surgery on a very hot day on the farm (43°C). The post mortem 

showed calcification of the Gore-Tex chords and the Gore-Tex chords from the medial 

papillary muscle showed a partial disruption from A2 (Figs 3.15 and 3.16). The vein leaflet 

showed good mobility and no calcification. 
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Fig 3.15: Mitral valve from sheep 15 (4 month implant) shows calcification of the Gore-Tex 

chordae and partial disruption from the A2 Gore-Tex chords from the medial papillary muscle 

 

 

Fig 3.16: Mitral valve from sheep 15 (same as Fig 3.15) shows the mobility of the vein leaflet 

and the calcification of the Gore-Tex chords. 
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Sheep 20 died 3.2 months after surgery. The post mortem revealed a tear in the central suture 

line between the vein halves at the leaflet edge (Fig 3.17). The central suture line close to the 

annulus healed well. Thickening of the vein leaflet was also noted at A1 because of organised 

fibrin between the vein layers. The echocardiogram at 3 months showed mild to moderate MR.  

 

Fig 3.17: Sheep 20 died 3.2 months after surgery. Note a tear in the central suture line 

between the vein halves. 
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Four sheep developed infective endocarditis (SBE) on the mitral valve (Sheep 8, 9, 11 and 

18). Sheep 11 was euthanized at 1 month for dyspnea and moderate to severe MR on the 

echocardiogram. The valve looked thickened on echocardiography with possible vegetations 

(Fig 3.18). The post mortem showed that the vein leaflet had an organising hematoma 

between the vein layers at A1. (Fig 3.19) This made the leaflet restrictive in the A1 area. There 

was also a perforation in the leaflet at A3.  Vegetations was noticed on the Gore-Tex chordae 

and histological examination confirmed the presence of infective vegetations with Gram 

negative organisms on the leaflet edge. This sheep was one of 2 sheep which had 

annuloplasty sutures placed to improve leaflet coaptation. 

 

Fig 3.18: Echocardiogram of sheep 11 shows thickening of the vein leaflet (yellow arrow) with 

mild billowing and possible vegetations on the leaflet and chordae (red arrow).  
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Fig 3.19: Sheep 11 was euthanized at 1 month for dyspnea.  The vein leaflet shows an 

organised hematoma between the leaflets in the A1 region. Notice the vegetations on the 

Gore-Tex chordae  

 

 

Sheep 8 was euthanized at 6 months because of dyspnea (Table 3.5). The echocardiogram 

showed severe mitral regurgitation with prolapse of A2 (Fig 3.20). The post mortem revealed 

SBE on the mitral valve with vegetations on both leaflets and loose Gore-Tex chordae at A1 

and A2 (Figs 3.21 and 3.22). Staphylococcus aureus was cultured from the vegetations. 
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Fig 3.20: Echocardiogram with colour flow of sheep 8 at 6 months showing moderate to severe 

MR due to chordal rupture at A2 with A2 prolapse. The red arrows mark the vein leaflet. 
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Fig 3.21: Sheep 8 was euthanized at 6 months for dyspnea. The post mortem showed SBE 

on the mitral valve with vegetations on both leaflets.  Gore-Tex chordae are loose at A1 and 

A2. 

 

 

Fig 3.22: The atrial view of the mitral valve of sheep 8 (same as Fig 3.6) shows vegetations 

on the vein leaflet and the posterior leaflet. 
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Sheep 9 died 6.7 months after surgery from SBE. The post mortem showed vegetations on 

the leaflet tip at A2 and disruption of the Gore-Tex chordae from the medial papillary muscle 

(Figs 3.23 and 3.24).  The lung histology showed pulmonary congestion and oedema. 

 

Fig 3.23: Sheep 9 died 6.7 months after surgery from SBE. Note vegetations on the leaflet 

and disruption of the Gore-Tex chordae from the medial papillary muscle, causing a large flail 

segment. 
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Fig 3.24: Atrial view of mitral valve of sheep 9 (same as Fig 3.12) shows the large vegetation 

on the vein leaflet edge at A2 and A3. 
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Sheep 18 died 4 months after surgery from SBE with disruption of all the Gore-Tex chords 

from the medial papillary muscle. The post mortem showed a severe infection with vegetations 

over the whole vein leaflet and the native leaflets (Fig 3.25). The medial papillary muscle with 

its attachments were destroyed. 

 

Fig 3.25: Mitral valve of sheep 18 shows severe infection with vegetations over the whole 

valve. 
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3.5 Euthanized sheep. 

The rest of the sheep were euthanized between 1 to 10 months to evaluate the vein leaflet 

macroscopically and histologically. The echocardiographic result and macroscopic evaluation 

at the time of euthanasia are given in Table 3.5.  

Table 3.5: Results of the sheep that were euthanized. 

Sheep 

nr 

Time between 

surgery and  

euthanasia 

Echocardiogram at time 

of euthanasia 

Vein leaflet morphology Heart 

weight  

Annulus 

circumference 

3 10 months Mild MR Vein tissue mobile and intact, good healing 

of suture lines (Figs 3.26 to 3.28). 

435 94 

5 8 months  Moderate MR.  

Calcium on valve edge, 

leaflet perforation 

Perforation in central suture line, with focal 

calcification on the leaflet edge suture lines 

and central suture line (Fig 3.29). Defect 

between vein leaflet and medial 

commissure (Fig 3.30). 

486 90 

6 7 months Moderate to severe MR Vein tissue mobile and intact, good healing 

of suture lines. One Gore-Tex chord pulled 

loose from A2 (Fig 3.31). 

313 85 

8 6 months for 

dyspnea 

Moderate to severe MR, 

prolapse A2 segment, 

Mass on valve, possible 

SBE  

Vegetations on mitral valve,  

Infective endocarditis with flail A2 from 

Gore-Tex chord that pulled loose (Figs 3.21 

and 3.22). 

360 98 

10  6 months Mild MR, Good EF Leaflet mobile, Good healing of suture lines. 

Small defect in central suture line (Figs 3.32 

to  3.34) 

302 80 

11 1 month for 

dyspnea  

Severe MR, Nodular mass 

on leaflet (Fig 3.18) 

Organised hematoma at A1 between vein 

layers. (Fig 3.19). Histology showed 

infective vegetation with Gram negative 

organisms at perforation. 

290 80 

13 6.5 months Mild to moderate MR, good 

EF 

Good healing of suture lines and vein leaflet 

mobile. Fibrin on atrial surface of vein leaflet 

(Figs 3.35 and 3.36). 

273 86 

14  6  months Moderate MR Good healing of suture lines and vein leaflet 

mobile (Fig 3.37) 

302 75 

16  6 months Moderate MR, poor LV Good healing of suture lines. Gore-Tex 

suture partially pulled away from papillary 

muscle (Fig 3.38) 

240 91 

17  6 months Moderate  Good healing of suture lines at the annulus. 

Vein leaflet mobile. Focal calcification of 

Gore-Tex chordae. Tear in distal central 

suture line (Fig 3.39 and 3.40). 

301 80 

21 6 months Mild Good healing of suture lines. Fibrin on atrial 

surface. Focal calcification of Gore-Tex 

chordae. (Fig 3.41) 

354 90 
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Sheep 11 was euthanized for dyspnea at 1 month and Sheep 8 was euthanized for dyspnea 

at 6.5 months. These sheep both had infective endocarditis (SBE) and were discussed with 

the group of sheep with SBE. 

The other 9 sheep were euthanized at 6 months (sheep 10, 13, 14, 16, 17, 21), 7 months 

(sheep 6) 8 months (sheep 5) and 10 months (sheep 3). Their results are summarised in Table 

3.5. Three had mild MR, 3 had moderate MR and 3 had moderate to severe MR at the time of 

euthanasia. 

 

Fig 3.26: Atrial view of mitral valve of sheep 3 at 10 months shows good healing of the annulus 

suture line. 
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Fig 3.27: Mitral valve of sheep 3 at 10 months shows good healing of all suture lines of the 

vein leaflet and Gore-Tex sutures are covered with fibrous tissue 

 

 

Fig 3.28: Mitral valve of Sheep 3 (same as Fig 3.26 and Fig 3.27) shows the flexibility of the 

vein leaflet. 
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Fig 3.29: Mitral valve of sheep 5 at 8 months shows the perforation in the vein leaflet at the 

central suture line and focal calcification of the suture line and Gore-Tex chordae. 

 

 

 

Fig 3.30: Sheep 5 (same as Fig 3.29) to show the large defect at the medial commissure. 
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Fig 3.31: Mitral valve of sheep 6 at 7 months. The leaflet is mobile and suture lines have 

healed well. One Gore-Tex chord has pulled loose from the leaflet edge at A2. 

 

 

 

Fig 3.32: Mitral valve of sheep 10 at 6 months. The vein leaflet suture lines have healed well. 

The Gore-Tex chordae are partially covered with endothelium. This sheep also had 2 

annuloplasty sutures placed in the annulus at the time of surgery. The annulus circumference 

measured 80mm.  
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Fig 3.33: Mitral valve of sheep 10 (same as Fig 3.32) to show ventricular aspect of valve and 

healing of suture line at the aortic-mitral curtain.  

 

 

 

Fig 3.34: Mitral valve of sheep 10, with the vein leaflet stretched, show small defects in the 

valve leaflet at the central suture line. Area of thickening noticed on posterior leaflet because 

of chronic friction from Gore-Tex knot to the anterior leaflet. 

 

 

 
 
 
 
 
 
Suture line at aortic-mitral curtain 
 
Aortic valve  

 
 
 
 
Area of thickening on posterior leaflet 
because of chronic friction from 
Gore-Tex suture knot. 

Stellenbosch University  https://scholar.sun.ac.za



 

130 
 

Fig 3.35: Sheep 13 at 6 months. The vein leaflet is mobile and suture lines have healed well. 

Gore-Tex sutures or partially covered with endothelium. There is some fibrin over the atrial 

aspect of the valve but there were no signs of infective endocarditis on histology. Note the 2 

areas of billowing of the vein leaflet. 

 

 

Fig 3.36: Sheep 13 (same as Fig 3.35), with the vein leaflet stretched, to show area of 

billowing. 
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Fig 3.37: Mitral valve of sheep 14 at 6 months. There is good healing of all suture lines. Area 

of thickening noticed on the posterior leaflet from chronic friction of Gore-tex suture knot on 

edge of vein leaflet.  

 

 

 

Fig 3.38: Mitral valve of sheep 16 at 6 months shows good healing of suture lines. Gore-Tex 

suture partially pulled away from antero-lateral papillary muscle. 
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Fig 3.39: Mitral valve of sheep 17 at 6 months shows good healing of suture lines at the 

annulus. There is focal calcification of Gore-Tex chordae and a tear in the distal central suture 

line (see Fig 3.40).  

 

 

 

Fig 3.40: Mitral valve of sheep 17 to show tear in distal suture line. 
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Fig 3.41: Mitral valve of sheep 21 shows good healing of suture lines. There is some fibrin on 

the valve surface with focal calcification of Gore-Tex chordae. 
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3.6 Histology results 

 

3.6.1 The histology of the excised anterior mitral leaflet showed normal valve leaflet histology 

with the atrialis, spongiosa, fibrosa and ventricularis layers (Fig 3.42). There are elastic fibres 

visible in the atrialis between the collagen fibres. The fibrosa consists of dense collagen fibres 

which are arranged in an orderly and parallel pattern (Fig 3.42 and Fig 3.43). The valve is 

more cellular (valvular interstitial cells) than human valves and the valve thickness ranges 

from 0.25 - 0.50 mm (Fig 3.44 and Fig 3.45). 

 

Fig 3.42: Histological section of excised anterior valve leaflet with Verhoeff and Van Gieson 

stain (100x). Elastic fibres stain black in the atrialis and the collagen fibres stain purple: 
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Fig 3.43: Histological section of excised anterior valve leaflet with APAS stain (200x) to show 

the extracellular matrix. Note the orderly and parallel arrangement of the collagen fibres in the 

valve fibrosa (arrow): 
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Fig 3.44: Histological section of excised anterior valve leaflet with Verhoeff and Van Gieson 

stain (40x) to show valve thickness: 
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Fig 3.45: Histological section of excised anterior valve leaflet with Haematoxylin and Eosin (H 

and E stain) (40x). Note the abundance of cellular nuclei in the leaflet: 

 

 

 

 

3.6.2 The histological section of the jugular vein leaflet after preparation but before it has 

been implanted (control vein leaflet) has more elastic fibres in the tunica media than the 

atrialis layer of the anterior mitral valve leaflet. The collagen fibres in the tunica media and 

tunica adventitia are more loosely arranged than in the fibrosa layer of the anterior mitral leaflet 

(Fig 3.46 to Fig 3.48). The vein wall thickness ranges from 0.30 - 0.5 mm, so the double 

layered vein leaflet thickness ranges from 0.6 - 1mm (Fig 3.49). The endothelial layer lining 

the tunica intima of the control vein shows a continuous endothelial lining (Fig 3.49). (The 

tunica intima, tunica media and tunica adventitia from here on will be referred to as intima, 

media and adventitia.) 
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Fig 3.46: Histological section of the jugular vein leaflet after preparation but before implant 

(control vein leaflet) shows the histological layers with Verhoeff and Van Gieson stain (40x). 

Note the tunica intima is on the outside of the vein leaflet and the tunica adventitia is in the 

middle. The 2 vein layers separated during the processing of the sample with a space between 

the layers (red arrow).  The tunica media contains more elastic fibres (black) than the atrialis 

layer of the anterior leaflet and the collagen fibres are more loosely arranged as in the fibrosa 

(purple) of the anterior leaflet.  
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Fig 3.47 Comparison of histological sections of the anterior mitral leaflet (left) and the internal 

jugular vein (right). Both were stained with Verhoeff and Von Gieson (200x) to show the elastic 

fibre (black) and the collagen fibre (dark pink) arrangement. The internal jugular vein contains 

more elastic fibres and the collagen fibres are more loosely arranged than the anterior mitral 

leaflet.   
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Fig 3.48: Histological section of the jugular vein leaflet before implant (control vein leaflet) with 

APAS stain (200x) to show the collagen and extracellular matrix of the vein wall.  
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Fig 3.49: Histological section of the jugular vein leaflet before implant (H and E stain 40x) 

shows the elastic fibres (dark pink), collagen (light pink) and the cellular nuclei of the smooth 

muscle cells. The intima is lined with a continuous endothelial layer. The vein wall  thickness 

measured 0.3mm.  
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Table 3.6: Histological results of the vein implants 

 Length 

of 

implant 

Overlying 

fibrin 

Infective 

vegetation 

Endothelium Calcification in 

the vein 

Space obliterated between layers   

 

Nature of obliteration 

Chordae 

tendinae 

Valve annulus Minimum 

valve 

thickness 

(mm)  

Maximum 

valve 

thickness 

(mm) 

1 4.1 

months 

Focal Absent Focal necrosis 

at A2 edge 

Absent Complete obliteration with fibrous proliferation Normal Normal 1.5 2 

2 1 month Absent Absent Normal Absent Focal obliteration with fibrous stroma and area of 

hematoma 

Normal Normal cartilage 

seen as part of 

fibrous annulus. 

Early calcification 

around sutures 

2 6.5 

3 9.7 

months 

Focal Absent Normal Absent Complete obliteration with  fibrovascular 

proliferation 

Normal, 

calcification at 

papillary muscle 

Normal 2.5 6.5 

4 2 days Absent Absent Focal necrosis Absent Focal obliterated and area with hematoma Normal Normal 1 4.5 

5 8.3 

months 

Absent Absent Normal Focal at suture 

line and chordal 

attachment 

Complete obliteration with  fibrovascular 

proliferation 

Extensive 

calcification 

Osseous 

metaplasia 

2 3 

6 7.2 

months 

Absent Absent Normal Focal Complete obliteration with  fibrovascular 

proliferation 

Normal Focal calcification 

Osseous 

metaplasia 

1.75 3.5 

7 2 days Extensive 

Fresh fibrin 

Absent Focal necrosis 

50% 

Absent Focal obliteration with fresh fibrin Normal Normal 0.75 3 

8 6 

months 

Vegetations Extensive with 

destruction  

Necrosis Focal  SBE SBE Normal 3 5 
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 Length 

of 

implant 

Overlying 

fibrin 

Infective 

vegetation 

Endothelium Calcification in 

the vein 

Space obliterated between layers   

 

Nature of obliteration 

Chordae 

tendinae 

Valve annulus Minimum 

valve 

thickness 

(mm)  

Maximum 

valve 

thickness 

(mm) 

9 6.5 

months 

Absent Extensive at 

leaflet edge 

with 

destruction 

Normal Extensive at 

Gore-Tex 

chordal 

attachment and 

SBE 

Complete obliteration with  fibrovascular 

proliferation 

Extensive 

calcification 

Normal 3 5.5 

10 6.5 

months 

Absent Absent Normal Absent Complete obliteration with  fibrovascular 

proliferation 

Normal Normal 1.5 3 

11 1 month Focal One seen on  

leaflet edge  

Focal necrosis 

50% 

Absent Focal obliteration fibrin and organised hematoma 

in A3 area 

Normal Normal 1 2.5 

12 2 hours Extensive Absent Focal necrosis Absent Focal obliteration with  fibrin Normal Normal 1.5 3.5 

13 6.4 

months 

Focal Absent Normal Absent Complete obliteration with  fibrovascular 

proliferation 

Focal 

calcification 

Normal 1.75 2.25 

14 6 

months 

Absent Absent Normal Focal at stitches Complete obliteration with  fibrovascular 

proliferation 

Normal Normal 3 5 

15 4 

months 

Absent Absent Normal Absent Complete obliteration with fibrous proliferation Focal 

calcification 

Normal 1.5 3 

16 6 

months 

Absent Absent normal Absent Complete obliteration with  fibrovascular 

proliferation 

Normal Normal 2 4 

17 6 

months 

Absent Absent Normal Focal at free 

edge at chordae 

Complete obliteration with  fibrovascular 

proliferation 

Focal 

calcification 

Normal 3 3 

18 4 

months 

Extensive Extensive with 

destruction 

Extensive 

necrosis 

Focal   Complete obliteration with fibrous proliferation Rupture SBE 5 5 

19 3 days Focal Absent Focal necrosis Absent Separate Normal Normal 2.5 5 

20 3 

months 

Focal Absent Focal necrosis 

at A1/A2 

Absent Focal obliteration with  fibrous  proliferation 

Thick layer of fibrin between layers at A1/A2 

Normal normal 3 6.5 

21 6 

months 

Extensive Absent Normal Absent Complete obliteration with  fibrovascular 

proliferation 

Extensive 

calcification 

Normal 3.5 4.5 
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3.6.3 The vein leaflet showed progressive histological changes with the length of time it was 

implanted. The findings are summarised in Table 3.6.  

 

3.6.4 The vein leaflets that were implanted for 0-3 days (sheep 4, 7, 12, 19) showed focal 

areas of endothelial necrosis which extended into the media (Fig 3.50). Fibrin was found 

overlying the areas of necrosis on the vein leaflets. Cell proliferation was identified by MIB-1 

immunostaining. Abundant proliferation was noticed in the media and adventitia from day 2 in 

the transplanted vein as part of the vein wall remodeling. In the same area of focal necrosis 

as seen in Fig 3.50, cell proliferation was absent which suggests that these areas were not 

viable (Fig 3.51). Muscle specific actin (MSA) immunostaining recognizes the alpha actin from 

cardiac, skeletal and smooth muscle sources and was used to mark smooth muscle cells and 

myofibroblasts in the media and adventitia. The areas of focal necrosis in Fig 3.50 showed a 

notable absence of smooth muscle cells with MSA immunostaining (Fig 3.52). 

 

The space between the layers of the vein leaflet was filled with fresh fibrin. Sheep 4 had an 

area of hematoma between the vein layers with areas of vein wall necrosis overlying the 

hematoma. (Table 3.4, Figs 3.53 and Fig 3.54). 
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Fig 3.50: Histological section of the vein leaflet of sheep 19 (H and E stain 40x) shows a focal 

area of necrosis (brackets) with overlying fibrin. The space between the vein layers are filled 

with fresh fibrin.  
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Fig 3.51: Cell proliferation identified by MIB-1 immunostaining of histological section of the 

vein leaflet of sheep 19 (same section as Fig 3.50) (20x). Note the abundant cell proliferation 

in the media and adventitia (cell nuclei mark brown). There is also a complete absence of 

proliferating cells in the areas of necrosis (brackets) 
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Fig 3.52: MSA (Muscle-specific actin) immunostaining identifies the alpha-actin in the smooth 

muscle cells and myofibroblasts in the media and adventitia (brown marking). Note the 

absence of the smooth muscle cell immunostaining in the area of necrosis (bracket) and the 

abundance of smooth muscle cells on the opposite side (arrows).  
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Fig 3.53: Histological section of the vein leaflet of sheep 4 shows a fresh hematoma which 

separates the 2 vein layers. Verhoeff and Van Gieson stain (20x).  
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Fig 3.54: Histological section of the vein leaflet of sheep 4 shows a fresh hematoma which 

separates the 2 vein layers (arrows). Note the endothelial and media necrosis of the vein 

overlying the hematoma. (a) H and E stain 20x (b) H and E stain 40X 

(a) H and E stain 20x 

 

(b) H and E stain 40X 

 

 
 
Endothelial and medial 
necrosis with lack of cellular 
structure and nuclei. 
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3.6.5 Two vein leaflets were implanted for 1 month (sheep 2 and 11).  

 

The valve of sheep 2 showed fibrous changes in the stroma between the 2 vein leaflets with 

new capillary vessel formation seen as part of the granulation process. This fibrous 

proliferation in the adventitia part of the veins caused significant thickening of the vein leaflet 

(Fig 3.55). Increased fibroblastic activity was also noted where the vein leaflet was attached 

at the annular suture line (Prolene 5-0) with foreign body tissue reaction and early calcification 

around the suture material at the annulus (Fig 3.56). Cartilage was seen in the fibrous annulus 

which is a normal finding in sheep as part of the central fibrous body at the aortic mitral curtain 

(Frink and Merrick 1974). The area where the hematoma was noticed macroscopically on the 

vein (Fig 3.13) showed organising fibrin that caused significant thickening of the vein leaflet. 

(Fig 3.57). The vein endothelium appeared normal with no areas of necrosis. 

 

The valve of sheep 11 also had an area of organised fibrin between the vein layers at A1 

which caused vein leaflet thickening. The vein endothelium showed areas of necrosis 

overlying the organising fibrin (Fig 3.58). Other parts of the vein leaflet showed fibrous 

proliferation in the vein leaflet similar to sheep 2. An infective vegetation with Gram negative 

bacteria was seen on this leaflet and this histology is discussed further with the group of sheep 

with infective endocarditis.   
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Fig 3.55: Histological section of vein leaflet of sheep 2 (H and E stain 20x).  Note the increased 

thickness of the vein leaflet because of the fibrous proliferation between the 2 veins.  
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Fig 3.56: Histological section of the vein leaflet of sheep 2 through the annular suture line 

where the vein is attached to the annulus. Increased fibroblastic activity is noted in this area 

(black arrows) (H and E stain 20x) Early calcification is noted around the annular suture (red 

arrow). Prolene 5-0 was used as the annular suture in this sheep. Cartilage is seen in the 

fibrous annulus which is normal a normal finding in sheep. 
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Fig 3.57: Histological section through the vein leaflet of sheep 2 with the organised hematoma. 

Organised fibrin between the vein layers causes marked thickening of the vein leaflet (6.5 

mm). The endothelium looks normal with no areas of necrosis. (H and E stain 20x) 
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Fig 3.58: Histological section of sheep 11 shows organising fibrin in the vein leaflet with 

necrosis of parts of the vein wall overlying the fibrin (arrows) (H and E stain 40x). 
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3.6.6 Three vein leaflets were implanted for 3-4 months (sheep 1, 15 and 20). The vein leaflet 

of sheep 1 showed endothelial and media necrosis in the distal part of the vein leaflet close to 

the leaflet edge on the atrial side. This part of the leaflet (A2) was under severe tension from 

the Gore-Tex chordae because of ventricular enlargement and annular dilatation (Table 3.4). 

The left ventricular and annular dilatation put the Gore-Tex chordae under increased tension 

with eventual disruption of the chordae from the leaflet edge (Fig 3.59). The ventricular side 

of the vein leaflet showed a viable vein and endothelium. Fibrin was noticed overlying the 

endothelium on the atrial side and intimal hyperplasia was noticed on the ventricular side. The 

space between the veins was obliterated with fibrous proliferation.  

 

The vein leaflet of sheep 20 also showed a focal area of vein necrosis.  The area of vein 

necrosis was on the ventricular side of the vein leaflet overlying the thickened part of the leaflet 

which contained a large amount of organised fibrin (Fig 3.60 and Fig 3.61). The large amount 

of fibrin could have been caused by blood that entered between the 2 vein layers during systole 

where the central suture line disrupted (Fig 3.60). The rest of the leaflet showed obliteration 

of the space between the 2 veins with fibrous proliferation with normal endothelium. 

The vein leaflet of sheep 15 showed normal endothelial covering of the vein leaflet at 4 months 

with no necrosis. The space between the 2 veins were completely obliterated with fibrous 

proliferation (Fig 3.46). Some of the Gore-Tex chordae showed focal calcification.   
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Fig 3.59: (a) Vein implant of sheep 1 showing the section line of the histological sample 

(dashed line) and the area of necrosis (circle). (b) Histological section shows the area of 

endothelial and media necrosis and fibrin overlying the endothelium on the atrial side. Intimal 

hyperplasia is seen on the ventricular side (H and E stain 20x).  

(a) 

 

 

(b) 

  

 

Vein necrosis 

Intimal hyperplasia 

Viable vein 

Viable vein 

Atrial side

Ventricular side 

Viable vein 

Stellenbosch University  https://scholar.sun.ac.za



 
 
 

151 
 

Fig.3.60:  (a) Valve leaflet of sheep 20 implanted for 3 months. A thickened part of the leaflet 

is noticed in the A1/A2 area where the 2 layers were separated by a large amount of fibrin. 

The large amount of fibrin could have been caused by blood that entered between the 2 vein 

layers during systole (arrows) where the central suture line disrupted.  

 

 

(b) Section through the thick part of the vein leaflet in (a) on the dashed line shows the large 

amount of fibrin between the vein layers (circle) and the partial destruction of the ventricular 

side of the vein (solid arrow) 
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Fig 3.61: Histological section through the thick part of the vein leaflet in Fig 3.60 with organised 

fibrin between the vein leaflets and overlying vein wall. Note the transition between viable vein 

and necrosis (arrows) on the ventricular side  
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Fig 3.62: Histological section of vein leaflet of sheep 15 shows the 2 vein layers (black arrows) 

and the fibrous proliferation in-between. Masson’s Trichrome staining technique was used 

which colours the collagen fibres green (40x).  
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3.6.7 The valves of the 4 sheep with infective endocarditis (SBE) (sheep 8, 9, 11, 18) showed 

infective vegetations with varying degree of leaflet destruction and necrosis.  

 

Sheep 11 had the leaflet implant for 1 month. The histology showed an infective vegetation 

with Gram negative bacteria at the leaflet edge where the Gore-Tex chordae implanted. There 

was an organised hematoma in this leaflet that caused necrosis of parts of the vein wall (Fig 

3.58). 

 

Sheep 8 had the implant for 6 months and the histology showed extensive vegetations with 

destruction of the vein leaflet and inflammatory cell infiltration (Fig 3.63). Staphylococcus 

aureus was cultured from the vegetations. The fibrous proliferation between the veins showed 

new capillary formation (neovascularization). 

 

Sheep 9 had the implant for 6.5 months and the histology showed a large vegetation on the 

leaflet edge with necrosis and inflammatory cell infiltration (Fig 3.64). There was calcification 

in the vegetation and also on some of the Gore-Tex chordae. The area of the leaflet away 

from the vegetation was spared and showed normal endothelium and the space between the 

2 veins was obliterated with fibrous proliferation (Fig 3.65). Blood vessel formation 

(neovascularization) was noticed in the fibrous portion of the leaflet. The endothelium also 

showed intimal fibroplasia (Fig 3.65) 

 

Sheep 18 had the implant for 4 months and had severe SBE on the valve.  The histology 

showed extensive vegetations with fibrin and destruction of the vein leaflet (Fig 3.66 and Fig 

3.67). Bacterial clusters and inflammatory cells were seen in the vegetations and focal areas 

of calcification were noted in the vegetations. Gram stain of the vegetations showed gram 

negative bacilli (Fig 3.68). 
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Fig 3.63: Histological section of the fibrous part of the vein leaflet of sheep 8 shows an infective 

vegetation with clusters of bacteria (solid black arrows) surrounded by cell necrosis (pale area 

without cell nuclei) and neutrophils and monocytes (red arrows) (H and E stain 100x). 

Neovascularization is also seen in the fibrous proliferation. 
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Fig 3.64: Histological section of vein leaflet of sheep 9 shows a large vegetation on the leaflet 

edge (circle) with colonies of bacteria (black arrows), inflammatory cell infiltration (red arrows), 

necrosis and focal calcification (dark purple) (H and E stain 40x). 
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Fig 3.65: Histological section of the vein implant of sheep 9 away from the vegetation shows 

the typical architecture that was seen after 6 months with a fibrovascular proliferation in the 

space between the 2 vein leaflets. The vein architecture is still recognised with overlying 

intimal fibroplasia. (H and E stain 40x).  
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Fig 3.66: Histological section of sheep 18 showed extensive vegetations with vein leaflet 

destruction and necrosis (H and E 20x). 
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Fig 3.67: Bacterial clusters (arrows) and inflammatory cells can be seen in the vegetations on 

the vein implant in sheep 18 (H and E stain 400x) 
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Fig 3.68: Gram stain of a vegetation from the mitral valve of sheep 18 showed Gram negative 

bacilli. (Gram stain 400x) 
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3.6.8 Nine other sheep had the implant for 6 to 10 months (sheep 3, 5, 6, 10, 13, 14, 16, 17, 

21), after excluding sheep 8 and 9 which had SBE.  Interesting changes were noted at this 

stage. Three sheep (3, 13 and 21) had areas of fibrin overlying the endothelium on the valve 

while there was none seen in the others. The endothelial layer looked normal in all the valves 

with no areas of necrosis as seen in some of the earlier specimens, so it seems as if the areas 

of endothelial necrosis either recovered or these valves did not have endothelial necrosis. The 

original vein layers could still be identified in the vein leaflet with cellular nuclei, elastic fibres 

and collagen in the media (Fig 3.69 and Fig 3.70). Significant intimal fibroplasia was seen in 

the vein (Fig 3.69 and Fig 3.70). 

 

The space between the vein layers was completely obliterated by granulation tissue consisting 

of fibrovascular proliferation (Fig 3.69 and Fig 3.70). The neovascularisation in the fibrous 

tissue between the 2 vein layers was more prominently seen in the vein leaflets that were 

implanted for 6 months and more. It could be seen that blood vessels enter the vein leaflet 

from the annulus side (Fig 3.71 and Fig 3.72). This fibrous proliferation caused significant 

thickening in the leaflets with the maximum thickness varying between 3 and 6.5 mm (Table 

3.5) (Fig 3.73). The orientation of the fibrous proliferation seemed more random and 

disorganised than the organised layers of collagen in the media of the vein or the native valve 

leaflet (Fig 3.70 and Fig 3.74).  

The central suture line at A2 showed good healing in 7 of the 9 implants (Fig 3.75). Sheep 5 

had a proximal defect in the central suture line with calcification on the central suture line and 

on the leaflet edge where the Gore-Tex chordae implanted (Fig 3.80). Sheep 10 showed very 

small defects at the suture line with no calcification. 

 

A foreign body tissue response was noted around the Gore-Tex sutures (Fig 3.76). The 

fibroblasts and collagen fibres were laid down orderly and parallel to the Gore-Tex chordae in 

line with the strain that the chord endures and is covered with an endothelial layer (Fig 3.77). 

The fibrous covering of the Gore-Tex sutures started forming from both ends, the papillary 

muscle side and the leaflet edge side, and then gradually covered the Gore-Tex chordae 

towards the middle of the chordae. The vein implant of sheep 10 (6.5 month implant) shows 

partially covered Gore-Tex chordae and it can be seen how the fibrous covering started from 

the leaflet edge and the papillary muscle (Fig 3.78). It is also interesting to see how the one 

Gore-Tex chordae that has torn loose from the leaflet edge at A1 only has a fibrous covering 

starting from the papillary muscle side, since the leaflet edge could not contribute fibroblasts 
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for the fibrous reaction (Fig 3.78). Sheep 3 (10 month implant) shows complete covering of 

the Gore-Tex chordae with a layer of fibrous tissue (Fig 3.79) 

The pledgets on the Gore-Tex suture also stimulated a foreign body tissue response at the 

papillary muscle (Fig 3.80).  

Calcification was noticed around the Gore-Tex chordae and sutures in 7 of the implants. In 6 

implants, the calcification was limited to some of the Gore-Tex chordae and 4 had calcification 

on the Gore-Tex chordae and where the Gore-Tex sutures were tied to the leaflet (Fig 3.81 – 

Fig 3.86). Sheep 3 (10 month implant) only had focal calcification where the Gore-Tex was 

sutured to the papillary muscle and sheep 10 (6.5 month implant) and 13 (6.4 month implant) 

showed no signs of calcification on histology (Table 3.5).  

Cartilaginous metaplasia was seen in sheep 21 around the Gore-Tex sutures (Fig 3.87).  

Sheep 5 and 6 had osseous metaplasia seen at the valve annulus next to the Gore-Tex 

sutures (Fig 3.88). This is different to the bone formation that can be found in the central  

fibrous body of sheep as part of the os cordis (Frink and Merrick 1974). 

There was no calcification noted in the vein leaflets itself apart from the calcification around 

the Gore-Tex sutures.  

The posterior leaflets (native leaflets) of these sheep also showed some degree of leaflet 

thickening with areas of intimal hyperplasia, presumably because of friction from the Gore-Tex 

sutures or from increased shear stress from regurgitation (Fig 3.89). 
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Fig 3.69: Histological section of the vein implant in sheep 16 (6 month implant) shows the 

original vein between the intimal fibroplasia and underlying fibrous proliferation with 

neovascularization (H and E stain 40x). There is preserved cells, collagen and elastic fibres 

in the original vein wall. 
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Fig 3.70: Histological section of vein leaflet of sheep 3 (10 month implant) (Verhoeff and Van 

Gieson stain 40x). The original vein (black arrow) can be identified between the intimal 

fibroplasia (red arrow) and the fibrous proliferation with neovascularization (yellow arrow). 

Note the preserved layers of elastic fibres (stain black) and the collagen (stain dark purple) in 

the vein wall. The collagen fibres in the fibrous stroma (yellow arrow) show a random, 

disorganised distribution. 
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Fig 3.71: Histological section of the vein leaflet of sheep 16 (6 month implant) at the annular 

suture line shows new blood vessels running between the Gore-Tex sutures (G) from the 

annulus to vein leaflet (black arrows). A foreign body tissue reaction is seen around the Gore-

Tex suture (red arrow) (H and E stain 40x). 
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Fig 3.72: The same section as Fig 3.53 to show both vein walls and the fibrous proliferation 

inbetween (H and E stain 40x). The neovascularization can be seen between the 2 veins and 

on the atrial side of the vein (black arrows). Note intimal fibroplasia on both sides of the leaflet 

(red arrows) 
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Fig 3.73: Histological section of sheep 3 (10 month implant) (Verhoeff and Van Gieson 20x) 

showing the vein attachment site at the annulus. The 2 vein layers can be seen (black arrow) 

and the fibrous stroma with blood vessels cause significant thickening of the vein (yellow 

arrow). 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 
 

168 
 

Fig 3.74: Histological section of the vein leaflet of sheep 16 (6 month implant) to show the 

fibrous proliferation and neovascularization between the vein layers in more detail (H and E 

100x). The capillaries, fibroblasts and collagen fibres are not orderly arranged in a single 

plane, but are arranged randomly in different directions.  
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Fig 3.75: Histological section of the vein leaflet of sheep 14 (6 month implant) shows good 

healing of the central suture line in the A2 part of the anterior leaflet (H and E stain 40x). Two 

Gore-Tex sutures CV 8 are visible that was used as a running suture to join the 2 veins 

together. 
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Fig 3.76: Histological section of Gore-Tex chordae of sheep 13 (H and E stain 200x) shows a 

foreign body reaction to Gore-Tex with macrophage activation, giant cell formation, fibroblast 

activation and fibrosis.  
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Fig 3.77: Histological section of Gore-Tex chordae of sheep 13 (H and E stain 40x) shows the 

endothelial covering of the fibrous tissue around the Gore-Tex chord. Note the arrangement 

of the collagen fibres which are parallel to the Gore-Tex chords and in line with the strain that 

the chord endures. The fibrous tissue is covered with an endothelial layer. 
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Fig 3.78: Mitral valve of sheep 10 (6.5 month implant) shows that the Gore-Tex chordae are 

partially covered with fibrous tissue. The last loop to A1 has torn loose from the leaflet edge 

and is only covered with fibrous tissue from the papillary muscle side. 

 

 

 

 

Fig 3.79: Mitral valve of sheep 3 (10 month implant) shows that the Gore-Tex chordae are 

completely covered with fibrous tissue. 
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Fig 3.80: Histological section of the felt pledget material (P) at the papillary muscle of sheep 

13 (H and E stain 200x) shows a foreign body reaction to the felt pledget with fibroblast and 

macrophage activation and giant cell formation (arrows).  
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Fig 3.81: Histological section of a Gore-Tex chordae of sheep 13 shows the fibrous 

proliferation around the Gore-Tex with fibres running parallel to the chord. Calcification is also 

noted in the Gore-Tex suture (dark purple) (H and E stain 100x). 
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Fig 3.82: Histological section of the Gore-Tex chordae of sheep 21 shows extensive 

calcification (dark purple) in the Gore-Tex (arrows) (H and E 20x). 
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Fig 3.83: Vein leaflet of sheep 5 (implant for 8 months) with a central suture line defect and 

calcification on the leaflet edge where Gore-Tex sutures were placed. There is quite extensive 

calcification of the Gore-Tex chordae. All the calcification is limited to areas on the vein where 

Gore-Tex sutures were placed.  This photograph helps to orientate where histological samples 

were taken for Fig 3.84 – Fig 3.86 

 

 

Fig 3.84: Histological section of vein leaflet of sheep 5 through the central suture line shows 

calcification (dark purple) around the Gore-Tex suture line (H and E stain 20x). The Gore-Tex 

sutures came out during sectioning of the specimen and the open spaces remain. 
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Fig 3.85: Histological section of vein leaflet of sheep 5 where the Gore-Tex chordae was tied 

to the vein leaflet edge (H and E stain 40x). Osseous metaplasia with calcification is noted 

(dark purple). The Gore-Tex sutures came out during sectioning of the specimen and the open 

spaces remain.  
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Fig 3.86: Histological section of the Gore-Tex attachment at the papillary muscle of sheep 5 

shows extensive calcification (dark purple) around the Gore-Tex suture (H and E stain 40 x). 
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Fig 3.87: Histological section of the vein leaflet of sheep 21 at the annulus suture line shows 

cartilaginous metaplasia around the Gore-Tex sutures (H and E stain 100x).  
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Fig 3.88: Histological section of vein leaflet of sheep 6 shows calcified osseous metaplasia 

(dark purple) with bone marrow (arrows) at the annular suture line around the Gore-Tex 

sutures (H and E stain 20x). 
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Fig 3.89: Histological section of the posterior (native) leaflet of sheep 6 shows intimal 

hyperplasia (black arrows) on the atrial side of the leaflet.  

(a) H and E stain (40x) 

 

 

(b) Verhoeff and Van Gieson stain (40x). 
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4. Discussion:  

 

The ideal prosthetic heart valve should have the following characteristics (Davila 1989, Harken 

1989): 

1. It must be safely and easily implantable and the procedure must be reproducible. 

2. Implantation should be secure with a permanent linkage between the prosthesis and 

the host. 

3. It must be a unidirectional valve that, within a physiological flow range, offers minimal 

opening resistance and minimal resistance to forward flow without turbulence. 

4. It must close without regurgitation. 

5. It must not activate the coagulation system.  

6. It must be chemically inert and not damage blood elements. 

7. It must be durable and function normally for the rest of the patient’s life. 

 

The autologous jugular vein of the sheep must be tested against these criteria to see how it 

performed as a heart valve prosthesis. Each of the 7 characteristics tabulated above will be 

discussed in sections 4.1 to 4.7.  

 

4.1 Technical aspects of vein implantation and the reproducibility of the procedure: 

 

Creating a valve leaflet from the jugular vein has a learning curve. It is not easy to implant and 

the technique needs to be refined to make it easier and more reproducible. There is a time 

constraint when making the valve, because the valve must be made intra-operatively after the 

vein is harvested. Unlike valves off the shelf, the valve function cannot be tested before 

implantation, but only afterwards with a saline test and with post-bypass echocardiography. 

This puts the surgeon under pressure, because the final valve function is only known after the 

procedure. Many of the principles of mitral valve repair are used when doing a vein implant 

and, as with repair, the valve must function well with good coaptation on echocardiography 

before leaving the operating room.  A poor functioning valve cannot be accepted and will either 

need to be corrected or replaced with a conventional valve prosthesis. Reproducing a 
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competent valve each time is dependent on the surgeon’s expertize and skill and has a 

learning curve, much like mitral valve repair.  This makes reproducibility difficult and the only 

way to overcome this would be to standardize each step of the valve preparation and 

implantation. The implantation of the chordal support also needs to be standardized to ensure 

reproducibility. 

 

The vein ischemic time from harvesting to implantation needs to be as short as possible. In 

our study the vein ischemic time was about 3-4 hours. When the ischemic time of the vein is 

longer than 90 minutes before transplant, there is significant endothelial cell loss with exposed 

subendothelial collagen fibers that may aggregate and activate platelets and trigger vascular 

inflammation (Zou et al 2012). It is important to handle the vein graft with care during 

harvesting with minimal instrument contact to the vein wall to avoid mechanical injury. (Davies 

and Hagan 1995, Owens 2010). Optimal vein procurement in an appropriate physiological 

storage solution will minimize chemical injury and hypothermia at 20°C may reduce ischemic 

injury. (Davies and Hagan 1995, Rosenfeldt et al 1999, Zou et al 2012).  

 

Harvesting of the left internal jugular vein gives enough tissue for 2 layers of vein leaflet which 

is large enough for an anterior mitral leaflet. A template with the shape of a normal mitral leaflet 

will help with the shaping of the leaflet. In this study a 28mm mitral ring sizer was used to make 

sure the vein leaflet was large enough to replace the anterior leaflet. It is important to suture 

the edges of the 2 layers together meticulously and to make sure all vein branches are closed 

with a suture to avoid any hematoma formation between the layers which was seen in 4 sheep. 

Gore-Tex CV-8 was used in this study because Gore-Tex sutures have been used 

successfully on the aortic valve leaflet to strengthen the leaflet free edge during aortic valve 

sparing surgery (David and Armstrong 2010).  

 

The vein leaflet is sutured to the annulus with a continuous suture and care must be taken to 

avoid injuring the aortic leaflet on the ventricular side. The free edge of the leaflet needs to be 

supported with chordae and we used artificial Gore-Tex chordae. The Gore-Tex chordae must 

have the correct length to avoid either prolapse or tethering of the leaflet. It is not easy to 

reproduce the correct chordal length for each valve. We used 6 Gore-Tex loops to support the 

leaflet edge from each papillary muscle and used the measured chordal distance of the native 

valve, before excision, as a guide. The Gore-Tex loops should be fashioned so that the loops 

on the outside are longer than the middle loops otherwise the leaflet edge will not be supported 
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in one plane (Fig 4.1). If the Gore-Tex loops are of equal length and the distance of the first 

and last loops are far apart, the leaflet edge will be curved. This may create a central segment 

that is prolapsing or a peripheral segment that is tethered (Fig 4.2). This could be a reason 

why some of the chordae tore loose from the leaflet edge in this study (Fig 4.3). It could also 

explain the mitral regurgitation (MR) at the commissures because of leaflet tethering.  We 

attempted to tailor the length of the loops for each valve, but did not get it right each time. 

Sheep 3 is an example of an implant where the chordal lengths were tailored well (Fig 4.4). 

 

 

Fig 4.1: Gore-Tex loops of equal length (in this case 15mm) cannot support the leaflet edge 

in one plane if the distance between the first and last loops are too far apart. The central part 

may either be prolapsing or the tension on the furthest loops will be too much, creating 

tethering and possible rupture of the chord or leaflet edge.  
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Fig 4.2: Part of the vein anterior leaflet is prolapsing because the Gore-Tex chordal length 

from the posterior papillary muscle is incorrect. The chordae from the anterior papillary muscle 

is correct with good leaflet coaptation. 
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Fig 4.3: Mitral valve of sheep 10 (6.5 month implant) shows that the Gore-Tex chordae to A2 

are under tension. The last loop to A1 has torn loose from the leaflet edge from increased 

tension. 
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Fig 4.4: Mitral valve of sheep 3 (10 month implant) shows that the Gore-Tex chordal lengths 

were tailored well with no increased tension noted on any particular chords. Most of the 

chordae are covered with fibrous tissue and endothelium. 

 

 

 

The outer loops must be made longer to overcome the problem of possible tethering. The 

length that is needed can be worked out by Pythagoras’ theory: In a right angled triangle the 

square of the longest side is equal to the squares of the other 2 sides (Fig 4.4). Therefore, if 

the length of the middle chordae is 15mm and the distance to the furthest chordae is 10mm, 

the length of the furthest chordae should be 18mm (Fig 4.5). To ensure the accuracy of this 

measurement it is important that the middle chordal loop is perpendicular from the leaflet edge 

of the papillary muscle.  

 

 

Fig 4.4: The theory of Pythagoras states that a² + b² = c² 

 

 

 

 

 

 

a 

b 

c 

 
 
 
 
 
Gore-Tex chordae to A3  
 
 
 
 
 
Gore-Tex chordae to A2 
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Fig 4.5: The length of the end loops can be worked out from the middle loop if the distance 

between the loops is known. Note the 2 right angled triangles in the diagram. In reality the 

triangles might not be an exact right triangle, but should be very close if the middle chord is 

perpendicular to the leaflet edge. This should create a leaflet edge that is supported in one 

plane with no areas of tethering or prolapse. 

 

 

 

One way to make the attachment of chordal support quicker, more uniform and reproducible 

would be to have ready-made Gore-Tex chordal loops of different lengths and a range of 

lengths in the same loop set as in Fig 4.5. It is possible to have more than one set of loops on 

each papillary muscle, but space is limited on the papillary muscle and attaching more loops 

increases the risk of damaging the papillary muscle. If a complete valve is implanted in this 

way with anterior and posterior leaflets, it would be preferable to have just 4 Gore-Tex loops 

attached, 2 from the anterior papillary muscle heads and 2 from the posterior papillary muscle 

heads. If it is possible to manufacture Gore-Tex chords that divide into 3 chords that fan out 

at the distal end, it would be much easier to support the leaflet edge in one plane (Fig 4.6). 

This configuration would mimic the native mitral valve chordae and with only 3 chords it would 

be possible to have 9 attachment sites to the leaflet edge. It would then be possible to support 

half of the anterior leaflet and the commissural leaflet from one set of chordae (Fig 4.6). 
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Fig 4.6: If Gore-Tex chordae can be manufactured to split into 3 distal segments that fan out, 

it would mimic the native mitral valve chordae. Three chordae can have 9 attachment sites on 

the free edge of the valve.  

 

 

 

The Gore-Tex sutures that was used to tie the Gore-Tex loops to the leaflet edge leaves a 

knot on the leaflet edge. This knot can cause friction to the opposite leaflet, as was found in 

some cases of our study (Figs 3.23 and 3.26). It can also cause an area of mitral regurgitation 

if the knot interferes with proper coaptation between the leaflets. One way to avoid this is to 

always leave the knot on the ventricular side of the leaflet.  

 

When we removed the native anterior mitral valve leaflet, we had to cut and remove the 

secondary chordae. Sectioning of secondary chordae does not produce mitral regurgitation, 

but they do serve an important function in maintaining left ventricular size, geometry and 

function (Silbiger and Bazaz 2009). The strut chordae also connects the musculature of the 

left ventricle (at the papillary muscles) to the mitral annulus (at the fibrous trigones) and 

maintains papillary-annular continuity (David 1994). This helps to maintain the D-shaped 

annulus during systole which increases the coaptation area of the leaflets. Without secondary 

chordae to support the annulus shape, the annulus dilates and tension increases on the 

primary chordae. Fig 4.7 shows secondary chordae on the native mitral valve supporting the 
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central part of the anterior mitral valve leaflet up to the annulus. This secondary chordae is 

connected with the strong network of collagen fibres in the fibrosa layer of the leaflet which 

transmits the tension to the whole leaflet (Fenoglio et al 1972). In contrast, the vein implants 

in this study had no secondary chordal support (Fig 4.8). This caused billowing of the central 

part of the leaflet and the D-shape of the mitral annulus is lost during systole with less 

coaptation surface between the anterior and posterior leaflets (Fig 4.9). All the tension is 

transferred to the primary chordae, with more chance of primary chordal rupture or dehiscence 

from the leaflet edge. Secondary chordae in the sheep implants would have helped to take 

tension off the primary chordae and might have resulted in less primary chordal failure.  

 

We considered and tried to place secondary chordae to the belly of the leaflet, but there was 

a risk that these sutures would pull out and create a perforation in the central part of the leaflet. 

This is because the Gore-Tex sutures puts all the tension on the attachment site of the leaflet 

and does not distribute the tension evenly throughout the fibrosa layer like native chordae 

would. A possible way to support the vein leaflet with secondary chordae would be to place a 

row of 3 chordal loops on each side of the central part of the vein leaflet body. This could help 

to distribute tension evenly throughout the leaflet with less chance of leaflet perforation (Fig 

4.10). It will complicate the implant procedure, but it is clear from this study that secondary 

chordae serve an important function to decrease tension on the primary chordae, prevent 

billowing of the leaflet and maintain papillary-annular continuity in the long term.  

 

An annuloplasty ring during mitral valve repair helps to maintain the systolic annular size and 

shape and prevents annular dilatation (Carpentier 1983, Carpentier et al 1995). It increases 

the coaptation surface of both leaflets and helps to decrease tension on the primary chordae, 

secondary chordae and the anterior leaflet belly (Jimenez et al 2005, Nielsen et al 2011). We 

elected not to place an annuloplasty ring with the implants to minimize foreign tissue and to 

allow for growth of the annulus. We wanted to see what the host response would be to the 

vein leaflet without the possible reaction to the annuloplasty ring. The disadvantage of a ring 

is that you fix the mitral annulus in a systolic position and you lose the diastolic enlargement 

of the mitral annulus during ventricular filling (Ormiston et al 1981, Lansac et al. 2001, Timek 

et al. 2003).  

 

Secondary Gore-Tex chordae and an annuloplasty ring may help to improve the durability of 

the vein leaflet by decreasing the tension on the primary chordae and leaflet belly. It will also 
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improve the coaptation surface and prevent billowing of the vein leaflet. It may be necessary 

to add one of these techniques, maybe both, to improve long term function of the vein leaflet. 

This will have to be evaluated further.  

 

Fig 4.7: Ventricular surface of the native anterior mitral valve leaflet showing secondary 

chordae implanting into the belly of the anterior mitral valve leaflet (Lam et al 1970). The whole 

anterior leaflet is supported by chordae tendinae from the annulus to the leaflet edge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aortic mitral curtain 
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the central part of the leaflet 
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Fig 4.8: Ventricular view of vein implant shows no secondary chordae supporting the central 

part of the leaflet and the anterior annulus. This causes billowing of the leaflet and the D-shape 

of the mitral annulus is lost during systole. 

 

 

 

Fig 4.9: Billowing of vein leaflet without support from secondary chordae. 

 

 

 

 

 
 
 
 
 
 
 
Aortic mitral connection where the vein 
leaflet was sutured to the annulus 
 
Aortic valve 
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Fig 4.10: A possible way to support the vein leaflet with secondary chordae. Three Gore-Tex 

chordae are placed on each half of the leaflet from the annulus to the midportion. 

 

 

 

 

Only the anterior mitral leaflet was replaced in this study, but when a complete mitral valve is 

replaced it will be necessary to create anterior, commissural and posterior leaflets from vein 

tissue. The native mitral valve leaflets actually consist of a single continuous structure which 

hangs into the left ventricle like a veil with indentations at the commissures (Fig 4.11 and Fig 

4.12). The height of the different leaflets and the insertion length of each leaflet at the annulus 

is known from anatomical studies and is shown in Table 4.1 (Carpentier 2010). One can create 

a mitral valve from a continuous length of vein by using a template with the measurements of 

a normal mitral valve (Fig 4.13). To illustrate the feasibility of this concept, a standard valve 

size is used (32mm annuloplasty), but the templates can be adapted to accommodate different 

valve sizes from a 26 mm to a 34 mm annuloplasty ring, depending on the patient’s size. 
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Fig 4.11: Left ventricular view of the mitral valve which is opened up to show the continuity of 

the mitral valve leaflets (Carpentier et al 2010). P1, P2 and P3 of the posterior leaflet are 

shown.  

 

 

 

 

 

Fig 4.12: The ventricular side of a porcine mitral valve, highlighting the mitral leaflets, chordae 

tendineae, and papillary muscles. The valve was excised from an explanted heart and cut in 

half at the P2 scallop of the posterior leaflet (Rabbah et al 2013). Notice how the mitral valve 

leaflets hangs from the annulus as a continuous curtain. The leaflet height increases at the 

anterior and posterior leaflets and are smallest at the commisures. 

 

Anterior mitral leaflet 

Chordae tendinae 
 
 
Papillary muscle 
 
 
 
Posterior mitral leaflet  

P3 
P2 P1 
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Table 4.1: The normal dimensions of mitral valve leaflets (Carpentier 2010). 

 Antero-lateral 

Commissural 

leaflet 

Anterior leaflet Posteromedial 

Commissural 

leaflet 

Posterior laeflet 

Insertion length 

at the annulus 

(mm) 

12 32 17 55 

Leaflet height 

(mm) 

8-9 23 8-9 P1: 10 

P2: 14 

P3: 10 
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Fig 4.13: A concept to shape a complete mitral valve leaflet from a saphenous vein 

 

 

 

 

 

 

Saphenous vein of 3mm diameter cut open lengthwise through 
the side branches on one side (red line) to have fewer branches 
in the middle of the vein leaflet that need to be sutured.  

The vein opened lengthwise with its side 
branches sutured. 

Three pieces of vein opened up and 
sutured together.  

3 mm 

9mm 

8mm 

22mm 

 13mm 

Shape of leaflets cut out with a template 
and avoiding the suture lines  
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In humans, the saphenous vein of one upper and lower leg will give sufficient surface area to 

create a whole mitral valve. The diameter of saphenous veins vary between 3 mm and 5.5 

mm depending on the dilatation of the vein (Stooker et al 2003). The circumference of a 3mm 

vein would be about 9 mm (3 x 𝝅) so after opening the vein lengthwise, the width will be 9 

mm. A normal anterior mitral leaflet height measures 23mm, hence 3 veins (3 x 9 = 27 mm) 

would give enough surface area for the anterior leaflet. The normal posterior leaflet height 

measures 14 mm and 2 veins (2 x 9 = 18mm) would be sufficient for the posterior leaflet. The 

commissural leaflet height is 8mm. After suturing the vein together and closing the vein 

branches, the new vein leaflet can be tailored according to the template. Care must be taken 

to not cut over any suture lines (Fig 4.13). 

 

The saphenous vein in an adult has a thicker wall than the jugular vein of sheep because the 

vein has adapted to the hydrostatic pressure in the legs. The jugular vein in our study 

measured 0.3-0.4 mm and the saphenous vein wall normally measures twice as much from 

0.6-0.9 mm (Fig 4.14) (Golbasi et al 2005). The saphenous vein may have sufficient strength 

to use as a single layer when creating a valve leaflet.  This would simplify the procedure if one 

can create a valve from a single layer of vein tissue, but only one side of the leaflet will be 

covered by endothelium with implantation.  
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Fig 4.14: Histological section of a saphenous vein to show the thickness of the vein wall 

(Verhoeff and Van Giesen 40x). The media of the saphenous vein is much thicker than the 

media of the jugular vein in sheep and consists of smooth muscle cells, interlaced with 

collagen and some elastic fibres. 

 

 

 

The interconnected sheets of collagen and layers and tubes of elastin give normal valve tissue 

viscoelasticity, anisotropy and highly non-linear mechanics. Anisotropy describes the 

direction-dependent properties of materials and valve tissue show a larger strain in the radial 

direction than in the circumferential direction (Sacks and Yoganathan 2007). The strain on the 

anterior mitral leaflet is 3 to 4 times more in the radial direction than in the circumferential 

direction (Fig 4.15) (Sacks et al 2006).  

 

 

 

Medi
a 0.95 mm 
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Fig 4.15: Mitral valve strain measured with piezo-electric transducers on the anterior mitral 

valve leaflet during the cardiac cycle. Peak radial strain is 16-22% (red arrow) and peak 

circumferential strain is 2.5-3.3% (black arrow) (Sacks et al 2006). 
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Jugular vein tissue also shows anisotropy and has a larger longitudinal strain (extension ratio) 

than circumferential strain (Wesly et al 1975). This may be an important observation when 

using the vein as a valve leaflet. The jugular vein in this study was used lengthwise in the 

radial direction when the valve leaflet was fashioned, so it was more likely to deform in the 

radial direction when subjected to systolic pressure (Fig 4.16). This mimics the anisotropy 

which is seen in the mitral leaflet (May-Newman and Yin 1995, Sacks et al 2006).  

 

 

Fig 4.16: The jugular vein has a larger longitudinal strain (extension ratio) than circumferential 

strain (Fig 4.18) and was sutured lengthwise to the annulus when creating the leaflet. The vein 

leaflet stretched more in the radial direction (red arrow) than the circumferential direction 

(black arrow), mimicking the anisotropy of the anterior mitral valve leaflet. 
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In contrast to the internal jugular vein, the saphenous vein shows more circumferential strain 

than longitudinal strain (Wesly 1975).  When the saphenous vein is used to shape a mitral 

valve it would be better to use it lengthwise in the circumferential direction to mimic the mitral 

valve anterior leaflet. This would also be more practical and require less suture lines (Fig 4.17) 

 

 

Fig 4.17: In contrast to the jugular vein, the saphenous vein has more circumferential strain 

(red arrow) than longitudinal strain (black arrow) (Fig 4.18). When creating a mitral leaflet from 

a saphenous vein it would be better to suture it lengthwise in the circumferential direction to 

mimic the anisotropy of the anterior mitral valve leaflet. It would also be more practical to 

suture a saphenous vein in this direction because the vein has a smaller diameter than the 

internal jugular vein and if sutured circumferentially it would result in fewer suture lines. 

 

 

 

 

 

Vein tissue loses most of its elasticity at arterial pressure (40 cm H20 for jugular veins and 

120cm H2O for saphenous veins) when used as an arterial graft, because its elastic fibres are 

stretched to the maximum and the inextensible collagen fibres come into play (Wesly et al 
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1975).  Mitral valve tissue has exceptionally high strain because the tissue cycles from a 

completely unloaded state in diastole to the high tension during left ventricular systole (Sacks 

and Yoganathan 2007). When using a vein graft as a valve leaflet the pressure that the leaflet 

is subjected to vary from 0-150 mm Hg in the normal human, which is very different from when 

it is used as an arterial graft where the pressure in the vein would be 80–120 mm Hg. At the 

lower pressure, from 0-120 mm Hg, the elastic properties of venous tissue could affect the 

way the vein performs as a valve leaflet. 

 

The mechanical properties of the jugular vein, saphenous vein and the anterior mitral leaflet 

all show stress-strain relations that are highly nonlinear, as is characteristic of most soft 

biological tissues (Wesly et al 1975, May-Newman and Yin 1995, Stooker et al 2003, Sacks 

et al 2006, Martinez et al 2010). The stress-strain curves all show the same pattern with a 

transition zone where the curves plateau (Fig 4.18). Jugular veins reach this transition zone 

at a pressure of 40 cm H2O and saphenous veins reach the transition zone at 120cm H2O. 

The maximum strain or extension ratio of the 3 tissues differ with jugular vein having the 

highest extension ratio and anterior mitral valve leaflet the lowest extension ratio (Fig 4.18). 

The maximum jugular vein extension ratio is about 1.65 in the longitudinal direction and 1.5 in 

the circumferential direction (Wesly et al 1975). The maximum saphenous vein extension ratio 

is about 1.5 in the longitudinal direction and 1.6 in the circumferential direction (Wesly et al 

1975). The maximum anterior mitral valve leaflet extension ratio is 1.18 in the circumferential 

direction and 1.34 in the radial direction (May-Newman and Yin 1995). 

 

The increased elasticity of venous tissue needs to be taken into account when creating a valve 

leaflet from a vein. An anterior mitral leaflet with a leaflet height of 23 mm would have a 

maximal length of 30 mm (23 x 1.3) under strain. A jugular vein of 23 mm height would stretch 

to 38 mm (23 x 1.65) under the same strain according to its mechanical properties,   and a 

saphenous vein would stretch to about 37 mm (23 x 1.6). Under strain, the vein leaflet 

stretches about 8 mm more than the anterior mitral valve leaflet.  This can be an advantage 

when the extra length of the leaflet gives redundant length at the coaptation zone and 

increases the coaptation area, but it is a drawback when the extra vein length is billowing into 

the atrium. We did not compensate for vein leaflet stretch when creating the size of the leaflet 

but hoped that the stretch would increase the leaflet area and help with coaptation.  The 

elasticity of the vein was seen with echocardiography. In diastole it retracts and shortens and 

during systole, with increasing pressure, the vein stretches, which helps with better coaptation, 

but also resulted in billowing of the vein leaflet. Secondary chordae could prevent excess 
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billowing of the vein leaflet by supporting the leaflet belly and in effect would pull more of the 

vein leaflet into the coaptation zone. An annuloplasty ring would decrease the antero-posterior 

dimension of the annulus which would place more vein leaflet into the coaptation area if the 

primary chordal length is correct (Jimenez et al 2005, Nielsen et al 2011).  

 

Fig 4.18: The stress-strain relationship of the jugular vein, saphenous vein and the anterior 

mitral leaflet is demonstrated with pressure (cm H20) on the x-axis and extension ratio or strain 

(λ) on the y-axis. Note the non-linear stress-strain relationship up to the maximal strain. The 

anterior mitral valve leaflet extension ratio is less than the saphenous vein and jugular vein 

(Wesly et al 1975, May-Newman and Yin 1995, Sacks et al 2006). 

 

Jugular vein circumferential strain =  

Jugular vein longitudinal strain =  

Saphenous vein circumferential strain =  

Saphenous vein longitudinal strain =  

Anterior mitral valve leaflet radial strain =  

Anterior mitral valve leaflet circumferential strain = 1.18 (not on chart) 

 

Stellenbosch University  https://scholar.sun.ac.za



 
 
 

204 
 

4.2 The nature of the linkage between the vein leaflet and the host. 

 

The vein is autologous living tissue and showed healing at the annulus suture line with 

formation of normal granulation tissue and vascular ingrowth into the vein tissue. There was 

no inflammatory response noted at the vein-host interface and the endothelial layer of the vein 

was in continuity with the endocardial cells at the suture line. A foreign body response was 

noted around the Gore-Tex sutures (Fig 4.19). 

 

Fig 4.19: Sheep 21 (6 month implant) shows endothelial continuity at the vein-annulus 

interface (red arrow) with normal granulation tissue with vascularisation over the vein (black 

arrow). A foreign body tissue reaction is noted around the Gore-Tex sutures (yellow arrows) 

(H and E stain 40x). 
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This healing process differs from the healing process that is normally seen between a valve 

prosthesis and the host annulus which shows a foreign body tissue response. The Dacron ring 

of a mechanical or tissue valve becomes encapsulated by healthy scar tissue from infiltrating 

fibroblasts that links the prosthesis to the host (Braunwald and Morrow 1969, Davila 1989). 

Homografts and stentless porcine valves show a host cellular response at the host-graft 

interface with mild chronic inflammation and  gradual infiltration of the prosthetic aortic root by 

poorly cellular organizing granulation tissue (scar or pannus) (Smith 1967, Siddiqui et al 2009). 

This granulation tissue formation or pannus is due to a persistent neointimal development from 

a chronic inflammatory response which provokes proliferation of myofibroblasts and 

extracellular matrix and can extend onto the valve leaflets and cause stiffening of the leaflets 

and even obstruction of mechanical valves (Fig 4.20) (Teshima et al 2003). The aortic root 

part of the prosthesis can also calcify and stiffen (Siddiqui et al 2009). In contrast, the vein 

leaflet in this study healed with minimal scar tissue and fibrosis at the suture line for up to 10 

month follow up.  

 

 

Fig 4.20: Pannus formation under a mechanical aortic valve caused obstruction of one leaflet 

and increased gradients over the valve. The valve was implanted for 23 years.  

 

 

 

The leaflet edge is supported by Gore-Tex chords which are attached to the papillary muscles 

and this is an advantage over other mitral prosthetic devices which are only connected to the 

host at the mitral annulus. Studies have shown that mitral valve replacement with chordal 

 
 
Pannus formation 
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preservation has a beneficial effect on postoperative left ventricular performance and survival 

by maintaining continuity between the mitral annulus and the papillary muscle (David et al 

1995, Okita et al 1995, Straub et al 1997).  

 

The normal mitral valve can only function well if all the parts of the mitral complex are working 

together: the left atrium, the mitral annulus, mitral leaflets, chordae tendinae, papillary muscle 

and the left ventricle.  Mitral valve tissue has exceptionally high strain, more than any of the 

other heart valves, because the tissue cycles from a completely unloaded state in diastole to 

high tension during left ventricular systole (Sacks and Yoganathan 2007). The normal mitral 

valve leaflets need support from chordae tendinae which are attached to the papillary muscles 

to maintain ventricular annular continuity, left ventricular geometry and to support the leaflets 

during valve closure (David 1994, Nielsen 2003, Silbiger and Bazaz 2009). The papillary 

muscles shorten during systole and this maintains a constant distance between the papillary 

muscle tips and the mitral annulus as the ventricle contracts. The papillary muscles act as a 

shock absorber of the mitral valve complex, keeping the tension on the chordae tendinae 

constant. (Joudinaud et al 2007).  

 

In this study Gore-Tex chordae were placed to support the leaflet edge during systole. 

Secondary chordae were not placed, but could help to maintain ventricular-annular continuity 

and left ventricular geometry. Current porcine and pericardial valves that are placed in the 

mitral position do not last as well as in the aortic position, because the leaflets are 

unsupported, experience much larger strain during left ventricular systole and degenerate 

earlier (Burdon et al 1992, Vongpatanasin et al 1996). The Gore-Tex chordae mimic the 

chordae tendinae of the normal mitral valve and are needed for normal valve function. If the 

length of the Gore-Tex chordae are  correct with good valve coaptation, the stress on the 

leaflets is reduced. 

 

  

4.3 Opening resistance and forward flow across the valve 

 

The vein leaflet has minimal opening resistance and showed good diastolic flow without 

turbulence on colour flow. The opening valve area was 2.8 cm² on average, the same as the 

native valve. If an annuloplasty ring has to be implanted to improve valve coaptation, the 
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diastolic gradient will increase because the diastolic mitral annular area is then effectively 

reduced to the systolic mitral annular area. (Timek and Miller 2001).  A 30 mm Carpentier-

Edwards annuloplasty ring reduces the mitral annular area down to 3.3 cm² in humans from a 

normal area of 6.5 cm² (Yamaura et al 1995). The effective orifice area of a 31 mm St Jude 

mechanical valve is 2.02 cm² (Magni et al 2007), therefore even if an annuloplasty ring has to 

be implanted with the vein implant, it would still give a larger mitral valve orifice area with better 

diastolic flow than any currently available mitral valve prosthesis. 

 

4.4 Valve closure and competence. 

  

It was possible to create a competent valve in this study by replacing the anterior leaflet with 

a vein leaflet. Out of 20 sheep the post-operative echocardiography showed 14 had trace to 

mild mitral regurgitation (MR), 2 had mild to moderate MR, 3 had moderate MR and 1 had 

moderate to severe MR.  

 

The MR was almost always at one or both commissures. At the commissures the surface area 

of leaflet coaptation is the smallest between the vein leaflet and the commissural leaflet and 

the margin for error in chordal length is small.  The MR could have been from incorrect Gore-

Tex chordal length at the commissure with leaflet restriction if the chordae were too short or 

leaflet prolapse if the chordae were too long (Fig 4.21). It may also have been from the change 

in shape of the anterior mitral annulus during systole without the support of the secondary 

chordae. Normally the anterior mitral annulus would move closer to the posterior mitral 

annulus during systole, but without the support of the secondary chordae, this movement is 

less (David 1994, Lansac et al. 2001; Timek et al. 2003).  
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Fig 4.21: Billowing of anterior vein leaflet and Gore-Tex chords that are too long causes 

prolapse of the leaflet with mitral regurgitation. 

 

 

 

If there is only a small area of coaptation between the leaflets, the tension on the primary 

chordae is increased (Fig 4.22) (Rabbah et al 2013). It is tempting to increase the size of the 

leaflet to create a larger area of coaptation, but this will not help if the excess leaflet billows 

into the left atrium (Fig 4.23).  The belly of the leaflet needs support to prevent prolapse and 

to pull more leaflet into the coaptation zone.  Secondary chordae will help to achieve this and 

also support the anterior annulus (Fig 4.23). A mitral annuloplasty will also support the anterior 

annulus and the leaflet belly (Jimenez et al 2005, Nielsen et al 2011). 
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Fig 4.22: With a small area of coaptation between the leaflets, the tension on the primary 

chordae is increased. 

 

 

 

 

Fig 4.23: Billowing of the anterior vein leaflet with poor coaptation between the vein and 

posterior leaflet causing near prolapse. Notice how secondary chordae could support the vein 

leaflet, prevent billowing and pull more vein leaflet into the coaptation zone. 

 

  

 
Billowing of anterior vein 
leaflet with poor coaptation 
and near prolapse 
 
 
 
Ideal position of the vein 
leaflet with support from 
secondary chordae 
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The initial mild MR can lead to annular dilatation, which decreases the coaptation between 

leaflets further and increases primary chordal tension (Kunzelman et al 1997). This will lead 

to progression of the MR which was seen in our study at the 6 month post-implant 

echocardiography. Out of 11 sheep, 3 had mild MR, 1 had mild to moderate MR, 4 had 

moderate MR and 3 had moderate to severe MR. When the tension on the chordae becomes 

too much, the chordae tears out of the leaflet, resulting in leaflet prolapse (Fig 4.24). This was 

noticed in 7 sheep, but 2 of these had infective endocarditis.  

 

Fig 4.24: Gore-Tex suture tearing out of vein leaflet edge causing severe prolapse and 

regurgitation. 

 

 

 

 

It is important to make sure that each valve that is implanted has no regurgitation with a large 

surface of coaptation between the leaflets. With good coaptation between the leaflets, the 

tension on the primary chordae would be less and the valve would be more durable. (Fig 4.24 

and Fig 4.25) (Rabbah et al 2013). In mitral and aortic valve repairs it has been shown that 

good leaflet coaptation height after valve repair results in better long term outcome. (Yamauchi 

et al 2005, Aicher et al 2011) 
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Fig 4.25: Optimal leaflet coaptation between leaflets reduces tension on the primary chordae. 

 

 

 

 

Fig 4.26: A valve with a good coaptation length between leaflets will be more durable. 
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4.5 Activation of the coagulation system. 

 

The vein leaflet is covered with endothelium which protects the leaflet against thrombus 

formation since normal vascular endothelial cells exhibit anticoagulant and antithrombotic 

properties (Underwood et al 1993). Intimal fibroplasia was seen in the vein leaflets but the 

intima was covered with endothelium (Fig 4.27). Potential areas for thrombus formation would 

be the suture lines and the Gore-Tex suture material and knots. In our study, all the early vein 

implants (0-3 days) showed focal areas of endothelial necrosis with overlying fibrin. These 

early endothelial changes are also seen when veins are transplanted as arterial grafts (Davies 

and Hagan 1995, Cavallari et al 1997, Kalra and Miller 2000). These areas could be potential 

sites of thrombus formation because the underlying collagen and smooth muscle cells are 

exposed. Twelve out of 17 vein implants implanted for longer than a month showed a normal 

endothelial lining, so it seems like the focal areas of necrosis recovered in the implants with 

time. The 5 implants that had areas of intimal necrosis after a month had an underlying cause 

such as infective endocarditis (SBE) (3 cases), a large hematoma between the vein layers (1 

case), a hematoma and SBE (1 case)  and a leaflet edge that was under severe tension from 

annular and left ventricular dilatation (1 case).  

 

The sheep in this study did not receive any anticoagulation therapy after surgery and thrombo-

embolic events were not observed postoperatively. No organised thrombi were observed on 

any of the valves at post mortem, but focal areas of fibrin were seen on 4 of the long term 

implants.  The sheep’s brain, spleen and kidneys were not examined for signs of distal emboli 

and infarcts.  

 

If a human trial is done, it would be advisable to give anti-coagulation therapy for 3 months 

until the sutures endothelialize and the areas of focal necrosis heal. The European Society of 

Cardiology (ECS) and the European Society of Cardiothoracic Surgery (EACTS) recommend 

that patients with a bioprosthetic mitral valve or mitral valve repair receive 3 months anti-

coagulation therapy after surgery (Vahanian and Iung 2012). The 2014 American Heart 

Association (AHA) and the American College of Cardiology (ACC) guideline for the 

management of patients with valvular heart disease also recommend 3 months anti-

coagulation therapy after a bioprosthetic mitral valve replacement or mitral valve repair 

(Guyton et al 2014). These guidelines are based on studies that have shown the risk of 

thrombo-embolic events is highest in the first 3 months after all types of mitral valve surgery 
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with the highest incidence in the first month (2% at 30 days and 3% at 180 days). This data 

includes mechanical valves and the rate is generally lower for mitral valve repair and 

bioprosthetic valves. There are no randomized trials to show the safety of omitting warfarin in 

the first 3 months for mitral valve repair, but there is evidence from retrospective studies that 

show no difference in thrombo-embolic events after mitral valve repair or biological mitral valve 

replacement when patients are given Warfarin or only aspirin in the first 3 months (Colli et al 

2010, Schwann et al 2013). Many centres do not adhere to the current guidelines and omit 

warfarin therapy in the first 3 months for mitral valve repair or biological mitral valve 

replacements in patients with sinus rhythm (Ruel et al 2004, Schwann et al 2013). Our own 

policy is to give aspirin to all mitral valve repairs and only warfarin without aspirin for those 

patients in atrial fibrillation. We do not give warfarin routinely to all mitral valve repairs in the 

first 3 months, but will weigh up the risk of thrombo-embolism, bleeding and the patients’ socio-

economic background, compliance and ability to manage warfarin therapy safely.  

 

Fig 4.27: Histological section of sheep 5 (8.3 month implant) shows intimal fibroplasia (red 

arrow) with overlying endothelium (black arrow). The vein (blue arrow) and underlying fibrous 

stroma (yellow arrow) is also seen (H and E stain 100x).  
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One of the major benefits of an autologous vein as a mitral valve bioprosthesis would be the 

ability to omit long term anticoagulation therapy because of a low thrombo-embolic risk. The 

risk of thrombo-emboli should be no more than a mitral valve repair or a biological mitral valve 

prosthesis. Patients with rheumatic heart disease who need valve surgery are younger 

patients (under 40 years) and often live in poor socio-economic conditions where good control 

of warfarin therapy may not be available or easily accessible (Marijon et al 2007, Nkomo 

2007). These patients would benefit most from a biological valve that does not need 

anticoagulation therapy and does not develop structural valve failure like current biological 

valves in young patients (Vongpatanasin et al 1996, Une et al 2014).  

 

4.6 Tissue response to the vein leaflet and Gore-Tex chordae and effect on blood 

elements. 

 

 

The vein leaflet is living autologous tissue and does not stimulate an immune response. The 

host sees the vein as its own tissue and incorporates it with a normal healing pattern.  

 

Gore-Tex or expanded polytetrafluoroethylene (ePTFE) sutures are known to function well as 

artificial chordae for mitral valve repair with good long term function of up to 20 and 25 years 

(Salvato et al 2008, David et al 2013). Experimental work with ePTFE artificial chordae was 

started in the 1980’s in search of a suitable material to replace elongated or ruptured chordae 

tendinae (Revuelta et al 1989, Zussa et al 1990).  

 

Expanded polytetrafluoroethylene (ePTFE) or Gore-Tex is a thermoplastic polymer and has 

outstanding physical, chemical, mechanical and thermal properties. It is flexible, has high 

tensile strength, and shows resistance to fatigue (Bortolotti 2012). It is known to be resistant 

to degradation and has been used for many years as a biomaterial in vascular grafts and heart 

valves with good biocompatibility. (Williams 2008). Biocompatibility is the ability of a 

biomaterial to perform its desired function with respect to a medical therapy without eliciting 

any undesirable local or systemic effects in the recipient, but generating the most appropriate 
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beneficial cellular or tissue response in that specific situation (Williams 2008). Gore-Tex is not 

inert but elicits a foreign body tissue response with macrophage activation, foreign body giant 

cell production and fibrous tissue formation around the Gore-Tex (Fig 4.28) (Williams 2008). 

This reaction is beneficial to give strong, durable anchorage of the Gore-Tex sutures to the 

papillary muscle and the leaflet edge. The fibrous tissue that covers the Gore-Tex suture is 

covered with endothelium which prevents thrombus formation. (Fig 4.29) The fibrous tissue 

around the Gore-Tex shows an organised arrangement of the collagen fibres which run 

parallel to the suture and is in line with the mechanical strain that the chord endures (Fig 4.29). 

This arrangement mimics the collagen fibres in the native chordae tendinae and other load 

bearing organs such as ligaments, tendons, cartilage and bone where the load bearing fibrils 

are laid down in the path of the applied mechanical strain (Fenoglio et al 1972, Wang and 

Thampatty 2005, Flynn et al 2010).  This helps to strengthen the Gore-Tex chord. 

 

The initial experimental results using ePTFE sutures as artificial chordae in sheep and dogs 

in the 1980’s showed that the microporous, nonabsorbable, monofilament suture healed well 

at the papillary muscle connection and at the anterior leaflet edge. The histology showed that 

the sutures were progressively and uniformly covered with fibrous tissue and a neointimal 

cellular sheath without signs of calcification up to 13 months of implantation (Revuelta et al 

1989, Bortolotti et al 2012). These experimental results led to the clinical application of ePTFE 

sutures to repair elongated or ruptured chordae tendinae with good early and long term results 

(David et al 1989, Zussa et al 1990, Salvato et al 2008, David et al 2013).  The sutures are 

durable in most cases, but there have been a few reported cases of calcification and rupture 

of ePTFE sutures from 6 to 14 years after implant (Butany et al 2004, Bortolotti et al 2012). 
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Fig 4.28: Histological section of Gore-Tex chordae of sheep 13 (H and E stain 200x) shows a 

foreign body reaction to Gore-Tex with macrophage activation, giant cell production, fibroblast 

activation and fibrosis.  
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Fig 4.29: Histological section of Gore-Tex chordae of sheep 13 (H and E stain 40x) shows 

the endothelial covering of the fibrous tissue around the Gore-Tex chord. Note the 

arrangement of the collagen fibres which are parallel to the Gore-Tex chords and in line with 

the mechanical strain that the chord endures.  

 

 

 

 

 

Seven implants showed areas of dystrophic calcification on and around the Gore-Tex sutures 

and chordae. The calcification was seen from as early as 4 months and calcification was also 

noticed in some of the vegetations in the valves with infective endocarditis. We were surprised 

to find dystrophic calcification in and around the Gore-Tex sutures in so many implants, 

because calcification was not described in the initial experiments with ePTFE artificial chordae 

in sheep and dogs for up to 13 months implantation (Revuelta et al 1989, Bortolotti 2012). We 

are unsure why some Gore-Tex chordae in our study showed none or very little calcification 

while others showed quite extensive calcification. One possible explanation is that thrombi, 

fibrin and infective vegetations attach to the Gore-Tex which then calcify. Devitalized cells and 
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cell remnants are important foci for calcification (Valente et al 1985, Tamura et al 1995, 

Flameng et al 2005, Schoen and Levy 2005). This theory is supported by the fact that in some 

specimens the calcification is seen more in areas of turbulence where high shear stress could 

cause platelet activation and aggregation which leads to fibrin and foci of cell debris on the 

chordae which then calcify (Fig 4.30). 

 

This calcification is a concern for the longevity of the Gore-Tex sutures because it causes 

stiffening and rupture.  Calcification of ePTFE vascular grafts have also been described and 

the presence of calcification was significantly related to the duration of the vascular 

implantation (Fig 4.31) (Metha et al 2011). Calcium deposits within the interstices of grafts can 

stiffen the graft and lead to fracture and graft failure. 

 

 

Fig 4.30: Mitral valve of sheep 5 (8 months implant) shows a large defect at the medial 

commissure where mitral regurgitation would have caused a turbulent jet and high shear 

stress (black circle). There is also a perforation in the central suture line (red circle) which 

would have caused a turbulent jet through the perforation. Notice how the calcification (red 

arrows) is concentrated on the side of the mitral regurgitation at the A2 and A3 Gore-Tex 

chordae while A1 is relatively spared. 

 

 

 

 

A1 
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Fig 4.31: Calcification in an extended polytetrafluoroethylene (ePTFE) vascular graft (Metha 

2011). 

 

 

 

 

Mechanical valves are known to create turbulent flow with increased shear stress across the 

valves which can cause platelet activation and aggregation and hemolysis of red blood cells 

(Yoganathan et al 2005).  The same increased fluid stresses can also cause damage to 

endothelial cells with exposure of extracellular matrix proteins which can lead to the 

adherence, activation and aggregation of platelets. Stented bioprosthetic valves are mildly 

stenotic compared to native valves because of stent restriction to leaflet opening, construction 

of the leaflets and stiffness of the fixed tissue (Yoganathan et al 2004).  This also creates 

turbulent flow cross the valve with increased shear stress.  

 

The flow across the vein leaflet was not turbulent on echocardiography and very similar to the 

native valve with a laminar diastolic flow pattern. Turbulence does occur with mitral 

regurgitation which was seen on echocardiography at the commissures. This turbulence 

causes high shear stress which can lead to focal areas of denuded endothelium and can 

become a source for the development of thrombo-emboli and infective vegetations.  We did 

not notice denuded endothelium in the long term implants, but intimal fibroplasia on the vein 

leaflet and posterior native leaflets was seen, which may have been from increased shear 

stress from mitral regurgitation. Focal areas of fibrin was found in 4 of the long term implants 

(6 months) overlying the endothelium.  These areas of fibrin and the infective endocarditis 
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which was seen in 4 cases may have been from increased shear stress from mitral 

regurgitation. 

 

4.7 Durability of the vein leaflet. 

 

It was encouraging to see how the vein leaflet adapted morphologically and functionally to its 

new surroundings in the heart as a mitral valve leaflet substitute. Focal areas of endothelial 

necrosis was noticed in all the early implants as is seen in veins that are used for arterial 

bypass grafts (Davies and Hagan 1995, Cavallari et al 1997, Kalra and Miller 2000). The later 

implants showed intimal fibroplasia with normal endothelial covering so it seems that the focal 

areas of endothelial necrosis heals with time. This was seen in 12 of the 17 implants after 1 

month and is evidence that the vein leaflet remains a living viable tissue valve inside the heart 

that can repair itself and adapt.  The intimal fibroplasia that was observed in the vein leaflets 

is also seen in veins when it is used as arterial bypass grafts (Spray and Roberts 1977). Intimal 

hyperplasia is also seen in pulmonary autograft leaflets with thickening of the leaflets when it 

is placed in the aortic and mitral position and it is an effect of adaptive remodelling from 

increased tensile and shear stress on the leaflets (Buch et al 1971, Schoof et al 2006). The 

thickening of the leaflets may enhance mechanical strength, but it influences valve function by 

restricting leaflet extensibility (Schoof et al 2006). The 5 vein implants that had focal areas of 

necrosis of the vein layers after 1 month either had SBE, a hematoma between the vein layers 

with pressure on the vein tissue or extreme tension on the leaflet edge from severe annular 

dilatation.  

 

We chose to use a double layer of vein leaflet for 2 reasons: to ensure endothelium on both 

sides of the leaflet and to increase the strength of the leaflet. The jugular vein of the sheep is 

0.3-0.6 mm thick and has a larger extension ratio than native mitral valve tissue (Wesly et al 

1975, May-Newman and Yin 1995, Sacks et al 2006). Using a double layered vein leaflet 

improved the strength of the leaflet, but it created potential problems. The 2 vein layers were 

sutured together at the leaflet edges with Gore-Tex CV-8 and the space between the 

adventitial vein layers creates a potential space. In the early implants it was filled with fibrin 

and the space was later obliterated by fibrous proliferation and neovascularization. This fibrous 

proliferation caused significant thickening of the leaflets (2.25mm-6.5mm) and histologically 

the collagen fibres showed a random orientation in different directions, unlike the organised 

pattern in native mitral valve tissue. The reactive fibrous proliferation could be a response to 
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the abnormal forces on the vein leaflet in the heart since distortion of connective tissue is 

known to stimulate cellular replication and the synthesis of collagen (Buch et al 1971, Schoof 

et al 2006). These thickened leaflets were still flexible, but not as flexible as the original thin 

vein leaflets at implantation.  The original vein layers were still clearly visible in the long term 

implants with preserved interstitial cells (myofibroblasts), collagen and elastic fibres (Fig 4.32).  

 

Fig 4.32: Histological section of the vein implant in sheep 16 (6 month implant) shows the 

original vein between the intimal fibroplasia and underlying fibrous proliferation with 

neovascularization (H and E stain 40x). There are preserved interstitial cells (myofibroblasts), 

collagen and elastic fibres in the original vein wall. 
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Although the fibrous proliferation between the vein leaflets caused thickening of the leaflets, it 

did not cause shortening or shrinkage of the leaflets. The leaflet height was unchanged and 

although it was not possible to demonstrate growth in the valve, there was no shrinkage or 

contraction of the leaflet. This is different to the fibrous reaction that was observed with fresh 

autologous pericardium. When fresh autologous pericardium was used as a heart valve leaflet 

and was subjected to the hemodynamic forces in the heart, the pericardium contracted and 

formed scar tissue. This was most likely mediated by pericardial cells that were stimulated by 

the abnormal forces on the pericardial substrate with very complex bending, compressive 

stresses and shear stress (Fabiani 1995, Vesely 2003). This experience with autologous 

pericardium demonstrated that the interstitial cells respond unpredictably when it is subjected 

to new or abnormal loading conditions (Vesely et al 2003). The scarring problem was solved 

by treating the autologous pericardium with glutaraldehyde, but this made the pericardium an 

acellular structure which degenerates with time (Fabiani 1995, Vesely et al 2003, Al Halees et 

al 2004).  

 

Hematoma formation was seen between the vein layers in 4 implants and this caused vein 

necrosis in 3 implants because of increased pressure between the vein layers. This is another 

potential problem of the double layered vein. Blood can enter the potential space between the 

leaflets, either at the suture line around the edges or through a vein branch opening that is not 

completely closed. We tried to avoid this complication by suturing the free edges and the vein 

branches carefully. It may be better to use the vein as a single layer to avoid the complications 

of the potential space between the layers. The saphenous vein wall is twice as thick as the 

jugular vein and may be strong enough to be used as a single layer to shape a leaflet (Fig 

4.13).  This will avoid hematoma formation between the layers and may also prevent the 

excessive fibrous proliferation between the leaflets that caused the leaflet thickening. If the 

vein is used as one layer, the endothelium will only be covering the leaflet on the intimal side, 

leaving the adventitial side uncovered, but with time an endothelial layer should form over the 

adventitia. Further investigation is needed to see if a saphenous vein can be used as a single 

layer and if the adventitial layer will remodel and endothelialize. The suture retention of 

saphenous vein must also be tested and compared to that of the mitral valve leaflet to see if 

it will be able to hold Gore-Tex sutures for chordae on the leaflet edge (Konig et al 2009).  
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The central suture line healed well in 17 of the 21 sheep and is evidence that the vein leaflet 

is viable and has the ability to repair itself. One implant showed a perforation in the proximal 

central suture line and one implant showed small defects in the central suture line. Two of the 

specimens showed tearing of the distal central suture line and 7 implants showed tearing of a 

primary Gore-Tex chord from the leaflet edge of which 3 had infective endocarditis as a cause.  

It is difficult to attribute the ruptured Gore-Tex chordae from the leaflet edge purely to poor 

suture retention of the vein tissue, because most of the Gore-Tex chordae healed well to the 

leaflet edge and did not tear out.  Many of the Gore-Tex chordae that pulled loose from the 

leaflet edge could be the result of extreme tension on the valve leaflet from annular dilatation 

and decreased coaptation which increased tension on the primary chordae.  An annuloplasty 

ring and secondary chordae may prevent this extreme tension on the leaflet edge as 

discussed.  

 

The sheep model is a good model to test calcification of a bioprosthetic heart valve, because 

of the accelerated rate of calcification that is seen in the juvenile sheep model (Schoen et al 

1994, Ozaki et al 2004, Flameng et al 2005). Calcification is more common in younger age 

and more pronounced in areas of increased mechanical stress and strain with the highest 

calcium concentrations shown in the cusps of mitral valve implants where the mechanical 

stress is higher than in the aortic or pulmonary position (Flameng et al 2005). The amount of 

calcification seen in a bioprosthesis implanted in a sheep for 3 months correlates well with the 

amount of calcification seen in a bioprosthesis implanted in an elderly person for 10 years 

(Ozaki et al 2004). In this study calcification was seen around the Gore-Tex chordae and 

sutures from 4 months after implantation.  

 

Calcification was only seen in 4 vein leaflets and this calcification was only seen around Gore-

Tex sutures while the rest of the leaflets were free from calcification. This is encouraging, 

because it means that the vein leaflet is viable and able to manage calcium transport and 

prevent it from accumulating in the cell membranes and forming hydroxyl apatite (calcium 

phosphate) crystals. The living vein is also able to prevent the spread of calcification, 

presumably by secreting inhibitors of apatite crystal growth. Fibroblasts have been shown to 

inhibit the calcification of bone cells when cultured in the same dish in vitro (Ogiso et al 1991).  

 

Histological evidence for the vein’s viability is seen from the normal endothelium and 

preserved myofibroblasts and connective tissue in the vein leaflets with preservation of the 
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original vein layers. The myofibroblasts possess characteristics similar to the valvular 

interstitial cells found in native heart valves (Filip et al. 1986, Della Rocca et al 2000). The 

absence of calcification in the vein leaflet demonstrates that the vein leaflet is able to regulate 

calcium transport and mineral deposition for up to 10 months. These results show that 

autologous venous tissue should last for at least 10 years in a human heart without significant 

calcification if the accelerated calcification in the sheep model can be extrapolated to humans 

(Ozaki et al 2004).      

 

The calcification that was seen in this study around the Gore-Tex sutures and the Gore-Tex 

chordae is a concern, because this may limit the durability of the valve and lead to Gore-Tex 

rupture. Other biological materials such as autologous pericardium and xenopericardium have 

failed to perform as chordae tendinae (Bortolotti et al 2012). Fascia lata performed poorly as 

a valve leaflet substitute with early failure and will not be a good option to use as chordae 

tendinae (Ionescu and Ross 1969, Silver et al 1975). Tissue engineering of chordae could 

create chordae that had comparable extensibility, but had 10 times more stiffness and the 

failure strength was 10 times less than normal chordae (Shi and Vesely 2004). There is 

currently no ideal substitute for the unique structure and function of native chordae tendinae 

with its central core of tightly packed collagen, surrounded by elastic fibres and covered with 

an endocardial cell lining (Fenoglio et al 1972). Gore-Tex chordae is the best substitute we 

have at present with good long term results and durability in mitral valve repair (Salvato et al 

2008, David et al 2013). 
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5. Conclusion: 

 

The purpose of this study was to evaluate whether an autologous vein graft can be used to 

replace an anterior mitral valve leaflet.  

 

The first question was whether it is technically possible to create a functioning mitral valve 

leaflet from autologous vein supported by Gore-Tex chordae. This study showed that it was 

possible to create a functioning valve leaflet with trace to mild mitral regurgitation (MR) in 14 

out of 21 sheep. This figure could be improved by ensuring accurate Gore-Tex chordal length 

of the primary chordae to avoid prolapse or tethering of segments of the vein leaflet. The 

coaptation length between the vein leaflet and the posterior leaflet can be increased with better 

valve closure by adding secondary chordal support with Gore-Tex chordae and by adding a 

ring annuloplasty. This should improve the commissural MR that was found in many of the 

valves. It is important to create a valve that is competent with a large surface of coaptation to 

ensure long term function. Mild to moderate MR can progress with time and cause annular 

and left ventricular dilatation. One of the reasons for increased MR with time, was that the 

mitral annular-papillary continuity was lost when we cut the secondary chordae and removed 

the native anterior mitral valve leaflet. A ring annuloplasty and secondary Gore-Tex chordae 

will support the annulus and restore annular papillary continuity and make the insertion of the 

valve more reproducible and durable. 

 

A double layer of jugular vein was used to increase the leaflet strength and to ensure an 

endothelial covering on both sides of the leaflet. The double layer made insertion of the valve 

more difficult with more suture lines on the edge and it created a potential space between the 

leaflets where a hematoma could form. This was seen in 4 cases with necrosis of the vein 

layer overlying the hematoma in 3 cases. The fibrous proliferation with neovascularization that 

was seen between the 2 vein layers caused significant thickening in the vein leaflet, but the 

leaflet remained flexible. A human saphenous vein has a wall thickness which is twice as much 

as the jugular vein wall and may be strong enough to use as a single layer when used as a 

vein leaflet in humans. This will simplify implantation and avoid the potential space between 

the 2 vein layers. It is uncertain how the adventitial layer will remodel and endothelialize and 

whether the fibrous proliferation and thickening will be less when used as a single layer. The 

suture retention of a saphenous vein will have to be tested and compared to the anterior mitral 

valve leaflet to see if a single layer saphenous vein could hold the Gore-Tex chordae on the 
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leaflet edge. It may be necessary to support the edge with an extra strip of vein tissue or vein 

pledget where the chordae are implanted.  

 

The second question was whether the vein will be able to withstand the stress and strain of 

deformation when used as a valve leaflet and maintain its flexibility. The vein leaflet has a 

larger extension ratio than mitral valve tissue and stretches more under pressure. This was 

seen with the amount of billowing of the leaflet on echocardiography. The amount of billowing 

was not exclusively from increased vein tissue elasticity, but also because the vein leaflet was 

not supported by secondary chordae like the native anterior mitral valve leaflet. The vein leaflet 

developed intimal fibroplasia and fibrous proliferation between the 2 adventitial layers as a 

response to the increased stress upon the tissue. This caused leaflet thickening, but the vein 

remained flexible up to 10 months on echocardiography without leaflet shortening or 

contracture.  The suture retention and healing of the Gore-Tex chordae to the leaflet edge was 

good in most cases and when some of the Gore-Tex chordae pulled out from the leaflet edge 

(7 cases), there was an underlying cause such as infective endocarditis or excessive tension 

from annular dilatation and poor coaptation. The progression of mitral regurgitation (MR) that 

was found in the sheep is a concern, but is most likely from technical reasons such as lack of 

mitral annular support, lack of secondary chordae and poor coaptation than from primary vein 

tissue failure. Further studies with mitral annular support and secondary chordae should clarify 

whether the progressive MR was from technical failure or vein tissue failure.   

 

The third question was whether a vein will remain viable in the intracardiac environment when 

used as a valve leaflet and be able to adapt and grow. The histological results showed that 

the vein leaflets had focal areas of endothelial and media necrosis in the early implants, while 

the older implants showed viable endothelium and the underlying vein layers clearly showed 

viability with myofibroblasts, collagen and elastin. This, with the healing pattern seen in the 

suture lines and lack of calcification in the leaflet, is evidence that the vein leaflet remains 

viable with the ability to repair itself and to morphologically adapt.   

 

Some of the Gore-Tex chordae showed calcification in 7 specimens from as early as 4 months 

which was a surprising finding, because other studies found no calcification of Gore-Tex 

chordae in sheep for up to 13 months (Revuelta et al 1989, Bortolotti 2012). One possibility 

for this could be regurgitant flow causing increased shear stress with platelet activation and 

aggregation on the Gore-Tex which create foci which can calcify. This calcification can lead to 
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chord rupture and valve failure and is a concern for valve durability. Gore-Tex chordae is the 

best substitute for chordae tendinae that is currently available with good long term results of 

up to 25 years in human mitral valve repairs (Salvato et al 2008, David et al 2013). 

 

The autologous vein supported by Gore-Tex chordae fulfil many of the criteria of the ideal 

valve prosthesis. It is a living valve that remains viable and functional for up to 10 months in a 

sheep model and showed the ability to morphologically adapt. There was a normal healing 

pattern between the vein leaflet and the annulus and no calcification was seen in the vein 

leaflets apart from the calcification around Gore-Tex sutures in some specimens. Growth 

potential was not shown, but there was no shrinkage of the leaflet as is seen with autologous 

pericardium and the leaflet retains flexibility and the ability to deform.  Anticoagulation is not 

necessary in the long term, since it is a biological valve with a viable endothelial layer. Diastolic 

flow across the valve is laminar and mimics the native mitral valve. Less turbulence means 

lower shear stress and less damage to endothelium and blood elements.  

 

It was encouraging to see some of the mitral valves functioning well with only mild MR for up 

to 10 months. There were late valve failures in this study, but many of these failures could be 

a result of an imperfect technique during replacement and not because of tissue failure from 

the vein. The ideal valve should be easily implantable and reproducible and the insertion of 

the vein leaflet does not satisfy these criteria yet. Before one can embark on a clinical study 

to replace the mitral valve with autologous vein tissue, it will be necessary to refine and 

standardize the technical aspects to ensure that a competent valve is created each time that 

will be durable and reproducible. An annuloplasty ring and secondary Gore-Tex chordae will 

support the vein leaflets by creating a larger surface of coaptation and will result in better long 

term valve function. 

  

Other possible clinical applications for autologous vein could be for a patch repair of a valve 

leaflet perforation. It might also be useful for leaflet extension of the posterior or anterior mitral 

valve leaflet for rheumatic valves or ischaemic mitral regurgitation where autologous 

pericardium is currently used (Zegdi et al 2007, De Varennes et al 2009). In the aortic valve it 

could also be used for leaflet extension for congenital or rheumatic aortic valves where 

pericardium is currently used (Grinda et al 2002, Alsoufi et al 2006). The vein is autologous 

living tissue and should perform better than autologous pericardium or xenograft pericardium. 
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Autologous vein may also be useful to create a monocusp valve during a Tetralogy of Fallot 

repair when a transannular patch is needed. Currently bovine pericardium, Gore-Tex 

membrane or porcine intestinal submucosa (CorMatrix®) is used for valvuloplasty but it is 

prone to early degeneration and progressive regurgitation (Bacha 2014, Turrentine et al 2002). 

Autologous vein should do very well in the pulmonary circulation because of the lower 

pressure. A drawback of using autologous vein is the extra leg incision if the saphenous vein 

is harvested and in a child the upper leg vein will need to be used. This will have to be 

discussed with the patient’s family and needs to be done in a clinical trial. Unfortunately in 

many cases it is not known beforehand whether a patch will be necessary and harvesting of 

a vein while on bypass is not always practical.  

 

Apart from mitral valve replacement, vein tissue could also be used to replace the aortic or 

pulmonary valves. These valves have a smaller surface area and enough vein can be 

harvested to create 3 semilunar leaflets. By using templates to cut out 3 semilunar valve 

leaflets from the vein, it would be possible to suture these leaflets to the aortic or pulmonary 

annulus, almost like a stentless valve. The aortic valve closes with diastolic pressure which is 

less than the systolic pressure that the mitral valve has to face. The feasibility of these 

techniques will have to be tested in large animal studies. 

 

This study demonstrated that autologous vein has the potential to be used as a valve leaflet 

substitute, because it remained viable in the intracardiac position for up to 10 months and was 

able to withstand the stress and deformation of a valve leaflet. Histologically it showed the 

ability to heal and to morphologically adapt to the new environment. 
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