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ABSTRACT 

Solvents are valuable chemicals, which are conventionally recovered through energy intensive 

processes such as distillation. In lube oil dewaxing processes, four times more solvent relative 

to solute is required. Solvents, such as toluene and methyl ethyl ketone (MEK), are commonly 

used in the dewaxing process. Due to high-energy costs, potential alternatives to recover 

these solvents are investigated. An alternative to solvent recovery through distillation is the 

use of Organic Solvent Nanofiltration (OSN) technology, which incorporates nanofiltration 

membranes designed to separate solvent-oil mixtures. The Max DeWax operation using OSN 

technology demonstrated successful recovery of solvent, while providing lower energy usage 

in solvent recovery. The research documented in this thesis focused on solvent recovery, 

membrane performance, transport modelling and techno-economic evaluation. 

The main aim of the project was to investigate the viability of OSN separation as an alternative 

method to conventional process separation. OSN viability evaluation was accomplished 

through demonstrating the recovery of solvent-oil mixtures using novel membranes. 

Experimental investigations performed in this study focused on recovery of four commercially 

available solvents used in lube-oil dewaxing processes, namely toluene, methyl ethyl ketone 

(MEK), methyl-isobutyl ketone (MIBK), di-chloro-methane (DCM) and the solute species which 

represented long-chain paraffin solutions, n-hexadecane (C16H34). Duramem™150, 

Duramem™200 and Puramem™280 membranes were used for the recovery process. 

Operating parameters, which include pressure, solute feed concentration, solvent type and 

membrane type, were varied and the effects thereof on membrane performance were 

investigated. 

The investigation also focused on describing the mass transfer through membranes using 

transport models, such as solution-diffusion and pore-flow transport models, using Matlab 

R2013a. Modelling of the mass transfer of MEK and toluene, well-known commercial solvents 

used in lube-oil dewaxing and processing, was done according to two pore-flow models (PF-

1, PF-2) and two solution-diffusion models (SD-1, SD-2) using Duramem™150, 

Duramem™200 and Puramem™280 membranes. Furthermore, the permeability of 

hexadecane was regressed to fit the experimental data. 

The viability of OSN operations in comparison to distillation operations was determined 

through a preliminary techno-economic evaluation using simulation software (Aspen Plus 

V8.8) to describe the mass and energy and provide supporting data for use in cost evaluation. 

Energy consumption, equipment performance as well as operating and capital costs were 

investigated. 
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The main contributions made by this study are threefold: (i) to demonstrate the successful 

recovery of solvent-oil mixtures using novel membranes through experimentation, (ii) to 

describe the transport through membranes using transport models and (iii) to investigate the 

economic feasibility of OSN systems, using simulation software. 

i) Recovery of solvents from oil mixtures

This study found that the recovery of MEK from solute was the most successful while providing 

high membrane fluxes and high rejections over the rest, followed by DCM. Overall, MEK and 

n-hexadecane, at feed concentrations above 20 wt/wt% separated using Duramem™150 

membranes, provided >90% rejection, while permeating at fluxes of approximately 12 

L.mˉ².hrˉ¹. Membrane performance and solvent behaviour of permeating species were found 

to be affected mainly by applied pressure, chemical properties that describe polarity such as 

di-electric constant and dipole moment as well as properties such as molar volume, viscosity 

and solubility parameters.  

ii) OSN modelling and simulation

The transport of pure solvent and binary solvent-solute mixtures was described using transport 

models based on literature. Using MEK and toluene, the two-parameter pore-flow model (PF-

2) and the classical solution-diffusion model (SD-1) provided relatively good predictions for

the transport through the polar stable membranes such as Duramem™150 and 

Duramem™200, but poor predictive models for non-polar stable membranes such as 

Puramem™280. The PF-2 model and SD-1 model provided Pearson coefficients of >0.988 

and >0.996, respectively, for the Duramem™ series membranes. The SD-1 model was further 

improved after regressing the estimated permeability parameter of hexadecane which 

provided an optimized Pearson coefficient of 0.9995. 

iii) OSN solvent recovery

For both OSN and distillation systems, while ignoring the cost of raw material, It was found 

that the energy required to recover a ton of MEK solvent by OSN (i.e. 2.5 kWh.tonsolvent_product
-

1) is approximately 50 times less than that of distillation (135 kWh.tonsolvent_product
-1) with energy 

recovery incorporated, which also results in a lower carbon footprint. However, by using the

Nelson-Farrar cost index, it was found that the capital costs for OSN ($0.85 million) in 2015 

were approximately ~25% of the capital cost for distillation (i.e. $3.36 million). The operating 

costs, while ignoring the cost of raw material and having a total operating feed capacity of 1 

ton.hr-1, were approximately $0.075 million.yr-1 for OSN operation and $0.155 million.yr-1 for 

distillation operation with a recycling stream and heat integration, while providing solute 

rejections as high as 97%. Total operating costs of OSN are less than half the amount required 
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for distillation with heat integration, where energy and maintenance costs differ significantly 

between the two processes.  
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SAMEVATTING 

Oplosmiddels is waardevolle chemikalieë wat op gerieflike wyse hernu kan word deur energie 

intensiewe prosesse soos distillasie. In smeerolie ontwassingsprosesse word vier keer meer 

oplosmiddel relatief tot opgeloste stof benodig. Oplosmiddels, soos tolueen en 

metieletielketoon (MEK), word algemeen gebruik in die ontwassingsproses. Weens hoë 

energie kostes, word potensieel alternatiewe prosesse vir die herwinning van hierdie 

oplosmiddels ondersoek. ‘n Alternatief vir oplosmiddel herwinning deur distillasie is die gebruik 

van Organiese Oplosmiddel Nanofiltrasie (OSN) tegnologie, wat nanofiltrasie membrane 

inkorporeer wat ontwerp is vir die skeiding van oplosmiddel-olie mengsels. Die Max Dewax 

proses, wat OSN tegnologie gebruik, is in staat om oplosmiddel suksesvol te herwin terwyl die 

proses ook laer energieverbruik getoon het. Die navorsing wat beskryf word in hierdie tesis 

fokus op oplosmiddel herwinning, membraan werksverrigting, transmembraanvervoer 

modellering en tegno-ekonomiese evaluering van die OSN proses. 

Die hoofdoel van die projek was om die lewensvatbaarheid van OSN as ‘n alternatief tot 

konvensionele prosesse te ondersoek. Die evaluering van OSN lewensvatbaarheid is voltooi 

deur die herwinning van oplosmiddel-olie met nuwe tipes van moderne membrane te 

demonstreer. Die eksperimentele ondersoeke wat uitgevoer is het gefokus op die herwinning 

van vier kommersieel beskikbare oplosmiddels deur gebruik te maak van smeerolie 

ontwassingsprosesse. Die vier oplosmiddels waarvan die herwinning ondersoek is, was 

tolueen, metieletielketoon (MEK), metiel-isobutiel ketoon (MIBK) en dichloormetaan (DCM). 

Die opgeloste stof, wat langketting paraffien oplossings verteenwoordig het, was n-

heksadekaan (C16H34). DuramemTM150, DuramemTM200 en PuramemTM280 membrane is 

gebruik in die herwinningsproses. Bedryfsparameters insluitende druk, opgeloste stof 

toevoerkonsentrasie, oplosmiddeltipe en membraantipe, is gevarieer en die effek daarvan op 

die membraan werksverrigting is ondersoek. 

Die ondersoek het ook daarop gefokus om die massa-oordrag deur membrane te beskryf deur 

gebruik te maak van vervoermodelle, soos oplossing-diffusie en porie-vloei modelle in Matlab 

R2013a. MEK en tolueen is bekende kommersiële oplosmiddels wat gebruik word in smeerolie 

ontwassing en prosessering. Modellering van die massa-oordrag van hierdie twee 

oplosmiddels is gedoen volgens twee porie-vloei modelle (PF-1, PF-2) en twee oplossing-

diffusie modelle (SD-1, SD-2), deur gebruik te maak van DuramemTM150, DuramemTM200 en 

PuramemTM280 membrane. Verder is regressie gedoen van die membraan deurlaatbaarheid 

van heksadekaan om ‘n passing met die eksperimentele data te verkry. 

Die lewensvatbaarheid van die bedryf van OSN sisteme in vergelyking met distillasie sisteme 

is vasgestel deur ‘n voorlopige tegno-ekonomiese evaluasie te doen. Hiervoor is simulasie 
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sagteware (Aspen Plus V8.8) gebruik om die massa en energie te beskryf en om 

ondersteunende data te genereer vir gebruik in koste evaluasie. Energieverbruik, toerusting 

werksverrigting asook bedryfs- en kapitale kostes is ondersoek. 

Die hoof bydraes wat gemaak is deur hierdie studie is drieledig: (i) demonstrasie deur 

eksperimentering van die suksesvolle herwinning van oplosmiddel-olie mengsels deur gebruik 

te maak van nuwe, moderne membrane, (ii) die beskrywing van die vervoer deur membrane 

deur gebruik te maak van vervoermodelle en (iii) die ondersoek van die ekonomiese 

lewensvatbaarheid van OSN sisteme deur gebruik te maak van simulasie sagteware. 

i) Herwinning van oplosmiddels uit olie mengsels. 

Hierdie studie het gevind dat die herwinning van MEK uit oplossing die suksesvolste was, 

gevolg deur dié van DCM. Hoë membraanvloei en verwerpings is hiervoor verkry. MEK en n-

heksadekaan is geskei deur DuramemTM150 membrane by toevoerkonsentrasies bo 20 

gew./gew.% en >90% verwerping is gelewer teen deursypelingsvloeie van ongeveer 12 L.M-

2.h-1. Daar is gevind dat die membraan werksverrigting en oplosmiddelgedrag van die 

deurdringende spesie hoofsaaklik geaffekteer is deur toegepaste druk, chemiese eienskappe 

wat polareit beskryf soos diëlektriese konstante en dipoolmoment, asook eienskappe soos 

molêre volume, viskositeit en oplosbaarheidsparameters.  

ii) OSN modellering en simulasie. 

Die vervoer van suiwer oplosmiddel en binêre oplosmiddel-opgeloste stof mengsels is beskryf 

deur gebruik te maak van vervoermodelle wat gebasseer is op wetenskaplike literatuur. Met 

MEK en tolueen as oplosmiddels, het die twee-parameter porie-vloei model (PF-2) en die 

klassieke oplossing-diffusie model (SD-1) goeie voorspellings verkry vir die vervoer deur polêr 

stabiele membrane soos DuramemTM150. Die voorspellingsvermoë van die modelle vir die 

vervoer deur nie-polêr stabiele membrane, soos PuramemTM280, was egter swak. Die PF-2 

model en SD-1 model het Pearson koëffisiënte van >0.988 en >0.996, respektiewelik, verkry 

vir die DuramemTM reeks membrane. Die SD-1 model is verder verbeter deur regressie van 

die geskatte deurdringingsparameter van heksadekaan wat ‘n geoptimiseerde Pearson 

koëffisiënt van 0.9995 gelewer het. 

iii) OSN oplosmiddel herwinning. 

Vir beide OSN sowel as distillasie stelsels, terwyl die koste van rou materiaal geïgnoreer word, 

daar is gevind dat die energie wat nodig is om n ton oplosmiddel te herwin van OSN (2.5 

kWh.tonsolvent_product
-1) ongeveer 50 keer minder is as dié van distillasie (135 kWh.tonsolvent_product

-

1) met energie herwinning ingesluit , wat ook ‘n laer koolstofvoetspoor tot gevolg het. Daar is 

egter gevind, deur gebruik te maak van die Nelson-Farrar koste-indeks, dat die kapitale koste 
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van OSN ($0.85 miljoen) in 2015 ongeveer ‘n kwart was van die kapitale koste van distillasie 

($3.36 miljoen). Die bedryfskoste, terwyl die koste van rou material geïgnoreer word en 'n 

totale bedryfskapasiteit van 1 ton.hr-1 het, was ongeveer $0.075 miljoen.j-1 vir die OSN sisteem 

en $0.155 miljoen.j-1 vir die distillasie sisteem met ‘n hersirkuleringstroom en hitte integrasie, 

wat verwerpings vir opgeloste stof so hoog soos 97% gelewer het.  Die totale bedryfskoste 

van OSN minder as die helfte is van dié van distillasie met hitte integrasie, met energie- en 

instandhoudingskostes wat die meeste verskil tussen die twee sisteme.
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Chapter 1: Introduction 

 

Overview 

This chapter provides a broad overview of the research of this investigation and is divided into 

three subsections, beginning with background and motivation for this investigation in Section 

1.1. The aims and objectives of the research are formulated in Section 1.2, followed by a 

discussion of the layout and scope of the thesis in Section 1.3. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



2 
 

1.1. Background and motivation 

Lubricant production, with more than 100 operations internationally, is one of the most energy 

intensive processes in the refining industry [21]. Furthermore, lubricating oil is the most 

commonly used lubricant that is produced by the refining of crude oil to a variety of different 

oil base stocks. Lubricant production illustrated in Figure 1.1 consists of two main intermediate 

steps, namely the fractional distillation process and the oil-dewaxing process.  

 

Figure 1.1: main Intermediate processes in lubricant production from crude oil. 

Significant amounts of solvent are fed through the process, making solvent recovery an 

attractive option towards reducing expenses on operating costs. Solvent recovery from the oil-

dewaxing step shown in Figure 1.1 is commonly practiced in industry [2].  Conventionally, the 

waxy feed in the dewaxing process is initially mixed with solvent before being chilled to desired 

filtration temperatures, allowing the waxy feed components to precipitate. The feed mixture 

enters a rotatory drum separator, which then separates the feed into slack wax and oil filtrate. 

The oil filtrate, which consists mostly of solvent, is sent through distillation operations for the 

recovery of solvent from the oil filtrate [1]. 

Solvent recovery by distillation is a conventional method used in the separation of mixtures by 

creation of two or more coexisting zones, which differ in temperature, pressure and 

composition as well as phase state [3]. High-energy input, capital costs and large space 

requirements are however associated with distillation processes. Additionally, distillation has 

the risk of bottlenecking the flow through processes involving slow filtration of waxy 

components [4]. Distillation can be hydraulically limited or may be constrained by the heat 

input through steam heaters or fired furnaces [5]. The drawbacks of distillation such as high-

energy requirements are a concern that should be dealt with by identifying novel separation 

technologies. 

One novel separation technology, which has been brought to the industrial level, is membrane 

separation, specifically focusing on Organic Solvent Nano-filtration (OSN). OSN technology 

has been a promising new separations technology for processes like solvent recovery in lube 

oil dewaxing [6,7]. Over the past few years researchers have investigated this novel 

technology with regard to operation performance, energy consumption and economic 

feasibility. This technology is competing with conventional separation operations as an 

alternative separation technology. OSN technology, combined with the initial distillation 

Crude oil 
Neutral 

base stock

Oil base 

stock

Fractional distillation Oil-dewaxing
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operation, has the potential to debottleneck the flow through the dewaxing process while 

recovering solvent at (or near) dewaxing temperatures. Recycled solvent at dewaxing 

temperatures decreases filter feed viscosity, resulting in higher filtration rates, which reduces 

the risk of bottlenecking throughout the dewaxing process [5].  Initially the focus had been on 

the performance of membranes, such as in the work of White and co-workers [8], where 

membrane performances were tested for the recovery of solvents. Many other research 

groups [9-11] have since illustrated that the performance of membrane separation of solvents 

from solutes is highly competitive with that of distillation performances.  

Previously available commercial membranes (i.e. Starmem™) have been sufficiently modelled 

[13,14]. However, currently available commercial membranes, such as Duramem™, 

Puramem™ as well as PerVap [15,16], have been shown to provide better performance than 

the Starmem™ membranes. However, modelling of these membranes have not been done 

sufficiently, and thus a consensus agreement on the best model is not available. 

The obstacles associated with OSN systems are commonly found in the design phase of 

industrial applications. One challenge in the design phase includes choosing a suitable 

membrane for the specific system in question (i.e. toluene recovery from dewaxed-oil mixture). 

Another challenge is describing the effect of operating conditions on the performance of a 

system. This obstacle was observed in the work of Silva et al. [12], where a solution-diffusion 

model was developed to describe the flux and rejection of a TOABr-toluene mixture at one 

temperature. The use of this solution-diffusion model for other systems creates some 

uncertainty, as experimentation needs to be done to determine the influence of certain 

operating parameters, such as temperature, on the performance of the specific membrane. 

These aforementioned obstacles make it challenging to find an optimal process (i.e. optimal 

number of modules, retentate and permeate recycling internally, arrangement, etc.)  

Over the past decade transport phenomena have been a subject of interest in OSN research. 

Peeva et al. [17] focused on developing transport models for specific membranes. Peeva and 

co-workers summarized various transport models that have been used such as the solution-

diffusion model as well as pore-flow modules. Combining membrane modelling with simulation 

is complex and only a handful of researchers have demonstrated the crossover between 

modelling of membranes to simulation. Chowdhury et al. [18] modelled a gas separation 

system through hollow fibre membranes. Darvishmanesh et al. [19] also simulated an OSN 

system using Aspen Custom modeller for Duramem™ membranes. Fontalvo et al. [20] chose 

to link Matlab to excel and Aspen interface in order to model the membrane system. 

Economic evaluations have been discussed as early as the implementation of the MAX 

DEWAX process and have been of interest to many researchers [21,22], who have performed 
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techno-economic evaluations. With reference to commercial applications, such as the MAX 

DEWAX process [1], it is evident that the process can be economical and viable. However, to 

overcome the aforementioned obstacles and challenges, state-of-the-art research should be 

of importance. State-of-the-art research on novel OSN membrane operation includes 

investigations on membrane fabrication, membrane performance, transport modelling and 

economic evaluations. 

1.2. Objectives  

The aim of this study is threefold: i) firstly, to demonstrate the successful utilization of OSN in 

recovering solvents from solvent-oil mixtures, ii) secondly, to describe the mass transport of 

the solvent-oil system through the membrane using different fundamental models, and iii) 

thirdly, to illuminate on a preliminary level the economic potential of using OSN compared to 

distillation. The objectives of this study are summarized as follows: 

i) Recovery of solvents from oil mixtures 

 Experimental investigation on membrane performance for the recovery of various 

solvents (methyl-ethyl-ketone, toluene, methyl-isobutyl-ketone and dichloromethane) 

from an oil-solvent mixture. 

 Investigate the effect of operating parameters such as pressure, membrane type 

(Duramem™ (150,200) and Puramem™280), concentration and solvent type on the 

membrane performance. 

 Investigate the OSN separation performances in comparison to those of conventional 

processes (Aspen Plus™). 

ii) OSN Modelling and simulation 

 Investigate the use of transport models (pore-flow and solution-diffusion) to describe 

the transport through an OSN membrane. 

 Simulating the membrane system using a simulation program (Aspen Plus™) and 

evaluate the mass and energy balances involved. 

 Comparison between the OSN system and conventional systems with regard to energy 

usage in conjunction with the sub-objectives set out in part (i) for the recovery of 

solvents in solvent-oil mixtures. 

iii) Technical and economic evaluation 

 Preliminary techno-economic evaluation was done for the membrane system and was 

compared to conventional systems for solvent recovery (MEK, toluene) from a solute 

component representing dewaxed oil. 
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1.3. Scope of study and thesis layout 

This thesis aims to provide insight and knowledge on the recovery of solvents using OSN 

membrane separation. The scope of this study is set out in Figure 1.2 in the form of a flow 

diagram to achieve the objectives listed in section 1.2. These objectives are discussed within 

the seven chapters in this thesis. 

The objectives within the scope of this study are illustrated in Figure 1.2.  

 

Figure 1.2:  Scope of Study illustrated in the form of a diagram 

Scope: Organic Solvent Nanofiltration

Objective 1:

Recovery of solvent 

from oil mixtures

Objective 2:

OSN Modelling and 

Simulation

Objective 3:

Economic evaluation

Screening & compatibility
Selection of commercial OSN 

membranes are selected for 

investigation of different solvent 

recoveries.

Modelling OSN
The OSN process is described in 

terms of first principles and using 

mass transfer models such as 

pore-flow and solution diffusion 

models.Characterization
OSN Membrane system is 

characterized according to their 

membrane and solvent 

characteristics and will be focusing 

on performances of each system in 

general.

Techno-economic 

evaluation
The OSN process is evaluated to 

determine mass and energy 

balances and perform a economic 

evaluation where the viability of 

OSN compared to conventional 

processes are focused on.
Simulation

Distillation and an OSN process is 

modelled and simulated in Aspen 

Plus at ambient temperature and at 

30 Bar. The energy and costs are 

evaluated and optimized design is 

included.Permeability of species
Different membranes are evaluated 

with regard to permeation of 

different solvents and a solute 

system. Long chain hydrocarbons 

such as n-Hexadecane as solute is 

dissolved in a variation of 

solvent(s) solutions.

Pure solvents
Solvents used for lube oil 

dewaxing as well as other suitable 

solvents are investigated and 

performances of membrane for 

various solvents are tested such as 

flux at pressures between 10 to 40 

bar. 

Binary mixtures
Binary solvent-solute mixtures 

investigated with a representative 

solute in typical dewaxing oil 

processes with varied binary 

concentrations between 0 to 25 

wt% at a pressure of 30 bar. 

Permeate flux and rejections were 

determined.

Summarized in Chapter 4

Summarized in Chapter 5

Summarized in Chapter 6
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Chapter 2 offers literary support to the investigations of this study, providing insightful and 

critical knowledge relating to the field of OSN. The purpose of this chapter is to critically review 

literature relevant to this study. OSN definitions and principles are discussed in this chapter 

followed by modelling and simulation. A state-of-the-art literature review is critical to 

understanding the state of current research and has been included with regard to solvent 

recovery and membrane performances. 

Chapter 3 provides a detailed discussion on the practical aspects of this study. The discussion 

covers various aspects of how each of the investigations were conducted, detailing 

experimental procedures, approaches to modelling, experimental conditions and parameters 

used in this study. Materials and chemicals are included in this chapter along with diagrams 

and photographic illustrations of equipment. 

Chapter 4 opens with a result summary to give the reader an overall idea of what is to be 

expected from this chapter, followed by the illustration of results and the discussion thereof.  

The discussion depicts the performances of commercial membranes, the influence of the 

solvent as well as the modelling and simulation of these systems using theory introduced in 

Chapter 2. Comparison with traditional solvent recovery methods are made by evaluating 

mass- and energy efficiency 

Chapter 5 discusses the OSN modelling and simulation, which describes various transport 

models investigated with results. With the aid of experimental data, these models were 

developed and regressed; thereby covering part of objective (ii). 

Chapter 6 covers objective (iii) and offers a preliminary techno- economic evaluation on the 

OSN system by making use of specific operating and capital costing heuristics. A comparison 

is made with traditional solvent recovery methods in order to determine the viability of OSN 

separation on an economic scale. 

As a last chapter, Chapter 7 provides a summary of the main findings from the investigations 

performed in this work and provides conclusions pertaining to the findings in a concise 

manner. Recommendations follow the conclusions of this work, which provide adequate 

suggestions for future work to be investigated.  

Stellenbosch University  https://scholar.sun.ac.za



7 
 

1.4. References 

[1] R.M. Gould, L.S. White, C.R. Wildemuth, Enviro. Prog. 20 (2001) 12-16. 

[2] C. Capello, U. Fischer, K. Hungerbühler, Green Chem. 9 (2007) 927-934. 

[3] R. H. Perry, D. W. Green, Perry's chemical engineers' handbook, McGraw-Hill, New 

York, 2008. 

[4] T. Welton, Solvents and sustainable chemistry, 471 (2015) 20150502. 

[5] N.A., Bhore, R.M Gould, S.M., Jacob, P.O., Staffeld, D., McNally, P.H., Smiley and C.R., 

Wildemuth, Oil & gas J., 97(1999) 67-72 

[6]  M. Priske, M. Lazar, C. Schnitzer, G. Baumgarten, Chem. Ing. Tech. (2016) 39-49. 

[7] W.J. Koros, R. Mahajan, J. Memb. Sci. 175 (2000) 181-196. 

[8] L.S. White, A.R. Nitsch, J. Memb. Sci. 179 (2000) 267-274. 

[9] J.G. Speight, The chemistry and technology of petroleum, CRC press, New York, 2014.  

[10] L.Z. Pillon, Interfacial properties of petroleum products, CRC Press, New York, 2007.  

[11] Z. Zhao, J. Li, D. Zhang, C. Chen, J. Memb. Sci. 232 (2004) 1-8. 

[12] P. Silva, L.G. Peeva, A.G. Livingston, J. Membr. Sci. 349 (2010) 167. 

[13] X. Yang, A. Livingston, L.F. Dos Santos, J. Memb. Sci. 190 (2001) 45-55. 

[14] L. Hesse, J. Mićović, P. Schmidt, A. Górak, G. Sadowski, J. Memb. Sci. 428 (2013) 554-

561 

[15] S. Ottewell, ‘Membranes Target Organic Solvents’, Chemical Processing, 24 June (2013). 

[16] H.B. Soltane, D. Roizard, E. Favre, Sep. Purif. Tech. 161 (2016) 193-201. 

[17] L.G. Peeva, E. Gibbins, S.S. Luthra, L.S. White, R.P. Stateva, A.G. Livingston, J. Memb. 

Sci. 236 (2004) 121-136. 

[18] M.H. Chowdhury, X. Feng, P. Douglas, E. Croiset, Chem. Eng. & Tech. 28 (2005) 773-

782. 

[19] S. Darvishmanesh, T. Robberecht, P. Luis, J. Degrève, B. Van Der Bruggen, J. Am. Oil 

Chem. Soc. 88 (2011) 1255-1261. 

[20] J. Fontalvo, Ingeniería e Investigación 34 (2014) 39-43. 

Stellenbosch University  https://scholar.sun.ac.za



8 
 

[21] G. Szekely, M.F. Jimenez-Solomon, P. Marchetti, J.F. Kim, A.G. Livingston, Green Chem. 

16 (2014) 4440. 

[22] P. Schmidt, E.L. Bednarz, P. Lutze, A. Górak, Chem. Eng. Sci. 115 (2014) 115. 

 

.

Stellenbosch University  https://scholar.sun.ac.za



9 
 

 

 

 

 

 

 

 

Chapter 2: Literature Study 

 

Overview 

The purpose of this chapter is to provide an understanding of terminologies, concepts and 

principles as well as literature that are relevant to this thesis. General knowledge of membrane 

separation as well as related concepts are discussed (Section 2.1). State of the art literature 

reviews on the use of membranes by Organic Solvent Nanofiltration (OSN) were investigated 

and are discussed in Section 2.2. OSN modelling research follows in Sections 2.3, describing 

the transport through the membrane. Energy and cost associated with OSN technology are 

further elaborated on in Section 2.4.  
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2.1. Theoretical background 

According to Mulder [1] a membrane can be described as thick or thin, natural or synthetic as 

well as neutral or charged, while its structure can be homogenous or heterogeneous.   

Membrane separation is a widely discussed topic that has made separation processes more 

simplistic with regard to lower energy consumption as well as waste generation when 

compared to conventional processes such as distillation [60,69]. Illustrated in Figure 2.1, 

membrane separation can be viewed as a selectively permeable membrane barrier separating 

two phases with a driving force [1].  

 

Figure 2.1: Membrane configuration and driving force. 

A driving force through the membrane initiates separation through the membrane. Transport 

can be active or passive. Active transport, initiated by external force, is the movement of 

molecules or ions from a low concentration to a high concentration. Passive transport is the 

movement of molecules or ions from a high concentration to a low concentration. Passive 

transport can be driven as illustrated in Figure 2.1 by a pressure gradient, concentration 

potential, as well as temperature. Membranes are designed to contain specific properties that 

control the flow of molecular species through the membrane, i.e. only specific molecules can 

move through the membrane, hence forcing separation to occur. The design of the membrane 

takes a specie’s molecular size, geometry, polarity as well as viscosity into account [1]. 

Research conducted over the past few years in the field of membrane technology tends to be 

application specific [2]. Membranes are system specific due to the process nature such as 

process conditions as well as material interactions. For this reason, a database of previous 
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work should be used as reference to determine the most appropriate membrane-system. A 

recent publication by Schmidt et al. [3] provides a thorough discussion on the membrane-

system design procedure used to find the best membrane-system integration, which also 

expands the membrane-system specific database. 

Membranes should not be confused with filter separations. By convention, the term filter is 

limited to structures that separate particulate suspensions ca 1 – 10μm [4]. As previously 

mentioned in this chapter, a membrane can be described as thick or thin, natural or synthetic 

as well as neutral or charged, while its structure can be homogenous or heterogeneous [4].  

This gives more flexibility and accommodates for the complexity of a wide spectrum of 

systems. In this regard, the advantages and disadvantages of membranes are summarized in 

Table 2.1 [1]. 

Table 2.1: Advantages and disadvantages of membrane systems 

Advantages Disadvantages 

Low energy consumption Membrane fouling/ concentration polarization 

Membrane integration  Low membrane lifetime 

Easy to scale up Generally low selectivity 

 

Disadvantages listed in Table 2.1 are dependent on a number of factors. Fouling which occurs 

on a membrane is one important factor that has a major influence on the membrane 

performance [4]. Fouling is the surface accumulation on a membrane due to chemical species 

blocking membrane hollow pores near the surface. The chemical species block the pores 

forming a coated barrier, which affects the permeation of other chemical species through the 

membrane [5].  Concentration polarization is a fouling behaviour that affects the selectivity of 

a membrane. This behaviour can be described as the accumulation of retarded or slow 

permeating species relative to fast permeating species at the surface of the membrane. This 

causes a greater concentration of the retarding species at the membrane surface relative to 

the solution itself, and as a result hinders the permeate flow through the membrane [2]. Both 

fouling and concentration polarization can be controlled by using specific strategies such as 

prefiltration, high fluxes, membrane selection and cyclic cleansing of the membrane [5]. 

Membranes are classified according to their ability to separate specific chemical species from 

each other by size exclusion. Membranes can be classified as reverse osmosis (RO), 

nanofiltration (NF), ultrafiltration (UF) and microfiltration membranes. Each membrane 

classification is represented in Figure 2.2, where different ranges in pore size, pressure, 

permeability and molecular weight cut off (MWCO). MWCO is further discussed in section 
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2.1.1. Different molecules and chemical species are shown under each membrane class, 

which can potentially reject the species noted [6].  

 

Figure 2.2: Membrane classification and their distinctive class ranges 

NF membranes are relatively new to the membrane field and falls between the upper 

molecular weight range of RO membranes and the lower molecular weight of UF membranes 

[5]. NF has separation potential for chemical species in the size range of 200 – 1200 g.mol-1, 

which is useful for separating solvents from organic compounds such as long chained linear 

and branched alkanes [2,7,8]. The field where solvents are separated from other organic 

components are classified as Organic Solvent Nanofiltration.  

Organic Solvent Nanofiltration (OSN) yields the same advantages as other nanofiltration 

membranes in the sense that the separations require no phase transition, no additives, 

minimal thermal damage and are easily combined with other separations to form hybrid 

systems [2,6]. The integration of OSN membranes with other separation processes is a 

concern for companies who do not have the practical knowledge of such processes. 

There are two flow configurations in which membrane separation of a feed produces a 

permeate and a retentate stream. The two types of flow configurations, illustrated in Figure 

2.3, are commonly used in industry as well as in research facilities.  

Reverse Osmosis Ultrafiltration Microfiltration

Nanofiltration

Atomic Radii
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Ionic liquids
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Solvent

Amino acids

Flavours

Genotoxins

Colourants
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Pharmaceuticals

Peptides

Antibiotics

Viruses

Proteins

Bacteria

Pigments

Enzymes

Pressure (Bar) >40 5 1

MWCO (g.molˉ¹ ) 100 10,000 100,000

Pore size (nm) <0.1 2 100

Permeance <1 10 – 50 >50

(x10ˉ³ m³.mˉ².hˉ¹.barˉ¹) 
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Figure 2.3: Dead end and cross flow configurations 

In a dead-end membrane configuration setup, the retentate flows directly into the membrane 

wall. The retentate piles up against the wall, while the permeate flows through the selectively 

permeable membrane due to a differential pressure over the membrane. In a crossflow 

membrane configuration setup, the feed flows tangent to the membrane wall, while allowing 

the retentate to flow in the same direction and the permeate to leave through the other side of 

the permeable membrane. The continuous flow is produced using a pump pumping the feed 

continuously through the system. [9]  

Dead-end configuration is useful for screening of membrane systems and is both cost effective 

and simplistic [10]. However, it is prone to concentration polarization, which can greatly affect 

performance, and for this reason is adequate for small bench scale experiments but not ideal 

for large-scale operations. Crossflow configuration has better operating conditions and 

reduced fouling compared to a dead end configuration setup, but is more sophisticated than 

a dead end setup [6]. 

Membranes are manufactured from various materials. Membranes are commonly either 

polymeric, mixed matrix or ceramic. Polymeric membranes are membranes that consist of 

polymeric material which are either porous or non-porous, depending on the application. 

Reverse Osmosis membranes are mostly non-porous, while nanofiltration membranes are 

mostly porous. Polymeric membranes are formed to become greener, generating less waste 

from manufacturing and becoming more solvent stable providing high membrane fluxes. 

However, polymer membranes are not suitable for every OSN system, limiting their scope of 

application in membrane operations because of their susceptibility to the effects of 

temperature, solvent type, pressure and operational lifespan [6]. 

Feed Feed

Driving Force

ΔP, ΔC, ΔT 

Dead end ConfigurationCross Flow Configuration

Permeate Permeate
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Ceramic membranes are developed from inorganic materials that are expensive to 

manufacture. These membranes have better mechanical, chemical and thermal stability 

compared to polymeric membranes. Ceramic membranes do not compact under pressure and 

do not swell in organic solvent. However, ceramic membranes are difficult to scale up, have 

high cost and are more brittle compared to polymeric membranes. Mixed matrix membranes 

are combinations of both polymeric and ceramic material which give both the desired 

properties of polymeric material as well as ceramic material [11]. Figure 2.4 illustrates the 

taxonomy of membranes by classifying them according to the material type, membrane type 

and preparation technique. 

 

Figure 2.4: Membrane taxonomy 

Polymeric membranes can be classified as Integrally Skinned Asymmetric (ISA) types or Thin 

Filmed Composite (TFC) types of membranes, as illustrated in Figure 2.4. The focus of current 

membrane manufacturing and development is to make polymeric membranes more robust, 

with ISA and TFC membranes being some of the products of current research [11]. 

Additionally, polyimide membranes are more compatible with organic solvents relative to 

ceramic membranes.  

2.1.1 Principles of OSN 

Membranes are characterized by their molecular weight cut-off (MWCO) which is, according 

to Szekely et al. [11], defined as the molecular weight of a chemical species which is 90% 

rejected by the membrane. Characterizing membrane performance solely on MWCO does not 

give sufficient information on the separating performance. The interactions between solute 

and solvent influence the solubility of a mixture. The properties that solvents and solutes 

exhibit (i.e. polarity, solvency, solubility, viscosity, size, etc.) affect the performance of certain 

types of membranes, such as hydrophilic and hydrophobic membranes. Research focusing 

on determining MWCO for membranes used alkanes [12] in determining specific rejections, 
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while other researchers identified the significance of the effect of specific solvents on 

membrane performances [13]. 

Membrane performance is a measure of how well a membrane can perform under specific 

circumstances. These circumstances include process conditions such as temperature, 

pressure, flowrate, concentration and system configuration. Membrane performance is 

commonly classified by the flux of permeate and rejection of solute [1]. Membrane flux is 

defined as the flow of liquid through the membrane over an area during an instance of time. 

The membrane flux can be expressed using Equation 2.1. 

𝐽 =
𝑉𝑛

𝐴.Δ𝑡
  (2.1) 

Where 

Vn  – volume of fluid that permeates through membrane normal to the surface area (L) 

A – effective membrane surface area (m2) 

t    – time interval for which volume V permeates through the membrane (hr) 

J – flux of a permeating species through the membrane (L.m-2.hr-1)  

Rejection is defined as the difference in concentration of solute in the feed (Cfeed) to the 

permeate (Cpermeate) over the concentration of initial feed. The rejection can be expressed using 

Equation 2.2. 

𝑅𝑠𝑜𝑙𝑢𝑡𝑒 = (1 −
𝐶𝑝

𝐶𝑓
) × 100%  (2.2) 

Where 

Cp  – solute concentration in feed permeate (mL.mL-1 or mg.L-1)  

Cf  – solute concentration in the feed (mL.mL-1 or mg.L-1) 

Rsolute  – rejection  

2.2 Review of solvent recovery using OSN 

Solvent recovery using OSN was introduced as early as the 1980’s, when Wight et al. [14] 

published a patent on solvent recovery from dewaxed oil in lube oil dewaxing processes. 

Furthermore, Wright paved the way for the first successful commercial OSN process to be 

operational in 1991, and it was known as the MAX De Wax process. 

OSN research is guided by the works of Schmit et al. [3], Livingston et al. [15] and Vankelecom 

et al. [16], setting the stage for OSN application and knowledge. In this section, reviews on 

past literature relating to solvent recovery using OSN technology are investigated. Reviews 

on past research on OSN membrane performance are listed in Table 2.2. These reviews 

include those that were done on the performance of both commercial and non-commercial 

membranes.  
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Table 2.2: Summary of previous publications regarding the separation of different solutes using Commercial OSN membranes 

Company Membrane Solute 
Solute MW 
(g.mol-1) 

solute/ 
solvent ratio 

Temperature 
(°C) 

Pressure     
(Bar) 

Solvent 
Flux 
(L.m².hrˉ¹) 

Rejection Ref 

Bor Mem tech GMT-oNF-2  TPP 262.29  20 30 n-hexanal 19.8 39 % [3]  
       Toluene  91 %  
       n-hexane  59 %  
       2-Propanol  66 %  
       DMC  58 %  
  steryl esters 650 - 850 10% w/w 20 35 hexane 59.5 94 % [17] 
  sterols 370-420    hexane  94 %  
  oleic acid 282.4614    hexane  89%  
Evonik Duramem™ 150 polystyrene oligomers 236−1200  30 30 THF 3.1 >93 % [18] 
       Acetone 10 >98 %  
 Duramem™ 200 API1 ?  30 30 DCM 10.5 100 % [19] 
  API2 ?    DCM 10.5 97 %  
 Duramem™ 300 styrene oligomers 236−1200    DCM 98 94 %  
 Puramem™ 280  TPP 262.29  20 30 n-hexanal 18.3 73 % [3] 
       Toluene 41.6 97 %  
       n-hexane 20.3 57 %  
       2-Propanol 12.2 83 %  
       DMC 49.9 88 %  

 
Puramem™S60
0 

steryl esters 650 - 850 10% w/w 20 35 hexane 56 92 % [17] 

  sterols 370-420    hexane  82 %  
  oleic acid 282.4614    hexane  82 %  
 Starmem™ 120 Soybean daidzin  416 Da  20 30 H2O 9 94 % [7] 
       MeOH 170 53 %  
 Starmem™ 122  docosane  310    30 Toluene 15 92 % [20] 
   (TOABr) 546    Toluene 30 >98 %  
  Soybean daidzin  416   20 30 H2O 20.6 98 % [7] 
       MeOH 320 20 %  
   (TOABr) 546  30 30 DMMS/ MeOH 78 30 % [21] 
  TEA 101.19  25 30 Toluene 72.5 7 % [10] 
  THexA 269.52    Toluene 28.3 99 %  
  THeptA 311.59    Toluene 28.9 99 %  
  TOA 353.68    Toluene 30.7 98 %  
  TDA 437.83    Toluene 30.5 98 %  
  TDDA 522    Toluene 21.1 19 %  
  Cooking oil 914.9 10% w/w 23  Isopropanol 4.48 79 % [22] 
       Ethanol 17.4 96 %  
       Acetone 56.6 70 %  
 Starmem™ 228 Soybean daidzin  416   20 30 H2O 2 95 % [7] 
       MeOH 21.9 79 %  
 Starmem™ 240 Soybean daidzin  416   20 30 H2O 9 98 % [7] 
       MeOH 164 51 %  
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Company Membrane Solute 
Solute MW 
(g.mol-1) 

solute/ 
solvent ratio 

Temperature 
(°C) 

Pressure     
(Bar) 

Solvent 
Flux 
(L.m².hrˉ¹) 

Rejection Ref 

  Polystyrene 200 -1200    toluene  >90 % [23] 
       n-heptane  >90 %  
Koch MPF-44 Soybean daidzin  416 Da  20 30 Water 27 89 % [7] 
       MeOH 7.4 72 %  
       EtOH 1.4 44 %  
       Acetone 0.86 56 %  
       Ethyl Acetate 0.55 24 %  
 MPF-50 Soybean daidzin  416 Da    Water 6.6 34 %  
       MeOH 42 83 %  
       EtOH 25 86 %  
       Acetone 267 72 %  
       Ethyl Acetate 197 32 %  
   (TOABr) 546  30 30 DMMS/MeOH 60 10 % [21] 
 MP-50/MPF-60    Room temp 30.4 Water 10 \ [24] [25] 
       Pentanol 31 \  
       Butanol 50 \  
       Propanol 70 \  
       Ethanol 119 \  
       Methanol 175 \  
       Octane 349 \  
       Acetone 490 \  
HP  Polymer Lenzing P84  n-Decane 142.28  50 41.4 Toluene 35.58 44 % [8] 

 

 1-Methyl-naphthalene 142.2     Toluene 35.58 1 %  
 n-Hexadecane 226.4412    Toluene 35.58 79 %  
 1-Phenyldodecane 246.43    Toluene 35.58 95 %  
 Pristane 268.51     Toluene 35.58 66 %  
 n-Docosane 310.61    Toluene 35.58 92 %  
 styrene oligomers  236−1200  30 30 DMF/Dioxane >120 >90 % [26] 
 styrene oligomers  236−1200  20 30 DMF 87 >90 % [27] 
 PEG-400 400  22 10 MeCN 29 66 % [28] 

  PEG-2000 2000    MeCN 29 99 %,  
Osmonics SEPA DK   25% w/w 40 30 hexane 0.1 no data [29] 
 SEPA DL      hexane 0.1 no data  
 SEPA GH soybean oil     hexane 12 67 %  
Solvay NF 030306 Cooking oil 914.9 10% w/w 23  Ethanol 4.89 78 % [22] 

 

      Acetone 16.6 78 %  
      Cyclohexane 0.54 64 %  
      Hexane 0.55 38 %  
 Degummed soybean oil 862.7 35% w/w 30 20 hexane 3.9 56 % [30] 
 steryl esters 650 - 850 10% w/w 20 35 hexane 0.385 27 % [17] 
 sterols 370-420    hexane  35 %  
 oleic acid 282.4614    hexane  30 %  
NF 030306F steryl esters 650 - 850 10% w/w 20 35 hexane 2.59 88 % [17] 
 sterols 370-420    hexane  71 %  
 oleic acid 282.4614    hexane  69 %  
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Company Membrane Solute 
Solute MW 
(g.mol-1) 

solute/ 
solvent ratio 

Temperature 
(°C) 

Pressure     
(Bar) 

Solvent 
Flux 
(L.m².hrˉ¹) 

Rejection Ref 

NF 070706 steryl esters 650 - 850 10% w/w 20 35 hexane 2.695 83 % [17] 
  sterols 370-420    hexane  0 %  
  oleic acid 282.4614    hexane  3 %  

Sulzer 
PERVAPTM 
4060 

n-Tetracosane (C24) 338.65  30 15 Toluene \ 40 % [31] 

  n-Triacontane (C30) 422.81    Toluene \ 61 %  
  n-Pentacontane (C50) 703.34    Toluene \ 100 %  

HaiHang 
Industry Co. 

Matrimid 5218 100N  20 % w/w -10 41.37 MEK, Toluene 12.9 96 % [32] 

  
Mobil light neutral base 
oil 

 20 % w/w -10 41.37 MEK, Toluene  98 % [12] 

 GKSS,  PEBAX free fatty acids 280  20 10 Acetone 3 35 % [33] 

 

 Palm oil     Acetone 3.3 86 %  
 rapeseed oil     Acetone 4.2 81 %  
 Sunflower oil     Acetone 0.5 90 %  
Cellulose Palm oil     Acetone 1.8 93 %  
 rapeseed oil     Acetone 2 >98 %  

  Sunflower oil     Acetone 1.8 97 %  
  Sunflower + PPhLipids     Acetone 1.6 93 %  
  Sunflower + Beeswax     Acetone 1.5 92 %  

 
PAN/PDMS 
composite 

Sunflower oil  8% w/w 20 7 n-hexane 12 92 % [34] 

  polyisobutylene 1300 8% w/w 24 7 n-hexane 12.5 90 % [35] 

 

PAN/PDMS ,  
PAN/PEO–
PDMS–PEO 
composite 

sunflower oil  8% w/w 24 30  n-hexane \ 95 % [36] 

       toluene 50 80 %  
Shanghai 
petrochemica
-ls 

PAN/MMA 
composite 

dewaxed oil  450 17% w/w 20 20 MEK, Toluene 12 73 % [37] 

Unknown 6FDA Lube oil  20% w/w 20 30 MEK, Toluene >12 96 % [38] 
Sigma 
Aldrich, UK 

TFC-MPD-NP 
(wout/treatment) 

polystyrene oligomers 236−1200  30 30 MeOH 7 95 % [18] 

 
TFC-MPD-NP 
(with/treatment) 

polystyrene oligomers 236−1200    MeOH 23 >95 %  

       DMF 8.6 >90 %  

 
TFC-MPD 
(wout/treatment) 

polystyrene oligomers 236−1200    MeOH 15 >97 %  

       Acetone 0.3 >96 %  

 
TFC-MPD 
(with/treatment) 

polystyrene oligomers 236−1200    MeOH 46 >97 %  

       DMF 46.1 >90 %  
       Acetone 71 >95 %  
       Ethyl acetate 26 >85 %  
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Company Membrane Solute 
Solute MW 
(g.mol-1) 

solute/ 
solvent ratio 

Temperature 
(°C) 

Pressure     
(Bar) 

Solvent 
Flux 
(L.m².hrˉ¹) 

Rejection Ref 

       toluene 4.2 >96 %  
       THF 45 100 %  
  Alkanes 220 -380    THF 35.6 >90 %  

 
TFC-PIP 
(with/treatment) 

polystyrene oligomers 236−1200    Acetone 65 >90 %  

  Alkanes 220 -380    THF 80.2 >80 %  

 
TFC-HDA 
(with/treatment) 

polystyrene oligomers 236−1200    Acetone 64 
>90 % 
(MWCO 
>300 Da) 

 

 
TMC - MPD  and      
Silica particles 

dewaxed oil 550 20% w/w ambient 15 
MEK 
+Toluene 

10.4 95 % [39] 

 TMC + MPD dewaxed oil  20% w/w ambient 15 
MEK 
+Toluene 

\ 95 % [40] 

 TFC dewaxed oil  20% w/w ambient 15 
MEK 
+Toluene 

10.4 95 % [41] 

 TFN0.02       13.85 96 %  
 TFN0.05       14.53 95 %  
 TFN0.1       15.05 88 %  
 TFN0.2       16.93 50 %  
Solvay PVDF–10SI Degummed soybean oil 862.7 25% w/w 30 20 hexane 20.1 77 % [30] 
 PVDF–12SI     15 hexane 15.9 85 %  
 PVDF–15SI     10 hexane 7.8 81 %  
 PVDF–CA    40 20 hexane 19 55 %  
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One of the first membranes to be used for solvent recovery was the MPF – series. Research 

using these membranes has been done by Machado et al. [24,25], who demonstrated that 

membrane performance was different for various solvents as well as different operating 

conditions. As shown in Table 2.2, Machado et al. demonstrated that solvents, such as 

acetone, provided higher fluxes compared to other solvents, such as butanol, for the MPF-50 

membrane series mainly due to lower surface tension and lower viscosity. Furthermore, the 

work from Machado et al. explains how the rise in temperature, change in pressure and 

varying solvent concentration can influence the permeate flow by changing a permeating 

species properties such as viscosity, hence the recovery of valuable chemicals.  

Yang et al. [13] stated that the MPF–series was an undesirable choice for organic systems. 

Yang and co-workers demonstrated in their research that the membrane performance for the 

MPF series was not entirely predictable when using organic solvents. Methanol permeation 

through MPF-50 and MPF-80 membranes as investigated by Yang et al., was compared to 

the works of Machado et al. [24,25] and Whu et al. [41]. These research groups obtained 

different permeation fluxes. Yang et al. states that the reason for such variation in fluxes is 

due to dead end cell setup as this relates to the membrane active area, while Whu et al. 

suggests that the major fluctuations in permeate flux is due to the reversibility of the 

membrane. 

White et al. [12] used the matrimid membrane series to recover solvents from lube oil. White 

et al. focused on the membrane performance with regard to membrane resistance and 

determined how economical the membrane separation performances were. Furthermore, 

White et al. demonstrated that, with binary solvent (MEK and toluene) and using matrimid 

membranes, it is possible to obtain a solvent purity of greater than 99 wt% and a steady 

permeation rate. 

Peeva et al. [20] used another type of commercially available membrane known as the 

Starmem™ series. Peeva et al. focused on the effect of concentration polarisation on the 

system with solvent and solute present. Peeva et al. determined that at higher solute 

concentrations, concentration polarisation has a large effect on the recovery of solvent. Peeva 

et al. used these results to model the system by incorporating activity coefficients into the 

transport models used. 

A new plasma grafted membrane to recover solvent from dewaxed oil was introduced through 

the work of Zhao et al. [37].  Zhao et al. demonstrated that the new non-commercial membrane 

could recover solvent well. However, it obtained low rejection of solute reaching around 72.8%. 

Plasma grafted membranes were shown not to provide competitive membrane performance 
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to that of traditional technologies, such as distillation, where purities of solvent are around 98 

wt%. 

In 2005, Kong et al. [38] demonstrated that the polyimide nanofiltration membranes were 

competitive with traditional technologies for separating and recovering solvent (MEK and 

toluene) from dewaxed lube oil filtrates. The PI membrane used was shown to reject 96% of 

the oil, and produce high permeate fluxes of around 12 L.m-2.h-1. Kong et al. demonstrated 

that variation in operating conditions, such as temperature, pressure, feed concentration and 

the binary mixture of solvents, has a definite effect on the solvent recovery capacity. However, 

the investigations by Kong et al. showed that high purities of solvents were obtained by 

permeation through the non-commercial membranes that were used in his research. Further 

research is required to investigate the recovery of solvents through commercial membranes, 

such as the Starmem™ series.  

Silva et al. [21] compared the solvent transport of methanol and toluene mixtures for two 

different membranes (Starmem™122 and MPF-50). Silva et al. demonstrated that 

Starmem™122 had better performance characteristics compared to that of MPF-50 

membranes. Fluxes for toluene were found to be higher for MPF-50 series membranes than 

for the Starmem™ series. However, the rejection of TOABr ranged at around 80% through 

MPF-50 compared to the 99% rejection through a Starmem™122 membrane. Silva et al. 

demonstrated that the MPF-50 membranes were not able to provide reproducible results. 

Hence, further modelling of the OSN system was performed using Starmem™ series 

membranes. 

Zhao et al. [7] investigated the influence that aqueous and organic solvents have on 

membrane performances. Experiments were conducted using Starmem™ series membranes 

obtained from W.R. Grace, MPF series membranes from Koch and Desal-DK membranes 

from Osmotics. The results for MPF membranes were in line with the findings of other research 

groups [13,21], indicating that rejection of solute was more uncommon in organic solvent than 

in water. With regard to solvent flux, organic solvents provided higher fluxes through the 

commercial membranes used. 

Zhao et al. [7] also demonstrated in the same year that the pretreatment of a membrane with 

a solvent can influence the membrane performance significantly. The performance of 

Starmem™ and Desal-DK membranes were affected significantly, while the commercial Koch 

membranes (MPF-50) were not significantly affected in methanol. 

Polar aprotic solvents were used in membrane characterisation in research conducted by Toh 

et al. [26]. The influence of aprotic solvents on the lenzing membrane, provided good 

Stellenbosch University  https://scholar.sun.ac.za



22 
 

separation and recovery of both the solute and solvent. The DMF permeability was shown to 

range between 1 – 8 L.m-2.h-1.bar-1 at temperatures below 100oC.  

Toh et al., in the same year, made use of various solvents with a solute to characterize 

Starmem™ membranes. Molecular Weight Cut Off (MWCO) tests were performed using 

various solvents, such as toluene and ethyl acetate. Solvent permeability tests were included 

in the tests and illustrated fluxes ranging between 5 – 210 L.m-2.h-1 at 30 bar. Silva et al. [21] 

reported similar fluxes for Starmem™122. Toh et al. found that the observed flux of solvent 

increased with increasing MWCO of the membrane, resulting in a MWCO variability which is 

dependent on the solvent system used. 

Various non-commercial membranes were investigated in order to understand their 

characteristics and impact on the performance of an OSN system. Soroko et al. [27] 

investigated the influence of TiO2 nanoparticles on the morphology and performance of cross-

linked polyimide OSN membranes. The solvents included DMF and isopropanol and they 

determined that the fluxes through these membranes varied between 160 and 50 L.m-2.h-1. 

The performance results of these membranes in the presence of TiO2
 nanoparticles showed 

improved compaction resistance as well as unaltered rejection and solvent flux. 

Apart from the Starmem™ series, Evonik provides other commercially available membranes 

known as Puramem™ and Duramem™. Research on Duramem™ membranes were initiated 

in 2012 through the work of Solomon’s group [18]. The Group demonstrated that the 

performances of Duramem™150 membranes are well above the MWCO of 90% for 

polystyrene oligomers dissolved in acetone and THF solvents.  

Siddique et al. [19] later demonstrated that the Duramem™ series membranes performed well 

in DCM solvent systems separating Active Pharmaceutical Ingredients (API) at high rejections 

and at moderate flux rates.  

Another commercial membrane available from Evonik, known as Puramem™ membranes, 

were shown to successfully separate triphenylphosphine (TPP) using a variety of different 

solvents, such as toluene and DMC, and these membranes provided similar results to the 

Starmem™ series [43]. 

Recent reviews from Marchetti et al. [6], Szeleky et al. [11] and Cheng et al. [44] have provided 

state of the art overviews of the knowledge on OSN in general and the current state of research 

[6,44] on the subject. They also discuss the sustainability of OSN compared to conventional 

processes [11]. 
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2.3. Review of transport models in solvent recovery  

In order to understand the membrane transport mechanism, modelling of the OSN system is 

necessary. Modelling can be used for two purposes: design and prediction. Design of a 

membrane system can occur at three levels: (i) membrane scale, (ii) module scale and (iii) 

process scale. According to Peshev et al. [45], 91% of membrane modelling focused on 

membrane scale up until 2013. Designing at membrane scale is accomplished by using 

experimental data for solvent-solute systems, and then obtaining unknown parameters 

through analytical and numerical regression of the experimental data. Industries use these 

models in order to understand the rate of permeation [46] and adapt the industrial process 

accordingly in order to meet an objective, thus using modelling based on membrane operation. 

These models can be used to describe the movement of solvents and solutes through the 

OSN membranes [6].  

There are three types of models that are commonly used at present for OSN modelling and 

these are known as the solution-diffusion model, pore-flow model and the phenomenological 

model [20]. These models can be used to model the flux through a membrane and this has 

been investigated in literature [47- 50]. This section discusses the above-mentioned models 

with regard to their applicability and uses. 

2.3.1. Membrane transport theory 

The first solution-diffusion model was developed by Lonsdale et al. [46,50]. He investigated 

the diffusion coefficients of reverse osmosis membranes, in order to acquire data for 

developing a solution-diffusion model. The work of Lonsdale was later reviewed by Wijmans 

et al. [47], providing a critical evaluation on the solution-diffusion model as well as pore-flow 

models.  

The classic solution-diffusion model is described  by Wijmans et al. [47] as a transport model 

which portrays how permeate dissolves into the membrane material and then diffuses through 

the membrane down a concentration gradient, and is shown in Equation 2.3 as well as in 

Figure 2.5.  

𝐽𝑛,𝑖 =
𝐷𝑖.𝐾𝑖

𝑙
[𝑐𝑖,𝐹𝑀 − 𝑐𝑖,𝑃 .

𝛾𝑖,𝑝

𝛾𝑖,𝑀𝑃
exp (−(𝑉𝑚,𝑖.

𝑃𝑀𝑃−𝑃𝑃

𝑅𝑇
))]  (2.3) 

where  

𝐽n,1  – partial molar flux of species 𝑖,  

Ci,FM – feed concentration of species i, 

Ci,PM – permeate concentration of species i, 

Di – diffusion coefficient of species 𝑖,  
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Ki – the sorption coefficient,  

𝛾𝑖  – the surface tension 

Vm – the molar volume of species 𝑖, 

𝑙  – the membrane thickness  

A concentration gradient is produced as the permeate diffuses through the membrane. The 

properties of each permeating species influence the permeation rate of that specific species. 

Due to the different properties of permeating species through the membrane, separation is 

enforced [47]. 

 

Figure 2.5: Solution-diffusion model through a membrane [46,47] 

The chemical potential gradient illustrated in Figure 2.5, is used to formulate a general flux 

equation as described in Equation 2.4. 

𝐽 =  −𝐿𝑖
𝑑𝜇𝑖

𝑑𝑥
   (2.4) 

Where 

J – flux of a permeating species through the membrane 

Li  – coefficient of proportionality 

dμi/dx  – chemical potential gradient of component i 

In many membrane processes a combination of driving forces are applied to produce a 

permeate-retentate separation.  Pressure and chemical potential are two driving forces 

commonly used to describe transport models, such as the pore-flow and solution-diffusion 

models. Chemical potential for organic solvents through a membrane is described by Equation 

2.5, which incorporates the effect of various parameters such as constant pressure, 

concentration and fugacity coefficient of species i [46]. 

𝜇𝑖(𝑇, 𝑃) = 𝜇0𝑖
𝑖𝑑(𝑇, 𝑃𝑠𝑎𝑡) + 𝑅𝑇𝑙𝑛 (

𝑃

𝑃𝑠𝑎𝑡
) + 𝑅𝑇𝑙𝑛(𝐶𝑖) + 𝑅𝑇𝑙𝑛(𝜑)  (2.5) 

Where 

Chemical potential μi 

Pressure p

Solvent activity ƴi ci 

High Pressure 

Solution

membrane Low-pressure 

solution
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μ  – chemical potential 

psat  – saturated vapour pressure 

T – temperature 

R – universal gas constant 

Ci  – the molar concentration of species i  

φ  – the fugacity coefficient of species i 

Wijmans et al. [47] provided assumptions with the solution-diffusion model, which govern the 

transport mechanism through the model. The following assumptions are made for the solution-

diffusion model: 

 Fluids on either side of the membrane are in equilibrium with the membrane surface 

interface. 

 Pressure through a membrane is uniform. 

Applications where the solution-diffusion model is used adopt Equation 2.5 to the specific 

system. It is difficult to formulate a model to suit every system. Generally, the solution-diffusion 

model is well suited for dense membranes. Bhanushali et al. [51] illustrated that the solution-

diffusion model gave a good description of the transport mechanism for hydrophobic 

membranes in alcohols and alkane. Bhanushali and co-workers showed that separation of 

solutes in a system which uses dense membranes, requires understanding of polymer-

solvent, solvent-solute and solute-polymer interactions. 

Pore-flow models describe systems where the permeate is separated by pressure driven 

convective flow through the tiny pores [47]. Research investigations are seldom done on 

transport through nanofiltration membranes due to the heterogeneous nature of the porous 

matrix that surrounds the polymer. The pore-flow model is well known as the Hagen-Poiseuille 

pore-flow model, as shown in Equation 2.6. The Hagen-Poiseuille equation assumes that the 

membrane consists of a number of cylindrical pores, which are parallel or oblique to the 

membrane surface, and that these capillaries are uniform and cylindrical.   

𝐽𝑃𝐹 = (
𝜀𝑚∙𝑑𝑝𝑜𝑟𝑒

2

32∙𝜂∙𝜏
) (

Δ𝑃

Δ𝑋𝑚
)  (2.6) 

Where  

JPF  – Flux (L.m-2.hr-1) 

ΔP  – Pressure difference (Pa) 

ΔXm  – Membrane thickness (m) 

η  – Viscosity of liquid (Pa.s.m-2) 

εm  – Surface porosity 
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𝜏 – Membrane tortuosity, 

dpore  – Membrane pore diameter 

The parameters that characterize the complex polymeric porous structure are not generally 

available, which necessitates experimentation in order to obtain them. Widely used 

parameters include tortuosity (τ), porosity (ε) and the average pore diameter (d). The general 

pore-flow model is illustrated in Figure 2.6. 

 

Figure 2.6: Pore-flow model through a membrane [47] 

The permeate transport through a porous membrane can be described as in Figure 2.6, where 

there is a linear pressure gradient throughout the membrane, while the solvent activity is 

constant. One of the earliest pore-flow transport models, known as the surface force pore-flow 

model, was developed by Matsuura and Sourirajan [52]. This was later adapted by 

Mehdizadeh and Dickson [53] to obtain a model known as the modified surface pore-flow 

model.  

According to Soltane et al. [31], there is no currently accepted model or transport mechanism 

that can be used to describe the solvent and solute transport through OSN processes. This 

statement by Soltane and co-workers’ can be justified from perusal of research done in the 

past decade and late 1900’s. Various solution-diffusion models as well as pore-flow models 

[52, 53] have been developed, but they do not apply to a broad spectrum of systems but rather 

only to specific ones. Paul and co-workers [48] investigated fluid transport through membranes 

initially using the pressure driven principles. In further studies, Paul et al. [48] re-evaluates the 

solution-diffusion model by using volume fractions of the solvent in the membrane, rather than 

taking the traditional pressure gradient concept. Paul et al. [48] observed that the results they 

obtained with swelling tests for transport of solvent using volume fractions were different from 

those obtained using pressure gradients. Further clarity on the three main models discussed 

in this section (i.e. solution-diffusion, pore-flow and phenomenological), is provided in the 

following sections. 

Chemical potential μi 

Pressure p

Solvent activity ƴi ci 

High Pressure 

Solution

membrane Low-pressure 

solution
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2.3.2. Solution-diffusion divergence  

Modelling of the transport through OSN membranes have been done since as early as 1995, 

when J.G. Wijmans et al. [47] developed a classic solution-diffusion model (i.e. Equation 2.3), 

that could model the transport through a membrane according to certain assumptions. The 

validity of his model ranged from dialysis to gas pervaporation. However, the Wijmans et al. 

[47] transport model lacks validation in other membrane processes such as OSN membrane 

modelling. Membrane modelling is diverging to many types of models which is why there is 

still potential to develop suitable transport models for general OSN systems. Variations of the 

solution-diffusion model are discussed in this study as supported from literature by a number 

of researchers. 

Peeva et al. [20] have developed a derived model from the classic diffusion model, which 

relies on experimental data, as shown in Equation 2.7. 

𝐽𝑖 = 𝑃𝑖,𝑀 [𝑐𝑖,𝑀 −
𝐽𝑖

𝐽𝑖+𝑗𝑗

𝛾𝑖,𝑃

𝛾𝑖,𝐹𝑀
exp (−

𝑣𝑖𝑝

𝑅𝑇
)]  (2.7) 

Peeva et al. demonstrated that permeation of a solvent mixture through Starmem™122 series 

membranes can be predicted fairly well. This model received attention from other researchers 

such as Silva et al. [54]. Silva et al. investigated the transport of various solvents through 

Starmem™ 122 series membranes. They demonstrated that the solution-diffusion model 

shown in Equation 2.7 was able to predict the permeation of solvent mixtures through the 

membrane. The model parameters were based on pure solvent permeabilities and did not 

take membrane properties such as swelling and porosity into account. Furthermore, the 

solution model was found to have the most accurate predictions, although membrane 

interaction was not considered. 

Geens et al. [55] demonstrated that solvent flux is dependent on membrane properties such 

as molecular size, viscosity and difference in surface tension and this can be mathematically 

portrayed by Equation 2.8. 

𝐽 ~
𝑉𝑚

𝜇 Δ𝛾
   (2.8) 

The developed model introduced a correction to the Bhanushali model, illustrated in Equation 

2.9 [51], which showed high correlation with experimental data and describes the solvent 

transport through relatively dense membranes adequately. 

𝐽 ~ (
𝑉𝑚

𝜇
) (

𝑙

𝛷𝑛𝛾𝑚
) (2.9) 

The models described by Bhanushali et al. [51] were tested on a variety of commercial 

membranes including MPF-44, 50 and Solsep-030505. Geens et al. [55] illustrated that 
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membrane-solvent interaction plays a larger role in the solvent permeability through 

hydrophobic membranes (MPF-50, Solsep-030505) than through hydrophilic membranes 

(MPF-44, Desal-5-DL) with increasingly polar solvents. 

According to Silva et al. [56]. predictive modelling was demonstrated by describing the 

transport through the spiral-wound membranes. Silva et al. used a spiral-wound 

Starmem™122 to perform the OSN investigations for the separation of toluene from 

tetraoctylammonium bromide (TOABr). They found that membrane performances for the 

spiral-wound membranes were accurately determined by using the membrane transport 

parameters determined from flat-sheet membrane tests.  

From another perspective, Stafie et al. [34] also focused on modelling composite membranes 

using the solution-diffusion model. The system that was modelled was a n-hexane/ sunflower 

oil system, with various feed concentrations and pressures. They found that the solution-

diffusion model described the hexane solvent transport system well, and determined that one 

of the main parameters governing hexane transport is the apparent viscosity and membrane 

swelling in a composite membrane system. Stafie et al. [34] focused on low pressure operation 

and explained that further work is required at higher pressures of up to 30 bar. 

2.3.3. Pore-flow divergence 

The pore-flow model can be described as a one-parameter model where the permeability term 

(
𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝑙𝜏
) for each solvent was determined by arithmetic averages. The experimental results for 

mixtures were described poorly using the one-term Hagen-Poiseuille model. Silva et al. [54] 

used this model in order to further develop an improved model known as the two-parameter 

Hagen-Poiseuille model, given in Equation 2.10. 

𝐽 = (
Δ𝑃

𝜂𝑚𝑖𝑥
) [𝑣1𝑐1(𝑚) (

𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝑙𝜏
)
1
+ 𝑣2𝑐2(𝑚) (

𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝑙𝜏
)
2
]  (2.10) 

According to Silva et al., the model given as Equation 2.10 has demonstrated improvement in 

the accuracy of experimental results compared to the one-parameter model. According to 

Mulder et al. [1], the Hagen-Poiseuille pore-flow model bases its predictions on the assumption 

that the membrane consists of cylindrical pores that are homogeneous throughout the 

membrane. Mulder et al. also states that if the assumption is made that the membrane consists 

of closely packed spheres, the Kozeny-Carmen equation, shown in Equation 2.11, can be 

used to describe the transport of a species through a membrane. 

𝐽𝑣 =
𝜀3

𝐾𝑙𝑠2(1−𝜀)2
×
𝑃0−𝑃𝑧

𝜂
  (2.11) 
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One of the earliest variations of the pore-flow model came from the work of Jonsson and 

Boesen et al. [57] and this model was developed for reverse osmosis systems. Jonsson et al. 

developed the model based on the combination of viscous flow and frictional models in order 

to determine the permeate flux. The model’s variation is given in Equation 2.12, which includes 

a new parameter in the equation, known as the molecular weight. 

𝐽𝑣 =
𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝜂𝜏
[

1

1+
𝑑𝑝𝑜𝑟𝑒
2 𝑥𝑠𝑚𝑐

32𝜂  𝑀𝑊

] ×
Δ𝑃

Δ𝑧
  (2.12) 

Robinson et al. [58] investigated the influence of organic solvents on composite membranes. 

The transport through the membranes can be interpreted using the Hagen–Poiseuille 

equation. However, with binary mixtures there are limitations. Robinson et al. [58] states that 

an investigation towards a deepened understanding of pore-flow and solution-diffusion models 

in composite membranes is not warranted, due to a lack of sufficient knowledge on their use 

in such systems. 

In 1999, Machado et al. [24,25] developed a transport model for MPF membranes. The model 

focuses on membrane properties such as viscosity, surface tension and membrane 

hydrophobicity and is presented in Equation 2.13. 

𝐽 =
Δ𝑃

𝛷[(𝛾𝑐−𝛾𝐿)+𝑓1]+𝑓2𝜇
 (2.13) 

The models developed by Machado’s research group illustrated that it is possible to model 

membrane systems. However, the solvent properties and interactions are not fully understood, 

which is why some of Machado’s modelling parameters, such as the dielectric constant, is not 

valid for certain systems, such as the acetone – water system.  

Another variation of the pore-flow model, which describes the influence of the solute-

membrane interactions of a binary system is discussed through the work of Matsuura et al. 

[52]. The model which Matsuura et al. describes is given in Equation 2.14 

𝐽𝑛,𝑖 = −
𝑅𝑇

𝑥𝑖,𝑗𝑏𝑓

𝑑𝑐𝑖
𝑑𝑥
+
𝑉𝑚,𝑖𝐶𝑖

𝑏𝑓
  (2.14) 

In later years, the model developed by Matsuura et al. [52] was disproven by Mehdizadeh and 

Dickson [53], who stated that there was a flaw in the model’s mass balance and that it was 

inconsistent in relating to the cylindrical pore geometry.  

2.3.4. Combination of solution-diffusion and pore-flow 

In literature, there are models that have been derived from the combination of both pore-flow 

and solution-diffusion models, by using both conceptual modelling ideas and implementing a 
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new mechanism for these models. The solution-diffusion-imperfection model, described in the 

work of Mason et al. [59], integrates viscous transport with diffusive transport, which may occur 

due to inconsistent imperfections in the membrane. This model is given in Equation 2.15. 

𝐽 =
𝐶𝑖𝑀𝐷𝑖𝑀𝑣𝑖

𝑅𝑇𝑙
Δ𝑃 +

𝑐𝑖𝑀𝐵𝑜

𝜂𝑙
Δ𝑃  (2.15) 

White et al. [8] understood the lack of information on characterizing Lenzing P84 membranes 

and focused on transport properties of various solutes dissolved in toluene. Applying the 

solution-diffusion model to the organic solvent resistant membrane system, using various 

solute molecules, this group could provide predictable performance for nanofiltration. White et 

al. [8] also states that alternative solvents, such as ketones and alcohols, are viable options 

for use in an asymmetric membrane system where predictable solution-diffusion models are 

applicable.  

2.3.5. Phenomenological models 

Vankelecom et al. [49] investigated the physio-chemical interpretation of PDMS - composite 

membrane with the commercially available MPF-50 membranes. Since using MPF-series 

membranes with organic solvents are debatable, Vankelecom et al. demonstrated that 

convective flow is the main driving force for MPF membranes and membrane swelling the 

main driving force through PDMS composite membranes. Vankelecom et al. [49] also stated 

that it is impossible to provide a generalized expression of solvent resistent nanofiltration 

transport mechanisms. Many models are derived from the classical solution-diffusion and 

pore-flow models. The derived models are discussed further in this section and a summary of 

the reviewed transport models have been illustrated in Table 2.4.  

Table 2.4: Summary of reviewed OSN transport models 

Model Equation 

Solution-diffusion  

Classic solution-diffusion 𝐽𝑛,𝑖 =
𝐷𝑖.𝐾𝑖

𝑙
[𝑐𝑖,𝐹𝑀 − 𝑐𝑖,𝑃 .

𝛾𝑖,𝑝

𝛾𝑖,𝑀𝑃
exp (−(𝑉𝑚,𝑖.

𝑃𝑀𝑃−𝑃𝑃

𝑅𝑇
))]  

Peeva et al. 𝐽𝑖 = 𝑃𝑖,𝑀 [𝑐𝑖,𝑀 −
𝐽𝑖

𝐽𝑖+𝑗𝑗

𝛾𝑖,𝑃

𝛾𝑖,𝐹𝑀
exp (−

𝑣𝑖𝑝

𝑅𝑇
)]  

Bhanushi et al. model 𝐽 ~ (
𝑉𝑚

𝜇
) (

𝑙

𝛷𝑛𝛾𝑚
)  

Geens et al. model 𝐽 ~
𝑉𝑚

𝜇 Δ𝛾
  

Pore-flow model  

One term hagen Poiseuille 𝐽 = (
𝜀𝑚∙𝑑𝑝𝑜𝑟𝑒

2

32∙𝜂∙𝜏
) (

Δ𝑃

Δ𝑋𝑚
)  
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Model Equation 

Jonnson and Boeden model 

𝐽𝑣 =
𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝜂𝜏
[

1

1+
𝑑𝑝𝑜𝑟𝑒
2 𝑥𝑠𝑚𝑐

32𝜂  𝑀𝑊

] ×
Δ𝑃

Δ𝑧
  

Two term hagen-Poiseuille 𝐽 = (
Δ𝑃

𝜂𝑚𝑖𝑥
) [𝑣1𝑐1(𝑚) (

𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝑙𝜏
)
1
+ 𝑣2𝑐2(𝑚) (

𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝑙𝜏
)
2
]  

Kozeny Carmen 𝐽𝑣 =
𝜀3

𝐾𝑙𝑠2(1−𝜀)2
×
𝑃0−𝑃𝑧

𝜂
  

Combinations of Solution-
diffusion and Pore-flow 

 

Solution-diffusion-with 

imperfections 

𝐽 =
𝐶𝑖𝑀𝐷𝑖𝑀𝑣𝑖

𝑅𝑇𝑙
Δ𝑃 +

𝑐𝑖𝑀𝐵𝑜

𝜂𝑙
Δ𝑃  

Machado et al. model  𝐽 =
Δ𝑃

𝛷[(𝛾𝑐−𝛾𝐿)+𝑓1]+𝑓2𝜇
  

 

2.4. Review of cost and energy analysis  

The potential that Organic Solvent Nanofiltration (OSN) has to reduce operating and capital 

costs has been well demonstrated by the MaxDewax Process [60]. The success of the 

MaxDewax process contributed to the research field focusing on the economic potential as 

well as sustainable growth of this technology. Thus, for OSN to be feasible, the separation 

process needs to be energy efficient, green technology and cost efficient.  According to 

Buonomenna M. [61] and Drioli et al. [62], feasibility of membrane technology has 

demonstrated sustainable growth in many solvent recovery applications performed in industry. 

Hybrid systems, which combine membranes with other operations, have been shown to be 

beneficial.  Micovic et al. [63] demonstrated that membrane-distillation hybrid systems yield 

promising, energy-efficient and intensified processes. Micovic et al. further stated that the 

hybrid system may be more economical than the stand-alone distillation process, which was 

applied to investigate the separation of heavy boilers from low- and middle- boilers in a mixture 

from hydroformylation processes. Pink et al. [64] reported another membrane hybrid system, 

which provides better separation of contaminants from adsorber unit operations when a 

membrane stage was introduced to the system. The Palladium concentration in typical 

solvents, such as toluene and ethyl acetate, was brought down by 8.5 times in the permeate 

of the hybrid process using 10 times less adsorbent compared to an adsorbent only process. 

Werth et al. [65] discusses how membrane processes can be both economical and less 

energy-intensive.  Werth et al. further discusses, based on a model-based process analysis, 

how the potential of OSN for solvent recovery has been shown to be high and that OSN is an 

important investment technology for future processes. 
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Werth et al. demonstrates, using a model-based approach and a flowrate of 2000 kg/hr of non-

editable oil, that the total energy demand for the OSN-evaporator hybrid process was between 

200 - 600 kW compared to 1400 kW for the base case evaporator system. The total annualized 

costs for the OSN-evaporator hybrid system was approximately $1.0 million compared to $1.2 

million for the base-case evaporator system. There is a $0.2 million difference between the 

two processes, which is a substantial amount economically saved for an individual process 

unit. Furthermore, Werth demonstrates graphically that there is a potential optimal point where 

both energy and total annualized cost can be optimized based on the membrane area. 

Werth further discusses that more than 70% of energy can be saved throughout OSN-assisted 

evaporation processes. From an economically competitive point of view, membrane prices 

should be $70/m2. Substantial economic advantages were also illustrated at lower membrane 

areas. 

The feasibility of OSN does not only rely on economic and energy initiatives, but also green 

technology initiatives. A recent review by Szekely et al. [11] made a comparison between the 

energy consumption of a nanofiltration system and a total reboiler for distillation. Szekely 

summarizes an adequate energy requirement based on pressure difference and this is given 

in Equation 2.16. 

𝑄𝑂𝑆𝑁 =
𝐹𝑓Δ𝑃𝑇𝑀

𝜀𝑝𝑢𝑚𝑝
  (2.16) 

Where: 

Ff - Feed flow through membrane 

ΔPTM  - Pressure difference over trans-membrane 

εPump - Pump efficiency 

The energy required in a throughput distillation is given in Equation 2.17. 

𝑄𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔 + 𝑄𝑣𝑎𝑝𝑜𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 +𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛   (2.17a) 

𝑄ℎ𝑒𝑎𝑡𝑖𝑛𝑔 = 𝐹𝑚𝑜𝑙𝑎𝑟𝑐𝑝Δ𝑇  (2.17b) 

𝑄𝑣𝑎𝑝𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑄𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 = 𝐹𝑚𝑜𝑙𝑎𝑟Δ𝐻𝑣𝑎𝑝  (2.17c) 

Where: 

Fmolar  - Molar flowrate 

cP  - Heat capacity at constant pressure 

ΔT  - Temperature difference between feed and the boiling point 
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ΔHvap - Latent heat of evaporation 

Szekely illustrates, using Equations 2.16 and 2.17, the energy consumption for the recovery 

of methanol within a process time of 1371 hr  at a feed flowrate of 417 L.hr-1 and an operating 

pressure of 15 bar. The total energy consumption for distillation and OSN was 1123 GJ and 

2.8 GJ, respectively.  OSN energy consumption was shown to be 200 times less than that of 

the distillation column, indicating that a membrane process is advantageous in terms of 

energy. 

Abejón et al. [66]  investigated the ultra-purification of hydrogen peroxide through multistage 

reverse osmosis. They performed an economic evaluation on the operating costs for the 

membrane unit. providing suitable equations that can be used in determining the operating 

costs of the OSN unit in this study. The equations used were similar to the heuristic equations 

found in Turton et al. [67], which is given in Equation 2.18. 

𝑇𝑂𝐶 = 𝐶𝑟𝑎𝑤 + 𝐶𝑙𝑎𝑏𝑜𝑢𝑟 + 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 + 𝐶𝑚𝑎𝑖𝑛𝑡   (2.18a) 

𝐶𝑟𝑎𝑤 = 𝐹𝑌𝑟𝑎𝑤   (2.18b) 

𝐶𝑙𝑎𝑏𝑜𝑢𝑟 = 24𝑌𝑙𝑎𝑏𝑜𝑢𝑟  (2.18c) 

𝐶𝑒𝑛𝑒𝑟𝑔𝑦 =
∑(𝑄𝐼𝑁𝑖Δ𝑃)

36𝜂
𝑌𝑒𝑙𝑒𝑐  (2.18d) 

𝐶𝑚𝑎𝑖𝑛𝑡 = 𝐴. 𝐶𝑐𝑎𝑝𝑖𝑡𝑎𝑙  (2.18e) 

Where: 

F  – Feed flow (kg/day) 

C  – Operating costs: raw material, maintenance, labour, energy ($/day) 

Yraw – Price of MEK ($/kg)  

Ylabour  – Salary ($/h) 

Yelec  – Electricity price ($/kWh) 

ΔPi  – Differential pressure across the membrane (Bar) 

QINi  – Stage Flow of inlet stream (m3/s) 

η  – Pump efficiency 

A  – Maintenance constant ranging between 0.01 - 0.06 (this study: 0.01) 

The level of detail that Abejón et al. provides using Equation 2.18(a-e) is used as an 

approximation of operating costs on a basic level, since many assumptions are made. For the 

purpose of this study, this equation will be used with heuristics obtained from Turton et al.[67] 

to determine the operating costs for both processes, while the capital costs are determined 

using capital cost estimation formulas provided in Turton et al. [67] 
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2.5. Concluding remarks 

The concept of OSN in general is simple to understand, as feed is separated through 

membrane permeation over a differential pressure. However, the complexity of operation is 

very application specific and empirical evaluations on OSN systems have been developed, as 

shown in past literature. There is a lack of knowledge on the understanding of interactions 

between solvents, solutes and membranes, which are the core factors for developing models 

for describing the transport in OSN systems. However, as is shown in this chapter, continuous 

progress is being made towards a better understanding. New membrane systems are 

continuing to emerge, providing more potential to better understand the OSN technology as a 

whole. 

In the past, while Starmem™ series membranes were still commercially being used, research 

performed by many research groups showed the recovery of solvents from membranes. The 

focus has shifted to newly commercialized membranes, such as Duramem™ and Puramem™ 

series membranes manufactured by Evoniks. However, the recovery of commercially used 

solvents through polyimide Starmem™ membranes [32, 60,68] have been demonstrated to 

be successful, while providing rejection of solutes of close to 95%. Cost and energy evaluation 

from literature has demonstrated that the energy needs of processes can be reduced greatly. 

Furthermore, the recovery of solvent can drastically lower the operating costs of unit operation, 

which results in a higher annual profit margin. 
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Chapter 3: Methodology 

 

Overview 

This chapter discusses the experimental methodology used to complete the objectives at 

hand. Section 3.1 discusses the chemicals and membranes that were used to investigate the 

separation performances. Section 3.2 provides a summary of the experimental procedures 

that were used throughout the experimental investigations. Section 3.3 discusses the 

approach that was followed to investigate membrane transport. Analytical evaluation using 

gas-chromatography as well as other equipment is briefly discussed in Section 3.4. 
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3.1.  Materials 

The solvents used in this study were Toluene, Methyl Ethyl Ketone (MEK), Methyl-isobutyl-

ketone (MIBK) and Dichloromethane (DCM). Toluene and MEK have been selected in this 

study based on their commercial use throughout the lube oil dewaxing operations [1]. 

Additionally MIBK has been mentioned by Priske et al. [2] to be a suitable solvent alongside 

MEK and toluene and is therefore investigated in this study.  

Previous studies involving DCM and Duramem™200 membranes demonstrate the use of 

DCM in solvent recovery [3]. DCM is investigated in this study, comparing its suitability as 

solvent for solvent recovery operations relative to the other solvents investigated in this study. 

3.1.1. Chemicals 

Toluene (>99.5 wt%), Methyl Ethyl Ketone (>99.5 wt%), Methyl-isobutyl-ketone (99 wt%) and 

Dichloromethane (>99.5 wt%) were purchased from Ace Chemicals (South Africa). For GC 

analysis Decane (>99 wt%) obtained from Sigma Aldrich was used as the external standard 

while n-hexadecane was used as the internal standard. High purity nitrogen, used in the OSN 

experiments, was supplied by Afrox.  

3.1.2. Membranes 

The commercially available membranes that were used in this study were of the Puramem™® 

and Duramem™® membrane series obtained from Evonik [4]. These membranes were 

supplied as A4 size sheets soaked in preservation oil as a measure of preventing the 

membranes from drying out. Properties of each membrane type are specified in Table 3.1. 

Table 3.1 : List of commercial membranes used in this study and their properties.  

Membrane: Puramem™ Duramem™ Starmem™228 

Membrane material: P84 polyimide P84 polyimide Polyimide 

MWCO (Da): 280 150, 200 280 

Membrane type Hydrophobic Semi-hydrophobic Hydrophobic 

Compatible 

solvents: 

Apolar hydrocarbon-type 

solvents: 

Toluene 

Heptane 

Hexane 

MEK 

MIBK 

Ethyl acetate 

Polar solvents: 

MIBK 

MEK 

Methanol 

 

Solvents: 

Butanol 

Hexane 

Toluene 

MEK 

MIBK 

Acetone 
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Puramem™ and Duramem™ series membranes were chosen due to their stability in the 

solvents that were used in this study, while a Starmem™228 membrane was used only to test 

pretreatment solvent type. In order for a membrane to be suitable for solvent recovery, it needs 

to be able to resist damage and degradation from solvents and other chemical solutes. 

Additionally, membranes need to resist large degrees of swelling to prevent loss of their 

separation capabilities [5].  

Previous studies have shown that these membranes were successful in recovering valuable 

solvents, such as toluene and DCM, from systems containing Hoveyda–Grubbs catalysts and 

activated pharmaceutical ingredients (API), respectively [3,6] 

Both membranes mentioned in Table 3.1 are organic solvent-compatible and stable in polar 

and polar aprotic solvents such as acetone, tetrahydrofuran (THF) and ethanol. These solvent 

compatibilities indicate that ketones as well as alcohols are adequate solvent species to be 

used with the Duramem™ series. However, in literature [7-9], the Duramem™ membrane 

series were used to recover solvents such as DCM, acetone and tetrahydrofuran (THF) from 

oligomers and other solutes. 

Puramem™ membrane series are also P84® polyimide membranes that are hydrophobic by 

nature and compatible with apolar hydrocarbon-type solvents such as toluene [10]. Like the 

Duramem™ series, Puramem™ membranes operate at pressures ranging between 20 – 60 

Bar. In general, Puramem™ series membranes are compatible with solvents such as toluene 

as well as ketones, but are not ideally suited for chlorinated solvents such as DCM and amines. 

3.2. Organic Solvent Nanofiltration (OSN) experimentation 

3.2.1. Experimental Setup 

The separation performances (i.e. rejection and flux) of the OSN system as well as the 

influence of operating parameters (i.e. pressure, feed concentration, temperature) on the 

system were evaluated using a dead end membrane cell system, as illustrated in Figure 3.1. 

Previous studies have also used this system to investigate separation performances [11- 13].  

The experimental setup consists of a cell chamber (3) with a volume capacity of 180 ml. In 

addition, there is a nitrogen tank (1) that supplies nitrogen to the system in order to provide 

the necessary pressure gradient through the membrane. Furthermore, the inlet valve (10), 

outlet valve (9), pressure relieve valve (7) and pressure gauge (6) are attached to the cell. The 

membrane chamber has an inner diameter of 46 mm, which provides an active surface area 

of 16.6 cm2. The membrane disks that provide the active surface area are cut from A4 sheets 

obtained from membrane manufacturers. 
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The membrane is placed in the chamber holder with the smooth lustrous side facing upwards 

while the sinter plate supports the membrane from beneath. O-rings are inserted at both ends 

of the membrane cell before bolts can be fastened. 

Concentration polarization, as defined by Vandezande et al. [17], occurs on the surface of the 

membrane as retained solutes begin to accumulate, resulting in an increase in osmotic 

pressure and a decrease in the permeate flux. This phenomenon was reported in the findings 

of Stamatialis et al. [15] and Peeva et al. [16], who both recommend crossflow operations over 

dead-end cell operations in order to minimize concentration polarization.  

The teflon-coated magnetic stirrer bar is placed inside the membrane about 3 mm above the 

membrane surface, which is in effect once the magnetic stirrer (4) is switched on. The stirring 

bar is used to accentuate cross flow conditions.  

 

1. Nitrogen gas cylinder 6.  Membrane cell pressure gauge 

2. Nitrogen gas pressure gauge 7.  Emergency relief valve 

3. Membrane cell 8.  Electronic mass scale 

4. Magnetic stirrer 9.  Permeate sample point 

5. Electronic scale 10. Gas inlet valve 

Figure 3.1: Dead-end membrane cell apparatus 

The permeate is collected from the outlet valve in a glass beaker (8) that is stationary on an 

electronic laboratory mass scale (5). The solvent-solute mixture is inserted into the membrane 

cell after which the cell is tightly sealed and nitrogen is pressurized through the membrane 

cell. The active experiments are then commenced to allow the rejection and permeate 

characterization. 
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3.2.2. Experimental methodology 

3.2.2.1. Introduction 

In this study experiments were done to obtain membrane performance data that could be used 

to demonstrate the successful recovery of solvent from oil-solvent mixtures. Pure species 

permeation, binary component permeation and separation for various membranes and various 

solvents were investigated using the experimental procedures discussed in this section. The 

general experimental phases in this study involved: 1) membrane pretreatment, 2) membrane 

conditioning tests, 3) membrane flux tests and 4) separation evaluation. 

3.2.2.2. Pretreatment of membranes 

Before any experimentation could occur, membranes were treated in order to remove any 

contaminants from the membrane and flush the membrane with solvent, to create a 

homogeneous membrane fluid throughout the membrane. Subjecting the membrane to 

pretreatment provided homogeneous membrane properties. The solvent that was evaluated 

through experimentation in this study, was also used as the solvent for pretreatment of the 

Duramem™ and Puramem™ series membranes. 

For pretreatment, 150 ml of the solvent under investigation was loaded into the cell, after which 

permeation occured at a continuous transmembrane pressure of 30 bar for 5 to 8 hours. 

Observing the colour of the permeate provided an indication of the amount of oil removed from 

the membrane matrix. Approximately 50 ml of the solvent in question had to permeate through 

to ensure that the oil was completely removed. The pretreatment was repeated for solvents 

that had very high fluxes (i.e. MEK, DCM) for permeate collection.  

3.2.2.3. Membrane conditioning  

It is common practice for the conditioning of membranes to be performed prior to 

experimentation. According to Vandezande et al. [17], membrane performance can be 

influenced significantly without proper membrane conditioning prior to experimentation. The 

effect of membrane compaction can be minimized by subjecting the membrane to the break-

in procedure prior to experimentation. 

Membrane conditioning was performed by exposing the membrane to the set of conditions, 

such as pressure and solvent, which would be used in the experimental runs. This allowed the 

membrane to compact and swell to the extent that it would during the experimental runs, which 

minimizes error and external influence on membrane performance. Prior to conditioning of the 

membrane, the membrane cell was rinsed with roughly 5 ml of the solvent that would be used 

in the experimental runs in order to remove unwanted species and provide a more consistent 

experimental run. The cell was then loaded with solvent or solvent mixture and sealed. The 

cell was pressurized to the desired pressure and roughly one third of the feed solution was 
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allowed to permeate. For steady state consistency, the permeate was recycled back into the 

feed, and the process was then performed again for 6 to 8 hours for the membrane to provide 

steady state. 

3.2.2.4. Binary species separation and solvent recovery 

Rather than characterizing OSN membrane operation with regard to pure solvent feed, it was 

evaluated in terms of solvent recovery and rejection of solute. 

Binary mixtures considered in this study consisted of the selected solvent and one solute (i.e. 

n-hexadecane), which was evaluated at solute feed weight fraction percentages. Only one 

solute species was used to represent the dewaxed oil composition typically found in industry.   

The membrane was pretreated initially with the pure solvent that was also used in the binary 

mixture according to the procedure provided in Section 3.2.2.2. Once pretreated, the solvent-

oil mixture was loaded into the cell at a volume of 150 ml and at the solute feed weight fractions 

that were being evaluated. The cell was pressurized and 60 ml (40 vol%) of the binary feed 

was allowed to permeate in order to obtain a consistent, steady membrane environment, 

providing data that is characteristic to the experimental conditions. Once 60 ml of feed solution 

had permeated, the cell was depressurized and the permeate was thrown back into the feed 

mixture. This was because if more than 40 vol% of the feed mixture had permeated, the 

experimental data obtained would have been inconsistent at the implemented experimental 

conditions. Permeate was recycled back into the feed solution until steady state flux was 

achieved. Once steady state was achieved, the cell was depressurized in order to take a 4 ml 

feed sample, after which the cell was pressurized and ready to begin the experimentation 

phase. 

Once steady state was achieved for the binary mixture, the experimentation could commence 

where 15 ml of feed was allowed to permeate. Once 15 ml of feed had permeated, three 

samples of 4 ml each were withdrawn from the permeate into a 4 ml vial. The three permeate 

samples and the initial feed sample were then prepared for GC analysis. The GC was used to 

determine the concentrations of the three permeate samples as well as the collected feed 

sample. 

3.3. Analytical techniques 

3.3.1. Gas-chromatography 

The analytical technique that was used to analyse the composition of the permeate and 

retentate was gas-chromatography (GC). The analytical equipment that was used was a 

Thermo Scientific (No. 423130) Trace GC Ultra, with analytical separations done on a 30 m x 

0.32 mm x 0.25 µm ZB5 capillary column coupled to a flame ionization detector. The 
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developed method had an initial hold time of 1 minute at 50°C. The temperature of the GC 

oven was then raised from 50°C to 250°C at 15°C.min-1, with a final hold time of 10 minutes 

at 250°C. A mixture of helium, hydrogen and air was used as the detector make-up gas. The 

make-up gas flowrate for helium, air and hydrogen was 20 ml.min-1, 300 ml.min-1 and 30 

ml.min-1, respectively.  

Standard solutions of hexadecane, having different concentrations, were used to obtain 

calibration curves which were used to obtain a GC response factor. The standard solutions 

were made up so that the standard curve range comprised of 10, 20, 30, 80 and 100 µL of 

each analyte used in this study. The solution contained 30 μL of decane, which was used as 

the internal standard for this study. The prepared samples were then placed in the GC 

autosampler, followed by injection on the analytical column for separation of sample 

components to obtain retention times. The response factor is defined in this study as the ratio 

between the concentrations of a compound being analysed relative to the ratio between peak 

areas of these compounds obtained from the GC detector. The peak areas are obtained from 

the chromatogram. The response factor for n-hexadecane was determined to be 0.9994 using 

the standard solution concentration curve data. The GC calibration curve and response factor 

for n-hexadecane is shown in Figure 3.2 

 

Figure 3.2: GC calibration curve for n-hexadecane 

For sample preparation, 80 μl n-hexadecane (i.e. Vn-hexadecane) was added to 4 ml of DCM in a 

4 ml sample vial and 30 μl of internal standard (i.e. decane, Vdecane) was added to the solution 
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as well. The sample was diluted by taking 300 μL of sample solution and adding it to 1.5 ml of 

DCM in a 2 ml sample vial. The samples were then put into the GC autosampler, injected on 

the GC column and sample components were separated on the GC column. The resulting GC 

peak areas of n-hexadecane and the internal standard on the GC chromatogram, as shown 

in figure 3.3, were then used to determine the response factor of n-hexadecane. Once the 

response factor was known, the volume of n-hexadecane could be determined from the 

calibration curve shown in Figure 3.2. 

 

Figure 3.3: Chromatogram for n-hexadecane 

As shown in Figure 3.3, the retention time for n-hexadecane and decane is approximately at 

11 min and 5.5 minutes, respectively. Combining the internal standard volume with the relative 

peak areas, results in the formation of Equation 3.1: 

𝑉𝑛−ℎ𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑒 = 𝑉𝑑𝑒𝑐𝑎𝑛𝑒 × (
𝐴𝑛−ℎ𝑒𝑥𝑎𝑑𝑒𝑐𝑎𝑛𝑒

𝐴𝑑𝑒𝑐𝑎𝑛𝑒
) × 𝑅𝐹  (3.1) 

Equation 3.1 was used to determine the volume of solute in each binary mixture evaluated in 

this study.  Once the concentration had been determined, the rejection of solute could thus be 

determined. 

3.4. Methodology of membrane transport 

Objective 2 in this study, which involves the investigation and evaluation of membrane 

transport mechanisms, was successfully accomplished by obtaining transport models to 

describe the transport through the membrane, as discussed in Chapter 2.2. A step-by-step 

procedure to validate, compare and fit the membrane models was developed. The approach 

that was used to develop models for these membranes can be classified as a three level 

approach.   
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Before experimentation is executed, a basic understanding of describing flux mathematically 

is evaluated through a level 1 approach. Flux described through Equation 2.1 was used to 

mathematically understand the influence of pressure, flowrate and membrane area. The level 

1 approach provides a good foundation towards moving onto level 2 and 3 modelling. 

Level 2 modelling requires empirical data from literature as well as modelling results from well-

known transport models (i.e. the classic solution-diffusion and pore-flow models) to the 

existing literature experimental data. Eventually the outcome of level 2 was to obtain flux and 

rejection as a function of different parameters, as shown in Equation 3.2 and Equation 3.3.  

𝐽𝑉 = 𝑓(𝑇, Δ𝑃,𝜔, 𝑃𝑖)    (3.2)  𝑅 = 𝑓(𝜔, 𝐶𝑝, 𝐶𝑓) (3.3) 

Flux and rejection can be shown as a function of various parameters in Equation 3.2 and 

Equation 3.3. After identifying important model parameters (i.e. permeability) from the classic 

solution-diffusion and pore-flow models, level 3 modelling makes use of experimental data 

from this study and incorporates it into the models evaluated in the level 2 modelling. The 

manipulated variables that were used in investigating the transport through the membrane are 

given in Table 3.2. 

Table 3.2: Manipulated operating variables 

Manipulated 

variables 

Range Description 

Feed Pressure 10, 20, 30, 40 Bar Pressure influences are typical conditions in 

an OSN system affecting the permeate rate 

and they have an effect on rejection. Finding 

the optimum pressure is therefore required. 

 

Solvent species Toluene, MEK, DCM, 

MBIK 

These solvents are typical solvents used in 

industry and were tested with a variety of 

membranes to determine the most suitable 

solvent(s) for a specific membrane 

separation. 

 

Solute 

concentration 

(n-hexadecane) 

10 ,15, 20, 25  wt/wt % The concentrations of oil are typical to what 

is found in literature applications and in 

industrial processes, such as the dewax 

plant. Hexadecane was chosen based on its 
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Manipulated 

variables 

Range Description 

properties and represents the oil in this 

study. 

 

Membrane Duramem™(150, 200), 

Puramem™280 

Membranes used in commercial application 

were studied in this investigation. 

 

 

The manipulated variables listed in Table 3.2 were used in order to produce a variety of output 

variables, which in turn were used to model and optimize the OSN system. The output 

variables collected from the experiments are listed in Table 3.3. 

Table 3.3: Experimental output variables obtained. 

Experimental output 

variables 

Method of 

acquisition 

Description 

Permeate concentration GC analysis The permeate concentration was 

required to determine the rejections 

and modelling equations that needed 

to be further developed in this study. 

 

Retentate concentration GC analysis For modelling and validation purposes 

the retentate stream concentration 

was determined. 

 

Permeate rate Cumulative mass 

over time 

The permeate rate was experimentally 

determined using a weight mass scale 

to determine the flux. 

 

 

The variables from Table 3.2 and Table 3.3 were incorporated into the level 3 modelling. They 

were used to evaluate the system by identifying the effects of all manipulating variables on the 

experimental output variables that were required to produce separation performance curves. 

Once the output performance parameters were obtained for the various membranes, the 

separation performances of the membrane systems could be compared to conventional 

separation systems, such as distillation solvent recovery.   
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The approach of using theoretical models, such as the solution-diffusion and pore-flow 

models, is a standard approach that requires the necessary parameters both from literature 

and from experimental data. Chemical properties for this study were based on literature 

values, while the permeability parameter for each model was experimentally determined in 

this study. After incorporating the parameters into the models, the response variables (i.e. flux) 

could be determined.  

3.4. Methodology of economic analysis 

To determine the feasibility of solvent recovery by OSN membrane operation, a comparative 

preliminary economic evaluation between distillation and OSN membrane operation was 

done. The economic evaluation made use of process simulation data, where process 

simulation was developed from the simplest system to a more complex system. Energy usage 

was determined for both systems through process simulation, while cost evaluation was 

determined based on the heuristics found in literature [9,19,20,21]. The simulation of the 

process conditions was developed using Aspen Plus software. The focus of the simulation 

was to determine the energy balances as well as mass balances throughout the OSN 

membrane unit and distillation unit.  

In order to provide the same operating conditions as the experimental OSN operation for both 

distillation and OSN systems, the assumption that the system was continuous for a binary 

solvent-solute system needed to be made in Aspen Plus. A calculator block was used in order 

to keep track of rejection and purity of the permeate and distillate streams with regard to the 

solvent recovered. Once the operating conditions were met, the energy that was required to 

operate the system was obtained. Energy usage for the OSN system was determined based 

only on the pump work required in order to provide the necessary pressure into the membrane.  

The operating costs depend on a number of operating variables as discussed in Chapter 2. In 

order to provide a reasonable economic evaluation, the economic evaluation was performed 

for a system without a recycle stream, which was then compared to the separation units where 

a recycle stream had been included.  

Capital costs were determined based on previous process plant data, such as unit size and 

unit cost in the provided year. Using the heuristics provided in Turton et al. [19], the capital 

costs were determined. The manipulated variables used to perform the energy and cost 

analysis are provided in Table 3.5. 

Table 3.5: Manipulated operating variables 
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Manipulated variables Range Description 

Feed flowrate 1000 kg.hr-1 The feed flowrate is a design base condition, 

which was used for the comparison of OSN 

and distillation in this study. 

 

Organic solvent 

concentration 

75, 80, 85, 90 

wt/wt % 

The concentration of solvent influences the 

cost of raw feed material, which influences 

the recycle ratio, reflux rate, purity and 

operating costs significantly. 

 

Distillation column 

stages 

10 - 25 The number of stages are based on a typical 

distillation column design, as illustrated in 

Coulson et al. [19] 

 

Reflux ratio 0 – 5 A selected input variable, that is required in 

order to provide the standard purities of 

solvent recovery obtained in industry for 

distillation operation. 

 

Split ratio of recycle 

stream back to OSN 

feed 

0 – 100   The split stream of recycle is determined to 

provide the ideal amount of solvent that can 

be placed into the feed, while providing an 

output stream of high purity solvent recovery 

at sufficient output flowrates. 

 

Membrane area 10 – 100 m2 The membrane area influences the size of 

the OSN unit and is used to determine the 

capital cost of the membrane unit. 

 

 

Based on the variables used in Table 3.5, the output variables obtained for comparative 

analysis of the two systems (i.e. Distillation and OSN operations) in question, are summarized 

in Table 3.6. 

Table 3.6: Economic output variables obtained 
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Experimental output 

variables 

Method of 

acquisition 

Description 

Solute rejection Aspen calculator 

block 

Using the calculator block as well as the 

stream concentrations, the rejection can 

be determined. 

 

Energy consumption Aspen Plus simulation Using Aspen Plus simulation software, 

the energy consumption can be 

determined for each individual piece of 

equipment that was used. 

 

Permeate/distillate 

flowrate 

Aspen Plus simulation From Aspen Plus, the distillate and 

permeate flowrates were determined for 

both streams. 

 

Capital Cost Nelson-Farrar cost 

indexes  

The cost information for the unit 

equipment was adjusted using 

appropriate scaling factors, in order to 

accommodate capacity scaling as well as 

inflation, which provides the estimated 

capital cost. 

 

Operating Costs Cost of manufacturing 

estimate 

Determining the cost of manufacturing 

relies on five elements, which include 

labour, energy, fixed capital costs, raw 

materials, waste, utilities and 

maintenance. 

 

 

Economic performance of OSN operation and distillation operation were compared and 

discussed based on the output variables provided in Table 3.6. The observed effects of 

manipulated variables demonstrate the flexibility of both systems and as a result indicate 

which variables have more influence than others.  

Stellenbosch University  https://scholar.sun.ac.za



52 
 

3.5. References 

[1] R.M. Gould, L.S. White, C.R. Wildemuth, Enviro. Prog. 20 (2001) 12-16. 

[2] M. Priske, M. Lazar, C. Schnitzer, G. Baumgarten, Chem. Ing. Tech. (2015). 

[3] H. Siddique, E. Rundquist, Y. Bhole, L. Peeva, A. Livingston, J. Membr. Sci. 452 (2014) 

354. 

[4] Evonik Industries AG, Germany. [Online], (2017).  http://Duramem™.evonik.com  

[5] D.R. Machado, D. Hasson, R. Semiat, J. Membr. Sci. 163 (1999) 93. 

 [6] D. Ormerod, B. Bongers, W. Porto-Carrero, S. Giegas, G. Vijt, N. Lefevre, et al., RSC 

Advances 3 (2013) 21501. 

[7] J. Li, M. Wang, Y. Huang, B. Luo, Y. Zhang, Q. Yuan, Part A, RSC Advances, 4 (2014) 

40740. 

[8] M.F.J. Solomon, Y. Bhole, A.G. Livingston, J. Membr. Sci. 423 (2012) 371.  

[9] P. Schmidt, E.L. Bednarz, P. Lutze, A. Górak, Chem. Eng Sci. 115 (2014) 115. 

[10] K. Hendrix, M. Van Eynde, G. Koeckelberghs, I.F. Vankelecom. J. Membr. Sci. 447 (2013) 

212.  

[11] K. Xiao, Y. Shen, X. Huang, J. Memb. Sci. 427 (2013) 139–149. 

[12] Y.H. See Toh, F.W. Lim, A.G. Livingston, J. Memb. Sci. 301 (2007) 3–10. 

[13] P. Van der Gryp, A. Barnard, J.P. Cronje, D. de Vlieger, S. Marx, H.C.M. Vosloo, J. Memb. 

Sci. 353 (2010) 70–77. 

[14] X. Yang, A. Livingston, L.F. Dos Santos, J. Memb. Sci. 190 (2001) 45-55. 

[15] D. Stamatialis, N. Stafie, K. Buadu, M. Hempenius, M. Wessling, J. Memb. Sci. 279 (2006) 

424-433. 

[16] L.G. Peeva, E. Gibbins, S.S. Luthra, L.S. White, R.P. Stateva, A.G. Livingston, J. Memb. 

Sci. 236 (2004) 121–136. 

[17] P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Chem. Soc. Rev. 37 (2008) 365–

405. 

[18] Y. Kong, D. Shi, H. Yu, Y. Wang, J. Yang, Y. Zhang,  Desal 191 (2006) 254. 

Stellenbosch University  https://scholar.sun.ac.za

http://duramem.evonik.com/


53 
 

[19] R. Turton, R.C. Bailie, W.B. Whiting, J.A. Schaeiwitz, Analysis, Synthesis, and 

Design of Chemical Processes, 3rd Ed., Prentice Hall, Boston, 2009. 

[20] R. Abejón, A. Garea, A. Irabien. Chem. Eng. Res. Design 90 (2012) 442.  

[21] D. Peacock, J.F. Richardson, Chemical Engineering, Chemical and Biochemical 

Reactors and Process Control, Volume 3, Elsevier, Oxford, 2012. 

 

Stellenbosch University  https://scholar.sun.ac.za



54 
 

 

 

 

 

 

Chapter 4: Results and 

Discussion – Recovery of Solvent 

 

Overview 

This chapter discusses all the experimental results that were obtained for the OSN 

system relating to the pure species and binary species recovery. The membranes 

investigated were Duramem™150, Duramem™200 and Puramem™280. The 

experimental validation, repeatability and experimental error are reported in Section 

4.2. Membrane performances are discussed in Sections 4.3 and 4.4, demonstrating 

the effect of solvent, solute and membrane properties on separation performances. 
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4.1. Introduction 

Membrane performance is usually categorized in terms of permeance and rejection 

parameters. The membrane performance of an industrial system has a significant effect on its 

economic viability, energy consumption and green-initiatives. The results discussed in this 

section elaborate on membrane performance in terms of flux and rejection. Flux and rejection 

data was obtained using Equation 4.1 and Equation 4.2. 

𝐽 =
𝑉𝑛

𝐴.Δ𝑡
   (4.1) 

𝑅𝑠𝑜𝑙𝑢𝑡𝑒 = (1 −
𝐶𝑝

𝐶𝐹
) (4.2) 

Where: 

Vn  – volume of fluid that permeates through membrane normal to the surface area (L) 

A – effective membrane surface area (m2) 

t    – time interval for which volume V permeates through the membrane (hr) 

J – flux of a permeating species through the membrane (L.m-2.hr-1)  

Cp  – solute concentration in feed permeate (ml.ml-1 or mg.L-1)  

Cf  – solute concentration in the feed (ml.ml-1 or mg.L-1) 

Rsolute  – rejection  

Interactions between solvents, solutes and membranes were observed, which influenced 

membrane performance, and these interactions are further discussed in this chapter. 

4.2. Experimental error and reproducibility 

This section presents the reproducibility and experimental validation of all experimental data 

for the OSN experiments obtained with the dead-end cell.  In order to obtain reasonable 

experimental results for the dead-end cell system, steady state conditions needs to be met.  

Silva et al. [1] states that membrane compaction and steady state operation is a slow process, 

and that describing the membrane operation at short time periods between 1 - 3 hours does 

not provide reliable performance for long-term operation. White et al. [2] provides a supporting 

argument, stating that a lined-out steady state was achieved through spiral-wound 

membranes after 100 hours of membrane operation. Whu et al. [3] achieved steady state for 

methanol at two different pressures for two sets of 8 hour experimental runs using a dead-

end-cell setup. Whu et al. furthermore stated that membrane compaction is demonstrated as 

the initial impermanent stage, having a duration of approximately 12 hours. 
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Using the break-in procedure, discussed in Section 3.2.2.2, the validation of experiments was 

addressed while achieving steady-state conditions over a 6-hour period, using 

Puramem™280 and toluene at 20 bar (as shown in Figure 4.1).  

 

Figure 4.1: Acquisition of steady state flux through Puramem™280 for pure toluene at 20 

bar. 

OSN experimental runs were performed five consecutive times. During each run the dead-end 

cell was depressurized, refilled and pressurized again to the desired pressure. This process 

is depicted in Figure 4.1 by the vertical lines intersecting the different operations, representing 

the 5 repeated runs. As shown in Figure 4.1, steady state started to be observed from Run 2 

onwards. Over five consecutive runs, an average flux of 168 L.m-2.hr-1 was obtained, as 

illustrated by the grey horizontal line in Figure 4.1. The steady state phenomenon 

demonstrated over the five consecutive operations illustrate that steady state had been 

achieved over 6 hours of operation. Run 1 is the operation where the break-in procedure 

occurs, resulting in a distributed compaction over the surface of the membrane, which from 

then onwards, induces a lower flux. Runs 2 – 5 illustrate the lower flux caused by compaction, 

but also show how the pressure drop over the membrane occurs after pressurizing the cell 

during each consecutive run. According to Van der Gryp et al. [4], a new membrane disc takes 

approximately three days for solvent flux to reach steady state. However, as shown by Whu 

et al. [3] as well as in Figure 4.1, steady state can be achieved over a shorter duration. 
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The Starmem™228 membrane was used in this study only to demonstrate the influence that 

the pretreatment solvent type has on the membrane performance for pure species flux, using 

pure 1-octene species. The experimental flux obtained was compared to literature flux values. 

Van der Gryp et al. [4] performed 1-octene pure species flux tests on Starmem™228, which 

is illustrated in Figure 4.2. 

 

Figure 4.2: 1-Octene Pure Species Flux through Starmem™228 

There are differences between the fluxes obtained from experimental work in this study and 

those obtained by Van der Gryp et al. [4], as shown in Figure 4.2. The solvent used for 

pretreatment of the Starmem228™ membrane in the work of van der Gryp et al. [4] was 

toluene. The solvent used for the pretreatment of the Starmem™228 membrane in this study 

is 1-octene  

According to Zhao et al. [5], the membrane structure and membrane hydrophobicity are 

reorganized depending on the type of solvent used for pretreatment. Additionally, Jeżowska 

et al. [6] state that pretreatment increases the homogeneity of properties of flat sheet 

membranes. Hence, the difference seen in Figure 4.2 is mainly due to the type of solvent used 

for pretreatment. For the purpose of this study, the solvents that were used for pretreatment 

of Duramem™150, Duramem™200 and Puramem™280, are the solvents that were being 

used in pure species and binary species experimentation, namely MIBK, MEK, toluene or 

DCM. 

Experimental runs for a binary mixture were repeated in order to validate the reproducibility of 

the experimental results by determining the experimental error for each experimental 
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operation. Three consecutive runs for the toluene/n-hexadecane mixture were conducted at 

different solute feed weight fraction percentages (10, 15, 20 and 25 wt%). Experimental error, 

which is based on the deviation of rejection for binary species, was determined and is 

summarized in Table 4.1. 

Table 4.1: Experimental error and repeatability for a toluene/n-hexadecane binary mixture 

through Puramem™280 at 30 bar. 

C16 

(wt%) 

C16 Con feed 

(mg/L) 

C16 Conc Perm 

(mg/L) 

Average Rej 

(%) 

Stdev 

(σ) 

Stnd error 

(%) 

10 0.100 0.060 39.57 +/- 5.0 4.3 2.5 

15 0.127 0.116   8.910 +/- 2.3 2.0 1.1 

20 0.173 0.128   26.17 +/- 5.6 4.0 2.8 

25 0.287 0.204   29.06 +/- 4.6 3.9 2.3 

Table 4,1 shows that for dead-end cell operation the standard error is on average 2.5 %. 

Furthermore, it can be assumed that all rejection experiments specific for binary mixtures will 

have the same standard error of 2.5 %. 

4.3. Pure species permeation tests 

Pure solvent fluxes were experimentally determined through Puramem™ and Duramem™ 

series membranes at various pressures and the results are illustrated in Figure 4.3.  

 

        (a) 

           

            (b) 
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            (c) 

Figure 4.3. Pure solvent flux through membranes (a) Duramem™150, (b) Duramem™200 

and (c) Puramem™280 at various pressures and ambient room temperature. 

As shown in Figure 4.3, the smaller molecular sized species, such as MEK and DCM, 

permeate at higher fluxes through Duramem™150 than larger species, such as toluene and 

MIBK. Other properties besides molecular weight have an influence on the membrane 

performance. This is evident, for instance, when comparing the fluxes of MIBK and toluene. 

MIBK has a molecular weight of 100.16 g.mol-1 and a molar volume of 125.8 m3.mol-1, which 

is larger than that for toluene. However, MIBK has a higher flux relative to toluene, as shown 

in Figure 4.3 (a) and (b). The reason why the flux of MIBK is higher than that of toluene, lies 

in the polarity of MIBK resulting in it having a better affinity to the Duramem™ series 

membranes than toluene. The Duramem™ membranes interact better with polar compounds, 

giving solvents like MEK, DCM and MIBK a higher flux due to these polar interactions 

compared to non-polar molecules such as toluene.  

The permeance values obtained from various fluxes at different pressures were used to model 

the transport through the membranes and the permeance of each species for Duramem™150, 

Duramem™200 and Puramem™280 is shown in Table 4.2. 

Table 4.2: Pure species permeance for Duramem™150, Duramem™200 and Puramem™280 

at a room temperature of 20°C. 

Permeance (L.m-2.hr-1.Bar-1) 

Species Duramem™150 Duramem™200 Puramem™280 

DCM 2.1700 2.0725  - 

MEK 1.3329  1.1403  29.323  

MIBK 0.1638  0.1217  2.7660  

Toluene 0.0378  0.0655  10.365  
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The data shown in Table 4.2 can be used in modelling within the pore-flow and solution-

diffusion models, as described in chapter 2. Chapter 5 of this thesis will elaborate further on 

this. As discussed previously, DCM and MEK have higher permeance values compared to the 

larger species, which are non-polar (i.e. toluene and MIBK). 

4.4. Effect of solvent properties 

Solvent properties are important when it comes to describing transport of a solvent-solute 

mixture through a membrane. Some of the solvent properties of interest in this study are 

shown in Table 4.3. 

Table 4.3: Summary of solvent properties used in this study 

Species/ 

Structure 

MW 

(g.mol-1) 

Vm 

(m3/mol) 

Viscosity 

(cP) 

Dipole 

Moment (µD) 
Polarity 

𝜹(a) 

(MPa)0.5 
𝜺(b) 

Toluene 
 

92.14 106.85 0.55 0.31 Non-
polar 

18.2 2.32 

DCM  84.93 64.50 0.437 1.6 Fairly 
polar 

20.2 8.93 

MEK 
 

72.11 89.44 0.428 2.78 Highly 
polar 

19.1 18.5 

MIBK  100.16 125.8 0.58 2.7 Highly 
polar 

17 13.1 

(a) Solubility Parameters based on Hansen Solubility parameters 
(b) Dielectric constant 

 

As shown in Figure 4.3, solvents with larger molecular weights relative to membrane MWCO 

tend to have lower fluxes. Referring to Table 4.3 and Figure 4.3, MIBK and MEK have 

molecular weights of 100.16 g.mol-1 and 72.11 g.mol-1, respectively. It is clear that the impact 

of the molecular size differences of MEK and MIBK on their respective fluxes were significant. 

Looking at Puramem™280 alone, MEK has a larger flux relative to MIBK and toluene. As 

mentioned before, the size of a species influences the degree of steric hindrance which that 

solvent species will experience with itself and with the membrane. When considering only the 

impact of molecular size, one would expect that the larger molecules would result in lower 

fluxes through a membrane. However, when arranging the molecules from largest molecular 

size to smallest: MIBK>Toluene>DCM>MEK, there is no clear explanation why some species, 

such as DCM, have higher fluxes to that of MEK, as illustrated in Figure 4.3 (b and c). This 

demonstrates that molecular size is not the only factor which influences the transport of a 

species through a membrane. 

Darvishmanesh et al. [8] reported that molecular size alone does not have significant 

effects on the flux through a membrane. According to these authors, this is due to the fact 

that other parameters, such as a combination of solvation and hydration effects as well as 
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solvent-solute-membrane interactions, play an important role. The interactions of solvent 

with a membrane influence the geometric shape of the membrane which affects its 

structure and degree of swelling to some degree. 

According to Zheng et al. [9], molecular size is the most easily accessible parameter to 

use but is not the most accurate size parameter. Zheng et al. further states that the 

molecular size parameter can be defined in various ways, with most of these assuming a 

spherical shape and rigid molecule. Focusing rather on describing the transport through a 

membrane that is based on the molecular shape, provides a better understanding of the 

molecular size parameter. When one looks from a molecular shape viewpoint, the length 

and width as well as geometrical conformation is taken into account, based on the 

molecular mass distribution. Zheng et al. defines the molecular shape parameter as the 

distribution of molecular bulk according to the geometrical conformation of a given 

molecule. 

Zheng et al. reported that the retention of solutes with similar molecular shapes increased 

with increasing molecular size. More importantly, Zheng et al. further mentions that for 

molecules of similar molecular weight, the transport through the membrane is most 

preferential towards linear molecules, followed by branched molecules and lastly 

molecules with cyclic groups. Previous studies have also shown preferential transport 

through membranes for linear molecules compared to branched- and cyclic molecules 

[8,10,11]. 

When looking at the solvents in this study, MIBK and toluene have nearly similar molecular 

weights (MIBK: 100.16 g.mol-1, Toluene: 92.14 g.mol-1). Toluene is classified as a cyclic 

compound and MIBK is classified as a branched compound. As illustrated in Figure 4.3, 

the fluxes of MIBK is higher than those of toluene through Duramem™150 and 

Duramem™200. According to Zheng et al. [9], branched molecules have a preferential 

permeance in comparison to cyclic compounds. This illustrates that even though toluene 

has a lower molecular size in comparison to MIBK, the molecular shape does influence 

the transport through the membrane. The molecular shape influences solvent transport 

through a membrane because of the inter- and intramolecular interactions that the 

permeating species has with the membrane and other permeating species, irrespective of 

whether the mixture is homogeneous or heterogeneous.  
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One solvent property that can describe the pure species flux through a membrane is 

viscosity. On evaluating the influence that viscosity has on the transport through each 

membrane, a definite link between the viscosity of a species and the solvent flux is 

identified. The following fluxes through Puramem™280 have been demonstrated 

experimentally (organized from highest to lowest flux): MEK>toluene>MIBK. The reported 

experimental fluxes through Puramem™280 perfectly reflect the viscosities of each pure 

species in order of smallest to largest viscosity: MEK<toluene<MIBK. For Duramem™150 

and Duramem™200, a similar phenomenon occurs, since both MIBK and toluene, which 

exhibit higher viscosity, provide lower fluxes compared to MEK and DCM.  

The Pearson correlation, given in Equation 4.3, is a measure of the strength of the 

association between two quantitative variables. The nearer the scatter of points are to a 

straight correlation line, the higher the strength of association between the variables.  

𝑟 =
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2 ∑(𝑦−𝑦̅)2
  (4.3) 

Using the correlation given in Equation 4.3, viscosity can be considered an important 

property that influences flux through Puramem™280, Duramem™200 and 

Duramem™150, with Pearson correlations of 0.9995, 0.994, and 0.9423, respectively. 

The dependence between viscosity, molar volume and flux signifies that the transport 

across a membrane is controlled by diffusive properties. Figure 4.4 demonstrates how the 

Pearson correlation closely relates the viscosity to flux. 

 

Figure 4.4: Flux vs inverse of viscosity for pure species permeation 
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The influence that viscosity has on the pure solvent flux through the membrane was shown 

to be inversely proportional, which has also been reported by other researchers [12-14].  

Bhanushali et al. [15] proposed a correlation between solvent properties and the 

experimental fluxes observed. Properties such as viscosity, surface tension, molar volume 

and sorption terms were included, as described in Equation 4.4. 

𝐽 ∝ 𝐴 ∝ (
𝑉𝑚

𝜂∅𝑛
)  (4.4) 

Where: 

Vm – molar volume (m3.mol-1) 

η – Viscosity (Pa.s) 

The relationship between the solvent properties and solvent transport is described through 

more than just viscosity and molar volume. According to Geens et al. [16], other properties 

besides viscosity influence the transport of solvents through membranes. 

Solvent polarity is an important parameter that is defined as the separation of electric 

charge, resulting in a molecule or its chemical groups having few or multiple electric dipole 

moments. Polar molecules are considered to have intermolecular dipole-dipole forces that 

interact with hydrogen bonds or atoms with low electronegativity.  The degree of polarity 

can be described by three properties, (1) the dipole moment, (2) dielectric constant and 

(3) miscibility with water. 

The dipole moment of a species refers to the measurement of separation of two opposite 

electrical charges on the species and describes the polarity of a species based on the 

distribution of electrons between two bonded atoms. The solvents that were used in this 

study, can be arranged from those with the largest to smallest dipole moments: MEK > 

MIBK > DCM > toluene. The relationship between solvent dipole moment and solvent 

permeance is illustrated in Table 4.4. 

Table 4.4: Solvent dipole moment and solvent permeance 

 Permeance (L.m-2.hr-1.Bar-1) 

Species Dipole moment Duramem™150 Duramem™200 Puramem™280 

MEK 2.78 1.33 1.14 29.32 

MIBK 2.7 0.16 0.12 2.76 

DCM 1.6 2.17 2.07 - 

Toluene 0.31 0.04 0.07 10.36 

On evaluation of the relationship between solvent dipole moment and solvent flux through 

Duramem™ series membranes presented in Table 4.4, it becomes clear that higher fluxes 
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are observed for solvents with high dipole moments (MEK, DCM and MIBK) compared to 

solvents with low dipole moments (toluene). There is no clear relationship between the 

solvent dipole moment and the pure solvent flux through the Puramem™280 membrane. 

For both Duramem™150 and Duramem™200 membranes the following solvent fluxes 

were observed, arranged from highest to lowest: DCM > MEK > MIBK > toluene. On 

comparison of the experimental fluxes with the dipole moment arrangement, the most 

notable observation is that the non-polar molecule, toluene, has a dipole moment of 0.31 

and a low solvent flux which can be considered a fair correlation. However, DCM provides 

high fluxes through Duramem™ series membranes but has a much lower dipole moment 

of 1.6 compared to those of MEK and MIBK of 2.78 and 2.7, respectively. It is clear from 

this observation that the dipole moment is a solvent property which is not well correlated 

with solvent flux for solvents with different functional groups. 

The dielectric constant is another parameter that can describe transport of solvent through 

the membrane. The dielectric constant is a measure of a substance’s ability to insulate 

charges from each other, which can be considered a measure of solvent polarity [16]. 

Solvents with high dielectric constants generally have high polarity, while solvents with 

low dielectric constants are classified as non-polar. The relationship between solvent 

dielectric constant and solvent permeance is illustrated in Table 4.5. 

Table 4.5: Solvent dielectric constant and solvent permeance. 

 Permeance (L.m-2.hr-1.Bar-1) 

Species Dielectric Constant Duramem™150 Duramem™200 Puramem™280 

MEK 18.5 1.33 1.14 29.32 

MIBK 13.1 0.16 0.12 2.76 

DCM 8.93 2.17 2.07 - 

Toluene 2.32 0.04 0.07 10.36 

 

From Table 4.5 one compares the dielectric constant gradation (from highest to lowest) of 

the solvent species used in this study: MEK > MIBK > DCM > toluene, with the apparent 

experimental permeance (DCM > MEK > MIBK > toluene), the correlation fits well for non-

chlorinated species through the Duramem™ series membranes. However, this correlation 

is not obvious for the solvent permeance through the Puramem™280 membranes.  

The solubility between two species can be used to describe the affinity of two species 

towards each other (i.e. solute, solvent, membrane), hence giving an indication of a 

species’ miscibility as reported by previous researchers [10,17 – 21]. Equation 4.5 is a 

representation of the difference between the solubilities of two species. 
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Δ𝛿 =  |𝛿𝑖 − 𝛿𝑚|  (4.5) 

Where 𝛿𝑖 is the solubility parameter for species i and 𝛿𝑚 is the solubility parameter of the 

membrane material. According to Li et al. [22], the membrane flux and separation can be 

represented by the solubility parameter and molarity. The model that Li et al. developed, 

provided a good fit for Duramem™ series membranes and is discussed further in Chapter 

5. The correlation of the solubility parameter of each solvent with the experimental flux 

can be evaluated by arranging the solvents from largest to smallest with regard to 

solubility: DCM > MEK > toluene > MIBK. The major discrepancy comes from the 

rearrangement of toluene and MIBK on comparison of their apparent fluxes for 

Duramem™ series membranes (arranged from largest to smallest flux): DCM > MEK > 

MIBK > toluene. 

The solubility of a species can be used to describe the polarity of the species. The 

solubility parameter for Duramem™ series membranes are found in literature to be 26.8 

MPa0.5 [22,23]. According to Robertson et al. [20], the closer the solubility parameter of 

the solvent is to that of the membrane, the higher the flux will be. This holds true for DCM 

and MEK, having Hansen solubility parameters of 20.2 MPa0.5 and 19.1 MPa0.5, 

respectively. However, this is not true in the case of MIBK and toluene. Although toluene 

has a higher solubility parameter than MIBK, MIBK has a higher permeance than toluene. 

This indicates that the Hansen solubility parameters do not provide a good correlation with 

permeance for larger molecules.     

According to the Evoniks membrane manufacturers [24], chlorinated solvents, such as 

dichloromethane (DCM), are not recommended for use with Duramem™ series and 

Puramem™ series membranes. In this study, the effect of DCM solvent on the Evonik 

membranes was investigated. DCM was found to be an acceptable solvent for use with 

the Duramem™ series membranes, but not suitable for use with Puramem™280 

membranes. Figure 4.5 is a visual comparison of a Puramem™280 membrane that had 

been exposed to either a non-chlorinated solvent or a chlorinated solvent.  
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(a) 

 

(b) 

Figure 4.5: Visual presentation of Puramem™280 membrane after (a) non-chlorinated 

solvent or (b) chlorinated solvent has permeated through at 30 bar and ambient room 

temperature.  

As shown in Figure 4.5(b), the use of chlorinated solvents with Puramem™280 

membranes can have a huge impact on the membrane condition. As is visible in Figure 

4.5, the chlorinated solvent perforates the membrane, which is undesirable. Perforation 

causes the membrane to provide little to no separation and in the process the membrane 

is damaged. According to Lau et al. [25], the suitability of commercial polyimide (PI) 

membranes for use with certain solvents are limited by their susceptibility to degradation 

through contact with chlorine. This is due to chemical changes that take place in the nature 

of the PI membranes when they are exposed to chlorine, which affects membrane 

performance. Furthermore, over the long term chlorine exposure shortens the membrane 

life span.  

Konagaya et al. [26] performed research on improving the resistance of Reverse Osmosis 

(RO) membranes towards chlorine. They demonstrated that it is possible to develop 

chlorine resistant membranes while providing high RO membrane performance. With 

regard to nanofiltration membranes, Buch et al. [27] investigated the chlorine stability of 

NF membranes by interfacial polymerization. Buch et al. reported that the performance of 

membranes decreased drastically after exposing the membranes to chloride solution for 

24 hours. Buch et al. further comments that membrane technology has not reached 

maturity yet and that more research work needs to be done to enhance the further 

development of membranes.  
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In summary, various solvent properties, such as viscosity, dielectric constant, molar 

volume, dipole moments and solubility parameters, have an impact on membrane 

transport of the permeating species. However, one parameter alone cannot predict the 

species flux through the membrane since there are still other interactions with the 

membrane that have to be taken into account. Various other parameters, such as surface 

tension, have been reported in literature to have an effect on the flux and membrane 

performance of the permeating species [16,29 - 31].  In literature, models have been 

developed [15,16] that take a combination of solvent properties into account, as shown in 

the relation given in Equation 4.6.  

𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ (
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑠𝑖𝑧𝑒

1
) × (

1

𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦
) × (

1

𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦
)  (4.6) 

The relationship between permeability and solvent properties given in Equation 4.6 have 

provided good results for past membranes such as Starmem™ and MFP series 

membranes. However, fitting this correlation to the solvents and membranes used in this 

study gives an unfitted trend, as illustrated in Figure 4.6.  

 

(a) 

 

         (b) 
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(c) 

Figure 4.6: Correlation between molar volume, viscosity and solubility constant of 

solvents in relation to permeance through (a) Duramem™150, (b) Duramem™200 and 

(c) Puramem™280.  

From Figure 4.6 it is clear that the correlations obtained from models proposed in 

literature, using various forms of Equation 4.6, fit the Puramem™280 series the least and 

the Duramem™ series membranes, with special reference to Duramem™200, the best. 

However, for none of the three membranes the correlation is positive, with Pearson 

correlations for Duramem™150, Duramem™200 and Puramem™280 of -0.82, -0.855 and 

-0.63, respectively. This shows that there is a negative correlation between the solvent 

properties and solvent permeance through membranes, indicating that the solvent 

properties have a low strength of association with the solvent permeance through the 

membrane.  

4.5. Binary species permeation and rejection 

n-Hexadecane has been used as a solute marker in past OSN research published by 

White et al. [2], in which toluene was recovered from a toluene-hexadecane system 

through a polyimide Lenzing P84 membrane. The rejection obtained for this system was 

found to be 78% hexadecane using Lenzing P84 membranes. Comparing literature to the 

results obtained from this study, there is a major difference in the performance between 

the two membranes and solvent types used. The recovery of solvents used in this study 

from a hexadecane solvent system is illustrated in Figure 4.7. 
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        (a) 

 

          (b) 

 

     (c) 

 

      (d) 

 

    (e) 

 

      (f) 

Figure 4.7: Binary permeation and rejection of n-hexadecane from different solvents through 

three membranes (a-b) Duramem™150, (c-d) Duramem™200 and (e-f) Puramem™280 at 

various feed concentrations, ambient room temperature and 30 bar feed pressure.   
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As illustrated in Figure 4.7, MEK had a higher flux than DCM, while both tended to decrease 

in flux as the concentration of hexadecane increased in the feed. The fact that permeate flux 

decreased with increasing feed solute concentration, was due to the higher hindrance that the 

solute has in the membrane, causing higher densities of concentration polarization and more 

obstruction of pathway through the membrane. Over time the flux decreased due to this 

hindrance and for this reason only smaller molecules, such as MEK and DCM, were allowed 

to pass through. One reason for MEK having a higher binary flux, is that MEK has a higher 

dipole moment, which allows MEK to pass through the membrane more easily. Kong et al. 

[32] demonstrated, with a binary solvent mixture and solute, that the permeation is influenced 

by the concentration of solute in the feed. A steady decrease of permeate was demonstrated 

and conclusions made by Kong et al. entail that concentration polarization decreases the MEK 

permeation. 

The major discrepancy between MEK and DCM is the difference in their dipole moments of 

Δμo = 1. This large difference and the fact that MEK has a larger molar volume (i.e. occupying 

more space), can be the reason for higher rejection than that of DCM. This behaviour between 

solvent and solute was identified by White et al. [2] and Zheng et al. [9,33], who found higher 

recoveries and lower permeability for the bulky molecules due to a larger steric presence. 

As illustrated in Figure 4.7, lower solute fractions in the feed provide lower rejections. 

Hexadecane has a molecular weight of 226.45 g.mol-1, which should in theory not allow it to 

permeate through the membrane. Although Duramem™150 is classified as a membrane that 

rejects 90% of molecules with the molecular weight of 150 g.mol-1 or greater, this rejection is 

not complete. MEK has a higher purity in the permeate than DCM, as is shown in Figure 4.7. 

Although DCM has a higher pure species permeance, the MEK solvent provides better 

rejection due to less steric hindrance in the MEK-hexadecane feed mixture. Both MEK and 

DCM have similar properties, which makes it difficult to justify how the behavioural properties 

of these two solvents influence the transport of hexadecane through the membrane. 

Membrane flux and rejection are two important output variables that are used to describe the 

recovery of a desired species. In Figure 4.8 rejection is plotted against membrane flux, 

demonstrating how these two recovery outputs are inter-linked with one another.   
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   (a) 

 

    (b) 

 

    (c) 

Figure 4.8: Flux vs rejection performances for (a) Duramem™150, (b) Duramem™200 and 

(c) Puramem™280 at 30 bar and room temperature. 

Figure 4.8 shows that the flux performance parameter decreases as the rejection of solute 

increases. This trend is most clearly illustrated in Figure 4.8(a), where DCM flux has a steep 

decrease as rejection of hexadecane increases, however this trend is less predominant for 

DCM through Duramem™200. The main cause of this is the build-up of solute on the 

membrane surface, contributing to the lower flow of solvent through the membrane due to the 

many steric hindrances. MIBK and toluene do not show strong resemblance to the trends 

followed by DCM and MEK. This is due to the challenges in determining the permeate flux of 

these solvents. The sensitivity of the mass scale that was used to obtain readings for the 

accumulative mass of very slow permeating species, resulted in error in the readings for the 

solute-solvent mixtures of the solvent species toluene and MIBK. Comparison between the 

recovery performance variables provides a good indication as to which would be a better 

choice for recovery. Ideally high rejection and high permeate flux are desired. 
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4.6. Concluding remarks 

In this chapter, the recovery of solvent through OSN membranes has been demonstrated to 

be influenced by a number of factors. 

Experimental validation for all species besides DCM demonstrated good reproducibility of the 

experimental results, . The experimental error was taken as an arithmetic mean, taking into 

account pressure drop, experimental rejections and recorded accumulated mass readings and 

was shown to be 2.5 % at a feed pressure of 30 Bar. The break-in procedure, which was used 

to acquire steady state in this study, was shown to be a viable procedure for use in this study. 

It was also shown that steady state conditions were achieved using the dead end cell setup. 

The equipment validation, which was performed using 1-octene, demonstrated good 

similarities with literature fluxes. 

Permeation tests performed for pure species through Duramem™150, Duramem™200 and 

Puramem™280 membranes provided results that illustrated how properties from both 

membrane and permeating species have an effect on flux. MEK and DCM provide higher 

fluxes overall due to their molecular size, polarity and solubility. However, toluene provides 

two orders of magnitude greater fluxes through Puramem™280 than Duramem™200, which 

demonstrates the influence of membrane interaction as well. DCM has been shown to be 

detrimental to membranes in general including the Duramem™ series membranes, which are 

classified to be polar stable membranes. This study has shown that DCM is not recommended 

as a suitable solvent to be used in lube oil dewaxing processes using Duramem™ and 

Puramem™ series membranes, due to the fact that it is a chlorinated species. 

A binary solvent-solute mixture, representing the feed solution in membrane operation, was 

also investigated. Solvent recovery was successfully demonstrated through membrane 

permeation and rejection of solute, which were determined though analytical analysis. 

The most notable results obtained for membrane performance for binary feedstock was that, 

at solute feed weight fractions lower than 15 wt/wt%, the rejection of solute was poor. It was 

found that solute feed weight fractions ranging between 20 – 25 wt/wt% provided rejections of 

solute as high as 95%, thus resulting in the recovery of higher purity solvent in the permeate.  

MEK and toluene are the preferred solvents used in industries for the recovery of solvent using 

dead-end cell equipment, as was also shown through the experimentation performed in this 

study. 
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Chapter 5: Results and 

Discussion - OSN 

Characterization and Modelling 

 

Overview 

This chapter describes the transport through membranes using transport models, such 

as pore-flow and solution-diffusion models. A brief explanation is provided for each 

model’s uses. Thereafter, a discussion of the applicability of each model to the 

prediction of the fluxes of permeating species follows in Section 5.2 and 5.3. 

Concluding remarks, in Section 5.4, are provided which discuss the overall predictions 

and make statements regarding the selection of solution-diffusion or pore-flow models 

in general. 
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5.1. Introduction 

There has been a lot of focus on the modelling of membrane transport over the past few years. 

This chapter aims to contribute to the knowledge database that has been built up on the 

modelling of membrane transport. According to Wang et al. [1], a trial and error approach is 

often taken in modelling membrane transport since there exists a lack of insight resulting from 

a lack of developed predictive models. The modelling of the transport of the solvent-solute 

system originates from basic pore-flow and solution-diffusion models, which were later 

developed into models that are more complex. 

The solution-diffusion and pore-flow models are known to be most applicable to OSN 

transport, due to the models’ parameters, which involve chemical and physical properties of 

the membrane and the specific permeating species [2]. Equations 5.1 and 5.2, respectively, 

represent the solution-diffusion and pore-flow models described in Section 2.2. 

𝐽𝑖 = 𝑃𝑖
𝑆𝐷 [𝑤𝑖,𝑀 −

𝐽𝑖

𝐽𝑖+𝑗𝑘
exp (−

𝑣𝑖 Δ𝑝

𝑅𝑇
)] (5.1) 

Where: 

𝐽I,k  – Partial mass flux of species 𝑖 and k (kg.m-2.s-1) 

Pi
SD – Permeance term for solution-diffusion for species 𝑖 (kg.m-2.s-1) 

wi      – Mass fraction in feed for species 𝑖  

vi  – The molar volume of species 𝑖 (m3.mol-1) 

ΔP  – Pressure across membrane (Pa) 

R  – Universal gas constant (m3.Pa.mol-1.K-1) 

T  – Temperature (K) 

For a binary species system, Equation 5.1 is solved simultaneously for species I and j, knowing 

each species’ permeance. The pore-flow model, that was investigated (given in Equation 5.2), 

demonstrates other parameters that are required than those of the solution-diffusion model. 

𝐽𝑣 = (
𝜀𝑚∙𝑑𝑝𝑜𝑟𝑒

2

32∙𝑙∙𝜏
)
𝑚𝑖𝑥

(
Δ𝑃

ηmix
) = 𝑃𝑚𝑖𝑥

𝑃𝐹 (
Δ𝑃

ηmix
)   (5.2) 

Where: 

Jv  – The volumetric flux of total permeate (L.mˉ².sˉ¹) 

ε – The membrane surface porosity 

τ  – The membrane tortuosity 

dpore  – The membrane pore size 

l  – The membrane thickness 

Pmix  – The permeability of solution (kg.m-2.bar-1) 
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The pore-flow model, represented in Equation 5.2, can be described as a one-parameter 

model where the permeability term 𝑃𝑃𝐹 = (
𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝑙𝜏
) for each solvent was determined by 

arithmetic averages. The viscosity for the binary mixture of species i and j are determined 

using the Kendall and Monroe correlation [2], which is fairly well suited for hydrocarbon 

mixtures and is described in Equation 5.3. 

𝜂𝑚𝑖𝑥 = (𝑥𝑖𝜂𝑖

1

3 + 𝑥𝑗𝜂𝑗

1

3)

3

  (5.3)  

Where  

xi,j  – The weight fraction of species i and j.  

ηi,j  – The theoretical viscosity for species i and j (Pa.s-1) 

Pure species permeance can be determined using experimental pure species permeation data 

and the solution-diffusion and pore-flow models, provided in Equation 5.1 and 5.2, 

respectively. In this study, the permeability term for pure solvents has been derived and 

sample calculations are given in Appendix C. Table 5.1 provides a general summary of the 

pure species permeability terms for both solution-diffusion and pore-flow models. 

Table 5.1: Pure species permeance for solvents used in this study 

(PSD) Solution-diffusion Permeability (kg.m-2.s-1) 

Species Duramem™150 Duramem™200 Puramem™280 

DCM 3.26 x10-1 3.11 x10-1 - 

MEK 8.86 x10-2 7.58 x10-2 1.95 

MIBK 7.97 x10-3 5.92 x10-3 1.35 x10-1 

Toluene 2.31 x10-3 4.00 x10-3 6.33 x10-1 

(PPF) Pore-flow Permeability (kg.m-2) 

Species Duramem™150 Duramem™200 Puramem™280 

DCM 3.49 x10-12 3.34 x10-12 - 

MEK 1.28 x10-12 1.09 x10-12 2.81 x10-11 

MIBK 2.22 x10-13 1.65 x10-13 3.75 x10-12 

Toluene 5.37 x10-14 9.31 x10-14 1.47 x10-11 

 

5.2. Pore-flow model 

The pore-flow model as given in Equation 5.2, requires a number of parameters that can be 

used to model the solvent mixture through the membrane. The permeance term used in the 

one-term pore-flow model described the transport based on the permeating species. A later 

two-parameter pore-flow model, known as the two-term Hagen-Poiseuille pore-flow model as 
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given in Equation 5.4, describes the transport through a membrane using membrane 

parameters as well as the permeating species parameters. 

𝐽 = (
Δ𝑃

𝜂𝑚𝑖𝑥
) [𝑣1𝑐1(𝑚) (

𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝑙𝜏
)
1
+ 𝑣2𝑐2(𝑚) (

𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝑙𝜏
)
2
]   (5.4) 

Where 

ci(m) – is the concentration of species i through the membrane (mol.m-3) 

vi – is the partial molar volume of species i (m3.mol-1) 

The Hagen-Poiseuille pore-flow model, as mentioned by Silva et al. [3], was based on the 

assumption that the concentration values were those of the pure species investigated, 

assuming no viscous selectivity and a linear pressure profile through the membrane. 

The one-term model (PF-1) and two-term (PF-2) pore-flow model are shown in Figure 5.1 to 

describe the transport of the solvent-solute mixture accurately.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.1: One-term and two-term pore-flow models describing MEK-hexadecane mixture at 

30 bar through Duramem™ and Puramem™ series at ambient room temperature. 
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The models are compared at the upper range of the solvent weight fraction, where the 

experimental data is based on realistic solvent-to-solute ratios. Therefore, the scope of the 

models are assumed to be applicable in the solvent fraction ranges of 75 – 100 wt %, which 

is similar to the solvent fractions in industry. 

Both pore-flow models illustrated in Figure 5.1 demonstrated good fits for the modelling of 

binary flux in a solvent oil system. The models demonstrate very good correlation to the 

experimental results by visual inspection. Figure 5.1 (a, b and d) also shows that the Hagen-

Poiseuille two-term pore-flow model provides a more accurate fit to the experimental data for 

polar solvents permeating through polar stable membranes, as well as non-polar solvents 

permeating through non-polar stable membranes. In the case of polar solvents permeating 

through a non-polar stable membrane (i.e. Puramem™280), the Hagen-Poiseuille one-term 

pore-flow model provides a more accurate fit to the experimental data.  

The Hagen-Poiseuille two-term pore-flow model (PF-2) takes into account the solvent- 

membrane and solute-membrane interactions by including the concentration of solute-solvent 

mixtures and their molecular shapes. The Hagen-Poiseuille one-term pore-flow model (PF-1), 

which provides a less accurate fit to experimental data, supports the argument that transport 

through a membrane is influenced by more than just a specific solvent property, such as 

viscosity. It is also influenced by the concentration of permeating species, which is related to 

the membrane swelling. 

The parameters in the PF-1 and PF-2 models that influence the models the most, are the pure 

species permeability (PPF) parameters. Varying the permeability shifts the model up and down 

along the vertical axis. However, since the permeability of a pure species is fixed based on 

the specific membrane system, it is important to note that the model mostly relies on the 

system itself. 

5.3. Solution-diffusion model 

The solution-diffusion model, as discussed in Section 2.2, was applied in this study to model 

the binary species fluxes through Duramem™ series and Puramem™ series membranes. The 

solution-diffusion model, as given in Equation 5.1, uses two parameters, namely the 

permeances of both the solute and the solvent species in question. Permeance values are 

shown in Table 5.1 and the solvent and solute properties are discussed in Chapter 4. 

The solution-diffusion permeance is based on diffusive and sorption properties and is shown 

in Equation 5.5.  

𝑃𝑆𝐷 =
𝐷𝑖𝐾𝑖

𝑙
  (5.5) 
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The permeance term is thus determined from the experimental permeance values and is 

incorporated into a modified model. This modified model combines the Hagen-Poiseuille two-

term pore-flow model (PF-2), shown in Equation 5.4, and the proposed solution-diffusion 

model from Bhanushali et al. [4], provided in Equation 5.6, to form a new modified solution-

diffusion model (SD-2) given in Equation 5.7. 

𝐽 ∝ 𝐴 ∝ (
𝑣𝑖

𝜂
) (

1

∅𝑛𝛾𝑠𝑣
)  (5.6) 

𝐽𝑣 =
Δ𝑃

𝜂𝑚𝑖𝑥∅
𝑛 (𝑣𝑖𝑐𝑖,𝑚 (

𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝜏𝑙
)
𝑖
+ 𝑣𝑗𝑐𝑗,𝑚 (

𝜀𝑑𝑝𝑜𝑟𝑒
2

32𝜏𝑙
)
𝑗
)  (5.7) 

Where:  

Δ𝑃  – Pressure across membrane (Pa) 

𝜂𝑚𝑖𝑥  – Viscosity of species (or mixture) (Pa.s) 

∅𝑛  – Sorption value of solvent, where n is empirical constant 

𝑣𝑖  – Molar volume of species (m3.mol-1) 

𝑐𝑖,𝑚  – Concentration of species i through the membrane (mol.m-3) 

𝛾𝑠𝑣  – Surface tension  

𝑑𝑝𝑜𝑟𝑒
2  – Diameter of pore in membrane 

𝜀  – Porosity of membrane 

𝜏  – Torosity factor of membrane 

The proposed Bhanushali model introduces four existing parameters, which are also used in 

similar pore-flow models, namely viscosity, sorption value, molar volume and surface tension 

[5].  This proposed model by the Bhanshali et al. group is classified as a solution-diffusion 

model. Figure 5.2 illustrates the Matlab determination of the binary total flux for solvent-solute 

species using the solution-diffusion model (SD-1), provided in Equation 5.1, and the initial 

modified solution-diffusion model (SD-2), provided in Equation 5.6. 

 

(a) 
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(c) 

 

(d) 

Figure 5.2: SD-1 and SD-2 models describing MEK-hexadecane and toluene-hexadecane 

mixtures at 30 bar through Duramem™ and Puramem™ series at ambient room temperature. 

It is clear from Figure 5.2 that the solution-diffusion models provided a better fit to the 

experimental data, referring specifically to the solution-diffusion modified model (SD-1) which 

had already been regressed to obtain the optimal permeability parameter for hexadecane. The 

SD models fit well with the Duramem™ membranes using a polar solvent, while they provided 

less accurate results for the Puramem™ series membranes. SD-2 and PF-2 models for 

toluene as solvent, yielded the best fit for non-polar species through Puramem™280, as 

shown in Figure 5.1 (d) and Figure 5.2 (d).  

The solution-diffusion models model the data better than the pore-flow models with prior 

knowledge to the permeance parameters and molecular size (i.e. geometry, volumetric 

shape). The diffusion parameters model the interaction between permeating species through 

polar stable membranes, such as Duramem™ series membranes. Pore-flow models, which 

are preferably used to model non-polar solvent stable membranes such as the Puramem™ 

series membranes, illustrate that the interaction between membrane and permeating species 

are not that relevant. Therefore, the assumption can be made that pore-flow models describe 

only solvent- solute interactions and properties for a system using a non-polar solvent stable 

membrane.  

5.4. Regression of PSD
c16 

In order to find the best fit for the solution diffusion model, a regression function in Matlab was 

used to determine the optimal permeability parameter for the hexadecane solute. The 

regression function makes use of a Matlab function called Fminsearch, which functions as an 

unconstrained non-linear optimization. The function finds the minimum of a scalar function 

containing several variables.  
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The regression focuses on finding the smallest difference between the modelled total flux and 

the experimental total flux through solving two partial solution diffusion equations (i.e. Equation 

5.1) simultaneously.  

Initially the permeability parameter was estimated for the SD-1 model, which provided a 

specific curve. Once regressed, the new permeability parameter was used to fit the curve. As 

illustrated in Figure 5.3, the estimated and regressed SD-model was fitted to the experimental 

data for a MEK-hexadecane and DCM-hexadecane binary mixture through Duramem™150. 

 

(a) 

 

(b) 

Figure 5.3: Comparison between optimized and estimated hexadecane permeability through 

Duramem™150 at 30 bar in a binary mixture using the solution-diffusion model with (a) MEK 

and (b) DCM. 

As illustrated in Figure 5.3, regression on the permeability variable provides improved 

modelling results for the binary mixtures of MEK-hexadecane and DCM-hexadecane in the 

weight fraction range of 0.75 – 1.00 wt/wt. These improved results using the solution diffusion 

model and regressed parameters make the model more robust and preferable compared to 

the other models.  

With regard to Figure 5.3 (a), the Pearson correlation improves from 0.9963 to 0.9995, while 

at the same time changing the permeability parameter of hexadecane from 0.0006 to 

0.00036272 kg.m-2.s-1. Results of the application of this regression using another solvent 

through Duramem™150, to find the optimized permeability of hexadecane, are shown in 

Figure 5.3(b). The permeability was found to be similar to the regressed PSD
hexadecane using 

MEK as solvent.  
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5.5. Concluding remarks 

The transport through the commercial membranes used in this study was successfully 

predicted using pore-flow and solution-diffusion models adapted from literature. The focus was 

on the most commercially used solvents (i.e. MEK and toluene) as well as the evaluation of 

all the membranes that were used in this study by modelling the transport through them. 

The transport through Duramem™ series membranes can be modelled with both the two- 

parameter pore-flow and classic solution-diffusion models to predictions as high as 0.985 

Pearson coefficients for polar stable membranes. For Puramem™280, the pore-flow models 

(PF-1) have been shown to provide the most adequate results. Overall, it is concluded that 

the transport through the membranes can be modelled using both the solution-diffusion and 

pore-flow models based on the parameters of each model. The properties of the solvent and 

solute as well as membrane permeability are major factors that influence transport through 

the membrane and the predictive modelling of this process.  

In general, the classic solution-diffusion models (SD-1 and SD-2) would be considered better 

predictive models, as illustrated in Figure 5.2. However, the pore-flow models are better 

choices for the modelling of a membrane system where the solvent is highly polar and the 

membrane is stable for non-polar systems. After regressing the PSD
C16

 parameter, which 

illustrated the effect of solute permeability on the model, a best fit was demonstrated by using 

the SD-1 model, as shown in Figure 5.3. 

 It was shown that the diffusive and viscous properties of solvent and solute species play a 

very important role in predicting the transport through polar stable membranes, such as the 

Duramem™ series membranes. 
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Chapter 6: Cost and Energy 

Evaluation  

 

Overview 

This chapter investigates the feasibility of OSN compared to distillation by performing 

a preliminary techno-economic evaluation. A simulation of OSN and distillation was 

performed in Aspen Plus V8.8. A brief background on the two separation systems are 

given, after which a design basis is provided for the cost evaluation in Section 6.2. 

Both systems are compared with regard to energy usage, capital cost and operating 

cost. In Section 6.4, results are shown and discussed which provide a better 

understanding of why there is still a debate as to which system is better. 
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6.1. Introduction 

OSN systems have already been shown to be beneficial in terms of using less energy and 

providing an adequate return on working capital costs (e.g. Max Dewax process) [1]. 

Additionally, a few authors have published data that demonstrates that OSN membrane 

separation is a lower energy alternative to conventional separation processes [2 – 4]. Other 

researchers have performed energy and cost evaluation on the recovery of solvent [5,6], while 

comprehensive studies on the sustainability of OSN systems have been done by the 

Vankelecom and Livingston Groups [7,8]. 

For this study, the OSN system was simulated using Aspen Plus™. Figure 6.1 represents the 

OSN unit used in the feasibility analysis.  

 

Figure 6.1. Aspen flowsheet of OSN membrane system 

The OSN unit consists of two pumps; one for pumping the feed to the membrane; another for 

pumping the permeate. The membrane system was assumed to be continuous with a recycle 

stream pumping back a split fraction (split ratio of 1:1) of the permeate into the feed stream. 

The distillation column was simulated using Aspen Plus™ software. The use of the RadFrac 

distillation column has already been demonstrated to recover solvents as documented in 

literature [9,17]. Therefore, in this study, the RadFrac distillation unit was used to determine 

the energy requirements to separate the MEK from n-hexadecane for this system. 

Thermodynamic properties were predicted using the Soave-Redlich-Kwong equation of state, 

since the system involved polar components, with operating pressures of around 30 Bar [18].  

The column is specified to have 15 trays, where the feed enters the column at stage 8. The 

column consists of a kettle reboiler and a total condenser, as illustrated in Figure 6.2. 
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Figure 6.2: RadFrac distillation column simulation process flowsheet. 

For consistency reasons, the distillation column illustrated in Figure 6.2 also contains a recycle 

stream at a split ratio that allows the product stream to have the same characteristics as those 

of the OSN permeate. The mass and energy balances could be determined for both OSN and 

distillation units in Aspen Plus™. Energy was recovered by heat integration of the bottoms 

and distillate streams with the feed stream as shown in Figure 6.2. 

6.2. Design base case 

The design basis focuses mainly on the energy consumption and cost of OSN and distillation 

systems for the recovery of solvents (i.e. MEK) from n-hexadecane. The selected membrane 

for OSN operation is Duramem™150 based on membrane performance observed during the 

experimental investigations in this study. It also focuses on small-scale operation over a two-

year period.  Furthermore, investigations on the lifespan and upscaling of membranes were 

proposed by Schmidt et al. [10], providing the base case assumption that a membrane unit 

area costs $295.14 m-2.yr -1. Assuming this is a continuous process operation, the process 

operating time, which is based on the Douglas method [11], was taken to be 8150 hr.year-1. 

The operating time includes scheduled and unplanned shutdowns. The design base that was 

used consists of a few assumptions and is summarized in Table 6.1. 

Table 6.1: Summary of design parameters used in cost and energy evaluation 

Design Parameters  Source 

Currency used in cost evaluation American Dollar ($)  

Operating time (top) 8150 hr.yr-1. [11] 
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Design Parameters  Source 

 

Feed-stream   

Total mass Flowrate (𝑚̇𝑓𝑒𝑒𝑑) 1000 kg/hr [8] 

Solute species n-hexadecane  

Solvent Species Methyl-ethyl-ketone  

Solute weight Fraction (csolute) 25.0  wt/wt %  

Pressure (ΔP) 30 Bar  

Temperature 20 °C  

   

Costs   

Membrane (Cmem) $295.14 m-2.yr-1 [10] 

Solvent (Csolvent) $38.99 kg-1 [20] 

Solute (Csolute) $319.05 .kg-1 [21] 

   

Experimental Binary Flux 10.1 kg.m-2.hr-1  

Target Rejection 95.0% [1] 

 

The above parameters were taken from experimental as well as literature data in order to 

provide a simplistic analysis of the operational cost and energy requirements for the recovery 

of solvent.  The approach used to compare OSN operation to distillation was based on a target 

separation where a 95 wt% rejection of solute was required.  The constraint that was used to 

evaluate both technologies was: 

“Feed and product streams for both OSN and distillation separation were to be kept the same”  

This constraint allowed the evaluation of both technologies by mainly focussing on their 

performance to produce a specific product specification for a given input feed stream. 

6.3. Design approach 

The design approach, which has been discussed in Chapter 2.3, were based on the works of 

Szeleky et al. [8] as well as Schmidt et al. [10]. Both these groups have performed a feasibility 

study on general OSN and distillation operations for recovery of desired species. 

6.3.1. Solvent recovery by distillation 

6.3.1.1. Capital cost 

The capital cost for installing a distillation column can be determined by following Hand’s 

method. This method gives a quick estimate of the capital cost of the column in those cases 
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where the installation includes a condenser, kettle reboiler and the column. The costing data 

was obtained from Coulson and Richardson et al. [14] and is shown in Table 6.2.  

Table 6.2: Capital cost of distillation column. 

Equipment   2007 2015(a) 

Condenser $30,200 $34,400 

Kettle reboiler $48,370 $55,000 

Column shell $2,600,000 $3,200,000 

Column trays(b) $55,700 $68,800 

Total column cost $2,734,270 $3,358,200 

(a) Prices are based on Nelson-Farrar cost indices in year 2007 NF-index = 2054.1 (2015 NF-index = 2544) 
(b) Cost of 15 trays  

Table 6.2 illustrates that based on the data provided by Coulson et al. [14], the capital costs 

required for the distillation column, which was used to recover the solvent, is approximately 

$3.358 million. The major contributor to the cost is the column shell. It should be noted that 

the costing of the column shell is equivalent to the costing of a vertical vessel of stainless steel 

material. Since this study used highly polar solvents, such as MEK, stainless steel is an 

adequate material for construction. Additionally, the capital cost for the heat exchangers 

(EXBOTT and EXDIST) that were used for heat integration in the distillation unit (Figure 6.2) 

are illustrated in Table 6.3.  

Table 6.3: Capital cost of heat exchangers. 

Year Equipment Index(a) Area (m2 ) Capital cost ($) 

2001  722.0 100  $ 25,000 

2015 EXBOTT 1305 1.31  $ 3,353 

2015 EXDIST 1305 1.32  $ 3,371 

Total heat exchanger cost:   $ 6,724 

(a) Based on the Nelson-Farrar Cost index 

The capital costs obtained for the heat exchangers as shown in Table 6.3 are approximately 

< 1% of the total capital cost of $ 3.364 million for the distillation unit. Heat transfer areas and 

the log mean temperature difference (LMTD)  were obtained through Aspen Plus™ and are 

recorded in Appendix E.3. 

6.3.1.2. Operating costs 

The energy required for a distillation throughput operation was determined using Equations 

2.17(a-c).  The values for these equations can be obtained through Aspen Plus as well as the 

values for heat transfer through each heat exchanger. All three variables were obtained in 

Aspen Plus™. 
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Assuming no heat loss to the atmosphere, the energy required to recover a ton of solvent in 

the distillate is 135 kWh.tonsolvent_product
-1, while rejecting 95 % of hexadecane from the feed to 

the bottoms. Table 6.4 summarizes the input and output variables that were used in the 

simulation. 

Table 6.4: Summary of RadFrac Distillation input and output variables 

Column operating variables  

Stages 15 

Feed inlet Stage 8 

Condenser  

Condenser type: Total Condenser 

Temperature 239.00 °C 

Reflux ratio 0.050 

Heat duty -67.78 kW 

Reboiler  

Reboiler type Kettle Reboiler 

Temperature 301.8 °C 

Boil-up ratio 4.09 

Heat duty 153.91 kW 

  

Total energy required: 135 kWh.tonsolvent_product
-1 

 

Table 6.4 shows that the total energy input required to recover a ton of MEK solvent for an 

initial combined feed and recycle flowrate of 1600 kg.hr-1 was determined to be 135 

kWh.tonsolvent_product
-1, which is a result of the condenser and reboiler operating at high 

temperatures ranging over 200 °C. This high energy requirement is due to the phase 

separation approach that distillation columns implement while separating species from each 

other. Heat integration was used in order to lower the condenser and reboiler loads through 

preheating of the feed stream.  

Literature from both Abejón et al. [15] and Turton et al. [12] were used in accordance with 

Equations 2.18(a-e) to determine the operating costs for the distillation unit. In this study, the 

assumption that the costs of raw materials are ignored. The operating costs for the distillation 

unit are summarized in Table 6.5.  
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Table 6.5: Operating costs determined for distillation 

Parameters (Abejón et al.) Contribution of 
total costs 

Cenergy ($,day-1) 165.39 36 % 
Cmaint ($,day-1) 99.09 21 % 
Clab ($,day-1) 192.00 42 % 
CTotal ($ Mil.yr-1) 0.155 100 % 

From Table 6.5 labour costs and energy costs are major contributors to the operating costs 

for distillation operation. The result of obtaining high energy costs for the distillation unit 

determined in this study, is within reason as supported by literature [1,8]. 

6.3.2. Solvent recovery by OSN  

6.3.2.1. Capital cost 

An economic capital costing for an OSN membrane module follows a simplistic approach. 

Turton et al. [13] illustrates a short-cut method based on process indices that can be used to 

determine capital costs and this is given in Equation 6.1. 

𝐶2 = 𝐶1 (
𝐼2

𝐼1
) (

𝐴2

𝐴1
)
𝑛
  (6.1) 

Where: 

C  – Purchased cost ($) 

I – Cost index 

A  – Capacity of equipment 

n  – Cost exponent  

Subscripts: “1” refers to base time when cost is known, “2” refers to time when cost is desired. 

For this study, the Nelson-Farrar cost indexes were used due to the availability of index for 

the year 1998.  

The capital cost in this study was determined with reference to the Max DeWax process that 

started up in the year 1998, where the capital cost for the Beaumont Refinery membrane unit 

was $5.5 million [1]. The capital cost for the membrane unit used in this study is shown in 

Table 6.6. 

Table 6.6 Capital cost for a membrane unit 

Year Index(a) Area (m2 ) Capital cost ($) 

1998 1477.6 3285  $ 5 500 000  

2015 2544.0 60  $    857 691 

(a) Based on the Nelson-Farrar Cost index 
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The membrane area shown in Table 6.6 is based on the assumption that the flux for both the 

Max DeWax and the membrane unit investigated in this study are 10.1 kg.m-2.hr-1 and that the 

capital cost of the Max DeWax process is based only on the total membrane area (i.e. 3285 

m2). Using the permeate flowrate from the Max DeWax process mentioned by Gould et al. [1] 

of 40 m3.hr-1 after membrane compaction had occurred, the area for the Max DeWax process 

can be determined. Additionally, Gould et al. [1] also mentions that the oil content in the 

permeate was at most 0.8 wt%, indicating that the permeate consisted of 99.2 wt% solvent. 

According to White et al. [19], the variation in the range of solvent ratios (MEK/toluene) that 

were tested by them (i.e. MEK/toluene ratios between 0.96 – 1.82) did not appear to have a 

major influence in their investigations. Assuming that the solvent used in the Max DeWax 

membrane operation were MEK and toluene [1] and that the ratio of MEK/toluene = 1.5 

(60/40), the total membrane area can be determined using Equation 4.1 found in chapter 4. A 

sample calculation was performed for both the Max DeWax membrane area as well as the 

membrane area used in the economic evaluation. 

In order to obtain a flux of 10.1 kg.m-2.hr-1, the membrane modules need to have a total area 

of 60 m2. According to Evoniks [13] the membrane modules come in standard sizes ranging 

from 0.1 m2 – 24 m2. Thus, thirty 2 m2 size modules  were used in the membrane unit for this 

economic evaluation, which is due to it being the largest spiral wound Duramem™150 

membrane which can be used to provide a total area of 60 m2.  

6.3.2.2. Operating costs 

The energy required for OSN can be based on the operation of the feed pump to the 

membrane unit, which requires energy to provide a pressure difference for a feed flow to the 

membrane. The energy requirement of the pump, described by Equation 6.2, was taken from 

literature [8]. 

𝑄𝑂𝑆𝑁 =
𝐹𝑓Δ𝑃𝑇𝑀

𝜀𝑝𝑢𝑚𝑝
  (6.2) 

Where: 

Ff - Feed flow through membrane 

ΔPTM  - Pressure difference over trans-membrane 

εPump - Pump efficiency 

The energy requirements determined from Equation 6.2 in Aspen Plus™ were found to be 

1.636 kW and 1.5811 kW, respectively. For consistency purposes, the net work required by 

the pump (assuming efficiency of 0.66), as determined from Aspen Plus™, was used and is 

summarized in Table 6.7. 

Table 6.7: Summary of energy requirements determined for OSN operation 
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OSN unit operating variables  

Transmembrane Pressure (ΔP) 29 Bar 

Temperature 21 °C 

Net work required  1.58 kW  

  

Energy per ton solvent: 2.5 kWh.tonsolvent_product
-1 

 

The energy required to recover a ton of MEK solvent in the permeate (PERMOUT stream) for 

OSN operation with a combined feed and recycle flowrate of 1600 kg.hr-1 was approximately 

2.48 kWh.tonsolvent_product
-1. The determination of total operating costs (TOC) was done using 

Equation 2.18(a-e), making use of the parameters obtained from Abejón et al. [15] as well as 

values obtained from membrane manufacturers. These total operating costs with the 

assumption of negligible costs of raw material, are summarized in Table 6.8.  

Table 6.8: Operating costs determined for membrane system 

Parameters (Abejón et al.) Contribution of 
total costs 

Cenergy ($,day-1) 3.03 1 % 
Cmaint ($,day-1) 50.35 22 % 
Clab ($,day-1) 168.00 75 % 
CTotal ($ Mil.yr-1) 0.075 100 % 

 

The energy expense shown in Table 6.8  is the lowest fraction of the operating expenses while 

labour costs provide the highest fraction of the operating expenses. Comparison of OSN and 

distillation operating costs reveal that OSN operation uses significantly less energy to recover 

MEK solvent (2.5 kWh.tonsolvent_product
-1) compared to distillation (135 kWh.tonsolvent_product

-1). This 

massive difference is due to the temperature increase and phase change associated with 

distillation during the separation process. However, maintenance and labour forms a 

reasonably large fraction of the operating costs for both systems.  

6.4. Results and feasibility analysis 

By investigating energy requirements, capital costs as well as cost of production for both 

distillation and OSN membrane operation, the two separation systems could be compared in 

terms of their economic viability. In order to compare the two separation units it is important to 

keep in mind that both systems have an objective function to recover solvent at a specific 

rejection of solute. The boundaries of these unit operations have been discussed in sections 

6.1 and 6.2. The results for the cost and energy evaluation are summarized in Table 6.9. 

Table 6.9: Summary of cost and energy evaluation using Aspen Plus™ for solvent recovery 
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Comparative variables OSN 
 

Distillation 

Feed Flowrate (kg.hr-1) 1000 1000 

Solute Rejection Obtained (%) 97 >96 

Energy required (kWh. tonsolvent_product
-1) 2.48 135 

Flowrate (permeate/distillate) (kg.hr-1) 594 592 

Capital Costs ($ Million) 0.85 3.36 

Operating Costs ($ Million.yr-1) 0.075 0.155 

Energy 1.370 % 36.23 % 

Maintenance 22.74 % 21.71 % 

Labour 75.89 % 42.06 % 

 

From Table 6.9 it is clear that recovery by OSN and distillation both provided high rejections. 

Capital costs for the OSN membrane unit was shown to be 1/4th of the cost of a distillation 

column. Additionally, distillation operation demands a higher energy input than OSN 

membrane operation. Also what is to be noted, is that the rejection of n-hexadecane through 

OSN is higher than that for distillation operation. The OSN operation in this study thus provided 

higher rejections at lower costs and fewer capital requirements.  

The data provided in Table 6.9 accentuates the massive difference in energy cost between 

OSN and distillation. The Total Operating Costs (TOC) for OSN and distillation operation were 

determined to be $0.075 Million.yr-1 and $0.155 Million.yr-1, respectively. Based on the 

operating costs in Table 6.9, it is clear that more than twice the cost of OSN operation is 

required for distillation operation. It is clear that it would be more practical to use OSN 

separation because this would save high volumes of energy, which can be used elsewhere in 

the plant.  

6.5. Concluding remarks 

A detailed economic evaluation of a process requires more in-depth understanding of such a 

process. Therefore, a preliminary techno-economic evaluation with its accompanying 

assumptions was performed. Aspen PlusV8.8 was used to generate the simulated data, which 

was necessary for this economic evaluation.  

Comparison of the cost and energy consumption of the OSN membrane system with that of 

the distillation system for the recovery of solvent from oil, illustrated which process is more 

economically viable. The OSN system requires 50 times less energy relative to distillation. 

This finding is in alignment with those of Geens et al. [6] and Szekely et al. [8], who provided 

relative energy outputs between OSN and distillation similar to this study.  

Stellenbosch University  https://scholar.sun.ac.za



95 
 

Additionally, operating costs for OSN were minimized based on low energy consumption, while 

providing MEK purity of 97 wt% in the permeate. OSN capital costs were shown to be 

$850 000.00 which is approximately 1/4th of the capital cost for distillation. The distillation unit 

has high energy inputs, while providing high solvent purities above 96 wt% (i.e. >96%) at reflux 

ratios below 0.3.  

Without recycling of solvent the expenses of raw material are enormous, which is why it is 

important to recover the solvent and return it to the feed stream at as little cost as possible. 

Furthermore, OSN separation provides the solvent recovered at similar temperatures as the 

solvent feed. In contrast, the solvent recovered from distillation has to be cooled down from 

temperatures above 200°C to the feed temperature of 20°C through heat integration in order 

to recover energy as well as cool down the solvent recovery streams. After heat integration is 

introduced to preheat the feed into the distillation column, high energy costs were still 

determined relative to OSN. 
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Chapter 7: Conclusions and 

Recommendations  

 

Overview 

This chapter discusses the overall results obtained through experimentation, 

modelling and economic evaluation which relates to the recovery of solvent from 

dewaxed oil feed solutions. Section 7.1 forms the introduction to this chapter, followed 

by a discussion of the contributions that have been made by this study (Section 7.2.). 

Conclusions and recommendations for future research work on OSN separation and 

solvent recovery are discussed in Section 7.3 and Section 7.4, respectively. 
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This study involved the demonstration of solvent recovery from novel OSN membranes 

through experimentation. The transport through membranes was further investigated using 

the experimental data that was obtained in this study, to develop models for the transport 

through OSN membranes. Additionally, a preliminary feasibility evaluation of OSN compared 

to conventional processes has been done through energy and cost analysis. In this chapter 

the overall viability for the use of OSN membranes in separation is discussed and conclusions 

are made pertaining to this. 

The organic solvents that were investigated in this study for recovery through Duramem™ and 

Puramem™ series membranes were toluene, MEK, MIBK and DCM. The solute component 

that represented the dewaxed lube oil mixture was n-hexadecane. 

7.1. Solvent recovery 

Experimental investigations for pure solvent recovery and solvent recovery from binary 

mixtures found that MEK was the solvent that was recovered the best of all solvents tested. 

Recovery of MEK was especially high through Duramem™150 and Duramem™200 series 

membranes. DCM has been shown to be the most incompatible solvent, which should not be 

used in lube-oil dewaxing and separating processes. Based on experimentation it was found 

that: 

 Pure species permeation of all solvents through membranes are linearly proportional 

to the pressure applied. 

 Solvent properties such as viscosity, polarity (i.e. dielectric constant, dipole moments), 

solubility and surface tension as well as physical properties such as molar volume, 

molecular shape, molecular size and molecular weight influence membrane 

performance. Membrane performance influences the recovery of solvent. Non-

homogeneous feed mixtures, demonstrating interactions between each species and 

the membrane, are required to identify the major contributing solvent parameter 

influencing membrane performance.  

 DCM solvent permeation through Puramem™280 was shown to be detrimental to the 

membrane. Chlorinated solvents perforate the membrane, which is undesirable. 

Perforation causes the membrane to provide little to no separation and in the process 

the membrane is damaged. 

The binary mixtures that were evaluated in this study were MEK/n-hexadecane, toluene/n-

hexadecane, MIBK/n-hexadecane and DCM/n-hexadecane. The solute concentrations were 

varied between 10,15, 20 and 25 wt% at 30 bar applied pressure. In this study, it was found 

that: 

Stellenbosch University  https://scholar.sun.ac.za



100 
 

 Binary feed mixture permeation through the Duramem™ and Puramem™ series 

membranes results in non-linear proportional behaviour with increasing feed solute 

concentration. Steric hindrance and interactions of solute and solvent species with 

each another as well as with the membrane are associated with the non-linear 

behaviour. 

 Concentration polarization was also shown to affect the permeation through 

membranes by resulting in a continuous slow decrease in permeation through 

membranes, especially Duramem™150 where the MWCO is 150 Da. Puramem™ 280 

provided poor rejection of solute and demonstrated that toluene is an adequate solvent 

for Puramem™280, but is not recommended for the Duramem™ series membranes. 

 Good recovery of MEK through Duramem™150 and Duramem™200 was found, with 

permeations ranging around 11 L.m-2.hr1.Bar-1 and rejections reaching 95%.  DCM 

showed the second best recovery after MEK, with rejections ranging around 78% and 

membrane permeation similar to MEK. Toluene was shown to provide extremely low 

permeation rates through the Duramem™ series membranes and standard 

permeation rates through the Puramem™280 membrane.  

7.2. OSN transport modelling 

MEK and toluene were selected from the experimental results as solvents to be used to 

compare models and experimental data. Two pore-flow models (i.e. the one-term (PF-1) and 

two-term (PF-2) Hagen-Poiseuille pore-flow models) and two solution-diffusion models (i.e. 

classical solution-diffusion model (SD-1) and the modified solution-diffusion model (SD-2)) 

were adapted from literature and used to describe the transport through OSN membranes. 

Using experimental pure flux and binary flux data, and comparing it to transport models, it was 

found that: 

 The classic solution-diffusion model provided the best prediction for the permeation of 

MEK through both Duramem™ series membranes, which demonstrates that the 

membrane can be described through diffusive properties, such as permeability of 

solvent. The permeability for MEK was determined through pure species permeation. 

The SD-1 model (i.e. Equation 7.1) provides Pearson coefficients ranging from around 

0.997  

𝐽𝑖 = 𝑃𝑖
𝑆𝐷 [𝑤𝑖,𝑀 −

𝐽𝑖

𝐽𝑖+𝑗𝑗
exp (−

𝑣𝑖 Δ𝑝

𝑅𝑇
)] (7.1)  

 The SD-1 Model predicted transport through Puramem™280 poorly for both polar and 

non-polar solvents. 
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 The PF-2 model yielded fair predictions for MEK and toluene through all three 

membranes. The additional inclusion of the solute properties, demonstrated the 

importance of solute interactions and that it is important to take into account their effect. 

 The SD-2 model provided similar predictions to those of the PF-2 transport models, 

due to inclusion of the concentration of solute and viscosity parameters. 

 Regressing PSD
hexadecane provided a better fit for the Duramem™ membrane series. 

7.3. Energy and economic evaluation. 

In this study, energy usage was investigated and a preliminary economic evaluation with 

regard to feasibility was done for OSN by comparing this alternative technology to 

conventional technologies, such as distillation. An energy analysis, capital cost analysis as 

well as operating cost analysis were done and it was found that: 

 For both OSN and distillation systems assumed to have negligible raw material costs 

and  a  feed flowrate of 1000 kg.hr-1, the energy required to recover a ton of MEK 

solvent through OSN (i.e. 2.5 kWh.tonsolvent_product
-1) and ca 50 times less than that of 

distillation (i.e. 135 kWh.tonsolvent_product
-1). This is due to the fact that distillation operates 

at temperatures ranging around 240°C, which requires high amounts of energy. 

 Capital costs for OSN instalment was 1/4th of the capital cost for distillation. Capital 

costs were determined using heuristics from Turton et al. [1]. The cost index used was 

the Nelson-Ferrar cost index. 

7.4. Recommendations for future work 

Through experimentation, modelling and economic evaluation, it was shown that OSN 

technology has potential to be favourable over distillation. However, there are certain issues 

relating to OSN technology which need to be addressed. Based on the conclusions and results 

provided in this study, certain recommendations can be made for future research on possible 

improvements to the OSN process. These recommendations are as follows: 

 The use of the dead-end cell operation does not reflect the industrial conditions for 

OSN process operation, such as membrane life span. This is due to the fact that dead-

end cell operation is a batch-wise process in contrast to the continuous operation done 

in industry. Cross-flow set-ups are recommended as better reflections of industrial 

conditions, in order to provide better OSN knowledge to the OSN technology database. 

 There is a lack of knowledge in modern research articles on the recovery of typical 

industrial solvents from lube-oil through the commercially available Duramem™ and 

Puramem™ membrane series. Thus, future research should focus on improving the 

knowledge database on the compatibility of solvents with these various membranes. 
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 Due to the influence which solvents have on the dewaxing process, it would be 

beneficial to determine the influence of various solvents on the permeation by using 

various binary solvents with a solute. 

 The models provided good predictions in describing the transport for a binary mixture. 

However, incorporating the models into simulation of the OSN system is still 

recommended for future work. This will provide an improved understanding of the 

process with models incorporated into simulation. 

 A full economic and energy evaluation is recommended due to the many solute species 

that have not been taken into account in this work. The long chain paraffin profile 

provides a much more difficult transport and recovery from a theoretical point of view. 

However, it would be preferred if future research investigations on the various solutes 

could focus on novel membrane performance. 

 The scope of the study can be expanded to include a more complex heat integration 

for both OSN and distillation separation units to re-evaluate effective energy usage. 
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A.1. Step-by-step procedure for OSN experiments 

A.1.1. Membrane pre-treatment and steady state characterization. 

1. Load cell with 150 mL of toluene. 

2. Fasten cell with flange. 

3. Place membrane cell on magnetic stirrer and adjust speed. 

4. Position the permeate outlet pipe towards the permeate collection flask. 

5. Place the permeate collection flask on an electric scale. 

6. Make sure all valves, except the dead end cell feed valve, are closed and then connect 

the nitrogen gas line to the cell inlet. 

7. Open cell inlet valve from the nitrogen gas line. 

8. Pressurize cell to 30 bar. 

9. Allow 50 mL toluene to permeate with impurities such as preservation oil. 

10. Once 50 mL has permeated, depressurize cell, open cell and then add fresh toluene. 

11. Close and pressurize the cell to desired pressure. 

12. Allow two thirds of the feed volume in the cell to permeate. 

13. During the permeation, measure the flux as mass or volume of permeate collected 

over a time interval and membrane active area. The pre-treatment is stopped once a 

constant flux is obtained. 

14. The cell can be depressurized. 

A.1.2.  Solvent recovery from oil-solvent mixture 

1. Make up an oil-solvent mixture containing 10 – 25 wt/wt% solution. 

2. Load cell with 150 mL of toluene. 

3. Fasten cell with flange. 

4. Place membrane cell on magnetic stirrer and adjust speed. 

5. Position the permeate outlet pipe towards the permeate collection flask. 

6. Place the permeate collection flask on an electric scale. 

7. Make sure all valves are closed and then connect the nitrogen gas line to the cell inlet. 

8. Open cell inlet valve from the nitrogen gas line. 

9. Pressurize cell to 30 bar. 

10. Allow 40% of initial feed mixture volume to permeate in order to remove preservative 

oils. 

11. Depressurize cell, refill the cell with new feedstock.  

12. Take an 80 μL feed sample used for analysis and then pressurize cell to desired 

pressure. 
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13. During permeation, measure the flux as mass or volume of permeate collected per unit 

time and membrane active area.  

14. For a feed of 10 wt/wt% solute and 150 feed solution, take an 80 μL permeate sample 

at a permeate volume of 10 -15 ml of permeate.  

15. Put the permeate flask aside and introduce a new empty flask to collect the following 

10 – 15 ml.  At the 10-15 ml mark, take another 80 μL permeate sample.  

16. Repeat steps 13 – 14 four times and then return all permeate in each flask back to the 

feed solution in the cell. 

17. Depressurise and open cell. 
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procedures and calibrations 
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B.1. Start-up, operational and shutdown procedures 

Start-up 

1. Open up the hydrogen, oxygen and helium line valves at the tanks against the wall. 

2. Make sure the air cylinder is open (located underneath the lab in parking lot). 

3. Switch on PC and go into GC program. 

4. Close the oven, switch on GC (switch is located behind the GC). 

5. Make sure the flow is at the correct pressure. 

6. Once GC is on, make sure GC solvent vial (i.e. DCM) is not empty. 

7. Open method used for analysis and make sure it is the method which is chosen for the 

run. 

8. Run a blank sample to clean up the column (the auto-sampler will then perform a GC 

analysis on the blank vial). 

9. Next, insert the diluted samples in the concentration ranges of the GC. 

10. Run the auto-sampler sequence and queue all samples prepared for sampling. 

11. Once in queue, operation has started. 

Operational 

1. Do not touch the detector while the operation is running. 

2. After each sample has been analysed, let the GC run a blank sample before following 

the shut-down procedure. 

Shut-down 

1. Change GC method to the shutdown method provided during GC training. 

2. Once the method has been changed to the shut-down method, let the system reach 

the initial conditions set by the method, such as oven temperature and FID 

temperature. 

3. Once the column has reached the method initial state, switch off the oven using the 

switch.  

4. The FID may be left on if the instrument is used on a weekly basis.  

5. Close the hydrogen, helium and air valves as it was opened in that order. (Only close 

the air valve and other valves if no other GC is running from the same gas line). 

6. Close the air valve on the air cylinder in the parking lot. 

B.2. Calibration curves and data 

Prepare standards as follows: 

1. Five standard solutions were prepared (i.e. 10μL, 20μL, 30μL, 50μL, 80μL) by taking 

n-hexadecane and weighing each standard vial at those volumes.  
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2. Place those volumes in DCM with 30μL of decane added to each of the five vials. 

3. Make 2 extra replicates of each standard by following steps 1 and 2 above, which is 

used for reproducibility purposes. 

4. Make sure the dilution concentration is within the limits of the GC before placing 

standards into the sample vial. 

5. Once the standards are in the sample vials, take the samples to the GC for analysis.  

The Calibration Curve for n-hexadecane is illustrated in Figure B.1. 

 

Figure B.1: GC calibration curve for n-hexadecane 
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C.1. Experimental flux and rejection 

C.1.1. Experimental flux 

Initial Parameters: 

 𝑉𝑓𝑒𝑒𝑑 = 150 𝑚𝑙 

 𝜌𝑀𝐸𝐾 = 804.9 𝑘𝑔.𝑚
−3 (@ 20°𝐶) 

 𝐴𝑎𝑐𝑡𝑖𝑣𝑒 = 0.00159 𝑚
2 

Experimental Data noted: 

 Data set 1:   

  Permeate mass (mp1): 5 g 

  Time interval (tp1): 521 s 

 Data set 2:   

  Permeate mass (mp1): 10 g 

  Time interval (tp1): 1012 s 

 

Calculations: 

Δm1→2 = 𝑚𝑝2 −𝑚𝑝1 = 10 (𝑔) − 5 (𝑔) = 5 𝑔   

Δ𝑡1→2 = 𝑡𝑝2 − 𝑡𝑝1 = 1012 (𝑠) − 521 (𝑠) = 491 (𝑠)  

Δ𝑉1→2 =
Δ𝑚1→2

𝜌𝑀𝐸𝐾
=

5 (𝑔)

804.9
𝑘𝑔

𝑚3

×
1 𝑘𝑔

1000 𝑔
×
1000 𝐿

1 𝑚3 ×
1000𝑚𝐿

1 𝐿
= 6.212 𝑚𝐿  

experimental flux (Jv) =
Δ𝑉1→2

𝐴.Δ𝑡1→2
=

6.212 𝑚𝐿

0.00159 𝑚2.491 𝑠
×

1 𝐿

1000 𝑚𝐿
×
3600 𝑠

1 ℎ𝑟
    

experimental flux (Jv) = 28.645 𝐿.𝑚
−2. ℎ𝑟−1  

 

C.1.2. Determining rejection of solute from GC data 

For MEK-n-Hexadecane at 10 wt% concentration: 

Feed sample: 

Area of hexadecane (AC16): 3243702 

Area of decane (AC10): 12728769 

𝑉𝐶16 =  𝑅𝐹 × (
𝐴𝐶16

𝐴𝐶10
) × 𝑉𝐶10 = 0.994 × (

3243702

12728769
) × (30 𝜇𝐿) = 7.60 𝜇𝐿  

𝑚𝐶16 = 𝑉𝐶16 × (
1 𝑚𝐿

1000 𝜇𝐿
) × 𝜌𝐶16 = (7.60 𝜇𝐿) × (

1 𝑚𝐿

1000 𝜇𝐿
) × 733.44 (𝑚𝑔.𝑚𝐿−1) =

               𝑚𝐶16 =  5.57 𝑚𝑔  
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𝐶𝐶16(𝑓𝑒𝑒𝑑) =
𝑚𝐶16

𝑉𝑀𝑖𝑥 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× (

1000 𝜇𝐿

1 𝑚𝐿
) × (

1000 𝑚𝐿

1 𝐿
) =

5.57 𝑚𝑔

80 𝜇𝐿
× 1000 × 1000 = 0.06966

𝑚𝑔

𝐿
  

 

Permeate sample: 

Area of hexadecane (AC16): 1091704 

Area of decane (AC10): 9419201 

𝑉𝐶16 =  𝑅𝐹 × (
𝐴𝐶16

𝐴𝐶10
) × 𝑉𝐶10 = 0.994 × (

1091704

9419201
) × (30 𝜇𝐿) = 3.46 𝜇𝐿  

𝑚𝐶16 = 𝑉𝐶16 × (
1 𝑚𝐿

1000 𝜇𝐿
) × 𝜌𝐶16 = (3.46 𝜇𝐿) × (

1 𝑚𝐿

1000 𝜇𝐿
) × 733.44 (𝑚𝑔.𝑚𝐿−1) =

               𝑚𝐶16 = 2.53𝑚𝑔  

𝐶𝐶16(𝑃𝑒𝑟𝑚) =
𝑚𝐶16

𝑉𝑀𝑖𝑥 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× (

1000 𝜇𝐿

1 𝑚𝐿
) × (

1000 𝑚𝐿

1 𝐿
) =

2.53 𝑚𝑔

80 𝜇𝐿
× 1000 × 1000 =

               𝐶𝐶16(𝑃𝑒𝑟𝑚) = 0.03168
𝑚𝑔

𝐿
    

Rejection:  

𝑅𝐶16 = (1 − (
𝐶𝐶16(𝑃𝑒𝑟𝑚)

𝐶𝐶16(𝑓𝑒𝑒𝑑)
)) × 100 % = (1 − (

0.03168
𝑚𝑔

𝐿

0.06966
𝑚𝑔

𝐿
 
) ) × 100 % = 54.52 %  

 

C.2. Transport modelling 

C.2.1. Pore-flow models 

Binary one-term Pore-flow model:  

𝐽𝑣 = 𝑃𝑚𝑖𝑥
𝑃𝐹 (

Δ𝑃

𝜂𝑚𝑖𝑥
) × (

1

𝜌𝑚𝑖𝑥
)  

𝜂𝑚𝑖𝑥 = (𝑤𝑖𝜂𝑖

1

3 +𝑤𝑗𝜂𝑗

1

3)

3

  

𝜌𝑚𝑖𝑥 = 𝑤𝑖𝜌𝑖 +𝑤𝑗𝜌𝑗  

𝑃𝑚𝑖𝑥
𝑃𝐹 =

(𝑃𝑖
𝑃𝐹+𝑃𝑗

𝑃𝐹)

𝑃𝑖
𝑃𝐹

𝑃𝑖
𝑃𝐹+𝑃𝑗

𝑃𝐹+
𝑃𝑗
𝑃𝐹

𝑃𝑖
𝑃𝐹+𝑃𝑗

𝑃𝐹

  

𝐽𝑣 = 𝑃𝑚𝑖𝑥
𝑃𝐹 (

Δ𝑃

𝜂𝑚𝑖𝑥
) × (

1

𝜌𝑚𝑖𝑥
) = [

(𝑃𝑖
𝑃𝐹+𝑃𝑗

𝑃𝐹)

𝑃𝑖
𝑃𝐹

𝑃𝑖
𝑃𝐹+𝑃𝑗

𝑃𝐹+
𝑃𝑗
𝑃𝐹

𝑃𝑖
𝑃𝐹+𝑃𝑗

𝑃𝐹

] × [
Δ𝑃

(𝑤𝑖𝜂𝑖

1
3+𝑤𝑗𝜂𝑗

1
3)

3

×(𝑤𝑖𝜌𝑖+𝑤𝑗𝜌𝑗)

]  
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For species i = MEK and species j = n-hexadecane(C16) through Duramem™150: 

𝜂𝑚𝑖𝑥 = (0.75 (
𝑘𝑔𝑚𝑒𝑘

𝑘𝑔𝑡𝑜𝑡𝑎𝑙
) ((4.28𝐸−4)(𝑃𝑎. 𝑠))

1

3 + 0.25 (
𝑘𝑔𝐶16

𝑘𝑔𝑡𝑜𝑡𝑎𝑙
) ((3.00𝐸−3)(𝑃𝑎. 𝑠))

1

3)
3

   

𝜂𝑚𝑖𝑥 = 7.93𝐸
−4 𝑃𝑎. 𝑠     

𝜌𝑚𝑖𝑥 =  0.75 (
𝑘𝑔𝑚𝑒𝑘

𝑘𝑔𝑡𝑜𝑡𝑎𝑙
) × 804.9 (

𝑘𝑔𝑚𝑒𝑘

𝑚𝑀𝐸𝐾
3 ) + 0.25 (

𝑘𝑔𝐶16

𝑘𝑔𝑡𝑜𝑡𝑎𝑙
) × 773.44 (

𝑘𝑔𝑐16

𝑚𝐶16
3 ) = 797.04

𝑘𝑔𝑚𝑖𝑥

𝑚𝑚𝑖𝑥
3    

𝐽𝑣 = [
(1.28𝐸−12+1.49𝐸−15) 

1.28𝐸−12

1.28𝐸−12+1.49𝐸−15
+

1.49𝐸−15

1.28𝐸−12+1.49𝐸−15

 (𝑘𝑔𝑚𝑖𝑥. 𝑚
−2)] × [

30 𝐵𝑎𝑟×
100 000 𝑃𝑎

1 𝐵𝑎𝑟

7.93𝐸−4(𝑃𝑎.𝑠) ×797.04(
𝑘𝑔𝑚𝑖𝑥
𝑚𝑡𝑜𝑡𝑎𝑙
3 )

] ×
3600 𝑠

1 ℎ𝑟
  

𝐽𝑣 = 21.89 𝐿.𝑚
−2. ℎ𝑟−1   

Binary Two-term Pore-flow model: 

𝑱 = (
𝜟𝑷

𝜼𝒎𝒊𝒙
) [𝒗𝒊𝒄𝒊(𝒎)𝑷𝒊

𝑷𝑭 + 𝒗𝒋𝒄𝒋(𝒎)𝑷𝒋
𝑷𝑭]   

𝑣(𝑓𝑟𝑎𝑐)𝑖 =
(
𝑤𝑖
𝜌𝑖
)

(
𝑤𝑖
𝜌𝑖
)+(

𝑤𝑗

𝜌𝑗
)

 =

(
0.75

𝑘𝑔𝑚𝑒𝑘
𝑘𝑔𝑡𝑜𝑡𝑎𝑙

  

804.9 
𝑘𝑔𝑚𝑒𝑘
𝑚𝑀𝐸𝐾
3

)

(
0.75

𝑘𝑔𝑚𝑒𝑘
𝑘𝑔𝑡𝑜𝑡𝑎𝑙

  

804.9
𝑘𝑔𝑚𝑒𝑘
𝑚𝑀𝐸𝐾
3

)+(
0.25

𝑘𝑔𝐶16
𝑘𝑔𝑡𝑜𝑡𝑎𝑙

  

773.44
𝑘𝑔𝐶16
𝑚𝐶16
3

)

= 0.742
𝑚𝑚𝑒𝑘
3

𝑚𝑡𝑜𝑡𝑎𝑙
3    

𝑣(𝑓𝑟𝑎𝑐)𝑗 =
(
𝑤𝑗

𝜌𝑗
)

(
𝑤𝑖
𝜌𝑖
)+(

𝑤𝑗

𝜌𝑗
)

 =

(
0.25

𝑘𝑔𝐶16
𝑘𝑔𝑡𝑜𝑡𝑎𝑙

  

773.44
𝑘𝑔𝐶16
𝑚𝐶16
3

)

(
0.75

𝑘𝑔𝑚𝑒𝑘
𝑘𝑔𝑡𝑜𝑡𝑎𝑙

  

804.9
𝑘𝑔𝑚𝑒𝑘
𝑚𝑀𝐸𝐾
3

)+(
0.25

𝑘𝑔𝐶16
𝑘𝑔𝑡𝑜𝑡𝑎𝑙

  

773.44
𝑘𝑔𝐶16
𝑚𝐶16
3

)

= 0.258
𝑚𝐶16
3

𝑚𝑡𝑜𝑡𝑎𝑙
3   

𝑪𝒊(𝒎) = (𝒗(𝒇𝒓𝒂𝒄)𝒊 × 𝑽𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏) ×
𝝆𝒊×(

𝟏

𝑴𝒘𝒊
)

𝑽𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏
  

𝐶𝑖(𝑚) = [(0.742
𝑚𝑚𝑒𝑘
3

𝑚𝑡𝑜𝑡𝑎𝑙
3 ) (150 𝑚𝑙) (

1 𝐿

1000 𝑚𝐿
) (

1 𝑚𝑡𝑜𝑡𝑎𝑙
3

1000 𝐿
)] ×

[(804.9
𝑘𝑔𝑚𝑒𝑘

𝑚𝑀𝐸𝐾
3 )(

1

72.11
𝑔
𝑚𝑜𝑙

)(
1000 𝑔

1 𝑘𝑔
)]

150 𝑚𝐿 (
1 𝐿

1000 𝑚𝐿
)(
1 𝑚𝑡𝑜𝑡𝑎𝑙

3

1000 𝐿
)

   

𝐶𝑖(𝑚) = 𝐶𝑀𝐸𝐾(𝑚) = 8.287𝐸
+3   

𝑚𝑜𝑙

𝑚3     

𝐶𝑗(𝑚) = [(0.258
𝑚𝐶16
3

𝑚𝑡𝑜𝑡𝑎𝑙
3 ) (150 𝑚𝑙) (

1 𝐿

1000 𝑚𝐿
) (

(1 𝑚𝑡𝑜𝑡𝑎𝑙
3 )

1000 𝐿
)] ×

[(773.44
𝑘𝑔𝐶16

𝑚𝐶16
3 )(

1

226.45
𝑔
𝑚𝑜𝑙

)(
1000 𝑔

1 𝑘𝑔
)]

150 𝑚𝐿 (
1 𝐿

1000 𝑚𝐿
)(
1 𝑚𝑡𝑜𝑡𝑎𝑙

3

1000 𝐿
)

   

𝐶𝑗(𝑚) = 𝐶𝐶16(𝑚) = 879.66   
𝑚𝑜𝑙

𝑚3        
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𝐽𝑣 = (
30 𝐵𝑎𝑟×

100 000 𝑃𝑎

1 𝐵𝑎𝑟
 

7.93𝐸−4(𝑃𝑎.𝑠)
) [(8.944𝐸−5

𝑚𝑚𝑒𝑘
3

𝑚𝑜𝑙𝑚𝑒𝑘
) (8.287𝐸+3  

𝑚𝑜𝑙𝑚𝑒𝑘

𝑚𝑡𝑜𝑡𝑎𝑙
3 ) (1.28𝐸−12

𝑘𝑔

𝑚2) +

(2.92𝐸−4
𝑚𝐶16
3

𝑚𝑜𝑙𝐶16
) (8.79𝐸+2

𝑚𝑜𝑙𝐶16

𝑚𝑡𝑜𝑡𝑎𝑙
3 ) (1.49𝐸−15

𝑘𝑔

𝑚2)] ×
3600 𝑠

1 ℎ𝑟
×

1

797.04
𝑘𝑔𝑚𝑖𝑥

𝑚𝑚𝑖𝑥
3

𝑥
1000𝐿

1 𝑚3
   

𝐽𝑣 = 16.86 𝐿.𝑚
−2. ℎ𝑟−1  

C.2.2 Solution Diffusion models 

Classic Solution-diffusion Model (SD-1): 

This model involves many iterative calculations performed in Matlab R2016a. A convenient 

way to show how the calculation steps are done, is by providing a block diagram shown in 

Figure C.1. This helps to visually illustrate the calculation steps during each iteration. 

 

Figure C.1: Block diagram for iteration step in the solution-diffusion model (SD-1) 

Iteration parameters:

Tolerance = 0.1

Max iterations = 1000

Input variable: w_solute = A wt/wt

Initial estimate:

Jratio = 0

1st calculation:

Ji-1 = f(Jratio)  

Jk-1 = f(Jratio)

2
nd

 calculation 

Ji = f(Ji-1,Jk-1) 

Jk = f(Ji-1,Jk-1)

3rd calculation: 

Diff = f(Ji-1,Jk-1,Ji,Jk)

Ji-1 = Ji

Jk-1 = Jk

Diff >= tol

Output statements:

Solutions: Diff, Ji, Jk

Jratio = Jratio + 1x10
-6

Diff < tol

Jratio <= 1

Find best Solution at w_solute = A wt/wt:

Solution= f(Diff is the smallest)

Initial parameter: 

Diff = infinity 

Stellenbosch University  https://scholar.sun.ac.za



116 
 

Determining the total flux for MEK at a weight fraction of 0.75 wt/wt % with the solution 

diffusion model is shown as follows for the first iteration: 

Starting at a guessed Jratio = 0.81274 

Determining Ji-1 and Jk-1 using Jratio: 

𝐽𝑖 = 𝑃𝑖
𝑆𝐷 [𝑤𝑖,𝑀 −

𝐽𝑖

𝐽𝑖+𝑗𝑘
𝑒𝑥 𝑝 (−

𝑣𝑖 𝛥𝑝

𝑅𝑇
)]  

𝐽𝑘 = 𝑃𝑘
𝑆𝐷 [𝑤𝑖,𝑀 −

𝐽𝑘

𝐽𝑖+𝑗𝑘
𝑒𝑥 𝑝 (−

𝑣𝑘 𝛥𝑝

𝑅𝑇
)]    

1st Calculation:  𝐽𝑚𝑒𝑘−1  =  𝑃𝑚𝑒𝑘
𝑆𝐷 (𝑤𝑚𝑒𝑘 − 𝐽𝑟𝑎𝑡𝑖𝑜 × exp

−
𝑣𝑚𝑒𝑘.Δ𝑃

𝑅.𝑇
 )  

𝐽𝑚𝑒𝑘−1 = (8.86𝐸 − 2
𝑘𝑔

𝑚2𝑠1
 )

(

 
 
 
0.75

𝑘𝑔𝑚𝑒𝑘

𝑘𝑔𝑡𝑜𝑡
− (0.81274

𝑘𝑔𝑡𝑜𝑡
𝑚2ℎ𝑟1

𝑘𝑔𝑡𝑜𝑡
𝑚2ℎ𝑟1

) × exp

−

(8.944𝐸−5
𝑚𝑚𝑒𝑘
3

𝑚𝑜𝑙
)(30𝐸+5 𝑃𝑎)

(8.314
𝑃𝑎.𝑚3

𝐾.𝑚𝑜𝑙
)(293.15 𝐾)

)

 
 
 

  

𝐽𝑚𝑒𝑘−1 =  0.001948
𝑘𝑔

𝑚3.𝑠
  

𝐽𝐶16−1 = (0.0036
𝑘𝑔

𝑚2𝑠1
 )

(

  
 
0.25

𝑘𝑔𝐶16

𝑘𝑔𝑡𝑜𝑡
− (1 − 0.81274

𝑘𝑔𝑡𝑜𝑡
𝑚2ℎ𝑟1

𝑘𝑔𝑡𝑜𝑡
𝑚2ℎ𝑟1

) × exp

−

(2.92𝐸−4
𝑚𝐶16
3

𝑚𝑜𝑙
)(30𝐸+5 𝑃𝑎)

(8.314
𝑃𝑎.𝑚3

𝐾.𝑚𝑜𝑙
)(293.15 𝐾)

)

  
 

  

𝐽𝐶16−1 =  0.0004298
𝑘𝑔

𝑚3.𝑠
  

2nd Calculation:  𝐽𝑖 = 𝑃𝑖
𝑆𝐷 [𝑤𝑖,𝑀 −

𝐽𝑖−1

𝐽𝑖−1+𝑗𝑘−1
𝑒𝑥 𝑝 (−

𝑣𝑖 𝛥𝑝

𝑅𝑇
)]  

𝐽𝑚𝑒𝑘 = (8.86𝐸 − 2
𝑘𝑔

𝑚2𝑠1
 )

(

  
 
0.75

𝑘𝑔𝑚𝑒𝑘

𝑘𝑔𝑡𝑜𝑡
− (0.8192

𝑘𝑔𝑡𝑜𝑡
𝑚2ℎ𝑟1

𝑘𝑔𝑡𝑜𝑡
𝑚2ℎ𝑟1

) × exp

−

(8.944𝐸−5
𝑚𝑚𝑒𝑘
3

𝑚𝑜𝑙
)(30𝐸+5 𝑃𝑎)

(8.314
𝑃𝑎.𝑚3

𝐾.𝑚𝑜𝑙
)(293.15 𝐾)

)

  
 

  

𝐽𝑚𝑒𝑘 = 0.001432
𝑘𝑔

𝑚3.𝑠
 
𝑘𝑔

𝑚2.𝑠
×

1

𝜌𝑚𝑒𝑘
  

𝐽𝑚𝑒𝑘 =  0.001432 
𝑘𝑔

𝑚2.𝑠
×
3600 𝑠

1 ℎ𝑟
×

1

804.9 (
𝑘𝑔𝑚𝑒𝑘

𝑚𝑀𝐸𝐾
3 )

×
1000𝐿

1 𝑚3 =  6.408 𝐿. 𝑚
−2. ℎ𝑟−1   

𝐽𝐶16 = (0.0036
𝑘𝑔

𝑚2𝑠1
 )

(

  
 
0.25

𝑘𝑔𝐶16

𝑘𝑔𝑡𝑜𝑡
− (1 − 0.8192

𝑘𝑔𝑡𝑜𝑡
𝑚2ℎ𝑟1

𝑘𝑔𝑡𝑜𝑡
𝑚2ℎ𝑟1

) × exp

−

(2.92𝐸−4
𝑚𝐶16
3

𝑚𝑜𝑙
)(30𝐸+5 𝑃𝑎)

(8.314
𝑃𝑎.𝑚3

𝐾.𝑚𝑜𝑙
)(293.15 𝐾)

)

  
 

  

𝐽𝐶16 = 0.000446 
𝑘𝑔

𝑚2.𝑠
×

1

𝜌𝐶16
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𝐽𝐶16 =  0.000446
𝑘𝑔

𝑚2.𝑠
×
3600 𝑠

1 ℎ𝑟
×

1

773.44(
𝑘𝑔𝑐16

𝑚𝑐16
3 )

×
1000 𝐿

1 𝑚3 =  2.076 𝐿.𝑚
−2. ℎ𝑟−1    

3rd Calculation: 𝐷𝑖𝑓𝑓 = (𝐽𝑚𝑒𝑘 − 𝐽𝑚𝑒𝑘−1)
2 + (𝐽𝐶16 − 𝐽𝐶16−1)

2   

𝐷𝑖𝑓𝑓 = (𝐽𝑚𝑒𝑘 − 𝐽𝑚𝑒𝑘−1)
2 + (𝐽𝐶16 − 𝐽𝐶16−1)

2  

𝐷𝑖𝑓𝑓 = (6.408 − 0.001948)2 + (2.076 −  0.0004298)2 = 45.35  

Since Diff > Tolerance, Jmek-1 = Jmek & JC16-1 = JC16 thus repeating 2nd Calculation step. 

Final solution for MEK through Duramem™150 at C16 weight fraction of 0.15 wt/wt: 

𝐽𝑚𝑒𝑘 = 8.7128 𝐿.𝑚
−2. ℎ𝑟−1  

𝐽𝑐16 = 2.00075 𝐿.𝑚
−2. ℎ𝑟−1  

𝐽𝑡𝑜𝑡 = 𝐽𝑚𝑒𝑘 + 𝐽𝐶16 = 8.7128 𝐿.𝑚
−2. ℎ𝑟−1 +  2.00075 𝐿.𝑚−2. ℎ𝑟−1 =  10.713 𝐿.𝑚−2. ℎ𝑟−1  

 

C.3. Determining energy required for OSN 

𝑄𝑂𝑆𝑁 =
𝐹𝑓Δ𝑃𝑇𝑀

𝜀𝑝𝑢𝑚𝑝
=
(129.54 𝐿.ℎ𝑟−1)×(30 𝑏𝑎𝑟)

0.66
× (

100𝑘𝑃𝑎

1 𝐵𝑎𝑟
) = 0.163 𝑘𝑊   

 

C.4. Determining the capital cost of membrane  

𝜌𝑚𝑖𝑥 = 𝜌𝑀𝐸𝐾 . 0.6 + 𝜌𝑡𝑜𝑙 . 0.4 = (804.9
𝑘𝑔𝑚𝑒𝑘

𝑚3 ) (0.6) + (866.9
𝑘𝑔𝑡𝑜𝑙

𝑚3 ) (0.4) = 829.34
𝑘𝑔

𝑚3  

𝐽𝑣,𝑀𝑎𝑥𝑑𝑤𝑎𝑥 =
𝑣̇𝑝𝑒𝑟𝑚

𝐴𝑚𝑒𝑚
 → 𝐴𝑚𝑒𝑚 =

𝑣̇𝑝𝑒𝑟𝑚

𝐽𝑣
× 𝜌𝑚𝑖𝑥 = (

40
𝑚3

ℎ𝑟

10.1
𝑘𝑔

𝑚2.ℎ𝑟

)(829.34
𝑘𝑔

𝑚3) = 3284.51 ~ 3285 𝑚
2  

𝐽𝑣,𝑠𝑡𝑢𝑑𝑦 =
𝑣̇𝑝𝑒𝑟𝑚

𝐴𝑚𝑒𝑚
 → 𝐴𝑚𝑒𝑚 =

𝑣̇𝑝𝑒𝑟𝑚

𝐽𝑣
= (

600
𝑘𝑔

ℎ𝑟

10.1
𝑘𝑔

𝑚2.ℎ𝑟

) = 59.4 ~ 60 𝑚2  

𝐶2 = 𝐶1 (
𝐼2

𝐼1
) (

𝐴2

𝐴1
)
𝑛
= ($5,500 000) × (

2544

1477.6
) × (

60

3285
)
0.6
= $857 691.14  

 

C.5. Determining operating costs using heuristics from Turton et al. 

𝑇𝑂𝐶 = 𝐶𝑟𝑎𝑤 + 𝐶𝑙𝑎𝑏𝑜𝑢𝑟 + 𝐶𝑒𝑛𝑒𝑟𝑔𝑦 + 𝐶𝑚𝑎𝑖𝑛𝑡    

𝐶𝑟𝑎𝑤 = 𝐹𝑌𝑟𝑎𝑤 =  75 MEK
kg

hour
× 24

hour

day
× 315 MEK

$

kg
= $ 574,296.00 𝑝𝑒𝑟 𝑑𝑎𝑦    

𝐶𝑙𝑎𝑏𝑜𝑢𝑟 = 24𝑌𝑙𝑎𝑏𝑜𝑢𝑟 = 24 × 7 = $ 168.00 𝑝𝑒𝑟 𝑑𝑎𝑦  
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𝐶𝑒𝑛𝑒𝑟𝑔𝑦 =
∑(𝑄𝐼𝑁𝑖Δ𝑃)

36𝜂
𝑌𝑒𝑙𝑒𝑐 =  0.15 𝑘𝑊 × 0.08

$

kWh
× 24

ℎ𝑜𝑢𝑟𝑠

𝑑𝑎𝑦
= $ 0.30336 𝑝𝑒𝑟 𝑑𝑎𝑦    

𝐶𝑚𝑎𝑖𝑛𝑡 = 0.05𝐶𝑐𝑎𝑝𝑖𝑡𝑎𝑙 = 0.05 ×
$ 25,000,000.00 

8150
ℎ𝑜𝑢𝑟𝑠

𝑦𝑒𝑎𝑟

 × 24
ℎ𝑜𝑢𝑟𝑠

𝑑𝑎𝑦
= $ 3680.98 𝑝𝑒𝑟 𝑑𝑎𝑦    

𝑇𝑂𝐶 =
($ 574,296.00+ $ 168.00+ $ 0.30336+$ 3680.98 )  𝑑𝑎𝑦−1

24
ℎ𝑜𝑢𝑟𝑠

𝑑𝑎𝑦

× 8150
ℎ𝑜𝑢𝑟𝑠

𝑦𝑒𝑎𝑟
  

𝑇𝑂𝐶 = $ 196 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟  
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data 
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D.1. Pure species flux tests  

Table D.1.1: MEK flux data through Puramem™280 at 40 Bar 

 

Table D.1.2: MEK flux data through Puramem™280 at 30 Bar 

 

Test: permeability tests Room temperature 19.3 oC

Date 2017-05-11 Ambient pressure 1.02 Bar

Time morning Gas pressure 40 Bar

Solvent MEK Vinitial charge 150 mL

Density 804.9 kg/m3 membrane area 0.00159 m2

membrane ID Puramem thickness 0.002 m 

MWCO 280 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:00:03.21 1 1.242 0.0 0 3 0.0008 0.00083 754716.98 937.65

5 00:00:15.80 4 4.970 0.0 0 16 0.0044 0.00361 696661.83 865.53

10 00:00:31.83 5 6.212 0.0 0 32 0.0089 0.00444 707547.17 879.05

13 00:00:51.11 3 3.727 0.0 0 51 0.0142 0.00528 357497.52

21 00:00:53.06 8 9.939 0.0 0 53 0.0147 0.00056 9056603.77

25 00:01:02.97 4 4.970 0.0 1 3 0.0175 0.00278 905660.38 1125.18

30 00:01:13.19 5 6.212 0.0 1 13 0.0203 0.00278 1132075.47 1406.48

40 00:01:38.47 10 12.424 0.0 1 38 0.0272 0.00694 905660.38 1125.18

50 00:02:04.76 10 12.424 0.0 2 5 0.0347 0.00750 838574.42 1041.84

60 00:02:31.57 10 12.424 0.0 2 32 0.0422 0.00750 838574.42 1041.84

Test: permeability tests Room temperature 20 oC

Date 2017-05-11 Ambient pressure 1.02 Bar

Time morning Gas pressure 30 Bar

Solvent MEK Vinitial charge 150 mL

Density 804.9 kg/m3 membrane area 0.00159 m2

membrane ID Puramem thickness 0.002 m 

MWCO 280 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:00:15.90 1 1.242 0.0 0 16 0.004 0.004 141509.43 175.81

5 00:00:25.37 4 4.970 0.0 0 25 0.007 0.003 1006289.31 1250.20

10 00:00:41.26 5 6.212 0.0 0 41 0.011 0.004 707547.17 879.05

15 00:00:55.97 5 6.212 0.0 0 56 0.016 0.004 754716.98 937.65

20 00:01:14.43 5 6.212 0.0 1 14 0.021 0.005 628930.82 781.38

25 00:01:28.35 5 6.212 0.0 1 28 0.024 0.004 808625.34 1004.63

30 00:01:46.14 5 6.212 0.0 1 46 0.029 0.005 628930.82 781.38

40 00:02:22.00 10 12.424 0.0 2 22 0.039 0.010 628930.82 781.38

50 00:02:56.29 10 12.424 0.0 2 56 0.049 0.009 665926.75 827.34

60 00:03:32.68 10 12.424 0.0 3 33 0.059 0.010 611932.69 760.26
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Table D.1.3: MEK flux data through Puramem™280 at 20 Bar 

 

Table D.1.4: MEK flux data through Puramem™280 at 10 Bar 

 

Test: permeability tests Room temperature 20 oC

Date 2017-05-11 Ambient pressure 1.02 Bar

Time morning Gas pressure 20 Bar

Solvent MEK Vinitial charge 130 mL

Density 804.9 kg/m3 membrane area 0.00159 m2

membrane ID Puramem thickness 0.002 m 

MWCO 280 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:00:17.14 1 1.242 0.0 0 17 0.005 0.005 133185.35 165.47

5 00:00:32.77 4 4.970 0.0 0 33 0.009 0.004 566037.74 703.24

10 00:00:55.23 5 6.212 0.0 0 55 0.015 0.006 514579.76 639.31

15 00:01:18.77 5 6.212 0.0 1 19 0.022 0.007 471698.11 586.03

20 00:01:42.35 5 6.212 0.0 1 42 0.028 0.006 492206.73 611.51

25 00:02:05.74 5 6.212 0.0 2 6 0.035 0.007 471698.11 586.03

30 00:02:31.31 5 6.212 0.0 2 31 0.042 0.007 452830.19 562.59

40 00:03:17.54 10 12.424 0.0 3 18 0.055 0.013 481734.24 598.50

50 00:04:08.67 10 12.424 0.0 4 9 0.069 0.014 443951.17 551.56

60 00:05:00.60 10 12.424 0.0 5 1 0.084 0.014 435413.64 540.95

Test: permeability tests Room temperature 20 oC

Date 2017-05-11 Ambient pressure 1.02 Bar

Time morning Gas pressure 10 Bar

Solvent MEK Vinitial charge 130 mL

Density 804.9 kg/m3 membrane area 0.00159 m2

membrane ID Puramem thickness 0.002 m 

MWCO 280 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:00:21.10 1 1.242 0.0 0 21 0.006 0.006 107816.71 133.95

5 00:00:52.25 4 4.970 0.0 0 52 0.014 0.009 292148.51 362.96

10 00:01:32.25 5 6.212 0.0 1 32 0.026 0.011 283018.87 351.62

15 00:02:14.21 5 6.212 0.0 2 14 0.037 0.012 269541.78 334.88

20 00:02:56.63 5 6.212 0.0 2 57 0.049 0.012 263273.37 327.09

25 00:03:38.37 5 6.212 0.0 3 38 0.061 0.011 276115.97 343.04

30 00:04:20.77 5 6.212 0.0 4 21 0.073 0.012 263273.37 327.09

41 00:05:55.18 11 13.666 0.0 5 55 0.099 0.026 264953.83 329.18

51 00:07:21.67 10 12.424 0.0 7 22 0.123 0.024 260247.23 323.33

60 00:08:42.59 9 11.182 0.0 8 43 0.145 0.023 251572.33 312.55
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Table D.1.5: Toluene flux data through Puramem™280 at 40 Bar 

 

Table D.1.6: Toluene flux data through Puramem™280 at 30 Bar 

 

 

 

Test: permeability tests Room temperature 14 oC

Date 2017-06-13 Ambient pressure 1.006 Bar

Time Afternoon Gas pressure 40 Bar

Solvent Toluene Vinitial charge 150 mL

Density 866.9 kg/m3 membrane area 0.0016619 m2

membrane ID Puramem thickness 0.002 m 

MWCO 280 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:00:34.08 1 1.15 0.0 0 34 0.009 0.009 63711.53 79.15

5 00:00:56.10 4 4.61 0.0 0 56 0.016 0.006 393853.10 489.32

10 00:01:26.53 5 5.77 0.0 1 27 0.024 0.009 349385.81 434.07

23 00:02:50.30 13 15.00 0.0 2 50 0.047 0.023 339283.09 421.52

32 00:03:42.48 9 10.38 0.0 3 42 0.062 0.014 374917.85 465.79

40 00:04:37.15 8 9.23 0.0 4 37 0.077 0.015 315082.48 391.46

60 00:06:46.60 20 23.07 0.0 6 47 0.113 0.036 333260.31 414.04

80 00:09:03.75 20 23.07 0.0 9 4 0.151 0.038 316232.41 392.88

Test: permeability tests Room temperature 24 oC

Date 2017-06-13 Ambient pressure 0.997 Bar

Time Afternoon Gas pressure 30 Bar

Solvent Toluene Vinitial charge 130 mL

Density 866.9 kg/m3 membrane area 0.0016619 m2

membrane ID Puramem thickness 0.002 m 

MWCO 280 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:00:27.00 1 1.15 0.0 0 27 0.008 0.008 80229.33 92.55

5 00:00:57.16 4 4.61 0.0 0 57 0.016 0.008 288825.61 333.17

10.3 00:01:43.04 5.3 6.11 0.0 1 43 0.029 0.013 249583.00 287.90

20 00:03:03.75 9.7 11.19 0.0 3 4 0.051 0.023 259408.18 299.24

30 00:04:29.80 10 11.54 0.0 4 30 0.075 0.024 251882.80 290.56

41 00:06:04.51 11 12.69 0.0 6 5 0.101 0.026 250822.24 289.33

60 00:08:48.31 19 21.92 0.0 8 48 0.147 0.045 252500.91 291.27

80 00:11:47.11 20 23.07 0.0 11 47 0.196 0.050 242032.63 279.19
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Table D.1.7: Toluene flux data through Puramem™280 at 20 Bar 

 

Table D.1.8: Toluene flux data through Puramem™280 at 10 Bar 

 

Test: permeability tests Room temperature 24 oC

Date 2017-06-13 Ambient pressure 0.998 Bar

Time Afternoon Gas pressure 20 Bar

Solvent Toluene Vinitial charge 110 mL

Density 866.9 kg/m3 membrane area 0.0016619 m2

membrane ID Puramem thickness 0.002 m 

MWCO 280 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

2 00:00:46.11 2 2.31 0.0 0 46 0.013 0.013 94182.26 108.64

5 00:01:13.84 3 3.46 0.0 1 14 0.021 0.008 232092.00 267.73

10 00:02:18.47 5 5.77 0.0 2 18 0.038 0.018 169233.75 195.22

20 00:04:17.28 10 11.54 0.0 4 17 0.071 0.033 182032.94 209.98

30 00:06:17.85 10 11.54 0.0 6 18 0.105 0.034 179024.14 206.51

40 00:08:21.46 10 11.54 0.0 8 21 0.139 0.034 176113.17 203.15

62 00:12:52.43 22 25.38 0.0 12 52 0.214 0.075 175853.23 202.85

80.4 00:16:46.77 18.4 21.23 0.0 16 47 0.280 0.065 169608.23 195.65

Test: permeability tests Room temperature 10 oC

Date 2017-06-13 Ambient pressure 1.02 Bar

Time Afternoon Gas pressure 10 Bar

Solvent Toluene Vinitial charge 130 mL

Density 866.9 kg/m3 membrane area 0.00159 m2

membrane ID Puramem thickness 0.002 m 

MWCO 280 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:00:38.26 1 1.15 0.0 0 38 0.011 0.011 59582.92 74.03

5 00:02:20.36 4 4.61 0.0 2 20 0.039 0.028 88790.23 110.31

11.3 00:04:16.61 6.3 7.27 0.0 4 17 0.071 0.033 121915.82 151.47

22 00:08:16.28 10.7 12.34 0.0 8 16 0.138 0.066 101365.75 125.94

30.6 00:11:30.26 8.6 9.92 0.0 11 30 0.192 0.054 100369.58 124.70

40 00:15:13.42 9.4 10.84 0.0 15 13 0.254 0.062 95439.55 118.57

60 00:22:48.32 20 23.07 0.0 22 48 0.380 0.126 99523.12 123.65

78 00:30:39.81 18 20.76 0.0 30 40 0.511 0.131 86344.74 107.27

100 03:43:33.00 22 25.38 3.0 43 33 3.726 3.215 4304.10 5.35

120 04:43:33.00 20 23.07 4.0 43 33 4.726 1.000 12578.62 15.63

140 05:43:33.00 20 23.07 5.0 43 33 5.726 1.000 12578.62 15.63
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Table D.1.9: MEK flux data through Duramem™200 at 40 Bar 

 

Table D.1.10: MEK flux data through Duramem™200 at 30 Bar 

 

 

Test: permeability tests Room temperature 19.3 oC

Date 2017-07-17 Ambient pressure 1.02 Bar

Time morning Gas pressure 40 Bar

Solvent MEK Vinitial charge 150 mL

Density 804.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem200 thickness 0.002 m 

MWCO 200 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:01:41.87 1 1.24 0.0 1 42 0.028 0.028 21237.18 26.38

5.3 00:05:48.76 4.3 5.34 0.0 5 49 0.097 0.069 37711.04 46.85

12.5 00:12:51.64 7.2 8.95 0.0 12 52 0.214 0.118 36871.35 45.81

16.4 00:16:40.75 3.9 4.85 0.0 16 41 0.278 0.064 36891.48 45.83

20.5 00:20:40.96 4.1 5.09 0.0 20 41 0.345 0.067 37005.78 45.98

25.8 00:26:14.71 5.3 6.58 0.0 26 15 0.438 0.093 34373.71 42.71

30 00:30:16.90 4.2 5.22 0.0 30 17 0.505 0.067 37595.07 46.71

37.8 00:38:14.98 7.8 9.69 0.0 38 15 0.638 0.133 35347.90 43.92

Test: permeability tests Room temperature 20 oC

Date 2017-07-17 Ambient pressure 1.02 Bar

Time morning Gas pressure 30 Bar

Solvent MEK Vinitial charge 150 mL

Density 804.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem200 thickness 0.002 m 

MWCO 200 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1.7 00:03:20.07 1.7 2.11 0.0 3 20 0.056 0.056 18412.63 22.88

5 00:07:24.47 3.3 4.10 0.0 7 24 0.123 0.068 29296.86 36.40

11 00:15:55.24 6 7.45 0.0 15 55 0.265 0.142 25434.74 31.60

15 00:19:49.08 4 4.97 0.0 19 49 0.330 0.065 37028.92 46.00

21 00:27:14.00 6 7.45 0.0 27 14 0.454 0.124 29207.08 36.29

27 00:34:51.68 6 7.45 0.0 34 52 0.581 0.127 28378.06 35.26

31.5 00:40:33.11 4.5 5.59 0.0 40 33 0.676 0.095 28586.11 35.52

35.4 00:45:30.89 3.9 4.85 0.0 45 31 0.759 0.083 28349.49 35.22
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Table D.1.11: MEK flux data through Duramem™200 at 20 Bar 

 

Table D.1.12: MEK flux data through Duramem™200 at 10 Bar 

 

Test: permeability tests Room temperature 20 oC

Date 2017-07-17 Ambient pressure 1.02 Bar

Time morning Gas pressure 20 Bar

Solvent MEK Vinitial charge 130 mL

Density 804.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem200 thickness 0.002 m 

MWCO 200 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:00:17.14 1 1.24 0.0 0 17 0.005 0.005 127423.06 158.31

5 00:00:32.77 4 4.97 0.0 0 33 0.009 0.004 541548.01 672.81

10 00:00:55.23 5 6.21 0.0 0 55 0.015 0.006 492316.37 611.65

15 00:01:18.77 5 6.21 0.0 1 19 0.022 0.007 451290.01 560.68

20 00:01:42.35 5 6.21 0.0 1 42 0.028 0.006 470911.31 585.06

25 00:02:05.74 5 6.21 0.0 2 6 0.035 0.007 451290.01 560.68

30 00:02:31.31 5 6.21 0.0 2 31 0.042 0.007 433238.41 538.25

40 00:03:17.54 10 12.42 0.0 3 18 0.055 0.013 460891.92 572.61

50 00:04:08.67 10 12.42 0.0 4 9 0.069 0.014 424743.54 527.70

60 00:05:00.60 10 12.42 0.0 5 1 0.084 0.014 416575.39 517.55

Test: permeability tests Room temperature 20 oC

Date 2017-07-17 Ambient pressure 1.02 Bar

Time morning Gas pressure 10 Bar

Solvent MEK Vinitial charge 130 mL

Density 804.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem200 thickness 0.002 m 

MWCO 200 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:00:21.10 1 1.24 0.0 0 21 0.006 0.006 103152.00 128.16

5 00:00:52.25 4 4.97 0.0 0 52 0.014 0.009 279508.65 347.26

10 00:01:32.25 5 6.21 0.0 1 32 0.026 0.011 270774.01 336.41

15 00:02:14.21 5 6.21 0.0 2 14 0.037 0.012 257880.01 320.39

20 00:02:56.63 5 6.21 0.0 2 57 0.049 0.012 251882.80 312.94

25 00:03:38.37 5 6.21 0.0 3 38 0.061 0.011 264169.76 328.20

30 00:04:20.77 5 6.21 0.0 4 21 0.073 0.012 251882.80 312.94

41 00:05:55.18 11 13.67 0.0 5 55 0.099 0.026 253490.56 314.93

51 00:07:21.67 10 12.42 0.0 7 22 0.123 0.024 248987.59 309.34

60 00:08:42.59 9 11.18 0.0 8 43 0.145 0.023 240688.00 299.03
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Table D.1.12: Toluene flux data through Duramem™200 at 40 Bar 

 

Table D.1.13: Toluene flux data through Duramem™200 at 30 Bar 

 

 

 

 

 

Test: permeability tests Room temperature 14 oC

Date 2017-07-18 Ambient pressure 1.006 Bar

Time morning Gas pressure 40 Bar

Solvent Toluene Vinitial charge 150 mL

Density 866.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem200 thickness 0.002 m 

MWCO 200 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

0.5 00:11:47.50 0.5 0.58 0.0 11 47 0.196 0.196 1531.96 1.77

1 00:19:10.08 0.5 0.58 0.0 19 10 0.319 0.123 2444.91 2.82

1.4 00:26:39.58 0.4 0.46 0.0 26 40 0.444 0.125 1925.50 2.22

2 00:35:30.53 0.6 0.69 0.0 35 31 0.592 0.148 2447.67 2.82

Test: permeability tests Room temperature 24 oC

Date 2017-07-18 Ambient pressure 0.997 Bar

Time morning Gas pressure 30 Bar

Solvent Toluene Vinitial charge 130 mL

Density 866.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem200 thickness 0.002 m 

MWCO 200 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:30:27.00 1 1.15 0.0 30 27 0.508 0.508 1185.66 1.37

2 00:50:27.00 1 1.15 0.0 50 27 0.841 0.333 1805.16 2.08

3 01:12:43.00 1 1.15 1.0 12 43 1.212 0.371 1621.40 1.87

4 01:34:04.00 1 1.15 1.0 34 4 1.568 0.356 1691.02 1.95

5 01:55:04.00 1 1.15 1.0 55 4 1.918 0.350 1719.20 1.98

6 02:17:04.00 1 1.15 2.0 17 4 2.284 0.367 1641.05 1.89
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Table D.1.14: Toluene flux data through Duramem™200 at 20 Bar 

 

Table D.1.15: Toluene flux data through Duramem™200 at 10 Bar 

 

 

 

Test: permeability tests Room temperature 24 oC

Date 2017-07-18 Ambient pressure 0.998 Bar

Time Afternoon Gas pressure 20 Bar

Solvent Toluene Vinitial charge 110 mL

Density 866.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem200 thickness 0.002 m 

MWCO 200 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:30:27.00 1 1.15 0.0 30 27 0.508 0.508 1185.66 1.37

2 01:00:26.00 1 1.15 1.0 0 26 1.007 0.500 1204.11 1.39

3 01:32:43.00 1 1.15 1.0 32 43 1.545 0.538 1118.32 1.29

4 02:03:04.00 1 1.15 2.0 3 4 2.051 0.506 1189.56 1.37

5 02:34:59.00 1 1.15 2.0 34 59 2.583 0.532 1131.17 1.30

6 03:06:44.00 1 1.15 3.0 6 44 3.112 0.529 1137.11 1.31

7 03:38:30.00 1 1.15 3.0 38 30 3.642 0.529 1136.51 1.31

Test: permeability tests Room temperature 10 oC

Date 2017-07-18 Ambient pressure 1.02 Bar

Time Afternoon Gas pressure 10 Bar

Solvent Toluene Vinitial charge 130 mL

Density 866.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem200 thickness 0.002 m 

MWCO 200 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:55:27.00 1 1.15 0.0 55 27 0.924 0.924 651.09 0.75

2 01:50:32.00 1 1.15 1.0 50 32 1.842 0.918 655.43 0.76

3 02:52:43.00 1 1.15 2.0 52 43 2.879 1.036 580.59 0.67

4 03:55:14.00 1 1.15 3.0 55 14 3.921 1.042 577.50 0.67

5 04:58:04.00 1 1.15 4.0 58 4 4.968 1.047 574.59 0.66

6 06:00:55.00 1 1.15 6.0 0 55 6.015 1.048 574.43 0.66

7 07:03:55.00 1 1.15 7.0 3 55 7.065 1.050 573.07 0.66
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Table D.1.16: MEK flux data through Duramem™150 at 40 Bar 

 

Table D.1.17: MEK flux data through Duramem™150 at 30 Bar 

 

Test: permeability tests Room temperature 20 oC

Date 2016-07-11 Ambient pressure 1.02 Bar

Time Morning Gas pressure 40 Bar

Solvent MEK Vinitial charge 150 mL

Density 804.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem150 thickness 0.002 m 

MWCO 150 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1 00:01:57.00 1 1.24 0.0 1 57 0.033 0.033 18514.46 23.00

5.5 00:05:28.02 4.5 5.59 0.0 5 28 0.091 0.059 46198.41 57.40

10.2 00:09:13.99 4.7 5.84 0.0 9 14 0.154 0.063 45049.13 55.97

15.2 00:13:24.48 5 6.21 0.0 13 24 0.223 0.069 43323.84 53.83

22.12 00:19:17.62 6.92 8.60 0.0 19 18 0.322 0.098 42344.77 52.61

30.2 00:25:50.31 8.08 10.04 0.0 25 50 0.431 0.109 44650.08 55.47

40.02 00:34:11.87 9.82 12.20 0.0 34 12 0.570 0.139 42374.51 52.65

50.04 00:42:30.24 10.02 12.45 0.0 42 30 0.708 0.138 43584.83 54.15

60 00:50:43.96 9.96 12.37 0.0 50 44 0.846 0.137 43674.64 54.26

70 00:58:54.09 10 12.42 0.0 58 54 0.982 0.136 44208.00 54.92

80 01:07:10 10 12.42 1.0 7 10 1.119 0.138 43673.23 54.26

Test: permeability tests Room temperature 18 oC

Date 2016-07-11 Ambient pressure 1.02 Bar

Time Morning Gas pressure 30 Bar

Solvent MEK Vinitial charge 150 mL

Density 804.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem150 thickness 0.002 m 

MWCO 150 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1.1 00:02:06.97 1.1 1.37 0.0 2 7 0.035 0.035 18762.29 23.31

5 00:06:34.55 3.9 4.85 0.0 6 35 0.110 0.074 31522.94 39.16

10.32 00:12:27.02 5.32 6.61 0.0 12 27 0.208 0.098 32739.04 40.67

15.34 00:18:02.63 5.02 6.24 0.0 18 3 0.301 0.093 32363.94 40.21

20.82 00:24:12.80 5.48 6.81 0.0 24 13 0.404 0.103 32083.06 39.86

30.1 00:34:29.00 9.28 11.53 0.0 34 29 0.575 0.171 32633.54 40.54

40.21 00:45:53.34 10.11 12.56 0.0 45 53 0.765 0.190 32017.84 39.78

51.7 00:58:42.97 11.49 14.28 0.0 58 43 0.979 0.214 32324.09 40.16

60.6 01:08:45.19 8.9 11.06 1.0 8 45 1.146 0.167 32025.10 39.79

70 01:19:23.00 9.4 11.68 1.0 19 23 1.323 0.177 31915.68 39.65
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Table D.1.18: MEK flux data through Duramem™150 at 20 Bar 

 

Table D.1.19: MEK flux data through Duramem™150 at 10 Bar 

 

 

 

 

Test: permeability tests Room temperature 20 oC

Date 2016-07-11 Ambient pressure 1.02 Bar

Time Morning Gas pressure 20 Bar

Solvent MEK Vinitial charge 130 mL

Density 804.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem150 thickness 0.002 m 

MWCO 150 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1.1 00:03:29.84 1.1 1.37 0.0 3 30 0.058 0.058 11346.72 14.10

5 00:10:14.21 3.9 4.85 0.0 10 14 0.171 0.112 20911.26 25.98

10 00:18:45.30 5 6.21 0.0 18 45 0.313 0.142 21195.62 26.33

16.5 00:30:05.71 6.5 8.08 0.0 30 6 0.502 0.189 20675.84 25.69

20.8 00:37:20.07 4.3 5.34 0.0 37 20 0.622 0.121 21462.27 26.66

30.1 00:53:25.86 9.3 11.55 0.0 53 26 0.891 0.268 20854.64 25.91

40.55 01:11:28.33 10.45 12.98 1.0 11 28 1.191 0.301 20921.17 25.99

56.06 01:38:27.50 15.51 19.27 1.0 38 28 1.641 0.450 20739.28 25.77

Test: permeability tests Room temperature 20 oC

Date 2016-07-11 Ambient pressure 1.02 Bar

Time Afternoon Gas pressure 10 Bar

Solvent MEK Vinitial charge 130 mL

Density 804.9 kg/m3 membrane area 0.0016619 m2

membrane ID Duramem150 thickness 0.002 m 

MWCO 150 Da

Mass of permeate (g) Time (hr:min:sec) Δmass permeate (g) Δvolume  permeate (ml)  hours Totalminutes cuml Seconds cum time (hr) Delta t (hr) Flux (g.mˉ².hrˉ¹) Flux (L.mˉ².hrˉ¹)

1.05 00:07:35.86 1.05 1.30 0.0 7 36 0.127 0.127 4987.94 6.20

5.3 00:27:14.33 4.25 5.28 0.0 27 14 0.454 0.327 7815.21 9.71

10.1 00:49:24.98 4.8 5.96 0.0 49 25 0.824 0.370 7811.96 9.71

15.44 01:14:14.50 5.34 6.63 1.0 14 14 1.237 0.414 7768.61 9.65

20.42 01:37:15.01 4.98 6.19 1.0 37 15 1.621 0.384 7811.47 9.70
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D.2. Summary of all experimental calculated data  

Table D.2.1: Experimental result summary for MEK solvent  

membrane 
C16 Frac solute  

(wt/wt %) 
Pressure 

 (bar) 
Average Flux  
(L.mˉ².hrˉ¹) 

Rejection  
(%) 

Duramem™150 

- 40 54.55 - 

- 30 39.96 - 

- 20 26.05 - 

- 10 9.69 - 

10 30 19.59 68.78 

15 30 15.40 89.21 

20 30 13.51 95.98 

25 30 11.84 94.47 

Duramem™200 

- 40 45.16 - 

- 30 35.57 - 

- 20 22.38 - 

- 10 10.00 - 

10 30 19.30 77.42 

15 30 15.96 81.79 

20 30 14.50 75.33 

25 30 12.21 88.11 

Puramem™280 

- 40 1148.10 - 

- 30 889.25 - 

- 20 597.75 - 

- 10 341.11 - 

10 30 730.88 38.38 

15 30 724.80 16.11 

20 30 645.56 35.18 

25 30 630.91 50.37 
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Table D.2.1: Experimental result summary for DCM solvent  

membrane 
C16 Frac solute  

(wt/wt %) 
Pressure 

 (bar) 
Average Flux  
(L.mˉ².hrˉ¹) 

Rejection  
(%) 

Duramem™150 

- 40 89.70 - 

- 30 65.05 - 

- 20 40.85 - 

- 10 16.92 - 

10 30 22.95 70.95 

15 30 11.19 75.83 

20 30 2.89 76.76 

25 30 0.37 78.10 

Duramem™200 

- 40 70.33 - 

- 30 55.76 - 

- 20 33.43 - 

- 10 16.12 - 

10 30 28.60 77.81 

15 30 23.62 96.06 

20 30 17.43 73.71 

25 30 9.23 91.23 

Puramem™280 

- 40 n/a n/a 

- 30 n/a n/a 

- 20 n/a n/a 

- 10 n/a n/a 

10 30 n/a n/a 

15 30 n/a n/a 

20 30 n/a n/a 

25 30 n/a n/a 
 

Stellenbosch University  https://scholar.sun.ac.za



132 
 

Table D.2.1: Experimental result summary for MIBK solvent  

membrane 
C16 Frac solute  

(wt/wt %) 
Pressure 

 (bar) 
Average Flux  
(L.mˉ².hrˉ¹) 

Rejection  
(%) 

Duramem™150 

- 40 6.61 - 

- 30 4.69 - 

- 20 3.50 - 

- 10 - - 

10 30 - - 

15 30 - - 

20 30 - - 

25 30 - - 

Duramem™200 

- 40 4.89 - 

- 30 3.48 - 

- 20 2.39 - 

- 10 1.28 - 

10 30 2.67 54.52 

15 30 2.11 89.92 

20 30 1.69 84.24 

25 30 1.32 70.98 

Puramem™280 

- 40 107.27 - 

- 30 83.16 - 

- 20 61.60 - 

- 10 28.04 - 

10 30 65.38 0.74 

15 30 47.49 4.95 

20 30 44.50 26.19 

25 30 39.88 32.22 
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Table D.2.1: Experimental result summary for toluene solvent  

membrane 
C16 Frac solute  

(wt/wt %) 
Pressure 

 (bar) 
Average Flux  
(L.mˉ².hrˉ¹) 

Rejection  
(%) 

Duramem™150 

- 40 1.55 - 

- 30 1.11 - 

- 20 0.72 - 

- 10 - - 

10 30 - - 

15 30 - - 

20 30 - - 

25 30 - - 

Duramem™200 

- 40 2.62 - 

- 30 1.96 - 

- 20 1.32 - 

- 10 0.66 - 

10 30 n/a n/a 

15 30 n/a n/a 

20 30 n/a n/a 

25 30 n/a n/a 

Puramem™280 

- 40 429.87 - 

- 30 287.59 - 

- 20 202.04 - 

- 10 123.21 - 

10 30 267.57 39.58 

15 30 227.64 8.91 

20 30 204.90 18.07 

25 30 197.77 29.06 
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E.1 OSN stream data 

Stream Properties Streams 

  FEED1 MEMBRANE MEMBIN PERM1 PERMOUT RET1 RECYC1 RECYC2 

          

Phase:  Liquid Liquid Liquid Liquid Liquid Liquid Liquid Liquid 

Comp Mole Flow          

MEK KMOL/HR 10.40 10.40 18.58 16.36 8.180 2.220 16.36 8.180 

hexadecane KMOL/HR 1.104 1.104 1.122 0.037 0.018 1.085 0.037 0.018 

Comp Mass Flow          

MEK KG/HR 750.00 750.00 1339.85 1179.71 589.85 160.146 1179.706 589.853 

hexadecane KG/HR 250.00 250.00 254.20 8.414 4.207 245.792 8.414163 4.207 

Comp Mass Fraction          

MEK  0.750 0.750 0.840 0.992 0.992 0.394 0.992 0.992 

hexadecane  0.250 0.250 0.1594 0.007 0.007 0.605 0.007 0.007 

Mole Flow KMOL/HR 11.505 11.505 19.704 16.397 8.198 3.306 16.397 8.198 

Mass Flow KG/HR 1000.0 1000.0 1594.06 1188.12 594.060 405.939 1188.12 594.060 

Volume Flow CUM/HR 1.295 1.290 2.038 1.493 0.746 0.534 1.493 0.746 

Temperature C 20.00 21.124 20.592 20.592 20.592 20.592 20.592 20.592 

Pressure BAR 1.00 30.00 30.00 30.00 30.00 30.00 30.00 30 

Liquid Fraction  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 

Molar Enthalpy KJ/HR -291.660 -291.166 -284.538 -275.250 -275.250 -332.250 -275.250 -275.23 

Mass Enthalpy KJ/KG -3355.467 -3349.775 -3516.99 -3798.651 -3798.651 -2706.068 -3798.651 -3798.46 

Enthalpy Flow KW -932.083 -930.5 -1557.305 -1253.694 -626.833 -305.138 -1253.694 -626.805 

Molar Density KG/CUM 0.0088 0.0090 0.0097 0.0109 0.0109 0.0062 0.0109 0.0109 

Mass Density KG/CUM 771.942 774.864 781.949 795.444 795.444 759.252 795.444 795.444 

Ave Molecular Weight g/mol 86.916 86.916 80.900 72.457 72.457 122.773 72.456 72.456 
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E.2 Distillation stream data 

Stream data Streams 

  BOTTMS BOTTMS2 DIST DIST2 DISTIN DISTMIX2 DISTOUT DISTREC FEED FEED2 

Comp Mole Flow            

MEK kmol/hr 2.249 2.249 16.304 16.304 18.553 18.553 8.152 8.152 10.401 10.401 

HEX kmol/hr 1.083 1.083 0.042 0.042 1.125 1.125 0.021 0.021 1.104 1.104 

Comp Mass Flow            

MEK kg/hr 162.20 162.20 1175.59 1175.59 1337.79 1337.79 587.79 587.79 750.00 750.00 

HEX kg/hr 245.29 245.29 9.40 9.40 254.70 254.70 4.70 4.70 250.00 250.00 

Comp Mass Frac            

MEK  0.398 0.398 0.992 0.992 0.840 0.840 0.992 0.992 0.750 0.750 

HEX  0.602 0.602 0.008 0.008 0.160 0.160 0.008 0.008 0.250 0.250 

Mole Flow kmol/hr 3.333 3.333 16.345 16.345 19.678 19.678 8.173 8.173 11.505 11.505 

Mass Flow kg/hr 407.5 407.5 1185 1185 1592.5 1592.5 592.5 592.5 1000 1000 

Volume Flow cum/hr 1.022 0.657 3.079 1.850 2.959 2.629 0.925 0.925 1.289 1.699 

Temperature c 301.9 171.1 239.0 141.1 197.0 161.1 141.1 141.1 20.0 173.2 

Pressure bar 30 30 30 30 30 30 30 30 30 30 

Liquid Fraction  1 1 1 1 1 1 1 1 1 1 

Molar Enthalpy kw -28.60 -34.41 -27.74 -30.42 -29.76 -30.75 -30.42 -30.42 -34.79 -30.98 

Mass Enthalpy kj/kg -1958 -2356 -3204 -3514 -3080 -3182 -3514 -3514 -3352 -2985 

Enthalpy Flow kw -221.68 -266.72 -1054.53 -1156.58 -1362.36 -1407.39 -578.30 -578.30 -931.13 -829.08 

Molar Density kg/cum 0.204 0.317 0.331 0.551 0.415 0.467 0.551 0.551 0.557 0.423 

Mass Density kg/cum 398.68 620.52 384.92 640.38 538.13 605.86 640.38 640.38 775.87 588.70 

Ave Mol Wt  g/mol 122.27 122.27 72.50 72.50 80.93 80.93 72.50 72.50 86.92 86.92 
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E.3. Heat exchanger Aspen Plus™ data 

Equipment parameters units EXBOTT EXDIST 

Calculated heat duty kW 45.04 102.06 

Required exchanger area sqm 1.31 1.32 

Average U (Dirty) kJ/sec-sqm-K 0.85 0.85 

UA kJ/sec-K 1.12 1.13 

LMTD (Corrected) C 40.37 90.66 

LMTD correction factor  1 1 

Number of shells in series  1 1 
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