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ABSTRACT

Statistical experimental design techniques are powerful tools that are often approached with suspicion

and apprehension by experimenters. The trend is to avoid any statistically structured and designed

experimentation program, and to rather use the traditional method of following ones "gut feel". This

approach, more often than not, will supply a satisfactory solution, but there is so much more

information availablefor the same amount of effort.

This thesis strives to outline the method and application of the Taguchi methodology of experimental

design. The Taguchi method is a practical, statisticalexperimental design technique that does not rely on

the designer's knowledge of the complex statistics typicallyneeded to design experimental programs, a

fact that tends to exclude design of experiments from the averageengineers' toolbox. The essence of the

statistical design of experiments is this: The traditional method of varying one variable at a time and

investigating its effect on an output is no longer sufficient. Instead all the input variables are varied at

the same time in a structured manner. The output trends resulting from each input variable are then

statisticallyextracted from the data in the midst of the variation.

Taguchi method achieves this by designing experiments where every level of every input variable occurs

an equal number of times with every level of every other input variable. The experimental designs are

represented in orthogonal arrays that are chosen and populated by the experimenter by following a

simple procedure.

Four case studies are worked through in this text and, where possible, compared to the "traditional"

approach to the same problem. The case studies show the additional information and time savings

availablewith the Taguchi method, as well as clearlyindicating the importance of using a stable system

on which to do the experiments. The Taguchi method generated more information in fewer

experiments than the traditional approaches as well as allowing analysis of problems too complex to

analysewithout a statisticaldesign of the experimentation procedure.
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OPSOMMING

Statistiese eksperimentele ontwerptegnieke is besonder kragtige instrumente wat baie keer met agterdog

deur ekspermenteerders beheen word. Die neiging is om enige statistiese gestruktureerde and ontwerpte

eksperimentele program te vermy, en om liewer die tradisionele metode, wat op 'n mens se intuïsie

staatmaak, te gebruik. Hierdie benadering sal baie keer 'n bevredigende oplossing gee, maar daar is veel

meer inligting vir dieselfde hoeveelheid inspanning verkrygbaar, wanneer die Taguchimetode gebruik

word.

Hierdie tesis strewe om die metode en toepassing van die Taguchimetodologie van eksperimentele

ontwerp voor te lê. Die Taguchimetode is 'n praktiese statistiese eksperimentele ontwerptegniek .wat nie

op die ontwerper se kennis van komplekse statistiek om eksperimentele programme te ontwerp berus

nie. Hierdie komplekse statistiek neig ook om eksperimentele ontwerp van die gemiddelde

ingenieursvaardigehede uit te sluit. Die kern van statistiese eksperimentele ontwerp is die volgende: Die

tradisionele metode van een veranderlike op 'n slag te varieer om die effek op die uitset te ondersoek, is

onvoldoende. In plaas daarvan, word al die insetveranderlikes gelyktydig gevarieer in 'n gestruktureered

manier. Die neigings van elke veranderlike is dan statisties ontleed van die data ten midde van die

variasie van al die ander veranderlikes.

Die Taguchimetode bereik die ontwerpte eksperimente deur elke vlak van elke insetveranderlik in 'n

gelyke aantal keer met elke vlak van elke ander insetveranderlike te varieer. Hierdie is verteenwoordig

deur ortogenale reekse wat gekies en gevul is deur 'n eenvoudige wisselpatroon te volg.

Vier gevallestudies is deurgewerk en, waar moontlik, vergelyk met die tradisonele siening van dieselfde

probleem. Die gevallestudies wys hoe toereikbaar die additionele inligting in die Taguchimethode

toepassings is. Hulle beklemtoon ook die belangrikheid van 'n stabiele sisteem waarop die eksperimente

berus. Die Taguchimetode het meer inligting verskaf met minder eksperimente as die tradisionele

toenaderings, en ook toegelaat dat die analise van probleme, te kompleks om te analiseer sonder om 'n

statistiese ontwerp van eksperimentele prosedure te volg, opgelos kon word.
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EXECUTIVE SUMMARY
Experimental design as a research technique is gready under-utilised in automotive engine research in

South Africa. Traditional experimentation methods are still used extensively in the examination and

optimisation of investigated parameters. This traditional approach involves varying one parameter at a

time in order to quantify trends and effects on a product or process in terms of one or several evaluation

parameters. The experimental design approach varies all parameters simultaneously in order to quantify

each individual parameter independently and is a much more powerful and effective option.

In this publication the necessary technical background is investigated for the testing and optimisation of

engine induction systems. Induction mechanisms and basic internal combustion theory are discussed,

and engine testing techniques are addressed from both hardware (engine test bed) and software (engine

control and data capture) points of view.

Genuchi Taguchi originally developed the Taguchi methodology for experimental design as a quality

control tool. Itwas largely applied to quality control in a production line environment, hence improving

the quality of the end product. Taguchi methods are unique in that the application and data analysis can

be divorced from the advanced statistics that are often necessary in the design and analysis of a complex

experiment. The method uses an engineering approach to problems rather than a purely statistical one

and emphasises engineering judgement on a foundation of statistics. Orthogonal arrays are used to

follow a simple recipe with four main sections: experiment planning, experiment design, experimentation

and finally experimental analysis. The design and application of extremely complex but efficient

experiments are thereby made possible for engineers with limited statistical knowledge.

The statistics, as needed for the development of a Taguchi type experimental design application, are

addressed from the relevant basic statistical concepts. The technique is moved from a quality control

tool, to that of experimental design and so transferring the same time and cost benefits from quality

control to experimentation and design. Other similar design techniques such as CCRD (Central

Composite Rotatable Design), Plakket-Burman (Haddamard) matrices and Latin squares are also

discussed in the literature investigation.

The Taguchi experimental method was applied in prototype evaluation, experimental optimisation and

trend investigation, and engine modelling. Each of these applications was compared to the traditional

experimental process that would otherwise have been used for such an experimental investigation.

The first application was a prototype evaluation in which the effect of the inclusion of two flow diverters

in a prototype carburettor adapter was evaluated in terms of power, torque and fuel consumption. Each

diverter effect was quantified, and the optimum configuration found. The interaction between the two

diverters was quantified statistically. This was not possible using the traditional experimental method.

The structured experiment process of the Taguchi design allowed for systematic data analysis and a

XlV

Stellenbosch University http://scholar.sun.ac.za



formalised result presentation. This compared favourably to the subjective analysis and results of the

traditional method.

The second application was an optimisation exercise in which the induction system between the air filter

and the carburettor (carburettor adapter) was investigated in terms of four parameters, namely the feed

pipe length and diameter, and the carburettor adapter plenum height and diameter. The investigation

was made possible only through the use of Taguchi methods. Each parameter was tested at three levels

or values resulting in a full factorial design matrix of 81 experiments. Using an L18(21x37) orthogonal

array 18 tests were used to quantify the main effects and any arising interactions. The optimum

configuration for the investigated components was determined and the performance predicted and then

tested for conformation. The large amount of data gathered from so few experiments show the power

of the Taguchi methodology of experimental design.

The third application was a modelling investigation in which software was used to simulate the engine

performance. Inlet manifold and camshaft dimensions were varied simultaneously. The full factorial

design of this investigation involved a simulation of 1024 runs compared to the Taguchi designed

experiment where 18 simulations were used to obtain equivalent information. The results from these

investigations were compared to determine the accuracy lost in the reduced number of experiments. It

was seen that the Taguchi matrix provided very good results when compared to the full factorial

investigation at a fraction of the computer time. This indicated a saving in time and effort.

Finally the Taguchi method of experimental design was evaluated as a tool in the automotive engine

research field. It served well as a theoretical tool although there were disadvantages in using it in

practise. This was largely due to the large amount of experimental preparation needed and the lengthy

experimentation required before results were forthcoming. When many parameters are investigated and

varied simultaneously, the data analysis can become very involved and reliant on statistics to sift through

the data to determine the trends. Results are only forthcoming after the investigation has been

completed. A progressively growing knowledge throughout the experimentation process, as achieved

with traditional methods, is thus exchanged for a more complete knowledge of the investigated product

or process, but only after all data analysis has been completed

This thesis serves both as an example of the application of Taguchi methods as a research tool, and as a

guideline for further Taguchi method experimental designs.

xv
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Chapter 1. Introduction

The internal combustion engine! is comprised of a collection of many independent yet inter-related

components, each affecting the others performance. In order to optimise this complex system of

interactive, interdependent components, a complete understanding of the mechanisms affecting the

system is required, as well as a knowledge of the applied optimisation methods.

An engine can be optimised, where only the best or optimum conditions are sought for its operation, or

alternatively it can be investigated, where a complete understanding of the system is sought. A system

can be affected by two kinds of variables (controllable variables, such as exhaust length, engine speed,

fuel type and uncontrollable variables, such as atmospheric pressure, engine wear and humidity). The

uncontrollable variables must be minimised and/or corrected for, i.e. by using SABS torque correction

factors to compensate for atmospheric and temperature variations or by preparing the inlet air to be at a

desired temperature and humidity. The measurement of a system's performance is done by measuring

an output variable such as torque, power or fuel consumption [Bilesand Swain 1980]. The system is

investigated by varying the controllable variables (independent variables) and measuring the associated

effect on the output variable (dependent variables).

The induction mechanisms of an engine are those mechanisms that affect the airflow in the induction

system. The mechanisms show the interdependence between inlet and exhaust pipe configurations and

the valve timing (camshaft). The interdependence implies that by changing the exhaust valve timing, a

new and different exhaust will be required to give optimum performance and by changing the exhaust

configuration, a new valve timing setting will be needed for optimum performance.

Traditionally one component or dimension of a component is optimised and then the next in a

sequential manner. The overall optimum configuration of the engine is therefore never reached, as the

components do not function in isolation. The optimisation of one component will alter the operation of

the others, and indeed change the optimum operating conditions of each one. It is therefore necessary

to examine the interactions that exist within the system as well as each single variable as all the engine

components are dependent on each other. Alternatively the parameters can be optimised independently

of the values of the other variables.

To investigate all the possible combinations would prove tedious and exhausting and in most cases is

not feasible. For example, if seven variables were chosen for an experiment, and each variable was to be

tested at three levels, in order to characterise each variable's effect completely it would be necessary to

test all the combinations. This would necessitate the testing of 2187 (37)engine configurations in a full

!All the experimental applications described in the case studies in this thesis were undertaken on petrol engines and
thus the diesel engine is not discussed in this text. All references in this document to the internal combustion
engine therefore refer specifically to the petrol engine.

1
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factorial analysis.Using Taguchi experimental design techniques, it is possible to drastically reduce this

number of experiments without foregoing any information [Barker 1986.]. Only 18 experimental

configurations are needed to complete this investigation [peace 1993]. This method of statistical

experimental design essentiallyquantifies the trends of each variable irrespective of the trends or values

of the other variables in the system, and it accomplishes it in much fewer experiments then other

'traditional' experimental design methods, i.e. fractional factorial designs.

The general background, set-up and testing of internal combustion engines can be divorced from the

statistical theory of the experimental design methods used to design the experiment. Similarlythe design

method as prescribed by Taguchi Methods can be developed and explained without specific reference to

the application. However, in order to optimise any given process or product, there must be a thorough

understanding of that process or product. The engine testing methods are very important to ensure

integrity of the information gathered for analysis, these are discussed in Chapters 2 and 3. Without a

good understanding of the techniques and equipment used there is an increased possibility of spurious

data, incorrect results and incorrect conclusions resulting from the tests. Experimental design methods

are discussed in Chapter 4, and a description of the Taguchi Method of experimental design is discussed

along with its development from a quality control tool to an experimental design tool in Chapters 5 and

6. An illustrative example is given in Chapter 7 and three further case studies are then undertaken in

Chapters 8 through 10 to illustrate the different possible applications of Taguchi Methods and the

advantages and disadvantages of the method in each of these areas. In some eases Taguchi Methods are

compared to the traditional methods that would otherwise have been used.

1.1. Research Objectives

It was the objective of this thesis to investigate the use of Taguchi Methods as an experimental design

tool for testing automotive engines in the automotive research industry. The success of the Taguchi

method of experimental design is determined by comparing and contrasting it to the traditional method

of experimental design by using both techniques in some of the case studies. Each case study was in a

different aspect of the automotive engine optimisation field, illustrating the diverse application of the

method.

In the first case study, a simple Taguchi matrix was used to examine the influence of two flow diverters

in a carburettor adapter on engine performance. The main trends as well as the degree of interaction

were investigated to determine the optimum conftguration of the flow diverters. The results are

compared to a traditional method of testing and evaluation. This case study illustrates the success of the

Taguchi design method in a prototype evaluation.

In the second case study, a more complex and lengthy experiment was conducted where the design

variables of a carburettor adapter were investigated. The trends in the effect of the length and diameter
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of the feed pipe as weil as the diameter and height of the plenum chamber were determined using an 18

experiment matrix. This case study clearly illustrates the advantages of the Taguchi experimental design

method in reducing experimental time in a trend investigation application.

The third case study used an engine modelling software package to identify variable trends and also

minimise the amount of testing required. The variables investigated were the inlet manifold diameter

and length, and the valve angles and valve lift. Case study four used a more developed version of the

same package as used in case study three and compared the Taguchi Method results to the equivalent

results from a full factorial investigation.

3

Stellenbosch University http://scholar.sun.ac.za



Chapter 2. Engine Theory

2.1. Engine Performance

The internal combustion engine is designed to convert potential energy contained in the liquid fuel, into

kinetic energy that can be used to propel a vehicle. The basic mechanism for a petrol engine is as

follows: A charge of air-fuel mixture is drawn into the combustion chamber, compressed and ignited.

The expansion resulting from the charge burning forces the piston downward producing kinetic energy,

which is used to tum the drive shaft connected to the wheels, and propel the vehicle forward. This

mechanism is discussed in more detail in Section 2.2.

There are many factors that influence the performance of an engine. The air-fuel ratio of a petrol engine

needs to be close to stochiometric (14 to 1), for complete combustion to take place and achieve

maximum energy efficiency. Limiting the amount of charge drawn into the combustion chamber

controls the power and torque of the engine. By reducing the amount of charge entering the cylinder,

the mass of fuel is reduced and there is less energy available to do work, hence a reduction in power and

torque. The charge mass is reduced by reducing the manifold pressure and thus the combustion

chamber pressure. This is achieved by throttling the airflow into the combustion chamber using a

butterfly valve in the air intake pipe or throttle body.

An open throttle valve (Wide Open Throttle, wal) results in the highest pressure (close to atmospheric

pressure) in the combustion chamber due to the low pressure drop across the throttle body. The higher

pressure in the combustion chamber results in the greatest charge mass drawn into the combustion

chamber, and thus the highest power and torque. As the throttle closes, the pressure drop across the

throttle body increases, and the pressure in the combustion chamber drops. Less charge is therefore

drawn into the combustion chamber and made available for combustion. For maximum power/torque

output from the engine the amount of charge drawn into the engine must be maximised. This is

referred to as the volumetric efficiency and is discussed further in Section 2.4.

2.2. Engine Cycle

A four-stroke engine gets its name from the fact that the entire cycle of the engine comprises of four

strokes, namely, an inlet, a compression, an expansion and an exhaust stroke. Each stroke occurs over

180° of engine revolution. The cycle duration is thus 720° (noted as being from -360° to +360°). In a
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four-cylinder engine each of the cylinder cycles is offset by 1800 to the others. The engine therefore is

always experiencing a power- stroke.

The first stroke of the cyde is the induction stroke, where fresh charge is drawn into the cylinder. On

.the downward stroke of the piston air is drawn into the cylinder through the inlet valve port due to

reduced pressure in the cylinder. As the piston continues downward the low pressure intensifies and

more charge is drawn into the combustion chamber to equalise the pressure difference across the inlet

valve. The compression stroke starts at bottom dead centre (BDC) when the piston changes direction

and starts to move upward. The induction process is still in progress due to the momentum of the

incoming air and the inlet valve doses after BDO.

The compression stroke compresses the charge by utilising the energy in the flywheel supplied by the

previous power stroke as weil as the power strokes of the other cylinders. With the inlet valve dosed the

gasses in the combustion chamber are compressed as the piston moves upward. Just before the piston

gets to top dead centre (IDC) the sparkplug fires and ignites the fuel-air mixture in the combustion

chamber. Ignition lag and slow initial burning allow the piston to pass me before the majority of the

charge is burnt and maximum pressure reached. As the charge bums it expands and increases in

temperature. The combustion products are much less dense than the air-fuel-mixture, and this together

with the rise in temperature results in the gases expanding, causing the pressure in the combustion

chamber to rise dramatically to as much as 50 bar [Heisler 1995]. This increase in pressure forces the

piston downward and powers the engine during the expansion stroke.

The exhaust valve opens 40 to 75 degrees before the piston gets to BDC. The initial venting of the

exhaust gases when the exhaust valve opens iiviolent and dramatic due to the large pressure difference

that is present across the exhaust valve. This pressure release is called exhaust blow down and causes

pressure and inertial effects in the exhaust pipes that aid exhaust scavenging" at the end of the exhaust

stroke. The exhaust stroke forces the burned gases out of the cylinder as the piston moves upward.

At 10 to 30 degrees before the piston reaches me the inlet valve opens and fresh charge is introduced

into the cylinder. The action of the inlet valve opening causes pressure and inertial effects in the inlet

manifold, which effect the induction process. The incoming fresh charge helps with the exhaust

scavenging by driving out the exhaust gases. The exhaust valve doses 10 to 30 degrees after me at

which stage the induction stroke has already commenced. This results in a valve overlap of 20 to 60

degrees [Heisler 1995]. The cyde is repeated from me with the induction stroke.

All the valve timing angles can be changed by changing the camshaft designs and are specific to, and

different for, each engine make and model. The valve timing is therefore an engine design variable that

needs investigation and facilitates optimisation.

2 Sometimes called an expansion Stroke.
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2.3. Induction System

The components of the induction system form a complex piping system of restrictions, expansions,

pipes and plenum chambers through which the air, fuel and exhaust gases (during reversion where

exhaust gases flow into the inlet manifold) must flow. The gases experience phenomena including

momentum affects and pressure pulsation as a result of the gas movement. These phenomena effect the

engine breathing characteristics in a complex manner that involves interaction and superposition of flow

effects. The ultimate result of these phenomena is a change in volumetric efficiency, which in turn

affects engine performance.

The geometry of each of the components is specific to an engine's make and model. The interaction

between components necessitates the investigation and optimisation of the dimensions of each

component for each engine designed.

2.4. Volumetric Efficiency

Volumetric efficiencyis defined as the ratio of the mass of charge inducted into the cylinder to the mass

that would occupy the displaced volume at the air density in the intake manifold [Ferguson 1986]. It can

be calculated by Equation 2-1

[2-1]

Where = Volumetric Efficiency [%]

rna = Mass flow of Air inducted [kg/sj

mr = Mass flow of fuel inducted [kgfs]

Pi = density in intake manifold [kg/m3]

Vd = Displaced volume [m3]

(J) = Engine Speed [radians/s]

R, = Engine Speed [rpm]

The volumetric efficiencyof a naturally aspirated engine ranges from 40% to 115% depending on engine

speed and throttling, amongst other things, but it is usually approximately 84 % [Ferguson 1986].

Volumetric efficiency is best examined under wide-open throttle conditions where the engine is

delivering maximum output. It is also under these conditions that maximisation is required. Throttling

3 !VC occurs approximately 40° to 75° after BDC
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restricts the flow of air into the combustion chamber and therefore reduces performance. Under these

conditions optimisation could be performed to reduce exhaust emissions and fuel consumption as well

as maximising the output power and torque.

The effect of a change in volumetric efficiency is reflected in a change in engine torque. Volumetric

efficiency is very difficult to measure accurately, as it is not a direct measurement, but is calculated from

measurements of fuel consumption, air consumption, and engine speed. By measuring torque however,

we have a good indication of the volumetric efficiency, and torque is easily and accurately measured. In

most engine tests therefore, torque is used as the comparative or evaluative variable to represent

volumetric efficiency. Torque is measured by using a dynamometer, which absorbs or provides power

(under motored conditions) to the engine. The dynamometer is supported on bearings but restrained

from rotating by a load cell. The force in the load cell [N] multiplied by the lever arm defines as the

distance from rotation axis to load cell point of attachment [ml gives the torque of the engine [Nm].

Other variables that can be used for engine performance evaluation are:

• Power [kW], which is the product of torque [N] and engine speed [rad], indicates the level of engine

output and is a measure of the rate at which work can be done,

• Specific Fuel Consumption [SFC], measured as g/kWh (fuel consumption/power), indicates the

engines efficiency,

• Engine Emissions such as Carbon-monoxide % [CO%], Nitrous oxides [NOx], Carbon-dioxide

[C02], Hydro-carbons [HC's], which all indicate combustion efficiency, and

• Exhaust temperature and oxygen measurement (lambda) for each cylinder indicates even fuel

distribution and fuelling homogeneity across the cylinders.

2.5. Theories of Flow Effects

The breathing mechanisms of the engine are complex and there is a high degree of interaction between

the incoming charge and the exhaust gases due to the valve overlap when both the inlet and the exhaust

valves are open simultaneously. There are three main theories that attempt to describe the flow

phenomena and the complex interactions of flow. The theory of induction inertial cylinder charging

suggests that the inertial mass (momentum) of moving air can be used to ram extra charge into the

combustion chamber.

The second theory, induction wave ram cylinder charging, suggests that the pressure pulses that move

within the piping system can be used to induce lower pressures in the combustion chamber and thus aid

the engine breathing. The Helmholtz resonator theory suggests that standing waves are set up within

4 The action of the incomingchargepushingout the exhaustgasses[Ferguson1986]
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the piping system as a result of the natural frequency of the piping geometry. These can be used to tune

the geometry to provide a boost to the volumetric efficiency.

All the theories tend to provide maximum benefit to the engine at specific engine speeds, and all the

mechanisms are taking place simultaneously superimposed onto each other. Therefore by utilising each

of the mechanisms at different engine speeds, it may be possible to design a piping system that gives

additional power boost across the entire speed range to generate a flat torque curve and give good

drivability or at the same speed to provide a "power band". The theories essentially provide different

techniques for visualising what is most likely the same event/phenomenon occurring at different

frequencies, places and times during the combustion process. The three main theories that describe the

flow phenomena that affect induction flow are discussed in more detail below.

2.5.1. Induction Inertial Ram Cylinder Charging

This theory states that the inertia (momentum) of the incoming charge can be used to ram additional

charge into the combustion chamber. The incoming velocity (kinetic energy) is translated to a higher

pressure in the combustion chamber. A higher pressure means more charge and more charge translates

to greater power.

The induction stroke of the internal combustion engine starts with the inlet valve open and the piston

reachingme. As the piston moves downward aftermc, the pressure in the combustion chamber is

lower than atmospheric pressure, forming a partial vacuum in the cylinder. The pressure difference

across the inlet port between the combustion chamber and the charge in the inlet manifold tract forces

the column of charge to accelerate into the combustion chamber. This charge acceleration results in the

increase of momentum of the incoming charge.

The point where the piston is at maximum speed downwards, and the kinetic energy of the charge

entering the combustion chamber is almost at its greatest, is when the piston reaches mid stroke. The

piston acceleration reverses and the piston slows during the second part of the induction stroke until it

stops at BDC, changes direction and starts moving upwards. The incoming column of charge in the

inlet tract however, possesses kinetic energy as a result of its incoming velocity, and it continues to enter

the combustion chamber. This results in an increase in pressure in the combustion chamber and the

charge is rammed into it despite the decreasingvolume.

As the piston moves past BDC and starts the compression stroke, the inlet valve is still open and the

charge is still entering the combustion chamber due to its inertia. This further increases the pressure and

results in more charge being able to occupy the space in the combustion chamber and the pressure can

reach values greater than atmospheric pressure in highly optimised engines. This enables volumetric

efficiencyto reach values of greater than 100% [Heisler 1995]
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Figure 2-1. Volumetric Efficiency for Varying Inlet Tract Diameters and Lengths [After Heisler
1995]

Figure 2-1 shows some of the effects that geometry has on volumetric efficiency.

• It can be said that reducing the pipe diameter will increase the air velocity and thus increase the

momentum for a constant volumetric flow rate (constant engine speed). The experimental data

used in Figure 2-1 shows that for a given tract length, the ram charge pressure peak (higher

volumetric efficiency) is seen to occur at lower engine speeds with smaller diameter pipes although

the magnitude of the pressure peak is shown to be unaffected by the pipe diameter.

• The graphs also show that while keeping the pipe diameter constant, a longer tract will provide a

greater charge column mass and thus increased momentum and a greater ram-charging effect and

an associated increase in peak volumetric efficiency. Increased flow resistance due to the longer

pipe however, results in the pressure peak occurring at lower engine speeds. The tail off after the

pressure peak is more pronounced in the longer pipes than the short because of the increased pipe

surface area, and the accompanying increase in flow resistance.

Momentum is defined as the product of the mass and the square of the velocity (Equation 2-2)

Momentum = mass x velocity' [2-2]

• An increase in either mass or velocity will increase the momentum effect.

• Velocity will have the greater influence in the momentum effect, as momentum is proportional to

the square of velocity. However with an increase in velocity there is an associated increase in wall

friction. The optimum velocity will therefore be a compromise between momentum maximisation

and the minimisation of flow losses due to friction.

• The valve overlap in adjacent cylinders can interfere with the induction ram charging. For example,

if cylinder two is in an inlet valve open position, there will be a low pressure in the inlet tract. If

this coincides with the inlet valve closing (!VC), a high pressure event of adjacent cylinder one, then
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the low pressure in inlet track two could rob some of the pressure in inlet tract one and result in a

decreased inertial ram-charging for cylinder two unless catered for by adequate pipe length.

• The ramming of the outside branches of a four cylinder engine is more pronounced at low engine

speeds due to the longer inlet tract. At high engine speeds, the flow resistance results in a decrease

of volumetric efficiencyin cylinders one and four with respect to cylinders two and three.

A secondary effect of the inertial ram charging comes into play when the inlet valve is closed. The

momentum of the charge moving into the combustion chamber is halted against the closed valve and

the momentum causes a stagnant pressure build up behind the inlet valve in the inlet tract. This

stagnant pressure propagates towards the open end of the inlet tract as the charge energy is converted

from kinetic energy to pressure energy. (This can be seen in Bernoulli's equation).

The entire inlet tract will reach a stage when it will be at a stagnation pressure that is greater than the

atmospheric pressure at the open end. The pressure difference results in the air at the open end of the

tract moving out into the atmosphere and the pressure in the tract starts to drop progressively from the

open end. The energy of the charge is then converted from pressure energy back into kinetic energy out

of the tract. The pressure drop starts at the open end and propagates toward the closed inlet valve as

the energy conversion takes place.

When the low pressure progresses to the closed inlet valve, the tract will once again reach stagnation

pressure, however, this time it will be lower than the atmospheric pressure at the open end of the tract.

This pressure difference then results in air entering the tract and forming a high-pressure region. The air

then gains momentum as it moves into the inlet tract and the high pressure front will move down the

inlet tract towards the inlet valve. When the tract again reaches stagnation pressure higher than the

atmospheric pressure at the open end of the pipe, the cycle repeats. This cyclewill continue for as long

as the inlet valve is closed.

If the inlet valve opens when the inlet tract is at a high stagnation pressure, (or when the high-pressure

inertial front reaches the inlet port) the high pressure will cause a greater pressure differential between

the inlet tract and the combustion chamber. This will result in better cylinder filling and better

volumetric efficiency. The exhaust gas extraction will also be aided as a result of the high pressure in the

inlet tract as the increased energy of the incoming air tends to force the exhaust gases into the exhaust

tract during valve overlap. This too results in improved volumetric efficiency.

If the inlet valve opens when the combustion chamber pressure is higher than the pressure in the inlet

tract then reversion occurs. When the inlet valve opens the combustion products flow from the

combustion chamber into the inlet tract until the pressure across the inlet valve is equalised. When the

piston starts moving downwards, the pressure in the combustion chamber will again be lower then the

pressure in the inlet tract and the air will flow into the combustion chamber. The combustion products
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in the inlet tract will flow back into the combustion chamber before the fresh charge does. This reduces

the amount of fresh charge that can enter the combustion chamber and therefore reduces the volumetric

efficiency.

Optimal utilisation of the inertial ram cylinder charging effect can be achieved by tuning (optimising) the

inlet pipe length such that the high pressure front is at the inlet valve at the time of opening. The tuning

will be specific to one engine speed however as the valve timing is dependent on the engine speed

whereas the pressure pulse velocities are dependent on the air temperature which essentially will remain

constant during operation.

2.5.2. Induction Wave Ram Cylinder Charging

The wave effect refers to pressure waves or pulses that are present in the inlet tract of the manifold as a

result of the instantaneous pressure differences that occur when a valve opens. The pressure pulses

travel at the speed of sound through the gases in the induction and exhaust pipes and are both above

and below atmospheric pressure. The pressure pulses are superimposed on the pressure fronts

discussed in the previous section.

A simple way to visualise the pressure wave moving through the inlet tract is by using a coil spring that

has been slightly stretched. By introducing a pulse at one end (a slight jerk) the compressed part of the

spring will travel down the length of the spring and be reflected at the other side without significant

movement of the entire spring. The pulse travels back and forth with less energy in each reflection.

When the inlet valve opens, the low pressure in the cylinder (as a result of the outgoing exhaust gas

momentum) causes a negative pressure pulse/wave to travel from the inlet port, through the column of

charge, towards the open end of the tract. When the wave reaches the open end it is rarefacted as a

positive pressure wave. This happens because the negative pressure wave reaching the open end causes

a pressure depression and the air then rushes into the tract to fill the depression. The inertia of the

incoming air causes a positive pressure wave that travels from the open end back towards the inlet valve.

When the inlet valve closes the pulses continue to reflect back and forth with decreasing magnitude until

they decay away.

When the pressure wave reaches the back of the open inlet valve port it is rarefacted back towards the

open end as a negative pressure pulse due to the valve. being open. It also aids in cylinder filling by

pushing air into the combustion chamber. These positive and negative pressure pulses travel back and

forth with decaying amplitudes in the inlet tracts until the inlet valve closes [Heisler 1995].

This positive pressure pulse can be used to ram extra charge into the cylinder if the pipe is tuned such

that the positive pressure wave reaches the inlet valve just before closing. The positive pressure wave

will enter the combustion chamber and be contained there by the valve closing thus resulting in a higher
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pressure in the combustion chamber. The increased density of the charge during ramming will result in

a higher volumetric efficiency.

Pipe length tuning is determined from Equations 2-3 to 2-5. [Heisler 1995]

S d f S d Distancethe pulseor wavetravelled[m]pee 0 oun = ----....:....--------=--=-
time taken [s]

[2-3]

. Inlet tract length x 2rearrangmg gives: time =------='----
speed of sound

[2-4]

2L
t=--

1000C
[2-5]

giving L = 1000e * t
2

[2-6]

Where: t = time for pulse to travel twice the tract length [s]

L = Length of tract from open end to inlet valve port [mm]

C = speed of sound through air [±330 ru/s]

Also: Crankshaft displacement = time of travel x angular speed [2-7]

:. 8=tx 360N = ___'!!:_X 360N
Substituting we get 60 1000e 60

= ___'!!:_ x 6N = 0.012LN (de)
ioooc e g

[2-8]

Where G = crank shaft angular displacement [degrees]

N = engine crankshaft speed [rpm]

For example: For an induction period of 240 degrees (Gt) and at an engine speed of 3000 rpm the length

of the pipe would have to be,

L = 240*330 = 2.200 m
0.012x3000

[2-9]

for the induction wave ram cylinder charging to be tuned to the first positive pulse returning to the inlet

valve. To be tuned for the second positive pulse return the inlet pipe would need to be 1.1m long, and

to be tuned for the third and fourth pulse returns, pipe lengths of 0.733m and O.SSmwould be needed

respectively.

The pressure pulse is, however, not always returned rarefacted. The cycling of the compression and

expansion waves will be interrupted when the inlet valve closes and a secondary effect comes into play.

When an expansion or compression wave/pulse reaches a closed end of a pipe, it is reflected not
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rarefacted. A compression pulse will be returned as a compression pulse but with lower amplitude and

visa versa for the expansion wave.

The inlet tract length can therefore also be tuned for the secondary effect to ensure that a compression

wave gets to the inlet valve as it is opening. This will aid exhaust gas scavenging as well as cylinder filling

and improve volumetric efficiency and engine performance [Heisler 1995].

2.5.3. Helmholtz Resonator Cylinder Charging

The Helmholtz resonator theory is used in low speed tuning applications where the tuned pipe length

using the induction wave ram charging theory (Section 2.5.2) would result in the individual tract lengths

being too long. This is found in heavy-duty diesel engines where the maximum engine speed is only in

the region of 2000 rpm. The theory is also known as the organ pipe theory, as it uses the resonant

frequency of a spherical chamber with a pipe projecting from it to determine the optimum dimensions.

It is important to note that while the previous theory focused on the pipe dimensions to tune the

system, in this instance it is the plenum dimensions (chamber dimensions) that are critical in

determining the resonant frequency of the system. The resonant frequency of the chamber and pipe is

given by [Heisler 1995] as:

efA
n= 2Jr Vrv [2-10]

where n = resonant frequency [Hz]

C = velocity of sound in air [m/s]

A = cross sectional area of tuned pipe [mZ]

L = Length of the tuned pipe [ml

v = resonating volume [m3]

The natural resonant frequency of vibration of a chamber and tuning pipe are used to excite the air

inside the chamber. The inlet valve opening (once every two engine revolutions) produces a negative

pressure wave that disturbs the air in the resonator chamber and pipes. The engine speed and system

dimensions can be tuned so that the pressure-wave pulse frequency corresponds to the natural frequency

of the system.

The air in the chamber will be excited into a state of resonance with the inlet valve motion producing a

series of pressure waves. These can be timed correctly, exposing the cylinder to blasts of compressed air

at the end of the induction stroke, just before the inlet valve closes (IVC), where the piston movement is
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no longer assistingwith cylinder filling. The resonance volwne can be chosen to resonate at the speed

where the boost in torque is needed or desired.

Figure 2-2 shows a system where the inlet pipes are 550 mm long with a diameter if 4 cm. The

characteristic tuned speed for this configuration is twice the resonant frequency, i.e, 2510 rpm.

330 nO.022

n=--
2n 0.55 x 0.01x 0.01x 0.04

=1255.2 Hz
=2510.5 rpm

[2-11]

V = O.Olmx O.Olmx 0.04 m

Inlet Manifold

L = 0.55 m
A = pi X 0.022

Figure 2-2. Inlet Configuration

This theory is not easilyapplied to systems where adjacent cylinders with overlapping induction periods

share a tuning pipe, as the pulses will interfere with each other both constructively and destructively.

The tuning benefits are very specific to one engine speed. The advantage gained from tuning reduces

sharply as the engine operation varies away from the tuned speed. To combat this phenomenon, multi-

stage systems are used. Valves controlled by engine speed are used to divert flow between different

pipes or to combine resonance volwnes that change the system configuration to be tuned for a different

engine speed as the engine operation changes. In this way,wide flat torque curves are attainable due to

the good volwnetric efficiencyacross all speeds.

2.5.4. Exhaust Blow-Down Influencing Induction

During the valve overlap where both the inlet valve and the exhaust valves are open, there is a

considerable amount of interaction between the charge induction and exhaust gas removal. Both the

ram inertial effect and the ram induction effect are present in the exhaust system and both are

accentuated due to the high temperatures and pressures that are present in the exhaust system. The

average speed of exhaust gases in the exhaust tract is 174mis to 250 mis, compared to the ±80 mis of
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the inlet gases. The speed of sound is higher in the exhaust gases (518 mis vs 330 mis) due to the high

temperature environment (400°C) [Heisler 1995]. The pressure difference over the exhaust valve when

it opens is very high, resulting in exhaust blow down at the point where the exhaust valve opens. Just

before the exhaust valve opens the pressure in the combustion chamber can be as high as 550kPa

[Taylor 1998].

This high-pressure difference causes a compression wave to travel down the exhaust tract and it is

rarefacted at the open end (either the atmosphere or an expansion box) and returns as an expansion

wave lower than atmospheric pressure. This expansion wave is then rarefacted as a compression wave

to travel back to the open end of the exhaust. This cycle continues for as long as the exhaust valve is

open.

The exhaust lengths are tuned in a similar manner to inlet tracts, so that the rarefacted expansion pulse

gets to the exhaust valve just before the exhaust valve doses. The residual exhaust gases are therefore

better scavenged and the incoming charge is drawn into the cylinder, as the inlet valve will still be open

at this stage.

The negative pressure expansion wave will also be propagated through the combustion chamber and

into the inlet manifold. The combustion chamber is at its smallest at this stage (the piston is at the top of

its travel) and it acts as a pipe and no longer as a chamber. This pulse then joins the existing pressure

waves, being reflected back and forth through the tract until they die out due to friction.

The exhaust expansion wave has a relatively high amplitude due to the energy inherent in the exhaust

blow-down process. It is therefore possible that the pressure wave from the exhaust pipes contributes

more to the improvement of the volumetric efficiency than the inlet manifold pressure waves. The

tuning of the inlet tract lengths should therefore take into account the exhaust blow-down pulses. This

tuning can possibly be used together with scavenging and ramming to give up to 130% volumetric

efficiency [Vizard 1993].

Tuning is very speed dependent and at engine speeds outside the tuning range, negative effects may

result due to the expansion waves being out of phase. With careful tuning all the above effects can be

used to produce a flat torque curve across the range of engine speeds, each mechanism will contribute to

volumetric efficiency at a different engine speed.

It is also important to note that the pulses originating from adjacent cylinders will affect the breathing of

each cylinder. Only with the aid of powerful computer simulations can all these phenomena be

simultaneously investigated to try and determine the influence of each factor. Even then, it is difficult to

distinguish which effects are responsible for the observed trends [Heisler 1995]. Therefore advanced

investigation technologies are needed to optimise engines such as those used in case studies three and

four.
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2.6. Effects of Components on Engine Performance

There are many components making up the induction system of an internal combustion engine. The

effect of each on the performance of an engine has been studied in detail by many researchers all over

the world. Most components affect the breathing of the engine (volumetric efficiency) and in that way

influence the performance. Bad breathing will result in poor volumetric efficiency and therefore reduced

performance. Some of the variables that affect the engine performance are:

2.6.1. Compression Ratio

The compression ratio is defined as the ratio of maximum to minimum volume in the combustion

chamber. By raising the compression ratio and reducing the clearance volume of the cylinder, the

volumetric efficiency decreases. Although the Otto cycle suggests an increase in efficiency with respect

to compression ration [Ferguson 1986] it is only possibly due to the omission of the internal friction and

the assumption of constant volume heat addition. Less fresh charge is drawn into the cylinder and at the

same time there is a lowering of the cylinder's residual gases with a reduction of compression ratio

[Heisler 1995]. Friction and heat losses also increase with an increased compression ratio [Ferguson

1986] further detracting from the engine efficiency.

2.6.2. Ram Pipe Dimensions and Plenum Chambers

The interaction of the pulses and momentum effects between cylinders has an effect on the breathing of

other cylinders. By tuning the inlet manifold pipe lengths and plenum chambers to make use of these

interactions, higher volumetric efficiency can be attained.

Changes in pipe length and diameter with a constant bore and stroke and equal conditions of inlet and

exhaust pressures, inlet temperature, fuelling and optimum spark timing, result in the following trends.

2.6.2.1. Length

The effect of the length of the pipe is dependent on the speed at which the air travels through the pipe.

The speed is limited to the choking that occurs at the inlet valve of the engine and the mach index

quantifies this speed [Taylor 1977]. The mach index characterises the average gas speed through the

inlet valve that would be required to realise complete filling of the cylinder at a specific engine speed. At

low speeds (low mach index) the flow losses are low and therefore volumetric efficiency increase. At

high values of mach index (Z) the flow velocities result in increased friction losses and decreased

volumetric efficiency [Ferguson 1986]. The mach index, Z, is defined by Equation 2-12.
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Ferguson [1986] describes a complex experiment where length, diameter and inlet valve timing are varied

under constant conditions. Generally speaking the results show that extending the length of the inlet

pipe will result in improved breathing (volumetric efficiency) at low values of the mach index Z (0.4),

and reduced breathing for high values of Z (0.8). A possible reason for the increased efficiency at low Z

is the increased use of the ramming effects present in the induction system of the engine without the

increased friction associated with higher air velocities. Also the lower resonant frequency of long pipes

is better suited to the low engine speeds and therefore a low mach index.

Where

Z = Mach Index

b = Cylinder Bore

A i = Mean Inlet Area

U p = Mean Piston velocity

C i = speed of sound in the inlet conditions
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Figure 2-3. Pipe Length Effect on Volumetric Efficiency. [Heisler 1995]

The effect of inlet pipe length is shown in Figure 2-3 for another application, where increased pipe

length improved peak efficiency and moved the peak to a lower engine speed (lower mach index). It can

also be seen that the peak volumetric efficiency is above 100%, which is achieved by good use of the

pulse and kinetic properties of the gas, both inlet and exhaust.
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For high-speed engines therefore the shorter pipes are better because this avoids the dramatic drop in

volumetric efficiency at high engine speeds.

2.6.2.2. l>ia~eter

Ferguson [1986] showed that an increase in pipe diameter moved the peak volumetric efficiency to a

higher engine speed and volumetric efficiency is linked to optimum flow rate. The diameter influences

pipe flow rate in two ways. The flow area is changed, resulting in different flow velocities for constant

flow rates, and the surface area, and therefore flow loses due to friction, is influenced by a change in

diameter.

A reduced pipe diameter will result in increased flow rate for constant volume flow and a larger pipe

diameter will result in a larger surface area in contact with the flow and therefore higher flow resistance

due to friction [Heisler 1995]. The flow velocity will however be reduced and friction losses will also

decrease. The reduced velocity in the larger diameter could result in poorer utilisation of the inertial

ramming phenomenon and thus poorer volumetric efficiency.

For large diameters, the low flow velocity at low engine speeds may result in many of the fuel droplets

not being able to stay in suspension and the heavier liquid particles may precipitate onto the walls. This

will result in uneven fuelling with fuel starvation in the gas and periodic enrichment in certain cylinders

as the liquid fuel enters the cylinder. Although this phenomenon occurs under normal operating

conditions, it is accentuated under low flow velocity conditions.

2.6.3. Air Filter

In South Africa the conditions under which engmes operate are harsher than in most developed

countries. The high dust content of the air makes it necessary to use a remote air filter with better

filtering characteristics than the pancake air filter used in Europe. The pancake air filter is normally

located directly above the catburettor throat and the airflows radially through the filter.

2.6.4. Carburettor Adapter

A carburettor adapter is necessary to link the remote air filter to the carburettor, The main function of

the carburettor adapter is to optimise the airflow pattern into the carburettor throat. Radial airflow with

no swirl or vorticity as it enters the carburettor throat is ideal. The adapter is also designed to make best

use of the pressure and inertial waves that occur in the inlet tracts. Optimal design results in a smooth,

low loss flow, with even fuel distribution between the cylinders.
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2.6.5. Carburettor

The carburettor is the means by which fuel is added to the incoming air. It also provides the correct air-

fuel mixture by atomising the required liquid fuel into droplets that will evaporate quickly. The

incoming air is accelerated through a venturi and the resultant pressure drop (P2 < PI) forces fuel

through the metering orifice. The amount of fuel drawn into the air stream is dependent on the

pressure at the fuel nozzle, which is in turn dependant on the amount of throttling of the inlet air, as

well as the pressure distribution within the venturi. If there is uneven flow through the venturi, like

swirl and tumble, then there will be additional pressure effects that will result in incorrect and uneven

fuelling.

The throttle controls the airflow through the venturi. The pressure drop across the butterfly valve used

for the throttle is increased as the valve is closed and the available area for airflow reduced. The

reduction in area results in lower volumetric flow rate, which produces higher pressures in the venturi

and hence lower fuel addition. [Heisler 1995]

2.6.6. Valves

There are many aspects to the valves in an internal combustion engine that effect the way the engine

breathes. The valve lift, size, shape and positioning as well as the opening and closing positions are vital

aspects when examining factors that effect the engine induction process.

a

j.

Figure 2-4. (a) Circular and (b) Pie-Chart Representations of Valve Timing

Valve timing can be represented graphically in a number of different ways. A circular timing diagram

(Figure 2-4 (a)) shows the induction and exhaust duration's clearly. A pi diagram (Figure 2-4 (b)) shows

Valve timing Pi chart

TDC
IVO

IVC

BDC

b
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valve movements.

the periods of overlap and duration while a spiral valve timing diagram (Figure 2-5) shows the order of

A spiral valve-timing diagram (Figure 2-5) gives an overall picture of the four phases of the engine

following on one from the other (induction, compression, expansion and exhaust). A linear

representation of the valve profiles (showing lift vs. cam angle) superimposed on each other gives a

better representation of the valve opening and closing progressions and the magnitude of valve overlap

(Figure 2-6).

Figure 2-5. Spiral Valve Timing Diagram
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Figure 2-6. Inlet and Exhaust Valve Profiles and Angles (with altered valve timing from -180 to
+420 as opposed to the expected -360 to +360)

1.6.6.1. Valve Lift

Valve lift describes the distance that a valve will move between the open and closed positions. The valve

will remain in the centre of the valve port when it is open leaving a circular band through which the air

must flow. This affects the ease with which the engine breathes. A higher lift will give a larger area for

the air to pass through and therefore lower flow losses and improved breathing. The Speed of the valve

getting to its maximum lift position determines the time taken for the flow through the valve to attain its

maximum value.
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2.6.6.2. Valve Size

The average gas speed through the valve should be kept subsonic (mach index Z < 0.6) to avoid flow

choking. Therefore the inlet valves are sized according to the maximum piston speed of the engine.

The speed of sound is much higher in the exhaust gases than in the intake gases (due to the temperature

and density differences) and therefore the exhaust valve only needs a smaller diameter and lift to avoid

the flow choke. Generally the inlet valves are limited in size by geometric restraints and are sized as large

as possible. Using two inlet valves circumvents the problem to some extent by increasing the flow area.

Typical valve size ratio's of exhaust to inlet valve areas are 70% to 80% [Ferguson 1986].

2.6.6.3. Inlet Valve Opening (IVO)

The inlet valve opens before IDC of the exhaust stroke. The outgoing exhaust gases still have enough

momentum to leave a vacuum and draw in the fresh charge, which in tum will sweep out the last exhaust

gases with its momentum. The IVO is tuned to maximise the fresh charge induced.

If the valve is opened too early the exhaust gas will be at a higher pressure than the inlet manifold and

the exhaust gases will flow into the inlet manifold, reversing the flow. This is particularly possible under

part load/part throttle conditions where the inlet manifold pressure is low. The exhaust gases in the

inlet manifold will displace the incoming charge, diluting it and heating it up. This will cause a decrease

in density and fuelling, resulting in lower volumetric efficiency and loss of engine performance.

Emissions are increased due to the inefficient burning (HC and CO increases). If the inlet valve opens

late, then there will be a loss of potential induction time and the volumetric efficiency of the engine will

decrease.

2.6.6.4. Inlet Valve Closing (/VC)

The inlet valve is open for the entire induction stroke and closes after BDC. The exact instant of inlet

valve closure is very important in determining the volumetric efficiency. The air flows into the cylinder

as a result of a pressure difference across the valve. The pressure difference is the result of the piston

moving downwards, as well as pressure pulses in the inlet tracts. Flow will continue in the positive

direction (into the cylinder) until the pressure in the cylinder exceeds the pressure in the inlet manifold.

At this point reversion will take place and air will flow back into the inlet manifold resulting in a decrease

of volumetric efficiency.

If the valve is closed before reversion occurs then there will potentially be a lower charge that could have

entered the cylinder. If the valve closes after reversion then there is a loss of charge due to the reverse

flow. Optimum volumetric efficiency will occur if the valve closes at the precise point of reverse flow

initiation.

21

Stellenbosch University http://scholar.sun.ac.za



Reversion occurs after BDC. As the piston starts the compression stroke, the low pressure that was

drawing the charge into the combustion chamber will become a high pressure at the piston face. As the

piston moves upward the high-pressure front also moves upward away from the piston face. At the

valve however there is still a positive pressure difference and air is flowing into the cylinder. When the

high pressure, caused by the upward movement of the piston and compression of the gases, reaches the

inlet valve, flow will stagnate and then reverse as the pressure in the combustion chamber exceeds the

pressure in the inlet manifold.

The speed of the enginewill determine the instant at which reversion occurs. Thus volumetric efficiency

is a function of engine speed as seen in Figure 2-3. At slow speeds flow reversal will occur and charge

will be lost while at high speeds potential charge is lost due to the valve closing while gas is still flowing

into the chamber.

The NC position is used to tune the spread of the maximum torque and performance of the engine

across the engine speed range. For a low inlet valve lag (valve opens early) there will be a loss at high

speed of the inertial ramming effect while a big lagwill result in a drop off of performance at low speeds,

due both to the low velocities, and reversion. The tuning is therefore a function of the engine's intended

use.

2.6.6.5. Exhaust Valve Opening (EVO)

The instant of EVa influences the expulsion of the exhaust gases from the combustion chamber and

tuning is used to maximise exhaust gas expulsion. The valve opens before BDC when the gas is still at a

pressure higher than the pressure in the exhaust system. This causes exhaust blow-down to occur and a

pressure wave is sent into the exhaust tract. The inertia of the gas helps in its extraction. The piston

essentially only sweeps out the residual gases. Therefore negative work during this stroke is kept to a

minimum.

The effects the exhaust valves opening early, is a loss of pressure energy and therefore a loss of power.

The high-pressure gas that is releasedwill contain energy that could still be used in the propulsion of the

engine. The exhaust valve is best opened when the piston is near BDC, an ineffectual crank position.

The effect of late opening is that the piston has to do more work to sweep out the residual gases at the

end of the stroke as a result of the less efficient exhaust blow down.

2.6.6.6. Exhaust Valve Closing (EVC)

The exhaust valve is open for the entire exhaust stroke and for the first part of the induction stroke.

The outward flowing gases in the cylinder possess kinetic energy and leave a partial vacuum in the

cylinder due to their inertia. Fresh charge is sucked into the partial cylinder vacuum with the inlet valve

partially open. At this stage, the piston cannot yet form a vacuum to draw in fresh charge as it is in an
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ineffective crank position and the downward movement is slow, although at maximum acceleration

downwards.

The timing of the exhaust valve closing is best determined by the tuning of the exhaust inertial and

pressure ramming phenomenon as weil as the overlap time to ensure that fresh charge does not make its

way into the exhaust system before the valve closes. If the valve closes too early there will still be

exhaust gases in the combustion chamber. This will reduce the volumetric efficiency of the engine, as

the residual exhaust gaseswill take up space that the fresh charge could take. The residual gaseswill also

increase the temperature of the incoming charge resulting in a lower charge density and therefore lower

volumetric efficiency. If the valve closes late then fresh charge will flow into the exhaust tract without

combusting and result in fuel loss (decrease in overall engine efficiency), increased emissions and a

backfire if the unburned fuel ignites in the hot environment of the exhaust tract [Ferguson 1986].

2.6.6.7. Valve Overlap

The overlap of the inlet and exhaust valves is a result of the inlet valve closing after the exhaust valve

opens. This results in the combustion chamber acting as a pipe for the pressure pulses to travel

through, thus best utilising the momentum of the airflow to increase volumetric efficiency. Exhaust

gases flowing into the inlet port during overlap result in a decrease in volumetric efficiency, because

before any charged air can enter the combustion chamber, the exhaust gas must first travel back into the

combustion chamber. Only then does the cylinder fill with fresh charge.

Greater overlap results in more emissions at low speeds and partial throttle. At high engine speeds and

wide open throttle however, the larger overlap results in better engine breathing. The overlap is

therefore a function of the engines intended use and the region where it is likely to spend most of its

working life.

For example a racing engine, designed for a high, narrow speed range and close gear ratios will not be

concerned about low speed performance and probably not about emissions. A large overlap will

therefore be suitable for this engine. A local delivery van where most of the driving is low speed, stop

start driving,will not use high engine speeds and emissions will be important. A small overlap will then

be more suitable.

2.7. Case Studies

The theories discussed in this section are applied in four case studies using Taguchi methods to design

the experimentation matrices. In the first case study, a carburettor adapter is investigated. The flow is

manipulated using flow diverters to try and produce smooth radial flow in the carburettor throat to

provide equal fuelling to all four cylinders and to maximise engine performance in terms of top-end-

power and mid-range-torque.
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In the second case study the dimensions of a carburettor adapter (height and diameter) and the

dimensions of the feed pipe (length and diameter) were investigated. The aim was to provide smooth

and even flow into the carburettor to get even cylinder fuelling and overall engine performance

enhancement in terms of top end power, mid range torque and fuel consumption.

The third case study investigates variables of engine design in a modelling simulation. Taguchi Methods

are used to minimise the amount of testing required in order to identify the optimum operating

conditions. Camshaft variables (inlet and exhaust valve opening and closing angles as well as valve lift)

and inlet pipe variables (length and diameter) are investigated to maximise engine performance in terms

of top-end-power and mid-range-torque.

Case study four does not directly apply any engine testing theory. It uses the same simulation package as

Case Study Three and compares the results from a Taguchi experimental method with a full factorial

equivalent. The benefits in terms of timesavings are well illustrated.
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Chapter 3. Engine Testing

In order to design and develop quality automotive engines, a vast amount of testing and experimentation

needs to take place. Engines are put onto dynamometers and run under varying controlled conditions to

simulate the conditions under which the engine will be used. In this way, the engine operation can be

optimised in a controlled environment to provide the highest quality product.

During experimentation many factors need to be monitored in order to maintain constant operating

conditions whilst optimising the input variables. For the experiments conducted for this thesis,

atmospheric conditions (wet and dry bulb temperature and pressure) were recorded to enable for the

correction of engine performance due to atmospheric variations using SABS torque correction factors.

Variables such as engine speed and throttle position were monitored for each test point to ensure that

the operation points were identical and repeatable for the testing of various engine components.

Torque, power, fuel consumption, emissions and exhaust temperatures were monitored as output

variables to evaluate engine performance. Oil temperature and pressure, and water temperatures for

both the dynamometer and the engine were monitored and used as a safety warning of an engine

malfunction. The onset of knock was also monitored using a knock sensor in order to prevent serious

engine damage.

3.1. Engine Test Facility

The Centre for Automotive Engineering (CAE) test laboratories at the University of Stellenbosch was

used for all the test work. The testing facility consists of seven engine test cells, housing nine engine test

stands ranging from 160 kW eddy current units to an advanced DC dynamometer used for dynamic

driving simulations. A standard eddy current dynamometer was used in the test work for this thesis. The

engine exhaust gases were removed from the test cell by directing the exhaust system into the extraction

system as shown in Figure 3-1.
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Figure 3-1. Hot Exhaust System During Testing

The same extraction system provided air cooling for the engine at a ventilation rate of approximately 1.5

m3/ s through each test cell. The operator in the control room was isolated from the engine and

dynamometer by double soundproof doors and double panes of hardened shatter proof glass for safety

and soundproofing. All engine control was done from the control room via computer control of the

engine control unit (ECU) (Figure 3-2).

Figure 3-2. Engine Control Room Figure 3-3. Test Stand
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Data logging was made possible through the use of an Action Instruments 110 PAKPLUS industrial

quality input/output processor. Sixteen possible channels were configured using plug-in digital and

analoguemodules that communicated with the computer via an RS-232 system.

The engine test stand (Figure 3-3)was fabricated from heavy rolled steel sections to provide stabilityand

strength. The main structure was mounted on rubber feet for vibration absorption. The extensive

adjustment allowable on the bed enabled the shaft from the engine to the dynamometer to be aligned

accurately. A two litre, SOHC, eight-valve engine from a one ton commercial vehicle was used for all

the testing. No gearbox was used in the testing so the engine was coupled directly to the test bed via a

shaft and two constant velocity (CV) joints.

A standard Froude eddy-current (EC38) dynamometer was mounted on the test bed. The dynamometer

consisted of two stationary coils and a rotating rotor situated between the coils. It worked on the

principle of opposing magnetic fields. The stationary coils were mounted on trunion bearings that

allowed the casing to swivelin the same axis as the incoming shaft. The magnetic field generated by the

electromagnetic coils induced eddy currents in the rotating spokes of the rotor. These eddy currents

then in turn produced an opposing magnetic field and thus power was absorbed. Heat from the rotor

was transferred away through a small air gap between the rotor and the water-cooled loss plates to the

coolingwater in the outer jacket of the dynamometer.

PID control of the supply voltage to the coil was used to achieve speed control. Varying the voltage

supplied to the electromagnetic excitation coils controlled the strength of opposing magnetic fields, and

thus the power absorption capacity. The amount of power absorbed was measured by means of a load

cellrestricting the casing's rotation. The force was then used to calculate the torque. This, together with

the speed of the shaft was used to determine the power absorbed by the dynamometer.

3.2. Engine Cooling

Due to the absence of a radiator on the engine, the engine water was cooled using a shell and tube heat

exchanger and an external supply of cool water. The standard water system for the engine was used,

including the water pump and thermostat for temperature control. The radiator was replaced with a

water to water heat exchanger to facilitate heat extraction from the system. The engine-water heat

exchanger and dynamometer heat exchanger were both supplied with a constant supply of cooling water

at 1.8bar.
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Figure 3-4. Water Flow Circuit

The cooling water system consisted of an overhead tank providing the pressure, a cooling tower to

regulate the temperature, and an under-floor sump for the used water as shown in Figure 3-4. The water

was circulated through these components in a closed system to control the flow rate and the

temperature. The water supply line was fitted with a flow switch to prevent the engine from starting

with an insufficient flow of coolant water, thus protecting both the dynamometer and the engine from

overheating.

3.3. Fuelling and Fuel Injection

Both carburettor and fuel injection systems were used in the testing. The two configurations are shown

in Figure 3-5. This necessitated the use of two fuel pumps. A low-pressure pump was used to supply

the carburettor with fuel, and a high pressure pump was used to supply fuel at a pressure of 3 bar for the

fuel injection configuration. For both systems, the fuel supply was via a fuel mass flow meter from the

bulk tank. By changing the piping into the fuel mass flow meter and changing the pump that received

power from the ignition switch, the two fuel systems were interchangeable.
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Figure 3-5. Fuel System

The fuel mass flow meter (Figure 3-6) consisted of a beaker on a scale and a filler pipe and pump from

the bulk fuel tank. The beaker was filled when the low level limit switch in the meter was activated.

When the level in the beaker activated the high level switch the filling pump was switched off and the

fuel mass flow was measured by recording the varying mass of the fuel in the beaker.

Figure 3-6. Mass Fuel Flow Meter

In the carburettor configuration, the fuel was pumped directly from the mass flow meter through a low

pressure filter (to protect the fuel pump from damage), to the carburettor using a 12 volt low pressure
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fuel pump. In the fuel injection configuration, a high pressure pump was used to draw the fuel through

a low pressure filter (to protect the pump from damage) and then push it through a high pressure filter

(to protect the injectors from fouling), before going to the fuel rail and injectors. A pressure regulator

and gauge were connected on the down stream side of the fuel rail. The gauge was used to set the

pressure regulator at 3 bar and, by means of a return pipe to the mass flow meter beaker, the fuel

pressure was maintained at 3 bar. The Centre for Mechanical Services (Sentrum vir Meganiese Dienste,

SMD) at the University of Stellenbosch manufactured the fuel rail.

3.4. Engine Management System

The fuel injectors were controlled using a DUPEC engine control unit (ECU). Manifold absolute

pressure (MAP) and engine speed were monitored by the ECU and used by DUPEC to control fuel

injection and ignition timing. Changing the data maps stored within DUPEC enabled the injection

timing and ignition timing to be changed while the engine was running. The vacuum advance used to

alter the ignition timingwas disconnected as all the tests were done at wide open throttle (WOT).

•
IOPAKPLUS ... PC
Data Recording

...
records all data

~IL
Ignition ~~

Data
Measuring MAP

V Engine Speed
Battery Voltage
Ignition Siwt~.. DUPECEngine ... (ECU).....

Injection Timing Indirect Control

Throttle ~~
Ignition Timing

Position
Direct Control

Throttle
Actuator

Figure 3-7. Engine Control and Monitoring

Other factors that were monitored and corrected for were battery voltage, ignition voltage, alt

temperature and water temperature. Low voltages were corrected for by lengthening the injection time,

as the injectors were slower to react to the signalwhen the voltage was low. Water temperature was set

to a default value of 70° C and the air temperature was set to a default value of 25° C for the controller,

thus removing two degrees of freedom in the control system. All the tests were carried out under

comparable controlled conditions so these two measurements were deemed unnecessary.
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3.5. Engine Test Automation (ETA)

ETA software developed in the Centre for Automotive Engineering (CAE) of the University of

Stellenbosch (US) was used for the user interface with the engine and data logging. The sixteen input-

output (lO) channels were configured according to the module and measurement type for that channel,

and a possible additional 48 calculated or user defined channels were available. These additional

channels were used for calculated channels such as, power, specific fuel consumption (SFC), and average

temperatures. Additional communication port channels, such as mass fuel consumption, and operator

entered values for data that could not be electronically captured, (i.e.wet bulb and dry bulb temperatures

and emissions data) could also be programmed into the additional channels

Each of the channels used had configurabie alarms for high, high-high, low and low-low values. For

critical channels, the triggering of an alarm would result in the engine being stopped by cutting the

ignition signal to the engine. i.e. a low-low alarm on oil pressure would result in the engine ignition

being cut to prevent damage. All alarms were written to an error file in real time when they occurred.

This enabled the operator to determine the reason for possible engine failure or data irregularities after

the test had been completed.

A list of channels and alarms is given in Appendix A along with an explanation of each channel used

during testing.

3.6. Air flow

The airflow in the engine was measured using a Ricardo air flow meter. The flow meter worked on the

principle that there is a pressure drop across a pipe length when there is laminar flow in the pipe. By

measuring the pipe dimensions and the pressure drop across it, one is able to calculate the air flow

volume though the pipe. The flow metre consisted of an air filter and then a section of many thin pipes

in parallel that forced the air flow to become laminar through them. The pressure drop across a section

of the pipes was measured and used to calculate the air flow rate, taking into account the measured air

temperature and pressure (density) during the test. This, together with the fuel mass flow rate was used

to calculate an air fuel ratio.

3.7. Atmospheric Corrections

Due to the fact that all the tests could not be completed under the same atmospheric conditions and the

fact that differing air density and humidity influence volumetric efficiency, torque corrections needed to

be done on all data to enable them to be compared. SABS standards prescribe the calculation that is

needed to correct for the discrepancies due to differing atmospheric pressure and humidity (reference

SABS standards).
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3.8. Knock

Knock is a complex unpredictable phenomenon that is, more often than not, damaging to internal

combustion engines. It is the phenomenon whereby fuel is ignited before it is consumed by the flame

front originating at the spark plug. It is also known as auto-ignition, pre-ignition and detonation, all

corresponding to different aspects or causes of the same fundamental event. Knock is identified by the

sound made when high velocity pressure waves reflect off the cylinder walls causing an audible pinging

sound. The oscillation of the pressure wave back and forth in the cylinder causes the cylinder walls to

become excited and thus the pitch of the wave is dependant on the oscillation frequency i.e. the velocity

of the wave and the cylinder dimensions (distance the wave has to travel). Velocities of these waves

have been measured at 1200mis [Fitton 1993],which translates to approximately 500 cyclesper second.

Knock sensitivity is measured as an anti-knock index or road octane number and it is a function of the

fuel used in the engine. This is defined as the average of the RON (research octane number) and MON

(motored octane number) numbers (Heisler 1995].

3.8.1. Mechanisms of Knock

During the normal combustion process the flame front moves from the centrally located spark plug

outward towards the end gas regions. The temperature in the combustion chamber rises due to the

increased pressure as a result of the combustion process. The unburned gases are also heated by the

radiation from the burnt gases and, initially from the warm cylinder walls. If the pressure and

temperature rises surpass a critical level, spontaneous ignition of the unburned gases occurs. High-

pressure waves are generated when the fuel bulk ignites prior to the flame front consuming the charge.

This occurs in areas of high temperature and pressure, typicallythe end gas regions near the rings of the

piston. The pressure of the resulting wave is dependent on the pressure of the charge when auto-

ignition occurred.

Pre-ignition is the term given to the knock phenomenon when detonation occurs before the spark has

been delivered to the charge. This occurs as a result of local overheating of the fuel mixture, due to a

hotspot in the combustion chamber. A portion of the gasket or carbon build-up that exceeds 800°C

may provide such a hot spot (Heisler 1995]. Under these circumstances the engine will experience

runaway where the engine will no longer require a spark to function and the effect will become self

propagating and develop into severe knock where drastic damage is done to the engine.

Excessive spark advancewill result in knock due to the higher temperatures and pressures resulting from

an advanced spark. The advanced ignition of the chargewill cause combustion to start before the piston

can start its downward movement, expanding the combustion chamber volume and absorbing the

combustion energy. This could lead to knock run-away and severe knock damage to the engine.
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3.8.2. Consequences

Auto detonation does not necessarily result in any damage to engine. It is characterised by a light

pinging noise coming from the combustion chamber. Severe knock however, scours away at the

stagnant gases in the boundary layer at the cylinder walls. This causes the heat rejection through the wall

to be increased, and the average cylinder temperature rises. The protective lubricating oil film on the

cylinder wall is also scoured away resulting in increased friction and engine wear. The bearings, rings and

pistons experience increased vibratory loads and also increased peak pressures (400 kPa) as a result of

the knock. The high cyclic pressure loading causes micro cracks to form and the material to flake. Thin

walls of sections of the piston also risk damage due to pressure differences that result across the material

[Fitton 1993].

3.8.3. Contributing Factors

Factors contributing to high temperatures an increased likelihood of knock are lean fuel mixtures and

over advanced ignition riming. Insufficient cooling around the combustion chamber and carbonisation

on the chamber walls could result in hot spots. A long flame path in the combustion chamber where the

end gases are exposed to high temperatures and pressures for an extended time period also increases the

likelihood of knock occurring. High compression ratio's used in conjunction with low octane fuels

promote knock occurrence.

A knock resistant fuel will result in more severe knock, if pre-ignition is allowed to occur, due to the

higher amount of energy that will be present in the end gas at auto-ignition. If the auto-ignition point

moves to before IDC, then negative work will be done in compressing the burnt gases and a decrease in

power, torque and speed will result. If the advancement continues, auto detonation could occur before

the inlet valve has closed and then the flame front will propagate into the inlet manifold. Exhaust

temperatures will decrease due to the increased energy lost to the coolant, as well as decreased CO%

emïssions. In a multi-cylinder engine where knock occurs in one of the cylinders the other non-

knocking cylinders will pull the knocking cylinder along, resulting in excessive and accentuated knock

damage.

3.8.4. Knock Prevention

The effect and occurrence of knock can be minimised in a number of ways. Increased turbulence in the

combustion chamber results in the end gases being burnt quicker due to the increased flame front speed.

By reducing the flame path the end gases are not exposed to the elevated pressures and temperatures for

as long. By quenching the end mixture it is burnt quicker and knock is prevented.

Piezometric knock sensors that detect the incipient oscillations of knock are used in modem cars where

the ignition riming and fuel injection duration are constantly monitored, changed and optimised by the
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engine management system during operation. This "on the edge" engine management system constantly

controls the engine so that it operates at the knock limit, thus achieving high performance and efficiency.

3.9. Closing Comments

In the four case studies described in this thesis, there were additional testing apparatus and tools used.

These are discussed as necessary in the relevant chapters. In case study two (birdcage), a four gas

analyser was used and the custom equipment needed for its' use is described in the relevant chapter. In

case studies three and four, a software program, Engine Simulation Analysis (ESA), was used to generate

the data that was used. It was developed at CAE and is discussed again in Chapter 3.

34

Stellenbosch University http://scholar.sun.ac.za



Chapter 4. Experimental Design

It is not the purpose of this text to completely describe the method and proofs behind the techniques

illustrated. Indeed there has been much written on the subject of experimental design (Beveridge et al

1970, Biles and Swain 1980, Box 1978, Daniel 1976, Fletcher 1980, Khuri and Cornell 1996, Lunneborg

1994, Box et al 1988, Daniel 1962, Davies and Hay 1950, Draper and Hunter 1966, Hunter and Naylor

1971, Marquardt 1963, Plakett and Burmann 1946, Statsoft 1998). This text provides an outline and

guide to the techniques needed in order to perform a successful experimental design using Taguchi

Methods as was used in this thesis. Other experimental methods are discussed briefly to provide a

comparison with Taguchi Methods and to highlight the advantages and disadvantages.

4.1. Introduction

Why Experiment? Primarily, the goal of experimentation is either to optimise an output of a system

(product or process), or to better understand a system (product or process). The aim is to identify and

quantify the effect that a controlled input variable has on a measured output variable. The input variable

can then be set to a predetermined value to obtain the optimum output.

Traditional thinking maintains that all variables should be kept constant, while one variable at a time is

varied and its effect determined and optimised. Modem thinking, however, has turned to varying

everything at the same time in a structured statistical experimental design constructed using advanced

mathematical and statistical techniques. The effect of a variable within the variation of the other

variables is determined as well as identifying and quantifying interactive effects between variables. The

information is more comprehensive and is attained with less experimentation resulting in saved time,

money and effort. This is the basis of Taguchi Methods.

All experimentation requires the specification of a range for each control variable (input variable) and a

number of levels (values) within that range at which the response will be evaluated. The more levels

chosen, the more information can be gleaned from the investigation of the process, product or system,

but the design also increases in complexity and size.

Optimisation can be described as a science to determine the "best" solution to a mathematically defined

problem either constrained or unconstrained. Problems can be constrained by specifying relationships

between variables, variable limits or response limits. Analytical optimisation techniques utilise

mathematical theory to identify maxima and minima. Numerical methods of optimisation usually

involve iterative techniques that refine the answer with each iteration, getting closer to the optimum each

time. Golden section search, steepest gradient method, discritisation and CFD are all examples of

iterative analytical optimisation techniques.
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A disadvantage of optimisation techniques is that they generally do not supply any other information

about the process other than the optimum settings. The possibility always exists that the process will

not identify the global optimum but simply a localised one.

4.2. Experimentation and Research

Research can take one of two forms. Correlation research aims to identify relationships (correlation's)

between variables without changing them. For example identifying the relationships between blood

pressure and cholesterol level. In experimentation research however, the variables are manipulated

(independent variables) and the response of the affected variables (dependent variables), is monitored to

determine a relationship [Statsoft 1998]. For example, changing fuels in a car and monitoring the altered

performance.

4.3. Traditional Experimentation

Experimental design is often a process that is ignored in favour of a traditional simplistic comparative

testing structure. Traditional consecutive experiments are conducted in which single variables are

changed, compared and a response trend measured and identified. The result is that the independent

variable is said to have a positive, negative or no effect on the chosen output variable.

Tests are specified and structured largely on intuition and experience, with no set design as to which

variable to investigate first, what levels to test them at and at what levels other variable should be set at

during the investigation. This method of testing is inefficient and yields a minimum amount of

information about the process or system being investigated. Only the main effects of the chosen

investigated variables are determined and only for the tested combination of other variables. No insight

is given to the interactive and second order effects that could be present in the system.

4.4. Statistical Design of Experiments

Japanese industry was first to realise the potential in statistical experimental design (SED). An English

- agriculturist, R. Fisher was a pioneer in the exploration of such designs in 1928, experimenting on crops

in Britain by varying ground condition and fertilisers. His techniques however, were not well received in

western circles, and it was the Japanese who embraced the techniques and used them to develop

themselves to become arguably, the world leaders in quality [Logothetis 1992].

The amount of information that can be gathered during the experimentation process using experimental

design techniques is much greater than the traditional comparative technique, and the "guess work" is

largely removed from the process. Trends over a range of levels, independent of the values of other
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variables, can be determined, and in some designs, high order interactions and quadratic effects can also

be quantified.

The statistical design of experiments has many advantages over traditional methods.

1. They provide more information per experiment performed.

2. There is an organised structured method of data collection.

3. They identify and quantify interactions between variables.

4. They give an easy to read graphical representation of the results (A picture is worth a thousand

words).

5. They enable the prediction of results at levels not tested in the experimental configurations.

The single major disadvantage of statistically designed experiments is that all experiments must be

completed and analysed before results are forthcoming. This means that the experiment must be well

planned and executed to prevent any external variation interfering with the experimentation process.

The traditional method however, allows for continual learning throughout the experimentation process.

There are generally five steps to experimental design process [Biles and Swain 1980] :

1. Formulate the problem.

2. Design the experiment.

3. Perform the experiment.

4. Tabulate and analyse the data.

5. Draw conclusions and make recommendations.

Irrespective of the type of application, the process will follow the above 5 phases. Many approaches

exist for SED, a number of which are discussed below.

4.5. Full Factorial to Fractional Factorial

A full factorial design is one in which every variable is tested in combination with every level of every

other variable. All possible combinations of variables are thus investigated and it is as comprehensive an

investigation as is possible. The design comprises a complete matrix of all the variables at all their levels.

The number of experiments required for a full factorial is kn where n is the number of variables and k is

the number of levels per variable. Therefore for a five variable experiment at two levels there would be

25 (32) experimental configurations. Similarly for six variables at two levels, 26 (64) configurations and

37

Stellenbosch University http://scholar.sun.ac.za



for five variables at three levels there would be 35 (243) experiments. The number of experiments

needed increases exponentially with either an increase in the number of variables or the number of levels

at which they will be investigated.

A simple illustration for three variables at two levels each is shown in Table 4-1. Three different

representations of the experiment are shown. The coded values (shown first) of +1 (or +) and -1 (or-)

represent the high level and the low level for the variables respectively. The actual values are then

inserted in tot he matrix and are shown on the right. The three control variables are temperature (100e
and 20oq, pressure (3 and 6 bar) and catalyst type (A or B).

Table 4-1. 23 Full Factorial Design

Coded Values Coded Values Actual Values
Parameter Temperature Pressure Catalyst Temp Pres Cat Temperature Pressure Catalyst

Experiment 1 -1 -1 -1 - - - 10 3 A
Experiment 2 -1 -1 1 - - + 10 3 B
Experiment 3 -1 1 -1 - + - 10 6 A
Experiment 4 -1 1 1 - + + 10 6 B
Experiment 5 1 -1 -1 + - - 20 3 A
Experiment 6 1 -1 1 + - + 20 3 B
E~riment7 1 1 -1 + + - 20 6 A
Experiment 8 1 1 1 + + + 20 6 B

This type of design gives absolute resolution. This means that all the main effects as well as all possible

interaction effects can be uniquely determined without aliasing. The response equation is shown below

(equation 4-1) wherey represents the system response (measured variable) A, B, and C are the varied

variables (temperature, pressure and catalyst) and bl the defining constants of the system.

[4-1]

As can be seen from this example a two level design will give an indication of any linear effects in the

variables only. To investigate non-linear (quadratic) effects a further level must be added to the design.

The 3k design, which has three levels per variable, is used to investigate the non-linear effects and to

identify maxima or minima within the range of the investigation.

Table 4-2 illustrates the 23 full factorial design expanded to include all the possible interactions in

columns 4 through 7. This is the saturated! two level design represented by the Ls(27) orthogonal array.

It is possible to produce a fractional factorial design from a full factorial design by replacing the higher

order interactions with additional variables [Davies and Hay 1950]. i.e. the ABC interaction can be

replaced with an additional variable D, without adding to the number of experiments (fable 4-2). Three

level interactions are rare and therefore this can be done without the risk of losing information. In

mathematical terms this is equivalent to leaving out the third order term in a Taylor series.

5 Saturated design implies that only the main effects can be investigated.
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Table 4-2. Saturated Two Level Design

1 2 3 4 5 6 7
No
1 1 1 1 1 1 1 1
2 1 1 -1 1 -1 -1 -1
3 1 -1 1 -1 1 -1 -1
4 1 -1 -1 -1 -1 1 1
5 -1 1 1 -1 -1 1 -1
6 -1 1 -1 -1 1 -1 1
7 -1 -1 1 1 -1 -1 1
8 -1 -1 -1 1 1 1 -1

.Q (J (J (J~ .Q (J .Q~ ~ .Q ~
Actual
Effect of

a+bcd b+acd c+abd ab+cd ac+bd bc+ad d+abc
additional
Variable D

In Boolean algebra the level of the interaction term for AB is the product of the variables A and B.

Similarly for ABC = AxBxC. By replacing ABC with D we say D=ABC, and the interaction ABC is

confounded with the main effect D (column 7 Table 4-2). The effect of variable D will actually

represent the summed effects of the variable D and the interaction ABC [Box and Hunter 1961]. By

multiplying both sides by D we get D2=ABCD. Irrespective of the value of D, D2will always be equal to

1, or the singularity I, (-lx-1=1, 1x1=1) which expands to giveA2=B2=O=D2=I. The defining identity

or generator for the experimental design is therefore I=ABCD (the defining identity is always equal to

one). For the previous example (fable 4-1) the defining identity was I=ABC.

This type of design is also referred to as a 24-1design which has a number of other implications. As well

as having the D main effect confounded with the ABC interaction effect, other effects are also

confoundeds, The defining identity illustrates the other confounded effects [Box and Hunter 1961].

The associated effects are called aliases", By multiplying I=ABCD by A on both side we getA=A2BCD

and using the coded form of the experiment we know A2=B2=O=D2=I=I, so we get A=BCD. This

means that the main effect A is confounded with the three way interaction BCD. By multiplying both

side by B we see AB=CD. These aliases show that the second order interactive effects are confounded

and the effect AB actually represents the sum of the AB effect and the CD effect interaction.

All the aliases from the defining relation I=ABCD are listed below and are shown in Table 4-2:

A=BCD,' B=ACD; C=ABD; D=ABC,'AB=CD;AC=BD;AD=BC [4-2]

6A confounding of two effects means that the trend identified cannot be attributed to one of the two effects but is
a result of both effects.
7 An aliased effects is the same as a confounded effect.
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This fractional factorial design is said to have a resolution of 4 which means that no main effect is

confounded with any other main effect or two way interaction, but main effects are confounded with

three way interactions and two way interactions are confounded. The design in Table 4-1 is a design of

absolute resolution where there is no aliasing of any of the variables.

Fractional factorialisation can be taken further if the second order terms can be ignored (all second order

and higher interactions are assumed to be negligible). The extra variables are then substituted for the

interaction terms. This results in a 7 variable experiment with a resolution 3 and defining identity,

I=abcdef, shown in Table 4-3.

Instead of the 27 (128) experiments needed for the full factorial, we have a 1/16 fractional factorial with

8 experiments evaluating the main effects only. It is also called a saturated design and it is also called an

Ls(27)orthogonal array.

Table 4-3. 27-4m Design

Ls(27)=27-4II1
Parameter 1 2 3 4 5 6 7

Experiment 1 1 1 1 1 1 1 1
Experiment 2 1 1 -1 1 -1 -1 -1
Experiment 3 1 -1 1 -1 1 -1 -1
Experiment 4 1 -1 -1 -1 -1 1 1
Experiment 5 -1 1 1 -1 -1 1 -1
Experiment 6 -1 1 -1 -1 1 -1 1
Experiment 7 -1 -1 1 1 -1 -1 1
Experiment S -1 -1 -1 1 1 1 -1
Full Factorial a
Saturated a
Assigning

1=

Two ata time

Three at a time

Four at a time

Complete defining relation

Actual

=a+
bd+
ee+
fg

b e ab ac be abc
b e d e f g

d=ab e=ac f=be g=abe
I=abd I=aee I=bef I=abeg

I=bede=aedf=edg=abef=beg=afg

I=def=adeg=bdfg=eefg

I=abedefg

I = bede = aedf = edg = abef = beg = afg = def =
adeg = bdfg = eefg = abedefg

=e+ =d+ =e+ =f+=b+ =g+
ed+ad+

ef+
eg

ab+
ef+
cg

be+
de+
ag

be+
af

ae+
bf+
dg

ae+
df+
bg

Table 4-3 shows the process of determining the defining identity. The added variables are assigned to

the columns in place of the interactive effects. Each confounded effect is calculated into an identity.

The identities are then multiplied together in all possible ways to give all possible interactions and all the
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possible products form the defining identity. It is apparent that this design is highly aliased with many

confounded effects. The final row shows the actual effects represented by each main effects

investigated (excluding 3rd order and higher terms). The complete defining relation will give the aliasing

for any single varaible. This is found by multiply through by the sought variable. For variable a we get

a=bd=ce=abcf= bcg=abcde=cdf=acdg= bef=abeg=fg=adef=deg=abdfg=acefg= bcdefg [4-3]

ignoring all the 3rd order and higher terms results in

a= bd=ce=fg [4-4]

Variable a is therefore confounded with interactions bd, ce and jg. It is only when these interactions are

negligible that the main effect alone can be evaluated.

Resolution 5 designs, where all three main affects, and all the second order interactions, can be

investigated without confounding, are also easily designed [Whitell , Morbey 1961] but require more

experiments than lower resolution experiments. Plackett and Burman designs use arrays that are

identical or equivalent to the orthogonal arrays as recommended by Taguchi [Logothetis 1992]. Plakett

and Burman however simply give the defining identity as the definition for the array [plakett and

Burman 1946], while Taguchi specifies the entire orthogonal array making it much easier to use and

apply[Lochner 1990, Shainin 1998].

4.6. Alternative Designs

There are a number of different designs available for different purposes with different characteristics all

developed by different people. A few of the alternatives are discussed below.

4.6.1. Central Composite Rotatable Design (CCRD)

The CCRD generates a response surfaces for the variables investigated locating maxima and minima.

Response modelling generates a multi dimensional surface identifying the relationship between the input

and response variables. The relationship is quantified in terms of a mathematical equation giving the

response variable as a function of the input variables. The method requires testing of the input variables

at five points within the variable range to generate an accurate function and this can only be done on

continuous variables. The graphical representation of the response variable can only be done with

respect to two input variables at a time. The generated equation however, is a function of all the input

variables investigated. It was introduced as an alternative to the 3k design [Box and Wilson 1951] and

consists of:

8A response surface is a surface 2 dimensional representation of the mathematical relationship of two of the
variables in the experimental evaluation to the response variable.
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1. A complete 2k factorial design (coded +1,-1) consisting of nc points making the 'cube' portion

of the design.

2. no centre points

3. ns axial points a distance a from the origin (centre points) forming the 'star' portion of the

design.

The CCRD investigates linear, quadratic and first order interaction effects of the variables. The total

number of experiments needed is 2k+2k+no which is considerably fewer than the alternative 3k for the

full factorial design. Each variable is evaluated at 5 levels, which gives sufficient data to determine the

accurate curvature of the trends and identify maxima and minima.

Figure 4-1. CCRD Diagram

A major restriction of the CCRD is that the variables must be continuous ID the range of the

experiment. The design must be orthogonal? (the coded sum of products within each row must be 0).

The distance a is calculated from the number of each type of point in order to maintain orthogonality

and rotatability. Advantages of the CCRD are:

1. A quadratic equation for the modelled response gives a good estimate of curvature.

2. Fewer experiments are required than the 3k design.

3. Repeat experiments at the centre points allow the variability of the system to be quantified.

4. Repeat experiments allow the determination of response and statistical error as a function of

both systematic and random errors.

5. It is a resolution 5 design with unconfounded second order interactions.

9 Every level of every variable occurs an equal number of times with every level of every other variable.

42

Stellenbosch University http://scholar.sun.ac.za



4.6.2. Haddamard

The Hadamard matrix (or Plakett-Burman matrix) [Plakett and Burman 1946] is used primarily for

screening many variables in order to determine the significant few with respect to the chosen response

variable. The design is usually of resolution 3 with as few runs as possible. The design is saturated in

that all the interactions are confounded with main effects and there is no degree of freedom left to

estimate the error term in an ANOVAlo. The Plakett-Burman designs are made up of 2k experimental

runs whereas the number of runs for a Hadamard matrix is a multiple of four. In both cases only linear

effects are investigated as there are only two levels per variable.

4.6.3. Latin Square Design

The Latin Square design is a specific design where the number of variables equals the number of levels

of each variable and no interactions are investigated [StatSoft 1998]. For example, to examine the effect

of 4 fuel additives on reduction in oxides of nitrogen with 4 cars and 4 drivers, then a full 4 x 4 x 4

factorial design would be used, resulting in 64 experimental runs. However, without an interest in any

(minor) interactions between the fuel additives and drivers, fuel additives and cars, or cars and drivers,

only in estimating the main effects, without any bias of confounding. Labelling the additives with the

letters A, B, C, and D, the Latin square design that would enable the determination of unconfounded

main effects estimates could be summarised as follows.

Table 4-4. Latin Square Design

Cars

Driver 1 2 3 4

1 A B D C

2 D C A B

3 B D C A

4 C A B D

Each of the entries in the table represents one experiment configuration. This is only one of the three

possible arrangements in effect estimates. These "arrangements" are also called LAtin squares. The

example above constitutes a 4 x 4 Latin square; and rather than requiring the 64 runs of the complete

factorial, you can complete the study in only 16 runs.

A nice feature of Latin Squares is that they can be superimposed to form Greco-Latin square designs. For

example, If three additives were used, A, Band C, and three tyres were also used, D, E, and F for the

10Analysis of Variance calculation.
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test as well as three cars and three drivers, the following two 3 x 3 Latin squares could be superimposed

to form a Hyper-Greco-Latin square design (fable 4-5):

Table 4-5 Hyper-Greco Latin Square

Cars
Drivers 1 2 3

1 A B C
2 B C A
3 C A B

+

Cars
Drivers 1 2 3

1 D E F
2 F D E
3 E F D

Cars
Drivers 1 2 3

1 AD BE CF
2 BFJ CD AE
3 CE AF BD

In the design it is possible to evaluate the main effects of the 4 variables at 3 levels in 9 experiments

rather than the 81 (34) needed for the full factorial design.

4.7. Closing Comments

The experimental design methods discussed here are not fundamentally different from Taguchi

Methods, all are forms of a fractional factorial experimental design, it is primarily in the use of the

methods that Taguchi Methods differ. A comprehensive statistical knowledge and understanding is not

needed in order to apply Taguchi Methods successfully. Taguchi Methods are discussed and described

in Chapter 5 and applied in a number of case studies in Chapters 6 through 9.
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Chapter 5. Taguchi Method of Experimental Design.

The techniques developed by Dr Genuchi Taguchi!' during the 1950s and 1960s, were born out of work

done by an English agriculturist, Mr Fisher. Mr Fisher was a pioneer in the exploration of experimental

design in 1928, experimenting on crops in Britain to improve output by varying ground condition and

fertilisers. His techniques however, were not well received in Western circles. It was the Japanese who

embraced the techniques and developed them in the area of quality control, to become arguably the

world leaders in quality [Logothetis 1992].

Taguchi methods have become more and more popular in recent years. The documented examples of

sizeable improvements due to the implementation of these methods [Gardener 1992, Hunter et.al. 1990,

Kailash 1988, Shetty and Kinsella 1992, Yan et al 1993, Rosiaux 1987, Quinlan 1985, Orr and Foslom

1987] have bolstered the image of Taguchi Methods in the Western world. The American

telecommunication giant, AT&T, is using these methods in the manufacture of very large-scale

integrated circuits. Ford Motor Company has also gained significant quality improvements by applying

Taguchi Methods [Statsoft 1998]. However, as the details of Taguchi Methods became more widely

known, critical appraisals [Box et al 1988] of the methods showed that they were very similar to already

well known methods of experimental design presented in a more user friendly package.

Taguchi robust design methods are set apart from traditional quality control and industrial

experimentation in various respects. Of particular importance are:

1. The concept of quality lossfunctions,

2. The use of signal-to-noise (SIN) ratios, and

3. The use of orthogonal arrqys.

These basic aspects of robust design methods are discussed in the rest of this Chapter. Several books

have recently been published on these methods [Bendel et al 1989, Peace 1993, Ross 1988] and are

highly recommended by the author in order to gain a more complete understanding of the methods.

5.1. Taguchi methods: A Quality Control Tool

Taguchi Methods are largely used under the banner of statistical process control (SPC). Taguchi's work

started in the quality control spheres and was based on principles developed by W.E. Demming and R.A.

Fisher [Logothetis 1992]. Demming approached quality and its improvement from a managerial and

philosophical perspective and Taguchi developed the application methods and tools for quality control

11 Director of the Japanese Academy of Quality and four time recipient of the Demming prize
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based on his philosophies. Demming aimed to move quality control from control charts and process

control into the engineering arena [Barker, 1986]. His most significant philosophy was to,

"Cease dependence on inspection to achieve quality ':

The Taguchi philosophy stemmed from the change in focus of the quality control philosophy. It shifted

from viewing quality as the achievement of specifications within tolerance limits, to the continued

improvement of critical variables to the goal value, representing 100% customer satisfaction. Variance

away from the goal value represents loss to society and therefore cost. Taguchi defined quality as

follows:

"The quality of a product is the loss imparted ry the product to societyfrom the time it is shipped, other than loss caused l?Y

its intrinsic fundions. "

Taguchi shifted quality control from the production stage to the design stage and concentrated on

designing a robust product. A robust product is insensitive to downstream variation in either

production or user environment.

Taguchi Methods offers more than techniques for experimental design and analysis. It is a complete and

integrated system to develop specifications, engineer the design, and manufacture the product to these

specifications [Barker 1986]. This comprehensive approach addresses quality in the design, manufacture,

and use of the product [Lochner and Matar 1990]. The key is to optimise the functional variables and

minimises the effect of noise on the system through the control of the levels of the product and process

variables [Bryne and Taguchi 1986]. The Taguchi Method calls upon engineering knowledge and

experience and utilises experimental design methods to sharpen decisions and arrive at an optimal

configuration with the least number of resources [Barker 1986]. The result is a visual plot of the data in

the analysis to determine the significant variables in the experiment as opposed to an ANOVA, which is

used in statistical analysis of data. For applications where statistics is not a strong field in the team this

method is preferred, [Bryne and Taguchi 1986] although where possible, a statistical evaluation is a good

supplementary tool.

5.2. Characteristics of Taguchi Methods

Linking quality control to optimisation may seem an obscure link. Taguchi's philosophy of quality

control was to design and build quality into the product from conception, through design and

manufacture and into its use. This essentially is optimising the product with regard to quality starting

during the concept phase. There are three steps involved in quality engineering optimisation according

to the guru Taguchi [Bryne and Taguchi 1986] (Figure 5-1).

46

Stellenbosch University http://scholar.sun.ac.za



1) System Design. This requires innovation and a knowledge of science and engineering in order

to select the main variables to be considered in the optimisation process, and preliminary values

for these variables.

2) Variable Design. This step of the process focuses on the testing of the chosen variables across

a range as determined in the system design step. The optimum levels for the variables are

chosen for robustness and performance.

3) Tolerance Design. This step is taken only if the results from the variable design are

unsatisfactory. Case study two (Chapter 8) illustrates a situation where the data variation was

too great to identify the optimum levels of the variables and further steps are needed in the

optimisation process. Improved test and analysis procedures and equipment are therefore

needed in order to reduce the data variation due to system noise and identify the true trends.

Removing the noise variable in other ways would then reduce the variation. Tolerance design

generally involves tightening the tolerances and variations on the variables causing the loss (i.e.

spending money on improved materials, machining, test methods or equipment).

Figure 5-1. Quality Engineering Optimisation [Bryne and Taguchi 1986]

Traditionally the second step is ignored and skipped over. It is however, in this step that Taguchi

methods show their worth and strength.

Off-line Quality control
Engineering optimisation

using design of experiments

The focus of the majority of Taguchi type experiments is on main effect investigation and generally the

interactive effects are assumed negligible. In these cases the importance of a confirmatory experiment

should not be underestimated. If there are indeed interactions that need to be investigated the

System Design Innovation

Variable Design Optimisation

Tolerance Design Optimisation

Process control
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confirmatory experiment will show this by being incorrect, and indicate that there are confounding or

unidentified effects disturbing the data and the experiment needs to be re-developed.

5.2.1. The Loss Function

Taguchi's definition of loss (Section 5.2) includes dysfunction, malfunction or simply customer

dissatisfaction that can develop into a bad reputation and loss of market share as well as warranty costs

[Bryne and Taguchi 1986]. The average product performance must match or exceed the customer

requirements. Taguchi's definition states that a product causes loss when it deviates from the target

value, not only if it falls outside target specifications as is the traditional method of measuring

specification conformance. This loss is defined to be proportional to the square of the deviation from

the target. To minimise the loss one must minimise the variation of the product. The Taguchi Method

views variability, from both within and without the system, as being the enemy of quality [Barker 1986].

Mathematically the loss function [equation 5.1] is derived from the first term of a Taylor expansion that

links the financial loss to the functional specification as a quadratic relationship [Barker 1986]. There are

many forms of the loss function but the most commonly known and used is

Where:

L =k(y-m)2

L = is the loss at the specifications limit

y = is the value of the response

m = is the mean target

k = is the loss constant

til
til
0-e-....-~
::I
Cl._
0...
til
0
U 0 2 64 8

[5-1]

10

Specifications (+1.7 -8.3)

Figure 5-2 shows an example of the loss function graphically within the quality specifications of +1.7 -

8.3 and the target value of 5. The cost of the loss is shown to grow exponentially as the distance from

the target value increases. Loss occurs not only when the product is out of specification but also when it

Figure 5-2. Taguchi Loss Function
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deviates from the target value. Therefore by continually striving to reduce the variation in the products

output variables, the loss is continually reduced [Bryne and Taguchi 1986].

The result of such a policy of loss measurement is an improvement in quality and a decrease in the

overall variation of the specifications from the target value. Figure 5-3 shows the distribution of product

values meeting specifications for an inspection driven quality philosophy versus a quality driven

philosophy. It is clear that the quality driven philosophy of meeting specifications yields better long-

term results than the inspection philosophy. Although both philosophies have the same number of

products meeting specifications, the deviation of the quality driven product from the target value of 5

will be lower, with more products produced closer to 5, than the inspection driven policy.

--- Inspection philosophy' ..... Quality Driven philosophy

Figure 5-3. Inspection-Driven Specifications vs. Quality-Driven Specifications

5.2.2. Variation

The deviation from a target value is attributed to noise, either inner noise'ê or outer noise", depending

on the origin of the variation. The variables causing variation can be divided into two classifications.

Controllable design variables which can be set to required values and uncontrollable noise variables

whose values cannot be controlled. Generally speaking the aim of an experimental design is to optimise

the controllable variables to give the best output that is least sensitive to the variation of the

uncontrollable variables.

Controllable variables can therefore be divided into those variables that affect the average level of the

response of interest (signal variables) and those variables that affect the variation of the response of

interest (control variables). The signal variable would therefore be used to get the "best output" and the

control variable would be used to minimise the variation around the "best output". In this thesis

emphasis is placed on using the signal variables to optimist the system whereas in pure quality control,

12 Inner Noise: The variation that occurs due to production variables, tolerances and things that the manufacturer
can attempt to control (voltages, speed, sizes, tolerances, ... ).
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control factors would also be optimised and often be considered the more important of the two types of

variables.

5.2.3. Noise

Where does the noise come from? Noise is defined as either inner noise or outer noise. Some texts refer

to the inner noise as controllable variables [Bryne and Taguchl 1986] and outer noise variables simply as

noise, thus differentiating the design variables that can be easily controlled from the noise variables that

are difficult, expensive or impossible to control. The noise variables are divided into three types shown

in Table 5-1.

Table 5-1. Examples of Noise Classification [Bryne and Taguchi 1986]

Product Desian Process Desian
Outer Conswner usage conditions Ambient Temperature
Noise Low Temperature Humidity

High Temperature Seasons
Temperature change Incoming Material Variation
Shock Operators
Vibration Voltage Changes
Humidity Batch to batch variation

Inner Deterioration of Parts Machinery ageing
Noise Deterioration of Material Tool Wear

Oxidisation (rust) Deterioration
Between Piece to Piece variation where they are Process to Process variation
Product Noise supposed to be the same where they are supposed to be

the same.

The aim is to select values for the controllable variables such that the product or process lS least

sensitive to variation in the noise variable.

5.2.4. Signal to Noise Ratio

One of the essential elements in Taguchl's design for robustness is the signal to noise ratio (SIN). By

using the signal to noise ratio, the level as well as the variation of the output variable can be evaluated

and controlled. The product can then be produced at optimwn levels with minimal variation. In its

simplest form the SIN ratio is the ratio of the mean value to the standard deviation. The formula offers

a built in trade off between the mean response and the variation of the response, although it is generally

more responsive to the mean value. There are many different formulas for the signal to noise ratio but

there are three generic forms that can be used for a wide range of applications [Barker 1986].

TypeN: Nominal is best (dimensions, output voltages, reduction ratios, etc.) (peace 1993] where

a specific value is the aim for the output variable. The SIN ratio is defined as

13Outer Noise:The variationimposed by externalcircumstances,such as the market place and the environment.
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[5-2]

Where s = (IyJ
m n

[5-3]

V =.Ly;2_(.Ly;)2/n
e n-l

[5-4]

and yi is the ith observation (data point) and

n is the number of observations

Type S: Smaller is better (noise, emissions, contamination, etc.), where the target or aim is to get the

smallest response from the output variable (minimise).

[5-5]

TypeB:

output variable.

Bigger is better (strength, power, torque), where the target or aim is to maximise the

[5-6]

The SIN ratios have been constructed such that irrespective of the goal of the experimentation

(maximising or minimising the output variable) the objective will be to maximise the value of the SIN

ratio used in the investigation. That way the response value will be optimised and the variation

minimised.

5.2.5. Orthogonal Arrays

The fundamental building block of Taguchi Methods is the orthogonal array. Orthogonal arrays have

been used for many years, but their application in Taguchi methods has some special characteristics.

Initially they look to be nothing more than fractional factorials, however the primary goal in the

optimisation process is to minimise the design's sensitivityto noise and thus produce a robust design.

The naming convention for the arrays is L.(bc)

Where a = number of experimental runs

b = number of levels of each variable
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c = number of variables in the array

Table 5-2. L16(45) Orthogonal Array

L16(45
)

xpe men
Test Var1 Var2 Var3 Var4 Var5
1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 2 1 2 3 4
6 2 2 1 4 3
7 2 3 4 1 2
8 2 4 3 2 1
9 3 1 3 4 2
10 3 2 4 3 1
11 3 3 1 2 4
12 3 4 2 1 3
13 4 1 4 2 3
14 4 2 3 1 4
15 4 3 2 4 1
16 4 4 1 3 2

E rt ts

The orthogonal array represented in Table 5-2 shows the naming convention and structure of the array.

Each of the 5 variables in the design has 4 levels. The numbers 1 through 4 represents the levels, and

the labels Varl through VarS represent the variables. The orthogonal array design has 16 experiments

that approximate the trends of 54 (625) variable combinations. Similarly with a L27(36)orthogonal array

the 36 (729) variable combinations are investigated in 27 experiments. The saving in experimental time

and the wealth of information gathered from the designs is self-evident. A notable characteristic of an

orthogonal array is the pair-wise balancing property: That is,

"every level of everyfactor occurs an equal number of times with every leoe!of every otherfoctor':

thus forming a well balanced experimental design. In essence the orthogonal array is an easy to read

definition of the fractional factorial design for a chosen experimental design and for a 3 level experiment

it can be likened to a 3(k-p) experimental design (Box and Hunter 1978, Daniel 1962).

5.2.6. Choosing an Orthogonal Array

Rosiaux [1987] used a simple flow diagram to illustrate the theoretical pathway to optimum orthogonal

array choice and experimental design. Figure 5-4 shows this pathway. The investigation starts with

identifying all the possible causes for the variation. If the number of causes (variables) is too great to fit

into a standard orthogonal array then choose the most important variables. Decide if it is to be a two or
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three level design or whether a modified design will need to be used, and whether interactions will be

included in the investigation or not.

list of Possible Causes

YES

Choose the most important:
10-13 for 2 level
8-10 fo 3levelNO

NO YES

Action Table
With interaction

L4(2~

Lg(27)

LI6(21~

Without interaction

~2(211)YES

Action Table
With interaction Without interaction

~8(ix3 7) l....J(3~
Lz7(31~

Use Modified Table

Figure 5-4. Orthogonal Array Flow Sheet

The standard orthogonal array can be modified to suite the experimental design. I.e. Rosiaux [1987]

used three two level columns in a L16(215) orthogonal array to represent four levels of a single factor. In

the design an interaction table was used to choose the correct columns to use for the four level factor to

avoid confounding with other variables that were deemed important. ASI [1987] published a collection

of orthogonal arrays and the associated interaction tables. Table 5-3 shows some commonly used

orthogonal arrays and some of their characteristics.
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Table 5-3 Commonly Used Orthogonal Arrays

Number of Number of

Orthogonal Number of Number of trials trials in a Degrees Of
levels per required by traditional

Array Factors factor orthogonal full factoria
Freedom

array experiment

L4(2) 3 2 4 8 3x(2-1)=3

Lg(2') 7 2 8 128 7x(2-1)=7

~(3~ 4 3 9 81 4x(3-1)=8
Lu(211) 11 2 12 2048 1lx(2-1)=11

Lt6(2~ 15 2 16 32768 15x(2-1)=15

Lt6(4S) 5 4 16 1024 5x(4-1)=15

Lts(ix3') 1 2 18 4374
1x(2-1)+ 7x(3

7 3 1)=15

5.2.7. Interaction Tables (Triangular Interaction Matrices)

Due to the fractional nature of the orthogonal array, it is also very aliased, i.e. the main effects are

confounded with higher order effects. Each orthogonal array has an interaction table associated with it

in order to identifywhich columns represent the interactions between other columns (factors) and which

interactions are confounded. It is important when assigning variable to columns to consult the

interaction table to eliminate the effect of anymajor interactions that will confuse the main effect trends.

Table 5-4. Interaction Table ofL16(215) Orthogonal Array. [ASI1987]

Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(1) 3 2 (2) 4 7 6 9 8 11 10 13 12 15 14

(2) 1 6 7 4 5 10 11 8 9 14 15 12 13
(3) 7 6 5 4 11 10 9 8 15 14 13 12

(4) 1 2 3 12 13 14 15 8 9 10 11
(5) 3 2 13 12 15 14 9 8 11 10

(6) 1 14 15 12 13 10 11 8 9
(7) 15 14 13 12 11 10 9 8

(8) 1 2 3 4 5 6 7
(9) 3 2 5 4 7 6

(10) 1 6 7 4 5
(11) 7 6 5 4

(12) 1 2 3
(13) 3 2

(14) 1
(15)
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Table 5-4 is an example of an interaction table for the L16(215) orthogonal array. If factor A were

assigned to column 1 and factor B were assigned to column 4, then their interactive effect AxB, is

located in column 5 as indicated by the circled number.

There are some orthogonal arrays that do not have interaction tables. The L12, L18, L36 and L54 arrays

are among a group of arrays that do not contain any confounded interactive effects and allow the

experimenter to focus on main effects only. The interactive effects are evenly spread across all the

columns and their arrays are among the most popular for this reason.

5.2.8. The Linear Graph

A linear graph is a graphic representation of the orthogonal array and the corresponding interaction

tables. Most orthogonal arrays have a number of linear graphs associated with then representing

different structures of main effects and the associated interactions. The linear graph is made up of dots

representing main variable effects and the lines joining the dots represent an interaction between the

main variables. This simplifies the design process greatly and removes the need of the designer to

determine which columns the interactive and main effects need to go into. The linear graph is used as a

tool for assigning the main effects and interactions to the correct columns to avoid confounding effects.

The linear graph in Figure 5-5 is of the L16(215) orthogonal array and shows the number of variations

that can be constructed from the same orthogonal array. The numbers represent the columns to which

the respective main effects or interactions are assigned for that configuration.
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Figure 5-5. Linear Graphs of L16(215) Orthogonal Array

Any literature on Taguchi Methods will have a selection of linear graphs in the text or the appendices.
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Analysis of the Taguchi experiment is not a particularly complex procedure. For the regular analysis,

average response tables, average response graphs and an ANOV A can be used. For the SIN ratio

analysis, SIN response tables, SIN response graphs, and a SIN ANOVA can be used.

012

The optimum levels for all the control variable are chosen and the predicted results for the optimum

configuration are calculated. The optimum configuration must always be tested for the experiment to be

completed. If the predicted result is incorrect it indicates that there is either an interaction that is

signiftcant and must be investigated or that there is another main effect that was not considered in the

initial design. In either case the experiment needs to be designed and re-executed. Precise details of this

procedure are given in Chapter 6 along with the first Case Study as a worked example.
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5.2.9. Analysis
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5.2.10. Multiple Response Optimisation

There are instances where the optimisation procedure needs to be applied to two or more response

variables [Draper and Hunter 1966], i.e, an engine would need to be optimised for torque, power and

fuel consumption. The standard method of single response variable optimisation could be used and

each of the investigations would yield an optimum configuration for each response variable.

The possibility that all the levels will agree for all the different response variables is very remote. In this

instance it is common place for the optimisation trade-off to be left to engineering intuition and

judgement for the final selection of variable levels.

The guess work can however be removed by using a multiple regression technique [Equation 5.7]. The

equation makes it possible to solve for the multiple response investigation with the transformation to YT

in terms of the control variables An [Logothetis et al 1987, Logothetis 1988].

[5-7]

Where Pi are the regression coefficients and a the regression constant ..

Using a linear programming approach the formula can be optimised under restrictions of the target

values for the response variable models.

[5-8]

Where R; is the i1h response in terms of the control variables An.

Although this method makes the choice of the optimum configuration very easy, it is very difficult to

determine the multiple response equation and most multiple response problems are solved intuitively

rather then numerically.

5.3. Closing Comments

The methods described in this chapter are very powerful when used efficiently and correctly. Chapter 6

illustrates the application of the method with the assistance of the first case study.
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Chapter 6. Taguchi Methods as an Experimental Design

Tool (Case Study One - Evaluation)

The aim of Taguchi Methods is to bring products to market quicker, with reduced costs and reduced

development time. The driving force for this time reduction is reduced experimentation time. This

chapter uses a case study to illustrate the method used in applyingTaguchi methods.

6.1. Experimental Planning Following the Taguchi Method

The Taguchi Method is a broad experimental approach with many different application possibilities and

configurations [peace 1993J. This Chapter focuses on the development of the method as it will be used

in the four case studies undertaken in this thesis. The first case study has been included in this chapter

as an example illustrating each of the steps in the technique. Only the aspects pertaining to this type of

application have been expanded upon. The basic structure has been adapted from Peace [1993Jwho

gave comprehensive instructions on how to use the Taguchi Method of experimental design. The

method is very flexibleand it depends largelyon the person driving the project as to where the emphasis

is placed. If, for example, a statistician were to lead the team and formulate the procedure, there would

be more attention placed on the statistical aspects, whereas a manager leading the team would perhaps

concentrate more on the project definition and planning as being important to the success of the

investigation. Both of these approaches are satisfactory as long as sufficient attention is placed on all of

the other phases of the application.

The first case study involves the evaluation of a carburettor adapter prototype. The results obtained in

this chapter using Taguchi Methods are compared in Chapter 7 to the traditional method of examining

the test data.

6.1.1. The Carburettor Adapter

Due to specific requirements of the Southern Africa climatic conditions of increased airborne dust, a

normal (lapanese standard) pancake air filter mounted directly onto the carburettor, is not suitable. A

remote air filter is more effective for dust removal and therefore used in local vehicles. A carburettor

adapter is therefore required to link the carburettor to the remote air filter housing.

The carburettor adapter can influence the engine performance in a number of ways. It can limit the

efficiencyof the engine by restricting the air flow into the combustion chamber (by restricting its flow

into the carburettor). The carburettor adapter can also change the air pressure in the carburettor and
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thus interfere with the fuelling and the distribution of fuel to the four cylinders. The dimensions and

design are therefore important features for induction optimisation.

6.1.2. Project Background

A research program, in conjunction with a local air filter manufacturer, was established by CAE in an

attempt to investigate the design procedure and to determine the specific factors of the carburettor

adapter that influence the volumetric efficiency of the engine. This program used Taguchi Design of

Experiments.

The effect of the adapter diameter, height and cross-over pipe dimensions, on the engine performance

were investigated by Hart [1996] and Petzer [1996]. This work was initially undertaken on the

carburettored prototype engine, although a fuel injection system was later added. This ensured that the

fuel distribution was equal across all the cylinders and only the air flow would be affected by the

carburettor. Any improvements in performance seen were as a direct result of improved breathing

characteristics and not as a result of altered fuelling. From this work a prototype adapter was designed

and manufactured using a rapid prototyping procedure developed at Stellenbosch University. The

prototype was fitted with two inserts in an attempt to improve flow characteristics into the carburettor,

shown in Figure 6-1.

Anti-Swirt Plate

Carburettor
throat

Baft1ePlate

Feed Pipe

( C) )
side view

Figure 6-1. Basic Carburettor Adapter Configuration Showing the Positions of the Two Flow
Diverting Inserts

The goal was to simulate the air flow in a pancake air filter which is connected directly above the

carburettor, and results in better engine performance characteristics. The optimal air flow is purely

radial, without any swirl as the air flows into the carburettor throat. A baffle plate was inserted to

encourage the air to approach the carburettor throat from all directions as radial flow, and an anti-swirl

59

Stellenbosch University http://scholar.sun.ac.za



plate was inserted to combat the development of swirl at the carburettor throat. Case study one is an

evaluation of the effects of the inserts in the prototype carburettor adapter.

6.2. Planning the Experiment

Many of the steps necessary in the quality control application of the method are not applicable to this

type of application (investigation of noise factors). Also, due to the simplicity of the experiment and the

uncomplicated matrix required, many of the steps seem obvious. They are, however, included as an

academic exercise to illustrate the process that is followed during the experimental design and analysis.

The Taguchi Methodology is illustrated in Figure 6-2. Each step is described in general and then applied

to the case study.

0/)

.§
U V

~13c::o
U

~orming the Experimentation Team 1

~ Determining The Objectives 1

I ;:. Identifying the Quality Characteristic 1
L-....--I..~l Determining the Measuring Method ,

I I ~: Sekering the Independent V";"ble. I
I ~l Selecting the Variable Settings 1

I ;:.cWdentifying the Possible Interactions 1

~ Determining Experimental Strategy ,

~ Calculating the Degrees of Freedom ,

I ..L-...;:::::::S=e=le=c=tin=g:=th=e=O=rth=o::g,=o=n=al=A=rr==ay,==='!....-,
L.._--1"~"I Assigning the variables to the array ,

~L-;===D=e=v=el=o=p=in=g=th=e=t=es=t=p=la=n===L...,'I .. ~ Preparation and coordination ,

I "'1 Performing the Experimental Runs'

L-...--I"~·I Testing and Inspection 1

~L-...;=T=a=b=ul=a=r=a=n=d=G=ra=p=hi=·c=al=An=a=ly=si=s==L...,'

I ~lL-...;::==Id=e=n=ti=fyin=·=g,=S=tr=o=ng==E=f=fe=c=ts==::::!'!....-,

I ...1L.....;:::::::=Id=e=n=tl=·fying='===o=pnm='=um=s=e=tnngs='=====I!........,
...1 Prediction Equation 1I 1-..7.1============--'1

.. L- __ C_o_n_firma__ ti_o_n_E_xp....::....enm_·_e_n_t__ --l

Figure 6-2. Taguchi Methodology
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6.2.1. Forming the Experimentation Team

Defining the team working on the project is essential in ensunng that the skills required and the

expectations and objectives for the project are met successfully and are included from the beginning. All

the people involved on the project need to be on the team so that the goals and methods are supported

and understood by all involved. It is important that the team be specified at the beginning of the project

so that there is no confusion or lack of clarity about each members responsibility, role and position.

Case Study One:
For the Carburettor adapter investigation the project team consisted of the following people.

Tearnleader:
ManagementSupport:
TechnicalSupport:

JeremyGreen
Dr AndrewTaylor
John Fitton
BennVincent
Nico Empedocles

6.2.2. Determining the Objectives

Objectives must be defined, and understood, by all involved in the project so that there is no possibility

of misunderstanding with respect to the project goals. It is important that the attainment of knowledge

be included in the list of objectives, as this gives room for creativity and learning, as well as getting the

job done. The goals do however, need to be clearly defined and attainable, as well as being measurable

in terms of success or failure. The project can then be evaluated in terms of success or failure upon its

conclusion. The problem must be well and clearly understood with a definite formulation that is written

down and communicated to all involved in the project. Many tools exist for this phase of the project in

attaining a clear and definite understanding of both the problem and the process, some are listed below.

• The brainstorming technique is emphasised and used more in examples or applications

where the project definition and understanding is unclear at the beginning of the project. It

allows for innovative and creative thinking in the definition of the quantity variables and

objectives. By gathering information from many different sources there is a better all round

understanding gained about the entire problem as opposed to just trying to focus on the

solution, as would traditionally be the approach.

• The Pareto Chart helps identify the specific focus of the problem and the vital few things

that need to be focused on rather than the trivial many.

• The process flow diagram (flow chart) helps to understand the sequence of events,

interactions and interrelations between steps.

• The cause and effect diagram flows from the identification of the quality variable and assists

in grouping the major and minor causes of variation.

• A Fault Tree Analysis determines the possible problems in the system and how they can be

avoided. Originally a safety feature.
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A FMEA (Failure Mode and Effect Analysis) assists in obtaining a greater understanding and

identifying of all the possible problems in the investigation.

These tools provide opportunities for innovative and creative ideas for problem solution. They assist in

the understanding of the problem and the direction the solution need to take, helping to provide focus

on the few vital problems rather than the trivial many. Interdependence of the steps and factors in the

investigation are identified. Safety and reliability problems can also be highlighted.

Some basic guidelines exist for the definition of the project objective.

• clearly define the objectives in terms that everyone on the team can understand;

• ensure that all team members agree on and can support the objectives selected by the team;

• attain mutual agreement on the criteria for measuring the ability to achieve the objectives;

• put into place communication safeguards to ensure that all affected personnel become

aware of any changes in the objective or quality variables (output variable to be used in the

optimisation process).

• provide the opportunity to respond to any changes so as to assure continued agreement and

support by all team members.

Case Study One:
In this case study the project goals were predefined by the client and non negotiable.

• To determine the optimum configuration of the inserts in the prototype carburettor

adapter,

• To examine the trends of two different inserts, and determine if an interaction exists

between them, and if one does exist, to quantify it.

6.2.3. Identifying the Quality Characteristic (Output Variable)

There are many terms for the variable that is to be optimised: optimisation parameter, quality variable,

optimisation characteristic and goal factor, all referring to the output variable that is measured and used

to determine the success or failure of the experiment. The variable chosen is dependent on the

objectives of the project, and largely determines the configuration of the experimental plan. In many

applications there will be two variables that must be simultaneously optimised or mapped.

The output variable must be measurable, so that progress and success or failure can be measurable. The

measurement instrumentation must be brought into account when determining the output variable.

"Can the measurement be made accurately and affordably and timeously?" it is an important question

that must be answered and can at times be the sole reason for an investigation's failure
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There are three categories of output variables:

• Measurable variables: These can be measured on a continuous scale with the aim or goal a

minimum, maximum or target value.

• Attribute variables: The end result is classed into a group rather than measured. (i.e. eggs are

divided into grades, A, B or C ).

• Dynamic variables: This is a functional representation of the process being studied. The

process is characterised by a linear relationship between an input signal and the output

signal.

A continuous variable is the best type of optimisation variable to use, as it provides for good additivity,

(i.e. torque and power). A classified attribute has the advantage of easy sampling and understanding (i.e.

colour, make or model, material type).

Case Study One:
The output variables in the case of the carburettor adapter investigation were top-end-power'", which is

representative of the engines peak power, and the mid-range-torque'>, which gives an indication of the

peak torque of the engine. Both top-end-power and mid-range-torque were identified as the variables to

be optimised, and both are dependent on volumetric efficiency but occur at different engine operating

conditions.

6.2.4. Determining the Measuring Methods

If the output variable is the speed of gas through a thin pipe, the measurement method for measuring

the speed must be known or determined. Measurement methods are very important in determining the

output variable as the difficulty or ease with which the measurement can be made will affect the

experiments accuracy and cost. A difficult measurement to take will invariably result in more external

noise and variance than one that is taken easily and increase the possibility of an unsuccessful

experimental investigation.

Case Study One:
The methods used to monitor the output of the engine used in the investigation are discussed in Chapter

3. The engine was not in its standard configuration, but had a University of Stellenbosch developed

Stainless Steel inlet manifold fitted to a University of Stellenbosch developed prototype cylinder head.

The ETA engine data capture system was used for the testing of the engine, which was attached to a

water dynamometer to absorb the generated power. A Bosch CO metre was used for the exhaust gas

analysis during the testing of the prototype carburettor adapter.

14 average power between 3000 rpm and 4000 rpm
IS average torque between 2000 rpm and 3000 rpm
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6.2.5. Selecting The Input Variables

Following the selection of the output variable, the variables that effect it need to be identified

(independent variables). The decision tools outlined in Section 6.2.2 can be used to explore all the

possibilities and then the variables can be screened to determine the final variables to be investigated.

The variables fall into two groups [Logothetis 1992]:

1. Controllable variables, whose values may be set or easily adjusted by the experimenter.

2. Uncontrollable (noise) variables, which are often related to the environment and the overall

performance. The final design should be insensitive to variation of the uncontrollable

factors.

The controllable factors are then further divided into those that affect the level of the response and

those that affect the variability of the response.

The uncontrollable variables can be classified further into three noise categories [peace 1993]:

1. Outer Noise: This is the variance caused by external factors. Usually the environment in

which the product is used results in this type of noise.

2. Inner Noise: This is the result of the ingredients making up the final product.

3. Between Product Noise: The variations are as a result of the different units being made at

different times, in different batches and account for piece to piece variation.

By designing to experiment to reduce the noise factors a robust final product or process is achieved.

Case Study One;
In the carburettor adapter investigation only the controllable factors were used. There were no noise

factors included in the design. Efforts were taken to minimise the external noise from influencing the

data.

1. SABS torque correction factors were used to correct for any changes atmospheric

conditions.

2. The engine was operated at a stable operating condition and an average of the output

variable was used over the stable operating period.

3. An engine speed control loop was used to maintain engine speed at the desired value.

The factors that were to be investigated were the inclusion/exclusion of a baffle plate and the

inclusion/ exclusion of an anti-swirl plate as laid out in the experimental objectives.
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The baffle plate was intended to force the air round the sides of the carburettor adapter, forcing an

evenly distributed radial flow pattern of air into the carburettor throat (Figure 6-3 (b)). This closely

approximated the more efficient configuration of the pancake filter.

The Anti-swirl plate was intended to stop the air from rotating in the carburettor adapter chamber and

forming a vortex and swirling into the carburettor entrance. The plate limits the travel of the air to 1800

round the entrance to the carburettor, The plate also stopped the development of a venturi and

circumferential flow round the carburettor throat (Figure 6-3 (c))

The input variables for the experiment are:

1. the baffle plate, and

2. the anti-swirl plate.

c cl

Figure 6-3. Prototype Configurations a shows the open adapter without any flow diverters in
place, b shows the inclusion of the baffle plate, c shows the inclusion of the anti-swirl plate and
d shows the expected air flow with both the baffle plate and the anti-swirl plates inserted with

the flow approximating the pancake filter air flow pattern.

ba

6.2.6. Selecting the Variable Levels

Selecting the variable levels is very important in defining the scope of the investigation's applicability.

The range of the variables will determine the range over which the results are valid. Interpolation is

regarded as acceptable but to extrapolate beyond the boundaries of the experiment is not advised. The

outer levels of the investigation should therefore be chosen so that the entire extent of the variables' are

covered within the experimental structure. Choosing three levels or more will result in non-linear effects

in the variable influence being quantified whereas two levels will only show any linear dependence and

are often used to only identify significant factors in process investigations.

Case Study One:
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For the Carburettor adapter investigation the levels are obvious and there is no choice to be made. The

two levels for each of the parameters are the exclusion (out) and the inclusion (in) of the respective flow

diverters. The parameters and their settings are shown in Table 6-1 for Case StudyOne.

Table 6-1. Parameter Levels

Variable Levell Level2

Baffie Plate In Out

Anti swirl plate In Out

6.2.7. Identifying Possible Interactions

Any significant interactions need to be identified and included in the investigation. This step can easily

be absorbed into step 6.2.5, identifying the input variables.

Case Study One:
In the carburettor adapter investigation there was only one possible interaction that could be

investigated and it was stated as one of the project objectives. The interaction between the baffle plate

and the anti-swirl plate was investigated and quantified.

6.2.8. Determine Experimental Strategy

The experimental strategy was to determine the influence of the carburettor adapter inserts on the

engine by measuring torque and power as an indication of volumetric efficiency. The torque was

measured at an engine speed of 3200 rpm, as a representation of mid-range-torque (MRT), and the

power was measured at 4800 rpm as a representation of top-end-power (fEP). An eddy current

dynamometer was used to test the engine on an engine test bed at CAE. The carburettor adapter was

designed with removable inserts to allow rapid change of the experimental configuration.

It is obvious that the stages in the planning phase are all very interrelated, and the boundaries between

the stages can at times be very vague. It may indeed be necessary to have feed back loops at any time

with the planning phase. The iterative procedure will eventually result in a weil planned experiment. It

is important to remember however that nothing is ever cast in stone, and feedback and modification

from the next phase may necessitate changes to the plans, to ensure that experimental investigation is a

success.
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6.3. Designing the Experiment

6.3.1. Calculating the Degrees of Freedom

Degrees of freedom (DOF) need to be calculated for the experiment in order to choose the appropriate

linear graph and orthogonal array. The first step is to calculate the degrees of freedom for each input

variable that is included in the investigation.

DOF's for each input variable:

n levels = n -1 DOF's [6-1]

The number of DOF's for all the input variables is simply the sum of each individual input variable's

DOF. Typically all the input variables will have the same number of levels, and therefore the same

number of DOF's. The total DOF's is therefore a function of the number of input variables (c) and the

number of levels in the input variables (n).

(n levels -1) * c input variables = (n -1) x c DOF's [6-2]

DOF for an interaction to be investigated is the product of the DOF of each variable in the interaction

DOF variable A * DOF variable B = DOF of interaction [6-3]

It can be seen that the more levels the input variables have, the more DOF are needed for the

interaction to be investigated in the experimental matrix.

For the total DOF's we must sum the DOF's for the main effect and interactions.

variables CX (n -1) +
interactions: A(n -1) x B(n -1) =

DOF
[6-4]

Case Study One:
For the example of the carburettor adapter there are two levels in each control variable, therefore the

DOF's for each variable are,

n levels= n -1 DOF's
2 levels= 2 - 1= 1 DOF [6-5]

There are two control variables therefore the number of DOF will be the sum of the individual DOF's,

i.e.
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1+1=2 DOF's
or [6-6]

2x1=2 DOF's

DOF's for the interaction to be investigated:

There are only two main effects (parameters) and therefore there can only be one interaction.

DOF factor A * DOF factor B =DOF of interaction
(2-1)*(2-1)=1 DOF [6-7]

In total then we must sum the two types of DOF's.

Factors 2 x (2 -1) = 2

Interactions: + (2 -1) x (2-1) = 1

3 DOF's
[6-8]

In total then there are 3 DOF's needed to investigate the two main effects (input variables) and the

single interaction between them.

6.3.2. Selecting the Orthogonal Array

The Taguchi experimental matrix is chosen using the calculation of the number of degrees of freedom

for the experiment and matching that with the most appropriate orthogonal array. The linear graph of

the chosen orthogonal array is compared to that of the desired experimental investigation.

Case Study One;
The orthogonal array chosen must have at least as many DOF's as there are in the experiment. In this

case there are three DOF's in the experiment so the orthogonal array must have at least three DOF's.

The number of degrees of freedom of the 1A(23)orthogonal array is calculated as the sum of the DOF in

each column.

3x(2-1)=3 DOF [6-9]

This suits the case study exactly. The orthogonal array for the experimental configurations is shown in

Table 6-2.
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Table 6-2. ~(23) Orthogonal Attay.

Level Var1 Var2 Var3
1 1 1 1
2 2 2 2

xpeflmen s
Test Var1 Var2 Var3
1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

E t

6.3.3. Linear Graphs

A linear graph is a graphical representation of the experiment to be conducted. The graph consists of

dots for the main effects to be investigated and lines joining the dots represent the interaction between

the joined dots that is to be investigated. Each orthogonal array has a number of Linear Graphs

associated with it

Case Study One:
The linear graph of the experiment is shown in Figure 6-4.

1 Interaction
AxE 2

VariableA
(BafflePlate) 3

VariableB
(Anti-SwirlPlate)

Figure 6-4: Linear Graph of ~(23) Orthogonal Attay

The orthogonal array, L, (23) was found to be most suitable and enabled two variables and their

interaction to be investigated in four experiments.

6.3.4. Assigning Variables to the Array

In order to avoid confounding between the main effects that are being investigated and the interactions

that are also being investigated, it is important that the correct columns are used for the correct variables

and interactions. In more complex investigations than the one shown here the assignment of the main

effects and the interactions is very important such that there is no significant aliasing of effects.

Recognising interaction columns [Logothetis 1992] can become tricky, especially for multi-level control
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variable investigations. For two level investigations the interaction column is simply the product of the

signed orthogonal array for the two factors involved. For larger 2 level investigations interaction tables

can be used to simplify the process of assigning the variables to columns.

Case Study One:
Using Table 6-2 and substituting the 2's with -l's we get Table 6-3. Column one and two represent the

baffle plate and the anti-swirl plates respectivelywith plus one representing its inclusion and minus one

representing the plate's exclusion.

Table 6-3. Signed ~(23) Orthogonal Array

Level Var1 Var2 Var3
1 +1 +1 +1
2 -1 -1 -1

xpenmen
Test Var1 Var2 Var3
1 +1 +1 +1
2 +1 -1 -1
3 -1 +1 -1
4 -1 -1 +1

E ts

The third column is the interaction column and is the product of the first two columns. Taguchi

devised an easy way to recognise two way interactions between columns using triangular interaction

matrices. This design, due to its simplicity, does not have a triangular interaction matrix. This was

discussed in more detail in Chapter 5.2.7. Substituting the plate positions for the levels, Table 6-4 is

produced and the experimental matrix complete.

Table 6-4. Case Study One Orthogonal Array

Level Baffle Plate Anti-Swirl Plate Interaction
1 in in +1
2 out out -1

xpenments
Test Baffle Plate Anti-Swirl Plate Interaction
1 in in +1
2 in out -1
3 out in -1
4 out out +1

E
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6.4. Conducting the Experiment

Planning is essential for a successful experiment and therefore it is necessary to complete preparations

thoroughly before commencing with the experimentation.

6.4.1. Developing the Test Plan

The test plan should be completed before experimentation commences to avoid any changes needing to

be made during testing that could result in external noise from distorting the data.

Case Study One:
The test plan was to initially get a base line of best possible performance with the best possible air flow

without restrictions. This was done with no carburettor adapter as the air flow would be unimpeded and

performance the best. The baseline of the present carburettor adapter was then measured in order to

have a comparison against which to measure the performance of the prototype carburettor adapter.

Repeat tests before and after the experimental design were planned as well as a number of repeats within

the matrix to determine confidence in the test results. All the tests were performed with the standard

feed pipe and the standard air filter. The tests comprised of a range of speeds from which the TEP and

MRT values were extracted for analysis.

6.4.2. Preparation and Co-ordination

Thorough preparation of persons and equipment needed for the experimental runs ensures smooth

experimentation and reduces the chances of noise distorting the response data.

Case Study One:
The university, using CAD/CAM system and equipment, made the prototype adapter prior to the

testing. A wax model was manufactured in a CNC machine and then covered with carbon fibre cloth

and resin. The model was then heated so that the wax melted leaving the carbon fibre shell. This shell

was then slightly modified to be able to accommodate the two flow diverters.

In the carburettor adapter investigation there were a number of preparations that needed to be made to

ensure that the experimentation ran smoothly once it commenced.

• Test sheets were required for recording data that was not electronically recorded.

• Sufficient fuel was required for all the tests to ensure that there would be no variation in the fuel

used for the tests (constant fuel conditions).

• Sufficient hard drive space was required to store all the electronic data from the tests.

• Sufficient CO meter filter paper was required for replacement of the fouled filter paper as per the

operating instructions.
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• Sufficient time was required to complete the tests before support services would be unavailable for

use (reduced water pressure, test cell ventilation, safety regulations). All the testing thus had to be

planned for and completed during office hours.

Rarely will the experimentation go exactly according to plan but by thorough planning there will be a

minimum of interruptions and ensure the best chances of experimental consistency and success.

6.4.3. Performing the Experimental Runs

Only once all preparations are complete should experimentation commence. The entire experimental

structure should be completed with as few breaks in testing as possible to avoid unnecessary external

noise generated by changing environmental conditions. For experiments where there are many

configurations, and the testing takes a long time, it is possible to block the configurations. Blocking of

the experiments was done by performing the experiments in orthogonal sets. The inter block variance

can then be investigated and quantified after experimentation.

Case Study One:
Testing was undertaken according to the experimental plan. It was apparent from the first test that was

undertaken that the engine was over fuelled. Exhaust temperatures were very low and the CO%'s were

very high. Based on this the fuel jets were changed for smaller ones and the test rerun. This test was

then repeated at the end of the experimental procedure to determine the repeatability of the test runs

and to determine if there was any drift in the results. Throughout the test programme selected

experiments were repeated to constantly monitor the experiment repeatability and to build confidence in

the results. As there were only four experiments in the matrix it was not possible to block them.

Results are given in Appendices B through F and summarised in Table 6-5.

Table 6-5. Test Results Summary

.... N C") .. ." CD .... Cl) CJ) 0....
Test Number - - - -; - - - - -; -;s '" '" '" = '" =Q) Q) Q)

~
Q) Q) Q)l- I- l- I- l- I- l- I-

Top End Power [kW] 68.8 67.0 65.0 65.4 64.6 66.9 66.7 58.7 60.9 67.1

Mid Range Torque [Nm] 171.0 166.3 157.6 155.6 155.9 157.7 159.5 142.5 145.8 166.4

Not all the experiments that were done were needed for the Taguchi Matrix. Averages of repeated runs

were taken to form the Taguchi response matrix shown in Table 6-6.

Table 6-6. T aguchi Experiment Results Summary

Run Number Baffle(A) Antl-SwlrI(B) AXB Test No Power TO_!'que
1 in in 1 6 66.90 157.70
2 in out 2 4,5 64.95 155.75
3 out in 2 7 66.70 159.50
4 out out 1 8,9 59.80 144.15
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6.4.4. Testing and Inspection

This involves checking the data and equipment to ensure that there is no external variance present that

makes the test null and void. Reproducibility test should be analysed and the data checked for any

outliers that are obviously incorrect and need to be retested. Any data manipulation needed to generate

the final results should also be cross checked to ensure that there are no calculation errors that could

result in incorrect trends being identified.

Case Study One:
The data and test procedure were tested for reproducibility by repeating the test points at the beginning

and the end with identical configurations. The before and after tests, (tests 2 and 10) show a maximum

difference of 2.3% in output across the entire engine speed range tested. The MRT (3200 rpm) and

IEP (4800rpm) variations were 0.54% and 0.21% respectively,as shown in Table 6-7.

Table 6-7 Before and After Repeatability Test

A similar trend can be seen in Table 6-8 for the repetition of Configuration two. The maximum

difference is 2.26% for the torque at an engine speed of 4800 rpm. The figures of interest however,

MRT and IEP, have variances of 0.22% and 1.24% respectively.

Table 6-8. Configuration Two Repeated

The repetition of configuration 4, the carburettor adapter without any inserts, shows a maximurn

variation of 4% for the torque at 4800 rpm. However, when we again look at the figures of importance,

namelyMRT and IEP we see variances of 2.3% and 3.91%.

Table 6-9. Configuration Four Repeated
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These two figures were used as the worst case for external variance and were used to establish error bars

on the trend investigations. In more complex investigations a signal to noise ration would have been

used to this end. The error bars essentially represent the internal noise of the experimental apparatus.

6.5. Analysing the Experiment

The experimental analysis can be either tabular or graphical, both utilising the analysis of means

(ANOM) method for identifying the trends. The tabular method shows the degree of change that can

be compared across the variable range to identify strong and weak effects in numeric terms. The

graphical analysis method shows the direction of the effect very clearly. The gradient of the line

represents the degree of effect that the variable or interaction will have on the process.

For tabular analysis the output variable is averaged at each of the levels of a factor, i.e. for factor A, the

output variable is averaged for all configurations where A was set at 1, and for all the experimental

configurations where A was set at 2. The SIN ratio is determined in a similar fashion if it is determined.

Plotting the graph of these values will indicate the significance of the input variable to the output

variable. A flat graph will indicate little dependence while a steep graph will indicate a significant

dependence.

6.5.1. Tabular Method

The tabular method of analysis takes the form of a table with the average values for each examined

variable or interaction level. It is easy then to identify the highest value in each column in the table

which then represents the optimum level for that variable. This is done with each of the response

variables identified at the beginning of the investigation, namely top-end-power and mid-range-torque.

Case Study One:
Table 6-10 illustrates the optimum configuration for the TEP. The anti-swirl-plate inclusion results in a

4.4 kW improvement in TEP while the inclusion of the baffle plate results in a 2.7 kW improvement in

the TEP. The table also indicates a strong interaction effect between the anti-swirl plate and the baffle

plate, indicating that the effect should be investigated further.

Table 6-10: Top-End-Power Response Table

Level Baffle(A) Anti-Swirl(B) AxB
1 (in) [~~~~1I'D.W>Il4 "t, .;"':f!;..,.~",,~"l" 63.4
2 (out) 63.3 62.4 ,;,;~u.;t':

difference 2.7 4.4 -2.5

Table 6-11 illustrates that the optimum configuration for the MRT is the same as for the TEP. Inclusion

of the anti-swirl plate results in a 9 Nm improvement in the MRT while the inclusion of the baffle plate
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results in an average improvement of 5 Nm. Table 6-11 also indicates a strong interaction effect,

indicating that the effect should be investigated further.

Table 6-11:Mid-Range Torque Response Table

6.5.2. Graphical Method

Level analysisgraphs provide a graphical representation of the data shown in the tabular method.

Case Study One:
The graphs provide a visual representation of the results. The steepest gradient (biggest effect) is

observed for the anti-swirl plates. The inclusion of both the anti-swirl plate and the baffle plate results

in increased output for torque and power. It is helpful to include the experimental noise as error bars on

the graphs to indicate the strength of the effect with respect to the magnitude of the noise. The error

bars on the graphs are percentages as determined in the tabular analysis and repeatability analysis in

section 6.4.4
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Figure 6-5 . Level Analysis Graphs for Case
Study One. a, band c are the power graphs
for the baffle plate, the anti swirl plate and
the interaction respectively. D, e, and fare

the torque trends for the same.
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6.5.3. Interaction Analysis

To be able to determine exactly what the interaction between the plates is, the interaction needs to be

analysed using an interaction table. A graph representing the interaction can be drawn from the table to

give a graphical representation of the interaction. The tables are calculated as averages of the data at

each of the conftguration indicated by the headings for the columns and rows. This is best illustrated by

the case study.

Case Study One:
The top left number in Table 6-12 is the TEP from the conftgurations where both the anti-swirl plate

and the baffle plate were inserted into the carburettor adapter and gives the highest output response.

Table 6-12. Top-End-Power Interaction Analysis

70

68 66.90
66 66.70

~ 64.95
ë. 64...
Q)

~ 62
,:l.; ". '. ··I59.80-ol 60
!::
W
6.. 58
0
r-<

56 1-- Baffle In ..•..Baffle Out 1
54

52
Anti-Swirl In Anti-Swirl Out

Figure 6-6. Top-End-Power Interaction Analysis

The graphical representation of the power interaction analysis table gives a good indication of the effect

in the process. It is often easier to identify the interaction effects from the graphical representation and

then quantify them from the tabular representation of the interaction.

Figure 6-6 shows that the effect of the baffle plate is small when the anti-swirl plate is inserted. When

the anti-swirl plate is removed from the carburettor adapter, the baffle plate effect is much larger. The

effect is that the TEP drops when the baffle plate is removed. The effect of the anti-swirl plate however

is significant whether there is a baffle plate in or not. By referring to the tabular representation of the

interaction we see that the magnitude of the drop is
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64.95 kW - 59.8 kW = 5.15 kW. [6-10]

The mid-range-torque interaction analysis is done in the same manner as the top-end-power interaction

analysis. The tabular investigation is done first and is shown in Table 6-13.

Table 6-13. Mid-Range-Torque Interaction Analysis

The graphical form of the table is constructed for a more visual effect and to allow for the easy

identification of significant interactive effects.

170 .-------------------------------------------~
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E
b 155
Q)::s
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~
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159.501.. I
157.70ït-"'-"~:--------_j 155.75

··········fl44.15
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Anti-Swirl In Anti-Swirl Out

Figure 6-7. Mid-Range-Torque Interaction Analysis

The graph and table show that the baffle plate has a significant effect on the mid-range-torque when the

anti-swirl plate is removed from the carburettor adapter. The magnitude of the change is calculated

from Table 6-13 as:

155.75 Nm -144.15 Nm = 11.6 Nm [6-11]

However when the anti-swirl plate is inserted into the carburettor adapter then the trend is reversed.

The MRT is decreases with the insertion of the baffle plate by 1.8 Nm. This amount is not larger than

the error bars but it is a significant finding.

The interaction effect is a negative one in both the TEP and MRT cases. The effect of inserting one of

the plates results in a decrease in the effect of inserting the other plate.
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6.5.4. Identifying The Strong Effects and the Optimum Levels

The graphs and the tables in the section above are used to determine the significantvariables and their

optimum level setting.

Case Study One
Based purely on a level analysis of the mam effects the TEP and MRT indicate the optimum

configuration is with the inclusion of both the baffle and the anti-swirl plates. The interaction is deemed

important in both cases, both for the magnitude of the interaction and the fact that it is negative

interaction (includingone plate decreases the effect of including the other) (fable 6-14).

Table 6-14. Significant Effects

Significant Factors

Baffle plate Yes

Anti SwirlPlate Yes

Interaction Yes

Based on the further investigation of the interaction effects however, it was seen that the for MRT this is

not the case. The interaction investigation shows that the maximum output is actually achieved when

the baffle plate is excluded and the anti-swirlplate is included in the carburettor adapter (fable 6-15).

Table 6-15. Optimum Level Settings

TEP MRT

Baffie plate Included Excluded

Anti Swirl Plate Included Included

It must be noted that the TEP inclusion of the baffle plate lS based on a O,2kWdifference. The

implications of this are discussed later in the chapter.

6.5.5. Prediction Equation

It is important to check both the level effect as well as the SIN ratio in a design for robustness. More

often than not, a trade off will have to be made on a variable where the optimum level for the output

variable will be different to the optimum level for the SIN ratio. The designer will have to determine

which of the effects is more beneficial to the process/product and use that setting.

The prediction equation is calculated by adding the effects of each of the strong variables and

interactions to the average of all the experiments (experimental average). When an interaction is

included as a significant effect and the sum calculated, the main effects of the two variables in the
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interaction need to be subtracted. The reason for subtracting the individual effects of the variables in

the interaction is that the interaction effect is comprised of the main effects of the variables involved as

well as the interaction effect itself. If the individual effect of the two factors are not subtracted they will

be mistakenly included. Even if one of the variables in the interaction are not considered significant, its

effect must be subtracted from the interaction effect.

Case Study One;
In this case study there was no SIN ratio investigation included as the focus was on controlling the level

of the output variable and not its variance. Only a level analysis prediction equation can therefore be

calculated. The experimental average for the power output variable is defined as the average output of

the system irrespective of the variable level settings and it is calculated for the top-end-power as:

TEP = 66.9 + 64.95 + 66.7 + 59.8 64.59kW
avg 4 [6-12]

and for the mid-range-torque as:

MRT
avg

= 157.7 + 155.75 + 159.5 + 144.15 = 154.28Nm
4

[6-13]

The prediction equation for TEP shown in equations 6.14 and 6.15 and for MRT in equations 6.16 and

6.17 where BF stands for baffle plate and ASP stands for anti-swirl plate. The subscripts indicate the

plates inclusion (in) and exclusion (out).

TEI;,re=TEPavg +(BP;n -TEPavg)+(ASP;n -TEPavg)

+[(BlfnASJr" -TEPavg)-(BP;n -TEPavg)-(ASP;n -TEPavg)]
[6-14]

TEI;,re = 64.59+(65.93-64.59) +(66.8-64.59)

+[(66.9-64.59)-(65.93-64.59)-(66.8-64.59)]
=66.9kW

[6-15]

MRI;,,.. = MRfavg +(BP"., -MRTavg)+(ASP;n -MRTavg)

+[(BP".,ASP;n - MRfavg) -(BP"u, - MRfavg) -(AsP;n - MRTavg)]
[6-16]

MRTpre = 154.28 + (151.83 -154.28) + (158.6 -154.28)
+ [(159.5 -154.28) - (151.83 -154.28) - (158.6 -154.28)]

= 159.5Nm

[6-17]

6.5.6. Confirmation Experiment

The confirmation experiments were included in the initial analysis and found to have outputs exactly as

the prediction equation had estimated.
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Only through the investigation of the interaction effects did the correct analysis emerge. Two

confirmation experiments were needed for this investigation, one for 1EP and one for 1v1RT. The two

predicted optimums were different and therefore a decision needs to be made as to the global optimum

that will be chosen for the system. TEP shows a small difference in value for the two possible

configurations and therefore only a small amount of power would be sacrificed of the non-optimum is

chosen. .MRT however has a more significant difference between the two possible optimum

configurations. It is pertinent to note that the .MRToptimum is also without one of the inserts and

therefore the manufacture of such a carburettor adapter would possibly be easier and cheaper. The

chosen optimum is therefore the optimum for the .MRT,namelywith the baffle plate excluded and only

the anti swirl plate in the adapter.

The analysis of the CO% and the exhaust gas temperatures is given in appendix G although no useful

information was gleaned form their analysis.
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Chapter 7. Case Study One - Traditional Methods vs

Taguchi Methods

7.1. Introduction

This chapter examines the Taguchi method used to solve the design problem encountered in Chapter Six

and compares the method and results to a conventional method of analysing the data and solving the

problem that would otherwise have been used in the absence of the Taguchi Method.

There were four possible combinations of variables and levels in which the carburettor adapter could

have been tested. This is the same number as required by the chosen orthogonal array for the Taguchi

optimisation process. The Taguchi process can therefore be compared directly with the traditional

experimental process without any further experiments. The Taguchi Method was applied to the

carburettor evaluation Case Study in Chapter 6. In this chapter a traditional approach is applied to the

evaluation of the carburettor adapter and then the results of both methods compared It must be

suggested that Chapter 6 be a prerequisite to this chapter to aid in the understanding.

7.2. Traditional Experimental Method

The term traditional experimental methods refers to the method that is currently used in the

investigations. The statistical experimental design methods usually used result in too many experiments

to make then feasible. Traditional experimentation methods require the comparison of two tests where

only one parameter at a time is varied. The effect of that varied parameter can then be quantified and

tested further to determine the optimum level or value for that parameter. This type of investigation

relies largelyon the experiment designer's knowledge and intuition as to the correct order in which to do

the testing, so as to minimise the number of tests needed in determining the trends and optimum

settings.

The set of experiments is evaluated as would have been done without Taguchi's Methods. Conclusions

are drawn from the availabledata and presented in table form in Appendices B through F. All possible

combinations of the inserts in the carburettor were tested as well as tests of the open configuration

(without a carburettor adapter in place) and of the carburettor adapter currently in use.
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7.3. Traditional Experimental Analysis

7.3.1. Torque Comparison

The torque data is plotted against engine speed in Figure 7-1.
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Figure 7-1. Torque Output Comparison

Three distinct groups emerge in the torque output comparison graph in Figure 7-1(details of the

configurations are given in Appendices B and E). The top group, with the highest outputs, are those test

where there is no carburettor adapter or air filter connected to the carburettor (tests one, two and ten).

The large jets used in test one expectedly give the most torque due to increased fuelling. Test two and

the repeatability test, test ten with the smaller carburettor main jets, have a slightly lower performance.

This is as expected since there is no filter, no feed pipe, and no adapter to restrict airflow. The fuel

consumption for this group of tests is also higher than the middle body of the tests. As illustrated in

Table 7-1 (9 -20 vs 7 - 19 hg/hr).

Table 7-1. : Fuel Consumption [kg/hr]

Test Number
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The group with the lowest torque is that of the empty/open prototype carburettor adapter with no

inserts (tests eight and nine). The trend in the graph is as expected but the graph is shifted down

approximately 10Nm. The fuel consumption for this group is much lower (approximately 6 - 16 kg/hr

vs 7 - 19 hg/hr) (fable 7-1) than for the other tests. The tests results for the different carburettor

adapter inserts lie in between these two groups.

7.3.2. Power Comparison
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Figure 7-2. Power Output Comparison

The power output comparison curves (Figure 7-2 and Appendix F) follow the same trends as the torque

output comparison curves. Three tests stand out at the top (tests one, two, and ten, all with no

carburettor adapter) and two are lower (tests eight and nine, both empty carburettor adapter tests) with

the rest of the tests bundled together in the middle. The values are difficult to compare due to the

proximity of the lines.

7.3.3. Top-End-Power and Mid-Range-Torque Comparison

The power (TEP) and torque (MRT) data of interest are compared in Figure 7-3 for the different

experimental configurations.
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Test I Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
1~:iiMidRange Torque [Nm) .Top End Power [kw)l

Figure 7-3. Top-End-Power and Mid-Range- Torque Comparison of all Tests

By omitting the no adapter configuration tests numbers one, two and ten and the baseline test three, a

comparison can be drawn for the prototype carburettor adapter configurations. It can be seen from

Figure 7-4 that tests six and seven are clearly the best configurations as per the considerations of Top-

End-Power and Mid-Range-Torque. These tests are the prototype carburettor adapter with a baffle plate

and an anti-swirl plate (test six) and the prototype adapter with only an anti swirl plate and no baffle

plate (test seven).

T~es~t~5 ~Tes~t~6~ ~T~es~t~7 -.Test8
i.::1.MidRange Torque [Nm) .Top End Power [kW]

Test 9Test4

Figure 7-4. TEP and MRT for Prototype Carburettor Adapter Taguchi Investigation

7.3.4. Discussion

From a pure performance point of view, the prototype carburettor adapter with the anti-swirl plate and

the baffle plate (test six), and test seven with the anti-swirl plate but without the baffle plate, result in the

highest TEP and MRT respectively. The question is whether or not to include the baffle plate in the

final optimum configuration. The configuration including the baffle plate results in lower low-end-

torque but a higher mid-range-torque with top-end-torque approximately the same (see Figure 7-1).
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No decision could be made based on the power output curve due to the close proximity of the tests.

Fuel distribution for the two tests (test 6 and test 7 as above) is very similar (fable 7-1). From a

production point of view, leaving out the baffle plate would result in an easier to manufacture design.

Test 7 would therefore be the better choice with only the anti-swirl plate included.

The CO% and the exhaust gas temperature analysisyieldsno further information (Appendices C and D).

7.4. Experimental Evaluation Method - Conclusion

The results of the traditional method are very intuition based while the Taguchi method provides sound

reasoning for the choices made. Structured analysis of the interaction and a better understanding of the

effect of each of the inserts is achieved with the Taguchi Method. The traditional method did find the

same optimum but without adding to the understanding of the system and the effects within it.
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Chapter 8. Case Study Two - Optimisation

8.1. Project Background

This project should ideallyhave been undertaken before Case Study One. However, due to the newness

of the Taguchi Method of experimental design to the group, this was not possible. Following the

success of, and experience gained from Case Study One, it was decided to use Taguchi Methods to

evaluate all the carburettor adapter dimensions simultaneously, rather than the traditional approach used

in determining the carburettor adapter dimensions for Case Study One. In this way the method would

show its strengths by adding to the knowledge of the system, as well as substantiating the previous work

done and highlighting the significanceof the interactive effects.

8.2. Traditional Experimental Methods

As indicated previously, traditional experimentation methods require the comparison of two tests where

only one input variable is varied at a time. The effect of that input variable can then be quantified and

tested further (if necessary) to determine its optimum position. This type of investigation relies largely

on the experiment designers knowledge and intuition as to the correct order in which to optimise

parameters.

The application of Taguchi methods used in this case study cannot be compared to the traditional

method using the testing that was done during the investigation. The experimental matrix dictating the

configurations to be tested is too varied and cannot be analysed any way other than as specified by

Taguchi Methods level analysis (i.e.statistically).

8.3. Taguchi Method

The experiment was planned and analysed using the Taguchi Method of experimental design. The

description of each section/is not included as it was for Case Study One. Only the results are presented.

Where necessary however some form of explanation is presented to aid in the explanation of the

investigation.
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8.4. Planning the Experiment

Selecting the Independent Variables

Selecting the Variable Settings

Identifying the Possible Interactions

Determining Experimental Strategy

Calculating the Degrees of Freedom

Identifying Strong Effects

Identifying optimum settings

Prediction Equation

Confinnation Experiment

Figure 8-1. Taguchi Methodology

8.4.1. Experimentation Team

Team leader:
Management Support:
Technical Support:

Jeremy Green
Dr Andrew Taylor
Benn Vincent + SMD

8.4.2. Problem Statement: Determining the Objectives

In this case study the objective was predefined as:

• To determine the optimum dimensions for a carburettor adapter and the piping between the

air filter and the carburettor adapter.

8.4.3. Identifying the Output Variable

Determining the output variable for such an investigation was complicated by the fact that there were a

number of variables that needed to be kept in mind, all of which could be used to determine engine

performance, and that all needed to be optimised.
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The fuel distribution across the cylinders is very dependent on the flow patterns in the carburettor and is

one of the variables that needed investigation. The fuelling distribution can be gauged by one of two

other parameters. The CO% in the exhaust gases gives an indication of the degree to which the petrol

was bumt. A lean engine with excess air will give a lower CO % (0-2%) compared to a rich engine

where the excess fuel will result in a higher CO% (6-7%). A comparison of the CO% levels in the

different exhaust cylinder pipes allows for the evaluation of the fuel distribution. Another indication of

the fuel distribution between the cylinders is the exhaust temperatures. A lean running engine will result

in a higher exhaust temperature than a rich running engine. Both of these variables can be evaluated in

terms of an average value and the variance across the four cylinders, to characterise the variation in

fuelling that occurs across the cylinders.

Engine performance however can never be ignored in favour of the above two variables, therefore

torque, power and specific fuel consumption (SFC) are also used as output variables in the investigation.

Mid-range-torque (MR1) and top-end-power (fEP) (as defined in Case Study One) both need to be

maximised while the SFC optimum will be a minimum ..

8.4.4. Determining the Measuring Methods

The measurement methods needed little determination as the testing procedure for internal combustion

engines is a standard procedure at CAE. The equipment that was used in the test is discussed below and

in Chapter Three.

The engine that was used in the investigation was a 2 litre, 4 cylinder, engine. It was not in the standard

configuration as substantial development had already been completed on the engine by the university.

The altered components of the engine included a modified stainless steel inlet manifold and a prototype

cylinder head. A prototype low back pressure exhaust was used on a standard exhaust manifold.

The engine was mounted on a standard test bed and connected to a Froude water dynamometer for the

control and performance measurement. Data capture was done with ETA (Engine Test Automation)

software developed by the CAE. A Bosch CO metre and four gas analyser was used to monitor the

CO% and other emission gases such as HC, C02 and O2•

The carburettor adapter simulator (named "Bird-cage" due to its appearance) used in previous test work

[Fetzer 1996] was used again in this test work. It consisted of two large disks (400mm diameter) forming

the top and bottom of the carburettor adapter. The bottom disk had a circular hole cut in the middle

through which the carburettor was fed The plenum walls (1mm galvanised sheeting) were inserted into

the area between the plates to form the plenum chamber of variable dimensions. The structure was

clamped together by 12 M6 threaded rods. The plenum was connected to the feed pipes by a diffuser

which was designed not to provide any pressure reclaiming by changing the kinetic energy of the gas into

pressure energy (the diffuser design is discussed briefly in Section 8.6.2). The diffusers and plenum
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volumes were all prefabricated to make interchanging them easy during testing. In all, 9 diffusers, and 9

plenum volumes were manufactured for the tests.

8.4.5. Selecting The Independent Variables

The factors that were to be investigated were prescribed at the project conception as:

• Diameter of the carburettor adapter.

• Height of the carburettor adapter.

• Diameter of the feed-pipe.

• Length of the feed-pipe (including the diffuser length).

8.4.6. Selecting the Variable Levels

Before determining the variable levels it was necessary to determine the number of levels to be used for

each variable. A two level investigation would identify the main effects but would not indicate whether

the relationship of the input variable to the output variable was linear or quadratic. Much of the

information for the selection of the levels was based on preliminary investigation by Petzer [1996], and

undocumented work by Petzer and Green.

8.4.6.1. Feed-pipe diameter

The standard feed pipe of the engine was 70 mm in diameter. The size of the diffuser that would be

required for an increased feed pipe diameter lead to the decision to investigate smaller feed pipe

diameters. The gas velocities in the larger pipe would be lower than the standard pipe and would

necessitate a larger exit area from the diffuser to the plenum chamber. This would result in the

minimum plenum diameter being very large to ensure that it was equal to or greater than the largest

diffuser exit width needed. The other two levels were therefore chosen as 60 mm and 50 mm.

8.4.6.2. Feed-pipe length

The standard settings for the feed-pipe (600 mm long and 70 mm diameter) were used as the starting

point. Due to possible adjustments to other engine structures, the engine could accommodate a length

of 670 mm. A third level 530 mm was chosen to complete the three levels.

8.4.6.3. Carburettor Adapter Height

The relationship between carburettor height and torque and power for an infinite diameter carburettor

adapter was developed by Petzer [1996] and is shown in
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Figure 8-2. Torque is at an optimum between heights of 40 mm and 55 mm. The effect of reducing the

diameter to a finite value was expected to throttle the flow. The additional height levels investigated

therefore had to be greater than 40 mm to counter the throttling effect. The possibility of having a

chamber height of 30 mm (to include the power peak Petzer identified) was investigated from a

geometrical point of view. It was, however, found to be infeasible due to the large diameter plenum that

would be needed to match the diffuser from a 70 mm diameter feed-pipe. The throttling effect of the

finite diameter was expected to increase the optimum height and therefore starting at 40 mm was

deemed sufficient.

Figure 8-2 shows a drop in MRT above 55 mm. The upper height for the carburettor was therefore

chosen to be 60 mm. The third level was chosen at 50 mm between the upper and lower limits

identified,
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The diffuser width at the junction to the plenum was the limiting factor in the choice of the plenum

diameter. The largest diffuser width needed to be equal to, or smaller than, the smallest plenum

diameter to ensure that the diffuser would fit into the plenum. The carburettor adapter diameter was

determined from the volume data accumulated by Petzer [1996]shown in Figure 8-3. The data shows

the performance of the tests engine at two plenum heights of 25 mm and 40 mm, and at diameters of

124mm, 186mm, 250 mm, and 310mm. They are compared on a volume basis.

160.5~----~~-----+------~------+-------~----~-------+------4
3020 40 50 70

Height of Carburettor Adaptor [mm]

Figure 8-2 MRT and TEP vs Carburettor Height for an Infinite Diameter [AfterPetzer 1996]

8.4.6.4. Carburettor Adapter Diameter (Plenum Diameter)
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Figure 8-3. TEP and MRT vs Plenum Volume [from Petzer 1996]

The minimum diameter chosen was 161 mm which was the greatest width needed by the diffuser

intersection with the carburettor adapter. The additional two levels were chosen around the power peak

seen at 1200cc in Petzers results (Figure 8-3).

8.4.7. Identifying Possible Interactions

Interactions were not deemed necessary in the preliminary experimental design, investigating only the

main effects. These could be investigated after the experiment with the aid of interaction graphs if

deemed necessary. Table 8-1 shows the choice of levels for the birdcage investigation.

Table 8-1. Level Settings for Birdcage Configurations

level FeedPipe <l> length height Plenum <l>
1 50 530 40 161
2 60 600 50 180
3 70 670 60 200
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8.5. Designing the Experiment

8.5.1. Calculating the Degrees of Freedom

There are three levels for each variable and 4 variables in the investigation. 8 DOF's are therefore needed

to investigate the main effects. To investigate a single interaction 4 DOF's are needed. There are

however no interactions planned for the investigation therefore 8 DOF's are needed in total.

8.5.2. Selecting the Orthogonal Array

The orthogonal array chosen must have at least as many DOF's as there are in the experiment. In this

case there are eight DOF's in the experiment so the orthogonal array must have at least eight DOF's.

All the variables have three levels in them and therefore the orthogonal arrays available for use are.

LI(34), LI8(2Ix37)or Lz7(313) any higher than this and the number of experiments is excessive (>27). The

number of DOF's of the LI(34) orthogonal array is

4x(3-1)=8 DOF's [ 8-1]

The number of DOF's in the LI8(2Ix37)orthogonal array is

1x(2 -1) +7x(3-1) = 15 DOF's [ 8-2]

The number of DOF's in the L27(313)orthogonal array is

13x(3-1) = 26 DOF's [8-3]

It would appear that the LI(34) array is most suited for the experimental matrix. The interactions

between columns one and two however are confounded with columns three and four. Figure 8-4 shows

the linear graph for the LI(34) orthogonal array. The interaction between columns one and two is spread

over columns three and four.

1 2
3,4

Figure 8-4. Linear Graph of ~(34)

Therefore unless one can be sure that there is no interaction between the first to variables, it is wise not

to use this matrix. The LI8(2Ix37) orthogonal array is a specially designed array where there is no

confounding of the columns. The linear graph is shown in Figure 8-5.
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1 2 3 4 5 6 7 8••••••••
Figure 8-5. Linear Graph of LlS(21x37)

The interactions of all the three level columns are more or less evenly spread across all the other three

level columns. It is therefore possible to investigate main effects without the interactions confounding

them. The additional DOF's will not be wasted as the additional variables can be used to block the

experiment into three blocks and the "free" columns can be used as variance checks. These dummy

variables should have no trends (be a flat line) as the columns do not represent any variable or other

source of variance. If a trend is apparent, it will be representative of the natural variance in the testing

method and procedure.

8.5.3. Assigning Variables to the Array

As all the variables were tested at three levels, the first column (two levels)was not used for the input

variables, but as an indication of the inherent noise of the experiment and possible random variation in

the test method and apparatus. Columns two through fivewere used for the input variables. Variable six

was used as a blocking variable to divide the experiments into three blocks of experiments that could be

each completed one a day. The test work could then be completed in three days of experimenting. The

experimental variation (uncontrollable variables and noise) as a result of the different days of testing

could then be evaluated. Columns seven and eight were used as dummy variables for the same purpose

as column one, to determine the level of random variation/noise in the system. The resulting

orthogonal test matrix is shown in Table 8-2.
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Table 8-2. Orthogonal Array with Assigned Variables and Levels

L18(21x37)
Matrix

Level Var1 feed Pipe <I> Length height t"lenum <I> Block Var7 VarS
1 1 50 530 40 161 1 1 1
2 2 60 600 50 180 2 2 2
3 - 70 670 60 200 3 3 3

Experiments
Config Var1 feed Pipe <I> Length height Plenum <I> Block Var7 VarS

1 1 50 530 40 161 1 1 1
2 1 50 600 50 180 2 2 2
3 1 50 670 60 200 3 3 3
4 1 60 530 40 180 2 3 3
5 1 60 600 50 200 3 1 1
6 1 60 670 60 161 1 2 2
7 1 70 530 50 161 3 2 3
S 1 70 600 60 180 1 3 1
9 1 70 670 40 200 2 1 2
10 2 50 530 60 20Q 2 2 1
11 2 50 600 40 161 3 3 2
12 2 50 670 50 180 1 1 3
13 2 60 530 50 200 1 3 2
14 2 60 600 60 161 2 1 3
15 2 60 670 40 180 3 2 1
16 2 70 530 60 180 3 1 2
17 2 70 600 40 200 1 2 3
1S 2 70 670 50 161 2 3 1

8.6. Conducting the Experiment

8.6.1. Developing the Test Plan

All tests were done at wide open throttle to get peak engine performance and at two different engine

speeds, 4800 rpm. for ~p and 3200 Wm fo~ :rvtRT. It was planned to do all the t~sting ~ccorgw.g to th~
block variable, changing the birdcage configuration between each run. Three full days of testing was

therefore needed to complete all the manual labour in changing the "birdcage" configuration between

test runs. All the testing had to be completed during work hours and with the same batch of fuel to

remove possible fuelling variations. Any experimental noise in the system would be reflected in the

dummy variables in columns one, seven and eight.

8.6.2. Preparation and Co-ordination

In the investigation an adapter was needed to join the feed pipe to the carburettor adapter plenum. This

adapter had the ability tb act as a pressure recovery diffuser and aid in the breathing of the engine by

providing a raised pressure at the carburettor throat and thus increased density and increased fuelling.

This effect needed to be cancelled out (or made equal) for all the various configurations that existed in

the experimental matrix. This ensured that the diffuser did not provide unequal gain to individual
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configurations, and thereby add noise to the data. All the diffusers were designed to produce equal

effects for all configurations across all engine speeds. In so doing the diffuser pressure recovery effect

was removed as a variable and held constant for all engine speeds and all birdcage configurations.

The enginewas first run on a carburettor to check that the enginewas functioning correctly and to check

all the support equipment. DUPEC Engine Control Unit (ECU) was then added to control the added

fuel injection system and to control the spark advance to the spark plugs. The design and manufacture

of all the diffuser and carburettor adapter pieces was completed before testing commenced to keep the

change over time between engine configurations and tests to a minimum.

8.6.3. Performing the Experimental Runs

Testing was undertaken in three blocks over three days without incident. For each experimental

configuration the engine was run at the two test speeds until equilibrium (base on stable exhaust

temperatures) was reached. Data was recorded for the duration of the test both electronically and

manually(asa back up and across checking precaution).

8.6.4. Testing and Inspection

The data recorded during each test was analysed electronically. A region of stable operation at each

engine speed for each test was identified, and all the electronically stored data averaged over that time

period. The results from the averaging were then graphically represented to determine if all the tests

could be considered accurate and feasible with no spurious data points. This process also allowed for

data integrity checks, i.e. identifying an inaccurate averaging effect or a mistyped reference in the results

calculations where they differed from the results recorded manually during the testing. Examples of

these inspection graphs are recorded in Appendix H for engine speed, dynamometer and engine water

temperature and air temperature (wet and dry bulb). A complete table of results at both the engine test

speeds for all the tests is shown in Appendix 1.

8.7. Analysing the Experiment

A level average analysis was performed on the results using MRT, TEP and SFC as performance

measures and CO% and exhaust temperature average and variance values as an indication of fuelling

distribution. These results are presented in Appendix J .

Identifying the strong interactions and their optimum levels proved more difficult than anticipated for

this case study. In most cases the block variable was found to be the major contributor to the variance.

This means that the output parameter was most influenced by the day on which the experiment was

conducted as opposed to any of the input variables. The variance analysis also showed that the empty
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variables representing the random intrinsic variance in the experimental procedure and method were

significant, in most cases more so than the input variables. Figure 8-6 shows the level analysis of the

specific fuel consumption at 3200 rpm. The block variable is clearly the most significantvariable with all

the other being relativelyinsignificant (close to straight lines).
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Figure 8-6. SFC Output Variable @ 3200 rpm

Figure 8-7 shows the level analysis of lEP. The block variable again represents the greatest effect on

the output parameter. The length and height variables also show trends but they are smaller than the

variance as a result of the day on which the experiment was conducted.
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Figure 8-7. Power Output @ 4800 rpm (TEP)

One of the fundamental properties of the orthogonal array based design is that the effect of each

variable is determined independently of any of the other variable trends. The trends in variables are

therefore independent of the block variation. This can be shown by attempting to correct for the block

variance. This involved adding and subtracting from the results obtained each day such that the resulting

variance of the block variable was zero. The results of this effort are shown in Figure 8-8. Correcting

for the variance in the blocks did not effect the response trends of the other variables in any way. This

shows that the response due to each variable is irrespective of the trends in the other variables.
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Statisticallythe trends identified are correct, but they are not significant in comparison to the random

variance that was identified in the 'empty' variables 1, 7 and 8.
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Figure 8-8. Power Output for Corrected Block Variance @ 4800 rpm

Trying to determine the optimum configuration from these trends is a fruitless exercise as the random

variancewithin the experiment is in most cases more significant than the trends that can be attributed to

the input variables. This indicates that although the trends are statistically correct, they could be

attributed to the systemsvariation and not due to the input variables changingvalues.

8.7.1. Prediction Equation and Confirmation Experiment

The prediction equation was not calculated as there was no value to be added by the exercise and

therefore there was also no need for a confirmatory experiment.

8.8. Experimental Method Evaluation

In the case study the experimental noise was too great to determine any trends in the input variables.

Therefore the next step in the quality engineering optimisation process shown in Figure 5.1, namely,

tolerance design is required. The parameter design optimisation was unsuccessful due to the high noise

levels and the tolerance design (whichmay involve spending large sums of money) aims to address those

shortfalls that prevented a successful optimisation taking place. Some of the identified short comings of

the experimental process are discussed further.

The measuring method was not accurate enough to determine the trends in the input variables as the

noise in the engine data created too much random variance. The best solution to this problem is to

remove the source of the variance, the engine. Testing the carburettor adapter in a more stable

environment would enable the subtle trends in the airflow to be quantified, and the understanding

developed before applyingit to the engine configuration. Another issue that needs to be addressed is the

exhaust temperature measurement. It is very sensitive to the probe position and more care must be
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taken to ensure that it is accurately representative of the output gas temperatures. Also the CO% should

be logged electronically to enable the actual trends to be determined and remove the guesswork from

recording the reading from the gas analyser. An indication of the variation would then also be possible

to determine.

The Taguchi Method was unsuccessful in this application due to the noisy environment. The trends

were in the region of 1% change in the output parameter which demands very accurate control and

measurement. The major disadvantage of Taguchi Methods is illustrated. The knowledge is only

available after all the experimentation is complete and the data analysis finished. Had the traditional

experimentation methods been used, the deficiencies in the system would possibly have been identified

earlier and the effort not been wasted in further testing of the system.
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Chapter 9. Case Study Three - Modelling and Simulation

9.1. Case Study Background

In this case study a modelling and simulation investigation was undertaken to determine the prototype

dimensions of the inlet manifold for a 1600cc engine. The engine and its components were modelled

and simulated using ESA (Engine simulation Analysis ver 1.07 beta), an engine simulation package

developed by CAE. Taguchi methods were used in the modelling matrix design, result analysis and trend

examination as well as the determination of theoretical optimum dimensions for the inlet manifold in

terms of torque at 2800 rpm (low end torque, LET) and power at 5300 rpm (top-end-power, TEP). A

number of camshafts were evaluated. The camshafts were described using the minimum number of

parameters and levels and then analysed in the Taguchi investigation to determine the best perfonning

camshaft at the optimised inlet manifold configuration and valve timing.

9.2. Introduction

CAE was commissioned to assist in an engine upgrade project to modify a 1600cc engine to meet

specific performance targets. These targets are outlined in Table 9-1.

Table 9-1. Design Performance Targets

Output variable Performance Performance
Criteria Targets

Target Torque~2800rpm >135 Nm + 5% >141.74Nm

Restriction Power @ 5300 rpm <64kW+ 5% <67.2kW

A 1600cc engine was provided for the project, as well as the previously designed dual length high

performance inlet manifolds to aid in the adaptation design. A number of cam shafts were also provided

to evaluate and identify the best performing camshaft when coupled with the inlet manifold design.

There were a vast number of possible configurations for the engine and these needed to be reduced.

The engine simulation software was used to determine the most feasible region in which the optimum

configuration would occur. The prototype testing and manufacture could then be focused on the

optimum region and reduce time and costs. Taguchi's method of experimental design and evaluation

was used to design a modelling matrix, thereby reducing the number of simulations necessary to

determine the optimum variable positions and identify the trends associated with these variables

theoretically. Full factorial designs are usually used to determine the modelling matrix for computer
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simulations, but they demand extensive computing power to nm the simulations and time to constrict

the simulation mes and analyse the results afterwards. By using a Taguchi orthogonal array to dictate the

simulations to be run, the time spent constructing the input files, analysing the results, and running the

simulations was greatly reduced and the turnaround time for results therefore also greatly reduced.
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The objective of the study was to reduce the uncertainty regarding the optimum operating region for the

pfototype design, manufacture and testing. By theoretically evaluating the engine performance under the

different variable configurations, the theoretical optimum was determined prior to testing. Thus

avoiding unnecessary prototype manufacture and testing to determine the optimum operating regime.

The objectives were:

To determine the optimum inlet manifold dimensions and,

• To select the best camshaft from the supplied camshafts .

The objective for the development was to maximise low-end torque (LET), namely, torque at 2800 RPM.

The design target was 135 Nm + 5% (141.74 Nm) at 2800 RPM. This was subject to a restraint on top-

end power ofless than 64 kW + 5% (67.2 kW) at 5300 rpm. Although it was possible that the optimum

camshaft dimensions as calculated from the simulation and the Taguchi analysis would not correspond

to one of the supplied camshafts, it was hoped that this would not be the case.

9.3.3. Identifying the Quality Characteristic (Output Variable)

The performance targets as described in the objectives prescribed the output variable for the test work.

For the results of this test work however, the output variables of torque and power were initially

maximised and then checked against the performance restraints. Analysis was therefore easier and LET

was the main output variables used in the results analysis. It was presumed that the trends identified

through the simulation investigation would mirror the true situation, although the values of the outputs

would not be absolute. Specific output measurement would only be made during the prototype

manufacture and testing stage.
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9.3.4. Determining the Measuring Methods

The in-house designed engine simulation software, ESA (Engine Simulation Analysis) was used to

evaluate the variables as prescribed by the Taguchi experimental design. ESA is a simulation package

that uses CFD, heat and mass transfer equations and a combustion model to simulate an internal

combustion engine from inlet to exhaust. Results of the simulation runs were analysed according to the

methodology as prescribed for Taguchi experimental design. A level averaging method for "maximum is

best" method was used [peace 1993].

9.3.5. Selecting the Independent Variables (Input Variables)

The instructions from the client for the experimental investigation were to investigate the parameters of

the inlet manifold, i.e. length and diameter, and investigate the different camshafts that were supplied to

determine the optimum engine configuration. The first two variables were therefore the inlet manifold's

pipe diameter and length. The remaining variables were chosen to represent the array of camshafts that

were supplied for investigation. This was closely linked to the selection of levels of each variable and is

therefore included in Section 9.3.6.

9.3.6. Selecting the Variable Levels

The camshafts supplied to CAE for evaluation were pre-manufactured and so the variables used to

describe them needed to be selected carefully. It can be seen from Table 9-2 that there was a vast range

of both inlet valve and exhaust valve opening positions, in total nine levels of each. The positions could

not be used as input variables, as nine levels is excessive for a standard Taguchi Methods investigation.

Table 9-2. Supplied Camshafts

There were 5 main cam profiles present in the selection of camshafts. The only other characteristic that

varied was the position of the lobes in relationship to each other (the inlet and exhaust cam profiles were

identical on each camshaft). The profiles differed in both lift and duration from one camshaft to the

next. Therefore by choosing the lift to describe the profile, all 5 were uniquely identified. The camshaft
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Which is sufficient for the investigation so no further arrays were considered. The chosen orthogonal

array for the experimental configurations is shown in Table 9-8.

Table 9-8. L16(45) Orthogonal Array

Experimns
Test Cam lift NO [JFFANl Length Danetel'
1 1 1 1 1 1
2 1 2 2 2 2
3 1 3 3 3 3
4 1 4 4 4 4
5 2 1 2 3 4
6 2 2 1 4 3
7 2 3 4 1 2
8 2 4 3 2 1
9 3 1 3 4 2
10 3 2 4 3 1
11 3 3 1 2 4
12 3 4 2 1 3
13 4 1 4 2 3
14 4 2 3 1 4
15 4 3 2 4 1
16 4 4 1 3 2

9.4.3. Linear Graphs

There are two possible linear graphs for the Lt6(45) orthogonal array. In the first graph two main effects

are investigated and their interaction was spread over the other three columns (Figure 9-1). The one

used for this investigation, was simply 5 dots representing the five main effects (Figure 9-2), as

interactions were not integral to this investigation and the assumption was made that the interaction

between camlift (being representative of the camshaft profile) and the IVO would not be significant and

therefore no significant aliasing would occur ..

1 2
3,4,5

Figure 9-1. Alternative Linear Graph of L16(45)
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with a lift of 10.2 had two different durations, 2890 and 2850 which are not significantly different with

respect to the other camshafts durations. Grouping these together for modelling purposes (and taking

the duration as 2850 for both) reduced the levels needed by one, resulting in four unique cam profiles.

The camshaft profile differentiation is shown in Table 9-3 as taken from Table 9-2.

Table 9-3. Camshaft Profile Levels

Level Profile ID Total Valve
Group Duration [oJ Lift

[mm]

1 026109113B 269 8.6

2 026109113D 284 10

3 048109 113A;035 109 113D 285 (289) 10.2

4 050109113B 278.4 10.6

By examining the inlet valve opening (IVa) angle, it is apparent that there are four distinct groups of

similar values. The average of the values in each group resulted in four levels of IVO. These are shown

in Table 9-4. ESA could only deal with integer values for the IVa and thus the numbers were rounded

off to the nearest integer.

Table 9-4. IVO Level Determination

Level Angles [OBTDC] IVO
Group Average

[OBTDC]

1 (14.7) 15

2 (17.35)(17.35)(18.95)(19.7) 18

3 (22.35)(23)(23.6) 23

4 (29) 29

In an investigation of the difference between the position of inlet valve opening (IVa) angle and the

position of exhaust valve opening (Eva) angle, it was apparent that there were five unique positions i.e.

492,493,498, 500, 512(Table 9-5). The IVa is before top dead centre while the EVe is before bottom

dead centre and there is a full engine cycle in between the two. The angle between the two events

(DIFFANG) is therefore:

DIFFANG = IVa + 360° + (180° - EVa) [9-1]
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For cam one the calculation is

DIFFANG = 290 + 3600 + (1800 -710) = 4980 [9-2]

Table 9-5. Calculation ofDIFFANG

-------~~-~--------~--- ---

29 75 71 33 216 498
23 66 51 38 201.6 512
23.6 85.4 63.6 45.4 220.2 500
14.7 90.3 62.7 42.3 218.2 492
19.7 85.3 67.7 37.3 218.2 492
22.35 76.05 64.35 34.05 216.25 498
18.95 79.45 60.95 37.45 216.25 498
17.35 81.05 64.35 34.05 216.25 493
17.35 81.05 59.35 39.05 216.25 498

By grouping 492 and 493 (the values are not significantly different from each other) to give an average of

492.5, four levels were needed to completely describe all the DIFFANG configurations. The

DIFFANG levels are shown in Table 9-6

Table 9-6. DIFFANG Level Determination

Level Number in DIFFANG
Group Level Group rl
1 3 492.5

2 4 498

3 1 500

4 1 512

The three variables, camlift, IVO and DIFFANG were all reduced to four levels that completely

described the range of camshafts supplied. The length and diameter variables therefore, were also

assigned four levels each so that all the variables would have an equal number of levels. The spatial

constraints of the engine compartment restricted the length variable to a minimum of 339 mm and a

maximum of 680 mm. The intemallevels were equally spaced at convenient intervals between the two

extremes. The diameter variable standard value was 33 mm. Two additional levels were added either

side of that, 2mm away. The level values were extended to either side of this value to include an increase

and decrease of the wall friction index (dependant on the amount of surface area the flowing air comes

into contact with) and air velocity, that would accompany a change in pipe diameter. The fourth level
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was added to the top of the three, separated by the same distance (2 mm) as the other 3. The final level

choices are shown in Table 9-7.

Table 9-'. Length and Diameter Level Determination

Level Length [mm] Diameter
Group [mm]

1 339 31

2 480 33

3 580 35

4 680 37

9.3.7. Identifying Possible Interactions

No interactions were investigated in this application. The important aspect was the investigation of the

main effects, and therefore the interactions were deemed unimportant in the investigation. It was

important however not to confound the main effects with any first order interactive effects and this was

kept in mind when choosing the orthogonal array.

9.4. Designing the Experiment

9.4.1. Calculating the degrees of Freedom

Each variable has 4levels and therefor needs three DOF's. The investigation therefore needs 15 DOF's

to investigate the main effects. Each interaction investigated would need an additional 9 DOF's. There

are no interactions investigated in this investigation, therefore the total DOF's required is 15.

9.4.2. Selecting the Orthogonal Array

The Taguchi experimental matrix was chosen using the calculation of the number of DOF's for the

experiment and matching that with the most appropriate orthogonal array. The linear graph of the

chosen orthogonal array was compared to the desired variable investigation. The simplest orthogonal

array with 4 levels per variable is L16( 45). The orthogonal array chosen must have at least as many DOF's

as there are in the experiment. In this case there are fifteen DOF's in the experiment so the orthogonal

array must have at least fifteen DOF's.

The number of degrees of freedom of the L16(45) orthogonal array is

5x(4-1)=15 DOF [ 9-1]
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1 2 3 4 5•••••
Figure 9-2. Chosen Linear Graph of L16(45)

9.4.4. Assigning Variables to the Array

The variable levels chosen in Section 9.3.6 are shown in Table 9-9

Table 9-9. Variable Parameters and Levels

Level Cam lift IVO DIFFANG Length Diameter
1 8.6 15 492 339 31
2 10 18 498 480 33
3- 10.2 23 500 580 35
4 10.6 29 512 680 37

The corresponding orthogonal array for these variables and levels is shown in Table 9-10. The exhaust

valve opening (EVO) angle is required as an input variable for ESA. EVO is a function of IVO and

DIFFANG and was calculated and included in the modelling matrix.

Table 9-10. Modelling Matrix

xpe men
Test Cam lift IVO DIFFANG EVO Length Diameter

mm °eTDC ° -aaoc mm mm
1 8.6 15 492 63 339 31
2 8_6 18 498 60 480 33
3 8.6 23 500 63 580 35
4 8.6 29 512 57 680 37
5 10 15 498 57 580 37
6 10 18 492 66 680 35
7 10 23 512 51 339 33
8 10 29 500 69 480 31
9 10.2 15 500 55 680 33
10 10.2 18 512 46 580 31
11 10.2 23 492 71 480 37
12 10.2 29 498 71 339 35
13 10.6 15 512 43 480 35
14 10.6 18 500 58 339 37
15 10.6 23 498 65 680 31
16 10.6 29 492 77 580 33
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9.5. Conducting the Experiment

9.5.1. Developing the Test Plan

The test planning included detennining the modelling matrix from which the multi-simulation files could

be constructed and programmed. Each engine configuration needed to have the manifold configuration

programmed into a separate file and made available to the simulation programme to retrieve when

needed. The simulation would then be run on a debugged version of the software on a sufficiently

powerful computer to reduce the necessary computing time. The results would then be analysed to

determine the optimum configuration of the camshafts and the inlet manifold. This information would

then be passed on to the next phase of the project for prototype manufacture and testing. If the

optimum camshaft identified was not in the available camshaft selection then this would be conveyed to

the client and the likelihood of obtaining such a camshaft explored.

9.5.2. Preparation and Co-ordination

All components of the simulation program needed to be functioning correctly to make the model

simulation and analysis feasible. Computer time was booked on a sufficiently powerful computer and all

the necessary files were created and loaded into the correct folders.

9.5.3. Performing the Experimental Runs

The program was run one configuration at a time and the results transferred to the results file before the

next configuration was run. This process was automated in a multi-simulation run file. On completion,

all the data was in one file which allowed easy transfer from the programme to the data analysis package.

Simulations were run at speeds of 2800 rpm and 5300 rpm to generate the LET and TEP data needed

for the analysis.

9.5.4. Testing and Inspection

The simulation data was checked for authenticity by making sure that it was feasible. Appendices K and

L shows the results from the simulation runs. Reproducibility was not an issue in this application as

there were no errors in variation that could occur within the experimental matrix.

9.5.5. Results

Results from the simulation modelling for the speeds 5300 rpm and 2800 rpm are shown ID
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Table 9-11 and Table 9-12 respectively. A complete set of results is given inAppendix K and L.

Table 9-11. Simulation Results @ 5300 RPM
(TEP [kW])

'~t ,~ ~fA«t B!>" ..
r-: ' ; L~~iCl_~

1 5300 125.2 69.5
2 5300 128.6 71.4
3 5300 116.0 64.4
4 5300 113.8 63.2
5 5300 134.9 74.9
6 5300 125.3 69.5
7 5300 134.4 74.6
8 5300 133.9 74.3
9 5300 122.9 68.2
10 5300 117.7 65.3
11 5300 147.3 81.7
12 5300 134.4 74.6
13 5300 143.6 79.7
14 5300 130.9 72.6
15 5300 123.8 68.7
16 5300 116.7 64.8

Table 9-12. Simulation Results @2800 RPM
(LET [Nm])

109

Stellenbosch University http://scholar.sun.ac.za



9.6. Analysing the Experiment

9.6.1. Tabular Method

The tabular results of the Taguchi analysisare shown in Table 9-13 through Table 9-16. The average output

of each level of each variable is recorded to give a view of the trends. The difference between the maximum

and minimum values of each variable was calculated (delta). The % that each variable contributed to the

total variance of the output variable was then calculated (%). The maximum output per variable is then

identified and the corresponding level and its value recorded in the last three columns of the table.

Table 9-13. Torque Response Table @ 5300 rpm

Output [Nm] Variance Optimum
Variable L1 L2 L3 L4 delta % Max Level Setting

Cam 11ft 120.90 132.11 130.57 128.71 11.21 24.25 132.11 2 10.0 mm
IVO 131.61 125.62 130.36 124.70 6.91 14.95 131.61 1 15°BTDC
DIFFANG 128.60 130.41 125.91 127.37 4.51 9.75 130.41 2 498 °
Length 131.20 138.33 121.32 121.43 17.01 36.80 138.33 2 480mm
Diameter 125.13 125.62 129.82 131.71 6.58 14.24 131.71 4 37 mm

1 2 3 4 100

Table 9-14. Power Response Table @ 5300 rpm (TEP)

Output [kW] Variance Optimum
Variable L1 L2 L3 L4 delta % Max Level Settil!Q

Cam lift 67.10 73.32 72.46 71.44 6.219 24.3 73.32 2 10.0 mm
IVO 73.04 69.72 72.35 69.21 3.833 14.9 73.04 1 15°BTDC
DIFFANG 71.37 72.38 69.88 70.69 2.5 9.75 72.38 2 498 °
Length 72.82 76.77 67.34 67.40 9.438 36.8 76.77 2 480mm
Diameter 69.45 69.72 72.05 73.10 3.654 14.2 73.10 4 37 mm

1 2 3 4 100--

Table 9-15. Torque Level response @ 2800 rpm (LET)

Output [Nm] Variance Optimum
Variable L1 L2 L3 L4 delta % Max Level Setting

Cam 11ft 135.09 126.83 124.47 126.74 10.62 23.62 135.09 1 8.6mm
IVO 123.55 128.12 127.79 133.66 10.11 22.48 133.66 4 29°BTDC
DIFFANG 127.92 127.64 129.29 128.27 1.65 3.66 129.29 3 500 °
Length 120.30 126.22 131.05 135.55 15.25 33.90 135.55 4 680mm
Diameter 131.67 130.15 126.99 124.32 7.35 16.34 131.67 1 31 mm

1 2 3 4 100--
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Table 9-16. Power Response Table @ 2800 rpm

Output [kW] Variance Optimum
Variable L1 L2 L3 L4 delta % Max Level Setting

Cam 11ft 39.61 37.19 36.50 37.16 3.11 23.62 39.61 1 8.6mm
IVO 36.23 37.57 37.47 39.19 2.96 22.48 39.19 4 29°BTDC
DIFFANG 37.51 37.43 37.91 37.61 0.48 3.66 37.91 3 500 °
Length 35.27 37.01 38.43 39.75 4.47 33.90 39.75 4 680mm
Diameter 38.61 38.16 37.23 36.45 2.15 16.34 38.61 1 31 mm

1 2 3 4 100--

9.6.2. Graphical Method

The graphical representation of the data is presented in Figure 9-3 through Figure 9-6. The trends for each

variable can easily be seen and the optimum level identified. From these two representations of the results it

is possible to comment on the prototype configuration that would warrant manufacture and testing.
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9.6.3. Identifying Strong Effects and their Optimum

The main effects of all the output variables were identified as the inlet pipe length and the camshaft lift

(which is linked to the valve duration). The trends identified in the analysis are as follows for the

investigations at 5300 rpm and 2800 rpm.

9.6.3.1. Inlet length

In the low-end-torque (2800 rpm) investigation the trend in inlet manifold length follows known trends (see

Section 2.6.2.1.). The longer inlet pipe provides more kinetic energy to the incoming gas and the inertial

ramming effect can be used to maximise output. The effect of the inlet length is quantified in Table 9-15 for

the torque (Figure 9-5) and Table 9-16 for the power (Figure 9-6). The inlet length is identified as the

strongest parameter with 33.9 % of the torque effect contributed to it translating to a variation of 15.25Nm

and 4.47 kW across the investigation spectrum.

For the top-end-power (5300 rpm) investigation, both the torque and power level analysis (Figure 9-3,

Figure 9-4, Table 9-13 and Table 9-14) show that the second level provides the maximum performance.

This could be attributed to the increased friction of long pipes with increased gas velocity and the pulse

effects of the engine running at high speeds. It can be seen from the response tables that the length is the

strongest parameter of the investigation providing 36.8 % of the overall variation. The torque effect is 17.01

Nm and the power effect can be quantified as a 9.4 kW contribution to variation.

9.6.3.2. Inlet Diameter

The diameter shows expected trends of large diameter pipes (Section 2.6.2.2.) having a low resistance to flow

at high speeds (5300 rpm) and the small diameter pipe as optimum at low speeds so that the kinetic energy

of the air remains high. For the TEP investigation the 37 mm diameter (Level 4) showed best results and

for the LET investigation the 31 mm diameter (level 1) showed the best results as seen in Table 9-13

through Table 9-16. The diameter contribution was not identified as a main effect in either of the two

investigations. The effect however should not be ignored as they were 14% and 16% contributors for the

5300 rpm and 2800 rpm investigations respectively.

9.6.3.3. Cam Lift

The cam-lift parameter was chosen as a representation of the cam-profile in its entirety (Section 9.3.6). Both

the valve open duration and the valve lift were described by a single variable. In the LET investigation the

breathing requirements are lower and the timing slower for the valves. The optimum level (one) was the one
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breathing requirements are lower and the timing slower for the valves. The optimum level (one) was the one

with the lowest lift and the shortest duration. It contributed 24% to the overall variation of the LET. The

TEP investigation also showed the camshaft lift as being a major contributor to the output variable, also

with 24% contribution. The optimum level here however was identified as level 2, the configuration with

the longest duration. This would be the configuration where the pulses in the manifold pipes contribute

most to the engine performance.

9.6.3.4. IVO

For the TEP investigation the NO optimum level was level1 (15°BTDC). It was the third most dominant

effect of the investigation with a 6.91 Nm (3.8 kW) effect on engine performance. For the LET

investigation level 4 was found to be the optimum setting (29°BTDC). It was again the third most

dominant effect in the investigation although in this instance it had 22% of the variance attributed to it.

(10.11 Nm and 2.96 kW).

9.6.3.5. DIFFANG

The % variance for the LET investigation was negligible (4%) and though it is higher for the TEP

investigation (9.7%) it is still not significant. The optimum setting for TEP investigation was level 2 (498°)

and for the LET investigation the best performance was gained at level3 (500°) with only 0.48 kWand 1.65

Nm difference in engine performance.

The identified optimum levels are summarised in Table 9-17.

Table 9-17. Optimum Level Settings

Variable 2800 rpm 5300 rpm

Cam Lift 1 8.6mm 2 10mm

IVO 4 29°BTDC 1 15°BTDC

DIFFANG 3 500° 2 498°

Length 4 680mm 2 480mm

Diameter 1 31mm 4 37mm

The optimum configuration for target torque is therefore achieved With a cam With the properties of :IVO of

29°BIDC, EVOof 69°BBDC, a lift of 8.6mm and duration of 26~,and an inlet manifold 680mm long with a

diameter of 31mm.
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The only camshaft from the selection with an 8.6mm lift has an IVO of 23°BTDC. The best option would

be to try and get another camshaft manufactured to these optimum specifications.

9.6.4. Prediction Equation

The prediction equation is calculated from the average effect of the significant factors and their optimum

settings. LET was the significant factor in the investigation and the calculation is as follows. The

DIFFANG contribution to the output variable was the only parameter to be ignored, as its influence was

deemed insignificant in comparison to the other four which all achieved in excess of 15% in the

investigation.

Where: lip,. = output variable predicted value;

oVa,!:= The average result of the output variable over all the tests conducted in the investigation;

ie the average output of the .rystem irrespective of the level settings.

G..;= The output variable average of Camlif! at level i;

IVOi = The output variable average of Inlet Valve angle at level i;

L= The output variable average of Inlet Pipe Length at level i;

Di = The output variable average of Inlet Pipe Diameter at level i;

i = the optimum level of the parameter.

For the Torque @ 2800 rpm the prediction equation yields:

Vout= 12&3+(135.1-12&3)+(1317 -12&3)+(135.6-12&3)+(1317 -12&3) = 15Wm [9-4]

This is above the required 142 Nm asked for at the outset of the experiment and is acceptable.

The corresponding value of the TEP at the same variables levels is:

Vout= 71.1+(67.1-71.1) +(>9.21-71.1)+(67.4-71.1)+(69.5-71.1) = 60tW [9-5]

which is below the prescribed 67kw maximum.

9.7. Conclusions

It can be seen that the four experiments resulted in different optimum settings for the variables depending

on the speed at which the investigation took place. Torque and power at each speed generated the same
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optimised configuration. That made it unnecessary to investigate both torque and power at the two speeds.

In further investigations only the torque investigation need to be done.

The optimum camshaft for the LET requirement results in a very low TEP. Although this meets with the

initial requirements the client may feel that the TEP is too low and rather have a trade off whereby one of

the variables is changed to improve the TEP and decrease the LET.

The prototype manifold can be manufactured to the above specifications. A possible further investigation

would be to model the availablecamshafts with the suggested optimum inlet manifold and determine which

performs the best. Confirmation testing of the engine with different camshafts and the prototype manifold

can be compared to determine the best operating camshaft among the camshafts available if the

recommended camshaft design cannot be manufactured.

Figure 9-7. Prototype Inlet Manifold

The optimum camshaft is not found in the available selection. The prediction equations for the closest

camshaft profile with a lift of 8.1mm and an NO of 23° predict an LET of 145Nm and a TEP of 63 kW.

The LET is lower than for the optimum conditions but stillwithin design constraints. The TEP delivered is

higher with this configuration. It was at the clients discretion which option to utilise. It is recommended

that the above option be explored initiallyduring the proto typing phase.
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Chapter 10. Case Study Four - Taguchi vs Full Factorial

This case study is a comparison of the performance of the Taguchi Method of experimental analysis with

the comprehensive full factorial method of the same investigation and is an extension of Case Study

Three described in Chapter 9. The full factorial analysis tests all the possible combinations of the

variables under investigation while the Taguchi Matrix uses minimal experiments applying an orthogonal

array in the design. Due to the extended experimental times needed for the full factorial, only one

engine speed (5300 rpm) was used for the comparison. Torque and power were not both needed as

output variables. Case Study Three showed that the two delivered the same results as power is a

function of torque and engine speed. Therefore if engine speed is not varied, power is a function of

torque and both variables do not need to be investigated. Only power was used as an output variable in

this case study.

10.1. Preparation

The problem from Case Study Three was used for the comparison of experimental methods. The model

design was complete and the only additional programming that was necessary was the creation of

multiple simulation files needed for the large number of simulations for the full factorial. The simulation

package development had progressed and a newer version was used for this analysis. The results

therefore are not directly comparable and a new Taguchi analysis was undertaken for the comparison

investigation.

Five input variables were investigated; Cam-shaft Lift (camlift), Inlet valve opening angle (IVO), the

difference between the inlet valve and the exhaust valve opening angles (DIFFANG), the length of the

inlet manifold pipe (length) and the diameter of the inlet manifold pipe (diameter), each at four levels. It

was decided to use evenly distributed levels for each of the variables (except for diameter that would use

the standard diameter of the engine in Case Study Three as one of the points), to generate evenly spaced

points on the output variable trend graphs, as shown in Table 10-1.

Table 10-1. Levels of the input Variables

L16(45)
Matrix

Level Cam lift IVO DIFFANG Length Diameter
1 8.6 15 494 600 33
2 10 20 498 640 34.5
3 10.2 25 502 680 36
4 10.6 30 506 700 37

116

Stellenbosch University http://scholar.sun.ac.za



10.2. Taguchi Investigation

The Taguchi simulation runs were conducted as in Chapter 9 using the same orthogonal array with the

new variable levels as shown in Table 10-2. The 16 simulations took almost 4 hours to run, at

approximately 15minutes each.

Table 10-2. Orthogonal Array used in the Taguchi analysis.

xpenrnen
Test Cam lift IVO DIFFANG Leng_th Diameter

mm °BTDC ° mm mm
1 8.6 15 494 600 33
2 8.6 20 498 640 34.5
3 8.6 25 502 680 36
4 8.6 30 506 700 37
5 10 15 498 680 37
6 10 20 494 700 36
7 10 25 506 600 34.5
8 10 30 502 640 33
9 10.2 15 502 700 34.5
10 10.2 20 506 680 33
11 10.2 25 494 640 37
12 10.2 30 498 600 36
13 10.6 15 506 640 36
14 10.6 20 502 600 37
15 10.6 25 498 700 33
16 10.6 30 494 680 34.5

L16(45)
E ts

The tabular results of the Taguchi analysisare shown in Table 10-3. The average output of each level of

each variable is recorded to give a view of the trends. The difference between the maximum and

minimum values of each variable was calculated (delta). The % that each variable contributed to the

total variance of the output variable was then calculated (%). The maximum output per variable was

then identified and the corresponding level and its value recorded in the last three columns of the table

as in Chapter 9.

Table 10-3. Taguchi Analysis Power Response Table @ 5300 rpm

Output rkW! variance Optimum
Variable Lt L2 L3 lA delta % Max Level Setting
Cam lift 60.12 64.27 65.13 67.05 6.9 24.2 67.05 4 10.6mm
IVO 60.23 63.71 66.34 66.29 6.1 21.3 66.34 3 25°BTDC

DIFFANG 65.03 65.37 64.34 61.82 3.6 12.4 65.37 2 498 °
Length 69.67 64.01 61.43 61.45 8.2 28.8 69.67 1 600mm

Diameter 62.41 62.77 65.18 66.22 3.8 13.3 66.22 4 37mm
1 2 3 4 28.7 100 actual

Figure 10-1 is a graphical representation of the data shown in Table 10-3, indicating visually the

significant trends and optimum level settings.
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Figure 10-1. Taguchi Power Response Results @ 5300 rpm

10.3. Full Factorial
I

The full factorial matrix was constructed as per the description in section 4.5 and the 1024 (45) possible

configurations were programmed into blocks of 100, the maximum that the simulation package could

handle in one multi-simulation run, The 1024 configurations, at an average of 15 minutes each, took

approximately 10 full days of processing time to complete, Great care was taken when reconstructing

the results matrix that no data was misplaced or corrupted that could lead to skewed results. The level

averaging technique used in the Taguchi analysis was also used in the analysis of the full factorial results.

It should be noted that the pivot table report function in Microsoft Excel® would have done the

analysis very quickly without the possibility of a typing error and the author recommends this method of

results analysis for future uses of Taguchi method applications.

Table 10-4. Full Factorial Power Response Table @53200 rpm
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Output rkWJ Variance Optimum
Variable 1 2 3 4 delta % Max Level Setting
Cam 60.35 64.37 64.71 66.84 6.5 26.20 66.84 4 10.6 mm
IVO 61.29 63.56 65.27 66.15 4.9 19.60 66.15 4 300BTDC

Dlffang 65.14 64.69 63.82 62.62 2.5 10.17 65.14 1 494 °
Length 68.94 63.71 61.80 61.82 7.1 28.79 68.94 1 600mm
Diameter 62.11 63.38 64.89 65.89 3.8 15.23 65.89 4 37 mm

1 2 3 4 24.79 100
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Figure 10-2.FuU Factorial Power Response Results @ 5300 rpm

10.4. Comparison

A comparison of the results using the different methods of analysis is shown in tabular form in Table

10-5 and in graphical form in Figure 10-3. The figures show that the Taguchi matrix is a very good

approximation of the full factorial design.

Table 10-5. Comparison ofFuU Factorial and Taguchi Results

Taguchi Analysis Table Power @ 5300
Level L1 L2 L3 L4

Cam lift 60.12 64.27 65.13 67.05
IVO 60.23 63.71 66.34 66.29

DIFFANG 65.03 65.37 64.34 61.82
Length 69.67 64.01 61.43 61.45
Diameter 62.41 62.77 65.18 66.22

Full Factorial Power Ii} 5300
Level 1 2 3 4

Cam lift 60.35 64.37 64.71 66.84
IVO 61.29 63.56 65.27 66.15

DIFFANG 65.14 64.69 63.82 62.62
Length 68.94 63.71 61.80 61.82
Diameter 62.11 63.38 64.89 65.89
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Figure 10-3, Comparison of Full Factorial and Taguchi Analysis Trends

There are two variables of concern where the Taguchi approximation of the trends results in a different

optimum level to the full factorial. The IVO variable (Figure 10-3) show a possible difference in the

optimum level determination between the two solutions. Although there is only a 0.6% difference in the

value for level three between the two methods, this is sufficient for the resulting data to indicate a

different optimum level. The Taguchi analysisindicates the optimum could be at level three or four, as

the trend plateau's out at those two levels. The full factorial however leaves no doubt as to the optimum

being level four.

DIFFANG in Figure 10-3 shows that although there is only a 1% difference in the value for level two

between the Taguchi solution and the full factorial solution, the difference is sufficient to change the
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predicted optimum level setting. The full factorial predicts an optimum at level one while the Taguchi

solution predicts an optimum at level two. This is of little consequence in the prediction equation as in

both cases the DIFFANG would have not been used as it is a very low contributor to the overall

variance and its level would have been convenience based and not dependent on the investigations

findings.

Table 10-6. Difference Between Full Factorial and Taguchi Results

Power_{( 5300 Difference
Level 1 2 3 4

Cam lift 0.23 0.10 -0.41 -0.21
IVO 1.06 -0.15 -1.06 -0.14

DIFFANG 0.11 -0.68 -0.52 0.81
Length -0.74 -0.30 0.37 0.37

Diameter -0.29 0.62 -0.29 -0.33

Power @ 5300 % Difference
Level 1 2 3 4

Cam lift 0.38% 0.15% -0.64% -0.31%
IVO 1.75% -0.24% -1.62% -0.21%

DIFFANG 0.17% -1.05% -0.82% 1.30%
Length -1.06% -0.47% 0.60% 0.61%

Diameter -0.47% 0.98% -0.44% -0.50%
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Figure 10-4. Taguchi and Full Factorial Difference

Table 10-6 and Figure 10-4 show the differences between the Taguchi solution and the full factorial

solution as a percentage. The maximum variance is 1.75%with the average difference being only 0.69%.

The Taguchi approximation of the variable trends is therefore very good, especially at the reduced

experimentation time needed to generate the necessary data. If this exercise was extended into the

experimentation arena then the benefits in terms of time and cost savingwould be enormous.

It must be noted however that where a variable plateau exists in a Taguchi analysis it could mean that

either of the values on the plateau could be the true optimum and need to be investigated further.
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10.5. Prediction Equation

Based on the results of the Taguchi matrix investigation a prediction equation was generated to predict

the performance of the optimwn configuration. The prediction equation takes into account the variables

that were deemed significant in the analysis. All the variables, bar DIFFANG, were deemed significant

and therefore all, bar DIFFANG, were included in the prediction equation.

Vout = Pavg + (CLi - Pavg) + (IVOi - Pavg) + (Li - Pavg) + (Di - Pavg) [10-1]

Where, Pavg = The average power output for the experimental investigation;

CLi is the average power output of the camlift at the ith level;

IVOi is the average power output of the camlift at the ith level

Li is the average power output of the Length at the ith level;

Di is the average power output of the diameter at the ith level;

i is the level at which the variable is being evaluated (the maximum for the optimwn prediction

equation)

Substituting in to the equation yields:

Vout = 64.14 + (67.05 - 64.14)+ (66.34 - 64.14)+ (69.67 - 64.14)+ (66.22 -64.14) [10-2]

Vout = 76.85 [10-3]

The optimwn levels for the confirmation experiment were. Camlift 4; IVO 3;Length l;Diameter 4;

DIFFANG 2. The full factorial investigation included this simulation run and the results could therefore

be compared. VoutFF is the output power of the confirmatory simulation run which resulted in a 0.55%

difference from the prediction equation as shown in the calculation below.

VoutFF = 76.43 [10-4]

Vout - VoutFF x 100 = 76.85 - 76.43 x 100 = 0.55%
Vout 1 76.85 1 [10-5]

The maxunum output generated by the full factorial was found by searching the full factorial

investigation results for the maximwn power output. The levels for the parameters of the maximwn

power output were; Camlift 4; IVO 4; DIFFANG 2; Length 1 and Diameter 4; with a power output of

76.76 kW. A comparison of the Taguchi predicted output with the confirmatory simulation run, the full

factorial predicted output with the confirmatory simulation run, and the actual maximwn output

configuration is given in Table 10-7.
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Table 10-7. Final Comparison

Full factorial Analysis Tazuchi Method FF Search
Max Level Setting Max Level Setting Level Variable
66.84 4 10.6mm 67.05 4 10.6mm 4 Cam
66.15 4 300BIDC 66.34 3 25°BIDC 4 IVO
65.14 1 494 ° 65.37 2 498 ° 3 Dlffang
68.94 1 600mm 69.67 1 600mm 1 Length
65.89 4 37 mm 66.22 4 37mm 4 Diameter

Confinnatory 76.29 kW
Predicted 75.61 kW

76.43 kW
76.85 kW

76.76kW

10.6. Conclusions

Table 10-7 indicates the effectiveness of the Taguchi Method. The two factors that were mis-optimised

(IVa and DIFFANG) had little effect on the power output. The NO was at the top end of its range

and had plateaued to a constant value and thus had little effect on the prediction equation. DIFF ANG

was a very complicated variable representing many effects simultaneously. In both the Taguchi analysis

and the full factorial it was deemed to be insignificant in the final analysis as it contributed very little to

the overall variance. The full factorial analysis estimate of the optimum output was further away from

the actual maximum output than the Taguchi prediction which over-predicted the power by 0.1 kW.

The Taguchi Investigation was completed in 16 simulations vs the 1024 simulations used in the full

factorial yet still produced arguably better results.

It must be noted that in a Taguchi investigation care must be taken where the analysis shows a plateau in

the variable trend. The Case Study has shown that both variables in the plateau could represent the

optimum and thus all possibilities should be investigated. It also is apparent from this case study that

error bars are necessary to determine the reliability that can be given to a "maximum". The error bars

would have brought attention to the reliability of the plateau and thus not left error in the analysis.
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Chapter 11. Conclusions and Recommendations

Taguchi Methods successfully reduced the amount of experimentation needed during automotive engine

research by employing statistical design of experiments in a simplistic form. This did not demand a

comprehensive grasp of the statistics needed to design the orthogonal arrays for the applications. In the

case studies included in this work, a wide range of applications were evaluated and all of them were

successful to varying degrees.

Case study one investigated the inclusion of flow diverters in a carburettor adapter prototype. The

experimental design as determined using the Taguchi Method was a simple one and allowed

comprehensive but easy comparison to be made with the traditional approach. In this case the

traditional approach was to undertake a full factorial investigation where all possible combinations were

tested. Results showed that information about the interaction of the flow diverters with each other was

highlighted using the Taguchi Method of experimental design versus the traditional approach. Although

the traditional method may have identified the interaction, the ability of the Taguchi method to put a

value to it is a significant advantage. The structured data analysis procedure of the Taguchi methodology

also ensures that the interaction is not missed. The Taguchi Method could also quantitatively attach a

benefit to the inclusion of the various adapters that could be offset against the cost of its inclusion. The

effect of the inclusion of the baffle-plate was to increase the Mid-Range-Torque by an average of 5 Nm.

Case study two expanded the investigation of the first case study to examine the geometrical

configuration of the carburettor adapter and the interactions of the investigated variables with each

other. The carburettor adapter diameter and height were analysed as well as the diameter and length of

the feed pipe from the air filter to the carburettor adapter. The measurement of the engine outputs was

comprehensive and resulted in a complex analysis of the data. Torque and power were measured at

different engine speeds as well as emissions data for each test point. The measurement of the emissions

data however was deemed to be insufficiently accurate to enable useful analysis. This was also shown in

the data analysis where no consistent or significant trends could be reliably identified. The major

difficulty encountered during the experimentation was that the natural variation of the system (noise)

was just as significant as the trends identified. This could have been overcome by either reducing the

natural variation or increasing the range of the input variables such that there was significant variation in

the output values. This knowledge in itself was valuable however and would not have been available in a

traditional approach of one step at a time experimentation.

Case study three then went on to an investigation where experimental variation would have no impact on

the investigation. A computer simulation programme was used to investigate a number of interactive

components of the engine. The camshaft valve opening angles were examined using calculated variables

describing the inlet and exhaust valve opening and closing angles and the valve lift. The inlet pipe
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diameter and length were the final two variables included in the investigation. The output of the engine

was measured and analysed at two engine speeds that resulted in a multiple response variable

optimisation problem. This resulted in different optimum configurations for the two engine speeds. A

trade off needed to be made between optimum variable levels at the two engine speeds to determine the

overall optimum design.

Case study four was a continuation of case study three and compared the results of the Taguchi Methods

analysis to a comprehensive analysis (full factorial) using the same computer programme and the same

variable levels. The comparison showed conclusively that the loss of accuracy resulting from the

reduced number of experiments of the Taguchi Method was almost insignificant. The largest difference

on one point in the analysis was 1.5% while the trend differences were minimal.

Generally the results obtained from the Taguchi Method experiments were superior and resulted in more

information about the process being analysed. This information was also obtained using less

experimental work.

The major disadvantage of the Taguchi Method is not obvious from the case studies. Taguchi Methods

demand that all the experiments are completed and then analysed before any information is fed back to

the experimenter. This means that if there is a problem during the experimentation runs, then it only

becomes evident after the data analysis. It also means, as in case study two, that where there is no

significant trend present this is only identified after the data analysis has been completed. All the

experimental runs completed are therefore superfluous and wasted time and money. The traditional

method however may have shown the problem earlier in the experimental programme. This single point

may cause resistance to the method and can only be overcome by fastidious experimental execution. But

as fastidious experimental execution is important to any experimentation programme, this fact should

discourage the use of Taguchi methods. It can be conclusively stated that Taguchi Methods result in

more information for less effort without exception, provided sound experimental procedures are used to

identify significant trends.

125

Stellenbosch University http://scholar.sun.ac.za



Aliasing

ANOVA

Combustion Chamber:

Confounding

Dependent Variable

Exhaust Blow Down:

Identity

Independent Variable

Induction system

IOPAK

Levels

Naturally Aspirated

Pancake air filter

Quality Characteristic

GLOSSARY
When the effect of a variable or interaction cannot be separated in the

analysis from the effect of another interaction then the two effects are

said to be aliased.

Analysis of variance, Statistical tool for identifying relationships between

variables.

The area above the piston and below the cylinder head in which

ombustion occurs.

When the main effects or interactions are aliases with a blocking variable

or interaction effects

A variable (usually an output variable) whose value lS dependent on

another (independent) variable (b where b=f(x))

The rushing out of combustion products that occurs when the exhaust

valve opens.

Or generator. The defining term that shows all possible aliasing

combinations in an experimental design.

A variable (usually an input variable) whose setting influences the value of

another (dependent) variable (x where b=f(x))

For the purpose of this investigation, the induction system of the engine

is defined to include all the parts of the engine from the air intake to the

inlet valves of the combustion chamber. This includes such components

as the air filter and associated piping, carburettor adapter, carburettor,

inlet manifold and ports in the cylinder head.

The input output module of the computer control system

(of a variable) The discrete values at which the variable are tested in an

experimental design.

An engine that is not super charged or turbo charged

The type of air filter commonly used outside of South Africa. The large

air inlet area results in lower flow losses increased engine efficiency.

Another name used for the output variable that is to be used in the

optimisation or investigation project.
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Residual gases The burnt gases that are not vented from the combustion chamber

before the exhaust valve closes.

Response parameter: See quality Characteristic.

Reversion The phenomenon that occurs when combustion products flow into the

inlet pipes when the inlet valve opens. It occurs as a result of the

combustion chamber pressure being higher than the pressure in the inlet

p1pe.

Specific

Consumption (SFC)

Fuel A measure of an engine efficiency that is normalised for the size (power

output) of an engine [g/kwh]

Traditional Experimental This is the method currently employed by the majority of experimenters.

Methods Usually one variable at a time is varied without changing anything else in

the tested system and the effect on the system compared (This is in

contrast to other possible 'traditional' experimental designs such as a full

factorial).

Volumetric Efficiency A ratio of air in the combustion chamber vs the air that would fill the

displaced volume under atmospheric conditions.
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Appendix A. Channel Listing for ETA Channels (Chapter 3)
Number Name function Units Modual High HighHIgh Low LowLow Off-set Gain

o Ignition turn Ignition on - AICP-OACJA 220V AC N/A N/A N/A N/A N/A N/A
1 Speed Frequancy rpm Frequancy 200-20000 Hz 6000 6500 -11 -11 -209 1
2 Torque Nm DC Unipolar 0-10 V 1000 1000 -10000 -10000 -77.34 60.7
3 Oil Pressure kPa DC current 4 - 20 mA 1000 1000 150 100 -1055 245
4 Water Temperature °C J Thermocouple 0-700 °C 95 100 0 0 0 1
5 Oil Temperature °C J Thermocouple 0-700 °C 120 125 0 0 0 1
6 Dynamometer Water Temperature J Thermocouple 0-700 °C 100 130 0 0 0 1
7 Exhaust one Temperature °C k Thermocouple 0-1250 °C 850 900 0 0 0 1
8 Exhaust Two Temperature °C k Thermocouple -100-950 °C 850 900 0 0 0 1
9 Exhaust Three Temperature °C k Thermocouple -100-950 °C 850 900 0 0 0 1

10 Exhaust Four Temperature °C k Thermocouple 0-1250 °C 850 900 0 0 0 1
11 Manifold Pressure 0-1 bar absolute DC current 4 - 20 mA 1000 1000 -1000 -1000 -84.798 17.108

12 to 16 Not Used
17 Smooth Speed Average Value over time Calculated
18 Smooth Torque Average Value over time Calculated
19 Power Calculated
21 Ignition Timing operator entered
22 C01 operator entered
23 CO2 operator entered
24 C03 operator entered
25 C04 operator entered
26 Betzmanometer operator entered
27 inclined Manometer operator entered
28 Mass Flow measure fuel flow kg/s comm port
29 Exhaust Average 1,2 Average value °C Calculated
30 Exhaust Average 3,4 Average value °C Calculated
31 Exhaust Average 1,2,3,4 Average Value °C Calculated

32 oil pressure alarm cut engine on low oil press operator defined
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Description of each Channel
There are two types of channels in the ETA software. Channels 0-16 are measured channels that
measure characteristics from the engine directlyand channels 17 upwards are calculated channels.

Measured Channels

Channel 0: Ignition.
ETA controlled the ignition circuit signal so that the engine could not be started without all the systems

first being checked and ready. In the same circuit there were two emergency safety stop buttons, that

would cut all power to the system and stop the engine, one in the test cell and one in the control room.

Channell: Engine Speed
An inductive speed pick-up was used to measure the engine speed. A toothed gear was attached to the

crankshaft behind the fan belt pulley. The pick-up consisted of a powerful permanent magnet and a coil

winding. The pickup was mounted close to the teeth on the rotating dish. As each tooth passed

through the magnetic field, a voltage was generated in the coil. The frequency of this voltage generation

was proportional to the engine speed. The gear that was used in this testing had 59 (60-1) teeth. I.e. that

the teeth were machined as though there were 60 teeth but two of them were joined to form a single

large tooth. It was the detection of the large induced voltage resulting from the large tooth that

determined the IDC position of cylinder one, for both DUPEC and ETA. The engine speed was

determined by counting all the teeth and determining the time taken to count 59 teeth (equal to one

revolution). The error due to possibly missing a tooth was thus much lower if the probe is counting 59

teeth per revolution instead of counting one tooth per revolution. Engine speed could be calibrated

using a tachometer to determine the true engine speed and then validating the reading on ETA. By

adjusting the offset and gain in ETA's set-up, the accuracy of the speed-reading was tuned to agree with

the tachometer. (See the general calibration procedure at the end of this section)

Channel2: Dynamometer Torque
As discussed in Chapter 3, the torque was measured using a load cell mounted on the casing of the

dynamometer. This load cell was connected via a DC uni-polar 0 to 10 V module in the 10 PAK to

ETA where the data was recorded. Torque calibration was done by imposing a known torque on the

dynamometer casing using a torque arm of known length that was connected to the dynamometer

casing, and a suspending a known mass on the end of the arm. The offset and gain was then set in ETA

to ensure accurate data. Gain and offset were calculated from a zero and maximum value (240.3 Nm)

point with linear interpolation being used within those range values.

Channel 3: Oil Pressure
A 0-10 bar pressure transducer was connected into the oil line and to a 4 to 20mA module that was used

in the 10 PAK. Calibration was done with the aid of a pressure gauge and a hand pump to generate a

known pressure. The gain and offset in ETA were then determined to give corresponding pressure

readings in ETA. The calibration calculation is shown at the end of this section.
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Channel4: Engine Water Temperature
The engine water temperature was monitored in the external water piping for the water using a type J
thermocouple. This was monitored with a high and high-high alarm with values as shown in the table

above to guard against overheating of the engine. The temperature was controlled using the standard

thermostat for the engine and an external heat exchanger.

Channel5: Engine Oil Temperature
The oil temperature was measured using a type J thermocouple that was mounted in the modified sump

plug of the engine. The oil temperature was monitored to guard against engine and oil overheating. The

oil would fail at high temperatures and no longer provide the cooling and lubrication needed for correct

engine operation conditions. The High-High alarm settings for ETA was coupled with an alarm that

would cut the ignition signal and stop the engine, thereby preventing drastic engine damage

Channel6: Dynamometer Water Temperature
The dynamometer water temperature was monitored to guard against the overheating of the casing that

might occur under choked or blocked cooling water flow as well as guarding against torque overload on

the dynamometer. A type J thermocouple was mounted in the casing of the dynamometer for this

purpose.

Channels 7 through 10: Exhaust Temperature (1,2,3,4)
Four exhaust temperatures were measured (one on each cylinder) to monitor the cylinder to cylinder

variation in temperature. Care was taken to ensure that the temperature that was being measured was

indeed the temperature representative of the actual gas temperature in the exhaust manifold. Due to the

fact that the walls of the manifold are not the same temperatures as the gases that flow in the pipes, the

thermocouple probe tips needed to be positioned very accurately. They all needed to be in the middle of

the pipe to give an indication of the gas temperature and not be effected by any heat transfer from the

manifold walls, and thus show the comparison of the gas temperature unaltered (this proved to be very

difficult). Heat transfer to the gas from the walls is also a factor that was taken into consideration so all

the thermocouples were positioned the same distance from the exhaust ports. The thermocouples were

calibrated using a signal generator to check the thermocouple modules.

Channelll: Manifold Absolute Pressure (MAP)
MAP was measure using a MAP sensor that measured the absolute pressure in the manifold. It was

mounted securely to the instrument panel to avoid detrimental vibration and connected to the manifold

by a flexible pipe. This signal was fed into a DC current 4 to 20 mA module in the 110 PAKPLUS

before being recorded by ETA.

Channels 12 through 16:
These channels were not needed for this test work
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Calculated Channels

Channels 17 and 18: Calculated Smooth torque and speed.
The values for speed and torque were very variable. In order to obtain a damped reading representative

of a time average for test data comparison, ETA calculated channels were used to calculate smooth

torque and smooth speed. The user could configure both of these channels to provide an average

reading over a specified number of seconds or an averageover a specified number of readings.

Channel19: Calculated Power
Power was calculated from torque and speed measurements as a calculated channel in ETA by the

relationship in the equation below.

P = (2 x 1[X T x S)/(60x 1000) [A-l]

Where P is Power [kW], T is Torque [Nm] and S is engine speed [rpm]

Channels 20 through 27: Operator Entered Channels.
There is a provision in ETA where the operator can enter in a number or value, and this will be saved

with all the other data relevant to that test point. This is information that ETA does not or cannot

monitor remotely, either though the type of data or the lack of available measured channels in the 10

PAK Channels such as CO% for the four exhaust pipes and other emissions data are saved in this way,

as well as wet and dry bulb temperatures and airflow data.

Channel 28: Fuel Mass Flow
Mass flow was used to measure the fuel consumption in kgf s. Fuel flow was measured using a mass

balance and an intermediate beaker positioned freely on the mass balance. The rate at which the fuel

mass was removed from the beaker was measured to give fuel consumption data. The mass was read

every V2 second and after 30 seconds the average fuel consumption was calculated and stored as the fuel

consumption data. This meant that only equilibrium engine operating conditions had meaningful fuel

consumption data. This suited the type of testing that was done. A 4-litre intermediate beaker was used

on the mass balance that had a 3-litre capacity for fuelling. Thereafter the beaker would be filled and

fuelling data could not be gathered during the fillingprocess. While the intermediate beaker was being

filled, ETA would register a 'filling' value in the data log so that the data would not become confusing

and create the illusion that the engine was indeed producing fuel.

Fuel was supplied to the intermediate beaker on the mass balance from a 50 litre bulk drum through a

standard filter using a standard low-pressure l2-volt fuel pump. This pump, and thus the fillingprocess,

was manually operated from the control room for testing undertaken and documented in this document.

Channels 29 through 31: Average Exhaust Temperature.
To give an indication of overall fuelling an average exhaust temperature was used in the calculated

channels in ETA. The average calculated channel in ETA however could only calculate the average of

two channels at a time and therefore three channels were needed in order to get the average exhaust

temperature in oe.

Alarm Channels.
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ETA provided for channels that can monitor two or more channels and depending on their values, give

an alarm to stop the engine by cutting the ignition channel. For example, when the engine speed is

greater than 3000 rpm, the oil pressure must be greater than 3 bar to ensure sufficient lubrication. If this

is not the case, then there is a malfunction in the oil supply system, and the ignition signal is cut off

before the engine is damaged.

General Calibration Calculation.
All the channels that relied on a gain and offset determination for their calibration require the same

process, which is described below.

Set the gain to 1 and the offset to zero. Using two known values (y) record the ETA measured values (x)

that correspond to the signal received by ETA. These two reading result in two linear equations both of

the form:

[A-2]

yl and y2will be the actual variable values (i.e. speed at 1000 rpm and 5000 rpm). Xl and X2will be the

I/O module input into ETA (i.e. 4 MA and 20 mA for a 4 to 20 mA module). Solving for the two

variables, m (gain) and c (offset) can complete the calibration. The calibration can be refined to be more

accurate by setting the offset at a zero set point and the gain at a maximum point. I.e. yl and Xlare at the

zero and y2and X2are at the maximum point to be measured. If the calibration is seem to be incorrect

with the offset and gain not equal to 0 and 1 respectively. The offset can be recalibrate at the zero point

and the gain at the maximum known point using a ratio or the calibrated reading over the ETA reading

vs. the needed gain over the present gain. Solving for the needed gain will recalibrate the channel.

RequiredGain CalibratedReading= [A-3]
Present Gain ETA reading
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Appendix B. Case Study One Test Summary
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Appendix C. Case Study One Exhaust Temperatures
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Appendix D. Case Study One CO % Levels
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Appendix E. Case Study One Torque Comparison

Torque Comparison of Prototype Carburettor Adapter
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Appendix F. Case Study One Power Comparison

Power Comparison of Prototype Carburettor Adapter
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Appendix G.
Case Study
One:
Carburettor
Adapter Results
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Figure 11-1. Exhaust Average
Temperature @3200 rpm
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Figure 11-2. CO% Average @ 3200
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Figure 11-3. Average Exhaust
Temp interaction @3200rpm
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Figure 11-4. Average CO %
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Figure 11-5. Exhaust Temperature
Variance @ 3200 rpm.
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Figure 11-6. CO% Variance @ 3200
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Figure 11-7. Exhaust Temperature
Variance @ 3200 rpm.
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Appendix H. Case Study Two Data Verification
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Appendix I. Case Study Two: Birdcage Application Tabular Results
Summary
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Appendix J. Birdcage Graph Results
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Figure 11-1. SFC @ 3200 rpm.
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Figure 11-2. Torque @ 3200 rpm.

54 ~ Dum1 - FP Dia - Length - Height

- PL Dia - Block - Dum7 - Dum8ro.8~========~========~=-------~
2 3

Level

Figure 11-3. Power @ 3200 rpm.
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Figure 11-4.Average Exhaust Temp @ 3200 rpm.
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Figure 11-5. Exhaust Temperature Variance @ 3200 rpm.
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Figure 11-6.Average CO% @ 3200 rpm.
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Figure 11-7. CO% Variance @ 3200 rpm.
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Figure 11-8. SFC @ 4800 rpm.
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Figure 11-9. Torque @ 4800 rpm.
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Figure 11-10.Power @ 4800 rpm.
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Figure 11-11.Average Exhaust Temperature @ 4800 rpm.
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Figure 11-12.Exhaust Temperature Variance @4800 rpm.
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Figure 11-13.Average CO% @ 4800 rpm.
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Appendix K. Simulation Results for TEP @ 5300 rpm
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Appendix L. Simulation results for LET @ 2800 rpm
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