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Abstract 

In South Africa fertilizer applications at establishment is a common practice in the 

forestry industry. Recommendations are based on past research with conventional 

sources (CV) and as a result there have only been slight improvements in additional 

plantation production over recent years. The objective of this study was to investigate 

initial stand responses in terms of leaf are index (LAI), foliar nutrient content, biomass 

index (BI) and volume growth to the application of controlled release fertilizers (CRF) 

at re-establishment. Nitrogen (N), phosphorus (P) and potassium (K) were applied in 

a three way factorial combination to Pinus radiata at planting on a site in the Western 

Cape. The design was replicated five times across the study area. N (CRF) and P 

(CV) were applied in a two way factorial combination at planting to two Eucalyptus 

grandis x urophylla hybrids and Eucalyptus dunnii across three sites, one ex-

agricultural and two re-establishment sites, on the Zululand coastal plain and the 

Midlands region. The design was replicated nine times on each study site. Harvesting 

residues were burnt on the eucalypt sites prior to establishment and may have had 

an impact on the responses found. 

An outbreak of Fusarium circinatum on the P. radiata site resulted in unexpected and 

extremely variable responses. An attempt to quantify the effect of the disease had 

limited success. The mean BI of the control treatment reached 25. The best CV and 

CRF treatments yielded improvements of 42 % and 83 % in BI over the control 

respectively, with only the CRF treatment difference being significant. Foliar analysis 

results revealed marginal to deficient concentrations of P and Mg being alleviated by 

the treatments in question. 

On the KZN Zululand sites there was a marked response of the hybrids to N with P 

having an additive effect on volume growth, LAI and foliar N content. Application of 

120 g N and 20 g P per tree on the ex-agriculture site produced a volume of 8 m3 ha-1 

at one year of age, a significant increase of 118 % and 80 % over the control and 

best CV treatment respectively. Application of 80 g N and 20 g P per tree, on the re-

establishment site, yielded a volume of 24.6 m3 ha-1 at one year which equates to a 

significant 39 % and insignificant 7 % additional volume at one year over the control 

and best CV treatment respectively. A non-significant suppressive effect was found 

with 20 g CV P application only. 
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At the KZN Midlands site, the major early response in height were to P application. 

Applications of 20 g CV P per tree, resulted in a mean height of 162.6 cm at seven 

months of age, a significant 28 % higher than the control. There was no significant 

effect of 80 g CRF N and 20 g CV P per tree respectively. 

CRF N applications up to 120 g per tree provide additional growth over 

recommended CV applications on coastal Zululand sites with low organic carbon 

(OC) content. On the KZN Midlands site with higher OC and clay content, early 

responses were limited to P fertilization only regardless of the fertilizer source. 
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Opsomming  

Dit is algemene praktyk in die Suid Afrikaanse bosbou industrie om kunsmis tydens 

aanplanting toe te dien. Hierdie aanbeveling is gebasseer op navorsing resultate met 

konvensionele bronne (CV), gevolglik was slegs ‘n klein toename in bykomende 

plantasie produksie gemeet die afgelope paar jaar. Die doelwit tydens hierdie studie 

is om die aanvanklike reaksie van die bome in terme van blaar oppervlak indeks 

(LAI), blaar-voedingstof inhoud, biomassa indeks (BI) en volume op die toediening 

van beheerde vrylating kunsmis (CRF) tydens aanplanting vas te stel.  Stikstof (N), 

fosfor (P) en kalium (K) is in drie-ledige kombinasie aan Pinus radiata op ’n plantasie 

in die Weskaap toegedien.  Die ontwerp is vyf keer in die studiegebied herhaal. N en 

P is in twee-ledige kombinasie aan twee Eucalyptus grandis x urophylla hibriede en 

Eucalyptus dunnii op drie groeiplekke, een eks-landbou en twee eks-bosbou, op die 

Zoeloeland kusvlakte en in die Natalse Middellande toegedien. Die ontwerp is nege 

keer in elke studiegebied herhaal. Oesreste is voor aanplanting op die Eucalyptus 

groeiplekke verbrand.   

Die voorkoms van Fusarium circinatum op die P. radiata groeiplek het onverwagte en 

hoogs uiteenlopende reaksies tot gevolg gehad.  ’n Poging om die effek van die 

siekte te kwantifiseer, was slegs gedeeltelik suksesvol.  Die gemiddelde BI van die 

kontrole behandeling, was 25. Die beste CV en CRF behandeling het onderskeidelik 

42 % en 83 % hoër BI as die kontrole groep gehad, waarvan slegs die CRF 

behandeling beduidend was. Blaarontleding het gewys dat daar marginale of 

ontoereikende konsentrasies van P en Mg was.   

In Zoeloeland het die Eucalyptus hibriede ’n beduidende reaksie op N en P getoon 

met meer volume groei, LAI en N inhoud. Die toediening van 120 g N en 20 g P per 

boom op die eks-landbou groeiplek het ’n volume van 8 m3 ha-1 op eenjarige 

ouderdom tot gevolg gehad. Dis beduidend beter met 118 % en 80 % onderskeidelik 

vir die kontrole en beste CV behandeling.  Die toediening van 80 g N en 20 g P per 

boom op die hervestigde eks-bosbou groeiplek, het ’n volume van 24.6 m3 ha-1 op 

eenjarige ouderdom tot gevolg gehad. Dit is 39 % beduidend en 7 % onbeduidend 

addisionele volume op eenjarige ouderdom vir onderskeidelik die kontrole groep en 

beste CV behandeling.  ’n Onbeduidende depressie effek is met die alleen toediening 

van 20 g CV P gevind.  
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In die Natalse Middellande groeiplek het die toediening van P ‘n vroeë reaksie in 

hoogte groei veroorsaak. Die toediening van 20 g CV P per boom, het ’n gemiddelde 

hoogte van 162.6 cm op die ouderdom van sewe maande tot gevolg gehad. Dit is 28 

% beduidend hoër as die kontrole. Die toediening van 80 g CRF N en 20 g CV P per 

boom was onbeduidend. 

Toedienings van CRF N tot en met 120 g per boom het in die kusgebiede van 

Zoeloeland met ‘n lae organiese koolstof (OC) inhoud, groter groei as die aanbevole 

CV toedienings gehad.  Die Middellande groeiplek met ’n hoër OC en klei inhoud, 

was die vroeë reaksie alleenlik beperk tot P bemesting. 
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SWC   Soil water content 
WC   Western Cape 
WP   Wilting point 
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Chapter 1: Introduction 

 

1.1 Background 

The application of fertilizer in plantation forestry has become a common practice in 

plantation silviculture over the past decades. The two historical reasons which have 

led to fertilization have been; to correct nutrient imbalances in the soil and to improve 

the productivity of a stand established on a marginal site (Evans and Turnbull, 2004). 

Over time, that has changed and major companies today fertilize all their stands at 

establishment and/or during the rotation. A fertilizing operation is only justified if a 

stand yields a significantly higher financial return at the end of rotation to not only 

offset the costs involved with fertilizing but result in a higher profit. Therefore, it 

makes sense to desire the maximum potential a fertilizer application can provide. 

The important role that research and technology implementation plays in the South 

African forestry industry is clearly evident from Figure 1.1, which presents the change 

in plantation area versus the change in plantation production from 1980 to 2009. 

From 1984 to 1999 the production from industrial plantations was changing 

proportional to the plantation area. Since 2000, the increase in production became 

exponential and can be attributed to increases in the degree of intensification of 

silvilcultural practices within the industry. Over the 29 year period the plantation area 

increased by a mere 9.8 % but the production from plantations increased by 59 % 

(Godsmark, 2010). There is no single factor that can be accredited for this change, 

but advances in genetics, silviculture and good site species matching played a 

significant role (Dyer, 2007). 
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Figure 1.1: Plantation production and area change over the period 1980 till 2009 (Godsmark, 
2010) 

Boden (1997) suggested that tree growth could be attributed to the inherent site 

productivity and on more marginal land, the benefit of intensive silviculture practices 

are minimal. However, it should be kept in mind that it is not sustainable to remove 

nutrients from the site, without the employment of nutrition management practices. If 

one were to accept this idea, the question needs to be asked, what role then does 

intensive silviculture play? 

Even though researchers have only recently been able to understand the productivity 

limits of some of our major site types, it is generally accepted that the current 

production levels have not yet reached these inherent limits (Dyer, 2007). There is 

still an opportunity to improve silvicultural practices at the research and operational 

level. 

Tree growth in the early stages of stand development is largely dependent on the 

silvicultural practices applied (Boden, 1997) and once the site has been ‘captured’ by 

the target crop, site productivity, or more specifically plant available water becomes 

the major driver of production, as most sites in South Africa are water limited (Boden, 

1997). The ideal time to improve production then, especially on more water stressed 

sites, is to augment the available soil nutrients during the high nutrient demanding 

exponential growth period, before water limitations start to affect growth (du Toit, 

2008). Figure 1.2 presents the four main areas which can be manipulated by forestry 
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professionals in order to maximise growth and their relative size of influence in a 

Eucalyptus spp. site. 

 

Figure 1.2: Changes in the relative contribution of the four main factors to stand productivity 
gains over time in a Eucalyptus trial series (du Toit et al., 2010) 

Volume growth and wood density have been known to increase with improvements in 

nutrient availability during the early years of eucalypt stands (du Toit et al., 2010). 

This observation has drawn the attention of major pulp producers as faster growth 

and increased wood density are both beneficial for increased pulp yields (du Toit et 

al., 2010).  

 

1.2 Research problem 

Conventional forms of nitrogen (N), phosphorus (P) and potassium (K) fertilizer, such 

as limestone ammonium nitrate (LAN), single/double/triple superphosphate, 

potassium chloride (KCl), and to a lesser extent, potassium nitrate (KNO3) are widely 

used in South African plantation forestry. These sources have been extensively 

tested with many commercial species, through the works of Donald (1974, 1987), 

Morris (1980), Carlson and Soko (1999) and many other researchers to optimize the 

timing and rate of application and the best ratio combination of the three nutrients to 

achieve the maximum yield response possible. The magnitude of the response to 

fertilizer treatments is dependent on variables such as soil properties, water 

availability, tree species, timing and rate of application, weed status and others. 

The constraint with conventional forms of fertilizer is that it can be leached out of the 

soil system relatively quick, especially N (Rothstein, 2005), and so the availability and 
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potentially tree growth response is rather short in comparison with the rotation 

lengths of the forestry industry (Crous et al., 2008). It follows that the current mean 

annual increment (MAI) and volumes the industry is achieving can potentially be 

improved upon. A possible solution for this could be the introduction of coated 

membrane-type controlled release forms of N, P and K. 

Controlled release fertilizer sources have been tested and used extensively in the 

agriculture and horticulture sectors of many countries for many years now (Trenkel, 

1997), but they are a relatively recent area of interest in plantation forestry. The main 

reason being issues relating to the cost effectiveness of controlled and slow release 

fertilizer products.  

Previous fertilizer experiments in South Africa exhibited only a type 1 response (du 

Toit et al., 2010), an advancement in the stand's development stage with the only 

real benefit a decrease in the time taken to reach canopy closure (Snowdon, 2002). 

The role of extended nutrient availability using CRF's needs to be tested on tree 

growth compared to CV sources. 

 

1.3 Research objective 

The aim of this study was to investigate whether the use of controlled release 

fertilizer sources are more beneficial in a plantation environment than current 

conventional sources, on re-established P. radiata, E. grandis x urophylla and E. 

dunnii transplants. The effect of the fertilizer source on the early survival, growth 

(height, biomass index [BI] and volume growth), foliar nutrient concentration and leaf 

area index (LAI) development were the main focus points in assessing any 

differences between treatments. The primary objective of the analysis was to 

determine if statistically significant differences could be detected between the two 

fertilizer sources, with regards to the focus points mentioned above. Furthermore, the 

study was designed to enable the determination of the best nutrient element 

combination in controlled release and conventional formulation, not only as a ratio, 

but also the optimal quantity of each element needed to realize the highest yield 

attainable on the study sites. 

1.4 Study hypothesis 

The first hypothesis is related to the growth responses to each fertilizer source. 
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H10 There are no differences in height (ht), biomass index (BI) or volume growth 

between different controlled release treatments or selected treatments receiving 

comparable quantities of conventional and controlled release fertilizers.  

H1a There are significant differences in height, biomass index and volume growth 

between different controlled release treatments or selected treatments receiving 

comparable quantities of conventional and controlled release fertilizers.  

Hypothesis two investigates the mechanism of tree growth response, namely nutrient 

uptake, specifically nutrient accretion into tree foliage after planting. 

H20: The uptake of N, P or K into the foliage of P. radiata, E. grandis x urophylla or E. 

dunnii transplants is similar when transplants are fertilized with conventional or 

controlled release fertilizers at establishment. 

H2a: The uptake of N, P or K into foliage of P. radiata, E. grandis x urophylla or E. 

dunnii transplants is significantly different when either conventional or controlled 

release fertilizers are applied at establishment.  

Hypothesis three investigates the longevity of the response to fertilization. 

H3o: The longevity of the response to controlled release fertilizers is similar to (or 

smaller than) the response to conventional forms. 

H3a: The longevity of the response to controlled release fertilizer is greater than the 

response to conventional forms  

 

1.5 Research questions 

To be able to test the first hypotheses, the following research questions will be 

answered: 

i. Are there any significant differences in growth between controlled release 

treatments? 

ii. Are there any significant differences in growth between comparable controlled 

and conventional treatments? 

In order to be able to test hypothesis two, the following questions need to be 

addressed: 
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i. Is there a good correlation between LAI development, foliar nutrient content, 

foliar biomass and biomass/volume growth, i.e. do the trees with the largest 

leaf areas/canopy sizes and foliar nutrients also have the highest growth 

response? 

ii. Are there any significant differences in leaf area between the treatments?  

iii. Are there any significant differences in foliar nutrient contents between 

treatments? 

Research questions relevant to hypothesis 3 are listed below: 

i. What was the growth rate of controlled release treatments versus conventional 

forms over the measurement period?  

ii. Was the nature of the growth response to treatments applied type 1, 2 or 3? 

iii. Can treatment differences (growth or changes in growth rate) be attributed to 

the presence or absence of water or nutrient stress? 
 

1.6 Brief chapter overview 

Chapter 2: Literature review 

The relevant literature to the study is summarized here, with a large emphasis being 

placed on past South African research, which forms the basis for current industry 

fertilizer recommendations.   

 

Chapter 3: Materials and methods 

A description of the four study sites, experimental designs, data collection techniques 

and statistical analysis methods used are described in full detail. 

 

Results and Discussion 

Results were split into two sections; section A presents the winter rainfall area and 

section B the summer rainfall area. There were three factors which contributed to the 

decision of separating this trial from the Mtunzini, Flatcrown and Woolstone trials; 1) 

the trial is older than the three eucalypt trials, 2) It has a different statistical design 

with more factors and more treatments, and 3) In the first year of the trial, a large 
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proportion of the trees were diagnosed to be infected with Fusarium circinatum, 

which had a significant influence on the trial growth data. 

Chapters 4 and 6: Results and Discussion A 

Presentation and discussion of the results relevant to the Coetzenburg trial site are 

presented in these two chapters.  

Chapters 5 and 7: Results and Discussion B 

The early results and findings of the Mtunzini, Flatcrown and Woolstone trials are 

presented and discussed here. Mtunzini and Flatcrown results (survival, volume 

growth, leaf area index, foliar analysis, foliar nutrient content and crown area data) 

are presented together as their trial characteristics are exactly the same. The 

Woolstone trial is the youngest and only early survival and height growth data are 

shown. 

Chapter 8: Conclusion  

In chapter 8, the findings of the study are concluded, with a short overview of how the 

study contributed to the current fertilizer knowledge base in South Africa. 

Recommendations are made for possible future research which addresses the 

delimitations of the study. 

  

Stellenbosch University  http://scholar.sun.ac.za



8 
 

Chapter 2: Literature review 

2.1  Early fertilization in pines  

The first recorded fertilizer trial on P. radiata was established in 1957 on Lottering 

plantation in the Southern Cape (Schönau, 1983). The majority of the research had 

taken place in a 20 year period stretching from 1957 to 1977 and in almost all of the 

trials a positive result was found resulting from fertilizer application, especially P 

(Donald et al., 1987). The details of the reviewed Pinus sp. establishment trials in 

South Africa are summarized in Table 2.1. The listed N, P and K rates are those at 

which the optimum response was found or where only one treatment was applied 

and a response obtained. The rates are the actual elemental amounts per ha or per 

treatment unit (seedling). 

The collection of pine fertilizer research in the winter rainfall region is smaller than 

with the collection of work done in the all year round rainfall and the summer rainfall 

areas (Carlson, 2001), but the observed results and emerging trends are very similar. 

From the South Western Cape up to Limpopo in the North, the main response 

resulted from the application of P, which is not surprising given the low availability 

and deficiency of P in soils found in South African forestry areas (Schönau, 1983).  

The most complete review of establishment trials in the summer rainfall region of 

South Africa, including Swaziland, was prepared by Carlson (2001). In this report, 

results from a total of 71 trials, including trials which received fertilizer within one year 

of establishment, were synthesized into a database summarizing the objectives, 

treatments and results obtained. It is important to keep in mind that these results are 

based on a subset of the full set of trials.  Poorly responding trials were never 

reported, while others were abandoned due to various possible reasons such as poor 

survival, weed infestation or pest and disease outbreaks. For these reasons, 

estimates of responses should be seen as conservative estimates and even biased. 

In many of the trials, the initial response to the application of fertilizer tends to fade 

over time with control plots “catching up” to treated plots. In the first year after 

planting, there is an 81.25 % chance that seedlings will respond. In year five this 

percentage had dropped to 64.15 %, which was still a significant positive response.
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Table 2.1: Summary of the South African fertilizer application at establishment trials on Pinus species that were reviewed 

Trial location Species Best performing/single level Treatment Response variable 
% increase 

over control Reference 

    N P K       

Lottering, SC P. radiata 0 169 g/tree 0     Schönau, 1983 

Elgin (F12), WC P. radiata 115 kg/ha 32 kg/ha 65 kg/ha MAI (11 years) 7.50 Donald and Glen, 1974 

Elgin (F5), WC P. pinaster 34 kg/ha 19 kg/ha 47 kg/ha MAI (11 years) 5.00 Donald and Glen, 1974 

Tokai, WC P. radiata 0 15 kg ha 0       

Tokai, WC P. radiata Unknown 30 kg ha 0 MAI (14 years) 63.00 Theron and Ellis, undated 

Jamestown, WC P. radiata Unknown 15 kg ha 0 MAI (7 years) 2.87 Donald et al., 1987 

Jonkershoek, WC P. radiata Unknown 30 kg ha 0 MAI (8 years) 18.07 Donald et al., 1987 

Highlands, WC P. radiata Unknown 15 kg ha 0 Biomass index (4 years) 481.48 Donald et al., 1987 

Steenbras, WC P. radiata 0 30 kg ha 0 Mean height (m) (4 years) 23.81 Donald et al., 1987 

Ruiterbos, SC P. radiata 45kg ha 
37.35 kg ha + 
40 kg MnSO4 0 MAI (12 years) 595.29 Donald et al., 1987 

Keurboomsrivier, SC P. elliottii 0 
5 kg ha + 
weeding 0 MAI (7.5 years) 118.34 Donald et al., 1987 

Kruisfontein, SC 
P. radiata + 
P. pinaster 45 kg ha 56 kg ha 45 kg ha MAI (15 years) 231.31 Donald et al., 1987 

Usutu, Swaziland P. patula 0 72 kg ha 29 kg ha Biomass index (28 months) 133.33 Donald et al., 1987 

Gilboa, KZN midlands P. patula 30 kg ha 45 kg ha 60 kg ha MAI (3.5 years) 67.23 Donald et al., 1987 

Graskop, Mpumalanga P. patula 10 kg ha 15 kg ha 10 kg ha Mean height(m) (1.25 years) 10.99 Carlson and Soko, 1999 

Driekop, Mpumalanga P. patula   20 g/tree   Mean height (cm) (1 year) 31.00 Rolando et al., 2007 

          collar diameter (cm)(1 year) 15.00   

  P. taeda   20 g/tree   Mean height (cm) (1 year) 10.20   

          collar diameter (cm)(1 year) 9.30   

  P. elliottii   20 g/tree   Mean height (cm) (1 year) 6.70   

          collar diameter (cm)(1 year) 20.00   
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Table 2.1 continued 

Trial location Species Best performing/single level Treatment Response variable 
% increase 

over control Reference 

  N P K    

Mossbank, KZN P. patula 13 g/tree 19 g/tree 13 g/tree Mean height (cm) (1 year) 6.33 Rolando et al., 2007 

          collar diameter (cm)(1 year) 31.60   

Bergvliet, Mpumalanga     20 g/tree   Mean height (cm) (1 year) 5.70 Rolando et al., 2007 

          collar diameter (cm)(1 year) 4.20   

Longridge, 
Mpumalanga     20 g/tree   Mean height (cm) (1 year) 8.88   

          collar diameter (cm)(1 year) 14.10   

London, Mpumalanga   13 g/tree 19 g/tree 13 g/tree Mean height (cm) (1 year) 12.00 Rolando et al., 2007 

          collar diameter (cm)(1 year) 7.50   

Mac Mac, 
Mpumalanga P. patula 12 g/tree 25 g/tree 12 g/tree Mean height (cm) (1 year) 22.00 Rolando et al., 2007 

          collar diameter (cm)(1 year) 25.40   

      25 g/tree   Mean height (cm) (1 year) 16.80   

          collar diameter (cm)(1 year) 17.90   

Blyde, Mpumalanga P. patula 12 g/tree 25 g/tree 12 g/tree Mean height (cm) (1 year) 0.51 Rolando et al., 2007 

          collar diameter (cm)(1 year) -9.32   

      20 g/tree   Mean height (cm) (1 year) 8.08   

          collar diameter (cm)(1 year) 4.24   

Clan, KZN P. patula 15 g/tree 20 g/tree 15 g/tree Mean height (cm) (1 year) 3.91 Rolando et al., 2007 

          collar diameter (cm)(1 year) 3.40   

      20 g/tree   Mean height (cm) (1 year) 10.70   

          collar diameter (cm)(1 year) 3.16   

Driekop, Mpumalanga P. taeda   20 g/tree   Mean height (cm) (1 year) 21.20 Rolando et al., 2007 

          collar diameter (cm)(1 year) 17.50   
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By year nine, the response to treatment were reported as low as 33.33 % (Carlson, 

2001). 

Possible reasons why trees do not respond to fertilizer applications are (Carlson, 

2001): 

i. In areas with fertile soils, few, if any nutrients may have been strongly growth 

limiting on the site type in question. 

ii. The nutrients applied were not the limiting resource. 

iii. Small plot sizes in historic trials. 

iv. Incorrect quantities and forms of fertilizer were applied. 

v. Timing and placement were incorrect. 

vi. Vulnerability to other factors such as diseases or stress was increased, thus 

reducing growth. 

The common aspects in all the trials reviewed are: 

i. Conventional sources of N cause an increase in seedling mortality as the 

application rate rises. 

ii. The highest responses when fertilizing P. radiata were found on the poorest of 

sites. 

iii. N and K applications in the absence of P often yield little or no response and 

can even result in a decline in the growth rate. 

iv. The magnitude and longevity of a fertilizer response is site dependent. 

v. Good weed control practices increased the magnitude of the response in 

fertilized trees significantly. 

vi. Adequate soil water was necessary to obtain a response. 

vii. The use of good seedling stock with healthy developed root systems helped 

the tree to take up the additional nutrients. 

viii. Placement and timing of application is just as important as the fertilizer source 

and application rates. 

 

2.2 Release mechanisms for slow and controlled-release fertilizer (CRF) 

The way in which different variations of slow and CRF release their nutrients is an 

important aspect to consider when developing a strategy to match up the right type 

of fertilizer and crop. The fertilizers are classified in terms of their release mechanism 
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and thus a good understanding thereof will aid in ensuring that the target crop is 

provided with sufficient nutrients at the right time during its development (Morgan et 

al., 2009). Slow and CRF can be divided into four categories. 

i. Organic 

 

The organic group of fertilizers includes materials such as animal byproducts, 

biosolids and various combinations of composted plant materials. These 

products release nutrients by means of microbial decomposition or 

mineralization of organic matter and their rate of release are impacted mostly 

by the temperature and moisture content of the soil and the quality of the 

product (Morgan et al., 2009). Higher temperatures and moisture contents 

lead to higher rates of release, but rates are also affected by the extent of the 

microbial population. It is extremely difficult to accurately estimate how fast 

these fertilizers will release their nutrients. 

 

ii. Inorganic 

 

Inorganic slow release fertilizers include material such as the mineral 

phosphates such as apatite and inorganic K fertilizer sources derived from 

compounds such as biotite. These are typically sparingly soluble minerals and 

nutrients become available gradually over time as weathering and other 

chemical reactions take place in the soil. 

iii. Synthetic organic 

 

The most common example of a synthetic organic fertilizer is urea 

formaldehyde. It is formed through a reaction of urea and formaldehyde in the 

presence of a catalyst (Rose, 2002). The rate of release of this group is 

dependent on the chain length of the polymers that are formed during the 

reaction. Longer polymer chains are less soluble and take longer to 

breakdown and become available to plants than shorter chains (Morgan et al., 

2009). The release mechanism is a multi-step process, with the first step 

being the breaking of the chain and the second being the bacterial 
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decomposition of the polymers into plant available nutrients (Morgan et al., 

2009), usually N. 

iv. Coated 

CRF’s or coated fertilizers are essentially water soluble fertilizers that are 

covered with a semi-impermeable membrane. This membrane can be made 

of sulphur, polymers, resin or a polyurethane coating (Morgan et al., 2009; 

Rose, 2002). The characteristics (composition and thickness) of the coating 

control the rate at which water diffuses into the water soluble fertilizer core 

and in some cases the rate of diffusion from the core into the soil. Soil 

temperature is the most influential environmental factor as it affects the rate of 

diffusion into and out of the fertilizer core (Morgan et al., 2009). 

Apart from the above factors there are others that introduce variation into the rate of 

release mechanism of slow and CRF as mentioned by Rose (2002). The packaging 

and storage needs to be as such to avoid prolonged exposure to moisture, as 

portions of the fertilizer can take up moisture and release nutrients sooner than what 

was intended. The age of the fertilizer is likely to play a role in its performance as 

older coatings may not react in the same way as fresher ones. Improper handling 

and abrasion with soil particles could lead to surface damage of the coatings and 

accelerate the rate of nutrient release. 

 

2.3 Controlled and slow release sources of N, P and K 

Controlled-release fertilizers (CRF) are not used in forestry on a large scale due to 

uncertainties about their cost-effectiveness, but are currently predominantly used in 

tree nursery environments and agriculture (Elliot and Fox, 2006). Studies have been 

conducted, mostly in the North and South America, Tasmania and a small number of 

South African trials, which tested the effectiveness of its use on varying stand ages, 

species, climatic and soil conditions. Results and trends emerging from international 

and domestic studies which have focused on controlled and slow release fertilizer 

sources are discussed further below.  

A pot trial, testing the CRF Osmocote, applied to four conifers, Picea pungens, Picea 

glauca, Abies fraseri and Pinus strobes was established to investigate its effect on 
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plant growth (Klooster et al., 2010). Containers with a capacity of 11.2 L were used 

with three application rates of 0.25, 0.5 and 1 g N tree-1 respectively. A positive 

growth response in height and root collar diameter was found in both the 0.5 and 1 g  

tree-1 application levels, but increasing the dosage from 0.5 to 1 g N per tree did not 

increase the growth response significantly. The foliar N concentrations increased 

with increasing dosage but resulted in no additions in growth. This is an indication 

that any additions above 0.5 g N were most probably utilized as luxury consumption 

by the plants. 

The effect of four different CRF’s, classified by their relative release rates (fast 

release, moderate release, slow release and slow release enriched with 

micronutrients) were investigated on the growth of Ponderosa pine (Pinus 

ponderosa) seedlings at establishment (Fan et al., 2002). Four levels (0, 5, 15 and 

30 g tree-1) were applied and the effects monitored over a three year period. After 

three years it was found that fertilizer treatments produced larger seedlings than the 

control, with fast release and slow release enriched treatments outperforming 

moderate and slow release (Fan et al., 2002). The lower doses, 5 and 15 g per tree, 

generally performed better than the highest dose of 30 g per tree, with the single 

best performing treatment being the 15 g of slow release enriched with 

micronutrients (diameters 20.8 % larger and heights 30.17 % higher than control). 

One possible explanation could be that the slower release rate allowed conditions for 

higher nutrient availability during the three growing seasons. This however is not 

evident from the foliar nutrient concentrations over the monitoring period (Fan et al., 

2002). The 30% height response obtained from the 15 g slow release enriched 

treatment is in line with height responses recorded in other similar field experiments 

(Carlson and Preisig, 1981; Van den Driessche, 1988) in north-western North 

America (Fan et al., 2002). 

In a study conducted by Jacobs et al. (2005), the effectiveness of the CRF 

Osmocote on the establishment of three hardwood species, white ash (Fraxinus 

Americana), yellow poplar (Liriodendron tulipifera) and black walnut (Juglans nigra) 

was tested. Osmocote was applied at six different rates (0, 15, 30, 45, 60 and 75 g 

seedling-1) directly into the root zone at establishment. This method seemingly had 

no significant impact on seedling mortality as survival was ≥ 90% for all treatments. 

There were differences between the three species with yellow poplar having the 
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lowest survival (85%), with black walnut (97%) and white ash (100%) performing 

similarly well. Growth was significantly affected by fertilizer application during both 

the first and second growing seasons. Seedling growth increased as the application 

rates increased up to 60 g per seedling rate and then declined in the 75 g rate. 

Interesting to note was the significant differences in growth between the three 

species, indicative of a possible species x fertilizer interaction. 

When compared to black walnut, the mean first year height growth of yellow poplar 

and white ash was 300 and 543 % larger, respectively and the root collar diameter 

growth was 233 and 200 % greater respectively. The improved growth response of 

yellow poplar and white ash over black walnut can be attributed to nutrient 

accumulation in the seedlings. N uptake in yellow poplar and white ash was 79 % 

and 93 % greater than in black walnut, while P uptake was more modest with 

increases of 28 % and 22 % respectively. There was no significant fertilizer rate x 

species interaction indicating that all three species responded similarly to all 

treatments. These results clearly reinforce the idea that CRF can provide additional 

growth responses over broadcast forms and placement directly in or adjacent to the 

planting hole where it is most accessible to the seedling could potentially yield the 

best results. 

The effectiveness of CRF’s on tree growth has been tested of different species and 

at varying rates of application, but the effectiveness of different CRF sources is not 

well documented. Mikkelsen et al. (1994) applied six different CRF sources 

(Isobutylidene Diurea (IBDU), Osmocote, Oxamide, Prokote plus, sulphur coated 

urea and Ureaform) to pots of Euonymus patens plants. Two rates were applied, 3.8 

g N pot-1 or 7.6 g N pot-1 respectively, with one half of the dose applied at 

transplanting and the other half placed on the surface of the pot 15 weeks later. An 

additional two treatments received no N at planting but instead received daily doses 

of NH4NO3 as fertigation, supplying either 20 or 40 mg N daily. The general trend 

was that the coated sources resulted in higher yields than the non-coated forms, with 

Prokote plus and Osmocote performing the best, while NH4NO3 and Ureaform were 

identified as the weakest performers. Increasing the application level caused an 

increase in both the tissue N concentration and plant biomass production. Coated 

sources were more effective in raising the tissue N concentrations than the non-

coated. 
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A study by Haase et al. (2006) investigated the benefits of supplementing the 

seedling growing medium of three stock sizes, styro-8 (130 cm3 cavity), styro-15 

(250 cm3 cavity) and styro-20 (336 cm3 cavity) of container grown Douglas fir 

(Pseudotsuga menziesii) with additions of CRF, in conjunction with conventional 

fertilizer treatments.  All seedlings were fertilized with conventional fertilizer through 

overhead irrigation but four treatments had one of four CRF’s (Apex #1, Apex #2, 

Forestcote and Osmocote) incorporated directly into the growing medium at rates of 

7, 13, 18 g per seedling cavity for the three stock sizes. The seedlings were grown 

for 11 months in the nursery and then planted in two different field sites. Four years 

after planting, seedlings which received the additional CRF fertilizers had greater 

height, basal stem diameters and stem volume with increases of 19 %, 21 % and 73 

% respectively, compared to conventionally treated seedlings. Differences between 

growing stock sizes were investigated. Larger stock sizes resulted in greater 

seedling growth, which can be attributed to larger nutrient reserves within the plant 

and a more developed root system.   

Elliot and Fox (2006) tested the effect of Ureaform, a slow release source of N, on 

the soil N dynamics of a mid-rotation stand of P. taeda. They found that the plots 

treated with Ureaform displayed significantly greater concentrations of total-

extractable N at every post-treatment sampling date and that the plant available N 

fraction was in all cases prolonged over the control and conventional urea plots. An 

interesting result was that in the third month post-treatment, both the control and 

conventional plots had shown negative N-mineralization rates (immobilization) while 

the controlled-release plot had a positive mineralization rate of 6.8 mg N kg soil-1. 

Smith et al. (1971) tested the response of P. elliottii seedlings germinated from seed,  

1year old seedlings transplanted to pots, and 1 year old seedlings planted in the field 

to urea formaldehyde and Ammonium nitrate. The soils used in the pots represented 

the forests of the lower coastal plains in Florida where positive responses to fertilizer 

applications are seen. In the young seedlings germinated from seed, plant heights 

were repressed however the diameter growth responses resulting from the urea 

formaldehyde were very good. In the year old seedlings good responses were seen 

in both height and diameter of the Ammonium nitrate control plots and the Ureaform 

plots, but only Ureaform was able to maintain the responses at the highest levels of 

application (180 kg N ha-1). In all cases Ureaform outperformed Ammonium nitrate.   
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In Chile a CRF product Basacote which is an NPK blend, was tested against the 

traditional conventional NPK blend applied during establishment phases of E. nitens. 

Basacote is coated with an elastic polymer coating which is more resistant to 

physical damage and frost (Anonymous (a), undated). The application rates of six 

month and nine month release Basacote were extremely small (7, 10 and 15 g 

product/tree) compared to the NPK blend (20, 80 and 110 g product/tree) but still 

showed significant differences up to seven months of age (Anonymous (a), undated). 

By 30 months however, no treatment differences were detectable. It is highly likely 

that the chosen application rates of Basacote were too small to begin with and a 

sufficient amount of nutrients was not able to accumulate in the foliage. The 

experiment was replicated in Tasmania on a newly established P. radiata stand.  The 

same application rates were applied and significant differences were only found up 

to six months post application (Anonymous (a), undated). 

In other studies conducted by Walker (1999, 2001) and Hensley and Aldridge (1990) 

similar results to the ones discussed above were found and can be summarized as 

follows: 

i. CRF’s and slow release fertilizers provide an additional response over 

conventional sources tested, although the response only lasts past the early 

stages of stand growth in a limited number of cases. 

ii. These responses are witnessed throughout the spectrum of application rates. 

iii. Mortality is lower with controlled-release treatments (provided no 

pathogen/disease attack). 

iv. Nutrients are available to the plants for longer periods of time and in higher 

concentrations. 

v. The longevity of the response is much better, eliminating the early “rise and fall” 

in soil nutrient concentrations of conventional sources. 

vi. Application rates of CRF need to be high enough to sustain growth differences 

observed in the first stage of stand development. 

 

There is only one recorded slow release fertilizer trial on P. radiata in the Western 

Cape (Theron and Ellis, undated), where N was tested as Ureaform tablets and P as 

superphosphate. Unfortunately the survival of the trial was so poor due to 
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competition from the fynbos regrowth that it had to be abandoned before any 

noteworthy results could be recorded. 

Slow release fertilizer research was mainly done on E. grandis in the summer rainfall 

region. The description and results of these trials are discussed below. 

Trial T55 of the Wattle Research Institute (1984) , the response of E. grandis to LAN 

(28 % N) and urea formaldehyde was tested on a site with a sandy Fernwood soil 

situated near Kwambonambi on the north coast of Kwa-Zulu Natal province. LAN 

and Ureafom were applied at rates of 0, 50 and 100 g per seedling.  An additional 

factor tested was the placement of the fertilizer, spot, ring or slot applied. The best 

treatment was 50 g LAN applied in a ring. Poor growth was observed in the 

Ureaform plots and it was suggested that this was due to the very low soil organic 

matter content and most probably coupled with low microbial activity not allowing 

sufficient release of N. A noteworthy trend that emerged was that there was an 

increase in growth with increase in application rate of Ureaform when it was applied 

in a ring around the tree. Perhaps if applied rates were increased, Ureafom would 

have performed better. The data for growth responses beyond one year in this trial 

were not published. 

Trial C68 established by the ICFR on a sandy soil in Kwambonambi, tested the 

efficacy of the slow release formulation MULTICOTE® and conventional LAN on the 

growth of E. grandis seedlings. In addition, the effect of splitting the application (half 

at planting, half at six months) was also investigated. LAN was applied at a rate of 35 

kg N ha-1 and MULTICOTE® at 25, 50 and 75 kg N ha-1.  At 11 months after 

establishment, height measurements indicated that there was no significant 

difference (p<0.05) between any of the treatments. The only significant difference 

that was found was between the foliar N concentrations of the MULTICOTE® 

treatments and the control, with the control having the significantly lower 

concentration (Noble, 1992b). 

Trial C69, established directly adjacent to C68, tested the efficacy of 5 different 

fertilizer sources and 2 different application rates, 28 and 56 kg N ha-1 respectively. 

The five sources are as follows (Noble, 1992b): 

i. Urea formaldehyde  
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ii. HUMAC 

iii. HUMAC + 10% oxi-Humate 

iv. HUMAC + 20% oxi-Humate 

v. AGROFERT 

Two controls, an application of 35 kg ha-1 LAN (28 %) and no fertilizer application 

were also incorporated into the trial. Both levels of Ureaform and the LAN application 

were the only treatments that showed no significant difference to the control plot with 

zero fertilizer in terms of height growth. The best performing treatment was 

AGROFERT applied at 56 kg ha-1. The lack of response to Ureaform can be 

attributed to the low microbial activity of the Zululand soils (Noble, 1992b), and thus 

coated forms of fertilizer that are not dependent on microbial breakdown would 

possibly lead to greater growth responses on these sandy sites (Noble, 1992b). 

 

2.4 Leaching of applied N and K: 

Nitrogen exists in the soil in organic and inorganic forms and can transform between 

forms through microbial activity. N is primarily taken up by plants in two forms 

namely ammonium (NH4
+) and nitrate (NO3

-). Organic N in the soil is converted to 

ammonium by the work of microbes through a process known as mineralization.   

This process is most affected by soil moisture and soil temperature. The conversion 

of ammonium to nitrate is done through the process of nitrification, which is also a 

biological process controlled by soil bacterial activity and like mineralization it is most 

accelerated in well aerated, warm and moist soils (Duckworth and Cresser, 1991). 

Ammonium is positively charged and therefore held close to the surface of soil 

particles through electrostatic forces. Nitrate on the other hand is negatively charged 

and water soluble, it is able to move through the soil profile away from the rooting 

zone and leach out of the soil system. The processes are graphically displayed in 

Figure 2.1. 
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Figure 2.1: The nitrogen cycle (Anonymous (b), undated). 

 

Nitrogen retention in forest soils are affected by factors such as soil temperature, 

neutral soluble salt concentrations and N pollutant concentrations amongst others 

(Duckworth and Cresser, 1991). The low pH of forest soils often inhibit the action of 

microbes in the process of nitrification but the process can still be stimulated by 

conditions of increased N availability or decreased crop N demand (Duckworth and 

Cresser, 1991). Where N is the major limiting nutrient to substrate turnover, soil 

microbes will compete vigorously for any available N resulting in net immobilisation 

rates in the soil. In an acid soil in maritime climate, N inputs from atmospheric 

deposition may be offset by the effect that sodium salts have on the ammonium ion 

i.e. preventing adsorption by keeping it in a mobile form (Duckworth and Cresser, 

1991). Soils with more humified horizons have a marked ability to retain more N 

added to the system and display increased mobilisation of organic N which stresses 

the importance of soil humus to N soil fluxes. Soil carbon also plays a role in N 

retention. An increase in soil carbon stimulates heterotrophic soil microbes to 

immobilise more plant available N. This N then becomes available once more 

through the turnover of these microbes (Duckworth and Cresser, 1991). 

The longevity of the response of applied N from conventional sources is in most 

cases short lived. A rapid initial response occurs which peaks early and declines with 
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time (Minogue et al., 2005), resulting in growth responses not realizing their full 

potential. Researchers have hypothesized that N leaching rates would increase 

proportionally with the rate of N application into the soil. It was found in a study by 

Flint et al. (2008) on an acidic sandy loam, which examined the N leaching rates of a 

Douglas-fir stand after the application of Urea that the hypothesized relationship did 

hold true. Six months after fertilization, 26 % of the applied N was accounted for in 

the overstory of the trees and 27 % in the top two layers of the soil (Flint et al., 

2008). The fertilized plots leached 4.2 kg N ha-1 more than that of the control plots 

which received no fertilizer, but this only relates to a 2 % loss of the total 224 kg N 

ha-1 applied (Flint et al., 2008). 

Minogue et al. (2005) monitored the soil N levels after fertilization of three pine 

species namely; P. elliottii, P. taeda and P. palustris at two, five and 11 years of age 

on moderately well to excessively drained sandy soils. What they found was that the 

results were variable between the three different age brackets. In the two year old 

stand, soluble nitrate concentration at 30 cm and 120 cm soil depth peaked at six 

and 12 weeks respectively and the same results were found in the 11 year old stand 

(Minogue et al., 2005). For the five year old stand, P. taeda did not show any 

elevated levels of soluble N but P. elliottii and P. palustris did show increased N 

levels at 9-11 weeks, indicating a difference in soil N fluxes between the species 

(Minogue et al., 2005). The most interesting result was the longevity of the response 

between the sources of N (mineral and broiler litter). In the two year old stands, the 

response lasted for 37 weeks. In the 11 year old stand, the N concentration for the 

mineral and broiler source returned to baseline levels after 18 and 23 weeks 

respectively. 

Soil and climatic conditions have an effect on the rate of leaching as is shown by 

Mortensen et al. (1998) where they tested rates of nitrate leaching at establishment 

of Salix viminalis on two different sites and at two different levels of N application (0 

or 75 kg N ha-1). The first site was coarse sand with an average of 963 mm annual 

precipitation over the three year reporting period. The leaching rates were 130, 9 and 

4 kg N ha-1 in each of the three years. On the second site, a loamy sand soil with 

710 mm average annual precipitation, the leaching rates were 142, 61 and 0 kg N 

ha-1 in each of the three years respectively. The large leaching rates for the first year 

were due to an abnormally high mineral N fraction in the soil at time of planting. The 
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0 kg N ha-1 leaching rate found on the second site in the third year was due to a low 

precipitation for that year coupled with poor percolation into the soil. The difference 

in leaching rates between the fertilized and control treatments in the first period was 

32 kg N ha-1 (average over both sites) and only 1-2 kg ha-1 in the following two 

periods. From this study it could be concluded that there were differences in the 

rates of leaching of N between different soil types and climatic conditions, and the 

percentage loss relative to that which was applied is variable and not easy to predict. 

Also important to note was that increased temperature and moisture in clear felled 

stands, coupled with reduced vegetation cover, led to high rates of N leaching.  

K is present in soils in an array of forms that can range from cations in the soil 

solution to a constituent of solid un-weathered primary minerals (Morris, 1980).  K 

availability for uptake by plants varies between the different forms of K and is 

replenished by the exchangeable fraction of K that has been adsorbed onto the 

surface of soil particles by electrostatic forces (Morris, 1980).  

Pedersen et al. (2006) tested the leaching versus input rates of N, K and Mg of 

different application rates on Nordmann fir (Abies nordmanniana) on four different 

sites. For K it was found that there is a linear relationship between leaching, 

application rate and atmospheric deposition on three of the four sites. The fourth site 

did not show a linear relationship which was attributed to its clayey texture and high 

CEC, caused by a majority of calcium proportionate to the low levels of K. In no 

instance did the leaching rate ever exceed the total input into the system on any of 

the four sites. The leaching response of K was very site specific and was affected by 

soil properties such as texture, pH, CEC and climatic conditions (mostly 

precipitation) which influences percolation rates. 

2.5 Response to P application and soil characteristics 

Soil characteristics play a very important part in fertilization as it is one of the most 

determinant factors of the degree of response that can be expected when fertilizer is 

applied to a stand. Soil characteristics such as parent material, soil texture, drainage 

class, pH and soil P retention capacity are briefly discussed below.  

The parent material of a soil is mostly responsible for soil characteristics such as 

particle sizes, pH, chemical status, texture, drainage capacity and some other 

properties which interact with nutrients in the soil. Knowing the parent material of the 
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site can assist the practitioner to better predict the type of soil chemical and physical 

properties that are characteristic of the site. This in turn can assist the practioner to 

better determine the dose of P fertilizer that should be applied.  

Phosphorus in soils is associated with individual soil particles or conglomerates, the 

finer the soil particles the higher the degree of association with phosphate (Busman 

et al., 2009). In the event of erosion, more fine particles than coarse particles are 

removed from the site, causing a higher fraction of P to be removed from the soil and 

deposited in a different location (Busman et al., 2009). In areas with high runoff, 

applied P has the potential to be removed from the site with heavy precipitation since 

P experiences minimal to no vertical movement in the soil (Cornforth, undated). 

The drainage of a soil is related to the texture of the soil, a sandy soil has better 

drainage than a clay soil. In the Southern United States it was found that the degree 

of the response to P application is highest when the drainage is poor and lowest in a 

well-drained soil (Dickens et al., 2009). The reason for this being the case, is the 

varying degree of phosphate reactive surfaces, P retention capacity (discussed later) 

and soil water with the varying texture classes. 

In low soil pH conditions (pH below 5.5) phosphate ions will react with Al and Fe ions 

and form solid compounds which are generally unavailable to the plant for uptake 

(Busman et al., 2009). In high pH conditions (pH above 7.3), Ca is the ion which 

reacts with phosphate and will form a precipitate of compounds such as octocalcium 

phosphate and hydroxyapatite (Busman et al., 2009). The most adequate pH range 

for the highest uptake of phosphate by the plant is between 6 and 7 (Busman et al., 

2009). The soil phosphate retention capacity is a measure of the maximum soluble P 

that can be “sorbed” onto the surface of soil particles and is expressed as mg kg-1 of 

soil (Turner et al., 2002). The higher the soil P retention capacity, the higher the 

amount of P fertilizer that is required by the soil for a positive response to be seen in 

the growing crop (Cornforth, undated). 

 

2.6 Phosphorus application and its effect on nitrogen 

N and P are the two nutrients which most commonly are limiting to tree growth in 

forest soils (Graciano et al., 2006). These two nutrients are closely associated with 
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each other and often have to be applied simultaneously to elicit optimal responses. 

In fact, numerous previous experiments have shown this relationship, those 

responses to N application depends on P availability and in some extreme cases P 

deficiency growth can actually be reduced by N fertilization (Graciano et al., 2006). A 

positive growth response by trees to P application is often the case when P is 

applied to stands as plantations are usually established in areas of high rainfall with 

low P availability (Graciano et al., 2006). 

In an experiment conducted by Graciano et al. (2006), the effect that P availability 

has on N absorption of young trees was investigated. Three month old E. grandis 

seedlings were transplanted into pots (one seedling per pot) which were filled with 

three different soil types (deep red sandy soil, dark brown loamy sand and silt clay 

loam) and were watered on a daily basis. One week after transplant, the seedlings 

received an application of either N (1, 2 or 4 g of urea) or P (6, 12 or 24 g of triple 

superphosphate) per pot. Samples and measurements were taken on three different 

occasions namely 44, 72 and 84 days after transplant and subsequent analysis was 

done. A positive response to P application was found across all three soil types and 

at all levels of application. Plants fertilized with P had a significantly different 

root/shoot ratio compared to plants just receiving N, as those plants partitioned more 

nutrients to shoot growth than to development of larger root systems. With the N 

application some surprising observations were made. It was found that N fertilization 

only improved the N concentration of the foliage, but produced no significant 

response in terms of growth (across all three soils, which are N deficient). Important 

to note is that the N uptake by the plants was higher when P was applied than when 

N was applied without P across all treatments.  

What can be concluded from this experiment and many more like it, is that despite a 

naturally N deficiency in the soils used here, application of N on its own did not 

improve N uptake by the plants. P application on the other hand caused more N to 

be taken up by the plant and increased the foliar nutrient concentrations of not only 

N and P but other nutrients such as sulphur. 

This experiment provides valuable data for foresters for understanding how these 

two macronutrients interact with one another and cements the idea that, to see the 

most significant response, the availability of N and P to the plant must be balanced. 
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Decisions can be made as to what and when fertilizer will be applied not only to 

younger plants but to more mature standing crops as well.  

 

2.7 Organic matter and microbial and enzyme activity 

The effect of fertilization and more specifically P fertilization in forest soils does not 

only influence growth, foliar nutrient content and nutrient status of the soil. Other soil 

properties such as microbial activity, changes in dissolved organic matter and soil 

enzyme activity are also affected by the addition of P fertilizers (Wang et al., 2008). 

The soil dissolved organic carbon, total soil N and P are not significantly changed by 

the addition of fertilizers, and however, the effects are predominantly seen in the size 

of the plant available fraction of N and P (Wang et al., 2008). In a study done by 

Wang et al. (2008), it was found that P fertilization significantly increased, on 

average 80 % more than the control plot, the organic P concentration in the soil of a 

four month old E. dunnii stand. When only N was applied the organic P concentration 

in the soil decreased by an average of 29 % relative to the control. 

P fertilization tends to lead to a decrease in the soil available N, as with the addition 

of P, more N is taken up by the plant leading to a lowered N availability in the soil 

(Wang et al., 2008). This lowered plant available N acts as a trigger for soil microbes 

to release N that was previously immobilized in the soil microbial pool leading to a 

decrease in the microbial biomass N.  

In the same study by Wang et al. (2008), the activity of the enzyme acid 

phosphatase, the enzyme responsible for releasing “sorbed” phosphate groups from 

soil particles was determined under application of P. It was found that with the 

addition of P and the subsequent increase in the dissolved organic P fraction of the 

soil, the activity of phosphatase was reduced markedly but in comparison the activity 

of the soil enzyme invertase was increased. 

2.8 The fate of P applied to soils 

P has three major pools in the soil namely; the soluble P, the active P fraction and 

the fixed P pool (Busman et al., 2009). The soluble portion is the part that is readily 

available to the plant for uptake and the plants will only take up that portion if it’s in 

the orthophosphate form (Busman et al., 2009). The active P pool consists of both 

organic and inorganic P that is present in the soil in the solid phase. The soluble P 
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pool is small, so most of the plants are dependent on the active P pool to replenish 

the soluble P pool when it gets depleted (Busman et al., 2009). Extremely insoluble 

inorganic compounds and organic compounds which do not mineralize easily make 

up the fixed P pool in the soil (Busman et al., 2009). These phosphate compounds 

can remain in the soil for long periods of time without becoming available for plant 

uptake. When P is applied to the soil, there are a few possible pathways that it can 

follow. 

P fertilizers are generally quite soluble and in a form which is readily available to the 

plant for uptake (Busman et al., 2009). In solution, the maximum uptake of P occurs 

at a pH of ± 4 (Haynes, 1982). As soon as the fertilizer has made contact with the 

soil, it undergoes a series of reactions which are dependent on the soil 

characteristics. These will render some of the P unavailable to the plant. The water 

in the soil will start to dissolve the fertilizer particle and release phosphate into the 

soil solution, the phosphate ion can then move away from the particle through the 

movement of water in the soil (Busman et al., 2009). During this movement, the 

phosphate will either be taken up by the plant, react with other elements along the 

way or be sorbed onto the surface of soil particles. 

In low soil pH conditions, phosphate will react with Al and/or Fe, and in high pH 

conditions it will react with Ca to form precipitates which are insoluble and temporary 

unavailable to the plant (Cornforth, undated). Over time, further reactions with Al, Fe 

and Ca can form solid compounds such as variscite (Al), strengite (Fe) and apatite 

(Ca) which form part of the fixed P pool (Busman et al., 2009). Phosphate can be 

adsorbed onto the surfaces of soil particles where it is temporarily taken out of soil 

solution. The extent of adsorption is dependent on the characteristics of the 

adsorbing surface in question and phosphate ions can be fully absorbed into the 

particle over time and slowly released again through the process of diffusion 

(Cornforth, undated). The relationship of the adsorbed P and the P in soil solution is 

directly proportional (Figure 2.2). 
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Figure 2.2: Relationship between adsorbed and soluble P (Busman et al., 2009) 

 

The specific P sorption of soil is a very important characteristic when trying to 

determine the P fertilizer requirement of a target crop. It is however not easy to 

establish which soil parameters are the most important when P sorption is concerned 

and this is due to a considerable degree of correlation between them (Syers et al., 

1971). The removal/neutralisation of one parameter, such as aluminium oxide, is 

likely to expose reactive sites that previously might have been covered (Juo and Fox, 

1977). In spite of this, it is still possible to identify a few general soil parameters and 

how they influence specific P sorption in soils, as found by Syers et al., (1971) and 

Juo and Fox, 1977: 

i. Parent material - Soils derived from basic igneous rocks have a higher P 

requirement than those derived from acidic parent materials. 

ii. Reactive surfaces - A high degree of reactive surfaces have a high P 

requirement. 

iii. Brunauer–Emmett–Teller (BET)-surface area – The higher the BET surface 

area the higher the P requirement.  

iv. Type of clay – Well-structured clays are able to adsorb less P than disordered 

clay types. 

v. Al and Fe – Al parameters (like exchangeable Al for example) are in most 

cases better correlated to specific P sorption than Fe. The chemical 

composition of Al in the soil plays a role in controlling both phosphate 

solubility and uptake by the plant. 
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The microbial pool in the soil is responsible for immobilizing a proportion of the 

applied P in its own biomass and releases it again in both organic and inorganic 

forms when there is a turnover of the microbes in the pool (Anonymous (c), 

undated).   

P is a nutrient which can remain in the soil system for long periods of time in 

unavailable forms to the plant. Often most of the P fertilizers applied to stands do not 

make it into the trees but either precipitate with Fe, Al or Ca, are immobilized by 

microbes or are adsorbed to charged surfaces of soil particles.  

2.9 Longevity of P fertilizer response 

P fertilizers often yield a positive response in growth as mentioned earlier due to it 

being one of the most common limiting nutrients in forest environments. To be able 

to report on how long this response lasts is imperative information needed for 

scheduling future applications. The longevity of the response is investigated further 

below with the reference to two particular cases. 

Case 1 is a study on the residual response of P fertilization on P. radiata over a 50 

year period. The study site is in New South Wales, Australia, on highly weathered, 

coarse textured sandy to sandy loam soils (Turner et al., 2002). Rock phosphate and 

superphosphate were applied in 1948 during the first rotation and the residual effects 

reported 50 years later in 1998, the end of the second rotation (Turner et al., 2002). 

Growth results indicated the tree height, basal area and volume growth did not differ 

between the two phosphate treatments, but they were significantly larger than the 

control, over the 33 year period of the second rotation. The MAI increased from 9.3 

m3 ha year in the control, to 14.8 m3 ha year mean in the phosphate treatments. 

Similar responses, like the 50 year longevity seen here, were observed on soils 

which have sedimentary origins or originate from volcanic ash (Turner et al., 2002). 

Case 2 is a study done by Crous et al. (2008) in Swaziland on P. patula, at Usutu 

plantation, on Gabbro derived soils. The fertilizer was applied in the third rotation of 

the stand in a factorial of P x K to set up the foundation for the fourth rotation trial 

which will test the residual effect of the previous rotation’s application. The results 

showed that in plots which received both P and K application, the residual effect was 

significant on the quadratic mean DBH, mean tree height and mean plot volume over 

the three year measuring period, meaning that the longevity of the response lasted 
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for at least three years into the second rotation. When P was applied on its own to a 

plot in the third rotation, no residual effect was observed in any of the plots of the 

forth rotation. The longevity of the response lasted only for a short period towards 

the end of first rotation. 

Gaining a positive response to P application in forest soils is highly dependent on 

soil characteristics. Different forest soil types affect reactions taking place in the soil, 

making P either available or unavailable to the plant for uptake. The longevity of a 

response is another element dependent on the soil. Sandy to loamy sand soil is the 

soil texture that produces some of the longest residual effects, up to 50 years 

(Turner et al., 2002) and possibly longer. P fertilization can greatly change the 

production capacity of a site and should not only be applied in cases of P deficiency 

but is also beneficial in cases where N is limiting, as P is able to enhance the 

response of N fertilization on N limited sites. 

2.10 Measurement and analysis of young/small pine species 

In cases where a fertilizer response is achieved as a result of its application, a 

selection of measurement techniques can be used to quantify such a response. The 

analysis of fertilizer research plots with young/small trees posed a problem to the 

researcher as few of the conventional volume calculations and analysis methods 

could be used. When working with fertilizer trials at establishment, the two most 

frequently asked questions are: (a) what growth response was observed in response 

to the treatments, (b) how survival and stand uniformity was affected.   

In forestry, the growth index that is of most interest is the utilizable volume growth, 

but it is difficult to accurately determine it at a young age. To overcome this problem 

the use of surrogate measures such as biomass or volume indices (King et al., 2008; 

McKeand et al., 2000) and plot volume indices (Marx et al., 1977) are used. The 

question that needs to be asked is whether these surrogate measures are an 

accurate enough estimation of volume, biomass and growth. 

In studies done by international researchers, Hensley and Aldridge (1990), Fan et al. 

(2002), Klooster et al. (2010) and local researchers, Noble (1992a), McInnes (1993) 

and Rolando et al. (2007), on fertilizer treatments at establishment of young trees, 

height and diameter growth are used separately as measures of treatment 

responses.  Height and diameter analyzed individually are often not sound variables 
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to measure treatment responses as the response is often not reflected solely in 

either of those two growth indices. Often small or non-significant responses are 

found in many trials, reflecting a false positive or false negative response (type I and 

type II errors). Baker et al. (1974) proposed that the use of tree weight/biomass or 

volume would be a better indication of fertilizer response as it would include 

secondary effects on fertilized trees such as the production of additional foliage. 

In a study conducted by Ruehle et al. (1984) on two and three year old pine 

seedlings, they tested the correlation between non-destructive growth indices and 

above ground tree weight or biomass. Three models (linear, non-linear and 

logarithmic) were used in the study to determine the strength of the correlation. The 

measurements of root collar diameter and height to calculate a biomass index was 

used. In order to compare the effectiveness of each model, the R-squared values 

obtained were used in the analysis of various data sets of young pines measured on 

different sites. They found that the linear and non-linear models performed equally 

well across the board but had a considerable amount of variation when they 

compared the residual values. The logarithmic model performed the best (having the 

highest R-squared value) and dealt with the residual variation problem quite well. 

Furnival’s index was then calculated for the linear and logarithmic model for each of 

the data sets used across the variety of sites to determine the goodness of fit for 

both models. The logarithmic model outperformed the linear model in all of the sites. 

To conclude, both D2H and log (D2H) show strong enough positive correlations with 

above ground tree weight/biomass and can thus be used to reduce the likelihood of 

type I or II errorswhen investigating treatment responses on young trees. 

One standard method used in assessing the effects of treatments on seedling 

mortality was to transform the plot survival percentages.  Amishev and Fox (2006) 

tested the effects of fertilization and weed control on four pine species, namely: P. 

taeda, P. virginiana, P. strobus and P. echinata. The survival count data of each plot 

was converted to a percentage value and then transformed using an arcsine function 

before subjected to statistical analysis using Anova techniques. Rolando and Little 

(2005) used the same methodology on P. elliottii, while McKeand et al. (2000) used 

an arccosine function instead. 
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Another useful comparison is that of trial results across different sites and different 

Pinus spp. Rolando et al. (2007) compared the results of nine pine fertilizer at 

establishment trials across different sites in KwaZulu-Natal and Mpumalanga in 

South Africa. The relative differences between the treatment responses (change in 

growth) and survival rates were compared to the control and expressed as a 

percentage (Equation 1). For example if the control yielded a biomass index of two 

and a particular treatment an index of 2.5, the increase would be calculated to be 

25%. The formula was as follows: 

 

                   
                               

             
          

 

This method allows for specific comparisons to be made across a variety of sites and 

with different species. 

2.11 LAI determination 

LAI can be defined as the “total one-sided area of leaf tissue per unit of ground 

surface” and any changes in canopy LAI can result in changes in stand productivity 

(Bréda, 2003). LAI is directly related to light capture and the photosynthetic potential 

of a forest stand. An increase in LAI can result in an increase in light capture, but this 

relationship will decrease at higher LAI values proportional to the light extinction 

characteristics of the tree canopy. LAI is also a driver of many important functions 

such as radiation extinction, interception of precipitation and gaseous exchange 

(Bréda, 2003) and therefore it is important to have an accurate measure thereof. LAI 

varies both spatially within the stand and temporally. Temporal variation includes 

changes in branch phenology, stand development, needle expansion and needle 

senescence (Vose et al., 1994).   LAI is also influenced by site quality (nutrition, soil 

water holding capacity, soil depth, etc.), climate (precipitation, PAR, temperature, 

etc.) and climatic variability (droughts, flood events, etc.). Species/genus, laws of 

light extinction, site quality and climate conditions set the upper limit of LAI and 

climatic and seasonal variation results in the fluctuation of LAI within these limits 

(Vose et al., 1994). Species with the greatest shade tolerance usually have the 

greatest maximum LAI. Beets and Pollock (1987) reported on maximum LAI (all 

surface) values in P. radiata in New Zealand to be between 22.1 and 31.1, which is 
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approximate to a projected leaf area of 7 and 9,8 m2/m2 respectively, peaking at an 

age of six years. In young stands before canopy closure, the majority of the foliage is 

present in the lower canopy positions rather than mid to high positions, which result 

in the LAI distribution to be downward skewed (Vose et al., 1994). 

 

LAI can be measured either directly, through litter fall collection, destructive sampling 

or point contact sampling, or indirectly by means of optical techniques and models 

(Chen et al., 1997). Direct measurements relate only to foliage so they provide the 

most accurate measures of LAI, but are extremely time consuming and costly. There 

are errors associated with direct measurements such as variance within the stand 

and errors in the estimation of the foliage area: mass ratio used to scale up from the 

foliage sub sample to the tree and finally the stand (Chen et al., 1997). Indirect 

optical measurements estimate LAI through the transmission of radiation through the 

stand canopy making use of the radiative transfer theory (Bréda, 2003). The 

accuracy of this method is dependent on the following assumptions being met: 1) 

leaves are randomly distributed within the canopy and 2) individual leaf size is 

relatively small when compared with canopy size 3) leaves have a set angular 

distribution and 4) be randomly distributed azimuthally and in space (Bréda, 2003; 

Dovey and du Toit, 2006). There is however two problems often encountered with 

the use of this method. Firstly the under canopy measurements of the radiation 

interception include interception by non-foliage elements such as branches and 

stems. For this, PAI (plant area index) is more commonly used in literature than LAI 

when this method is used with no correction factors to eliminate the woody 

proportion from the measurements (Bréda, 2003). Secondly, indirect methods have a 

tendency to underestimate LAI in coniferous stands (Gower and Norman, 1991). 

This is mostly due to the first assumption being violated, as clumping of foliage within 

the stand is common (Bréda, 2003). 

 

2.12 Foliar analysis 

Foliar analysis has been widely used in forestry in the past and can easily diagnose 

a nutrient problem at any particular point in time. There are three established 

methods widely used by researchers namely; critical level approach, diagnosis and 

recommendation integrated system (DRIS) and vector analysis. These are based on 
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the following assumptions (Linder, 1995): 1) Optimal growth and plant vitality can 

only be achieved if nutrients are present in their correct proportions; 2) The 

proportions of elements relative to N are just as important as their individual 

concentrations; and 3) To optimise biomass production in a given climate all 

essential nutrients should be applied at a rate which meets the nutrient demand of 

the crop, as is affected by mineralization and fixation rates of the soil. To achieve 

meaningful foliar analysis especially for use in comparative studies, it is imperative to 

standardize the sampling procedures to avoid errors in the data caused by seasonal 

and temporal variation. The application merits and shortfalls of each method are 

discussed.  

 

2.12.1  Critical level approach 

In the critical level approach foliar material would be collected from the top third of 

the crown and its percentage nutrient concentrations analysed. The concentrations 

of each nutrient are then compared with the critical level of that nutrient for the 

particular species in question. The critical level can be defined as “the foliar nutrient 

concentration at which yield attains 90% of the possible maximum” (Ulrich and Hills, 

1967) and differs for each nutrient element and between various species. 

The first problem with the critical level approach relates to phloem mobility or rather 

immobility of some nutrients (Gregoire and Fisher, 2004). For example, Comerford 

(1981) found that the K concentration varied five-fold between lower and upper 

crown positions. It is therefore important that the relative sampling position in the 

crown be chosen as to give the most accurate results. An additional form of variation 

in nutrient concentrations is seasonal changes and needle/leaf age. Nutrient 

concentrations peak early in the growing season and decline as the season 

progresses and soil reserves are depleted (Gregoire and Fisher, 2004). Current-year 

foliage concentrations vary more significantly than older foliage as they are still 

accumulating dry weight during the season, thus the timing of sampling must be 

chosen appropriately (Gregoire and Fisher, 2004). 

For pines, sampling should be done late in the growing season, i.e. around late July-

August in the winter rainfall region, in the upper third of the canopy on one-year old 

needle tufts. For eucalypts, sampling should ideally take place in late summer/early 

autumn, on the first fully extended leaves of a live branch in the upper third of the 
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canopy (Dell et al., 1995) The second problem with this approach is that only one 

element can be interpreted at a time and vital elemental interactions are missed 

(Svenson and Kimberly, 1988) 

The critical level approach can provide the researcher with a snapshot in time of the 

plant’s current nutrient status but falls short in providing information on the rate of 

fertilizer needed to correct the deficiencies and the level of response that can be 

expected (Gregoire and Fisher, 2004). 

 

2.12.1  DRIS 

DRIS provides an alternative approach. It provides the researcher with a mechanism 

of defining optimum nutrient balance for a specific species in a specific location and 

the simultaneous comparison of optimum nutrient conditions (Needham et al., 1990). 

DRIS therefore solves the second problem of the critical level approach by providing 

the researcher with of addressing nutrient interactions by using ratios of foliar 

concentrations to calculate indices that can be used to further diagnose the plant 

nutritional status (Svenson and Kimberly, 1988). DRIS norms can be defined as the 

‘’average foliar nutrient pairs or ratios for high yielding stands’’ (Gregoire and Fisher, 

2004). The system is mainly based on the comparison of calculated nutrient indices 

with data obtained from chemical foliar analysis and already established DRIS 

norms. These indices cannot only be ranked in the level of importance but also 

provide an initial indication as to the amount of nutrient addition required by the plant 

(Gregoire and Fisher, 2004). Users have found that DRIS however is subject to the 

same variability to sampling timing and location as experienced for the critical level 

approach (Benton Jones, 1993) and as a result leads to indices that can be 

misleading and incorrect. 

 

 

2.12.3  Vector Analysis 

Vector analysis is a diagnostic technique that allows the researcher to compare plant 

growth, foliar nutrient content and foliar nutrient concentration with each other for 

individual trees and nutrients (Haase and Rose, 1995). In this way the growth 

responses of the trees to the fertilizer treatments can be assesed in a way that yields 

more descriptive information on the physiological level. This information is then 
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presented in a graphical format termed a vector nomogram. One of the major 

advantages of this approach is that the vector interpretations and comparisons are 

based on treated and untreated trees grown under the same site conditions and 

silvicultural regime (Gregoire and Fisher, 2004) 

Foliage can be sampled around the same time as critical level foliar analysis. The 

vector method algebraically compares treatment responses within an experimental 

design to a reference treatment, usually an untreated control. All calculations are 

normalized to 100 for ease of interpretation. The vectors for the x and y axes are 

calculated using the following two equations (Haase and Rose, 1995) (see section 

3.6.5): 

 

               
                             

                           
          

 

               
                                   

                                 
          

 

This allows for relative nutrient comparisons between individual plots and individual 

nutrients. The nutrient content is calculated according to the following formula 

(Haase and Rose, 1995): 

 

                                                                (4) 

 

The unit dry weight can be anything from foliar dry weight to whole plant dry weight, 

but should be kept constant for the analysis. For this study, foliar dry weight will be 

used as it is highly correlated with long term growth responses (Haase and Rose, 

1995). After the normalization is complete, the responses, or vectors, can be plotted 

on a vector nomogram. 

 

The directional shifts of the vectors will be used to interpret and diagnose the 

nutritional responses of each treatment. The magnitude and direction of each vector 

indicates the degree of response obtained. Possible interpretations and diagnosis 

are presented in Table 2.2.  

 

Stellenbosch University  http://scholar.sun.ac.za



36 
 

Critical level foliar analysis is good for determining nutrient deficiency, sufficiency or 

toxic levels at a particular point in time and while DRIS allows the study of nutrient 

balances and interactions, it is more informative to understand how the nutrient 

levels responded to the different nutrient additions over time. 
Table 2.2: Directional shifts (adapted from Haase and Rose, 1995) 

  Response in:    
Direction 
of shift 

Dry 
weight 

Nutrient 
conc. 

Nutrient 
cont. 

Interpretation 
Possible 
diagnosis 

A + - + Dilution Non-limiting 
B + 0 + Sufficiency Non-limiting 
C + + + Deficiency Limiting 

D 0 + + 
Luxury 
consumption Non-toxic 

E - ++ ± Excess Toxic 
F - - - Excess Antagonistic 

 

 

2.13 Biomass growth and nutrient accretion  

The accretion of nutrients into the biomass is important to the internal and external 

nutrient cycle (Morris, 1992). Measuring how much nutrients accumulated in the total 

foliar biomass provides aid in explaining the growth patterns observed out in field. 

Silvicultural treatments that increase the availability of growth resources (slash 

management, fertilization, etc.) can affect stand growth dynamics in several ways. 

This usually leads to one or more of the following outcomes; 1) increased leaf area; 

2) increased photosynthetic efficiency; and 3) changes in allocation of carbon to 

plant parts (du Toit and Dovey, 2005). Cromer et al. (1993a) and Leuning et al. 

(1991) emphasized that optimum plant nutrition in young stands is critical because of 

its potentially large impact on early growth through its effect on early development of 

leaf area and photosynthetic efficiency. 

 

It is essential to measure the degree of nutrient accretion or uptake by the trees, 

especially N, over the monitored growing period. Cromer et al. (1993b) found that 

80% of the total N uptake by young Eucalyptus trees in both fertilized and control 

plots was present in the foliage and for every 1 kg of N present in the foliage equated 

to an above ground production of 220 kg dry matter each year, irrespective of the 

treatment applied.  
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Chapter 3 Materials and Methods 

3.1 Introduction 

This chapter provides a detailed description of the selected study sites, trial designs, 

treatments applied, measurements carried out and the statistical techniques that 

were used to analyse the data.   

3.2 Description of study sites 

This study was conducted on four study sites, one located in the Western Cape 

Province and the other three in the KwaZulu-Natal Province of South Africa. In this 

trial series, the CRF was tested with four different commercial forestry species, 

growing in three distinct climatic zones with varying soil conditions. The sites and 

their climatic zones of the four sites are shown in Table 3.1 and Figure 3.1. 

Table 3.1: Site names and their climatic zones 

Site number Site name Climate zone 

1 Coetzenburg Temperate Coastal 
2 Mtunzini Sub-tropical coastal 
3 Flatcrown Sub-tropical coastal 
4 Woolstone Temperate interior 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The locations of the four trial sites in different climatic zones of SA (Adapted from 
Anonymous, 2013). 
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The Coetzenburg site is located in Stellenbosch, situated approximately 40 km South 

East of Cape Town, on the mountain land of the University of Stellenbosch.  The trial 

site was previously stocked with several Pinus spp which burnt down in 2009 and the 

site was overgrown with fynbos vegetation following the event that prevailed around 

the trial site (Figure 3.2).  

 

Figure 3.2: A portion of the Coetzenburg site after planting. The fynbos vegetation is visible.  

 

The climate can be classified as temperate with well-defined wet periods in the 

winter months (from May/June until August) and hot, dry summer months 

(November/December until March/April). Figure 3.3 shows the mean daily 

temperature, mean monthly precipitation (MMP) and the moisture growing season, 

defined as the period where precipitation is greater than 0.3 x potential evaporation 

(Ep) (FAO, 1978). Mean daily temperatures vary between 12 °C and 21 °C from 

winter to summer months. MMP figures reach a low of 8 mm in December and a high 

of 100 mm in June and July. The active moisture growing season on the site lasts 

five months, starting in May and ending in September. The site is dominated by fine 

and coarse sand fractions with a soil depth of approximately 1 m. 

Stellenbosch University  http://scholar.sun.ac.za



39 
 

 

Figure 3.3: Mean monthly precipitation (MMP), mean daily temperatures, potential evaporation 

(Ep) and moisture growing season gradient line (Ep x 0.3) of the Coetzenburg study site. 

 

The Mtunzini (Figure 3.6 and 3.7) and Flatcrown (Figure 3.8) sites are respectively 

located in compartments A009 and A035 on Mondi’s Mtunzini and Kwambonambi 

plantations along the coastline of north-eastern KwaZulu-Natal. Both locations fall 

within the summer rainfall region of South Africa with a typical warm, humid sub-

tropical climate. The Mtunzini site is situated 2 km south west of the town of Mtunzini 

and wad previously under sugar cane production. According to the SA soil 

classification system, the dominant soil in compartment A009 is a grey Fernwood 

family, with a sub-domination form being a Hutton family. Both of these soil forms 

have very sandy topsoil with medium and fine sand the dominant texture classes. 

The organic carbon (OC) content in the weakly structured, orthic topsoil horizon is 

less than 0.5 %. The depth of the soil profile typically exceeds 1.5 m on the site. 

Table 3.2 shows the typical soil properties. Figure 3.4 indicates the mean climatic 

values for temperature, precipitation, potential evaporation and the moisture growing 

threshold. The site is warm, with mean temperatures varying between 17.5 °C and 

26 °C throughout the year. The site commonly receives in excess of 1 150 mm of 

precipitation annually, with 70% of it falling between October and March. Although 

there is a reduction in precipitation during the winter months, the site receives 

sufficient moisture to result in an all year round moisture growing season. The 

climatic information of the four sites was summarized (Table 3.3). 
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Figure 3.4: Mean monthly precipitation (MMP), mean daily temperatures, potential evaporation 

(Ep) and moisture growing season gradient line (Ep x 0.3) of the Mtunzini study site. 

 

Table 3.2: Summary of the major soil properties on the four study sites 

Soil information Coetzenburg Mtunzini Flatcrown Woolstone 

Family 
 

Fernwood Fernwood Inanda 

pH (KCl) 
 

4.5 4.2 4.4 

P Bray II (PPM) 
 

20 5 3 

Exchangeable Na (cmol (+)/kg) 
 

0.09 0.1 0.16 

Exchangeable K (cmol (+)/kg) 
 

0.04 0.05 0.39 

Exchangeable Ca (cmol (+)/kg) 
 

0.77 0.46 1.08 

Exchangeable Mg (cmol (+)/kg) 
 

0.31 0.41 0.96 

Organic carbon (%) 

 

0.3 0.41 2.67 

Clay (%) 13 4 6 49 

Silt (%) 7 5 4 16 

Fine Sand (%) 34 50 50 24 

Medium Sand (%) 9 39 38 5 

Course Sand (%) 37 2 2 6 

- Only textural analysis performed on Coetzenburg site 

Fernwood is the dominant soil form at the Flatcrown site, with characteristic lightly 

coloured A and E horizons. The OC content of the soil is less than 0.5 % with an 

average topsoil sand fraction of >90 %. The soil depth at Flatcrown is greater than 2 

m. Detailed soil properties and typical climatic patterns of the site follow (Table 3.2 

and Figure 3.5). Flatcrown is slightly warmer and drier than Mtunzini. Mean daily 
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temperatures range from 18 °C to 26 °C with a MAP of 1 100 mm. Similarly to 

Mtunzini 70 % of the MAP is received between October and March. Even though the 

site is drier and warmer than Flatcrown, it also has an all year round moisture 

growing season. 

 

 

Figure 3.5: Mean monthly precipitation (MMP), mean daily temperatures, potential evaporation 

(Ep) and moisture growing season gradient line (Ep x 0.3) of the Flatcrown study site. 
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Figure 3.6: A photo of the Mtunzini site three days after planting 

 

Figure 3.7: The Mtunzini site with the Coastal forest patch on the compartment border 
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Figure 3.8: The Flatcrown site at Kwambonambi. The indigenous forest patch can be seen in 

the background 

 

The fourth site is located approximately 15 km north west of Greytown on 

compartment H003 (Figure 3.10) of Mondi’s Woolstone plantation which forms part 

of the Holmesdale estate. The site was previously stocked with E. grandis. The soil 

on the site is characterised by red apedal soils of the Inanda form with a moderately 

high to high (35 – 65 %) clay percentage in the soil column. The OC content of the 

soil is approximately 3 % on average, but sampled topsoil areas are as high as 10 % 

(Appendix 1D). Refer to Table 3.2 for soil characteristics of the site. The study site is 

situated in the summer rainfall region with a MAP of 850 mm. The temperate climate 

of the region and the altitude of the site result in mean daily temperature range of 

between 13 °C and 24 °C. The active moisture growing season for the site starts in 

September and lasts until late March/early April (Figure 3.9). 
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Figure 3.9: Mean monthly precipitation (MMP), mean daily temperatures, potential evaporation 

(Ep) and moisture growing season gradient line (Ep x 0.3) of the Woolstone study site. 

 

Table 3.3: long term climatic averages of the four trial sites 

Climate information Coetzenburg Mtunzini Flatcrown Woolstone 

Mean Annual Rainfall (mm)  616 1132 1064 885 

Mean Annual Temperature (°C)  17.5 22 22 19 

Mean maximum of warmest month (°C)  28 28 28 31 

Mean minimum of coldest month (°C)  8 14 14 6 

Mean Annual Min Temperature (°C)  12 17.5 17.5 13 

Altitude (m.a.s.l.)  215 45 80 1117 

Moisture growing season May-Sep. All year All year Sep. - Apr. 
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Figure 3.10: The Woolstone site on the day of treatment application.  

 

3.3 Trial design and Treatments 

 

3.3.1   Coetzenburg 

The Coetzenburg trial was designed as a factorial combination with the three factors 

(N, P and K) applied in different levels. The trial design was a 3 x 2 x 3 + 6, with 

three levels of N, two levels of P and three levels of K in factorial combination. Six 

additional treatments were used to make some direct comparisons between the 

controlled release fertilizer and the conventional forms. This design allowed us to 

test for differences between the 18 CRF treatments, differences between CRF and 

CV sources and to evaluate the performance of P. elliottii x caribaea compared to P. 

radiata. This equates to 120 plots for the entire experiment. The plots were laid out in 

a rectangle with a 6 x 5 configuration (30 trees per plot) with an espacement of 3 m x 

3 m. The controlled release sources for N and K were coated Urea (42 % N) and 

KNO3 (35 % K) respectively. P was not tested in a controlled release form due to 

unavailability of the product. The conventional sources of N, P and K were 

Limestone Ammonium Nitrate (LAN, 27 % N), double supers (19.6 % P) and KNO3 
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(38 % K). Each treatment was assigned a corresponding treatment number with the 

controlled release treatments receiving numbers 1 through to 18 and the additional 

treatments, numbers 19 to 24. The additional treatments were as follows:  

i. Control plot with no fertilizer application, treatment 24. 

ii. Plot with P. elliottii x caribaea hybrid fertilized, treatment 22. 

iii. Plot with P. elliottii x caribaea hybrid unfertilized, treatment 23. 

iv. Comparison of controlled vs. conventional fertilization at the following 

treatment levels: 

a. N3P1K0 – Comparison with conventional N application as LAN, 

treatment 19. 

b. N1P1K2 – Comparison with conventional K application as KNO3, 

treatment 20. 

c. N3P2K2 – Comparison with conventional NPK application at the 

highest treatment levels, treatment 21. 

The experimental design is summarised in Table 3.4. The application details of all 24 

treatments are summarised in Table 3.5. 

Table 3.4: Coetzenburg experimental design summary 

  Coetzenburg trial site 

Species P. radiata & P. elliottii x P. caribaea 

Experimental design Factorial 3 x 2 x 3 + 6 

Number of replications 5 

Number of plots 120 

Plot size 270 m2 

Espacement 3 m x 3 m (1111 spha) 

Total area used 3.25 ha 

Date established 24 June 2010 

 

 

3.3.2   Mtunzini, Flatcrown and Woolstone 

The three Eucalyptus trials at Mtunzini, Flatcrown and Woolstone plantations were 

designed differently to the Coetzenburg trial. With previous trials (using conventional 
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fertilizer sources) in these areas very rarely shows any significant responses to the 

application to K (Noble, 1992a) only N and P were tested. Fewer factors with fewer 

treatments meant that with the reduced number of plots per replication, more 

replications per site could be laid out and therefore increase the statistical power of 

the trial. Four levels of coated N, with a mixture of two (25 %) and eight (75 %) 

month release and two levels of P (conventional) were tested in a factorial 

combination with one additional all-conventional treatment at Mtunzini and Flatcrown 

for a design of 4 x 2 + 1 and two additional treatments, one all-conventional and one 

all-controlled release, at Woolstone for a 4 x 2 + 2 design. Summary of the trial 

designs are shown in Table 3.6. The additional treatments were as follows: 

i. Treatment CV11, conventional LAN and MAP application simulating 

the elemental nutrient contents of N and P provided by treatment 

number 4. See Table 3.7 

ii. Treatment CRF 7-3-0, controlled release fertilizer treatment 

MULTICOTE® 7-3-0 which contains a mixture of Urea and MAP, both 

coated. 

 

3.3.3   Fertilizer placement 

On the Coetzenburg and Woolstone site, two narrow bands 25-30 cm were made on 

either side of the tree, approximately 40-45 cm in length and 10 cm deep, for the 

placement of both the CRF and CV sources. On the Mtunzini and Flatcrown site, a 

different approach was used for the CRF source. Three holes, 15-20 cm in diameter 

and 10 cm in depth, were made around the tree for the application. The CV source 

for Mtunzini and Flatcrown was placed as at Coetzenburg and Woolstone. 
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Table 3.5: Application details of all 24 treatments tested at Coetzenburg 

Treatment  Code Species N level 
Applied 
grams of 
product 

Grams 
of 

element 
P level 

Applied 
grams of 
product 

Grams 
of 

element 
K level 

Applied 
grams of 
product 

Grams 
of 

element 

1 CRF110 P. radiata 1 14 6 1 107 15 0 N/A 0 

2 CRF210 P. radiata 2 48 20 1 107 15 0 N/A 0 

3 CRF310 P. radiata 3 95 40 1 107 15 0 N/A 0 

4 CRF111 P. radiata 1 7 6 1 107 15 1 26 9 

5 CRF211 P. radiata 2 41 20 1 107 15 1 26 9 

6 CRF311 P. radiata 3 88 40 1 107 15 1 26 9 

7 CRF112 P. radiata 1 0 6 1 107 15 2 51 18 

8 CRF212 P. radiata 2 34 20 1 107 15 2 51 18 

9 CRF312 P. radiata 3 81 40 1 107 15 2 51 18 

10 CRF120 P. radiata 1 14 6 2 214 30 0 N/A 0 

11 CRF220 P. radiata 2 48 20 2 214 30 0 N/A 0 

12 CRF320 P. radiata 3 95 40 2 214 30 0 N/A 0 

13 CRF121 P. radiata 1 7 6 2 214 30 1 26 9 

14 CRF221 P. radiata 2 41 20 2 214 30 1 26 9 

15 CRF321 P. radiata 3 88 40 2 214 30 1 26 9 

16 CRF122 P. radiata 1 0 6 2 214 30 2 51 18 

17 CRF222 P. radiata 2 34 20 2 214 30 2 51 18 

18 CRF322 P. radiata 3 81 40 2 214 30 2 51 18 

19 CV310 P. radiata 3 148 40 1 77 15 0 0 0 

20 CV112 P. radiata 1 0 6 1 77 15 2 47 18 

21 CV322 P. radiata 3 126 40 2 153 30 2 47 18 

22 CVH322 P. elliottii x caribaea 3 81 40 2 214 30 2 51 18 

23 Control P. radiata 0 N/A 0 0 N/A 0 0 N/A 0 

24 CVH000 P. elliottii x caribaea 0 N/A 0 0 N/A 0 0 N/A 0 
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Table 3.6: Zululand and Midlands trials experimental design summary 

 Mtunzini Flatcrown Woolstone 

Species 
E. grandis x urophylla E. grandis x urophylla E. dunnii 

Clone number GU 608 GU 608 n/a 
Experimental design Factorial 4 x 2 + 1 Factorial 4 x 2 + 1 Factorial 4 x 2 + 2 
Number of replications 9 9 9 
Number of plots 81 81 90 
Plot size 294 m2 294 m2 315 m2  
Espacement 3 x 2 m 3 x 2 m 3 x 2 m 
Total trial area 2.38 ha 2.38 ha 2.84 ha 
Date established 11/07/2012 12/07/2012 5/12/2012 

 

The controlled release sources of N applied were the same as the Coetzenburg trial 

but the application rates were substantially. The conventional source of N used was 

the same (LAN, 25 % active) but the P source was uncoated MAP (12 % N and 26% 

P active) rather than Double supers. Application rates are summarised in Table 3.7.   

Table 3.7: Quantity of CRF applied at the Zululand and Midlands trial sites 

Treatment 
code 

Species N level 

Applied 
grams 

of 
product 

Grams 
of 

element 
P level 

Applied 
grams 

of 
product 

Grams 
of 

element 

Control E. grandis x urophylla + E. dunnii 0 N/A 0 0 N/A 0 

CV01 E. grandis x urophylla + E. dunnii 0 N/A 0 1 143 20 

CRF10 E. grandis x urophylla + E. dunnii 1 95 40 0 N/A 0 

CRF11 E. grandis x urophylla + E. dunnii 1 95 40 1 143 20 

CRF20 E. grandis x urophylla + E. dunnii 2 180 80 0 N/A 0 

CRF21 E. grandis x urophylla + E. dunnii 2 180 80 1 143 20 

CRF30 E. grandis x urophylla + E. dunnii 3 285 120 0 N/A 0 

CRF31 E. grandis x urophylla + E. dunnii 3 285 120 1 143 20 

CV11 E. grandis x urophylla + E. dunnii 1 148 40 1 185 20 

CRF7-3-0 E. dunnii N/A 410 29 N/A 410 12.3 

 

3.4  Soil sampling 

After the trial plots had been laid out on each site, a number of locations within the 

trial site boundary were chosen as soil sampling sites. This was done by dividing the 

trial site into four quadrants and taking the centre of each quadrant as the sample 

point. The sample points for the Flatcrown site are shown as an example in Figure 

3.11.  
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Figure 3.11: Flatcrown soil sampling points. 

 

Following identification of the sample points, a 1.8 m long auger was used to take 

three soil samples at each point. The first sample was taken at a depth of between 0 

cm – 20 cm, the second at 20 cm – 40 cm and the third at 40 cm – 60 cm. The 

samples were collected in air tight plastic bags. The sample labels were constructed 

as alphanumeric characters using the following guidelines. 

Table 3.8: Guidelines used to label individual soil samples taken at each trial site 

Site Mtunzini Flatcrown Woolstone Coetzenburg 

Character A B C D 

Sample point 1 2 3 4 
Character 1 2 3 4 

Sample depth 0-20 cm 20-40 cm 40-60 cm  
Character 1 2 3  

 

For example, sample A12, identifies a sample taken on the Mtunzini site, at sampling 

point number 1 and at a depth of 20 - 40 cm. The 42 (Only two locations in 

Coetzenburg trial sampled for textural analysis) samples were sent to Bemlab 

commercial laboratories for standard chemical and five fraction textural analyses. 

For full analysis results of each individual sample see Appendix 1A – 1D. Refer to 

Table 3.8 for identification of individual samples. 

P1

4 1

3 2

P81
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3.5  Soil analysis techniques 

The above mentioned soil samples were air dried and sieved through a 2 mm sieve 

for determination of stone fraction percentage. The bulk density of the sieved soil 

was determined by weighing 60 cm3 of soil at 20 °C and expressed as kg.m3.  Soil 

pH was determined with a 1 M KCl solution. Exchangeable cations (K, Ca, Mg and 

Na) were extracted at pH = 7 with a 0.2 M ammonium acetate solution. The extracts 

were analysed with a Varian ICP-OES optical emission spectrometer (Raath, 2013). 

Organic carbon content was determined using the Walkley-Black method (The Non-

affiliated Soil Analyses Work Committee, 1990). Extractable acidity was extracted 

with a 1 M KCL solution determined through titration with 0.05 M NaOH (Raath, 

2013). Available soil P was determined through extraction with Bray II solution (0.03 

M NH4F in 0.1 M HCL) and total P extracted with a 1:1 mixture of 1 N HNO3 and HCL 

at 80 °C for 30 minutes and determined with a Varian ICP-OES optical emission 

spectrometer (Raath, 2013). Total N content of the soil was determined through total 

combustion using a Leco Truspec CN analyser (Raath, 2013). Chemical dispersion 

is performed with sodium hexametaphosphate and three sand fractions identified 

through sieving as described by the Non-affiliated Soil Analyses Work Committee 

(1990). Silt and clay particle sizes were determined through sedimentation rates at 

20 °C using an ASTM E100 (152H-TP) hydrometer (Raath, 2013) 

 

3.6  Measurements 

Three groups of measurement techniques were applied at each site, selected 

according to their applicability or logistical feasibility.The first group consists of 

Coetzenburg, second Mtunzini and Flatcrown and the third Woolstone. A numerical 

superscript, either 1, 2 or 3 is placed behind each technique’s heading to denote 

which trial(s) it is relevant to. 

 

3.6.1   Biomass index1
  

An estimation of biomass was used for the Coetzenburg site as volume estimation 

was not the most feasible measure for statistical treatment comparison for small 

young aged trees. The methodology employed by Donald et al. (1987) was used. 
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To estimate the biomass growth of the trees over the two year monitoring period, 

ground line diameters and tree heights of each tree were measured. Diameters were 

measured in cm with a digital calliper and the measurements were taken on two 

axes, approximately 1-2 cm above the ground to maintain a degree of consistency. 

Tree height in cm was measured with a metal measuring pole marked with 1 cm 

increments. The same callipers were used for all three measurement exercises. 

A biomass index was determined for each tree measured (Equation 5); 

                 
                       (5) 

Where, Dgl = Ground line diameter in cm  

 

3.6.2    Volume estimation2 

 
The accurate estimation of volume in young trees is often difficult to achieve given 

that the majority of commercially developed volume equations calculate utilizable 

volume. The volume of the E. grandis x urophylla hybrids at one year of age was 

determined through the use of the equation developed by Hardiyanto and Tridasa 

(2000) as shown in Equation 6. 

                          (6) 

dbh = diameter at breast height (m) 

h = tree height (m) 

f = 0.65 (form factor) 

 

The ANOVA analysis was performed on the estimated mean volumes per hectare of 

each treatment. 

 

3.6.3   Foliar sampling1,2 

Post fertilization foliar samples were collected in early August 2011 and middle April 

2013 for the Coetzenburg Pinus spp, and Mtunzini and Flatcrown Eucalyptus spp 

trials respectively. For the Coetzenburg tial, three out of the five replications were 

sampled. Six trees out of each plot throughout replicates numbers one, three and 

five were selected for sampling. One year old needles were collected from two 

Stellenbosch University  http://scholar.sun.ac.za



53 
 

second order branches in the upper third of the crown from each of the selected 

trees.  

The needles collected from the six sample trees were bulked to form a single 

representative plot sample and sealed in a bag marked with the corresponding plot 

number. In the laboratory, mean fascicle length was determined from 30 fascicles for 

each plot. 

 The oven dry weight of 100 needles was recorded for each plot sample. All the 

samples were then packaged in clearly marked brown paper bags and sent to 

Bemlab for full chemical analysis. 

For the two Zululand Eucalyptus trials, six replications were sampled at Mtunzini and 

three at Flatcrown. One sample tree for each row of the inner plot was selected. The 

trees were selected systematically across a diagonal line, for e.g. tree 1 of inner row 

1, tree 2 of inner row 2, etc. Two representative branches were sampled, one from 

the upper half of the canopy and one from the lower half. All the leaves from the five 

trees were bulked as a single plot sample, labelled and stored in a cold storage 

container.  

For each individual plot, 60 g of fresh leaves were weighed out, scanned using a 

photoelectric digital scanner for leaf area determination and oven dried to a constant 

weight. From this a SLA m2.kg-1 per plot was determined for use in the estimation of 

total foliar nutrient content in 3.6.7. 

3.6.4   Foliar analysis techniques 

The bulked foliar samples of each plot were analysed for nutrient concentrations 

according to the techniques described by Campbell and Plank (1998). After selection 

of the best condition leaf material, the samples were washed with a Teepol solution, 

rinsed with de-ionised water and oven dried overnight at 70 °C (Raath, 2013). The 

dried leaf samples were milled and then ashed at 480 °C. The ash was mixed with a 

1:1 HCl (32 %) solution for extraction through filter paper (Campbell and Plank, 

1998). The cation and micronutrient content of the filtrate was determined using a 

Varian ICP-OES optical emission spectrometer (Raath, 2013). The total N content of 

the milled leaves was measured through total combustion in a Leco N-analyser 

(Raath, 2013). 
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3.6.5  Vector analysis1,2 

The trees response to the fertilizer treatments was analyzed using the vector 

analysis technique. The lab results of the nutrient concentrations of the elements 

tested for in the samples collected in Section 3.6.2 were used in further vector 

analysis calculations. First, the nutrient content for each of the macronutrients per 

treatment was determined by calculating the product of the nutrient concentration 

(percentage value derived from the lab results) and the unit dry weight (mean weight 

in grams of 100 needles or 60 fully extended Eucalyptus leaves of the relevant 

treatment). The nutrient concentration, nutrient content and unit dry weight of the 

control treatment was used as the reference point for the calculation of relative 

nutrient concentration, relative nutrient content and relative unit dry weight of the 

other treatments. All calculations were done using Microsoft (MS) Excel 2010. 

The MS Excel spreadsheet was imported into the software program Sigmaplot, 

version 12.5, for plotting of the vector nomograms. Relative nutrient content was 

used as the response variable as it incorporates both nutrient concentration and unit 

dry weight. Diagnosis of the vectors was done according to the possible shifts and 

interpretations shown in Table 2.2. 

 

3.6.6  LAI determination2 

The PAI of each treatment was measured using a LICOR LAI-2000 plant canopy 

analyser. Six replications at Mtunzini and three at Flatcrown were measured. At 

Mtunzini, two LAI-2000 sensors were used, which were synchronized and cross-

calibrated with one another, in remote mode setting. The first sensor was set up in 

an elevated position outside of the compartment, not directly facing the sun, to 

record above sky conditions automatically at 15 second intervals. The second sensor 

was used to record below canopy light conditions for the whole plot. A 90 degree 

lens cap was chosen as it is better suited for use in small plot areas. At Flatcrown, 

the two sensors were used in paired mode due to the inconsistent sky conditions on 

the measurement day, with the above sensor mounted on top of a 6 m long 

aluminium pole and hoisted above the canopy. The same lens cap was used on both 

sites. At Flatcrown, care had to be taken to ensure that both the above-canopy and 

below-canopy fish eye lenses were facing the same direction when logging readings. 

On both sites, the first measurement was always taken on the left hand side corner 
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of the plot, with the operator facing away from the sun. A total of twenty readings 

were taken on each plot, which consisted of four readings in each of the inner plot 

rows. Above and below canopy readings were combined to calculate gap fraction 

from which PAI was derived with the aid of computer software provided with the 

instrument. In cases where below canopy readings were greater than above 

readings, the transmission value was set to one. 

The calculated PAI values were then adjusted to an estimated LAI through the use of 

the extrapolation of the regression equation for LAI of E. grandis at two years of age 

developed by Dovey and du Toit (2006). 

3.6.7  Soil water availability1 

In South African conditions, water availability is a major driver for growth. 

Determining the soil water content and relative extractable water (REW) (Granier et 

al., 2000) is important for establishing periods during which trees are experiencing 

water stress. For this purpose, the HyMo water balance model, developed by Rötzer 

et al. (2004) was used. The choice to use HyMo was motivated by two factors: 1) it’s 

simple and readily available input parameters; and 2) its reliable and robust output 

across various sites as shown in Rötzer et al. (2004) and Fischer (2011). 

The basic inputs required by HyMo are meteorological data such as temperature, 

precipitation, solar radiation, humidity and wind speed (Rötzer et al., 2004). Latitude, 

longitude and altitude cover the geographical inputs needed, while land cover and 

edaphic data such as effective rooting depth (ERD), wilting point (WP), field capacity 

(FC), crop species and crop age are also needed (Rötzer et al., 2004). The model 

and its input parameters are described in detail in Rötzer et al. (2004).  

The daily soil water content (SWC) from the 1 June 2010 till 1 July 2013, a 37 month 

period, was modelled using the HyMo model. The REW was calculated using 

equation (1) of Granier et al. (2000), which relates REW as an index from 0 to 1. 

Granier et al. (2000) proposed that drought stress ensues when the REW drops 

below 0.4 or 40% of the maximum extractable water and this threshold was tested 

for Pinus species. 
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3.6.8   Foliar nutrient content2 

The foliar nutrient content on an area basis of each treatment was estimated using 

the following procedure. The estimated LAI was converted to a leaf mass by dividing 

with the SLA and scaled up to a hectare basis. The nutrient content was calculated 

as the product of leaf mass and foliar nutrient concentration 

 

3.6.9  Crown area determination2 

  

In addition to LICOR PAI readings, crown diameters of the same plots were 

measured at Mtunzini. A three metre long aluminium rod was used. Two 

measurements were taken, one along the contour line and the second perpendicular 

to the first. These two measurements were then used to determine an individual 

crown area in m2 and summed for the 25 trees of the inner plot. The plot crown area 

was scaled up to a crown area per ha by dividing the crown area per plot by the 

quotient of plot size (m2) and the area of one ha (m2). For this to be accurate, two 

considerations were taken into account. The first was mortality. Where trees were 

missing inside the inner plot, a zero value was assigned to them. The second 

consideration was crown overlap (Figure 3.12). 

 

Figure 3.12: Crown overlap consideration in a number of plots at Mtunzini when calculating 

crown area. 

 

Crown overlap occurred when the sum of the radii of directly adjacent neighbouring 

trees exceeded the planting distance between them. Radius was taken as half of the 

measured diameter. In cases where overlap did occur, the larger of the two radii (m) 

was adjusted down by multiplying it by the quotient of the planting distance (m) in 

that direction divided by the sum of the two radii in question. The smaller of the two 
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radii remained unadjusted. The mean radii of the trees were then calculated by 

adding the four radii (measured and adjusted where applicable) and dividing by four. 

This mean radius was used in the formula for the area of a circle to estimate crown 

area.   

 

3.7.  Statistical analysis1,2,3 

The analysis procedures and statistical techniques used for the various data sets are 

described below. Only treatment differences of p<0.05 are reported. All analyses 

were done with the use of the statistical program Statistica 11.  

 

3.7.1  Coetzenburg 

 

3.7.1.1    Survival  

A survival count per plot was taken four weeks after treatment application. The total 

number of dead trees per plot were converted to a plot mortality percentage by 

dividing by 30 (plot size of 6 x 5 trees) and multiplying by 100. The data was then 

analysed on a plot level using an analysis of variance (ANOVA) technique, described 

in Section 3.7.4. 

After testing the assumptions of an ANOVA, it was found that the residuals of the 

data were not normally distributed and the variances were heteroscedastic. A 

Kruskal-Wallis non-parametric test (Section 3.7.5) was performed. 

 

3.7.1.2   Biomass index 

The GLD - ht pairs of 12, 18 and 30 months were used to calculate a biomass index 

value per tree. This value was summed and divided by the number of living 

individuals in each plot. Unfortunately the influence of F. circinatum on the growth 

was evident from the large variation in growth between plots of the same treatment. 

For this reason, a subset of the data was used in the final analysis to account for the 

effects of F. circinatum. 

 

Trees which were classified as infection level 0 (Table 3.9) for the period between 12 

and 30 months were identified. The least amount of level 0 trees for a single plot, 6, 
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was used as the general standard for all plots. A new mean BI of the largest 6 trees 

per plot (all non-infected) was calculated for each plot and used as the response 

variable in the ANOVA procedure. This subset will be referred to as the healthy tree 

sub-set (Nel, 2013). 

 
 

3.7.2  Mtunzini and Flatcrown 

 

3.7.2.1    Survival 

The mortalities of the individual plots were determined seven weeks after treatment 

application. A plot mortality percentage was calculated as in Section 3.7.1.1, but on 

this occasion dividing by 49 (7 x 7 plot size). A Kruskal-Wallis test was performed on 

the data 

 

 

3.7.2.2    Volume growth 

A rudimentary individual tree volume was calculated by using the equation 

highlighted in Section 3.6.2. The measured heights and diameters at 12 months of 

age were used as the input variables. The resultant individual tree volumes were 

averaged over the entire plot and scaled up to a per hectare value as an estimation 

of the volume growth over the first growth year. The estimated volume per hectare 

was analysed for treatment differences using a two-way factorial ANOVA. 

 

3.7.3    Woolstone 

 

3.7.3.1   Survival 

A survival count was done 8 weeks after treatment application. A plot mortality 

percentage was calculated per plot, based upon stocking levels calculated for each 

plot to account for inconsistent planting densities. A Kruskal-Wallis test was 

performed on the resulting dataset. 
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3.7.3.2   Height growth 

The measured heights at seven months were used as the response variable. Due to 

the unbalanced number of experimental units in some plots as a result of the 

inconsistency of planting distances within rows a set number of 15 trees (five trees 

for each row of the inner plot) per plot were used to calculate the plot means. The 

mean height data was then analysed on a plot level using the ANOVA statistical 

technique. 

 

3.7.4.   Analysis of variance 

The ANOVA technique is an extension of the T-test. It is used when the means of 

three or more groups are compared with one another to determine if there are 

differences between them. The between-treatment variation of the treatment groups 

is compared to the group’s within-treatment variation (Clewer and Scarisbrick, 2001). 

For the test of variance to be valid, the observations of each treatment need be 

independent of one another, originate from a normally distributed population and 

share equal variances with each other (Clewer and Scarisbrick, 2001). 

 

3.7.5   Kruskal-Wallis one-way ANOVA 

The Kruskal-Wallis test is the non-parametric equivalent of the one-way ANOVA. It 

compares the median of populations of three or more sample groups, but the actual 

data is replaced by its rank. This test does not assume normally distributed data or 

equal variances, but does assume that the population groups are random, 

independent from one another and that their distributions are identically shaped 

(Clewer and Scarisbrick, 2001). 
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Chapter 4: Results A 

 

4.1 Early survival 

The survival on the Coetzenburg site was recorded up until 133 days (time of first 

height measurement) after treatment application. The non-parametric Kruskal-Wallis 

test gave no differences between the 18 CRF treatments or CRF and CV sources 

were. Plot mortalities were not affected by increases in application of N, P and K or 

their various factor interactions. The only significant difference on the site was 

between the two species, P. radiata and P. elliottii x caribaea hybrid. The fertilized 

and unfertilized hybrid treatments had a mean mortality of 9 and 2 % respectively. 

CRF111 was the best surviving CRF treatment with a mean mortality of 27 %, while 

CV310 with a mean of 33 % had the lowest mortality of the CV treatments. The 

control (24 %) treatment however performed better than both CRF111 and CV310. 

Survival of the trial at 133 days post treatment application was 60 %. The ten best 

overall surviving treatments are shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: The top ten surviving treatments on the Coetzenburg site with 95 % confidence 

intervals. Different letters indicate significance (p<0.05). Refer to treatment codes in Table 3.5. 
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4.2 Foliar analysis 

The laboratory analysis results of the P. radiata samples collected as described in 

Section 3.6.3 are further discussed here. Refer to Appendix 2A for the full lab 

analysis report. 

4.2.1. Critical levels 

The foliar concentrations 12 months after fertilizer treatment application were 

assessed according to the critical values determined by Boardman et al. (1997). The 

two P. elliottii x caribaea treatments were excluded from the critical value analysis 

due to the unavailability of published critical nutrient values. The results can be seen 

in Table 4.1.   

The chemical analysis showed that K, Ca, Na, Mn, Fe, Cu and Zn were all present in 

adequate concentrations, and are thus unlikely to pose a growth limitation The 

nutrient concentrations were subjected to an ANOVA (Table 4.2).  

 

N in all P. radiata treatments were at the higher end of the adequate range and 

treatments CRF110 and CRF311 found to contain excessively high N levels. P 

concentrations were marginal in the majority of treatments with only five treatments 

(CRF111, CRF122, CV112, CV310 and CV322) having adequate foliar 

concentrations. P was not present in a controlled release form and the source of P in 

the CRF and CV sources were silphos and double superphosphate respectively. 

Silphos is a non-coated concentrated superphosphate containing 14 % P used in the 

manufacturing of the CRF fertilizer blends. Deficiencies were only found for Mg in 

treatments CRF222, CRF311, CRF312, CV112 and the control with the rest of the 

treatments displaying marginal levels. With a range of 0.06-0.10 Mg clearly seems to 

be a limitation on this site. Refer to Appendix 2B for graphical representations of the 

N x P x K interactions for the significant nutrients. 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



62 
 

 

Table 4.1: Foliar nutrient concentrations one year after treatment application assessed 

according to the critical values determined by Boardman et al. (1997). 

Treatment N P K Ca Mg Na    Mn      Fe 
                    
Cu   

           
Zn     B 

  % mg kg-1 

Control  2.42 0.12 1.06 0.20 0.06 422 139 206 4 64 18 

CRF110 2.62 0.14 1.03 0.26 0.07 460 260 220 3 30 17 

CRF111 2.43 0.15 1.15 0.16 0.07 320 230 170 3 28 19 

CRF112 2.45 0.13 1.08 0.19 0.07 224 260 163 4 36 22 

CRF120 2.41 0.14 0.97 0.24 0.10 209 431 158 4 29 24 

CRF121 2.46 0.14 1.01 0.17 0.08 289 309 194 4 32 18 

CRF122 2.45 0.18 1.05 0.19 0.07 201 313 160 4 49 15 

CRF210 2.42 0.12 0.87 0.18 0.09 285 249 181 3 22 14 

CRF211 2.47 0.14 1.00 0.18 0.07 290 282 185 3 18 17 

CRF212 2.54 0.13 0.94 0.23 0.09 344 345 205 4 24 16 

CRF220 2.50 0.13 0.83 0.22 0.09 398 285 205 3 16 18 

CRF221 2.56 0.14 0.90 0.19 0.07 371 239 175 3 21 15 

CRF222 2.52 0.13 1.09 0.18 0.06 407 231 198 3 22 16 

CRF310 2.54 0.12 0.80 0.17 0.08 437 156 225 3 14 11 

CRF311 2.62 0.13 1.03 0.19 0.06 275 288 176 3 25 13 

CRF312 2.51 0.13 0.90 0.13 0.06 608 206 230 3 17 16 

CRF320 2.56 0.13 0.77 0.21 0.08 412 234 195 3 20 13 

CRF321 2.36 0.13 0.91 0.21 0.08 416 286 186 3 22 13 

CRF322 2.46 0.12 0.92 0.20 0.07 312 321 184 3 20 12 

CV112 2.38 0.16 1.07 0.21 0.06 470 270 230 3 62 17 

CV310 2.50 0.15 0.99 0.19 0.07 375 147 174 3 33 19 

CV322 2.42 0.15 1.04 0.23 0.07 379 198 175 4 38 15 

Deficient 
0.5-

1 0.06 <0.25 <0.06 <0.07 <20 <5 <35 <2 <6 5-12 

Marginal 
1-

1.2 0.09-0.14 <0.35 
0.06-
0.07 

0.07-
0.1 20-30 5-20 

40-
80 2.1-2.3 

11-
13 10-16 

Adequate 
1.6-
2.4 

0.177-
0.344 0.36-1.8 

0.08-
0.45 

0.11-
0.8 

40-
500 20-400 

70-
200 2.4-9 

14-
16 16-70 

Toxic >2.6 n/a >1.9 n/a n/a >3000 n/a n/a n/a n/a >170 

 

*Non shaded cells = Adequate values; Shaded cells = Marginal concentrations 

 Bold values = Deficient concentrations; red values = Toxic (or excessively high) levels; n/a = 

not available/not applicable 
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Table 4.2: Significant ANOVA results of Coetzenburg foliar nutrient concentration analysis. 

Significant effects shown in red. 

Analysis of variance results of Foliar nutrient concentration 

Coetzenburg nutrient concentration significant differences 

P  

Effect SS 
Degree 

Of 
freedom 

MS F p Comments. Refer 
to Appendix 2B 

N level 0.004311 2 0.002156 13.857 0.000034 P concentrations 
decreased with 

increasing N N level * P level * K level 0.001722 4 0.000431 2.768 0.041939 

K 

N level 0.2426 2 0.1213 14.011 0.000032 K concentrations 
increases with K 
application, but 
decreases at 

higher levels of N 

K level 0.17685 2 0.08842 10.214 0.000307 

N level * P level * K level 0.01384 4 0.00346 0.4 0.807544 

Na 

N level 143448 2 71724 5.0434 0.011724 Na concentrations 
increases with 
increasing N 
application 

N level * P level * K level 142525 4 35631 2.5055 0.05916 

Cu 

N level 8.9259 2 4.463 10.955 0.000192 Cu concentrations 
decreases with 

increasing N 
application 

N level * P level * K level 0.5185 4 0.1296 0.318 0.863929 

Zn 

N level 2340.48 2 1170.24 39.619 0.00000 Zn concentrations 
increases with K 
application, but 
decreases at 

higher levels of N 

K level 357.37 2 178.69 6.05 0.005432 
N level * K level 478.74 4 119.69 4.052 0.008183 
N level * P level * K level 191.56 4 47.89 1.621 0.19007 

B 

N level 336.26 2 168.13 4.0333 0.02627 B concentrations 
decreases with 

increasing N 
application 

N level * P level * K level 48.44 4 12.11 0.2905 0.88219 

 

4.2.2. Vector analysis 

 

After assessment of the nutrient values across replications 1, 3 and 5, in terms of the 

accepted critical values of Boardman et al. (1997), an investigation into the relative 

effect of the macronutrients (N, P, K, Ca and Mg) was performed on each treatment 

The vector analysis technique was used as described in Section 2.12.3. It was found 

that the magnitude of the vectors and therefore their influence on the majority of the 
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treatments were in most cases negligible. Results may have been unreliable and 

influenced by asymptomatic F. circinatum infections at the time of sampling should 

be stressed. For each of the five macronutrients, only those treatments which 

represented noteworthy responses were presented graphically on the vector 

nomograms. A summary of the interpretation and possible diagnosis of the 

significant vectors (when the magnitude is at least 1.5 times that of the control) for all 

the treatments, excluding the control, which serves as the reference point and the P. 

elliottii x caribaea treatments, which have different needle architecture, length and 

weight, are given in Table 4.3.  

Refer to Appendix 2C for a summary of all the calculated vectors and graphical 

representations of the significant vector nomograms.  
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Table 4.3: A summary of the macronutrient vector responses across all replications that were deemed to be of a sufficiently large magnitude to warrant 

discussion and interpretation  

 

 

 
  Nitrogen  Phosphorus  Potassium Calcium Magnesium 

  Treatment Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis 

  CRF110       Luxury Non-toxic   

  CRF120       Luxury Non- toxic Luxury Non-toxic 

  CRF222 Deficiency Limiting Deficiency Limiting Excess Antagonistic     

  CRF310         Luxury Non-toxic 

  CRF322     Excess Antagonistic     

  CV112   Luxury Non-toxic       

  CV322 Sufficiency 
Non-
limiting Deficiency Limiting Sufficiency 

Non-
limiting Deficiency Limiting Deficiency Limiting 
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4.3  Disease incidence 

During the period between the survival count and first ht measurement (six months) it 

was noted that a few individual trees were exhibiting symptoms characteristic of 

Fusarium infection. These individuals were monitored closely in the weeks to follow, 

but over time the tree health deteriorated and symptoms were being observed in 

multiple plots across all five replications. Sample branches were cut from three 

diseased trees and sent to the Stellenbosch Disease Clinic for identification of the 

pathogen. Results were conclusive that all three samples had tested positive for 

Fusarium circinatum. 

 

Following the second ht measurement and first GLD measurement, where a BI could 

be calculated, it was clear that F. circinatum was having a significant effect on plant 

growth. A rudimentary numerically based visual assessment of disease incidence 

and severity was developed (Table 4.4; Figure 4.2), with the primary purpose of 

quantifying the extent of the infection for use as a covariate in the analysis 

procedures. Only in circumstances where the covariate was significant was it 

included in the analysis procedure. A disease incidence percentage (number of 

diseased trees / number of living trees in plot) was then calculated per plot. Trees 

with both level 1 and 2 descriptions were bulked in the calculation procedure. 

 
Table 4.4: Levels of disease severity and their descriptions 

Level Description 

0 
Tree does not display any visual signs of foliage discolouration, wilt of the growing 

tips or resin on stem or branches. Photo A 

1 
Clear foliage discolouration on a single branch ("flagging") or group of branches, a 

degree of foliage loss, wilting growing tip or resin on stem/branches. Less than 30% of 
tree affected. Photo B and C 

2 
More than 30% of tree affected with level 1 symptoms or whole tree chlorotic.  

Photo D 

 
 A 
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Table 4.5: Spread of trees classified in each disease level category 

  
Disease incidence 
10/04/12 

Disease incidence 
14/02/13 % change 

Total assessed 1764 1673 - 5.16 
Level 0 1192 1318 + 11.53 
Level 1 515 353 - 29.4 
Level 2 57 2 - 71.43 

 

 

 

Figure 4.2: Visual symptoms used for the diagnosis of the Fusarium circinatum 

infections. 

B 

C D 

A 
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Table 4.6: Non-parametric results of F. circinatum disease incidence analysis across all 

treatments on the Coetzenburg site. Different letters indicate significant differences (p<0.05) 

Kruskal-Wallis ANOVA by Ranks: H ( 23, N= 120) =35.31468 p =.0484* 

Treatment Sum of Ranks Mean Rank 

CVH000 29.0000 5.80000 A 
CVH322 76.0000 15.20000 A 
Control 218.5000 43.70000 B 
CRF322 233.5000 46.70000 B 
CRF210 239.5000 47.90000 B 
CRF310 254.0000 50.80000 B 
CRF312 260.5000 52.10000 B 
CV322 266.5000 53.30000 B 

CRF220 271.5000 54.30000 B 
CRF320 299.5000 59.90000 B 
CV310 330.0000 66.00000 B 

CRF120 335.5000 67.10000 B 
CRF311 338.0000 67.60000 B 
CV112 340.5000 68.10000 B 

CRF212 341.0000 68.20000 B 
CRF112 343.0000 68.60000 B 
CRF222 356.5000 71.30000 B 
CRF110 369.5000 73.90000 B 
CRF221 374.5000 74.90000 B 
CRF122 378.5000 75.70000 B 
CRF121 391.0000 78.20000 B 
CRF211 397.5000 79.50000 B 
CRF321 404.5000 80.90000 B 
CRF111 411.5000 82.30000 B 

 

A significant P-value (p=0.0484) indicated that there were differences among 

treatments.  The P. elliottii x caribaea treatments, CVH000 and CVH322, was 

statistically different to all other treatments. CVH000 and CVH322 had the lowest 

disease incidence with the control treatment displaying the least mean disease 

incidence of the P. radiata treatments. The observation that the hybrid control had a 

lower disease incidence than its fertilized counterpart, and that the same was true for 

the P. radiata control, suggests a likely fertilizer x disease interaction, however an 

investigation into the effect of different levels of N, P and K fertilizer application on 

the disease incidence percentage proved inconclusive with no significant differences 

between varying levels of application.  
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4.4. Soil water availability 

For the first three months the SWC was erratic with three distinct intermittent peaks 

and drops (Figure 4.3). September 2010 was a very dry month and the REW was 

well below the 0.4 water stress inducing threshold (Figure 4.4). An 

uncharacteristically high SWC was modelled from October 2010 to the start of 

January 2011, where the SWC eventually reaches the lower limit of water availability 

by the end of the latter month. The trend did not change significantly until the onset of 

the wet season in late May 2011. The results for the period that followed was as 

expected. A clear seasonal pattern was observed with clear dry and wet periods in 

the summer and winter months respectively. The odd sporadic rainfall event in the 

spring and autumn months brought temporary stress relief to the trees. These results 

are similar to the seasonal trends found in Fischer (2011) for the Boland region, 

which forms part of the winter rainfall zone.  

 

 

Figure 4.3: Coetzenburg modelled daily SWC vs. daily precipitation from 1 June 2010 till 1 July 

2013. 
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Figure 4.4: Coetzenburg modelled daily SWC vs. daily REW for the period 1 June 2010 to 1 July 

2013. 

 

4.5. Biomass index growth 

The results (non-significant output not shown) of the full ANOVA analysis showed 

that there was no significant (p<0.05) interaction between N x P (p=0.8207), N x K 

(p=0.7319), P x K (p=0.5197) and N x P x K (p=0.624). The effects of the main 

factors N (p=0.6038), P (p=0.6608) and K (p=0.5033) were non-significant (p<0.05) 

on the BI growth across all three measurement periods. The fourth factor, time, which 

is the repeated measure in the analysis was significant (p=0.000). This is to be 

expected, as the BI equation contains a squared term, which would result in an 

exponential increase in the BI value over time (Figure 4.5). 

The trees that did not show signs of F. circinatum infection (the healthy subset) were 

analysed separately to gauge the effect of fertilization in the absence of disease 

influences. The results of the healthy trees data subset that was prepared as 

described in Section 3.7.1.2 was more conclusive (Table 4.7). There was a 
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significant interaction between N x K (p<0.01) and N x P x K (p<0.01). Figure 4.6 and 

Figure 4.7 show these interactions for the mean BI over 12, 18 and 32 months.  

 

Table 4.7: ANOVA output of the healthy tree subset for the CRF factorial treatments. Significant 

effects shown in red.  

Repeated measures ANOVA: CRF Factorial treatments 

Effect SS 
Degree 

Of 
freedom 

MS F p 

Intercept 2025473 1 2025473 1590,859 0,000000 
N 5916 2 2958 2,323 0,098963 
P 1096 1 1096 0,861 0,353977 
K 2313 2 1156 0,908 0,403833 
N*P 3258 2 1629 1,280 0,279007 
N*K 18873 4 4718 3,706 0,005497 
P*K 6535 2 3268 2,566 0,077780 
N*P*K 27111 4 6778 5,323 0,000330 
Error 664608 522 1273   
TIME 2547649 2 1273825 1367,096 0,000000 
TIME*N 10871 4 2718 2,917 0,020469 
TIME*P 1476 2 738 0,792 0,453274 
TIME*K 4235 4 1059 1,136 0,337906 
TIME*N*P 3072 4 768 0,824 0,509824 
TIME*N*K 26668 8 3333 3,578 0,000418 
TIME*P*K 6378 4 1595 1,711 0,145186 
TIME*N*P*K 40457 8 5057 5,427 0,000001 
Error 972772,3 1044 931,7743     
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Figure 4.5: The trend of increase in mean BI across CRF treatments over time Period 1 = 

summer (December 2010) through to winter (July 2011), period 2 = winter (July 2011) through 

to summer (December 2011) and Period 3 = A full rotation of the four seasons (December 2011 

to February 2013). 

 

 

 

Figure 4.6: Significant N x P x K interaction for the healthy tree subset of the Coetzenburg BI 

data.  
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The N x P x K interaction (Figure 4.6) is discussed in regard to the three N levels. For 

level 1 N application, there is a decrease in growth with an increasing K application 

for both levels of P applied, with the exception of level 2 K in combination with level 1 

P. For level 2 applications of N, the growth across all K application levels is the same 

with level 1 P applied and growth sharply increases with increasing applications of K 

in combination with level 2 P. It appears that a balanced N:P:K ratio is needed with 

treatment N2P2K2 yielding the best results. At the highest level of N application, the 

relationship between increasing levels of K in combination with the two levels of P 

show inverse trends. BI growth increases with an increase in K application in 

combination with level 1 P and decreases in combination with level 2 P. 

 

Figure 4.7 shows the growth of the P. elliottii x caribaea hybrid compared to P. 

radiata in control and fertilized treatments. From this limited comparison, it appears 

that P. radiata is more responsive to fertilizer application than the P. elliottii x 

caribaea hybrid. 

 

 

Figure 4.7: The growth response to fertilizer application of P. elliottii x caribaea hybrid 

compared to P. radiata. 
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Figures 4.8, 4.9 and 4.10 show the responses in respect of N, P and K, of the three 

CRF treatments (CRF112, CRF310 and CRF322), as identified for use as direct 

comparisons with their CV counterparts, as mentioned in Section 3.3.1.  

 

 

Figure 4.8: The growth response of the direct comparison treatments to comparable levels of N 

application from the two different fertilizer sources. Trees responded to higher levels of N 

when applied in the CV form but similar responses are seen with lower applications of N in the 

CRF form. 
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Figure 4.9: The growth response of the direct comparison treatments to comparable levels of P 

application from the two different fertilizer sources. Trees respond better to low levels of 

silphos over higher levels of double superphosphate. 

 

 

Figure 4.10: The growth response of the direct comparison treatments to comparable levels of 

K application from the two different fertilizer sources. 
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The top three CRF treatments overall were CRF222, CRF120 and CRF110 with each 

having a combined mean BI that reached approximately 45. These three were not 

statistically different from one another but were different to both the hybrid treatments 

(CVH000 BI=18, CVH322 BI=19.3), CV112 (BI=23.1), CRF322 (BI=25), CRF310 

(BI=25.4) and the control (BI=25) treatment.  Of the three CRF treatments chosen for 

comparison with the equivalent CV sources, none performed statistically better 

(p<0.05) than their CV counterparts. Only CRF112 (BI=39) had a higher combined 

mean BI than its CV112 (BI=23.1) equivalent.  

The percentage differences in ht and GLD of CRF110, CRF120 and CRF222 over 

the control at 32 months are shown in Table 4.8. The results are similar to those 

found by the study conducted by Fan et al. (2002) discussed in Section 2.3.  

Table 4.8: Percentage increase in ht and GLD of treatments CRF110, CRF120 and CRF222 over 

the control at 32 months of age 

  % Difference over control 

Treatment ht GLD 

CRF110 16.1 17.5 

CRF120 14.36 20 

CRF222 19.5 20.2 
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Chapter 5: Results B 

5.1 Early survival 

Mean seedling mortality was lowest on the Flatcrown site (4 % mortality) and 

acceptably low according to industry standards, on the Mtunzini and Woolstone sites, 

with a mean mortality of 11 % and 6 % respectively. The effect of site and treatment 

were investigated on the mean mortality of the seedlings. A significant (p<0.05) site 

effect was found between Mtunzini and the other two sites (Table 5.1). The 

significantly higher mortality at Mtunzini was not directly caused by site conditions, 

but of a weevil outbreak in the stand 4 – 5 weeks after treatment application. Across 

all three sites, there were no significant differences in the mortality rate between the 

CRF treatment combinations, the CV treatment or the control.  

No significant interaction was found between the two factors (fertilizer N and P) on 

mortality rates across any of the sites. This allowed for the main effects on mean 

mortality to be interpreted separately. The influence of an increasing N level on 

mortality was non-significant on all sites, while an increasing P level was significant 

on the Flatcrown site only (Table 5.1). An increase in the level of application from 0 to 

20 g P per tree resulted in a non-significant increase in the mean treatment mortality 

from 2.75 % to 4.75 % (Figure 5.1). 

The situation at Woolstone was not any different from the other two sites. There were 

no significant trends in mortality with levels ranging from 4 to 9% across all 

treatments.  

5.2 Foliar analysis 

 

5.2.1   Critical levels 

The E. grandis x urophylla foliar samples were subjected to full chemical analysis as 

described in Section 3.6.3. The published critical values for E. grandis x urophylla 

were used as described by Dell et al. (1995). Refer to Table 5.2 and Table 5.3 for the 

critical level results. 
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Table 5.1: Statistical results of mean mortality percentage between site, treatment and main 
effect of experimental factors 

Effect 

      
Non-parametric test 

P-value 

Comparison of Mean Mortality between sites 

Site    >0.001** 

Comparison between Treatments at each site 

Mtunzini 

   
0.666 

Flatcrown 
   

0.1157 

Woolstone 
   

0.5794 

Influence of main effects on mortality at each site 

Mtunzini         

N level 

   
0.46495 

P level 

   
0.44273 

Flatcrown         

N level 

   
0.84983 

P level 

   
0.00402* 

Woolstone         

N level 

   
0.67555 

P level       0.18133 

** p<0.001   *p<0.05 

 

0 1

P level

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

M
or

ta
lit

y 
%

 

Figure 5.1: Significant P level effect on the mean mortality of treatment plots on the Flatcrown 
site. 
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Table 5.2: Mtunzini foliar nutrient concentrations nine months after treatment application 
assessed according to the critical values determined by Dell et al. (1995) 

Treatment N P K Ca Mg Na Mn Fe Cu Zn B 

 % mg/kg 

Control 1.85 0.24 0.83 0.93 0.35 4395 189 105 7 17 31 

CRF10 1.81 0.23 0.72 0.97 0.34 3886 221 101 7 16 30 

CRF11 1.78 0.23 0.80 0.97 0.33 3755 172 100 6 15 31 

CRF20 2.02 0.21 0.73 0.91 0.32 4044 171 99 7 16 30 

CRF21 1.82 0.23 0.76 0.94 0.32 3706 242 98 6 15 32 

CRF30 2.00 0.19 0.74 1.02 0.33 3829 211 102 6 15 32 

CRF31 1.97 0.20 0.70 1.01 0.33 3568 216 99 5 15 33 

CV01 1.81 0.26 0.94 0.91 0.35 4170 160 95 8 19 30 

CV11 1.83 0.25 0.78 0.97 0.35 3890 195 99 7 18 30 

Deficient 
0.8-
1.1 

0.08-
0.1 

0.2-
0.6 n/a 

0.02-
0.04 n/a n/a n/a n/a n/a 8-12 

Marginal 
1.11
-1.8 

0.1-
0.15 

0.6-
0.9 <0.21 

0.04-
0.1 n/a n/a n/a n/a n/a 12-13 

Adequate 
1.8-
2.9 

0.15-
0.26 

0.9-
1.5 

0.21-
0.75 

0.11-
0.36 

3000-
4200 

134-
2316 

40-
100 

3.5-
13.4 

13-
29 13-30 

Toxic n/a n/a n/a n/a n/a >10000 n/a n/a n/a n/a n/a 

*Non shaded cells = Adequate values; Shaded cells = Marginal concentrations 

 n/a = not available/applicable 

 

Table 5.3: Flatcrown foliar nutrient concentrations nine months after treatment application 
assessed according to the critical values determined by Dell et al. (1995) 

Treatment N P K Ca Mg Na Mn Fe Cu Zn B 

  % mg/kg 

Control 2.48 0.17 1.09 0.98 0.29 2528 349 163 10 18 28 

CRF10 2.46 0.16 0.90 1.08 0.30 2245 350 161 9 18 29 

CRF11 2.37 0.17 0.92 0.95 0.28 2376 289 172 8 17 31 

CRF20 2.53 0.17 1.07 1.00 0.25 2408 365 156 9 20 30 

CRF21 2.73 0.19 4.00 0.88 0.30 3075 367 306 10 31 35 

CRF30 2.92 0.17 1.11 0.93 0.27 1957 315 177 9 23 35 

CRF31 2.80 0.16 1.05 0.98 0.26 2026 311 164 8 17 34 

CV01 2.16 0.18 0.93 0.96 0.30 2675 328 165 9 18 27 

CV11 2.57 0.16 0.92 0.96 0.27 2066 360 168 9 17 31 

Deficient 
0.8-
1.1 

0.08-
0.1 

0.2-
0.6 n/a 

0.02-
0.04 n/a n/a n/a n/a n/a 8-12 

Marginal 
1.1-
1.8 

0.1-
0.15 

0.6-
0.9 <0.21 

0.04-
0.1 n/a n/a n/a n/a n/a 12-13 

Adequate 
1.8-
2.9 

0.15-
0.26 

0.9-
1.5 

0.21-
0.75 

0.1-
0.36 

3000-
4200 

134-
2316 

40-
100 

3.5-
13.4 

13-
29 13-30 

Toxic n/a n/a n/a n/a n/a >10000 n/a n/a n/a n/a n/a 

*Non shaded cells = Adequate values; Shaded cells = Marginal concentrations 

 n/a = not available/applicable 
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On the Mtunzini site all elements for all treatments were at adequate concentrations 

except for N and K (Table 5.2). The N concentration for CRF11 was just outside the 

adequate range. The 0.02 % difference between marginal and adequate can be 

deemed negligible. The concentration of K for all treatments except CRF31 was 

marginal but had minimal negative effects on the growth as CRF31. On the Flatcrown 

site, all the nutrient concentrations fell well within their adequate ranges (Table 5.3). 

ANOVA of the macro and micronutrient values of Mtunzini and Flatcrown resulted in 

significant nutrient differences for some elements and treatments (Table 5.4.) Refer 

to Figures 5.2 to 5.8 for the effect of N and P fertilizer treatments on the foliar 

concentrations of the four (P, K, Mg, Fe) significant nutrient concentration responses 

at Mtunzini and three significant nutrient concentration responses at Flatcrown (N, 

Fe, Cu). 

At Mtunzini, significant responses were found for P, K, Mg and Fe concentrations. 

The application of N had the most significant effect on foliar nutrient concentration 

values. Reductions in foliar P, K and Mg concentrations were found with increases in 

N application. Fe concentrations increased significantly with N applications up to 80 g 

per tree. There was no significant difference in foliar nutrient concentrations between 

comparable CV and CRF treatments. 

 At Flatcrown, the foliar N concentration increased with higher N applications with no 

additive P effect. Treatments with no N application were still well within the adequate 

range of Dell et al. (1995). The Fe concentrations decreased from N level 0 to 1, then 

subsequently increased from level 1 to 3 with P having an additive effect at N levels 0 

and 3. The CV11 treatment had a significantly higher Fe concentration, with nearly 

double the foliar Fe than its CRF11 counterpart. N application had the opposite effect 

on foliar Cu concentrations than it did on Fe concentrations. Increases in Cu 

concentration were found from level 0 to 1, for N application in combination with level 

1 P, and from level 0 to 2 for N applied singly. CV11 had lower non-significant foliar 

Cu concentrations than CRF11. 
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Table 5.4: Foliar nutrient concentration ANOVA results for both Mtunzini and Flatcrown. 
Nutrients with significant differences shown in red. 

Analysis of variance results of Foliar nutrient concentration 

Mtunzini nutrient concentration significant differences 

P  

Effect SS 

Degree 
Of 

freedom MS F p 
N level 0.021373 3 0.007124 22.119 0.000000 
P level 0.002269 1 0.002269 7.044 0.011357 
N level * P level 0.000273 3 0.000091 0.282 0.837750 

K 

N level 0.21803 3 0.07268 7.423 0.000458 
P level 0.03000 1 0.03000 3.064 0.087694 
N level * P level 0.03137 3 0.01046 1.068 0.373494 

Mg 

N level 0.008675 3 0.002892 7.14 0.000596 
P level 0.000000 1 0.000000 0.00 1.000000 
N level * P level 0.000317 3 0.000106 0.26 0.853311 

Fe 

N level 862.0 3 287.3 3.772 0.017860 
P level 40.3 1 40.3 0.529 0.471087 
N level * P level 147.0 3 49.0 0.643 0.591787 

Flatcrown nutrient concentration significant differences 

N 

Effect SS 

Degree 
Of 

freedom MS F p 
N level 1.0268 3 0.3423 9.652 0.000710 
P level 0.0408 1 0.0408 1.152 0.299140 
N level * P level 0.2040 3 0.0680 1.918 0.167433 

Fe 

N level 11233.3 3 3744.4 17.902 0.000023 
P level 2521.5 1 2521.5 12.055 0.003144 
N level * P level 2476.5 3 825.5 3.947 0.027746 

Cu 

N level 5.458 3 1.819 4.367 0.019911 
P level 0.042 1 0.042 0.100 0.755918 
N level * P level 2.792 3 0.931 2.233 0.123791 
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Figure 5.2: Foliar P concentrations of the CRF factorial treatment combinations as well as the 
additional CV11 treatment at Mtunzini. 

 

 

Figure 5.3: Foliar K concentrations of the CRF factorial treatment combinations as well as the 
additional CV11 treatment at Mtunzini. 
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Figure 5.4: Foliar Mg concentrations of the CRF factorial treatment combinations as well as the 
additional CV11 treatment at Mtunzini. 

 

 

Figure 5.5: Foliar Fe concentrations of the CRF factorial treatment combinations as well as the 
additional CV11 treatment at Mtunzini. 
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Figure 5.6: Foliar N concentrations of the CRF factorial treatment combinations as well as the 
additional CV11 treatment at Flatcrown. 

 

 

Figure 5.7: Foliar Fe concentrations of the CRF factorial treatment combinations as well as the 
additional CV11 treatment at Flatcrown. 
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Figure 5.8: Foliar Cu concentrations of the CRF factorial treatment combinations as well as the 
additional CV11 treatment at Flatcrown. 

 

5.2.2   Vector analysis 

All nine treatments on both Mtunzini and Flatcrown had notable vectors for N, P, K, 

Ca and Mg (Table 5.5; Table 5.6). Refer to Appendix 3B for the vector nomograms 

for both sites.  

All of the responses were either of the type A, B or C (Table 2.2). Majority of the 

responses showed either a deficiency or a dilution effect. Level 1 N application on 

both sites with the exception of CV11 at Flatcrown (deficiency) all had dilution effects. 

Level 2 N application exhibited deficiencies all round with the exception of one 

dilution effect of CRF21 at Mtunzini. Level 3 N application clearly revealed 

deficiencies at both sites 
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Table 5.5: Summary of the macronutrient vector responses across all replications at Mtunzini 

 
Nitrogen Phosphorus Potassium Calcium Magnesium 

Treatment Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis 

CRF10 Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting Deficiency Limiting Dilution Non-limiting 

CRF11 Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting Deficiency Limiting Dilution Non-limiting 

CRF20 Deficiency Limiting Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting 

CRF21 Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting Deficiency Limiting Dilution Non-limiting 

CRF30 Deficiency Limiting Dilution Non-limiting Dilution Non-limiting Deficiency Limiting Dilution Non-limiting 

CRF31 Deficiency Limiting Dilution Non-limiting Dilution Non-limiting Deficiency Limiting Dilution Non-limiting 

CV01 Dilution Non-limiting Deficiency Limiting Deficiency Limiting Dilution Non-limiting Sufficiency Non-limiting 

CV11 Dilution Non-limiting Deficiency Limiting Dilution Non-limiting Deficiency Limiting Deficiency Limiting 

 

Table 5.6: Summary of the macronutrient vector responses across all replications at Flatcrown 

  Nitrogen  Phosphorus  Potassium Calcium Magnesium 

Treatment Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis 

CRF10 Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting Deficiency Limiting Deficiency Limiting 

CRF11 Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting 

CRF20 Deficiency Limiting Dilution Non-limiting Dilution Non-limiting Deficiency Limiting Dilution Non-limiting 

CRF21 Deficiency Limiting Deficiency Limiting Deficiency Limiting Dilution Non-limiting Deficiency Limiting 

CRF30 Deficiency Limiting Sufficiency Non-limiting Deficiency Limiting Dilution Non-limiting Dilution Non-limiting 

CRF31 Deficiency Limiting Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting 

CV01 Dilution Non-limiting Deficiency Limiting N/A N/A Dilution Non-limiting Deficiency Limiting 

CV11 Deficiency Limiting Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting Dilution Non-limiting 

 

The cells demarcated as N/A represent instances where a response in unit dry weight, nutrient concentration and nutrient content did not match an interpretation as 

set out by Haase and Rose (1995). 
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5.3 Foliar nutrient content 

An investigation into the foliar macronutrient contents at nine months for both sites 

revealed some significant differences (p<0.05). On the Mtunzini site there were 

significant treatment differences for all five macronutrients (Table 5.7).  

Table 5.7: Analysis of variance results of significant increases in macronutrient foliar content 
at nine months of age for Mtunzini and Flatcrown. Significant effects shown in red. 

Analysis of variance results of Foliar nutrient content 

Mtunzini nutrient content significant differences 

N 

Effect SS 

Degree 
Of 

freedom MS F p 
N level 26.1810 3 8.7270 9.6528 0.000064 
P level 9.8276 1 9.8276 10.8702 0.002056 
N level * P level 3.4327 3 1.1442 1.2656 0.299146 

P   

N level 9.2073 3 3.0691 7.2560 0.000535 
P level 5.6604 1 5.6604 13.3824 0.000733 
N level * P level 1.7507 3 0.5836 1.3797 0.262881 

K 

N level 113.494 3 37.831 7.5840 0.000395 
P level 63.340 1 63.340 12.6976 0.000965 
N level * P level 19.847 3 6.616 1.3262 0.279311 

Ca 

N level 289.449 3 96.483 12.4382 0.000007 
P level 87.134 1 87.134 11.2329 0.001765 
N level * P level 31.935 3 10.645 1.3723 0.265093 

Mg 

N level 26.1810 3 8.7270 9.6528 0.000064 
P level 9.8276 1 9.8276 10.8702 0.002056 
N level * P level 3.4327 3 1.1442 1.2656 0.299146 

Flatcrown nutrient content significant differences 

N 

Effect SS 

Degree. 
Of 

freedom MS F p 
N level 9669.2 3 3223.1 4.4181 0.019136 
P level 2.1 1 2.1 0.0028 0.958167 
N level * P level 3885.1 3 1295.0 1.7752 0.192375 

K 

N level 1641.85 3 547.28 4.7428 0.014950 
P level 21.67 1 21.67 0.1878 0.670511 
N level * P level 1005.90 3 335.30 2.9057 0.066891 
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Figures 5.9 to 5.13 illustrate the influence of N and P application on the foliar 

contents of the five macronutrients at Mtunzini. For all five macronutrients there is a 

trend of increasing foliar contents with an increase in N application, while P 

application had an additive effect on nutrient uptake into the foliage.  

Treatment combination CRF31 and CRF21 had the highest foliar contents of N, 22.3 

kg ha-1 and 21.2 kg ha-1 respectively, while CV01 and the control treatment had the 

lowest contents at 5.9 kg ha-1. The mean foliar N content for the site was only 13 kg 

ha-1. For P, CRF21 had the highest value with 2.6 kg ha-1, more than three times the 

content of the control. The mean foliar P content on the site was 1.5 kg ha-1. As 

expected, treatments which included an application of P in combination with N were 

in the top positions for foliar N content with CRF21 having a significantly higher 

content than CV01. This is an indication that P accumulation in the foliar biomass of 

E. grandis x urophylla clones is improved when P is applied in conjunction with N. A 

similar trend was found for K, Ca and Mg content, with trees treated with 

combination CRF21 containing the highest mass of K, Ca and Mg per hectare at 8.8 

kg ha-1, 11 kg ha-1 and 3.7 kg ha-1 respectively. The macronutrient contents of CV11 

were not significantly different to CRF11. 

 

Figure 5.9: Foliar N contents for the eight factorial treatment combinations as well as the CV11 
treatment at Mtunzini at nine months of age. 
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Figure 5.10: Foliar P contents for the eight factorial treatment combinations as well as the 
CV11 treatment at Mtunzini at nine months of age. 

 

 

Figure 5.11: Foliar K contents for the eight factorial treatment combinations as well as the 
CV11 treatment at Mtunzini at nine months of age. 
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Figure 5.12: Foliar Ca contents for the eight factorial treatment combinations as well as the 
CV11 treatment at Mtunzini at nine months of age. 

 

 

Figure 5.13: Foliar Mg contents for the eight factorial treatment combinations as well as the 
CV11 treatment at Mtunzini at nine months of age. 

On the Flatcrown site, only foliar N and K contents were significantly (p<0.05) 

different among treatments. The difference in N uptake into the foliage between the 
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four levels of N in the absence of P was not significant, though there was an 

increase in foliar N content with increasing N application. The difference in N 

contents when N was applied in combination with P is clearer. A higher foliar N 

content was found when applying level 2 and 3 N over level 1 and no N application. 

The treatment combination with the highest foliar N content, CRF31 accumulated 

128.9 kg ha-1, nearly six times the amount accumulated in the equivalent treatment 

at Mtunzini over the same period of time. The mean foliar N accumulation for the site 

at nine months was 97.1 kg ha-1, more than seven times the mean of Mtunzini. The 

control treatment had an N content of 80.9 kg ha-1, which was higher than the CV01 

(57.6 kg ha-1) and CRF11 combination treatment (67.6 kg ha-1). P had a negative 

effect on N uptake at zero and low levels of N application and an additive effect 

when application rates are increased to 80 g N per tree and above. There was no 

clear indication as to why CRF11 did not manage to accumulate as much N as its 

CV11 counterpart or CRF10. A possible reason for this occurrence was that the 

modest amount of N applied in the CRF form, the longevity of the release period and 

some influence of P addition at the lower levels of N, could be conducive to 

unfavourable N/P ratio for optimal N uptake into the foliage The only significant 

difference for foliar N content was between CRF31 and CV01 (Figure 5.14). 

The trend for foliar K content was similar to that of foliar N. N application in the 

absence of P across all levels had very similar foliar K contents. As with foliar N 

contents, a slight non-significant positive trend in foliar K content was also seen with 

higher N applications (Figure 5.15). N applied in the presence of P had a significantly 

positive effect on K uptake. There was a significant increase in K content from 26.2 

kg ha-1 for CRF11 to 58.7 kg ha-1 in CRF21. The K content of CRF21 was more than 

six times that of the equivalent treatment at Mtunzini. Although a higher K content 

was found in the CV11 (43.4 kg ha-1), it was not significantly different to the CRF11 

equivalent. The control once again performs better than anticipated with a content of 

35.6 kg ha-1. The mean K foliar content for the site was 39.1 kg ha-1, more than 14 

times that of Mtunzini. 
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Figure 5.14: Foliar N contents for the eight factorial treatment combinations as well as the 
CV11 treatment at Flatcrown at nine months of age. 

 

 

Figure 5.15: Foliar K contents for the eight factorial treatment combinations as well as the 
CV11 treatment at Flatcrown at nine months of age. 
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5.4 Estimated LAI 

Both the N and P factors had significant (p<0.05) effects on the LAI at Mtunzini, while 

no significance in LAI development was evident on the Flatcrown site. At Mtunzini 

there was no significant increase in LAI between N level 0 and 1, or level 2 and 3. At 

Mtunzini the major response in leaf area was to the application of N with P having an 

additive effect The marked increase in estimated mean LAI takes place between 

level 1 and 2 N in the presence of P, a significant increase from 0.27 to just over 

0.52 (Figure 5.16). The mean estimated LAI for the conventional treatment was not 

significantly different to CRF11 with each attaining a value of 0.27. 

The estimated mean LAI on the Flatcrown site varied from 1 to 1.8, with no 

significant treatment differences between any of the factorial combinations or the 

additional conventional treatment. There are two factors which may have contributed 

to the lack of significance. Firstly, the overhead sky conditions on the measurement 

day were inconsistent, resulting in error/variability within treatments being larger than 

treatment differences. Secondly, with fairly homogenous growth across the site and 

plots nearing canopy closure, differences between treatments may have been non-

existing or indiscernible. Given the presence of the large error bars on the treatment 

means, the former appears the more feasible explanation (Figure 5.17). 

 

Table 5.8: Results of the analysis of variance analysis of estimated LAI at nine months of age 
for Mtunzini and Flatcrown 

ANOVA results of Estimated LAI analysis 

Mtunzini 

Effect SS 
Degree 

Of 
freedom 

MS F p-value 

N level 0,473596 3 0,157865 11,2322 0,000018 
P level 0,159571 1 0,159571 11,3535 0,001678 
N level*P level 0,073727 3 0,024576 1,7486 0,172567 

Flatcrown 

Effect SS 
Degree. 

Of 
freedom 

MS F p-value 

N level 1,14101 3 0,38034 2,1634 0,132268 
P level 0,02100 1 0,02100 0,1195 0,734111 
N level*P level 0,73275 3 0,24425 1,3893 0,282189 
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Figure 5.16: Estimated leaf area index for the eight factorial treatment combinations as well as 
the CV11 treatment at Mtunzini at nine months of age. 

 

Figure 5.17: Estimated leaf area index for the eight factorial treatment combinations as well as 
the CV11 treatment at Flatcrown at nine months of age. 

 

5.5 Crown area projections 

The results of the crown area analysis showed that on the Mtunzini site there were 

significant (p<0.05) treatment differences (Table 5.9). The mean crown area per ha 
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for the site was 4503.13 m2, with the control treatment and P application in the 

absence of N exhibiting the smallest crowns of 3579 and 3619 m2/ha. The response 

in crown area was primarily due to N application with P yet again having an additive 

effect.   

Table 5.9: ANOVA results of the investigation into crown area per hectare treatment 
differences on the Mtunzini site 

ANOVA results of estimated crown area analysis 

Mtunzini 

Effect SS 
Degree 

Of 
freedom 

MS F p-value 

N level 16361038 3 5453679 14.072 0.000002 
P level 2912153 1 2912153 7.514 0.009108 
N level*P level 1004201 3 334734 0.864 0.467835 

 

 

Figure 5.18: Crown area estimation values for the factorial treatment combinations and the 
additional conventional treatment at Mtunzini. 

 

Level 1 N application, with and without P, increased the crown area by a significant 

38 % and insignificant 23 % over the control respectively. The increase from level 1 

N application to level 3 N applications, with or without P, only showed an 

improvement of approximately 10 %. The crown area response of the conventional 
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treatment was poorer than its CRF11 counterpart achieving a crown area of 3984 

m2/ha. 

5.6 Estimated volume growth 

On the Mtunzini site, the effects of N and P were significant (p<0.05) with an 

insignificant interaction. There was a near linear increase in growth with an 

increasing level of N application with an additive effect from P application. The 

control treatment achieved a mean volume of approximately 3.5 m3 ha-1, while the 

treatment that received only P applications (20 g P per tree) had a mean volume of 

3.2 m3 ha-1, suggestive of a slight non-significant depressive effect on growth by P 

fertilization applied singly.  

 

Table 5.10: ANOVA results of estimated mean volume on the Mtunzini and Flatcrown site 

Mtunzini 

Influence and interaction of Main factors 

Effect SS 
Degree 

Of 
freedom 

MS F p 

N level 120.287 3 40.096 20.637 0.000000 
P level 19.774 1 19.774 10.177 0.002203 
N level*P level 16.720 3 5.573 2.869 0.056460 

Testing for any significant treatment differences 

Treatment 162.915 8 20.364 10.854 0.000000 
Flatcrown 

Influence and interaction of Main factors 

N level 330.96 3 110.32 9.340 0.000033 
P level 25.13 1 25.13 2.128 0.149525 
N level*P level 89.57 3 29.86 2.528 0.065154 

Testing for any significant treatment differences 

Treatment 479.33 8 59.92 5.059 0.000052 
 

Figure 5.19 shows the significant interaction between the four levels of CRF N 

applied in either the presence or absence of conventional P for the Mtunzini site. It 

was evident that the highest levels of application equated to the highest levels of 

growth. Level 3 N applications in the absence of P were able to attain a mean 

volume of 6.4 m3 ha-1. When applied in combination with P, this yield was even 

further improved with 1.6 m3 ha-1 to reach a maximum yield of 8 m3 ha-1 for the 

CRF31 treatment on the site.  

Stellenbosch University  http://scholar.sun.ac.za



97 
 

The mean volume of level 3 N application in combination with P was significantly 

(p<0.05) higher than level 0 and 1 N in combination with P. The increase in volume 

between the CV11 and best N and P combination treatment (level 3 N, level 1 P) 

was approximately 82 %. 

 

Figure 5.19: The relationship between increasing CRF N applications in the presence or 
absence of conventional P and the response in volume growth on Mtunzini. 

 

On the Flatcrown site only the effect of N was significant and in contrary to Mtunzini, 

no additive effect from P application was found. In combination with P, there was a 

marked increase in the mean estimated volume from level 0 (17.5 m3 ha-1) to 2 (24.6 

m3 ha-1) N. A slight reduction in the volume growth when the N application is 

increased from level 2 to 3 was found. When N is applied singly, the mean estimated 

volume between levels 0 and 1, increased from 17.7 m3 ha-1 to 21.1 m3 ha-1. 

Between level 1 and 2, the volume was reduced from 21.1 m3 ha-1 to 20.6 m3 ha-1 

and between 2 and 3, increased from 20.6 m3 ha-1 to 21.6 m3 ha-1. There are no 

significant differences between any of the four N levels applied in the absence of P. 

The interaction of the levels of CRF N and conventional P are shown in Figure 5.20. 

The peak mean volume for the site (24.6 m3 ha-1) was found at level 2 N in the 

presence of P. The conventional treatment performed well on this site, with a mean 
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estimated volume of 22.9 m3 ha-1, an improvement of 3.5 m3 ha-1 over the CRF11 

treatment. 

 

 

Figure 5.20: The relationship between increasing CRF N applications in the presence or 
absence of conventional P and the response in volume growth on Flatcrown. 

5.7 Mean height growth 

The fertilizer response at Woolstone is distinctly different to the two Zululand sites 

(Table 5.11). There is a significant effect (p<0.05) of P fertilization on this site, while 

N addition did not have a significant effect on early height growth. With an 

insignificant interaction between the main factors, the effect of P could be further 

investigated. 

There was a clear noticeable difference in height growth between treatment 

combinations which received 20 g P per tree and those without (Figure 5.21). 

Treatments which received P had a mean height of 155.9 cm and those with no P 

had a mean height of 123.8 cm, a significant difference of 32.1 cm. The interaction 

between the N and P factor combinations as well as the two additional treatments on 

the site is shown in Figure 5.21.  
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Table 5.11: ANOVA results of mean height growth analysis on the Woolstone site 

Woolstone 

Influence and interaction of Main factors 

Effect SS 
Degree 

Of 
freedom 

MS F p 

N level 1606 3 535 2.049 0.115832 
P level 18584 1 18584 71.127 0.000000 
N level*P level 106 3 35 0.135 0.938531 

Testing for any significant treatment differences 

Treatment 25266 9 2807 11.292 0.000000 
 

The growth trend of increasing applications of N, with or without P, was the same. A 

non-significant trend with negative height growth response was elicited as N 

application rates increased. N applications in the presence of P, performed 

superiorly than equivalent N applications in the absence of P. The best growth was 

obtained when P was applied in the CV form unaccompanied by N. The difference in 

height growth between all treatments which received P are however not statistically 

significant from one another. Treatments which received P were significantly different 

from those which did not receive any P, with the exception of the level 3 N which 

performed statistically similar to the control. 
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Figure 5.21: The relationship between increasing CRF N applications in the presence or 
absence of conventional P and the response in mean height growth at 7 months of age on the 
Woolstone site. The two additional treatments performance are shown relative to the factorial 
treatments. 

The two additional treatments performed well on the site. The height growth of CV11 

was statistically similar to the CRF11 equivalent. CRF 7-3-0, contained both N (29 g 

N per tree) and P (12.3 g N per tree) in a controlled release form and despite the 

lower application rate, the growth was similar to the best treatment combinations on 

the site. The treatments which only received N were not significantly different to the 

control.  
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Chapter 6: Discussion A 

 

6.1  Early survival 

The non-significant effect of fertilizer application on early survival of pine species is 

similar to results found by Carlson and Soko (1999), Amishev and Fox (2006) and 

Rolando et al. (2007). The poor survival experienced can be ascribed mainly to the 

infection of seedlings by F. circinatum. Pinus radiata is particularly susceptible to 

infection (Gordon et al. 1998, Gordon et al. 2001, Wingfield et al. 2002) while the P. 

elliottii x caribaea hybrid in previous studies demonstrated good resistance to the 

pathogen (Roux et al. 2007). This would explain the differences found between the 

two taxa. The question remains whether Fusarium infection is the sole contributor to 

mortality, or whether it was masking other outside influences. 

Two additional influences could have exerted an additive effect on the poor survival. 

The first is the relatively late (4 weeks after planting) application of the fertilizer 

treatments, but excellent survival in both the P. radiata and hybrid control treatments 

indicates that the timing of application was not a contributing factor. 

The interspecific competition from weeds could have induced a significant degree of 

stress on the seedlings. Little and Rolando (2001) indicated that competition from 

weeds during the establishment phase of pines in the summer rainfall region of 

South Africa is a significant contributor to early seedling mortality. Although hoeing 

and herbicide applications were performed on schedule, due to the nature and 

history of the site, fynbos weed growth may have reduced survival. 

The results suggested that a fertilizer x disease interaction occurred, but the 

mechanism and relationship requires further investigation. 

 

6.2 Foliar analysis 

The magnitude of the responses was negligible in most cases, suggesting that the 

site was not nutrient limited. However, magnitude of the vectors aside, the 

interpretation and diagnosis among treatments which received the same level of 

application is highly inconsistent for all five macronutrients.  
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For level 1 N application, treatment CRF110 shows a toxic level, treatment CRF111 

was sufficient non-limiting and CRF112 was deficient. Inconsistencies like these are 

prevalent throughout the vector analysis results. Whether this was a result due to the 

Fusarium influence is unclear, these results therefore do not give a true indication of 

the site’s nutrient limitations and requirements, or the ability of CRF fertilizers to 

increase the uptake of nutrients into the above ground foliar biomass. The only 

consistent trend in the analysis was large vector response magnitude for all 

macronutrients in the CV322 treatment. CV322 indicates that N and K were not 

limiting factors, while P, Ca and Mg were limitations on growth. This is consistent 

with the critical value analysis which indicates marginal to deficient values for P and 

Mg. 

 

6.3 Disease incidence 

Tree mortality reduced sample numbers between first and second measurement 

dates. There was an increase of 11.53 % in the frequency of trees not displaying any 

visual signs of the disease, a reduction of 29.4 % for level 1 symptoms and a 71.43 

% decrease in level 2 trees. These percentages take into account the amount of 

trees that died, assuming they died as classified at the first assessment, and those 

that were reclassified into different levels in the 10 month period between first and 

second assessments. For example, for level 2, of the 57 trees classified at the first 

assessment, 50 trees died, and of the 7 that survived, 5 were reclassified as level 1. 

The true percentage change for level 2 is thus 5/7, which equals the 71.43 % 

reduction.  

Blakeslee et al. (1999) investigated the influence of pre-commercial thinning and 

fertilization on the disease incidence and severity of pitch canker on loblolly pine. 

The authors found that disease incidence and severity fluctuated substantially 

between different years. These results are in line with what was observed on the 

Coetzenburg site between assessments one and two. Cumulative incidence and 

severity was also higher in treatments which received fertilization. 

Fertilization with N alone, or in combination with P and/or K, favoured F. circinatum 

(pitch canker fungus) development on P. elliottii, P. taeda and P. virginiana 

(Fraedrich and Witcher, 1982). N appears to be the primary element responsible for 
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increases in canker severity in the three tree species investigated, with P and K 

fulfilling secondary additive functions when applied in combination with N (Fraedrich 

and Witcher, 1982). For the P. radiata on this site though, no significant correlation 

could be found between increasing applications of N, alone or in the presence of P 

and/or K, and increases in disease incidence. The highest level of applications of 

CRF and CV sources, CRF322 and CV322, had the 4th and 8th lowest disease 

incidence of all 24 treatments. 

 

6.4 Biomass index growth 

Even though the trees of the healthy tree data subset did not show any visual 

symptoms of F. circinatum it cannot be said with 100 % certainty that their growth 

was unaffected.  

The growth of P. elliottii x caribaea in unfertilized plots was not significantly different 

to the P. radiata control, but the latter’s growth response to fertilizer application was 

significantly greater than the former. The fertilized P. elliottii x caribaea plots 

performed poorer than the P. radiata control and equivalently fertilized plots. These 

results show that the P. elliottii x caribaea hybrid is not a suitable species to be 

grown on this site given its poor growth performance despite clearly showing 

superior resistance to F. circinatum. However, the hybrid remains an option for the 

site if nothing else shows good survival. 

The three treatments identified as statistically different to the control, CRF110, 

CRF120 and CRF222 show an improvement over the control of 75 %, 82 % and 83 

% respectively. The best CV performer, CV310, however only exhibited a difference 

of 42 %. In comparison with two CV trials reviewed by Donald et al. (1987) which 

reported early BI results, the improvements over the control seen here were small. 

The first trial reported by Donald et al. (1987) showed a percentage increase of 

481.48 % (at 48 months) and the second an increase of 133.33 % (at 28 months)  

(Table 2.1). At the lowest rates of application of N, P and K, the CRF source 

performed better than the CV sources.  

When directly assessing the two fertilizer sources, increases in the applications of N 

and P, resulted in significant reductions in growth for the CRF source, while the 
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opposite situation was found for the CV source. For increases in K, reduction in 

growth was found for both sources. The CRF fertilizers which allow nutrients to be 

available to the trees for a longer period of time stimulates new tissue growth which 

as a consequence could possibly lead to an intensification of the action of the pitch 

canker fungus and it’s inhibiting effects on plant growth. It is likely that greater 

additional responses to fertilizer application would have been obtained in the 

absence of disease. 
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Chapter 7: Discussion B 

 

7.1 Early survival 

Claims are made that fertilizer application decreases mortality, but the contradictory 

results seen here were not surprising. Germishuizen and Smith (2007) reviewed a 

number of conventional fertilizer trials on eucalypts at establishment in Zululand and 

found only two instances of a significantly positive response on stand survival. 

Bennett et al. (1996) found similar non-significant effects on survival when they 

tested fertilizer applications on three eucalypt species across three different sites in 

Australia. Significantly negative responses to conventional fertilizer were found by du 

Toit and Oscroft (2003) at rates of 100 g of N applied as LAN and 100 g of ASN 

(Ammonium Sulphate Nitrate) in a single trial on the Zululand coast. 

Noble (1992a) and du Toit and Oscroft (2003) suggested that where conventional 

fertilizer is applied, the placement thereof is an important consideration, especially at 

higher rates of application. In trial C.87 of the ICFR, high mortality was found in 

specific lines of treatment plots that received 100 g of N while less disproportionate 

mortality was found in plots of the same treatments on four other sites that formed 

part of the same trial series. Poor fertilizer placement in ICFR trial C.87 is most likely 

the cause of the higher mortality (du Toit and Oscroft, 2003). 

The non-significant mortality results in this trial, even at application rates of 120 g of 

N per tree and that the higher than expected mortality at Mtunzini was caused by an 

externality is an indication that CRF fertilizers can be applied more safely at higher 

rates. 

7.2 Foliar analysis 

The foliar analysis results were not as discernible between treatments as initially 

expected. On both Mtunzini and Flatcrown, clear and discernible increases were 

seen in foliar nutrient content and dry weight but changes in foliar nutrient 

concentrations were minimal. Past research conducted on the development of 

diagnosis norms for nutrient deficiencies and optimal foliar nutrient concentrations for 

eucalypts should be treated with caution, especially after a fertilization event as foliar 

nutrient concentration fluctuations are minor (Germishuizen and Smith, 2007). 

Although foliar diagnosis in other commercial species has proven its worth as a 
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useful analysis tool, for Eucalyptus, results have been proven unreliable (Cromer, 

1996). 

Nutrient concentrations in a plant vary according to leaf age, position in crown, 

seasonality and nutrient mobility (Gregoire and Fisher, 2004). Eucalypts have a high 

level of nutrient translocation, which can take place in leaves as young as six months 

of age (Fife et al., 2008) which leads to nutrient concentrations which may not reflect 

the true nutritional status of the plant. 

Eucalyptus are known to possess the capacity to rapidly take up readily available 

nutrients in support of new growth expansion (Germishuizen and Smith, 2007). Often 

nutrients taken up into the plant at planting becomes ever more diluted over time as 

total tree biomass increases (Noble, 1991). At Mtunzini and Flatcrown there was a 

definite foliar biomass response to an increased nutrient availability at planting and 

this can be seen in the estimated LAI values (Section 5.4) and crown area 

projections (Section 5.5). The mixture of deficiency and dilution  vectors found can 

possibly be explained through the translocation and therefore dilution of foliar 

nutrient concentrations as the trees grew. The sampling and analysis methods may 

need review and further development to overcome the shortcomings described here.  

Foliar nutrient analysis on Eucalyptus was erratic and the variability of these results 

only further reinforce what has previously been found (Cromer 1996, Bennett et al. 

1996, Germishuizen and Smith 2007), with studies on eucalypt species. 

7.3 Foliar nutrient content 

Foliar N and P concentrations of juvenile eucalypts are higher in the younger foliage, 

at higher positions in the canopy, than older foliage lower down (Cromer et al. 

1993b). This is an indication of re-translocation of nutrients at a young age. As a 

result of the chosen sampling strategy, the calculated foliar nutrient contents are 

more representative of the entire crown area. Laclau et al. (2000) found that in clonal 

eucalypt plantations in the Congo, N and K concentrations are highest in the foliage 

and 50 % N and 65 % K have already been accumulated within the first two years of 

growth. Cromer et al. (1993b) showed that by as early as 0.66 years after fertilizer 

application, E. grandis had already accumulated 80 % of the total aboveground N in 

its foliage in both fertilized and non-fertilized trees.  
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When analysing the results of the foliar N contents of Mtuzini and Flatcrown there is 

a clear discernible difference in the N supplying capability of the Mtunzini site in 

comparison with Flatcrown, and this can be seen in the difference in growth rate of 

the trees (see Section 5.6). This observation is a typical attribute of an ex-agricultural 

site in South Africa, where historical agriculture practices such as soil cultivation, 

burning of harvesting residues and intensive fertilization have had adverse effects on 

the soil fertility (du Toit et al., 2001). CRF N fertilization at its highest rates on the 

Mtunzini site had a significantly positive effect on the available N for uptake in the 

soil, and increased the foliar uptake two fold from the optimal conventional treatment 

for these sites.  Not only is it safer to apply larger doses of CRF N over CV N, but 

higher N uptake into the tree can also be achieved.  

For high rates of growth to be achieved, equally high rates of nutrient uptake was 

needed, especially during the period before canopy closure (Cromer et al. 1993b). In 

the study by Cromer et al. (1993b), where N and P was applied at nine intervals 

during the first three years for a total of 1 536 kg ha-1 and 461 kg ha-1 respectively, 

the N content in the foliage of the fertilized plots accumulated to 130 kg ha-1 in 1.04 

years and continued to increase slowly to 150 kg ha-1 by 2.4 years. The control plots 

accumulated 27 kg ha-1 of N in 3.08 years. In addition, Cromer et al. (1993b) also 

suggested that each kg ha-1 of N in the foliage was associated with 220 kg of above 

ground dry matter production per year.  

The highest rates of fertilizer application in this study i.e. 200.04 kg ha-1 of N and 

33.34 kg ha-1 of P, resulted in similar accumulation rates on the Flatcrown site. This 

was achieved at a younger age and with only a single application at planting. The 

substantially lower foliar N concentrations at Mtunzini could be an indication that an 

even larger application could be applied to further increase growth. At this point it is 

not clear which treatment is the most economically viable option on either site. It is 

clear though, that higher nutrient availability and uptake during the early growth 

period before canopy closure is crucial to achieving the maximum growth potential of 

the target crop on the site. 
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7.4 Estimated volume growth 

Results from previous fertilizer trials established on former agricultural lands have 

been unpredictable due to the atypical nature of these sites. The soils are fraught 

with poor physical properties, low levels of exchangeable cations and low N 

mineralization and supply capacity (Germishuizen and Smith, 2007; Noble, 1992a). 

Preceding agriculture practices such as tillage, burning and excessive fertilization 

have led to indirect consequences of site nutrient deficiencies for forest managers to 

deal with. Although trees have shown significant responses to conventional 

fertilization in the past on ex-agricultural sites (du Toit and Oscroft, 2003; du Toit et 

al., 2001; Noble, 1992a), the excellent response to controlled-release N fertilization 

has proven the need for prolonged N availability in the soil for additional growth 

benefits to be achieved early on in the rotation. 

Although there is only a 0.11 % difference in the mean site OC content of the two 

sites, their responses are evidently dissimilar.  However it should be stated that even 

though the total OC difference is small, differences in labile OC are bound to be 

larger due to the history of the Mtunzini site. Mtunzini’s ability, as an ex-agriculture 

site, to supply N directly from the soil is significantly lower than Flatcrown. Assuming 

that the control plot foliar N contents were directly related to the quantity of N that the 

site can supply on its own, the control plot values in Figures 5.14 and 5.15 should 

provide a good indication as to the difference in soil fertility of the two sites. The 

relative difference in growth between the control and the best treatment combination 

at Mtunzini is 116 %, but it only represents an absolute increase of 4.3 m3 ha-1. The 

difference between the control and best treatment combination on Flatcrown is 38.9 

% or 6.9 m3 ha-1.  Even though Flatcrown responded relatively poorer than Mtunzini, 

it had the best absolute increase in volume growth. This is often the case with the 

most productive sites having the largest responses. Even though both sites were 

planted with the same hybrid clone, some of the differences on the two sites can 

possibly be attributed to clone x site interactions. However, these differences are 

likely to be small and given that the weather conditions on the two sites were similar 

over the 12 month period, with similar average daily temperatures, 21.68 °C and 

21.19 °C, and rainfall 1 234 mm and 1 107 mm for Mtunzini and Flatcrown 

respectively. The observed differences are mainly site related, with the biggest effect 

most probably due to the history of the two sites.  
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One criticism of fertilization at establishment is that the root systems are not 

adequately developed for optimal nutrient uptake at the time of application. With 

conventional fertilizer, the common response to this criticism was to delay the timing 

of, or split the application which incurs additional costs. Controlled-release fertilizers 

allow the flexibility of blending fertilizers with different release rates to produce a 

tailor-made product for specific tree nutrient demands. The 75/25 combination of 

eight and two month release periods allowed at least 25 % of the total application to 

be available to the plant within the first two months of growth to aid in root system 

development.  

The suppressive effect of P fertilization on both sites did not come as a surprise.  

The requirement for N on low OC content sites was much higher than P and when P 

was applied without remedying the N requirement, it may have resulted in an 

unfavourable N:P ratio for optimum growth. The Mtunzini site had higher amounts of 

available P in the soil to begin with (Table 3.2) most likely as a result of past 

agricultural practices when the site was under sugarcane production. The N:P 

balance in the soil was thus likely to be unfavourable at trial establishment and as a 

result, P fertilization on its own was found not to be beneficial and the CV01 

performed poorer than the control. Trial C.19 (ICFR, 1987) and C.82 (du Toit and 

Oscroft, 2003) of the ICFR, report similar findings on similar sites with P fertilization 

performing poorer than the control. To achieve the best growth on sites with low OC 

content, P should be applied in combination with N.  

The growth performance of CV11 at Mtunzini was slightly poorer than CRF11, but at 

Flatcrown it performed 18 % better. Even though the growth of the CV11 treatment is 

comparable to CRF11, the benefit that CRF had over CV sources was that additional 

responses could be obtained with increases in application rates. Du Toit and Oscroft 

(2003) showed that very few responses were found to applications of N above 50 g 

per tree on comparable sites in the same region. With pre-enriched organic 

fertilizers, Agrofert® and Humac®, du Toit et al. (2001) found the optimum 

application at 80 kg/ha or 60 g N per tree. On the Mtunzini site significant responses 

were found at double (120 g N per tree) that application rate. 
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7.5 Mean height growth 

Soils such as at Woolstone, with substantial OC (2.67 %) and clay (48 %) content, 

high levels of available N and strong P fixing capacity, require P addition more 

strongly than N. With an increase in soil OC, an increase in P fixation can be 

expected due to an escalation of P adsorption by Al and Fe surfaces (Tisdale et al., 

1993). As discussed in Section 2.8, the availability of P in soils is dependent on 

multiple factors. In low soil pH conditions, such as the acidic Inanda soil at 

Woolstone, which contain high levels of sesquioxides are predisposed to high rates 

of P sorption (Bainbridge et al., 1995). Highly weathered red or yellow-brown clays, 

with high OC content in the topsoil were found to be some of the highest P sorbers in 

the Mistbelt region of the Kwa-Zulu Natal province (Bainbridge et al., 1995). Although 

these soils are rated as having a high to very high P requirement on the classification 

system developed by Juo and Fox (1977), there is still considerable variation in P 

sorption within the same soil form. Bainbridge et al. (1995) illustrated that P sorption 

in soils of the Inanda form varied noticeably even among soils with similar clay 

contents. P sorption in Inanda soils with similar clay contents to Woolstone varied 

between 200 and 600 mg of P sorbed per kg of soil (Bainbridge et al., 1995). An 

inverse relationship between soil OC content and P availability to trees was 

observed by Tisdale et al. (1993) which may indicate an opportunity for additional 

productivity gains to be had with increases in the dosages of P on P fixing sandstone 

derived sites. 

The results seen here, with a reduction in height growth with increasing applications 

of N in the absence of P, suggests an adverse N/P ratio in these treatments which 

had a non-significant depressive effect on the growth. With a baseline available P of 

only 3 ppm in the soil (Table 3.2), the response to P addition is justified. Although 

early negative responses to N were found, the N accumulation in the above ground 

biomass and especially foliage would have been high in the period from May to 

August. Refer to du Toit and Dovey (2005) for measured nutrient accretion rates. 

The growing season at Woolstone is in the spring and summer months and the 

additional N accumulated in the higher N application treatments will aid in supplying 

the N demand for sustained fast growth. The responses obtained here are similar to 

results found by du Toit (1998), where conventional N, P and K addition was tested 

on E. dunnii on an Inanda soil form. The most significant responses were to P, with K 
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application having an additive effect when applied in combination with P. In the same 

trial positive responses were also found to N application in the presence of P on low 

tillage sites.   
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Chapter 8: Conclusion and Recommendations 

 

The findings presented in this study are only preliminary responses to controlled 

release fertilization on three commercial plantation species in South Africa. The F. 

circinatum outbreak in the P. radiata trees introduced a large degree of variation into 

the trial which the original design could not compensate for in the Coetzenburg site. 

This compromised the statistical integrity of the data and imposed a severe limitation 

to the analysis thereof.  In terms of resistance to F. circinatum, the P. elliottii x 

caribaea hybrid, both fertilized and unfertilized, was significantly better than all other 

treatments. The attempt made to compensate for this external factor in the BI 

growth, was to some extent successful in revealing some statistical differences 

between treatments. These differences were not as expected and the influence of 

the pitch canker on the growth of the trees was clearly evident. The results of the 

effectiveness of controlled release fertilization on P. radiata in the Western Cape 

region of South Africa warrants further investigation.  

The early results of Mtunzini and Flatcrown show the importance of fertilization on 

these sandy sites with low OC contents. Fertilization had no effect on stand survival 

and the results show that it is possible to apply large doses, up to 120 g N per tree, 

in a controlled release form with no ill-effect on seedling mortality. Mtunzini, the ex-

agriculture site (mean OC = 0.3 %), showed significantly positive responses to both 

N and P application in terms of estimated LAI, foliar nutrient content, crown area 

projections and estimated volume growth.  LAI values ranged from 0.15 (CV01) to 

0.52 (CRF21). The conventional treatment CV11 had an estimated LAI value of only 

0.28. The foliar N contents ranged from just over 5 kg ha-1 in the CV01 and control 

treatments, to approximately 23 kg ha-1 in treatment CRF31. Crown area projections 

range was estimated at between 36 % and 54 % ground coverage for the same 

treatments. All of these significant responses culminated in superior volume growth 

of the treatments with high N in the presence of P. With higher LAI values, larger 

canopies for radiation interception and significantly greater N uptake into the foliar 

biomass culminated in the CRF treatments being able to produce more biomass. 

The control and CV treatments produced one year mean volumes of between 3.1 

and 4.4 m3 ha-1. The top CRF treatments, CRF21 and CRF31, produced mean 

volumes of 6.6 and 8 m3 ha-1 respectively, with CRF31 mean volume nearly double 
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that of CV11. The best response overall was achieved with the highest application of 

controlled release N at 120 g per tree in combination with 20 g of conventional P. 

The application of 20 g P in the absence of N caused a slight depressive effect on 

the growth (3.1 m3 ha-1) with the control (3.4 m3 ha-1) producing marginally (but not 

significant) more volume. 

Flatcrown (mean OC = 0.41 %) , the more fertile of the two coastal Zululand sites in 

terms of N supplying potential, still responded significantly to applications of N in 

foliar N content and estimated volume only. Mean foliar N contents ranged from 57.6 

kg ha-1 for CV01 to 128.9 kg ha-1 for CRF31, a significant difference of 71.3 kg ha-1 

or 123 %.The control and CV11 had mean foliar N contents of 80.9 and 121.5 kg ha-

1 respectively. Although the top treatment combination, N level 3 and P level 1, had a 

mean improvement in estimated volume growth at 12 months of 59 % over the 

control and only 6 % over CV11, these differences were not significantly different 

between them or between any of the other treatments. The biggest response in 

volume growth was found in treatment combinations N level 2 and N level 3 in the 

presence of P, with 24.6 and 24.3 m3 ha-1 respectively.  These two responses were 

significantly different to the control and the single P treatment only. The conventional 

treatment, CV11 (22.9 m3 ha-1), performed well on this site, especially in the early 

stages where it was the best performer with regards to height growth. However it 

was not able to sustain the growth rate through the full year. None of the CRF 

treatment combinations were significantly different to the conventional treatment 

when volume growth for the first year is compared. The LAI values on the site varied 

from 1 to 1.8, but no significant treatment differences could be detected. 

Early responses on the Woolstone site were primarily to the application of P. 

Unfortunately CRF N was the primary nutrient that was tested and with only one 

treatment with CRF P, definite conclusions to the merits of CRF P on this site cannot 

be made. Although treatments with only N application did not perform well in the 

early stages of growth, the N accumulated in the biomass of the tree will be crucial to 

supplying the higher N demand in the oncoming growth season. 

No attempt was made in performing an economic analysis at this stage of the study, 

due to the early nature of the responses and the possibility that the situation may 

look different towards the end of the rotation. It is recommended that growth 
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responses need to be monitored up until end of rotation and those values used in the 

final economic viability study. An additional option could be the projection of the 

current growth data to rotation end Additional research on the wood properties of the 

eucalypts growing at different rates and their pulping properties is an avenue worthy 

of further investigation in the coming years. 

Fertilization at re-establishment improved early growth gains of eucalypts on all sites 

tested with CRF as opposed to CV sources.  Early productivity gains to CRF N 

fertilization are promising and provide additional growth when compared against 

standard CV applications used widely in the South African forestry industry. Volume 

growth gains found in this study, at application rates above those reported as optimal 

in past research on similar sites, are reason to re-evaluate current fertilizer 

recommendations.  
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Appendix 1A 

Mtunzini soil chemical and textural properties 

 

  Depth   pH Resist. H+ P Bray 
II K Exchangeable cations (cmol(+)/kg) C Clay Silt Fine 

Sand 
Medium 

Sand 
Course 
Sand Stone 

Sample 
no (cm) Soil (KCl) (Ohm) (cmol/kg) mg/kg   Na K Ca Mg % % % % % % (Vol %) 

A11 0-20 Sand 5.8 2320 0.36 18 26 0.09 0.07 2.08 0.53 0.41 4 4 49.2 40.6 2.2 1 

A12 20-40 Sand 4 5460 0.87 60 14 0.07 0.04 0.4 0.17 0.34 4 4 48.7 41.3 2 1 

A13 40-60 Sand 4 8390 0.61 45 14 0.07 0.04 0.21 0.15 0.21 4 2 51.7 40.4 1.9 1 

A21 0-20 Sand 5.5 1510 0.26 17 28 0.09 0.07 1.76 0.51 0.38 4 4 52.6 37.3 2.1 1 

A22 20-40 Sand 4.4 3060 0.66 12 16 0.08 0.04 0.64 0.2 0.27 4 4 49.7 40.6 1.7 1 

A23 40-60 Sand 4.1 4680 0.66 3 8 0.07 0.02 0.26 0.12 0.26 4 4 51.4 39 1.6 1 

A31 0-20 Sand 5.1 2010 0.26 10 28 0.08 0.07 1.02 0.41 0.27 4 6 48.8 39.7 1.5 1 

A32 20-40 Sand 3.9 5280 0.71 29 17 0.07 0.04 0.32 0.16 0.17 4 4 47.1 43.5 1.4 1 

A33 40-60 Sand 3.9 3040 0.71 21 9 0.15 0.02 0.19 0.11 0.22 2 6 50.3 40 1.7 1 

A41 0-20 Sand 4.8 2460 0.46 16 29 0.12 0.07 1.61 0.52 0.39 4 4 53 37.2 1.8 1 

A42 20-40 Sand 3.9 5260 0.97 9 3 0.09 0.01 0.42 0.32 0.34 4 6 51.8 37 1.2 1 

A43 40-60 Sand 4.1 5530 0.66 4 9 0.09 0.02 0.32 0.52 0.33 2 8 49.3 38.8 1.9 1 
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Appendix 1B 

Flatcrown soil chemical and textural properties 

 

  Depth   pH Resist. H+ P Bray 
II K Exchangeable cations (cmol(+)/kg) C Clay Silt Fine 

Sand 
Medium 

Sand 
Course 
Sand Stone 

Sample 
no (cm) Soil (KCl) (Ohm) (cmol/kg) mg/kg   Na K Ca Mg % % % % % % (Vol %) 

B11 0-20 Sand 4.4 1760 0.51 8 21 0.14 0.05 0.68 0.53 0.43 4 6 54.5 34 1.5 1 

B12 20-40 Sand 4.4 4450 0.41 3 13 0.1 0.03 0.45 0.26 0.33 4 4 53 37 2 1 

B13 40-60 Sand 4.4 1800 0.36 2 17 0.16 0.04 0.5 0.23 0.34 4 6 47.7 40.5 1.8 1 

B21 0-20 Sand 4.2 1650 0.61 6 30 0.11 0.08 0.71 0.44 0.51 6 2 45.2 45.4 1.4 1 

B22 20-40 Sand 4 2900 0.92 4 26 0.11 0.07 0.33 0.21 0.39 6 6 44.6 41.8 1.6 1 

B23 40-60 Sand 3.9 3820 1.02 4 24 0.1 0.06 0.23 0.15 0.36 8 6 44 40 2 1 

B31 0-20 Sand 4.2 2030 0.82 6 7 0.08 0.02 1.16 0.41 0.67 8 4 55 30.9 2.1 1 

B32 20-40 Sand 4 3950 1.17 12 14 0.06 0.04 0.37 0.16 0.38 6 6 52.9 33.2 1.9 1 

B33 40-60 Sand 4 4910 0.92 2 13 0.06 0.03 0.19 0.13 0.37 8 4 49 37.3 1.7 1 

B41 0-20 Sand 4.4 2150 0.36 6 16 0.08 0.04 0.43 0.22 0.46 4 2 53.8 38.6 1.6 1 

B42 20-40 Sand 4.1 2840 0.61 4 23 0.08 0.06 0.27 0.27 0.35 6 2 52.6 37.6 1.8 1 

B43 40-60 Sand 4.1 3360 0.77 1 19 0.09 0.05 0.22 0.19 0.32 6 4 50 38.1 1.9 1 
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Appendix 1C 

Woolstone soil chemical and textural properties 

 

  Depth 
  

pH Resist. H+ P Bray 
II K Exchangeable cations (cmol(+)/kg) C Clay Silt Fine 

Sand 
Medium 

Sand 
Course 
Sand Stone 

Sample 
no (cm) Soil (KCl) (Ohm) (cmol/kg) mg/kg   Na K Ca Mg % % % % % % (Vol %) 

C11 0-20 Loam 4 1630 4.18 4 74 0.11 0.19 1.21 1 4.26 48 15 24 5 8 3 

C12 20-40 Loam 4 2100 4.58 2 85 0.13 0.22 0.54 0.84 3.98 54 15 23 4 4 3 

C13 40-60 Loam 4.4 3820 2.19 1 37 0.17 0.09 0.28 0.68 0.67 71 12 14 1 2 1 

C21 0-20 Loam 4.3 5200 2.19 1 17 0.07 0.04 0.27 0.65 1.27 62 13 21 3 2 1 

C22 20-40 Loam 4 3850 4.48 1 49 0.04 0.13 0.25 0.53 1.94 35 18 26 12 10 1 

C23 40-60 Loam 4.1 4170 3.69 1 27 0.13 0.07 0.21 0.9 2.27 53 14 26 3 4 1 

C31 0-20 Loam 4 2040 3.93 2 65 0.1 0.17 0.34 0.6 2.21 31 14 37 8 10 4 

C32 20-40 Loam 4.6 4930 1.49 0
 25 0.16 0.06 0.18 0.53 1.1 49 14 24 4 9 26 

C33 40-60 Loam 5 5010 1 0 73 0.11 0.19 0.5 0.86 0.86 43 18 21 5 13 24 

C41 0-20 Loam 5.4 580 0.75 17 1213 0.36 3.1 6.04 2.19 10.14 33 24 25 8 11 2 

C42 20-40 Loam 4.7 1160 2.09 6 119 0.2 0.3 2.72 1.51 2.15 47 20 25 3 6 2 

C43 40-60 Loam 4.6 1610 1.79 0 24 0.32 0.06 0.46 1.22 1.19 59 18 17 2 4 2 
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Appendix 1D 

Coetzenburg soil textural properties 

 

  Depth   Clay Silt Fine Sand Medium Sand Course Sand 

Sample no (cm) Soil % % % % % 

D11 0-20 Loamy Sand 8 6 40.6 10 35.4 

D12 20-40 Loamy Sand 6.4 7.6 34.6 9 42.4 

D13 40-60 Loamy Sand 10 6 34.5 9.5 40 

D21 0-20 Sand 6 6 41.1 10.4 36.5 

D22 20-40 Sand 6 4 37 11 42 

D23 40-60 Sandy Loam 16 8 25.6 8 42.4 
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Appendix 2A 

Coetzenburg foliar analysis results 

Plot 
number Treatment N P K Ca Mg Na Mn Fe Cu Zn B 

    % mg/kg 

1 CV322 2.38 0.16 1.07 0.27 0.08 250 228 184 4 34 17 

2 CRF212 2.62 0.12 0.94 0.25 0.10 270 433 192 4 30 23 

3 CRF112 2.44 0.12 1.02 0.22 0.09 191 417 183 4 38 36 

4 CRF121 2.61 0.15 1.05 0.21 0.07 234 391 172 4 33 27 

5 CRF312 2.48 0.13 0.83 0.17 0.07 571 161 204 3 22 17 

6 CRF210 2.20 0.13 0.95 0.21 0.09 242 179 177 4 30 21 

7 CRF110 2.95 0.15 0.93 0.15 0.04 425 165 229 4 33 18 

8 CRF122 2.37 0.18 1.00 0.17 0.06 251 328 168 4 39 16 

9 CRF221 2.72 0.14 0.85 0.20 0.09 244 380 172 3 21 24 

10 CVH322 2.16 0.09 0.53 0.15 0.04 819 529 185 2 14 20 

11 CRF222 2.61 0.13 0.93 0.18 0.07 387 183 220 4 25 22 

12 CV310 2.63 0.13 0.86 0.19 0.08 543 145 240 2 19 18 

13 CRF320 2.65 0.14 0.78 0.21 0.08 428 357 210 3 16 23 

14 CRF120 2.27 0.13 1.01 0.23 0.09 237 262 175 4 33 28 

15 CRF311 2.84 0.13 1.07 0.25 0.06 238 393 194 3 23 19 

16 CRF321 2.17 0.12 0.77 0.26 0.10 353 386 188 3 23 14 

17 CRF211 2.46 0.13 1.02 0.15 0.07 327 209 208 3 22 12 

18 CV112 2.30 0.16 1.07 0.22 0.02 368 159 226 2 82 17 

19 CRF310 2.53 0.12 0.71 0.18 0.09 204 139 171 3 20 13 

20 Control  2.32 0.11 1.11 0.21 0.05 339 238 221 3 60 23 

21 CRF322 2.52 0.12 1.01 0.27 0.09 311 497 216 3 13 15 

22 CRF220 2.48 0.14 0.88 0.30 0.13 293 333 177 3 21 23 

23 CRF111 2.38 0.15 1.17 0.14 0.06 222 266 160 3 30 17 

24 CVH000 2.35 0.10 0.69 0.29 0.04 444 555 138 3 37 23 
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49 CRF211 2.50 0.14 0.95 0.25 0.11 221 453 215 2 15 27 

50 CRF310 2.55 0.11 0.87 0.18 0.08 524 213 275 2 9 15 

51 CRF222 2.44 0.12 1.19 0.15 0.04 381 267 187 2 18 16 

52 CRF312 2.56 0.13 0.98 0.10 0.05 509 362 252 3 15 19 

53 CRF122 2.50 0.18 0.97 0.24 0.07 124 345 168 5 60 17 

54 CRF111 2.48 0.14 0.99 0.19 0.07 426 232 205 4 30 20 

55 CRF120 2.48 0.16 0.94 0.20 0.13 178 475 170 5 29 26 

56 CRF121 2.38 0.14 0.98 0.12 0.10 179 228 224 4 34 13 

57 CRF212 2.47 0.12 1.00 0.27 0.10 216 468 210 3 26 14 

58 CRF210 2.49 0.11 0.77 0.18 0.11 256 419 202 2 21 13 

59 CRF110 2.45 0.12 1.14 0.37 0.10 277 470 221 3 25 17 

60 CRF311 2.54 0.11 0.87 0.18 0.08 193 254 171 3 29 15 

61 CV112 2.43 0.14 1.04 0.17 0.08 255 514 185 4 37 21 

62 CRF220 2.53 0.13 0.84 0.20 0.09 262 329 179 2 14 18 

63 CVH322 2.34 0.07 0.46 0.12 0.02 725 146 155 1 10 12 

64 CRF221 2.44 0.13 0.95 0.15 0.05 426 169 148 3 21 14 

65 CRF322 2.42 0.11 0.80 0.10 0.03 335 169 150 2 25 6 

66 Control  2.46 0.12 1.11 0.19 0.05 440 101 196 5 64 20 

67 CRF320 2.50 0.11 0.84 0.20 0.06 390 160 191 3 30 9 

68 CRF112 2.42 0.14 1.08 0.18 0.05 178 129 133 4 32 14 

69 CV310 2.42 0.14 1.05 0.23 0.07 354 195 147 4 41 25 

70 CVH000 2.29 0.08 0.45 0.16 0.04 490 69 119 3 37 17 

71 CV322 2.42 0.14 0.90 0.23 0.08 392 139 145 4 48 15 

72 CRF321 2.42 0.13 0.94 0.18 0.06 521 235 189 4 19 11 

97 CRF121 2.39 0.14 1.01 0.18 0.07 453 307 186 4 30 14 

98 CVH000 2.29 0.11 0.82 0.14 0.04 680 128 185 3 25 12 

99 CRF311 2.49 0.16 1.14 0.13 0.05 394 216 162 3 22 6 

100 CRF112 2.48 0.14 1.15 0.18 0.06 304 235 174 4 37 15 

101 CRF122 2.47 0.17 1.17 0.16 0.08 227 266 143 4 48 12 

102 CV322 2.47 0.14 1.16 0.20 0.05 496 227 197 3 32 14 
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103 CRF120 2.47 0.14 0.96 0.3 0.08 212 555 129 3 25 17 

104 CRF322 2.45 0.13 0.94 0.22 0.08 289 297 187 4 23 14 

105 CV112 2.42 0.19 1.11 0.23 0.08 787 137 279 4 67 12 

106 CRF111 2.44 0.16 1.28 0.16 0.07 311 193 145 3 24 20 

107 CRF211 2.46 0.15 1.02 0.14 0.04 323 183 131 3 18 11 

108 CV310 2.44 0.17 1.05 0.15 0.06 227 100 134 4 40 13 

109 CRF222 2.50 0.14 1.15 0.20 0.07 453 244 187 3 24 11 

110 CVH322 2.44 0.08 0.78 0.12 0.05 767 165 147 2 14 5 

111 Control  2.47 0.12 0.97 0.19 0.08 488 78 201 4 67 10 

112 CRF321 2.49 0.15 1.03 0.20 0.07 375 238 181 2 25 15 

113 CRF110 2.46 0.14 1.01 0.26 0.08 679 146 210 3 32 17 

114 CRF320 2.54 0.13 0.68 0.23 0.09 418 185 184 3 13 7 

115 CRF210 2.56 0.13 0.88 0.15 0.06 357 150 163 3 15 8 

116 CRF221 2.52 0.14 0.89 0.21 0.07 442 169 205 3 20 7 

117 CRF220 2.49 0.12 0.78 0.17 0.06 638 194 260 3 12 12 

118 CRF212 2.52 0.15 0.89 0.18 0.07 546 133 214 4 16 11 

119 CRF310 2.55 0.12 0.81 0.16 0.08 584 115 228 3 13 5 

120 CRF312 2.50 0.12 0.90 0.12 0.05 743 96 233 3 13 11 
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Appendix 2B 

 

N x P x K interactions of the significant foliar nutrient concentrations 
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Appendix 2C 

Coetzenburg Macronutrient Vector nomograms. Shaded results of each nutrient are shown graphically. 

The cells demarcated as N/A represent instances where a response in unit dry weight, nutrient concentration and nutrient content did not 
match an interpretation as set out by Haase and Rose (1995). 

 
  Nitrogen  Phosphorus  Potassium Calcium Magnesium 

  Treatment Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis Interpretation Diagnosis 

  CRF110 Excess Toxic Excess Toxic Excess Antagonistic Luxury Non-toxic Excess Toxic 

  CRF111 Sufficiency Non-limiting Deficiency Limiting N/A N/A N/A N/A Deficiency Limiting 

  CRF112 Deficiency Limiting Sufficiency Non-limiting N/A N/A N/A N/A Deficiency Limiting 

  CRF120 Excess Toxic Excess Toxic N/A N/A Luxury Non- toxic Luxury Non-toxic 

  CRF121 Excess Toxic Excess Toxic Excess Antagonistic Excess Antagonistic Excess Toxic 

  CRF122 Deficiency Limiting Deficiency Limiting Dilution Non-limiting Dilution Non-limiting Deficiency Limiting 

  CRF210 Excess Toxic Excess Toxic Excess Toxic Excess Antagonistic Excess Toxic 

  CRF211 Deficiency Limiting Deficiency Limiting N/A N/A N/A N/A Deficiency Limiting 

  CRF212 Excess Toxic Excess Toxic Excess Antagonistic Excess Toxic Excess Toxic 

  CRF220 N/A N/A Excess Toxic Excess Antagonistic Excess Toxic Excess Toxic 

  CRF221 N/A N/A Excess Toxic Excess Antagonistic Excess Antagonistic Excess Toxic 

  CRF222 Deficiency Limiting Deficiency Limiting Excess Antagonistic Excess Antagonistic N/A N/A 

  CRF310 Deficiency Limiting Deficiency Limiting N/A N/A N/A N/A Luxury Non-toxic 

  CRF311 N/A N/A Excess Toxic Excess Antagonistic Excess Antagonistic Excess Toxic 

  CRF312 Excess Antagonistic Excess Toxic Excess Antagonistic Excess Antagonistic Excess Antagonistic 

  CRF320 Luxury  Non toxic Luxury  Non toxic N/A N/A Deficiency Limiting Deficiency Limiting 

  CRF321 Deficiency Limiting Deficiency Limiting Deficiency Limiting Deficiency Limiting Deficiency Limiting 

  CRF322 Excess Toxic Excess Toxic Excess Antagonistic N/A N/A Excess Toxic 

  CV112 N/A N/A Luxury Non-toxic Excess Antagonistic Excess Toxic N/A N/A 

  CV310 N/A N/A Luxury  Non toxic Luxury  Non toxic N/A N/A Luxury  Non toxic 
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  CV322 Sufficiency Non-limiting Deficiency Limiting Sufficiency Non-limiting Deficiency Limiting Deficiency Limiting 
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i) Vector nomogram of responses to N of treatments CRF222 and CV322. 
CRF222 showing a type  C shift and CV322 a type B shift. 

Coetzenburg - N Vector analysis
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ii) Vector nomogram of responses to P of treatments, CRF222, CV112 and 
CV322. CRF222 and CV322 showing a type C while CV112 a type D. 

Coetzenburg - P Vector Analysis
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iii) Vector nomogram of responses to K application of treatments CRF310, 
CRF322 and CV322. CRF310 and CRF322 shows a type F shift and 
CV322 a type B shift. 

Coetzenburg - K Vector Analysis
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iv) Vector nomogram of responses to Ca application of treatments CRF110, 
CRF120 and CV322. A type D shift for CRF110 and CRF120 and a type C 
shift for CV322. 

Coetzenburg - Ca Vector Analysis
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v) Vector nomogram of responses to Mg application of treatments CRF120, 
CRF310 and CV322. CRF120 and CRF310 show type D shifts and CV322 
and type C shift. 

Coetzenburg - Mg Vector Analysis
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Appendix 3A 

 

Mtunzini and Flatcrown foliar analysis results 

i) Mtunzini 

Plot Treatment N P K Ca Mg Na Mn Fe Cu Zn B 

    % mg/kg 

1 Control 1.75 0.25 0.60 0.91 0.35 2655 154 103 6 16 40 

2 CRF31 1.63 0.25 0.75 0.87 0.37 3609 165 98 6 17 34 

3 CRF21 1.92 0.24 0.72 0.89 0.30 3967 186 88 5 14 31 

4 CRF11 2.21 0.21 0.80 0.83 0.31 3658 192 97 5 16 34 

5 CRF10 1.83 0.22 0.63 0.86 0.32 4089 165 94 5 16 28 

6 CRF20 2.33 0.23 0.88 0.90 0.34 4170 175 103 7 18 34 

7 CRF11 1.73 0.22 0.61 1.05 0.36 3153 165 111 5 14 37 

8 CV11 1.81 0.21 0.78 0.87 0.33 3777 137 89 5 15 35 

9 CRF20 2.04 0.22 0.74 0.77 0.29 3996 115 93 6 17 29 

10 CV01 2.00 0.26 0.92 1.03 0.38 4477 138 96 7 20 30 

11 CRF30 2.00 0.21 0.64 0.98 0.33 4290 190 103 5 16 31 

12 CV11 2.46 0.24 0.80 0.91 0.37 3952 146 107 7 20 29 

13 CRF30 2.20 0.17 0.69 1.04 0.32 2269 154 88 6 14 34 

14 CRF31 2.19 0.20 0.73 0.98 0.32 3371 192 92 5 15 35 

15 CV01 2.01 0.26 1.08 0.89 0.37 4729 158 96 8 18 30 

16 Control 2.04 0.28 0.96 0.93 0.37 5428 146 107 9 20 28 

17 CRF21 1.60 0.22 0.64 0.98 0.34 3911 219 94 5 14 33 

18 CRF10 1.99 0.23 0.75 0.98 0.34 3830 209 92 9 16 31 

22 CRF31 1.96 0.22 0.68 1.22 0.33 3144 216 101 5 14 38 

23 CRF11 1.76 0.24 0.86 0.97 0.35 4162 202 103 6 16 28 

24 CRF10 2.07 0.21 0.68 1.12 0.39 3721 213 134 7 16 37 
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28 CV11 1.58 0.30 0.65 1.15 0.38 3439 241 102 7 20 28 

29 CRF20 2.41 0.21 0.68 1.06 0.36 4407 232 116 13 17 32 

30 CRF30 2.35 0.18 0.8 1.14 0.35 4082 241 103 5 15 32 

34 CRF21 1.62 0.22 0.66 1.08 0.34 3482 281 98 9 14 29 

35 CV01 1.97 0.24 0.81 0.81 0.32 4397 183 96 7 16 29 

36 Control 1.96 0.21 0.79 0.93 0.35 4145 217 123 7 14 33 

55 CRF21 1.87 0.27 0.84 1.06 0.33 3200 185 104 6 16 35 

56 CV11 1.87 0.25 0.93 0.91 0.33 3812 151 102 7 17 30 

57 CRF30 1.93 0.18 0.79 0.99 0.33 3924 259 104 6 16 34 

58 CRF11 1.73 0.25 0.88 0.93 0.31 4192 158 91 6 14 27 

59 CRF20 2.03 0.20 0.73 0.96 0.29 4423 196 107 5 15 28 

60 Control 1.97 0.24 0.88 0.89 0.35 4817 244 103 8 19 25 

61 CRF11 1.82 0.24 1.00 1.09 0.34 3950 165 99 6 17 32 

62 CRF20 1.75 0.19 0.69 0.89 0.30 3522 140 87 6 15 28 

63 CRF10 1.61 0.24 0.76 0.86 0.31 3458 145 90 6 15 25 

64 CRF31 1.94 0.18 0.68 1.03 0.33 3935 234 100 4 14 30 

65 CRF10 1.78 0.24 0.80 0.97 0.35 4174 248 103 6 17 28 

66 CRF21 2.16 0.19 0.74 0.80 0.29 3932 405 109 6 14 28 

67 CV01 1.71 0.27 0.94 0.92 0.33 3435 158 82 6 18 34 

68 Control 1.57 0.23 0.85 0.91 0.34 4452 141 97 6 17 30 

69 CRF31 2.00 0.18 0.68 1.11 0.34 3317 216 104 5 15 32 

70 CV01 1.64 0.24 0.90 0.94 0.36 4176 166 92 10 20 27 

71 CRF30 1.80 0.18 0.67 1.07 0.33 4366 221 107 5 14 31 

72 CV11 1.67 0.23 0.84 1.03 0.36 4278 327 102 7 18 31 

73 CRF21 1.73 0.22 0.94 0.83 0.32 3741 177 96 6 16 33 

74 CRF11 1.44 0.22 0.62 0.92 0.32 3414 147 98 5 13 30 

75 CRF20 1.53 0.22 0.68 0.88 0.31 3744 169 88 5 14 28 

76 CV11 1.58 0.24 0.66 0.93 0.34 4082 168 94 6 17 28 

77 Control 1.82 0.22 0.95 0.99 0.35 4874 230 99 6 18 27 

78 CV01 1.53 0.28 0.99 0.88 0.35 3804 158 107 8 19 31 
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79 CRF30 1.73 0.19 0.86 0.91 0.31 4045 203 108 6 15 29 

80 CRF31 2.07 0.18 0.67 0.87 0.31 4031 270 101 5 14 28 

81 CRF10 1.60 0.22 0.67 1.03 0.32 4042 345 93 6 15 29 

 

ii) Flatcrown  

Plot Treatment N P K Ca Mg Na Mn Fe Cu Zn B 

    % mg/kg 

7 CV01 2.08 0.20 0.95 0.91 0.32 3088 251 142 9 18 29 

8 CRF11 2.66 0.18 0.85 0.97 0.28 2301 268 137 9 18 35 

9 CRF30 3.02 0.18 1.12 0.89 0.27 1973 230 183 8 32 38 

16 CRF10 2.53 0.15 0.95 1.12 0.31 2499 328 139 9 17 31 

17 CRF21 2.74 0.17 1.09 0.82 0.27 2123 208 109 9 17 30 

18 CRF31 2.71 0.15 1.01 1.04 0.25 2198 293 131 9 19 34 

25 CRF20 2.76 0.19 1.13 0.93 0.25 2340 325 127 10 19 30 

26 Control 2.48 0.18 1.16 0.93 0.29 2507 323 127 10 18 29 

27 CV11 2.62 0.17 0.98 0.86 0.27 2316 249 125 10 17 30 

31 CRF31 2.98 0.18 0.98 0.86 0.24 1685 299 146 9 17 33 

32 Control 2.45 0.18 1.05 1.11 0.29 2392 342 155 10 20 27 

33 CRF30 2.90 0.18 1.09 1.07 0.28 1921 383 145 10 20 32 

40 CRF20 2.47 0.14 0.91 1.15 0.24 2443 450 163 8 17 31 

41 CRF21 2.83 0.21 1.02 0.84 0.26 2243 308 134 9 18 30 

42 CRF10 2.67 0.17 0.78 1.08 0.28 1991 387 155 10 19 28 

49 CRF11 2.04 0.16 0.98 0.96 0.30 2638 316 170 8 16 27 

50 CV01 2.04 0.20 0.96 1.00 0.30 2335 331 162 9 17 25 

51 CV11 2.64 0.16 0.94 1.07 0.29 2033 575 154 9 18 31 

55 CRF20 2.37 0.18 1.16 0.92 0.27 2441 320 177 9 24 29 

56 CRF31 2.70 0.16 1.15 1.04 0.29 2196 340 216 7 16 35 

57 CRF10 2.17 0.17 0.96 1.03 0.30 2245 335 189 8 17 29 
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64 CRF11 2.42 0.16 0.93 0.93 0.26 2190 283 208 8 17 31 

65 Control 2.52 0.16 1.07 0.91 0.28 2685 381 206 9 17 28 

66 CV01 2.37 0.15 0.88 0.97 0.29 2602 403 192 9 19 26 

73 CV11 2.44 0.14 0.83 0.94 0.26 1850 255 224 8 15 33 

74 CRF30 2.84 0.16 1.12 0.84 0.25 1976 332 204 8 17 34 

75 CRF21 2.62 0.20 9.88 0.99 0.37 4860 584 676 12 57 46 

 

Stellenbosch University  http://scholar.sun.ac.za

Stellenbosch University  http://scholar.sun.ac.za



149 
 

Appendix 3B 

 

Mtunzini and Flatcrown Macronutrient Vector nomograms 

 

 

a) Vector nomogram of responses to N of all treatments showing a mixture of 
type A and C shifts. 

Stellenbosch University  http://scholar.sun.ac.za



150 
 

 

b) Vector nomogram of responses to P of all treatments showing majority of type 
A shifts. 
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c) Vector nomogram of responses to K of all treatments showing type A 
responses for all treatments except CV01. 
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d) Vector nomogram of responses to Mg of all treatments showing type A shifts 
for all treatments except CV11, type C and CV01 type B. 
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e) Vector nomogram of responses to Ca shows majority of Type C shifts. 
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f) Vector nomogram of responses to N of all treatments showing a mixture of 
Type A and C responses. 

 

Stellenbosch University  http://scholar.sun.ac.za



155 
 

 

g) Vector nomogram of responses to P indicating a mixture of Type A, B and C 
responses. 
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h) Vector nomogram of responses to K of all treatments showing a mixture of 
Type A and C responses, with CV01 showing a non-typical response. 
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i) Vector nomogram of responses to Mg of all treatments showing a mixture of 
Type A and C responses. 
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j) Vector nomogram of responses to Ca of all treatments showing majority of 
type A responses. 
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