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Abstract

The surface of a 3D model may be digitally represented as a collection of flat polygons in

R3. The collection is known as a polygonal mesh. This representation method has become

standard in computer graphics.

Parameterising the surface of such a 3D model is an important phase in numerous appli-

cations, including filtering, compression, recognition, texture mapping and morphing.

In this thesis we consider surfaces that are topologically equivalent to a sphere. A natural

parameter domain for these surfaces is the surface of the unit sphere. A continuous one-

to-one mapping between the surface of a 3D model and the surface of a sphere is known

as spherical parameterisation.

Some existing methods of spherical parameterisation are discussed. A novel method that

is both theoretically sound and numerically efficient is introduced. We call this method

the θ–φ method.

The idea behind the θ–φ method is to cut a given mesh open along a specific line on the

surface. The “open” mesh is embedded in the 2D plane, and then folded onto the surface

of the unit sphere, yielding a spherical parameterisation.

Results from applying the different methods are given, and briefly analysed. The θ–φ

method is then compared to the existing methods.

A short description of some of the applications mentioned above is also given.
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Opsomming

Die oppervlak van ’n 3D model kan digitaal voorgestel word as ’n versameling van veelhoeke

in R3. Die versameling staan bekend as ’n veelhoekverbinding. Hierdie voorstellingsmetode

is die standaard in rekenaargrafika.

Die parameterisering van die oppervlak van so ’n 3D model is ’n belangrike fase in verskeie

toepassings, soos filtrering, kompaktering, herkenning, tekstuurafbeelding en morfering.

In hierdie tesis oorweeg ons oppervlakke wat topologies ekwivalent aan ’n sfeer is. ’n

Natuurlike parametergebied vir hierdie oppervlakke is die oppervlak van die eenheidsfeer.

’n Kontinue een-tot-een afbeelding tussen die oppervlak van ’n 3D model en die oppervlak

van ’n sfeer staan bekend as sferiese parameterisering.

Enkele bestaande metodes van sferiese parameterisering word bespreek. ’n Nuwe metode

wat teoreties begrond en numeries doeltreffend is, word voorgestel. Ons noem hierdie

metode die θ–φ metode.

Die idee agter die θ–φ metode is om ’n gegewe veelhoekverbinding langs ’n spesifieke

lyn op die oppervlak oop te sny. Hierdie “oop” veelhoekverbinding word in die 2D vlak

ingebed, en dan oor die oppervlak van die eenheidsfeer gevou. Sodoende word ’n sferiese

parameterisering verkry.

Resultate van die toepassing van die verskillende metodes word gegee en kortliks analiseer.

Die θ–φ metode word dan met die bestaande metodes vergelyk.

’n Kort beskrywing van sommige van die bogenoemde toepassings word ook gegee.
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CHAPTER 1

Introduction

Research in the digital processing of three-dimensional models has increased tremendously

over the last two decades. Various fields in science, engineering, medicine and entertain-

ment benefit from this research.

The surface of a 3D model may be described by a collection of adjacent flat polygons.

Such a collection is known as a mesh. Meshes have become a standard respresentation

method for 3D models, due to their simplicity, flexibility, and the fact that they are widely

supported by computer graphics software and hardware.

Parameterising the surface of such a mesh is a central issue in computer graphics. A

parameterisation allows complex operations to be performed directly on the parameter

domain, rather than on the surface of a mesh, which has an arbitrary shape. These

operations include remeshing, surface filtering, compression, recognition, morphing, and

texture mapping, all of which are important applications in computer graphics.

Parameterisation amounts to establishing a one-to-one correspondence between the surface

of a mesh and some parameter domain.

Only surfaces topologically equivalent to a sphere will be considered in this thesis. A

natural parameter domain for these surfaces is the surface of the unit sphere (see for

example Figure 1.1).
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1. Introduction

←→

Figure 1.1

To date, the problem of parameterising the surface of an arbitrary mesh remains challeng-

ing. Various methods have been proposed [1, 3, 9, 16, 19, 21, 29, 34, 35]. These methods

have limitations, however, and there is still a need for a robust and efficient method.

There are two major classes of parameterisation methods. The first of these rely on posi-

tioning vertices on the sphere at convex combinations of neighbouring vertices [1, 3, 9, 16].

We call these methods the convex combination methods. The second class of methods is

those that simplify the mesh to a convex mesh by removing vertices, and then replacing

the vertices in such a way that the mesh remains convex [19, 29, 35]. These methods are

known as progressive mesh methods.

This thesis is devoted to the convex combination methods only. Some existing methods are

discussed, and a novel method is presented. This new method is compared to the existing

methods with the aid of some experimental results.

The rest of the thesis is organised as follows.

• Chapter 2 introduces some general definitions and notation for meshes. It also shows

how meshes are related to graphs.

• Chapter 3 formally defines the problem of spherical parameterisation, and discusses

the standard procedure towards finding solutions.

• Chapter 4 provides some theory on convex combinations. A method that implements

convex combinations for embedding planar graphs in the 2D plane is discussed.

• Chapter 5 shows how a number of existing methods extend the 2D planar embedding

algorithm to the surface of the sphere. The aim of these methods is to solve the

problem of parameterisation.

2



1. Introduction

• Chapter 6 explains the new method in detail.

• Chapter 7 gives some experimental results after applying the different methods dis-

cussed in the thesis to a number of test models. Measured running times are given

and compared.

• Chapter 8 briefly discusses a number of applications for surface parameterisation and

illustrates them by means of examples.

• Chapter 9 gives some concluding remarks and possibilities for future research.

• Appendix A discusses an algorithm from graph theory, known as Dijkstra’s algorithm,

used in various parts of this thesis.

• Appendix B supplies MATLAB code for the different algorithms and methods in this

thesis.

3



CHAPTER 2

Graphs and meshes

Polygonal meshes (or simply “meshes”) have become a standard representation method

for three-dimensional objects in computer graphics. A mesh is a collection of polygons

or “faces” that forms the outer surface of an object or shape in three-dimensional space.

Figure 2.1 shows an example of a 3D model (a rabbit) represented as a polygonal mesh.

Figure 2.1

Clearly, the collection of distinct vertices of all the faces in a mesh has a connectivity

structure — pairs of vertices are connected by means of edges. This structure suggests the

use of methods and techniques from the field of graph theory.
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2. Graphs and meshes 2.1. Definitions from graph theory

This chapter provides some basic definitions from graph theory, and shows more formally

how polygonal meshes are related to graphs.

2.1 Definitions from graph theory

In this section, definitions and concepts from graph theory that are needed for the purpose

of this thesis are briefly discussed.

A (simple) graph G is uniquely defined by two sets: a vertex set V (G), and an edge set

E(G). Both these sets are finite, and it is assumed that V (G) is non-empty.

The elements of V (G) are called vertices. Geometrically, a vertex may be thought of as a

point. Each vertex in V (G) can be labeled, and we follow the convention that the vertices

are labeled with the integers from 1 to |V (G)|, where |A| denotes the cardinality of a set

A. We denote the vertex with label i simply by the number i. Therefore, for a graph G

with n vertices, we follow the convention that

V (G) = {1, 2, . . . , n}. (2.1)

The elements of E(G) are called edges. An edge may be thought of as a curve joining two

vertices. Each edge is an unordered pair of the form (i, j), where i, j ∈ V (G).

Figure 2.2 shows the graphical representation of a graph with its corresponding vertex set

and edge set. The graph has 5 vertices and 6 edges.

��

��

��

�� �	

1

2

3

4 5

V (G) = {1, 2, 3, 4, 5}

E(G) = {(1, 2), (2, 3), (2, 5), (3, 4), (3, 5), (4, 5)}

Figure 2.2

Two vertices i and j in V (G) are said to be adjacent in G if (i, j) ∈ E(G). Also, we say i

is a neighbour of j, and vice versa. The edge (i, j) is said to be an adjacent edge of both i

and j.

The neighbourhood of a vertex i ∈ V (G) is the set of vertices

N(i) = {j ∈ V (G) : (i, j) ∈ E(G)}, (2.2)

5



2. Graphs and meshes 2.1. Definitions from graph theory

in other words, the set of all the vertices adjacent to i.

The degree of a vertex i ∈ V (G), denoted by deg(i), is defined as

deg(i) = |N(i)|, (2.3)

that is, the number of vertices adjacent to i.

Two graphs G1 and G2 are said to be isomorphic if there exists a bijective mapping f :

V (G1) 7→ V (G2) such that the edge (i, j) is an element of E(G1) if and only if (f(i), f(j))

is an element of E(G2). If such a mapping exists, the function f is an isomorphism between

G1 and G2. Figure 2.3 gives an example of two isomorphic graphs.

��

��

��

��

1

2

3

4

�	


�
�

��

1

2

3

4

Figure 2.3

Each edge in the graph G may be associated with a weight. It is useful to assign zero

weights to any pair of non-adjacent vertices. We therefore define the weights of a graph as

ρij

{
> 0, (i, j) ∈ E(G),

= 0, (i, j) 6∈ E(G),
i, j = 1, 2, . . . , |V (G)|. (2.4)

A walk in a graph G is a sequence W = (v1, v2, . . . , vn) of vertices such that every pair of

consecutive vertices in W are adjacent in G. The walk W may also be referred to as a

v1–vn walk in G. The length of the walk W is denoted by `(W ), and is defined as

`(W ) =
n−1∑
i=1

ρvivi+1
. (2.5)

Vertices and edges may appear more than once in a walk. A path in a graph G is a walk

in which none of the vertices are repeated. Every vertex in the graph appears either once

or never in a path. A cycle is a walk with at least 4 vertices in which the first vertex is the

same as the last one, but in which no other vertices are repeated. A cycle with n edges is

called an n–cycle.

The distance between two vertices i and j in a graph G is defined as the length of a shortest

possible i–j path, and is denoted by d(i, j). If G does not contain an i–j path, we define

d(i, j) =∞.

6



2. Graphs and meshes 2.1. Definitions from graph theory

A vertex i in a graph G is said to be connected to a vertex j if the graph contains an i–j

path. A graph is connected if i is connected to j for all possible (i, j) pairs in the graph.

A graph that is not connected is called disconnected.

We define a vertex removal from a graph G to be the result after a vertex v ∈ V (G),

together with all its adjacent edges, is removed from G. This resulting graph is denoted

by G− v. Thus, if H = G− v, then

V (H) = V (G) \ v, (2.6)

and

E(H) = {(i, j) ∈ E(G) : v 6∈ {i, j}}. (2.7)

For a graph G and S ⊂ V (G), we write G − S to denote the resulting graph after every

vertex in S has been removed from G.

A graph G is said to be k–connected, with k a positive integer, if it is possible to remove

any set of k − 1 vertices from G, such that the resulting graph remains connected. We

require that a k–connected graph have at least k +1 vertices. By definition, any connected

graph is at least 1–connected.

Figure 2.4 shows three graphs. The graph in (a) is 1–connected, but not 2–connected. The

graph in (b) is 2–connected, but not 3–connected. The graph in (c) is 3–connected, but

not 4–connected.

��

��

��

��

�	

(a) 1–connected


�

�

��

��

��

(b) 2–connected

��

��

��

��

��

��

 !

"#

(c) 3–connected

Figure 2.4

A planar graph is a graph that can be drawn in the two-dimensional plane such that none

of its edges intersect. Such a drawing of a planar graph is called a planar embedding of

the graph. Chapter 4 deals with finding planar embeddings. The graphs in Figures 2.2,

2.3 and 2.4 are examples of planar graphs.
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2. Graphs and meshes 2.2. Polygonal meshes

2.2 Polygonal meshes

This section defines the concept of a mesh and gives some properties of meshes. Two

specific classes of meshes are also introduced. In the chapters that follow we will only be

interested in meshes from these classes.

2.2.1 Definition of a mesh

A mesh M is defined by the following two structures: a coordinate set X(M) and a face

set F (M).

The elements of the coordinate set X(M) are called nodes. Suppose a given mesh has n

nodes. The nodes are points in R3, labeled with the integers from 1 to n. Therefore

X(M) = {xi ∈ R3, i ∈ {1, 2, . . . , n}}, (2.8)

where xi denotes the coordinates of node i. It is assumed that the coordinates of the nodes

are distinct, therefore xi 6= xj, for any i 6= j.

The elements of the face set F (M) are called faces. Every face defines a planar polygon

in R3. Suppose a given mesh has m faces. The faces are labeled with the integers 1 to m,

with fi denoting the face with label i. A face fi ∈ F (M) is an ordered tuple

fi = (fi,1, fi,2, . . . , fi,k(i)), (2.9)

with k(i) ≥ 3 and fi,j ∈ {1, 2, . . . , n}, j = 1, 2, . . . , k(i), such that the points xj, j ∈ fi

are co-planar. The elements fi,j correspond to the vertices of the polygon fi. The number

k(i) therefore denotes the number of vertices, or equivalently the number of sides, of the

polygon fi. We refer to k(i) as the degree of the face fi, and denote it by deg(fi).

Figure 2.5 shows an example of a mesh M , with given coordinate set and face set. The

mesh has 10 nodes and 7 faces.

The convention for the order of traversing the vertices for each face is counterclockwise as

seen from outside the mesh. Note that the example in Figure 2.5 follows this convention.

A mesh in which all the faces have the same degree is called a uniform mesh. In particular,

if all the faces of a mesh have degree 3, the mesh is said to be triangular.

8



2. Graphs and meshes 2.2. Polygonal meshes
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8

9

10

x

y

z

X(M)
i xi

1 [2, 0, 0]
2 [0, 0, 0]
3 [0, 2, 0]
4 [2, 2, 0]
5 [2, 0, 2]
6 [0, 0, 2]
7 [0, 2, 2]
8 [2, 2, 2]
9 [2, 1, 3]
10 [0, 1, 3]

F (M)
i fi

1 (1, 2, 3, 4)
2 (1, 5, 6, 2)
3 (3, 7, 8, 4)
4 (5, 9, 10, 6)
5 (7, 10, 9, 8)
6 (1, 4, 8, 9, 5)
7 (2, 6, 10, 7, 3)

Figure 2.5

2.2.2 The underlying graph of a mesh

Since the sides of every face in a mesh M may be thought of as edges connecting the nodes

of M , a relationship between meshes and graphs exists. This relationship is explained next.

Every mesh M is associated with a graph, called its underlying graph. The graph is denoted

by GM , and is sometimes referred to as the node-neighbourhood graph, or the skeleton of

the mesh.

Figure 2.6 shows a graphical representation of the underlying graph of the mesh from

Figure 2.5.

��
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1 4

7

10

6

2 3

Figure 2.6

The graph GM is constructed as follows. Every vertex in GM corresponds to a node of the
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2. Graphs and meshes 2.2. Polygonal meshes

mesh M , and every edge in GM corresponds to a side of one or more of the faces of M .

In order to obtain the edge set of GM , we define the set E(fi) to be the set of sides (or

edges) of the face fi ∈ F (M). Therefore,

E(fi) = {(fi,j, fi,j+1), j = 1, 2, . . . , deg(fi)− 1} ∪ {(fi,deg(fi), fi,1)}. (2.10)

Using also (2.1), a formal definition of the graph GM follows.

Definition 2.1 : For a mesh M with n nodes and m faces, the unique underlying graph

GM is defined by

V (GM) = {1, 2, . . . , n}, and E(GM) =
m⋃

i=1

E(fi),

where E(fi) is given by (2.10).

Definition 2.1 can be used to obtain the graph GM from the sets X(M) and F (M). Note

that there exist at most one edge between any pair of vertices in GM . Faces of M may

therefore share the same edge in GM .

From Figure 2.6, it is clear that every face fi ∈ F (M) corresponds to a cycle of length

deg(fi) in the graph GM .

2.2.3 Mesh triangulation

In the chapters that follow, only triangular meshes will be considered. This is not a major

restriction, since any polygon can be divided into a number of triangles. For a general

mesh with non-triangular faces, a triangulation algorithm may be applied as part of a

preprocessing phase.

There is a number of different ways to triangulate a given polygon. A simple method of

triangulating a convex polygon is illustrated in Figure 2.7. A new vertex is created in the

centre of the polygon and connected to the original vertices as shown.

Note that for some concave polygons the new vertex may lie outside of the polygon. This

problem may be solved by first partitioning the polygon into a number of convex polygons.

In practice, however, very few cases arise where concave polygonal faces occur in meshes.
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Figure 2.7

De Berg, et. al. [6] devote an entire chapter to polygon triangulation, and provide some

interesting algorithms and proofs.

2.2.4 The surface of a mesh

The main focus of this thesis is to parameterise the surface of a given mesh. This section

provides the formal definition of, and a formula for, the surface of a triangular mesh.

The surface of a mesh M , denoted by SM , is defined to be the set of all points in R3 that

lie in one or more of the polygonal faces of M .

For a triangular mesh M with m faces, let T (fi) ⊂ R3 denote the set of points inside or

on the boundary of the triangular face fi. Then

SM =
m⋃

i=1

T (fi). (2.11)

Next we derive an explicit formula for describing T (fi) in terms of the coordinates of the

vertices of fi.

Figure 2.8 shows a triangular face fi. Let a,b, c ∈ R3 denote the vectors from the origin

to the three vertices of fi.

Let d ∈ R3 be the vector from the origin to an arbitrary point on the line segment between

a and b, as shown in Figure 2.8. Then

d = λa + (1− λ)b, λ ∈ [0, 1]. (2.12)

Let v ∈ R3 be the vector from the origin to an arbitrary point on the line segment joining

c and d. Therefore

v = µd + (1− µ)c = λµa + (1− λ)µb + (1− µ)c, (2.13)

with µ ∈ [0, 1].
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Figure 2.8

Varying λ and µ between 0 and 1 in (2.13) results in all possible points inside or on the

boundary of fi. The set T (fi) may therefore be expressed as

T (fi) = {λµxfi,1
+ (1− λ)µxfi,2

+ (1− µ)xfi,3
∈ R3 : λ, µ ∈ [0, 1]}, fi ∈ F (M). (2.14)

Equation (2.14) is used in equation (2.11) to obtain an explicit formula for the surface of

the mesh M .

2.2.5 Homeomorphism and 2–manifoldness

This section deals with some topological features of meshes.

A homeomorhism is a one-to-one (or bijective) mapping h : U → V between the points of

two geometric objects U and V that is continuous in both directions, i.e. h and h−1 are

both continuous. If such a mapping exists, it is said that U and V are homeomorphic (or

topologically equivalent).

(a) sphere (b) torus (c) figure eight

Figure 2.9
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2. Graphs and meshes 2.2. Polygonal meshes

None of the surfaces of the meshes in Figure 2.9 are homeomorphic to each other, since

continuous mappings between the three different sets of points cannot be found. The mesh

from Figure 2.5, however, is homeomorphic to the mesh in Figure 2.9(a).

The following two geometric objects will be used throughout the rest of this thesis. The

surface of the unit sphere, denoted by S0, is defined to be the continuous set of points given

by

S0 = {x ∈ R3 : ||x|| = 1}. (2.15)

The closed disc, denoted by D0, is defined to be the continuous set of points given by

D0 = {x ∈ R2 : ||x|| ≤ 1}. (2.16)

In the rest of this thesis we will be concerned with meshes with surfaces homeomorphic to

either S0 or D0. This motivates the need for the introduction of the following two classes

of meshes.

Definition 2.2 : We write M to denote the set of meshes such that a mesh M belongs

to M if and only if:

(1) M is triangular, and

(2) SM is homeomorphic to S0,

with SM defined as in (2.11) and S0 as in (2.15).

It turns out that the mesh from Figure 2.1 is an example of a mesh inM. The mesh from

Figure 2.5, however, is not, since it is not triangular. The mesh from Figure 2.9(b) is not

inM, since its surface is not homeomorphic to S0.

Definition 2.3 : We writeMB to denote the set of meshes such that a mesh M belongs

to MB if and only if:

(1) M is triangular, and

(2) SM is homeomorphic to D0,

with SM defined as in (2.11) and D0 as in (2.16).

The subscript B in the notation MB emphasises the fact that meshes in this class have

boundaries. These boundaries are discussed next, with some preliminary definitions.

The star of a vertex i, denoted by star(i), is defined as the set of all points on the faces

containing i. Hence

star(i) = {T (f) : f ∈ F (M), i ∈ f}, i ∈ V (GM), (2.17)

13



2. Graphs and meshes 2.2. Polygonal meshes

with T (f) defined as in (2.14).

A vertex i is called 2–manifold if (a) the number of faces sharing i is equal to deg(i), and

(b) star(i) is homeomorphic to the disc D0 as defined in (2.16). A vertex i is said to be a

boundary vertex if condition (b) is satisfied, but instead of (a), the number of faces sharing

i is equal to deg(i)− 1. Figure 2.10 shows a few vertices, each with its star, and whether

it is 2–manifold, boundary, or neither.
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(c) non–manifold vertex

Figure 2.10

A mesh M is called 2–manifold if every vertex i ∈ V (GM) is a 2–manifold vertex. Clearly,

all the meshes inM are 2–manifold. But note that a mesh such as the one in Figure 2.9(b)

is 2–manifold, but does not belong to the classM.

For an arbitrary mesh M , any cycle of boundary vertices in GM is refered to as a boundary

of M . In particular, a mesh in M has no boundaries, while a mesh in MB has exactly

one boundary (hence the subscript B). We use the symbol B to denote the boundary of a

mesh M ∈MB.

Figure 2.11 shows a mesh belonging to the class MB, from two different viewpoints. The

boundary is clearly visible.

Figure 2.11
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2. Graphs and meshes 2.2. Polygonal meshes

Another consequence of Definitions 2.2 and 2.3 is the fact that the underlying graph of a

mesh in eitherM orMB is necessarily connected. If this were not the case, a continuous

mapping could not be established from the surface of the mesh to either S0 or D0.

We conclude this section on polygonal meshes by discussing two well-known results, namely

Steinitz’s theorem and Euler’s formula.

2.2.6 Steinitz’s theorem

This section deals with a result due to Ernst Steinitz [31], that relates some properties of

a mesh to that of its underlying graph.

The result, originally published in 1934, is reformulated here in the context and notation

of this chapter. The proof is not given, and may for example be found in [36, p. 103].

Theorem 2.4 : (Steinitz’s theorem) A simple graph G is the underlying graph of a mesh

M , where S(M) is homeomorphic to S0, if and only if G is planar and 3–connected.

The theorem translates to the following. If a mesh M has a surface homeomorphic to S0,

then the underlying graph of M is necessarily planar and 3–connected. Conversely, given

a planar, 3–connected graph G, a mesh M can be constructed such that G is equal to the

underlying graph of M , and such that the surface of M is homeomorphic to S0.

Note that this theorem holds for meshes in the classM.

The surface of a mesh M ∈MB is homeomorphic to the disc, therefore the graph GM can

be embedded in the 2D plane without edge intersections, implying that GM is planar.

We have thus established the following important result:

Corollary 2.5 : The underlying graph of any mesh in either M or MB is planar.

2.2.7 Euler’s formula

This section deals with an equality known as Euler’s formula, that relates the number of

vertices, edges and faces of certain types of meshes.

Euler discovered this formula around 1750. A proof may be found in for example [5, p.

189].
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2. Graphs and meshes 2.2. Polygonal meshes

Theorem 2.6 : (Euler’s formula) For any mesh M , with S(M) homeomorphic to S0,

it holds that

v − e + f = 2,

where v denotes the number of vertices, e the number of edges, and f the number of faces

in M .

Note that the formula holds for meshes in M. We aim to establish a similar result for

meshes inMB.

Consider a mesh in M ∈ MB. Since the edges in the boundary B of M corresponds to

the edges of a simple polygon, it is possible to reposition all the boundary vertices of M

to the same plane in R3. It is then possible to add a face to M , with vertices exactly those

of B. This results in a mesh from the classM.

Therefore, if follows from Theorem 2.6 that

v − e + (f + 1) = 2, (2.18)

where v, e and f denote the number of vertices, edges and faces in the original mesh M

(before the new face is added). We have thus established the following important result.

Corollary 2.7 : Consider a mesh M with v vertices, e edges and f faces. The following

hold:
(a) if M ∈M, then v − e + f = 2,

(b) if M ∈MB, then v − e + f = 1.

The mesh in Figure 2.1 belongs toM. For this example, v = 453, f = 902, e = 1353, and

since 453 − 1353 + 902 = 2, the formula holds. The mesh in Figure 2.11 belongs to MB,

and for that example v = 135, f = 257 and e = 391, and we have 135− 391 + 257 = 1.

Consider a mesh M ∈M, with v vertices, f faces, and e edges. Since every face in M has

degree 3, and every edge is shared by 2 faces, it follows that e = 3
2
f . Combining this with

Euler’s formula yields

f = 2(v − 2), and e = 3(v − 2). (2.19)

Therefore, if the number of vertices in an arbitrary mesh inM is known, then (2.19) may

be used to determine how many faces and edges the mesh necessarily has.
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2. Graphs and meshes 2.2. Polygonal meshes

Table 2.1 lists the number of meshes inM for specific numbers of vertices. Note that this

table counts the number of meshes where the underlying graphs differ up to isomorphism,

i.e., regardless of different labelling or positioning of nodes. The numbers in the last column

are taken from [25].

For obvious reasons, there are no meshes in M with fewer than 3 vertices. The unique

mesh with 4 vertices is the tetrahedron (a pyramid with triangular base).

Vertices Faces Edges Number of meshes inM
4 4 6 1

5 6 9 1

6 8 12 2

7 10 15 5

8 12 18 14

9 14 21 50

10 16 24 233

11 18 27 1,249

12 20 30 7,595

13 22 33 49,566

14 24 36 339,722

15 26 39 2,406,841

Table 2.1

There is a well-known extension to Euler’s formula. For any 2–manifold mesh, it holds

that

v − e + f = 2(c− g), (2.20)

where v, e and f denote the number of vertices, edges and faces respectively. The integer

c denotes the number of connected components, and g denotes the so-called genus of the

mesh, which is defined next.

The genus of a connected 2–manifold mesh M is defined to be the maximum number of

cuttings along closed simple curves on the surface of M without rendering the resultant

mesh disconnected. The genus of a mesh with surface homeomorphic to S0, is 0. The mesh

in Figure 2.9(b) has genus 1, and the one in Figure 2.9(c) has genus 2.
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2. Graphs and meshes 2.3. The validity of a mesh

2.3 The validity of a mesh

This section discusses some techniques for examining the properties of a given mesh, for

testing whether a given mesh belongs to the classM.

The following result gives three conditions which must be satisfied for the surface of a mesh

to be homeomorphic to the sphere.

Proposition 2.8 : If a mesh M , with v vertices, e edges and f faces, satisfies the

following three conditions,

(1) M is 2–manifold,

(2) GM is a connected graph, and

(3) v − e + f = 2,

then SM is homeomorphic to S0.

Proof

If M is 2–manifold, then equation (2.20) holds. If GM is connected, then c = 1. It then

follows from (2.20) that

v − e + f = 2− 2g, (2.21)

with g the genus of the mesh. If condition (3) is satisfied, then g = 0, implying that S(M)

is homeomorphic to S0.

Proposition 2.8 implies that if a given mesh M satisfies the three conditions listed, and

M is triangular, then M ∈M. Techniques to test those conditions will now be discussed.

Consider a given mesh M .

The condition of triangularity, as well as condition (3), are easily tested.

Next, a method for testing the condition of 2–manifoldness is discussed. From the definition

of 2–manifoldness, every vertex of M must be a 2–manifold vertex. This means that for

every i ∈ V (GM), (a) the number of faces sharing i must equal deg(i), and (b) star(i) must

be homeomorphic to the disc.

We define the face neighbourhood of a vertex i, denoted by Nf (i), to be the set of faces

sharing i. Thus

Nf (i) = {f ∈ F (M) : i ∈ f}. (2.22)

Now, condition (a) holds if

|Nf (i)| = deg(i), i ∈ V (GM). (2.23)
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2. Graphs and meshes 2.4. Orientation of faces

Condition (b) is tested as follows. If condition (a) is satisfied, and all the neighbours of i

lie on a single cycle of length deg(i) in the graph GM , then condition (b) is satisfied. See

for example Figure 2.10(a).

If the two conditions for 2–manifoldness hold for every vertex in M , then M is 2–manifold.

A technique to test the connectivity of the graph GM of a mesh M will now be discussed.

Recall that a graph G is said to be connected if there exists a path in G between every

possible pair of vertices.

The following recursive algorithm is used. We start with an arbitrary vertex i ∈ V (GM).

Let D be the set {i}. Every neighbour of i is inserted into D. Then every neighbour of

every vertex j ∈ D is inserted. This process is continued until no more vertices are inserted

into D.

Clearly, if after the execution of this algorithm D is equal to V (GM), then GM is a connected

graph.

2.4 Orientation of faces

The last section in this chapter discusses a method for testing, and correcting, the ordering

of vertices in every face of a given mesh inM.

Recall from the definition of a mesh that the following convention is assumed to be imple-

mented. The vertices of every face are ordered to be counterclockwise, as seen from outside

the mesh. In some of the arguments in subsequent chapters this assumption is crucial.

If the vertices of a face f are ordered according to this convention, we say that f is

orientated correctly. If not, then f is orientated incorrectly.

An algorithm has been developed for this purpose. Before a formal description of this

algorithm is given, we illustrate it with an example. Consider a mesh M ∈M.

The algorithm assumes that one face, say f ∗ ∈ F (M), is known to be orientated correctly.

It then runs through every face f ∈ F (M) \ {f ∗}, checking that f is orientated correctly,

and if not, correcting the orientation of f by reversing the ordering of its vertices.

Figure 2.12 gives an illustration of the first few steps of this algorithm. It shows some

vertices and edges of a mesh M . Assume the face f ∗ ∈ F (M) is known to be correctly

orientated. The grey face in Figure 2.12(a) depicts the face f ∗. The arrows on the edges

of f ∗ denote the order in which the vertices of f ∗ are traversed in the face set.
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2. Graphs and meshes 2.4. Orientation of faces

Every face sharing an edge with f ∗ is tested next. Since it is known that the orientation of

f ∗ is correct, these faces are easily tested, and corrected if necessary. Figure 2.12(b) shows

the face f ∗, as well as the three faces sharing edges with f ∗, in grey. Again, the arrows on

the edges denote the order in which vertices of grey faces are traversed.

Figure 2.12(c) shows the result after another step. The grey faces indicate all the faces

that have already been checked, and the arrows indicate the direction of vertex traversal

in these faces.
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Figure 2.12

This process is continued until every face in F (M) has been checked, resulting in an

updated face set, where every face is orientated according to the orientation of f ∗.

The only part of this algorithm that may need further investigation is obtaining the face

f ∗. We recommend a manual search for such a face. Since only one face is needed, this

would probably not be such a tedious task.

Also, if the face f ∗ is orientated incorrectly, then the result of applying the algorithm would

be that all the faces in the mesh are orientated incorrectly. The reversal of the ordering of

vertices of every face in the mesh would then produce the desired result.

Algorithm 2.9 gives the algorithmic form of the procedure described above. Some notation

used in this algorithm is introduced next. Consider a mesh M ∈ M, with a given face

f ∗ ∈ F (M).

Let F ′ denote the set of faces that have already been checked and corrected if necessary.

The algorithm is terminated as soon as |F ′| = |F (M)|, implying that every face in F (M)

has been checked.

Let FT denote the list of faces that can be checked next, i.e. all faces sharing edges with

grey faces in Figure 2.12. This list will be implemented as a “last-in-first-out” list.
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2. Graphs and meshes 2.4. Orientation of faces

Let ET denote the last-in-first-out list of edges corresponding to the faces in FT (the bold

edges in the figure). We assume that faces and corresponding edges are inserted into FT

and ET in the same order.

The function remove(L) is defined to return the element in the list L that was inserted

last. This element is then also removed from L. The function add(L, i) adds an element i

to the list L, and returns the updated list. These two functions will be applied to the lists

FT and ET .

The following functions are also used in the algorithm. The function edges[F (M), f ] is

defined as follows, for a face f = (f1, f2, f3) ∈ F (M),

edges[F (M), f ] = {(f1, f2), (f2, f3), (f3, f1)}. (2.24)

This gives the three edges contained in the face f . The ordering of vertices in edges are

very important here.

The function otherface[F (M), e, f ], where f contains the (unordered) edge e, returns the

face in F (M) \ {f} containing the edge e. Therefore, for a face f ∈ F (M) and an edge

e = (i, j) ∈ E(GM),

otherface[F (M), e, f ] = {fp ∈ F (M) \ {f} : {i, j} ⊂ fp}. (2.25)

The function flipface(f) returns the face f , where the ordering of the vertices of f has

been reversed. For example, if f = (7, 1, 11), then flipface(f) = (11, 1, 7). Hence, for a face

f = (f1, f2, f3) ∈ F (M),

flipface(f) = (f3, f2, f1). (2.26)

Algorithm 2.9 performs the checking, and correcting, of the orientation of faces in a given

mesh M , with the aid of a specific face f ∗, which is known to be correct.

A face f ∈ FT is checked for correct orientation in the following way. If the corresponding

edge e ∈ ET appears in f in the same order as it appears in the other face sharing e, then

f is orientated incorrectly. If not, then f is orientated correctly. See for instance Figure

2.12.
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2. Graphs and meshes 2.4. Orientation of faces

Algorithm 2.9 :

INPUT: A mesh M ∈M, and a face f ∗ ∈ F (M)

OUTPUT: A new face set F ′, such that every face in F ′ is orientated as f ∗

1. Let F ′ ← {f ∗} and FT ← ∅
2. {e1, e2, e3} ← edges[F (M), f∗]

3. for i = 1 to 3 do

fp ← otherface[F (M), ei, f
∗]

FT ← add(FT , fp) and ET ← add(ET , ei)

end

4. while |F ′| < |F (M)| do

f ← remove(FT ) and e← remove(ET )

e1 ← edge[F(M), f, e]

if e1 = e then

F ′ ← F ′ ∪ {flipface(f)}
else

F ′ ← F ′ ∪ {f}
end

{e1, e2, e3} ← edges[F ′, f ]

for i = 1 to 3 do

fp ← otherface[F (M), ei, f ]

if fp 6∈ F ′ then

FT ← add(FT , fp) and ET ← add(ET , ei)

end

end

end

5. return F ′

This concludes the chapter on graphs and meshes. In the next chapter, the main problem

addressed in this thesis is presented.
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CHAPTER 3

Surface parameterisation

The main focus of this thesis is to parameterise the surface of an arbitrary mesh from the

classM (see Definition 2.2). In order to parameterise such a mesh, a one-to-one mapping

from the surface of the mesh to some parameter domain is needed.

Recall from section 2.2.5 that a homeomorphism is a bijective mapping h such that both

h and h−1 are continuous.

Since we consider meshes with surfaces homeomorphic to the sphere, a natural choice for

a parameter domain for these meshes is the surface of the sphere, S0, as defined in (2.15).

We define the concept of a spherical parameterisation as follows.

Definition 3.1 : A spherical parameterisation of a mesh M ∈M is a homeomorphism

h between SM and S0, where SM denotes the surface of M , as given by (2.11), and S0

denotes the surface of the unit sphere, defined in (2.15).

The problem of finding a valid spherical parameterisation for an arbitrary mesh in M is

referred to as the problem of parameterisation. It follows directly from the definition of the

classM (Definition 2.2, on page 13) that a solution to this problem always exists.

Parameterising the surface of a 3D model is regarded as an important problem in com-

puter graphics. Applications include remeshing, filtering, texture mapping, and morphing.
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3. Surface parameterisation 3.1. GC-embeddings

Chapter 8 briefly discusses some of these applications.

The rest of this chapter deals with a specific spherical drawing of the underlying graph GM

of a mesh M ∈ M, and shows that the problem of parameterisation is easily solved once

such a drawing is obtained.

3.1 GC-embeddings

In this section a specific embedding of the underlying graph of a mesh inM is discussed.

We will show that this embedding leads to a valid spherical parameterisation of the mesh.

We define a spherical drawing of any graph G as follows. Every vertex i ∈ V (G) is

positioned at a point vi ∈ S0, and every edge (i, j) ∈ E(G) is drawn as a simple curve on

the surface of the unit sphere, between vi and vj. Figure 3.1 shows a graph in (a), and a

spherical drawing of the graph in (b).
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(b) a spherical drawing of G

Figure 3.1

A great circle is a circle on the surface of a sphere with the same radius and midpoint as

that sphere. Consider the great circle C passing through two points P and Q on a sphere.

The shorter of the two arcs of C between P and Q is called the minor arc between P and

Q. This is the shortest curve on the surface of the sphere between points P and Q.

A spherical polygon through the points Pi, i = 1, 2, . . . , k, on the surface of a sphere is

defined to be the region on the surface of the sphere enclosed by the minor arcs of the

great circles connecting Pi with Pi+1, i = 1, 2, . . . , k − 1, and Pk with P1. Specifically, if

k = 3, it is called a spherical triangle.

Figure 3.2(a) shows a sphere and two points P and Q on the surface, with the great circle

through P and Q. The arc shown in bold is the minor arc between P and Q. Figure 3.2(b)
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3. Surface parameterisation 3.1. GC-embeddings

shows a sphere with three points P1, P2 and P3 on the surface. The edges of the spherical

triangle defined by these three points are shown in bold.
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Figure 3.2

We define a GC-drawing of a graph G as a spherical drawing of G where every edge is

drawn as a minor arc between its endpoints. “GC” is an abbreviation for Great Circle.

Consider a drawing of a graph G on some surface S. If none of the edges in that drawing

intersect, the drawing is called an embedding of G on S. This concept gives rise to the

following definition.

Definition 3.2 : A GC-embedding of a graph G is any GC-drawing of G such that:

(1) the vertices are positioned at distinct points in S0, and

(2) none of the edges in the drawing intersect.

Figure 3.3 shows a graph G in (a), and a GC-embedding of G in (b).
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Figure 3.3
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3. Surface parameterisation 3.2. Mapping between two triangles in R3

Note that in Figure 3.3(b), the surface of the sphere is divided into a number of spherical

polygons, such that none of these polygons overlap.

In particular, a GC-embedding of the underlying graph GM of any mesh M ∈M partitions

the surface of the sphere into a number of non-overlapping spherical triangles, such that

every face of M corresponds to a unique spherical triangular region on the surface of the

sphere.

Figure 3.4 shows a mesh M ∈M in (a) and two GC-drawings of the graph GM in (b) and

(c). The postitions of the vertices in (b) are all distinct and none of the edges intersect.

The drawing in (b) is therefore a valid GC-embedding of GM . The drawing in (c), however,

is not a GC-embedding, since edge intersections clearly occur. Also, the GC-embedding in

(b) divides the surface of the sphere into non-overlapping spherical triangles, while some

of the triangles in (c) overlap.

(a) a mesh (b) valid GC-embedding (c) invalid GC-embedding

Figure 3.4

Before we prove that a GC-embedding of GM leads to a spherical parameterisation of M ,

the following section provides some theory on mapping between the sets of points inside

two different triangles.

3.2 Mapping between two triangles in R3

Consider two arbitrary planar traingles in R3, each of which has a strictly positive area.

Suppose the set TA contains all points inside or on the boundary of the one triangle, and

the set TB contains all points inside or on the boundary of the other triangle. This section

explains how a homeomorphic mapping between TA and TB may be constructed.

Suppose the three vertices of triangle TA are positioned at a1, a2, a3 ∈ R3, and the three

vertices of TB are positioned at b1,b2,b3 ∈ R3. Figure 3.5 gives an example.
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Consider a point x ∈ TA. The line through a1 and x intersects the line segment between

a2 and a3, at say v. See Figure 3.5(a). Hence, for some fixed λ, µ ∈ [0, 1],

x = λa1 + (1− λ)v

= λa1 + (1− λ) [µa2 + (1− µ)a3]

= w1a1 + w2a2 + w3a3, (3.1)

with w1 = λ, w2 = (1 − λ)µ and w3 = (1 − λ)(1 − µ). Note that w1 + w2 + w3 = 1. We

rewrite (3.1) as the following linear system,

Aw = x, (3.2)

with A = [a1, a2, a3] and w = [w1, w2, w3]
T . Since the vectors a1, a2 and a3 are

linearly independent, A is non-singular. The solution w of (3.2) therefore exists, and is

unique.

The vector w is referred to as the barycentric coordinates of x, with respect to the triangle

TA.

We define the point x′ as

x′ = Bw, (3.3)

with B = [b1, b2, b3]. Clearly, as Figure 3.5(b) illustrates, x′ lies inside the triangle TB.

Also, x′ is the unique point in TB corresponding to the point x. Note, for example, that

ai maps to bi, i = 1, 2, 3.

The mapping discussed above is a continuous mapping from TA to TB. Since the triangles

are arbitrary, a similar mapping is used for the inverse mapping from TB to TA. Therefore

the mapping is homeomorphic. We call this mapping the barycentric mapping between the

two triangles.

In the following section it is shown that the problem of parameterisation may be solved

by finding a valid GC-embedding of the corresponding underlying graph. We use the

barycentric mapping established here, for this purpose.
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3. Surface parameterisation 3.3. Spherical parameterisation from a GC-embedding

3.3 Spherical parameterisation from a GC-embedding

For a mesh M ∈ M we proceed to construct a continuous bijective mapping h between

the surface of M , SM , and the surface of the unit sphere, S0, given a valid GC-embedding

of GM . This mapping would then be a solution to the problem of parameterisation.

Consider a mesh M ∈ M, with a given GC-embedding of GM . Suppose vi denotes the

coordinates of vertex i ∈ V (GM) in this GC-embedding.

First, it is shown how any point in SM can be uniquely and continuously mapped to a

point in S0, using the given GC-embedding. Then it is also shown how any point in S0

maps uniquely and continuously to a point in SM .

Consider a point x ∈ SM . Since the surface of M is partitioned into a number of flat

triangular faces in R3, this point x lies inside or on the boundary of one of these faces, say

f ∈ F (M). Suppose f has vertices with indices i, j and k, such that i, j, k ∈ V (GM).

From the given GC-embedding of GM , we know that the face f corresponds to a unique

spherical triangle, say fs, on the surface of the unit sphere. This spherical triangle has

vertices positioned at vi, vj and vk.

The point x is mapped with a barycentric mapping to a unique point v′ in the flat triangle

with vertices vi, vj and vk. We then map the point v′ to the surface of the sphere by

means of normalisation. Hence

v =
v′

||v′||
(3.4)

denotes the unique point in S0 corresponding to the point x ∈ SM .

��

��

��

��

xi

xj

xk

�	


�

�

��

��

��

vi

vj

vk

(a) surface of M (b) surface of unit sphere

Figure 3.6
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3. Surface parameterisation 3.3. Spherical parameterisation from a GC-embedding

Figure 3.6 illustrates the mapping. The dot inside the triangle in (a) indicates x. This

point is mapped to v′, the white dot in (b), with a barycentric mapping. The point v′ is

then normalised to yield v on the surface of the sphere.

This establishes a continuous mapping h from SM to S0.

Next, consider a point v ∈ S0. Since the GC-embedding of GM partitions the surface of the

unit sphere into a number of spherical triangles, the point v lies inside or on the boundary

of one of these spherical triangles, say fs. This triangle corresponds to a unique triangular

face of M , say f ∈ F (M).

Suppose fs has vertices positioned at vi, vj and vk. Then f has vertices positioned at xi,

xj and xk.

Since v lies inside or on the boundary of fs, the vector v intersects the flat triangle with

vertices vi, vj and vk. It is then possible to write

αv = w1vi + w2vj + w3vk, (3.5)

with α ∈ (0, 1), and w1, w2, w3 ∈ [0, 1]. Since v is inside the triangle f , it follows that

w1 + w2 + w3 = 1. Equation (3.5) is rewritten as

v =
w1

α
vi +

w2

α
vj +

w3

α
vk. (3.6)

Values for w1/α, w2/α and w3/α are obtained by solving the 3 × 3 linear system (3.6),

which is similar to finding barycentric coordinates.

In order to obtain the value of α, note that

w1

α
+

w2

α
+

w3

α
=

1

α
(w1 + w2 + w3) =

1

α
. (3.7)

This gives an expression to solve for α, and then to obtain values for w1, w2 and w3.

We define the point x to be

x = w1xi + w2xj + w3xk, (3.8)

which is the unique point in SM corresponding to v ∈ S0. Figure 3.6 may also serve as an

illustration for this inverse mapping. The dot on the surface of the sphere in (b) indicates

v. The white dot in (b) is αv, which is mapped to the triangle in (a), yielding the point x.

This establishes the inverse mapping h−1 from S0 to SM .

Both h and h−1 are continuous and bijective. The mapping h is therefore a solution to the

problem of parameterisation, and we have the following result.

29



3. Surface parameterisation 3.4. Validity of a GC-embedding

Proposition 3.3 : For a mesh M ∈ M, it is possible to solve the problem of parame-

terisation with a valid GC-embedding of the underlying graph GM .

This seems to be the standard procedure for parameterising the surface of a mesh in the

literature [1, 3, 16, 17, 21, 29, 35]. In Chapter 5, a few existing methods for obtaining

GC-embeddings will be discussed.

The importance of the requirement that no edges may intersect in a GC-embedding is

stressed in the construction of h. As soon as an edge intersection occurs, spherical triangles

overlap, and a one-to-one mapping cannot be established between S(M) and S0.

The following section provides two techniques to test whether a given GC-drawing of GM

is in fact a valid GC-embedding of GM .

3.4 Validity of a GC-embedding

Suppose a GC-drawing of GM , for a given mesh M ∈ M, is given. Suppose therefore

that a set V = {vi ∈ R3 : i = 1, 2, . . . , n} is given, such that every vertex i ∈ V (GM) is

positioned at vi, and the edges are drawn as minor arcs between endpoints. This section

provides two possible methods to test whether this GC-drawing is a valid GC-embedding

of GM .

According to Definition 3.2, it is necessary to test that the points vi are distinct, and that

no edges intersect in the drawing. Note that an edge intersection implies that at least two

spherical triangles overlap, and vice versa.

It is thus sufficient to test that the points vi are distinct, and that the spherical triangles

defined by these points do not overlap. The first condition is easily tested. The following

two methods test the second condition.

3.4.1 The orientation test

The first test is based on the fact that a valid spherical parameterisation is obtained if

all the spherical triangles are orientated correctly. That is, for a face f ∈ F (M) the side

that is on the outside of the mesh must be on the outside of the sphere. There can be no

foldovers in the embedding without at least one face being upside down.
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3. Surface parameterisation 3.4. Validity of a GC-embedding

Suppose the convention in section 2.2 is followed, namely that the labels of the vertices of

every face are ordered to be counterclockwise as seen from outside the mesh. For a face

f ∈ F (M) corresponding to the spherical triangle fs with vertices vi, vj and vk, we then

calculate

s(fs) = sign [(vi × vj) · vk] , (3.9)

where the function sign(·) : R 7→ {−1, 0, 1} is defined as

sign(x) =


−1, x < 0,

0, x = 0,

1, x > 0,

x ∈ R. (3.10)

Now, if s(fs) = 1, then fs is orientated correctly. If s(fs) = −1, then fs is upside down,

and if s(fs) = 0 then fs is either a single point or an arc on the sphere, in other words, fs

is a collapsed triangle.

In order to test the entire GC-drawing, (3.9) is evaluated for every spherical face fs in the

GC-drawing. If the result is 1 for all the faces, then all the faces are orientated correctly,

and the drawing is a valid GC-embedding. We call this the orientation test.

The following theorem validates the correctness of the orientation test.

Theorem 3.4 : Given a spherical triangle f with vertices located at v1, v2 and v3, the

value of s(f) = sign [(v1 × v2) · v3] satisfies the following:

(a) s(f) = 0 if the area of the triangle is zero,

(b) s(f) = 1 if the vertices are ordered counterclockwise,

(c) s(f) = −1 if the vertices are ordered clockwise.

By ordering we mean as viewed from outside the sphere.

Proof

In order to prove (a), suppose first that v1 = v2. Then v1×v2 = 0, implying that s(f) = 0.

If v1 6= v2, but v3 lies on the great circle through v1 and v2, then (v1×v2) is perpendicular

to v3. This also implies that s(f) = 0.

In order to prove (b) and (c), suppose the area of the triangle is strictly positive. The vector

n = v1× v2 is perpendicular to the plane spanned by v1 and v2. This plane partitions R3

into two open halfspaces, say H1 and H2, with n ∈ H1.
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Figure 3.7

If the vertices of f are ordered counterclockwise, then v3 ∈ H1 (see Figure 3.7(a)). Thus

n · v3 > 0, and s(f) = 1. If the vertices of f are ordered clockwise, then v3 ∈ H2 (see

Figure 3.7(b)). Thus n · v3 < 0, and s(f) = −1.

The advantage of this test is that it identifies the faces that are upside down. A disadvan-

tage is that all the faces in the face set of the mesh must be correctly orientated, i.e. the

mesh must be preprocessed with Algorithm 2.9.

3.4.2 The area test

The second test is based on the fact that a valid GC-embedding is obtained if the sum of

the areas of all the spherical triangles is exactly the area of the unit sphere, which is 4π.

As soon as an overlapping occurs, this sum would become larger than 4π.

For a given GC-drawing, with V = {vi ∈ R3 : i = 1, 2, . . . , n}, we calculate

A =

|F (M)|∑
f=1

a(f), (3.11)

where the function a : F (M) 7→ R3 gives the area of the spherical triangle corresponding

to the face f ∈ F (M). There are no overlappings in a GC-drawing of GM if and only if

A = 4π. We call this the area test.

Next, an explicit formula for a(f) is given. Suppose the face f ∈ F (M) maps to the

spherical triangle with vertices positioned at v1, v2 and v3. Then, according to [30, p. 18],

a(f) = ∠312 + ∠123 + ∠231 − π, (3.12)
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where ∠ijk denotes the angle in radians at vertex j of the spherical triangle with vertices

labelled i, j and k. This angle is measured as the angle between the tangents to the two

incident arcs of the triangle. See for example Figure 3.8. The angle ∠312 is shown.
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Figure 3.8

In order to obtain a formula for this angle, consider for instance the angle ∠312. A vector

a parallel to the line through v1, tangent to the arc between v1 and v2, is given by

a = (v1 × v2)× v1. (3.13)

Using the identity (p× q)× r = (p · r)q− (q · r)p and the fact that v1 · v1 = 1 yields

a = v2 − (v1 · v2)v1. (3.14)

Similarly, a vector b parallel to the line through v1, tangent to the arc between v1 and v3,

is given by

b = (v1 × v3)× v1 = v3 − (v1 · v3)v1. (3.15)

It follows that the angle ∠312 is equal to the angle between a and b, and therefore,

cos(∠312) =
a · b
||a|| ||b||

, (3.16)

which gives a formula for calculating ∠312. Similar expressions can be derived for ∠123 and

∠231, and are then used in (3.12) to calculate the area of the spherical triangle.

The advantage of this method is that correct orientation of the faces is not required a priori.

A disadvantage is that numerical round-off errors are bound to occur. A possibility is to

evaluate |A− 4π|, and if it is less than some fraction of the area of the smallest spherical

triangle, the embedding can be said to be valid.
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3. Surface parameterisation 3.5. Parameterising convex or star-shaped meshes

3.5 Parameterising convex or star-shaped meshes

For some meshes in M, a valid GC-embedding is obtained by simply normalising every

vertex of the original mesh, with respect to some point inside the mesh.

A star-shaped mesh has the property that a point inside the mesh can be found such that

any ray originating at that point intersects the surface of the mesh exactly once. Such a

point is called a radial centroid of the mesh. The radial centroid of a mesh is usually not

unique.

A convex mesh is a mesh where any point strictly inside the mesh is a radial centroid. Any

mesh that is not convex is called concave. See for example Figure 3.9.

(a) convex (b) star-shaped (c) concave

Figure 3.9

A convex or star-shaped mesh inM has the advantage that a valid GC-embedding is easily

obtained. Suppose that for a convex or star-shaped mesh M one of its radial centroids is

positioned at m ∈ R3. Then

vi =
xi −m

||xi −m||
, i ∈ V (GM), (3.17)

with xi the coordinates of node i in the original mesh, yields the positions for the vertices

of a valid GC-embedding of GM .

The embedding in Figure 3.4(b) was obtained by using (3.17) and choosing the point m

to be the mean of the coordinates of all the nodes, i.e.

m =
1

|V (GM)|
∑

i∈V (GM )

xi. (3.18)

For convex meshes, this method for finding m is sufficient, but for some star-shaped meshes

it can be rather difficult to obtain a radial centroid.

The interesting problem of parameterisation arises when a general mesh, such as the rabbit

model in Figure 2.1, is considered.
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Before we look at methods for finding valid GC-embeddings of arbitrary meshes inM, we

deal, in the following chapter, with an algorithm for finding valid 2D planar embeddings.

In Chapter 5, this algorithm is then extended to find valid GC-embeddings.
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CHAPTER 4

2D planar embeddings

In this chapter, a method for obtaining a straight edge drawing of a planar graph in the

2D plane is discussed. In the next chapter, this method is adapted to find a valid GC-

embedding of the underlying graph of a mesh inM.

4.1 2D Tutte embedding

The definition in section 2.1 of a planar graph translates to the following: a graph G is

planar if it can be embedded in the 2D plane such that each vertex i ∈ V (G) is mapped

to a point in R2, each edge (i, j) ∈ E(G) is mapped to a curve whose endpoints are the

points i and j, and none of these edges intersect. Such an embedding is called a planar

embedding of the graph.

If a planar embedding of G has the property that every edge is drawn as a segment of a

straight line, and no edge intersections occur, we call it a straight line embedding of the

graph G. It was first shown by Fáry [8] that every planar graph has a valid straight line

embedding.

Figure 4.1 shows a planar graph in (a). This embedding of the graph is not a planar

embedding, because of the two edges intersecting. A planar embedding of this graph is
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4. 2D planar embeddings 4.1. 2D Tutte embedding

shown in (b), and a straight line embedding is shown in (c).
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(b) planar embedding

�� ��

��

��

(c) straight line embedding

Figure 4.1

Tutte [33] proposed a method for finding a straight line embedding of the graph GM of a

mesh M ∈ MB (i.e. a mesh with a boundary, see Definition 2.3). We call an embedding

obtained by his algorithm a 2D Tutte embedding.

Obtaining a 2D Tutte embedding of GM involves two steps. First, the boundary vertices

of GM are fixed on a convex boundary in the 2D plane, such that the ordering of these

vertices is preserved. Next, every interior vertex of the graph is positioned at the centroid

of its neighbours. Tutte proved that this results in a drawing of the graph with no edge

intersections [33].

Figure 4.2(a) shows an example of a mesh in MB. Figure 4.2(b) shows a 2D Tutte em-

bedding of the underlying graph, where the boundary vertices are fixed on the boundary

of the unit circle centred at the origin.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) a mesh M inMB (b) a 2D Tutte embedding of GM

Figure 4.2

In Tutte’s algorithm, the positioning of a vertex at the centroid of its neighbours may

be generalised to any convex combination of the positions of the neighbours. Before this
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4. 2D planar embeddings 4.2. Convex combinations

generalisation is discussed, the following section provides some theory on convex combina-

tions. This theory contributes to proving that the generalisation of Tutte’s method always

yields a valid straight line embedding for the graph GM of any mesh M ∈MB.

4.2 Convex combinations

In this section the concepts of a convex set, a convex hull and a convex combination in R2

are defined, and relationships between these concepts are derived.

A set of points P ⊂ R2 is said to be a convex set in R2 if, for any points x, y ∈ P , and any

λ ∈ (0, 1), the point λx + (1− λ)y is also in P . Figure 4.3 shows an example of a convex

set and a non-convex set.
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Figure 4.3

The convex hull of a set of points S ⊂ R2 is defined to be the convex set in R2 with smallest

possible area containing S. We denote the set of points strictly inside the convex hull of S

by CH(S). Figure 4.4 shows an example of the convex hull of a set of points.

��

��

��

��

�	


�

�

(a) a set S of points

��

��

��

��

��

��

��

(b) CH(S)

Figure 4.4
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The following lemma gives an explicit formula for any point in the convex hull of a set of

vectors, in terms of those vectors. This lemma is used to prove a subsequent theorem.

Lemma 4.1 : For a set of vectors V = {vi ∈ R2, i = 1, 2, . . . , n}, any point v ∈ CH(V )

can be expressed as

v =
n∑

i=1

[
vi(1− λi)

n+1∏
j=i+1

λj

]
, (4.1)

with λ1 = 0, λi ∈ (0, 1), i = 2, 3, . . . , n, and λn+1 = 1. Moreover, for λ1 = 0, λn+1 = 1,

and any choice of λi ∈ (0, 1), i = 2, 3, . . . , n, the point v as given by (4.1) is an element

of CH(V ).

Proof

Figure 4.5 shows the steps of a method to construct CH(V ) for an example set V .
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Figure 4.5

The method starts with the first vector, v1. Any point x1 in the convex hull of the set

V1 = {v1} may be expressed as

x1 = v1(1− λ1), (4.2)
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where we choose λ1 = 0 to simplify the expressions that follow.

If we consider the next vector, v2, any point x2 in the convex hull of the set V2 = {v1,v2}
may be expressed as a convex combination of v2 and a point in CH(V1). Therefore

x2 = x1λ2 + v2(1− λ2)

= v1(1− λ1)λ2 + v2(1− λ2), (4.3)

with λ2 ∈ (0, 1). Note that any value of λ2 in the interval (0, 1) yields a point in CH(V2).

If we consider the next vector, v3, any point x3 in the convex hull of V3 = {v1,v2,v3} may

be expressed as a convex combination of v3 and a point in CH(V2). Thus

x3 = x2λ3 + v3(1− λ3)

= v1(1− λ1)λ2λ3 + v2(1− λ2)λ3 + v3(1− λ3), (4.4)

with λ3 ∈ (0, 1). Again, any value of λ3 in the interval (0, 1) yields a point in CH(V3).

This process is continued until the last vector in V , vn, is reached. Then we know that

any point xn in the convex hull of the set Vn = V may be expressed as

xn =
n∑

i=1

[
vi(1− λi)

n+1∏
j=i+1

λj

]
, (4.5)

with λ1 = 0, λi ∈ (0, 1), i = 2, 3, . . . , n, and λn+1 = 1. Also, any values for λi, i =

1, 2, . . . , n + 1 satisfying these conditions yield a point in CH(V ).

A strict convex combination of the vectors v1,v2, . . . ,vn ∈ Rd, is defined as a linear com-

bination

v =
n∑

i=1

wivi, (4.6)

with weights wi ∈ R, i = 1, 2, . . . , n, such that

n∑
i=1

wi = 1, and wi > 0, i = 1, 2, . . . , n. (4.7)

For the purpose of this chapter, we will consider convex combinations of vectors in R2.

For a set of vectors V = vi ∈ R2, i = 1, 2 . . . , n, we define the set CC(V) to be the set of

all possible strict convex combinations of the vectors in V . Therefore

CC(V ) =

{
n∑

i=1

wivi :
n∑

i=1

wi = 1 and wi > 0, i = 1, 2, . . . , n

}
. (4.8)
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The following fundamental theorem relates the concepts of a convex hull and convex com-

binations. This theorem is needed in proving that the generalisation of Tutte’s method

yields a valid straight line embedding.

Theorem 4.2 : For any set of vectors V = {vi ∈ R2, i = 1, 2, . . . , n},

CH(V ) = CC(V ),

where CH(V ) denotes the set of points strictly inside the convex hull of V , and CC(V ) is

defined by (4.8).

Proof

Let v ∈ CH(V ). According to Lemma 4.1, v can be expressed as

v =
n∑

i=1

hivi, (4.9)

where

hi = (1− λi)
n+1∏

j=i+1

λj, i = 1, 2, . . . , n, (4.10)

with λ1 = 0, λi ∈ (0, 1), i = 2, 3, . . . , n, and λn+1 = 1. Note that with λi, i = 1, 2, . . . , n,

satisfying these conditions, it follows that hi > 0, i = 1, 2, . . . , n. Also,

n∑
i=1

hi =
n∑

i=1

[
n+1∏

j=i+1

λj −
n+1∏
j=i

λj

]
= −

n+1∏
j=1

λj +
n+1∏

j=n+1

λj = 0 + 1 = 1. (4.11)

Therefore v is a strict convex combination of the vectors in V . Thus v ∈ CC(V ), and we

have

CH(V ) ⊂ CC(V ). (4.12)

Next, let v ∈ CC(V ). Suppose therefore that

v =
n∑

i=1

wivi, (4.13)

where weights wi, i = 1, 2, . . . , n, are given such that (4.7) is satisfied. According to Lemma

4.1, in order to show that v is an element of CH(V ), it is only necessary to show that v can

be written in the form (4.1), such that λ1 = 0, λi ∈ (0, 1), i = 2, 3, . . . , n, and λn+1 = 1.
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By comparing (4.13) with (4.1), we choose λ1 = 0 and λn+1 = 1. For n ≥ 2, the values of

λi, i = 2, 3, . . . , n must be chosen to satisfy

wi = (1− λi)
n+1∏

j=i+1

λj, i = 1, 2, . . . , n. (4.14)

For n = 2, we choose λ2 = 1−w2. Note that λ2 ∈ (0, 1), and this specific choice is therefore

valid. Suppose now that n ≥ 3. Since wn = 1− λn, it follows that

λn = 1− wn. (4.15)

Next, wn−1 = (1− λn−1)λn, and we have

λn−1 = 1− wn−1

λn

. (4.16)

This backwards recursion is continued, and the following is obtained,

λi = 1− wi/

[
n+1∏

j=i+1

λj

]
, i = n− 1, n− 2, . . . , 2. (4.17)

This, together with (4.15), gives a solution to (4.14). Note that from (4.15), λn ∈ (0, 1).

If follows from (4.17) that

n+1∏
j=i

λj =

[
n+1∏

j=i+1

λj

]
− wi

=

[
n+1∏

j=i+2

λj

]
− wi+1 − wi

=

[
n+1∏

j=n+1

λj

]
−

n∑
j=i

wj

= 1−
n∑

j=i

wj, i = 2, 3, . . . , n− 1. (4.18)

Therefore

λi = 1− wi/

[
1−

n∑
i+1

wj

]
, i = 2, 3, . . . , n− 1. (4.19)

Clearly, since (4.7) holds,
n∑

j=i

wj < 1, i = 2, 3, . . . , n− 1, therefore

1−
n∑

j=i+1

wj > wi, i = 2, 3, . . . , n− 1, (4.20)
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which, together with (4.19) establishes that λi ∈ (0, 1), i = 2, 3, . . . , n− 1.

It is therefore possible to write v, as defined in (4.13), in the form (4.1), thereby proving

that v ∈ CH(V ), and we have

CC(V ) ⊂ CH(V ). (4.21)

Combining (4.12) and (4.21) proves the theorem.

We conclude this section by giving two results that follow from Theorem 4.2.

Corollary 4.3 : Suppose v ∈ R2 is a strict convex combination of the vectors in V =

{vi ∈ R2, i = 1, 2, . . . , n}, and suppose ` is any line through v. Then either

(a) the points v1,v2, . . . ,vn all lie on `, or

(b) at least one of these points lies strictly on one side of `, and at least one

of the points lies strictly on the other side of `.

Proof

Note that v ∈ CC(V ), and thus from Theorem 4.2, v ∈ CH(V ). Therefore v lies stricly

inside the convex hull of V .

Suppose that all the points v1,v2, . . . ,vn lie strictly on the one side of `. Such a situation

is shown in Figure 4.6(a).
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Figure 4.6

But then the convex hull of V , CH(V ), is also strictly on that side of `, implying that `

does not pass through CH(V ). This implies that v 6∈ CH(V ), which is a contradiction.

Next, suppose some of the points v1,v2, . . . ,vn lie on `, and the others strictly on one side

of `. This implies that ` coincides with one of the sides of CH(V ). But then v lies on the

boundary of CH(V ), which is also a contradiction.
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Corollary 4.4 : Suppose v ∈ R2 is a strict convex combination of the n linearly in-

dependent vectors in V = {vi ∈ R2, i = 1, 2, . . . , n}, with n ≥ 3. Then integers

a, b, c ∈ {1, 2, . . . , n} exist, such that v lies strictly inside the triangle with vertices va, vb

and vc.

Proof

We proceed by constructing such a triangle. Figure 4.7 gives an illustration of the idea

behind this construction.
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Consider the line passing through v1 and v that divides R2 into two open halfplanes, H1

and H2. See Figure 4.7(a). If follows from Corollary 4.3 that at least one of the vectors in

V \ {v1} lies in H1 and at least one in H2.

Consider a point of V \ {v1} that lies in H1, say vj. The line passing through vj and v

divides R2 into two open halfplanes, say P1 and P2. See Figure 4.7(b). Again, Corollary

4.3 states that at least one element of V \ {vj} lies in P1 and at least one in P2.

It follows that there exists at least one point of V \ {v1,vj} in the intersection of H2 and

P2. Consider one of these points, say vk.

Clearly, the point v lies strictly inside the triangle with vertices v1, vj and vk. See Figure

4.7(c).

The next section deals with a generalisation of 2D Tutte embedding. Some of the results

of convex combinations proven here are used to prove that the algorithm of generalised 2D

Tutte embedding always yields a valid straight line embedding of the graph GM of a mesh

M ∈MB.
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4. 2D planar embeddings 4.3. Generalised 2D Tutte embedding

4.3 Generalised 2D Tutte embedding

In this section a generalisation of the 2D Tutte embedding algorithm, as briefly discussed

in section 4.1, is investigated. In this generalisation every vertex is no longer positioned at

the centroid, but rather at any strict convex combination of the positions of its neighbours.

Consider the graph GM of a mesh M ∈MB, with N vertices. There exists a cycle B in the

graph GM such that every vertex in B is a boundary vertex in M . All the other vertices of

GM will be called interior vertices. We denote the number of interior vertices by n, where

n < N .

We assume, by relabelling the vertices if necessary, that 1, 2, . . . , n are the labels of the

interior vertices, and n + 1, n + 2, . . . , N are the labels of the boundary vertices.

The first step of the generalised 2D Tutte embedding algorithm is to map the boundary

vertices to the vertices of some convex polygon Q in R2, such that the ordering of these

vertices is preserved. Let these coordinates be given by ui, i = n + 1, n + 2, . . . , N . One

possibility is to choose Q as a regular (N − n)–gon, i.e.

ui =

[
cos[h(i− n− 1)]

sin[h(i− n− 1)]

]
, i = n + 1, n + 2, . . . , N, (4.22)

with h = 2π/(N − n).

Next, for each interior vertex i ∈ {1, 2, . . . , n}, weights wij, j = 1, 2, . . . , N , are chosen

such that

wij > 0, (i, j) ∈ E(GM), and wij = 0, (i, j) 6∈ E(GM), (4.23)

and also
N∑

j=1

wij = 1, i = 1, 2, . . . , n. (4.24)

We define the points u1,u2, . . . ,un ∈ R2 to be the solutions of the following linear system

of equations,

ui =
N∑

j=1

wijuj, i = 1, 2, . . . , n. (4.25)

This yields a drawing of the graph GM . Every vertex i of the graph GM is positioned at

the point ui in the plane, for i = 1, 2, . . . , N . Edges are drawn as segments of straight lines

between endpoints. We will call this drawing a generalised 2D Tutte embedding of GM .

Note that with the weights chosen to satisfy (4.23) and (4.24), every interior vertex is

positioned at a strict convex combination of the positions of its neighbours.
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The question remains whether this embedding is always a valid straight line embedding.

To prove that it is we have to show that the points ui, i = 1, 2, . . . , n, as given by (4.25),

are well-defined and distinct, and that no edges intersect in the embedding.

First, it is shown that the linear system (4.25) has a unique solution. In order to accomplish

this, (4.25) is rewritten as

ui −
n∑

j=1

wijuj =
N∑

j=n+1

wijuj, i = 1, 2, . . . , n. (4.26)

By considering the two components of ui, say xi and yi, separately, the equations in (4.26)

are equivalent to the following two matrix equations,

Ax = b1, and Ay = b2, (4.27)

where x = [x1, x2, . . . , xn]T , y = [y1, y2, . . . , yn]T , and the matrix A is n× n with elements

{A}ij =

{
1, i = j

−wij, i 6= j,
i, j = 1, 2, . . . , n. (4.28)

It follows from (4.26) that b1 = [b1,1, b1,2, . . . , b1,n]T and that b2 = [b2,1, b2,2, . . . , b2,n]T have

elements

b1,i =
N∑

j=n+1

wijxj, and b2,i =
N∑

j=n+1

wijyj, i = 1, 2, . . . , n. (4.29)

Existence and uniqueness of a solution to the system (4.25) is therefore equivalent to the

non-singularity of the matrix A.

Theorem 4.5 : The matrix A, as defined by (4.28), is non-singular.

Proof

We prove the theorem by showing that the only solution of Av = 0 is v = 0. Let

v = [v1, v2, . . . , vn]T . The equation Av = 0 may be written as

vi −
N∑

j=1

wijvj = 0, i = 1, 2, . . . , n, (4.30)

with vn+1 = vn+2 = . . . = vN = 0. Let vmax be the maximum of v1, v2, . . . , vn, and suppose

vmax = vk, for some k ∈ {1, 2, . . . , n}.
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Consider any vertex j ∈ N(k). Since vk = vmax, we have vj ≤ vk. But if vj < vk, then

(4.30) together with (4.23) and (4.24), imply that there must exist a vertex ` ∈ N(k) such

that v` > vk, which is impossible. Therefore vj = vk = vmax.

In a similar way, every neighbour i of vertex j must satisfy vi = vmax, and so on.

Since the graph GM is connected, a boundary vertex is eventually reached, with the result

that vj = vmax for some j ∈ {n + 1, n + 2, . . . , N}. Therefore vmax = 0.

A similar argument shows that for the minimum of v1, v2, . . . , vn, denoted by vmin, we have

vmin = 0, and therefore v = 0. Hence the theorem holds.

Theorem 4.5 implies that (4.25) has a unique solution. Before we prove that this solution

yields a valid straight line embedding, the following result is needed.

Lemma 4.6 : If every internal vertex i is positioned at ui, where ui are solutions of

(4.25), i ∈ {1, 2, . . . , n}, then every internal vertex lies strictly inside the convex polygon

Q with vertices at un+1,un+2, . . . ,uN .

Proof

Suppose at least one internal vertex does not lie strictly inside Q. Let ui be any such

vertex whose shortest distance to Q is maximal. Then ui either lies strictly outside of Q,

or on the boundary of Q.

First, suppose ui lies strictly outside of Q. Let v be the point on the boundary of Q nearest

to ui. The point v is either a vertex of Q, or a point on one of the edges of Q.

��

��

��

��

�	


�

�

��

v

ui

`

QH2

H1

(a)

��

��

��

��

��

��
ui `

Q

(b)

��

��

 !

"#

$%

&'

()
ui

`

Q

(c)

Figure 4.8

Let ` denote the line passing through ui, perpendicular to ui−v. This line divides R2 into

two open halfplanes, say H1 and H2 such that v ∈ H1. Note that because ui lies outside
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of Q and Q is convex, the vertices of Q all belong to H1. See for example Figure 4.8(a).

Since ui has maximal shortest distance to Q, it follows that uj 6∈ H2, j = 1, 2, . . . , n. But

ui is a strict convex combination of its neighbours, thus, according to Corollary 4.3, the

neighbours of ui must all lie on the line `.

Similarly, the neighbours of the neighbours of ui must all lie on `, and so on. Since the

graph GM is connected, the vertices of Q must all lie on `, which results in a contradiction.

Therefore no internal vertices lie strictly outside of Q.

Next, suppose ui, the point with maximal distance from Q, lies on the boundary of Q.

Then ui is either a vertex of Q, or a point on one of the edges of Q.

If ui coincides with a vertex of Q, let ` be any line through ui, but not through Q, as in

Figure 4.8(b). If ui is a point on an edge of Q, let ` be the infinite extension of that edge,

as shown in Figure 4.8(c).

Since ui has maximal distance from Q, no internal vertex lies strictly outside of Q. Thus,

according to Corollary 4.3, every neighbour of ui must lie on `. Also, every neighbour of

every neighbour of ui must lie on `, and so on. Eventually the vertices of Q are reached,

implying that all the vertices of Q lie on the line `, which is a contradiction. Therefore no

internal vertices lie on the boundary of Q.

It remains to prove that the solution of (4.25) gives a valid straight line embedding, i.e.

that no edges intersect. Note that an edge intersection implies that at least two triangular

faces overlap in the embedding. The converse is also true: overlapping faces imply edge

intersections.

The following theorem states that the solution of (4.25) results in an embedding where none

of the faces overlap, which is equivalent to stating that a valid straight line embedding is

obtained. The proof of this theorem is partly due to Colin de Verdière, Pocchiola and

Vegter [4].

Theorem 4.7 : The solution of (4.25) yields a planar embedding of GM in which no

triangles overlap.

Proof

Let B(GM) denote the set of N − n boundary vertices, and I(GM) the set of n interior

vertices of GM . We denote the boundary polygon (with vertices at un+1,un+2, . . . ,uN) by

Q.
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Let the function α(i) : V (GM) 7→ R be defined as

α(i) =

{
2π, i ∈ I(GM),

the angle of Q at i, i ∈ B(GM),
i ∈ V (GM). (4.31)

Let the function β(i) : V (GM) 7→ R be defined such that β(i) gives the sum over all

triangles incident to vertex i of the angle of such a triangle at i. We aim to show that

α(i) = β(i), for all i ∈ V (GM).

Consider a fixed vertex i ∈ V (GM). The vertices adjacent to i form a cycle if i ∈ I(GM),

and a path if i ∈ B(GM). We denote the neighbours of i by i1, i2, . . . , ip, in the order of

this cycle or path. See for example Figure 4.9. Note that for an interior vertex i, (4.25)

implies that i is positioned at a strict convex combination of the positions of the vertices

i1, i2, . . . , ip.
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First, we prove that α(i) ≤ β(i), with equality if and only if the triangles incident to i do

not overlap. To this end, the following notation is introduced. For a triangle with vertices

u, v and w, let σ(u, v, w) be the angle of the triangle at v, with 0 ≤ σ(u, v, w) ≤ π.

Suppose i ∈ B(GM). Let a and b denote the labels of the two boundary vertices adjacent

to i. According to Lemma 4.6, every interior vertex lies strictly inside the polygon Q.

Therefore
p−1∑
j=1

σ(ij, i, ij+1) ≥ σ(a, i, b), i ∈ B(GM), (4.32)

and β(i) ≥ α(i), i ∈ B(GM).

Next, consider an interior vertex i ∈ I(GM), with neighbours i1, i2, . . . , lp. It follows from

Corollary 4.4 that there exist integers a, b and c with 1 ≤ a < b < c ≤ p such that vertex
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i lies strictly inside the triangle with vertices labelled ia, ib and ic. Therefore

σ(ia, i, ib) + σ(ib, i, ic) + σ(ic, i, ia) = 2π. (4.33)

We also have

b−1∑
j=a

σ(ij, i, ij+1) ≥ σ(ia, i, ib), (4.34)

c−1∑
j=b

σ(ij, i, ij+1) ≥ σ(ib, i, ic), (4.35)

p+a−1∑
j=c

σ(ij, i, ij+1) ≥ σ(ic, i, ia), (4.36)

where we define ij+cp = ij, c ∈ Z. Adding these three inequalities yields

p−1∑
j=1

σ(ij, i, ij+1) ≥ σ(ia, i, ib) + σ(ib, i, ic) + σ(ic, i, ia) = 2π, (4.37)

and thus β(i) ≥ α(i), i ∈ I(GM).

Since α(i) ≤ β(i) for every boundary vertex and every interior vertex i, we have

α(i) ≤ β(i), i ∈ V (GM). (4.38)

Moreover, it is clear from Figure 4.9 that equality holds only if the triangles incident to

vertex i do not overlap.

In order to prove that equality does hold in (4.38), let t denote the total number of trian-

gular faces of the original mesh M . Then

N∑
i=1

β(i) = πt, (4.39)

and
N∑

i=1

α(i) = 2πn + π(N − n− 2) = π(N + n− 2). (4.40)

Since the mesh M belongs toMB, it follows from Corollary 2.7 that

N − e + t = 1, (4.41)
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where e denotes the number of edges in GM . Because all the faces are triangular, e =

(3t + N − n)/2, and equation (4.41) becomes

N − 3t + N − n

2
+ t = 1, (4.42)

which simplifies to

N + n− 2 = t. (4.43)

Substituting (4.43) into (4.40) and using also (4.39) yield

N∑
i=1

α(i) = πt =
N∑

i=1

β(i). (4.44)

But since 0 < α(i) ≤ β(i), i ∈ V (GM), it follows that α(i) = β(i), i ∈ V (GM). Hence no

triangles overlap, and the theorem holds.

Theorems 4.5 and 4.7 imply that the generalised 2D Tutte embedding algorithm always

results in a valid planar embedding for the graph GM of any mesh M ∈ MB, provided

that the weights satisfy (4.23) and (4.24), and that the boundary vertices are positioned

at the vertices of a convex polygon.

Note that Tutte’s original algorithm [33] as briefly explained in section 4.1, is a special

case of this algorithm where the weights are chosen as

wij =


1

deg(i)
, (i, j) ∈ E(GM),

0, otherwise,
i, j ∈ V (GM). (4.45)

The next section gives some more possibilities for choosing weights.

4.4 Choosing weights

In the previous section, the generalised 2D Tutte algorithm was given and proven to be

correct under the condition that the weights satisfy (4.23) and (4.24). This section provides

a number of choices for these weights.

4.4.1 Tutte weights

An obvious choice of weights is given by (4.45). Since Tutte used these weights in his 2D

planar embedding algorithm [33], we call these weights Tutte weights. It follows directly

from (2.3) that (4.24) is satisfied.
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4.4.2 Chord length weights

Another choice is chord length weights, where every weight is scaled to represent the Eu-

clidean length of the corresponding edge in the original mesh.

These weights are defined as

wij =
ωij

wdeg(i)
, (i, j) ∈ E(GM), and wij = 0, (i, j) 6∈ E(GM), (4.46)

where

ωij = ||xi − xj||ρ, i, j ∈ V (GM), (4.47)

with ρ ∈ R, and

wdeg(i) =
∑

j∈N(i)

ωij, i ∈ V (GM). (4.48)

The position vector xi, i ∈ V (GM), denotes the coordinates of node i in the original mesh

M . Note that Tutte weights are the special case of ρ = 0. Choosing for example ρ = −1

reduces the influence that longer edges have on the position of a vertex, while ρ = 1

increases this influence.

Figure 4.10 shows the result of embedding the graph GM of the mesh M from Figure 4.2(a),

using different values of ρ in (4.47).
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4.4.3 Other weights

A number of alternative choices for weights may be found in the literature. Floater [9]

proposed the so-called shape-preserving weights which, as its name suggests, attempts to

attain the shape of the original mesh relatively, by minimising a distortion function.
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In [10], Floater proposed the mean-value weights. These weights are derived from the

mean-value theorem for harmonic functions. They also attain certain shape-parameters of

the original mesh.

For the remainder of this thesis, we will make use of chord length weights only.

4.5 An iterative scheme for 2D Tutte embedding

In section 4.3 it was shown that a valid straight line embedding of the graph GM can

be obtained by solving a linear system. This section deals with the issue of numerical

efficiency that arises in the implementation of the generalised 2D Tutte algorithm.

From a computational viewpoint, solving the two systems in (4.27),

Ax = b1, and Ay = b2, (4.49)

by a direct method for a graph with thousands of vertices is not desirable. The matrix

A is sparse, but it is not, in general, possible to rearrange the non-zero entries into a

band structure. The sparseness of A suggests that an iterative method should be more

computationally efficient.

For this purpose, we use Gauss-Seidel iteration, which is defined next. Consider a square

linear system Cv = d. The matrix C is split up as

C = L + D + U, (4.50)

where L denotes the strictly lower triangular part, D the diagonal part, and U the strictly

upper triangular part of C. The linear system is then written as

(L + D + U)v = d

(L + D)v = −Uv + d. (4.51)

This leads to the following iteration scheme,

(L + D)v(r+1) = −Uv(r) + d, r = 1, 2, . . . , (4.52)

where v(0) is some chosen initial value. Note that since L+D is a lower triangular matrix,

solving for v(r+1) in (4.52) is a matter of forward substitution. The iteration (4.52) is known

as Gauss-Seidel iteration. If (4.52) converges, it converges to the solution v = C−1d.

The following well-known theorem gives a condition under which (4.52) converges. A proof

may for example be found in [12, p. 512].
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Theorem 4.8 : If C is symmetric and positive definite, then the Gauss-Seidel iteration

(4.52) converges for any v(0).

Consider the two linear systems in (4.49). We assume, for the purpose of the arguments

that follow, that A was constructed using chord length weights (see section 4.4.2), for some

ρ ∈ R.

In order to apply Theorem 4.8 to the linear system (4.49), we first rewrite the system

as follows. Let D be the n × n diagonal matrix, with diagonal entries {D}ii = wdeg(i),

i = 1, 2, . . . , n. Then

Bx = c1, and By = c2, (4.53)

with B = DA, c1 = Db1 and c2 = Db1. Note that from (4.47), we have ωij = ωji, and

therefore, B is symmetric.

We aim to show that B is also positive definite. The following theorem, known as Gerschgo-

rin’s circle theorem, identifies a region in the complex plane that contains all the eigenvalues

of a given square matrix. The theorem was originally proposed and proved in [11]. A proof

may also be found in [12, p. 320].

Theorem 4.9 : (Gerschgorin’s circle theorem) For an n×n matrix A, with {A}ij = aij,

let

Ri =
n∑

j=1

j 6=i

|aij|, i = 1, 2, . . . , n.

Then every eigenvalue of A lies in the set Λ defined as

Λ =
n⋃

i=1

{z ∈ C : |z − aii| ≤ Ri}.

The following proposition states that the Gauss-Seidel iteration method converges for the

two linear systems (4.53) for any initial values x(0) and y(0).

Proposition 4.10 : For the linear systems in (4.53), the Gauss-Seidel iteration con-

verges, for any x(0) ∈ Rn and y(0) ∈ Rn.

Proof

We have already established that the matrix B is symmetric. It is well-known that the
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eigenvalues of a symmetric matrix are real (see for instance [2, p. 376]). Thus the eigen-

values of B, denoted by λ1, λ2, . . . , λn, are all real numbers.

Applying Gerschgorin’s circle theorem and using also (4.46) and (4.48) yield

Ri =
∑

j∈N(i)

ωij = wdeg(i). (4.54)

Since {B}ii = wdeg(i), i = 1, 2, . . . , n, it follows that λi ≥ 0, i = 1, 2, . . . , n.

But from Theorem 4.5, A is non-singular, and therefore B is also non-singular. Thus

λi 6= 0, i = 1, 2, . . . , n, implying that λi > 0, i = 1, 2, . . . , n. Therefore, B is positive

definite.

It follows from Theorem 4.8 that the Gauss-Seidel iteration converges for any x(0) ∈ Rn

and y(0) ∈ Rn.

Therefore, the iteration scheme given by

(L + D)x(r+1) = −Ux(r) + c1, (L + D)y(r+1) = −Uy(r) + c2, r = 1, 2, . . . , (4.55)

with B = L + D + U , and where x(0) and y(0) are some chosen initial values, always

converges, and may be used in solving for x and y in (4.49).

Figure 4.11 illustrates this iteration, for the example mesh from Figure 4.2(a). We chose

x(0) = y(0) = 0, and used Tutte weights (i.e. chord length weights with ρ = 0). Clearly,

the iteration approaches the exact solution depicted in Figure 4.2(b).

It should be noted that we have only proved convergence in the case where the weights

are chosen as chord length weights, and not for all weights satisfying (4.23) and (4.24).

For arbitrary weights satisfying these conditions, the corresponding matrix in (4.49) is not

necessarily symmetric and positive definite.

In the following chapter, we attempt to extend the notion of 2D Tutte embedding to the

surface of the sphere, to ultimately obtain a valid GC-embedding of the underlying graph

of a mesh.
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Figure 4.11
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CHAPTER 5

Iterative methods for spherical embedding

In this chapter, we return to the problem of parameterisation as defined in Chapter 3.

Proposition 3.3 states that a solution to this problem for a mesh M ∈M, may be obtained

by first finding a valid GC-embedding of the underlying graph GM .

Recall from Definition 3.2 that a valid GC-embedding of GM assigns distinct coordinates

vi ∈ S0 to every vertex i ∈ V (GM), such that when we draw all the edges as minor arcs

joining endpoints, none of them intersect.

This chapter gives a brief discussion of some existing methods to find valid GC-embeddings

of an underlying graph.

In Chapter 4, the generalized 2D Tutte embedding algorithm for finding valid planar em-

beddings of a graph GM , where M ∈ MB, was discussed. In the following section, we

attempt to extend that algorithm to find a valid GC-embedding of the underlying graph

of a mesh inM.

5.1 Spherical Tutte embedding

The generalised 2D Tutte embedding algorithm involves the positioning of every vertex at

some convex combination of its neighbours. When extending this idea to the surface of the
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5. Iterative methods for spherical embedding 5.1. Spherical Tutte embedding

sphere, there are two aspects to be considered. First, a boundary is no longer of any use,

since the surface of the sphere is a closed set.

Second, every vertex can no longer be positioned at a convex combination of its neighbours,

but rather at a projection of this combination on the surface of the unit sphere. This

projection is a radial projection through the center of the sphere.

Figure 5.1 illustrates this notion. The figure shows the unit sphere centred at the origin

with four neighbours located at a, b, c, and d of a vertex i. The centroid of the four

neighbours is denoted by u, hence

u = 1
4
(a + b + c + d). (5.1)

This point lies inside the sphere. The position of vertex i, denoted by vi, is then taken to

be the projection of u on the surface of the sphere, i.e.

vi =
u

||u||
. (5.2)

��

��

��
��

�	


�

�

a

b

c
d

vi

u

Figure 5.1

For a mesh M ∈M, the goal is therefore to obtain a GC-drawing of the graph GM on the

surface of the unit sphere, such that every vertex is positioned at the projection of some

convex combination of its neighbours. We will refer to such a drawing as a spherical Tutte

embedding of GM .

5.1.1 The non-linear system for spherical Tutte embedding

In this section a system of non-linear equations is set up. A non-trivial solution of this

system would then give a spherical Tutte embedding.
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Consider a given mesh M ∈ M with N vertices. As with 2D Tutte embedding, weights

wij are assigned such that for each vertex i ∈ V (GM),

wij > 0, (i, j) ∈ E(GM), and wij = 0, (i, j) 6∈ E(GM), (5.3)

and also
N∑

j=1

wij = 1. (5.4)

The points v1,v2, . . . ,vN ∈ R3 are defined to be solutions of the following non-linear

system of equations,

vi =
ui

||ui||
, with ui =

n∑
j=1

wijvj, i = 1, 2, . . . , N. (5.5)

Note that vi ∈ S0, i = 1, 2, . . . , N , and every vertex is a projection of a convex combination

of its neighbours. A solution to (5.5) therefore yields a spherical Tutte embedding of GM ,

where each vertex i is positioned at point vi, i = 1, 2, . . . , N .

The question of whether this embedding is in fact a valid GC-embedding of GM still

remains. Before this question is addressed, (5.5) is rewritten in another form. Note that

ui is a scalar multiple of vi, for each i ∈ {1, 2, . . . , N}. It is therefore possible to write

ui = αivi, where αi = ||ui||, i = 1, 2, . . . , N. (5.6)

If the N × 3 matrix U is defined as the matrix with row i equal to uT
i , and the N × 3

matrix V is defined as the matrix with row i equal to vT
i , i = 1, 2, . . . , N , then

U = AV, (5.7)

where A is the diagonal N ×N matrix with diagonal elements {A}ii = αi, i = 1, 2, . . . , N .

But, from (5.5), we also have

U = WV, (5.8)

where the N ×N matrix W has elements

{W}ij = wij, i, j = 1, 2, . . . , N. (5.9)

Combining (5.7) and (5.8), and forcing the vertices to lie on the surface of the sphere yield

the following non-linear system of equations,

WV = AV, such that ||vi|| = 1, i = 1, 2, . . . , N, (5.10)
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with vT
i equal to the ith row of V . The first equation, WV = AV , states that every vertex

must be positioned at some dilation of a convex combination of its neighbours. The second

set of equations ensures that every vertex is positioned on the surface of the unit sphere.

A non-trivial solution of (5.10), for A and V , therefore yields a spherical Tutte embedding

of GM . Note that (5.10) represents 4N equations in 4N unknowns. The unknowns are the

coordinates vi ∈ R3 and the value of αi = {A}ii for every vertex i ∈ {1, 2, . . . , N}.

A trivial solution of (5.10) is a case where every vertex is positioned at the same point on

the surface of the unit sphere, that is, the solution vi = q, where q ∈ S0 is a fixed point,

and αi = 1, for all i ∈ {1, 2, . . . , N}.

The following section discusses the question of whether a spherical Tutte embedding is in

fact a valid GC-embedding. In subsequent sections, the matter of solving the system (5.10)

will be considered.

5.1.2 Correctness of the non-linear system

The following theorem states that any spherical embedding of GM where every vertex is

distinctly positioned at the projection of some convex combination of its neighbours is a

valid GC-embedding of GM . A direct consequence of this theorem is that any non-trivial

solution to (5.10) is in fact a valid GC-embedding of GM .

The proof of this theorem relies on results from spectral graph theory, and falls beyond

the scope of this thesis. A proof may be found in Gotsman, Gu and Sheffer [16].

Theorem 5.1 : Given the graph GM of a mesh M ∈ M, a valid GC-embedding is

obtained if and only if each vertex of GM is distinctly positioned at the projection on the

surface of the unit sphere of some convex combination of the positions of its neighbours.

Theorem 5.1 implies that a non-trivial solution of (5.10) forms a valid GC-embedding,

provided such a solution exists. The problem of finding a solution of this non-linear system

is addressed in the following section.

5.1.3 Solving the non-linear system

Solving (5.10) is not straightforward. Gotsman et. al. [16] proposed using the MATLAB
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5. Iterative methods for spherical embedding 5.1. Spherical Tutte embedding

procedure fsolve, which is a numerical method for solving non-linear systems of equations.

This method uses preconditioned gradients and is based on Newton’s method.

When implementing this procedure, an initial guess of the solution is needed. Initial values

for vi may be obtained by centering the mesh at the origin, and then normalising every

vertex. Thus

v
(0)
i =

xi −m

||xi −m||
, i = 1, 2, . . . , N, (5.11)

where xi denotes the coordinates of vertex i in the original mesh, and m is some point

inside the mesh, usually taken to be the mean of xi, i = 1, 2, . . . , N . It should be noted

that for some meshes, such a point may not be easy to obtain.

Gotsman et. al. proposed setting the initial value of αi to

α
(0)
i =

4π√
3N

, i = 1, 2, . . . , N, (5.12)

which represents the average total curvature at the points on the sphere [16].

Solving (5.10) with fsolve, using initial guesses (5.11) and (5.12), is hereafter referred to

as Gotsman’s method for finding a valid GC-embedding of the graph GM .

Figure 5.2 shows the result of applying Gotsman’s method to the rabbit model, for two

different choices of weights, namely Tutte weights and chord length weights with ρ = 1

(see section 4.4).

(a) original model (b) Tutte weights (c) chord length weights

Figure 5.2

The problem with Gotsman’s method is that it becomes computationally expensive even

for meshes with only a few hundred vertices. The example above required about 17 minutes

for one embedding.

Sections 5.2 and 5.3 provide two iterative schemes based on heuristic arguments that aim

to obtain solutions to (5.10) faster than Gotsman’s method.
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5.2 The method of iterative relaxation

In this section an iterative method for finding a spherical Tutte embedding of the graph GM

of a mesh M ∈ M, is discussed. Inspired by the iterative scheme for obtaining 2D Tutte

embeddings (section 4.5), this method involves the iterative replacement of the position

of every vertex with the projection of a convex combination of its neighbours, thereby

hopefully converging to a non-trivial solution of (5.10).

For a given mesh M ∈M with N vertices, let the N × 3 matrix V (r) contain the position

vectors of the vertices at iteration step r ∈ {1, 2, . . .}, such that the ith row of V (r), denoted

by [v
(r)
i ]T , yields the position vector of vertex i ∈ {1, 2, . . . , N}, at step r.

The iteration is started with an initial embedding of the graph on the surface of the unit

sphere. The initial embedding from Gotsman’s method is used, therefore

v
(0)
i =

xi −m

||xi −m||
, i = 1, 2, . . . , N, (5.13)

where xi denotes the coordinates of vertex i in the original mesh M , and m ∈ R3 is some

point in the interior of the mesh M . As with Gotsman’s method, obtaining a valid choice

for m may be difficult in some cases. A possibility is to let m be the arithmetic mean of

the nodes of M , i.e.

m =
1

N

N∑
i=1

xi. (5.14)

For some “extremely concave” meshes, however, this point may not lie in the interior. In

such a case, the point m may be user-specified.

Next, weights wij are chosen to satisfy (5.3) and (5.4). The coordinates of the vertices at

every iteration step is defined recursively by

v
(r+1)
i =

u
(r)
i

||u(r)
i ||

, where U (r) = WV (r), i = 1, 2, . . . , N, r = 1, 2, . . . , (5.15)

with W the N×N matrix defined by (5.9), and where [u
(r)
i ]T gives the ith row of the matrix

U (r). For each iteration, the position of every vertex is updated to be the projection of a

convex combination of its neighbours.

The process of replacing vertices by convex combinations of neighbours is known as relax-

ation. For this reason, the algorithm defined by (5.13) and (5.15) will be called the method

of iterative relaxation.

62



5. Iterative methods for spherical embedding 5.2. The method of iterative relaxation

If the only objective is to find a valid GC-embedding of the graph GM , the iteration may

be terminated as soon as such an embedding is reached. The orientation test from section

3.4.1, or the area test from section 3.4.2 may be used to determine whether a given spherical

drawing of GM is a valid GC-embedding. Testing a given spherical drawing may become

computationally expensive if the mesh has thousands of faces. For this reason, we opt to

test for the validity of the embedding every R iterations, where R is user-specified.

Figure 5.3 shows the result of applying the method of iterative relaxation to the rabbit

model. Embeddings after certain numbers of iterations are shown. The point m was

calculated according to (5.14), and Tutte weights (from section 4.4.1) were used.

original model r = 0 r = 5

r = 10 r = 50 r = 200

r = 450 r = 490 r = 495

Figure 5.3
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Foldovers are clearly visible in the initial embedding, at r = 0. Applying the iteration

scheme seems to smooth out these foldovers. After about 200 iterations the embedding

seems to tend towards a valid GC-embedding. Before a valid embedding is reached, how-

ever, the drawing of the graph collapses, ultimately to a single point on the surface of the

sphere (which is a trivial solution of (5.10)).

It seems that the problem with this method is that faces in the embedding become relatively

large in some areas, and small in other areas. These small faces tend to “pull” all the

vertices of the graph towards them, resulting in a collapse of the graph.

Chapter 7 shows a few more examples, some where the method of iterative relaxation

succeeds, and some where it fails. Issues such as execution time are also considered.

The next section deals with an adaptation of the method of iterative relaxation. Weights

are updated at every iteration, whereby it is hoped that the collapse of the graph can be

avoided.

5.3 Alexa’s method

The method described in this section was established by Alexa [1]. The main difference

between this method and the method discussed in the previous section is that the weights

are updated at every step in the iteration. Heuristic arguments determine the specific

updating.

Alexa [1] gives the following motivation for his method. Consider a spring embedding,

where every edge simulates a spring. The idea is to minimise a potential defined by

W =
∑

(i,j)∈E(GM )

||vi − vj||2, (5.16)

where vi denotes the coordinates of the vertex i. Squaring the edge lengths ensures that

longer edges are penalised, and the solution strives towards a reasonably uniform distribu-

tion over the surface of the sphere.

The following iteration scheme was proposed by Alexa [1]. An initial embedding may be

chosen according to (5.13). The scheme is then defined as

v
(r+1)
i =

v
(r)
i − q

(r)
i

||v(r)
i − q

(r)
i ||

, i ∈ V (GM), r = 1, 2, . . . , (5.17)

with
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q
(r)
i =

c
(r)
i

deg(i)

∑
j∈N(i)

(
v

(r)
i − v

(r)
j

)
||v(r)

i − v
(r)
j ||, i ∈ V (GM), r = 1, 2, . . . , (5.18)

where c
(r)
i ∈ R for all i ∈ V (GM) and r ∈ {1, 2, . . .}. The choice of c

(r)
i will be discussed

presently.

Note that multiplying (v
(r)
i −v

(r)
j ) by its length results in a quadratic weight for each edge,

as is implied by (5.16). Longer edges are thereby shortened in subsequent steps. Also,

the point v
(r)
i − q

(r)
i is not necessarily on the surface of the sphere, and must therefore be

normalised to obtain v
(r)
i .

According to Alexa [1], choosing c
(r)
i = 1, i ∈ V (GM) and r ∈ {1, 2, . . .}, yields a robust,

but not very efficient, relaxation process. For short edges, the quadratic length weights

cause vertices to move very slowly from one iteration to the next. The move lengths can

be increased by choosing c
(r)
i as

c
(r)
i =

[
max
j∈N(i)

{
||v(r)

i − v
(r)
j ||

}]−1

, i ∈ V (GM), r = 1, 2, . . . . (5.19)

If all adjacent edges are short, the corresponding c
(r)
i become large. Alexa argues that this

would ensure that short edges do not slow down the iteration process.

The following proposition relates Alexa’s method to the method of iterative relaxation

from the previous section.

Proposition 5.2 : Choosing c
(r)
i = 1, i = 1, 2, . . . , N , and omitting the factor ||v(r)

i −
v

(r)
j || in Alexa’s method result in a special case of the method of iterative relaxation from

section 5.2.

Proof

The method of iterative relaxation, as given by (5.15), may be written as

u
(r)
i =

N∑
j=1

wijv
(r)
j , i = 1, 2, . . . , N, (5.20)

for a fixed r ∈ {1, 2, . . .}. By choosing the weights in (5.20) as Tutte weights from section

4.4.1, equation (5.20) becomes

u
(r)
i =

1

deg(i)

∑
j∈N(i)

v
(r)
j , i = 1, 2, . . . , N. (5.21)
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Choosing c
(r)
i = 1, i = 1, 2, . . . , N , and omitting the factor ||v(r)

i − v
(r)
j || in (5.18), yield

q
(r)
i =

1

deg(i)

∑
j∈N(i)

(
v

(r)
i − v

(r)
j

)
= v

(r)
i −

1

deg(i)

∑
j∈N(i)

v
(r)
j , i = 1, 2, . . . , N,

by virtue of (2.3). Substituting (5.21) into this equation then gives

v
(r)
i − q

(r)
i = u

(r)
i , i = 1, 2, . . . , N. (5.22)

Normalising both sides of this equation gives the desired result.

Results from applying Alexa’s method on the rabbit model are shown in Figure 5.4, after

certain numbers of iterations.

A valid GC-embedding is obtained after 104 iterations. Continuing with the iteration

process after this does not seem to improve the embedding significantly.

It should be stressed that the arguments in this section are all based on heuristics, and

cannot guarantee convergence of the iteration process, or the validity of solutions thus

obtained. However, Alexa’s method does seem to be more stable than the method of

iterative relaxation.

Chapter 7 provides some interesting results obtained by applying Alexa’s method to various

models.

In the next chapter a new method for parameterising the surface of a given mesh is discussed

in detail. It will be shown that this method guarantees a valid spherical parameterisation

for any mesh M ∈M.
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original model r = 0 r = 5

r = 10 r = 25 r = 50

r = 100 r = 200 r = 300

Figure 5.4
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CHAPTER 6

The θ–φ method

In this chapter a method that guarantees a valid solution to the problem of parameterisation

for any mesh from the classM is introduced. This method is the main novel contribution

of this thesis.

The concept behind the method is to alter the given mesh in M to a mesh in MB, and

then to use a 2D planar embedding algorithm to embed the underlying graph in the 2D

plane. This 2D embedding is then folded onto the sphere, thereby yielding a spherical

drawing of the underlying graph of the original mesh. We will call this method the θ–φ

method, for reasons that will soon become clear.

This method was originally inspired by a method of Brechbühler, Kübler and Gerig [3].

Their method was designed for voxel-based objects (a 3D model built up from unit cubes),

and they used heat diffusion to motivate their arguments.

We adapt their method to polygonal meshes, show that the 2D planar embedding algorithm

from Chapter 4 may be incorporated, and prove that the spherical drawing thus obtained

leads to a solution for the problem of parameterisation.

The following section gives a brief overview of the steps followed in the θ–φ method.

Detailed discussion of these steps follow in subsequent sections.
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6.1 Overview of the θ–φ method

This section provides an overview of the θ–φ method. In subsequent sections, the method

will be explained in full detail. Figure 6.1 shows the basic strategy.

We start with a given mesh M ∈ M. Two vertices of M are chosen, and a path through

GM connecting these vertices is found. See Figure 6.1(a).

Next, the mesh is cut open along this path, yielding a mesh M ′ similar to the one shown

in Figure 6.1(b). This mesh M ′ belongs to the classMB (see Definition 2.3).

The generalised 2D Tutte embedding algorithm from Chapter 4 is then used to embed GM ′

in the 2D plane, as shown in Figure 6.1(c).

This embedding is then folded onto the surface of the sphere, as shown in Figure 6.1(d).

This yields a spherical embedding of the graph GM , as shown in Figure 6.1(e).

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

(a) (b)

(c)

(d)(e)

Figure 6.1

The first step of the method is to select a path between two specific vertices, along which

the mesh is cut open. Section 6.2 discusses a few techniques for the selection of two such

vertices, and also how a path between them may be chosen.

The second step is to cut the mesh open along the selected path. Section 6.3 discusses the

issues that need to be considered in that step.
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Section 6.4 involves the embedding of the open mesh in the 2D plane, and section 6.5

explains how this 2D embedding is folded onto the sphere, to yield a spherical embedding.

In section 6.6 it is shown that this spherical embedding solves the problem of parameteri-

sation (as defined in Chapter 3).

6.2 Selecting poles and a cut path

As explained in the previous section, the θ–φ method involves cutting the given mesh M

open, along a specific path in GM . This section deals with selecting that path.

The path along which the mesh is cut open is referred to as the cut path, and denoted by

P . In the final spherical embedding of GM the two endpoints of P map to the north and

south pole of the unit sphere. We therefore call these two vertices the north pole and south

pole of GM , and denote their labels by n and s, where n, s ∈ V (GM).

The vertices n and s may be chosen arbitrarily, but different choices of these vertices lead

to different spherical embeddings of GM . In order to avoid an uneven distribution of points

in the embedding, it is advisable to choose the two vertices as far apart as possible. A

number of different methods for selecting the poles follows. Selecting a path between these

poles is discussed in section 6.2.4.

6.2.1 The physical distance method

In order to select two vertices in the graph GM that are farthest apart, some measure of

distance between a pair of vertices may be defined and calculated for every pair. A pair

with maximum distance may then be selected as the two poles of the graph.

The first measure of distance is called physical distance, and is denoted by dp(i, j), i, j ∈
V (GM). It is defined as the physical distance between vertices i and j in the original mesh

M . Therefore,

dp(i, j) = ||xi − xj||, i, j ∈ V (GM), (6.1)

where xi ∈ R3 denotes the coordinates of node i in M . The two poles of GM are then

defined to be two distinct vertices n and s in V (GM), satisfying

dp(n, s) = max{dp(i, j), i, j ∈ V (GM)}. (6.2)
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The value of dp(i, j) is calculated for every possible (i, j)–pair, and the two poles are then

chosen to be a pair satisfying (6.2). This method will be called the physical distance

method.

The problem with choosing poles based on this scheme is that it may result in selecting

poles that are not really “anti-podal” in the underlying graph GM . Consider for example

a “C”-shaped mesh, similar to the one depicted in Figure 6.2. Two poles satisfying (6.2)

are shown in (a). Although this may not be such a bad choice, it is evident that choosing

poles as those shown in (b), may result in a more uniform embedding of the graph GM .
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s

��

��

n

s

(a) physical distance method (b) a better choice?

Figure 6.2

It is therefore suggested that in some cases, the distance between vertices should rather be

defined as the distance through the underlying graph, and not as the physical distance.

6.2.2 The graph distance method

The second measure of distance is called graph distance, and is denoted by d(i, j). Recall

from section 2.1 that the distance between two vertices i and j in a graph is defined to be

the length of a shortest possible path between i and j.

According to equation (2.5), the length of a path is defined as the sum of the weights of

every edge on that path. It is thus necessary to assign weights to every edge. We suggest

using either constant weights,

ρij = 1, (i, j) ∈ E(GM), (6.3)

or edge-length weights,

ρij = ||xi − xj||, (i, j) ∈ E(GM). (6.4)

In this scheme, the two poles of GM are defined to be two vertices n and s in V (GM),
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6. The θ–φ method 6.2. Selecting poles and a cut path

satisfying

d(n, s) = max{d(i, j), i, j ∈ V (GM)}. (6.5)

Appendix A gives an overview of an algorithm, called Dijkstra’s algorithm, that can be

used to obtain shortest paths between vertices in a graph. The distances between every

pair of vertices in GM are calculated. The two poles are then selected to be a pair satisfying

(6.5). This method will be called the graph distance method.

For small meshes this method may be sufficient, but the execution time for calculating

distances increases dramatically as the number of vertices in the graph increase. The

following scheme gives a faster alternative that generally does not produce a solution to

(6.5), but does yield fairly distant poles.

6.2.3 The fast-graph method

The following pole selection scheme is much faster than the one discussed in the previous

paragraph. It is based on the method suggested by Brechbühler et. al. [3].

The method begins with the selection of a fixed vertex, say i ∈ V (GM). This vertex is

chosen arbitrarily. The north pole of GM is then chosen to be the vertex n satisfying

d(i, n) = max{d(i, j), j ∈ V (GM)}, (6.6)

i.e. a vertex farthest from i in GM . Next, the south pole of GM is chosen to be a vertex s

satisfying

d(n, s) = max{d(n, j), j ∈ V (GM)}, (6.7)

i.e. a vertex farthest from n in the graph.

Thus, it is only necessary to find distances from two vertices to every other vertex, instead

of distances between all possible pairs of vertices. This results in a much faster algorithm.

We call this method the fast-graph method.

The method avoids selecting a pole near the middle of a long thin tubular mesh, but it

generally does not produce a solution to (6.5) for any graph. In selecting poles, the idea is

to avoid choosing two vertices close to one another, and this method returns vertices fairly

far apart. Because of the great improvement in execution time, it is suggested that this

method is chosen above the previous one.
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6.2.4 Selecting the cut path

After the two poles have been selected using any of the three methods above, the cut path

P is chosen to be any shortest path between vertices n and s. Dijkstra’s algorithm (see

Appendix A) may be used for this purpose.

Figure 6.3 shows the rabbit model with the chosen cut paths, using different pole selection

methods. In each case, the poles are indicated by dots. From these examples, it is evident

that the different methods produce poles that are fairly far apart.

(a) physical distance (b) graph distance (c) fast-graph

Figure 6.3

Let |P | denote the number of vertices in P . We denote every vertex in P , except the two

poles, by pi, i = 1, 2, . . . , |P |− 2, such that P = {n, p1, p2, . . . , pk, s}, with k = |P |− 2. For

the remainder of this chapter, we assume that the cut path is chosen such that k ≥ 2, i.e.

there are at least 4 vertices in the cut path.

A symmetry plane is clearly visible in the rabbit model. Since the θ–φ method cuts the

mesh open on a path, and then later reattaches it, we might hope to select a cut path

close to this symmetry plane (possibly for aesthetic reasons). The next method attempts

to select poles and a cut path based on this argument.

6.2.5 The symmetry method

The following method for selecting poles and a cut path attempts to find symmetry planes

in a given mesh. A path in or close to such a plane is then chosen to be the cut path.

First, a weighted confidence ellipsoid is fitted to points on the surface of the mesh M .

Pairs of the three principal axes of this ellipsoid span three different planes in R3. These
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6. The θ–φ method 6.2. Selecting poles and a cut path

planes are tested for symmetry, and the best candidate is then chosen to be the potential

symmetry plane. Two poles and a path between them are then selected from a set of

vertices that are on or close to this plane. This method of finding poles and a cut path

will be called the symmetry method.

Consider a given set of N coordinates in R3, denoted by vi = [x, y, z]T . Let m denote

the mean of these coordinates, i.e.

m =
1

N

N∑
i=1

vi. (6.8)

The coordinates are translated, and packed into the matrix V as follows,

V = [v1 −m, v2 −m, . . . , vN −m]T . (6.9)

The covariance matrix of V , denoted by CV , is calculated as

CV = V T V. (6.10)

Because CV is symmetric, there exist three orthogonal eigenvectors s1, s2 and s3. It is

well-known that these eigenvectors give the directions of the three principal axes of the

confidence ellipsoid of V , centred at m.

Suppose however that the coordinates of V have associated weights, i.e. some points are

more important than others. Suppose therefore that every vector vi has an associated

weight wi ∈ R.

The value of m is redefined to be the weighted average of the points, i.e.

m =

∑N
i=1 wixi∑N
i=1 wi

. (6.11)

This vector m is used in the construction (6.9) of V .

The diagonal matrix W is defined to be the N×N matrix with diagonal entries {W}ii = wi,

i = 1, 2, . . . , N . The weighted confidence ellipsoid is then the ellipsoid centred at m, with

principal axes in the directions of the eigenvectors of the matrix C, where

C = V T WV. (6.12)

Consider a mesh M . The symmetry method operates as follows. A weighted confidence

ellipsoid is fitted to points on the surface of M , and the three planes spanned by pairs of

the principal axes of this ellipsoid are tested for potential symmetry.
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6. The θ–φ method 6.2. Selecting poles and a cut path

Because the surface of M is made up of triangles with different areas, we opt to choose the

centroids of all the faces as points, each weighed with the area of the corresponding face.

Let the centroid of a face i ∈ {1, 2, . . . , |F (M)|} be denoted by yi, then

yi = 1
3
(xfi,1

+ xfi,2
+ xfi,3

), i = 1, 2, . . . , |F (M)|, (6.13)

where xi gives the coordinates of node i in M . Let wi denote the area of the face fi, i.e.

wi = 1
2
||(xfi,2

− xfi,1
)× (xfi,3

− xfi,1
)||, i = 1, 2, . . . , |F (M)|. (6.14)

The weighted confidence ellipsoid is calculated for the coordinates yi, weighed by wi, i =

1, 2, . . . , |F (M)|. This ensures that larger faces have a greater impact on the orientation of

the ellipsoid than smaller faces. Figure 6.4(a) shows the rabbit model (slightly transparent),

with a scaling of the corresponding weighted confidence ellipsoid.

Let s1, s2 and s3 denote the normalised eigenvectors of C. Let p1, p2 and p3 be the three

planes spanned respectively by s2 and s3, s1 and s3, and s1 and s2. Figure 6.4(b) shows

the rabbit model with the planes p1, p2 and p3.

p1

p2

p3

(a) confidence ellipsoid (b) potential symmetry planes

Figure 6.4

Suppose that C is diagonalised as

C = QΛQT , (6.15)

where Q is an orthogonal matrix with columns s1, s2 and s3, and Λ is the diagonal matrix

with diagonal entries equal to the corresponding eigenvalues of C.

Next, the planes p1, p2 and p3 are tested for potential symmetry. Consider for instance

plane p1. We wish to calculate the signed distance between p1 and every point yi −m.
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6. The θ–φ method 6.2. Selecting poles and a cut path

By signed distance we mean the positive distance if the point lies on one side of the plane,

and the negative of the distance if it lies on the other side. These distances should, ideally,

sum to zero if p1 is an exact symmetry plane.

Since Q is an orthogonal matrix, the vector s1 is a normalised vector perpendicular to the

plane p1. The projection of yi −m on the line spanned by s1 is given by

pi = s1s
T
1 (yi −m). (6.16)

Note that pi is a vector in the direction of s1. Therefore the signed distance from yi −m

to plane p1 is given by

dp1(yi) = sT
1 (yi −m). (6.17)

Calculating

Dp1 =

|F (M)|∑
i=1

dp1(yi), (6.18)

yields the sum of the signed distances from all the points yi to the plane p1. The values

of Dp2 and Dp3 are calculated similarly. For an exact symmetry plane p the value of Dp

would be 0. We define the best potential symmetry plane of the mesh M to be the plane

pk such that

|Dpk
| = min{|Dp1|, |Dp2|, |Dp3 |}, (6.19)

with k ∈ {1, 2, 3}. For the rabbit model we get Dp1 = 0.65, Dp2 = −228.7 and Dp3 =

−699.2. Clearly, plane p1 is the best potential symmetry plane for this example.

Next, the vertices of M close to pk are selected. The set of vertices R ⊂ V (GM), defined

by

R = {i ∈ V (GM) : dpk
(xi) < ε} (6.20)

with xi the coordinates of node i in the mesh, and ε some predefined tolerance, contains all

the vertices close to the plane pk. Figure 6.5(a) shows the rabbit model with the vertices

in R. For this example, ε = 0.3 was chosen.

We select two poles, and a path between them, from the following subgraph of GM . Let

H be the graph with vertex set V (H) = R, and edge set

E(H) = {(i, j) ∈ E(GM) : i, j ∈ R}. (6.21)

The graph H is therefore a graph with vertices close to the symmetry plane, and edges

from GM connecting them. Figure 6.5(b) shows the graph H for the rabbit model.
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(a) vertices close to p1 (b) the graph H

Figure 6.5

For some models the graph H may be disconnected. If this is the case, we choose the

connected component of H with the most vertices.

The fast-graph method from section 6.2.3 is implemented next, to select two poles n and

s in H. A shortest path between n and s, through the graph H, is then selected to be

the cut path. Figure 6.6 shows the cut path of the rabbit model, selected according to the

symmetry method.

Figure 6.6

It should be noted that the symmetry method may identify a non-symmetry plane as a

potential symmetry plane, since the only criterion for a plane to be classified as a potential

symmetry plane is that the signed distances from every vertex to the plane should cancel

out and ideally sum to 0. Of course, this criterion does not hold only if the plane is a

symmetry plane.

Also, if there does not seem to be a symmetry plane in the model, that is, if none of the

values |Dp1|, |Dp2| or |Dp3| are sufficiently small, it is advisable to use another method for

selecting the poles.
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6. The θ–φ method 6.3. Cutting the mesh open

6.3 Cutting the mesh open

The next step in the θ–φ method is to cut the mesh M open along the cut path, resulting

in a mesh M ′ ∈MB.

In this section, we derive expressions for the coordinate set X(M ′), and the face set F (M ′).

These two sets uniquely define the mesh M ′, as well as the underlying graph GM ′ . Let the

number of vertices in M be denoted by N .

Figure 6.7 shows how M is cut open along the path P . The figure shows part of a graph

GM in (a), with P in bold, and part of the resulting graph GM ′ in (b).
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Figure 6.7

For every vertex pi, i = 1, 2, . . . , k, a new vertex is created. The labels of the new vertices,

N+1, N+2, . . . , N+k, are ordered such that B = (n, p1, p2, . . . , pk, s, N+1, N+2, . . . , N+k)

forms the boundary cycle in M ′. See for example Figure 6.7(b). That is, vertex pi is

duplicated with the label N + k − i + 1, i = 1, 2, . . . , k.

We position the new vertices at exactly the same points as the vertices they duplicate. The

coordinate set X(M ′) is therefore defined as

X(M ′) = X(M) ∪ {xN+1,xN+2, . . . ,xN+k}, (6.22)

where we choose xN+i = xpk−i+1
, i = 1, 2, . . . , k.

In order to construct the face set F (M ′), note that some of the faces in the original mesh

M need to be changed. See for example the grey faces in Figure 6.7. The faces of M that

need to be changed are shown in (a). The changed faces of M ′ are shown in (b).
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We denote the set of faces in the original mesh M that need to be changed by FC , where

FC ⊂ F (M). Also, let FU denote the set of faces in M that remain unchanged in M ′.

Therefore

FU = F (M) \ FC . (6.23)

The faces in FC need to be identified. Algorithm 6.1 may be used for this purpose. The

algorithm returns the set FC .

The algorithm uses a function faces[GM , (i, j)], where GM is the underlying graph of a

mesh M ∈M, and (i, j) ∈ E(GM). The function returns the set {f1, f2}, such that f1 and

f2 are the two faces in M that share the edge (i, j). The function is therefore defined as

faces[GM , (i, j)] = {f ∈ F (M) : i, j ∈ f}. (6.24)

Note also that for the purpose of the algorithm, each face is seen as a set containing all its

vertices.

Algorithm 6.1 :

INPUT: A graph GM with cut path P = {n, p1, p2, . . . , pk, s}
OUTPUT: The set FC of faces that need to be changed

1. Let pk+1 ← s, FC ← {}, and i← 1

2. {f1, f2} ← faces[GM , (n, p1)]

3. f ← f1

4. qi ← f \ {n, p1}
5. for j = 1 to k do

while pj+1 6∈ qi do

FC ← FC ∪ f

g ← faces[GM , (qi, pj)]

f ← g \ f

i← i + 1

qi ← f \ {qi−1, pj}
end

i← i− 1

end

6. FC ← FC ∪ f

7. return FC
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6. The θ–φ method 6.3. Cutting the mesh open

Figure 6.8 illustrates this algorithm for the example from Figure 6.7. At each step, the

edge (qi, pj) is shown in bold, and the face f in grey. The algorithm runs through every

vertex in P , and finds the labels of all the neighbouring vertices, until the next vertex in

P is reached. This ensures that only the faces to the one side of P are put in FC .
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Figure 6.8

Note that in step 3 of Algorithm 6.1, the face f1 is chosen at random. If f2 had been

chosen, the vertices on the other side of P would have been selected.

Let P denote the set of vertices on the cut line, excluding the two poles. Thus

P = P \ {n, s}. (6.25)

Then every face f ∈ FC has either 1, 2 or 3 vertices belonging to the set P . The index of

each of these vertices is updated to the index of the new vertex that duplicates it.

Thus, for every face f ∈ FC , the following is performed. Every vertex in the set f ∩ P has

a label of the form pi, with i ∈ {1, 2, . . . , k}. These labels are changed to N + k − i + 1,

for every pi ∈ f ∩ P . Let F ′
C denote the set of faces resulting from this updating.
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The face set of M ′ is then given by

F (M ′) = F ′
C ∪ FU , (6.26)

with FU defined by (6.23). Equations (6.22) and (6.26) yield the mesh M ′ ∈ MB. The

underlying graph GM ′ is then constructed according to Definition 2.1.

The next section deals with embedding GM ′ in the 2D plane.

6.4 Embedding the open mesh in the 2D plane

This section discusses a specific 2D planar embedding for the graph GM ′ , as used in the

θ–φ method. We implement the generalised 2D Tutte embedding (from section 4.3) for

this purpose.

The first step in embedding GM ′ in the 2D plane is to assign every boundary vertex of M ′

coordinates, such that these coordinates lie on the boundary of a convex polygon in R2.

We choose the coordinates of the boundary vertices specifically to aid in simplifying the

final step of the θ–φ method, which is to fold the 2D embedding onto the unit sphere.

Consider the spherical coordinate system, as illustrated in Figure 6.9. Any point in R3 is

described by a triplet (r, θ, φ), where r is the length of the position vector of the point,

and θ and φ are the two angles as shown.

x-
ax

is

y-axis

z
-a

x
is

x

y

z

P

{

(x, y, z)
(r, θ, φ)

θ

φ

r

Figure 6.9

It can be shown that spherical coordinates are related to cartesian coordinates by

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ, (6.27)

and inversely,

r =
√

x2 + y2 + z2, θ = arccos(z/
√

x2 + y2 + z2), φ = arctan(y/x). (6.28)
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Note that (2.15), the definition of S0, can be written in spherical coordinates as

S0 = {(1, θ, φ) : θ ∈ [0, π], φ ∈ [0, 2π)}. (6.29)

Therefore, any point on the surface of the unit sphere is uniquely defined by the two

parameters θ and φ, where θ ∈ [0, π] and φ ∈ [0, 2π).

We call the rectangle in R2 defined by the cartesian coordinates θ ∈ [0, π] and φ ∈ [0, 2π)

the θ–φ rectangle. We aim to embed the graph GM ′ in the θ–φ rectangle, because any

point in that rectangle, excluding the lines θ = 0 and θ = π, maps uniquely to a point in

S0 by virtue of (6.27), with r = 1.

Recall from the previous section that the boundary cycle of M ′ is of the form

B = (n, p1, p2, . . . , pk, s, N + 1, N + 2, . . . , N + k). (6.30)

The (θ, φ)–coordinates of the boundary vertices are chosen as follows,

un = (0, π), us = (π, π),

upi
= (ih, 0), uN+i = ((k + 1− i)h, 2π), i = 1, 2, . . . , k, (6.31)

with h = π/(k+1). Every vertex i ∈ B is positioned at coordinates ui in the θ–φ rectangle,

thereby yielding a boundary for the 2D embedding. This boundary is clearly convex, as

can be seen from the example in Figure 6.10. In this example, k = 4.
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With the boundary vertices fixed, every interior vertex i ∈ V (GM ′) \ B is positioned at

coordinates ui, which are solutions to the linear system

ui =
N+k∑
j=1

wijuj, i ∈ V (GM ′) \B. (6.32)
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The weights wij, i, j ∈ V (GM ′) are chosen to satisfy

wij > 0, (i, j) ∈ E(GM ′), and wij = 0, (i, j) 6∈ E(GM ′), (6.33)

and also
N+k∑
j=1

wij = 1, i ∈ V (GM ′) \B. (6.34)

This yields a 2D planar embedding for the graph GM ′ . No edges intersect in this embedding,

by virtue of Theorems 4.5 and 4.7, and because the boundary is convex, and (6.33) and

(6.34) hold.

Figure 6.11 shows a 2D embedding in the θ–φ rectangle of the rabbit model. The cut line

was chosen to be the one shown in Figure 6.6, and Tutte weights (see section 4.4.1) were

used in (6.32).

0 1 2 3 4 5 6
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1.5

2

2.5

3

θ

φ

Figure 6.11

The fact that the graph GM ′ is embedded in the θ–φ rectangle is the reason why we call

this method the θ–φ method.

The next section deals with folding this 2D embedding onto the unit sphere to give a

spherical drawing of the graph GM ′ .
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6.5 Folding the 2D embedding onto the sphere

In this section the last step of the θ–φ method is discussed. The 2D embedding of the

graph GM ′ is folded onto the unit sphere. In section 6.6 it will be shown that this leads to

a solution for the problem of parameterisation.

Since the boundary of the 2D embedding was chosen to embed the graph GM ′ in the θ–φ

rectangle, every vertex i ∈ GM ′ has values (θi, φi). It follows from (6.27) that the mapping

m : [0, π]× [0, 2π) 7→ S0, defined by

m(u) =

 sin θ cos φ

sin θ sin φ

cos θ

 , u = (θ, φ) ∈ [0, π]× [0, 2π), (6.35)

maps any point in the θ–φ rectangle, excluding the lines θ = 0 and θ = π, to its corre-

sponding point on the surface of the unit sphere.

Note from Figure 6.10 that there are four triangular regions in the θ–φ rectangle that are

not covered by the embedding of GM ′ . Before the mapping m is applied to the embedding

of GM ′ , the embedding is transformed to cover the entire θ–φ rectangle.

6.5.1 Transforming the 2D embedding to cover the entire θ–φ rectangle

This section explains how the 2D embedding of GM ′ may be transformed, to cover the

entire θ–φ rectangle. Figure 6.12 illustrates the aim of the chosen transformation.
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Figure 6.12

The original embedding of GM ′ is shown in Figure 6.12(a), and the transformed embedding
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in (b). Only the boundary edges and edges connecting the poles and neighbours of the

poles are shown.

Since the mapping m maps any point on the line θ = 0 to the point (0, 0, 1) ∈ S0, the

position of the north pole, un = (0, π), is transformed to the line θ = 0. The edges

connecting the vertex n are changed in the following manner.

Consider an edge (n, i) connecting n with some vertex i ∈ N(n). The coordinates of n in

the θ–φ plane is un = (0, π), and that of i is ui = (θi, φi). Instead of drawing this edge as

the straight line segment connecting ui and un, we draw it as the vertical line connecting

the points ui and (0, φi).

A similar transformation is applied to the edges connecting the south pole s. Instead of

drawing a straight line segment between uj = (θj, φj) and us = (π, π), we draw it as the

line connecting uj and (π, φj), for some j ∈ N(s).

Consider the path Pn = (p1, v1, v2, . . . , v`, N + k), where ` = deg(n) − 2, and vi ∈ N(n),

i = 1, 2, . . . , `. This is the path of all vertices adjacent to the north pole. Clearly, the

transformed embedding contains no edge intersections if the sequence {φi} increases strictly

monotonically, i ∈ Pn. Figure 6.13(a) shows an example where this is not the case. Figure

6.13(b) shows the resulting transformed embedding.
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Figure 6.13

A similar restriction holds for the path Ps, which is the path of all vertices adjacent to the

south pole. In practice it rarely happens that the φ–values do not increase strictly mono-

tonically, with the result that the transformed embedding contains no edge intersections.

If it does happen, however, we change the initial boundary of the 2D embedding as follows.

Suppose the φ–values on the path Pn = (p1, v1, v2, . . . , v`, N + k) do not increase monoton-

ically. We define the graph H as

H = GM ′ − n, (6.36)

i.e. GM ′ , with vertex n removed (together with all its adjacent edges). The boundary cycle
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6. The θ–φ method 6.5. Folding the 2D embedding onto the sphere

B′ of H is then given by

B′ = (p1, p2, . . . , pk, s, N + 1, N + 2, . . . , N + k, v`, v`−1, . . . , v1). (6.37)

For the generalised 2D Tutte embedding algorithm the (θ, φ)–coordinates of these boundary

vertices are chosen as

us = (π, π),

upi
= (ih1, 0), uN+i = ((k + 1− i)h1, 2π), i = 1, 2, . . . , k,

uvj
= (h1, jh2), j = 1, 2, . . . , `, (6.38)

with h1 = π/(k+1) and h2 = 2π/(`+1). Figure 6.14 shows an example of such a boundary,

where k = 4 and ` = 5.

��

��

��

��

�	


�

�

��

��

�� �� �� �� ��

v1 v2 v3 v4 v5

p1

p2

p3

p4

s

N + 1

N + 2

N + 3

N + 4

π

2π φ

θ

Figure 6.14

The boundary is clearly convex. The generalised 2D Tutte embedding algorithm is im-

plemented on the graph H with this boundary, yielding a 2D embedding of H in the θ–φ

rectangle. The vertex n is positioned at (0, π), and connected to its neighbours in GM ′ .

This yields a 2D embedding of GM ′ .

Note that the φ–values of the neighbours of n do increase strictly monotonically in this

embedding. It is therefore possible to transform the embedding as illustrated in Figure

6.12, without resulting in edge intersections.

A similar procedure is applied to the embedding of GM ′ in the case where the φ–values of

the neighbours of s do not increase strictly monotonically.

Thus, no edge intersections occur in the transformed embedding, and the embedding covers

the entire θ–φ rectangle.
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6. The θ–φ method 6.5. Folding the 2D embedding onto the sphere

6.5.2 Mapping the transformed embedding to S0

Next, the transformed embedding is mapped to the surface of the sphere. The mapping

m, given by (6.35), is applied to every vertex ui, i = 1, 2, . . . , N + k, as follows,

vi = m(ui), i = 1, 2, . . . , N + k. (6.39)

This gives coordinates vi ∈ S0 for every vertex i ∈ V (GM ′).

The edges in the (transformed) embedding are also mapped with m, as follows. An arbi-

trary point x on the straight line segment joining the points u1 = (θ1, φ1) and u2 = (θ2, φ2)

in the θ–φ rectangle may be represented as

x = λu1 + (1− λ)u2, λ ∈ [0, 1]. (6.40)

Allowing λ to vary between 0 and 1 yields every point on that line segment. Therefore,

mapping the line segment to the sphere is a matter of calculating m(x) for every λ ∈ [0, 1],

where x is given by (6.40).

Mapping the vertices and edges of the 2D embedding to the surface of the sphere yields a

spherical drawing of the graph GM ′ . We refer to this spherical drawing as a TP-embedding

of GM ′ . Figure 6.15 shows the TP-embedding of the graph GM ′ from Figure 6.11.

Figure 6.15

Note the following. Since the positions of the boundary vertices were chosen according to

(6.31), it follows that uN+k−i+1 = (2π, ih), and hence

m(upi
) = m(uN+k−i+1), i = 1, 2, . . . , k. (6.41)
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6. The θ–φ method 6.6. Solving the problem of parameterisation

Any edge connecting a vertex N+i with a neighbour is therefore also a curve on S0 between

that neighbour and the vertex that was originally duplicated, namely pk−i+1.

Also, both the lines φ = 0 and φ = 2π map to the same line on the sphere. Thus, under

the mapping m the graph GM ′ is closed on exactly the same line as it was originally cut

open.

In the following section we show that a TP-embedding of GM ′ leads to a solution for the

problem of parameterising the surface of the original mesh M .

6.6 Solving the problem of parameterisation

Recall that the problem of parameterisation for a given mesh M ∈M is to find a continuous

bijective mapping (or homeomorphism) between SM and S0. In section 3.3 a homeomor-

phism between SM and S0 was constructed with the aid of a valid GC-embedding of the

graph GM .

In this section we proceed to construct a homeomorphism h between SM and S0 by using

a TP-embedding of the graph GM ′ obtained with the θ–φ method. This homeomorphism

would then be a solution to the problem of parameterisation.

Consider a mesh M ∈ M, with a given TP-embedding of the graph GM ′ . It is therefore

assumed that M has been cut open (as explained in section 6.3), to produce a mesh

M ′ ∈ MB, and that the graph GM ′ was embedded in the θ–φ rectangle (as explained in

section 6.4).

Some notation is needed. The set of points in the θ–φ rectangle covered by the embedding

of GM ′ is denoted by T ′. We define T ′ as

T ′ = T ′ \ {(0, π), (π, π)}. (6.42)

We will write T to denote the entire θ–φ rectangle, that is, all the points in [0, π]× [0, 2π),

and define T as

T = T \ {u = (θ, φ) ∈ T : θ ∈ {0, π}}. (6.43)

We write SM ′ to denote the set SM ′ \ {xn,xs}, which is the set of all points on the surface

of M ′, excluding the two poles.

We will also write S0 to denote the set S0 \ {(0, 0,−1), (0, 0, 1)}.
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6. The θ–φ method 6.6. Solving the problem of parameterisation

Figure 6.16 gives an illustration of how the construction of h proceeds. In section 6.6.1

a mapping h1 between SM ′ and T ′ is established. Then, in section 6.6.2, a mapping h2

between T ′ and T is established. Section 6.6.3 establishes a mapping h3 between T and

S0.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

3

h1 h2 h3

SM ′ T ′ T S0

Figure 6.16

Combining the mappings h1, h2 and h3 leads to a mapping between SM and S0. This is

discussed in section 6.6.4.

6.6.1 Mapping between SM ′ and T ′

In this section, a continuous mapping h1 between the sets SM ′ and T ′ is established.

Recall that SM ′ denotes the set of points on the surface of M ′, excluding the two poles,

and T ′ denotes the set of points in the θ–φ rectangle covered by the embedding of G′
M and

excluding the poles.

An arbitrary point in SM ′ lies inside or on the boundary of a triangular face f ∈ F (M).

Since the 2D embedding of GM partitions T ′ into a number of non-overlapping triangles,

f corresponds to a unique triangle t in the θ–φ plane.

We use the barycentric mapping, discussed in section 3.2, to obtain a homeomorphism

between f and t. Consideration of all the faces of M ′ and all the triangles in the θ–φ plane

yield a homeomorphic mapping h1 between SM ′ and T ′.

6.6.2 Mapping between T ′ and T

In this section, a continuous mapping h2 between the sets T ′ and T is established. Recall

that T ′ denotes the set of points in the θ–φ rectangle, covered by the embedding of G′
M and
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6. The θ–φ method 6.6. Solving the problem of parameterisation

excluding the poles, and T denotes the set of points in the entire θ–φ rectangle, excluding

the lines θ = 0 and θ = π.

We use the transformation from section 6.5.1 to transform the embedding of GM ′ to cover

the entire θ–φ rectangle. We assume, by changing the embedding as discussed in section

6.5.1 if necessary, that there are no edge intersections in this transformed embedding.

Consider a point u ∈ T ′. We will establish a mapping h2 that maps u to a point u′ ∈ T .

If u does not lie in one of the triangles affected by the transformation, then h2 maps u to

exactly the same position. That is, we let u′ = u.

Suppose that the point u lies in one of the triangles affected by the transformation. Suppose

the vertices of this triangle are positioned at u1 = (θ1, φ1), u2 = (θ2, φ2) and u3 = (θ3, φ3),

such that u3 is equal to either un or us. See for example Figure 6.17(a). We denote the

set of points inside this triangle by Q3.

The point u in the triangle described above must be mapped continuously and uniquely

to a point in the trapezium, with vertices positioned at u1, u2, (θ3, φ1) and (θ3, φ2). See

for example Figure 6.17(b). We denote the set of points in this trapezium by Q4.
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Figure 6.17

Let Q′
3 be the set of points given by

Q′
3 = Q3 \ {u3}, (6.44)

and Q′
4 the set of points given by

Q′
4 = Q4 \ {(θ, φ) ∈ Q4 : θ 6= θ3}. (6.45)

We aim to establish a continuous one-to-one mapping between Q′
3 and Q′

4. Consider the

given point u = (θu, φu) ∈ Q′
3. It is possible to write

u = w1u1 + w2u2 + w3u3, (6.46)
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6. The θ–φ method 6.6. Solving the problem of parameterisation

where w1, w2 ∈ [0, 1], w3 ∈ [0, 1), and w1 + w2 + w3 = 1. The weights w1, w2 and w3 are

obtained by solving the non-singular linear system (6.46).

The point u is also a linear combination of the points v and u3, as shown in Figure 6.17(a),

where v = (θv, φv) is some combination of u1 and u2. Thus

v = λu1 + (1− λ)u2, (6.47)

for some λ ∈ [0, 1]. Hence

u = µv + (1− µ)u3 = λµu1 + (1− λ)µu2 + (1− µ)u3, (6.48)

for some µ ∈ (0, 1]. Comparing (6.48) with (6.46) yields λ = w1/(1− w3) and µ = 1−w3.

Since u3 is transformed to the line segment between (θ3, φ2) and (θ3, φ1), let u′ be the

following linear combination of v and w, with w = (θ3, φu),

u′ = µv + (1− µ)w. (6.49)

See for example Figure 6.17(b). Some manipulation yields

u′ =

[
θu

λφ1 + (1− λ)φ2

]
=

[
θu

w1

1−w3
φ1 + w2

1−w3
φ2

]
. (6.50)

The point u′ is then the unique point in Q′
4 corresponding to the point u ∈ Q′

3. Note that

(6.50) gives a formula for calculating u′ from the weights that satisfy (6.46).

This establishes the mapping h2.

Next, to establish the inverse mapping h−1
2 , consider a point u′ = (θu′ , φu′) ∈ T . If the

point u′ lies in any triangle t of the embedding of GM ′ , such that n or s is not a vertex of

t, then the inverse of h2 does not affect the position of u′, that is, we let u = u′.

Assume now that this is not the case. Then u′ lies in one of the trapezoidal regions created

by transforming the embedding of GM ′ , say in the trapezium Q4 from Figure 6.17(b). Note

that u′ is a linear combination of v and w, as shown in Figure 6.17(b). Therefore

u′ = λv + (1− λ)w, (6.51)

for some λ ∈ (0, 1]. The point w is defined to be equal to (θ3, φu′), and v = (θv, φv) is

some linear combination of u1 and u2, thus

v = µu1 + (1− µ)u2, (6.52)
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6. The θ–φ method 6.6. Solving the problem of parameterisation

for some µ ∈ [0, 1]. Since φv = φu′ , it follows that

µ =
φu′ − φ2

φ1 − φ2

. (6.53)

Substituting this value into (6.52) yields the point v. By considering the θ–values in (6.51)

we have

θu′ = λ[µθ1 + (1− µ)θ2] + (1− λ)θ3, (6.54)

and therefore

λ =
θu′ − θ3

µ(θ1 − θ2)− θ2 − θ3

. (6.55)

The point u, defined as

u = λv + (1− λ)u3, (6.56)

is the unique point in Q′
3 corresponding to the point u′ ∈ Q′

4. Again, note that (6.56),

together with (6.55), (6.53) and (6.52), yield a formula for calculating u, given the point

u′.

This also establishes the continuous inverse mapping h−1
2 .

6.6.3 Mapping between the T and S0

In this section, a mapping h3 between the sets T and S0, is established. Recall that T

denotes the set of points in the entire θ–φ rectangle, excluding the lines θ = 0 and θ = π,

and S0 denotes the set of points on the surface of the unit sphere, excluding the points

(0, 0,−1) and (0, 0, 1).

Recall from section 6.5 that the mapping m, as defined in (6.35), maps any point in T to

a point in S0. According to (6.28), the inverse of m is given by

m−1(v) =

[
arccos(z/

√
x2 + y2 + z2)

arctan(y/x)

]
, v = (x, y, z) ∈ S0. (6.57)

We therefore choose h3 = m, and this gives a mapping between T and S0. Note that the

mapping h3 is not continuous, since the surface of the sphere is “cut open” to form the

θ–φ plane. This is not a problem, as will be seen shortly.

6.6.4 Mapping between SM and S0

Finally, the mappings h1, h2 and h3 are combined to establish a mapping h between SM

and S0. We construct h as follows.
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6. The θ–φ method 6.6. Solving the problem of parameterisation

Consider a point x ∈ SM . If x = xn, then h maps x to the point (0, 0, 1) ∈ S0. If x = xs,

then h maps x to the point (0, 0,−1) ∈ S0.

Suppose now that x 6∈ {xn,xs}. The point x lies inside or on the boundary of a face in

F (M), and therefore also inside or on the boundary of a face in F (M ′). This point maps

uniquely to a point u in the θ–φ plane, under the mapping h1 from section 6.6.1. The

mapping h2 from section 6.6.2 is used to map u uniquely to a point u′ in the entire θ–φ

plane. This point is then mapped with h3 from section 6.6.3 to a point v ∈ S0.

The inverse mapping, h−1, is defined as follows. Consider a point v ∈ S0. If v = (0, 0, 1),

then h−1 maps it to xn, and if v = (0, 0,−1), then h−1 maps it to xs.

Assume now that v is neither (0, 0, 1) nor (0, 0,−1). The point v is mapped with the

function h−1
3 from section 6.6.3, to yield a point u′ somewhere in the θ–φ rectangle. The

mapping h−1
2 from section 6.6.2 is used to map u′ to the point u in the region of the θ–φ

rectangle that is covered by the embedding of GM ′ . This point u maps uniquely to a point

x in SM ′ under the mapping h−1
1 from section 6.6.1. Note that x is then also a point in

SM .

Since the mapping h3 closes the 2D embedding of GM ′ on exactly the same line as the

mesh M was originally cut open, it follows that h is a continuous mapping between SM

and S0.

This mapping h can be constructed for any mesh M ∈ M, as long as it is possible to cut

M open to obtain M ′ ∈ MB, and its underlying graph GM ′ . From the beginning of the

discussion of the θ–φ method, the only assumption that was made on the original mesh M

was that the cut path should contain at least 4 vertices.

Next we show that it is possible to obtain a path containing 4 vertices, through the graph

GM of any mesh M ∈ M. Recall from section 2.2.7 that there does not exist a mesh in

M with fewer than 4 vertices. Also, there is only one mesh in M with 4 vertices (up to

isomorphism of the underlying graphs). Let M denote this mesh.
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Figure 6.18
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Figure 6.18(a) shows the graph GM , with a path indicated in bold. This path has four

vertices, and is therefore a valid cut path. Figure 6.18(b) shows the graph GM ′ that results

from cutting M open along this path. The 2D embedding of GM ′ in the θ–φ rectangle is

shown in Figure 6.18(c). Therefore, the θ–φ method succeeds for this mesh.

Clearly, adding vertices to M would not result in the failure of the θ–φ method. Hence,

the θ–φ method can be applied to any mesh inM.

We have therefore proven the main result of this chapter, which is the following.

Proposition 6.2 : The θ–φ method, together with the mapping h established in this

section, solves the problem of parameterisation for any mesh in M.

This result is a great advantage of the θ–φ method. Recall from Chapter 5 that the method

of iterative relaxation, as well as Alexa’s method, cannot guarantee a valid solution to the

problem of parameterisation.

Chapter 7 gives a more comprehensive comparison of these methods with the θ–φ method.

An issue such as execution time is considered.

This concludes the description of the θ–φ method. In the last section of this chapter the

possibility of obtaining a valid GC-embedding from the θ–φ method is discussed.

6.7 GC-embeddings from the θ–φ method

Recall from Chapter 3 that a GC-embedding of a graph G is defined as a drawing of G

on the sphere, such that every vertex i ∈ V (GM) is positioned at a distinct point vi ∈ S0,

and that every edge is drawn as the minor arc of a great circle between its endpoints. For

this GC-embedding to be valid, we require that none of these edges intersect.

It was shown in section 3.3 that the problem of parameterisation for a mesh M ∈ M is

easily solved once such a GC-embedding of GM is obtained.

The question this section addresses is whether it is possible to obtain a valid GC-embedding

of GM from the 2D embedding of GM ′ , yielded by the θ–φ method.

Note that the spherical drawing obtained by mapping the 2D embedding of GM ′ in the θ–φ

rectangle onto the surface of the sphere is not a GC-embedding. The edges are not drawn

as minor arcs, as is visible in for example Figure 6.15. The edges are obtained by mapping
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a straight line segment in the θ–φ rectangle with the function m defined in (6.35).

Next, we consider what happens if the edges are drawn as minor arcs, in the hope of

obtaining a GC-embedding of GM .

Consider for this purpose a mesh M ∈ M. Suppose this mesh is cut open as prescribed

by the θ–φ method to produce the mesh M ′ ∈ MB. Suppose the graph GM ′ is embedded

in the θ–φ rectangle, such that the coordinates ui give the position of vertex i ∈ V (GM ′).

The function m from (6.35) is used to map every vertex i ∈ V (GM ′) to the point vi ∈ S0.

Let every vertex i ∈ V (GM) be positioned at vi, with

vi = m(ui), i ∈ V (GM ′). (6.58)

The edges are simply drawn as minor arcs between endpoints. This yields a GC-drawing of

the graph GM ′ . The question of whether it is also a valid GC-embedding of GM ′ remains.

Figure 6.19(a) shows the TP-embedding of Figure 6.15, for comparison. Figure 6.19(b)

shows a drawing of the same graph, where the edges were simply drawn as minor arcs

between endpoints.

(a) edges mapped with m (b) edges as minor arcs

Figure 6.19

For this example, inspection shows that there are no edge intersections in the GC-drawing

depicted in Figure 6.19(b). Hence, a valid GC-embedding is obtained and Proposition

3.3 implies that this embedding solves the problem of parameterisation (with a different

mapping than the one established in section 6.6.4).

It is important to note, however, that in general a valid GC-embedding may not be obtained

with this procedure. Indeed, the following example shows that an embedding in the θ–φ
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rectangle where no edges intersect does not necessarily yield a GC-drawing with no edge

intersections.

Figure 6.20(a) shows four vertices in the θ–φ plane, connected by straight line segments.

Clearly, no edges intersect. Figure 6.20(b) shows this embedding mapped to the surface of

the sphere. Here the lines were also mapped with the function m. In Figure 6.20(c), these

curves are replaced by minor arcs of great circles. An edge intersection occurs.
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Figure 6.20

The preceding example shows that the θ–φ method may not always yield a valid GC-

embedding. However, as Figure 6.19 illustrates, there are meshes for which a valid GC-

embedding may be obtained from the θ–φ method.

The next chapter shows some experimental results. Examples where the θ–φ method gives

a valid GC-embedding, and some where it does not, are also mentioned.
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CHAPTER 7

Experimental results

In this chapter some experimental results are given and discussed. The methods and algo-

rithms described in this thesis were implemented in MATLAB 6.5 Release 13. Appendix

B gives a short description of this implementation. All the experiments mentioned in this

chapter were executed on a 2.8 GHz Intel Pentium 4 processor with 512 MB memory.

The following section shows the different test models that were used, and provides some

properties of these models.

7.1 Test models

We experimented on eight different test models, all varying in size and shape. These models

are shown on the following pages, each with its number of vertices, faces and edges.

The models are all freely available on the internet, in different formats. The different

formats were converted to MATLAB variables. Every model listed belongs to the classM
(see Definition 2.2). Also, the faces of every model are all orientated correctly (see section

2.4).

Note that the edges of the last two models are not drawn, simply because the faces are too

small.
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PAWN RABBIT

vertices 154 vertices 453

faces 304 faces 902

edges 456 edges 1,353

HELIX GLASS

vertices 505 vertices 662

faces 1,006 faces 1,320

edges 1,509 edges 1,980

HAND HEAD

vertices 1,002 vertices 1,490

faces 2,000 faces 2,976

edges 3,000 edges 4,464
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TRICERATOPS

vertices 2,832

faces 5,660

edges 8,490

FEMALE

vertices 4,039

faces 8,074

edges 12,111

Model Vertices Faces Edges

pawn 154 304 456

rabbit 453 902 1,353

helix 505 1,006 1,509

glass 662 1,320 1,980

hand 1,002 2,000 3,000

head 1,490 2,976 4,464

triceratops 2,832 5,660 8,490

female 4,039 8,074 12,111

The different parameterisation methods discussed in this thesis were tested on the models

above. Results of these tests follow. The issue of execution time is considered in section

7.6.

7.2 Gotsman’s method

Recall from section 5.1.3 that Gotsman’s method involves solving the non-linear system

(5.10) with the MATLAB function fsolve.

The method as we implemented it was only able to solve the system for PAWN and RABBIT.
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The other models have too many vertices, and MATLAB quickly runs out of memory.

Figure 7.1 shows the results of applying Gotsman’s method to PAWN and RABBIT. In each

case, Tutte weights were used (see section 4.4.1).

PAWN RABBIT

Figure 7.1 — Gotsman’s method

7.3 Iterative relaxation

Results from applying the method of iterative relaxation (from section 5.2) are given in

this section. The method is defined by (5.15).

Recall that an initial embedding on the sphere is needed. This embedding may be obtained

by (5.13), with m some point inside the mesh. Choosing m as the arithmetic mean of the

nodes yields a valid interior point for every model except HELIX. For this model an interior

point was selected manually. Figure 7.2 shows the initial embedding of every model.

The method of iterative relaxation yields valid GC-embeddings for five of the eight models.

For RABBIT, HELIX and FEMALE, however, the graph collapses (ultimately to a single point

on the surface of the sphere) before a valid embedding is reached. Figure 5.3 illustrates

this collapsing behaviour for RABBIT.

Figure 7.3 shows the valid GC-embeddings of the five models for which the iterative re-

laxation method does succeed. The orientation test in section 3.4.1 was implemented to

terminate the process when a valid embedding is reached. Tutte weights (section 4.4.1)

were used.
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PAWN RABBIT HELIX GLASS

HAND HEAD TRICERATOPS FEMALE

Figure 7.2 — Initial embeddings

PAWN GLASS HAND

HEAD TRICERATOPS

Figure 7.3 — Iterative relaxation method
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7.4 Alexa’s method

Results from applying Alexa’s method (from section 5.3) are given in this section. The

method is defined by (5.17) and (5.18). The initial embeddings depicted in Figure 7.2 were

used.

The method yielded valid GC-embeddings for all the models, except for HELIX and FE-

MALE. These two models have long tubular parts, and an iterative scheme such as Alexa’s

method requires an immense number of iterations to smooth out these parts.

For HELIX we terminated the process after 200,000 iterations, which required about 2

hours of computation. For FEMALE the process was terminated after 20,000 iterations,

which lasted for about 10 hours. It is not certain whether a valid embedding would ever

be reached for these two models (clearly not in any desirable amount of time). Also, the

collapsing behaviour of the iterative relaxation method seems less likely to occur with

Alexa’s method.

Figure 7.4 shows the results of the six models where Alexa’s method does succeed. The

results look similar to those obtained by the method of iterative relaxation.

PAWN RABBIT GLASS

HAND HEAD TRICERATOPS

Figure 7.4 — Alexa’s method
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7.5 The θ–φ method

Results from applying the θ–φ method (from Chapter 6) are given in this section. Recall

that the method selects two vertices and a path between them and then cuts the mesh

open along this path to produce a mesh in MB. This “open” mesh is then embedded in

the 2D θ–φ rectangle and folded onto the surface of the sphere.

7.5.1 Pole selection

This section shows the results from implementing the four different pole selection schemes

discussed in section 6.2. Figures 7.5 to 7.12 show the different models, and in each case

the different cut paths resulting from different pole selections.

(a) physical (b) graph (c) fast-graph (d) symmetry

Figure 7.5

(a) physical (b) graph (c) fast-graph (d) symmetry

Figure 7.6
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(a) physical (b) graph (c) fast-graph (d) symmetry

Figure 7.7

(a) physical (b) graph (c) fast-graph (d) symmetry

Figure 7.8

(a) physical (b) graph (c) fast-graph (d) symmetry

Figure 7.9

104



7. Experimental results 7.5. The θ–φ method

(a) physical (b) graph (c) fast-graph (d) symmetry

Figure 7.10

(a) physical (b) graph (c) fast-graph (d) symmetry

Figure 7.11

(a) physical (b) graph (c) fast-graph (d) symmetry

Figure 7.12
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From the preceding examples it is evident that the graph distance method and the fast-

graph method produce nearly the same poles in most cases. RABBIT and HEAD are the

only cases where these two pole selections differ significantly.

The symmetry method seems to produce cut paths fairly close to the actual symmetry

planes of the different models. Of course, this method fails to yield a sensible cut path

for HELIX. There are also no symmetry planes in HAND, but the symmetry method does

produce a usable cut path.

In section 7.6 the execution times of the the four pole selection methods are compared.

7.5.2 Embedding on the sphere

This section shows the TP-embeddings resulting from applying the θ–φ method on the

different test models. In each case, the physical distance method was used to select the

poles. For the 2D embedding we implemented Tutte weights (section 4.4.1).

Figure 7.13 shows the results obtained for all the test models. Recall from Proposition 6.2

that valid embeddings are guaranteed for all the models.

PAWN RABBIT HELIX GLASS

HAND HEAD TRICERATOPS FEMALE

Figure 7.13 — The θ–φ method

106



7. Experimental results 7.6. Execution times

Note the edges of the cut path visible in each of the embeddings in Figure 7.13. The θ–φ

method forces these edges to lie on the line φ = 0.

It seems that the embeddings obtained by the iterative methods preserve more of the

geometric properties of the original model. For example, the face of HEAD is still clearly

visible in the embedding obtained by Alexa’s method, while it is not distinguishable in

the case of the θ–φ method. However, where the iterative methods fail, the θ–φ method

produces valid results.

7.6 Execution times

In this section the matter of execution time is considered. The execution times given here

were all obtained with our implementation of the algorithms and methods.

Table 7.1 lists the execution times of Gotsman’s method, for the two models where valid

embeddings were obtained. Clearly, this method is not desirable.

Model Gotsman’s method

pawn 15.5 sec

rabbit 17 min 18 sec

helix -

glass -

hand -

head -

triceratops -

female -

Table 7.1

Recall from Chapter 5 that the implementation of the iterative methods involves a test to

check the validity of an embedding every R iterations. Two tests were described in this

thesis, namely the orientation test (section 3.4.1) and the area test (section 3.4.2).

Table 7.2 lists the execution times for performing one such test, on an embedding of each

of the test models. It is clear from the figure next to the table, that the execution times of

both these tests increase linearly as the number of vertices increase. Also, the orientation

test is computationally more efficient.
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Model Orientation test Area test

pawn 0.09 sec 0.29 sec

rabbit 0.22 sec 0.77 sec

helix 0.25 sec 0.86 sec

glass 0.33 sec 1.10 sec

hand 0.49 sec 1.67 sec

head 0.73 sec 2.48 sec

triceratops 1.38 sec 4.75 sec

female 1.96 sec 6.76 sec

Table 7.2
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Table 7.3 shows the execution times of the method of iterative relaxation and Alexa’s

method for the different test models. In each case the number of iterations to a valid

solution is also shown. The execution times shown were measured with no tests of validity

(refer to Table 7.2 for the execution times of validity tests).

The cases of failure (graph collapsing) are indicated by “-”. The cases where it is uncertain

whether the method will ever reach a valid solution are indicated by “?”.

Model
Iterative relaxation Alexa’s method

iterations time iterations time

pawn 17 0.01 sec 20 0.19 sec

rabbit - - 104 2.74 sec

helix - - ? ?

glass 24 0.19 sec 37 1.50 sec

hand 700 11.19 sec 338 23.68 sec

head 1 0.36 sec 1 0.28 sec

triceratops 5,852 16 min 51 sec 610 6 min 40 sec

female - - ? ?

Table 7.3

Clearly, the number of iterations needed for a valid embedding does not depend on the num-

ber of vertices in the model. It does, however, depend on the geometry of the model. For

the models that are “nearly convex”, such as PAWN and HEAD, few iterations are required.

For the models with more discernible concavity, such as HAND and TRICERATOPS, a large

number of iterations are needed to smooth out these concavities. As already mentioned,
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these two methods fail on “highly concave” models, such as HELIX and FEMALE.

Note also that on average, one iteration of the iterative relaxation method tends to execute

faster than one iteration of Alexa’s method.

Next, the θ–φ method is examined. Table 7.4 lists the execution times for selecting poles

and a corresponding cut path, based on the four schemes from section 6.2.

Model Physical Graph Fast-graph Symmetry

pawn 0.09 sec 3.07 sec 0.09 sec 0.06 sec

rabbit 0.61 sec 31.77 sec 0.29 sec 0.23 sec

helix 0.75 sec 39.82 sec 0.31 sec 0.25 sec

glass 1.24 sec 1 min 21 sec 0.46 sec 0.44 sec

hand 2.88 sec 4 min 8 sec 1.01 sec 0.83 sec

head 6.16 sec 13 min 9 sec 1.98 sec 1.74 sec

triceratops 22.24 sec 1 h 29 min 7.03 sec 34.01 sec

female 46.08 sec 4 h 7 min 14.33 sec 7 min 11 sec

Table 7.4

Considering the selections of poles (depicted in Figures 7.5 to 7.12), it is evident that the

fast-graph method should be used rather than the graph distance method. The computa-

tional cost for the graph distance method quickly becomes undesirably large as the number

of vertices increase.

The symmetry method seems to be a good choice for the relatively small models, but

interestingly, the execution time of this method also increases dramatically for the larger

models.

From a purely computational viewpoint, it would seem that the fast-graph method is the

best method to use. The poles resulting from this method also seem to be “good” choices

(i.e., would probably cause the final embeddings to be fairly evenly distributed over the

surface of the sphere).

Table 7.5 shows the execution times of applying the θ–φ method to the different models.

Selection of poles and a cut path was disregarded in measuring these times. Any of the

pole selection methods may be implemented, and the corresponding execution times from

Table 7.4 may be added to those in Table 7.5. The figure next to the table is a graphical

respresentation of the data from that table.
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Model The θ–φ method

pawn 0.02 sec

rabbit 0.12 sec

helix 0.14 sec

glass 0.17 sec

hand 0.33 sec

head 0.51 sec

triceratops 2.45 sec

female 7.91 sec

Table 7.5
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Note that the θ–φ method was implemented to solve the linear system of Tutte 2D embed-

ding directly. An iterative scheme such as the one discussed in section 4.5 may improve

the efficiency, but because of the powerful matrix tools of MATLAB it does not seem to

be necessary for these examples. For FEMALE, less than a second is required to solve the

linear system. For models with tens of thousands of vertices an iterative scheme should

become more efficient.

Clearly, the execution time of the θ–φ method increases monotonically as the number of

vertices increase. This behaviour is due to the fact that the execution time is independent

of the geometry of the model (contrary to the iterative relaxation method and Alexa’s

method).

Adding an efficient pole selection scheme such as the fast-graph method, yields execution

times that are great improvements to those of the previous methods. This, and the fact

that a solution is guaranteed, is a major advantage of the θ–φ method. The advantages

and disadvantages of the θ–φ method are further explored in Chapter 9.

Finally we attempted to acquire GC-embeddings from the spherical embeddings obtained

by the θ–φ method. The technique explained in section 6.7 yields valid GC-embeddings

for every model except HELIX and FEMALE. For these two models edge-intersections occur

when the edges are drawn as minor arcs, instead of straight line segments transformed with

the mapping m defined in (6.35). These intersections occur mostly in the regions close to

the poles on the sphere, where the difference in the two types of curves is most apparent.
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CHAPTER 8

Applications

There are various applications in computer graphics where surface parameterisation plays

an integral role. This chapter briefly discusses a number of these applications. References

to papers dealing with these applications are given.

A number of the applications that may be implemented with the aid of surface parameter-

isation are also illustrated by means of examples.

8.1 Remeshing

One of the fundamental applications of parameterisation is that of remeshing. Remeshing

is concerned with replacing an arbitrary mesh with a structured mesh.

Many algorithms in the analysis of 3D models require special structure in the meshes.

Alternatively, some algorithms perform more efficiently and robustly if there is a certain

structure in the given mesh. A structured mesh is typically a mesh generated by iteratively

subdividing a coarse base mesh.

Hormann et. al. [21] and Kobbelt et. al. [23] proposed different techniques for remeshing a

triangular mesh by first parameterising the surface.
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8.2 Mesh compression

An application where parameterisation, and particularly remeshing, is used is mesh com-

pression. This involves finding methods that compactly represent the data describing an

arbitrary mesh. Gotsman et. al. [15] gives a survey of developments in this field.

8.3 Smoothing and filtering

Another widely used application is that of filtering the surface of a mesh to obtain, for

example, a smoother surface.

In the case of a genus 0 surface, spherical parameterisation is applied to the mesh to obtain

a spherical function or signal. This signal is then transformed to the frequency domain,

using the so-called spherical harmonic transform (see for example [26]). A filter is applied

to the transformed signal yielding, for example, a smoother surface in the spatial domain.

We implemented a crude version of this technique. Figure 8.1 shows the results of applying

a low-pass filter with different cut-offs to the HAND model from section 7.1. The smoothing

effect is clearly visible.

Figure 8.1

Brechbühler et. al. [3] also apply smoothing filters in the frequency domain, and obtain

similar results to the ones shown above. Zhou et. al. [35] demonstrate the use of high-pass

(or sharpening) filters. Kazhdan et. al. [22] explain how the spherical harmonic transform

can be used to obtain a rotation invariant represention of a 3D model.
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8.4 Morphing

Morphing has particular applications in animation. It involves finding a smooth transition

between the surfaces of two 3D models.

Such a transition may be accomplished by parameterising the two surfaces. Points on the

surface of the one model are mapped to the sphere (using the parameterisation of that

model), and then mapped to the surface of the other model (using the parameterisation of

that model). An interpolation scheme is then performed between the sets of points on the

two surfaces.

We implemented this algorithm with linear interpolation. Figure 8.2 shows some interme-

diate steps of RABBIT morphing into HEAD.

Figure 8.2

Shapiro et. al. [29] discuss a similar technique, and also show how the meshes of the two

models can be merged to a single mesh. Gotsman et. al. [14] propose a method which
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guarantees that this new merged mesh never intersects itself during the morphing process.

Alexa [1] gives a method for aligning certain features of the two models (if, for example,

we want to morph the eyes of RABBIT to the eyes of HEAD).

8.5 Texture mapping

The last application discussed in this chapter is texture mapping. This involves the map-

ping of a two-dimensional image onto the surface of a 3D model. Over the last few years

there has been a surge of interest in the study of different techniques for mapping texture.

This is due to the success in the entertainment industry, of animated films and video games

in particular.

Mapping texture may be accomplished by first parameterising the surface of the given

mesh. The texture is then mapped to this parameter domain, and then inversely mapped

onto the surface of the mesh.

Figure 8.3 gives an example of mapping a 2D image of the earth onto the surface of HEAD.

First, the surface of the model is parameterised. This was accomplished by 200 iterations

using Alexa’s method. The 2D image is then mapped onto the surface of the unit sphere.

We now have a one-to-one mapping between the surface of the sphere and the surface of

HEAD. The position of every pixel of the image on the surface of the sphere is mapped to

the surface of HEAD. This yields the image shown at the bottom of the figure.

Haker et. al. [17], Praun et. al. [27] and Zhang et. al. [34] are some examples of papers

concerned with different techniques for texture mapping. An important aspect of these

techniques is to somehow minimise the amount by which the 2D image is stretched, or

deformed, when it is mapped to the surface of a 3D model.
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Figure 8.3
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CHAPTER 9

Conclusions

Existing methods for parameterising the surface of an arbitrary mesh in the classM have

been studied. The θ–φ method was also introduced, and proven to yield a valid spherical

parameterisation.

In this chapter some advantages and disadvantages of the θ–φ method are presented. The

method is also compared to the existing methods. Section 9.3 gives some recommendations

for further research.

9.1 Advantages of the θ–φ method

Possibly the greatest advantage of the θ–φ method is that it guarantees a valid spherical

parameterisation of any given mesh inM.

Saba et. al. [28] claim that Gotsman’s method, as explained in section 5.1.3, is the first

method to produce a provably valid parameterisation. Although Gotsman’s method is

theoretically sound, it is impractical. Solving a huge system of non-linear equations with a

generic algorithm is by no means efficient. We have presented a method that is theoretically

sound, and numerically efficient compared to the existing methods.

Saba et. al. [28] also present an efficient and provable method. Their method involves an
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initial embedding, followed by an iterative scheme to get rid of edge intersections. The

initial embedding is obtained by cutting the mesh open along a closed curve, yielding two

meshes inMB. These two meshes are embedded in the plane with Tutte’s algorithm, and

then projected to the two hemispheres of the unit sphere. Only the vertices are projected,

and the edges are then drawn as minor arcs. This may result in edge intersections, and

they then proceed to iteratively smooth out these intersections.

While their method does generate valid parameterisations, the θ–φ method immediately

yields a valid parameterisation, and does not require any iteration thereafter. For this

reason, the θ–φ method is probably more efficient than the method of Saba et. al.

Another important advantage of the θ–φ method is that the execution time required does

not depend on the geometry (or shape) of the given mesh.

As mentioned in Chapter 7, the efficiency of the method of iterative relaxation and Alexa’s

method both depend heavily on the geometry of the model. Also, for models that are

“extremely concave” these two methods either collapse, or fail to terminate and become

impractical.

The θ–φ method, on the other hand, is executed in roughly the same length of time for

any mesh with a fixed number of vertices, regardless of the geometry.

9.2 Disadvantages of the θ–φ method

A disadvantage of the θ–φ method is that the cut line is always visible on the spherical

embedding. This may be undesirable for some applications.

Another possible disadvantage of the θ–φ method is that it may not always produce valid

GC-embeddings. Although it was shown that the problem of parameterisation is still solved

with a TP-embedding, some existing applications may specifically require a GC-embedding.

In the next section some possibilities to overcome these disadvantages, are discussed.

9.3 Recommendations

This section provides some possibilities for future research, specifically for the iterative

methods and the θ–φ method.
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9.3.1 Iterative methods

An issue that needs further investigation is that of obtaining an initial embedding for the

iterative methods. Recall from Chapter 5 that an interior point m is required, and the

nodes of the mesh are then normalised with respect to m.

In some cases, choosing m as the arithmetic mean of the nodes in the mesh yields a valid

interior point. However, models exist for which this choice does not lie inside the mesh

(see for example HELIX from Chapter 7). For these models, a more sophisticated method

for choosing m is needed.

Another possible topic would be a comprehensive analysis of the iterative methods. It

is not clear exactly why, and under what conditions, the method of iterative relaxation

collapses for some models.

It may be possible to improve on the efficiency of the iterative methods by localising the

iterative updating of vertex positions. Consider for example TRICERATOPS in Chapter 7.

After about 500 iterations of the method of iterative relaxation the edge intersections were

mostly smoothed out, but the embedding required an additional 5,000 iterations for very

small segments in the graph where edges still intersected. Performing this much work for

such a small part of the graph seems wasteful.

An important aspect not covered in this thesis is that of comparing the quality of different

parameterisations for a fixed model. For such a comparison a parameter may be imple-

mented that measures some predefined amount of distortion between the surface of the

original model, and the parameterisation.

Suppose that for a specific application the edge-lengths in the spherical embedding need

to be more or less equal. This would probably then lead to an even distribution of the

embedding over the surface of the unit sphere. A parameter that measures, for example,

the standard deviation in edge-lengths may be implemented. A spherical embedding for

which this parameter is relatively low would then yield a “good” parameterisation.

9.3.2 The θ–φ method

As mentioned in section 9.2, one of the disadvantages of the θ–φ method is the fact that

the cut line is always visible in the final spherical embedding. One possible solution is to

implement a localised iteration scheme, to perturb only the vertices on and adjacent to the

cut path. A carefully constructed updating technique may keep the embedding free from
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edge intersections. Further research into this area may prove to be interesting and useful.

Another disadvantage of the θ–φ method is the fact that it does not always yield valid

GC-embeddings. It would be interesting to find conditions under which the θ–φ method

would give valid GC-embeddings, and possibly, to steer the method towards meeting these

conditions (selecting the weights for the 2D embedding in a specific manner, for example).

A local updating scheme similar to the one described above may possibly be implemented

here as well, to locally correct areas of the spherical embedding where edge intersections

occur due to edges being drawn as minor arcs.

9.3.3 Other methods for solving the problem of parameterisation

There are other methods for solving the problem of parameterisation which are not covered

in this thesis.

The most notable of these is the so-called method of progressive meshes, due to Hoppe

[19, 20]. This method involves the iterative removal of vertices and edges from the mesh

until a convex mesh remains. This convex mesh is then projected onto the sphere, and

the vertices are iteratively replaced in the opposite order in which they were removed.

Lindstrom and Turk [24] as well as Shapiro and Tal [29] presented similar methods.

It would be interesting to see how the θ–φ method compares to these methods from a

computational viewpoint, and also the quality of solutions obtained.

9.4 Concluding remark

The θ–φ method seems to compare very well with existing iterative methods. Considering

all the advantages, we believe that the θ–φ method is a major contribution to the research

of surface parameterisation.
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APPENDIX A

Dijkstra’s algorithm

A method for finding the distance between two vertices in a graph is discussed in this

appendix. Recall from section 2.1 that the distance from a vertex u to a vertex v is the

length of a shortest u–v path. The length of a path is defined in (2.5), and a shortest

path between two vertices u and v is a (not necessarily unique) path with minimum length

among all possible paths connecting u and v.

Note that every edge (i, j) in a graph must be assigned a weight ρij > 0. If no weights are

assigned, it is assumed that ρij = 1 for every edge (i, j).

A popular algorithm to obtain distances between vertices is discussed next.

Dijkstra’s algorithm [7] determines the distances from a single source vertex to every other

vertex in the graph. The algorithm can be repeated for each vertex in the graph to obtain

distances between every pair of vertices in the graph.

Consider a graph G with vertex set {1, 2, . . . , p} and a source vertex v. We wish to calculate

distances from v to every other vertex in the graph. Dijkstra’s algorithm is given below.

The algorithm implements a priority queue Q to store values of the vertices. The choice

of a priority queue optimises execution time [13, p. 586]. A priority queue is a list of

elements, each of which has a priority in the list, depending on the value of a key. The

function removeMin(Q) removes an element with smallest key value from the queue Q, and
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returns the label of that vertex.

Algorithm A.1 : (Dijkstra’s algorithm)

INPUT: A graph G with p vertices and a source vertex v ∈ V (G)

OUTPUT: Distances from v to every vertex in G

1. d(v)← 0, and d(u)←∞, for every u 6= v

2. Let Q contain all the vertices of G, with the d(·) labels as keys

3. while Q is not empty do

u← removeMin(Q)

for each vertex z ∈ N(u) ∩Q do

if d(u) + ρuz < d(z) then

d(z)← d(u) + ρuz

update key of z to d(z) in Q

end

end

end

4. return d(u) for every u ∈ V (G)

During the execution of the algorithm, a value d(u) is stored for every u ∈ V (G), which

denotes the length of the shortest v–u path found so far. Initially, d(v) = 0 and d(u) is set

to ∞ for every vertex u ∈ V (G) \ {v}. The set Q ⊂ V (G) is defined to the set of vertices

of which the correct distances from v have not yet been determined. Initially, Q = V (G).

At each iteration of the algorithm a vertex u ∈ Q with smallest d(u) is selected, and

removed from Q. For the first iteration v is removed from Q. Once a new vertex u has

been removed from Q, the value of d(z) is updated for every vertex z adjacent to u and

inside Q, to compensate for the fact that there may be a shorter path from v passing

through u. For a vertex z adjacent to u, the updating is performed as follows,

if d(u) + ρuz < d(z) then d(z)← d(u) + ρuz, (A.1)

with ρuz the weight of edge (u, z). The operation (A.1) is sometimes refered to as edge

relaxation. The process is repeated until Q is empty, so that the distance from v to every

other vertex is known.

The algorithm returns values d(u) that denote the distance from v to every vertex u in the

graph. With an added labelling scheme it is possible to recover shortest paths, rather than
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just the lengths.

Figure A.1 shows an example of a small graph and results in tabular form when Dijkstra’s

algorithm is applied to vertex 1.

u d(1) d(2) d(3) d(4) d(5) C

- 0 ∞ ∞ ∞ ∞ ∅
1 0 1 ∞ ∞ ∞ {1}
2 0 1 2 ∞ 2 {1, 2}
3 0 1 2 3 2 {1, 2, 3}
5 0 1 2 3 2 {1, 2, 3, 5}
4 0 1 2 3 2 {1, 2, 3, 4, 5}

��

��

��

�� �	

1

2

3

4 5

Figure A.1
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APPENDIX B

MATLAB implementation

The methods and algorithms in this thesis were implemented in MATLAB. This appendix

gives a short description of the implementation.

B.1 Graphs and meshes

The data describing a triangular mesh with n vertices and m faces is stored in two matrices:

a vertex list VL and a face list FL. The vertex list is an n× 3 matrix, such that the ith row

gives the coordinates of vertex i. The face list is an m × 3 matrix, such that the ith row

gives the three indices of the vertices of face i. The function drawmesh draws such a mesh,

in the colour specified by col.

function drawmesh(VL,FL,col,edges)
f = size(FL,1);
X = VL(:,1); Y = VL(:,2); Z = VL(:,3);
for j = 1:f,

face = FL(j,:);
if edges, patch(X(face),Y(face),Z(face),col);
else patch(X(face),Y(face),Z(face),col,’EdgeColor’,’none’); end

end
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B. MATLAB implementation B.1. Graphs and meshes

view(50,28)
axis image, axis tight, axis off, axis vis3d

A graph G is described by means of an edge list EL. This is an q × 2 matrix, where q

denotes the number of edges in G. The ith row of this matrix gives the indices of the

two vertices of edge i. The function edgelist may be used to obtain the edge list of the

underlying graph of a given mesh (see Definition 2.1).

function EL = edgelist(FL)
v = max(max(FL)); f = size(FL,1);
A = zeros(v,v);
for j = 1:f,

f = FL(j,:);
A(f(1),f(2)) = 1; A(f(1),f(3)) = 1; A(f(2),f(3)) = 1;
A(f(2),f(1)) = 1; A(f(3),f(1)) = 1; A(f(3),f(2)) = 1;

end
A = triu(A); [I,J] = find(A);
EL = [I J];

The function checkmesh implements Proposition 2.8. The three conditions of the propsi-

tion are tested, and if all three test positive, the mesh belongs to the classM.

function checkmesh(VL,FL);
EL = edgelist(FL);
v = size(VL,1); e = size(EL,1); f = size(FL,1);

% 2-manifoldness
A = zeros(v,v);
I = EL(:,1); J = EL(:,2);
A(v*(I-1) + J) = 1;
A(v*(J-1) + I) = 1;
E = [];
for j = 1:v, if sum(sum(FL == j)) ~= sum(A(j,:)), E = [E; j]; end; end
test1a = isempty(E);
if test1a,

E = [];
for i = 1:v,

[I,J] = find(FL == i);
face = I(1);
ijk = FL(face,:); ijk = ijk(find(ijk ~= i));
j = ijk(1); k = ijk(2);
first = j;
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cyclelength = 1;
while k ~= first,

[I1,J1] = find(sum(FL == i,2).*sum(FL == k,2));
g = I1; g = g(find(g ~= face));
ijk = FL(g,:);
ijk = ijk(find(ijk ~= i)); ijk = ijk(find(ijk ~= k));
j = k; k = ijk; face = g;
cyclelength = cyclelength + 1;

end
if cyclelength ~= length(I), E = [E; j]; end

end
test1b = isempty(E);

else
test1b = 0;

end
test1 = test1a & test1b;

% connectivity
i = 1; D = zeros(1,v); D(i) = 1;
C = ones(1,v); j = i; inserted = 1;
while inserted ~= 0,

nb = find(A(j,:));
D(nb) = 1; C(j) = 0;
if sum(D & C) == 0,

inserted = 0;
else

inserted = 1;
j = find(D & C); j = j(1);

end
end
test2 = (sum(D) == v);

% Euler’s formula
test3 = (v-e+f == 2);

if test1 & test2 & test3, disp(’Valid mesh’);
else

if ~test1, disp(’Mesh is not 2-manifold !’); end
if ~test2, disp(’Mesh is disconnected !’); end
if ~test3, disp(’Euler’’s formula does not hold !’); end

end

The function checkfaces implements Algorithm 2.9, to test and correct the orientation

of faces in a given face list. We assume that face fstar is correctly orientated. The
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algorithm returns a face list in which every face is orientated as fstar. The first two

functions implement edges[F, f ] as defined in (2.24), and otherface[F, e, f ] as defined in

(2.25).

function [a,b,c] = edges(FL,f);
f = FL(f,:); a = f([1,2]); b = f([2,3]); c = f([3,1]);

function f = otherface(FL,e,f_);
f = find(sum((FL == e(1)) | (FL == e(2)),2) == 2); f = f(find(f ~= f_));

function nFL = checkfaces(FL,fstar);
nFL = FL; FT = []; FAC = fstar;
[e1,e2,e3] = edges(nFL,fstar);
fp = otherface(FL,e1,fstar); if sum(FAC == fp) == 0, FT = [FT; fp e1]; end
fp = otherface(FL,e2,fstar); if sum(FAC == fp) == 0, FT = [FT; fp e2]; end
fp = otherface(FL,e3,fstar); if sum(FAC == fp) == 0, FT = [FT; fp e3]; end
while size(FAC,1) < size(FL,1),

f = FT(end,1); e = FT(end,2:3); FT = FT(1:end-1,:);
[e1,e2,e3] = edges(FL,f);
if sum((e1 == e(1)) | (e1 == e(2))) == 2, ee = e1;
elseif sum((e2 == e(1)) | (e2 == e(2))) == 2, ee = e2;
else ee = e3;
end
if sum(ee == e) == 2,

nFL(f,:) = fliplr(FL(f,:));
end
FAC = [FAC; f];
[e1,e2,e3] = edges(nFL,f);
fp = otherface(FL,e1,f); if sum(FAC == fp) == 0, FT = [FT; fp e1]; end
fp = otherface(FL,e2,f); if sum(FAC == fp) == 0, FT = [FT; fp e2]; end
fp = otherface(FL,e3,f); if sum(FAC == fp) == 0, FT = [FT; fp e3]; end

end

B.2 Surface parameterisation

The function gcdrawing may be used to draw a specific GC-drawing of a mesh, from a

face list, and an N × 3 matrix V which contains coordinates vi ∈ S0, for every vertex i.

The function minorarc draws a minor arc on the surface of the unit sphere between two
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given points.

function minorarc(v1,v2);
lambda = 0:0.05:1;
g = lambda’*v1 + (1-lambda)’*v2;
normg = sqrt(sum(g.^2,2)); g = g./[normg normg normg];
plot3(g(:,1),g(:,2),g(:,3),’k’);

function gcdrawing(V,FL)
EL = edgelist(FL); e = size(EL,1);
figure, hold on
for j = 1:e,

edge = EL(j,:);
minorarc(V(edge(1),:),V(edge(2),:));

end
[x,y,z] = sphere(30); r = 0.999;
surf(r*x,r*y,r*z,’EdgeColor’,’none’,’FaceColor’,[0.804, 0.894, 0.824]);
view(46,18)
axis image, axis tight, axis off, axis vis3d

The next two functions, gctestorientation and gctestarea, implement the orientation

test from section 3.4.1, and the area test from section 3.4.2. Both of these functions test a

given GC-drawing to determine whether it is in fact a valid GC-embedding. The function

areasphertria is used in gctestarea, and computes the area of a spherical triangle with

vertices at v1, v2 and v3.

function valid = gctestorientation(V,FL)
f = size(FL,1);
S = zeros(f,1);
for j = 1:f,

S(j) = sign(dot(cross(V(FL(j,1),:),V(FL(j,2),:)),V(FL(j,3),:)));
end
valid = 0;
if min(S) == 1, valid = 1; end

function area = areasphertri(v1,v2,v3)
na = v2 - dot(v1,v2)*v1; nb = v3 - dot(v1,v3)*v1;
a = acos(dot(na,nb)/norm(na)/norm(nb));
na = v1 - dot(v2,v1)*v2; nb = v3 - dot(v2,v3)*v2;
b = acos(dot(na,nb)/norm(na)/norm(nb));
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na = v2 - dot(v3,v2)*v3; nb = v1 - dot(v3,v1)*v3;
c = acos(dot(na,nb)/norm(na)/norm(nb));
area = a + b + c - pi;

function valid = gctestarea(V,FL)
f = size(FL,1);
A = 0;
for j = 1:f,

A = A + areasphertri(V(FL(j,1),:),V(FL(j,3),:),V(FL(j,2),:));
end
valid = abs(4*pi - A) < 1e-12;

The function normvl implements equation (3.17) for every vertex in a mesh. Thus, every

vertex in VL is centred and normalised. This function may, for example, be used to obtain

a GC-embedding of a convex or star-shaped mesh (see section 3.5).

function V = normvl(VL)
m = mean(VL);
V = [VL(:,1)-m(1), VL(:,2)-m(2), VL(:,3)-m(3)];
rn = sqrt(sum(V.^2,2));
V = [V(:,1)./rn, V(:,2)./rn, V(:,3)./rn];

B.3 2D planar embeddings

For a given mesh in MB the function boundary returns a vector B containing indices of

the vertices in the boundary cycle, in the order of the cycle.

function B = boundary(FL);
v = max(max(FL));
EL = edgelist(FL);
A = zeros(v,v);
I = EL(:,1); J = EL(:,2);
A(v*(I-1) + J) = 1; A(v*(J-1) + I) = 1;
E = zeros(1,v);
for j = 1:v,

if sum(sum(FL == j)) == sum(A(j,:)) - 1, E(j) = 1; end
end
i = find(E); i = i(1);
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nb = find(A(i,:) & E); j = nb(1); last = nb(2);
B = [i j];
while j ~= last,

nb = find(A(j,:) & E);
oldj = j; j = nb(find(nb ~= i)); i = oldj;
B = [B j];

end

The function weightmatrix2d sets up the matrix A for the generalised 2D Tutte embedding

algorithm (see section 4.3). A mesh must be supplied, with its corresponding boundary

cycle B. Chord length weights are used, depending on the value of rho.

function A = weightmatrix2d(VL,FL,B,rho)
EL = edgelist(FL);
v = size(VL,1); e = size(EL,1);
A = zeros(v,v);
for j = 1:e,

edge = EL(j,:); omega = norm(VL(edge(1),:) - VL(edge(2),:));
A(edge(1),edge(2)) = omega^rho;
A(edge(2),edge(1)) = omega^rho;

end
for j = 1:v, A(j,:) = -A(j,:)/sum(A(j,:)); A(j,j) = 1; end
for j = B, A(j,:) = zeros(1,v); A(j,j) = 1; end

The function tutte2d performs generalised 2D Tutte embedding for a given mesh inMB.

The boundary cycle B must be supplied, together with an n × 2 matrix U, that gives the

2D coordinates of the boundary vertices. Chord length weights are used for a given rho. If

iter is 1, then n_iter iterations are used to approximate the solution of the linear system.

If not, the linear system is solved directly.

function [x,y] = tutte2d(VL,FL,B,U,rho,iter,n_iter)
v = size(VL,1);
px = U(:,1); py = U(:,2);
A = weightmatrix2d(VL,FL,B,rho);
bx = zeros(v,1); by = zeros(v,1);
bx(B) = px; by(B) = py;
if iter == 1,

x = zeros(v,1); x(B) = px;
y = zeros(v,1); y(B) = py;
A = A - diag(ones(v,1));
for r = 1:n_iter,
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for j = 1:v,
x(j) = bx(j) - A(j,:)*x;
y(j) = by(j) - A(j,:)*y;

end
end

else
x = sparse(A)\bx; y = sparse(A)\by;

end

The function draw2dembedding plots the 2D planar embedding obtained with tutte2d.

The boundary edges are drawn in thick red lines.

function draw2dembedding(FL,B,x,y)
figure, hold on
EL = edgelist(FL);
for j = 1:size(EL,1),

e1 = EL(j,1); e2 = EL(j,2);
plot([x(e1) x(e2)],[y(e1) y(e2)],’k’);

end
for j = 1:length(B)-1,

plot([x(B(j)) x(B(j+1))],[y(B(j)) y(B(j+1))],’r’,’LineWidth’,2);
end
plot([x(B(1)) x(B(end))],[y(B(1)) y(B(end))],’r’,’LineWidth’,2);
plot(x,y,’k.’,’MarkerSize’,10);
axis([min(x)-.2, max(x)+.2, min(y)-.2, max(y)+.2]);

B.4 Iterative methods for spherical embedding

The function weightmatrix3d sets up the matrix W for spherical Tutte embedding (see

section 5.1). Chord length weights are used, for a specific rho. If normrows is 1, then the

rows of W are normalised such that they sum to 1.

function W = weightmatrix3d(VL,FL,rho,normrows)
EL = edgelist(FL);
v = size(VL,1); e = size(EL,1);
W = zeros(v,v);
for j = 1:e,

edge = EL(j,:);
omega = norm(VL(edge(1),:) - VL(edge(2),:));

130



B. MATLAB implementation B.4. Iterative methods for spherical embedding

W(edge(1),edge(2)) = omega^rho;
W(edge(2),edge(1)) = omega^rho;

end
if normrows == 1, for j = 1:v, W(j,:) = W(j,:)/sum(W(j,:)); end; end

The function methodgotsman implements Gotsman’s method from section 5.1.3. Chord

length weights are used for a specific rho. The maximum number of iterations must also

be supplied. The function calls gotsmanfun, which returns a function value F. The built-in

function fsolve attempts to find a solution where F is zero.

function F = gotsmanfun(X,W)
x = X(:,1); y = X(:,2); z = X(:,3); a = X(:,4);
F = [(x.^2 + y.^2 + z.^2 - 1), (a.*x - W*x), (a.*y - W*y), (a.*z - W*z)];

function V = methodgotsman(VL,FL,rho,maxiter);
v = size(VL,1);
W = weightmatrix3d(VL,FL,rho,1);
X0 = normvl(VL); a0 = 4*pi/sqrt(3*v) + zeros(v,1);
X0 = [X0 a0];
options = optimset(’Display’,’iter’,’MaxFunEvals’,Inf,’MaxIter’,maxiter);
[X,fval,exitflag] = fsolve(@gotsmanfun,X0,options,W);
V = X(:,1:3);

The function methoditerative implements the method of iterative relaxation from section

5.2. Chord length weights are used for a given rho. The function checks the solution for

validity every R iterations with the orientation test. The process is continued until a valid

solution is obtained, or until maxiter iterations have been applied.

function [V,valid] = methoditerative(VL,FL,rho,maxiter,R)
v = size(VL,1);
W = weightmatrix3d(VL,FL,rho,1);
V = normvl(VL);
valid = 0; r = 0;
while ~valid & r < maxiter,

r = r + 1;
U = W*V;
rn = sqrt(sum(U.^2,2));
V = [U(:,1)./rn, U(:,2)./rn, U(:,3)./rn];
if mod(r,R) == 0, valid = gctestorientation(V,FL); end

end

131



B. MATLAB implementation B.5. The θ–φ method

valid = gctestorientation(V,FL);

The function methodalexa implements Alexa’s method from section 5.3. The function

checks the solution for validity every R iterations with the orientation test. The process is

continued until a valid solution is obtained, or until maxiter iterations have been applied.

function [V,valid] = methodalexa(VL,FL,maxiter,R)
EL = edgelist(FL);
v = size(VL,1); e = size(EL,1);
A = zeros(v,v);
for j = 1:e,

A(EL(j,1),EL(j,2)) = 1;
A(EL(j,2),EL(j,1)) = 1;

end
V = normvl(VL);
valid = 0; r = 0;
while ~valid & r < maxiter,

r = r + 1; oldV = V;
for j = 1:v,

vi = oldV(j,:);
nb = find(A(j,:));
q = [0 0 0]; c = 0;
for k = 1:length(nb),

edge = vi - oldV(nb(k),:);
q = q + edge*norm(edge);
if norm(edge) > c, c = norm(edge); end

end
q = q/length(nb)/c;
V(j,:) = (vi - q)/norm(vi - q);

end
if mod(r,R) == 0, valid = gctestorientation(V,FL); end

end
valid = gctestorientation(V,FL);

B.5 The θ–φ method

The function dijkstra implements Dijkstra’s algorithm (see Appendix A). The input

matrix G contains the weights of the edges of the graph, and v is the source vertex. This

function will be used in some of the functions that follow.
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function [d,pred] = dijkstra(G,v);
p = size(G,1);
pred = zeros(p,1);
d = zeros(p,1) + Inf; d(v) = 0;
Q = [[1:p]’ d];
while ~isempty(Q),

[a,b] = min(Q(:,2)); u = Q(b,1); Q = [Q(1:b-1,:); Q(b+1:end,:)];
Gu = zeros(1,p); Gu(Q(:,1)) = 1;
neighb = find(Gu.*G(u,:));
for z = neighb,

if d(u) + G(u,z) < d(z),
d(z) = d(u) + G(u,z);
Q(find(Q(:,1) == z),2) = d(z);
pred(z) = u;

end
end

end

The following three functions, tppolesphysical, tppolesgraph and tppolesfastgraph,

implement three of the pole selection methods discussed in section 6.2, for use in the θ–φ

method. Each of these functions returns the two indices of the selected poles.

function [north,south] = tppolesphysical(VL);
v = size(VL,1);
D = zeros(v,v);
for j = 1:v, for k = 1:v, D(j,k) = norm(VL(j,:) - VL(k,:)); end; end
[a,b] = max(D); [c,d] = max(a);
north = b(d); south = d;

function [north,south] = tppolesgraph(VL,FL);
v = size(VL,1);
G = weightmatrix3d(VL,FL,1,0);
D = zeros(v,v);
for j = 1:v, D(j,:) = [dijkstra(G,j)]’; end
[a,b] = max(D); [c,d] = max(a);
north = b(d); south = d;

function [north,south] = tppolesfastgraph(VL,FL);
G = weightmatrix3d(VL,FL,1,0);
i = 1;
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[a,north] = max(dijkstra(G,i));
[b,south] = max(dijkstra(G,north));

The function tpcutpath selects a shortest path through the underlying graph of the given

mesh, between vertices north and south. This path P then serves as the cut path in the

θ–φ method.

function P = tpcutpath(VL,FL,north,south)
G = weightmatrix3d(VL,FL,1,0);
[d,pred] = dijkstra(G,north);
P = south; v = south; ov = v;
while v ~= north, v = pred(ov); P = [P; v]; ov = v; end
P = P(end:-1:1);

The function tppolessymmetry implements the symmetry method from section 6.2.5 for

selecting poles and a cut path. The function returns indices of the two poles, as well as a

cut path between them.

function [north,south,P] = tppolessymmetry(VL,FL);
v = size(VL,1);
Y = (VL(FL(:,1),:) + VL(FL(:,2),:) + VL(FL(:,3),:))/3;
n = size(Y,1);
a = VL(FL(:,1),:); b = VL(FL(:,2),:); c = VL(FL(:,3),:);
w = cross(b-a,c-a,2); w = sqrt(sum(w.^2,2))/2;
W = diag(w)/sum(w);
C = Y’*W*Y;
[S,L] = eig(C);
s1 = S(:,1); s2 = S(:,2); s3 = S(:,3);
m = sum(W*Y)/trace(W);
d = zeros(n,1); s = s1/norm(s1);
for j = 1:n, d(j) = s’*(Y(j,:)’-m’); end; D1 = sum(d);
d = zeros(n,1); s = s2/norm(s2);
for j = 1:n, d(j) = s’*(Y(j,:)’-m’); end; D2 = sum(d);
d = zeros(n,1); s = s3/norm(s3);
for j = 1:n, d(j) = s’*(Y(j,:)’-m’); end; D3 = sum(d);
[a,b] = min(abs([D1 D2 D3]));
if b == 1, s = s1/norm(s1);
elseif b == 2, s = s2/norm(s2);
else s = s3/norm(s3);
end
d = zeros(v,1); for j = 1:v, d(j) = s’*(VL(j,:)’ - m’); end
tol = 0.2*max(abs(d));

134



B. MATLAB implementation B.5. The θ–φ method

closepoints = find(abs(d) < tol);
EL = edgelist(FL);
EE = 0*EL;
for j = 1:length(closepoints), EE = EE | (EL == closepoints(j)); end
closeedges = find(sum(EE,2) == 2);
CEL = EL(closeedges,:);
G = zeros(v,v);
for j = 1:size(CEL,1),

edge = CEL(j,:);
omega = norm(VL(edge(1),:) - VL(edge(2),:));
G(edge(1),edge(2)) = omega;
G(edge(2),edge(1)) = omega;

end
i = closepoints(1); d = dijkstra(G,i); d(d == Inf) = 0; [a,north] = max(d);
[d,pred] = dijkstra(G,north); d(d == Inf) = 0; [b,south] = max(d);
P = south;
v = south; ov = v;
while v ~= north,

v = pred(ov);
P = [P; v];
ov = v;

end
P = P(end:-1:1);

The function tpfacestochange implements Algorithm 6.1, which identifies all the faces in

the given mesh that change when the mesh is cut open. The function uses faces which

returns indices of the two faces sharing a given edge.

function [f1,f2] = faces(FL,edge)
[i,j] = find(sum(FL == edge(1) | FL == edge(2),2) == 2);
f1 = i(1); f2 = i(2);

function FC = tpfacestochange(FL,P)
n = P(1); s = P(end);
p = P(2:end); k = length(p) - 1;
FC = []; i = 1;
[f1,f2] = faces(FL,[n,p(1)]); f = f1;
face = FL(f,:); q = face(find(face ~= n & face ~= p(1)));
for j = 1:k,

while p(j+1) ~= q(i),
FC = [FC; f];
[f1,f2] = faces(FL,[q(i),p(j)]);
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if f1 == f, f = f2; else f = f1; end
face = FL(f,:);
i = i + 1;
q(i) = face(find(face ~= q(i-1) & face ~= p(j)));

end
i = i - 1;

end
FC = [FC; f];

The function tpcutmeshopen cuts the given mesh open (as explained in section 6.3) along

a given cut path P. The list of faces FC, obtained with tpfacestochange, must also be

supplied. The function returns a vertex list oVL and a face list oFL of the “open” mesh.

function [oVL,oFL] = tpcutmesh(VL,FL,P,FC)
oVL = [VL; VL(P(end-1:-1:2),:)];
oFL = FL;
N = size(VL,1); p = P(2:end-1); k = length(p);
for j = 1:length(FC),

face = FL(FC(j),:);
for l = 1:3,

if sum(p == face(l)) > 0,
face(l) = N + k - find(p == face(l)) + 1;

end
end
oFL(FC(j),:) = face;

end

The function methodthetaphi implements the θ–φ method from Chapter 6. Note that the

physical distance pole-selection method is implemented, but it may be changed to any of

the other methods. Also, the function tutte2d is used to embed the graph of the “open”

mesh in the θ–φ rectangle. The function returns the θ and φ coordinates of every vertex.

function [theta,phi] = methodthetaphi(VL,FL,rho);
N = size(VL,1);

% Select poles and cut path
[north,south] = tppolesphysical(VL);
P = tpcutpath(VL,FL,north,south);

% Cut mesh open
FC = tpfacestochange(FL,P);
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[oVL,oFL] = tpcutmeshopen(VL,FL,P,FC);

% Embed open mesh in theta-phi rectangle
k = length(P) - 2;
B = [P’, N+1:N+k];
h = pi/(k+1);
U = [pi 0; zeros(k,1) [1:k]’*h; pi pi; zeros(k,1)+2*pi [k:-1:1]’*h];
[phi,theta] = tutte2d(oVL,oFL,B,U,rho,0);
draw2dembedding(oFL,B,phi,theta);

The function tpdrawing may be used to draw the TP-drawing that results from the θ–φ

method. The vectors theta and phi, obtained by methodthetaphi, must be supplied.

The function thetaphiline draws the straight line segment between points (t1, p1) and

(t2, p2), mapped with m (as defined in (6.35)), on the surface of the sphere.

function thetaphiline(t1,p1,t2,p2);
lambda = 0:0.05:1;
g = lambda’*[t1 p1] + (1-lambda)’*[t2 p2];
t = g(:,1); p = g(:,2);
x = sin(t).*cos(p); y = sin(t).*sin(p); z = cos(t);
plot3(x,y,z,’k’);

function tpdrawing(theta,phi,FL,north,south);
EL = edgelist(FL); e = size(EL,1);
figure, hold on
for j = 1:e,

edge = EL(j,:);
t1 = theta(edge(1)); p1 = phi(edge(1));
t2 = theta(edge(2)); p2 = phi(edge(2));
if edge(1) == north | edge(1) == south, p1 = p2; end
if edge(2) == north | edge(2) == south, p2 = p1; end
thetaphiline(t1,p1,t2,p2);

end
[x,y,z] = sphere(30); r = 0.999;
surf(x,y,z,’EdgeColor’,’none’,’FaceColor’,[0.804 0.894 0.824]);
view(129,18)
axis image, axis tight, axis off, axis vis3d

The function tp2gc attempts to obtain a GC-embedding from the θ–φ method (see section

6.7) by drawing the edges as minor arcs on the sphere between endpoints. It should be

noted that this may not always result in a valid GC-embedding.
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function V = tp2gc(theta,phi,FL)
V = [sin(theta).*cos(phi), sin(theta).*sin(phi), cos(theta)];
gcdrawing(V,FL); view(129,18)
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Index

θ–φ method, 68

2–manifold mesh, 14

2–manifold vertex, 14

2D Tutte embedding, 37

Adjacent, 5

Alexa’s method, 64

Area test, 32

Barycentric

coordinates, 27

mapping, 27

Best potential symmetry plane, 76

Closed disc, 13

Compression, 112

Concave mesh, 34

Confidence ellipsoid, 74

Connected graph, 7

k-connected, 7

Convex

combination, 40

construction of convex hull, 39

hull, 38

mesh, 34

set, 38

Coordinate set, 8

Covariance matrix, 74

Cut path, 70

Cycle, 6

Dijkstra’s algorithm, 120

Distance

between vertices, 6

graph, 71

physical, 70

Edge, 5

weights, 6

Edge set, 5

Euler’s formula, 16

extended, 17

Face, 8

degree of, 8

orientation of, 19

Face set, 8

Fast-graph method, 72

Gauss-Seidel iteration, 53

GC-drawing, 25

GC-embedding, 25

from θ–φ method, 94

validity of, 30

Generalised 2D Tutte embedding, 45

Genus, 17

Gerschgorin’s circle theorem, 54
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Index Index

Gotsman’s method, 61

Graph, 5

Graph distance method, 72

Great circle, 24

Homeomorphism, 12

Isomorphism, 6

Iterative relaxation method, 62

Mesh, 8

boundary of, 14

classM, 13

classMB, 13

surface of, 11

triangulation, 10

validity, 18

Minor arc, 24

Morphing, 113

Neighbour, 5

Neighbourhood, 5

Node, 8

North pole, 70

Orientation test, 30

Path, 6

Physical distance method, 71

Planar embedding, 36

Planar graph, 7

Polygonal mesh, 8

Radial centroid, 34

Remeshing, 111

Smoothing, 112

South pole, 70

Spherical drawing, 24

Spherical parameterisation

definition of, 23

from a GC-embedding, 28

from a TP-embedding, 88

problem of, 23

Spherical polygon, 24

Spherical triangle, 24

area of, 32

Spherical Tutte embedding, 58

non-linear system of, 59

Star of a vertex, 13

Star-shaped mesh, 34

parameterisation of, 34

Steinitz’s theorem, 15

Straight line embedding, 36

Surface of the unit sphere, 13

Symmetry method, 73

Texture mapping, 114

TP-embedding, 87

Triangular mesh, 8

Underlying graph, 9

definition of, 10

Uniform mesh, 8

Vertex, 5

boundary, 14

degree of, 6

interior, 45

Vertex removal, 7

Vertex set, 5

Walk, 6

length of, 6

Weighted confidence ellipsoid, 74

Weights

chord length, 52

mean-value, 53

shape-preserving, 52

Tutte, 51
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