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Abstract

Data-driven Regression Models for Voyage Cost
Optimisation Based on the Operating Conditions of the

SA Agulhas II

P.G. Durandt

Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Mechatronic)

December 2020

The maritime industry is a cornerstone in the modern globalised economy.
Efficient operation of ocean-going vessels is of great importance from both
financial and environmental perspectives. Carbon emissions from maritime
activities are projected to increase significantly in the coming decades. Short
term strategies to address the carbon footprint issue calls for research around
topics such as efficiency optimisation of ocean-going vessels.

Emerging digital twin platforms are allowing asset owners and operators to
manage the vast information networks that monitor asset performance. Dig-
ital twins provide a way to plan, monitor and simulate various operating en-
vironments to find optimum configurations. Machine learning methods are
harnessed to provide an innovative solution to modelling of data-driven prob-
lems which could be very useful in the prediction of asset responses for various
operational scenarios. Speed and route optimisation with the use of data-
driven models are prerequisites in the attempt to provide decision support
capacity to gain tactical foresight for maritime operations.

The SA Agulhas II (SAAII) is a polar supply and research vessel owned and
operated by the South African Department of Environment, Forestry and Fish-
eries (DEFF). This vessel is of particular importance due to the large quantity
and variety of data, for both open water and ice navigation, that are recorded
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ABSTRACT iii

during annual voyages to Antarctica, Marion and Gough Islands. Data is
comprised of physical measurements from on-board sensors and diligent ob-
servations of ocean and ice conditions. Reconciliation and synchronisation of
observed and machine data from the ship’s central measurement unit (CMU)
was successful and paved the way towards effective data-driven modelling.
Two different machine learning models, support vector regression (SVR) and
artificial neural networks (ANN), were trained to predict the powering per-
formance of the SAAII for open water and ice navigation while subjected to
various atmospheric and ocean conditions. Output power is directly relatable
to fuel consumption and was successfully estimated from trained models. A
non-linear relationship between power and speed is observed and provides an
opportunity to optimise ship operations in terms of cost or time.

Speed optimisation illustrates the financial cost-benefit impact of operating
at higher speeds and power levels. A pilot exercise is defined to assess the
applicability of data-driven models in a route selection context. A dynamic
optimisation technique is successfully implemented to account for the stochas-
tic, time-series characteristics of weather conditions over a voyage path. Data-
driven modelling and optimisation offer breakthrough opportunities to ensure
the modernisation and sustainability of the SAAII in the context of a South
African presence within Antarctic and Southern Ocean research.
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Uittreksel

Datagedrewe Regressie Modelle vir Vaart
Kosteoptimering Gebasseer op die Operasionele

Omstandighede van die SA Agulhas II
(“Data-driven Regression Models for Voyage Cost Optimisation Based on the

Operating Conditions of the SA Agulhas II”)

P.G. Durandt

Departement Meganiese en Megatroniese Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Megatronies)

Desember 2020

Die seevaartbedryf is ’n hoeksteen van die moderne wêreldekonomie. Doeltref-
fende see-verwante bedrywighede uit beide ’n finansiële en omgewingsbewust-
heids perspektief is van belang. Die bydraes van grootskaalse koolstofvryla-
tings uit die seevaartbedryf word na verwagting beraam om noemenswaardig
toe te neem. Korttermyndoelwitte om the koolstofvoetspoor aan te spreek,
vra van kundiges om onderwerpe soos doeltreffendheidsoptimering van skepe
te ondersoek. Innoverende digitale platforms is besig om bate eienaars en
operateurs te bemagtig met die vermoë om ’n geweldige hoeveelheid inligting
van sensornetwerke bestuur kan word. Hierdie digitale platforms skep die ge-
leentheid om beplanning, kontrolering en simulasies vir verskeie operationele
omstandighede uit te oefen, sodat die optimale konfigurasie van veranderlikes
geïdentifiseer kan word. Masjienleermetodes word gebruik om ’n oplossing vir
die modellering van datagedrewe probleme te bied. Spoed- en roeteoptimering,
met die gebruik van datagedrewe modelle, is voorvereistes in the poging om
tegnologie te ontwikkel wat in verband met toekomsgerigte taktiese besluitne-
ming ondersteuning te bied.

Die SA Agulhas II (SAAII) is ’n polêre verskaffing- en navorsingskip wat deur
die Suid-Afrikaanse Departement van Omgewing, Bosbou en Vissery besit
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word. Hierdie skip is van belang weens die beskikbaarheid van ’n groot hoe-
veelheid en verskeidenheid data uit jaarlikse ekspedisies na Antarktika, sowel
as Marion- en Gough eiland. Hierdie data was tydens oop water en ysnaviga-
sie omstandighede opgeneem. Die datastel bestaan uit metings deur sensors
wat op die skip geïnstalleer is, asook ys- en golfobservasies wat deur vrywilli-
gers aangeteken word. Die rekonsiliase en sinkronisasie van al die databronne
was sukselvol en baan die weg na doeltreffende modellering van die skip se
gedrag. Twee verskillende masjienleer modelle, naamlik ondersteuningsvektor
regressie (support vector regression) en kunsmatige neurale netwerke (artificial
neural networks), is ondersoek. Die modelle is geleer om die drywing van die
SAAII, met die effek van weers- en ysomstandighede in ag geneem, suksusvol
te voorspel. ’n Nie-linêre verhouding tussen drywing en spoed is waargeneem.
Tesame met die gevolgtrekking dat brandstofverbruik direk gekoppel is aan die
skip se uitset drywing, skep dit geleentheid om die uitvoering van operationele
planne in terme van koste of tyd te optimeer.

Spoedoptimering het die koste-voordeel impak van operasies met hoë spoed en
drywing geïllustreer. ’n Loodsoefening is gedefinieer om die toepassingswaarde
van ’n datagedrewe model, met betrekking tot ’n roete-keuse konteks, te wys.
’n Dinamiese optimeringstegniek wat voorsiening te maak vir veranderende en
tydafhanklike weersomstandighede oor die lengte van ’n seeroete, is geïmpli-
menteer. Datagedrewe modellering en optimering skep nuwe geleenthede om
die modernisering en volhoubaarheid van die SAAII, binne die konteks van ’n
Suid-Afrikaanse teenwoordigheid in die Antarktiese navorsingsgemeenskap, te
verseker.
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Chapter 1

Introduction

The maritime industry plays an integral role of modern day life. Globalisation
and availability of goods from around the world, which is commonplace in the
modern era, would not be possible without international shipping. It connects
countries from across the world to facilitate trade and international relations
and can be considered as a cornerstone to the international economy (Cosci,
2018).

Maritime operations make it possible to conduct research activities in some of
the most remote and isolated regions on the planet. The logistical solutions
that ships offer make it easy to maintain permanently staffed research bases in
areas such as Antarctica and the islands of the Southern Ocean. The amount
of data gathered from voyages to remote environments contribute to how we
understand the effect that climate change has on the oceans, atmosphere,
plants and animals which are endemic to island habitats. The preferential
location of South Africa allows access to some of the most oceanographically
and biologically diverse routes to the southernmost continent in the world.
(Ansorge, Skelton, Bekker, de Bruyn, Butterworth, Cilliers, Cooper, Cowan,
Dorrington, Fawcett et al., 2017).

The sustainability of the maritime industry is important for the wellbeing of
the modern economy and research in geological, environmental and engineering
sciences.

1.1 Background
The SA Agulhas II (SAAII) is a South African polar supply and research ves-
sel owned and operated by the South African Department of Environment,
Forestry and Fisheries (DEFF). The ship, as shown in Figure 1.1, was built
to the PC-5 ice class specification, meaning that she can operate year round
in medium first-year ice with some old ice inclusions (DNV-GL, 2017). She
measures 121 m in length, 21.7 m wide and is powered by two 4500 kW elec-

1
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Figure 1.1: The SA Agulhas II at Neumayer Station (January 2018).

tric motors connected to drive shafts that turn controllable pitch propellers
(CPP). The propulsion system makes it possible for the ship to reach a re-
ported maximum speed of 18 knots in open water and 5 knots in 1 m thick
ice.

The SAAII is the ship used by the South African National Antarctic Pro-
gramme (SANAP) to resupply the research stations in Antarctica, Marion and
Gough Island. The voyages to these locations allow for oceanographic and en-
gineering research activities while at sea. The Sound and Vibration Research
Group (SVRG) from Stellenbosch University (SU) have been researching the
dynamic behaviour of the SAAII since 2012. The rough sea conditions of the
Southern Ocean, where the SAAII mostly operates, make it an ideal engineer-
ing laboratory to study the drivers of ship vibration, hull loads and operating
performance in open water and in ice.

The SAAII undergoes an annual relief voyage to Antarctica to resupply
the research station of the South African National Antarctic Expedition
(SANAE IV) located in the Queen Maud Land area. The route of the 2017-
2018 relief voyage is plotted in Figure 1.2. The ship departed on 8 Decem-
ber 2017 from Cape Town harbour (1) and sailed via Bouvet Island (2) to-
wards Penguin Bukta in Antarctica (3) where provisions for SANAE-IV were
offloaded. The ship spent more than a month at the Antarctic ice shelf, navi-
gating through ice between the German Neumayer station and Penguin Bukta.
When relief activities were completed, the ship departed for South Georgia (4)
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Figure 1.2: Route for 2017-2018 relief voyage from Cape Town (1) to Bouvet
Island (2), Antarctica (3) and South Georgia (4).

and arrived on 31 January 2018. From South Georgia the ship sailed back to-
wards Bouvet Island before returning to Cape Town, arriving in South Africa
on 13 February 2018. This brief description is typical for an annual relief voy-
age to Antarctica during summer. Other voyages to the Marion and Gough
islands rarely expose the ship to ice due to their locations north of the marginal
ice zone. Relief voyages to Antarctica add an unique perspective into the per-
formance of the SAAII by exposing the ship to extreme conditions, yielding
data that is rich in various open water and ice navigation scenarios.

1.2 Motivation

1.2.1 From a climate change and environmental
perspective

Climate change is a global phenomenon that the scientific community is only
beginning to grasp. It is a mainstream topic in international discussions to
find environmentally sustainable policies. This is a key driving force behind
innovation in industry, especially in sustainable and renewable energy, which
need to be accounted for when realising massive investments for new polar ves-
sels such as the Polarstern II (Germany) and the RRS Sir David Attenborough
(United Kingdom).

During 2012, the maritime industry was responsible for close to 938 million
tonnes of CO2 emissions, accounting for roughly 2.6% of the global total. It is
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projected that maritime related CO2 emissions will increase significantly within
the next few decades. In the period up to the year 2050, and depending on
the future economic climate, maritime emissions could increase by 50% to
250%. Emission projections show that improvements in the energy efficiency
of shipping is an important element in the effort to decrease the rate of CO2
emission growth (IMO, 2015).

The strategy adopted by the International Maritime Organization (IMO) con-
sists of short, medium and long term measures to reach the goal of reducing
greenhouse gas (GHG) emissions by 40% by 2030 (Cosci, 2018). While the
medium and long term measures rely heavily on a political drive from par-
ticipating countries, the short term counter measures are more applicable to
current engineering research. Cosci (2018) mentions that the strategy suggests
a number of methods to improve shipping efficiency, which include: funding
research into low carbon fuels; the development of more efficient ports; and
lastly to research route, speed and power optimisation techniques to improve
energy efficiency.

In contrast, according to a report from the International Council on Clean
Transportation (ICCT), the fuel demand from ships has increased despite the
efforts to improve their efficiency. Fuel consumption from international ship-
ping have increased from 291 million tons in 2013 to 298 million tons in 2015
(Olmer, Comer, Roy, Mao and Rutherford, 2017). This report claims that
should international shipping be treated as a country, it would have been the
sixth largest emitter of energy-related CO2 in 2015. The graph in Figure 1.3
shows the change in CO2 intensity with the change in total CO2 emissions of
different ship classes. The yellow bars indicate the change in CO2 intensity
and the blue showing the change in total CO2 emissions. For almost all of the
classes the intensity of CO2 emissions decreased, in some cases as much as 9%.
This figure reinforces that, from either a design or operational perspective,
ships are becoming more efficient in terms of energy usage. However, due to
the increased demand for shipping during the period of the study, the efforts to
improve efficiency have been countered by higher fuel usage. The ICCT report
suggests that the mismatch between CO2 intensity and emissions are unlikely
to be substantially reduced by normal business-as-usual improvements (Olmer
et al., 2017).

Within this context of climate change, there is a global call for the shipping
industry to reduce its environmental footprint. The cost of fuel has become
one of the largest items associated with the operating costs (OPEX) of a
vessel. Presently, fuel is accounting for almost 50% of the total voyage cost
(Bialystocki and Konovessis, 2016). Keeping in mind that, depending on the
size and purpose of a vessel, the amount of fuel that is consumed on a voyage
can be in the order of a few tonnes per day. A 5% error in estimating the
fuel consumption can translate into a substantial financial expense. Another
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Figure 1.3: Change in CO2 emission and intensity according to ship classes
(Olmer et al., 2017).

.

important point to mention is the fuel used in shipping is a non-renewable
source of energy, which emphasises the fact that it must be consumed in an
optimal and responsible manner. Researching methods to optimise fuel usage
can find innovative ways to reduce operating costs and CO2 emissions. These
goals are inline with drives from the IMO to reduce the carbon footprint of
the maritime industry.

1.2.2 From a technology and innovation perspective

Innovation has always been a driver to obtain a competitive edge in industry. It
is fuelled by the prospect of securing new markets or refining and reducing costs
in existing ones. Digital platforms allow industries to monitor and understand
their processes. The insight from these platforms could identify inefficiencies
and inspire ways to resolve them.

The flow of information is an integral part of modern industrial activities.
Sensors installed across mines, processing plants or any other industrial assets
provide valuable information on the productivity and condition of machinery.
Digital solutions should form part of any plant’s control and instrumentation
infrastructure to manage the flow of information. Modern supervisory control
and data acquisition (SCADA) systems are typical examples of this digital
infrastructure, although not without its limitations. The challenges to man-
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age these vast amounts of data is increasing rapidly. Cost-effective and more
readily available sensors provide real or near real-time measurements, and are
transforming plants into an industrial Internet of Things (IoT). About 20%
of operational budgets can be attributed to poor information management
(DNV-GL, 2016). Not only is the management of data important but also the
interpretation thereof. A system limited to process monitoring is completely
reactive to machinery failure, resulting in costly unplanned down time. On the
other hand, a system that has some kind of foresight will enable operators to
make corrective decisions in time before faults occur. Digital services should
not just be a representation of physical systems but deliver value to the end
user.

From various corners of industry, the notion of an asset as a sensor is becoming
more apparent. Real-time and full scale measurements of assets could be bene-
ficial by advising on the correct use and management thereof. This technology
is a cornerstone when considering future endeavours such as the automation
of assets. DNV-GL (2016) introduces a digital twin concept where a cloud-
based virtual image is created to provide a platform for analysis, insight and
diagnostics of an asset. This concept can be part of the solution to address
the historical weakness of poor information management while still accommo-
dating the increasing demand for real-time asset monitoring (DNV-GL, 2016).
The digital twin, along with advanced analytics and data-driven techniques
such as machine learning, can change the way how asset condition and per-
formance is monitored (DNV-GL, 2016). It paves the way for decision aiding
technologies with predictive capacity, which aims towards optimising efficient
operations (Bekker, 2017) and to improve condition and load monitoring sys-
tems (Bekker, Lu, van Zijl, Matthee and Kujala, 2019). Industry is pushing
for digital solutions that accomplishes this goal.

1.3 Objectives
In the light of the current economic, environmental and technological climate,
it is of interest to find solutions that assist with the management and efficient
use of assets within the maritime industry. It is proposed to harness the digital
twin concept to investigate data-driven modelling and its contribution to deci-
sion support systems within the operational context of the SAAII. Challenges
include the stochastic and ever changing nature of weather conditions and the
complexity of ice-ship interactions that influence the performance characteris-
tics of the vessel. Data-driven modelling and cost optimisation could benefit
the ship’s operators by creating a tool for route planning which provides a sense
of tactical foresight. Ice and weather conditions change daily and routes are
often planned from satellite images that are sometimes delayed by a number
of hours. It is envisioned that a ship such as the SAAII have the technology
available to assist with the planning and optimisation of routes, especially in
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the Antarctic regions, which does not solely rely on the use of satellite im-
agery. Routes could be recommended in terms of the quickest voyage time
between waypoints, or in terms of minimum cost by means of route selections
that improve a ship’s efficiency (Zhang, Zhang, Zhang and Mao, 2019). It is
worth exploring the applications of this idea within the operational context of
the SAAII.

Cost optimisation in terms of time, energy efficiency and speed are the first
step toward route optimisation. The objectives of this study are focussed on
the development of a data-driven model that characterises the performance of
the SAAII, which is valid for a defined range of environmental and operating
conditions. This data-driven model will be used to optimise the operating
costs for a unit of distance travelled by the ship. It is not the purpose of this
model to find the best route but rather to find the optimum speed to minimise
costs. The results from this will be an input to a route optimisation problem.
The four main objectives are listed as follows:

1. The first objective is to gather and process the operational data from
the SAAII’s central measurement unit (CMU) and environmental obser-
vations which was obtained from previous voyages. Analysis of the data
is required to show the distribution and correlations between variables.
Lastly, the data has to be prepared for regression model training.

2. The second objective is to use suitable machine learning algorithms and
train a data-driven regression model of the output power based on oper-
ational data from previous voyages. The validity of this model must be
tested for both open water and ice navigation.

3. The third objective is to use the regression model in an optimisation
problem to minimise operating costs by finding the optimum speed in
simulated operating conditions. The cost function will be expressed as
the sum of fuel and overhead costs.

4. The fourth objective is to illustrate the decision support value of data-
driven modelling and cost optimisation in a pilot cost-benefit exercise
for route recommendation and selection under simulated operating con-
ditions. The models should predict the best route based on waypoints
and artificial weather conditions.

The flow diagram in Figure 1.4 provides a graphical representation of the
four defined project objectives. The completion of all four stages presents
an opportunity to attempt comprehensive route optimisation for both open
water and ice, which falls within the overarching goal from the IMO to find
operational strategies that improve efficiency (Cosci, 2018).
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Figure 1.4: Flow diagram of project objectives.

Over the past few years, the SAAII has been fitted with many different types
of sensors to measure structural vibration, hull loads, ship dynamics, machine
settings and navigational parameters. Massive amounts of data is available
from past voyages to Antarctica, Marion and Gough Islands. It is the ideal
vessel to base this project on. The success thereof will benefit both the SAAII’s
crew and owners from an operations and financial perspective.
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Chapter 2

Literature review

2.1 Introduction
The modern shipping industry is faced with demands to reduce costs and
increase efficiency. Innovations must align with the directives set out by the
International Maritime Organisation (IMO) to reduce the carbon footprint
of the sector. Energy efficiency can be optimised from a design, operational
or strategic point of view (Zhang et al., 2019). It would be a slow process
to wait for new and more energy efficient ships to replace the ones currently
operating (Johnson and Andersson, 2016), which implies that design-based
innovations are not a feasible option in the short and medium term. Instead,
research efforts should focus on finding improved operational strategies such
as speed optimisation, route selection and effective asset management. The
modelling and optimisation of vessels are necessitated by this global drive.
Nonetheless, ship operators should not sacrifice effective operational risk and
safety management for gains in efficiency. Digital twin solutions aim to provide
asset owners with valuable real-time information to make decisions that reduce
operating costs and downtime arising from unplanned maintenance (DNV-GL,
2016).

The biggest contributing factors to the operating costs of the SAAII is main-
tenance and fuel. With current provisions in the operating budget, the SAAII
will have significant budgetary shortfalls from 2020 to 2023. Due to these
constraints, the ship cannot spend the desired 160 days per year out at sea
(Devanunthan, 2019). This serves as motivation to use the extensive sensor
networks on-board the SAAII as a platform to explore the possibilities of digi-
tisation and modelling of ship responses to obtain predictive capacity (Bekker
et al., 2019).

The progression of information from initial measurement to decision aiding
ability is shown in Figure 2.1. The first two stages, measurement and analysis,
have been documented in terms of the structural vibration (Soal, Bekker and

9
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Figure 2.1: Roadmap from data measurement to decision aiding (Bekker, 2017)

Measurement Analysis Monitoring 
Modelling  + 

decision aiding 

Past 

(hindsight) 

Present 

(insight) 

Future 

(foresight) 

Design perspective Operational and tactical perspective 

Figure 2.2: Perspectives gained from full-scale operational data.

Bienert, 2015), ice load estimation (Bekker et al., 2019), detection of wave
slamming sites (Omer and Bekker, 2016) and the human response thereof
(Omer and Bekker, 2017). These studies have contributed to an extensive
experience-driven operational and tactical knowledge-base for the SAAII. How-
ever, real-time monitoring and decision aiding capabilities are areas that still
need attention.

Each step of data processing, Figure 2.1, describe the ship’s responses from
three distinct perspectives. The flow diagram in Figure 2.2 indicates that the
data can be interpreted from a past, present and future orientated point of
view. For example:

1. Measurement and analysis both report on what happened in previous
voyages.

2. Monitoring systems show the real-time state of the ship.

3. Modelling with predictive capability estimates what the future responses
of the ship would be, subject to various operational environments.

A hindsight perspective provides useful feedback for the iterative design process
with medium and long term outputs looking into the development of improved
components, parts and ship structures. This requires extensive analysis and
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investment from stakeholders in the maritime industry. Comprehensive real-
time monitoring requires extensive control and instrumentation infrastructure
to implement successfully. These systems assist the crew with their oper-
ational, in the moment, decision making. Modelling and decision support,
which aims to provide a sense of foresight, is necessary to produce a tactical
tool that assists with the planning of shipping speeds and routes. A large po-
tential for improvement in energy efficiency, with noteworthy economic gain,
is yet to be exploited (Johnson and Andersson, 2016).

The digital twin is a virtual representation of an asset that allows single source
access to information in all three time frames outlined in Figure 2.2. Histor-
ical information would include construction reports, quality acceptance tests
and historical voyage data. Real-time processes could be monitored and com-
pared to future estimates predicted from the digital model (DNV-GL, 2016).
Literature indicates that the key to useful predictive analytics is the accurate
modelling of ship dynamics from historical data (Bialystocki and Konovessis,
2016; Gkerekos, Lazakis and Theotokatos, 2019; Yoo and Kim, 2018).

2.2 Modelling ship dynamics
Ship dynamics describes the responses observed from propulsion, buoyancy and
environmental forces that are exerted on an ocean-going vessel. These forces
originate from the propulsion and steering systems within a highly variable op-
erating environment. The powering performance is predominantly dependent
on speed but environmental factors induce a considerable amount of variance
in the power-speed relationship (Yoo and Kim, 2018). The SAAII predomi-
nantly operates in the Southern Ocean and around the coast of Antarctica.
The load profiles of open water compared to ice navigation are very different.
Characterising and understanding these significant differences are the key to
developing a successful power performance model.

2.2.1 Performance indicators

Equation 2.2.1 describes the energy efficiency operational indicator (EEOI),
which is a common metric used to quantify shipping performance in terms of
energy efficiency. Guidelines for its use set out by the IMO (IMO, 2009).

EEOI =

∑
j FCj × Ccarbon

mcargo × d
(2.2.1)

In Equation 2.2.1, j represents the fuel type; FCj the total fuel consumption
for a voyage; Ccarbon is the carbon content of the fuel type j; mcargo is the mass
of the cargo; and lastly d which is the total distance for a given voyage. The
formulation shows that an improvement in energy efficiency would translate

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 12

Figure 2.3: Various operational and environmental factors that effect energy
efficiency (Yoo and Kim, 2018).

into a decrease of EEOI (Zhang et al., 2019). The fuel type, vessel tonnage and
distance are constants to a specific voyage and difficult to influence. The best
strategy to improve the efficiency would be to decrease the fuel consumption of
the vessel (Wang et al., 2018; Zhang et al., 2019). Wang et al. (2018) concludes
that speed optimisation for fuel consumption reduction could improve profits
significantly.

2.2.2 Factors influencing power demand

Power is required to push a ship through water, as is the case with any me-
chanical system that does work. Non-linear hydrodynamic forces between the
hull and water induce drag that load the propulsion system. Fuel consumption
is directly related to power output. To guide fuel consumption estimates, a
power versus speed curve is calculated for new vessels during sea trails. How-
ever, a single curve is insufficient to describe the powering performance of a
vessel for its whole life cycle (Bialystocki and Konovessis, 2016).

Some of the main factors that influence power demand are shown Figure 2.3.
The power generated from the engine turns the drive shafts and propellers
which create thrust and push the ship forwards. Unless otherwise specified,
all references to output power should be considered as the mechanical shaft
power driving the ship’s propellers. Engine power increases in proportion to
speed as a result of non-linear hydrodynamic drag between the hull and water.
It is also affected by environmental factors and operational settings (Yoo and
Kim, 2018). Bialystocki and Konovessis (2016) refers to three main factors
that contribute additionally to the load:
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Figure 2.4: Time series dependency of ship powering dynamics for steady state
operation (Yoo and Kim, 2018).

1. Increased draft and thus water displacement,

2. Adverse ocean and atmospheric weather conditions,

3. Wear and deterioration of the hull and propeller roughness.

Draft and displacement are the operational parameters that can be adjusted
by the crew using hydrostatic and stability tables (Bialystocki and Konoves-
sis, 2016). Weather conditions refer to oceanic (wave height, direction and
length) and atmospheric factors (wind speed and direction). Lastly, wear and
deterioration of hull and propeller roughness refer to the adverse affects of
prolonged bio-fouling and cavitation on the efficiency of a vessel. Its effect can
be mitigated by conducting routine maintenance (Bialystocki and Konovessis,
2016).

Apart from the listed elements, the time dependence between them should
also be considered. Yoo and Kim (2018) represents the interconnected rela-
tionships for steady state conditions as a graphical probability model in Fig-
ure 2.4. Weather, W t, operational settings, Ot, and engine rotational speed,
nt contribute to the ship dynamics at time t which has an effect on the speed,
V t through water. The speed and engine power, PB

t, directly influence the
rotational speed of the engines at the next time step t + 1. The continuous
co-dependence of the variables, influenced by stochastic weather conditions,
make the reliable modelling of ship dynamics very complex (Yoo and Kim,
2018). Analytical or empirical formulations between power and speed may be
difficult to determine and could contain too many uncertainties (Zhang et al.,
2019). For ice-going ships this relation may be even more complex compared
to open water shipping, with no official guidelines in place for the application
of energy efficiency strategies for polar navigation (Zhang et al., 2019).
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2.2.3 Modelling ice interactions

Ice-ship interactions bring a lot of uncertainties into the modelling of ice nav-
igation, mainly due to inaccurate ice data or the measurement thereof (Zhang
et al., 2019). Li et al. (2020) describe the ice breaking process in detail. Ini-
tially, ice will be crushed and start to shear along the edges when a ship enters
a sheet of level sea ice. A bending moment is exerted on the sheet due to the
vertical contact force between the hull and ice. This bending moment causes
the ice to break and rotate parallel to the hull. Some of the ice pieces stay
submersed under the hull where the ice heavily interacts with the hull and
other pieces of ice (Li et al., 2020).

Ship-ice and ice-water interaction occur on a localised scale which in turn con-
tribute to a ship’s performance on the global scale. The scope of this study
which aims to predict powering performance in steady state conditions sim-
plifies the problem with modelling ice interactions. On a global scale the ran-
domness of ice thickness and strength would have a limited effect on the power
demand estimate, should the mean ice conditions remain relatively constant
over time (Li et al., 2020).

In contrast to open water efficiency optimisation, which is usually the shortest
and fastest route, is fuel consumption for ice navigation dependent on the
selected route. The resistance from one route to the next may not be the same
due to differing ice and environmental conditions, resulting in fuel consumption
also being subject to route selection (Zhang et al., 2019). This provides a
bigger picture point of view towards the problem of efficient ice navigation.
Apart from finding an optimal speed, route selection is of equal importance
for effective and safe operation.

2.3 The SA Agulhas II - a valuable asset for
data-driven modelling and optimisation

The SAAII is equipped with a multi-sensor data acquisition network that mea-
sure vibration, hull strain, operational and environmental parameters (Bekker,
2017; Bekker et al., 2019). Apart from Bialystocki and Konovessis (2016), who
used noon reports for a statistical model, most other sources that had access to
similar data sets to that of the SAAII used various machine learning techniques
to successfully model ship propulsion performance (Gkerekos et al., 2019; Wang
et al., 2018; Yoo and Kim, 2018). Literature indicates that models could make
predictions that account for changes in weather and sea state. Figure 2.5 shows
the power versus speed curves for varying sea states estimated by a Gaussian
process (GP) model (Yoo and Kim, 2018). A container ship larger than the
SAAII was involved with the research to produce the reported curves. The
ship’s specifications are listed in Table 2.1. The Beaufort number is an indi-
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Figure 2.5: Power versus speed curves for different Beaufort numbers (Yoo and
Kim, 2018).

Table 2.1: Specification of 4600 TEU class container ship and propulsion sys-
tem (Yoo and Kim, 2018).

Ship feature Specification
Overall length 254.7 m
Breadth 37.5 m
Design draft 12 m
Diesel engine rating 25 040 kW @ 95 rpm

cation of the sea state. A higher number represents harsher ocean conditions
which in turn translate into a larger power demand to maintain a constant
speed. The success of machine learning models, along with the availability of
full-scale operational data, make a strong case for a similar approach towards
the goal of a data-driven performance model for the SAAII. Machine learning
is an overarching term that could reference to numerous model architectures.
Gkerekos et al. (2019) trained nine different regression models using various
machine learning algorithms. All of the models were able to make accurate
predictions, but the two that were among the best performers were support
vector machines (SVM) and artificial neural networks (ANN), which achieved
accuracy scores of 95% and higher (Gkerekos et al., 2019). These two methods
will be considered for training a powering performance model from the SAAII’s
data. The model would accept input parameters such as speed, shaft and pro-
peller settings and environmental conditions to make motor power demand
predictions.

The next step towards a model with decision aiding capability would be opti-
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Figure 2.6: Diagram of dynamic optimisation.

misation in terms of energy efficiency, fuel consumption or cost. As discussed
previously, for a single voyage the EEOI is most affected by fuel consumption
(Wang et al., 2018), which has a direct cost implication. Optimisation in terms
of fuel consumption would automatically minimise the energy efficiency and
voyage costs. The novelty of the model accounting for weather conditions is
a possible drawback in the optimisation context. The uncertainty and time-
series dependent nature of environmental factors could decreased the accuracy
for weather forecasts over longer periods of time. It was shown that weather
does affect the power requirement as illustrated in Figure 2.5. Static optimi-
sation methods cannot ensure a reliable recommended speed if the weather
changes significantly along the voyage route. To address this problem a dy-
namic optimisation method is proposed by Wang et al. (2018).

The dynamic optimisation method aims to compensate for the time-varying
environmental factors along the voyage distance. Figure 2.6 illustrates the
methodology behind the method. The voyage distance from point A to B is
divided into segments labelled A1, A2, A3, . . . , An with the time steps indicated
by t0, t1, t2, . . . , tn. For each segment a unique weather vector, Wj, is deter-
mined specific to the conditions a ship would see at the given location and
time. The optimum sailing speed can then be determined for each segment to
compensate for disturbances from changing environmental conditions (Wang
et al., 2018).

2.4 Introduction to machine learning theory
Machine learning is a subfield of computer science that is well adapted to
process and analyse large, complex data sets (Géron, 2017). The philosophy
behind it is very different from classical programming. The flow chart in Fig-
ure 2.7 illustrates the differences between the two approaches. According to
this diagram, with classical programming the programmer will code the rules
according to which the data should be analysed. Hence, when the data is fed
into the program, it will result in answers according to the predefined rules
(Chollet, 2018). The problem with this approach is that complex data may
need complex rules, leading to a scenario where long lists of rules are required
for proper analysis. This is not feasible to do by hand. Machine learning will
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Figure 2.7: Main differences between classical programming and machine
learning (Chollet, 2018)

most often simplify a program and give better results than conventional meth-
ods (Géron, 2017). With machine learning, the data and expected answers
are given simultaneously as inputs to the program. The algorithm will then
determine the rules that correlate the input data and expected solution i.e. it
creates a data-driven model. New data can now be presented to the model to
produce predicted results based on the lessons learnt from the original training
data (Chollet, 2018).

There are many techniques that fall under the machine learning field and are
mostly classified according to the amount of supervision necessary during train-
ing (Géron, 2017). The main types of learning are unsupervised, reinforcement
and supervised learning. Unsupervised learning is useful in problems where
training data is only available as inputs and the algorithm’s goal is to highlight
correlations observed from input data (Gkerekos et al., 2019). Reinforcement
learning requires the algorithm to make decisions and perform actions. The
algorithm is penalised or rewarded based on the success of predicted outcomes
as it learns the best strategy to solve a problem (Géron, 2017). A typical
simple application is an algorithm which learns the best strategy to win a
game. Supervised learning is more in line with the idea shown in Figure 2.7
where trainable input data is given to an algorithm along with the expected
results. Supervised learning is the basis for classification (discrete number of
outputs) and regression problems (continuous target variables). Therefore, the
challenge of predicting power output over time is a regression problem due to
the presence of continuous variables (weather, load and speed) that affect the
overall resistance of the vessel (Gkerekos et al., 2019).

Care must be taken to ensure that a machine learning model does not learn
unwanted trends. The ability of an algorithm to make reliable, repeatable
and accurate predictions from new data is the ultimate goal of developing
a model in the first place. Poor quality data is one of the main reasons for
inaccurate and unreliable models (Géron, 2017). Insufficient volumes and non-
representative data are common pitfalls (Géron, 2017). Complex models that
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are based on less data will often be outperformed by simple models that are
exposed to vast quantities of data (Halevy, Norvig and Pereira, 2009). Gk-
erekos et al. (2019) concludes that the quality of a model is dependent on the
quality of the training data. If the data represents only a portion of the sample
space or contain irrelevant features, then the model would learn meaningless
trends.

Overfitting is another hurdle that requires consideration. A model can learn
the correct representations from the training data but may not generalise well
to new examples. In such cases overfitting has occurred (Géron, 2017). Yoo
and Kim (2018) note that ship performance models based on machine learning
algorithms alone are especially vulnerable. It is suggested to include domain
knowledge of the physical ship into the design of a regression model to reduce
the likelihood of overfitting. Domain knowledge refers to physical ship dynam-
ics such as the fact that speed cannot be increased or maintained at cruising
levels without a corresponding supply of power from the engines. If these rules
are violated then the model is invalid.

2.4.1 Support vector machines

A support vector machine (SVM) is a supervised learning technique used for
classification, regression and outlier detection problems. A SVM does this by
mathematically constructing a decision boundary, called a hyperplane, in a
higher dimensional space to achieve good separation between different classes
of training data. In general, the larger the distance between the decision
boundary margins, referred to as support vectors, the lower the generalisation
error will be (Pedregosa et al., 2011). Figure 2.8 is a good example of a linearly
separable problem. The orientation of the decision boundary is chosen by
finding two parallel lines, called support vectors, that separate the red and blue
data points with the largest distance, a, between them. SVM’s are known as
kernel methods, where the name refers to a kernel function which represent the
hyperplane that define the decision boundary. Kernel functions are typically
determined by hand while the hyperplane is learned from the training data
(Chollet, 2018).

SVM’s are very memory efficient. Unlike other machine learning methods,
SVM’s are very well understood and backed by theory and thorough mathe-
matical analysis (Chollet, 2018; Pedregosa et al., 2011). A major drawback of
SVM’s are that they do not scale very well to high dimensional problems. This
could be an issue for its application on the SAAII’s data set, which contains
more than a dozen features. SVM’s also require that internal hyper-parameters
be selected appropriately according to the given problem. This gives rise to
the issue that the algorithm may need to be optimised for a specific problem by
tuning hyper-parameters until the best configuration is achieved. Nonetheless,
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a 

Figure 2.8: Example of a decision boundary for linearly separable problems.
Adapter from Pedregosa et al. (2011).

because of its success in Gkerekos et al. (2019), the method might still have
value as a baseline to compare with other techniques.

2.4.2 Artificial neural networks

An ANN is a technique of machine learning where the data is represented in a
layered approach. The data is transformed from one layer to the next where,
from the algorithm’s perspective, it becomes increasingly informative of the
final result (Chollet, 2018). The ANN uses these layers to learn connections
between the input data and the desired outcomes. The parameterisation of how
the input data is transformed in a layer is described by the layer’s weights. For
ANN, learning happens by tuning the values of the weights so that the network
correctly maps the inputs to desired outputs (Chollet, 2018). A general flow
diagram that illustrates the learning process is shown in Figure 2.9.

Initially, the values of the weights are random and result in a network with
meaningless outputs. Feedback is required so that the network has a way to
observe the error between a prediction and the desired value. A loss function is
defined for this purpose and in turn calculates a loss score. The key to a ANN’s
success lies in the process where the weights are adjusted in the direction
that minimizes the loss score. The central process behind an ANN is the
backpropagation algorithm which facilitates this optimisation loop. Sufficient
iterations of this training loop, typically tens of iterations over thousands of
examples, will result in weights that are tuned to the point where the loss
function is minimized. This yields a trained network with minimal loss between
the predicted outputs and the target values (Chollet, 2018).
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Figure 2.9: Flow diagram of a general neural network architecture. Adapted
from Chollet (2018).

The topology of ANN allows information to be processed through the various
layers from the input to output. This process can be interpreted as feed-
forward propagation of information. ANNs display very broad approximation
characteristics and can therefore be referred to as universal approximators
(Bishop, 2006).

2.5 Chapter summary
A digital twin is the gateway for industrial assets to advance into the modern
IoT environment. It is a step towards digitising expensive assets to better plan
its construction, operation, maintenance and end-of-life phases. The goals
defined for this study focuses on the efficient operation of the SAAII. The
building blocks of accurate modelling and optimisation were discussed to show
the underlying technologies to access digital twin solutions.

Ships operate in extremely challenging environments that are difficult to fore-
cast and model analytically or empirically. Machine learning provides a fresh
perspective that is adapted for modelling of non-linear functions (Bishop,
2006). Combined with optimisation methods it could provide additional fore-
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sight for efficient tactical or operational action. The next step towards mod-
elling the powering performance of the SAAII is to inspect, clean and correct
the data obtained from its extensive on-board sensor network. Defining the
domain of a model is central to determining its application value. This can be
observed by examining the quality and distribution of the data available from
the 2017-2018 and 2019-2020 Antarctic relief voyages.
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Chapter 3

Data acquisition and processing

The data generated from the voyages of the SAAII is valuable as it can be
used to develop data-driven models of the ship’s responses. A model is only
as good as the data used to train it. Therefore, a key concern is that the
data is of the required quality and is representative of the whole operating
range of the SAAII. Training a model on biased data will inevitably produce
a biased model and, therefore, results in an inaccurate digital representation
of the SAAII. Model training often requires very large data sets to learn the
interconnected relationships between parameters. Thus, the purpose of this
chapter is to the discuss the methods used to process the raw data from the
central measurement unit (CMU) into a large data set of acceptable quality
that would be used to train machine learning models. Such a data set must
be representative of the ship’s operating range and contain enough volumes of
data in order for a trained model to be generally applied to new scenarios.

3.1 Data collection
Measurements on the SAAII were recorded and stored on-board on the CMU.
These variables relate to the operating parameters of the ship and the sur-
rounding environmental conditions. It was not possible to automatically record
and store ice or wave measurements on the CMU. Therefore, visual observa-
tions of ice and wave conditions were conducted to include this data of the
surrounding sea and ice states. All observations and measurements were made
according to UTC standard time.

3.1.1 CMU data

Operational data stored on the CMU contains the operating modes and navi-
gation parameters of the ship. The CMU data is divided into a machine control
and navigational set with the variables for both data sets listed in Table 3.1.
The machine control data was recorded at 0.5 Hz and comprises of measure-

22
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Table 3.1: CMU Variables and units.

Machine Control Data Unit Navigational Data Unit
Motor current (port) A NavTime N/A
Motor power (port) kW Latitude Deg
Motor speed (port) rpm Longitude Deg
Motor voltage (port) V Speed over ground (SOG) kn
Motor current (starboard) A Coarse over ground (COG) Deg
Motor power (starboard) kW Heading Deg
Motor speed (starboard) rpm Relative wind direction Deg
Motor voltage (starboard) V Wind speed kn
Rudder order (port) N/A Water depth m
Rudder order (starboard) N/A
Rudder position (port) Deg
Rudder position (starboard) Deg
Propeller pitch (port) %
Propeller pitch (starboard) %
Indicated shaft speed (port) rpm
Indicated shaft speed (starboard) rpm

ments from the control surfaces and machinery of the ship. The navigational
data is sampled at 1 Hz and consists out of navigational and wind related data
(Bekker et al., 2019). Sensors which record these measurements are part of the
ship’s infrastructure and serves as a method to log the operations that were
carried out during a voyage. All CMU variables are recorded in real-time and
are not time averaged. Due to international construction standards for mar-
itime vessels, on-board instrumentation can be assumed to adhere to industry
specifications and good practice.

3.1.2 Ice and wave observations

The navigational data set from the CMU is limited in the sense that it does
not have any information about sea states or ice conditions. Therefore, ice and
wave observations were conducted to capture this data. Ice observations were
only done during ice passage, with observers working rotating 3 hour shifts to
ensure uninterrupted observed ice data. Ice conditions can change very rapidly,
necessitating a high observation rate. The ice parameters, listed in Table 3.2,
were observed every minute with an average calculated for every 10 minute
interval. Ice and brash ice concentration were estimated as a fraction out of
10, where 0 referred to no ice and 10 to full ice cover. A zero value for both
parameters is interpreted as open water navigation. During ice manoeuvrers,
the ice tends to rotate along the sides of the ship when it passes through,
which allows a view of the thickness. This parameter was estimated by a
1.5 m long ruler protruding from to the side of the ship. The other parameters
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Table 3.2: Parameters gauged from ice and wave observations

Ice observations Wave observations
Snow cover Beaufort number
Brash ice concentration Wave direction
Ramming count Average wave height
Vibration intensity Max swell height
Ice concentration Wave length
Ice thickness Average wave period
Flow size Average encounter frequency

were estimated based on the observer’s judgement. Manual wave observations
were done on an hourly bases during visible day time hours and recorded the
variables listed in Table 3.2. The Beaufort number is a descriptive variable
between 0 and 12 which describe the wind and sea conditions on an increasing
scale of severity.

Variability of manual observations are expected. Fatigue, differences between
the judgement of observers and the visibility during and observation interval
could influence how observations are recorded. This inherent variability should
be acknowledged and kept in mind when interpreting results based of visual
observations. The most variability could be expected for the ice observation
data as this task has the highest observation rate, require many fields to be
filled in, and required observers to keep to a rolling 3 hour shift cycle to ensure
uninterrupted observations. Variability is most likely be expected in the ice
concentration, ice thickness, wave height and wave length observations.

3.2 Synchronisation problem of the CMU data
Data stored on the CMU is not sampled at same sampling rate. The dissimilar
sample rates, 1 Hz for navigation and 0.5 Hz for machine control parameters,
cause synchronisation problems and prohibits direct comparisons between the
two data sets. The unsynchronised data from the 2017-2018 relief voyage is
plotted in Figure 3.1, with the speed over ground (SOG) shown in red and the
starboard motor power shown in blue. The SOG and power originates from
the navigation and machine control data sets respectively. Point A show the
last sample for the navigation set, while point B indicate the last sample for
the machine control set. Both A and B represent the same point in time. It
is illustrated that a sample number from the navigation set, that for example
correspond to 13 December 2017, will not align with the same sample number
in the machine control set, which represents a different day completely. It is
not meaningful to try and find correlations or trends in the data while in this
form.
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Figure 3.1: Synchronisation problem between the machine control and navi-
gation data sets. Data from 2017-2018 relief voyage.

.

To preserve the integrity of the time-series data, interpolation cannot be used
to created and increase the number of samples for the machine control data.
Instead, data points from the navigation set has to be selected and aligned
with the machine control data. A simple but somewhat naïve solutions would
be to multiply the navigation set with a factor to scale it down to the size of the
machine control set. This method was initially explored, however, it became
apparent that the missing data points would cause this method to be invalid.
This may occur due to a faulty sensor or the system that had to reboot. The
CMU does not increment the sample number when no measurement is recorded
and does not take into account the time that had passed since the previous
successful sample. As a result, the data does not scale linearly using a simple
scaling factor.

A more appropriate way to synchronise was to compare and match the time
stamps of each data point to within a defined tolerance. By doing so, the
data from the navigation set that does not have a match will be ignored. The
ship operates mostly in steady state conditions during long distance voyages.
It can be argued that the parameters recorded by the CMU is typically slow
to respond to environmental changes. Therefore, a maximum synchronisation
tolerance of 5 seconds is suggested based on these assumptions. Samples that
could not converge within this tolerance were discarded. An algorithm was
written in MATLAB for the synchronisation. The interested reader is referred
to Appendix A. All data points had a corresponding time stamp that was
converted into epoch time format. Epoch time is a real number format that
represents a point in time as the total number of seconds that have passed
since 1 January 1970 at 00:00:00 UTC. The task of comparing the time stamp
information was much simpler in this format. Time stamp information of a
machine control samples were compared to the time stamps from the naviga-
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Figure 3.2: Time domain synchronisation convergence plot of every 10th navi-
gation sample.

tion set. The algorithm incremented through the navigation set until it was
within the time tolerance. A convergence plot of the first 60 data points is
shown in Figure 3.2. The red lines show how the time difference between an
individual machine control data point and a corresponding navigation data
point converge to zero. The data points are saved and stored in a separate
array when it is within the time tolerance, as illustrated in Figure 3.2 as the
blue circles. Figure 3.2 shows the majority of data points were sampled with
zero time difference between them while a small percentage of points were
misaligned by 1 or 2 seconds.

Ice and wave observations were conducted by observers by populating an Excel
spreadsheets with the parameters listed in Table 3.2. A very similar method
was used to synchronise the observations to the CMU data. The Excel spread-
sheet was loaded into MATLAB as an array. Time stamp information was then
converted into epoch time format to make useful comparisons. The script in-
cremented through each line of the CMU data, comparing date and time fields
until the closest match was found. The CMU data within a 10 minute obser-
vation interval was allocated the corresponding discrete information from the
ice and wave observations. Averaged data from a 10 minute ice observation
interval is therefore spread over a whole 10 minute period of CMU data which
corresponds to the same date and time when the observations were made. The
temporal resolution of ice conditions are likely to be limited by the observation
interval which serves as justification to use average values when synchronising
observations with the CMU data. Similarly, data from wave observations were
spread over a corresponding 1 hour period.

The 2017-2018 and 2019-2020 Antarctic relief voyage CMU datasets contained
enough data points to validate data-driven techniques such as machine learn-
ing practices. The combined length of data from both voyages is in the order of
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Figure 3.3: Histogram of the synchronisation error for the 2017-2018 relief
voyage data with a temporal resolution of 3 minutes.

4.5 million and 13 million for the machine control and navigation sets respec-
tively, with each sample containing various fields of measurement, Table 3.1.
The synchronisation of all the samples is computationally expensive and time-
consuming. The proposed synchronisation method allows for the opportunity
to reduce the size of data sets. Every nth sample from the navigation set
can be selected and synchronised, thereby creating trade-off between temporal
resolution and computational time.

Every 100th sample of the navigation data was used during the synchronisation
for open water data. From the 2017-2018 relief voyage this method produced
21 952 synchronised samples of the whole voyage. This translates into a tem-
poral resolution of roughly 3 minutes, which could be considered as acceptable
for steady state open water passage. The resolution can be improved but re-
quires more computational resources. Ice data for instance is highly erratic
over a short time span and requires a higher temporal resolution. The dates
for when ice passage took place were determined from the dates recorded from
observations. The corresponding CMU data within these time periods were
isolated and synchronise to a resolution of 15 seconds.

The histogram in Figure 3.3 give an indication of the amount of samples that
are misaligned after processing with a resolution of 3 minutes. More than 80%
of samples have a synchronisation error of zero seconds and 18% with an error
of 1 second. Apart from a few outlier samples that are misaligned by more
than 1 second, almost all of the data were synchronised successfully. Only
76 samples were not able to converge and was subsequently discarded. This
accounts for less than 0.5% of the data set, proving that the techinque was an
appropriate data synchronisation tool. The same technique was then used to
synchronise the 2019-2020 voyage data.
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(a) Synchronised machine control and navigation data.

(b) Route for the 2017-2018 Antarctic relief voyage.

Figure 3.4: Synchronised data and corresponding route for the 2017-2018
Antarctic relief voyage.

3.3 Observations from synchronised data

3.3.1 2017-2018 relief voyage

A graph of the synchronised machine control and navigation data for 2017-2018
is presented in Figure 3.4a. The sample numbers on the x-axis do not represent
the total number of samples available for model training; instead a reduced
number of samples is used for representation purposes. SOG follows the power
very well, especially at locations on the graph where the change in power
is almost vertical. This indicates that the synchronisation was successful.
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Comparisons between the two data sets can now be made with reasonable
confidence.

The numbers 1-6 on top of Figure 3.4a cross-reference to the waypoints indi-
cated on the map in Figure 3.4b. The first leg of the voyage, waypoints 1,
2 and 3, consisted of open water navigation for the most part with some ice
passage when approaching the Antarctic ice shelf (3). Notice the erratic power
output with low SOG at around 3 in Figure 3.4a. A number of weeks on the
timeline between 3 and 4 passed as the ship conducted logistical activities,
typically at low speed. At waypoint 4 the ship stopped at the island of South
Georgia before departing towards Cape Town (6) via Bouvet Island (2, 5). In
open water the ship typically operates at a continuous power level of 2500 kW
with one exception between waypoints 1 and 2. Here the ship was operated
at power levels higher than 4000 kW to obtain speeds of 15-17 kn. This may
prove useful during model training and optimisation as this portion of data
contain the ship’s responses at higher than usual power levels.

3.3.2 2019-2020 relief voyage

A successfully synchronised plot of the 2019-2020 CMU data is presented in
Figure 3.5a with the corresponding voyage route in Figure 3.5b. Again, the
sample numbers on the x-axis was reduced for representation and does not
indicated the quantity of data available for model training.

The waypoints indicated on the map, numbers 1-7, correspond to the numbers
shown at the top of time Figure 3.5a. The ship left Cape Town (1) and sailed
via waypoint 2 toward Penguin Bukta (3) in Antarctica. Power fluctuations
are observed with peaks up to 4000 kW in the region of 3, see Figure 3.5a, as
the ship passes through ice to reach the Antarctic coast. The ship spent a few
weeks at the ice shelf to partake in relief operations before departing towards
South Georgia (4). Afterwards the ship headed east towards waypoint 5 before
setting a course Cape Town (6). Afterwards, the ship sailed back to Antarctica
(7 and 3) a few days later to complete the relief mission. However, the machine
control data from the CMU did not record any values from this point onwards.
Therefore, from waypoints 1 to 6 is the only portion of the 2019-2020 relief
voyage that is useful for model training.

3.3.3 Data correlations

The CMU data was divided into three groups according to the ship’s operating
modes: open water; ice navigation; and cases where the ship remained station-
ary or at very low speed and power levels. The open water and ice navigation
cases were defined according to the ice concentration parameter from visual
observations. A value equal to zero indicated open water movement, while
an ice concentration value greater than zero indicated ice navigation. The

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. DATA ACQUISITION AND PROCESSING 30

(a) Synchronised machine control and navigation data.

(b) Route for the 2019-2020 Antarctic relief voyage.

Figure 3.5: Synchronised data and corresponding route for the 2019-2020
Antarctic relief voyage.

stationary case was reserved for situations where the output power is simulta-
neously less than 800 kW with a SOG lower than 0.5 kn. The scatter plots in
Figures 3.6a and 3.6b illustrate the relationship between the power and SOG
for the two relief voyages. The data is plotted according to the three operating
modes. There is a general non-linear relationship visible between power and
SOG during open water navigation for both voyages, shown in blue. This is
typical of open water operations where the load profile is caused by the hydro-
dynamic resistance between water and the ship’s hull (Yoo and Kim, 2018).
The data seems to be tightly grouped, especially around 2000 kW and 15 kn,
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(a) Scatter plot of 2017-2018 relief voyage.

A

(b) Scatter plot of 2019-2020 relief voyage.

Figure 3.6: Scatter plots of power versus SOG showing stationary, ice and
open water modes.

which could be promising for determining an appropriate model. The graph
for the 2017-2018 voyage, Figure 3.6a, show a cluster of data at high SOG and
power levels which is not present in the 2019-2020 voyage. This is a valuable
grouping that could subject a data-driven model to data describing the ship’s
responses under high speed operation, which is considered financially expen-
sive due to increased fuel consumption. Therefore, knowledge of such cases
could help models distinguish between normal and high speed operations.

On the other hand, a scattered and seemingly disorganised pattern is present
between the power and SOG for ice conditions as indicated by the red circles -
a significantly different observation compared to the open water scenario. This
chaotic pattern introduces added complexity, which implies increased difficulty
for training a model for an ice environment. The power levels are very high,
around 4000 kW, for SOG’s ranging from 0-10 kn. However, for some instances
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the same SOG is recorded at abnormally lower power levels of below 2000 kW,
marked A on Figure 3.6b. This cluster could be a result of the ship moving
through a stretch of calm water called leads or polynyas while ice observation
were still conducted. Sea ice tends to dampen water motion, thereby resulting
in very calm stretches of water located in the middle of ice fields. The calm
water provides a lower resistance to the ship’s motion and could explain why
the ship can sail at speeds of 10-12 kn with lower than normal power levels.

The poor grouping and scattered correlation of ice navigation data is indicative
of the extraneous effects of ice loads on the propulsion system. At low speeds,
below 8 kn, the hydrodynamic resistance is very low which demands minimal
power to maintain a constant speed. Ice interactions change the resistance to
motion rapidly and in a very complex fashion (Li et al., 2020), and as a result
the power demand increases significantly up to the ship’s maximum limit.
Modelling such behaviour is possible with enough volumes of data that are
directly relevant to the power-SOG relationship for an ice passage environment.

A data-driven model can only produce estimates for ranges of input values
that were available during training. Various histograms of the most notewor-
thy parameters are presented in Figure 3.7 to illustrate regions where the most
data originated during open water navigation. SOG, Figure 3.7a, is concen-
trated around 15 kn while most of the power samples, Figure 3.7b, cluster
near 2500 kW. The similar grouping supports the connection between power
and speed as illustrated by the scatter plots in Figure 3.6. Propeller pitch,
Figure 3.7c, and shaft rotational speed, Figure 3.7d, were mostly maintained
at constant levels during open water passage. When using these parameters
as inputs to a data-driven model the configuration of both variables, for the
port and starboard side, should be kept in the same general region as shown
in the histograms to ensure the validity of a trained model’s predictions. This
constraint follows the notion that a data-driven model can only predict from
data it was trained on. Lastly, Figures 3.7f and 3.7e show most common wind
speeds and relative directions measured during the 2017-2018 relief voyage.

The data distribution during ice navigation, on the other hand, is much dif-
ferent. Figure 3.8 presents histograms for power, SOG, propeller pitch and
shaft speed during ice operations. The SOG of the ship, Figure 3.8a, is con-
centrated in the slower end of the speed spectrum. Power demand is uniform
over the available range with two peaks visible around 1300 kW and 4000 kW,
Figure 3.8b. The relationship between power and SOG is not apparent from
inspecting the two histograms, as power sample concentrations are not com-
plemented by a corresponding grouping of SOG samples. This supports the
idea that external ice interactions are the leading factor driving power demand.
In some cases, the ship may get stuck in ice and must reverse to free itself.
Therefore, the propeller pitch often changes position, Figure 3.8c. The shaft
speed on the other hand is kept fairly constant near 140 rpm, Figure 3.8d.
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(a) SOG (b) Starboard power

(c) Starboard propeller pitch (d) Starboard shaft speed

(e) Wind speed (f) Relative wind direction

Figure 3.7: Histogram of noteworthy CMU parameters during open water
navigation (2017-2018 relief voyage).
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(a) SOG (b) Starboard power

(c) Starboard propeller pitch (d) Starboard shaft speed

Figure 3.8: Histogram of noteworthy CMU parameters during ice navigation
(2017-2018 relief voyage).

The 2019-2020 relief voyage experienced very similar conditions and operation
settings with some minor exceptions such as instances of high power demand
during high speed open water passage. Refer to Appendix B for similar his-
tograms detailing the distribution and concentration of data for open water
and ice navigation during this voyage.

3.3.4 Limitations of CMU data

The quantity of ice data that is available from the CMU is much lower in
relation to the open water and stationary data. This might be an issue when
training a single model for universal use. The pie charts in Figure 3.9 illustrates
ratio of ice, open water and stationary data available from each voyage. In
both voyages the ship spent roughly half of the time in open water and a very
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(a) 2017-2018 voyage. (b) 2019-2020 voyage.

Figure 3.9: Pie charts of ratios between open water, ice and stationary data.

small percentage in active ice navigation. Even when disregarding the amount
of time that the ship remains stationary, the proportion of ice to open water
data is disproportionately small. This highlights a significant data limitation,
as the ship spends most of the time on the voyage’s departure and return
legs. Ice navigation is limited to essential movement near the Antarctic coast.
When the ship reaches the ice shelf, it idles and remains stationary during the
offloading of cargo. It would be computationally inexpensive to rather create
separate models for the two scenarios of open water and ice navigation. This
way, accurate models can be developed separately, whereas an universal model
will require significantly more data and computational power to fully define
the complex non-linear relationships between the data parameters. Due to
hardware limitations, an universal model is not feasible for the scope of the
project. Further, a model trained on a disproportionately uneven dataset of
ice to open water navigation will produce skewed predictions for ice scenarios,
where ice interactions would most likely be misinterpreted for special cases of
open water navigation.

Therefore, two separate models are developed using data-driven techniques.
The first should be trained on the open water and stationary data. An open
water model can then be used to predict the power requirement exclusively
for open water navigation. The second model should be trained on the ice
data. It might be helpful to improve the temporal resolution so that more ice
data is available for training. It should be noted that the 10 minute resolution
obtained from ice observations could still be too slow for reliable predictive
modelling. With this approach, the two operating modes of the ship can be
isolated during model training and would limit the overwhelming bias that the
open water data would have on the predictive ability of the model for ice cases.

3.4 Chapter summary
The CMU data from the 2017-2018 and 2019-2020 Antarctic relief voyages
were synchronised successfully with minimal error. The data was separated
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into three groups based on the operating modes of the SAAII: stationary,
open water, and ice navigation. Scatter plots of all three groups, Figure 3.6,
showed that the relationship between power and SOG is very different for
open water passage compared to ice navigation. The pie charts in Figure 3.9
indicated that the amount of open water data is significantly more than the
ice data for both relief voyages. Using this data to train an accurate model for
universal open water and ice application would be unfeasible due to hardware
limitations and would require significantly more data. Therefore, two models
are recommended rather than one universal model. Histograms of the data
showed the spread of the data where ship operations took place most of the
time. The distribution of these parameters, which will be the inputs to a data-
driven model, defines the domain over which the model would be accurate
and robust. The quantity and quality of the data was found to be acceptable
for open water navigation. It was noted that a lack of sufficient ice condition
data might become a constraint in developing a robust model for this mode of
operation.
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Machine learning

4.1 Introduction
In the previous chapter, the cleaning of the data to an acceptable quality
standard was discussed. The next step forward is to use this data to train a
machine learning model. As previously discussed, machine learning is a term
describing a set of computing techniques used to train data-driven models for
problems with high orders of complexity (Chollet, 2018; Géron, 2017). Similar
to a mathematical model, the data-driven model would make predictions of
desired outcomes based on the input data it receives. This chapter provides a
walk through of how two sets of models, SVR and ANN, were developed for
the SAAII to describe the behaviour of the propulsion system in ice and open
water. Models were trained on data from past voyages and were evaluated
retrospectively, meaning that the accuracy of predictions could be verified
by the actual measurement taken at the time of the voyage. A reliable model
would be one that consistently makes accurate predictions of the output power
over the whole sample period. Such a model could be a helpful tool that has
the predictive ability to estimate power usage over a whole voyage.

4.2 Model architecture
As motivated by literature two techniques were used to develop models for
the SAAII: SVR and ANN (Gkerekos et al., 2019). Both methods were imple-
mented with the Python programming language and Jupyter Notebook as the
user interface. Scikit-Learn and Keras are open-source libraries that contain
functions and algorithms to perform machine learning operations. SVR was
implemented using Scikit-Learn while Keras was used to create ANN. Features
from the CMU data were selected and normalised. The data was separated ac-
cording to operating conditions to train models for open water and ice passage
independently.

37
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Table 4.1: Computer specifications.

Hardware Specification
Device model Dell Inspiron 1545
Operating system Windows 10
System type 64-bit
Processor Intel Core Duo CPU - 2.20 GHz
Installed RAM 4.00 GB

4.2.1 Computing hardware

Computing hardware is an important limiting factor that dictates the complex-
ity and size of machine learning models that can be trained. Processor chip
design has improved significantly in the past 30 years allowing small ANN to
run on the average modern computer with a central processing unit (CPU)
(Chollet, 2018). However, more advanced graphic processing units (GPU’s)
are required for applications that require very high computational power such
as computer vision or speech recognition (Chollet, 2018). The hardware spec-
ifications that were available for model training and data processing are listed
in Table 4.1. Although the use of a GPU is recommended, the data is pro-
cessed up to a temporal resolution to allow for training on a CPU which would
complete within a reasonable amount of time.

4.2.2 Parameter selection, preparation and training
methodology

The selection of input parameters from the synchronised CMU data are of ut-
most importance to ensure meaningful model predictions. Géron (2017) clev-
erly puts it as: garbage in, garbage out. Eliminating irrelevant features could
reduce the risk of a model learning skewed associations. Pearson correlation
analysis is a commonly used method to find underlying linear connections be-
tween parameters. A summarised version of the most noteworthy correlation
coefficients are given in Table 4.2. The reported correlation numbers range be-
tween -1 and 1, where numbers close to -1 indicate a strong negative correlation
and numbers close to 1 a strong positive correlation. A number near zero indi-
cates no linear correlation. Zhang et al. (2019) conducted a Pearson analysis on
data from a PC6 class cargo ship operating in the Arctic and reported similar
correlation numbers between power-SOG, power-ice and SOG-ice variables.

The coefficients in Table 4.2 were calculated from data of the 2019-2020 re-
lief voyage and includes all of the ship’s operating modes. In cases where no
ice or wave observation where recorded, a Not-a-Number (NaN) variable was
introduced to indicate that no data was available for that specific parameter.
Intuitively, shaft speed and propeller pitch parameters are directly responsible
for the propulsion motor’s output power, seeing that these are the mechanisms
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Table 4.2: Pearson correlation matrix between most noteworthy CMU param-
eters.

1. 2. 3. 4. 5. 6.
1. Stbd power 1
2. Stbd shaft speed 0.804 1
3. Stbd propeller pitch 0.797 0.598 1
4. SOG 0.831 0.693 0.902 1
5. Beaufort number -0.021 -0.023 -0.022 -0.273 1
6. Ice concentration 0.425 0.446 -0.384 -0.769 0.599 1

by which the torque and rotational speed are controlled. Therefore, the cor-
relation coefficients indicate their relationship to output power is strong and
positive. SOG contributes to the hydrodynamic load experienced by the ship,
particularly during open water navigation. This is seen through the strong
positive correlations between SOG, power and propeller pitch. Ice concentra-
tion has a positive correlation to power with a coefficient of 0.435, which is a
weaker connection as reported by Zhang et al. (2019). This is odd due to the
ship reaching its peak power level usually when in ice mode. In addition to the
low temporal resolution of observed ice data, a very low percentage of recorded
data was captured during ice navigation, see Figure 3.9, which could contribute
to the lower than expected correlation coefficient. As per expectation, SOG
and ice concentration has a relatively strong negative relationship.

Apart from choosing the correct input data, the scaling is also an important
consideration. For example: the SOG varies between 0 and 18 kn while the
wind direction has a range of 0-360 degrees. Typically, the performance of ma-
chine learning algorithms are severely hindered when input data has attributes
with different scales (Géron, 2017). To correct this, the data is normalised to
a range from 0 to 1. Scikit-Learn has a function called MinMaxScaler that
automatically performs the normalisation by subtracting the minimum value
from the current data point and then dividing it by the difference between
the maximum and minimum values as shown in Equation 4.2.1. The machine
learning algorithm can reliably compare normalised input data to each other
and make useful connections.

x∗i =
xi − xmin

xmax − xmin

(4.2.1)

The correlation matrix, Table 4.2, indicates that individual variables, which
was obtained from various sampling methods and sources, could have an in-
fluence each other and on the performance of the ship. A systematic approach
was adopted by training a baseline model on the minimum number of features
which showed the highest correlation to power and then incrementally includ-
ing other data fields in subsequent models. The effect that new parameters
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Table 4.3: Training variables for the machine learning model.

Training variables
Target Machine data Environmental data

CMU CMU Observations
Power Port motor speed Wind direction Brash ice

Starboard motor speed Wind speed Ice concentration
Port propeller pitch Ice thickness
Starboard propeller pitch Beaufort number
SOG Wave direction

Wave length

have on the model could then be evaluated against the baseline. Table 4.3 lists
the features that were used to train the model and are separated into groups
that indicate their origin. At first, the machine data from the CMU was used
for training as per Table 4.3. Environmental data, both from the CMU and
observations was later introduced incrementally. Steady state operating con-
ditions are of concern and thus it is assumed that both motors operate at the
same power levels. Therefore, the target training parameter is the average
power between the port and starboard motors.

Mean absolute error (MAE), Equation 4.2.2, is used as a metric to determine
the accuracy of the trained models. Here, xi and yi represent the predicted
and target values of each sample of the n respectively.

MAE =

∑n
i=1 |xi − yi|

n
(4.2.2)

This metric calculates the absolute error between the predictions and targets
over the whole sample set. It can be used to create a tolerance zone around
the target values where the predictions are likely to be located. The unit
of the MAE score is in kilowatt and indicates the average variance between
the predicted and target power for the whole time period. A smaller MAE
translates into a tighter tolerance zone which suggests improved predictive
accuracy achieved from the model. All models for both open water and ice
conditions are evaluated according to the MAE.

4.2.3 SVR model

A SVR model was trained with a radial basis function (RBF) kernel to model
non-linearity. Discussed previous chapters, the problem with the SVR method
is that the hyper-parameters need to be tuned to suite the desired application.
The accuracy of untuned SVR models were significantly worse compared to
the optimised models. Scikit-Learn’s GridSearch function was used to find
the best configuration of hyper-parameters. This process was computationally
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Table 4.4: MAE scores for SVR open water and ice navigation models.

Model Tuned with GridSearch (Yes/No) MAE (kW)
Open water model No 581,08

Yes 139,58
Ice model No 388.63

Yes 191.16

very expensive, especially when introducing large amounts of data. Typical
training sessions lasted between 45-60 minutes and increased as more features
were added to the input vector.

Table 4.4 lists the MAE scores for the best performing SVR models out of 54
experiments. The MAE for the given models are calculated from a separate test
set that was unknown to the model during training. Notice the reduced MAE
after tuning the hyper-parameters. The open water data spanned over most of
the voyage and has a temporal frequency of roughly 3 minutes. On paper the
SVR open water model performed well, achieving a MAE of 140 kW. The ice
data is concentrated to areas where the ship operated near the Antarctic coast
and, as hypothesised, proved to be much more volatile. A finer temporal reso-
lution is preferable to show more detail of ice loads on the propulsion system.
Therefore, the sampling rate of the ice data was increased by re-synchronising
the data to obtain a temporal frequency of 90 seconds. Computational limits
meant that this was the best achievable resolution to train SVR models. The
SVR ice model did not achieve the same MAE score as the SVR open water
model. However, this is expected due to volatile and low quantities of ice re-
lated date. The best MAE score that could be achieved for ice navigation was
191 kW.

The MAE score does not give any indication of the output’s accuracy over
time. Nor does it show if the output has overfitted to any of the parameters.
Figure 4.1a shows a plot of SOG and power for the time period from 10 to
19 December 2019 during open water navigation. This model was trained on
all open water related parameters listed in Table 4.3. The data originates
from the test set which was not used during training. Thereby, the model’s is
forced to make new predictions from previously unseen data. The measured
power outputs from both motors, in blue and green, are plotted alongside the
predicted power output from the SVR model, shown in black. The predicted
power follows the measured power, especially in cases where SOG is relatively
constant (see points E and G). However, at points A, C and D the prediction
seems to be very closely connected to SOG, suggesting that the model might
have overfitted to this parameter. If SOG changes slightly then the predic-
tion charges with it. Furthermore, the model performs adequately where the
output is either at 2500 kW (E) or idling (B and G), but struggles in the inter-
mediate power range (F). This is not acceptable and challenges the precision
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(a) Power and SOG plot over time with estimated power from the open water SVR model
(10 Dec. - 19 Dec. 2019).

(b) Scatter plot of open water model predictions.

Figure 4.1: Predictive performance of the SVR open water model.

and robustness of the model.

A scatter plot, Figure 4.1b, paints a picture of how well the predicted power
matches the actual measured data. The model’s predictions, shown in red,
follows the expected general non-linear power versus speed trend but struggles
to describe the width of the actual power output, which is most probably
caused by variations in environmental factors. The most accurate estimates
lie in the regions of 2500 kW at 15 kn and when the ship is idling. This
provides insight into why the estimated power in Figure 4.1a does not perform
satisfactory.

The second challenge is to characterise the dynamic behaviour typical of ice
navigation. A brief 15 hour period of ice manoeuvres are plotted in Figure 4.2a
showing the SOG, actual power outputs of both motors and the predicted
power from the SVR model. This model was trained on all ice related parame-
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(a) Power and SOG plot over time with estimated power from the ice navigation SVR model
(29 Dec. - 30 Dec. 2019).

(b) Scatter plot of ice model predictions.

Figure 4.2: Predictive performance of the SVR ice model.

ters listed in Table 4.3. It appears that the model’s predicted power does follow
its measured test equivalent over the course of time. However, the model is
unable to describe the high (C) and low (D) peak values. It is as if the model’s
response is limited to an average power output of around 2500 kW. An off-
set of roughly 500 kW between the predicted and actual power is visible at
point B where the graph is fairly constant. The error is amplified in the region
around point C to almost 2000 kW. In the scatter plot, Figure 4.2b, the model
is unable to make any predictions above 2500 kW. The cumulative effect of
adding up the error over time could translate into a significant mismatch be-
tween projected and actual power demand. For this reason, the SVR model is
not acceptable for characterising the power requirement for ice navigation.

The SVR model performed well as a first step into understanding how measure-
ments and observations from the SAAII can be used in a predictive capacity.
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The open water model was able to make adequate estimates but was limited
within two operating regions, either at cruising speeds or when stationary.
The ice model was crude and lacked the ability to characterise the dynamic
nature of ice loadings on the propulsion system. The SVR learning process
was also computationally expensive. As more variables were introduced the
training time increase up to a point where it was intractable. In some instances
training took a few hours to complete.

4.2.4 Neural network model

The alternative approach to the problem was using ANN. Again, separate
models for open water and ice modes were trained. A feed-forward neural
network (FFNN) was created consisting of one input layer and two hidden
layers. The rectified linear unit (relu) function, Equation 4.2.3, was used as
the activation function in the first two layers. No activation function was
applied to the output layer, leaving the model free to predict values in any
range. The optimiser from the backpropogation algorithm was instructed to
minimised the mean square error (MSE) between the predicted values and the
actual data in order to train the network.

frelu =

{
x x ≥ 0
0 x < 0

(4.2.3)

Both models were trained on the same 2019-2020 data set as the SVR models
with the same variables as listed in Table 4.3. The training process for neural
networks completed much faster than the SVR method, typically within a
10 minute time frame. Figure 4.3 shows the convergence plots for the open
water and ice navigation models. Both plots show the MAE as they progress
through optimisation iterations. Each iteration is known as an epoch. The
model for ice navigation, Figure 4.3b, took longer to converge compared to the
open water model, Figure 4.3a. This is most likely due to the unpredictable
nature of the ice data. Both models were trained for 80 epochs where, for the
first few iterations, the MAE score improves dramatically and flattens out later
on. MAE does not significantly improve beyond 80 iterations, which indicates
that 80 epochs would be the around optimum number of training iterations to
achieve the best fit for the present model proposal.

The MAE scores are calculated based on the test data. In Table 4.5 the MAE
scores of both ice and open water models are listed. MAE for the open water
and ice models are 46 kW and 117 kW respectively. This is a significant
improvement in comparison with SVR’s performance. When the range of the
ship’s power output of around 4500 kW, the relative error is small at about
2% for both open water and ice scenarios. This realisation enables the FFNN
model to make predictions with reasonable confidence and reliability.
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(a) MAE for the open water model (b) MAE for the ice model

Figure 4.3: Convergence of MAE on test data during training iterations of the
open water and ice navigation neural networks.

Table 4.5: MAE scores for FFNN open water and ice navigation models based
on the 2019-2020 test data.

Model MAE (kW)
Open water model 46.47
Ice model 117.42

A plot of power and SOG over time for the FFNN open water response is given
in Figure 4.4a for the same time period as with the SVR model. The labels, A
to G, mark the same points of interest noted for the SVR response, Figure 4.1a.
Comparing the two figures, it is illustrated that the response of FFNN follows
the actual power much better than the SVR model. Recall that at points A, C
and D, the SVR model deviated significantly from the targeted response and
seemed to have overfitted to SOG. This is not the case for FFNN as the model
does not seem to be overly affected by the variations in SOG at A, C and D.
The FFNN is better at predicting power levels in the intermediate range (F).
SVR could predict the overall trend of the power output, but at intermediate
power levels displayed an offset error of 500 kW or more. The FFNN does not
struggle with this problem and gives accurate predictions for low (B and G),
intermediate (F) and high power levels (A, C, D and E). The scatter plot of
power versus SOG also proves this point, Figure 4.4b. The estimated power,
shown as red circles, overlaps the measured power much better compared to the
SVR model, Figure 4.1b. The predicted power from FFNN almost completely
covers the measured test data, which indicates that the model was able to
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(a) Power and SOG plot over time with estimated power from the open water FFNN model
(29 Dec. - 30 Dec. 2019).

(b) Scatter plot of open water model predictions.

Figure 4.4: Predictive performance of the FFNN open water model.

introduce variance caused by extraneous ocean and atmospheric conditions.

The time to train a neural network model was significantly faster in compar-
ison with the SVR model. Depending on the volume of data, training time
was typically 4-8 minutes for the FFNN compared to the 40 to 60 minutes
of SVR models. For this reason, it was still economical to train the FFNN
on larger volumes of data which would have been impractical for SVR. The
training data for ice mode cases were thus sampled at a much higher rate,
resulting in temporal resolution of 15 seconds. A huge improvement to the
90 second resolution available to SVR. Figure 4.5a shows the power and SOG
response over time during ice navigation. The power output oscillates heavily
and is inversely related to SOG. Peaks from the power variable correspond to
SOG valleys and vice versa. This is an indication of the ship interacting with
heavy ice, driving the power output to high levels with little increase in speed.
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(a) Power and SOG plot over time with estimated power from the ice navigation FFNN
model (01:00 to 05:00 on 30 Dec. 2019).

(b) Scatter plot of ice model predictions.

Figure 4.5: Predictive performance of FFNN ice model.

Describing this behaviour is particularly difficult as it does not follow a typical
polynomial model as for open water. Observations of ice thickness, ice concen-
tration and ice loading are very limited and subjective, making the use of an
analytical or numerical model unrealistic. However, the FFNN does charac-
terise the power output very well by following the fluctuating power parameter
and correctly estimating the peak values. The scatter plot for the power ver-
sus SOG, Figure 4.5b, show how well the FFNN was able to make predictions.
Estimates from the model, shown as red circles, cover the whole spectrum of
power levels from ice data, especially at mid-range speeds where higher power
levels are not driven by hydrodynamic forces between the hull and water, but
from ice interactions instead. By comparison to the SVR model, Figure 4.2b,
the FFNN is superior for this application.

Both ice and open water neural network models showed improved performance
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in comparison with the SVR models. On inspection it does not seem that the
models overfit to any of the input parameters. The MAE was much lower
for FFNN compared to SVR with the FFNN models displaying accurate and
reliable predictive ability for both open water and ice conditions.

4.3 Model validation
The FFNN models achieved much better MAE scores and displayed superior
predictive ability compared to SVR on the test data sets. Therefore, only
FFNN will be considered from for model validation. Although the models
achieved good performance, it must still be verified on data that is unique and
not used during training or testing. The idea is to test the model on completely
new scenarios to find its limitations.

4.3.1 Antarctic relief voyage (2019-2020)

A small portion of the 2019-2020 test data is plotted for open water passage,
Figure 4.6a, and ice navigation, Figure 4.6b, to compare the actual average
power to the model’s projections. The upper and lower limits of the MAE are
indicated by dotted lines around the actual average power to show how closely
the average predicted power follows the target value. As mentioned, MAE
only shows the mean error and thus it is expected for the predicted value to
travel in and out of these limits. A glimpse into the limitations of the model is
provided when this happens and indicates where the model can be improved.

Points of interest are indicated as A, B, C and D on Figure 4.6a. At point A
the predicted value moves out of the MAE band but returns quickly. At
points B, C and D the predicted value is almost exactly the same as the target
value. Taking into consideration that almost half of the data is from stationary
operations may suggest that the MAE score is biased towards low speed and
low power scenarios. Overexposing the model to stationary points may not
yield a true reflection of the error during open water navigation. Power output
during stationary operations can be predicted with relative ease and can create
a false sense of accuracy for open water estimates. The ice model would not
have this problem as the training data did not contain any stationary data
points. Nonetheless, with fuel consumption estimations we are not concerned
with local inaccuracies as identified at A. Instead, it is required that the model
be consistently accurate over the whole time period, which is evident in the
FFNN predictions for open water.

The power predictions for the FFNN ice model is presented in Figure 4.6b.
The volatile nature of the power output is estimated very well. However, upon
critical reflection is may not be evident that this model is robust as yet. The
test data for 2019-2020 is very similar to the training set used to develop the
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(a) Tolerance zone indicating the upper and lower limits of the MAE for open water navi-
gation during the 2019-2020 Antarctic relief voyage. MAE = 46, 5 kW

(b) Tolerance zone indicating the upper and lower limits of the MAE for ice navigation
during the 2019-2020 Antarctic relief voyage. MAE = 117.43 kW

Figure 4.6: Predictions from FFNN models on 2019-2020 test data.

model. The extraordinary fit seen in Figure 4.6b could be attributed to the
model memorising the expected outcomes and would therefore show excellent
predictive ability. Further validation is required on data sets outside of the
2019-2020 relief voyage data for both ice and open water models to conclude
whether training was successful.

4.3.2 Antarctic relief voyage (2017-2018)

Data from the Antarctic relief voyage of 2017-2018 was used to create predic-
tions for the FFNN model, which was trained on the 2019-2020 relief voyage
data. A small section of the open water predictions is plotted in Figure 4.7a
with a new MAE tolerance band specific to this data set shown as dotted
lines. The predicted output does follow the actual average power very well
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(a) Tolerance zone indicating the limits of the MAE for open water navigation during the
2017-2018 Antarctic relief voyage. MAE = 153.13 kW

(b) Tolerance zone indicating the limits of the MAE for ice navigation during the 2017-2018
Antarctic relief voyage. MAE = 308.67 kW

Figure 4.7: Predictions from FFNN models on 2017-2018 test data.

with slight overestimation at points A, C, D and E, but otherwise mostly stay-
ing within the MAE band. The ship was operated slightly different for a short
period of time during the 2017-2018 voyage. To achieve higher speeds the ship
was operated at power levels of 4000 kW in open water, which is a configura-
tion usually reserved for ice passage. This mode of operation was not present
in the training data and explains why the model has poor predicting ability
at point B. Without any examples of this behaviour in the training set, the
model cannot learn from these extreme trends. The only way to improve the
predicting ability at point B is to include this in the training process. Other
than that, the model’s predictive ability is acceptable around A, C, D and E,
which does not show any wild trends that might suggest that the model has
overfitted. Another aspect to take into account is that wave observations were
not conducted during the 2017-2018 voyage which results in a lack of available
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input variety. It is not apparent that the model is unaffected by this, which
would suggest that knowledge of the ocean conditions are currently not the
primary driver for the model’s estimates.

Figure 4.7b shows a sample of the power over time plot for the ice data from
the 2017-2018 relief voyage. The estimated and actual average power is plotted
along with the MAE tolerance bands calculated specifically for this data set.
At first glance the model performs very well, showing the ability to accurately
predict oscillations in the power output (points A, B, D and E). The predictions
also mostly stay within the MAE band, although it is a looser fit compared to
the 2019-2020 test data. At some occasions, the model does get estimations
wrong, such as at the peaks outside the MAE band at point C. However, as
previously stated, local inaccuracies will not adversely affect the models ability
to estimate energy use over time. It is more important to consistently follow
the actual power, which is true for the model perditions in Figure 4.7b. The
limited quantity is not yet apparent as the 2017-2018 data was very similar to
the 2019-2020 test set. The model could still rely on memorisation to make
predictions and therefore the success of the ice model is still inconclusive.

4.3.3 Weddel sea expedition (2018-2019)

A third data set from the Weddel sea expedition (2018-2019) was available
for model validation. The effect of training a model on representative data is
illustrated in the two plots in Figures 4.8a and 4.8b. At the beginning of the
Weddel sea expedition the ship was operated at 4000 kW to achieve a higher
SOG. The FFNNmodel trained on the 2019-2020 data was not exposed to high-
speed manoeuvrers which constrained the domain of the model. This effect is
visible in Figure 4.8a where the maximum power estimate of roughly 3200 kW
fall significantly short of the actual measured power, which was in the region of
4200 kW. In contrast, Figure 4.8b plots the estimated power for the same data
but with an FFNN model trained on both 2017-2018 and 2019-2020 data sets.
As previously mentioned, the 2017-2018 relief voyage contained a portion of
high power open water operations similar the that experienced on the Weddel
sea expedition. By widening the range of the training data has a positive effect
on the FFNN model which can now predict the powering performance of high-
power and high-speed open water operations. The improved model achieves a
better MAE score of 191 kW and predicts consistently within the MAE bands
indicated in Figure 4.8b. This verification instils confidence that the FFNN
model trained of both relief voyages will be able to reliably predict the output
power for a wider range of operating conditions.

The limitations of insufficient data become apparent when examining the
power predictions for ice navigation data from the Weddel sea expedition.
Figure 4.9 shows a portion of the data during ice navigation. The ice obser-
vations from the Weddel sea expedition were recorded in a slightly different
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(a) Section of open water data from the Weddel sea expidition. Prodiction from FFNN
model trained on 2019-2020 relief voyage. MAE = 412 kW

(b) Section of open water data from the Weddel sea expidition. Prodiction from FFNN
model trained on 2017-2018 and 2019-2020 relief voyage. MAE = 191 kW

Figure 4.8: Predictions from FFNN models on Weddel sea data (2018-2019).

manner with a temporal resolution of 5 minutes. This presents completely
new data to the FFNN model which meant it could not rely on memorised
patterns to make predictions. Very poor predictive performance is observed in
Figure 4.9. Apart from the model’s poor fit to the measured power, the MAE
score is the worst thus far at 739 kW. This is an unacceptable result that
questions the robustness of the FFNN ice model when applied to new data.

4.4 Chapter summary
Two machine learning algorithms were trained on the CMU data from the
2019-2020 Antarctic relief voyage. A SVR and FFNN were proposed for ex-
perimentation. The correlations between the various input parameters were

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. MACHINE LEARNING 53

Figure 4.9: Tolerance zone indicating the limits of the MAE for ice navigation
during the Weddel sea expedition. MAE = 738.62 kW

calculated and discussed to find the strongest connections to the output power.
This led to the identification of 13 variables suitable for training either the ice
or open water models, Table 4.3. A training methodology was discussed to ex-
plain the importance of scaling the input data. MAE was defined as a metric
to measure the performance of the SVR and FFNN models.

A SVR model was trained and evaluated on a test portion of the 2019-2020
CMU data. Optimising the SVR hyper-parameters was computationally ex-
pensive with the training process taking a significant amount of time to com-
plete. The open water SVR model overfitted to the SOG parameter, showing
an inability to make accurate predictions over the voyage period. In addition,
SVR was unable to characterise the volatility of ice data, Figure 4.1. The ice
model could only predict in the general area where it would be expected to
find mean power estimates. Considering both flaws, the models were found
to be unacceptable and would be ineffective as a predictive tool to estimate
energy use over time.

FFNN proved to perform much better than the SVR. The training process was
much simpler and completed in a shorter time frame. Once again a test portion
of the 2019-2020 CMU data was used to evaluate the model’s initial perfor-
mance. Both ice and open water models were able to predict the output power
within reasonable accuracy. At first, the ice model particularly impressed by
predicting the volatile ice data accurately in terms of both frequency and am-
plitude. The FFNN models were validated on CMU data from the 2017-2018
Antarctic relief voyage and proved to be effective on data previously unknown
to the models but lacked the ability to estimate power demand for high-speed
operation. The model was trained again on both 2017-2018 and 2019-2020 re-
lief voyages to increase the range of the available training data. The improved
model was successfully validated on an open water portion of data from the
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Weddel sea expedition. The insufficient quantity of ice-related data proved to
be troublesome. The validation process dismissed the validity of the ice model
which is not sufficiently trained for general applications.
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Chapter 5

Voyage cost optimisation

5.1 Introduction
Data-based models describing the dynamic behaviour of the SAAII in a range
of weather and operating conditions presents an opportunity to examine the
historical response of the vessel. This hindsight perspective that a model brings
is useful in a design review or maintenance planning context and may provide
insight into how the ship responds to specific operating environments. On the
other hand, an optimisation problem challenges the robustness and accuracy
of the data-based models. It requires the model to have foresight and know
the effect that some input parameters have on others.

A proof of concept optimisation exercise is presented to demonstrate the value
of a data-driven model within a route planning and financial context. A com-
parison between classical optimisation and evolutionary algorithms are dis-
cussed. Evolutionary methods are recommended and the costs for a fictitious
voyage optimised using particle swarm optimisation (PSO).

5.2 Theoretical overview of optimisation
methods

Mathematical optimisation is the process of formulating and finding the op-
timum solution to a problem subject to constraints. The origin of a problem
could stem from a practical or theoretical source. General classical constrained
optimisation can be mathematically expressed as (Snyman, 2005):

minimize
w.r.t. x

f(x), x = [x1, x2, . . . , xn]T ∈ Rn

subject to gi(x) ≤ 0, i = 1, 2, 3 . . . ,m.

hj(x) = 0, j = 1, 2, 3 . . . , r.

(5.2.1)

55
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Here gi(x) refers to inequality constraint functions and hj(x) to equality con-
straint functions. In the context of this study, the objective function f(x)
represents the voyage costs of the SAAII with x a vector of input parameters
used for model training, Table 4.3.

The objective function f(x) utilises an FFNN model as part of the formula
to calculate costs of travelling over a set distance. Estimating curve char-
acteristics, such as rates of change or partial derivatives, are not as simple
for data-driven models compared to a conventional mathematical function.
The model only has knowledge of the ship dynamics specific to the available
training data. The possible implications of this range from multiple minima
points to significant numerical noise. The subject literature does not always
agree on the correct approach to such problems. Snyman (2005) argues that,
despite the presence of inhibiting factors, gradient-based methods are appro-
priate and more suitable compared to computationally expensive evolutionary
approaches. The judicious use of gradient-based methods can solve problems
with numerical noise and multiple minima much faster (Snyman, 2005). On
the other hand, Lindfield and Penny (2017) emphasize that evolutionary meth-
ods are applicable to non-linear problems with particular reference to prob-
lems with multiple minima points. Lindfield and Penny (2017) note that PSO
would find the global minimum where gradient-based methods could fixate on
local minima. PSO was successfully applied in other studies where data-driven
modelling was used (Wang et al., 2018). This previous work provides a strong
argument for its use within the current context.

Classical optimisation with a gradient-based approach was derived from math-
ematics. The steepest descent method is well known and is typically used for
unconstrained optimisation on its own. When subject to constraints, steepest
descent can still be used but within the augmented Lagrangian method, which
converts the problem into an unconstrained problem with Lagrangian multi-
pliers (Snyman, 2005). Gradient-based methods were attempted on the cost
optimisation problem, discussed in the subsequent subheading, but required
knowledge of the first derivative of the objective function. This was impossible
to calculate analytically. Numerical differentiation of the FFNN model with
the use of finite difference approximations was possible. However, it remained
difficult to discern between numerical noise and the approximate derivatives.
Preliminary results from this approach were impractical, returning minimum
costs as a large negative value. If this were true then the ship would gener-
ate profit by just being out at sea. Along with a tedious implementation and
highly variable results, it was decided that classical methods would not be used
in further experimentation.

Evolutionary optimisation algorithms draw inspiration from natural phenom-
ena. PSO and genetic algorithms (GA’s) are well established techniques in the
evolutionary optimisation toolkit. These methods rely on randomised guesses
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that use the collective knowledge of the whole population to migrate to either
a local or global minimum. PSO draws inspiration from birds flocking and
is well suited to a non-linear problem with multiple local minima where the
global optimum is sought (Lindfield and Penny, 2017). PSO was selected as
the method for experimentation due to its simple implementation and the fact
that it does not require knowledge of the slope of the objective function.

5.3 Particle swarm optimisation in the open
water environment

A basic optimisation exercise could illustrate the application value of data-
driven technique as an integral part of the digital twin concept. The purpose
of cost optimisation is to find the optimum configuration of the ship’s control
surfaces to minimize the costs associated with travelling a predefined distance.
An adjustable input vector is defined with variables that describe the con-
figuration of the ship’s control surfaces: shaft rotational speed and propeller
pitch. The PSO is therefore conducted over a two dimensional search space.
The influence of ocean and atmospheric conditions are introduced as exter-
nal, manually adjustable parameters which describe the contours of the search
area.

5.3.1 Defining the objective function f(x)

There are many factors which contribute to the costs related to keeping a vessel
such as the SAAII in operation. Not only does the efficiency of a vessel play
a significant role but also the overhead costs such as maintenance, crew wages
and other items not associated with the direct power output from the engines.
A simple cost structure is proposed to describe the operating expenses to a
destination over change in time

The overhead costs can be broken down into two components: recurring costs
for each day spent out at sea and initial fixed costs incurred before departure.
The sum of the two equates to the total overhead costs which can be expressed
as a linear function of time.

A(∆t) = m∆t+ b (5.3.1)

In Equation 5.3.1 the total fixed cost is expressed as a linear function of the
time difference, ∆t, to the destination. A(∆t) is the total overhead costs, with
m the daily expenses at sea and b the initial expenditure before departure.
Daily expenses include crew wages, energy for heating, electricity generation
and food provisions. Initial costs entail tasks required before departure - such

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. VOYAGE COST OPTIMISATION 58

as harbour fees, maintenance costs, fumigation of the ship and land-based
logistics.

Fuel consumption is linked to power demand of two propulsion motors over
defined time period, expressed in the unit kWh. The cost for an amount of
fuel is given by:

B(∆t) = 2kP (x, v(x),W)∆t (5.3.2)

In Equation 5.3.2 the total fuel costs, B(∆t), is proportional to the power
output over a time difference, ∆t. The constant of proportionality, k, scales
the product of power output and time difference to obtain the correct relation
between fuel costs and energy use. P (x, v(x),W) denotes the power output
at a specific shaft and propeller configuration, SOG and weather environment.
This value is estimated by the FFNN model which was trained on data from
both 2017-2018 and 2019-2020 relief voyages. Initial PSO results highlighted
a flaw in the model’s power predictions when the control surfaces and SOG
could be adjusted independently from each other. The FFNN model could
not describe the physical connection between SOG, propeller configurations
and power demand. PSO found an optimum configuration for this model but
required the ship to sail at full speed and low power levels by keeping shaft ro-
tational speed and propeller pitch to a minimum - an impossible configuration
to sustain. As a consequence, a secondary model was trained from the two
relief voyage data sets, but with SOG as the main output target. The result
of this SOG model was then processed as an input to the power model. The
dependency of both SOG and power on the control settings were now enforced.
x represents the shaft and propeller configurations for the port and starboard
side. v(x) is the result obtained from the SOG FFNN model with x as the
input. The vector that contains relevant weather information is represented
by W.

Combining and factorising Equations 5.3.1 and 5.3.2 results in the total costs
as a function of the time difference between departure and arrival.

C(∆t) = b+ (m+ 2kP (x, v(x),W))∆t (5.3.3)

Realizing that ∆t = ∆d/v(x), and substituting into Equation 5.3.3 yields the
objective function f(x):

f(x) = b+
∆d(m+ 2kP (x, v(x),W))

v(x)
(5.3.4)

An exaggerated graphical representation of the cumulative costs, as described
by the objective function, is presented in Figure 5.1. Voyage time, ∆t, is rep-
resented on the x-axis with the costs on the y-axis. The maximum obtainable
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Figure 5.1: Diagram of proposed cost structure.

SOG dictates how quick the ship can reach the destination. Point A indi-
cates the quickest attainable voyage time that can be achieved by operating
the ship at full speed. The shaded area represents a region that falls outside
of the ship’s performance capabilities. The relationship between power and
SOG for open water passage is non-linear, which leads to the possibility of
locating an optimum point at B. Between A and B fuel consumption drives
rising costs, whereas recurring overhead expenses become the dominant con-
tributor as voyage times increase beyond point B. In addition, the implications
from uncertainties caused by ocean and atmospheric conditions could result
in a shifting optimum point which highlights the need scenario-specific cost
optimisation.

5.3.2 Defining the search domain

The search space must be defined in accordance to the parameters that a
ship’s crew can control. The input variables are also limited by the domain
over which the model was trained. Apart from route planning strategies and
protocols, weather conditions are beyond the control of any ship operator.
Four main assumptions have to be made in order to simplify the overarching
optimisation problem:

1. Adjustable parameters are limited to the control surfaces of the ship:
shaft rotational speed and propeller pitch. This forces PSO to exclusively
adjust parameters that the crew have control over.

2. Weather conditions are stochastic and time series dependent, meaning
that the current weather is influenced by the previous conditions. To
simplify for the purpose of the optimisation exercise, it was assumed that
weather would be constant over the whole distance in the optimisation
interval, ∆d.
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Table 5.1: Variables and constant selected for PSO.

Description Domain Symbol
Input variables Shaft rotational speed 90 - 140 (rpm) x1

Propeller pitch 33 - 100 (deg) x2
Constants Voyage distance 3000 km d

Hourly cost R 10 000 m
Initial cost R 100 000 b
Cost per kWh R 2.80 k

3. The pitch of both the starboard and port propellers are the same and
similar to how it would be configured in practice under steady state
conditions.

4. The rotational speed of both the starboard and port side drive shafts
are identical and similar to how it would be configured in practice under
steady state conditions.

By means of the above-mentioned assumptions, the problem is simplified and
focusses only on parameters that the crew can control. Some of these assump-
tions may skew the accuracy of the calculated costs but should still allow the
FFNN model to converge to an optimum recommended SOG. The domain of
the input vector is also limited to regions where the model is best defined.
These regions fall into the areas where the most data was available in the
training set. The acceptable range of the shaft rotational speed and propeller
pitch are given in Table 5.1.

The assumed values of constants in the objective function f(x) is listed in
Table 5.1. The constant relating to fuel consumption cost, k, was estimated
based on correspondence with ship officers (Ligthelm, 2020) and a diesel price
of R13.00 per litre. The reader is referred to Appendix C for the calculation
of costs listed in Table 5.1. These costs are for illustrative purposes only and
do not reflect actual voyage expenses. The distance of 3000 km was arbitrarily
selected.

5.4 Results
The objective function f(x) was optimised with a global best position PSO
search with respect to the vector x. Speed optimisation was done on the
open water and ice models. The PSO algorithm typically converged within 50
iterations is illustrated by the convergence plot, Figure 5.2, where the x-axis
shows the number of iteration and the y-axis represents costs in South African
Rands (ZAR). As an additional pilot exercise, PSO was used to assist with a
hypothetical route selection scenario.
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Figure 5.2: Convergence of the PSO algorithm on the objective function f(x).

Figure 5.3: The effect of the Beaufort number on the power versus speed curve.

5.4.1 Open water model - speed optimisation

A good starting point for speed optimisation is to observe the power-speed
relationship predicted by the model. Yoo and Kim (2018) demonstrated the
usefulness of their data-driven model by plotting estimated power versus speed
curves under various wave and wind conditions associated with the Beaufort
scale, see Chapter 2. Similarly, the power versus speed curves for various
Beaufort numbers, determined from the open water model, are presented in
Figure 5.3. In-line with what is expected, a non-linear relationship is visible
between the two variables with the slope increasing rapidly at speeds exceeding
12 kn. Compared to scatter plots of the data, Figure 3.6, the predicted curves
have eliminated noise originating from other extraneous factors. This provides
a sense of confidence that predictions from the data-driven models are in line
with the ship’s responses. Unfortunately, the curves in Figure 5.3 do not
show significant variance between the four Beaufort numbers which could be a
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Figure 5.4: The effect of wind direction on the voyage costs.

result of poor distribution of sea state related data in the training set. Beaufort
numbers were only recorded during daylight hours at typical cruising speeds
during the 2019-2020 relief voyage. As a consequence, some portions of the
operating domain is paired with recorded sea state data while others are not.
It does not necessarily mean that the model cannot account for weather, but
rather indicates that the Beaufort number on its own does not have a great
influence on the prediction based on the current training data. Nonetheless,
the Beaufort number only represents a general description of environmental
conditions. As discussed previously, Chapter 4, wind and wave related data
should be able to introduce variance which allows for distinctions between
levels of weather severity.

A similar observation can be made regarding the effect of wind direction on the
powering performance. Figure 5.4 shows the costs over voyage time plots for
three distinct wind directions: head, beam (side), and tail winds. The voyage
costs were calculated according to Equation 5.3.4 with the parameters set out
in Table 5.1. A head wind intuitively produces the most resistance to motion
and accordingly is the most expensive out of the three discrete directions.
However, from Figure 5.4 the variance between the three directions does not
seem to be significant. At the optimum speed of 12.5 kn, or roughly 130 hours
of voyage time, the cost difference between a head and tail wind is R8 840.
An insignificant cost compared to the total cost of R2.75 million. This may
provide a glimpse into how the model weighs the effect of individual parameters
on its predictions, as it is not always sensitive to individual environmental
parameter changes. This is an unlikely event to be encountered in practice as,
for example, a decrease in wind speed could affect the wave height and length.
Instead, the model might rely on the simultaneous and collective changes to
the environmental conditions as a whole.

Voyage cost efficiency is a balancing act between two cost drivers as indicated in
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Table 5.2: Weather scenarios noted in Figure 5.5a.

Beaufort Wind Wind Wave
Scenario number speed direction direction

[n/a] [kn] [Degrees] [Degrees]
1 1.4 6.6 0 0
2 2.8 16.7 0 0
3 5.6 23.3 0 0
4 7 30.0 0 0

(a) Cost vs voyage time (b) Cost vs power output

Figure 5.5: Costs at sea in terms of power demand and voyage time.

Figure 5.4. To reach a quicker voyage time translates into a much higher power
demand, which increases fuel consumption. On the other hand, time-related
overhead costs become significant when travelling slower than the optimum
speed. In Figure 5.5 two plots of voyage cost are presented as functions of time
and power for various weather scenarios with increasing severity from numbers
1 to 4. These plots illustrate the trade-off relationship between running costs,
voyage time and power output to reach a destination. The weather vector,
W, for each of the four scenarios is detailed in Table 5.2. Each scenario was
manually configured by adjusting parameters in conjunction with each other
to describe the weather scenarios. As expected, the estimated minimum cost
for ideal weather (Scenario 1) is much lower compared to harsher weather
(Scenario 4). The increased resistance from more intense atmospheric and
ocean conditions drive the cost difference between Scenarios 1 and 4 to roughly
R118 000 at the optimum point.

Figure 5.5b highlights the balance between cost and average power output. By
operating at higher power levels of 4000 kW in open water may improve the
ship’s arrival time, but can increase the cost by roughly 20%. A financial deci-
sion is to be made: incur significant extra fuel cost to minimise the time spent
at sea or save on fuel by operating at optimum speeds. As discussed, routes
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Table 5.3: Comparison between cost and time optimisation for a 3000 km
voyage.

Optimisation Power SOG Cost Time to
goal output est. est. destination

[kW] [kn] [ZAR] [Hours]
Fastest time 4008 17.2 R 3 135 300 94
Lowest cost 1880 13.4 R 2 593 000 122

Figure 5.6: Power and SOG plots for open water navigation from 2-8 Jan 2019.

can be optimised in terms of voyage duration or cost. To achieve minimal
voyage time is trivial, as maximum SOG will translate into minimum voyage
time. The two contrasting optimisation goals are compared in Table 5.3. Con-
sidering Scenario 1 for the voyage of 3000 km, the destination is reached in
94 hours when sailing at full speed compared to 122 hours at optimal speed.
However, it should be taken into consideration that this 28 hour gain comes
at a significant extra cost estimate of roughly R542 300.

The SAAII is not always operated at its optimum speed. Data from the
Weddel sea expedition shows the ship travelling at speeds of 18 kn with the
motors running at 4500 kW for long periods of time, Figure 5.6. The power
output doubles for a 20% increase in SOG. The motivation for operating the
ship at high power levels could override the need for financial efficiency. Such
motivation could be ice avoidance or science and logistical activities that take
priority over cost in the fixed time frame of the bigger expeditionary plans.
Nonetheless, the eligibility of such decisions need to be weighed against the
significant cost implications of excessive power usage.
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Table 5.4: Ice navigation optimisation results for a 300 km ice route.

Ice Power SOG Cost Time to
conditions output est. est. destination

[kW] [kn] [ZAR] [Hours]
No ice 4276 6.6 R 829 400 25
Light 1316 4.7 R 598 800 34

Medium 1140 5.5 R 486 250 29
Hard 1157 8.7 R 304 700 19

5.4.2 Ice model - speed optimisation

Speed optimisation was conducted with the model trained on ice navigation
data. Similar to how PSO was implemented for the open water model with
varying weather, PSO has been used on the ice model for a voyage of 300 km
with varying ice conditions. The results from this optimisation are listed in
Table 5.4. The total costs were calculated using Equation 5.3.4 but with the
initial expenses, b, set to R 0. Regrettably, there are some inconsistencies
that make these results implausible. For instance, the highest power output
that the model predicted was with no ice conditions. In addition, the fastest
estimated time to the destination was 19 hours when the ship was intended to
be in the toughest simulated ice conditions. The power was also not accurately
predicted as noted in Table 5.4. Looking back at the actual data, the power
fluctuated rapidly between 1000 kW and 4500 kW in ice, Figure 4.5a. However,
the reported power estimates are averaged around the 1200 kW region and
decrease despite worsening levels of simulated ice conditions.

Such contradictions have a negative impact on the credibility of the model. It
may have accurately predicted the past voyages on the test data but struggles
when brand new examples are presented. This problem most probably arose
due to two main reasons: an insufficient quantity of ice data and poor modelling
of the ice environment. The quality of models are dependent on the quality
and quantity of the training data (Géron, 2017; Gkerekos et al., 2019). A very
small percentage of the 2017-2018 and 2019-2020 CMU data was measured
during ice navigation, see Chapter 3. It is therefore expected that the ice
model would not perform as well as the open water model. Also, due to the
complex nature of how ice interacts with the ship, efficiency in ice is highly
sensitive to the specific route. To further improve the reliability, a secondary
navigation model of the environment is proposed for future research to simulate
the routing options based on data from satellite imagery (Zhang et al., 2019)
and ship-mounted equipment such as radar or cameras with computer vision
technology (Sandru, 2018).
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5.4.3 Route recommendation for open water navigation
- a proof of concept exercise

By optimising in terms of speed and cost paves the way to methods that provide
recommendations for the best route choice. A simple hypothetical voyage is
proposed in Figure 5.7 to illustrate the decision aiding potential of a data-
driven model. The shortest distance that a ship can travel between point A
and B is a straight line. However, in this hypothetical voyage, adverse weather
is located midway between points A and B as indicated by the concentric
circles. Route 1 is the shortest route but goes straight through the weather
system. The other option, Route 2, deviates from the shortest route with an
angle θ to bypass the storm. To facilitate a dynamic optimisation technique,
as proposed by Wang et al. (2018), both routes are equally divided into six
segments. A unique weather vector is assigned to each segment which aims
to simulate changes in weather conditions over the length of the two routes.
PSO is used to calculate the optimum ship speed and cost for each segment.
The total cost for each route can be determined by summing the costs for all
segments.

Table 5.5 provides a breakdown of the weather vectors for each of the six
segments in both route options. The conditions were manually estimated to
simulate how the ship would experience changing weather over the length of the
two routes. The shortest option, Route 1, passes through a storm. Therefore,
the wind conditions and Beaufort number intensifies from W1 to W3 as the
ship approaches and enters the weather system. Higher Beaufort numbers of
between 5 and 7 can be expected here. These conditions decrease again from
W4 to W6 when the ship leaves the area. As an alternative option, Route 2,
the ship sails around the storm, see Figure 5.7. This route is longer but
the operating environment is less harsh. The weather conditions do increase
in intensity as the ship approaches the edge of the storm, but not as much
as for Route 1. As the ship turns towards point B, where the two routes
converge again, the weather becomes increasingly similar between the two
options. Apart from the wind direction, the vectors W6 and W ∗

6 are exactly
the same.

Figure 5.7: Route options for the hypothetical voyage.
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Table 5.5: Breakdown of weather vectors for two possible routes.

Wind Wind Beaufort Wave
Vector direction speed number direction

[Deg] [kn] [n/a] [Deg]
Route 1 W1 323 6.5 1.4 310

W2 270 20.0 4.2 293
W3 270 31.5 6.7 310
W4 40 30.0 6.3 17
W5 18 20.0 4.6 17
W6 0 10.0 2.8 0

Route 2 W ∗
1 341 6.7 1.4 17.3

W ∗
2 323 13.3 2.1 0

W ∗
3 323 16.7 3.5 17.3

W ∗
4 0 16.7 3.2 328

W ∗
5 341 14.0 2.8 338

W ∗
6 341 10.0 2.8 0

Table 5.6: Route optimisation results.

θ h Distance SOG Voyage time Cost
[Deg] [km] [km] [kn] [hours] [ZAR]

Route 1 0 0 1000 12.7 42.6 R 849 850
Route 2 11.3 100 1020 13.3 41.5 R 853 100

16.7 150 1043 13.2 42.6 R 873 460
21.8 200 1077 13.3 43.7 R 900 915

The results obtained from dynamic PSO for both routes are listed in Table 5.6
and show the optimum speed with the expected cost. For Route 2, the PSO
was done with three deviation angels, θ, to illustrate the trade-off between the
costs of alternative routes compared to operational difficulty. Specific for the
straight line routes in Figure 5.7, a bigger deviation angle translates into a
larger perpendicular distance, h, from the weather system’s centre. This also
means that the alternative route’s total distance from A to B increases as θ is
increased. In addition, it is not assumed that the size of the weather system
is fixed. In reality, the weather conditions should change as the distance to a
storm’s centre increases due to its fixed size. Instead, for this pilot exercise, the
weather vectors remain independent of θ, meaning that they remain unchanged
despite of the perpendicular distance to the storm, h, varying as a function
of θ. This inherently implies that the size of the weather system fluctuates
as θ is changed. However, it should not be considered as a problem for this
pilot exercise. On the contrary, it highlights further complexity of automated
route optimisation with decision-support potential. Weather modelling and
the automatic import of ERA5 satellite wave data could provide improved
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resolution of Wn along all directions and through time, which, in comparison
to the two elementary routes currently available, allows for access to more and
better routing options that can be evaluated.

The model that produced the results in Table 5.6 used the same cost struc-
ture given in Table 5.1, apart from the large initial cost, b, which was set to
R 0. By comparison, the alternative scenario presented by Route 2 is very
competitive in relation to Route 1. The three options for Route 2 are slightly
more expensive due to longer distances that has to be travelled. However,
estimated voyage times to the destination is around 42 hours on average. A
very similar result compared to the more direct Route 1. Other factors such as
comfort, ability to work on-board and safety factors enter the decision-making
process. The human responses to rough weather conditions or long sustained
periods at sea may negatively influence morale and crew productivity. With
better weather resolution and factoring in comfort and safety, the cost-benefit
ratio for possible routes can be better quantified. This could provide a tactical
advantage for the ship officers in their decision making, as cost efficiency alone
may not always be the best strategy.

5.5 Chapter summary
The argument was made that evolutionary optimisation techniques are better
suited for the non-linear nature of working with ANN models. An objective
function was defined that describes the fixed cost and fuel-related expenses
expected from a voyage in an open water environment. PSO was used to
define conditions for minimum voyage cost over the search domain. The data-
driven model of the SAAII’s power output was able to reach convergence,
which predicts an optimum speed for a given set of atmospheric and ocean
conditions in open water navigation. A similar approach was used to optimise
speed for ice navigation. However, due to insufficient data, the model was not
able to make reliable predictions from new data. The need for environmental
modelling was highlighted as a method to introduce ice floe interaction which
produces the fluctuating power demand typical of ice navigation.

A basic route selection experiment was conducted with a dynamic optimisation
approach. Similar to the definition of mathematical integration, the voyage
distance would be broken down into smaller segments and optimised according
to each segment’s localised load conditions. The cumulative cost of each seg-
ment would then add up to the total cost for the route. From a cost efficiency
point of view, alternative routes that pass through calmer oceans are very
competitive compared to the most direct route for a hypothetical storm. The
need to define comfort and safety was highlighted to provide supplementary
guidance for route planning, as cost efficiency on its own, may not always be
the best operational strategy.
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Conclusion

6.1 Introduction
Maritime operations contribute significantly to the global economy but also
have a large impact on climate change (IMO, 2015; Olmer et al., 2017). In the
short term, methods that further operational efficiency should be the focus as
advances in ship design technologies are likely on long term horizons (Johnson
and Andersson, 2016). This study aimed to use operational data from the
SAAII’s Antarctic relief voyages to produce data-driven power performance
models of the vessel. Apart from the goal to seek a sense of tactical foresight,
this modelling effort pioneers for cost and route optimisation of this vessel,
which could enable future systems to have decision support capability. Four
objectives where defined aimed at achieving this, namely:

1. Filter, clean and synchronise the SAAII’s data stored on the CMU and
consolidate with ice and wave observations.

2. Train machine learning models to describe the power performance of the
vessel. The best performing models were used in objectives 3 and 4,
which was trained on the data from both 2017-2018 and 2019-2020 data.
Model performance was validated with data recorded during the Weddel
sea Expedition (2018-2019).

3. Use suitable optimisation techniques to find the optimum speed with the
lowest fuel consumption for various operational conditions.

4. Implement the data-driven models to predict the best and most efficient
route based on waypoints and environmental conditions.

All of the four objectives were implemented - each providing a unique perspec-
tive on the modelling process and possible future developments.

69
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6.1.1 Data processing and quality assessment
(objective 1)

The raw data from the CMU and observations were unsynchronised and stored
in various formats which could not be used to train data-driven models - a
common problem encountered in practice. The data required synchronisation
into one complete set that contained all features measured by the CMU and
observed during the two relief voyages. The biggest problem with the CMU,
in addition to the unsynchronised data, was that in some cases the navigation
parameters were recorded while measurements for the machine control data,
such as propulsion and rudder settings, failed. This might have been caused by
sensor errors or software issues on the ship’s computer network. A placeholder
for the missing measurements was unfortunately not recorded which lead to
gaps in the time-series sequence for some measurement periods. To rectify
this problem, a synchronisation algorithm was written in MATLAB to align
the timestamps of navigational and machine control data. A similar technique
was adopted to integrate ice and wave observations with the CMU data. This
algorithm is now a permanent asset to benefit future vessel data
management.

Data quality and veracity are important factors that determine the reliability
and accuracy of data-driven models (Chollet, 2018). After comparing param-
eters such as power and speed, it was determined that multiple models would
be required to predict the performance of the SAAII in ice and open water in-
dependently. These contrasting operating conditions produce widely different
power demands on the ship’s propulsion system. The ratio of ice data to open
water was disproportionately low. This meant that a single universal model
would most likely classify ice data as outliers cases for open water passage and
would be discarded. Therefore, to avoid diluting ice data, a secondary model
trained specifically for ice navigation was proposed.

Large amounts of good quality open water data were available. A typical
non-linear relationship was observed between power and speed, similar to data
reported by Yoo and Kim (2018). Regions of high data concentrations were
identified near the ship’s cruising speed which foreshadowed the range where
trained models would be best defined. High volumes of open water data with
complete wave observations instilled confidence that training a reliable model
would be possible.

Ice data was difficult to extract and relied mostly on ice observations to help
distinguish between open water and ice cases. Parameters from the CMU
was erratic, typically caused by sudden load changes due to the crushing and
breaking forces exerted on the ship and from backing and ramming manoeuvres
when passing through of fields of ice. Ice observations provided the only form
of environmental data available of which the temporal resolution was partic-
ularly troublesome. A significant constraining factor would be the 10 minute
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observation intervals which could al best provide average ice condition infor-
mation on a macro scale. Local interactions between the hull and ice, which
causes significant fluctuating loads, could not be measured visually.

6.1.2 Machine learning models (objective 2)

Two distinct machine learning approaches were trained on the ice and open
water data sets. SVR and ANN were selected based on results reported in
literature (Gkerekos et al., 2019; Zhang et al., 2019). SVR was implemented
with the RBF kernel and for the ANN method, a FFNN architecture was
used. Both ice and open water data sets were randomly divided into two
groups for model development and validation. 70% of the data was allocated
for training, while the other 30% was reserved for testing the accuracy of the
model’s predictions. From comparisons between the actual recorded power
levels and estimates by both SVR and FFNN, it was determined that FFNN
was superior. The FFNN model could better describe the complex
relationship between the output power, speed and environmental
conditions and was, therefore, the preferred model of choice for fur-
ther experimentation.

The open water FFNN model was first trained on the 2019-2020 relief voyage
data, which contained a tight clustering of power versus speed data around the
rated cruising speed of the ship. Wave observations were conducted during this
voyage and could therefore further contribute to how weather influenced pow-
ering performance. The model showed promising results on the 2019-2020
test data with a MAE deviation of 46 kW, which translates roughly into a
2% error. The model was further validated on the 2017-2018 data and illus-
trated the issue of insufficient and non-representative data. During the voyage
of 2017-2018, the ship was operated at full power to achieve speeds of close
the 18 kn at power levels higher than 4000 kW. Since this information was
not present during training, the model could not accurately estimate power
levels at higher than normal cruising speeds. This would be an issue when
attempting optimisation. Therefore, a final FFNN model for open water pow-
ering performance was trained with data from both relief voyages to increase
the quantity of training data and to widen the range for power predictions.
Data from the Weddel sea expedition served as validation for the improved
model. The results were verified which instilled confidence that ac-
curate and reliable power predictions for open water navigation was
possible.

A FFNN model for ice navigation was also trained and showed promise upon
initial inspection. Despite the low quantity of usable ice data, the model
was able to consistently predict the fluctuating power parameter when com-
pared to similar data from both relief voyages. The typical MAE was 117 kW
which corresponds to a 2.5% error measured from a maximum power output
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of 4500 kW. However, the results were not convincing enough to rule out the
likelihood that the model predicted from memory, meaning that estimates are
based on similarities between the training and test data. The Weddel sea ex-
pedition produced ice data with different ice observation rates than what was
available in the training set. This served as an external source of previously
unseen data that could challenge the robustness of power estimates. The ice
model did not perform up to expectation and highlighted the serious
limitation of insufficient training data.

6.1.3 Speed and cost optimisation (Objective 3)

The non-linear relationship between power and speed creates an opportunity
to optimise operational settings to achieve minimal running costs. The open
water FFNN model, trained on data from both relief voyages, was able to
predict these non-linear characteristics. Evolutionary optimisation techniques
were found to be most versatile when implemented in conjunction with data-
driven models. PSO was selected as an appropriate optimisation method. An
objective function was intuitively defined and optimised for a hypothetical
voyage of 3000 km. The PSO was successful and illustrated the effect of
operating the SAAII at higher than recommended speeds in open water. A
20% increase in fuel expenditure could be expected if the ship was
operated at its top speed of 18 kn instead of the ideal 13.5 kn.

PSO was used with the ice model to find optimum speeds for ice navigation.
Again, PSO was able to find optimum points but exposed limitations in the
reliability and accuracy of the ice model. The predicted power was incoherent,
with the model estimating very high power levels in zero or light ice conditions.
Meanwhile, for a tough ice environment, the model predicted low power levels
with high speeds. Possible reasons for this contradiction include insufficient
quantities of training data, as validated by Weddel sea expedition data, but
also the lack of ice environment modelling.

The use of data-driven models in optimisation problems showed some success
but also highlighted the limitations caused by poor data quality and limited
data quantities. The optimisation problem had to be constrained in such a
way to simulate practical operational settings as close as possible, otherwise the
PSO would find global minimum points that are not possible in reality. Such
illogical predictions originate from data combinations that are never physically
encountered. The search domain has to be constrained to ranges were the data-
driven model is valid. The domain is limited to the distribution of training data
as illustrated in Chapter 3. This has shed light on the need to generate
new data as much as possible to increase a model’s exposure to
various operating conditions.
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6.1.4 Route recommendation (Objective 4)

A pilot exercise for route recommendation and selection was conducted in an
attempt to show how data-driven models could provide a sense of tactical
foresight for ship operators. The exercise consisted of two route options in a
hypothetical voyage between two points. The direct option passed through
a weather system with harsh weather conditions, while the alternative route
progressed around the adverse weather in search for a longer but easier route.
A coarse dynamic optimisation method was manually introduced that could
account for weather and sea state changes (Wang et al., 2018).

The exercise showed that an alternative route can be very compet-
itive with respect to cost and voyage time. There exists an optimum
point between the additional loading from rough weather and the increased
distance to the destination. The success of the exercise has highlighted the
need for more complete weather data with improved resolution. The dynamic
optimisation could also be automated to improve resolution and to evaluate
other better-suited route options.

6.2 Reflection on modelling success
Modelling and decision support technologies address the grey areas around
efficient voyage planning and its tactical execution. It is envisioned that officers
in control of the SAAII have access to an innovative tool that can support
their decision making with regards to route choices and optimum speeds that
reduce operating costs. This study attempted to research the fundamentals for
training data-driven models and their application on the SAAII. The model for
open water powering performance was successfully trained, tested and used in
optimisation exercises. The training data originated from the ship’s installed
infrastructure and provides an excellent opportunity to continuously re-train,
maintain and update the model to improve its reliability and accuracy. The
ice model initially did perform well on the test data but was unable to make
good predictions during model validation and speed optimisation exercises. As
mentioned, the most prominent reason for this is insufficient data. The model
could be improved by further training using ice related CMU data from future
voyages.

The origin of ice data remains an issue. Satellite imagery and on-board radar
systems should to be investigated as an alternative data sources for ice condi-
tions on a macro scale. Visual ice observations have limitations and are sub-
ject to the observer’s judgement. Transitioning to machine vision technologies
(Sandru, 2018) could improve the temporal resolution of ice observations and
presents the opportunity to identify individual interactions between the ship
and ice, and link them to fluctuations observed in the power over time plots.
Both models could benefit from including other relatable features in the train-
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ing data such as draft, displacement and trim. These parameters could extend
the scope of both models, which could allow accurate predictions for a wider
range of operating conditions.

Optimisation problems with the data-driven models were structured in such
a way evaluate the feasibility of the decision support concept. The dynamic
optimisation technique can be improved up to a point that is still computa-
tionally viable. However, it did show its value in terms of highlighting how
operational changes could improve cost and emissions efficiency; thereby ad-
dressing one of the key benefits of digital twin technology (DNV-GL, 2016).
The models could possibly help improve the efficiencies of the SAAII in terms
of cost, speed and route planning. The philosophy behind finding alternative
routes to avoid adverse weather can be adapted to ice navigation problems were
suitable ice routes can be planned in advance. Even so, route optimisation is
not exclusively a cost-benefit problem but also has to address factors such as
passenger comfort and safety (Zhang et al., 2019). Energy management and
cost reduction is only viable under acceptable levels of risk.

Modelling ship performance is a complex problem with reported analytical
and empirical methods found to be lacking (Zhang et al., 2019). Machine
learning methods proved to be very useful and could be applied to almost
every vessel type (Gkerekos et al., 2019). The observed results showed that
cost and speed optimisation is possible with the use of data-driven models.
In addition, greater insight of a vessel’s performance capabilities are available
compared to a typical power versus speed curve which was estimated during
sea trails (Bialystocki and Konovessis, 2016). Data-driven models could make
massive advancements in how performance degradation, shipping operations
and engine emissions are tracked over time (Gkerekos et al., 2019).

6.3 Future work
The process from raw data to data-driven modelling were outlined and achieved
reasonably successful results. Nonetheless, further research and development
are still required to hone model performance and to reap the benefits of data-
driven optimisation. The following future work is proposed in order to make
advances in digital twin technology for the SAAII:

1. The poor performance of the ice model during optimisation illustrated
an opportunity for further investigation and refinement. Research can
be directed towards the complex interactions between the ship and ice,
and how these interactions effect the power demand. Alternative sources
of environmental data such as satellite imagery, on-board radar systems,
camera footage and drone surveillance could compliment the manual ice
observations that were available for this study.
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2. Develop a working route optimisation and decision support system for
open water and ice navigation based on the data-driven models of the
ship. Weather and ice data originating from external sources could pro-
vide a continuous, real-time source of weather and ice data that span
across vast geographical areas. Literature has reported optimisation ap-
proaches such as Ant Colony Algorithms (ACA) that were successfully
implemented for ice route optimisation in the Arctic (Zhang et al., 2019).
A comprehensive study is proposed to research these innovations to the
benefit of the maritime industry based on the extensive full-scale data of
the SAAII in Antarctica.

3. Risk will always be part of maritime activities and should be reduced
to acceptable levels to ensure the safety of crew and passengers. By
incorporating risk matrices into route optimisation could be crucial for
advancing such technologies into the maritime navigation toolbox. Fu-
ture work is proposed to define the risks involved and asses whether cost
reduction strategies are done under acceptable levels.

4. A financial perspective could provide an objective judgement on the eco-
nomic success of data-drive speed and route optimisation efforts. Such
a study would entail comprehensive analysis of maritime economics and
how the finances of the SAAII compares to the general industry. Voyages
should be conducted, with preference given to the selected routes sug-
gested by the data-driven models, and compared to the expenses from
previous voyages with conventionally selected routes. Without a finan-
cial point of view it would be difficult to definitively conclude if route
optimisation provides any realisable cost benefit to the ship owners and
its operators.

Machine learning and artificial intelligence (AI) is a very powerful computa-
tional tool that is still in its infancy (Chollet, 2018). Advancements in data-
driven modelling which predict asset responses for universal environmental
conditions are key to the development digital twin platforms. The complete
life cycles of assets could be modelled, simulated and optimised before start
of any construction. The maritime industry may have formed the basis for
data-driven modelling in this study, but the versatility of machine learning in
an information intensive world make it possible for a wide range of applica-
tions in other industrial sectors such as mining, manufacturing, logistics and
day-to-day business operations. In addition, driving efficiency is the key to-
ward achieving the goal set out by the IMO to reduce carbon emissions from
maritime activities by 40% by 2030 (Cosci, 2018). Green operations should be
a focus point of innovations to ensure sustainability in the maritime industry.
The data-driven performance models of the SAAII will hopefully contribute to
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the vessel’s effective management and efficient operations, which would secure
safe and sustainable scientific activities in the southern ocean and Antarctica.
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Algorithms

A.1 Synchronisation of CMU data
This MATLAB script automatically synchronises the machine control data
and the navigational data from the CMU

clear all
% load data
load('CMU_Data_2017_2018.mat');
disp('Data upload complete')

% -------------------- DATA SYNC ----------------------------

% clear important variables
clear A

start_index = 157000; % define sample number to start sync
stop_index = length(machctrl.time); % define sample number to stop sync;

scaling = 1.5; % scaling factor for nav dataset
skip_factor = 100; % scaling factor to thin out data
dynamic_scaling = 1;

i = start_index; % main counter
j = round(scaling*start_index); % counter
n = 1; % counter for output array
m = 1; % counter in while loop
timediff = 1; % load timediff variable to enter while loop
overshoot_no = 0;
overshoot_flag = 0;

78
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clear B
clear A

% flags
flag_while_entry = 0;

progressbar('Sync data...');

while i < stop_index

% Get machine control time instance
mach_str = datestr(machctrl.time(i,1));
mach_time = datetime(mach_str);

while (timediff > 0)

j = j + 1*dynamic_scaling; % increment

nav_str = datestr(nav.time(j,1));
nav_time = datetime(nav_str);

timediff_prev = timediff;

% convert datetime variable into epoch time and
% calculate the difference. The minimum difference
% will be the nearest time value.
timediff = posixtime(mach_time) - posixtime(nav_time);

B(m,1) = j;
B(m,2) = timediff;
B(m,3) = dynamic_scaling;

m = m + 1;

% set scaling factor
if timediff > 2
dynamic_scaling = round(timediff/2);
elseif timediff < -2 % overshoot correction
overshoot_no = overshoot_no + 1;
j = j - 1*dynamic_scaling;
dynamic_scaling = round(-(timediff/2));
else
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dynamic_scaling = 1;
end

flag_while_entry = 1; % set flag

A(n,1) = j; % save index number with sychronised nav data points
A(n,2) = i; % corrosponding machctrl data point
A(n,3) = timediff; % save time difference whith sychronised data points.
A(n,4) = m; % save point where final result is recorded

if A(n,3) < -5
A(n,3) = nan; % save time difference whith sychronised data points.
overshoot_flag = overshoot_flag + 1;
break
end

end

progressbar((i - start_index)/(stop_index - start_index));

% reset timediff variable to enter while loop
timediff = 1;

i = i + 1*skip_factor; % increment
n = n + 1; % increment
flag_while_entry = 0; % reset flag

if skip_factor > 1
j = j + round(skip_factor*scaling); % adjust j if skip factor applied
end
end

progressbar(1); % close progress bar
disp('Synchronization complete')

% Create array for synchronised features
clear data
clear D

% convert timestamp to epoch time
D(:,1) = posixtime(datetime(datestr(machctrl.time(A(:,2),1))));
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% machine control data
data(:,1) = 1:length(A); % index number
data(:,2) = machctrl.time(A(:,2),1); % time and date number
data(:,3) = machctrl.data(A(:,2),1); % PortPropMotorCurrent
data(:,4) = machctrl.data(A(:,2),2); % PortPropMotorPower
data(:,5) = machctrl.data(A(:,2),3); % PortPropMotorSpeed
data(:,6) = machctrl.data(A(:,2),4); % PortPropMotorVoltage
data(:,7) = machctrl.data(A(:,2),5); % StbdPropMotorCurrent
data(:,8) = machctrl.data(A(:,2),6); % StbdPropMotorPower
data(:,9) = machctrl.data(A(:,2),7); % StbdPropMotorSpeed
data(:,10) = machctrl.data(A(:,2),8); % StbdPropMotorVoltage
data(:,11) = machctrl.data(A(:,2),9); % RudderOrderPort
data(:,12) = machctrl.data(A(:,2),10); % RudderOrderStbd
data(:,13) = machctrl.data(A(:,2),11); % RudderPositionPort
data(:,14) = machctrl.data(A(:,2),12); % RudderPositionStbd
data(:,15) = machctrl.data(A(:,2),13); % PropellerPitchPort
data(:,16) = machctrl.data(A(:,2),14); % PropellerPitchStbd
data(:,17) = machctrl.data(A(:,2),15); % ShaftRPMIndicationPort
data(:,18) = machctrl.data(A(:,2),16); % ShaftRPMIndicationStbd

disp('machctrl data array complete')

nav data

data(:,19) = nav.data(A(:,1),1); % NavTime
data(:,20) = nav.data(A(:,1),2); % Latitude
data(:,21) = nav.data(A(:,1),3); % Longitude
data(:,22) = 2*nav.data(A(:,1),4); % SOG
data(:,23) = nav.data(A(:,1),5); % COG
data(:,24) = nav.data(A(:,1),6); % HDT
data(:,25) = nav.data(A(:,1),7); % WindDirRel
data(:,26) = nav.data(A(:,1),8); % WindSpeed
data(:,27) = nav.data(A(:,1),9); % Depth
data(:,28) = D(:,1); % time and date epoch format

disp('nav data array complete')

% Save synchronised result in Excel file
xlswrite('My synchronised CMU data.xlsx', data);
disp('write file complete')
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A.2 Synchronisation ice and wave observations
with CMU data

This MATLAB script synchronises the ice and wave observations to the CMU
data.

% Load data
%ice_obs_data = xlsread('Relief 2017_Ice Obs_trimmed sheet', 'A5:AX1866');
ice_obs_data = xlsread('Relief 2019_Ice Obs_trimmed sheet', 'A125:AP2465');
sea_obs_data = xlsread('SVRG Wave Observations Antarctica 2019-2020_trimmed'
, 'A4:AD915');
cmu_data = xlsread('My sychronised CMU data');

disp('Observation sheet upload complete')

ice_obs_data(:,2:7) = floor(ice_obs_data(:,2:7));
dates_ice = datetime(datestr(ice_obs_data(:,2:7)));

ice_obs_data(:,1) = posixtime(dates_ice);

% do the same for sea state data
sea_obs_data(:,2:7) = floor(sea_obs_data(:,2:7));
dates_sea = datetime(datestr(sea_obs_data(:,2:7)));

sea_obs_data(:,1) = posixtime(dates_sea);

% ------------------- Ice obserbation sync ----------------------------

progressbar('Sync data...'); % initialize progressbar function

start_cmu_index = 1; % index starting point for CMU data
stop_cmu_index = length(cmu_data); % index stopping point for CMU data

start_obs_index = 19; % index starting point for ice obs data
stop_obs_index = length(ice_obs_data); % index stopping point for
ice obs data

time_diff = 1; % initialize variable
time_diff_prev = 1;
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i = start_cmu_index;
n = start_obs_index;

overshoot = 0;

override_flag = 0; % override flag to convert NaN numbers to 0
load_nan_flag = 0; % flag to load array with NaN numbers

if override_flag == 1 % keep NaN if 1
x_brash = 0;
x_ram = 0;
x_ice_conc = 0;
x_ice_thickness = 0;
x_flow_size = 0;
end

if load_nan_flag == 1
cmu_data(:,29:33) = nan;
end

while i < stop_cmu_index

% calculate time difference
time_diff_prev = time_diff;
time_diff = ice_obs_data(n+1,1) - cmu_data(i,28);

% timestamp is found
if time_diff < 0

% check if not a number
if override_flag == 0;

x_brash = isnan(ice_obs_data(n,12));
x_ram = isnan(ice_obs_data(n,13));
x_ice_conc = isnan(ice_obs_data(n,27));
x_ice_thickness = isnan(ice_obs_data(n,42));
x_flow_size = 1;%isnan(ice_obs_data(n,50));

end

if abs(time_diff) > abs(time_diff_prev) % overshoot case

overshoot = overshoot + 1;

Stellenbosch University https://scholar.sun.ac.za



APPENDIX A. ALGORITHMS 84

i = i - 1;

% set first run
if n == start_obs_index
index_prev = i;
end

if x_brash == 1
cmu_data(index_prev:i,29) = 0;
else
cmu_data(index_prev:i,29) = ice_obs_data(n,12); % brash ice count
end

if x_ram == 1
cmu_data(index_prev:i,30) = 0;
else
cmu_data(index_prev:i,30) = ice_obs_data(n,13); % Ramming count
end

if x_ice_conc == 1
cmu_data(index_prev:i,31) = 0;
else
cmu_data(index_prev:i,31) = ice_obs_data(n,27); % Ice concentration average
end

if x_ice_thickness == 1
cmu_data(index_prev:i,32) = 0;
else
cmu_data(index_prev:i,32) = ice_obs_data(n,42); % Ice thickness average
end

if x_flow_size == 1
cmu_data(index_prev:i,33) = 0;
else
cmu_data(index_prev:i,33) = ice_obs_data(n,50); % Flow size average
end

else % normal case

% set first run
if n == start_obs_index
index_prev = i;
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end

if x_brash == 1
cmu_data(index_prev:i,29) = 0;
else
cmu_data(index_prev:i,29) = ice_obs_data(n,12); % brash ice count
end

if x_ram == 1
cmu_data(index_prev:i,30) = 0;
else
cmu_data(index_prev:i,30) = ice_obs_data(n,13); % Ramming count
end

if x_ice_conc == 1
cmu_data(index_prev:i,31) = 0;
else
cmu_data(index_prev:i,31) = ice_obs_data(n,27); % Ice concentration average
end

if x_ice_thickness == 1
cmu_data(index_prev:i,32) = 0;
else
cmu_data(index_prev:i,32) = ice_obs_data(n,42); % Ice thickness average
end

end

index_prev = i; % save the previous index number
progressbar((n - start_obs_index)/(stop_obs_index - start_obs_index));
n = n + 1;

end

i = i + 1;

if n == stop_obs_index
break;
end

end
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progressbar(1) % close progressbar
disp('end')

% --------------------- Wave observation sync -------------------------

progressbar('Sync data...'); % initialize progressbar function

start_cmu_index = 2; % index starting point for CMU data
stop_cmu_index = length(cmu_data); % index stopping point for CMU data

start_obs_index = 214; % index starting point for wave data
stop_obs_index = length(sea_obs_data); % index stopping point for
wave obs data

time_diff = 1; % initialize variable
time_diff_prev = 1;
%time_diff_prev = 1.5e+9;

i = start_cmu_index;
n = start_obs_index;

overshoot = 0;

override_flag = 0; % override flag to convert NaN numbers to 0
load_nan_flag = 0; % flag to load array with NaN numbers

if override_flag == 1 % keep NaN if 1
x = 0;
x_wavedir = 0;
x_waveheight = 0;
x_ice_thickness = 0;
x_flow_size = 1;
end

if load_nan_flag == 1
cmu_data(:,34:40) = nan;
end

while i < stop_cmu_index

% calculate time difference
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time_diff_prev = time_diff;
time_diff = sea_obs_data(n+1,1) - cmu_data(i,28);

% timestamp is found
if time_diff < 0

A(n) = i;
%disp('diff success')
% check if not a number
if override_flag == 0;

x_bf = isnan(sea_obs_data(n,14));
x_wd = isnan(sea_obs_data(n,19));
x_wh = isnan(sea_obs_data(n,20));
x_sh = isnan(sea_obs_data(n,21));
x_wl = isnan(sea_obs_data(n,23));
x_wp = isnan(sea_obs_data(n,26));
x_ef = isnan(sea_obs_data(n,30));

end

if abs(time_diff) > abs(time_diff_prev) % overshoot case

overshoot = overshoot + 1;
i = i - 1;

% set first run
if n == start_obs_index
index_prev = i;
end

if x_bf == 1
cmu_data(index_prev:i,34) = 0;
else
cmu_data(index_prev:i,34) = sea_obs_data(n,14); % Beaufort number
end

if x_wd == 1
cmu_data(index_prev:i,35) = 0;
else
cmu_data(index_prev:i,35) = sea_obs_data(n,19); % Wave direction
rel to ship
end
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if x_wh == 1
cmu_data(index_prev:i,36) = 0;
else
cmu_data(index_prev:i,36) = sea_obs_data(n,20); % Ave wave height
end

if x_sh == 1
cmu_data(index_prev:i,37) = 0;
else
cmu_data(index_prev:i,37) = sea_obs_data(n,21); % Max swell heighy
end

if x_wl == 1
cmu_data(index_prev:i,38) = 0;
else
cmu_data(index_prev:i,38) = sea_obs_data(n,23); % Wave length lambda
end

if x_wp == 1
cmu_data(index_prev:i,39) = 0;
else
cmu_data(index_prev:i,39) = sea_obs_data(n,26); % Average Wave period
end

if x_ef == 1
cmu_data(index_prev:i,40) = 0;
else
cmu_data(index_prev:i,40) = sea_obs_data(n,30); % Average encounter
frequency
end

else % normal case

% set first run
if n == start_obs_index
index_prev = i;
end

if x_bf == 1
cmu_data(index_prev:i,34) = 0;
else

Stellenbosch University https://scholar.sun.ac.za



APPENDIX A. ALGORITHMS 89

cmu_data(index_prev:i,34) = sea_obs_data(n,14); % Beaufort number
end

if x_wd == 1
cmu_data(index_prev:i,35) = 0;
else
cmu_data(index_prev:i,35) = sea_obs_data(n,19); % Wave direction
rel to ship
end

if x_wh == 1
cmu_data(index_prev:i,36) = 0;
else
cmu_data(index_prev:i,36) = sea_obs_data(n,20); % Ave wave height
end

if x_sh == 1
cmu_data(index_prev:i,37) = 0;
else
cmu_data(index_prev:i,37) = sea_obs_data(n,21); % Max swell heighy
end

if x_wl == 1
cmu_data(index_prev:i,38) = 0;
else
cmu_data(index_prev:i,38) = sea_obs_data(n,23); % Wave length lamda
end

if x_wp == 1
cmu_data(index_prev:i,39) = 0;
else
cmu_data(index_prev:i,39) = sea_obs_data(n,26); % Average Wave period
end

if x_ef == 1
cmu_data(index_prev:i,40) = 0;
else
cmu_data(index_prev:i,40) = sea_obs_data(n,30); % Average encounter
frequency
end
end

index_prev = i; % save the previous index number
progressbar((n - start_obs_index)/(stop_obs_index - start_obs_index));
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n = n + 1;
end

%progressbar((i - start_cmu_index)/(stop_cmu_index - start_cmu_index));
i = i + 1;

if n == stop_obs_index
break;
end

end

progressbar(1) % close progressbar
disp('end')

% Write to Excel File

xlswrite('My sychronised data set.xlsx', cmu_data);
disp('write file complete')

A.3 Support vector regression
In [ ]: # Support vector regression training

# Load required python packages
import pandas as pd
import numpy as np

# Load packages from Scikit-Learn
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import GridSearchCV

# Import pickle library to save models
import pickle

# Import data from Excel
# Open water data from 2019-2020 relief voyage
df1 = pd.read_excel(’CMU_2019_2020_open water.xlsx’)
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# Stationary data from the 2019-2020 relief voyage
df2 = pd.read_excel(’CMU_2019_2020_stationary.xlsx’)

# Data for ice navigation is imported in the same manner

# Combine into one data frame
df = df1.append(df2, sort=False)
#=====================================

# Split data set into a training and test set
training, test = train_test_split(df, test_size = 0.33, random_state = 42)

#=================================
# Data has to be normalised and presented in the correct shape and format
# to train a model successfully
#==================================

# Normalisation of training data

# Transform par 1
scaler = MinMaxScaler()
scaler.fit(df[’PortPropMotorSpeed’].values.reshape(-1,1))
train_par_1 = scaler.transform(training[’PortPropMotorSpeed’]

.values.reshape(-1,1))

# Transform par 2
scaler.fit(df[’StbdPropMotorSpeed’].values.reshape(-1,1))
train_par_2 = scaler.transform(training[’StbdPropMotorSpeed’]

.values.reshape(-1,1))

# Transform par 3
scaler.fit(df[’PropellerPitchPort’].values.reshape(-1,1))
train_par_3 = scaler.transform(training[’PropellerPitchPort’]

.values.reshape(-1,1))

# Transform par 4
scaler.fit(df[’PropellerPitchStbd’].values.reshape(-1,1))
train_par_4 = scaler.transform(training[’PropellerPitchStbd’]

.values.reshape(-1,1))

# Transform par 5
scaler.fit(df[’SOG’].values.reshape(-1,1))
train_par_5 = scaler.transform(training[’SOG’]

.values.reshape(-1,1))
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# Transform par 6
scaler.fit(df[’WindDirRel’].values.reshape(-1,1))
train_par_6 = scaler.transform(training[’WindDirRel’]

.values.reshape(-1,1))

# Transform par 7
scaler.fit(df[’WindSpeed’].values.reshape(-1,1))
train_par_7 = scaler.transform(training[’WindSpeed’]

.values.reshape(-1,1))

# Transform par 8
scaler.fit(df[’Beaufort number’].values.reshape(-1,1))
train_par_8 = scaler.transform(training[’Beaufort number’]

.values.reshape(-1,1))

# Transform par 9
scaler.fit(df[’Wave direction’].values.reshape(-1,1))
train_par_9 = scaler.transform(training[’Wave direction’]

.values.reshape(-1,1))

# Transform par 10
scaler.fit(df[’Wave length’].values.reshape(-1,1))
train_par_10 = scaler.transform(training[’Wave length’]

.values.reshape(-1,1))

#===============================

# Normalisation of ice data

# Transform par 1
scaler = MinMaxScaler()
scaler.fit(df[’PortPropMotorSpeed’].values.reshape(-1,1))
test_par_1 = scaler.transform(test[’PortPropMotorSpeed’]

.values.reshape(-1,1))

# Transform par 2
scaler.fit(df[’StbdPropMotorSpeed’].values.reshape(-1,1))
test_par_2 = scaler.transform(test[’StbdPropMotorSpeed’]

.values.reshape(-1,1))

# Transform par 3
scaler.fit(df[’PropellerPitchPort’].values.reshape(-1,1))
test_par_3 = scaler.transform(test[’PropellerPitchPort’]
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.values.reshape(-1,1))

# Transform par 4
scaler.fit(df[’PropellerPitchStbd’].values.reshape(-1,1))
test_par_4 = scaler.transform(test[’PropellerPitchStbd’]

.values.reshape(-1,1))

# Transform par 5
scaler.fit(df[’SOG’].values.reshape(-1,1))
test_par_5 = scaler.transform(test[’SOG’]

.values.reshape(-1,1))

# Transform par 6
scaler.fit(df[’WindDirRel’].values.reshape(-1,1))
test_par_6 = scaler.transform(test[’WindDirRel’]

.values.reshape(-1,1))

# Transform par 7
scaler.fit(df[’WindSpeed’].values.reshape(-1,1))
test_par_7 = scaler.transform(test[’WindSpeed’]

.values.reshape(-1,1))

# Transform par 8
scaler.fit(df[’Beaufort number’].values.reshape(-1,1))
test_par_8 = scaler.transform(test[’Beaufort number’]

.values.reshape(-1,1))

# Transform par 9
scaler.fit(df[’Wave direction’].values.reshape(-1,1))
test_par_9 = scaler.transform(test[’Wave direction’]

.values.reshape(-1,1))

# Transform par 10
scaler.fit(df[’Wave length’].values.reshape(-1,1))
test_par_10 = scaler.transform(test[’Wave length’]

.values.reshape(-1,1))

#==============================

# Transform training data into the correct shape

X_1 = np.reshape(train_par_1,-1)
X_2 = np.reshape(train_par_2,-1)
X_3 = np.reshape(train_par_3,-1)
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X_4 = np.reshape(train_par_4,-1)
X_5 = np.reshape(train_par_5,-1)
X_6 = np.reshape(train_par_6,-1)
X_7 = np.reshape(train_par_7,-1)
X_8 = np.reshape(train_par_8,-1)
X_9 = np.reshape(train_par_9,-1)
X_10 = np.reshape(train_par_10,-1)

X_train = (X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_10)
train_x = np.transpose(X_train)

# Transform test data into the correct shape

X1 = np.reshape(test_par_1,-1)
X2 = np.reshape(test_par_2,-1)
X3 = np.reshape(test_par_3,-1)
X4 = np.reshape(test_par_4,-1)
X5 = np.reshape(test_par_5,-1)
X6 = np.reshape(test_par_6,-1)
X7 = np.reshape(test_par_7,-1)
X8 = np.reshape(test_par_8,-1)
X9 = np.reshape(test_par_9,-1)
X10 = np.reshape(test_par_10,-1)

X_test = (X1, X2, X3, X4, X5, X6, X7, X8, X9, X10)
test_x = np.transpose(X_test)

# Data is now prepared and ready for training
#=========================================================

# SVR training !!!!!!!!!!!!!!!!

# Train SVR model - hyperparameters not optimised

clf = SVR(C=1.0, epsilon=0.2)
clf.fit(train_x, train_y)

# Check accuracy score
SVR_score_untuned = clf.score(test_x, test_y)
print(SVR_score_untuned)

#========================
# Optimise SVR hyper-paramters
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parameters = {’kernel’: (’linear’, ’rbf’, ’poly’), ’C’:(1,4,8,16,32)}
svr = SVR()

# Train model
clf2 = GridSearchCV(svr, parameters, cv=5)
clf2.fit(train_x, train_y)

# Check accuracy score
SVR_score_tuned = clf.score(test_x, test_y)
print(SVR_score_tuned)

# Save optimised SVR model which can be called when needed
with open(’My SVR model.pkl’, ’wb’) as f:

pickle.dump(clf2,f)

# End of SVR training
#===================================================

A.4 Feed-forward neural network
In [ ]: # Feed-forward neural network training

# Import required python packages
import pandas as pd
import numpy as np

# Packages from Scikit-Learn
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

# Packages from Keras amd Tensorflow
import tensorflow as tf
from tensorflow import keras
from keras import models
from keras import layers

# Import data from Excel
# Open water data from 2019-2020 relief voyage
df1 = pd.read_excel(’CMU_2019_2020_open water.xlsx’)

# Stationary data from the 2019-2020 relief voyage
df2 = pd.read_excel(’CMU_2019_2020_stationary.xlsx’)
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# Open water data from 2017-2020 relief voyage
df3 = pd.read_excel(’CMU_2017_2018_open water.xlsx’)

# Data for ice navigation is imported in the same manner

# combine two data sets
df_1 = df1.append(df2, sort=False)
df = df_1.append(df3, sort=False)
#=====================================

# Split data set into a training and test set
training, test = train_test_split(df, test_size = 0.33, random_state = 42)

#=================================
# Data has to be normalised and presented in the correct shape and format
# to train a model successfully
#==================================

# Normalisation of training data

# Transform par 1
scaler = MinMaxScaler()
scaler.fit(df[’PortPropMotorSpeed’].values.reshape(-1,1))
train_par_1 = scaler.transform(training[’PortPropMotorSpeed’]

.values.reshape(-1,1))

# Transform par 2
scaler.fit(df[’StbdPropMotorSpeed’].values.reshape(-1,1))
train_par_2 = scaler.transform(training[’StbdPropMotorSpeed’]

.values.reshape(-1,1))

# Transform par 3
scaler.fit(df[’PropellerPitchPort’].values.reshape(-1,1))
train_par_3 = scaler.transform(training[’PropellerPitchPort’]

.values.reshape(-1,1))

# Transform par 4
scaler.fit(df[’PropellerPitchStbd’].values.reshape(-1,1))
train_par_4 = scaler.transform(training[’PropellerPitchStbd’]

.values.reshape(-1,1))

# Transform par 5
scaler.fit(df[’SOG’].values.reshape(-1,1))
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train_par_5 = scaler.transform(training[’SOG’]
.values.reshape(-1,1))

# Transform par 6
scaler.fit(df[’WindDirRel’].values.reshape(-1,1))
train_par_6 = scaler.transform(training[’WindDirRel’]

.values.reshape(-1,1))

# Transform par 7
scaler.fit(df[’WindSpeed’].values.reshape(-1,1))
train_par_7 = scaler.transform(training[’WindSpeed’]

.values.reshape(-1,1))

# Transform par 8
scaler.fit(df[’Beaufort number’].values.reshape(-1,1))
train_par_8 = scaler.transform(training[’Beaufort number’]

.values.reshape(-1,1))

# Transform par 9
scaler.fit(df[’Wave direction’].values.reshape(-1,1))
train_par_9 = scaler.transform(training[’Wave direction’]

.values.reshape(-1,1))

# Transform par 10
scaler.fit(df[’Wave length’].values.reshape(-1,1))
train_par_10 = scaler.transform(training[’Wave length’]

.values.reshape(-1,1))

#===============================

# Normalisation of ice data

# Transform par 1
scaler = MinMaxScaler()
scaler.fit(df[’PortPropMotorSpeed’].values.reshape(-1,1))
test_par_1 = scaler.transform(test[’PortPropMotorSpeed’]

.values.reshape(-1,1))

# Transform par 2
scaler.fit(df[’StbdPropMotorSpeed’].values.reshape(-1,1))
test_par_2 = scaler.transform(test[’StbdPropMotorSpeed’]

.values.reshape(-1,1))

# Transform par 3
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scaler.fit(df[’PropellerPitchPort’].values.reshape(-1,1))
test_par_3 = scaler.transform(test[’PropellerPitchPort’]

.values.reshape(-1,1))

# Transform par 4
scaler.fit(df[’PropellerPitchStbd’].values.reshape(-1,1))
test_par_4 = scaler.transform(test[’PropellerPitchStbd’]

.values.reshape(-1,1))

# Transform par 5
scaler.fit(df[’SOG’].values.reshape(-1,1))
test_par_5 = scaler.transform(test[’SOG’]

.values.reshape(-1,1))

# Transform par 6
scaler.fit(df[’WindDirRel’].values.reshape(-1,1))
test_par_6 = scaler.transform(test[’WindDirRel’]

.values.reshape(-1,1))

# Transform par 7
scaler.fit(df[’WindSpeed’].values.reshape(-1,1))
test_par_7 = scaler.transform(test[’WindSpeed’]

.values.reshape(-1,1))

# Transform par 8
scaler.fit(df[’Beaufort number’].values.reshape(-1,1))
test_par_8 = scaler.transform(test[’Beaufort number’]

.values.reshape(-1,1))

# Transform par 9
scaler.fit(df[’Wave direction’].values.reshape(-1,1))
test_par_9 = scaler.transform(test[’Wave direction’]

.values.reshape(-1,1))

# Transform par 10
scaler.fit(df[’Wave length’].values.reshape(-1,1))
test_par_10 = scaler.transform(test[’Wave length’]

.values.reshape(-1,1))

#==============================

# Transform training data into the correct shape

X_1 = np.reshape(train_par_1,-1)
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X_2 = np.reshape(train_par_2,-1)
X_3 = np.reshape(train_par_3,-1)
X_4 = np.reshape(train_par_4,-1)
X_5 = np.reshape(train_par_5,-1)
X_6 = np.reshape(train_par_6,-1)
X_7 = np.reshape(train_par_7,-1)
X_8 = np.reshape(train_par_8,-1)
X_9 = np.reshape(train_par_9,-1)
X_10 = np.reshape(train_par_10,-1)

X_train = (X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_10)
train_x = np.transpose(X_train)

# Transform test data into the correct shape

X1 = np.reshape(test_par_1,-1)
X2 = np.reshape(test_par_2,-1)
X3 = np.reshape(test_par_3,-1)
X4 = np.reshape(test_par_4,-1)
X5 = np.reshape(test_par_5,-1)
X6 = np.reshape(test_par_6,-1)
X7 = np.reshape(test_par_7,-1)
X8 = np.reshape(test_par_8,-1)
X9 = np.reshape(test_par_9,-1)
X10 = np.reshape(test_par_10,-1)

X_test = (X1, X2, X3, X4, X5, X6, X7, X8, X9, X10)
test_x = np.transpose(X_test)

# Data is now prepared and ready for training
#=========================================================

# Define neural network architecture

def build_model():
model = models.Sequential()
model.add(layers.Dense(64, activation=’relu’, input_shape=(10,)))
model.add(layers.Dense(64, activation=’relu’))
model.add(layers.Dense(1))
model.compile(optimizer=’rmsprop’, loss=’mse’, metrics=[’mae’])
return model

model = build_model()
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# train model for 100 epochs on training set
history = model.fit(train_x, train_y, epochs = 100, batch_size=16, verbose=0)

# Return MSE and MAE scores
test_mse_score, test_mae_score = model.evaluate(test_x, test_y)

# save model to file
model.save("My neural network model.h5")
print("Saved model to disk")

# End of training procedure
#==========================================================

A.5 Particle swarm optimisation
In [ ]: # Partical swarm optimisation

# import required python packages
import tensorflow as tf
from tensorflow import keras
from keras import models
from keras import layers
import numpy as np
import pandas as pd
import math
import pyswarms as ps
from pyswarms.single.global_best import GlobalBestPSO

# import neural network model trained on the 2019-2020 and 2017-2018 data
ship_model = models.load_model(’Run 67_NN.h5’)
SOG_model = models.load_model(’Run 66_NN_SOG estimate.h5’)

# define objective function
#============================
# function - the cost function to be evaluated
def function(x):

# define voyage constants - all of these are estimates
d = 3000 # distance
m = 10000 # R10 000 per hour - estimate
c = 100000 # Minimum cost of R 100 000 before starting voyage
b = 2.8 # Rough calculation - R 2,8/kWh
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# weather variables
windd = 0.25 # wind_dir - head wind
ws = 1 # wind speed
BF = 0.5 # beaufort number
wave_d = 0 # wave direction
wl = 0.035 # wave length

l = 0
p = 0

x2 = np.empty([10,10])
x_SOG_est = np.empty([10,4])

x1 = np.reshape(x, (10,2))

x_SOG_est[:,0] = x1[:,0]
x_SOG_est[:,1] = x1[:,1]
x_SOG_est[:,2] = x1[:,0]
x_SOG_est[:,3] = x1[:,1]

# SOG estimate from SOG FFNN model
SOG_est = SOG_model.predict(x_SOG_est) # output in knots

constants = np.reshape(np.array([windd, ws, BF, wave_d, wl]), (1,5))

# populate array for
for l in range(10):

for p in range(10):

if p < 4:
x2[l,p] = x_SOG_est[l,p]

elif p == 4:
# convert to scale between 0 and 1
x2[l,p] = SOG_est[l,0]/17.94

else:
x2[l,p] = constants[0,p-5]

x_shaped = np.reshape(x2, (-1,10))

# neural network
nn = 2*ship_model.predict(x_shaped)

# convert SOG value to km/h
SOG = 1.852*(np.reshape(SOG_est[:], (10,1)))
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# cost function - total costs = fixed costs + voyage costs
fx = m*(d/SOG) + c + b*nn*(d/SOG)
fx = np.reshape(fx, (10,))

return fx
# end of function definition
#=========================================================

# Define PSO variables

# create bounds of input parameters
max_bound= 1*np.ones(2)
min_bound = 0.65*np.ones(2)
bounds = (min_bound, max_bound)

# initialize swarm
options = {’c1’: 0.5, ’c2’: 0.5, ’w’:0.9}

# initiate optimizer
optimizer = GlobalBestPSO(n_particles=10, dimensions=2,

options=options, bounds=bounds)

# now run the optimization for 1000 iterations
cost, pos = optimizer.optimize(function, 1000)

x_input = np.array([pos, pos])
x_input = np.reshape(x_input, (-1,4))

# Get SOG estimate from optimum input conditions
SOG_estimate = SOG_model.predict(x_input)

# Print outputs

# Print SOG
print("Optimimum SOG:")
print(SOG_estimate)

# Print best propeller and shaft speed configuration
print("Optimimum machine control settings:")
print(pos)

# Print minimum cost
print("Minimum cost:")
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print(cost)

# End of PSO algorithm
# ==================================
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Appendix B

Observations from previous voyage
data

Various histograms of noteworthy parameters from the 2019-2020 Antarctic
relief voyage are presented in Figure B.1 to illustrate regions where the most
data originated during for open water navigation. SOG, Figure B.1a, is concen-
trated around 15 kn while most of the power samples, Figure B.1b, cluster near
2500 kW. The similar grouping supports the relationship between power and
SOG. Propeller pitch, Figure B.1c, and shaft rotational speed, Figure B.1d,
were mostly maintained at constant maximum levels during open water pas-
sage. When using these parameters as inputs to a data-driven model, the
configuration of both variables, for the port and starboard side, should be
kept in the same general region as shown in the histograms to ensure the va-
lidity of a trained model’s predictions. Lastly, Figures B.1f and B.1e show
most common wind speeds and relative directions measured during the 2019-
2020 relief voyage. The ship rarely experience wind speeds higher than 20 kn.
Head winds were also the most common wind direction encountered.

The data distribution during ice navigation is different to open water passage.
Figure B.2 presents histograms for power, SOG, propeller pitch and shaft speed
during ice operations. The SOG of the ship, Figure B.2a, is concentrated
around speeds between 5 to 10 kn. The most samples for power demand are
located at lower power levels of 1250 kW. However, a number of samples are
also located at peak power levels of 4000 kW, Figure B.2b. The relationship
between power and SOG are not apparent from inspecting the two histograms,
as power sample concentrations are not complemented by a corresponding
grouping of SOG samples. This supports the idea that external ice interactions
are the leading factor driving power demand. In some cases, the ship may get
stuck in ice and must reverse to free itself. Therefore, the propeller pitch often
changes position, Figure B.2c. The shaft speed on the other hand is kept fairly
constant near 140 rpm, Figure B.2d.

104
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(a) SOG (b) Starboard power

(c) Starboard propeller pitch (d) Starboard shaft speed

(e) Wind speed (f) Relative wind direction

Figure B.1: Histogram of noteworthy CMU parameters during open water
navigation (2019-2020 relief voyage).
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(a) SOG (b) Starboard power

(c) Starboard propeller pitch (d) Starboard shaft speed

Figure B.2: Histogram of noteworthy CMU parameters during ice navigation
(2019-2020 relief voyage).
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Appendix C

Fuel cost calculation

C.1 Calculation of running cost
An hourly overhead cost was introduced into the speed optimisation problem
as discussed in Chapter 5. A breakdown of the estimated hourly cost calcu-
lation is presented in Table C.1. These budgeted expenses were estimated to
facilitate the optimisation problem in Chapter 5. All amounts are listed in
South African Rand (ZAR). The estimated expenses added up to R9 840 and
was subsequently rounded up to R10 000.

Table C.1: Breakdown of estimated hourly costs (ZAR).

Number Estimated Estimated
of annual hourly

Position crew earnings earnings Total
Captain 1 R1 200 000 R520 R520
Chief Engineer 1 R1 200 000 R520 R520
Officer 12 R500 000 R200 R2 400
Deckhand 30 R200 000 R80 R2 400
Total per hour for crew wages R5 840
Miscellaneous hourly expenses R4 000
Grand total per hour R9 840

107
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C.2 Calculation of fuel cost
The estimated fuel consumption for the SAAII of 179 g/kWh was communi-
cated by the ship’s officers (Ligthelm, 2020). Assuming the price for diesel at
R13 per litre with a fuel density of ρ = 0.8323 kg/litre, the price per kilogram
can be calculated as

Price per kilogram = R13× ρ ≈ R15.62/kg. (C.2.1)

The price per kWh can be approximated as

Price per kWh = R15.62/kg × 179g/kWh ≈ R2.80/kWh. (C.2.2)
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