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Summary 

The aim of the study was to identify genetic determinants associated with tick count, growth 

traits, and skin thickness in F2 Angus x Nguni crossbred cattle. Two hundred and sixty-six 

animals were used in the study. Genetic parameters were estimated by fitting a sire model 

using pedigree records and by fitting an animal model using a kinship matrix in the ASReml 

software. Hair samples from the animals were genotyped using Illumina BovineSNP150 assay 

and there were 115 143 SNPs after quality control. A single SNP approach was used for the 

association tests, using the mixed model function of the mmscore, while adjusting for 

population stratification and relatedness in GenABEL. A nominal threshold of Pnominal = 5 x 

10-5 was applied to the data. Post-GWAS functional annotation, pathway, and cluster 

analyses were performed using DAVID and ShinyGo bioinformatics resources with the Bos 

taurus genome used as a background. Fisher's exact test with false discovery rate (FDR) 

adjustment was used at p (FDR) < 0.05. 

 

The heritability estimates from the sire model for tick count, birth, weaning and yearling 

weights, and skin thickness were 0.21±0.22, 0.36±0.26, 0.32±0.14, 0.32±0.19, and 0.40±0.15, 

respectively. The respective heritability estimates obtained from an animal model fitting 

kinship matrix were 0.12±0.15, 0.26±0.16, 0.70±0.18, 0.38±0.18 and 0.58±0.21. These 

heritability estimates showed the presence of genetic variation for these traits. Thus, 

improvement of these traits can be expected from selection. Single nucleotide polymorphisms 

(SNP) for tick count were observed on chromosomes 2 and 4, while those associated with 

birth weight were on chromosomes 3 and 12. Chromosomes 2 and 18 contained SNPs for 

weaning weight and chromosome 8 had a SNP for yearling weight. The SNPs for skin 

thickness were observed on chromosomes 2, 7, 8, 9, and 12. For tick count, functional 

annotation uncovered enriched gene ontology (GO) terms and pathways related to cellular 

processes, regulation of biological processes, and response to stimulus. These were relevant 

for immune system response necessary for understanding host-tick interaction. Candidate 

genes such as ZNF746, GIMAP8, and RARRES2 could be potential biomarkers for tick control 

in cattle. The enriched GO terms and pathways for growth traits were related to ubiquinol-

cytochrome-c reductase activity, plasma membrane raft, DNA ligase, ATP dependent among 

others. These categories were relatable to cell differentiation, skeletal muscle development, 

and metabolism regulation. The uncovered potential candidate genes for growth traits were 

TRPM8, SPP2, UQCRFS1, MB, TMEFF1, CAVIN4, and MSANTD3. For skin thickness, the 

enriched GO terms and pathways were related to immune response, cell differentiation, and 

transmembrane receptor tyrosine-protein kinase among others. The categories were enriched 
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through FER and NTRK2 genes, which could be regarded as potential candidate genes for 

skin thickness in this population. The study uncovered some novel and previously identified 

genes as well as biological mechanisms related to tick count, growth traits, and skin thickness 

in the F2 Angus x Nguni population. These genes could be used to facilitate genetic 

improvement of tick count, growth traits, and skin thickness in this population.  
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Preface 

This thesis is an original work by Nelisiwe Mkize. This study forms part of a marker detection 

research project, which was established by the Animal Production Campus of the Agricultural 

Research Council. The research project was based on F2 Angus x Nguni cattle population and 

the Agricultural Research Council Ethics Committee granted the ethical clearance (Ref: 

APIEC 17/04).  

 

This thesis is structured as described below: 

Chapter 1: General Introduction 

This is an introductory chapter, which gives background information of the research 

undertaken, the problem statement, motivation, research question and aims and objectives of 

the study. 

 

Chapter 2: Suitability of GWAS as a Tool to Discover SNPs Associated with Tick 

Resistance in Cattle: A Review 

This chapter reviewed available literature to explore whether GWAS was a suitable tool to 

study tick resistance in cattle. To be specific, the study looked at computer software available 

to conduct GWAS, available genotyping platforms, testing for association, Post-GWAS 

analysis. 

 

Chapter 3: Genetic parameter estimates for tick resistance in F2 Angus x Nguni cattle 

artificially infested with Amblyomma hebraeum ticks 

The focus of this chapter was on the estimation of genetic parameters for tick count, growth 

traits and skin thickness using a sire model through ASReml software.  

 

Chapter 4: Genome-wide association study for tick count, growth traits and skin 

thickness in F2  Angus x Nguni cattle  

Genome wide association analysis was used to search for SNPs associated with tick count, 

growth traits, and skin thickness in F2 Angus x Nguni cattle 

 

Chapter 5: Post-GWAS analysis to find genes associated with tick count, growth traits 

and skin thickness 

This chapter presents the Post-GWAS analysis aimed to understand the biological relevance 

of the identified SNPs with the traits of interest.  
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Chapter 6: General conclusion and recommendations 

This chapter presents the general summary of the findings, scientific contribution, 

recommendations, future work and limitations of the study. 
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1. Chapter 1: General Introduction 

 

1.1 Introduction 

Cattle production contributes significantly to the economies of many countries and most 

people depend on it for food security and income [1–4]. Cattle food products have a nutritive 

role in the human diet; they contribute beneficial sources of proteins, vitamins, fibre, fatty 

acids, minerals, and energy [5–7]. These are valuable nutritive elements, which are important 

for human growth and development [8]. The rapid expansion of the world population 

contributes to the great demand for food and the majority of the world’s population resides in 

hunger-stricken communities [9]. The United Nations have established 17 global Sustainable 

Development Goals. Sustainable Development Goal 2 aims to create a world that is free of 

hunger by the year 2030 [10]. The actual focus of the goal is to end hunger, achieve food 

security and improved nutrition, and promote sustainable agriculture [10]. The repercussions 

of continuous climate change are a threat to the United Nations’ Sustainable Development 

Goal 2. Climate change creates environmental conditions, which threaten cattle production 

systems. Ultimately contributing to the instabilities in animal welfare and food insecurity.  

 

About 70% of global cattle production occurs in subtropical regions, which have a high 

prevalence of ticks and tick-borne diseases [11]. Ticks and tick-borne diseases (TTBDs) affect 

about 80% of the world's cattle population [12]. As a result, ticks are of veterinary and public 

health importance globally and are associated with the transmission of various diseases (e.g. 

Bovine babesiosis, anaplasmosis, ehrlichiosis, Lyme disease, Rocky Mountain Spotted Fever, 

and others) in animals and humans [13,14].  

 

The widespread presence of TTBDs has dramatic effects on cattle production traits, morbidity, 

and mortality [12,15,16]. Losses due to ticks have long been of concern to livestock producers, 

governments, and researchers [17]. Currently, global losses range from US$20-30 billion per 

annum [18] and this is significantly higher than previous losses of US$13.9-18.7 billion per 

annum that were reported by de Castro in 1997 [13]. This shows that presence of TTBDs in 

livestock production is an ongoing problem, which requires serious attention. In Africa, around 

1.1 million cattle die annually because of TTBDs, resulting in economic losses of $160 million 

[19]. In India, the economic losses due to TTBDs in animal production are estimated to be 

US$498.7 million per annum [20]. In Brazil, previous reports suggest that the country loses 

about two billion dollars per annum because of ticks [21]. These losses are incurred despite 
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the widespread use of tick control measures, which include the application of acaricides and 

vaccines. 

 

In Africa, the tick species that have been reported to be troublesome in cattle production, 

include Amblyomma spp and Rhipicephalus spp [22]. Studies investigating host 

susceptibility/resistance to tick infestations in South African cattle have reported different 

prevalence rates on different breeds such as Nguni, Bonsmara, Angus and others [16, 23–

26]. These studies have highlighted that South Africa is one of the countries facing a tick-

endemic crisis in cattle production. In the regions where ticks are endemic, different tick control 

measures such as the use of chemical compounds, biological systems and grazing 

management have been adopted to mitigate the burden of tick infestations in cattle production 

[17]. 

 

The success of different tick control methods employed to mitigate the burden of TTBDs in 

cattle production has been hindered by various shortcomings. Currently, the main tick control 

method in use is based on chemical compounds known as acaricides [27,28]. The application 

of acaricides is associated with high costs, the emergence of acaricide-resistant tick strains, 

the presence of acaricide residues in animal products and environmental contamination 

[29,30]. The emergence of acaricide-resistant strains of ticks underlines the need to 

continuously develop new chemicals. Given that acaricide-resistant strains are evolving faster 

than the development of new acaricides [31], this approach may not be a stand-alone solution. 

Apart from the acaricides usage, vaccines are currently being exploited as alternative anti-tick 

compounds. However, it has been reported that ticks mutate the targeted epitopes into 

unfamiliar forms, and this nullifies the effect of these drugs [32,33]. Moreover, the natural 

specificity of vaccines disadvantages the ability of the drugs to effectively confer protection 

against various tick species [34]. Therefore, there is a need for the development of alternative 

tick control strategies.  

 

Host resistance to bovine tick species is the natural ability of an animal to limit the number of 

ticks that survive to maturity; this occurs because of the immunological response of the animal 

[35]. Differences in tick burdens between and within cattle breeds have been observed [16,26]. 

It is known that Bos indicus cattle and their crosses are more resistant to TTBDs compared to 

Bos taurus cattle [36,37]. This is explained by the genetic architecture of the breeds, which is 

currently being exploited globally, to gain insight into the biological mechanisms influencing 

the resistance and susceptibility of cattle against ticks [26,30,38–43]. The identification of 

genetic variants underlying resistance to ticks in cattle has the potential to provide 
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opportunities to improve tick resistance through genomic selection [44,45]. The exploratory 

measures to search for genetic determinants associated with tick resistance are currently 

being made possible by the availability and advancement of high-throughput single nucleotide 

polymorphisms (SNPs) genotyping arrays for cattle [46]. The SNP genotyping arrays generate 

information, which is studied using computational and statistical methods, to attain insight into 

the genetic variation among cattle, translating to the performance of economic traits [47,48]. 

When studying genetic variations among economically important traits, different genomic 

approaches are used. The approach that is gaining momentum in research is the genome-

wide association studies (GWASs). The simple principle for this approach is to test the SNPs 

influencing the trait of interest by associating the trait's phenotype with genomic data of the 

species tested. In cattle tick resistance research, the GWAS approach has been used in 

different regions (such as Brazil, Australia, and South Africa) on different breeds to investigate 

genomic regions associated with resistance to ticks. Previous GWAS research identified 

genomic regions associated with resistance to ticks in cattle [26,30,38,43]. Despite the 

findings reported in these studies, information on molecular markers associated with tick 

resistance in cattle is still limited. Therefore, this elicits the need to conduct more studies to 

uncover biological mechanisms underlying tick resistance in cattle. More studies will provide 

knowledge, which will facilitate the development of alternative tick-control strategies through 

selective breeding for tick resistance. Breeding for host resistance to ticks may reduce the 

costs of vaccine and acaricides administration as well as reduce cattle mortalities. This would 

also improve animal welfare. The environment and consumers stand to benefit through 

reduced contamination of animal products and the environment with chemical residues. 

 

Body weight is considered an important economic trait that describes growth in beef cattle 

production [49,50]. At the farm level, growth traits (body weights) are used as an indicator of 

meat production and as a criterion to select animals for further breeding [51–54]. One of the 

breeding goals in beef breeding programs is to improve body weight (e.g. birth weight, 

weaning weight and yearling weight). The improvement of body weight is beneficial for 

controlling calving ease (with birth weight), preventing stock fatalities, increasing productivity, 

and ensuring food security. Selling et al. [55] noted that the improvement of growth traits can 

be enhanced if Deoxyribonucleic acid (DNA) polymorphisms influencing the expression of the 

traits are uncovered and used for selective breeding. In this context, the improvement of 

growth traits could act as a proxy to improve tick resistance in cattle, since positive correlations 

have been established between these traits [44]. Furthermore, skin thickness is another 

economic trait that has been noted to play a role in tick infestation in cattle [56]. The thickness 

of the skin has also been suspected to have an association with growth traits [57]. However, 

Stellenbosch University https://scholar.sun.ac.za



 

4 
 

 

the information related to the relationship between growth traits and skin thickness is still 

limited. 

 

Commercial beef production in South Africa is practiced mainly using exotic breeds such as 

Angus, Simmental, Santa Gertrudis, and Wagyu [58]. Angus cattle are one of the preferred 

breeds for meat production, because of their ease of calving, marbling, and growth traits [59]. 

However, Muchenje et al. [16] reported that the Angus breed tends to be susceptible to TTBDs 

that affect meat production and reduce profit margins. Previous studies have reported that 

there are cattle breeds with natural resilience to tick infestations [23,26,60,61]. South African 

indigenous breeds that have been reported to be highly resistant to tick infestations include 

the Afrikaner and Nguni [23,61–64]. The Nguni breed has captured international interest 

concerning its resilience to TTBDs, high reproductive performance, good gait, minimal 

maintenance requirements, and good foraging ability [16,65]. The demand for new tick control 

measures in cattle production has led to the implementation of studies that are focused on the 

crossbreeding of naturally tick-resistant breeds with breeds known for producing high-quality 

meat but are susceptible to tick infestations. In Southern Africa, crossbreeding to improve tick 

resistance has not been well explored. This warrants the need to implement crossbreeding 

research aimed at improving tick resistance using the Nguni and Angus breeds.  

 

 

1.2 Problem statement 

Ticks and tick-borne diseases (TTBDs) threaten animal welfare, food security, food and 

environmental safety, and profit margins of pasture-based cattle production systems. TTBDs 

are prevalent in cattle production systems globally and are expected to increase due to climate 

change. Farm management systems make use of acaricides to control TTBDs, however, these 

drugs are costly, and their residues pollute the environment and food products of cattle origin. 

A contaminated environment raises public health concerns and underscores the need for 

remedial actions to be taken swiftly. Furthermore, the prolonged use of acaricides in 

production systems results in the emergence of tick strains that are resistant to these drugs. 

Therefore, there is a need for alternative tick control strategies that will not only be cost-

effective, but sustainable and environmentally friendly, complementing conventional tick 

control strategies. The use of genomic information in breeding to improve host natural 

resistance to ticks has been recommended as an environmentally safe alternative strategy to 

control cattle ticks.  

 

In South Africa, beef production systems are mostly practiced under extensive environments 
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characterized by elevated levels of infestation by ticks. Commercial beef production is 

prevalently practiced using exotic breeds. Not only are exotic breeds known to be highly 

susceptible to tick infestations but also they are less adaptable to harsh environmental 

conditions such as drought. During unfavourable environmental conditions, commercial cattle 

production is heavily affected.  

 

The variation in resistance to ticks that have been observed in South African cattle breeds has 

not been well explored as a potential approach to control ticks. Thus, the Nguni cattle’s 

superior resistance to ticks has not been utilized in improving the level of resistance in South 

African beef production systems.  

 

There is evidence of additive variation that has been linked to tick count, skin thickness and 

growth traits. The genetic improvement of these traits requires knowledge of the genetic 

architecture of the determinants which influence the trait. Genome-wide association analysis 

presents a better approach to elucidate the genetic architecture of biological mechanisms 

influencing tick count, growth traits and skin thickness.  

 

 

1.3 Motivation of the study 

The establishment of South African research studies aimed to uncover the genetic 

determinants associated with tick count, growth traits and skin thickness will provide 

information, which will inform cattle breeding programs. Selection for tick count, growth traits 

and skin thickness, may help control tick infestations, reduce production losses and the 

intensive use of acaricides, as well as increase food and environmental safety from acaricides 

contaminations.  

 

 

1.4 Aims and objectives 

The aim of this study was to identify genetic determinants associated with tick count, growth 

traits, and skin thickness in F2 Angus x Nguni crossbred cattle.  

 

The specific objectives of the study were:  

 

(i) To estimate genetic parameters for tick count, growth traits and skin thickness in F2 

Angus x Nguni cattle. 

(ii) To identify SNPs associated with tick count, growth traits and skin thickness in F2 
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Angus x Nguni cattle using Genome Wide Association analysis. 

(iii) To conduct post-genome wide association analyses to identify genes associated with 

biological processes relevant to tick count, growth traits and skin thickness.  

 

 

1.5 Research question 

The study aimed to address the following research questions:  

(iv) Does genetic variation exist for tick count, growth traits and skin thickness in F2 Angus 

x Nguni cattle? 

(v) Are there any genetic determinants associated with the expression of tick count, 

growth traits, and skin thickness in F2 Angus x Nguni cattle? 

(vi) What are the biological functions of the genetic determinants underlying tick count, 

growth traits and skin thickness?  
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Abstract: Understanding the biological mechanisms underlying tick resistance in cattle holds 

the potential to facilitate genetic improvement through selective breeding. Genome wide 

association studies (GWAS) are popular in research on unravelling genetic determinants 

underlying complex traits such as tick resistance. To date, numerous studies have been 

published on single nucleotide polymorphisms (SNPs) associated with tick resistance in cattle. 

The discovery of SNPs related to tick resistance has led to the mapping of associated 

candidate genes. Despite the success of these studies, information on genetic determinants 

associated with tick resistance in cattle is still limited. This warrants the need for more studies 

to be conducted. In Africa, the cost of genotyping is still relatively expensive; thus, conducting 

GWAS is a challenge, as the minimum number of animals recommended cannot be 

genotyped. The required minimum population size and genotyping cost challenges may be 

overcome through the establishment of collaborations. Thus, the current review discusses 

GWAS as a tool to uncover SNPs associated with tick resistance, by focusing on the study 

design, association analysis, factors influencing the success of GWAS, and the progress on 

cattle tick resistance studies. 

Keywords: tick control; genotyping technology; quality control; association test 

 

2.1 Introduction 

Traditionally, animal improvement programs were limited to phenotypic information only, 

which may be ineffective for traits that are costly to measure, such as tick resistance. In cattle 

production, the presence of bovine ticks is considered as one of the main sources of diseases, 
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which are detrimental to animal health [1]. Ticks and tick-borne diseases (TTBDs) have 

substantial effects on animal health and welfare wellbeing, as well as a serious economic 

impact in both developed and developing countries [2]. To mitigate the bovine tick burden, 

wide ranges of tick control strategies have been adopted; however, they are ineffective in 

completely eradicating ticks. Currently, farmers use acaricides, which were efficient when they 

were introduced; however, they later developed limitations which are detrimental to the animal 

production economy and to consumers. Various researchers have reported that the prolonged 

utilization of acaricides on food-producing animals creates the development of acaricide 

resistance by ticks, subsequently reducing the efficacy of chemicals [3-4]. Additionally, 

acaricide residues have been traced in milk and meat products [5]. The presence of these 

residues in food products and in the environment poses a health threat to human beings. This 

underlines the need for alternative tick control measures, which are chemically-free and 

environmentally friendly [6]. A potential alternative approach to control ticks would be the use 

of genomic information, which entails the exploitation of genetic variation in host resistance to 

tick infestation. The success of this approach depends on the discovery of genetic 

determinants associated with low tick load in cattle.  

 

The development of high throughput genotyping technologies has provided an opportunity to 

identify novel genetic variants, such as single nucleotide polymorphisms (SNPs), associated 

with economic traits in cattle. SNPs are genetic markers of choice because they are heritable 

and abundantly distributed across the genome. Genome-wide association studies (GWAS) 

are increasingly becoming the common experimental approach to investigate SNP markers 

associated with various economic traits in animal production. This approach operates by 

associating the phenotype with the genotype data to investigate the causal genetic variants 

for traits of interest using statistical models. The use of SNP markers in breeding for tick 

resistance (low tick load in cattle) has the potential to assist breeders in making informed 

decisions to improve host resistance to ticks in cattle [7–9]. Using GWAS, several studies have 

been conducted to investigate genetic variants for tick resistance in cattle, in different breeds 

and regions.  

 

Studies that have been conducted to date have presented evidence of the association of 

various genomic regions with low tick load in cattle and recommended the validation of the 

discovered regions. Some of the challenges associated with GWAS include different 

phenotyping methods and genotyping strategies. These challenges could be overcome by the 

standardization of phenotyping procedures for tick count [15]. Genotype imputation has been 

identified and recommended as a cost-effective approach to account for the missingness of 

Stellenbosch University https://scholar.sun.ac.za



 

15 
 

 

genotyped data and facilitate the improvement of GWAS power. Additionally, the 

establishment of collaborations holds the potential to solve issues associated with small 

discovery populations and running costs for GWAS for tick resistance.  

 

Despite the number of tick resistance GWAS studies that have been conducted to date, the 

availability of data is still a challenge, which is a global challenge hindering the success of 

improving tick resistance traits through genomic selection. Several researchers noted that in 

depth knowledge of genome variation for tick resistance in cattle is required [7,16]. The 

generation of genomic information for host resistance to ticks is currently gaining more 

attention because there is a need for the knowledge on genetic determinants influencing this 

trait. This paper reviews GWAS as a genetic tool to identify genetic variants associated with 

resistance to ticks in cattle. 

 

 

2.2 GWAS Overview 

The advent of high-density SNP genotyping platforms has provided opportunities to detect 

quantitative trait loci (QTLs) and uncover the genetic architecture of quantitative traits. This 

development has stimulated interest among researchers to explore genetic variabilities 

associated with various diseases affecting animals using GWAS. Genome-wide association 

analysis relies on recombination to rearrange the genome. Its underlying principle is to seek 

correlation between phenotype and genotype based on a non-random association of alleles 

at two or more loci [17,18].  

 

This GWAS approach has successfully uncovered genetic determinants associated with 

disease susceptibility and resistance in humans, animals, and plants [19–21] However, using 

this approach to uncover genetic determinants associated with traits which follow polygenic 

patterns of inheritance, such as tick resistance, is not straight forward, since such traits are 

controlled by multiple genes. Despite this challenge, the approach is used to search for marker 

variants indirectly associated with certain diseases or traits of interest by assuming that a 

marker is in linkage disequilibrium (LD) with the underlying causal variant [22]. Linkage 

disequilibrium refers to the non-random association of alleles at different loci in each 

population [23]. Currently, the GWAS approach is gaining popularity in mapping QTLs 

associated with traits of economic importance or complex traits. This is because GWAS can 

detect variants that can be in LD with the causal variant, and this information could be used 

to narrow genomic regions that harbour causal variants [24,25], providing genetic determinant 

information that could be useful for the genetic selection of economic traits, such as tick 
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resistance in cattle. The continued success of GWAS depends on careful population selection 

and collaborative analytical approaches. Work by [26] reviewed the guidelines for successful 

GWAS analysis intensively and presented a useful workflow, which might be of value when 

conducting GWAS.  

 

Bovine GWAS have successfully discovered genetic determinants associated with distinctive 

disease resistance or susceptibility, such as tuberculosis [27], resistance to ticks [8,12], 

mastitis [28]; and foot and mouth disease [29]. Moreover, this approach has been used in the 

successful mapping of genetic variants associated with meat quality [30,31] and milk 

production [32,33]. Such studies assist in providing information on the genetic architecture of 

QTL, generate biological knowledge about the expression of economic traits and facilitate the 

improvement of genomic selection. 

 

 

2.3 Computer Software for GWAS and Genomic Public Databases 

The most used computer programs for GWAS are presented in Table 2.1. They perform the 

same activities, and their access is free. The effective use of these programs requires the 

user to have operating skills. 

Table 2.1: Common publicly available computer programs for GWAS. 

Software Focus Website Reference 

PLINK 

Stratification, LD, and 

structured association 

mapping 

http://pngu.mgh.harvard.edu/pur

cell/plink accessed on 20 May 

2019 

[34] 

R 

(GenABEL) 

Stratification, LD, and 

structured association 

mapping 

https://cran.r-

project.org/src/contrib/Archive/G

enABEL accessed on 20 May 

2019 

[35] 

SVS 

Stratification, LD, 

haplotype blocs and 

structured association 

mapping 

http://www.goldenhelix.com 

accessed on 1 June 2019 
[36] 

GenAMap 

Stratification, LD, and 

structured association 

mapping 

http://cogito-

b.ml.cmu.edu/genamap 

accessed on 1 June 2019 

[37] 
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GEMMA 

Stratification, Fits LMM and 

BSLM models, IBD 

analysis, estimation of chip 

heritability, and association 

mapping. 

http://www.xzlab.org/software.ht

ml accessed on 1 June 2019 
[38] 

Blupf90 

Data conditioning, estimate 

variances using several 

methods, and use SNP 

information for improved 

accuracy of breeding 

values + for genome-wide 

association studies 

(GWAS) 

 

http://nce.ads.uga.edu/wiki/doku.

php?id=documentation accessed 

on 17 November 2021 

[39] 

GEMMA – genome-wide efficient mixed model association; LLM – linear mixed model; BSLM- 

Bayesian sparse linear mixed model; SNPs – single nucleotide polymorphisms, LD – linkage 

disequilibrium; IBD – identical by descent, SVS – SNP and variation suite 

 

The information generated from genomic studies is housed on different web databases for 

public access. Such databases include NCBI, EMBL-EBI, Ensembl, Animal QTLdb and 

NAGRP. Some of these databases are not specific to any organism, while some are specific 

to livestock genomics (Table 2.2). To date, several QTLs and associations related to tick 

resistance have been identified in different cattle breeds using different research approaches. 

The information of the QTLs and associations is recorded in a database known as Animal 

QTLdb, which is currently updated whenever there is  new information [40]. Based on the 

available information, it is noted that most of the QTLs and associations have been uncovered 

on chromosome 10, followed by BTA23, BTA14, BTA11, BTA2 and others. This is depicted in 

Figure 2.1, sourced from the Animals QTLdb database. Information on African indigenous 

breeds are lacking on these databases. The limited information contained on these databases 

concerning tick resistance in cattle breeds shows that more research still needs to be 

conducted, especially in African cattle breeds. 
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Figure 2.1: Distribution of tick resistance related QTL/associations in bovine, based on 

count of report data (sourced from: https://www.animalgenome.org/cgi-bin/QTLdb/BT/index 

(accessed on 4 September 2020). 
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Table 2.2: Some web databases that house genomic information associated with economic 

traits. 

Genomic database Description URL 

NCBI (Genbank) 
Repository for biomedical and 

genomic information 

https://www.ncbi.nlm.nih.gov/ accessed on 

06 December 2019 

Ensembel Genome browser 
https://www.ensembl.org/index.html 

accessed on 06 December 2019 

Animal QTLdb Animal QTL database 

https://www.animalgenome.org/cgi-

bin/QTLdb/index accessed on 04 

September 2020 

NAGRP Genomic information browser 
https://www.animalgenome.org/ accessed 

on 04 June 2020 

EMBL-EBI Genomic information database 
https://www.ebi.ac.uk/ accessed on 15 June 

2020 

DDBJ Genomic information browser 
https://www.ddbj.nig.ac.jp/index-e.html 

accessed on 15 June 2020 

UCSC Genome browser 
https://genome.ucsc.edu/ accessed on 15 

June 2020 

Refseq Reference sequence database 
https://www.ncbi.nlm.nih.gov/refseq/ 

accessed on 15 June 2020 

VEGA Genome browser 
http://vega.archive.ensembl.org/index.html 

accessed on 15 June 2020 

Animal QTLdb – Animal quantitative trait loci database;  

NAGRP – National animal genome research program;  

EMBI-EBI – European molecular biology laboratory-European bioinformatics institute; 

DDBJ – DNA data bank of Japan;  

UCSC – University of California Santa Cruz;  

Refseq – Reference sequence;  

VEGA – vertebra genome annotation 
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2.4 Available Genotyping Platforms and Coverage 

The abundance of SNPs in the genome and its ability to be amenable to high throughput 

automated analysis make SNP genotyping the most preferred approach to studying genetic 

variation in animals, humans, and plants [41–43]. Moreover, SNPs are heritable and allow 

single base resolution, making the identification of causal markers easy [44]. Initially, SNP 

genotyping arrays were developed for human studies [45], and then, the technology was 

adopted in animal and plant research. In cattle research, three well-known commercial 

companies that produce commercial Bovine SNP arrays are Illumina, Neo-GeneSeek® and 

Affymetrix. These companies have developed SNP genotyping platforms with different 

densities, which are used for GWAS, identification of selection sweeps, and investigating 

genome-wide genetic diversity and relationships in cattle. The summary of SNP genotyping 

platforms available for Bovine is provided by [46]. The SNP genotyping platforms include 

different densities of SNPs, ranging from as low as Golden Gate Bovine 3K (2900 SNPs) to 

Bovine HD (777,962 SNPs) [47]. The density of an array plays a key role in the success of a 

GWAS study. It was recommended by [48] that denser SNP arrays should be used for 

crossbreed GWAS studies, due to its large hypothetical effective population size. GWAS 

experiments performed using data from denser SNP arrays are provided with enough marker 

density to dissect the genetic architecture of the trait of interest. In instances where low-density 

SNP arrays have been used, genotype imputation is advisable. This phenomenon will be 

briefly discussed later in this article.  

 

The development of SNP arrays is advancing rapidly, making genomic selection feasible [47]. 

They noted that the development of genotyping platforms has not been regulated under a 

standardized system. This results in difficulties in making comparisons and merging data 

genotyped by different commercial companies. Therefore, there is need for standardization 

during SNP array development to minimize downstream research challenges [47]. Despite 

this success, studies on local African breeds are still facing the challenge of the SNP arrays 

being originally created using exotic breeds. This underscores the need for the development 

of SNP arrays that will incorporate ancestry data from African breeds. The development of 

such SNP arrays could potentially extend insights on the architecture of traits being 

investigated using African cattle populations. Although the decreasing cost of genotyping 

potentially makes GWAS possible and affordable, in Africa the cost of genotyping is still 

relatively expensive. This is a challenge for GWAS because it is difficult to genotype the 

minimum number of animals recommended [48]. The minimum number of animals required is 

determined by conducting a statistical power test, to ensure the low rate of discovering false 
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positive results in GWAS [49]. The issue of attaining a better number of samples for GWASs 

can be solved through the establishment of collaborations.  

 

 

2.5  Testing for an Association 

The main goal for GWAS is to test a null hypothesis, stating that there is no association 

between the genotype and the expression of the trait of interest. This is facilitated by choosing 

the appropriate association test approach, influenced by covariates, population structure, 

study population and pedigree structure [50]. A single locus statistical test and multiple locus 

tests are the two approaches that are currently being used, depending on the focus of the 

study. A single locus statistical test compares the genotype and the phenotype by focusing on 

one SNP at a time [51]. This test uses a regression model, assuming that the trait being 

studied is normally distributed and the variance is the same within a population. Testing one 

SNP at a time results in multiple tests, which may produce false positive and false negative 

results [48,52,53]. Therefore, it is necessary to correct for multiple testing to prevent spurious 

associations, making it impossible to conduct follow up studies. This can be performed using 

the false discovery rate (FDR) and Bonferroni correction. The adjustment through the FDR 

approach corrects for the expected rate of false discoveries, and gives the investigator an 

insight into the proportion of true associations in the study [54,55] However, this adjustment 

is considered less stringent compared to the Bonferroni correction [55,56].  

 

After the adjustment, a SNP is considered statistically significant if its p value is less than or 

equals the adjusted genome-wide cut off [55]. A single SNP association approach worsens 

the missing heritability problem, which is the gap between the heritability measured using 

pedigree information and that measured through GWAS [57,58]. Biological mechanisms, such 

as epistasis, epigenetics, and others, are attributors of missing heritability. However, in a 

human-based study, none of these mechanisms accounted for the missing heritability [59]. 

The study included human microbiome information to understand the heritability of a given 

trait in humans. They reported that microbiome is associated with many important traits and 

encodes for extra genes which interact with human genes. The interaction can be a source of 

variation and phenotypic plasticity [59]. Thus, the inclusion of microbiome in GWAS for cattle 

can be used to solve the issue of missing heritability. Alternatively, the multilocus association 

approach can be adopted because it examines nonlinear relationships genome-wide. 

Multilocus models do not require Bonferroni correction; this is beneficial because it reduces 

the high chances of losing many loci associated with the targeted trait through failing to meet 

the stringent requirement for the significant test, as it happens in single locus models [60]. 
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Multilocus models are more advantageous compared to single locus models, because of their 

ability to allow the estimation of three variance components, a high power of QTL detection, 

and the SNP effect is random [61]. Table 2.3 shows some examples of single and multilocus 

models that are currently being used in GWAS across distinct species.  
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Table 2.3: Models that can be used for GWAS analysis. 

Model Type Model Reference 

Single locus General linear model (GLM) [62] 

 Mixed linear model (MLM) [63] 

 Logistic mixed model (LMM) [64] 

 Compressed mixed linear model (CMLM) [63] 

Multi-locus Multilocus random SNP effect mixed linear models (mrMLM) [65,66]  

 
Fast multilocus random SNP effect efficient mixed model 

association (FASTmrEMMA) 
[67] 

 

During the association analysis, population stratification is regarded as one of the confounding 

effects that can inflate the variance of the usual statistics [65]. The inflation of test statistics 

may potentially attribute high false positive discoveries; hence, it should be accounted for. 

There are two ways to account for population stratification in GWAS: the variance is adjusted 

using genetic control or principal component analysis. It was pointed out by [65] that genomic 

control adjusts the variance by calculating the statistics on data from null loci. Figure 2.2 shows 

the quartile–quantile plots before correction (A) and after (B). Figure 2.2A shows a departure 

from the diagonal observed, which indicates a high inflation rate. Figure 2.2B shows the 

improvement after correction using genomic control, where the inflation rate has decreased. 
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Figure 2.2: A-Quartile–quantile plots before correction. B-Quartile–quantile plots after 

correction. 

At the end of the association analysis, an independent association test replication is 

recommended on the SNPs to validate the findings [66]. This is, however, still not applicable 

for most studies, because of the associated cost implications, time, and other factors 

associated with the study design. When a replication study is conducted, GWAS is performed 

on statistically significant SNPs. This process makes use of a small sample size, attributing to 

a low GWAS power and making it difficult to confirm the initial findings [67]. Lack of replications 

does not necessarily mean findings are not valid, but the study should be professionally 

designed, and all confounding factors accounted for, to ensure the validity of the findings. 

 

The preferable mode to summarize and present GWAS findings visually is the use of a 

Manhattan plot (Figure 3). Figure 2.3 presents y-axis -log10(P-value) versus x-axis (the 

chromosome position for each SNP tested), where each circle signifies a SNP. The SNPs are 

stacked together to form a signal that is influenced by the level of LD amongst the SNPs with 

relation to the causal marker. Several studies have used Manhattan plots to present their 

GWAS findings in cattle [8,14]. In South Africa, [8] conducted a GWAS study on the indigenous 

Nguni and produced the plots presented in Figure 2.3. The two dotted horizontal lines depict 

the suggestive (red) and the actual genome-wide cut off line [grey], which represents the level 

of significance. If a SNP passes the grey line, it is considered significant. On this study, a 
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significant SNP associated with tick resistance in Nguni cattle was observed in BTA10. There 

are many free tools that can be used to graphically plot a GWAS Manhattan diagram; 

examples include SNPEVG [68], R package (qqman) [69], Stata [70], and Manhattan [71]. 

When a GWAS association has been detected, tools such as Manhattan harvester [72] and 

Locus Zoom [73] provide opportunities to study the detected region in depth. Both tools focus 

on the physical position of the chromosome of interest; however, LocusZoom is more 

informative because it allows the visualization of LD levels, recombination rates and genes 

[73]. The LocusZoom tool has mostly been used in human research. Figure 2.4 depicts an 

example of a LocusZoom plot, sourced from a human GWAS study [74], showing the 

architecture of a region of interest in chromosome 19 (significant SNPs, associated 

recombination rate, and genes). The use of tools such as LocusZoom in bovine research will 

provide an in depth insight into the landscape of genetic contribution associated with the 

expression of economic traits, such as tick resistance, growth traits, milk production and 

others. 

                      

Figure 2.3: Manhattan plot showing findings for a single marker GWAS where the association 

of low tick load (total A. hebraeum ticks) and genotype was assessed in Nguni breed, using a 

genome-wide p value < 0.05 as a cut-off. The redline indicates suggestive threshold and the 

grey indicates the genome-wide cut off (taken from [8]). 
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Figure 2.4: LocusZoom plot showing in depth findings for most significant SNPs in 

Chromosome 19, from a human GWAS that was focused to study genetic variation 

underlying renal uric acid excretion in Hispanic Children [74]. 

 

 

2.6  Post GWAS Analysis 

The discovered GWAS hits are used to physically map candidate genes underlying the trait 

being studied. The National Centre of Biotechnology Information 

(https://www.ncbi.nlm.nih.gov/ accessed on 6 December 2019) and 

ENSEMBL(http://www.ensembl.org/index.html accessed on 6 December 2019) databases are 

used for gene annotation to identify candidate genes associated with identified SNP markers 

[75]. When the genes have been identified, their biological functionality or relevance can be 

verified using functional annotation databases such as DAVID and KEGG [58,76,77]. 

Furthermore, it is also possible to create gene networks using open source software such as 

Cytoscape [78]. The gene network provides a better biological understanding of the interaction 

of genes underlying the trait of interest. A recent GWAS by [14] identified SNPs and candidate 

genes (TREM1, TREM2, CD83, MYO5A, TREML1, PRSS16) associated with tick resistance, 

and then used the information to create a gene network. Tick resistance is a complex trait that 

is influenced by various determinants. Therefore, gene networks are particularly important to 
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give insight on the interconnection of genes responsible for the expression of the tick 

resistance trait. Despite the success that has been made, the inferring of true causal genes 

and biological mechanisms from GWAS results in tick resistance studies is still a challenge. 

This is due to the difficulties associated with the interpretation of GWAS findings and the 

limitation of available data.  

 

 

2.7 Factors Influencing the Success of GWAS 

2.7.1 GWAS Experimental Design 

The success of GWAS requires proper study experimental design, in addition to factors such 

as population of interest, sample size and standardized data collection. In addition, concise 

pipelines to execute the actual analysis should be taken into consideration. Phenotyping data 

should be properly collected to reduce high rates of outliers, which may potentially create noisy 

data. The data is often tested for normality, to assess the distribution and the presence of 

outliers so that necessary steps can be taken to address the violation of normal distribution 

assumptions and the removal of outliers. The tick resistance trait is known to be not normally 

distributed and literature shows that some studies addressed this issue by transforming the 

data to confer normality. It has been noted that, although removal of outliers is important, it 

affects the size of the population tested. Selection of population for association analysis 

generates a structure that leads to specific genetic variation and an effect on the end use of 

association analysis [49]. In cattle, within family pure breeds and crossbreeds have been used 

for dairy and beef GWAS experiments to identify genomic regions associated with phenotypic 

variation in economically important traits. Crossbred lines, specifically the F2 design, have 

been identified as an appropriate design because they exhibit a high level of LD compared to 

pure lines. High LD potentially increases the power of GWAS [79]. Studies have been 

conducted to study the LD patterns within the crossbred F2 population [48,80,81].  

 

In relation to cattle tick resistance studies, GWAS studies have been conducted using the 

crossbred F2 design in different regions [12,14]. However, it can be noted that some previous 

studies were conducted using data that was genotyped using microsatellite markers. The 

limitation of microsatellite markers involves the lack of an adequate number of informative 

markers, while on the other hand, SNPs are very abundant in the genome [82]. A study by 

[14] is currently the only known study that used the F2 crossbred design to discover tick 

resistance genetic determinants using SNP genotyped data. Although all these studies have 

been conducted, and information generated, the development of crossbred F2 populations 

remains a challenge. More time is required to build the required population, and this is 
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associated with inflated costs of SNP genotyping a large sample size, especially in developing 

countries. However, there is need for this population design to be used for the genomic 

improvement of the tick resistance trait, regardless of the associated shortcomings.  

 

 

2.7.2 Phenotyping 

Phenotyping for tick resistance in cattle is often assessed through natural or artificial 

infestation. The assessment of tick count under the approach of interest is one of the baseline 

indicators for tick resistance differences. Tick count is the commonly used mode of 

phenotyping in studies that assess tick resistance differences in a population. Counting ticks 

for GWAS phenotyping where a large population size is the requirement becomes a 

bottleneck. A study by [83] noted that counting ticks on every animal in a population is labor 

intensive, time consuming, and requires trained technicians and expensive infrastructure to 

constrain the animal. This stresses the animals through handling and the use of a trained 

technician does not rule out the possibilities of bias tendencies when counting. More 

challenges are faced under natural infestation because of multiple tick species and the need 

to categorize them accordingly when counting. All these shortcomings play a part in the 

reduced success rate of recording a tick count for big study populations. A study by [84] on 

Nguni cattle estimated the correlation between whole body tick count and tick count in different 

body parts. They also assessed correlations between tick species and different seasons, and 

observed that some tick species were prevalent in certain seasons, indicating that seasons 

are influential on tick distribution. The approach for this study is highly informative because it 

gave insight into the distribution of ticks in various parts of the animals. The challenge is that 

the process of counting ticks is labor intensive, and this will be exceedingly difficult for studies 

with large population size.  

Artificial tick infestation has been used as an alternative approach; however, this approach 

does not represent the true reflection of natural infestation in regions where various tick 

species inhabit [83]. To solve this problem, [85] introduced a scoring method that overcame 

some disadvantages associated with tick count. However, [86] reported that the scoring 

method provides a low heritability, as compared to tick count. Low heritability constitutes a 

reduced power to detect association, since heritability is a good indicator that explains the 

genetic variance contribution towards the expressed phenotype [49]. Therefore, since the 

scoring method is associated with low heritability estimates, tick count remains a better 

method of phenotyping for tick resistance GWASs. However, there is need for high throughput 

phenotyping methods that will eliminate the issues of biasness when counting ticks and reduce 

associated costs and stress imposed to animals. 
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2.7.3 Population Size 

Population size is amongst the limiting factors affecting the statistical power of a GWAS. A 

small population size results in reduced statistical power to detect a causal variant. This poses 

a major challenge in understanding the biological mechanism underlying economic traits such 

as tick resistance. A population comprising 1000 individuals is regarded as a better population 

size, constituting about 80% GWAS statistical power [87]. In certain research set ups, it is 

difficult to attain a minimum of 1000 samples to conduct a GWAS, because of numerous 

factors at play associated with infrastructure and costs. These factors are not limiting 

researchers’ drive to find information that could be used to improve animal welfare and 

facilitate sustainable food security in the current trying times. According to [88], a population 

of individuals ranging from 100 to 500 can be suitably used to perform GWAS. However, such 

a population needs to be carefully selected based on the status of the genetic variation of the 

trait being studied, and other factors influencing phenotype such as environment. Moreover, 

the selection criterion must take population stratification into consideration to avoid false 

positive results. The selected GWAS population should result in low stratification[89] and large 

genetic variation to potentially detect true variants that can be used in breeding schemes to 

improve the trait of interest.  

 

GWAS statistical power is defined as the probability of rejecting a null hypothesis under an 

assumed alternative hypothesis [87]. It depends on a clear study design and the number of 

samples used for the analysis. One thousand samples, equating to 80% power, are 

considered the normal number in human and animal studies [87]. The same applies to 

livestock studies. However, the issue of sample numbers remains a problem in developing 

countries. Hence, many GWAS livestock studies are conducted on samples below one 

thousand. Factors playing a role in this regard include the lack of recorded phenotypes for 

certain traits and the availability of resources to cover genotyping costs. Although such costs 

are gradually decreasing, researchers in Africa are still battling to afford genotyping on cattle 

numbers near the normal one thousand mark. The situation is even more difficult when high-

density SNP genotyping chips are considered. GWAS analysis requires a large sample size 

to achieve sufficient statistical power [90,91]. Attaining a large population size for tick 

resistance studies is a challenge in developing countries, because of lack of funds, resources, 

well trained data collectors and infrastructure. To tackle this problem, the establishment of 

collaborations could be beneficial, since it will promote the sharing of information, insights, 

and funds. This will improve the development of GWAS and its quality.  
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2.7.4 Data Quality Control for GWAS 

Prior to actual genome-wide association analysis, the genotyped data is subjected to quality 

control (QC) to decrease the chances of discovering false positive and false negative 

associations [92]. False positive association is defined as the occurrence of identifying a SNP 

association that is not profoundly influencing the trait of interest in the study. On the other 

hand, false negative association is defined as an incidence where a SNP that is influencing 

the trait of interest is not associated with the trait in the study. The genotyped data is subjected 

to stringent filters that are performed on a sample and SNP level. The quality control filters 

include missing call rate, minor allele frequency (MAF) and Hardy Weinberg equilibrium 

(HWE). The samples with a missing call rate higher than 1–5% could be a result of poor DNA 

quality potentially influencing genotypic errors [56]. The removal of SNPs with high missing 

genotypes may increase SNPs with accurate genotype calls for downstream analysis. 

However, in a study with a small population size, it is not good practice to lose samples 

because this negatively affects the power of the study. This can be overcome through 

genotype imputation to replace the missing SNP markers, explained later.  

 

The other aspect of QC is to assess the format of genotyped data, where sometimes there is 

a mixing of the AB and ACTG formats, which needs to be corrected to form one uniform format. 

Additionally, data is assessed for MAF, which removes SNPs not complying with a given 

threshold for a particular study. Exceptionally low allele frequencies are less informative [93] 

and can result in the discovery of fake associations [94]. GWAS capitalizes on the LD that 

exists between the markers; thus, it is especially important to assess the deviation of SNPs 

from the HWE. The deviation of SNPs from HWE is set using Chi square test [95], where the 

significance level for rejecting is based on P values ranging from 10−5–10−7 [50,56]. The SNPs 

that are not in compliance with a stipulated criterion are removed from the dataset that is used 

in the downstream analysis. Overall, statistical software such as PLINK, and R environment 

are used for quality control. However, PLINK is the most preferred because it is free and 

flexible to accommodate large scale data management [56]. It is noted there is no universal 

criterion to perform QC and there is no perfect QC pipeline that can capture all the problematic 

SNPs in a population being studied. Therefore, it is important to view the clustering intensity 

plots for SNPs, to ensure that there are no obvious clustering problems. 

 

 

2.7.5 The Extent of LD Measures r2 in GWAS  

GWAS relies on the extent of LD between markers across the genome, where its measure (r2) 

is bounded between 0 and 1, with 1 considered as the perfect association [48]. Linkage 
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disequilibrium in a population can be affected by population structure, genetic drift, selection, 

recombination rate, migration, and mutations [96]. The development of LD maps and 

haplotype block structures at the population level are useful parameters for guiding GWAS. In 

association studies, the presence of LD creates two outcomes, namely, direct, and indirect 

association [97]. Direct association occurs when the SNP influencing a biological system is 

directly genotyped in the study and found to be statistically associated with the trait. The 

indirect association outcome occurs when the SNP is indirectly linked with the trait. The 

phenomenon is termed taq SNP and is graphically explained well in a review by [97]. The 

feasibility of GWAS strongly depends on the extent of LD, as the latter determines the required 

SNP markers and mapping resolution [98]. Therefore, it is important to study the extent of LD 

in a population of interest before the association analysis is performed.  

 

 

2.7.6 The Effect of Genotype−Environment Interaction 

According to Falconer et el. [99], genotype by environment (GxE) interaction is defined as the 

different responses of genotypes under different environmental conditions. GxE affects the 

ranking of animal performance under different environmental conditions. Therefore, it is 

important to closely monitor economical traits that are influenced by environmental factors 

[100]. In cattle production, tick resistance is among the traits that are highly influenced by 

environmental factors. Climate change influences the distribution and density of tick 

populations and because it influences the life cycle of ticks, it increases the chances of 

tick−host interactions. 

 

Currently, genetic evaluations for tick tolerance in countries such as Australia and Brazil are 

performed routinely. Despite the success of these evaluations, Moat et al. [101] noted that 

GxE is not taken into consideration in these evaluations. They also pointed out that failure to 

consider GxE interaction in genetic evaluations can potentially affect genetic gain, as the 

selection of candidate comparisons is environmentally dependent. Thus, the cost implications 

of not accounting for GxE can be high [102]. This is because animals observed as top 

performers in one environment will not necessarily perform the same in a different 

environment, a phenomenon that is associated with the loss of genetic progress. Few studies 

have provided evidence that resistance to ticks in cattle can be influenced by various 

environmental effects [103]. A recent study investigated the existence of GxE using different 

models in Hereford and Braford cattle [101]. Their findings showed that the estimates of 

repeatability varied along the environmental gradient (range 0.18–0.45), indicating that 

resistance to ticks is environmentally influenced. Additionally, the posterior means of the 
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genetic correlations across the environmental tick infestation surface plot demonstrated a 

large plateau above 0.80. This indicates that there will be re-ranking of performance for a trait 

of interest between environments, which necessitates the separation of breeding programs 

for each environment [104,105]. GxE interaction contributes to the genetic architecture of 

complex traits and it affects the chances of discovering a true association between phenotype 

and genotype in GWASs. According to Cooley et al. [106], failure to adjust for environmental 

effects results in the reduced chances of predicting an association. This has been proven 

through assimilation studies, intensively in human epidemiological studies [107–109] and plant 

studies [110,111].  

 

 

2.7.7 Batch Effect 

For most study designs, samples are not genotyped at once, instead, they are handled in 

batches. One of the reasons behind this can be the use of substantial number of samples, 

which makes it impossible to genotype the samples at the same time. In addition, some studies 

collect samples at different time intervals, prompting the genotyping to be also conducted at 

different time intervals. For cattle tick studies, sometimes data is collected from different 

environments that are geographically spaced, leading to data being treated in batches. 

Additionally, for cattle ticks studies conducted on hybrids, the data is partitioned according to 

the development of the hybrids. It is known that the development of hybrid populations can 

never be carried out at one go. Instead, it is conducted in batches, for example, the 

development of an F2 population. The partitioning of samples gives rise to the batch effect, 

which results in apparent associations confounded by the batches. It is therefore necessary 

to assess the dataset for a potential batch effect, since it has potential to yield spurious 

association if this is not accounted for. Before the actual GWAS association test, the batches’ 

genotyped data should be handled independently to assess the presence of confounding 

effects [112]. 

 

 

2.7.8 Genotype Imputation as a Cost-Effective Approach to Improve the Power of 

GWASs 

The main purpose of imputation is to infer missing genotypes of the SNPs that are not directly 

genotyped in the study, using in silico haplotype information from reference samples with 

genotypes from denser genotyping arrays [113,114]. Genotype imputation holds the potential 

to improve the statistical power to detect association by reducing the number of missing 

genotypes, thereby increasing the overall number of genotypes available for association 
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analysis [113]. Genotype imputation has the potential to boost GWAS statistical power by up 

to 10% over testing only genotyped SNPs [115]. The performance of association tests on 

typed SNPs may not lead to a significant association, especially when the sample size is small 

[113]. Their findings were different when the association test was conducted on imputed 

genotyped data, where there was also a more detailed view of the association region.  

 

Various tools are available for imputation, and some are presented in Table 2.4. For example, 

BEAGLE has been built to handle genotype intensity data so that genotypes can be called 

using LD information between the SNPs, offering an improvement in genotyping error rates. 

Imputation is a cost-effective tool to generate genomic variants at denser platforms [46,116]. 

Imputation allows high-density genotypes to be imputed reliably from low-density SNP arrays 

potentially solving the affordability issue in developing countries, as more animals can be 

genotyped at low cost. However, the accuracy of imputation and the factors that affect it should 

be taken into consideration because they determine the reliability of the tool.  

 

 

Table 2.4: Some available software packages for genotype imputation. 

Software Usage Website 

BEAGLE 

Prephases haplotypes infers missing 

genotypes, and identifies IBD in related 

samples 

https://Faculty.washington.edu/browning 

/beagle/old.beagle.html

accessed on 9 July 2020 

GIGI Imputes missing genotypes on a pedigree 

https://faculty.washington.edu/wijsman  

/progdists/gigi/software/GIGI/GIGI.html 

accessed on 9 July 2020 

IMPUTE2 
Prephases haplotypes, infers missing 

genotypes 

https://mathgen.stats.ox.ac.uk/impute   

/impute_v2.html accessed on 9 July 2020 

MaCH/ 

minimac3 

Prephases haplotypes, infers missing 

genotypes 

https://github.com/statgen/Minimac4 

accessed on 9 July 2020 

IBD – identical by descent; GIGI –Genotype imputation given inheritance 

 

In humans, whole genome sequencing and imputation based GWAS strategies were used to 

refine the association signals and recover novel association signals for complex traits 

[117,118]. Sequencing and imputation GWAS is powerful and cost effective, and can also be 

applied on non-European populations [119]. In cattle, the whole genome sequencing and 

imputation GWAS strategies have been applied to study the genetic architecture of 

quantitative traits in beef cattle[50]. In relation to tick resistance, most GWAS were carried out 
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using 50K genotyping platforms (Table 2.5). Thus, some studies used imputation to ensure 

better statistical analysis effectiveness [13,14,120]. Imputation boosted the number of SNPs 

that were tested for association and subsequently improved the power. Imputation makes it 

applicable for cattle tick resistance-focused studies to be conducted using samples that were 

initially genotyped at low-density platforms, then imputed to high density. This has been 

proposed as a cost-effective approach than can solve the current problems associated with 

generating genomic data in cattle production, especially in developing countries. Currently, in 

different regions, there are ongoing studies that are investigating the feasibility of the tool for 

cattle research. The outcomes of these studies will give insights that could be used to properly 

apply this tool in GWAS aimed to study biological mechanisms underlying tick resistance. 

 

 

2.8 Progress on Tick Resistance GWAS in Cattle 

Quantitative trait loci studies using microsatellites and SNPs have been inconsistent, with an 

exceptionally low percentage relating phenotypic variation to tick infestation [121]. Most 

studies were conducted in subtropical regions such as Brazil, Australia, and Mexico (Table 

2.5). Brazilian studies have successfully mapped genomic regions associated with resistance 

to ticks on F2 Gyr x Holstein and on Hereford and Braford [13]. Similar studies were conducted 

in Australia by Turner et al. [122] . In some instances, different studies identified QTLs on 

similar chromosomes, regardless of the differences in the breeds and tick species used. This 

underlines the need for the validation of the role of these chromosomes in cattle tick 

resistance. Validation could be pursued through GWAS meta-analysis, which can be achieved 

through collaborations.  

 

To date, only one study in Africa used SNP genotyping and GWAS as an approach to 

investigate genetic variants associated with tick resistance in cattle [8]. This study was 

conducted on South African Nguni cattle and identified several genomic regions  harbouring 

QTLs associated with tick count traits. Despite the studies conducted previously, information 

on genetic determinants associated with cattle resistance to ticks is still limited. Further 

investigations focusing on unravelling genomic determinants associated with tick resistance 

will identify and provide understanding on biological mechanisms associated with TTBDs in 

cattle production. The information from the investigations will present a wonderful opportunity 

to improve breeding programs to produce animals that are more resistant to tick infestation, 

while enhancing productivity [7,12].  
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Table 2.5: Previous GWAS studies on genomic regions associated with tick resistance in different regions of the world. 

Region Breed Sample size 
Mode of 

infestation 

Genotyping 

platform 
Findings Reference 

Brazil 
F2  B. taurus × B. 

indicus 
382 Artificial Microsatellite 

Identified significant genomic regions on 

chromosomes 5, 7 and 14 
[11] 

Brazil F2 Gyr × Holstein 376 Artificial 
Microsatellite 

markers 

Identified dry season specific QTL on BTA 2 

and 10, rainy season specific QTL on BTA 5, 

11 and 27 and BTA 23 for both seasons 

[12] 

Australia 

Brown-Swiss, 

Holstein-Friesian, 

mixed taurine 

189 Natural 

MegAllele 

genotyping 

bovine10K SNP 

Identified genes associated with tick burden, 

namely TNFSF8 [CD30], and SIRPA 
[122] 

South 

Africa 
Nguni 586 Natural 

Illumina 

BovineSNP50 

BeadChip 

Identified significant genomic regions on 

chromosomes 1, 3, 6, 7, 8, 10, 11, 12, 14, 15, 

17, 19 and 26 

[8] 

Brazil 
Braford and 

Hereford 
3455 Natural 

Illumina 

BovineSNP50 

BeadChip 

Identified 48 tag SNPs associated with tick 

resistance 
[13] 

Brazil F2 Gir × Holstein  46 Artificial 

Illumina 

BovineSNP50 

BeadChip 

Identified genes associated with immune 

system function, namely, TREM1, TREM2, 

CD83, MYO5A, TREML1, and PRSS16 ] 

[14] 

F2 –Second filial generation; QTL – quantitative trait loci; BTA –Bos taurus; SNPs – single nucleotide polymorphisms  
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2.9 Breeding Cattle for Tick Resistance 

Breeding for genetic resistance is a potentially promising strategy to control ticks [123]. 

Sufficient genetic variation is one of the key factors determining the success of breeding 

schemes in livestock production. Bovine quantitative genetics studies have demonstrated low 

to high heritability for resistance to ticks depending on the breed [124,125]. Such findings hold 

the potential for tick resistance to be included as a goal in breeding schemes. Bos taurus 

breeds are known to be highly productive; however, they are also known to be highly 

susceptible to ticks and this makes their use in tropical production systems unsustainable, 

especially by resource-poor farmers. On the other hand, Bos indicus breeds are known for 

being resilient toward ticks as compared to B. Taurus, but they yield lower production.  

 

These differences motivate the development of crossbreeding programs between Bos indicus 

and Bos Taurus cattle. These programs aim to produce crossbred animals, to facilitate the 

improvement of production whilst controlling TTBDs using genomic selection. The success of 

genomic selection for tick resistance depends on the availability of proper genetic evaluation 

programs for the trait. The existence of genetic evaluation programs for tick resistance has 

the potential to generate information and facilitate the improvement of tick resistance. In 

countries such as Australia and Brazil, there are ongoing genetic evaluation programs for tick 

resistance. These develop crossbred animals that are productive under environmental 

conditions that have a high prevalence of ticks [126]. In Brazil, there is a genetic evaluation 

program known as Delta G Connection, which involves the Hereford and Braford cattle [101]. 

The Australians have developed the Australian Friesian Sahiwal, which produces acceptable 

levels of milk in an environment with ticks. The lack of information of such programs from other 

regions may suggest less enthusiasm from other regions, especially Africa and Asia [126]. 

There are concerns about the selection potential for resistance to ticks and the trade-offs with 

other traits of economic significance. In this regard, studies have demonstrated that there is 

exceptionally low genetic correlation between tick count and various productive, adaptive, and 

pubertal traits [104].  

 

The existence of genetic components of variation in host resistance to ticks in cattle is currently 

being studied to discover tick resistance molecular markers that can be used in marker-

assisted selection (MAS). This information from locally  adapted breeds can be used through 

crossbreeding to upgrade local breeds using highly productive exotic breeds. The challenges 

hindering the application of MAS for tick resistance are costs, resource populations, 

requirements of technical skills and the validation of discovered molecular markers for each 
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population. All these challenges translate to the lack of molecular markers associated with tick 

resistance in cattle. However, despite the limitations, the development of studies that will 

investigate and generate genomic information on tick resistance and production traits holds 

the potential to increase the accuracy of selection. Therefore, the use of molecular genetics 

techniques, together with conventional breeding tools, is important in balancing the process 

of selection for tick resistance.  

 

Host resistance to ticks is potentially an alternative tick control strategy that could solve the 

current TTBDs problems affecting the beef and dairy industry. The development of this 

alternative strategy requires the generation of knowledge that will broaden the understanding 

of biological mechanisms underlying tick resistance in cattle. The first step to control for a 

certain trait of interest requires the studying of genetic determinants influencing the expression 

of the trait. The advancement of technology has made it possible to use a genome-wide 

association approach to gain understanding on mechanisms underlying tick resistance in 

cattle and to generate knowledge. However, information is still limited, and this is one of the 

hurdles preventing the facilitation of breeding for tick resistance through genomic selection. 

The information gap warrants the need for more GWASs to be conducted, to provide an 

understanding on biological mechanisms underlying tick resistance. 

 

The costs associated with TTBDs are a major constrain for beef and dairy production. 

Therefore, the use of genomic selection as a tool to breed for tick resistant cattle will reduce 

the costs associated with the intensive use of vaccines and acaricides. This will further ensure 

animal welfare, facilitate increased production, and subsequently increase profit margins. The 

implementation of genomic selection for tick resistance in developing countries is currently 

hindered by the inflated costs associated with the generation of a large cattle resource 

population, phenotyping, and genotyping. The success of genomic selection for tick resistance 

is possible using cost-effective genotype imputation methods to increase the power of GWASs 

and the accuracy of GEBVs estimates. There are countries that have included tick resistance 

trait in their breeding goals. However, from those countries, there are no studies that have 

been put in place to investigate the economic aspects of including the tick resistance trait in a 

genomic selection-breeding goal. Therefore, there is a need for studies that will investigate 

the prospect of cost-effective genomic selection for tick resistance. 
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2.10 Limitations for GWAS to Uncover Tick Resistance Causal Variants in Cattle 

The discovery of common causal variants associated with tick resistance is limited by various 

attributes, which include the nature of the trait, methodological challenges, and the lack of 

financial resources. Tick resistance is a polygenic trait, influenced by more than one gene. 

This means the discovery of major genes using GWAS is impossible. Factors such as 

epistasis, epigenetics, microbiome, and environment attribute to missing heritability [127,128]. 

This results in GWAS not being able to capture all the genetic determinants underlying the 

expression of tick resistance trait [14]. The lack of biological understanding on how these 

factors influence missing heritability in cattle is part of the obstacles hindering the discovery 

of true loci associated with tick resistance. The failure of GWAS to capture common variants 

is not a limitation to GWAS only. To date, there is no perfect genomic technology available to 

capture all the genetic information underlying the expression of complex traits [129]. Despite 

this drawback, there is a pressing need to use the available technologies to discover 

information that could be used to improve the trait through selection. Methodological 

challenges such as the GWAS study design of choice, poor structure of the data, phenotyping 

uncertainties, genotyping errors, improper data analysis, and the poor interpretation of results 

plays a huge role in limiting the success of GWAS for the trait of interest. The use of a poor 

data structure and failure to ensure proper data analysis increase the discovery of type I and 

type II errors. Therefore, ensuring proper data analysis and a clear interpretation of results is 

crucial for the generation of information that will inform alternative controlling strategies for 

ticks. The fluctuating exchange rate makes it difficult for most researchers to conduct GWAS 

studies focused on studying the genetic architecture of tick resistance, since such studies 

require a large sample size that is expensive to develop, sustain and genotype. 

 

 

2.11 Conclusions  

When conducting GWAS, it is necessary to account for factors that affect the rate of 

discovering an association and control the rate of discovering spurious associations. GWASs 

have been phenomenally successful in the discovery of SNPs and candidate genes 

associated with tick resistance in various cattle breeds of different origins. Despite the 

success, more information is needed given that most GWASs on tick resistance in cattle are 

underpowered. This underlines the need for continuous data collection to enable larger and 

more powerful studies. For the studies that have been conducted using low-density markers, 

genotype imputation is the most appropriate cost-effective approach for GWAS for tick 

resistance in cattle. The availability of modest research populations, tools and funds are the 

current limitations of GWASs in developing countries. GWASs in African countries are 
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performed using SNP genotyping arrays developed using exotic breeds. Thus, the 

ascertainment bias effect leads to a low discovery rate of variants that influence the expression 

of the phenotype. This underscores the need for the inclusion of information from local breeds 

of different regions in the development of SNP genotyping arrays for cattle. This will facilitate 

a better understanding of variation in the breeds that are naturally adapted to the African 

production environments. 
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3 Chapter 3: 

Genetic parameter estimates for tick resistance in F2 Angus x Nguni cattle artificially 

infested with Amblyomma hebraeum ticks 

 

 

Abstract: This study aimed to (1) assess the effect of coat characteristics, growth traits, skin 

thickness, sex, and year of infestation on tick count, and (2) estimate genetic parameters for 

tick count, growth traits, and skin thickness in an F2 Angus x Nguni crossbred cattle population. 

A total of 266 F2 Angus x Nguni crossbred animals were produced between 2013 and 2020. 

The animals were artificially infested with Amblyomma hebraeum and assessed for tick load 

in batches. Data on factors that could potentially affect the level of tick load on cattle were 

collected and assessed for their association with tick count. Variance components and 

heritability were estimated by fitting the sire model using ASREML software. Live weights (p< 

0.05) and years of infestation (p<0.001) had significant effects on the level of tick load. The 

heritability estimate for tick count was 0.21±0.22. The heritability estimates were 0.36 ± 0.26, 

0.32±0.14, and 0.32±0.19 for birth weight, weaning weight, and yearling weight, respectively. 

The heritability estimate for skin thickness was 0.40±0.15. These heritability estimates indicate 

the presence of sufficient genetic variation for these traits. Therefore, genetic improvement 

through selective breeding is a viable option for these traits.  

Keywords: genetic variation, heritability, coat characteristics, year of infestation 

 

 

3.1 Introduction 

Cattle production plays a key socio-economic role in many countries especially those in the 

developing world. It contributes to food security as a source of milk and meat. Over 80% of 

global cattle production occurs in regions which have high prevalence of ticks and their 

associated tick-borne diseases [1]. Ticks and tick-borne diseases (TTBDs) are a global 

problem and considered one of the major challenges to livestock production and health [2–4]. 

Economic losses associated to TTBDs in cattle production are estimated to be USD $20 – 30 

billion per/year worldwide [4]. Economic losses due to TTBDs in the South African livestock 

industry has been estimated to be more than R500 million per year [3]. In South Africa, 

Amblyomma hebraeum is the most prevalent veterinary important tick species, which is 

notoriously known for infesting livestock and wildlife [5,6]. Ticks cause huge economic losses, 

which can be reduced by implementing effective control measures [7–9]. Presently, acaricides 

are used to control ticks; however, these chemicals are continuously losing efficacy because 

Stellenbosch University https://scholar.sun.ac.za



 

52 
 

 

of their intensive use and the development of resistance to chemicals by ticks [7,10]. 

Additionally, the traces of acaricide residuals in food products of cattle origin violates food 

security policies and raises public health concerns [11]. This underlines the need for 

alternative tick control strategies. 

 

According to Phocas et al. [12], breeding for disease resistance is a promising route to reduce 

use of antibiotics, vaccines, and pesticides in animal husbandry as well as  to ensure animal 

welfare, which is currently a growing concern. The use of the animal’s natural host resistance 

to tick infestation, through selective breeding, has been advocated as a feasible approach to 

fight tick burden [13,14]. Host resistance is defined as the animal’s ability to limit the level of 

tick burden and a defensive immune system to fight tick-borne diseases [15]. Natural host 

resistance to ticks is heritable and differs among different cattle breeds and involves the 

interaction of many factors [7,16]. Natural tick resistance is responsive to selection, therefore 

selective breeding for this trait could potentially reduce the costs of tick control [13,17]. 

Moreover, this could benefit animal welfare, reduce environmental contaminations, toxicity to 

other biota and the traces of acaricide residues in food products [14]. The estimation of genetic 

parameters related to tick count will generate information useful in establishing breeding 

programs. Tick count is a trait that is also affected by biological characteristics such as coat 

thickness, color, hair type, and weight of an animal [18]. Therefore, the influence of these 

factors needs to be taken into consideration when estimating the genetic parameters [14,16]. 

There are studies that have reported on the differences in tick load observed when animals 

are raised under similar environmental conditions [19,20]. Such differences can be attributed 

to the physiological and genetic properties of the animals.  

 

In South Africa, most beef production systems use exotic breeds due to their superior growth 

performance. However, exotic breeds are known to be highly susceptible to tick infestations 

and vulnerable to harsh conditions associated with climate instabilities. Local indigenous 

breeds such as Nguni cattle are known for their tolerance to tick infestations and for 

withstanding harsh environmental conditions [21,22]. It has been suggested that the 

establishment of crossbreeding programs that will cross indigenous adapted breeds with 

exotic breeds could promote the sustainability of beef production in South Africa [23–25]. The 

Agricultural Research Council - Animal Production campus established a crossbreeding 

project, where they crossed Angus x Nguni breeds and assessed them for tick resistance and 

growth performance. Although studies have been conducted on genetic parameters for tick 

resistance [26,27] and growth performance [28–31], the genetic parameters of these traits in 

Angus x Nguni  crossbreeds have not been estimated. Therefore, the objective of this study 
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was to estimate the genetic parameters for tick count in the F2 Angus x Nguni cattle population. 

The study also estimated genetic parameters for growth traits (birth weight, weaning, and 

yearly weight) and skin thickness in this population.  

 

 

3.2 Materials and Methods 

3.2.1 Study area and period  

The study was carried out from 2011 to 2020 at the South African Agricultural Research 

Council-Animal Production campus (ARC-AP) in Irene (25°53′59.6″S, 28°12′51.6″E). The area 

experiences four seasons, autumn (March to May), winter (June-August), spring (September 

to November) and summer (December to February). 

 

 

3.2.2 Experimental population  

An experimental population consisting of 5 sire families was established by crossing Nguni 

cows with Angus bulls using artificial insemination to establish an F1 population in 2011 

(Figure3.1). Briefly, Nguni cows were subjected to oestrus synchronization and artificially 

inseminated with frozen and thawed Angus semen. The F1 population was inter-crossed to 

produce the F2 generation. Prior to inter-crossing, parentage verification was conducted to 

prevent within-family intercrossing. The first batch of the F2 population (Figure 3.2) was 

generated in 2013 and subsequent batches were produced yearly until 2020. In total, 266 F2 

animals were produced consisting of 58% females and 42% males. The F2 population batches 

were subjected to artificial tick infestation and phenotypic data were recorded for tick count, 

gender, year of infestation, season of infestation, skin thickness, coat colour pattern, and live 

weight at birth, weaning and yearling. 
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Figure 3.1: Schematic representation of the F2 design (A= Angus and B= Nguni). QQ, Qq and 

qq represent the expected genotypes for F2 population assuming that the parental breeds 

were fixed for the alternative alleles (Q and q) at the tick count locus. 

 

 

Figure 3.2: Assorted colour patterns in the F2 Angus x Nguni cattle. 

 

 

3.2.3 Tick species 

The tick species of interest used in the study was Amblyomma hebraeum. Amblyomma 

hebraeum larvae were sourced from the Agricultural Research Council - Onderstepoort 

Veterinary Research laboratory of South Africa. Unfed tick larvae were sourced from the 

laboratory, to ensure the absence of disease contamination. In preparation for tick infestation, 

100 unfed larvae were housed in vials, which were then placed at room temperature (25°C) 

to create a normal environment for the ticks. 
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3.2.4 Tick infestation and counting 

Prior to tick infestation, animals were not exposed to acaricides and vaccines. Amblyomma 

hebraeum unfed larvae were used to artificially infest 266 F2 animals for a period of 10 days 

during different seasons. The infestation trials were conducted in batches, from year 2014 

until 2020 (Table 3.1). Artificial infestation was performed using Calico bags which were 

attached on the dorsal region of the animal using Alcolin contact adhesive glue (Figure 3.3). 

 

Table 3. 1: The F2 Angus x Nguni cattle batches according to the year of infestation and 
season.  

Batch N Year of infestation Season 

1 12 2014 Autumn 

2 19 2015 Autumn 

3 17 2016 Winter 

4 29 2017 Summer 

5 26 2017 Winter 

6 65 2018 Autumn 

7 48 2019 Autumn 

8 50 2020 Winter 

 

 

 

Figure 3.3: Schematic representation of the placement of the calico tick bags. 3.3A shows the 

attachment of a bag prior to infestation and 3.3B shows a closed attached bag after infestation 

in the F2 Angus x Nguni cattle. 

 

To attach the bag, the animals were shaved on the dorsal region using heavy-duty electric 

clippers (Legend®, Lister, South Africa), a day before the trial to allow the glue to dry out 

(Figure 3.3), and animals to cool down from the stress caused by handling. On the day of 

infestation, a vial containing 100 unfed tick larvae was opened and placed inside each tick 
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bag, which was then closed using a castration ring to ensure the ticks did not escape. Tick 

count was conducted on the 11th day after infestation and the animals were sprayed with 

acaricides to control the ticks and prevent environmental contamination. The year of 

infestation was used to create contemporary groups. In year 2017, two tick infestation 

activities were carried out in winter and spring. 

 

 

3.2.5 Growth traits 

The growth traits of interest were birth, weaning, and yearling weights. Cattle were weighed 

using a Taltec digital livestock scale at birth, weaning (at 6 months), yearling (at the age of 12 

months), and upon infestation at the age of 15 months. 

 

 

3.2.6  Coat characteristics 

Skin thickness is a coat characteristic that can be measured in two ways that involve 

measuring skin biopsies and skinfold thickness using a calliper on the region of interest. The 

measuring of skin biopsies is the most accurate measure compared to skinfold thickness. 

However, it was not preferred from a welfare point of view since it subjects the animals to pain 

and stress. Therefore, the current study used skinfold thickness approach to assess the effect 

of skin thickness on the level of tick count on F2 Angus x Nguni cattle. The skinfold thickness 

was measured following a method explained by Marufu et al. [13]. The skin thickness was 

measured on the midside area of the animal (just caudal to the 13th rib about 20 cm below the 

dorsal line) [13]. Skin thickness in this position is known to be uniform [32]. Raw coat colour 

patterns were recorded and then categorised (Table 3.2). 

 

Table 3.2: Cattle coat patterns categories of the F2 Angus x Nguni population. 

Color pattern N 

Black 91 

Black and other colors 82 

White 1 

White and other colors 38 

Brown 22 

Brown and other colors 23 

Red 6 

Red others 1 
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Grey 1 

 

 

3.2.7 Statistical analyses 

Tick count data did not follow a normal distribution (Figure 3.4A) and it was transformed using 

log10 (x +1) to confer normality (Figure 3.4B). The transformed tick count data were used as a 

response variable for further analysis. Analyses of variance (ANOVA) were conducted using 

PROC GLM procedure of SAS program [33] to assess the effect of sex, year of infestation, 

body weight (birth, weaning, yearling, and upon infestation) and coat characteristics using 

model (1). The fixed effects considered were sex and contemporary group to assess growth 

traits (i.e. birth, weaning, and yearly weights) 

    

 yijkl = μ + Yi + SEXk + β(Wt) + eikl (1) 

 

yijkl is the log-transformed tick count, μ is the overall mean, Yi is the effect of the ith year of 

infestation, SEXk is the effect of the kth sex, β is the regression coefficient of the effect of weight 

at infestation, Wt is weight at infestation and eikl is the residual error. 
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3.2.8 Variance component estimation 

The data were edited to remove outliers and the final data is presented in Table 3.3. The traits 

that were analysed were the log-transformed tick count, birth, weaning and yearling weights, 

skin thickness. For tick count and skin thickness, contemporary groups were created by 

concatenating year and season of infestation, while year and season of birth were 

concatenated to create contemporary groups for birth weight. Weaning and yearling years 

were considered in creating the contemporary group for weaning and yearling weights, 

respectively.  

 

Table 3. 3: Structure of the data analysed. 

Trait Animals Sires Dams 
Contemporary 

groups 

Tick count 209 7 61 8 

Birth weight 158 7 48 16 

Weaning weight 211 7 61 7 

Yearling weight 211 7 61 6 

Skin thickness 209 7 61 8 

 

Phenotypic and residual variance were estimated by fitting a sire model in ASREML software 

[34]. The following sire model was used for all the traits: 

 

 𝐲 = 𝐗𝐛 + 𝐙𝐬 + 𝐞 (2) 

 

Where; y is the vector of observations, b is the vector of fixed effects (e.g. contemporary 

group, sex, and growth trait); s is a vector of random sire additive genetic effects; e is the 

vector of residuals effects unique to each observation and X and Z are incidence matrices 

relating the fixed and random effects, respectively to y. A normal distribution was assumed for 

random effects, with animal ∼N (0, Aσ2 s), phenotypic variance ∼N (0, Iσ2
p), residual ∼N (0, 

Iσ2 e), where A is the numerator relationship matrix and I is an identity matrix, σ2 s, σ2 p and σ2 

e are the sire, phenotypic and residual variances, respectively. The relationship matrix was 

constructed using the pedigree. The narrow-sense heritability (h2) was calculated as follows: 

 

 𝐡𝟐  = (𝟒𝛔𝐬
𝟐 )/( 𝟏 +  𝛔𝐬

𝟐) (3) 
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3.3 Results and discussion 

3.3.1 Descriptive statistics 

Tick count data were not normally distributed and most animals had  tick count observation  

less than 50 ticks, which were semi-engorged (Figure 3.4A). The variability in tick count could 

be a result of differences in genetic, immunological, and physiological components of the 

individual animals in the study population. Figure 3.4B depicts the log-transformed tick count.  

 

Figure 3.4 A: The raw distribution of tick count and 3.4 B The log-transformed tick count data 

for the F2 population. 

 

Descriptive statistics of traits considered in this study are presented in Table 3.4. Furthermore, 

live body weight and skin thickness were subjected to normality testing and they were found 

to be normally distributed as depicted in Figure 3.5. 
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Figure 3.5: Frequency distribution for birth, weaning and yearling weights, and skin thickness 

for the 266 F2 Angus x Nguni cattle. 

 

Table 3. 4: Descriptive statistics for the traits analysed in the F2 Nguni X Angus cattle after some animals were 

removed. 

Trait N Mean Min Max SD 

 Log-transformed tick count 209 1.06 0.00 2.00 0.58 

Birth weight (kg) 148 28.11 17.60 40.00 6.16 

Weaning weight (kg) 211 160.86 120 254 27.27 

Yearling weight (kg) 211 214.84 150 333 42.53 

Skin thickness(mm) 266 15.21  9.70 29.00 2.70 
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Table 3.5: Analysis of variance for tick count, growth traits and skin thickness. 

TRAIT Y_INF S_INF SEX STHICK CC WWT YWT 

TCOUNT  <.0001*** 

 

NS NS 

 

NS NS <.0001*** 

 

0.0042* 

 

STHICK  - 

 

- 0.001*** 

 

- - <.0001*** 

 

0.0050* 

 

BWT - - 0.001*** 

 

- - - - 

WWT - - 0.001*** 

 

- - - - 

YWT - - 0.001*** - - - - 

*** P<0.001; ** P<0.01; * P≤0.05; NS- Not significant, TCOUNT-tick count, BWT- birth weight, 

WWT- weaning weight, YWT-yearling weight, STHICK-skin thickness, Y_INF-year of 

infestation, S_INF-season of infestation, CC- coat colour, (-)- Not tested 

 

 

3.3.2 The effect of coat characteristics 

The results from the current study showed that skin thickness had no effect on the level of tick 

count. A similar study by Marufu et al. [13] reported no statistical significant (P > 0.05) effect 

of skin thickness on tick load in Bonsmara and Nguni cattle breeds. Skin thickness affected 

tick count in cattle in other studies [26, 28, 29]. Inconsistent findings observed across these 

studies may be due to different study designs, environments, tick species of interest, 

anatomical site where skin thickness was measured and breed differences. 

 

Coat colour patterns did not affect the level of tick count in the current study (P>0.05). These 

findings agree with results observed by Nwachukwu et al. [14]. Marufu et al. [13] observed 

that coat colour has a statistically significant (P<0.05) effect on tick count. Although there was 

limited information on the effect of coat characteristics on tick count, research has shown that 

coat characteristics play a key role in maintaining the level of tick load on the host [35].  

 

It is believed that light colored animals can be easily recognized by ticks under natural 

infestation [36]. However, when the animals are artificially infested the light colour allows easy 

recognition of ticks by predators such as wasps. The inconsistencies observed on the effect 

of coat characteristics could be due to the different methods used in different studies to 

measure skin thickness and to categorize coat colour patterns. Therefore, standardized 
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methods to measure skin thickness and to categorize coat colour patterns are required so that 

the effect of coat characteristics on tick resistance can be accurately evaluated in cattle [13]. 

 

 

3.3.3 The effect of live weight on tick count 

Most studies investigating tick burden in cattle do not consider the influence of live weight on 

tick count [26-27]. In the current study, the influence of live weight on tick count was evaluated. 

Tick count was significantly affected by weaning (P<0.05) and yearling weights (P<0.001). It 

was observed that for every kg increase in weaning weight, tick count increased by 0.019 ± 

0.006. Conversely, there was a decrease of 0.023 ± 0.006 in tick count when yearling weight 

increased by 1 kg. This indicates that heavier cattle at weaning are associated with higher tick 

loads, while animals with higher yearling weights have fewer ticks. These observations may 

be attributed to growth rate and nutritional status of the calves. The influence of nutritional 

status and growth rate on the magnitude of tick count was not assessed in the current study. 

According to O’kelly et al. [37], “little attention is being paid to the relationship between growth 

rate, nutritional status of the host, and the magnitude of tick burden”, this statement applied to 

the current study. To date, little is known about the influence of nutrition and growth rate on 

the magnitude of tick count. Therefore, this knowledge gap  suggest the need for future studies 

to investigate the relationship between nutrition, growth rate and tick count to provide better 

understanding, which could be used to develop strategies to control ticks in beef production.  

 

Katiyatiya et al. [38], considered age and reported that age has a positive and significant 

genetic  correlation with tick load. It has been observed that young animals tend to experience 

lower tick load as compared to older animals [38], which may be due to the differences in the 

effectiveness of the immunity between the two groups. Heavier animals are more 

compromised immunologically compared to their counterpart [39]. It has been previously 

reported that the weight of an animal was positively correlated with the age, which was 

subsequently related to the ability of the immune system of the animal to repel or allow ticks 

to feed [40]. In this study, age was not considered. It has been suggested that old animals 

emit high quantities of carbon dioxide, which enhance the attraction of ticks to the host [41], 

however, this does not apply to the current study because artificial infestation was used. It is 

recommended that animals of different ages should be assessed to evaluate the effect of age 

in future studies.  
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3.3.4 The effect of sex 

Sex did not significantly affect (P>0.05) tick count. This could be due to the early age of 

animals at which hormonal differences were not expressed. Yessinou et al. [41] reported that 

males were more infested than females animals. The difference could be because their 

studies were conducted using cattle of different ages. The findings from this study were 

consistent with results reported by Chartier et al. [42], but are contrary to findings by Gharbi & 

Darghouth [43]. The production of carbon dioxide was regarded as the primary factor for the 

differences in tick load between males and females. It was suggested that males produce 

more carbon dioxide than females, which contributes to more attraction of ticks as noted by 

Yessinou et al. [41]. Testosterone hormone has also been reported to play a key role in the 

level of TTBDs in animals, explaining the difference in tick load between females and males. 

According to Hughes et al. [44], testosterone hormone reduced both innate and acquired 

resistance to tick feeding in rodents.  

 

 

3.3.5 The effect of year of infestation 

The year of infestation significantly affected (P<0.001) tick count. Tick count for the year 2014 

was significantly different from other years of infestation (Table 3.5). The differences among 

years of infestation may be attributed to different climatic conditions during the year in which 

the trials were conducted. Some trials were conducted during the  drought period, which could 

have affected the homeostasis of the animals and the behaviour of ticks. According to Monyela 

[45], South Africa experienced a long drought in summer of 2014/2015 and in 2015/2016. 

Amblyomma hebraeum larvae prefer cold and dry environment, therefore, the variation in 

climatic conditions throughout the study period could have affected the behaviour of the ticks, 

and tick loads [6]. The differences contributed by the year of infestation suggest the need to 

incorporate climate data when studying the tick count. Year and season of infestation were 

concatenated to create contemporary groups (Table 3.6), which significantly affected 

(P<0.001) tick count.  
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Table 3.6: Least Square Means (LSM) for year of infestation. 

Year of infestation Season LSMeans ± SE 

2014 Autumn 1.70a ± 0.18 

2015 Autumn 1.36a ± 0.15 

2016 Winter 0.94b ± 0.14 

2017 Summer 1.46a ± 0.12 

2017 Winter 1.64a ± 0.11 

2018 Autumn 0.69b ± 0.10 

2019 Autumn 0.78b ± 0.09 

2020 Winter 0.99b ± 0.09 

LSMeans with the same superscript are not significantly different 

 

 

3.3.6 The effect of season of infestation 

The season of infestation did not significantly (P>0.05) influence the tick count in F2 Angus x 

Nguni cattle (Table 3.5). The least square means for the season of infestation also showed no 

significant differences (P>0.05) amongst the three seasonal periods (Table 3.7). The  findings 

in the current study are in agreement with a study by Kemal et al. [40], which reported a non-

significant effect of season on tick count in cattle of Southern Ethiopia. In the current study, 

the season of infestation alone did not affect tick count, however when it was concatenated 

with the year of infestation (Table 3.6 and 3.7), a significant effect was observed. Significant 

effect of season on the level of tick count has been reported by Nwachukwu et al. [14], 

Mekonnen et al. [46], and Mohamed et al. [47]. Furthermore, the effect of season on tick 

infestation in cattle have been further validated by studies which discovered different 

quantitative trait loci association with the level of tick infestation during wet and dry season 

[5,48–51]. The effect of season may be prompted by the preferred environmental conditions 

by the tick species of interest. Amblyomma hebearum is normally found in the coastal areas 

of South Africa, because the regions are characterized by stable temperature conditions, 

seasonal rainfalls and high grasslands [13,52,53]. The current study was conducted in the 

inland region, which exhibits different temperature conditions compared to coastal region. 
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However, the mode of infestation was artificial; it could have contributed to how the tick 

behaved upon infestation. 

 

Table 3.7: Least Square Means for season of infestation. 

Season LSMeans ± SE 

Summer 1.06a ± 0.20 

Autumn 0.67a ± 0.11 

Winter  1.36ab ± 0.08 

LSMeans with the same superscript are not significantly different. 

 

 

3.3.7 Heritability estimates 

Heritability estimates for the log-transformed tick count, birth, weaning, and yearling weights 

and skin thickness are presented in Table 3.8. 

 

Table 3.8: Heritability estimates (±SE) for tick count, birth weight, weaning weight, 

yearling weight and skin thickness. 

Trait Heritability estimate ± SE 

Log-transformed tick count 0.21±0.22 

Birth weight 0.36±0.26 

Weaning weight 0.32±0.14 

Yearling weight 0.32±0.19 

Skin thickness 0.40±0.15 

 

 

3.3.7.1 Tick count 

Heritability estimate for tick count was 0.21±0.22 in the current study, indicating that this trait 

has low to moderate heritability. The associated standard error was high, which could be 

attributed to the small population size used in this study. Heritability estimate for tick count 

was comparable to the findings from similar studies which reported heritability estimates 

ranging from 0.05 to 0.58 in Bonsmara, and Nguni cattle [26,54,55]. Some of these studies 

were conducted in South Africa using purebred Bonsmara with heritability estimates ranging 

from 0.01 to 0.08 [26], and purebred Nguni cattle  with heritability estimates ranging from 0 to 

0.89) [54].  
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Heritability estimate in the current study was higher than estimates  from the previous studies 

[56–58], which ranged from 0.09 to 0.15. Recent studies by Mapholi et al. [5,54] reported 

heritability estimates ranging from 0.00 to 0.89 in Nguni cattle, where animals were assessed 

for different tick species during different months. Furthermore, Mapholi et al. [5,54] estimated 

heritability for Amblyomma hebraeum during  different months and reported heritability 

estimates ranging from 0.00 to 0.28. The authors concluded that the genetic variation 

observed was sufficient to warrant the improvement of tick resistance through selection [54]. 

 

The inconsistency in heritability estimates between the current and previous studies could be 

attributed to many factors, which include; breed, tick species, mode and region of infestation, 

lack of consistency in the protocols used to assess tick loads, population size, failure to 

account for the immune status of the animal, and the seasons in which the studies were 

conducted. It has been reported previously that sex, skin thickness, coat colour patterns and 

season affect the level of tick load [5,13,54] which in turn affect estimates of heritability for tick 

count. Despite these observations, the heritability estimate obtained in the current study 

indicates that this trait could be improved through selection. However, more studies  should 

be conducted using standardized protocol to measure tick count. Additionally, animal's 

immune status  should be considered in the statistical analysis of tick count as recommended 

by Porto Neto et al. [1], as it plays a key role in the expression of tick resistance.  

 

 

3.3.7.2 Birth weight 

In cattle, previous studies have associated birth weight with survivability, disease incidence, 

reproductive performance, and milk production [59,60]. The heritability estimate for birth 

weight in the current study was 0.36 ± 0.26 (Table 3.8). This heritability estimate is slightly 

lower than the estimates reported by Yin and Kong [61] (0.47), and Beyoda et al. [62] (0.44). 

Ossa et al. [63], and Boligon et al. [64] reported lower estimates of heritability of 0.17 and 0.25 

respectively.  

 The differences in heritability estimates across studies could be attributed to different 

environmental conditions, breed, farm management strategies, and the model used for 

statistical analysis.  

 

3.3.7.3 Weaning weight 

The heritability estimate for weaning weight in the current study was 0.320.14, indicating a 

moderate heritability. This estimate is in agreement with findings from previous beef cattle 
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studies [65–67]. As has been done in previous studies, maternal heritability has been 

estimated in conjunction with direct heritability for growth traits. In this study, maternal 

heritability was not estimated because of the limited sample size, which influenced the 

statistical model used. It has been noted that failure to account for maternal effects on growth 

traits could inflate direct heritability estimates [31]. The differences observed from these 

studies could be attributed to factors such as herd management, breed composition, sample 

size, procedures to measure the phenotype, and the statistical model used. 

 

 

3.3.7.4 Yearling weight  

The heritability estimate for yearling weight in the current study was 0.320.19. This estimate 

is in agreement with previous studies by Neser et al. [66], van Vleck and Diop [28], Haile & 

Assa-Mersha [68] who reported heritability estimates of 0.23 in Brangus, 0.24 in Gobra, and 

0.34 in Boran cattle, respectively. The findings from the current study are not in agreement 

with results reported by Pico et al. [69] and Eler et al. [70] who reported low heritability 

estimates of 0.14 in Brahman and 0.16 in Nellore, respectively. The differences observed 

amongst the above-mentioned studies could be attributed to breed, farm management, 

sample sizes, and statistical models used. Despite the differences, the findings from the 

current study indicate that yearling weight could be improved through  selection in this 

population. 

 

 

3.3.7.5 Skin thickness  

The heritability estimate for skin thickness in this study was 0.40. This estimate is  higher than 

reported in a previous study by Maiorano et al. [71], who reported a low heritability of 

0.12±0.02 in Nellore cattle from Brazil. The heritability estimate obtained in the current study 

indicate that there is sufficient additive genetic variation for selection to increase skin thickness  

The skin acts as the first line of defence against pathogens and it facilitates regulation of 

temperature and pressure [72]. For example, animals with thick skin are better protected 

during tick infestation as compared to animals with a thin skin. In animals with thick skin, it is 

hard for ticks to bite, suck blood and introduce toxins. In cattle, skin thickness plays a role in 

the expression of other traits such as tick count, heat tolerance, body fat deposition, and milk 

production [73,74]. Skin thickness is also of interest in sheep. Moderate heritability estimates 

of 0.26, 0.21 and 0.21 have been reported in lambs by Ghambavani et al. [75], Tait et al.[76], 

and Soltanighombavani [77], respectively. The paucity of information on skin thickness in 

cattle elicits the need for more studies. 
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3.4 Conclusions 

Heritability estimates for tick count, birth, weaning and yearling weights and skin thickness 

obtained in the current study indicate that these traits are under sufficient genetic control to 

warrant genetic improvement through selection. Year and season of infestation and live weight 

should be considered when estimating genetic parameters for tick count. Breeding for tick 

resistance could provide an additional and complementary approach for sustainable livestock 

production in tick-infested regions. However, there is a need to study the genomic and 

immunological components influencing tick count, to gain better understanding of the 

biological mechanisms underlying tick resistance in cattle.  
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4 Chapter 4: 

Genome-wide association study for tick count, growth traits, and skin thickness in F2 

Angus x Nguni cattle  

 

Abstract: Amblyomma hebraeum ticks pose substantial threat to cattle production, health, 

and welfare. The current tick-control methods are ineffective which underscores the need for 

alternative control measures. Genetic variation was explored by performing a genome-wide 

association study (GWAS) to identify single nucleotide polymorphism (SNP) markers 

associated with tick count, live body weights, and skin thickness in the F2 Angus x Nguni 

population. A total of 266 F2 Angus x Nguni animals were genotyped using Illumina 

BovineSNP150 assay. The genotype data was subjected to quality control, after which 115 

143 SNPs were retained for downstream analysis. Genome-wide association analysis was 

undertaken in the R environment using the GenABEL version 1.8 package. The estimated 

genomic heritability was 0.12±0.15, 0.26±0.16, 0.70±0.18, 0.38±0.18, and 0.58±0.21 for tick 

count, birth weight, weaning weight, yearling weight, and skin thickness, respectively. SNPs 

associated with birth weight were observed on BTA3 and BTA12. Two SNPs were 

suggestively associated with tick count on BTA4 and BTA22. Furthermore, suggestive SNPs 

associated with weaning weight were observed on BTA2, and BTA18. Another suggestive 

SNP on BTA8 was associated with yearling weight. Suggestive SNPs associated with skin 

thickness were observed on BTA2, BTA7, BTA8, BTA9, and BTA12. Despite the modest 

sample size in the current study, the findings indicate that it is feasible to control tick resistance 

using tick count as a proxy through genomic selection.  

Keywords: Crossbred Cattle, Genomic Heritability, SNPs, GWAS 

 

 

4.1 Introduction 

High levels of cattle tick infestation in beef production is a global threat to food security and 

animal welfare. This also has adverse economic implications. Ticks affect cattle production by 

sucking blood, damaging hides, and transmitting tick-borne diseases, which prominently 

influence increases in rates of mortalities. Reduced production translate to less availability of 

meat products which impacts food security for consumers. The use of acaricides and vaccines 

are the prevalent methods for controlling tick infestations in cattle production. However, these 

methods pose some challenges, which include inflated costs associated with the development 

of drugs, the emergence of acaricide-resistant tick strains, and environmental contamination. 

The emergence of acaricide-resistant strains of ticks raises animal welfare and human health 
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concerns. Ticks develop resistance toward acaricides through prolonged and inappropriate 

utilization [1–3]. This results in delayed therapy when there is an outbreak, translating to 

production loss and increased treatment costs. The alternative solution may include the 

development of new drugs; however, this may not be economically sustainable because the 

development of new drugs is costly, and a long period is needed for drug testing and approval. 

Although the drug could be approved, the sustainability of its efficacy is not guaranteed since 

there are possibilities that ticks will soon develop resistance toward the new drugs too. 

Additionally, acaricides are not environmentally friendly; previous studies have indicated that 

chemical residues from the acaricides remain in food products such as meat, milk, and their 

by-products [1,4]. This is a threat to consumers. Therefore, there is a serious need for 

alternative strategies to control ticks to ensure animal welfare, and  sustainable production, as 

well as to protect consumers from harmful chemical residues.  

 

Selection for naturally resistant animals is a promising alternative measure that can be used 

to control cattle ticks [5,6]. Cattle's natural resistance to tick infestations has been reported by 

numerous studies in different breeds [4,7,8]. The use of genetic selection to control tick 

infestations on cattle will reduce the prevalence of tick-borne diseases. The main challenge is 

that selecting naturally resistant animals requires an understanding of genetic determinants 

influencing the host response to tick infestation. It would be advantageous to understand 

phenotypic and genetic correlations between growth and reproductive traits, as this will 

facilitate the improvement of productivity. The role of the skin as a barrier to tick attachment 

may be affected by skin colour and thickness. It has been noted by Burrow et al. [9], that the 

magnitude of heritability estimates for tick resistance depends on the animal’s growth; 

therefore, there is a need to study the relationship between growth traits, skin thickness, and 

tick count. Heavily tick-infested animals are expected to gain less weight. Skin thickness 

serves as a protection against tick infestation; a thick skin makes it difficult for ticks to bite [10].  

 

Efforts have been made globally to uncover and understand genetic determinants influencing 

natural tick resistance in cattle. Underlying single nucleotide polymorphisms (SNPs) and 

genes have been discovered using molecular genetics approaches such as genome-wide 

association studies (GWAS). The GWAS approach utilizes phenotypic information to search 

for DNA markers (SNPs) associated with traits of economic interest. GWAS is regarded as an 

efficient method to uncover SNPs associated with complex economic traits [11]. According to 

Welderufael et al. [12], GWAS has the potential to identify genetic markers for use in marker-

assisted selection (MAS). The information on genomic selection can potentially be used to 

develop breeding schemes that will facilitate breeding of cattle with increased favourable allele 
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frequencies for a trait of interest [13]. Using GWAS, genetic determinants associated with tick 

resistance have been discovered across the 29 bovine autosomal chromosomes from different 

cattle breeds [7,8,14]. The successful discoveries from previous tick resistance studies have 

generated knowledge and paved a way for more studies that need to be conducted since the 

information is still limited. 

 

In Africa, commercial beef production is mostly practiced using exotic breeds, which are 

known to be susceptible to tick infestations, for example, the Angus breed. The lack of studies 

focused on uncovering genetic determinants associated with tick resistance in African 

indigenous breeds and their crossbreds remains a major challenge. Africa is still lagging 

behind in controlling tick resistance through marker-assisted selection because there is limited 

information to understand the genetic architecture for this trait. Although there is information 

from studies conducted in other regions, it is especially important to generate information on 

the African environment, since the environment plays a key role in influencing tick resistance.  

 

The aim of the current study was to identify genomic regions associated with tick count in F2 

Angus x Nguni crossbreed cattle. This is the first study that has focused on unravelling genetic 

determinates associated with ticks in F2 Angus x Nguni crossbreed cattle. It has been reported 

that the use of an F2 crossbred population is advantageous for GWAS of polygenic traits 

because it improves the QTL mapping resolution, and accuracy while reducing the false 

discovery rate (FDR) [15]. The findings from this study will provide a better understanding of 

genetic determinants influencing tick count in F2 Angus x Nguni crossbred cattle. This 

information could then be used to improve the trait through marker-assisted selection. 

 

 

4.2 Materials and Methods 

4.2.1 Phenotypic data and DNA source 

Phenotypic data were collected from 266 F2 Angus x Nguni crossbred cattle as described in 

Chapter 3. This includes data on tick count, skin thickness, live weights, and coat colour 

patterns. These traits were chosen because they play a role on the level of tick infestation 

count in cattle. Hair samples from the tail were collected for DNA extraction assuring enough 

hair roots. The collected hair samples were stored in labelled LidCat bags to avoid 

contamination until the day of DNA extraction. Figure 4.1 below shows a sample of the LidCat 

bag with hair samples.  
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Figure 4.1: Hair samples in a LidCat bag 

 

4.2.2 DNA extraction 

Hair samples with visible roots were used to extract genomic DNA. The extraction of DNA was 

carried out using phenol:chloroform:isoamyl alcohol extraction and ethanol precipitation 

method described by Sambrook et al. [16]. The ratio of absorbance at 260 and 280 nm was 

used to assess DNA purity, and a ratio of between 1.8 to 1.9 was accepted as pure for the 

isolated DNA.  

 

 

4.2.3 SNP genotyping and data management 

Two hundred and sixty-six samples of F2 Angus x Nguni cattle were genotyped using Bovine 

150K SNP chip assay from Illumina at the Agricultural Research Council - Biotechnology 

Platform and Neogen Company. Data were received in a form of final reports, which are in 

text format. To create MAP and PED files, SNPConvert 

(https://github.com/nicolazzie/SNPConvert)  was used as described by Nicolazzi et al. [17]. 

The SNPConvert program has different options to convert the files. For the current study, 

pedda_row.py program was used. This program converts Illumina ROW files into PLINK 

format. Two input files are required, an Illumina FinalReport file (in ROW format) and one 
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SNP_Map (original from Illumina). The program offers a parameter file for the users to modify 

accordingly before running the program. The created SNP position file (MAP) and associated 

genotype (PED) files allowed the resolution of ambiguous SNP before merging. Both datasets 

had problematic SNPs that shared the same positions, however, variants of three or more 

alleles were detected using the Plinkv1.9 software. These problems were solved by following 

the instructions depicted in the Plink1.9 software manual [18]. A brief illustration of data 

management is presented in Figure 4.2.  

 

 

 

Figure 4.2: F2 Angus x Nguni genotyped data management flowchart. 
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After the datasets were merged, the distribution of SNPs throughout the chromosomes were 

presented graphically in Figure 4.3.  

 

Figure 4.3: Variants distribution according to chromosomes. The y-axis represents the 

frequency of the SNPs, and the x-axis represents chromosomes, 0 denotes SNPs that are 

not assigned to any chromosomal location. Chromosomes 1 to 29 represents autosomal 

chromosome pairs and 30 is sex chromosome pair. 

 

Merged data were subjected to quality control (QC) using GenABEL software in the R 

environment [19] using QC parameters which excluded SNPs with minor allele frequency of 

less than 1%, more than 10 % missing genotypes, and deviated from Hardy-Weinberg 

equilibrium (p < 1.0 x 10-6). Additionally, SNPs that were on the sex chromosome and the ones 

that had unmapped locations were removed. Initially, there were 141 356 variants; however, 

after QC only 115 143 variants were retained. The cleaned data were then used for 

downstream analyses, which included the estimation of linkage disequilibrium, and genome-

wide association analysis.  

 

 

4.2.4 Genome-wide linkage disequilibrium 

Genome-wide pairwise linkage disequilibrium (r2) over a 1000kb window was estimated using 

Plink (v1.9) software [18]. Average r2 values corresponding to inter-marker distance were 

calculated in the R environment. The resulting r2 values were plotted against inter-marker 

distance to graphically assess the linkage disequilibrium pattern for the current study. 
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4.2.5 Estimation of heritability using a kinship matrix 

For all the traits studied, the phenotypic variance and residual variance were estimated by 

fitting the animal model in ASREML software [20] as described by VanRaden [21], using the 

following model: 

𝑦 = 𝑥β + 𝑍𝑢 + 𝑒 

 

Where 𝑦 is a vector of phenotypic values, 𝑥β is the mean and 𝑒  is a random error vector with 

variance of 𝐑𝜎𝑒
2. Matrix 𝐑 is diagonal with elements 𝐑𝒊𝒊 = (𝟏\𝐑𝐝𝐚𝐮) − 𝟏, where 𝐑𝐝𝐚𝐮  is the 

bull’s reliability from daughters with parent information excluded. Moreover, vector 𝑢 contains 

the additive genetic effects that correspond to allele substitution effects for each marker. 

Lastly, vector 𝑍𝑢 represent the sum of all marker loci assumed to equal the vector of breeding 

values calculated. 

 

 

4.2.6 Association analysis 

Association analysis was performed under a null hypothesis, which assumed that there was 

no association between SNPs and the level of tick count. To prepare for GWAS analysis, an 

ANOVA was performed to identify effects associated with tick count. This analysis was broadly 

explained in chapter 3. The fixed effects that were significant (p < 0.05) in the model for tick 

count were used for the association analysis. Tick count data were log-transformed to 

approximate normality with a constant of ?? added to avoid zeros. 

  

All association analyses were performed using a single locus model in R using the GenABEL 

package [19]. For all the traits, the association analysis was initially conducted using the score 

test model. The findings showed the presence of genetic structure. The actual presence of 

population stratification was investigated by calculating the genomic kinship matrix using the 

“ibs’’ function in GenABEL. The designed kinship matrix was then used to present the genetic 

structure of the population in the form of a multidimensional scaling (MDS) plot showing the 

first two principal components. Moreover, relatedness amongst the cattle was assessed by 

estimating pair-wise identity by state genomic kinship matrix [7]. This was done using 

autosomal SNPs and a heatmap was plotted to present the relatedness. Furthermore, the 

single SNP association was tested using the mixed model function of the score [22], while 

adjusting for population stratification and relatedness [23]. The population size used for this 

study was too small, making it difficult to use Bonferroni corrected genome-wide significant 

level because it was too stringent, and is known for its potential to inflate findings in small 

population datasets. Therefore, a nominal threshold of Pnominal = 5 x 10-5 was applied [24]. This 
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meant that SNPs with a p-value smaller than 5 x 10-5  were considered to have nominal 

significance with the trait of interest. The genome-wide significance level was described as 

0.05/ N, whereby N was the number of variants after QC.  

 

The following model was used for the association analysis of all the traits of interest:  

𝑦 = 𝑊α + 𝑥β + 𝑍𝑢 + 𝑒 

 

where y is a vector of phenotypic values; α is a vector of fixed effects including the population 

mean and the first MDS component; W is the designed matrix for fixed effects; β is the marker 

effect; x is a vector of marker genotypes; Zu is a designed matrix for relatedness, and e is the 

random errors.  

 

 

4.3 Results 

4.3.1 Marker information 

Downstream genome-wide analysis was conducted on F2 Angus x Nguni crossbred cattle with 

115 143 variants after quality control. The data consisted of variants distributed throughout 

the 29 bovine autosomes (Figure 4.3). As shown in Figure 4.4, LD decays as distance 

increases. The average LD estimate r2 = 0.1, extended to about 400kbp in the current study. 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

84 
 

 

 

Figure 4.4: Genome-wide pairwise linkage disequilibrium in F2 Angus x Nguni crossbred 

cattle. 

 

 

4.3.2 Heritability estimates 

Table 4.1 shows the heritability estimates obtained when the kinship matrix (computed using 

genotyped data) was fitted instead of a pedigree. From Table 4.1, it can be noted that the 

heritability estimates ranged from low to high.  

 

Table 4.4.1: Heritability estimates obtained by fitting the kinship matrix using the animal 

model  

Trait Genetic variance Phenotypic variance Heritability (se) 

BWT 4.56 17.78 0.26 (0.16) 

YWT 478.70 1274.20 0.38 (0.18) 

WWT 616.81 883.90 0.70 (0.18) 

STHICK 3.51 6.06 0.58 (0.21) 

TCOUNT 84.28 685.98 0.12 (0.15) 

TCOUNT- Tick Count; BWT-Birth Weight; WWT-Weaning Weight; YWT-Yearling Weight; 

STHICK-Skin Thickness  
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4.3.3 Genome-Wide association findings  

The multidimensional scaling (MSD) plot showed that the F2 Angus x Nguni population was 

genetically clustering into three groups (Figure 4.5).  

 

 

Figure 4.5: Population structure analysis. A is a scree plot and B is a multidimensional 

scaling plot showing the distribution of animals using the first two principal components 

(PCs) of the genomic relationship matrix. 

 

Figure 4.5A is a scree plot showing the contribution to the variance of the first ten principal 

components to the population structure. There was not much variation attributed to the first 

two PCs. The most important PCs are indicated by the amount of variance they explain. Figure 

4.5B, shows the clustering of animals from plots of the first two principal components. 

Although, the study population is genetically clustered into three groups, the red cluster does 

not seem to be clearly defined. The clustering indicates different proportions of Angus and 

Nguni crossbred animals. These observations are supported by the kinship matrix presented 

in the form of a heatmap in Figure 6. The kinship matrix heatmap shows the relatedness 

amongst the animals, using the colour code and kinship coefficient. A coefficient closer to 0 

indicates less relatedness and closer to 1 indicates more relatedness. Moreover, on the left 

and the top of the heatmap diagram, dendrogram trees show that the study population was 

genetically clustered into three groups as observed on the MDS plot (Figure 4.5B).  
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Figure 4.6: Heatmap plot and dendrogram tree of kinship matrix for F2 Angus x Nguni cattle. 

 

Figure 4.7A shows a Manhattan plot indicating the association results for the tick count. The 

genome-wide cut-off (0.05/Number of variants after quality control) and suggestive threshold 

(Pnominal = 5 x 10-5) are indicated by black and red dotted lines, respectively. The findings 

depicted in Figure 4.7A show that no SNP passed the genome-wide cut-offline, however, there 

were two SNPs that passed the suggestive line (nominal threshold). The two SNPs were 

observed on chromosome 4 (BovineHD0400032426) and 22 (BovineHD2200005710). The 

Manhattan plot indicates that no SNP passed the required significance thresholds. Figure 4.7B 

shows a quantile-quantile (q-q) plot that quantifies the extent of genomic inflation. The 

observed results could be a product of the Bulmer effect, which is the effect that has the 

potential to reduce the proportion of genetic variance explained by the marker [25].  

 

 

Stellenbosch University https://scholar.sun.ac.za



 

87 
 

 

 

 

Figure 4.7: Manhattan and q-q plots showing findings for tick count trait. 

 

Figure 4.8 shows results for growth traits and skin thickness. For birth weight, 13 SNPs were 

observed, two passed the genome-wide significant line (Hapmap38587-BTA-23830 and 

BovineHD1200022868) and 11 passed the suggestive line. For weaning and yearling weights, 

6 SNPs and 1 SNP passed the suggestive threshold, respectively. 
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Figure 4.8: Manhattan and Quantile-Quantile plots showing findings for live weights traits 

and skin thickness. 

 

More details on the SNPs of interest are presented in Table 4.2. The heritability estimate for 

tick count obtained in the current study was low (0.03) (Table 4.2). For growth traits, estimated 

genomic heritability was 0.06, 0.25, and 0.23 for birth, weaning and yearling weight, 
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respectively. All the heritability estimates presented in Table 4.2 were estimated using the 

mmscore model during genome-wide association analysis. 

 

Table 4.4.2: Suggestive SNPs associated with tick resistance in F2 Angus x Nguni crossbred 

cattle. 

Trait h2 SNP name Chr Position A1 A2 Pc1df 

TCOUNT 0.03 BovineHD0400032426 

 

4 112551883 

 

G A 3.80e-05 

 

  BovineHD2200005710 

 

22 19635553 

 

C T 4.81e-05 

 

BWT 0.06 Hapmap38587-BTA-23830 12 51067836 C A 1.95e-07 

  BovineHD1200022868 12 79955065 A G 1.19e-06 

  BTA-22732-no-rs 12 46739954 C T 1.85e-06 

  ARS-BFGL-BAC-15043 12 82199690 T G 2.64e-06 

  BovineHD1200023142 12 80884150 T C 4.89e-06 

  BovineHD1200023153 12 80926254 C T 4.89e-06 

  Hapmap60388-rs29016486 12 84095269 G A 1.14e-05 

  BTA-22711-no-rs 12 45649503 G A 3.50e-05 

  BovineHD0300032874 3 113815818 C T 5.58E-05 

        

WWT 0.25 BovineHD1800000097 18 840780 C T 4.06e-05 

  ARS-BFGL-NGS-18307 18 156809 C T 5.02e-05 

        

YWT 0.23 BovineHD0800026814 8 90226480 C T 2.56e-05 

        

STHICK 0.37 BTB-00360130 8 78145059 G A 1.83e-05 

  Hapmap51837-BTA-49470 7 108006295 T C 2.00e-05 

  BovineHD0900022588 9 81302552 T C 3.40e-05 

  BovineHD0200012180 2 42082588 T G 4.41e-05 

  BovineHD1200012955 12 47139521 C T 5.89e-05 

TCOUNT- Tick Count; BWT-Birth Weight; WWT-Weaning Weight; YWT-Yearling Weight; STHICK-Skin 

Thickness; Chr- Chromosome, h2 –Heritability 
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4.4 Discussion  

The main benefit of genome-wide association analysis is the ability to discover genetic 

determinants associated with the expression of the trait of interest without prior knowledge of 

the location of the region on the genome and its function. The current GWAS was conducted 

using the F2 Angus and Nguni crossbred population. The F2 design is well known for being 

suitable to map quantitative traits loci segregating from the parental lines, especially for 

complex traits [26,27]. The F2 design considered in this study was, therefore, suitable to study 

complex traits such as tick count, growth, and skin thickness using genome-wide association 

analysis. The association analysis capitalizes on the extent of linkage disequilibrium (LD) that 

exists within the population, population size, the genetic architecture of the trait, and 

environmental factors.  

 

Findings presented in Figure 4.4 show a linkage disequilibrium that is fast decaying as the 

distance increases. According to Stratz et al. [28], F2-designed populations have reduced 

length of LD blocks compared to pure lines, thus justifying the application of GWAS. The fast 

decaying of LD has the potential to positively affect the resolution of genome-wide association 

analysis. However, the LD decay in crossbreed cattle has not been well studied. The 

implementation of studies focused on investigating the nature of LD in crossbreed cattle, 

specifically F2 populations is therefore important. These studies provide an understanding of 

LD architecture, which might be useful in developing more informed GWAS models to 

elucidate genetic determinants associated with traits of economic importance. Research 

studies focused on studying economic traits using F2 populations have been well explored in 

plants and chicken research, therefore more information is available on these species as 

compared to cattle studies. It must be noted that developing cattle F2 populations for research 

purposes may be costly and time-consuming. Such barriers may be the reason behind the 

limited availability of F2 population studies in beef cattle research.  

 

In GWAS, the use of linear mixed models is applicable for a study population made of related 

individuals and it is regarded as a comprehensive approach to correct for the inflation of false 

positives, population stratification, and polygenic background [29–32]. For this study, linear 

mixed models were used for all association analyses whilst adjusting for genetic structure and 

relatedness amongst the F2 Angus x Nguni cattle. The presence of population stratification 

was observed in the current study population. This phenomenon is regarded as one of the 

main confounding effects that affect the success of GWAS [33]. If it is not accounted for, the 

presence of population stratification increases the chances of discovering false positive results 

and reduces the chances of discovering true associations. Therefore, it is crucial to take 
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population stratification and relatedness into consideration when performing GWA analyses. 

In this study, the assessment of population stratification revealed that the population was 

clustered into three groups (Figure 4.5B). The clustering of F2 Angus x Nguni cattle indicates 

the three genotypes that were created through crossbreeding the F1 cattle population. The 

clustering of data was further confirmed by the kinship matrix outcomes presented by the 

dendrogram tree (Figure 4.6), which showed three clades. The incorporation of genetic 

structure, kinship matrix, and fixed effects in all study association models, permitted a better 

fitting of GWA models for all the traits.  

There is extensive information in literature noting that genotyping costs are decreasing, 

making it possible to conduct genomic studies [34,35]. In Africa, conducting genomic studies 

remains a challenge, since the cost of genotyping is still high. In this study, the genotyping of 

samples was conducted in batches. Genotyping data in batches gives rise to the batch effect. 

The batch effect is a confounding effect and is accounted for through the application of 

stringent quality control on genotyped data and treating batches independently before the 

execution of the actual GWAS analysis. The stringent quality control does not completely 

account for this confounding effect; instead, it reduces the number of SNPs available to carry 

out the association analysis. This could result in losing important SNPs influencing the trait.  

 

 

4.4.1 Tick count 

The genome-wide association analysis showed that no SNP passed the genome-wide 

significant line. However, two SNPs passed the suggestive line. The SNPs are located on BT4 

(BovineHD0400032426) and BTA 22 (BovineHD2200005710). The association of these SNPs 

with tick count have not been reported previously in the literature. However, BTA 4 and BTA 

22 have been reported to harbour genomic regions associated with the expression of the tick 

count in  a study by Sellore et al. [14]. The two SNPs explained a small genetic variance, 

which indicated that the tick count is highly polygenetic. The discovery of genomic regions 

associated with tick count in cattle remains a challenge, due to the nature of the trait, the 

limited resources associated with the generation of phenotypes and genotyping, the lack of 

standardized methods to measure the phenotype, and the selection of appropriate association 

models to capture the variation explaining the trait in a population. Tick count  is polygenic, 

meaning that its expression is influenced by various genomic determinants [7,8,36]. The 

GWAS power for polygenetic traits is reduced when the population is small, therefore, genetic 

interactions (epistasis effects) could be the reason for the observed findings. The heritability 

estimate obtained via the genome-wide association model was 0.03, which is considerably 

low when compared to the estimates obtained from an animal model fitting a kinship matrix 
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(Table 4.1). This difference could be due to the issue of missing heritability, which is also 

explained by epistasis, epigenetics, and other biological effects. The incorporation of 

microbiome GWAS for cattle could solve the issue related to missing heritability [37]. The 

inclusion of the microbiome in human GWAS showed that the microbiome is associated with 

many traits, and it encodes for extra genes which interact with the host genes [38]. In the 

current study, tick count was measured using calico bags, which is a method that has not been 

well explored. The method has been successfully used in a study by Marima et al. [39], which 

was aimed at investigating gene expression and immunological responses of the Nguni, 

Brahman, and Angus cattle artificially infested with Rhipicephalus microplus and R. 

decoloratus.  

 

 

4.4.2 Growth performance traits 

Growth traits such as live body weights are of economic importance in beef production [40], 

because of their role in determining the efficiency of a production system [41]. Live body 

weights are associated with meat production and are regarded as an integral part of the 

breeding goals. These traits are included in traditional breeding schemes and they are known 

to exhibit moderate to high heritability [42,43].  

 

The availability of SNP genotype data has allowed the discovery of genetic determinants 

influencing growth traits using the GWAS approach. Studies have been explored in different 

regions using various cattle breeds such as Colombian Brahman [40], Canchim [44], Nellore 

[41], Braunvieh [45], and Simmental [46]. Although the information from such studies is 

available, it can be noted that similar studies are not common in the African region, especially 

on crossbred populations. Heritability estimates obtained using a genome-wide association 

model were 0.06, 0.25, and 0.23 for birth weight, weaning weight, and yearling weight, 

respectively.  

 

The genome-wide association analysis identified nine SNPs of which one SNP passed the 

genome-wide significant level while eight passed the suggestive SNP level for birth weight. 

The nine SNPs were discovered on BTA3 and BTA12. For weaning weight, six SNPs located 

on BTA5, BTA8, and BTA18 were suggestively associated with the trait. BTA8 has previously 

been associated with weaning weight in Brahman [40]. Additionally, only one SNP on BTA 8 

was suggestively associated with yearling weight.  
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4.4.3 Skin thickness 

Skin thickness serves as a barrier to protect the host from tick bites. In cattle, if the skin is 

thick, it is believed to give the animals protection by making it difficult for ticks to bite. In this 

study, skin thickness showed no genetic associated with the level of tick load. It has been 

observed that skin thickness plays a key role in controlling the level of tick load in cattle [47,48]. 

Therefore, it is important to study the genetic basis of skin thickness so that this trait can be 

considered in the breeding goal to control tick infestation in cattle.  

Information on heritability estimates and genetic determinants influencing this trait is extremely 

limited.The estimated genomic heritability observed for skin thickness was 0.37 in the currebnt 

study. Moreover, genome-wide association analysis revealed 5 SNPs that were suggestively 

associated with skin thickness in F2 Angus x Nguni cattle. The observed SNPs were located 

on BTA2, BTA7, BTA8, BTA9, and BTA12. Further studies are required to validate the 

identified genomic regions for skin thickness in cattle. 

 

 

4.5 Conclusions 

The GWA analysis identified SNPs associated with tick count, growth traits, and skin thickness 

in F2 Angus x Nguni population. These results provide baseline information that could be used 

to inform future research aimed at generating information, which will inform breeding programs 

to improve tick resistance. The small population size, exclusion of G x E interaction in the 

model, the size of the SNP genotyping platform used, and the nature of the traits could be the 

plausible explanation for non-significant genome-wide SNPs for tick count, weaning weight, 

yearling weight, and skin thickness. Additionally, there is a need for more studies with large 

population sizes. There is a need for post-GWAS analysis to understand the biological 

relevance of identified SNPs on the expression of tick count, growth traits, and skin thickness. 
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5 Chapter 5: 

Post-GWAS analysis to find genes associated with tick count, growth traits, and skin 

thickness 

 

Abstract: Genome-wide association studies lack the capacity to explain the biological 

mechanisms influencing economic traits in livestock, therefore post-GWAS analysis are 

required. The elucidation of the biological mechanisms underlying tick resistance, growth 

traits, and skin thickness in cattle is crucial for the improvement of these traits through genetic 

selection. Therefore, the current study performed a post-GWAS functional analysis to 

understand biological mechanisms underlying tick count, growth traits, and skin thickness in 

F2 Angus X Nguni cattle. Functional annotation, pathway and cluster analysis were formed 

using DAVID and ShinyGo bioinformatics resources. Fisher's exact test with False discovery 

rate adjustment was used and the statistical significance was considered at p (DFR) <0.05. 

The gene ontology (GO) terms that were enriched by the genes associated with tick count 

included, cellular processes, regulation of biological processes, and response to a stimulus. 

Consequently, genes ZNF746, GIMAP8, and RARRES2 were identified as potential 

biomarkers for tick count control in cattle. For growth traits, the enriched GO terms and 

pathways related to ubiquinol-cytochrome-c reductase activity, plasma membrane raft, DNA 

ligase, and ATP dependent. These categories are associated with cell differentiation, skeletal 

muscle development, and metabolism regulation. Therefore, genes TRPM8, SPP2, 

UQCRFS1, MB, TMEFF1, CAVIN4, and MSANTD3 were identified as candidate genes 

controlling growth traits. For skin thickness, the enriched GO terms and pathways related to 

cell differentiation and transmembrane receptor tyrosine-protein kinase. The categories were 

enriched by FER and NTRK2 genes, which were regarded as potential candidate genes for 

skin thickness in the study population. 

These findings need to be validated through fine mapping and the implementation of more 

studies. To conclude, biological mechanisms uncovered from this study hold promise for the 

genetic improvement of the traits of interest through selective breeding. 

Keywords: immune response, development of skeletal muscles, cell differentiation, 

metabolism 
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5.1 Introduction 

Genome-wide association studies (GWAS) have been instrumental in the discovery of SNPs 

relating to the expression of economic traits in beef cattle. Nevertheless, information on the 

biological processes underlying the expression of these traits is still limited [1]. Genome-wide 

association analyses produce summary statistics that do not provide insight into the biological 

mechanisms underlying the economic traits of interest. Additionally, the genome-wide 

association analyses do not take into consideration that the expression of traits is a byproduct 

of gene networks [2]. The other components limiting the elucidation of complex traits through 

GWAS include the issue of epistasis and the bi-allelic nature of the SNPs which could attribute 

to the failure of capturing multi-allelic quantitative trait loci (QTL) [2]. Therefore, post-GWAS 

analyses such as gene-set enrichment, pathway, and gene network analyses are required as 

downstream analyses to elucidate the biological information relating to the complex nature of 

traits [3–8].  

 

A post-GWAS analyses are a crucial step for mapping causal variants and providing a better 

understanding of biological processes underlying the trait beyond the SNPs [9]. Amongst the 

bioinformatics platforms which are available to perform gene set enrichment and pathways 

analyses, DAVID (The Database for Annotation, Visualization, and Integrated Discovery) is 

the most preferred. DAVID is a web-based platform that enables researchers to generate 

biological context for large gene lists associated with traits in a broad range of species [10–

12]. The upper hand for this tool over the others is its ability to derive information from diverse 

sources such as UniProt, KEGG, REACTOME, and NCBI [13].  

 

Through post-genome-wide association analyses, previous studies have uncovered candidate 

genes and gene ontology (GO) terms associated with tick resistance in cattle. A study by Otto 

et al. [14] discovered genes (MYOSA, TREML1, CD83, PRSS16, TREM1, and TREM2) 

relating to tick resistance in the F2 Gir × Holstein population. Moreover, the study discovered 

gene network interactions that were associated with the immune system. This warranted the 

need to validate the identified genes for their effects on the tick resistance phenotype in cattle. 

Another study by Mapholi et al. [15] uncovered genes (KCNQ4, TRPM8, CSN1S2, PRkG1, 

and GPR142) relating to tick resistance in the Nguni breed, and concluded that their findings 

provide the potential for marker-assisted selection in Nguni cattle. A systematic review by dos 

Santos et al. [1] presented a summary of post-GWAS analyses for tick resistance in cattle. 

The review provided consolidated information on candidate genes and biological evidence 

relating to tick resistance in cattle from numerous studies. Currently, the available biological 
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information relating to tick resistance is based on the study of pure-breeds as compared to 

crossbred animals. Studies on crossbred animals are limited.  

 

Growth traits and skin thickness form part of the factors affecting tick resistance in cattle. The 

role of growth traits and skin thickness in tick resistance necessitates the need to study the 

biological mechanisms influencing these traits. Skin thickness is a trait not well studied; 

therefore, knowledge of the biological mechanisms influencing this trait in cattle is scarce. 

Candidate genes and biological networks associated with the expression of growth traits in 

cattle have been uncovered in previous studies. In their studies Buzanskas et al. [16] (DPP6, 

MANEA, LOC783932); and Du et al. [17] (FGF4, ITGA5, PLA2G4A, ANGPT4) found 

candidate genes that were associated with birth weight in cattle. Candidate genes associated 

with weaning weight were identified by Buzanksas et al. [16] (FARSB, RALGDS, GTF3C5), 

and Smith et al.[18] (LCORL, SLIT2, GRD2, FAM1848, MOS, CCSER10). Furthermore, in 

their study Buzanskas et al. [16] observed that MARCH3, PHAX, ALDA7A1, GRAMD3, 

MIR2458 and LOC1008484523 were associated with yearly weight. 

 

The discoveries from such studies hold the potential to inform the development of alternative 

tick-control strategies and improvement of tick count, growth, and skin thickness traits through 

selective breeding. Despite the availability of knowledge from previous studies, information 

related to the biological mechanisms controlling tick count, growth traits, and skin thickness is 

still limited. Therefore, an improved understanding of the mechanisms underlying tick count, 

growth traits and skin thickness at a cellular, molecular, and biological level could contribute 

positively to the establishment of schemes aimed to improve and monitor these economic 

traits.  

 

Therefore, this chapter aimed to perform a post-GWAS analysis to map candidate genes 

closest to the SNPs of interest and to perform functional annotation analyses for genes related 

to tick count, growth traits, and skin thickness in F2 Angus x Nguni cattle. 

 

 

5.2 Materials and methods 

5.2.1 Bioinformatics  

Suggestive SNPs from the GWAS analyses were used as foundational information to find 

candidate genes associated with the traits of interest. The Ensembl Genome Browser 107.12 

[19] was used to locate genes nearest to the suggestive SNPs using the Bos taurus reference 

genome (Assembly ARS-UCD1.2) [20]. The genes located nearest to the SNPs of interest 
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within a 1Mb region were considered in creating the gene list for all the traits of interest 

independently. 

 

 

5.2.2 Gene functional annotation 

The created gene lists were then used for functional, pathway, and cluster  analyses in DAVID 

bioinformatics resources version 2021 (https://david.ncifcrf.gov/summary.jsp)  using Bos 

taurus as a background [21]. Fisher's exact test with False discovery rate (FDR) adjustment 

was used and statistical significance was considered at p (FDR) <0.05. The bioinformatics 

resources used to investigate previous relations of genes to the traits of interest were UniprotK 

(https://www.uniprot.org/uniprotkb) [22], NCBI (https://www.ncbi.nlm.nih.gov/) [23], gene card 

(https://www.genecards.org) [24], and Animal QTLdb (https://www.animalgenome.org/cgi-

bin/QTLdb/index) [25]. ShinyGO v0.741 (http://bioinformatics.sdstate.edu/go74/)was also 

used for functional annotation for all the traits. On this platform, the Bos taurus assembly that 

was used is STRING.9913. Bos and default settings were used as background information 

and p (FDR) <0.05 considered as significant. 

 

 

5.3 Results  

5.3.1 Tick count  

For the tick count, the focus was on two suggestive SNPs located on BTA4 and BTA22. The 

suggestive position on BTA4 was associated with 27 genes and the BTA22 position was 

associated with the two nearest genes. Figure 5.1 shows a novel transcripts in BTA4 and 

BTA22, showing candidate genes closest to the suggestive SNPs associated with tick count 

in F2 Angus x Nguni. The description of the genes is presented in Table 5.1. Seven genes 

were uncharacterized, while genes belonging to the zinc finger protein were abundant, 

followed by the RNA family, GTPase, IMAP family member.  
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Figure 5.1: A screenshot showing the nearest candidate genes within the 1 Mb region surrounding the suggestive SNPs for tick count in BTA4 

and 22. 
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Table 5.1: List of identified genes within the 1 Mb region surrounding the suggestive SNPs 

for tick count. 

BTA Position Ensembl ID Nearest 

gene 

Description  

4 112551883 ENSBTAG00000042081 Y_RNA Y RNA 

  ENSBTAG00000017143 PDIA4 Protein disulfide isomerase family 

A member 4 

  ENSBTAG00000020445 ZNF398 Zinc finger protein 398 

  ENSBTAG00000014768 ZNF786 Zinc finger protein 786 

  ENSBTAG00000000389 ZNF212 Zinc finger protein 212 

  ENSBTAG00000050861 Unknown Uncharacterized 

  ENSBTAG00000055284 5S_rRNA 5S ribosomal RNA 

  ENSBTAG00000020448 Unknown Uncharacterized 

  ENSBTAG00000051861 7SK 7SK RNA 

  ENSBTAG00000002810 ZNF777 Zinc finger protein 777 

  ENSBTAG00000031106 ZNF746 Zinc finger protein 746 

  ENSBTAG0000002445 Unknown Uncharacterized 

  ENSBTAG00000010219 KRBA1 KRAB-A domain containing 1 

  ENSBTAG00000008542 SSPO SCO-spondin 

  ENSBTAG00000019844 ZNF467 Zinc finger protein 467 

  ENSBTAG00000039594 ZNF862 Zinc finger protein 862 

  ENSBTAG00000049343 Unknown Uncharacterized 

  ENSBTAG00000031059 LRRC61 Leucine-rich repeat containing 61 

  ENSBTAG00000038241 REPIN1 Replication initiator 1 

  ENSBTAG00000006022 ATP6V0E2 ATPase H+ transporting V0 

subunit e2 

  ENSBTAG00000004215 RARRES2 Retinoic acid receptor responder 2 

  ENSBTAG00000007983 ZNF775 Zinc finger protein 775 

  ENSBTAG00000053931 Unknown Uncharacterized 

  ENSBTAG00000030940 GIMAP7 GTPase, IMAP family member 7 

  ENSBTAG00000014402 GIMAP8 GTPase, IMAP family member 8 

  ENSBTAG00000049318 Unknown Uncharacterized 

  ENSBTAG00000039588 Unknown Uncharacterized 

22 19635553 ENSBTAG00000013047 GRM7-201 Glutamate metabotropic receptor 

7 

  ENSBTAT00000059985.2 U6-201 U6 spliceosomal RNA 

 

The DAVID functional annotation for these genes uncovered four Gene Ontology terms and 

13 pathways significantly enriched for tick count (Table 5.2). The observed GO terms and 
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pathways were sorted according to the most significant p (FDR) value. Amongst the GO terms 

enriched, three belonged to molecular function (GO: 0005525, GO: 0003700, GO: 0000978), 

and one belonged to biological process (GO: 0006357).  

 

Table 5.2: Gene Ontology (GO) terms and pathways significantly enriched using genes 

associated with a tick count 

Category Term Genes Count PValue FE FDR 

INTERPRO IPR006703:AIG1 GIMAP7, GIMAP8 5 2.39E-10 438.25 6.46E-09 

UP_SEQ_FEATURE DOMAIN: AIG1-type G GIMAP7, GIMAP8 5 3.04E-10 416.30 3.07E-08 

INTERPRO IPR022137: Protein of 

unknown function 

DUF3669, zinc finger 

protein 

ZNF746,ZNF777, 

ZNF212,ZNF398 

4 7.56E-09 818.07 1.02E-07 

SMART SM00355: ZnF_C2H2 REPIN1,ZNF746, 

ZNF777,ZNF77,ZNF467,ZNF78

6, ZNF212,ZNF398 

8 2.26E-07 12.49 2.71E-06 

INTERPRO IPR013087: Zinc finger 

C2H2-type/integrase 

DNA-binding domain 

REPIN1,ZNF746, 

ZNF777,ZNF775, 

ZNF467,ZNF786, 

ZNF212,ZNF398 

8 2.43E-07 15.41 2.18E-06 

GOTERM_BP_DIREC

T 

GO:0006357~regulation 

of transcription from RNA 

polymerase II promoter 

REPIN1,ZNF746, 

ZNF777ZNF775, 

ZNF467,ZNF786, 

ZNF212,ZNF398 

8 1.10E-05 7.74 3.85E-04 

INTERPRO IPR001909: Krueppel-

associated box 

ZNF746,ZNF777, 

ZNF862,ZNF212, ZNF398 

5 2.49E-05 26.56 1.68E-04 

UP_SEQ_FEATURE DOMAIN: KRAB ZNF746,ZNF777, 

ZNF862,ZNF212, ZNF398 

5 2.89E-05 25.79 0.00 

SMART SM00349: KRAB ZNF746,ZNF777, 

ZNF862,ZNF212, ZNF398 

5 3.73E-05 21.44 0.00 

KEGG_PATHWAY bta05168: Herpes 

simplex virus 1 infection 

ZNF746,ZNF777, 

ZNF786,ZNF212, ZNF398 

5 6.23E-05 15.48 0.00 

UP_SEQ_FEATURE DOMAIN:C2H2-type ZNF777,ZNF775, 

ZNF467,ZNF786, 

ZNF212,ZNF398 

6 9.39E-05 11.60 0.00 

GOTERM_MF_DIREC

T 

GO:0005525~GTP 

binding 

GIMAP7, GIMAP8 5 4.11E-04 12.84 0.01 

GOTERM_MF_DIREC

T 

GO:0003700~transcriptio

n factor activity, 

sequence-specific DNA 

binding 

ZNF746,ZNF467, ZNF212, 

ZNF398 

4 0.00 16.60 0.01 

GOTERM_MF_DIREC

T 

GO:0000978~RNA 

polymerase II core 

promoter proximal region 

sequence-specific DNA 

binding 

ZNF746,ZNF775, 

ZNF467,ZNF786, 

ZNF212,ZNF398 

6 0.00 5.90 0.01 

UP_KW_LIGAND KW-0342~GTP-binding GIMAP7,GIMAP8 5 0.00 6.77 0.02 

INTERPRO IPR027417:P-loop 

containing nucleoside 

triphosphate hydrolase 

GIMAP7,GIMAP8 5 0.01 6.49 0.03 

INTERPRO IPR003655:Krueppel-

associated box-related 

ZNF777, ZNF398 2 0.01 306.78 0.03 
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GO- gene ontology, FDR- False discovery rate, FE-Fold enrichment 

 

The clustering analysis grouped the enriched terms into two groups (Figure 5.2). A full 

description of the clusters is presented in Annexure 1.1. In Figure 5.2, the green color 

represents the positively associated gene terms within a group, and black represents unknown 

relationships. The enrichment score informs the order of annotation terms within the cluster. 

For cluster 1, the enriched GO terms are commonly related annotations for GTPase, and IMAP 

Family member genes as compared to Zinc finger protein. Cluster 2 shows a scattered pattern 

of green and black; this symbolizes functional differences amongst the enriched GO terms 

within the group.  

 

GO terms and pathways enriched through using the ShinyGO bioinformatics source are 

shown in Table 5.3. The enriched terms are presented in the form of a network as presented 

in Figure 5.3, where each node depicts an enriched pathway. The size of the node 

corresponds to the number of genes involved. Additionally, lines connect the nodes, and the 

thickness of the line indicates the percentage of overlapping genes. Table 5.4 shows genes 

grouped by functional categories defined by high-level GO terms for tick count. The high-level 

GO category observed was the cellular process characterized by a group of six genes, and 

the lowest being one.  
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Figure 5.2. Gene to terms 2D heat map showing all related genes and their associated terms for annotation cluster 1 and cluster 2 genes for 

tick count using DAVID 
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Table 5.3: Enriched GO terms and pathways for tick count using ShinyGO bioinformatics source 

Pathway Genes  nGenes Pathway 

Genes 

Enrichment 

FDR 

FE 

Zinc finger protein  ZNF212 ZNF777 ZNF746 ZNF398 ZNF282  5 6 1.77E-12 833 

Protein of unknown function DUF3669, zinc finger protein ZNF212 ZNF777 ZNF746 ZNF398  4 5 9.22E-10 799.68 

Protein of unknown function DUF3669, zinc finger protein, and 

Iguana/Dzip1-like DAZ-interacting protein N-terminal 

ZNF212 ZNF777 ZNF746 ZNF398  4 6 1.84E-09 666.4 

Zinc finger, C2H2 type ZNF212 ZNF777 ZNF746 ZNF786 ZNF467 

ZNF398 ZNF775 REPIN1 ZNF282 

 9 476 3.85E-08 18.9 

KRAB box ZNF212 ZNF777 ZNF746 ZNF786 ZNF398 

ZNF862 ZNF282 

 7 209 7.20E-08 33.480 

Krueppel associated box ZNF212 ZNF777 ZNF746 ZNF786 ZNF398 

ZNF862 ZNF282 

 7 206 7.20E-08 33.967 

Zinc finger ZNF212 ZNF777 ZNF746 ZNF786 ZNF467 

ZNF398 ZNF775 REPIN1 ZNF282 

 9 561 9.35E-08 16.0367 

Mixed, incl. protein of unknown function duf3669, zinc finger 

protein, and phosphatase and actin regulator 1 

ZNF212 ZNF777 ZNF746 ZNF398  4 17 1.09E-07 235.200 

Zinc finger C2H2 superfamily ZNF212 ZNF777 ZNF746 ZNF786 ZNF467 

ZNF398 ZNF775 REPIN1 

 8 444 3.12E-07 18.011 

Mixed, incl. krba1 family repeat, and replication initiator 1 KRBA1 LRRC61 REPIN1  3 5 4.34E-07 599.760 

Mostly uncharacterized, incl. protein of unknown function 

duf3669, zinc finger protein, and phosphatase and actin 

regulator 1 

ZNF212 ZNF777 ZNF746 ZNF398  4 26 4.90E-07 153.785 

Zinc finger C2H2-type ZNF212 ZNF777 ZNF746 ZNF786 ZNF467 

ZNF398 ZNF775 REPIN1 

 8 488 4.90E-07 16.387 

KRAB domain superfamily ZNF212 ZNF777 ZNF746 ZNF398 ZNF862  5 125 4.95E-06 39.984 

Krueppel-associated box ZNF212 ZNF777 ZNF746 ZNF398 ZNF862  5 131 5.80E-06 38.153 

AIG1-type guanine nucleotide-binding (G) domain ENSBTAG00000030940 LOC511617 

GIMAP8 

 3 13 8.22E-06 230.677 

AIG1 family ENSBTAG00000030940 LOC511617 

GIMAP8 

 3 14 9.81E-06 214.200 

Mostly uncharacterized, incl. dbird complex, and trim37, math 

domain 

KRBA1 LRRC61 REPIN1  3 16 1.42E-05 187.425 
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Mostly uncharacterized, incl. protein of unknown function 

duf3669, zinc finger protein, and transport and Golgi 

organization 2 

ZNF212 ZNF777 ZNF746 ZNF398  4 75 2.38E-05 53.312 

C2H2-type zinc finger ZNF777 ZNF746 ZNF467 ZNF775 REPIN1  5 251 1.063E-05 19.912 

Zinc-finger ZNF212 ZNF777 ZNF746 ZNF786 ZNF467 

ZNF398 ZNF775 REPIN1 

 8 1202 2.778E-04 6.653 

Mostly uncharacterized, incl. class I histocompatibility antigen, 

nkg2d ligand, domains 1 and 2, and glyco_18 

KRBA1 LRRC61 REPIN1  3 45 2.856E-04 66.640 

Krueppel-associated box-related ZNF777 ZNF398  2 6 3.279E-04 333.200 

Mostly uncharacterized, incl. class I histocompatibility antigen, 

nkg2d ligand, domains 1 and 2, and armadillo-like 

KRBA1 LRRC61 REPIN1  3 75 1.217E-033 39.984 

Zinc ZNF212 ZNF777 ZNF746 ZNF786 ZNF467 

ZNF398 ZNF775 REPIN1 

 8 1566 1.574E-03 5.107 

Repeat ZNF212 ZNF777 ZNF746 PDIA4 ZNF398 

LRRC61 SSPO REPIN1 

 8 1707 2.784E-03 4.685 

C2H2-type zinc finger ZNF467 ZNF775 REPIN1 ZNF282  4 286 3.234E-04 13.980 

50S ribosome-binding GTPase ENSBTAG00000030940 LOC511617 

GIMAP8 

 3 117 3.889E-03 25.631 

Zinc-finger of C2H2 type ZNF746 REPIN1 ZNF282  3 125 4.557E-03 23.990 

C2H2-type zinc-finger domain ZNF786 ZNF467  2 37 1.084E-02 54.032 

Metal-binding ZNF212 ZNF777 ZNF746 ZNF786 ZNF467 

ZNF398 ZNF775 REPIN1 

 8 2286 1.726E-02 3.498 
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Figure 5.3: Network for tick count enriched GO terms and pathways using ShinyGo bioinformatics platform
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Table 5.4: Tick count-related genes grouped by functional categories defined by high-level 

GO terms. 

N  High-level GO category Genes 

6  Cellular processes RARRES2 ATP6V0E2 PDIA4 LRRC61 SSPO 

REPIN1 

4  Regulation of biological process RARRES2 ZNF746 PDIA4 SSPO 

4  Biological regulation RARRES2 ZNF746 PDIA4 SSPO 

4  Regulation of cellular process RARRES2 ZNF746 PDIA4 SSPO 

3  Binding RARRES2 ZNF746 REPIN1 

3  Organelle ZNF746 PDIA4 REPIN1 

3  Intracellular ZNF746 PDIA4 REPIN1 

2  Extracellular region RARRES2 SSPO 

2  Response to stimulus RARRES2 PDIA4 

2  Protein binding RARRES2 ZNF746 

2  Extracellular space RARRES2 SSPO 

2  Response to stress RARRES2 PDIA4 

2  Ion binding ZNF746 REPIN1 

2  Organelle lumen PDIA4 REPIN1 

2  Cellular metabolic process RARRES2 REPIN1 

2  Positive regulation of the biological 

process 

RARRES2 ZNF746 

2  Negative regulation of the biological 

process 

ZNF746 SSPO 

1  Immune response RARRES2 

1  Cell adhesion SSPO 

1  Biosynthetic process REPIN1 

1  Response to external stimulus RARRES2 

1  Response to biotic stimulus RARRES2 

 

 

5.3.2 Growth traits  

The description for genes mapped to the nearest SNPs of interest is presented in Annexure 

1.2. Functional annotation findings obtained through DAVID revealed only two GO terms 

significantly enriched for birth weight and yearling weight (Table 5.5) and none for weaning 

weight. Conversely, enrichment analyses using ShinyGo v0.741 revealed several GO terms 

enriched for birth, weaning, and yearly weight (Table 5.6, 5.7, and 5.8 respectively). The 

enriched categories for birth, weaning, and yearly weight are further depicted graphically in 

Figure 5.4. The enriched GO terms interactions for birth, weaning, and yearly weight are 

exhibited in Figures 5.5, 5.6, and 5.7, respectively. Few genes characterized birth weight 
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enrichment; therefore, the grouping of related genes according to the enrichment was not 

possible. Weaning weight-related genes were grouped according to functional categories 

defined by high-level GO terms (Table 5.9). Lastly, few genes characterized yearly weight; 

therefore, functional enrichment for this trait was not possible through both bioinformatics 

sources used.  

 

Table 5.5: Enriched GO term for growth traits using DAVID 

Trait Category Term Genes  Count % PValue FE 

BWT GOTERM_CC_DIR

ECT 

GO:0005654~nucleoplasm LMO7, 

HJRP, 

LIG4, 

UCHL3 

 4 40 0.03 4.80 

YWT GOTERM_BP_DIR

ECT 

GO:0030154~cell 

differentiation 

 

TMEFF1

, 

CAVIN4 

 2 66.6

7 

0.045 29.07

3 

 

 

Table 5.6: Enriched GO terms and pathways terms for birth weight using ShinyGo 

Pathway Genes Pathway 

Genes 

Enrichment 

FDR 

FE 

DNA ligase, ATP-dependent LIG4 3 0.031 555.333 

Peptidase C12, ubiquitin carboxyl-terminal hydrolase UCHL3 4 0.031 416.500 

DNA ligase, ATP-dependent, N-terminal LIG4 3 0.031 555.333 

DNA ligase, ATP-dependent, C-terminal LIG4 3 0.031 555.333 

DNA ligase, ATP-dependent, central LIG4 3 0.031 555.333 

DNA ligase, ATP-dependent, conserved site LIG4 3 0.031 555.333 

Holliday junction regulator protein family C-terminal HJURP 4 0.031 416.500 

The domain of unknown function DUF4757 LMO7 2 0.031 833.000 

DNA ligase, ATP-dependent, N-terminal domain 

superfamily 

LIG4 3 0.031 555.333 

Peptidase C12, ubiquitin carboxyl-terminal hydrolase 

superfamily 

UCHL3 4 0.031 416.500 

Neuronal tyrosine-phosphorylated phosphoinositide-3-

kinase adapter, N-terminal 

MYO16 3 0.031 555.333 

ATP-dependent DNA ligase domain LIG4 3 0.031 555.333 

Ubiquitin carboxyl-terminal hydrolase, family 1 UCHL3 4 0.031 416.500 

DNA ligase N terminus LIG4 3 0.031 555.333 

ATP dependent DNA ligase C terminal region         LIG4 3 0.031 555.333 

Holliday junction regulator protein family C-terminal repeat HJURP 4 0.031 416.500 

Neuronal tyrosine-phosphorylated phosphoinositide-3-

kinase adapter 

MYO16 3 0.031 555.333 

The domain of the unknown function (DUF4757) LMO7 2 0.031 833.000 

Mixed, incl. baff-r, tall-1 binding, and taci, cysteine-rich 

domain 

LOC107131142 5 0.032 333.200 
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Mixed, incl. armadillo-type fold MROH2A 5 0.032 333.200 

Non-homologous end joining LIG4 5 0.032 333.200 

Mixed, incl. attractin-like, c-type lectin-like domain, and 

granular component 

DNAJB3 5 0.032 333.200 

Mixed, incl. p2x3 purinoceptor, and transient receptor 

potential cation channel subfamily v member 1 

TRPM8 6 0.035 277.667 

TRPM, SLOG domain TRPM8 6 0.035 277.667 

Mixed, incl. serine aminopeptidase, s33, and 

glucuronoside catabolic process 

ABHD13 7 0.036 238.000 

Serine aminopeptidase, S33 ABHD13 7 0.036 238.000 

Secreted phosphoprotein 24 (Spp-24) cystatin-like domain SPP2 7 0.037 238.000 

BRCT domain, a BRCA1 C-terminus domain LIG4 8 0.040 208.250 

Smooth muscle protein/calponin LMO7 9 0.044 185.111 

Mixed, incl. epithelial sodium channel, conserved site, and 

piezo family 

TRPM8 11 0.047 151.454 

 

 

Table 5.7: Enriched GO terms and pathways terms for weaning weight using ShinyGo 

Pathway Genes Pathway 

Genes 

Enrichment 

FDR 

FE 

Ubiquinol-cytochrome-c reductase activity UQCRFS1 5 0.043 444.267 

Oxidoreductase activity, acting on diphenols and related 

substances as donors 

UQCRFS1 5 0.043 444.267 

Oxidoreductase activity, acting on diphenols and related 

substances as donors, cytochrome as acceptor 

UQCRFS1 5 0.043 444.267 

Oxygen carrier activity MB 9 0.046 246.815 

Oxygen binding MB 9 0.046 246.815 

 

 

Table 5.8: Enriched GO terms for yearling weight using ShinyGo 

Pathway Genes Pathway 

Genes 

Enrichment 

FDR 

FE 

Caveola CAVIN4 27 0.034 246.815 

Myofibril CAVIN4 66 0.034 100.970 

Sarcomere CAVIN4 61 0.034 109.246 

Z disc CAVIN4 40 0.034 166.600 

I band CAVIN4 42 0.034 158.667 

Sarcolemma CAVIN4 39 0.034 170.872 

Contractile fiber CAVIN4 67 0.034 99.463 

Plasma membrane raft CAVIN4 33 0.034 201.939 

Membrane raft CAVIN4 87 0.034 76.598 

Membrane region CAVIN4 92 0.034 72.435 
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Membrane 

microdomain 

CAVIN4 87 0.034 76.598 

 

 

Table 5.9: Weaning weight-related genes grouped by functional categories defined by high-

level GO terms. 

N High-level GO category Genes 

4 Binding MB MCM5 RBFOX2 UQCRFS1 

4 Cellular process MB MCM5 RBFOX2 UQCRFS1 

3 Metabolic process MCM5 RBFOX2 UQCRFS1 

3 Organelle MCM5 RBFOX2 UQCRFS1 

3 Response to stimulus MB MCM5 RBFOX2 

3 Intracellular MCM5 RBFOX2 UQCRFS1 

3 Ion binding MB MCM5 UQCRFS1 

3 Membrane-bounded organelle MCM5 RBFOX2 UQCRFS1 

3 Intracellular organelle MCM5 RBFOX2 UQCRFS1 

3 Cellular metabolic process MCM5 RBFOX2 UQCRFS1 

3 Organic cyclic compound binding MB MCM5 RBFOX2 

3 Heterocyclic compound binding MB MCM5 RBFOX2 

2 Catalytic activity MCM5 UQCRFS1 

2 Multicellular organismal process MB RBFOX2 

2 Developmental process MB RBFOX2 

2 Protein-containing complex MCM5 UQCRFS1 

2 Biological regulation MB RBFOX2 

2 Nitrogen compound metabolic process MCM5 RBFOX2 

2 Response to stress MB MCM5 

2 Primary metabolic process MCM5 RBFOX2 

2 Anatomical structure development MB RBFOX2 

2 Cellular response to stimulus MCM5 RBFOX2 

2 Organic substance metabolic process MCM5 RBFOX2 

1 Immune system process MB 

1 Transporter activity MB 

1 Signaling RBFOX2 

1 Regulation of biological process RBFOX2 

1 Localization MB 
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1 Cellular component organization or 

biogenesis 

MCM5 

1 Molecular function regulator RBFOX2 

1 Myeloid cell homeostasis MB 

1 Immune system development MB 
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Figure 5.4: Enriched GO terms and pathways for birth weight (bwt), weaning (wwt), and yearling weight (ywt) generated by ShinyGo 
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Figure 5.5: Networks for birth weight enriched pathways using ShinyGo bioinformatics platform  

Stellenbosch University https://scholar.sun.ac.za



 

118 
 

 

 

 

 

Figure 5.6: Network for weaning weight enriched pathways using ShinyGo bioinformatics platform 
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Figure 5.7: Network for yearling weight enriched pathways using ShinyGo bioinformatics platform 
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5.3.3 Skin thickness 

The mapped genes for skin thickness are presented in Annexure 2. Furthermore, GO terms 

enriched through the DAVID bioinformatics resource are presented in Table 5.10. Clustering 

through DAVID was not a possibility for this trait because the related genes were very few. 

Furthermore, the enrichment analyses conducted through ShinyGo revealed enriched GO 

terms, that are described in Table 5.11 and further presented graphically in Figure 5.8. The 

interaction for the enriched GO terms is exhibited in Figure 5.9.  

 

Table 5.10: Gene ontology terms and pathways significantly enriched using DAVID for skin 

thickness 

Category Term Genes % PV FE 

INTERPRO IPR020635:Tyrosine-protein kinase, 

catalytic domain 

FER, NTRK2 66.67 0.01 188.79 

INTERPRO IPR008266:Tyrosine-protein kinase, 

active site 

FER, NTRK2 66.67 0.01 160.06 

GOTERM_MF_DIRECT GO:0004714~transmembrane 

receptor protein tyrosine kinase 

activity 

FER, NTRK2 66.67 0.01 137.12 

GOTERM_BP_DIRECT GO:0007169~transmembrane 

receptor protein tyrosine kinase 

signaling pathway 

FER, NTRK2 66.67 0.01 115.69 

INTERPRO IPR001245:Serine-

threonine/tyrosine-protein kinase 

catalytic domain 

FER, NTRK2 66.67 0.01 109.08 

SMART SM00219:TyrKc FER, NTRK2 66.67 0.02 87.9 

INTERPRO IPR017441:Protein kinase, ATP 

binding site 

FER, NTRK2 66.67 0.03 38.75 

UP_SEQ_FEATURE ACT_SITE:Proton acceptor FER, NTRK2 66.67 0.04 35.66 

GOTERM_BP_DIRECT GO:0045087~innate immune 

response 

FER, NTRK2 66.67 0.04 32.1 

INTERPRO IPR000719:Protein kinase, catalytic 

domain 

FER, NTRK2 66.67 0.04 29.75 

GOTERM_BP_DIRECT GO:0030154~cell differentiation FER, NTRK2 66.67 0.05 29.07 

INTERPRO IPR011009:Protein kinase-like 

domain 

FER, NTRK2 66.67 0.05 27.32 

UP_KW_MOLECULAR_F

UNCTION 

KW-0418~Kinase FER, NTRK2 66.67 0.05 18.96 

PV- pvalue, FE- Fold enrichment 
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Table 5.11: Enriched GO terms and pathways for skin thickness using ShinyGo  

Pathway Genes Pathway 

Genes 

Enrichment FDR FE 

Tyrosine-protein kinase, active site FER, NTRK2 88 8.02E-04 151.455 

Tyrosine-protein kinase, catalytic domain FER, NTRK2 76 8.02E-04 175.368 

Serine-threonine/tyrosine-protein kinase, 

catalytic domain 

FER, NTRK2 126 1.10E-03 105.778 

Tyrosine-protein kinase, Fes/Fps type FER 2 1.68E-03 3332.000 

Fes/Fps/Fer, SH2 domain FER 2 1.68E-03 3332.000 

Tyrosine-protein kinase, neurotrophic 

receptor 

NTRK2 3 1.80E-03 2221.333 

Tyrosine-protein kinase receptor NTRK, 

C2-Ig-like domain 

NTRK2 3 1.80E-03 2221.333 

Protein kinase, ATP binding site FER, NTRK2 354 3.25E-03 37.650 

Tyrosine-protein kinase, receptor class II, 

conserved site 

NTRK2 9 4.20E-03 740.444 

Protein kinase domain FER, NTRK2 454 4.26E-03 29.357 

Protein kinase-like domain superfamily FER NTRK2 493 4.56E-03 27.034 

FCH domain FER 19 6.65E-03 350.737 

F-BAR domain FER 21 6.78E-03 317.333 

Leucine-rich repeat N-terminal domain NTRK2 51 0.015 130.667 

AH/BAR domain superfamily FER 69 0.019 96.580 

The cysteine-rich flanking region, C-

terminal 

NTRK2 74 0.019 90.054 

SH2 domain FER 104 0.025 64.077 

SH2 domain superfamily FER 106 0.025 62.868 

Immunoglobulin I-set NTRK2 126 0.028 52.889 

Immunoglobulin subtype 2 NTRK2 196 0.041 34.000 

Leucine-rich repeat NTRK2 231 0.046 28.848 

Zinc finger, RING-type PJA2 258 0.049 25.829 
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Figure 5.8: Enriched pathways for the skin thickness 
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Figure 5.9: Networks for skin thickness enriched pathways using ShinyGo bioinformatics platform 
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5.4 Discussion 

5.4.1 Tick count 

The presence of uncharacterized genes could be attributed to the fact that the whole bovine 

genome assembly is still incomplete. The abundantly identified genes were from the zinc 

finger protein family (ZNF398, ZNF789, ZNF212, ZNF777, ZNF746, ZNF467, ZNF775, and 

ZNF862). The region at SNP BovineHD2200005710 on BTA22 was characterized by two 

genes, U6 and GRM7. These genes have not been associated with tick count in cattle 

previously. However, Metabotropic Glutamate Receptor 7(GRM7) has been suspected to play 

a role in parasite resistance in cattle [26,27]. The enrichment findings excluded the two genes 

related to BTA22.  

 

Zinc finger proteins found on BTA4 are the largest protein families in eukaryotes, which control 

a variety of cellular, molecular, and biological processes [28–30]. No previous study has 

reported the association of zinc finger genes with tick count in cattle. Based on functional 

annotation analysis conducted in the current study, zinc finger genes were involved in three 

significantly enriched GO terms. The three significantly enriched GO terms were related to 

biological process (GO:0006357~regulation of transcription from RNA polymerase II 

promoters), and molecular functions (GO:0003700~transcription factor activity, sequence-

specific DNA binding; GO:0000978~RNA polymerase II core promoter proximal region 

sequence-specific DNA binding). RNA polymerase II promoter is regulated in response to 

internal and external stimuli [31]. Additionally, these zinc finger genes were significantly 

enriched in a variety of pathways using DAVID and ShinyGo.  

 

The significantly enriched pathways also included IPR001909:Krueppel-associated box, 

SM00349:KRAB, and IPR003655:Krueppel-associated box-related. These genes are involved 

in the modulation of adaptive immunity and are responsible for responding to stimuli in mice 

and human [32]. In cattle, the zinc finger genes involved in Krueppel-associated box (KRAB) 

have been associated with the development of embryos [33], and the synthesis of milk in dairy 

cattle [34]. Additionally, a GWA study by Wen et a. [35] found that KRAB genes (ZNF862 and 

ZNF775) had an association with supernumerary teats in Holstein cattle. In sheep, there was 

an association of KRAB genes with host resilience to small ruminant Lentivirus in two 

populations [36]. In chickens, the zinc finger gene has been considered as a potential gene 

for host resistance to Avian influenza, due to its role in the immune response during viral 

infection [37]. In plants, zinc finger domains have been associated with disease resistance 

[38], and were reported to regulate resistance mechanisms for various biotic and abiotic 
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stresses [39][40]. Therefore, the effect of zinc finger proteins on the expression of tick count 

in cattle requires further investigation.  

 

In the present study, the two clusters were generated by the functional annotation clustering 

analysis. These were mostly comprised of GTPase, IMAP family member (GIMAP7 and 

GIMAP8), and zinc finger domain. In cluster 1, the GTPase, IMAP family member genes were 

positively associated with most of the terms that were enriched. The least was a zinc finger 

protein (ZNF746), which was positively associated with two terms related to 

GO:0005829~cytosol and KW-0175~coiled coil. On the other hand, cluster 2 exhibited the 

ZNF746 gene as the most positively associated with enriched terms, followed by genes ZNFF 

212, ZNF 398, and ZNF777.The overall enrichment analysis for tick count implicated the 

ZNF746 gene. This gene is a protein-coding gene located in the cytosol and nucleus. It plays 

a pivotal role in the positive regulation of transcription by RNA polymerase II [41]. The ShinyGo 

analysis related the genes to functions such as regulation of biological processes, the 

regulation of cellular processes, and protein binding. These functions are part of the important 

mechanisms for the host’s response to tick infestation. Therefore, the Zinc Finger Protein 746 

(ZNF746) gene may be considered as a candidate for tick count in cattle.  

 

Another potential candidate gene underlying tick count expression in the current study is 

GTPase, IMAP Family Member 8 (GIMAP8). This gene has been previously reported by Santo 

et al. [1], as a candidate gene for tick resistance in cattle. It plays a role in the modulation of 

the immune system during the response to infections [42]. Berg et al. [43] postulated that 

GIMAP8 is part of the GTPase IMAP family members, which are intensively expressed in the 

last stage of B and T cell development. The role of B cells in conferring tick resistance in cattle 

has been demonstrated by Robbertse et al. [44]. They observed that in tick resistant breeds, 

B cells are important mediators of immune response due to their influx and proliferation in 

CD3+ T cells at tick fixation areas. Another candidate gene for tick count expression that was 

found in the current study is Retinoic Acid Receptor Responder 2 (RARRES2). This is a 

protein-coding gene that encodes a secreted chemotactic protein, which initiates chemotaxis  

response to chemical stimuli [45]. Furthermore, Bondue et al. [46] confirmed that RARRES2 

is a chemotactic factor for leukocytes during a response to stimuli. According to Geering et al 

[47], granulocyte chemotaxis forms part of the essential elements of innate immune response 

to a stimulus. Chemotaxis is the movement of cells in response to stimulus, and in this context 

of tick infestation events, important cells are moved to the area of irritation or  tick fixation [48–

50]. Furthermore, a review by Tabor et al. [51] highlighted distinctive differences observed 

amongst the skin of tick-resistant and tick-susceptible cattle. The skin of resistant Bos indicus 
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cattle was intensively invaded by granulocytes, such as, eosinophils and basophils at the point 

of infestation, which was not the case in their susceptible counterparts. Therefore, the role of 

RARRES2 in controlling the level of tick count in cattle needs to be studied further. 

 

The region associated with tick count in BTA4 can be considered a hot spot for the trait’s 

expression in F2 Angus x Nguni cattle. To gain more insight into the underlying biological 

architecture and mechanisms of this region related to tick resistance, more intensive studies 

should be conducted. The genes ZNF746, GIMAP8, and RARRES2 are potential biomarkers 

that can be used in the marker-assisted selection for tick count.  

 

 

5.4.2 Growth traits 

The analysis of birth weight showed genes that were located to the BTA 3, and these included 

TRPM8, SPP2, HJRP, MROH2A, DNAJB3, ENSBTAG0000005483, 

ENSBTAG00000051335, ENSBTAG0000004331, and ENSBTAG00000053153 (Annexure 

2). The transient receptor potential cation channel subfamily M member 8 (TRPM8) is a 

protein-coding gene involved in calcium ion transmembrane transport and positive regulation 

of cold-induced thermogenesis [52]. Maestro heat like repeat family member 2A (MROH2A) 

is a protein-coding protein, and the function of the encoded protein has been characterized 

[53]. DnaJ Heat Shock Protein Family (Hsp40) Member B3 (DNAJB3) is a pseudogene [24], 

that has been associated with metabolic dysfunction in mice [54]. Four genes associated with 

BTA 3 for birth weight were uncharacterized; therefore, it was not possible to attain biological 

relevance of these genes on birth weight. 

 

The proteins encoded by TRPM8 are involved in brown adipocytes facilitating the regulation 

of body temperature, and the survival of new-borns in mammals [55]. An important paralog for 

TRPM8, TRPM2 is known to play a role in the innate immune system and ion channel transport 

[56]. TRPM8 facilitates calcium ion transmembrane transport, which allows calcium ions to 

regulate biological function involved in embryo formation and development in mammals 

[57,58]. In mice, this gene influences energy balance and fine-tunes eating behaviour [59]. 

The deficiency of this gene results in metabolic dysfunctions [59]. In humans, the potential use 

of TRPM8 agonists includes the reduction of glucose levels, weight gain, and treatment of 

metabolic syndromes, obesity, and type 2 diabetes [60]. This gene has been implicated in 

cattle as a candidate gene associated with environmental adaptation and metabolic 

homeostasis [61].  
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The TRPM8 gene is also linked with SPP2 (Secreted Phosphoprotein 2), a bone morphogen 

[62]. The role of bone morphogen proteins includes the influence on skeletal development and 

growth during early life in mammals [63]. A study by Dzhalginsky et al. [64] investigated the 

correlation between the expression of SPP2 and live weight in sheep. Despite the significantly 

low expression of SPP2, they concluded that the correlation between the expressions of the 

gene with live weight exists. They considered this gene as a potential genetic marker to control 

live weight in sheep. Moreover, TRPM8 and SPP2 were identified as part of the genes 

responsible for reproduction and growth in sheep [65]. Studies on the relationship for TRPM8 

and SPP2 genes with live weights in cattle are limited. 

 

The genes that were grouped under the significantly enriched GO term 

(GO:0005654~nucleoplasm) related to cellular components, and these are LMO7, HJRP, 

LIG4, and UCHL3 . The role of nucleoplasm is to provide a conducive environment for cell 

activities that occur inside the nucleus [66]. Growth and metabolism are part of the biological 

mechanisms which are controlled and regulated by the nucleus [67]. Furthermore, these 

genes (LMO7, HJRP, LIG4, UCHL3, and MYO16) were significantly enriched for pathways 

generated by the ShinyGo bioinformatics resource. The enriched pathways were related to 

DNA ligase, and ATP-dependent. The network analysis showed the connections among some 

of the enriched pathways.  

 

Three chromosomal regions were uncovered for weaning weight and were associated with 11 

genes (BTA 5: TOMI, MCM5, IXS, RASD2, RBF0X2, ENSBTAG0000004906, and MB; 

BTA18: UQCRFS, VSTM2B, OR4P4, 6, and HMGXB4). For BTA18 two SNPs were 

suggestively associated with weaning weight. No GO terms were significantly enriched for 

weaning weight using the DAVID. However, ShinyGo successfully generated enriched 

pathways relating to the molecular function category for this trait. The enriched pathways 

included ubiquinol-cytochrome-c reduction activity, oxygen carrier activity, and oxygen 

binding, among other. The enriched pathways involved MB and UQCRFS1, which suggests 

that a connection among the enriched pathways exists. Myoglobin (MB) is a protein-coding 

gene that is expressed in skeletal and cardiac muscles [68]. In addition, myoglobin plays a 

role in muscle oxidation metabolism [69,70], and affects the colour of meat in pigs, sheep, and 

cows [71–73]. Ubiquinol-Cytochrome C Reductase, Rieske Iron-Sulfur Polypeptide 1 

(UQCRFS1) is a protein coding gene involved in mitochondrial respiratory chain complex III 

assembly and respiratory electron transport chain [74]. It is associated with feed efficiency 

and energy balance in dairy cattle [75]. The gene set enrichment performed using ShinyGo 

showed that most genes related to weaning weight belonged to binding, cellular process, and 
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metabolic process. These functions are related to growth and development, therefore this 

information provides insight into biological mechanisms underlying weaning in cattle.  

 

The chromosomal region BTA8 was uncovered for yearling weight and was associated with 7 

genes (MSANTD3, TMEFF1, CAVIN4, CDK20, ENSBTAG00000021235, 

ENSBTAG00000025756, and ENSBTAG00000054632). Out of these genes, three were 

uncharacterized. One biological processed GO term (GO:0030154~cell differentiation) was 

enriched for yearling weight using the DAVID bioinformatics resource. Cell differentiation is a 

process in which cells become specialized [76], informed by a changed structural morphology 

and functional characteristics [77]. The role of cell differentiation is irreversible. This facilitates 

selective expression of the genome, whereby the expression of different genes is turned on 

or off, to produce proteins [77]. Du et al. [78] noted manipulation of progenitor cell 

differentiation through nutrition management, selective breeding or fetal programming as  

promising tool that can be used to improve cattle performance and carcass value. The 

inducers of cell differentiation in relation to yearling weight in F2 Angus x Nguni cattle were 

TMEFF1 and CAVIN4.  

 

Transmembrane Protein with EGF-Like and One Follistatin-Like Domain (TMEFF1) is a 

protein-coding gene predicted to be involved in animal organ morphogenesis, neuron 

projection development, and tissue development [79]. Furthermore, previous evidence shows 

that TMEFF1 and CAVIN4 play a significant role in the biological mechanisms regulating 

energy metabolism and skeletal muscle development in cattle [80,81]. Caveolae-associated 

protein 4 (CAVIN4) is a protein-coding gene, which promotes signaling in cardiac muscle cells, 

and may facilitate myofibrillar organization [82]. This gene has been identified as a novel 

muscle disease candidate caveolar protein in humans [83]. The gene enrichment analysis 

using the ShinyGO revealed the association of CAVIN4 with significantly enriched pathways 

for the current study. Part of the enriched pathways included Plasma membrane raft, myofibril, 

caveola, and contractile fiber, where the interaction among the pathways exists. Additionally, 

Myb/SANT-Like DNA-Binding Domain-Containing Protein 4 (MSANTD3) and Cyclin-

Dependent Kinase 20 (CDK20) have been regarded as candidate genes related to cell growth 

and metabolism in chicken [84] and cattle [85], respectively.  

 

Overall, most uncovered candidate genes in the current study showed biological relevance in 

skeletal muscle development and energy metabolism contributing to the expression of growth 

traits in cattle. This holds a promise that these genes can be used in selection schemes to 

improve growth performance in cattle. However, it should be noted that the biological 
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relevance of some of the uncovered genes for growth traits was unknown. Therefore, there is 

a need to study these genes further.  

 

 

5.4.3 Skin thickness 

The skin is a large, complex organ with a wide range of functions, which include sensation, 

protection, and thermoregulation. Although the skin is thin at birth, its thickness in dairy and 

beef cattle varies due to genetic effects, age, sex, breed, nutritional status, and environmental 

conditions. Skin thickness is a particularly important trait in cattle as it is associated with 

immune response [86], heat tolerance [87], tick resistance [88], body score condition, milk 

production [89], and reproductive traits [90]. 

 

In this study, five genes were mapped on BTA7 and BTA8 for skin thickness. The mapped 

genes included NTRK2, bta-m-2465, ENSBTAG00000051829, FER, and PJA2 (Annexure 2). 

The relation of these genes with skin thickness has not been reported in previous studies. This 

may be attributed to the fact that there are extremely few investigations that have studied the 

genetic components of skin thickness in cattle. Neurotrophic receptor tyrosine kinase 2 

(NTRK2) is a protein-coding membrane-bound receptor that phosphorylates itself upon 

neutrophil binding [24]. The signalling involved in this gene leads to cell differentiation. In 

humans, this gene is associated with body weight  [91], and a mutation in this gene results in 

obesity [92]. Furthermore, it has been implicated as a molecular signature for human 

epidermal melanocytes [93]. A study by Schleger & Bean [94] on the melanocyte system of 

cattle skin, postulated that the melanocyte system might have an important surveillance role 

in the defense mechanisms of the skin. In sheep, it has been confirmed as a novel candidate 

gene for litter size [95]. This kinase harbours the deferential methylation region associated 

with fibroblasts in Holstein and Angus cattle [96]. Fibroblasts play a key role in regulating skin 

physiology and cutaneous wound repair [97]. The role of fibroblast has been observed in the 

process of healing the full-skin thickness wound in rats [98]. 

 

FER tyrosine kinase (FER) is a protein-coding gene, which plays a role in the regulation of the 

actin cytoskeleton, cell migration, and chemotaxis [24]. The actin cytoskeleton has an 

important cellular function in mammals, and it is implicated as a biological factor influencing 

the biology of the skin [99–101]. Additionally, the FER gene is known for its contribution to 

regulating innate and adaptive immunity [100,102]. In sheep, this gene has been associated 

with Haemonchus contortus resistance in the Marada Nova breed [103]. It was also noted that 

the FER gene is involved in leukocyte recruitment, responsible for the response to bacteria 
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[104]. Mapholi et al. [15] noted that this gene was associated with tick resistance in the Nguni 

breed. The existing relationship between skin thickness and tick resistance in cattle has been 

reported by Foster et al. [105] and Fourie et al. [106]. The relationship between skin thickness 

and tick count was not established in this study. However, there is a need to further investigate 

the biological influence FER gene and its contribution to the control of the two traits. 

 

Functional annotation uncovered enriched GO biological processes terms related to innate 

immune response (GO:00450087), cell differentiation (GO:00330154), and transmembrane 

receptor protein (GO:0007169). One molecular function GO related to a transmembrane 

receptor protein (GO:0004714) was also enriched, together with various pathways which 

include tyrosine-protein kinase, catalytic (IPR020365), tyrosine-protein kinase, and active site 

(IPR008266). The significantly enriched categories for this trait only involved NTRK2 and FER 

genes in both bioinformatics resources used for functional annotation. Therefore, NTRK2 and 

FER are noted as important genes influencing the expression of skin thickness in F2 Angus x 

Nguni cattle. However, the fine mapping of these genes is required to validate their biological 

contribution to skin thickness. 

 

 

5.5 Conclusions 

The current study uncovered novel and previous genes related to tick count, growth traits, and 

skin thickness in F2 Angus x Nguni cattle. Biological mechanisms influencing the traits of 

interest were also uncovered. For tick count, the region of BTA4 was associated with tick 

count; thus, it could be responsible for the expression of this trait in the F2 Angus x Nguni 

cattle. Improvement of tick count could be achieved through marker-assisted selection, with 

the genes located on BTA4 as potential biomarkers. The genes uncovered for growth traits 

were associated with skeletal muscle development and energy metabolism. Growth 

performance can thus be improved if these genes are incorporated into selection schemes for 

growth performance in this population. The genes uncovered on the skin were NTRK2 and 

FER that were associated with immunity in the F2 Angus x Nguni cattle. This study contributed 

to the understanding of the biological mechanisms underlying tick count, growth traits, and 

skin thickness in cattle. Furthermore, future studies are recommended to validate the identified 

regions which could be used to facilitate the improvement of the traits of interest through 

selective breeding. 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

131 
 

 

5.6  References  

[1] dos Santos CG, Sousa MF, Vieira JIG, de Morais LR, Fernandes AAS, de Oliveira Littiere 

T, et al. Candidate genes for tick resistance in cattle: a systematic review combining post-

GWAS analyses with sequencing data. J Appl Anim Res 2022;50:460–70. 

https://doi.org/10.1080/09712119.2022.2096035. 

[2] Dadousis C, Pegolo S, Rosa GJM, Gianola D, Bittante G, Cecchinato A. Pathway-based 

genome-wide association analysis of milk coagulation properties, curd firmness, cheese 

yield, and curd nutrient recovery in dairy cattle. J Dairy Sci 2017;100:1223–31. 

https://doi.org/10.3168/jds.2016-11587. 

[3] Srikanth K, Lee S-H, Chung K-Y, Park J-E, Jang G-W, Park M-R, et al. A Gene-Set 

Enrichment and Protein-Protein Interaction Network-Based GWAS with Regulatory SNPs 

Identifies Candidate Genes and Pathways Associated with Carcass Traits in Hanwoo 

Cattle. Genes 2020;11:E316. https://doi.org/10.3390/genes11030316. 

[4] Kopke G, Anklam K, Kulow M, Baker L, Swalve HH, Lopes FB, et al. The identification of 

gene ontologies and candidate genes for digital dermatitis in beef cattle from a genome-

wide association study. Int J Vet Sci Res 2020;6:027–37. 

https://doi.org/10.17352/ijvsr.000050. 

[5] Clancey E, Kiser JN, Moraes JGN, Dalton JC, Spencer TE, Neibergs HL. Genome-wide 

association analysis and gene set enrichment analysis with SNP data identify genes 

associated with 305-day milk yield in Holstein dairy cows. Anim Genet 2019;50:254–8. 

https://doi.org/10.1111/age.12792. 

[6] Hirschhorn JN. Genomewide association studies--illuminating biologic pathways. N Engl 

J Med 2009;360:1699–701. https://doi.org/10.1056/NEJMp0808934. 

[7] Otto PI, Guimarães SEF, Calus MPL, Vandenplas J, Machado MA, Panetto JCC, et al. 

Single-step genome-wide association studies (GWAS) and post-GWAS analyses to 

identify genomic regions and candidate genes for milk yield in Brazilian Girolando cattle. 

J Dairy Sci 2020;103:10347–60. https://doi.org/10.3168/jds.2019-17890. 

[8] Marina H, Pelayo R, Suárez-Vega A, Gutiérrez-Gil B, Esteban-Blanco C, Arranz JJ. 

Genome-wide association studies (GWAS) and post-GWAS analyses for technological 

traits in Assaf and Churra dairy breeds. J Dairy Sci 2021;104:11850–66. 

https://doi.org/10.3168/jds.2021-20510. 

Stellenbosch University https://scholar.sun.ac.za



 

132 
 

 

[9] Adam Y, Samtal C, Brandenburg J, Falola O, Adebiyi E. Performing post-genome-wide 

association study analysis: overview, challenges and recommendations. F1000Research 

2021;10:1002. https://doi.org/10.12688/f1000research.53962.1. 

[10] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene 

lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57. 

https://doi.org/10.1038/nprot.2008.211. 

[11] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the 

comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37:1–13. 

https://doi.org/10.1093/nar/gkn923. 

[12] The DAVID Gene Functional Classification Tool: a novel biological module-centric 

algorithm to functionally analyze large gene lists | Genome Biology | Full Text n.d. 

https://genomebiology.biomedcentral.com/articles/10.1186/gb-2007-8-9-r183 (accessed 

November 13, 2022). 

[13] Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and 

plants. Bioinformatics 2020;36:2628–9. https://doi.org/10.1093/bioinformatics/btz931. 

[14] Otto PI, Guimarães SEF, Verardo LL, Azevedo ALS, Vandenplas J, Soares ACC, et al. 

Genome-wide association studies for tick resistance in Bos taurus × Bos indicus 

crossbred cattle: A deeper look into this intricate mechanism. J Dairy Sci 

2018;101:11020–32. https://doi.org/10.3168/jds.2017-14223. 

[15] Mapholi NO, Maiwashe A, Matika O, Riggio V, Bishop SC, MacNeil MD, et al. Genome-

wide association study of tick resistance in South African Nguni cattle. Ticks Tick-Borne 

Dis 2016;7:487–97. https://doi.org/10.1016/j.ttbdis.2016.02.005. 

[16] Buzanskas ME, Grossi DA, Ventura RV, Schenkel FS, Sargolzaei M, Meirelles SLC, et 

al. Genome-Wide Association for Growth Traits in Canchim Beef Cattle. PLoS ONE 

2014;9:e94802. https://doi.org/10.1371/journal.pone.0094802. 

[17] Du L, Duan X, An B, Chang T, Liang M, Xu L, et al. Genome-Wide Association Study 

Based on Random Regression Model Reveals Candidate Genes Associated with 

Longitudinal Data in Chinese Simmental Beef Cattle. Anim Open Access J MDPI 

2021;11:2524. https://doi.org/10.3390/ani11092524. 

[18] Smith JL, Wilson ML, Nilson SM, Rowan TN, Schnabel RD, Decker JE, et al. Genome-

wide association and genotype by environment interactions for growth traits in U.S. Red 

Angus cattle. BMC Genomics 2022;23:517. https://doi.org/10.1186/s12864-022-08667-6. 

Stellenbosch University https://scholar.sun.ac.za



 

133 
 

 

[19] Ensembl genome browser 108 n.d. https://www.ensembl.org/index.html (accessed 

November 21, 2022). 

[20] ARS-UCD1.2 - bosTau9 - Genome - Assembly - NCBI n.d. 

https://www.ncbi.nlm.nih.gov/assembly/GCF_002263795.1/ (accessed November 21, 

2022). 

[21] DAVID Functional Annotation Bioinformatics Microarray Analysis n.d. 

https://david.ncifcrf.gov/ (accessed November 21, 2022). 

[22] * in UniProtKB search (230496503) | UniProt n.d. 

https://www.uniprot.org/uniprotkb?query=* (accessed November 21, 2022). 

[23] National Center for Biotechnology Information n.d. https://www.ncbi.nlm.nih.gov/ 

(accessed November 21, 2022). 

[24] GeneCards - Human Genes | Gene Database | Gene Search n.d. 

https://www.genecards.org/ (accessed November 21, 2022). 

[25] Animal QTL Database n.d. https://www.animalgenome.org/cgi-bin/QTLdb/index 

(accessed November 21, 2022). 

[26] Xu L, Hou Y, Bickhart DM, Zhou Y, Hay EH abdel, Song J, et al. Population-genetic 

properties of differentiated copy number variations in cattle. Sci Rep 2016;6:23161. 

https://doi.org/10.1038/srep23161. 

[27] Vajana E, Barbato M, Colli L, Milanesi M, Rochat E, Fabrizi E, et al. Combining Landscape 

Genomics and Ecological Modelling to Investigate Local Adaptation of Indigenous 

Ugandan Cattle to East Coast Fever. Front Genet 2018;9:385. 

https://doi.org/10.3389/fgene.2018.00385. 

[28] Zhang M. DETERMINATION OF THE CONSENSUS TARGET SEQUENCES 

RECOGNIZED BY ZNFO, A NOVEL OOCYTE-SPECIFIC ZINC FINGER 

TRANSCRIPTION FACTOR IN CATTLE. MS. West Virginia University Libraries, 2018. 

https://doi.org/10.33915/etd.7286. 

[29] Ganss B, Jheon A. Zinc Finger Transcription Factors in Skeletal Development. Crit Rev 

Oral Biol Med 2004;15:282–97. https://doi.org/10.1177/154411130401500504. 

[30] Sobocińska J, Molenda S, Machnik M, Oleksiewicz U. KRAB-ZFP Transcriptional 

Regulators Acting as Oncogenes and Tumor Suppressors: An Overview. Int J Mol Sci 

2021;22:2212. https://doi.org/10.3390/ijms22042212. 

Stellenbosch University https://scholar.sun.ac.za



 

134 
 

 

[31] Muniz L, Nicolas E, Trouche D. RNA polymerase II speed: a key player in controlling and 

adapting transcriptome composition. EMBO J 2021;40:e105740. 

https://doi.org/10.15252/embj.2020105740. 

[32] Santoni de Sio F. Kruppel-associated box (KRAB) proteins in the adaptive immune 

system. Nucl Austin Tex 2014;5. https://doi.org/10.4161/nucl.28738. 

[33] M. Zhang, H. Baldwin, J. Current, J. Yao. 35 Characterization of the promoter region of 

ZNFO, an oocyte-specific gene in cattle. Reprod Fertil Dev 2021;33:125–125. 

https://doi.org/10.1071/RDv33n2Ab35. 

[34] Beckett L, Xie S, Thimmapuram J, Tucker HA, Donkin SS, Casey T. Mammary 

transcriptome reveals cell maintenance and protein turnover support milk synthesis in 

early-lactation cows. Physiol Genomics 2020;52:435–50. 

https://doi.org/10.1152/physiolgenomics.00046.2020. 

[35] Wen H, Luo H, Yang M, Augustino SMA, Wang D, Mi S, et al. Genetic parameters and 

weighted single-step genome-wide association study for supernumerary teats in Holstein 

cattle. J Dairy Sci 2021;104:11867–77. https://doi.org/10.3168/jds.2020-19943. 

[36] Massa AT, Mousel MR, Durfee CJ, Herndon MK, Hemmerling KM, Taylor JB, et al. A 

DNA Regulatory Element Haplotype at Zinc Finger Genes Is Associated with Host 

Resilience to Small Ruminant Lentivirus in Two Sheep Populations. Animals 

2021;11:1907. https://doi.org/10.3390/ani11071907. 

[37] Drobik-Czwarno W, Wolc A, Fulton JE, Arango J, Jankowski T, O’Sullivan NP, et al. 

Identifying the genetic basis for resistance to avian influenza in commercial egg layer 

chickens. Animal 2018;12:1363–71. https://doi.org/10.1017/S1751731117002889. 

[38] Gupta SK, Rai AK, Kanwar SS, Sharma TR. Comparative Analysis of Zinc Finger Proteins 

Involved in Plant Disease Resistance. PLoS ONE 2012;7:e42578. 

https://doi.org/10.1371/journal.pone.0042578. 

[39] Giri J, Vij S, Dansana PK, Tyagi AK. Rice A20/AN1 zinc-finger containing stress-

associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) 

interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis 

plants. New Phytol 2011;191:721–32. https://doi.org/10.1111/j.1469-8137.2011.03740.x. 

[40] Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EWT, et al. 

The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes 

the transition to germination by regulating light and hormonal signaling during seed 

maturation. Plant Cell 2011;23:1772–94. https://doi.org/10.1105/tpc.111.085134. 

Stellenbosch University https://scholar.sun.ac.za



 

135 
 

 

[41] ZNF746 zinc finger protein 746 [Homo sapiens (human)] - Gene - NCBI n.d. 

https://www.ncbi.nlm.nih.gov/gene/155061#summary (accessed November 27, 2022). 

[42] GIMAP8 - GTPase IMAP family member 8 - Homo sapiens (Human) | UniProtKB | UniProt 

n.d. https://www.uniprot.org/uniprotkb/Q8ND71/entry#function (accessed November 27, 

2022). 

[43] Berg HE, Blackburn PR, Baughn LB, Ketterling RP, Xu X, Greipp PT, et al. Identification 

of a novel KMT2A/GIMAP8 gene fusion in a pediatric patient with acute undifferentiated 

leukemia. Genes Chromosomes Cancer 2021;60:108–11. 

https://doi.org/10.1002/gcc.22902. 

[44] Robbertse L, Richards SA, Maritz-Olivier C. Bovine Immune Factors Underlying Tick 

Resistance: Integration and Future Directions. Front Cell Infect Microbiol 2017;7. 

https://doi.org/10.3389/fcimb.2017.00522. 

[45] RARRES2 retinoic acid receptor responder 2 [Homo sapiens (human)] - Gene - NCBI n.d. 

https://www.ncbi.nlm.nih.gov/gene/5919#summary (accessed November 27, 2022). 

[46] Bondue B, Wittamer V, Parmentier M. Chemerin and its receptors in leukocyte trafficking, 

inflammation and metabolism. Cytokine Growth Factor Rev 2011;22:331–8. 

https://doi.org/10.1016/j.cytogfr.2011.11.004. 

[47] Geering B, Stoeckle C, Rozman S, Oberson K, Benarafa C, Simon H-U. DAPK2 positively 

regulates motility of neutrophils and eosinophils in response to intermediary 

chemoattractants. J Leukoc Biol 2014;95:293–303. https://doi.org/10.1189/jlb.0813462. 

[48] Kemp DH, Bourne A. Boophilus microplus: the effect of histamine on the attachment of 

cattle-tick larvae--studies in vivo and in vitro. Parasitology 1980;80:487–96. 

https://doi.org/10.1017/s0031182000000950. 

[49] Schleger AV, Lincoln DT, McKenna RV, Kemp DH, Roberts JA. Boophilus microplus: 

cellular responses to larval attachment and their relationship to host resistance. Aust J 

Biol Sci 1976;29:499–512. https://doi.org/10.1071/bi9760499. 

[50] Marufu MC, Chimonyo M, Mans BJ, Dzama K. Cutaneous hypersensitivity responses to 

Rhipicephalus tick larval antigens in pre-sensitized cattle. Ticks Tick-Borne Dis 

2013;4:311–6. https://doi.org/10.1016/j.ttbdis.2012.12.001. 

[51] Tabor AE, Ali A, Rehman G, Rocha Garcia G, Zangirolamo AF, Malardo T, et al. Cattle 

Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host 

Responses. Front Cell Infect Microbiol 2017;7. https://doi.org/10.3389/fcimb.2017.00506. 

Stellenbosch University https://scholar.sun.ac.za



 

136 
 

 

[52] TRPM8 transient receptor potential cation channel subfamily M member 8 [Homo sapiens 

(human)] - Gene - NCBI n.d. https://www.ncbi.nlm.nih.gov/gene/79054#summary 

(accessed November 25, 2022). 

[53] MROH2A maestro heat like repeat family member 2A [Homo sapiens (human)] - Gene - 

NCBI n.d. https://www.ncbi.nlm.nih.gov/gene/339766#summary (accessed November 

25, 2022). 

[54] Nejat S, Dehbi M, Thornalley P, Moustaid-Moussa N, Scoggin S, Menikdiwela K. The 

Effect of DNAJB3 Deficiency on Metabolic Dysfunctions in Diet-induced Obese Mice. Curr 

Dev Nutr 2022;6:1078. https://doi.org/10.1093/cdn/nzac070.037. 

[55] Yamashita H, Wang Z, Wang Y, Furuyama T, Kontani Y, Sato Y, et al. Impaired basal 

thermal homeostasis in rats lacking capsaicin-sensitive peripheral small sensory neurons. 

J Biochem (Tokyo) 2008;143:385–93. https://doi.org/10.1093/jb/mvm233. 

[56] Feske S, Wulff H, Skolnik EY. Ion Channels in Innate and Adaptive Immunity. Annu Rev 

Immunol 2015;33:291–353. https://doi.org/10.1146/annurev-immunol-032414-112212. 

[57] Zhang P, Zheng C-B, Chen Z, Liu X-Y. Editorial: The Role of Calcium Channels in Human 

Health and Disease. Front Mol Biosci 2022;9:834108. 

https://doi.org/10.3389/fmolb.2022.834108. 

[58] Paudel S, Sindelar R, Saha M. Calcium Signaling in Vertebrate Development and Its Role 

in Disease. Int J Mol Sci 2018;19:3390. https://doi.org/10.3390/ijms19113390. 

[59] Reimúndez Dubra A, Fernández-Peña C, García G, Fernandez Caloto R, Ordás P, 

Gallego R, et al. Deletion of the Cold Thermoreceptor TRPM8 Increases Heat Loss and 

Food Intake Leading to Reduced Body Temperature and Obesity in Mice. J Neurosci 

2018;38:3002–17. https://doi.org/10.1523/JNEUROSCI.3002-17.2018. 

[60] González-Muñiz R, Bonache MA, Martín-Escura C, Gómez-Monterrey I. Recent Progress 

in TRPM8 Modulation: An Update. Int J Mol Sci 2019;20:2618. 

https://doi.org/10.3390/ijms20112618. 

[61] Tian R, Nanaie HA, Wang X, Zhao M, Wang F, Li H, et al. Genomic adaptation to extreme 

climate conditions in beef cattle as a consequence of cross-breeding progra 2022. 

https://doi.org/10.21203/rs.3.rs-1971517/v1. 

[62] Majhi RK, Saha S, Kumar A, Ghosh A, Swain N, Goswami L, et al. Expression of 

temperature-sensitive ion channel TRPM8 in sperm cells correlates with vertebrate 

evolution. PeerJ 2015;3:e1310. https://doi.org/10.7717/peerj.1310. 

Stellenbosch University https://scholar.sun.ac.za



 

137 
 

 

[63] Reddi AH. Bone morphogenetic proteins and skeletal development: the kidney-bone 

connection. Pediatr Nephrol 2000;14:598–601. https://doi.org/10.1007/s004670000364. 

[64] Trukhachev V, Skripkin V, Kvochko A, Kulichenko A, Kovalev D, Pisarenko S, et al. 

Correlation between gene expression profiles in muscle and live weight in Dzhalginsky 

Merino sheep. Rev Colomb Cienc Pecu 2016;29:188–98. 

https://doi.org/10.17533/udea.rccp.v29n3a04. 

[65] Snyman G, Süllwald S, Olivier W, Visser C. Identification of Genes Targeted in South 

African Merino and Afrino Sheep Populations Under Long-Term Selection for 

Reproduction and Body Weight. 2020. https://doi.org/10.21203/rs.3.rs-128951/v1. 

[66] Nucleoplasm - an overview | ScienceDirect Topics n.d. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-

biology/nucleoplasm (accessed November 25, 2022). 

[67] Nucleus | Definition, Function, Structure, & Facts | Britannica n.d. 

https://www.britannica.com/science/nucleus-biology (accessed November 25, 2022). 

[68] MB myoglobin [Homo sapiens (human)] - Gene - NCBI n.d. 

https://www.ncbi.nlm.nih.gov/gene/4151#summary (accessed November 25, 2022). 

[69] Moore LG, Zamudio S, Zhuang J, Droma T, Shohet RV. Analysis of the Myoglobin Gene 

in Tibetans Living at High Altitude. High Alt Med Biol 2002;3:39–47. 

https://doi.org/10.1089/152702902753639531. 

[70] Cassar-Malek I, Passelaigue F, Bernard C, Léger J, Hocquette J-F. Target genes of 

myostatin loss-of-function in muscles of late bovine fetuses. BMC Genomics 2007;8:63. 

https://doi.org/10.1186/1471-2164-8-63. 

[71] Mortimer SI, Fogarty NM, van der Werf JHJ, Brown DJ, Swan AA, Jacob RH, et al. 

Genetic correlations between meat quality traits and growth and carcass traits in Merino 

sheep1. J Anim Sci 2018;96:3582–98. https://doi.org/10.1093/jas/sky232. 

[72] King DA, Shackelford SD, Kuehn LA, Kemp CM, Rodriguez AB, Thallman RM, et al. 

Contribution of genetic influences to animal-to-animal variation in myoglobin content and 

beef lean color stability1. J Anim Sci 2010;88:1160–7. https://doi.org/10.2527/jas.2009-

2544. 

[73] Cross AJ, King DA, Shackelford SD, Wheeler TL, Nonneman DJ, Keel BN, et al. Genome-

Wide Association of Myoglobin Concentrations in Pork Loins. Meat Muscle Biol 2018;2. 

https://doi.org/10.22175/mmb2017.08.0042. 

Stellenbosch University https://scholar.sun.ac.za



 

138 
 

 

[74] PubChem. UQCRFS1 - ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 

1 (human) n.d. https://pubchem.ncbi.nlm.nih.gov/gene/UQCRFS1/human (accessed 

November 25, 2022). 

[75] Dorji J, MacLeod IM, Chamberlain AJ, Vander Jagt CJ, Ho PN, Khansefid M, et al. 

Mitochondrial protein gene expression and the oxidative phosphorylation pathway 

associated with feed efficiency and energy balance in dairy cattle. J Dairy Sci 

2021;104:575–87. https://doi.org/10.3168/jds.2020-18503. 

[76] Cell Differentiation - an overview | ScienceDirect Topics n.d. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/cell-differentiation 

(accessed November 26, 2022). 

[77] Cell Differentiation - Creative Diagnostics n.d. https://www.creative-diagnostics.com/cell-

differentiation.htm (accessed November 26, 2022). 

[78] Du M, Huang Y, Das AK, Yang Q, Duarte MS, Dodson MV, et al. MEAT SCIENCE AND 

MUSCLE BIOLOGY SYMPOSIUM: Manipulating mesenchymal progenitor cell 

differentiation to optimize performance and carcass value of beef cattle1,2. J Anim Sci 

2013;91:1419–27. https://doi.org/10.2527/jas.2012-5670. 

[79] TMEFF1 transmembrane protein with EGF like and two follistatin like domains 1 [Homo 

sapiens (human)] - Gene - NCBI n.d. https://www.ncbi.nlm.nih.gov/gene/8577#summary 

(accessed November 26, 2022). 

[80] Lo H, Lim Y-W, Xiong Z, Martel N, Ferguson C, Ariotti N, et al. Cavin4 interacts with Bin1 

to promote T-tubule formation and stability in developing skeletal muscle. J Cell Biol 

2021;220. https://doi.org/10.1083/jcb.201905065. 

[81] Leal-Gutiérrez JD, Rezende FM, Elzo MA, Johnson D, Peñagaricano F, Mateescu RG. 

Structural Equation Modeling and Whole-Genome Scans Uncover Chromosome Regions 

and Enriched Pathways for Carcass and Meat Quality in Beef. Front Genet 2018;9:532. 

https://doi.org/10.3389/fgene.2018.00532. 

[82] CAVIN4 caveolae associated protein 4 [Homo sapiens (human)] - Gene - NCBI n.d. 

https://www.ncbi.nlm.nih.gov/gene/347273#summary (accessed November 26, 2022). 

[83] Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ, Lo HP, et al. MURC/Cavin-4 and 

cavin family members form tissue-specific caveolar complexes. J Cell Biol 

2009;185:1259–73. https://doi.org/10.1083/jcb.200903053. 

Stellenbosch University https://scholar.sun.ac.za



 

139 
 

 

[84] Kang H, Zhao D, Xiang H, Li J, Zhao G, Li H. Large-scale transcriptome sequencing in 

broiler chickens to identify candidate genes for breast muscle weight and intramuscular 

fat content. Genet Sel Evol 2021;53:66. https://doi.org/10.1186/s12711-021-00656-9. 

[85] Pan C, Lei Z, Wang S, Wang X, Wei D, Cai X, et al. Genome-wide identification of cyclin-

dependent kinase (CDK) genes affecting adipocyte differentiation in cattle. BMC 

Genomics 2021;22:532. https://doi.org/10.1186/s12864-021-07653-8. 

[86] Ghebremariam MK, Rutten VPMG, Vernooij JCM, Uqbazghi K, Tesfaalem T, Butsuamlak 

T, et al. Prevalence and risk factors of bovine tuberculosis in dairy cattle in Eritrea. BMC 

Vet Res 2016;12:80. https://doi.org/10.1186/s12917-016-0705-9. 

[87] Alfonzo EPM, Barbosa da Silva MVG, dos Santos Daltro D, Stumpf MT, Dalcin VC, Kolling 

G, et al. Relationship between physical attributes and heat stress in dairy cattle from 

different genetic groups. Int J Biometeorol 2016;60:245–53. 

https://doi.org/10.1007/s00484-015-1021-y. 

[88] Maiorano AM, Oliveira MCS, Cyrillo JNSG, Albuquerque LG, Curi RA, Silva J a. I. Genetic 

study of skin thickness and its association with postweaning growth in Nellore cattle: 

estimation of the genetic parameters. Genet Mol Res 2016;15. 

https://doi.org/10.4238/gmr.15017124. 

[89] Hamid: Skin thickness in relation to milk production... - Google Scholar n.d. 

https://scholar.google.com/scholar_lookup?title=Skin%20thickness%20in%20relation%2

0to%20milk%20production%20of%20crossbred%20cows&publication_year=2000&auth

or=M.A.%20Hamid&author=S.M.I.%20Husain&author=M.K.I.%20Khan&author=M.N.%2

0Islam&author=M.A.%20Biswas (accessed November 22, 2022). 

[90] Zhang H, Liu A, Li X, Xu W, Shi R, Luo H, et al. Genetic analysis of skinfold thickness and 

its association with body condition score and milk production traits in Chinese Holstein 

population. J Dairy Sci 2019;102:2347–52. https://doi.org/10.3168/jds.2018-15180. 

[91] Kichaev G, Bhatia G, Loh P-R, Gazal S, Burch K, Freund MK, et al. Leveraging Polygenic 

Functional Enrichment to Improve GWAS Power. Am J Hum Genet 2019;104:65–75. 

https://doi.org/10.1016/j.ajhg.2018.11.008. 

[92] Yeo GSH, Connie Hung C-C, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, et al. A 

de novo mutation affecting human TrkB associated with severe obesity and 

developmental delay. Nat Neurosci 2004;7:1187–9. https://doi.org/10.1038/nn1336. 

[93] Belote RL, Le D, Maynard A, Lang UE, Sinclair A, Planells-Palop V, et al. Single cell 

analysis of human site-specific melanocyte differentiation and the decoding of 

Stellenbosch University https://scholar.sun.ac.za



 

140 
 

 

developmental programs in melanoma 2020:2020.05.25.115287. 

https://doi.org/10.1101/2020.05.25.115287. 

[94] Schleger A, Bean K. The Melanocyte System of Cattle Skin II. Melanotic Melanocytes of 

Epidermis and Dermis. Aust J Biol Sci 1973;26:985. https://doi.org/10.1071/BI9730985. 

[95] Esmaeili-Fard SM, Gholizadeh M, Hafezian SH, Abdollahi-Arpanahi R. Genome-wide 

association study and pathway analysis identify NTRK2 as a novel candidate gene for 

litter size in sheep. PloS One 2021;16:e0244408. 

https://doi.org/10.1371/journal.pone.0244408. 

[96] Benjamin AL, Green BB, Crooker BA, McKay SD, Kerr DE. Differential responsiveness of 

Holstein and Angus dermal fibroblasts to LPS challenge occurs without major differences 

in the methylome. BMC Genomics 2016;17:258. https://doi.org/10.1186/s12864-016-

2565-x. 

[97] Dermal Fibroblast - an overview | ScienceDirect Topics n.d. 

https://www.sciencedirect.com/topics/engineering/dermal-fibroblast (accessed 

November 22, 2022). 

[98] Kwon A-H, Qiu Z, Hirao Y. Topical application of plasma fibronectin in full-thickness skin 

wound healing in rats. Exp Biol Med Maywood NJ 2007;232:935–41. 

[99] Kim MO, Ryu JM, Suh HN, Park SH, Oh Y-M, Lee SH, et al. cAMP Promotes Cell 

Migration Through Cell Junctional Complex Dynamics and Actin Cytoskeleton 

Remodeling: Implications in Skin Wound Healing. Stem Cells Dev 2015;24:2513–24. 

https://doi.org/10.1089/scd.2015.0130. 

[100] Kopecki Z, Yang GN, Arkell RM, Jackson JE, Melville E, Iwata H, et al. Flightless I 

over-expression impairs skin barrier development, function and recovery following skin 

blistering. J Pathol 2014;232:541–52. https://doi.org/10.1002/path.4323. 

[101] Leduc C, Sobilo L, Toumi H, Mondon P, Lespessailles E, Ossant F, et al. TGF-beta-

induced early gene-1 overexpression promotes oxidative stress protection and actin 

cytoskeleton rearrangement in human skin fibroblasts. Biochim Biophys Acta 

2016;1860:1071–8. https://doi.org/10.1016/j.bbagen.2016.02.009. 

[102] McCafferty D-M, Craig AWB, Senis YA, Greer PA. Absence of Fer protein-tyrosine 

kinase exacerbates leukocyte recruitment in response to endotoxin. J Immunol Baltim Md 

1950 2002;168:4930–5. https://doi.org/10.4049/jimmunol.168.10.4930. 

Stellenbosch University https://scholar.sun.ac.za



 

141 
 

 

[103] Niciura SCM, Benavides MV, Okino CH, Ibelli AMG, Minho AP, Esteves SN, et al. 

Genome-Wide Association Study for Haemonchus contortus Resistance in Morada Nova 

Sheep. Pathog Basel Switz 2022;11:939. https://doi.org/10.3390/pathogens11080939. 

[104] Qi W, Ebbert KVJ, Craig AWB, Greer PA, McCafferty D-M. Absence of Fer protein 

tyrosine kinase exacerbates endotoxin induced intestinal epithelial barrier dysfunction in 

vivo. Gut 2005;54:1091–7. https://doi.org/10.1136/gut.2004.061887. 

[105] Foster LA, Fourie PJ, Neser FWC, Fair MD. Differences in physical traits such as coat 

score and hide-thickness together with tick burdens and body condition score in four 

breeds in the Southern Free State n.d.:4. 

[106] Fourie PJ, Foster LA, Neser FWC. Score and hide-thickness, together with tick burden 

and body condition score, in four cattle breeds in the South-eastern Free State province 

of South Africa n.d.;11:8. 

 

 

 

 

Stellenbosch University https://scholar.sun.ac.za



 

142 
 

 

6 CHAPTER 6: 

General conclusions and recommendations 

 

6.1 Exploring genetic variation 

The genetic variation that exists in tick count between and within breeds should be exploited 

to successfully address the challenge of tick infestations. Tick-resistant indigenous breeds, 

such as the Nguni cattle are generally not considered in commercial beef production systems 

due to their poor growth performance and meat attributes. This precludes the incorporation of 

the needed economically important trait of tick resistance into the beef production systems. 

Farmers use chemical acaricides, vaccines, and environmental methods, which have not been 

effective in eradicating ticks. Crossbreeding is a common mating system used to exploit breed 

complementarity that can be used to incorporate tick resistance into beef production systems. 

The South African Agricultural Research Council recently initiated a research program, where 

the tick-tolerant Nguni was crossed with tick-susceptible Angus, which has excellent growth 

and meat characteristics. This project aimed to create a resource population for the discovery 

of genetic markers or causative mutations for tick resistance.  

 

Since this is the first crossbreeding experiment involving these breeds, the potential of 

improving tick count in this crossbred population was explored by determining genetic 

variations for this trait. The artificial infestation was performed successfully using calico bags  

to assess the tick count. It is generally known that enumeration of tick counts is costly,  time 

consuming, and labor-intensive; therefore, there is a need for the development of new 

phenotyping strategies for  assessing tick burdens/loads. The use of calico bags serves as a 

new approach to assessing tick count in cattle. The disadvantage associated with this method 

is related to the longevity of the adhesion.  In this research study, the use of calico bags to 

measure tick count provided a labor-manageable, cost and time-effective approach to 

measure the trait. Therefore, this is a promising method, and further use of this method is 

recommended to explore and improve its effectiveness.  

 

Genetic parameters were initially assessed using pedigree data. The current study showed 

that tick count is moderately heritable, with a heritability estimate of 21%, and this was 

consistent with previous studies. Moreover, the heritability of tick count estimated using an 

animal model fitting kinship matrix showed a genetic variation of 12%. This discrepancy 

indicates the need for the collection of more data since the data used for the current study 

only included 266 animals. The alternative to improve tick count directly is to select a 

correlated trait that affects resistance to ticks. Skin thickness is one of the traits that affect tick 

Stellenbosch University https://scholar.sun.ac.za



 

143 
 

 

count. This is because the skin is the attachment site for tick feeding and its vascular system, 

which is the source of blood for the ticks, varies from one animal to another. In this regard, a 

moderate heritability estimate for skin thickness was obtained. This implies that a response to 

selection may be expected if genetic selection is applied to skin thickness. However, due to 

the limited number of animals, genetic correlations could not be estimated.  

 

Equally important in beef production systems are the growth traits. Thus, genetic variations 

for birth, weaning, and yearling weights were evaluated in the F2 Angus x Nguni population to 

determine the potential of simultaneously improving these traits and tick count. On the other 

hand, all the growth traits studied were moderately heritable. Thus, sufficient genetic variation 

exists for these traits and their improvement through genetic selection is possible. However, 

due to the population size, it was not possible to estimate the genetic correlations to determine 

if selecting growth traits can result in a correlated response in tick count. This would have 

determined if simultaneous selection for growth traits and tick count is possible.  

 

 

6.2 Genetic influence on economic traits 

Genomic technologies have made it possible to identify genes and genomic regions affecting 

a given trait. Genome-wide association analyses were performed for tick count, skin thickness, 

and growth traits. Genomic regions influencing these traits were subsequently identified, 

where two SNPs were identified on chromosomes 4 and 22 for tick count. For skin thickness 

SNPs were found on chromosomes 2, 7, 8, 9, and 12. For birth weight, the SNPs were found 

on chromosomes 3 and 12, while SNPs associated with weaning weight were found on 

chromosomes 5, 8, and 18. One SNP located on chromosome 8 was associated with yearling 

weight. These results show that tick count does not have any common SNPs with the weight 

traits analyzed, which may indicate that there are no common genes.  

 

The absence of common genes between tick count and weight traits may suggest a low 

genetic correlation. This suggests that tick count should be included in the breeding objective 

together with the weight traits to achieve simultaneous improvement of both traits. 

Improvement in tick count or vice versa may thus be expected without adversely affecting the  

growth traits. Although skin thickness has been reported to affect resistance to ticks, results 

from the current study show that there are no common SNPs and genes between tick count 

and skin thickness. This may also indicate a low genetic correlation between these traits, 

suggesting that skin thickness may not be selected with an expectation of a correlated 

response in tick count. It should be noted, however, that the absence of common SNPs and 
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genes does not preclude the interaction of genes located in different chromosomes. The 

interaction of such genes may also result in significant genetic correlations. More reliable 

results may be obtained if a larger population size is used in the analysis. 

 

The F2  population was a suitable design for the study undertaken, however, the small 

population may be the reason significant SNPs were missed because the power of the study 

was reduced. It is generally known that it is not easy to discover significant SNPs for complex 

traits using a small population size. In addition to population size, a single SNP GWAS 

approach was used for the analysis, this approach has the potential to miss SNPs, which 

contributes to the heritability of the trait being studied. Another challenge is that the single-

locus approach is not capable to estimate SNP effects and detect epistatic interactions within 

or between close genes relevant to the expression of the trait. In this context, an integrated 

approach of single-locus GWAS with multi-locus GWAS is recommended. Integration of these 

two approaches may improve the capacity of an association study to detect significant SNPs 

and a better understanding of the genetic architecture of the traits studied. In the current study, 

the integration approach was not conducted; however, it is one of the next steps for our project. 

 

 

6.3 Functional annotation of genes 

Genes control and or influence traits in animals; hence, their expression and ultimately the 

functions they perform to exert their influence are of paramount importance. These genes are 

involved in a variety of pathways that influence certain biochemical activities in an animal. In 

the current study, several genes associated with tick count were identified, which control a 

variety of cellular, molecular, and biological processes. Most of these genes are involved in 

response to stimuli, immune response, and disease resistance. Therefore, these genes can 

be used as potential biomarkers and targets for selection in the improvement programs for 

tick count. Five genes were mapped for skin thickness, which like the genes for ticks, were 

involved in the immunity of the animal. These genes can also be considered in the selection 

to improve tick count. Although there are no common genes between tick count and skin 

thickness, these genes perform common functions.  

 

Genes associated with birth weight control skeletal development and growth. Similarly, genes 

were uncovered for weight-controlled skeletal muscle development and growth. They also 

affected cardiac muscle development and meat colour. For weaning weight, the genes 

uncovered were associated with skeletal muscle and myofibril growth and cell differentiation. 

These results show that growth traits are controlled by genes that perform functions that are 
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different from those that control tick count. Therefore, tick count must be included in breeding 

programs, together with growth traits.  

Initially, DAVID was used for gene set enrichments as a broader tool. However, since this 

bioinformatics platform was purposely developed for humans, we integrated it with ShinyGo, 

which is a recently developed tool for animals and plants. ShinyGo is an intuitive graphical 

tool for gene set enrichment; therefore integrating it with DAVID provided an actionable insight 

into the biological mechanism underlying tick count, growth traits, and skin thickness.  

 

 

6.4 Recommendations for future work 

Heritability estimates obtained from pedigree analysis were characterized by large standard 

errors, which could be due to the sample size used in the current study. Furthermore, if the 

sample size is increased, an animal model may be used instead of a sire model used in this 

study, to yield more accurate genetic parameter estimates. A larger sample size may reveal 

significant SNPs, especially for tick count, which only had SNPs reaching suggestive 

thresholds.  

 

This study used a 150K SNP chip, which only works with predetermined SNPs along the 

genome. A denser chip, such as the 777K SNP chip may be considered for future studies that 

will contain more SNPs than the 150K SNP chip. Furthermore, instead of working with 

predetermined SNPs loaded onto a chip, whole genome sequence data could be used. The 

advantage of whole-genome sequence data is that, in addition to the genes, it can also detect 

single nucleotide variants, insertions/deletions, copy number changes, and large structural 

variants. These are additional genetic determinants that are known to affect tick count. 

 

The SNP chip used in this study was developed using exotic breeds; hence genetic content 

from local South African breeds may not be well represented in these chips. Representation 

of local breeds such as the Nguni in the SNP chip may be advantageous. The absence of 

information on the African breed in current bovine SNP genotyping arrays impedes the 

success of identifying SNPs influencing production and adaptive traits in African breeds. 

Therefore, the establishment of new African breeds' specific SNP genotyping arrays will 

enhance the utility of commercial chips in gene discovery studies. Furthermore, this will 

improve the economic traits breeding criterion. Improved breeding criteria will ensure 

improved animal welfare, food security, and profitability. 
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6.5 Shortfalls of the study 

Nutrition plays an important role in influencing the traits studied. At the age of 12 months, the 

F2 Angus X Nguni cattle were raised at a feedlot for a period of 3 months, however, the nutrition 

data was not factored into the study analyses. Moreover, the trials were conducted in batches, 

represented by different years; this implies that the environmental conditions were not the 

same. This underscored the need to factor in climate data during data analyses. The factoring 

of climate data into the analyses was not possible because the attempt to get hold of climate 

data was not successful. The inclusion of nutrition and climate data during data analyses 

would have improved the findings of the study. In closing, the last trial was conducted during 

the year 2020, from March until the end of June, which was the time during the COVID-19 

pandemic lockdown, this could have affected the handling of the animals since there was a 

shortage of manpower, co-workers were at home because of the government restrictions. 
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List of Annexures 

Annexure 1.1: Clustering of enriched GO for tick count.  

Annotation Cluster 1 Enrichment Score: 3.72  
     

Category Term Genes Count % PValue FE FDR 

INTERPRO IPR006703:AIG1 GIMAP7, GIMAP8 5 25 2.39E-10 438.25 6.46E-09 

UP_SEQ_FEATURE DOMAIN:AIG1-type G GIMAP7, GIMAP8 5 25 3.04E-10 416.3 3.07E-08 

GOTERM_MF_DIRECT GO:0005525~GTP binding GIMAP7, GIMAP8 5 25 4.11E-04 12.84 1.00E-02 

UP_KW_LIGAND KW-0342~GTP-binding GIMAP7, GIMAP8 5 25 0.00 6.77 2.00E-02 

INTERPRO IPR027417:P-loop containing nucleoside triphosphate hydrolase GIMAP7, GIMAP8 5 25 0.01 6.49 3.00E-02 

GOTERM_CC_DIRECT GO:0005829~cytosol ZNF746, GIMAP7, GIMAP8 6 30 0.04 2.85 6.60E-01 

Annotation Cluster 2 Enrichment Score: 3.33  
     

Category Term Genes Count % PValue FE FDR 

INTERPRO IPR022137:Protein of unknown function DUF3669, zinc finger protein ZNF746,ZNF777, ZNF212, ZNF398 4 20 7.56E-09 818.07 1.02E-07 

SMART SM00355:ZnF_C2H2 REPIN1,ZNF746,ZNF777, 

ZNF775,ZNF467,ZNF786, ZNF212, 

ZNF398 

8 40 2.26E-07 12.49 2.71E-06 

INTERPRO 

 

IPR013087:Zinc finger C2H2-type/integrase DNA-binding domain REPIN1, ZNF746, ZNF777, ZNF775, 

ZNF467, ZNF786, ZNF212, ZNF398 

8 40 2.43E-07 15.41 2.18E-06 

GOTERM_BP_DIRECT GO:0006357~regulation of transcription from RNA polymerase II promoter REPIN1, ZNF746, ZNF777, ZNF775, 

ZNF467, ZNF786, ZNF212, ZNF398 

8 40 1.10E-05 7.74 3.85E-04 

INTERPRO IPR001909:Krueppel-associated box ZNF746, ZNF777, ZNF862, ZNF212, 

ZNF398 

5 25 2.49E-05 26.56 1.68E-04 

UP_SEQ_FEATURE DOMAIN:KRAB ZNF746, ZNF777, ZNF862, ZNF212, 

ZNF398 

5 25 2.89E-05 25.79 1.03E-07 

SMART SM00349:KRAB ZNF746, ZNF777, ZNF862, ZNF212, 

ZNF398 

5 25 3.73E-05 21.44 1.28E-07 
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KEGG_PATHWAY bta05168:Herpes simplex virus 1 infection ZNF746, ZNF777, ZNF786, ZNF212, 

ZNF398 

5 25 6.23E-05 15.48 0.00E+00 

UP_SEQ_FEATURE DOMAIN:C2H2-type ZNF777, ZNF775, ZNF467, ZNF786, 

ZNF212, ZNF398 

6 30 9.39E-05 11.6 0.00E+00 

GOTERM_MF_DIRECT GO:0003700~transcription factor activity, sequence-specific DNA binding ZNF746, ZNF467, ZNF212, ZNF398 4 20 0.00 16.6 1.00E-02 

GOTERM_MF_DIRECT GO:0000978~RNA polymerase II core promoter proximal region sequence-specific DNA binding ZNF746, ZNF775, ZNF467, ZNF786, 

ZNF212, ZNF398 

6 30 0.00 5.9 1.00E-02 

UP_KW_DOMAIN 

 

KW-0677~Repeat REPIN1, ZNF746, LRRC61, SSPO, 

ZNF777, ZNF212, PDIA4, ZNF398 

8 40 0.02 2.58 1.20E-01 

UP_KW_DOMAIN KW-0863~Zinc-finger REPIN1, ZNF746, ZNF775, ZNF467, 

ZNF786 

5 25 0.03 4.04 1.20E-01 

GOTERM_MF_DIRECT GO:0046872~metal ion binding REPIN1, ZNF746, ZNF777, ZNF212, 

ZNF398 

5 25 0.06 3.14 1.52E-07 

UP_KW_LIGAND KW-0862~Zinc REPIN1, ZNF746, ZNF777, ZNF775, 

ZNF467, ZNF786, ZNF212, ZNF398 

8 40 0.22 1.44 1.76E-07 

UP_SEQ_FEATURE REGION: Disordered REPIN1, ZNF746, SSPO, ZNF777, 

ZNF775, KRBA1, ZNF467, ZNF786, 

ZNF212, GIMAP8, PDIA4, ZNF398 

12 60 0.37 1.16 1.00E+00 

GOTERM_CC_DIRECT GO:0005634~nucleus ZNF746, ZNF775, ZNF467, ZNF786 4 20 0.53 1.38 1.00E+00 

UP_KW_LIGAND KW-0479~Metal-binding REPIN1, ZNF746, ZNF777, ZNF775, 

ZNF467, ZNF786, ZNF212, ZNF398 

8 40 0.59 1.08 7.40E-01 
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Annexure 1. 2: List of identified genes within the 1 Mb region surrounding the suggestive 

SNPs for growth traits (birth, weaning, and yearling weight), and skin thickness 

Trait BTA position Ensembl ID Nearest 

gene 

Description 

BWT 12 51067836 ENSBTAG00000048557 U6 U6 spliceosomal RNA 

   ENSBTAG00000010693 LMO7 LIM domain 7 

   ENSBTAG00000054578 COMMD6 COMM domain containing 

6 

   ENSBTAG00000008024 UCHL3 Ubiquitin C-terminal 

hydrolase L3 

   ENSBTAG00000032878 Unknown Uncharacterized 

   ENSBTAG00000049325 bta-mir-

2285ab 

bta-mir-2285ab 

 3 113815818 ENSBTAG00000014652 TRPM8 Transient receptor 

potential cation channel 

subfamily M member 8 

   ENSBTAG00000002030 SPP2 Secreted phosphoprotein 2 

   ENSBTAG00000024726 HJURP Holliday junction 

recognition protein 

   ENSBTAG00000017434 MROH2A Maestro heat like repeat 

family member 2A 

   ENSBTAG00000018756 DNAJB3 DNAJ heat shock protein 

family (Hsp40) member B3 

   ENSBTAG0000005483 Unknown Uncharacterized 

   ENSBTAG00000051335 Unknown Uncharacterized 

   ENSBTAG00000043312 Unknown Uncharacterized 

   ENSBTAG00000053153 Unknown Uncharacterized 

 12 84095269 ENSBTAG00000018237 MY016 Myosin XVI 

   ENSBTAG00000002432 ABHD13 Abhydrolase domain 

containing 13 

   ENSBTAG00000011563 TNFS13B TNF superfamily member 

13b 

   ENSBTAG00000015868 LIG4 DNA ligase 4 

WWT 18 840780 ENSBTAG00000046786 UQCRFS1 

 

Ubiquinol-cytochrome c 

reductase, Rieske iron-

sulfur polypeptide 1 

   ENSBTAG00000018244 VSTM2B V-set and transmembrane 

domain containing 2B 
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18 156809 ENSBTAG00000053809 OR4P4 Olfactory receptor family 4 

subfamily P member 4 

 5 73514352 ENSBTAG00000010533 HMGXB4 HMG-box containing 4 

ENSBTAG00000045785 TOM1 The target of myb1 

membrane trafficking 

protein 

ENSBTAG00000015595 MCM5 Minichromosome 

maintenance complex 

component 5 

ENSBTAG00000007674 ISX Intestine specific 

homeobox 

ENSBTAG00000017116 RASD2 RASD family member 2 

ENSBTAG00000005333 MB Myoglobin 

ENSBTAG00000020125 RBFOX2 RNA binding fox-1 

homolog 2 

ENSBTAG00000049066 Unknown Uncharacterized 

YWT 8 90226480 ENSBTAG00000052146 MSANTD3 Myb/SANT DNA binding 

domain containing 3 

ENSBTAG00000021991 TMEFF1 transmembrane protein 

with EGF like and two 

follistatin like domains 1 

ENSBTAG00000021992 CAVIN4 caveolae associated 

protein 4 

ENSBTAG00000015171 CDK20 cyclin dependent kinase 

20 

ENSBTAG00000021235 unknown Uncharacterized 

ENSBTAG00000025756 Unknown Uncharacterized 

ENSBTAG00000054632 Unknown Uncharacterized 

STHICK 8 78145059 ENSBTAG00000010647 NTRK2 Neurotrophic receptor 

tyrosine kinase 2 

7 108006295 ENSBTAG00000045264 bta-mir-

2465 

bta-mir-2465 

ENSBTAG00000051829 Unknown Uncharacterized 

ENSBTAG00000003051 FER FER tyrosine kinase 

ENSBTAG00000021675 PJA2 Praja ring finger ubiquitin 

ligase 2 

BWT- birth weight, WWT- weaning weight, YWT- yearly weight, STHICK- skin thickness, 

BTA – Bos Taurus chromosome 
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