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SUMMARY 
The sensory profiles and the phenolic composition of C. genistoides, C. longifolia, C. maculata and 

C. subternata, used for commercial production of honeybush tea, were determined with the aim to 

develop quality control tools, such as sensory wheels and statistical models to predict the basic 

taste and mouthfeel modalities using compositional data.  Optimum fermentation parameters for C. 

longifolia in terms of aroma and flavour development were determined by investigating eight 

temperature/time regimes (80°C and 90°C for 8, 16, 24 and 32 h), using descriptive sensory 

analysis (DSA).  Fermentation at 80°C/24 h or 90°C/24 h significantly reduced the negative 

sensory attributes present and produced a tea of good sensory quality.  Previously, 80°C/24 h and 

90°/16 h were shown to deliver optimum quality for the other three Cyclopia species.  

A large sample set (N = 150) consisting of C. genistoides, C. maculata and C. subternata, 

harvested during three production years (2010, 2012 and 2013), as well as C. longifolia harvested 

in 2013, was used to develop sensory wheels.  All the samples were produced by fermentation at 

the two optimum fermentation temperature/time regimes of each species.  The plant material was 

sourced from different production regions and plantations to ensure inherent plant variation was 

accommodated.  The “characteristic” and generic sensory profile of honeybush was defined as a 

“fynbos-floral”, “woody”, “fynbos-sweet” aroma and flavour, with a sweet taste and slightly 

astringent mouthfeel.  Species-specific sensory profiles were also identified.  Cyclopia genistoides 

had a strong “rose geranium” flavour and a perceptible bitter taste, whereas C. longifolia had a 

similar sensory profile to that of C. genistoides, however, C. longifolia’s “rose geranium” flavour 

was less prominent and its bitter taste not perceptible.  Cyclopia maculata and C. subternata were 

both described as having “caramel” and other “sweet-associated” notes and a slightly astringent 

mouthfeel.  These results were used to develop a generic sensory wheel for both aroma and 

flavour, as well as similar wheels for each of the four Cyclopia species.  Each sensory wheel 

reflects the relative intensity of the sensory attributes, while prevalence of the major attributes were 

accommodated in accompanying bar graphs. 

Sorting was investigated as a rapid profiling technique to serve as an alternative to the 

standard profiling method, descriptive sensory analysis (DSA).  Instructed sorting was identified as 

a possible rapid sensory profiling tool for the honeybush industry, especially when samples need to 

be classified according to a selected list of sensory attributes.  Uninstructed sorting can be used 

when the aim is to categorise a group of samples freely according to similarities and thus 

determine the natural grouping of samples within a broader sample set.   

The phenolic content of the respective four Cyclopia species differed qualitatively and 

quantitatively.  Of the compounds quantified only four compounds were present in all four species, 

i.e. hesperidin, vicenin-2, mangiferin and isomangiferin.  A larger number of compounds were 

present in three out of four species.  The predictive value of the phenolic compounds towards the 

intensity of the taste and mouthfeel attributes (sweet, sour, bitter and astringent) was investigated 

Stellenbosch University  https://scholar.sun.ac.za



iii 

using Pearson‟s correlation analysis, partial least squares regression (PLS) and step-wise 

regression analysis.  Potential “candidate predictors” for taste and mouthfeel attributes were 

identified such as the xanthones, mangiferin and isomangiferin, being responsible for bitter taste 

and astringency. 
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UITTREKSEL 
Die sensoriese profiel en fenoliese samestelling van C. genistoides, C. longifolia, C. maculata en 

C. subternata, waarvan heuningbostee geproduseer word, is bepaal om gehaltebeheer 

hulpmiddels te ontwikkel soos sensoriese wiele en statistiese modelle wat die fenoliese 

samestelling kan gebruik om die basiese smaak en mondgevoel eienskappe van infusies te 

voorspel.  Die optimum fermentasie parameters vir C. longifolia in terma van aroma- en 

geurontwikkeling is bepaal deur agt temperatuur/tyd kombinasies (80°C en 90°C vir 8, 16, 24 en 

32 h) te ondersoek met behulp van beskrywende sensoriese analise (BSA).  Fermentasie by 

80°C/24 h of 90°C/24 h het „n beduidende afname in die negatiewe sensoriese eienskappe 

veroorsaak en tot die ontwikkeling van tee met ŉ goeie sensoriese kwaliteit gelei.  Die fermentasie 

parameters, 80°C/24 h en 90°/16 h, is voorheen aangedui as die optimale kondisies vir die 

ontwikkeling van „n goeie kwaliteit tee vir die ander drie Cyclopia spesies. 

'n Groot stel monsters (N = 150), bestaande uit C. genistoides, C. maculata en C. 

subternata en ge-oes gedurende drie produksiejare (2010, 2012 en 2013), sowel as C. longifolia 

ge-oes in 2013, is gebruik om die sensoriese wiele te ontwikkel.  Die twee optimum fermentasie 

temperatuur/tyd kombinasies van elke spesie is gebruik om die monsters te produseer.  

Plantmateriaal afkomstig van verskillende produksiegebiede en plantasies is versamel ten einde te 

verseker dat die monsters „n betekenisvolle hoeveelheid inherente variasie dek.  Die generiese en 

"karakteristieke" sensoriese profiel wat met heuningbos geassosieer word, is gedefinieer as 'n 

"fynbos-blomagtige", "houtagtige", "fynbos-soet" aroma en geur, met 'n soet smaak en effense 

vrank mondgevoel.  Spesies-spesifieke sensoriese profiele is ook geïdentifiseer.  Cyclopia 

genistoides het 'n sterk "roos malva" geur en „n merkbare bitter smaak.  Die sensoriese profiel van 

C. longifolia is soortgelyk aan dié van C. genistoides, maar sy "roos malva" geur was minder 

prominent en 'n bitter smaak was nie sensories waarneembaar nie.  Beide C. maculata en C. 

subternata het waarneembare "karamel" en ander "soet-verwante" eienskappe, asook 'n effense 

vrank mondgevoel getoon.  Die volle stel data is uiteindelik gebruik om 'n generiese sensoriese 

wiel vir heuningbostee, asook spesies-spesifieke sensoriese wiele vir elk van die vier Cyclopia 

spesies saam te stel.  Die onderskeie sensoriese wiele weerspieël die relatiewe intensiteit van elk 

van die sensoriese eienskappe, terwyl die voorkoms-frekwensie van die onderskeie sensoriese 

eienskappe in gepaardgaande kolomgrafieke geillustreer is. 

Sortering, 'n vinnige profileringsmetode, is as alternatief tot die standaard 

profileringsmetode, beskrywende sensoriese analise (BSA), ondersoek.  Gestrukteerde sortering is 

geïdentifiseer as 'n moontlike hulpmiddel vir die heuningbosbedryf om die sensoriese profiel van 

heuningbos te bepaal, veral wanneer „n groot aantal monsters vinning geklassifiseer moet word 

volgens 'n lys geselekteerde sensoriese eienskappe.  Ongestrukteerde sortering kan gebruik word 

wanneer die doel is om „n groot aantal monsters vrylik te kategoriseer volgens hul sensoriese 

ooreenkomste of verskille.  
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Die fenoliese saamestelling van die vier Cyclopia spesies het kwalitatief en kwantitatief 

verskil.  Slegs vier van die gekwantifiseerde verbindings was teenwoordig in al vier spesies, 

naamlik hesperidien, visenien-2, mangiferien en isomangiferien.  Meer verbindings was egter 

teenwoordig in drie van die vier spesies.  Die voorspellingswaarde van die fenoliese verbindings tot 

die intensiteit van die smaak en mondgevoel eienskappe (soet, suur, bitter en vrank) is ondersoek 

met behulp van Pearson se korrelasie, gedeeltelike kleinste-kwadrate regressie (PLS) en staps-

gewyse regressie analises.  Potensiële "kandidaat voorspellers" vir die smaak en mondgevoel 

eienskappe, soos die xantone, mangiferien en isomangiferien, verantwoordelik vir 'n bitter smaak 

en vrank mondgevoel, is geïdentifiseer.  
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CHAPTER 1 

INTRODUCTION 
Honeybush tea is produced from the Cyclopia shrub that grows along the coastal and mountainous 

regions of the Eastern and Western Cape provinces of South Africa (Joubert et al., 2011).  There 

are many different Cyclopia species, with more than 20 species described to date (Schutte, 1997).  

Honeybush is a traditional South African herbal tea and was first mentioned in 1705 when it was 

believed to be used for medicinal purposes (Du Toit et al., 1998; Joubert et al., 2011).  Honeybush 

remained a largely unknown product until it was “rediscovered” in the 1990‟s (Joubert et al., 2011).  

The demand for this herbal tea, usually in the so-called “fermented” format, has increased 

substantially over the last decade.  This demand is driven, in part, by consumer awareness of the 

link between diet and disease, thus expanding the market for health-promoting food products.  

Over the past ten years the export of honeybush has grown from 50 to 200 tonnes and currently 

production cannot supply in the demand or sustain further growth of the market (Joubert et al., 

2011).  Commercially, C. subternata, C. genistoides and C. intermedia are the major species, 

however, the focus has recently shifted to include other Cyclopia species such as C. longifolia and 

C. maculata.  With the growing demand, unsustainable harvesting practices are one of the key 

concerns that are threatening wild populations.  Furthermore, expansion of cultivation, identification 

of new land suitable for honeybush cultivation and conservation are pressing issues faced by 

industry (SAHTA, 2011).  Due to this a breeding program has been developed at Infruitec-

Nietvoorbij, one of the research institutes of the Agricultural Research Council of South Africa, to 

improve plant material for cultivation, largely to increase production per hectare (Bester, 2013).   

With an increasing demand, another concern is the issue of honeybush being produced in 

other countries and the fact that such a move could threaten the entire South African honeybush 

industry.  Honeybush has, however, recently been granted Geographical Indication (GI) protection, 

meaning that the name “honeybush” belongs to the South African Honeybush Tea Association 

(SAHTA) and is protected from use elsewhere, unless the product originates from the honeybush 

growing regions within South Africa (Brand-Jonker, 2014; Anon., 2013).  There are a number of 

examples where GI‟s have been introduced in EU countries to protect product names and place of 

origin, e.g. Port in Portugal and Champagne produced in the Champagne region of France (Addor 

& Grazioli, 2002; Van de Kop & Sautier, 2006).  The newly acquired GI status of honeybush will 

hopefully have a large economic impact on the industry, yet, in order to maintain the GI status the 

characteristic sensory profile of honeybush in general and the respective commercially viable 

species in particular need to be described.  South Africa‟s Agricultural Products Standards Act for 

the export of honeybush tea states that honeybush “should have a clean and characteristic taste 

and aroma of honeybush and that it should be free from any foreign flavours and odours which 

detrimentally effect the characteristics of the product” (Anon., 2000).  This description is vague as it 

does not define the characteristic aroma, flavour or mouthfeel of honeybush as such, or any of the 
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Cyclopia species.  In previous research, the different Cyclopia species were shown to have 

different sensory profiles (Theron et al., 2014; Bergh, 2014).  The latter, along with environmental 

conditions and potentially different processing conditions, all lead to a variation in sensory quality.  

The lack of standardised sensory terminology for honeybush per se, as well for the respective 

Cyclopia species, opens the door for targeted research.  In the 1990‟s the overall sensory profile of 

honeybush has been described as being “sweet” and “honey-like”.  Other descriptors such as 

“fruity”, “grassy” and “burnt” were also used (Du Toit & Joubert, 1998; 1999).  Theron et al. (2014) 

recently researched the sensory profile of six Cyclopia species, primarily to determine the 

characteristic sensory profile of honeybush.  The characteristic sensory profile was defined as a 

combination of “floral”, “fruity”, “woody”, “plant-like” and “sweet-associated” aromas with a sweet 

taste and slightly astringent mouthfeel (Theron et al., 2014).  These results were, however, based 

on a limited number of samples sourced during one production season and further research on a 

larger sample set is necessary to validate the latter “characteristic” profile. 

Studies found that the oxidative chemical reaction, known as “fermentation”, is responsible 

for the development of the characteristic aroma and flavour of honeybush (Du Toit & Joubert, 

1999).  Fermentation of honeybush at 70°C for 60 h or 90°C for 36 h produced an acceptable end-

product (Du Toit & Joubert, 1999).  The fermentation conditions currently employed by the industry 

are, however, not standardised, resulting in inconsistent quality.  A recent study has indicated that 

the processing conditions, 80°C/24 h and 90°C/16 h, could be regarded as optimum fermentation 

conditions for C. genistoides, C. maculata and C. subternata (Theron, 2012).  Subtle differences 

were observed in the sensory profiles of each species at 80°C/24 h and 90°C/16 h.  Cyclopia 

genistoides fermented at 80°C/24 h developed a strong “rose geranium” aroma, with this note 

being less prominent at 90°C.  Fermentation of C. maculata at 90°C caused an increase in 

negative sensory attributes; however, a fermentation time of 24 h effectively reduced the intensity 

of the negative sensory attributes.  It was thus recommended that C. maculata should be 

fermented at 80°C for 24 h.  It was also found that C. subternata can be fermented at 80°C/24 h or 

90°C/16 h, depending on whether a “floral” or “apricot jam” note is desired (Theron, 2012).  These 

results indicate that the optimum fermentation parameters are different for each of the Cyclopia 

species tested, yet it still needs to be investigated for other commercially viable Cyclopia species, 

e.g. C. longifolia.   

The lack of quality control tools and a standardised grading system are restricting the 

growth of the South African honeybush industry.  Inconsistency in the quality of honeybush can 

lead to poor acceptance of the product by the market.  Therefore, the development of quality 

control tools, such as a sensory wheel and lexicon for honeybush could aid in the development of 

consistent products.  Internationally, sensory lexicons and sensory wheels are often used in 

industry as quality control tools.  A sensory lexicon consists of a set of terms that describe the 

sensory profile of a product, as well as definitions and reference standards for clarification of the 

respective terms (Drake & Civille, 2002).  Sensory lexicons are regarded as sophisticated tools in 
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sensory research.  It can serve as a powerful, qualitative frame of reference when conducting 

descriptive sensory analysis, but also when determining the broad-based quality of a product 

(Drake & Civille, 2002).  Processors, researchers and industry should use it as tools to monitor 

product quality and product consistency (Lee & Chambers, 2007).  Sensory lexicons have been 

developed for a variety of products, including rooibos (Koch et al., 2012) and honeybush (Theron 

et al., 2014).  A sensory wheel is a simplified graphical representation of the sensory descriptors 

included in sensory lexicons (Noble et al., 1984).  A variety of aroma and flavour wheels have been 

developed for food products such as red wine (Gawel et al., 2000), olive oil (Aparicio & Morales, 

1995) and rooibos tea (Koch et al., 2012; Jolley, 2014).  Theron et al. (2014) developed the first 

generic sensory wheel for honeybush, however, the latter research suggested that it would be 

worthwhile to invest in the development of species-specific sensory wheels.  Species-specific 

wheels could be useful during the blending of Cyclopia species, but also when it is important to 

produce a honeybush product with a specific sensory profile for niche markets. 

Sensory profiling plays a major role in new product development as flavour greatly affects 

the acceptance of a food product by consumers.  Sensory analysis is considered the ultimate 

method to measure flavour quality, as instrumental and chemical measures lack the capability to 

integrate sensory perceptions and the accuracy of human senses (Aparicio et al., 1996).  

Descriptive sensory analysis (DSA) is regarded as a primary tool when analysing the aroma, 

flavour, texture, taste and mouthfeel profile of a food product (Lawless, 1999).  DSA can be used to 

establish the full sensory profile of a product and the DSA data can be combined with other types 

of data, for example instrumental data to determine instrumental quality drivers of sensory quality 

or with consumer preference data to determine sensory quality drivers of consumer preference 

(Lawless & Heymann, 2010).  DSA is a reliable method that results in detailed quantitative and 

qualitative results, but it is sometimes regarded as time-consuming and costly, especially within 

industry.  A DSA panel usually requires extensive training before analysis can start, yet some 

companies just do not have the time or resources to conduct extensive panel training (Cartier et 

al., 2006; Valentin et al., 2012).  Within industry, there is thus a vital need for faster and more cost-

effective sensory profiling methods.  Even though DSA has been used to determine the sensory 

profile of herbal teas such as rooibos (Koch et al., 2012; Jolley, 2014) and honeybush (Theron et 

al., 2014), it could be beneficial for the honeybush industry if a more rapid profiling method were to 

be used to obtain profiling results similar to that of DSA.  There are several rapid profiling methods 

currently available, but the sorting task is regarded as one of the most popular methods, especially 

within industry (Chollet et al., 2011).  Sorting is a quick and easy tool that can provide valuable 

qualitative sensory information (Lelièvre et al., 2008).  The viability of sorting as a rapid profiling 

tool for the honeybush industry should thus be investigated. 

The sensory quality of honeybush is dependent on the aroma, flavour, taste and mouthfeel 

attributes, which in turn is affected by the presence and concentration of volatile (aroma) and non-

volatile (taste and mouthfeel) compounds.  Theron (2012) studied the correlation between specific 
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phenolic compounds and sensory attributes associated with the basic taste modalities and the 

mouthfeel attribute, astringency.  Sweet taste could not be correlated with any specific phenolic 

compounds, but a significant negative correlation was found between sweet taste and the phenolic 

compounds mangiferin and isomangiferin (Theron, 2012).  In the latter study mangiferin, 

isomangiferin and hesperidin was also correlated with the bitter taste and it was postulated that 

mangiferin could be responsible for the bitter taste in honeybush, especially in C. genistoides.  

Mangiferin and isomangiferin were also believed to be responsible for the mouthfeel attribute, 

astringency in honeybush (Theron, 2012).  The latter study proposed that using a larger 

honeybush sample set, thereby incorporating more product variation, might result in more 

information on the role of phenolic compounds in the sweet, sour and bitter taste modalities, as 

well as astringency.  Prediction models are relatively new tools used by the industry to predict the 

quality of a product.  Prediction models take into account certain aspects within the manufacturing 

process and try to determine the role they play in the quality of the end product (Wang & Ruan, 

2009).  Prediction models have been developed for a number of products, such as dry-cured ham 

(Careri et al., 1993), wine (Frank & Kowalski, 1984) and Longjing teas (Wang & Ruan, 2009).  The 

study on Longjing teas formulated a prediction model by correlating the non-volatile compounds, 

volatile compounds and leaf and infusion colours with the sensory scores received from a tasting 

panel (Wang & Ruan, 2009).  The development of a prediction model for honeybush should be 

investigated, primarily to establish the correlation between the taste and mouthfeel attributes and 

phenolic compounds.  A prediction model based on the latter could be a useful quality control tool, 

i.e. to ensure standardisation of product grading within the honeybush industry. 

The aim of this study was therefore to 1) determine the effect of different fermentation 

temperature/time combinations on the sensory profile of C. longifolia in order to identify the 

optimum fermentation conditions, 2) to determine the defining aroma, flavour, taste and mouthfeel 

attributes of C. genistoides, C. subternata, C. maculata and C. longifolia, to validate the generic 

sensory wheel and lexicon for honeybush and to develop species-specific sensory wheels for the 

respective Cyclopia species, 3) to test the viability of sorting as a rapid profiling method to classify 

three honeybush species (C. genistoides, C. maculata and C. subternata) according to their 

sensory profiles and finally 4) to determine the difference in the phenolic content of four Cyclopia 

species and the contribution of individual phenolic compounds to the taste and mouthfeel of 

honeybush infusions, the data of which would be used to develop a sensory-chemical prediction 

model for honeybush.  
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1. INTRODUCTION 

Honeybush tea is a traditional South African herbal tea produced from Cyclopia species (Family: 

Fabaceae; Tribe: Podalyrieae), belonging to the fynbos biome.  To date more than 20 Cyclopia 

species have been described (Schutte, 1995).  These species grow localised throughout the 

fynbos region because of their specific environmental requirements (Joubert et al., 2011).  The 

formal honeybush industry is still very young and faces many challenges.  One of these is that 

current production cannot supply the demand and sustain the growth of the market.  The health-

promoting properties associated with honeybush and the increasing consumption of herbal teas by 

health-conscious consumers have led to a vast increase in demand locally and internationally 

(Joubert et al., 2011).  For this reason commercialisation of more species is under investigation, 

adding to the range of herbal teas that are used in the honeybush blend normally sold to the 

consumer.   

This chapter will give an overview of the history, geographical distribution, industry, 

processing methods, sensory profile and chemical composition of honeybush tea.  The physiology 

of detecting aroma, flavour, taste and mouthfeel will be discussed.  The focus will also fall on the 

analytical methods used for analysing the sensory attributes of a product such as honeybush, 

providing the necessary background to methodology applied in subsequent chapters.   

2. HONEYBUSH INDUSTRY 

 History 2.1

Honeybush has a long history of local use.  The earliest mention was in 1705, when it was most 

likely used for medicinal purposes (Du Toit et al., 1998; Joubert et al., 2011).  In 1808 the genus 

Cyclopia was described taxonomically for the first time by Ventenant (Schutte, 1997).  Known in 

local vernacular as “Heuningtee”, “Bergtee”, “Bush tea”, “Boertee” and “Bossiestee”, it remained a 

largely unknown product outside of the natural habitat areas until the 1990s, when it was 

“rediscovered” (Joubert et al., 2011).  Most enlightening is that honeybush tea is also known as 

“South Africa‟s sweetest tea”.  

The use of species such C. genistoides and C. subternata on the Cape Peninsula and in 

the Caledon/George areas, respectively, was noted by Marloth (1925).  Very little information is 

available on economic activity relating to honeybush prior to its rediscovery.  Honeybush, 

harvested in the Kouga area in the 1930s, was sold for 1½ c per kilogram.  During the war in the 

1940s the price went up to 4½ c per kilogram (Anon., 2013).  In the 1960s the first branded 

honeybush product appeared on the South African market named “Caspa Cyclopia tea”.  It 

remained largely a small cottage industry, until efforts by Dr Hannes de Lange of the South African 

National Botanical Institute (SANBI) to create interest in the product mobilised farmers and the 

Agricultural Research Council, leading to the development of a formal honeybush industry.  The 

growth of the health-promoting food market contributed to the new interest in honeybush and its 

health-promoting properties (Joubert et al., 2011). 
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A present concern is that the increasing demand for honeybush could lead to its production 

in other countries, which will threaten the South African honeybush industry.  Some protection is 

afforded by recent acceptance of a geographical indication (GI) for honeybush, which will protect 

the name “honeybush” and “heuningbos”, after almost a decade of negotiations with the European 

Union (EU) (Brand-Jonker, 2014).  GI indicates that a product is produced in a certain place, which 

contributes to the characteristics of the product.  GI differs from a trademark, as enterprises use 

trademarks to distinguish their products or services from others (Table 1) (Addor & Grazioli, 2002; 

Van de Kop & Sautier, 2006). 

 

Table 1 Comparison of protected geographical indications and trademarks (Addor & Grazioli, 
2002). 

Criteria Protected Geographical Indication* Trademarks 

Owner of right Ownership by state on behalf of all 
producers in area 

One private producer unless 
explicitly registered otherwise 

Applicant(s) Professional group or association One private producer 

User(s) Any producer in the area who respects 
the common production rules 

One private producer 

Registration National ministry, then European 
Union 

National trademark bureau 

Administration and 
control 

Shared by public and private bodies Exclusively by the right holder 

Duration No limitation 10 years 

Transferability Cannot be sold or licensed Can be sold or licensed 

*According to EU Regulation 2081/92 

 Botanical description and geographical distribution  2.2

Cyclopia species are woody shrubs with yellowish to brown twigs, hard-shelled seeds and yellow 

flowers.  They have a low leaf-to-stem ratio and the leaves are trifoliate.  The leaf form ranges 

between species from narrow, pin-like leaves to flattened leaves (Du Toit et al., 1998).  For the 

purpose of this study the focus will be on C. genistoides, C. intermedia, C. maculata, C. subternata 

and C. longifolia (Fig. 1).  They are divided into two categories according to their survival 

strategies, i.e. sprouters and non-sprouters (re-seeders).  Sprouters, such as C. intermedia and C. 

genistoides, produce new coppice shoots after a fire, while non-sprouters such as C. maculata and 

C. subternata re-establish after fire through seedlings (Joubert et al., 2011).  The species, C. 

longifolia, has not yet been well characterised and it seems that some plants are able to re-sprout, 

while others are re-seeders.  Re-seeders tend to develop thick, rough stems, but if they are 

harvested regularly their stems are thinner (SAHTA, 2012). 

Cyclopia species belongs to the fynbos biome as part of the Cape Floristic Region (CFR). 

They grow along the coastal and mountainous regions of the Western and Eastern Cape provinces 

(Du Toit et al., 1998; Turpie et al., 2003).  The CFR contain 8 700 plant species and more than half 

are indigenous to the area.  Sour figs and honeybush tea are the most important foods of the 

fynbos products harvested in this region.  The wild harvest of fynbos products is decreasing, 
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following the same trend as rooibos tea, which is no longer harvested in the wild (Turpie et al., 

2003).  Certain Cyclopia species occur only within a small area, while others are widespread (Fig. 

2).  Most of the bushes grow along the shady and cool southern slopes of the mountain.  Cyclopia 

genistoides is found along the sandy and flat coastal areas and C. maculata, C. subternata and C. 

longifolia are mostly found in wet areas and near water (Joubert et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 

Fig. 2 a) Natural distribution of honeybush species and b) distribution of nurseries and processors 
(Joubert et al., 2011). 

a) b) c) d) 

Fig. 1 Leaves of different Cyclopia species a) C. genistoides, b) C. intermedia, c) C. maculata, d) C. 
subternata and e) C. longifolia. 

e) 
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 Industry 2.3

The honeybush industry was originally a cottage industry and it was only used locally.  The tea was 

harvested from the wild and varied in quality.  In 1999 the South African Honeybush Tea 

Association (SAHTA) was established and this launched the organised honeybush industry.  While 

cultivation trials sparked the renewed interest in honeybush, sustainable harvesting from the wild 

remains a priority for SAHTA (Joubert et al., 2011) as the bulk of the harvest still comes from the 

wild (more than 75%) in the Langkloof area.  At present there are ten honeybush growers, of which 

seven are commercial and the other three are community-based (SAHTA, 2011).  

The present market for honeybush is driven in part by consumer awareness of the link 

between diet and disease, hence the market for products with health-promoting properties.  The 

consumption of herbal tea drinks has increased by 15% in recent years (Bender, 2014) and the 

rising interest in honeybush occurred at the same time as the increase in the demand for health-

promoting food (Joubert et al., 2011).  Phytoestrogen, anti-cancer, antioxidant and anti-mutagenic 

(Joubert et al., 2008a; Joubert et al., 2011), anti-obesity (Dudhia et al., 2013; Pheiffer et al., 2013) 

and anti-diabetic properties (Muller et al., 2011; Chellan et al., 2014) have received attention to 

date.  The export of honeybush has grown tremendously, from 50 to 200 tonnes, over the past ten 

years (Fig. 3) and the global demand is greater than the supply at this time.  The availability of 

plant material was limited in 2009 - 2011 as a result of drought and veld fires (Joubert et al., 2011).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Honeybush is exported to many countries and the market composition changes every year; 

however, Germany, the Netherlands, the United States of America (USA) and the United Kingdom 

(UK) have been the major importers since 2008.  The bulk of honeybush tea exported in 2010 went 

to Germany and the Netherlands (74%).  In 2012 the major importers were Germany (44%), the 

USA (26%), the Netherlands (13%) and the UK (6%) (Fig. 4).  At least 95% of the honeybush 

Fig. 3 Total exports of honeybush from 2008 to 2012 (ARC, 2013). 
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produced by the industry is sold in bulk form and honeybush has only recently become readily 

available on South African supermarket shelves (Joubert et al., 2011).  Honeybush is primarily sold 

as a herbal tea, but honeybush extracts are used in products such as cosmetics, ready-to-drink 

beverages, sweets and fruit juices (ARC, 2013).  Honeybush differs from black and rooibos tea in 

that it consists of more than one species.  It is seldom sold as a single Cyclopia species, because 

of the small quantities of individual species, and for this reason is often blended with rooibos tea 

(Joubert et al., 2011).  Marketing of honeybush is mainly in the hands of the major rooibos 

marketing companies as it adds to their product range.   

The growing demand is threatening wild populations as a result of unsustainable harvesting 

practices.  A breeding programme is in place to improve plant material for cultivation, largely to 

increase production per hectare (Bester, 2013).  Expansion of cultivation, identification of new land 

suitable for honeybush cultivation and conservation are pressing issues faced by industry (SAHTA, 

2011). 

 

Fig. 4 Top importers of honeybush in 2012 (ARC, 2013). 

 Processing of honeybush 2.4

2.4.1 Harvesting 

Traditionally harvesting was done during the flowering period as the presence of flowers was 

believed to increase the sweet, honey-like flavour of the tea.  Flowers also served to identify the 

plants in the wild.  As the demand for honeybush increased, so the harvesting period was 

extended, thus including periods when flowers are not present.  Du Toit and Joubert (1999) found 

that honeybush without the presence of flowers still delivered a satisfactory product.  
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The harvesting method depends on the species (Fig. 5a).  The shoots of sprouters are cut 

at soil level, stimulating new growth, while non-sprouters should not be cut back too severely to 

prevent dieback (Fig. 5b).  Cyclopia subternata, a non-sprouter, is harvested by cutting 30 to 50 cm 

above the ground.  Harvesting of old bushes tends to give coarse material, mainly because the 

plants have thicker stems.  Coarse material result in slow extraction rates (Du Toit et al., 1998).  

The sprouter, C. intermedia, makes up most of the production of honeybush, as it is harvested in 

the wild and thus provides a ready supply; this species is not favoured for cultivation, mainly 

because it can only be harvested every two to three years after planting and it is thus 

uneconomical to cultivate (ARC, 2013).  Cyclopia genistoides, also a sprouter, is a vigorous grower 

and is harvested annually.  Non-sprouters, under ideal conditions, can be harvested one year after 

planting.  With harvesting the lifespan of plants can be at least ten years for sprouters and seven to 

eight years for non-sprouters (Joubert et al., 2011).  Cyclopia subternata and C. genistoides are 

the main cultivated species.  Cultivation trials with C. maculata and C. longifolia are at present on-

going.  

After harvesting, the honeybush is cut into fine particles with mechanised fodder cutters or 

tobacco cutters.  The tobacco cutters produce smaller particles and a more uniform cut (Du Toit et 

al., 1998).  Du Toit and Joubert (1998b) did research on the pre-treatment of honeybush with water 

prior to fermentation.  They found that the colour development during fermentation is enhanced if 

the finely cut plant material is pre-treated with water.  Hot or cold water can be used, but it is more 

economical to use cold water (Du Toit & Joubert, 1998b).  

 

 

 

 

 

 

 

 

 

 

 

 

  

b) a) 

Fig. 5 Photos of a) harvesting of honeybush tea and b) a dead C. subternata bush. 
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2.4.2 Fermentation 

The term “fermentation” is used in the tea industry to describe the oxidation process.  It originates 

from a time when the changes during processing of black tea (flavour and colour development) 

were attributed to a microbial process.  Traditionally referred to as “sweating”, the same 

terminology was later adopted by the South African herbal tea industry because of the lack of a 

more suitable term (E. Joubert, ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa, June 2013, 

personal communication).  The characteristic “sweet”, “honey-like” flavour and dark-brown colour 

of honeybush develops during fermentation and is thus an essential step in the processing of this 

herbal tea.  The initial research on the fermentation of honeybush was done by Du Toit and 

Joubert (1999) on C. intermedia and C. maculata (ex Du Toitskloof) (later reclassified as C. 

buxifolia) (Joubert et al., 2011).  It was found that the fermentation of honeybush at 70°C for 60 h 

or 90°C for 36 h produced an acceptable end product (Du Toit & Joubert, 1999).  With the 

increasing demand, the focus shifted to include other Cyclopia species such as C. genistoides, C. 

maculata and C. subternata.  A range of fermentation conditions, including 80–85°C/18–24 h is 

currently employed by the industry, irrespective of species.  It was only recently that the 

fermentation parameters of C. genistoides, C. subternata and C. maculata were studied in an 

attempt to define an optimum fermentation temperature-time regime for each (Theron, 2012).  

Fermentation temperatures of 80°C and 90°C for 8, 16, 24 and 32 hours were investigated.  It was 

found that the optimal sensory profile is obtained at a fermentation period of 80°C/24 h or 90°C/16 

h, irrespective of species; however, subtle differences in the sensory profiles obtained for these 

fermentation temperature/time regimes and species were evident.  It was found that C. subternata 

can be fermented at 80°C/24 h or 90°C/16 h, depending on whether a “floral” or “apricot jam” note 

is desired.  Cyclopia genistoides fermented at 80°C/24 h developed a strong “rose geranium” 

aroma, with this note less prominent at 90°C.  Fermentation of C. maculata at 90°C caused an 

increase in negative sensory attributes; however, a fermentation time of 24 h effectively reduces 

the intensity of the negative sensory attributes.  Thus it is recommended that C. maculata be 

fermented at 80°C for 24 h (Theron, 2012).   

2.4.3 Drying 

After fermentation the plant material is dried to a moisture content below 10% to prevent fungal 

growth.  Mechanical or sun-drying is used.  The latter is preferred, because it does not require any 

extra equipment or costs.  Honeybush dried under controlled conditions at elevated temperatures 

has a slightly darker colour than the sun-dried variant.  Du Toit and Joubert (1998a) determined 

that a drying temperature of 50°C gives the best aroma.  The drying time depends on the thickness 

of the layer of plant material and the weather conditions.  It usually takes one to two days to dry 

(Du Toit & Joubert, 1998a).  The quality of sun-dried and artificially dried honeybush did not differ 

significantly. 
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2.4.4 Grading and quality control 

Grading systems are developed to help standardise products and to ensure safe, consistent 

commercial products meeting certain quality criteria.  First the quality parameters and standards of 

the product need to be defined.  In many instances sensory qualities form part of the latter list of 

parameters and standards.  Sensory grading systems are, however, not the same for each product 

as the quality parameters differ between products (Feria-Morales, 2002).  The quality of tea is 

usually measured by trained tasters to ensure overall quality and consistency (Feria-Morales, 

2002; Koch et al., 2012).  The grading of rooibos tea, initiated by the Rooibos Tea Board in 1954 

(Joubert, 1994) in an attempt to increase product quality and consistency, focused only on the cut, 

colour and aroma of the dried tea.  This grading system evolved through the years so that the 

current system, used by the major rooibos processing and marketing company, includes grading of 

infusion aroma, flavour and colour.  Basic grades are A, B or C reflecting strong, medium and poor 

quality characteristics, respectively (Koch, 2011).  

It is important to note that the grading system for rooibos is not standardised and each 

company uses its own system, especially with regard to the range of attributes considered for 

determining the final grade (Koch, 2011).  Many of these same companies also market honeybush 

tea.  It is thus clear that a universal grading system for honeybush has not been a high priority.  

The use of different Cyclopia species further complicates quality control of honeybush as there are 

currently no specified, industry-accepted sensory profiles available for the respective commercial 

species.  Honeybush is typically a very coarse material, but the export markets usually want a finer 

product.  The current South African regulations for exporting honeybush stipulate that honeybush 

may not contain more than 10% of coarse material and if it is packed in retail packaging it may not 

contain more than 1% coarse material.  Coarse material is defined as the quantity of honeybush 

that cannot pass through a 6-gauge mesh sieve (Anon., 2000).  The tea is sieved into different size 

categories after drying and is sold as loose tea or tea bags (Joubert et al., 2011).  The honeybush 

industry would definitely benefit from a grading system that takes into account the aroma and 

flavour of the infusion.  The regulations are very vague and only stipulate that the tea “must have a 

clean and characteristic aroma and taste of honeybush” (Anon., 2000).  They do not define the 

characteristic aroma, flavour or mouthfeel of honeybush per se, or for any of the Cyclopia species. 

The quality control of honeybush, as governed by the export regulations, only includes the 

presence of insects and foreign material, pesticide levels, microbial safety, cut size and moisture 

content (Joubert et al., 2011).  The health benefits, especially the polyphenol content of 

honeybush, are also not addressed in any regulation.  It will definitely benefit the South African 

honeybush industry should specifications for polyphenol content and antioxidant activity be 

available, as well as standardised methods to assess and define sensory quality.  

3. SENSORY PROFILING 

Stone and Sidel (1993) defined sensory evaluation as a scientific discipline used to evoke, 

measure, analyse and interpret reactions to characteristics of foods as they are perceived by the 
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senses of smell, taste, touch, sight and hearing.  The acceptance of a food product by consumers 

is greatly dependent on the flavour of the product.  Instrumental and chemical measures lack the 

ability to integrate sensory perceptions as well as the accuracy of human senses; therefore 

sensory analysis is considered the ultimate method to measure flavour quality (Aparicio et al., 

1996).  The characteristics of the product is analysed by a panel specifically trained to ensure 

reliable and consistent results.  The analysis takes place under controlled conditions to ensure only 

variation within products and only their sensory attributes are determined (Stone & Sidel, 1993). 

Sensory analysis methodologies use well-trained panels to analyse the full range of 

sensory attributes associated with products, primarily to ensure reliable, consistent results (Stone 

& Sidel, 1993).  A number of sensory profiling methodologies are available, e.g. descriptive 

sensory analysis (DSA), as well as registered methods such as Texture Profile Method® (General 

Foods Technical Center, United States), Flavour Profile Method® (Arthur D Little Company, United 

States), Spectrum method® (Sensory Spectrum Inc., United States) and Quantitative Descriptive 

Analysis® (Tragon Corporation, United States) (Meilgaard et al., 1991; Murray et al., 2001; Stone 

et al., 2012).  DSA has been developed as a generic sensory profiling method and is mainly used 

within the research environment (Piggott & Jardine, 1979; Feria-Morales, 2002; Lee et al., 2008).  

The registered sensory profiling methods have been specifically developed for industry; these 

methods are quite costly, thus adding substantially to the general cost of conducting sensory 

profiling (Lawless & Heymann, 2010).   

 Descriptive sensory analysis 3.1

Descriptive sensory analysis (DSA) is regarded as a primary tool when analysing food products for 

the full range of sensory attributes, i.e. aroma, flavour, texture and mouthfeel attributes as 

perceived by the human senses (Lawless, 1999).  In this method of analysis a well-trained panel 

should be used to detect, describe and score the qualitative and quantitative sensory components 

of food products (Murray et al., 2001).  The qualitative component refers to the perceived attribute 

and the quantitative component to the intensity of each attribute (Munoz & Civille, 1998).  DSA is a 

generic methodology used by researchers world-wide and usually consists of the following three 

steps: train the judges in the respective sensory attributes, determine judge reproducibility in 

scoring the respective attributes and, lastly, allow judges to analyse the samples according to the 

accepted protocol (Lawless & Heymann, 2010).  The panel is usually trained beforehand with food-

based or chemical reference standards, primarily to align the sensory perception of each panel 

member with that illustrated by the given attribute (Lawless, 1999).  If the panel is not properly 

trained, they will analyse products based on their own personal frame of reference, and this could 

easily lead to variation between panel members and thus inconsistent results (Munoz & Civille, 

1998).  The capacity to judge intensities of a range of odours in complex mixtures can be difficult 

and exhausting.  To ensure consistent results there should be sufficient resting time in between 

replications and, furthermore, the number of samples to be tested should also be limited to allow 

for the senses to stabilise.   
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One of the main strengths of DSA is that sensory intensity data can be correlated with other 

blocks of data, i.e. sensory data can be correlated with instrumental data to determine instrumental 

quality drivers of sensory quality or with consumer preference data to determine the sensory 

quality drivers of consumer preference (Lawless & Heymann, 2010).  Correlation of data sets, 

using appropriate regression methodologies, are important when the research aim is to determine 

the predictive ability of instrumental or sensory parameters, especially in quality control, product 

matching, product development and sensory-chemical or sensory-preference mapping.    

Panel selection is essential as DSA requires a panel with a reasonable level of sensory 

insight and training.  Prospective candidates perform a variety of tests relevant to the objectives of 

the project and only the ones who perform well are selected.  Some of the factors that should be 

considered when selecting sensory panellists are allergies, health status, smoker status, dietary 

habits, medication, users of specific products or supplements, availability, personality, verbal 

creativity, education, motivation, concentration and previous experience.  The two most important 

factors are motivation and commitment; if the panel member does not have time to attend the 

training and analysis sessions, they should not be selected as part of the panel.  Education does 

not influence the ability to perceive, but it may influence the panellists‟ ability to comprehend and 

carry out the analysis (Murray et al., 2001).   

An accurate and extensive description of the product attributes is generated during the 

training phase of DSA.  The initial generation of vocabulary should focus on the differences 

between the products and not on merely compiling a list of adjectives.  The selection of the final 

attribute list is usually a consensus exercise (Murray et al., 2001).  Sensory analysis could lead to 

a descriptive language of the product characteristics that closely relate to the consumers‟ 

perception (Seppä et al., 2012).  A spin-off of DSA is the development of sensory lexicons, i.e. a 

list of sensory descriptors, definitions and reference standards describing and illustrating the 

respective attributes (Galán-Soldevilla et al., 2005; Lee & Chambers, 2007). 

During DSA the differences within samples might make it more difficult to detect the 

differences between samples.  High variability between each batch, or for example each fruit, 

makes accurate analysis difficult.  This limitation demands appropriate and robust statistical 

designs, as well as appropriate statistical procedures.  Sorting, a rapid sensory profiling method, 

and/or external grading on quality attributes before conducting DSA could possibly speed up the 

profiling stage, but also reduce the variability within batches (Bavay et al., 2013).   

DSA data are usually analysed using analysis of variance to determine significant 

differences between treatment means.  Multivariate techniques are also employed, specifically to 

determine association between attributes and samples, and whether the sensory attributes can act 

as drivers of quality or preference (Lawless & Heymann, 2010; Corollaro et al., 2013). 

 Rapid sensory methods 3.2

Even though DSA is robust enough to provide profiling data that are valid and reliable, this method 

is often regarded as time-consuming and costly, especially within industry.  A DSA panel usually 
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requires extensive training before they can be used as a “calibrated” sensory instrument (Cartier et 

al., 2006; Valentin et al., 2012).  Some companies just do not have the time or resources for DSA.  

Within industry, there is thus a vital need for faster and more cost-effective profiling methods. 

There are several rapid methods available that do not require a trained panel or an 

extensive training phase.  Rapid methods can be categorised into three classes: verbal-based 

methods, similarity-based methods and reference-based methods.  The rapid sensory methods 

that fall under each class are displayed in Fig. 6 (Valentin et al., 2012).  Each method has positive 

and negative aspects that need to be examined before usage and the final choice of method 

depends on the aim and expected results of the study (Delholm et al., 2012). 

 

 

 

 

 

 

 

 

 

The sorting task is regarded as one of the most popular rapid sensory methods, especially in 

industry (Chollet et al., 2011).  It was first used with a food product in 1995, when Lawless et al. 

(1995) used it to create perceptual maps of cheeses.  Since then it has become one of the most 

popular rapid methods, employed for a variety of food products, i.e. beer (Lelièvre et al., 2008), 

white wines (Campo et al., 2008), grape jellies (Tang & Heymann, 2002) and water (Falahee & 

MacRae, 1997) 

Sorting is a quick and easy tool that can provide valuable qualitative sensory information.  

The process does not require any quantitative responses and is based on categorisation, which is 

a natural cognitive process people use every day (Lelièvre et al., 2008).  It allows a reasonable 

perspective of a set of stimuli to be obtained with inexperienced subjects (Faye et al., 2004).  The 

panel member receives all the samples at the same time and is asked to form coherent and 

homogenous groups according to sample similarities (Chollet et al., 2011).  This method produces 

little fatigue and boredom, and minimum training is necessary (Cartier et al., 2006).  The sorting 

task can be followed by a description step, where the panellist is asked to assign descriptive 

attributes to each group (Chollet et al., 2011).  A perceptual map can be generated when sorting is 

combined with a description step (Cartier et al., 2006).  A problem that often occurs during this step 

is that assessors use quantitative terms, for example „very‟, „slightly‟, „more‟ and „many‟, which 

makes data interpretation difficult (Valentin et al., 2012).  The description leads to a better 

1. Verbal-
based method 

Flash profile 
(FP) 

'check-all-
that-apply' 

(CATA) 

2. Similarity-
based method 

Free sorting 

Projective 
mapping, 
Napping 

3. Reference-
based method 

Polarised 
sensory 

positioning 

Pivot profile 

Fig. 6 Rapid sensory methods categorised into three groups (Valentin et al., 2012).  
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understanding of the global similarities and dissimilarities between products; however, if a better 

understanding of the sensory characteristics of individual samples is required, an additional step is 

necessary when each group of samples should be described with one or more descriptive sensory 

terms (Campo et al., 2008). 

Sorting data can be analysed using multidimensional scaling (MDS) (Fig. 7a), DISTATIS (Fig 

7b) and correspondence analysis (CA) (Fig. 8) (Chollet et al., 2011).  The former two 

methodologies are used when analysing sorting data, whereas CA is used when sorting is 

conducted using the additional descriptive step (Beh et al., 2011).  MDS draws a spatial map to 

show the similarity of samples, where the samples are represented by points (Chollet et al., 2011).  

The frequency of those samples being grouped together during the sorting task is calculated to 

measure similarity (Tang & Heymann, 2002).  DISTATIS combines MDS with STATIS, which is a 

multivariate statistical method based on Rv coefficients.  On the DISTATIS plot similarity is also 

represented by the distance between the points, as for MDS (Abdi et al., 2007).  CA evaluates the 

correspondence between the rows, which represents the samples, and the columns, which 

represents the attributes given to the sample (McEwan & Schlich, 1991/1992).  Sorting was used 

by Hanekom (2012) to group 15 wines according to their sensory attributes.  The groups formed 

are displayed on the MDS (Fig. 7a) and DISTATIS (Fig. 7b) plots.  A CA plot shows the 

relationship between the wines and the descriptors assigned to each group by the individual judges 

(Fig. 8).  From the CA plot (Fig. 8) it can be seen that wines 8, 13, 15 and 24 associate with fresh 

fruit and floral aroma attributes and wines 8 and 13 are more closely associated with the fresh 

fruity aroma (Hanekom, 2012). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Fig. 7 Example of a) an MDS and b) a DISTATIS plot obtained from sorting of 15 wines (Hanekom, 
2012). 
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 Sensory profile of honeybush species 3.3

Previously, the broad-based sensory terms “sweet” and “honey-like” (Du Toit & Joubert, 1999), as 

well as “characteristic honeybush” (Cronje, 2010) have been used to describe the overall sensory 

profile of honeybush.  A few other terms such as “flowery”, “fruity”, “fermented”, “under-fermented”, 

“over-fermented” and “burnt” have also been used by Du Toit and Joubert (1999) to describe the 

sensory quality of the honeybush during the optimisation of the fermentation parameters.  A more 

detailed, summarised version of the characteristic sensory profile of honeybush was not developed 

until 2012 when Theron (2012) analysed several samples of a number of Cyclopia species by DSA 

to characterise the generic sensory profile of honeybush.  Fifty-eight honeybush samples 

comprising six Cyclopia species, i.e. C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. 

subternata and C. maculata, were used for the sensory profiling.  The full range of sensory 

attributes used in this research included 28 aroma, 23 flavour, 3 taste and one mouthfeel attribute, 

including both positive and negative attributes (Fig. 9). Negative attributes were included as the 

intention was the development of a sensory wheel, suitable for quality control purposes.  From 

these results the “characteristic” sensory profile of honeybush was defined as  “floral”, “sweet-

associated”, “fruity”, “plant-like” and “woody” aroma with a sweet taste and a slight astringent 

mouthfeel (Theron et al., 2014).  There were, however, specific sensory differences between the 

respective Cyclopia species.  After the full dataset was subjected to discriminant analysis, a 

statistical classification method, it was clear that the respective species split into three groups 

according to similarity of sensory attributes (Table 2; Theron et al., 2014). 

 
 

Table 2 Attributes associating with each group of Cyclopia species (Theron et al., 2014). 

Groups Associating attributes 

Cyclopia genistoides, C. sessiliflora & C. intermedia “Fynbos-sweet”, “fynbos-floral”, “lemon”, “plant-like”, 
bitter, sour and astringent. 

Cyclopia longifolia & C. subternata  “Apricot jam”, “rose geranium”, “fruity-sweet”, 
“rose/perfume” and sweet taste. 

Cyclopia maculata “Boiled syrup”, “cassia/cinnamon”, “walnut”, 
“coconut” and “cooked apple”. 

Fig. 8 CA plot obtained from sorting of 15 wines with a descriptive step (Hanekom, 2012). 
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Fig. 9 a) PCA loadings plot showing the positioning of both positive and negative sensory attributes.  The letters “A”, “F” and “T” in front of the 
attributes refer to aroma, flavour and taste attributes, respectively. Cassia = Cassia/cinnamon, Rotting = Rotting plant water, Hay = 
Hay/dried grass, Cookedveg = Cooked vegetable.  b) PCA scores plot showing the positioning of the 58 honeybush tea samples.  The 
abbreviations Ses, Lon, Gen, t, Sub and Mac in the scores plot refer to the specific Cyclopia species; C. sessiliflora, C. longifolia, C. 
genistoides, C. intermedia, C. subternata and C. maculata, respectively (Theron, 2012). 
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4. CHEMICAL COMPOSITION OF HONEYBUSH 

Volatile compounds are detected by the sense of smell and non-volatile compounds by taste (Dutta 

et al., 2003).  The flavour of a product is influenced by both the volatile and non-volatile 

compounds present (Dutta et al., 2003).  The following sections summarise the current knowledge 

of the non-volatile and volatile composition of honeybush. 

 Non-volatile compounds 4.1

Honeybush is low in tannin content and is regarded as caffeine free (Joubert et al., 2008a).  The 

focus to date has been on its polyphenol constituents as, generally, many pharmacological and 

therapeutic effects are attributed to this class of phytochemicals (Masibo & He, 2008; Fraga et al., 

2010; Vauzour et al., 2010).  Similarly, the health-promoting properties of honeybush have been 

linked to its phenolic compounds (Joubert et al., 2008a).  To date studies on the phenolic 

composition of Cyclopia species were done on C. intermedia (Ferreira et al., 1998; Kamara et al., 

2003) and C. subternata (Kamara et al., 2004; De Beer et al., 2012; Kokotkiewicz et al., 2012), C. 

maculata (Schulze, 2013) and C. genistoides (Kokotkiewicz et al., 2013; Beelders et al., 2014).  

The xanthones, mangiferin and isomangiferin, the flavanone, hesperidin, and the benzophenone, 

iriflophenone-3-C-glucoside, are some of major compounds present in all Cyclopia species 

analysed (Fig. 10).  A number of other compounds have been identified such as flavanones 

(hesperetin, naringenin, eriodictyol, eriocitrin, naringenin-5-O-β-D-glucopyranoside and eriodictyol-

5-O-β-D-glucopyranoside), flavones (luteolin, diosmetin, isosakuranetin, 5-deoxyluteolin and 

scolymoside), isoflavones (afrormosin, formononetin, wistin, formononetin-diglucoside, calycosin, 

pseudobaptigenin, fujikinetin and orobol), coumestans (sophoracoumestan, medicagol and 

flemmichapparin) and several flavonols (kaempferol glucosides) (De Nysschen et al., 1996; 

Ferreira et al., 1998; Kamara et al., 2003, 2004).  Three new compounds that were previously 

unidentified (De Beer & Joubert, 2010) were characterised for the first time in 2012 as the 

benzophenone derivative, iriflophenone 3-C-β-glucoside, the flavone, isorhoifolin, and the 

dihydrochalcone, phloretin 3′-5′-di-C-β-glucoside (Kokotkiewicz et al., 2012).  Many of these 

compounds would have very low solubility in water.  For this reason recent studies (De Beer et al., 

2012; Schulze, 2013; Beelders et al., 2014) focused on aqueous extracts due to their relevance to 

a cup of tea.  Several new compounds have also been tentatively identified in C. subternata, 

namely iriflophenone-di-O,C-hexoside, (R)- and (S)-eriodictyol-di-C-hexoside, vicenin-2 and 3-

hydroxyphloretin-3′,5′-di-C-hexoside (De Beer et al., 2012).  Beelders et al. (2014) analysing C. 

genistoides, identified two aromatic amino acids, an iriflophenone-di-C-hexoside, one flavone, two 

tetrahydroxyxanthone-C-hexoside isomers, a maclurin-di-O,C-hexoside, a tetrahydroxyxanthone-

di-O,C-hexoside, five glycosylated phenolic acid derivatives, two symmetric tetrahydroxyxanthone-

C-hexoside dimers and nine glycosylated flavanone derivatives.  An investigation of C. longifolia is 

currently in progress (A. Schulze, ARC Infruitec-Nietvoorbij, Stellenbosch, South Africa, April 2014, 

personal communication).  Quantitative data for the major phenolic compounds in aqueous 

extracts of various species (Joubert et al., 2008b) are summarised in Fig. 11.  Cyclopia genistoides 
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contribute to variation in composition (Yao et al., 2005).  The geographical area was found to play 

an important role in the chemical composition of plants that have the same genetic make-up 

(Owuor et al., 2008).  Processing introduces extensive changes and formation of new compounds, 

depending on the type of tea manufactured (Tounekti et al., 2013).  

Very little data on factors contributing to variation in the phenolic composition of honeybush 

is available.  Joubert et al. (2003) found quantitative differences in the polyphenolic composition 

between C. genistoides from Overberg and the West Coast regions.  The mangiferin content was 

significantly higher in the Overberg sample and the hesperidin content was less than that of the 

West Coast sample (Joubert et al., 2003).  A study on the effect of harvest date on the 

accumulation of xanthones, hesperidin and iriflophenone-3-C-glucoside in the leaves of C. 

genistoides showed that these compounds, except hesperidin, peaked during summer, while the 

lowest contents were found during early spring.  Hesperidin remained largely unaffected by 

harvested date (Joubert et al., 2014).  In this case another C. genistoides seed source, the 

Kirstenbosch type from the southern part of the Cape Peninsula, was harvested in addition to the 

Overberg and West Coast types.  All the plants were cultivated at the same location in the 

Overberg.  The Overberg type, cultivated in its “natural” habitat, was the least affected of the types 

by harvest date.  Seeds from the Cape Peninsula produced plants with higher responsiveness to 

solar radiation, water availability and temperature.  This resulted in greater seasonal peaks in 

xanthone and benzophenone levels in the leaves of the plants from the Cape Peninsula (Joubert et 

al., 2014). 

Numerous other studies on tea and food products have demonstrated the established 

phenomenon that heat treatment causes a decrease in content of polyphenolic compounds.  

Processing conditions also play a major role in the variation of phenolic concentrations within 

species.  Fermentation was found to decrease the content of most phenolic compounds, especially 

mangiferin and isomangiferin (Joubert et al., 2008b; De Beer & Joubert, 2010).  A study on the pre-

treatment of green honeybush (C. subternata) with steam before drying showed a substantial 

improvement in the retention of colour and phenolic compounds (Joubert et al., 2010).  The soluble 

solids and polyphenolic content of C. maculata (re-classified as C. buxifolia) and C. intermedia 

decreased with fermentation, regardless of the temperature used (Table 3) (Du Toit & Joubert, 

1999).  Table 3 also indicates the difference in phenolic content between C. intermedia and C. 

buxifolia.   

In 2012 Theron (2012) conducted a study on the effect of fermentation on the phenolic 

content of three Cyclopia species (C. genistoides, C. subternata and C. maculata).  The polyphenol 

composition and colour (absorbance) of these species, subjected to two fermentation temperatures 

(80°C and 90°C) for four different time periods (8, 16, 24 and 32 h), were studied.  The 

concentration of the soluble solid, total polyphenol and polyphenolic compounds quantified were 

reduced during fermentation.  The mangiferin and isomangiferin content of C. genistoides 

deceased with fermentation, which might be associated with the decrease in bitter taste.  Particular 
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temperature/time combinations caused less decrease in the phenolic content.  The results were 

not constant between species and a specific temperature/time combination was recommended for 

each species (Theron, 2012).   

Table 3 Effect of fermentation time on soluble solid (SS) content of the infusion and the total 
polyphenol and flavonoid contents of the SS of C. intermedia and C. buxifolia infusions (Du Toit & 
Joubert, 1999). 

 C. intermedia C. buxifolia 

Fermentation 
time (h) 

SS  
(g litre-1) 

TP  
(g kg-1 SS) 

Flavonoids  
(g kg-1 SS) 

SS  
(g litre-1) 

TP  
(g kg-1 SS) 

Flavonoids 
(g kg-1 SS) 

24 4,41a,b 181,92a 149,85a 3,6a 192,47a 162,75a 

36 4,59a 175,11a,b 141,74a 3,89b 179,5b 150,25a 

48 4,48a,b 164,63b 129,57b 3,69a,b 158,56c 126,81b 

60 4,3b 151,17c 113,56c 3,32c 147,48c 112,92b 

72 3,74c 127,03d 87,1d 2,87d 120,68d 85,1c 

a-d
 Means with different letters in a column differ significantly (P>0.05) 

 

In herbal tea infusions non-volatile compounds impact mainly on the basic taste modalities 

(bitter, sour and sweet taste) and the mouthfeel attribute, astringency. The impact of specific 

compounds will be discussed in Section 5. 

 Volatile compounds 4.2

Recent studies on the volatile fraction of honeybush tea showed that processing affects its volatile 

composition (Cronje, 2010; Le Roux et al., 2008).  The volatile fractions of unfermented and 

fermented C. genistoides contained the same compounds, but major quantitative differences were 

observed (Table 4; adapted from Le Roux et al., 2008).  A large number of saturated and 

unsaturated alcohols, aldehydes and methyl ketones are present in the volatile fraction of 

unfermented C. genistoides, whereas terpenoids comprise the major aroma compounds of the 

fermented plant material.  The largest concentration was observed for linalool (36%) (Le Roux et 

al., 2008).  High concentrations of the compounds contributing to the “sweet, honey-like” notes and 

low concentrations of the compounds contributing to the “green” notes are expected to be present 

in a good-quality honeybush (Le Roux et al., 2008).   

Le Roux et al. (2012) used gas chromatography-mass spectrometry (GC-MS) in 

combination with GC-O to identify and characterise the aroma-active compounds and volatiles in 

C. subternata.  Just over 180 compounds were identified in this herbal tea variant, of which the 

majority were terpenoids (56%, N = 103).  Another major group was aldehydes, with the remaining 

compounds consisting of ketones, hydrocarbons, esters, alcohols, lactones, furans, carboxylic 

acids, ethers and one thiazole compound (Le Roux et al., 2012).  Detection frequency (DF) and 

aroma extract dilution analysis (AEDA) were used to identify the odour-active compounds.  Out of 

the 183 compounds identified, 37 were found to be odour-active (FD >2).  The odours of the 

following compounds were identified by the assessors as “typically honeybush-like”:  (6E,8Z)-

megastigma-4,6,8-trien-3-one, (6E,8E)-megastigma-4,6,8-trien-3-one, (7E)-megastigma-5,7,9-4-
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one, epi-α-muurolol, 10-epi-γ-eudesmol and epi-α-cadinol (Le Roux et al., 2012).  Cronje (2010) 

found that the four Cyclopia species were qualitatively very similar; however, quantitatively they 

differed significantly.  In the latter study four Cyclopia species, i.e. C. genistoides, C. intermedia, C. 

longifolia and C. subternata, were compared.  Included were also two samples of both C. 

genistoides and C. subternata originating from different areas.  Table 5 lists the volatile compounds 

associated with the respective honeybush species, as well as samples of the same species 

originating from different areas.  These results explain why different species have slightly different 

aroma profiles.  

It is worth noting that gas-chromatography olfactometry (GC-O), as employed by Le Roux 

et al. (2012), is usually conducted to determine the aroma-active compounds in complex mixtures.  

GC-O allows us to separate, quantify and identify the compounds in aroma fractions.  This is only a 

starting point as the contribution of a volatile compound to “aroma quality” depends not only on the 

fact that it is present or absent, but also on the concentration of the aroma-active compound in 

question.  One should know how the compound is perceived at a given concentration and what the 

perceived intensity would be if the concentration of the compound increased (Delahunty et al., 

2006).  Furthermore, aromas are known to enhance or mask each other (Hattori et al., 2003) and 

compounds with no apparent aroma (non-aroma active) and/or present in sub- and peri-thresholds 

can modify the sensory perception of aroma-active compound, as postulated by Ryan et al. (2008).  

This information has not yet been confirmed for honeybush. 

Table 4 Main volatile compounds identified in fermented and unfermented honeybush, C. 
genistoides, and their odour descriptors (Le Roux et al., 2008). 

Compound  Unfermented  

Area % 

Fermented  

Area % 

Aroma Descriptors  

Hexanal  4.08  1.76  Fatty, green grass  

6-methyl-5-hepten-2-one  54.07  14.17  Oily, green grass, herbaceous  

Limonene  4.60  3.15  Citrus, sweet, orange, lemon  

3,5-octadien-2-one  2.42  0.50  -  

trans-furanoid linalool oxide  0.93  2.29  Sweet-woody, floral-woody-earthy  

cis-furanoid linalool oxide  0.81  1.67  Sweet-woody, floral-woody-earthy  

6-methyl-3,5-heptadien-2-one  1.43  -  Warm spicy cinnamon-like  

Linalool  10.68  35.94  Refreshing, light, clean, floral  

α-terpineol  3.75  17.30  Fragrant, floral, sweet lilac  

β-cyclocitral  1.47  0.25  Minty, fruity, green  

Nerol  0.34  3.49  Sweet, floral  

Geraniol  0.96  10.80  Sweet, floral, rose, fruity  

Geranyl acetone  2.33  0.59  Floral, sweet-rosy, slightly green  

Dihydroactinidiolide  1.02  0.16  Sweet, floral, tobacco  
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Table 5 Relative concentrations (% Area) of the most intense odour-active compounds in different Cyclopia species (Cronje, 2010). 

 

C. genistoides C. intermedia C. longifolia C. subternata 

 

Albertinia Pearly Beach 

  

Bredasdorp Genadendal 

Linalool                                                                 29.38 31.7 28.88 19.67 23.95 17.41 

(E,Z)-2,6-Nonadienal     0.07 0.11 0.12 0.22 0.22 0.17 

(E)-2-Nonenal  0.05 0.07 0.11 0.12 0.13 0.09 

Geraniol 12.43 22.5 13.9 27.61 25.34 5.1 

Component C178  0.37 0.08 0.42 0.09 0.06 0.42 

(E)-β-Damascenone 0.67 1.37 1.04 0.72 0.61 0.5 

(E)-β-Damascone  0.24 0.4 0.74 0.48 0.25 0.45 

2,3-Dehydro-γ-ionone                                        0.04 0.2 0.09 0.3 0.25 0.11 

3,4-Dehydro-β-ionone  0.16 0.04 0.13 0.12 0.1 0.46 

(E)-β-Ionone         1.43 0.84 1.52 2.5 3.06 2.99 

10-epi-γ-Eudesmol                                   0.06 0.02 0.59 0.1 0.12 0.22 

epi-α-Cadinol  0.01 0.078 0.063 0.061 0.061 0.064 

epi-α-Muurolol          0.007 0.045 0.043 0.029 0.034 0.034 
(7E)-Megastigma-5,7,9-trien-4-
one   0.0011 0.0017 <0.001 <0.001 0.0018 0.0014 
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 Interactions between volatile and non-volatile compounds 4.3

Taste and smell can be researched separately in a laboratory situation; however, during 

consumption they are perceived simultaneously and in many cases coupled with tactile sensations 

such as astringency.  This constitutes the overall impression of aroma and taste (also known as 

flavour) as well as mouthfeel (Noble, 1996).  Therefore analysing these sensory dimensions 

separately may not paint a clear picture of the overall flavour and mouthfeel of a product. 

It has also been reported that certain aromas enhance the tasted sweetness of a product, 

while others can suppress it; for example, the sourness of citric acid was suppressed and the 

sweetness of sucrose enhanced when a caramel aroma formed part of the mixture (Stevenson et 

al., 1999).  The basic taste modalities, singularly and in combination, can also influence the overall 

aroma profile of a product; a study found that the fruity aroma was rated higher when analysed in a 

sweet-tasting medium and lower in a less sweet-tasting medium (Buettner & Beauchamp, 2010; 

Noble, 1996).  Scharbert and Hofmann (2005) studied the relationship between aroma and taste in 

black tea by using nose clamps while rating the intensities of certain basic taste and mouthfeel 

qualities.  With the nose clamps on, no aroma notes could be perceived, while the perception of 

astringency, bitterness and sweetness was slightly lower.  This indicates that the perception of 

non-volatile components is different when the olfactory sense is “active” or “inactive” (Scharbert & 

Hofmann, 2005; Sáenz-Navajas et al., 2012). 

Currently, there is a drive to identify and develop flavour-modulating compounds, such as 

bitter-masking or sweet-enhancing compounds.  Quite a number of herbal tea variants can be 

classified as being bitter.  Modulating compounds, known to mask potential bitter tastes, are 

beneficial in the development of new products with bitter challenges, or when it is important to 

understand flavour technology (Reichelt et al., 2010).  This aspect will be discussed in the next 

section.  

5. BASIC TASTE MODALITIES AND ASTRINGENCY AND ROLE OF POLYPHENOLS 

 Physiology of taste and mouthfeel 5.1

The sense of taste is a specialised chemosensory system (Yarmolinsky et al., 2009).  There are 

four basic tastes: sweet, sour, bitter and salty, and some instances “umami” is also classified as a 

basic taste (Chen et al., 2011).  The savoury taste associated with monosodium glutamate (MSG) 

is known as umami (Chen et al., 2011).  Umami and sweet taste are seen as indicators of “good”, 

nutritious food, while bitter and to a certain extent sour tastes can be regarded as negatives when 

tasting food products.  Humans‟ taste perceptions are greatly influenced by expectations, hunger 

and emotions (Yarmolinsky et al., 2009).  The sensation of taste takes place in the taste receptor 

cells (TRCs) by the interaction of the sapid molecules („tastants‟) with receptors and ion channels 

in the apical microvilli.  TRCs are modified epithelial cells and these cells have many neuronal 

markers and properties.  Taste buds are central collections of more or less 100 TRCs that are 

clustered within onion-shaped structures.  The taste buds of the tongue are known as lingual buds 
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and are found within three types of papillae.  These three types of papillae are fungiform, foliate 

and vallate, found at the front, sides and rear of the tongue, respectively (Gilbertson et al., 2000).  

The basic taste modalities are mediated by distinct groups of TRCs and since these are present in 

all areas of the oral cavity, contrary to previous beliefs, there is no topographic map of taste 

receptors on the tongue (Yarmolinsky et al., 2009).  Furthermore, it was also found that receptors 

that detect sweet, bitter and umami taste are not just restricted to the tongue, but are distributed 

throughout the stomach and intestines (Trivedi, 2012). 

 Taste modulation 5.2

Flavour is usually defined as a composite sensation consisting of aroma(s) and one or more of the 

basic tastes.  In some instances the “overall flavour” is defined as a mixture of tastes, aromas and 

mouthfeel attributes (pain and/or astringency) as instigated by aroma compounds, taste 

compounds and trigeminally active compounds, respectively.   

Trigeminal active compounds cause the activation of free nerve endings, mainly 

responsible for pain detection, in the nose and mouth cavity.  Aroma/aroma interactions, 

trigeminal/aroma interactions, aroma/taste interactions, taste/taste interactions and taste/trigeminal 

interactions are therefore different flavour modification types.  It is well known that basic tastes 

influence each other (taste/taste interaction), for example, the suppression of bitterness and the 

reduction of sourness by sweeteners (Ley et al., 2011).  The demand for flavour-modifying 

ingredients is increasing as the need to produce healthier alternatives increases.  Several studies 

have been conducted to try and identify zero-kilojoule sweeteners that are similar to sugar.  

Positive allosteric modulators (PAMs) have been found to enhance sweetness at low 

concentrations while preserving the taste of sucrose (Servant et al., 2011).  Certain flavonoids 

have also been labelled as sweetness enhancers, such as homoeriodictyol and the aglycone of 

hesperidin, hesperetin (Kinghorn et al., 2010).  Homoeriodictyol showed 6% sweetness-enhancing 

activity when present at 100 ppm in a 5% w/v sucrose solution, i.e. apart from its bitterness-

masking properties (Ley et al., 2008).  Eriodictyol has been identified as a bitterness blocker and it 

is known that it does not result in any additional flavours or tastes (Ley et al., 2005).  

5.2.1 Sweet 

It was found that T1R2 and T1R3 function in combination as sweet receptors.  They are part of the 

T1R class of taste-specific GPCRs.  T1R1 and T1R3 receptors respond to umami taste, thus 

suggesting that sweet and umami taste receptors share a subunit (T1R3) (Li et al., 2002).  Three 

different pathways that activate sweet receptors have been identified (Fig. 12d).  Several 

hypothetical models of the ligand binding sites for sweet receptors have been developed.  All of 

these models contain AH-B groups in which the AH group is a hydrogen donor and the B group an 

electro-negative group.  According to this, all sweet-tasting compounds consist of a hydrogen bond 

donor (AH) and a hydrogen bond acceptor (B) separated by a distance of 2.5-4.0 Å (Kinghorn et 

al., 2010).   

Stellenbosch University  https://scholar.sun.ac.za



31 
 

No specific compounds linked to the sweetness of honeybush tea could be identified, 

although a significant negative correlation was found between sweet taste and isomangiferin and 

mangiferin (Theron, 2012).   

5.2.2 Sour 

Organic acids and pH are responsible for sour taste.  Acid-sensitive TRCs are depolarised when 

the sour taste receptor is activated.  This leads to a decrease in the intracellular pH and the 

release of transmitters.  This causes the afferent nerve fibres of the brain cortex to react, leading to 

the sour taste perception (Ramos Da Conceicao Neta et al., 2007).  According to Gilbertson et al. 

(2000), acids permeate the epithelial-type Na+ channel (ENaC) and activate cation (X+) channels 

while inhibiting apical K+ channels (Fig. 12b).   

The correlation between the polyphenolic compounds present in honeybush and sour taste 

was low and it was suggested that this was because small, soluble, inorganic cations are 

responsible for the sour taste in food (Theron, 2012). 

5.2.3 Bitter 

Bitterness is a sensation perceived at the back of the tongue and there are several transduction 

mechanisms identified for individual bitterants; however, there is no model that fits all the bitter 

compounds.  With the exception of caffeine, flavanols are the primary source of bitterness in tea 

(Lesschaeve & Noble, 2005).  Flavon-3-ols and their polymers are known to cause bitterness.  

These compounds are widely distributed, especially in fruits (Peleg et al., 1999).  Phenolic 

compounds are also responsible for bitter taste (Arnold et al., 1980). 

The sensitivity to bitter taste can be inherited.  Phenylthiocarbamide (PTC) and 6-n-

propylthiouracil (PROP) are known to be perceived as tasteless in some individuals and extremely 

bitter in others (Drewnowski & Rock, 1995).  G proteins and G protein-coupled receptors (GPCRs) 

are responsible for bitter transduction.  Taste-2 receptors (T2Rs) have been identified as bitter 

taste receptor (Chandrashekar et al., 2000).  Gustducin heterotrimers are activated by T2Rs when 

they are exposed to bitter compounds.  Phosphodiesterase (PDE) is stimulated by this activated α-

gustducin and hydrolyses cyclic adenosine monophosphate (cAMP).  The β and y subunits help to 

generate inositol triphosphate (IP3) by activating PLCβ2.  IP3 releases Ca2+ from the internal 

stores, which causes the neurotransmitter release (Fig. 12e) (Gilbertson et al., 2000).   

Theron (2012) found that isomangiferin, hesperidin, soluble solid (SS) and total polyphenol 

(TP) contents correlated with bitter taste, while eriocitrin had a negative correlation with bitter taste.  

It was suggested that mangiferin might be responsible for the bitter taste in honeybush (Theron, 

2012). 
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5.2.4 Astringency 

Astringency is usually described as a “dry-mouth” feeling (Arnold et al., 1980).  Astringency is 

known to occur when specific compounds precipitate proteins.  A molecular weight between 500 

and 3000 is required for water-soluble polyphenols to precipitate proteins and tannins with more 

than 3 flavon-3-ol units.  Compounds that have been found to elicit astringency are flavan-3-ol 

monomers, dimers and trimers and hydroxybenzoic acids (Lesschaeve & Noble, 2005).  Molecules 

that are larger in size tend to be more astringent than their smaller counterparts (Peleg et al., 

1999).  However, in some situations this is not the case; for example when flavonoids polymerise 

to tasteless compounds, i.e. during the ripening of fruit, the astringency tends to decrease.  

Furthermore, individuals perceive astringency different, primarily because the salivary flow rate is 

different in each individual.  Individuals with low salivary flow rates experience the intensity of 

astringency more intensely than those with high salivary flow rates (Lesschaeve & Noble, 2005).  It 

is suggested that different pathways are used by distinct astringent compounds to cause 

astringency.  In the literature it is said that astringency is a multidimensional and complex 

sensation that can be influenced by a number of variables such as gustatory sensation and pH.  

Taste qualities such as sweet, sour, salty and bitter have been shown to physiologically and 

physically influence the sensation of astringency.  Some studies done on astringency also included 

the analysis of bitterness (Peleg et al., 1999; Arnold et al., 1980; Lesschaeve & Noble, 2005).  A 

vast number of compounds that elicit astringency are also regarded as bitter tasting.  Even though 

Fig. 12 Transduction mechanism in taste receptor cells (Gilbertson et al., 2000). 
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acids are known to be astringent, the pH still affects the perceived astringency.  In some cases an 

increase in pH caused a decrease in astringency (Bajec & Pickering, 2008).   

PPAG is believed to cause bitterness and astringency in rooibos as it results in a bitter 

taste and a dry mouthfeel (astringency) when dissolved in water.  Koch (2011) found that it 

associated with bitterness in rooibos and the only compound that significantly associated with 

astringency was rutin (Koch, 2011).  Rutin has been described in previous studies as having 

astringent properties (Scharbert et al., 2004).  Theron (2012) found that the xanthones, mangiferin 

and isomangiferin, appeared to influence bitterness and astringency in honeybush.  It was 

suggested that at low concentration the xanthones cause bitterness and at high concentrations 

they are perceived as astringent (Theron, 2012).   

 Role of polyphenols in basic taste modalities, astringency and aroma  5.3

Polyphenol compounds contribute to the taste and mouthfeel of a number of food products, 

amongst others, black tea (Camellia sinensis) (Millin et al., 1969; Scharbert et al., 2004; Scharbert 

& Hofmann, 2005), honeybush (Cyclopia species) (Theron, 2012) and rooibos tea (Aspalathus 

linearis) (Rabe et al., 1994; Koch, 2011).  

The complex chemical composition of tea, alkaloids and polyphenols has a major influence 

on the taste (Chen et al., 2008).  Terpenoids, alkaloids and flavonoids elicit bitter taste, while 

tannins cause astringency (Lesschaeve & Noble, 2005).  There are many variations of bitter 

molecules, but the strongest representatives are from the classes mentioned above: isoalpha acid, 

limonoids (terpenoids), nicotine, quinine, caffeine (alkaloids), neohesperidin and eppigallocatechin 

gallate (flavonoids).  Bitterness has an extremely wide structural range; thus it is unexpected that 

the bitter taste is specific to isomers and similar small molecules.  Minor structural variations can 

alter the threshold or change the taste profile (Ley, 2008).  Belitz and Wieser (1985) found that 

bitter molecules need a hydrophobic moiety and a polar group.  Bitterness prediction in the 

structural class of peptides found that the bitterness of the peptide is higher when the 

hydrophobicity of terminal amino acids of the peptide chain is higher.  It was also found that if the 

peptide has more than three to four amino acid residues, it will be more or less tasteless, except 

for some sweet-tasting proteins such as lysozyme, thaumatin and brazzein (Ley, 2008).  

Epigallocatechin gallate (EGCG) is a catechin that is found in green tea and comprises 60% of the 

total catechins.  Tea catechins are known to be bitter and astringent.  There are a few health 

benefits coupled to EGCG, such as anti-carcinogenic and cardio-protective effects, but the strong 

bitter and astringent taste results in low consumer acceptance.  The use of sweeteners, bitter taste 

receptor blockers and complexation with other compounds has been investigated to lessen 

bitterness (Bohin et al., 2013).  The addition of milk in tea reduces the bitterness and astringency, 

because of the interaction between the milk proteins and the tea catechins (Bohin et al., 2013).  

Rodgers et al. (2006) studied the key structural features of bitter molecules to build a classification 

model.  Substructural features such as highly branched carbon scaffolds and sugar moieties were 

identified in bitter compounds (Rodgers et al., 2006). 
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According to El Gharra (2009), proanthocyanidins, also known as condensed tannins, are 

responsible for the astringent mouthfeel of certain fruits and beverages (apples, grapes, peaches, 

pear, beer, wine and tea) by forming complexes with the salivary proteins.  Simple, volatile phenols 

such as eugonal, vanillin and isoeugonal can contribute to the aroma of products, whereas some of 

the phenols act as aroma precursors (phenol glycosides) by releasing the phenols after hydrolysis, 

giving rise to aroma (Tomás-Barberán & Espín, 2001).   

Limited research has been done on the taste and mouthfeel properties of polyphenolic 

compounds present in Cyclopia species.  It is believed the combination of flavonoids and other 

phenolic compounds are responsible for the unique taste of honeybush.  The only Cyclopia 

polyphenols linked to taste are hesperetin and eriodictyol.  Hesperetin has sweet-enhancing 

properties, while eriodictyol possesses bitter-masking properties (Ley et al., 2005; Ley, 2008; 

Reichelt et al., 2010).  Hesperetin rutinoside (hesperidin) has been reported to be tasteless, while 

the positional isomer hesperetin neohesperidoside (neohesperidin) is perceived as very bitter (Ley, 

2008).   

Theron (2012) studied the polyphenolic content of six Cyclopia species and its relationship 

to the basic tastes and mouthfeel.  The study found a significant correlation between hesperidin 

and bitter taste, although Ley (2008) reported this compound to be tasteless.  A moderate, but 

significant correlation between mangiferin and bitter taste indicates that this xanthone might be 

responsible for the bitter taste in honeybush, especially in species such as C. genistoides and C. 

longifolia (Theron, 2012). 

However, it is difficult to determine whether one compound is responsible for a specific 

taste, primarily because several compounds, in combination, might affect one or more of the taste 

modalities or may act as taste modulators (hesperetin and eriodictyol) (Ley et al., 2005; Ley, 2008; 

Reichelt et al., 2010).  According to Theron (2012) the characteristic, sweet taste of honeybush 

could not be explained by the phenolic composition; thus further identification of the chemical 

composition, as well as its effect on taste is necessary.  

Similar studies have been done on black tea (Millin et al., 1969; Scharbert et al., 2004; 

Scharbert & Hofmann, 2005) and rooibos tea (Rabe et al., 1994; Koch, 2011).  Millin et al. (1969) 

investigated the effect of non-volatile compounds on the taste of black tea and came to the 

following conclusions: the general taste of black tea was not affected by simple monomeric 

phenolic compounds; however, flavonol and flavanol components produced a slight metallic and 

astringent mouthfeel.  According to these researchers, astringency was caused by theaflavin and 

other oxidation products.  More recent studies revealed that several flavan-3-ols can potentially 

affect taste (Scharbert et al., 2004; Scharbert & Hofmann, 2005), i.e. nine flavonol-3-glycosides, 

catechin, eppigallocatechin-3-gallate and caffeine are associated with taste and astringency in 

black tea (Scharbert & Hofmann, 2005).   

Rabe et al. (1994) suggested that asphalathin, a dihydrochalcone, may be responsible for 

the naturally sweet taste of rooibos; however, further research indicated that asphalathin could be 
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associated with bitterness (Koch, 2011).  Quercetin and luteolin were also found to be associated 

with bitterness, while enolphenylpyruvic acid-2-glucoside (PPAG), iso-orientin and quercetin-3-

glucoside associated with sweetness.  When PPAG is dissolved in water, the result is a bitter taste 

and a dry mouthfeel (astringency).  It was found to associate with bitterness and sweetness in 

rooibos.  The only compound that significantly associated with astringency was rutin (Koch, 2011).   

6. STATISTICAL METHODOLOGIES 

 Analysis of DSA data 6.1

Using the correct statistical method for analysing sensory data is extremely important for the 

success of the research, and within the field of sensometrics the individual differences between the 

assessors can often complicate the analysis.  Different assessors will inevitably have different 

perceptions of samples and attributes, as well as a different understanding of the scales used, so 

the model used to analyse the data should take this into account.  The model should be able to 

distinguish between sample-specific and assessor-specific variation (Bro et al., 2008).  The data 

can always be seen as three-way data tables to analyse differences between samples and 

assessors, as well as the correlation structure among attributes.  Assessors, samples and 

attributes represent the three dimensions (Luciano & Næs, 2009).  In sensometrics the objective is 

to study the similarities and differences between samples and assessors, and to analyse the 

correlation structure among the sensory and instrumental attributes. 

Sensory analysis data are often simplified by using the average over the assessors.  This 

reduces the three dimensions to one dimension and can potentially result in the loss of significant 

information about the individual differences among assessors.  The development of three-way 

factor analysis that can analyse all three dimensions simultaneously, such as the parallel factor 

analysis (PARAFAC) and the procrustes rotation methods (Dahl et al., 2008), have been used 

recently to address this loss of panel information.  PARAFAC and principal component analysis 

(PCA) produce similar results, but PARAFAC considers the fact that the assessors are not all 

equal, while PCA assumes there are no significant individual differences between assessors.  Thus 

PARAFAC generates a better picture of the patterns within the data set (Bro et al., 2008).   

Analysis of variance (ANOVA) or multivariate analysis of variance (MANOVA) is also used 

to analyse data gathered from sensory panellists.  ANOVA indicates whether the terms generated 

during training are discriminating and it is used to differentiate between samples.  It also allows the 

panel leader to ensure that there are no significant differences between replicate testing of 

attributes, thus indicating that each attribute is discriminating between treatments (Wolters & 

Allchurch, 1994).  MANOVA looks at all attributes simultaneously, testing the effect the samples 

and/or assessors have on all the attributes.  Generalised procrustes analysis (GPA) is another 

method commonly used, where each assessor slice is treated as a matrix.  This is followed by PCA 

based on a consensus matrix.  GPA is based on the idea of using scaling and rotation to make 

each individual assessor data matrix as similar as possible.  Regular PCA involves the analyses of 

all the individual sensory profiles and then performing an ANOVA on the most significant 
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components (Luciano & Næs, 2009).  PCA reduces the dimensionality of the data while 

maintaining most of the variation in the data set.  This is done by identifying directions (principal 

components) of maximal variation (Ringnér, 2008).   

When variables are classified as dependent or independent, the aim is usually to use the 

independent variable to predict the dependent variable.  In this instance regression analysis, partial 

least squares (PLS), principal component regression or discriminant analysis (DA) can be used.  

Discriminant analysis is often used as a classification technique and might produce different 

patterns than PCA, because PCA simply looks for patterns of correlations, while DA looks for 

discrimination of products relative to the disagreement of people or error (Lawless & Heymann, 

2010).   

There are many different methods available to analyse sensory data, as mentioned above.  

It is thus important to decide on the expected outcome of the experiment before deciding on a 

method.  It is also recommended that more than one method be used as each statistical method 

generates a slightly different picture of the correlations in the data set (Palmer, 1974). 

 Prediction models  6.2

Prediction models are a fairly new tool used by the industry to predict the quality of their product.  

During the production of the product the manufacturer strives to achieve consistent quality every 

time.  Prediction models take into account certain aspects within the manufacturing process and try 

to determine the role they play in the quality of the end product (Wang & Ruan, 2009). 

6.2.1 Development of a prediction model 

Regression analysis is used to build prediction models by relating two data sets to each other.  

Some examples are spectroscopy (this is the use of spectral measurements to predict chemistry), 

product development (using chemistry data and relating it to sensory results), and consumer 

science (using the sensory data to understand consumer preference).  Simple linear regression is 

the use of one variable (x) to predict another (y).  It is often necessary to use more than one x-

variable to predict y.  This requires the use of multiple linear regressions (T. Næs, Nofima, Norway, 

December 2012, personal communication).  External preference mapping (prefmap) is often used 

during product development.  Prefmap models consumer liking using sensory profiles.  The 

problem with this method is its poor model quality.  The poor model quality is a result of the product 

attribute space being inadequate to the preference one (Bougeard & Cardinal, 2014).  Bougeard 

and Cardinal (2014) found a way to enhance the model quality, applying prefmap to external 

attributes as well as to sensory attributes.  The consumer preference (Y) is explained by sensory 

attributes (X1), physiochemical parameters (X2) and packaging description (X3) (Fig. 13).  These 

explanatory variables are organised into meaningful blocks.  This method is called multiblock 

redundancy analysis (Bougeard & Cardinal, 2014). 

  

Stellenbosch University  https://scholar.sun.ac.za



37 
 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2 Prediction models in the industry 

The relationship between information sources of multiple measurements is usually modelled to a 

pre-set path using PLS.  This method describes the connection between variables segregated into 

blocks and gives a predictive model for measurements of observations in the response block.  This 

method was used in a study on wine to predict the individual and overall sensory scores from the 

chemical composition of the wine.  Forty wines from two geographic origins were modelled by 

looking at the relationship between the chemical composition and sensory profile of the wines, as 

well as the role of the geographic origin.  The PLS model provided valuable information about the 

differences in chemical components between the two wine regions, as well as the compounds 

responsible for the good and bad quality of the wines.  The study concluded that chemical data 

contained sufficient information to predict the overall quality, individual sensory parameters and the 

origin of the wines (Frank & Kowalski, 1984). 

A similar study was also done on Italian-type dry-cured hams.  GPA and PLS were used to 

analyse the data and determine the relationship between the chemical and sensory properties 

(Careri et al., 1993). 

A study on Longjing teas correlated the non-volatile compounds, volatile parameters and 

leaf and infusion colours with the sensory scores received from the tasting panel to formulate a 

prediction model (Wang & Ruan, 2009).  Chen et al. (2008) measured the main catechins and 

caffeine in green tea by using HPLC and support vector classification (SVC) pattern recognition to 

predict the quality of green tea.  Previous research indicated a relationship between the main 

catechin contents (catechin index (CI)) and green tea quality.  The five main catechins (EGCG, 

EGC, ECG, EC and C) and caffeine levels were measured simultaneously in the green tea leaves 

by HPLC.  SVC, a chemical pattern recognition tool, was applied to develop an identification 

model.  The results showed that HPLC combined with SVC can be used to identify green tea 

quality levels (Chen et al., 2008).  In another study electronic nose, electronic tongue and sensory 

assessments were done on Sri Lankan teas from different origins to try and distinguish between 
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Fig. 13 Multiblock explanatory data which aims to explain consumer preference (Bougeard & 
Cardinal, 2014). 
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the origins.  The aim was to identify the compounds contributing to the discrimination of tea quality.  

All the data were combined to construct a reliable quality prediction model.  The PLS method was 

used to evaluate the data and found a close correlation between the results obtained from sensory 

analysis and the results from electronic tongue analysis.  This study suggested the use of a large 

data set to produce a reliable and robust model (Kovács et al., 2010). 

7. QUALITY CONTROL TOOLS FOR INDUSTRY 

 Sensory lexicons 7.1

Sensory lexicons are used extensively in research and industry, especially when conducting 

sensory profiling of products.  This tool can be used to describe the aroma, flavour taste and 

mouthfeel of products and consists of the following: 1) a set of sensory descriptors, 2) definitions 

describing each descriptor, and 3) reference standards illustrating the respective attributes.  An 

excerpt of a sensory lexicon set up for apples is shown in Table 6.  The lexicon contains the list of 

attributes with definitions and reference standards corresponding to the scale extremities.  It also 

lists the evaluation procedure (Corollaro et al., 2013). 

The following steps are usually followed to generate a lexicon for a product or product 

range.  Firstly, collect a frame of reference for the product, then generate all possible terms to 

describe the product, thereafter review the terms and then develop the final list of descriptors.  

Several (25 to 100) products in the category are evaluated to collect a wide sample set or frame of 

reference of the product and the aroma, flavour and taste attributes generated become the basis of 

the lexicon (Drake & Civille, 2002).  Each term is defined and the list of terms is reduced by 

removing redundant terms and merging similar terms (Lee & Chambers, 2007).  It is important to 

source a range of treatment samples, primarily to capture a comprehensive range of potential 

characteristics in the product category; this will ensure that the lexicon captures all potential 

product variability (Drake & Civille, 2002).  After the list of attributes has been generated, the terms 

are defined and clarified through reference standards.  Reference standards can be food or non-

food products that illustrate the aroma, flavour or texture of the product (Drake & Civile, 2002).   

Sensory lexicons are regarded as sophisticated tools in sensory research.  They can serve 

as a powerful, qualitative frame of reference when conducting DSA, but also when determining the 

broad-based quality of a product (Drake & Civille, 2002).  Sensory lexicons have been developed 

for a variety of products (Table 7), including a sensory lexicon for rooibos (Koch et al., 2012) and 

honeybush (Theron et al., 2014). 

Sensory lexicons can be useful tools for processors, researchers, the industry and 

consumers (Lee & Chambers, 2007).  They can also assist in the monitoring of products and 

product consistency for quality control as they can assist in describing a product, as well as in 

discriminating between products.  These tools are also very useful during new product 

development and when profiling competitive products (Drake & Civille, 2002). 
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Table 6 Excerpt from an apple sensory lexicon (Corollaro et al., 2013). 

Category Attribute Sensory definition Evaluation procedure Reference 0 Reference 100 

Appearance Green flesh The green tint of flesh 
Note the colour and evaluate 
the green gradation in white 
colour 

Printing of white colour (RGB 
model: red 255; green 255; 
blue 255) 

Printing of green colour 
(RGB model: red 207; green 
253; blue 203) 

Appearance Yellow flesh The yellow tint of flesh 
Note the colour and evaluate 
the yellow gradation in white 
colour 

Printing of white colour (RGB 
model: red 255; green 255; 
blue 255) 

Printing of yellow colour 
(RGB model: red 252; green 
237; blue 150) 

Texture Hardness 
Resistance of the sample to 
the first chews with molars 

Place the sample between the 
molars and press without 
breaking it (1–2 times), 
evaluating the resistance 

Carrot boiled for 12 min Carrot boiled for 4 min 

Texture Crispness 
Sound (pitch/intensity) 
produced by the sample at the 
first bite using the fore teeth 

Place the sample between the 
incisors, break it by a single 
bite and evaluate the sound 

Wet breakfast cereals
a

 Dry breakfast cereals 

Texture Juiciness 
Amount of juice released 
during chewing (first three 
chews) 

Place the sample between the 
molars, chew 3 times quickly 
and create a depression to 
evaluate the amount of 
released juice 

Unripe melon Ripe melon 

Odour Overall odour 
Overall odour sensation 
(perceived by smelling) 

Open the lid of the cup, smell 
and quantify the intensity of all 
perceived odours 

Apple juice
b
 diluted 1:2  Apple juice

b
 as it is  

Flavour Sweet taste Sweet taste sensation 
Evaluate the intensity of sweet 
taste 

Fructose water solution 20 
g/kg 

Fructose water solution 80 
g/kg 

Flavour Bitter taste Bitter taste sensation 
Evaluate the intensity of bitter 
taste 

Caffeine water solution 0.15 
g/kg 

Caffeine water solution 0.6 
g/kg 

a 
50 g breakfast honey balls extruded cereals (Miel Pops Kellogg's) were kept for 24 h at 23°C in a sealed bin together with a cup of 30 mL water. 

b 
100% cloudy apple juice produced by Pfanner Getränke GmbH, Lauterach, Austria.
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Table 7 Examples of sensory lexicons for various food and beverage products. 

General subject Product Authors 

Beverage 

Blueberry juice Bett-Garber & Lea, 2013 

Pomegranate juice Koppel & Chambers, 2010 

Coffee Hayakawa et al., 2010 

White wine Pickering & Demiglio, 2008 

Green tea Lee & Chambers, 2007 

Grain 
Whole-grain rice Bett-Garber et al., 2012 

Bread Elía, 2011 

Fruits and vegetables 

Apples Corollaro et al., 2013 

Mango Suwonsichon et al., 2012 

Fresh leafy greens Talavera-Bianchi et al., 2010 

Tomato Hongsoongnern & Chambers, 2008 

Meat Beef Maughan et al., 2012 

Miscellaneous Honey (floral) Galán-Soldevilla et al., 2005 

 Sensory wheels 7.2

A sensory wheel is a simplified graphical representation of a sensory lexicon.  Sensory wheels can 

be used as a communication tool between industries, marketers and researchers, and there are 

indications that the use of this type of tool has seen great success in industry.  

Sensory wheels usually consist of only aroma, flavour and mouthfeel attributes, or a 

combination of them.  Sensory wheels usually consist of more than one level.  The basic/general 

terms are located near the centre and the specific descriptive terms are located in the outer circle 

(Lawless & Heymann, 2010).  Noble et al. (1984) developed an aroma wheel for wine to assist in 

the communication between winemakers and different members of the wine industry.  

Standardised terminology is very important in industry, for example when a winemaker describes a 

defect in the flavour of the wine, the winemaker and his staff should use the same terminology to 

ensure that the problem is recognised and solved (Noble et al., 1984).  The wine industry 

responded positively to the latter wine aroma wheel, including wine consumers and journalists.  

After the initial development of this wine aroma wheel (Noble et al., 1984), it had to be 

standardised.  The wine aroma wheel and a questionnaire were thus sent out for comments to 

more than 100 members in the USA wine industry.  Their responses and feedback were used to 

standardise the wheel (Noble et al., 1987).   

The above-mentioned examples illustrate that the development of the sensory lexicon and 

wheel is a time-consuming process and requires a wide range of samples so that the full spectrum 

of attributes associated with the product in question is encompassed in the wheel.  It is thus 

important that the samples should cover a wide range of variation, such as different production 

areas, harvesting years and seasonal effects.  This will help in defining as many prospective 

sensory attributes as possible.   
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A variety of flavour and aroma wheels have been developed for food products such as fish 

(Warm et al., 2000), red wine (Gawel et al., 2000), olive oil (Aparicio & Morales, 1995), rooibos tea 

(Koch et al., 2012) and honeybush tea (Theron et al., 2014).   

During the development of the rooibos sensory wheel in 2009 - 2010, 121 descriptive terms 

were generated by a trained panel during training sessions.  The number of terms had to be 

reduced to about 10 or 20.  Similar terms were grouped together and terms that were not used 

regularly were removed.  The 20 flavour attributes and 7 taste and mouthfeel attributes were 

selected from the list based on frequency of quotation during descriptive sensory analysis (DSA).  

A three-tiered wheel was formed using the 27 attributes (Fig. 14) (Koch et al., 2012).  The sensory 

wheel for honeybush (Fig. 15) consists of 28 flavour and 7 taste and mouthfeel attributes.  The 

wheel consists of 10 sectors: floral, fruity, nutty, spicy, sweet, taste and mouthfeel, earthy, 

chemical and vegetative, and the attributes are grouped into two classes, positive and negative 

(Theron et al., 2014).   

The honeybush sensory wheel was developed in 2011–2012 by the ARC in collaboration 

with Stellenbosch University and is used by the industry to help in tea evaluation and to compare 

and evaluate quality.  The development of species-specific sensory wheels is being investigated, 

as the species differ in sensory profile.  This will help to ensure a more consistent product.   

 

  

Fig. 14 Sensory wheel for rooibos tea (Koch et al., 2012). 
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8. CONCLUSIONS 

Honeybush is a traditional herbal tea produced from Cyclopia species.  It grows along the coastal 

and mountainous regions of the Eastern and Western Cape provinces of South Africa.  There are 

more than 20 Cyclopia species.  Not all of the species are used for commercial production.  The 

rising interest in honeybush coincided with the increasing demand for health-promoting food 

worldwide.  Honeybush contains no caffeine and has low tannin content.  It contains numerous 

polyphenolic compounds associated with health-promoting properties.  It was found that the 

different species differ in chemical composition, which may cause a difference in their sensory 

characteristics, which in turn influences the marketing of the product. 

The honeybush industry has the potential to become as successful as the rooibos industry.  

It is important that the descriptors used to describe honeybush are accurate.  The product should 

be consistent and always taste the same.  It is necessary to understand the differences between 

species and the factors that may influence them.  Location, fermentation and environmental 

conditions may all influence the sensory and chemical characteristics of Cyclopia species. 

There is no official grading system for honeybush and the development of a generic flavour 

wheel and species-specific flavour wheels would help aid the development of a grading system.  

The use of flavour wheels is well known in the food industry.  They improve communication 

between the different role players in the production of a product.   

Fig. 15 Sensory wheel for honeybush tea (Theron et al., 2014). 
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The fermentation of honeybush is one of the major factors that influence the sensory and 

phenolic profile of the tea.  The conditions currently employed in industry are not optimum for all 

the Cyclopia species.  The optimum fermentation temperature/time combination for some species 

has been determined in previous studies, but species such as C. longifolia need to be studied to 

determine the optimum temperature/time combination.  

The development of a prediction model for honeybush will also benefit the industry.  This 

will assist in predicting the sensory characteristics of the product by looking at other variables such 

as chemical composition and processing parameters.  This will be cost effective and less time 

consuming. 
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ABSTRACT 

The effect of fermentation temperature and time on the sensory characteristics of C. longifolia was 

investigated to establish the optimum fermentation conditions.  Cyclopia longifolia harvested from 

three different areas were divided into batches and fermented at 80°C and 90°C for 8, 16, 24 and 

32 h.  Descriptive sensory analysis (DSA) was conducted to determine the effect of these 

fermentation conditions on the sensory profile of C. longifolia.  The fermentation temperature and 

time combinations tested did not result in the development of any “new” sensory attributes; the 

existing positive and negative sensory attributes were merely intensified and reduced, respectively.  

This herbal tea became more “floral” with increasing fermentation time, while the “green grass” 

notes decreased considerably.  Fermentation of C. longifolia at 80°C/24 h and 90°C/24 h ensured 

adequate formation of the positive sensory attributes and decrease of the negative sensory 

attributes.  Fermentation for a longer time (32 h) did not result in any significant differences from 

the samples fermented for 24 h and hence, given the cost of heating, the time should be limited.  

The sensory profile of C. longifolia achieved after fermentation at 80°C/24 h and 90°C/24 h can be 

described as having a “fynbos-floral”, “apricot/apricot jam”, “woody” and “fynbos-sweet” aroma and 

flavour, a sweet taste and a slight astringent mouthfeel; furthermore, the negative attributes were 

effectively reduced to an acceptable level. 

1. INTRODUCTION 

“Fermented” honeybush tea, produced from several species of the genus Cyclopia, is the major 

product sold on the local South African and global markets (Joubert et al., 2011).  This product has 

a characteristic sensory profile that can be described as “floral”, “fruity”, “plant-like”, “woody” and 

“sweet-associated”, with a sweet taste and slight astringent mouthfeel (Theron et al., 2014).  At 

present 23 Cyclopia species have been described, but not all of them are used for commercial 

production.  The honeybush industry has grown tremendously over the past ten years, and with the 

demand exceeding supply, more Cyclopia species are being investigated for production (Joubert et 

al., 2011).  One such species with a history of use that is currently in cultivation trials is C. 

longifolia.  

The term “fermentation” used in the honeybush tea industry refers to the chemical oxidation 

process that takes place during processing and results in the distinctive dark brown colour and 

characteristic sensory profile (Du Toit & Joubert, 1999; Theron 2012).  The traditional practice of 

fermentation heaps (Marloth, 1925), baking ovens (Hofmeyer & Phillips, 1922) and sun drying have 

been replaced by the use of rotation drums for fermentation and drying at controlled conditions.  

Fermentation conditions employed should be selected to achieve optimum tea quality.  This 

requires knowledge of the processing factors that affect the sensory quality of honeybush tea.  

Major factors are fermentation temperature and time (Du Toit & Joubert, 1999; Joubert et al., 

2011). 

Du Toit and Joubert (1999) studied the effect of fermentation temperature and time on the 

quality of C. intermedia and C. buxifolia (previously classified as C. maculata ex Du Toit‟s Kloof).  It 
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was found that higher temperatures required shorter fermentation times to produce the 

characteristic sweet, “honey-like” flavour with no negative aroma attributes such as “grassy” 

undertones.  It was suggested that fermentation at 70°C for 60 h or 90°C for 36 h produced a 

good-quality tea (Du Toit & Joubert, 1999).  A recent study by Bergh (2014) on C. intermedia 

confirmed that the latter fermentation conditions result in optimum sensory quality attributes when 

considering this species.  The effect of fermentation conditions on sensory attributes of other 

Cyclopia species of commercial interest, i.e. C. genistoides, C. maculata and C. subternata, was 

investigated by Theron (2012).  Varying fermentation temperatures (80°C and 90°C) and times (8, 

16, 24 and 32 h) demonstrated different optimum conditions for each species.  Cyclopia 

genistoides, fermented at 80°C/24 h, had a strong “rose geranium” aroma.  Fermentation of C. 

maculata at 90°C, as opposed to 80°C, caused an increase in negative sensory attributes; 

however, a fermentation time of 24 h effectively reduced the intensity of the negative sensory 

attributes so that fermentation of C. maculata at 80°C for 24 h was recommended for optimum 

sensory quality.  It was found that C. subternata can be fermented at 80°C/24 h or 90°C/16 h, 

depending on whether a “floral” or “apricot jam” note is desired (Theron, 2012).  These results 

clearly indicate that fermentation conditions should be optimised for each Cyclopia species.  

In view of the above, the objective of this study was therefore to determine the effect of 

different fermentation temperature/time combinations on the sensory profile of C. longifolia in order 

to identify the optimum fermentation conditions. 

2. MATERIALS AND METHODS 

 Sample collection and processing of plant material 2.1

Three batches of C. longifolia plant material were harvested at each of the three locations in the 

Western and Eastern Cape provinces of South Africa (Bredasdorp, Barrydale and Tsitsikamma) 

from experimental and commercial plantations.  A batch consisted of the shoots of more than one 

plant that were pooled.  The weight of the batches varied between 10 - 15 kg.  The different 

batches of plant material were processed at the ARC, Infruitec-Nietvoorbij, Stellenbosch, South 

Africa according to a standardised protocol as described by Le Roux et al. (2008).   

Before cutting the shoots into 2 - 3 mm lengths with a mechanised fodder cutter, thick 

stems and stems without leaves were removed.  The cut plant material of each batch was mixed 

thoroughly, divided into 1 kg sub-batches and placed into stainless steel containers (one for each 

temperature/time combination) and lastly superficially moistened with 250 mL water.  The 

containers were sealed using aluminium foil, after which they were placed into temperature-

controlled laboratory ovens (CAL 3200; CAL Controls Ltd., UK) to ferment the plant material at 

different temperature/time regimes (80°C and 90°C for 8, 16, 24 and 32 h).  One sample was 

removed from each oven per time point, spread out on separate fine-mesh drying trays and dried 

under controlled conditions (40°C for 6 h), using a cross-flow drying tunnel.  The dried samples 

(<10% moisture content) were sieved (200 g/30 s at 90 rpm) using a SMC Mini-sifter (JM Quality 

Services, Cape Town, South Africa) and the fractions <12 mesh and >40 mesh were finally 
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collected.  The plant material was stored at room temperature in sealed glass jars, until analysed.  

Table 1 displays the experimental design for a total of 72 samples, with each sample being 

analysed in triplicate.   

 Preparation of infusion 2.2

Freshly boiled distilled water (1000 g) was poured onto sieved plant material (12.5 g), infused for 5 

min and strained through a fine-mesh stainless steel strainer into a 1 L stainless steel thermos 

flask (Woolworths, Bellville, South Africa).  The infusion (ca. 100 mL) was served in white porcelain 

mugs covered with plastic lids to prevent loss of volatiles.  The mugs were labelled with three-digit 

codes and arranged in randomised order for each panellist.  Measures taken to keep the 

temperature of the infusions constant during serving included pre-heating of the thermos flasks and 

mugs before addition of the infusion and the use of temperature-controlled (65°C) scientific water 

baths (SMC, Cape Town, South Africa) during serving, as proposed by Koch et al. (2012).  See 

Addendum A (Fig. 1A) for photos of the latter measures. 

 Descriptive sensory analysis 2.3

2.3.1 Training panel 

The sensory panel consisted of ten female assessors who had extensive experience in the 

assessment of rooibos tea quality.  From 2010 onwards the panel received extensive training in the 

assessment of the respective honeybush species, using descriptive sensory analysis (DSA) as test 

technique (Lawless & Heymann, 2010).  Training sessions were conducted to generate the 

suitable aroma, flavour, taste and mouthfeel descriptors associated with different Cyclopia species.  

During each of these training sessions six honeybush samples were analysed (Theron, 2012).  Six 

one-hour training sessions were used to train the panel for assessment of the sensory profile of C. 

longifolia.  The list of 68 aroma, 51 flavour and taste, and mouthfeel attributes based on the 

sensory profiles of six Cyclopia species, generated by Theron et al. (2014), were used as a basis 

to generate the descriptors used to describe C. longifolia.  The list of attribute descriptors for C. 

longifolia consists of: 22 for aroma, 16 for flavour, 3 for taste and 1 for mouthfeel (Table 2). 

The aroma was analysed first by removing the plastic lid, swirling the cup before smelling, 

followed by a discussion of the perceived aroma attributes until the panel reached consensus.  The 

flavour, taste and mouthfeel were then analysed by sucking a mouthful of the tea infusion using a 

round tablespoon.  Between each sample the panel were asked to cleanse their palates with 

unsalted water biscuits (Woolworths, Stellenbosch, South Africa) and distilled water.   

2.3.2 Testing procedure 

After training was completed and the panellists had a good understanding of the product, the 

testing phase started.  The panellists were asked to rate the intensities of the aroma, flavour, taste 

and mouthfeel attributes present in the samples.  The samples were labelled with three-digit codes 

and presented in randomised order.  The panellists rated the intensities of attributes on a 

unstructured line scale (0 – 100), using Compusense® five software program (Compusense, 
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Guelph, Canada).  The samples were analysed in triplicate in three consecutive sessions to test 

judge reliability.  After each session the panel had a 10 min break to avoid panel fatigue.  All 

analyses were conducted in booths fitted with controlled lighting. 

 Statistical procedures 2.4

The data from all the assessors for each individual sample were collected and analysed.  The 

performance of the panel was monitored using Panelcheck software (Version 1.4.0, Nofima Mat, 

Ås, Norway).  SAS® software (Version 9.2; SAS Institute Inc., Cary, USA) was used to subject the 

data to test-retest analysis of variance (ANOVA).  The residuals were tested for non-normality by 

using the Shapiro-Wilk test and outliers were identified and removed in the event of significant non-

normality (p ≤ 0.05).  Principal component analysis (PCA) and discriminant analysis (DA) plots 

were produced, using XLStat (Version 2013.5.07, Addinsoft, New York, USA) to provide a 

graphical representation of the relationship between the samples and their attributes. 

3. RESULTS AND DISCUSSION 

The characteristic dark brown colour of the tea leaves and the sweet, “honey-like” flavour of 

honeybush tea develop during the high temperature chemical oxidation process, better known as 

fermentation (Du Toit & Joubert, 1999).  Previous studies on the Cyclopia species of commercial 

importance, excluding C. longifolia, demonstrated that the optimum fermentation temperature/time 

combination depends on the specific species (Du Toit & Joubert, 1999; Theron, 2012; Bergh, 

2014).  These studies also demonstrated that high-temperature fermentation is required to develop 

the sought-after sensory profile of honeybush.  Additionally, Theron (2012) showed for C. 

subternata that more than one optimum fermentation temperature/time condition can exist, 

depending on the desired sensory profile.  In this study C. longifolia was fermented at 80°C and 

90°C with sampling at 8, 16, 24 and 32 hours to determine the optimum fermentation parameters.  

These parameters were chosen, since previous studies on C. intermedia, C. buxifolia (previously 

classified as C. maculata ex Du Toit‟s Kloof), C. genistoides, C. maculata and C. subternata 

showed that the optimum would most likely be reached within these conditions (Du Toit & Joubert, 

1999; Theron, 2012; Bergh, 2014). 

A PCA plot was used to display the effect of different fermentation temperature/time 

combinations on the full sensory profile of C. longifolia samples (Fig. 1).  The samples are split 

along principal component one (PC1, also Factor 1) of the scores plot (Fig. 1a), with most of the 

samples fermented for 8 h positioned on the left-hand side.  Samples fermented for longer periods 

were progressively positioned to the right with all samples fermented for 24 and 32 h, except two 

samples fermented at 80°C for 24 h, positioned on the left side of the plot.  All samples fermented 

at 90°C for 16 h were positioned on the far right side of the scores plot.  The loadings plot (Fig. 1b) 

shows the positioning of the attributes corresponding with the samples on the scores plot (Fig. 1a).  

The positive attributes are split from the negative attributes along PC1.  The samples fermented for 

8 h mostly associated with the negative aroma and flavour attributes such as “hay/dried grass”, 

“burnt caramel”, “cooked vegetable” and “green grass”, as well as with sour and bitter taste and a 
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prominent astringent mouthfeel.  In this study it was found that “burnt caramel” was associated with 

samples fermented for a short period.  Previously, with other Cyclopia species, the presence of this 

attribute was associated with over-fermentation.  Du Toit and Joubert (1999) found that 

fermentation longer that 36 h at 90°C resulted in a “burnt” flavour, whereas Theron (2012) found 

that over- and under-fermented teas were associated with the following sensory attributes: “dusty”, 

“medicinal”, “burnt caramel”, “rotting plant water”, “cooked vegetable”, “green grass”, “hay/dried 

grass” aroma notes and a detectable sour taste.  The association of samples fermented for a short 

period with “burnt caramel” could be a result of the “intensely sweet” aroma of these samples, i.e. 

the so-called “boiled syrup” aroma that was noted in some under-fermented samples.  The PCA 

plot (Fig. 1) furthermore indicates that more samples fermented at 80°C associated with negative 

sensory attributes, especially samples fermented for 8 h and 16 h than samples fermented at 

90°C.   

It was also important to see how the respective treatments associated with the range of 

attributes when considering the positive attributes (Fig. 2) and negative attributes (Fig. 3), 

separately.  The PCA loadings plot (Fig. 2b) displaying the positive attributes shows a clear split 

along the PC1.  All the “floral”, “woody” and “fruity” attributes lie to the right side of the plot, 

whereas only “boiled syrup” and “plant-like” are situated on the left side of the loadings plot.  The 

samples associated with the latter two sensory attributes, “boiled syrup” and “plant-like”, were 

mostly the samples fermented for 8 h and 16 h at 80°C, probably because of the absence of the 

other more distinctive sweet-associated attributes.  “Plant-like” is considered a positive attribute 

and is defined as “the slightly sour aroma associated with freshly cut fynbos plant material”.  Five 

of the samples fermented at the higher temperature of 90°C for 8 h also associated with these two 

attributes; however, there were exceptions, i.e. one batch from harvest set one (s1_90_8) and all 

three batches from harvest set two (s2_90_8).  The latter 90°C/8 h samples did not show any 

prominent “boiled syrup“ or “plant-like” notes and were thus more associated with the other positive 

attributes situated on the right side of the PCA plot.   

The PCA plot displaying the negative aroma and flavour attributes, as well as the taste and 

mouthfeel attributes, again shows a clear split between the samples (Fig. 3).  The negative 

attributes “hay/dried grass”, “green grass” and “cooked vegetable” aroma and flavour, and a 

distinctive bitter taste and astringent mouthfeel lie to the right-hand side of the PCA loadings plot 

(Fig. 3b), again associating with most of the samples fermented for 80°C/8 h.  A few samples 

indicated on the upper-left quadrant (Fig. 3a) seemed to associate with a “dusty” aroma and 

flavour.  The reason for the development of the “dusty” note is not clear.  Pearson‟s correlation 

coefficients (Table 3) indicate positive, moderately strong correlations between “dusty” and a 

number of positive attributes, i.e. “fynbos-floral” (r = 0.598), “cooked apple” (r = 0.637), “fynbos-

sweet” (r = 0.597), “cassia/cinnamon” (r = 0.668), “walnut” (r = 0.585) and “woody” (r = 0.713).  The 

maximum intensity of “dusty” aroma and flavour perceived in C. longifolia infusions were very low 

(7 and 2 out of 100, respectively) (Table 4) and would hardly be noticeable, thus possibly negating 
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its negative effect.  At such low intensities the attribute “dusty” was not perceived as a negative 

attribute; however, if the intensity increases it might become more negative.   

In correlation analysis, the degree of linear association is shown by the correlation 

coefficient and the closer r is to 1, the stronger the linear association between the two variables is 

(Taylor, 1990).  In PCAs, when based on the correlation matrix, attributes can lie close together on 

the loadings plot and also have high Pearson‟s correlation coefficients; however, such relationships 

can easily be meaningless.  Talavera-Bianchi et al. (2010) concurs with this and indicates that 

certain attributes can change in a similar way over a large sample set and this could suggest 

chance attribute groupings.  In our study the Pearson‟s correlation coefficients (Table 3) indicated 

significant patterns between the positive and negative aroma attributes.  “Fynbos-floral”, one of the 

major positive notes in this Cyclopia species, had a strong negative correlation with most of the 

negative sensory attributes, i.e. “burnt caramel” (r = -0.909), “hay/dried grass” (r = -0.932), “green 

grass” (r = -0.933) and “cooked vegetables” (r = -0.929).  “Fynbos-floral” also had a strong negative 

correlation with some of the taste and mouthfeel attributes, i.e. sour (r = -0.730), bitter (r = -0.900) 

and astringent mouthfeel (r = -0.847).  As expected, there was a strong positive (r > 0.7) correlation 

between two of the major positive sensory attributes, i.e. “fynbos-floral” and sweet taste (r = 0.919).  

Sweet taste was also positively correlated to some of the positive aroma notes typically associated 

with the Cyclopia species, i.e. “rose geranium” (r = 0.607), “rose perfume” (r = 0.667), “cooked 

apple” (r = 0.556), “woody” (r = 0.917) “fruity-sweet” (r = 0.699), “fynbos-sweet” (r = 0.903) and 

“cassia/cinnamon (r = 0.619).    

Discriminant analysis (DA) was conducted to generate a perceptual map of all the C. 

longifolia samples.  DA and PCA plots produce different patterns, as DA is used as a classification 

technique and PCA only looks for patterns of correlation (Lawless & Heymann, 2010).  The DA plot 

(Fig. 4) indicates a split between the samples associating with the negative sensory attributes, i.e. 

samples fermented for 8 h at 80°C and 90°C, and samples associating with the positive sensory 

attributes, i.e. samples fermented for longer periods, except for one of the sample sets fermented 

at 90°C for 8 h (s2_90_8).  Each set comes from a different area, which differs in climate, 

harvesting season, soil fertility and processors.  In previous studies external factors were found to 

have an effect on the phenolic profile and sensory quality of tea (Jayasekera et al., 2014).  Joubert 

et al. (2014) also found that seed source and harvesting time strongly affected the phenolic content 

(mangiferin, isomangiferin and iriflophenone-3-C-glucoside) of C. genistoides.  Thus samples 

harvested from different geographical locations, fermented at the same temperature/time 

combination, can have different sensory profiles.  Some samples fermented for a short period can 

be high in negative sensory attributes, while other samples fermented for the same period can 

have lower intensities of the negative sensory attributes, most probably as a result of external 

factors.    

Further analysis of the data by ANOVA gives insight into the main effects and interactions.  

The statistical definition of a main effect is the effect of one independent variable on the dependent 
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variable.  If the interaction between temperature and time has a significant effect (p ≤ 0.05) on an 

attribute, the main effects cannot be interpreted and instead the interactions should be interpreted 

(Clewer & Scarisbrick, 2006).  The interactions between temperature and time are summarised in 

Tables 5 – 8 and the significant interactions are highlighted in yellow.  Only sensory attributes with 

an average intensity of more than 5 were investigated, as an intensity of 5 is barely perceptible.  

The main effects for those parameters showing no interactions will be discussed firstly, i.e. the 

effect of temperature (Fig. 5 – Fig. 6), as well as the effect of time (Fig. 7 – Fig. 8).  The 

interactions between temperature and time will be discussed after that (Fig. 9 – Fig. 11). 

Fermentation temperature had a significant effect on “fynbos-floral”, “apricot/apricot jam”, 

“woody”, “fruity-sweet” and “fynbos-sweet” aroma attributes, as well as sweet and bitter taste and 

astringent mouthfeel (Fig. 5).  “Fynbos-floral”, “woody” and “hay/dried grass” flavour were also 

significantly affected by fermentation temperature (Fig. 6) (Tables 5 – 8).  The intensity of all of 

these attributes, except bitter taste and astringency were significantly higher (p ≤ 0.05) in 

honeybush fermented at 90°C than when fermented at 80°C.  Similar to the latter aroma attributes, 

“fynbos-floral” (Fig. 6a) and “woody” (Fig. 6b) flavours were significantly (p ≤ 0.05) higher in 

honeybush fermented at 90°C, whereas “hay/dried grass” (Fig. 6c) flavour was significantly (p ≤ 

0.05) higher in honeybush fermented at 80°C.  A study done by Theron (2012) on the influence of 

different fermentation temperature/time combinations on sensory and chemical profile of three 

Cyclopia species found that 80°C or 90°C can be used as fermentation temperature, depending on 

the desired sensory profile.  In the latter study, the fermentation of C. subternata at 80°C resulted 

in a more “floral” honeybush tea, whereas fermentation at 90°C produced a honeybush tea with a 

stronger “apricot/apricot jam” aroma.  The present study showed that C. longifolia fermented at 

90°C produced a tea with stronger “fynbos-floral” and “apricot/apricot jam” aroma notes.  Cyclopia 

longifolia fermented at 80°C produced a more bitter and astringent and less sweet tea.  It is 

possible that, with increasing temperature, the compounds responsible for bitter taste and 

astringency decreased, while the compounds responsible for the sweetness increased.  

Fermentation time also affected aroma and flavour.  “Fynbos-floral”, “apricot/apricot jam”, 

“cooked apple”, “woody”, “fruity-sweet” and “fynbos-sweet” aroma (Fig. 7), sweet and bitter taste, 

astringent mouthfeel, and “fynbos-floral”, “woody”, “hay/dried grass” and “cooked vegetable” 

flavour (Fig. 8) were significantly (p ≤ 0.05) affected by fermentation time (Tables 5 – 8).  The 

aroma intensity of “fynbos-floral” (Fig. 7a), “apricot/apricot jam” (Fig. 7b), “cooked apple” (Fig. 7c), 

“woody” (Fig. 7d), “fruity-sweet” (Fig. 7e) and “fynbos-sweet” (Fig. 7f) increased significantly (p ≤ 

0.05) as the fermentation time increased.  For all the attributes, except for “apricot/apricot jam” and 

“fruity-sweet”, 24 h fermentation resulted in significantly (p ≤ 0.05) higher aroma intensities than 

fermentation for 16 h.  There were, however, no significant (p > 0.05) differences between tea 

fermented for 24 h and 32 h in the above-mentioned aroma intensities (Fig. 7).  Sweet taste  

(Fig. 8a), “fynbos-floral” flavour (Fig. 8d) and “woody” flavour (Fig. 8e) increased significantly (p ≤ 

0.05) as the fermentation time increased from 8 h to 24 h, after which no significant (p > 0.05) 
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increase was observed.  Bitter taste (Fig. 8b), astringent mouthfeel (Fig. 8c) and “hay/dried grass” 

flavour (Fig. 8f) decreased significantly (p ≤ 0.05) as fermentation time increased from 8 h to 32 h.  

“Cooked vegetable” flavour (Fig. 8g) only decreased significantly (p ≤ 0.05) as the fermentation 

time increased from 8 h to 16 h, with longer fermentation times having no significant effect.  

Previously for C. genistoides, it was found that a fermentation period of at least 16 h was 

necessary to decrease the negative and increase the positive average attribute intensities to an 

acceptable level.  The same was seen for C. subternata where a fermentation period of 16 h was 

adequate to effectively reduce a “rotting plant water” aroma and a high degree of astringency 

(Theron, 2012).  

There was a significant (p ≤ 0.05) interaction between fermentation temperature and time 

for the following sensory attributes: “rose geranium”, “plant-like”, “caramel” aroma (Fig. 9) (Table 

5), “burnt caramel”, “hay/dried grass”, “green grass” and “cooked vegetable” aroma (Fig. 10) (Table 

6), as well as sour taste (Table 7) and “green grass” flavour (Fig. 11) (Table 8).  Considering the 

positive aroma attributes, the highest aroma intensity for “rose geranium” (Fig. 9a) and “plant-like” 

(Fig. 9b) was obtained for tea fermented at 90°C/24 h and 80°C/8 h, respectively.  The intensity of 

the ”plant-like” aroma decreased over time, with the lowest intensity observed at 90°C/32 h, but not 

significantly different from that when the plant material was fermented at 80°C/32 h.  This intensity 

was also not significantly different from that already reached at 16 h where fermentation took place 

at 90°C.  Interestingly, the highest aroma intensity for this attribute was approximately 6 on a 100-

point scale (Table 4), which would hardly be noticeable by consumers.  The “caramel” aroma (Fig. 

9c) of the tea decreased significantly (p ≤ 0.05) when fermentation time increased from 8 h to 16 h 

at 80°C, but after 16 h there was no significant difference in the aroma intensity of the samples 

fermented for 24 h and 32 h (p > 0.05).  At 90°C the “caramel” aroma decreased significantly (p ≤ 

0.05) when the fermentation time increased from 8 h to 16 h, but as the fermentation time 

increased from 16 h to 32 h the aroma intensity increased significantly (p ≤ 0.05).  After 32 h the 

intensity was the same as after 8 h.  The average intensities of the negative aroma attributes, 

“burnt caramel” (Fig. 10a), “hay/dried grass” (Fig. 10b), “green grass” (Fig. 10c) and “cooked 

vegetable” (Fig. 10d) decreased significantly (p ≤ 0.05) as the fermentation time increased from 8 h 

to 32 h at 80°C and 90°C.  A significant decrease in the negative aroma intensities occurred as the 

temperature (p ≤ 0.05) increased from 80°C to 90°C at 8 h.  After 16 h and 24 h no significant (p > 

0.05) difference occurred in the average intensity of these negative aroma attributes at 90°C and 

80°C, respectively.  A similar trend was observed for “green grass” flavour (Fig. 11b).  In all cases, 

except “hay/dried grass” the intensity of these negative attributes reached levels ≤5 after 16 to 24 h 

fermentation time. However, the attribute “hay/dried grass” remained at intensity levels of ≥10 and 

this tendency could have a significant impact on quality.  The average intensity of sour taste (Fig. 

11a) decreased significantly at 80°C as the time increased from 8 h to 24 h, but after 24 h there 

was no significant (p > 0.05) difference in the average intensity.  Fermentation at 90°C caused a 
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significant decrease in the average intensity over time, but intensity, irrespective of fermentation 

time, was less than 5 out of 100 so its impact on sour taste would be of little importance.   

The effect of fermentation temperature and time on “fynbos-floral”, “apricot/apricot jam”, 

“cooked apple”, “woody”, “fruity-sweet” and “fynbos-sweet” aroma (Fig. 12) and sweet and bitter 

taste, astringent mouthfeel, “fynbos-floral”, “rose geranium”, “woody”, “hay/dried grass” and 

“cooked vegetable” flavour (Fig. 13) was also explored, even though there was no significant 

interaction between fermentation temperature and time (p > 0.05) for these attributes.  By 

investigating the changes over time for a specific fermentation temperature, one can attain a 

clearer understanding of the development of positive attributes and decrease in intensity of 

negative attributes to ultimately determine optimum fermentation temperature/time combination(s).  

The change in intensities was more or less the same for 80°C and 90°C (Fig. 12 – Fig. 13) as 

indicated by non-significant interactions (Tables 5 - 8).  In most instances the major change 

occurred between 8 h and 16 h, with very little change observed after 16 h.  In contrast, the 

intensity of “rose-geranium” flavour (Fig. 13e) peaked at 24 h for both 80°C and 90°C, whereas 

“cooked apple” aroma (Fig. 12c) increased slightly after 90°C/16 h.  The intensities of the negative 

attributes were lower for infusions prepared from plant material fermented at 90°C, while opposite 

effects were observed for the positive sensory attributes. 

Overall, it is evident that even a short fermentation time such as 8 h caused a significant (p 

≤ 0.05) decrease in the intensity of the negative attributes.  As the fermentation time increased 

from 8 h to 32 h, the intensity of the negative attributes decreased even more.  Fermentation 

temperature of 90°C resulted in the negative attributes having lower intensities after 8 h, compared 

to 80°C.  A fermentation time of 24 h effectively reduced the intensities of most of the negative 

attributes to an acceptable level.  According to Theron (2012), a fermentation temperature of 

80°C/24 h was found to effectively reduce the “green grass” and “rotting plant water” aroma in C. 

maculata.  “Green grass” aroma was also found to be associated with insufficiently fermented 

honeybush tea (Du Toit & Joubert, 1998); therefore it was expected that the “green grass” aroma 

and flavour would decrease with increasing fermentation time.  Le Roux et al. (2008) found similar 

results during the investigation of the volatile compounds present in fermented and unfermented C. 

genistoides.  It was found that the compounds responsible for “green grass” aromas (hexanal and 

6-methyl-5-hepten-2-one) were significantly lower in fermented C. genistoides samples (Le Roux et 

al., 2008). 

The fermentation conditions tested (80°C and 90°C for 8, 16, 24 and 32 h) did not lead to 

the development of different or new sensory attributes; they only affected the average intensity of 

the existing attributes.  The results indicated that as the fermentation temperature increased from 

80°C to 90°C, the average intensity of the positive and negative attributes increased and 

decreased, respectively, except for “plant-like”.  “Plant-like” is not perceived as a negative attribute 

at low intensities, but at high intensities it may be perceived as negative.  Therefore it was 

favourable that the average intensity of “plant-like” decreased as the fermentation temperature 
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increased.  The same trend was seen as the fermentation time increased from 8 h to 32 h.  

Similarly the intensity of the mouthfeel attribute, astringency, may determine whether it has a 

negative impact on the overall quality of the infusion.  In this herbal tea intensities that are too high 

or too low may both be undesirable.  A slight astringency is desirable in tea, as it is regarded as an 

important tactile component of flavour (Balentine et al., 1997).  Green (1993) also suggested that 

the changes in the surface texture of the mouth, caused by astringency, are an important 

component of flavour.  Thus if the tea had very low astringency, the flavour would be perceived as 

lower, and the product might be seen as weak and to bland.  

Mostly C. longifolia samples fermented for only 8 h were perceived as under-fermented.  

The under-fermented samples were high in negative sensory attributes such as “hay/dried grass”, 

“green grass” and “cooked vegetable” aroma and flavour, and bitter and sour taste and astringent 

mouthfeel.  The positive attributes such as “fynbos-floral”, “rose geranium” “fruity-sweet” and 

“fynbos-sweet” aroma and flavour and sweet taste were perceived in lower intensities in these 

samples.  Thus a fermentation time of 8 h at either processing temperatures is insufficient for the 

fermentation of C. longifolia.  Fermentation for 16 h at 80°C and 90°C significantly (p ≤ 0.05) 

increased intensities of the positive attributes, but most negative attribute intensities were still high, 

especially bitter taste and astringent mouthfeel.  Fermentation for an extra 8 h would ensure 

adequate formation of the positive attributes and decrease of negative attributes, especially 

considering that the composition of harvests could differ.  In a commercial processing set up, 

factors such as rate of heating and fluctuations in temperature can play a pivotal role in final 

product quality; therefore a longer fermentation period is advised (Bergh, 2014).  Bergh (2014) 

found that C. intermedia fermented on laboratory-scale had higher attribute intensities and the 

sensory profile was more “fruity”, whereas the samples fermented on commercial-scale were more 

“floral”.  Therefore 24 h is seen as the optimum fermentation time at both 80°C and 90°C.  Longer 

fermentation (32 h) did not result in any significant (p > 0.05) differences in average attribute 

intensities, so it would not be advantageous to extend the fermentation period beyond 24 h.  Given 

the cost of heating, fermentation time should thus be limited. 

The fermentation temperature did overtly influence the tea quality, but at optimum 

fermentation times both 80°C and 90°C produced an acceptable tea.  Certain positive attributes 

were perceived at higher intensities in samples fermented at 90°C, but in most cases the average 

intensity only increased significantly by approximately 5%. One would assume that most 

consumers might not even perceive such a slight difference in intensity.  Fermentation at 90°C/24 

h produced a tea with a stronger “rose geranium” aroma and flavour, whereas fermentation of C. 

longifolia at 80°C/24 h and 90°C/24 h resulted in a tea with a “fynbos-floral”, “apricot/apricot jam”, 

“woody” and “fynbos-sweet” aroma and flavour, a sweet taste and a slightly astringent mouthfeel, 

and the negative attributes were effectively reduced to an acceptable level. 
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4. CONCLUSIONS 

Extensive sensory analysis of C. longifolia identified 42 aroma, flavour, taste and mouthfeel 

attributes.  For the fermentation period investigated, increasing fermentation time did not produce 

“new” sensory attributes, but it only resulted in an increase of most of the positive sensory 

attributes and a decrease of most of the negative sensory attributes. It was found that a 

fermentation time of 8 h was too short and resulted in relative high intensities of the “hay/dried 

grass”, “green grass” and “cooked vegetable” aroma and flavour notes and a bitter taste and an 

astringent mouthfeel, indicating that the tea was still under-fermented.  A fermentation time of 16 h 

did reduce the negative sensory attributes significantly, but the reduced intensities of some of the 

negative attributes were still too high, resulting in an unsatisfactory tea.  Fermentation for 24 h at 

80°C and 90°C decreased the average intensity of the negative sensory attributes and increased 

the intensity of the positive sensory attributes, resulting in a satisfactory product.  Further 

fermentation (32 h) did not lead to significant differences in the intensities of the aroma, flavour, 

taste and mouthfeel attributes, compared to 24 h; therefore 24 h can be recommended as the 

optimum fermentation time.  Fermentation at both 80°C/24 h and 90°C/24 h thus produced an 

acceptable quality tea with low intensities of the negative attributes and high intensities of positive 

attributes, especially the sweet and floral notes.  
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Table 1 Experimental design for eight fermentation temperature/time combinations used for the 
nine batches of C. longifolia. 

 Time 8 h 16 h 24 h 32 h 

Harvest set Temperature 80°C 90°C 80°C 90°C 80°C 90°C 80°C 90°C 

1 (Bredasdorp) Batch 1 1 2 3 4 5 6 7 8 

Batch 2 1 2 3 4 5 6 7 8 

Batch 3 1 2 3 4 5 6 7 8 

2 (Barrydale) Batch 1 1 2 3 4 5 6 7 8 

Batch 2 1 2 3 4 5 6 7 8 

Batch 3 1 2 3 4 5 6 7 8 

3 (Tsitsikamma) Batch 1 1 2 3 4 5 6 7 8 

Batch 2 1 2 3 4 5 6 7 8 

Batch 3 1 2 3 4 5 6 7 8 
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Table 2 Attributes and definitions used for descriptive sensory analysis of C. longifolia. 

Aroma attributes Definitions 

FLORAL AROMA  

 Fynbos-floral* Sweet floral aroma note associated with the flowers of fynbos vegetation  

 Rose geranium* Floral aroma note associated with the rose geranium plant 

 Rose perfume* Floral aroma note associated with rose petals 

FRUITY AROMA  

 Lemon/lemon grass* Aromatic associated with general impression of fresh lemons and lemon grass 

 Apricot/apricot jam* Sweet aroma reminiscent of apricot jam 

 Orange* Aroma reminiscent of orange peel 

 Cooked apple* The flat, slightly sour aroma of cooked apples 

WOODY AROMA  

 Plant-like* Slightly sour aromatic characteristic of freshly cut fynbos plant material 

 Woody* Aromatic associated with dry bushes, stems and twigs of the fynbos vegetation 

 Pine* Aroma reminiscent of pine needles 

SWEET AROMA  

 Fruity-sweet Sweet aroma reminiscent of non-specific fruit especially berries and apricot jam 

 Boiled syrup Aroma note associated with boiled syrup 

 Caramel Sweet aromatic characteristic of molten sugar or caramel pudding 

 Honey Aromatics associated with the sweet fragrance of fynbos honey 

 Fynbos-sweet Aroma note reminiscent of the fynbos plant 

SPICY AROMA  

 Cassia/cinnamon* The sweet, woody, spicy aroma of ground cinnamon/cassia bark 

NUTTY AROMA  

 Walnut Aroma note associated with fresh (not rancid) walnuts 

NEGATIVE AROMA ATTRIBUTES  

 Dusty* Earthy aromatic associated with wet hessian or wet cardboard 

 Burnt caramel* Aromatic associated with blackened/acrid carbohydrates 

 Hay/dried grass* Slightly sweet aromatic associated with dried grass or hay 

 Green grass* Aromatic associated with freshly cut green grass 

 Cooked vegetable* An overall aroma note associated with canned/cooked vegetables 
*Flavour attributes used for DSA of C. longifolia. 
The taste and mouthfeel attributes used were; sweet, sour, bitter and astringent. 
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Table 3 Pearson's correlation coefficients (r) displaying the relationship between the positive and the negative aroma attributes and taste and 
mouthfeel. 

Variables Dusty Burnt caramel Hay/dried grass Green grass Cooked vegetable Sweet Sour Bitter Astringent 

Fynbos-floral 0.598 -0.909 -0.932 -0.933 -0.929 0.919 -0.730 -0.900 -0.847 

Rose geranium 0.316 -0.559 -0.638 -0.609 -0.578 0.607 -0.296 -0.576 -0.493 

Rose perfume 0.462 -0.586 -0.658 -0.643 -0.634 0.667 -0.559 -0.600 -0.559 

Lemon/lemongrass 0.069 -0.101 -0.146 -0.123 -0.148 0.143 0.049 -0.153 -0.103 

Orange 0.168 -0.321 -0.388 -0.353 -0.347 0.383 -0.252 -0.313 -0.261 

Apricot/apricot jam 0.071 -0.257 -0.391 -0.345 -0.310 0.428 -0.181 -0.197 -0.155 

Cooked apple 0.637 -0.431 -0.503 -0.490 -0.478 0.556 -0.575 -0.475 -0.435 

Plant-like -0.655 0.791 0.870 0.859 0.840 -0.849 0.735 0.774 0.751 

Woody 0.713 -0.843 -0.908 -0.906 -0.888 0.917 -0.696 -0.873 -0.788 

Pine 0.286 -0.433 -0.516 -0.469 -0.456 0.481 -0.191 -0.478 -0.414 

Fruity-sweet 0.381 -0.580 -0.709 -0.679 -0.648 0.699 -0.471 -0.575 -0.502 

Boiled syrup -0.599 0.747 0.825 0.810 0.802 -0.835 0.713 0.712 0.674 

Caramel -0.281 0.297 0.239 0.295 0.262 -0.209 0.223 0.280 0.222 

Honey 0.423 -0.390 -0.351 -0.420 -0.388 0.422 -0.402 -0.354 -0.291 

Fynbos-sweet 0.597 -0.847 -0.908 -0.902 -0.884 0.903 -0.682 -0.837 -0.793 

Cassia/cinnamon 0.668 -0.456 -0.520 -0.520 -0.496 0.619 -0.538 -0.514 -0.462 

Walnut 0.585 -0.293 -0.291 -0.349 -0.329 0.427 -0.390 -0.338 -0.289 

Positive correlations above 0.5 are indicated in red and negative correlations higher than -0.5 are indicated in green.  All values in bold are 
significantly different from 0 (p ≤ 0.05). 
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Table 4 Minimum, maximum and mean intensity ratings for each sensory attribute as scored on a 
100-point scale. 

 Variable Min Max Mean 

A
ro

m
a
 

A_Fynbos-floral 22 48 40 

A_Rose geranium 1 13 5 

A_Rose perfume 0 7 2 

A_Lemon/lemon grass 0 3 1 

A_Orange 0 3 1 

A_Apricot/apricot jam 5 21 12 

A_Cooked apple 1 13 4 

A_Plant-like 0 8 2 

A_Woody 26 46 39 

A_Pine 0 5 1 

A_Fruity-sweet 11 31 21 

A_Boiled syrup 0 4 1 

A_Caramel 2 7 4 

A_Honey 0 2 1 

A_Fynbos-sweet 22 43 35 

A_Cassia/cinnamon 0 8 2 

A_Walnut 0 5 1 

A_Dusty 0 7 3 

A_Burnt caramel 0 12 2 

A_Hay/dried grass 7 26 13 

A_Green grass 0 33 6 

A_Cooked vegetable 0 18 3 

T
a
s

te
 &

 

m
o

u
th

fe
e
l Sweet 15 22 20 

Sour 1 8 3 

Bitter 0 22 4 

Astringent 23 34 27 

F
la

v
o

u
r 

F_Fynbos-floral 20 42 35 

F_Rose geranium 0 7 3 

F_Rose perfume 0 4 1 

F_Lemon/lemon grass 0 2 1 

F_Orange 0 2 0 

F_Apricot/apricot jam 0 7 2 

F_Cooked apple 0 5 1 

F_Plant-like 0 5 1 

F_Woody 29 44 37 

F_Pine 0 3 1 

F_Cassia/cinnamon 0 4 0 

F_Dusty 0 2 0 

F_Burnt caramel 0 8 1 

F_Hay/dried grass 10 27 15 

F_Green grass 0 28 4 

F_Cooked vegetable 0 16 2 
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Table 5 Interactions between fermentation temperature and time for the positive aroma attributes of C. longifolia samples. 

 Fynbos-floral Rose geranium Apricot/apricot jam Cooked apple Plant-like Woody Fruity-sweet Caramel Fynbos-sweet 

Temperature <0.0001 <0.0001 0.0008 0.0081* <0.0001 <0.0001 <0.0001 0.0124 <0.0001 

Time <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0001 <0.0001 

Temperature/time 0.3631 0.012 0.1966 0.4055 0.0042 0.7056 0.4793 0.0026 0.3546 

*Average intensity <5. 

 

Table 6 Interactions between fermentation temperature and time for the negative aroma attributes of C. longifolia samples. 

 Burnt caramel Hay/dried grass Green grass Cooked vegetable 

Temperature 0.0003 <0.0001 <0.0001 <0.0001 

Time <0.0001 <0.0001 <0.0001 <0.0001 

Temperature/time 0.0098 0.0056 <0.0001 0.0093 

 

Table 7 Interactions between fermentation temperature and time for the taste and mouthfeel attributes of C. longifolia samples. 

 Sweet Sour Bitter Astringent 

Temperature <0.0001 0.142 0.0009 0.0009 

Time <0.0001 <0.0001 <0.0001 <0.0001 

Temperature/time 0.1454 0.0001 0.5475 0.1604 

 

Table 8 Interactions between fermentation temperature and time for the flavour attributes of C. longifolia samples. 

 Fynbos-floral Woody Hay/dried grass Green grass Cooked vegetable 

Temperature <0.0001 <0.0001 0.0064 <0.0001 0.0047* 

Time <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Temperature/time 0.3919 0.6375 0.4543 0.0007 0.1589 

*Average intensity <5 
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Fig. 1 a) PCA scores plot showing the positioning of C. longifolia samples (N = 72) according to their sensory profiles.  The letter “s” in the sample 
coding refers to the sample set, s1 = harvest set 1 (Bredasdorp), s2 = harvest set 2 (Barrydale) and s3 = harvest set 3 (Tsitsikamma).  80 and 90 
refer to the fermentation temperature and 8, 16, 24 and 32 refer to the fermentation time (h).  b) PCA loadings plot showing the positioning of the 
positive and negative aroma, flavour, taste and mouthfeel attributes.  The letters “A” and “F” in front of the attributes refer to aroma and flavour, 
respectively. Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = Hay/dried grass, Cookedveg = Cooked 
vegetable. 

a) a) b) 
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Fig. 2 a) PCA scores plot showing the positioning of C. longifolia samples (N = 72) according to their positive sensory profiles.  The letter “s” in the 
sample coding refer to the sample set, s1 = harvest set 1 (Bredasdorp), s2 = harvest set 2 (Barrydale) and s3 = harvest set 3 (Tsitsikamma).  80 and 
90 refers to the fermentation temperature and 8, 16, 24 and 32 refer to the fermentation time (h).  b) PCA loadings plot showing the positioning of the 
positive aroma and flavour attributes.  The letters “A” and “F” in front of the attributes refer to aroma and flavour, respectively.  Apricot = Apricot/apricot 
jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon. 

a) b) 
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Fig. 3 a) PCA scores plot showing the positioning of C. longifolia samples (N = 72) according to their negative sensory profiles.  The letter “s” in the 
sample coding refer to the sample set, s1 = harvest set 1 (Bredasdorp), s2 = harvest set 2 (Barrydale) and s3 = harvest set 3 (Tsitsikamma).  80 and 
90 refers to the fermentation temperature and 8, 16, 24 and 32 refer to the fermentation time (h).  b) PCA loadings plot showing the positioning of the 
negative aroma and flavour attributes and the taste and mouthfeel attributes.  The letters “A” and “F” in front of the attributes refer to aroma and 
flavour, respectively.  Hay = Hay/dried grass, Cookedveg = Cooked vegetable. 

a) b) 
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Fig. 4 a) DA plot illustrating the grouping of C. longifolia samples (N = 72) fermented at 80°C and 90°C for 8, 16, 24 and 32 h, according to their 
sensory profiles.  The letter “s” in the sample coding refers to the sample set, s1 = harvest set 1 (Bredasdorp), s2 = harvest set 2 (Barrydale) and s3 = 
harvest set 3 (Tsitsikamma).  80 and 90 refer to the fermentation temperature and 8, 16, 24 and 32 refer to the fermentation time (h).  b) DA variables 
plot showing the positioning of the positive and negative aroma, flavour, taste and mouthfeel attributes.  The letters “A” and “F” in front of the 
attributes refer to aroma and flavour, respectively.  Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = 
Hay/dried grass, Cookedveg = Cooked vegetable. 

b) 

b) 
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Fig. 5 Effect of fermentation temperature (80°C and 90°C) on a) fynbos-floral, b) apricot/apricot jam, c) woody, d) fruity-sweet, e) fynbos-sweet aroma, 
f) sweet taste, g) bitter taste and h) astringent mouthfeel of C. longifolia.  “A” in front of the attribute name refers to aroma, except for Astringent.  
Different alphabetical letters indicate a significant difference in the treatment means (p ≤ 0.05). 
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Fig. 6 Effect of fermentation temperature (80°C and 90°C) on a) fynbos-floral, b) woody and c) hay/dried grass 
flavour of C. longifolia.  “F” in front of the attribute name refers to flavour.  Different alphabetical letters indicate a 
significant difference in treatment means (p ≤ 0.05). 
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Fig. 7 Effect of fermentation time (8, 16, 24 and 32 h) on the aroma attributes a) fynbos-floral, b) apricot/apricot jam, c) cooked apple, d) woody, e) 
fruity-sweet and f) fynbos-sweet of C. longifolia.  “A” in front of the attribute name refers to aroma.  Different alphabetical letters indicate a significant 
difference in treatment means (p ≤ 0.05). 
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Fig. 8 Effect of fermentation time (8, 16, 24 and 32 h) on a) sweet taste, b) bitter taste, c) astringent mouthfeel, d) fynbos-floral, e) woody, f) hay/dried 
grass and g) cooked vegetable flavour of C. longifolia.  "F" in front of the attribute name refers to flavour.  Different alphabetical letters indicate a 
significant difference in treatment means (p ≤ 0.05). 
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Fig. 10 The effect of temperature (80°C and 90°C) and time (8, 16, 24 and 32 h) on the average intensity of a) burnt caramel, b) hay/dried grass, c) 
green grass and d) cooked vegetable aroma.  "A" in front of the attribute name refers to aroma.  Values with different alphabetical letters differ 
significantly from each other (p ≤ 0.05). 
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Fig. 9 The effect of temperature (80°C and 90°C) and time (8, 16, 24 and 32 h) on the average intensity of a) rose geranium, b) plant-like and c) 
caramel aroma.  "A" in front of the attribute name refers to aroma.  Values with different alphabetical letters differ significantly from each other (p ≤ 
0.05). 
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Fig. 11 The effect of temperature (80°C and 90°C) and time (8, 16, 24 and 32 h) on the average intensity of a) sour taste and b) green grass 
flavour.  The letters “F” in front of the attribute name refers to flavour.  Values with different alphabetical letters differ significantly from each other 
(p ≤ 0.05). 
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Fig. 12 The effect of temperature (80°C and 90°C) and time (8, 16, 24 and 32 h) on the average intensity of a) fynbos-floral, b) 
apricot/apricot jam, c) cooked apple, d) woody, e) fruity-sweet and f) fynbos-sweet aroma.  "A" in front of the attribute name refers to aroma.  
Values with different alphabetical letters differ significantly from each other (p ≤ 0.05). 
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Fig. 13 The effect of temperature (80°C and 90°C) and time (8, 16, 24 and 32 h) on the average intensity of a) sweet taste, b) bitter taste, c) astringent 
mouthfeel, d) fynbos-floral, e) rose geranium, f) woody, g) hay/dried grass and f) cooked vegetable flavour.  "F" in front of the attribute name refers to 
flavour.  Values with different alphabetical letters differ significantly from each other (p ≤ 0.05). 
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ABSTRACT 

Cyclopia is popular in the fynbos biome and grows along the coastal and mountainous regions of 

the Eastern and Western Cape provinces of South Africa.  A large sample set (N = 150) differing in 

production year, processing, species and production area was used to capture all possible 

variation within honeybush.  Descriptive sensory analysis (DSA) was used to determine the 

characteristic sensory profile of honeybush and the species-specific sensory profiles of C. 

genistoides, C. maculata, C. subternata and C. longifolia.  The characteristic sensory profile of 

honeybush was defined as a “fynbos-floral”, “woody” and “fynbos-sweet” aroma and flavour with a 

sweet taste and slightly astringent mouthfeel.  Cyclopia maculata and C. subternata were 

characterised as being reasonably similar in sensory profiles and both can be described as having 

“caramel” and other sweet-associated notes and a slightly astringent mouthfeel.  Cyclopia 

genistoides was defined as being high in “rose geranium” flavour, as well as bitterness, while C. 

longifolia had a slightly less prominent “rose geranium” flavour.  The latter results were used to 

validate the previously developed generic sensory wheel and to develop species-specific sensory 

wheels, which are potential quality control tools for the honeybush industry.  The rapid sensory 

method, sorting, was investigated as an alternative to the traditional profiling method, DSA.  The 

aim was to determine whether instructed, as well as uninstructed sorting could be used to profile 

three Cyclopia species in terms of broad-based sensory profiles when using an expert panel.  

Instructed sorting produced results similar to that of DSA, and these results suggest that instructed 

sorting could be viewed as a viable industry tool when the aim is to profile honeybush infusions in 

terms of broad-based sensory attributes.  The results obtained from uninstructed sorting differed 

from those of DSA, indicating that free sorting is not successful in categorising honeybush samples 

according to species, especially when the difference between species is not clear-cut.  

1. INTRODUCTION 

Honeybush is a South African herbal tea, produced from the leaves and stems of a number of 

Cyclopia species.  Since the early 1990s there have been concerted efforts to develop and expand 

the honeybush industry, especially on a global level.  Exports increased from 50 to 200 tonnes per 

annum, with the major importers being the Netherlands, Germany, the United Kingdom and the 

United States of America (Joubert et al., 2011).  Cyclopia subternata, C. genistoides and C. 

intermedia are the main species used for the production of honeybush; however, as the current 

demand is higher than the supply, other Cyclopia species such as C. maculata and C. longifolia 

are also under investigation (Joubert et al., 2011; Theron et al., 2014).  Most of the honeybush 

produced is the “fermented product”, i.e. produced through a high-temperature oxidation process.  

This process is essential for the development of the characteristic sensory attributes associated 

with honeybush (Du Toit & Joubert, 1999). 

According to the South African Agricultural Standards Act for the export of honeybush 

(Anon., 2000), this herbal tea should have a “distinctive honeybush colour and a clean, 

characteristic aroma and taste”; however, the regulation does not expand on the specifics of 
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“characteristic” aroma and flavour.  In previous research descriptive terms used for describing the 

sensory quality of honeybush were quite broad-based and included terms such as “sweet” and 

“honey-like” (Du Toit & Joubert, 1998; 1999).  Cronje (2010) also used broad-based sensory 

descriptors such as “honeybush-like”, “sweet-associated” and “rose geranium-like” to distinguish 

between four Cyclopia species.  Because of the lack of specific sensory attributes to describe the 

unique sensory profile of honeybush, Theron et al. (2014) researched the characteristic sensory 

profile of six Cyclopia species (C. genistoides, C. subternata, C. maculata, C. intermedia, C. 

longifolia and C. sessiliflora) using descriptive sensory analysis (DSA).  In the latter study a range 

of sensory attributes were identified to describe the “characteristic” sensory profile of honeybush.  

Generally honeybush can be described as having a “floral”, “sweet-associated”, “fruity”, “plant-like” 

and “woody” aroma and flavour, as well as a sweet taste and slightly astringent mouthfeel.  The 

respective honeybush species also illustrated other specific aroma, flavour and taste attributes that 

were typical of one or more of the species tested.  The full range of sensory attributes that were 

associated with these six Cyclopia species was used to construct a lexicon and generic sensory 

wheel for honeybush, the latter being a graphical representation of the sensory attributes 

associated with these Cyclopia species (Theron et al., 2014).  Quality tools such as these are often 

used in the industry to fingerprint the aroma, flavour, taste and mouthfeel of a product, or to 

determine to what extent different batches of a product differ from each other (Drake & Civille, 

2002; Lee & Chambers, 2007).  Sensory wheels can also be used as a communication tool by 

marketers and exporters, or when developing products for niche markets, i.e. products with specific 

sensory profiles that would appeal to certain groups of consumers (Aparicio & Morales, 1995). 

To expand the global market it is important to define the characteristic sensory profile of the 

respective species; however, as a retail product, honeybush rarely consists of one single Cyclopia 

species.  Currently, the composition of blends depends on the availability of plant material as well 

as production yield.  It is, however, important to consider the sensory profiles of the respective 

species when blending, primarily to ensure that it does not result in non-descript, variable profiles.  

Unique species-specific profiles would definitely be lost during blending.  Such profiles could 

potentially be used to establish niche markets (Joubert et al., 2011). 

DSA is usually conducted when the aim is to determine the full sensory profile of a product 

or range of products.  DSA is the best method when precision and information obtained are 

important.  DSA uses a trained panel of assessors and this aspect can be costly and time-

consuming, especially when the experimental design has to account for sensory differences 

between treatments and sensory variability within treatments (Lawless & Heymann, 2010).  In 

some instances DSA is too difficult for application by industry.  In view of this, there is an obvious 

need for efficient, rapid sensory profiling methodologies that are cheaper, simpler to use and which 

can identify the most important sensory differences between products (Bavay et al., 2013).  Sorting 

is one of the most popular rapid profiling techniques developed for industry.  The sorting task is 

both simple and quick to perform, and the panel needs no formal training prior to performing a 
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sorting task and this technique is based on an innate cognitive process which humans use daily 

(Campo et al., 2008; Chollet et al., 2011).  This method requires that a panel of judges sort a set of 

10 to 20 products into groups containing similar products (Chollet et al., 2011; Lawless & 

Heymann, 2010).  It is generally believed that items placed in a certain category do not represent 

that group equally, but rather contain items that share more sensory attributes with that specific 

group than with any other group (Ballester et al., 2008; Bavay et al., 2013). 

In view of the above, the objectives of this study were to 1) determine the defining aroma, 

flavour, taste and mouthfeel attributes of C. genistoides, C. subternata, C. maculata and C. 

longifolia, 2) to validate the generic sensory wheel and lexicon for honeybush and to develop 

species-specific sensory wheels for the respective species, and 3) to test the viability of sorting as 

a rapid profiling method to classify three honeybush species (C. genistoides, C. maculata and C. 

subternata) according to their sensory profiles. 

2. MATERIALS AND METHODS  

A summary of the samples used for DSA and sorting, and the data analysis done on each 

methodology is displayed in Fig. 1. 

 Sample collection and processing of plant material 2.1

Different batches of plant material (C. genistoides, C. maculata and C. subternata) were harvested 

over a four-year period, i.e. 2010, 2012 and 2013, at several locations in the Western Cape 

Province, South Africa (Table 1).  Similarly, three sets of C. longifolia plant material (Table 1) were 

sourced in 2013 from three locations in the Eastern and Western Cape Provinces, South Africa 

(Bredasdorp, Barrydale & Tsitsikamma).   

The C. genistoides, C. maculata and C. subternata batches represent two processing 

conditions, i.e. fermentation at 80°C for 24 h and 90°C for 16 h, whereas the C. longifolia 

represents fermentation at 80°C for 24 h and 90°C for 24 h.  All four species also differed in terms 

of harvesting season, geographical area and producer, primarily to ensure encompassing the 

largest possible percentage of product variation.  The samples were processed as described in 

Chapter 3. 

 Descriptive sensory analysis (DSA) 2.2

2.2.1 Preparation of infusions 

The sample infusions were prepared for DSA as described in Chapter 3. 

2.2.2 DSA training and testing procedures 

DSA was conducted as described in Chapter 3.  For the study on C. genistoides, C. maculata and 

C. subternata eight one-hour training sessions were used to train the panel in the sensory 

assessment of the three species.  After that 6 to 10 samples were analysed in triplicate in each 

testing session.  The DSA analyses of the C. genistoides, C. maculata and C. subternata (three 

sample sets sourced in 2010, 2012 and 2013) were conducted in 2012 and 2013.  As all the 
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batches of C. longifolia were sourced in 2013, this species was tested in 2013 over a three-week 

period.   

The list of descriptors generated for the respective species sourced in 2010 (C. genistoides, 

C. maculata and C. subternata), 2012 (C. genistoides, C. maculata and C. subternata) and 2013 

(C. genistoides, C. maculata, C. subternata, as well as C. longifolia) can be seen in Table 2.  

 Sorting 2.3

Two sorting procedures, instructed and uninstructed sorting, were conducted on two consecutive 

days.  When conducting instructed sorting, samples are usually sorted according to guidelines or 

specific sensory profiles.  During uninstructed sorting each panellist can sort the sample set as 

they see fit; no guidelines are given on how to sort or categorise the samples.  The sorting step is 

usually concluded with a descriptive task where each judge has to assign one or more sensory 

attributes to describe the overall sensory profile of each of the groups of samples.   

2.3.1 Samples for sorting 

For instructed sorting, a total of 12 samples were selected from the 2013 sample set (Table 3).  

This sample set consisted of four samples of C. genistoides, four of C. maculata and four of C. 

subternata, with each of the four samples being representative of the “typical” sensory profile of the 

Cyclopia species in question.  Sorting was not conducted on C. longifolia.  

For uninstructed sorting, 13 samples were selected from the 2012 and 2013 sample sets of 

C. genistoides, C. maculata, and C. subternata.  Six samples, two from each species, were 

selected from each year (Table 4).  The selected samples represented the “typical” sensory profile 

of each species.  An extra sample, consisting of a mixture of the latter three species, was added to 

the sample set, primarily to ascertain whether the mixed sample will be grouped on its own or 

together with samples of the three species.  Samples of the 2013 sample set were selected to 

prepare this mixture, containing equal amounts of G13_90_3, M13_90_4 and S13_80_2. 

2.3.2 Sorting panel 

The already trained DSA panel consisting of 12 female assessors was used to conduct the sorting 

analysis.  The panel was regarded as an expert panel as they had been part of the DSA panel 

since 2012 and thus familiar with the sensory quality of the relevant honeybush species.   

2.3.3 Sorting procedure 

The first day consisted of two sessions of instructed sorting.  In the first session the samples were 

sorted according to aroma, and in the second session according to the palate attributes, i.e. the 

flavour, taste and mouthfeel attributes.  Each panellist received 12 honeybush infusions, four of 

each species (C. genistoides, C. maculata and C. subternata; labelled A – L; Table 3).  The 

temperature of the honeybush infusions were controlled, as described in Chapter 3.  The panel 

members were instructed to sort the samples into a minimum of three groups according to aroma 

(session 1) and palate attributes (session 2).  For this they had to use the list of aroma and palate 

attributes associated with the respective species, as depicted in Tables 5 and 6.  None of the 
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groups was allowed to contain more than six samples.  The sorting task was concluded with a 

descriptive step where the judges had to assign sensory attributes to the respective sample 

groupings, again using the provided list of attributes (Tables 5 & 6).  The questionnaires used for 

instructed sorting are given in Addendum B (Fig. 1B). 

The uninstructed sorting sessions took place on the second day.  The panellists each 

received 13 honeybush infusions, labelled A – M (Table 4).  In the first uninstructed sorting session 

the panel was instructed to group the samples according to similar aroma attributes and in the 

second session according to similar flavour, taste and mouthfeel attributes.  No instructions were 

given as to how the samples should be grouped or which attributes the panellists should use to 

describe each grouping of samples.  The panellists were allowed to form a maximum of six groups 

and each group had to be described with no more than five sensory attributes.  An example of the 

questionnaire is given in Addendum B (Fig. 2B). 

 Statistical procedures 2.4

2.4.1 Statistical analysis of DSA data 

Univariate and multivariate analyses were conducted as described in Chapter 3. 

2.4.2 Statistical analysis of sorting data 

DISTATIS was used to analyse both the instructed and uninstructed sorting data (Abdi et al., 

2007).  This method takes into account the data from each assessor involved in the sorting task 

and the resulting plots indicate whether the samples could be categorised into different groupings.  

Correspondence analysis (CA) was used to evaluate the similarity of samples, based on the 

descriptors assigned to the samples during the descriptive task (Cadoret et al., 2009).  The 

attributes assigned to each group by the panellists for CA analysis were condensed into broader 

categories by using the generic honeybush sensory wheel (Theron et al., 2014).  This was done to 

reduce the number of categorical variables, simplifying data analysis.  Rv coefficients were 

calculated to measure the similarity between product configurations (Abdi et al., 2007).  The Rv 

coefficients range from between 0 and 1, and the closer the values are to 1, the more similar the 

groupings on the respective plots (Nestrud & Lawless, 2008).  Ward‟s cluster analysis, an example 

of agglomerative hierarchal clustering (AHC), was also performed (Giacalone et al., 2013) to create 

clusters of samples deemed similar in terms of their sensory characteristics (De Saldamando et al., 

2013).  This method allows for the relationships between samples to be viewed on more than two 

principal components.  All data analyses were performed using the STATISTICA program 

(Statistica 10, StatSoft Inc., Tulsa, Oklahoma, USA). 

3. RESULTS AND DISCUSSION 

According to previous research (Theron et al., 2014), the “characteristic” sensory profile of 

honeybush has recently been defined as a combination of “floral”, “fruity”, “woody”, “plant-like” and 

“sweet-associated” aromas with a sweet taste and slightly astringent mouthfeel.  Theron (2012) 

investigated the sensory profile of 58 honeybush samples consisting of six Cyclopia species (C. 
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sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata and C. maculata) to 

ultimately define the overall sensory profile of honeybush and to develop a generic sensory wheel 

and lexicon that could be used by the honeybush industry as entry-level quality-control tools.  

Discriminant analysis (DA) of the latter sample set showed that the Cyclopia species could be 

grouped into three groups according to their sensory profiles (Fig. 2).  It was, however, suggested 

that the latter result, i.e. the classification of samples according to similar profiles, should be 

verified with a larger sample set sourced over more than one production season.  It was also 

suggested that it would be worthwhile to validate the generic sensory wheel developed by Theron 

et al. (2014) and, furthermore, to create species-specific sensory wheels for the honeybush 

industry.  To achieve the latter aim, it was important to use a large data set encompassing a 

significant percentage of variation; thus samples harvested over more than one production year 

and processed according to different temperature/time regimes were used for the present study.  

 Species-specific and generic sensory profile of honeybush 3.1

3.1.1 Species-specific profiles of C. genistoides, C. maculata, C. subternata and C. longifolia 

The sensory profile of a large sample set of C. genistoides, C. maculata and C. subternata, 

harvested over three production years (2010, 2012 and 2013), and C. longifolia harvested from 

three different production regions in 2013, was investigated.  All four Cyclopia species were also 

processed according to two different temperature/time regimes (Table 1).  These measures were 

taken to try and capture a significant amount of product variation.   

Principal component analysis (PCA) and discriminant analysis (DA) were conducted to 

determine the sensory profiles of the respective species, as well as their similarities and 

dissimilarities in terms of sensory attributes (Fig. 3 – Fig. 9).  PCA searches for patterns of 

correlation, while DA searches for the discrimination of products relative to the disagreement 

among judges or to error (Lawless & Heymann, 2010).  The DA plots were developed by 

conducting forward stepwise model selection.  The variable with the largest contribution to the 

model was added first.  Then the second variable was added if its entry probability was greater 

than the entry threshold value.  The impact of removing each variable was evaluated after the third 

value was added.  A variable was removed from the model if the probability of the calculated 

statistic was greater than the removed threshold value (Friedman, 1989).  In the end the DA plot 

was drawn up from the variables present in the model after all the variables have been added and 

evaluated. 

The PCA and DA plots for C. genistoides (Fig. 3a & Fig. 4a), C. maculata (Fig. 5a & Fig. 

6a) and C. subternata (Fig. 7a & Fig. 8a) indicate a split in the samples according to production 

years, and not necessarily according to production regimes.  The attributes associated with the 

samples are displayed on the respective loadings plots (Fig. 3b – Fig. 8b).  For each of the three 

species, considerable differences were noted in the sensory profiles of the respective production 

years.  These so-called year-differences follow no specific pattern, as can be seen from Fig. 3 to 

Fig. 8.  This could be the result of a number of factors.  A study done on Sri Lankan tea suggests 

Stellenbosch University  https://scholar.sun.ac.za



93 
 

that season, climate, husbandry, soil fertility and processing conditions could have an interactive 

influence on the phenolic profile of teas (Jayasekera et al., 2014).  Joubert et al. (2014) found that 

seed source, harvest time as well as harvest interval affected the chemical composition of C. 

genistoides.  Although determining the differences between production years was not the aim of 

this study, it was still interesting to note that per species there were sensory differences from 

production season to production season.  As the different batches of plant material of a specific 

species were not harvested from the same plants on a yearly basis, the changes in the sensory 

profiles observed cannot be attributed solely to seasonal effects and only serve to demonstrate 

that, per species, unidentified factors or a combination of factors induced changes in the sensory 

profile.  

As indicated in Chapter 3, all the samples of the species C. longifolia were harvested during 

one production season (2013) and two of the temperature/time regimes that resulted in an 

acceptable sensory profile (80°C/24 h and 90°C/24 h) were chosen for the current study.  The PCA 

scores plot (Fig. 9a) indicates a split between the samples fermented at 80°C and 90°C along PC2.  

The samples fermented at 90°C associate with the “fynbos-floral”, “rose geranium”, “apricot/apricot 

jam” and “woody” aroma and flavour attributes, while the samples fermented at 80°C associated 

more with the negative sensory attributes such as “green grass”, “hay/dried grass” and “cooked 

vegetable” (Fig. 9b).   

One of the objectives of this study was to identify the defining sensory attributes of each 

species, primarily to determine whether species-specific sensory wheels could ultimately be 

developed.  The relative importance of the major sensory attributes of each species was 

investigated by plotting graphs displaying the occurrence of an attribute (as a percentage of the 

number of samples analysed) versus the average intensity of an attribute (Fig. 10).  In these plots 

average intensities of ≥10 are considered worthwhile noting; however, attributes rated lower in 

intensity, especially negative attributes, should not be disregarded as they can still, singly or 

collectively, have a significant influence on the aroma and flavour of the infusion (Theron et al., 

2014).  All samples of the four species had “fynbos-floral”, “woody” and “fynbos-sweet” notes, a 

sweet taste and astringent mouthfeel.  The average intensity of “fynbos-floral” was >35 in all four 

species, emphasising the typical but reasonably prominent “floral” note of this species (Theron et 

al., 2014).  “Fruity-sweet” was noted for all samples of C. longifolia (Fig. 10b), C. maculata (Fig. 

10c) and C. subternata (Fig. 10d), with approximately 90% of the C. genistoides (Fig. 10a) samples 

illustrating this attribute.  

It is quite clear that C. maculata and C. subternata have similar sensory profiles in terms of 

occurrence and average intensity of attributes.  “Caramel” aroma was present in 41% of the C. 

subternata and 50% of the C. maculata samples.  Bitter taste was absent in C. subternata and 

present in less than 2% of the C. maculata samples at extremely low average intensities (<5).  

In contrast, C. genistoides and C. longifolia differed from C. maculata and C. subternata as 

their “rose geranium” and “apricot/apricot jam” aromas were more prominent.  “Rose geranium” 
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aroma was present in 66% of C. genistoides and 72% of C. longifolia samples at an average 

intensity >5.  “Rose geranium” flavour could also be picked up in both C. genistoides and C. 

longifolia, i.e. in approximately 40% of the samples.  The aroma attribute “apricot/apricot jam” was 

present in 93% of C. genistoides and 100% of C. longifolia samples at an average intensity >10.  

“Hay/dried grass” flavour was present in all the C. genistoides and C. longifolia samples at an 

average intensity >10.  The aroma attribute “hay/dried grass” was also present in both species, but 

the occurrence differed slightly; it was present in all C. longifolia samples at an average intensity of 

just >10, and in C. genistoides the occurrence was 80% and average intensity approximately 10.  

Bitter taste was most prominent in C. genistoides; it had an average intensity >10 and was present 

in all the C. genistoides samples.  Bitter taste was not regarded typical of the other three species, 

and if present, the occurrence and intensities were extremely low.  The intensity of sweet taste of 

the different species was very similar, with an average intensity of approximately 20 for all four 

species.  The average intensity of astringency was approximately 25 in C. genistoides and C. 

longifolia, and 20 in C. maculata and C. subternata.  The average intensity values, along with the 

minimum and maximum values of each attribute for each species, can be seen in Table 7.  

The occurrence/intensity scatter plots (Fig. 10) for C. genistoides, C. longifolia, C. maculata 

and C. subternata indicate that most of the sensory attributes are present in all four species; 

however, the intensities of the respective attributes differ between species and this results in each 

species having a distinct, discernible sensory profile.   

Spider plots, based only on attribute intensities, can also be used to illustrate product 

differences.  Spider plots are regarded as a simple, quick and convenient way to visualise intensity 

differences in sensory profiles (Koch et al., 2012).  The spider plots depicted in Fig. 11 illustrate the 

aroma attributes, and in Fig. 12 the flavour, taste and mouthfeel attributes of the respective 

species.  It is evident that the aroma and flavour profiles of C. maculata and C. subternata are very 

similar and differ from those of C. genistoides and C. longifolia.  Considering the spider plots for 

aroma (Fig. 11), it can be noted the attributes “fynbos-floral”, “fynbos-sweet” and “woody” are 

prominent in all four species.  The spider plots for the flavour, taste and mouthfeel attributes (Fig. 

12) also show a similar pattern with “fynbos-floral” flavour, “woody” flavour, sweet taste and 

astringency being again prominent in all four species.  These tendencies were also evident in the 

scatter plots (Fig. 10).  Differences between the respective species, i.e. according to the spider 

plots, are mostly a result of minor attributes, most notably “rose geranium” aroma and flavour in C. 

genistoides and to a lesser extent in C. longifolia, as well as bitter taste of C. genistoides.   

3.1.2 Overall sensory profile of four honeybush species  

The sensory data of the four species were combined to obtain further insight into the major 

similarities and dissimilarities between the tested Cyclopia species and the correlation of attributes 

when using multivariate techniques such as PCA and DA.  The PCA scores plot (Fig. 13a) shows 

that the four species mostly overlap, with no clear grouping between C. maculata, C. subternata 

and C. longifolia.  Cyclopia genistoides is, however, partially separated from the other three 
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species.  The latter division could be attributed to the “rose geranium” aroma and flavour, as well 

as the bitter taste and astringent mouthfeel indicated on the right side of the PCA loadings plot 

(Fig. 13b).  

Fig. 13b also demonstrates the correlation between the aroma (orthonasal, ON) and flavour 

(retronasal, RN) attributes.  It can be seen that most of the aroma and flavour attributes lie close 

together on the PCA loadings plot, which indicates that these notes are perceived similarly on the 

nose and palate.  These associations can be justified when considering the linear association of 

ON and RN attributes (Talavera-Bianchi et al., 2010).  The degree of linear association is shown by 

the correlation coefficient and the closer r is to 1, the stronger the linear association between the 

two variables is (Taylor, 1990).  According to the Pearson‟s correlation coefficients (Table 8 and 

Table 9), there are significant correlations between most of the aroma and flavour attributes.  

There are strong positive correlations (r > 0.7) between aroma and flavour for the attributes, i.e. 

“fynbos-floral” (r = 0.855), “rose geranium” (r = 0.948), “rose perfume” (r = 0.859), 

“lemon/lemongrass” (r = 0.719), “woody” (r = 0.934), “cassia/cinnamon” (r = 0.955) (Table 8), 

“burnt caramel” (r = 0.761), “hay/dried grass” (r = 0.831), “green grass” (r = 0.815) and “cooked 

vegetable” (r = 0.921) (Table 9).  Certain aroma attributes are also correlated with the basic taste 

modalities such as sweet and bitter taste.  Sweet taste had a positive but low significant correlation 

with “caramel” (r = 0.456) and “cassia/cinnamon” (r = 0.381) (Table 8), whereas sweet taste 

correlated negatively with “cooked vegetable” (r = -0.469) (Table 9).  It is also clear that bitter taste 

had a strong positive correlation with “rose geranium” (r = 0.678) (Table 8).  Noble (1996) found 

that the perceived intensity of an aroma can be increased by certain basic tastes.  Taste intensity 

can also be increased by certain aromas, i.e. if they have a logical association, such as sweetness 

and “caramel” aroma.  However, it is important to note that not all relationships between attributes 

that lie close on the PCA loadings plot and have high Pearson‟s correlation coefficients are 

meaningful, as certain attributes might change in a similar way over a large sample set, which may 

cause certain attribute groupings (Talavera-Bianchi et al., 2010).  In the current study, it can be 

assumed that there is a logical association between “caramel” aroma and sweet taste, as a 

“caramel” aroma might enhance the perception of sweet taste.  The correlation between bitter taste 

and “rose geranium” aroma is, however, not evident in this case and it is probably a factor of two 

attributes changing in a similar way.  

DA forward stepwise model selection was conducted to generate a perceptual map of the 

four Cyclopia species, primarily to indicate whether the respective species formed separate groups 

and whether specific attribute(s) were responsible for the groupings (Fig. 14).  Three groups were 

formed on the DA plot (Fig. 14a).  Cyclopia maculata and C. subternata were grouped together, 

indicating that these two species have similar sensory profiles when considering attribute 

intensities.  Cyclopia genistoides and C. longifolia were grouped separately on the DA plot (Fig. 

14a).  It seems that C. genistoides, situated in the bottom left quadrant of the DA plot is primarily 

driven by “rose geranium” flavour and not, as expected, by bitter taste.  According to Fig. 14b, C. 
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longifolia seems to be driven by the attributes that are generally associated with Cyclopia species 

per se, i.e. “fynbos-floral” notes, as well as “woody” flavour, and, not as expected, by the attributes 

indicated in Section 3.1.1.  This discrepancy could possibly be explained by the application of 

different analyses.  The DA forward stepwise model selection only looks at attribute intensities, 

whereas the scatter plots use attributes intensities as well as occurrence.  

In summary, the following attributes were present in all four Cyclopia species, i.e. “fynbos-

floral”, “woody”, “fynbos-sweet”, sweet taste and astringent.  These attributes were present in 

100% of the samples (Fig. 10) and the respective attributes illustrated the following average 

intensities for all Cyclopia species tested: “fynbos-floral” aroma >35, “woody” aroma >29, “fynbos-

sweet” aroma >30, sweet taste >19 and astringent >20 (Table 7).  Thus the “characteristic” 

sensory profile of honeybush can be defined as a “fynbos-floral”, “woody”, “fynbos-sweet” aroma 

with a sweet taste and slightly astringent mouthfeel.  This result differs slightly from the 

“characteristic” sensory profile as defined by Theron et al. (2014), which also included “fruity” and 

“plant-like”.  The expanded sample set used for this study, i.e. 150 samples, most probably 

resulted in a larger product variance and thus a slightly different generic profile (Næs et al., 2010).  

 Development of quality control tools for the honeybush industry 3.2

Theron et al. (2014) developed the first generic sensory wheel and lexicon for honeybush 

consisting of 30 descriptive terms.  A lexicon usually consists of a list of sensory descriptors, 

definitions for each descriptor, as well as food- and/or chemical-based reference standards 

illustrating the respective sensory attributes, whereas a sensory wheel is just a graphical 

representation of the descriptive terms (Drake & Civille, 2002).  The three-tier sensory wheel that 

was developed for honeybush by Theron et al. (2014) consisted of the following attributes: 26 for 

flavour, 3 for taste and 1 for mouthfeel.  The secondary attributes, such as “fynbos-floral” and 

“fruity-sweet”, formed the inner tier of the latter honeybush wheel.  The middle tier consisted of ten 

primary descriptors that grouped together similar secondary attributes, whereas the outer tier 

classified the attributes according to their being positive or negative.  The positive attributes are all 

typical of the product in question, whereas the negative attributes can be used by processors when 

they have to grade samples according to unacceptable or poor quality (Drake & Civille, 2002).  

Theron et al. (2014) furthermore suggested that the honeybush wheel could be used as a 

communication tool between researchers and industry, or when developing new honeybush 

products.  As the first version of the sensory wheel was based on the results of only 58 batches of 

honeybush, it was suggested that this version of a generic sensory wheel should be validated with 

more samples and that the development of species-specific sensory wheels should also be 

investigated (Theron et al., 2014). 

Sensory wheels and lexicons have been established for a variety of products such as 

brandy (Jolly & Hattingh, 2001), beer (Meilgaard et al., 1979), red wine (Gawel et al., 2000), olive 

oil (Aparicio & Morales, 1995), floral honey (Galán–Soldevilla et al., 2005), green tea (Lee & 

Chambers, 2007) and rooibos tea (Koch et al., 2012).  The sensory wheels visually display the 
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range of and relationship between descriptors (Lawless & Civille, 2013).  It is important that the 

range of descriptors are understood by experts and the general public alike (Jolly & Hattingh, 

2001).  Lexicons usually add to this understanding.  Vázquez-Araújo et al. (2012) developed a 

sensory lexicon for Turrón where each reference standard, illustrating a specific sensory attribute, 

was accompanied by an intensity score (0 (none) - 15 (extremely strong)).  Tools such as these 

help the industry to better understand the importance of a sensory attribute.  In view of this, it was 

decided to investigate the inclusion of average intensity for each of the respective attributes in the 

second version of the sensory wheel for honeybush.  

When developing and validating a sensory wheel, it is important to carefully consider the 

size of the sample set.  According to Lawless and Civille (2013), the sample set should be large 

enough to represent the entire product category.  For the current study a large sample set 

spanning three production years (2010, 2012 and 2013) was sourced for three of the species (C. 

genistoides, C. maculata and C. subternata).  These samples differed in season, climate, producer 

and processing conditions (80°C/24 h and 90°C/16 h), primarily to try and capture maximal sample 

variation.  The latter processing conditions were chosen as Theron (2012) indicated in a previous 

study that 80°C/24 h and 90°C/16 h could be regarded as ideal processing conditions for C. 

genistoides, C. maculata and C. subternata, i.e. processing conditions that should result in 

“characteristic” sensory profiles when considering the latter three Cyclopia species.  The C. 

longifolia samples were all harvested in the same year, but differed in producer and geographical 

area.  The samples were also fermented at the two optimum temperature/time combinations 

(80°C/24 h and 90°C/24 h), as determined in Chapter 3.  The results of the total group of 150 

honeybush samples, consisting of four honeybush species, were thus used to develop the second 

version of the generic sensory wheel for honeybush.  To capture more information two wheels 

were developed, one for aroma (Fig. 15) and one for flavour, taste and mouthfeel (Fig. 16).  The 

aroma wheel for honeybush consists of 18 aroma attributes and the flavour wheel of 13 flavour, 3 

taste and 1 mouthfeel attribute(s).  As with the previous sensory wheel for honeybush, the new 

sensory wheels consist of three tiers.  The outer tier represents the two quality divisions, i.e. the 

positive and negative attributes.  The middle tier contains the primary, “broad-based” attributes, 

whereas the inner tier contains the specific, secondary attributes.  A new addition to the generic 

sensory wheel for honeybush is that the average intensity of each of the specific attributes is 

indicated on the wheel; therefore each slice width corresponds with the specific intensity, thus the 

wider the width of the slice, the higher the average intensity of the specific attribute.  Each wheel is 

also accompanied by bar graphs indicating the percentage occurrence of the respective attributes 

(Fig. 15b & c and Fig. 16b, c & d).  These graphical representations make it easy to see which the 

most prominent attributes in honeybush are.  Changes were also made to the sensory lexicon 

developed by Theron et al. (2014) to reflect the changes made to the wheel (Table 10).   

As already mentioned, the aim of this study was also to develop species-specific aroma 

and flavour wheels for C. genistoides, C. longifolia, C. maculata and C. subternata (Fig. 17 & Fig. 
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18).  The species-specific wheels give an indication of the prominent attributes present in each 

species, but also illustrate the significant differences between species.   

The newly developed generic and species-specific sensory wheels will definitely be of value 

to the honeybush industry, i.e. in quality control or grading, where it is important to ensure 

consistent product quality.  They can also assist during the development of species-specific 

honeybush products for niche markets, or when it is important to blend different species to end up 

with a blend with a specific sensory profile. 

 Rapid methodologies for sensory profiling 3.3

The determination of sensory quality plays an important role in quality control.  DSA is one of the 

most commonly used tools to determine the qualitative and quantitative sensory profile of a product 

(Lawless & Heymann, 2010).  This method has been used effectively in the determination of the 

full sensory profile of herbal teas such as rooibos (Koch et al., 2012; Jolley, 2014), as well as 

honeybush (Theron et al., 2014).  DSA is sometimes regarded as being too time-consuming and 

costly for the food industry, and one would assume that it would be similar for a small industry such 

as the honeybush industry.  Rapid profiling methods such as sorting have been used on a large 

variety of food products (Lawless et al., 1995; Valentin et al., 2012) and they have recently been 

investigated for a South African herbal tea where rooibos infusions were categorised based on 

their perceived similarities of aroma or palate quality attributes (Jolley, 2014).  The sorting task can 

be used to group together samples of similar sensory profiles, but the grouping of samples can be 

combined with a descriptive step where each grouping of samples is described with one or more 

sensory attributes (Chadoret et al., 2009; Chollet et al., 2011).  Sorting does not result in any 

quantitative information, but can be used to determine the broad-based sensory profile of a product 

or the consistency of product quality (Chollet et al., 2011).  The sorting task can be instructed or 

uninstructed.  During instructed sorting the panellists are given a predefined set of attributes or 

profiles according to which the samples need to be sorted.  During uninstructed sorting the 

panellists are given no guidelines for grouping the samples (Valentin et al., 2012).  In the literature 

instructed sorting is known as “directed sorting” and uninstructed sorting as “free sorting” (Valentin 

et al., 2012).  The number of assessors required for sorting has not been clearly indicated.  Sorting 

tasks using between 8 and 22 panellists have been conducted (Abdi et al., 2007; Chollet et al., 

2011).  Blancher et al. (2007) suggested that the efficacy of the sorting task itself has a bigger 

influence on the results than the number of panellists.  A trained/expert or untrained panel can be 

used to perform the sorting task (Cartier et al., 2006; Chollet et al., 2011), depending on the 

objective of the experiment.  When the objective is to determine the broad-based sensory profile of 

a product or to group samples according to quality grades, it would be beneficial to use an expert 

panel, which consists of assessors with knowledge of the product profile (Louw et al., 2013; Jolley, 

2014).  Consumers or untrained panellists can be used when it is important to ascertain how the 

general consumers perceive and classify a group of samples (Cartier et al., 2006).  The results 
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obtained from an expert sorting panel were found to be comparable to those of conventional DSA 

panel (Lelièvre et al., 2008; Chollet et al., 2011; Louw et al., 2013). 

In this study the instructed sorting task was investigated to determine if it can be used to 

describe the broad-based sensory profile of different Cyclopia species (C. genistoides, C. maculata 

and C. subternata).  The objective was to compare the results of the sorting task to that obtained 

from DSA, primarily to determine if sorting can be used as an alternative method to DSA.  If the 

latter is true, the honeybush industry would be able to use instructed sorting as a quick profiling 

method.  Uninstructed sorting was also conducted to find out whether an expert panel would be 

able to distinguish between different species when conducting free sorting, i.e. when no 

instructions are given as to how the samples should be categorised.  

3.3.1 Instructed sorting 

Instructed sorting was conducted using samples from one production year (2013) and the sample 

set consisted of C. genistoides, C. maculata and C. subternata.  A panel of expert judges were 

instructed to sort the samples in two consecutive sessions according to species-specific aroma, as 

well as flavour, taste and mouthfeel attributes, as indicated in Tables 5 and 6, respectively.  

DISTATIS was firstly employed to ascertain group formations.  Based on how the samples 

are grouped, a DISTATIS plot can show the similarities between the samples.  DISTATIS does not 

use the mean value of panellists as is the case with multidimensional scaling or MDS (Abdi et al., 

2007).  DISTATIS takes into account individual panellists‟ variances and the distance matrix for 

each individual panellist is integrated in the most efficient way to eliminate the effect of individual 

panellists‟ error variance (Chollet et al., 2011).  Cluster analysis can also be used to ascertain 

sample groupings.  This method is a statistical classification method that makes no preceding 

assumptions about the important differences within a sample set (Punj & Stewart, 1983).  In this 

study Ward‟s cluster analysis was also used to verify the respective groups formed on the 

DISTATIS plots.  Ward‟s cluster analysis tries to keep the overall within-cluster variation low, by 

combining similar items (Mooi & Sarstedt, 2011).  Correspondence analysis (CA), a multivariate 

method (McEwan & Schlich, 1991/92), was used as a graphical tool to study the symmetric 

association between categorical variables obtained from the descriptive step of the sorting task 

(Beh et al., 2011).  CA is a generalised PCA, tailored for the analysis of qualitative data (Valentin et 

al., 2012).   

Cluster analysis of the data obtained from instructed sorting according to aroma profiles 

resulted in a dendrogram showing three distinct clusters (Fig. 19).  Each cluster contains four 

samples from the same Cyclopia species.  The results indicate that the panellists were able to sort 

the samples according to species: C. genistoides (G13_90_4, G13_90_3, G13_80_2 and 

G13_80_1), C. maculata (M13_80_2, M13_90_4, M13_90_3 and M13_80_1) and C. subternata 

(S13_80_1, S13_90_3, S13_80_2 and S13_90_4).  The same groupings can be seen on the 

DISTATIS plot (Fig. 20), although the C. maculata and C. subternata groups both show one 

sample slightly distant from the rest of the group.  C. maculata and C. subternata can have very 
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similar sensory profiles, as mentioned in Section 3.1, thus potentially making grouping according to 

species slightly difficult.  The CA plot (Fig. 21) shows the same groupings as on the DISTATIS plot 

(Fig. 20).  Each group corresponded with aroma descriptors that lie in close proximity to the 

samples (Fig. 21).  According to instructed sorting, C. genistoides associated with “apricot/apricot 

jam”, “fruity-sweet” and “rose geranium”, C. maculata with “fynbos-floral”, “fynbos-sweet” and “rose 

perfume”, and C. subternata with “cooked apple”, “cassia/cinnamon” and “caramel” aroma 

attributes.  The purpose of this study was to compare the CA results with that of DSA (Fig. 22), 

primarily to determine the efficacy of instructed sorting as profiling method.  It can be seen on the 

CA (Fig. 21) and PCA (Fig. 22) plots that the samples split into three groups according to species.  

It is thus clear that same aroma attributes were associated with the same samples on the CA and 

PCA plots.  It is important to note that the latter PCA plot contains only attributes that were used 

during sorting, and not the full sensory profile as obtained through DSA (Chapter 4, Fig. 3 - 8).  

Rv coefficients were computed to compare the similarity between sorting plots and the PCA 

plot obtained from DSA.  The Rv coefficient, multivariate generalisation of the squared Pearson 

correlation coefficient, ranges between 0 and 1 and measures the similarity between two plots 

(Abdi, 2007; Abdi et al., 2007).  The closer the Rv coefficient is to 1, the higher the similarity 

between the plots; however, an Rv coefficient closer to 0 indicates that two plots are less similar, 

thus reducing the assurance that they can both be used to illustrate the same results.  Previous 

studies have considered various “cut-off” points for the Rv coefficient to indicate significant 

similarity.  An Rv value of 0.77 was suggested by Faye et al. (2004) to indicate significant 

similarity, Tang and Heymann (2002) found that 0.68 indicated significant similarity, whereas 

Cartier et al. (2006) suggested that, as a basis of comparison, an Rv of 0.7 should indicate a good 

level of agreement between two configurations.  The Rv coefficient indicating the similarity of 

groupings in the DISTATIS (Fig. 20) and CA plots (Fig. 21) was 0.91 (Table 11).  When comparing 

the similarity of the DISTATIS (Fig. 20) and PCA plots (Fig. 22), the Rv coefficient was close to 1 

(Rv = 0.94; Table 11), whereas the Rv coefficient comparing the CA and the PCA plot was also 

close to 1 (Rv = 0.96).  These results indicate that the sample groupings in the DISTATIS, CA and 

PCA plots are significantly similar, indicating that it is possible to use instructed sorting as a rapid 

technique when grouping Cyclopia species according to diverse or reasonably similar aroma 

profiles.  The addition of the descriptive step added to the success of this rapid profiling technique 

and indicated that it is possible to replace DSA with instructed sorting when the objective is to 

determine the broad-based aroma profile of Cyclopia species. 

The samples were also sorted according to species-specific flavour, taste and mouthfeel 

profiles (Table 6).  Both the Ward‟s cluster analysis (Fig. 23) and DISTATIS plots (Fig. 24) indicate 

that the samples were grouped according to species (C. genistoides, C. maculata and C. 

subternata).  The four samples from each species lie in close proximity on the DISTATIS plot (Fig. 

24), indicating that they are similar in flavour, taste and mouthfeel attributes.  A high similarity was 

also observed (Rv = 0.93, Table 11) between the DISTATIS (Fig. 24) and CA plots (Fig. 25), both 
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plots again illustrating similar group formations.  The CA plot (Fig. 25) also displays descriptive 

terms generally associated with each species: C. genistoides associated with “apricot/apricot jam”, 

“rose geranium” and “hay/dried grass” flavour attributes, bitter taste and astringent mouthfeel, C. 

maculata associated with “woody”, “pine”, “fynbos-floral” and “rose perfume” flavour attributes, 

whereas C. subternata associated with “cooked apple” and “cassia/cinnamon” flavour attributes, a 

sweet taste and low degree of astringency.  The Rv coefficient of the DISTATIS (Fig. 24) and PCA 

plots (Fig. 26); and the CA (Fig. 25) and PCA plots (Fig. 26) were 0.89 and 0.86, respectively.  

These results again indicate that the sample groupings in the DISTATIS, CA and PCA plots are 

similar, indicating that it is possible to use instructed sorting as a rapid technique when grouping 

Cyclopia species according to flavour, taste and mouthfeel attributes.  Again, the descriptive step 

added to the success of this rapid profiling technique.  It is important to note, however, that Rv 

coefficients were slightly lower when conducting instructed sorting based on the palate attributes 

(Rv coefficients ranged between 0.89 and 0.86) than when based on aroma attributes (Rv 

coefficients ranged between 0.96 and 0.94).  The slight lowering of Rv values could possibly be 

attributed to the lower variation in the flavour, taste and mouthfeel intensities (Koch et al., 2012; 

Jolley, 2014).  In view of this, instructed sorting according to flavour, taste and mouthfeel profiles 

can be more difficult.  However, the Rv coefficients were still considered high enough, especially 

when comparing them to those obtained in other studies (Tang & Heymann, 2002; Faye et al., 

2004; Cartier et al., 2006).   

It can thus be concluded that the results obtained from instructed sorting based on aroma, 

as well as palate attributes of three Cyclopia species, are similar to those obtained through DSA.  

Instructed sorting can therefore be viewed as a viable, rapid sensory profiling method for the 

honeybush industry, and possibly also a first step towards the development of a viable quality 

grading or quality-control tool. 

3.3.2 Uninstructed sorting 

Uninstructed sorting was conducted on samples sourced from two production years (2012 and 

2013) and three Cyclopia species (C. genistoides, C. maculata and C. subternata).  This 

combination was chosen to introduce enough product variation within a species, as well as within 

the full sample set.  A panel of expert judges were asked to sort the samples according to the 

similarity of their aroma, as well as their flavour, taste and mouthfeel attributes in two consecutive 

sessions.  In both sessions the sorting step was concluded with a descriptive task.  As this was an 

application of uninstructed sorting, no guidelines regarding the usage of specific attributes were 

given.   

In the first session the panellists were asked to sort the samples according to the similarity 

of their aroma profiles.  They were also asked to explain their group formations by allocating a few 

descriptive attributes to each grouping of samples.  No clear grouping according to species, based 

on Ward‟s cluster analysis (Fig. 27) and the DISTATIS plot (Fig. 28), could be indicated.  As 

depicted in Fig. 27, four groups were formed: the C. genistoides samples and MIX sample grouped 
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together, except for G12_80_2 that were grouped with the C. subternata samples (S12_80_1, 

S13_80_2, and S12_90_4).  M12_80_2, M12_90_3 and S13_90_3 formed a group, while 

M13_90_4 and M13_80_1 formed a further grouping.  The CA plot (Fig. 29), illustrating the 

descriptive attributes assigned to respective groupings, displays three groups.  Again the 

groupings are not according to species: S12_90_4, M13_80_1, S12_80_1, M13_90_4 and 

G12_80_2 grouped together and associated with “fynbos-sweet”, “rose perfume”, “fynbos-floral”, 

“pine” and “green grass” aroma attributes.  Another group consisting of C. maculata and C. 

subternata samples were formed, consisting of S13_80_2, S13_90_3, M12_80_2 and M12_90_3.  

These samples associated with “woody”, “caramel”, “cassia/cinnamon” and “cooked apple” aroma 

attributes.  The MIX sample grouped with G13_90_3, G13_80_1 and G12_90_4 and associated 

with “apricot/apricot jam”, “rose geranium” and “hay/dried grass” aroma attributes.  A reasonably 

high similarity of groupings was obtained for the DISTATIS (Fig. 28) and CA plots (Fig. 29) (Rv = 

0.82).  This indicates that both analyses resulted in reasonably similar groupings; however, there 

was no logical pattern in the grouping of species.  The sorting plots were also compared to the 

PCA plot (Fig. 30), obtained from DSA.  The groupings illustrated in the DISTATIS plot (Rv = 0.24) 

and CA plot (Rv = 0.36) did not compare well with those shown in the PCA plot (Fig. 30).  Note that 

the Rv coefficients were computed without the data of the MIX sample, as the MIX sample was not 

analysed during DSA (Chapter 4, Section 3.1).   

The panellists were also asked to sort the same samples according to the similarity of their 

flavour, taste and mouthfeel attributes.  Both Ward‟s cluster analysis (Fig. 31) and DISTATIS (Fig. 

32) indicate that three reasonably “tight” groupings were formed.  All four C. genistoides samples 

grouped together with the MIX sample on the left side of Fig. 32.  The two 2012 C. maculata 

samples were grouped together with all the C. subternata samples on the bottom right corner of 

Fig. 32, while the two 2013 C. maculata samples were placed in a separate group as indicated in 

the top right corner of Fig. 32.  The CA plot (Fig. 33) displays the flavour, taste and mouthfeel 

attributes that associated with each group.  It can be seen that the C. genistoides samples and the 

MIX sample again grouped together and associated with “apricot/apricot jam”, “fruity-sweet”, “rose 

geranium” and “green grass” flavour attributes, bitter taste and astringent mouthfeel, the C. 

subternata samples and the two 2012 C. maculata samples associated with “woody”, “pine”, 

“cassia/cinnamon” and “fynbos-floral” flavour and sweet taste, as well as a low astringency, while 

the two 2013 C. maculata samples associated with a “rose perfume” flavour.  The Rv coefficient 

indicating the similarity between the DISTATIS (Fig. 32) and CA plots (Fig. 33) was 0.87, which 

indicates the grouping in these two plots were significantly similar.  When comparing the groupings 

of the PCA plot (Fig. 34; data obtained from DSA) with those of the DISTATIS plot (Fig. 32) and the 

CA plot (Fig. 33), the Rv coefficients are 0.66 and 0.50, respectively.  These reasonably low Rv 

coefficients indicate a poor match between the sorting and DSA plots.   

The above-mentioned results indicate that uninstructed sorting according to aroma, as well 

as flavour, taste and mouthfeel attributes, did not result in species-specific groupings.  This could 
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possibly be attributed to the fact that different production years resulted in different profiles within a 

species, as already indicated (Chapter 4, Section 3.1, Fig. 3-8).  Although uninstructed sorting 

results were not comparable with those obtained via DSA, this free sorting technique could still be 

used in the honeybush industry, especially when the aim is to sort samples freely according to 

similarities or dissimilarities, and not according to species-specific profiles (Valentin et al., 2012).   

4. CONCLUSIONS 

The first objective of this study was to determine the generic and defining aroma, flavour, taste and 

mouthfeel attributes of C. genistoides, C. maculata, C. subternata and C. longifolia and to develop 

species-specific aroma and flavour wheels for each honeybush species.  The following attributes 

were present in all four Cyclopia species, i.e. “fynbos-floral”, “woody”, “fynbos-sweet”, sweet taste 

and astringent.  These attributes were present in 100% of the samples.  The “characteristic” 

sensory profile of honeybush can thus be defined as a “fynbos-floral”, “woody”, “fynbos-sweet” 

aroma with a sweet taste and slightly astringent mouthfeel.  This generic profile differs slightly from 

that proposed by Theron et al. (2014), possibly because the latter study included more species, but 

only 58 samples.  The current study was able to distinguish between the four Cyclopia species in 

terms of sensory profiles.  This resulted in species-specific aroma and flavour wheels, i.e. quality 

tools that could be most valuable to the honeybush industry.  Cyclopia maculata and C. subternata 

were characterised as being reasonably similar in sensory profiles.  Both can be described as 

having “caramel” and other sweet-associated notes and a slight astringent mouthfeel.  Cyclopia 

longifolia and C. genistoides were also characterised as being reasonably similar.  Cyclopia 

genistoides was defined as being high in “rose geranium” flavour, as well as bitterness, while C. 

longifolia had a slightly less prominent “rose geranium” flavour and no strong bitter taste.   

The second objective was to test the viability of a rapid profiling technique, sorting, to 

classify C. genistoides, C. maculata and C. subternata according to the similarity of their sensory 

profiles.  It can be concluded that the results obtained from instructed sorting are similar to those 

obtained through the traditional profiling method, descriptive sensory analysis (DSA).  Instructed 

sorting can therefore be viewed as a viable, rapid sensory profiling tool for the honeybush industry.  

Although the uninstructed sorting results were not comparable with those obtained via DSA, this 

free sorting technique could still be used as a valuable tool in the honeybush industry, especially 

when the aim is to sort samples freely according to similarities or dissimilarities, and not according 

to species-specific sensory profiles.  
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Table 1 Number of samples sourced per Cyclopia species for this study. 

 Fermentation  
parametersa 

Batches sourced 
Total per 
species 

  2010 2012 2013  

C. genistoides 
80°C/24 h 6 batchesb 8 batchesb 8 batchesb 

44 
90°C/16 h 6 batchesb 8 batchesb 8 batchesb 

C. maculata 
80°C/24 h 6 batchesb 8 batchesb 8 batchesb 

44 
90°C/16 h 6 batchesb 8 batchesb 8 batchesb 

C. subternata 
80°C/24 h 6 batchesb 8 batchesb 8 batchesb 

44 
90°C/16 h 6 batchesb 8 batchesb 8 batchesb 

C. longifolia 
80°C/24 h 0 0 9 batchesb 

18 
90°C/24 h 0 0 9 batchesb 

a
Optimum fermentation conditions as determined by Theron (2012) for C. genistoides, C. maculata and C. subternata.  

Optimum conditions for C. longifolia as determined in Chapter 3 of this study. 

b
A batch consists of the shoots of more than one plant that were pooled. 
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Table 2 Attributes used for descriptive sensory analysis of C. genistoides, C. maculata and C. subternatab in 2010, 2012 and 2013, and C. longifoliaa 
in 2013. 

Primary aroma 
attributes 

C. genistoides, C. maculata and C. subternata
b
 Cyclopia longifolia (2013)

a 

2010
b 

2012
c 

2013
 

Floral Fynbos-floral
d
, Rose geranium, Rose 

perfume 
Fynbos-floral, Rose geranium, Rose 
perfume 

Fynbos-floral, Rose geranium, Rose 
perfume 

Fynbos-floral, Rose geranium, 
Rose perfume 

Fruity Lemon, Orange, Cooked apple, Apricot 
jam, Cherry 

Citrus, Cooked apple, Apricot jam, 
Cherry essence 

Lemon/lemongrass, Cooked apple, 
Apricot/apricot jam 

Lemon/lemongrass, Cooked 
apple, Apricot/apricot jam, 
Orange 

Plant-like Rooibos, Plant-like, Woody, Pine Woody, Pine Woody, Pine Woody, Pine, Plant-like 

Sweet Fruity-sweet, Boiled syrup, Caramel, 
Honey, Fynbos-sweet 

Fruity-sweet, Caramel, Honey, 
Fynbos-sweet 

Fruity-sweet, Caramel, Honey, Fynbos-
sweet 

Fruity-sweet, Boiled syrup, 
Caramel, Honey, Fynbos-sweet 

Spicy Cassia/cinnamon Cassia/cinnamon Cassia/cinnamon Cassia/cinnamon 

Nutty Coconut, Walnut Coconut Walnut, Coconut Walnut 

Negative Dusty, Yeasty, Medicinal, Burnt 
caramel, Rotting plant water, Hay/dried 
grass, Green grass, Cooked vegetable 

Dusty, Medicinal, Burnt caramel, 
Rotting plant water, Hay/dried grass, 
Green grass, Cooked vegetable 

Dusty, Medicinal, Burnt caramel, 
Rotting plant water, Hay/dried grass, 
Green grass, Cooked vegetable 

Dusty, Burnt caramel, Hay/dried 
grass, Green grass, Cooked 
vegetable 

Flavour attributes     

Floral Fynbos-floral, Rose geranium, Rose 
perfume 

Fynbos-floral, Rose geranium, Rose 
perfume 

Fynbos-floral, Rose geranium, Rose 
perfume 

Fynbos-floral, Rose geranium, 
Rose perfume 

Fruity Lemon, Orange, Cooked apple, Apricot 
jam, Cherry 

Citrus, Apricot jam Lemon/lemongrass, Apricot/apricot 
jam, Cooked apple 

Lemon/lemongrass, Cooked 
apple, Apricot/apricot jam, 
Orange 

Plant-like Rooibos, Plant-like, Woody, Pine Woody, Pine Woody, Pine Woody, Pine, Plant-like 

Spicy Cassia/cinnamon Cassia/cinnamon Cassia/cinnamon Cassia/cinnamon 

Nutty Coconut, Walnut Coconut Coconut Walnut 

Negative Dusty, Yeasty, Medicinal, Burnt 
caramel, Rotting plant water, Hay/dried 
grass, Green grass, Cooked vegetable 

Dusty, Medicinal, Burnt caramel, 
Rotting plant water, Hay/dried grass, 
Green grass, Cooked vegetable 

Dusty, Medicinal, Burnt caramel, 
Rotting plant water, Hay/dried grass, 
Green grass, Cooked vegetable 

Dusty, Burnt caramel, Hay/dried 
grass, Green grass, Cooked 
vegetable 

Taste and mouthfeel 
attributes 

    

Taste Sweet, Sour, Bitter Sweet, Sour, Bitter Sweet, Sour, Bitter Sweet, Sour, Bitter 

Mouthfeel Astringent Astringent Astringent Astringent 

a
Attributes mentioned in Chapter 3 were used to analyse C. longifolia; 

b
Attributes generated by Theron (2012);  

c
Attributes generated by Koch (unpublished). 

d
Fynbos is natural 

shrubland vegetation occurring in the Western Cape, South Africa.
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Table 3 Cyclopia species samples used for instructed sorting. 

C. genistoides C. maculata C. subternata 

80°C 90°C 80°C 90°C 80°C 90°C 

G13_80_1 G13_90_3 M13_80_1 M13_90_3 S13_90_1 S13_90_3 

G13_80_2 G13_90_4 M13_80_2 M13_90_4 S13_90_2 S13_90_4 

 

 

Table 4 Cyclopia species samples used for uninstructed sorting. 

 C. genistoides C. maculata C. subternata 

 80°C 90°C 80°C 90°C 80°C 90°C 

2013 G13_80_1 G13_90_3 M13_80_1 M13_90_4 S13_80_2 S13_90_3 
2012 G12_80_2 G12_90_4 M12_80_2 M12_90_3 S12_80_1 S12_90_4 
Mix sample  G13_90_3  M13_90_4 S13_80_2  

 

 

Table 5 Typical aroma profiles of three Cyclopia species. 

C. genistoides C. maculata C. subternata 

Apricot/apricot jam 

Fruity-sweet 

Honey 

Rose geranium 

Fynbos-floral 

Rose perfume 

Woody 

Fynbos-sweet 

Cassia/cinnamon 

Cooked apple 

Caramel 

Coconut 

 

 

Table 6 Typical flavour, taste and mouthfeel profiles of three Cyclopia species.  

C. genistoides C. maculata C. subternata 

Rose geranium 

Apricot/apricot jam 

Hay  

Bitter taste  

Strong astringency 

Woody 

Fynbos-floral 

Rose perfume 

Cassia/cinnamon 

Cooked apple  

Sweet taste 

Low astringency 

Stellenbosch University  https://scholar.sun.ac.za



 

 
 

1
1
1
 

Table 7 Minimum, maximum and mean intensity DSA ratings for each sensory attribute per species. 

   C. genistoides C. maculata C. subternata C. longifolia 

 Variable Min Max Mean Min Max Mean Min Max Mean Min Max Mean 

A
ro

m
a

 

Fynbos-floral 28.71 45.13 36.50 30 42.83 36.49 32.35 45.91 38.39 36.21 47.45 42.93 
Rose geranium 0.94 32.37 10.89 0 8.24 3.54 0.74 8.78 4.13 4.14 12.62 7.27 
Rose perfume 0 15.13 4.20 0 9.35 4.03 0 9.28 2.67 0.72 3.24 2.11 
Lemon/lemongrass 0 2.61 0.38 0 1.9 0.33 0 4.05 0.76 0.00 1.92 0.68 
Apricot/apricot jam 3.33 16.45 10.28 0.37 21.44 6.52 1.11 21.61 7.81 7.83 21.29 12.86 
Cooked apple 0 2.7 0.41 0 17.22 2.77 0 9.93 2.32 1.50 10.83 4.63 
Woody 20.78 37.63 29.61 21.98 38.44 32.67 20.19 38.19 31.28 35.09 45.97 42.06 
Pine 0 9.58 2.59 0 3.72 1.46 0.3 6.4 1.63 0.00 5.32 2.00 
Fruity-sweet 2.98 23.7 12.45 5.54 22.31 11.30 7.26 21.3 13.31 16.71 28.10 22.26 
Caramel 0.2 5.2 2.10 1.3 9.19 4.89 0 14.26 5.13 1.68 5.89 3.61 
Honey 1.89 15.04 6.20 0 13.43 4.89 0 10.07 3.67 0.00 2.13 0.69 
Fynbos-sweet 25.72 39.35 31.82 21.96 35.59 31.37 25.13 37.04 32.82 32.14 41.75 38.22 
Cassia/cinnamon 0 5.21 1.03 0 21.43 4.57 0 10.93 4.08 0.00 5.71 2.28 
Dusty 0 3.81 1.16 0.7 8.39 2.34 0 4.44 1.86 1.87 4.21 3.16 
Burnt caramel 0 4.7 0.81 0 8.25 1.10 0 3.52 0.36 0.00 3.34 0.41 
Hay/dried grass 2.87 15.63 7.38 1.22 20.65 6.74 0.58 15.33 5.24 6.98 17.63 10.51 
Green grass 0 4.55 1.57 0 7.38 1.08 0 8.48 1.15 0.00 13.32 1.33 
Cooked vegetable 0 11.41 1.84 0 3.6 0.58 0 2.4 0.22 0.00 6.06 0.90 

F
la

v
o

u
r 

Fynbos-floral 27.02 36.41 31.65 25.43 37.52 32.01 28.63 39.37 33.25 32.40 41.53 37.73 
Rose geranium 0.74 17.39 7.12 0 4.43 1.42 0 5.59 1.39 1.23 6.38 3.95 
Rose perfume 0 10.9 2.34 0 7.45 2.47 0 4.5 1.33 0.50 3.87 1.47 
Lemon/lemongrass 0 0.94 0.14 0 0.9 0.10 0 2.47 0.49 0.17 2.30 0.78 
Apricot/apricot jam 0 5.84 2.15 0 5.19 1.23 0 7.17 1.68 0.18 5.98 2.33 
Woody 22.83 38.02 31.52 22.2 37.82 31.37 18.44 35.03 30.11 35.47 43.33 39.50 
Pine 0 4.94 1.04 0 2.57 0.84 0 2.32 1.07 0.00 2.82 0.92 
Cassia/cinnamon 0 1.67 0.23 0 12.68 2.17 0 7.03 2.09 0.00 2.03 0.36 
Burnt caramel 0 2.52 0.20 0 5.26 0.41 0 0.67 0.03 0.00 2.19 0.12 
Hay/dried grass 5.43 16.37 10.30 2.02 16.4 8.18 1.85 16.19 7.50 10.64 20.07 13.73 
Green grass 0 4.04 1.47 0 3.35 0.78 0 4.06 0.78 0.00 8.23 0.78 
Cooked vegetable 0 8.62 1.27 0 1.55 0.29 0 0.72 0.06 0.00 3.48 0.47 
Dusty 0 1.35 0.18 0 1.92 0.25 0 1.72 0.32 0.00 1.57 0.46 

T
a
s
te

 &
 

m
o

u
th

fe
e
l 

Sweet 16.67 21.07 19.05 19.74 22.93 21.13 19.27 24.37 21.99 18.90 21.78 20.50 
Sour 1.33 10.17 5.09 0.67 7.78 3.48 0.93 9.54 3.75 1.52 4.76 2.88 
Bitter 5.22 25.7 12.87 0 6.3 1.71 0.19 3.91 1.50 0.00 10.00 1.83 
Astringent 20.56 28.41 25.39 15.26 25.68 21.44 14.8 23.53 21.17 24.42 28.43 26.14 
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Table 8 Pearson's correlation coefficients (r) displaying the relationship between the positive aroma and flavour, and taste and mouthfeel attributes of 
all samples (N = 150). 

Variables Sweet Sour Bitter Astringent F_Fynbos-floral F_Rose geranium F_Rose perfume F_Lemon
a 

F_Apricot
b 

F_Woody F_Pine F_Cassia
c 

A_Fynbos-floral 0.181 -0.121 -0.140 0.062 0.855 0.123 0.039 0.219 -0.206 0.392 0.168 0.022 

A_Rose geranium -0.327 0.491 0.678 0.398 0.048 0.948 0.586 -0.106 -0.037 -0.156 0.384 -0.251 

A_Rose perfume -0.046 0.267 0.332 0.192 0.006 0.576 0.859 -0.093 -0.167 -0.138 0.416 -0.140 

A_Lemon
a 

-0.063 -0.139 -0.144 0.044 0.278 -0.135 -0.155 0.719 -0.117 0.289 0.028 -0.156 

A_Apricot
b 

-0.161 0.388 0.167 0.112 -0.105 0.079 -0.072 -0.171 0.640 -0.226 -0.166 -0.512 

A_Cooked apple 0.239 -0.569 -0.344 -0.043 0.332 -0.249 -0.273 0.094 -0.213 0.506 -0.049 0.820 

A_Woody -0.029 -0.628 -0.446 0.273 0.610 -0.274 -0.227 0.410 -0.090 0.934 -0.021 0.251 

A_Pine -0.085 0.448 0.417 0.201 0.197 0.695 0.542 -0.060 -0.091 -0.155 0.625 -0.196 

A_Fruity-sweet -0.015 -0.086 -0.255 0.261 0.210 -0.167 -0.217 0.171 0.603 0.339 -0.189 -0.202 

A_Caramel 0.456 -0.458 -0.414 -0.219 -0.155 -0.381 -0.098 -0.006 -0.031 0.168 0.080 0.666 

A_Honey -0.095 0.380 0.350 0.181 -0.530 0.270 0.470 -0.299 0.206 -0.401 0.109 -0.188 

A_Fynbos-sweet 0.179 -0.184 -0.088 0.270 0.801 0.188 0.093 0.294 -0.154 0.519 0.261 0.136 

A_Cassia
c 

0.381 -0.491 -0.364 -0.302 0.142 -0.334 -0.222 -0.029 -0.310 0.270 0.000 0.955 

Correlations above 0.7 are indicated in red.  All values in bold are significantly different from 0 (p ≤ 0.05)  The letter “A” and “F” in front of the attributes descriptors refer to the aroma 

and flavour attributes, respectively. 

a
Lemon = lemon/lemongrass; 

b
Apricot = apricot/apricot jam; 

c
Cassia = cassia/cinnamon 
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Table 9 Pearson's correlation coefficients (r) displaying the relationship between the negative aroma and flavour, and taste and mouthfeel attributes 
for all samples (N = 150). 

Variables Sweet Sour Bitter Astringent F_Burnt caramel F_Hay/dried grass F_Green grass F_Cooked vegetable F_Dusty 

A_Dusty 0.256 -0.209 -0.302 -0.045 -0.058 0.026 -0.198 -0.196 0.463 

A_Burnt caramel -0.085 0.260 0.196 0.019 0.761 0.319 0.206 0.203 0.180 

A_Hay/dried grass -0.133 0.340 0.240 0.094 0.452 0.831 0.417 0.080 0.256 

A_Green grass -0.226 0.243 0.233 0.099 0.105 0.380 0.815 0.202 -0.044 

A_Cooked vegetable -0.469 0.188 0.286 0.447 0.098 0.101 0.236 0.921 -0.134 

Correlations above 0.7 are indicated in red.  All values in bold are significantly different from 0 (p ≤ 0.05).  The letter “A” and “F” in front of the attributes descriptors refer to the aroma 

and flavour attributes, respectively.
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Table 10 Sensory lexicon describing aroma characteristics of honeybush.  

a
Reference standards determined by Theron et al. (2014). 

b
Fynbos is natural shrubland vegetation occurring in the Western Cape, South Africa.  

Attributes Definition Reference standard
a 

F
lo

ra
l Fynbos-floral

b 
Sweet, floral aroma note associated with the flowers of fynbos 
vegetation 

Honeybush tea prepared from C. intermedia (3 g/100 mL) 

Rose geranium Floral aroma note associated with the rose geranium plant Fresh rose geranium leaf (10 mm x 10 mm)/Rose geranium oil (0.005%) 

Rose perfume Floral aroma note associated with rose petals Crushed petals of one rose 

F
ru

it
y
 Lemon/lemongrass Aromatics associated with general impression of fresh lemons 

or lemongrass 
Lemon juice (5%) 

Apricot/apricot jam Sweet-sour aroma reminiscent of apricot jam Superfine apricot jam (15 g/100 mL hot water) 

Cooked apple The flat, slightly sour aroma of cooked apples Apple puree (2.5 g/100 mL) 

P
la

n
t-

li
k
e
 Plant-like Slightly sour aromatic characteristic of freshly cut fynbos plant 

material 

Honeybush prepared from C. sessiliflora (3 g/100 mL) 

Woody Aromatics associated with dry bushes, stems and twigs of the 
fynbos vegetation 

Honeybush tea prepared from C. maculata (3 g/100 mL) 

 
Pine Aroma reminiscent of pine needles Fresh pine needles 

S
w

e
e

t 

Fruity-sweet Sweet-sour aromatic reminiscent of non-specific fruit, 
especially berries and apricot jam 

Superfine apricot jam and strawberry jam (5 g each/100 mL hot water) 

Caramel Sweet aromatics characteristic of molten sugar or caramel 
pudding 

Caramel, Natural flavour (0.4%) 

Honey Aromatics associated with the sweet fragrance of fynbos honey Wild flower honey 

Fynbos-sweet Aroma note reminiscent of the fynbos plant Honeybush tea prepared from C. intermedia (3 g/100 mL) 

S
p

ic
y
 Cassia/ 

cinnamon 
The sweet, woody, spicy aromatic of ground cinnamon/cassia 
bark 

Soak cinnamon/cassia bark in water overnight 

N
u

tt
y

 Walnuts Aroma note associated with fresh walnuts (not rancid) Freshly chopped walnuts 

Coconut Aromatics associated with desiccated coconut Desiccated coconut 

N
e
g

a
ti

v
e
 

Dusty Earthy aroma associated with wet hessian or wet cardboard or 
dry dirt road 

Old, dry tree bark (Jacaranda mimosifolia) (1 piece/100 mL hot water, infuse for 
5 min filter) 

Medicinal Aromatic characteristic of Band-aid®, disinfectant-like 
(phenolic) 

Place a Band-aid® adhesive bandage in a petri dish and cover 

Rotting plant water Slightly sour aromatic characteristic of rotting plant water Grass (Pennisetum clandestinum) (30 shredded blades/100 mL hot water. Store 

1 week, filter)
 

Hay/dried grass Slightly sweet aroma associated with dried grass or hay Hay or dried grass  

Green grass Aroma associated with freshly cut green grass Cis-3-hexen-1-ol (0.005%)/Green grass (Pennisetum clandestinum 
Cooked vegetable An overall aroma note associated with canned/cooked 

vegetables 
Brine from canned green beans (5%) 

Burnt caramel Aroma associated with blackened/acrid carbohydrates Caramel, Natural flavour (0.4%) 
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Table 11 Rv coefficients comparing the results for instructed sorting of 12 honeybush samples [(DISTATIS and CA plots) and DSA]. 

Plot 1 Plot 2 Rv coefficient p-value 

DISTATIS (Ses 1; Aroma) (Fig. 20) DSA (Aroma) (Fig. 22) 0.94 0.000 

CA (Ses 1; Aroma) (Fig. 21) DSA (Aroma) (Fig. 22) 0.96 0.000 

DISTATIS (Ses 1; Aroma) (Fig. 20) CA (Ses 1; Aroma) (Fig. 21) 0.91 0.000 

DISTATIS (Ses 2; Flavour, taste and mouthfeel) (Fig. 24) DSA (Aroma) (Fig. 22) 0.93 0.000 

CA (Ses 2; Flavour, taste and mouthfeel) (Fig. 25) DSA (Aroma) (Fig. 22) 0.93 0.000 

DISTATIS (Ses 1; Aroma) (Fig. 20) DSA (Flavour) (Fig. 26) 0.89 0.000 

CA (Ses 1; Aroma) (Fig. 21) DSA (Flavour) (Fig. 26) 0.89 0.000 

DISTATIS (Ses 2; Flavour, taste and mouthfeel) (Fig. 24) DSA (Flavour) (Fig. 26) 0.89 0.000 

CA (Ses 2) (Flavour, taste and mouthfeel) (Fig. 25) DSA (Flavour) (Fig. 26) 0.86 0.000 

DISTATIS (Ses 2; Flavour, taste and mouthfeel) (Fig. 24) CA (Ses 2; Flavour, taste and mouthfeel) (Fig. 25) 0.93 0.000 

Ses 1 and 2 refer to consecutive analysis sessions conducted on one day. 
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Table 12 Rv coefficients comparing the results for uninstructed sorting of 12 honeybush samples [(DISTATIS and CA plots) and DSA]. 

Plot 1 Plot 2 Rv coefficient p-value 

DISTATIS (Ses 1; Aroma) (Fig. 28) DSA (Aroma) (Fig. 30) 0.24 0.24 

CA (Ses 1; Aroma) (Fig. 29) DSA (Aroma) (Fig. 30) 0.36 0.04 

DISTATIS(Ses 1; Aroma) (Fig. 28) CA (Ses 1; Aroma) (Fig. 29) 0.82 0.00 

DISTATIS (Ses 2; Flavour, taste and mouthfeel) (Fig. 32) DSA (Aroma) (Fig. 30) 0.45 0.01 

CA (Ses 2; Flavour, taste and mouthfeel) (Fig. 33) DSA (Aroma) (Fig. 30) 0.40 0.02 

DISTATIS (Ses 1; Aroma) (Fig. 28)  DSA (Flavour) (Fig. 34) 0.27 0.13 

CA (Ses 1; Aroma) (Fig. 29) DSA (Flavour) (Fig. 34) 0.40 0.03 

DISTATIS (Ses 2; Flavour, taste and mouthfeel) (Fig. 32) DSA (Flavour) (Fig. 34) 0.66 0.00 

CA (Ses 2; Flavour, taste and mouthfeel) (Fig. 33) DSA (Flavour) (Fig. 34) 0.50 0.01 

DISTATIS (Ses 2; Flavour, taste and mouthfeel) (Fig. 32) CA (Ses 2; Flavour, taste and mouthfeel) (Fig. 33) 0.87 0.00 

Ses 1 and 2 refer to consecutive analysis sessions conducted on one day. 
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DISTATIS, 

DSA 
[150 samples] PCA & DA 

 

Sensory  
Wheels 

 

(Generic &  
Species-specific) 

2010 samples 

C. genistoides [12] 

C. maculata [12]                  36 samples 

C. subternata [12] 

 

2012 samples 

C. genistoides [16] 

C. maculata [16]               48 samples 

C. subternata [16] 

 

2013 samples 

C. genistoides [16] 

C. maculata  [16]               48 samples 

C. subternata [16] 

 

2013 samples 

C. longifolia                18 samples 

Full sample set 

Select 6 samples from 

2012 & 6 from 2013 

 

Uninstructed  

sorting 

Ward‟s Cluster, 

DISTATIS, CA & PCA 

Ward‟s Cluster, 

DISTATIS, CA & PCA 

Instructed  

sorting 

Select 12 samples 

Fig. 1 Layout of samples, sensory analyses, data analysis procedures and outputs towards developing quality control tools for the honeybush 
industry. 

Rapid profiling 

methodologies 

for industry 
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Fig. 3 a) PCA scores plot showing the positioning of Cyclopia genistoides samples (N = 44) from three production years (2010, 2012 and 2013).  The 
abbreviation G refers to the Cyclopia species; C. genistoides, while 80 and 90 refer to the fermentation period, 80°C/24 h and 90°C/16 h. b) PCA 
loadings plot showing the positioning of the positive and negative aroma, flavour, taste and mouthfeel attributes.  The letters “A” and “F” in front of the 
attributes refer to aroma and flavour, respectively. Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = 
Hay/dried grass, Rotting = Rotting plant water, Cookedveg = Cooked vegetable. 

a) b) 
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Fig. 4 a) Selected DA plot illustrating groupings of Cyclopia genistoides samples from three production years (2010, 2012 and 2013). The 

abbreviation G refers to Cyclopia genistoides, while 80 and 90 refer to the fermentation period, 80°C/24 h and 90°C/16 h. b) DA variable loadings plot 

showing the positioning of the positive and negative aroma, flavour, taste and mouthfeel attributes.  The letters “A” and “F” in front of the attributes 

refer to aroma and flavour, respectively.  Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = Hay/dried 

grass, Rotting = Rotting plant water, Cookedveg = Cooked vegetable. 

a) b) 
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Fig. 5 a) PCA scores plot showing the positioning of Cyclopia maculata samples (N = 44) from three production years (2010, 2012 and 2013).  The 

abbreviation M refer to the Cyclopia species; C. maculata, while 80 and 90 refer to the fermentation period, 80°C/24 h and 90°C/16 h. b) PCA 

loadings plot showing the positioning of the positive and negative aroma, flavour taste and mouthfeel attributes.  The letters “A” and “F” in front of the 

attributes refer to aroma and flavour, respectively. Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = 

Hay/dried grass, Rotting = Rotting plant water, Cookedveg = Cooked vegetable. 

a) b) 
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Fig. 6 a) Selected DA plot illustrating groupings of Cyclopia maculata samples from three production years (2010, 2012 and 2013). The abbreviation 

M refers to Cyclopia maculata, while 80 and 90 refer to the fermentation period, 80°C/24 h and 90°C/16 h. b) DA variable loadings plot showing the 

positioning of the positive and negative aroma, flavour taste and mouthfeel attributes.  The letters “A” and “F” in front of the attributes refer to aroma 

and flavour, respectively.  Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = Hay/dried grass, Rotting = 

Rotting plant water, Cookedveg = Cooked vegetable. 

a) b) 
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  a) b) 

Fig. 7 a) PCA scores plot showing the positioning of Cyclopia subternata samples (N = 44) from three production years (2010, 2012 and 2013).  The 

abbreviation S refer to the Cyclopia species; C. subternata, while 80 and 90 refer to the fermentation period, 80°C/24 h and 90°C/16 h.  b) DA 

variable loadings plot showing the positioning of the positive and negative aroma, flavour taste and mouthfeel attributes.  The letters “A” and “F” in 

front of the attributes refer to aroma and flavour, respectively. Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, 

Hay = Hay/dried grass, Rotting = Rotting plant water, Cookedveg = Cooked vegetable. 
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  a) b) 

Fig. 8 a) Selected DA plot illustrating groupings of Cyclopia subternata samples from three production years (2010, 2012 and 2013). The abbreviation S 

refers to Cyclopia subternata, while 80 and 90 refer to the fermentation period, 80°C/24h and 90°C/16h. b) DA variable loadings plot showing the 

positioning of the positive and negative aroma, flavour, taste and mouthfeel attributes.  The letters “A” and “F” in front of the attributes refer to aroma 

and flavour, respectively.  Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = Hay/dried grass, Rotting = 

Rotting plant water, Cookedveg = Cooked vegetable. 
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a) b) 

Fig. 9 a) PCA scores plot showing the positioning of Cyclopia longifolia (N = 18) samples.  The abbreviation L refer to the Cyclopia species; C. 
longifolia, while 80 and 90 refer to the fermentation period, 80°C/24 h and 90°C/24 h.  b) PCA loadings plot showing the positioning of the positive and 
negative aroma, flavour, taste and mouthfeel attributes.  The letters “A” and “F” in front of the attributes refer to aroma and flavour, respectively. 
Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = Hay/dried grass, Cookedveg = Cooked vegetable. 
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  a) 

b) 

Fig. 10 Scatter plot showing the percentage of samples exhibiting a certain attribute vs. the average 
intensity of the specific attribute. a) Cyclopia genistoides and b) C. longifolia.  The letters "A" and "F" 
in front of the attribute refer to aroma and flavour, respectively, except for astringent. 
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 c) 

d) 

Fig. 10 continued Scatter plot showing the percentage of samples exhibiting a certain attribute vs. 
the average intensity of the specific attribute. c) C. maculata and d) C. subternata.  The letters "A" 
and "F" in front of the attribute refer to aroma and flavour, respectively except for astringent. 
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a) b) 

Fig. 13 a) PCA scores plot showing the positioning of Cyclopia samples (N = 150) consisting of four species.  The abbreviations G, L, M and S refer 

to the Cyclopia species; C. genistoides, C. longifolia, C. maculata and C. subternata, respectively, while 80 and 90 refer to the fermentation 

temperature/time combinations.  b) PCA loadings plot showing the positioning of the positive and negative aroma, flavour, taste and mouthfeel 

attributes.  The letters “A” and “F” in front of the attributes refer to aroma and flavour, respectively. Apricot = Apricot/apricot jam, Lemon = 

Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = Hay/dried grass, Cookedveg = Cooked vegetable. 
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Fig. 14 a) DA plot illustrating groupings of four Cyclopia species.  The abbreviations G, L, M and S refer to the Cyclopia species; C. genistoides, C. 

longifolia, C. maculata and C. subternata, respectively, while 80 and 90 refer to the fermentation temperature/time combinations.  b) DA variable 

loadings plot showing the positioning of the positive and negative aroma, taste and mouthfeel attributes.  The letters “A” and “F” in front of the attributes 

refer to aroma and flavour, respectively.  Apricot = Apricot/apricot jam, Lemon = Lemon/lemongrass, Cassia = Cassia/cinnamon, Hay = Hay/dried grass, 

Cookedveg = Cooked vegetable. 

  a) b) 
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Fig. 16 a) Generic honeybush sensory wheel illustrating the mean intensities of the flavour, taste and mouthfeel attributes.  Graphs b), c) and d) 
illustrate the average percentage that each attribute appeared in the honeybush infusions during the study. 

b) 

c) 

d) 

a) 
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Fig. 17 Species-specific sensory wheels illustrating the mean intensities of the aroma attributes.  
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Fig. 18 Species-specific sensory wheels illustrating the mean intensities of the flavour, taste and mouthfeel attributes. 
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Fig. 19 Cluster analysis of instructed sorting data based on the aroma of three Cyclopia species. 

 

 

 

 

 

  

Fig. 20 DISTATIS plot showing the position of three Cyclopia species sorted according to their 
aroma profile during instructed sorting. 
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Fig. 21 CA plot showing the position of three Cyclopia species sorted according to their aroma 
profile during instructed sorting. 

Fig. 22 PCA bi-plot obtained from DSA showing the position of honeybush samples with the 
corresponding aroma attributes.  The same samples were used for instructed sorting. 
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Fig. 23 Cluster analysis of instructed sorting data based on the flavour, taste and mouthfeel of three 
Cyclopia species.  
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Fig. 24 DISTATIS plot showing the position of three Cyclopia species sorted according to their 
flavour, taste and mouthfeel profile during instructed sorting. 
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Fig. 25 CA plot showing the position of three Cyclopia species sorted according to their flavour, 
taste and mouthfeel profile during the instructed sorting. 
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Fig. 27 Cluster analysis of uninstructed sorting data based on the aroma of three Cyclopia 
species. 
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Fig. 28 DISTATIS plot showing the position of three Cyclopia species sorted according to their 
general aroma profile during uninstructed sorting. 
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Fig. 29 CA plot showing the position of three Cyclopia species sorted according to their general 
aroma profile during the uninstructed sorting. 
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Fig. 31 Cluster analysis of uninstructed sorting data based on the flavour, taste and mouthfeel of 
three Cyclopia species. 

Cluster analysis using Ward's method on first 4 components

Ward`s method

Euclidean distances

0.0 0.5 1.0 1.5 2.0

Linkage Distance

M13_80_1

M13_90_4

M12_90_3

M12_80_2

S13_90_3

S12_80_1

S13_80_2

S12_90_4

G13_90_3

Mix

G13_80_1

G12_90_4

G12_80_2

Fig. 32 DISTATIS plot displaying the position of three Cyclopia species sorted according to their 
general flavour, taste and mouthfeel profile during uninstructed sorting. 
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Fig. 33 CA plot showing the position of three Cyclopia species sorted according to their general 
flavour, taste and mouthfeel profiles during uninstructed sorting. 
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CHAPTER 5 

Chemical composition of C. genistoides,  
C. longifolia, C. maculata and C. subternata 

as potential predictors of taste and 
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ABSTRACT 

The aim of this study was to identify the phenolic compounds that most likely contribute to the taste 

and mouthfeel attributes (sweet, sour, bitter and astringent) of C. genistoides, C. longifolia, C. 

maculata and C. subternata infusions and to develop a prediction model that could be used in 

future as a preliminary screening tool to predict the intensities of the basic tastes and astringency 

of tea infusions.  A large sample set, spanning a number of production seasons and different 

fermentation conditions, was used.  HPLC-DAD analysis was conducted to compare the phenolic 

composition of all the infusions qualitatively and quantitatively.  The data obtained from HPLC-DAD 

and sensory (taste and mouthfeel) analyses were subjected to multivariate (PCA and PLS) and 

step-wise regression analyses.  Differences in phenolic composition between species were 

demonstrated.  Of the compounds identified and present in detectable quantities, only mangiferin, 

isomangiferin, hesperidin and vicenin-2 were present in the infusions of all four Cyclopia species.  

Other compounds present in three of the four species were iriflophenone-3-C-glucoside-4-O-

glucoside and eriocitrin.  Step-wise regression analysis used different combinations of phenolic 

compounds for the different Cyclopia species to predict the intensities of the respective taste and 

mouthfeel attributes.  The regression model was able to explain 74% and 73% of the variation in 

the bitter attribute of C. genistoides and C. longifolia, respectively.  For C. longifolia 60% and 69% 

of the variation in the sweet and astringent attribute intensities, respectively, could be explained.  

For C. maculata and C. subternata the model was able to predict less than 40% of the variation in 

the taste and mouthfeel attribute intensities.  The overall regression model for Cyclopia, based on 

the combined data set, was able to predict 50%, 81% and 69% of the variation in the intensity of 

the typical palate modalities sweet, bitter and astringent, respectively, implying good prediction of 

bitter taste and astringency, based on phenolic composition. 

1. INTRODUCTION 

Phenolic compounds are among the most abundant groups of plant secondary metabolites and 

form an important part of the human diet (Bravo, 1998).  Interest in the biological effects of 

phenolic compounds and their importance in the human diet resulted in a considerable growth in 

the market for these health-promoting ingredients (Becker, 2013).  Beverages such as tea can 

make a substantial contribution to the daily polyphenol intake of consumers (Chun et al., 2007).  

Whilst desirable from a health-promoting perspective, many polyphenols could impart negative 

taste sensations such as bitterness and astringency, limiting their potential benefit in food products 

and beverages.  In addition to polyphenols, other classes of non-volatile compounds that could 

influence the taste (sweet, sour and bitter) and mouthfeel (astringency) of tea are amino acids, 

purine alkaloids, nucleotides, organic acids, carbohydrates and ions.  Tea polyphenols, especially 

catechins, are known to have an effect on bitterness and astringency (Yu et al., 2014).  An 

increase in the concentration of the catechins causes an increase in bitter taste and astringency 

(Narukawa et al., 2010).  Non-volatile components also affect the aroma perception and the overall 

flavour volatility, perception and release of volatile compounds (Aronson & Ebeler, 2004).  Previous 
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studies have found that polyphenols can interact non-covalently with flavours in a solution (King & 

Solms, 1982). 

The sense of taste is a specialised chemosensory system (Yarmolinsky et al., 2009).  The 

mechanism of taste sensation is complex and it was found that the sensation of taste takes place 

in the taste receptor cells (TRCs) by the interaction of the sapid molecules („tastants‟) with 

receptors and ion channels in the apical microvilli.  The basic taste modalities are mediated by 

distinct groups of TRCs (Yarmolinsky et al., 2009).  TRCs are not just restricted to the tongue, and 

receptors that detect sweet and bitter taste are distributed throughout the stomach and intestines 

(Trivedi, 2012).  Detection of sweet taste is attributed to T1R2 and T1R3 receptors (Li et al., 2002).  

Different pathways that activate sweet receptors have been identified and several hypothetical 

models of the ligand binding sites for sweet receptors have been developed.  Kinghorn et al. 

(2010) suggest that all of these models contain AH-B groups, where the AH group is a hydrogen 

donor and the B group an electro-negative group, thus indicating that all sweet tasting compounds 

consist of a hydrogen bond donor (AH) and a hydrogen bond acceptor (B), separated by a distance 

of 2.5-4.0 Å (Kinghorn et al., 2010).  Studies suggested that pH and organic acids are responsible 

for the sour taste of products.  Acid-sensitive TRCs are depolarised when the sour taste receptor is 

activated, leading to a decrease in the intracellular pH and the release of transmitters.  This causes 

the afferent nerve fibres of the brain cortex to react, leading to the sour taste perception (Ramos 

Da Conceicao Neta et al., 2007).  Bitterness, a sensation perceived by taste receptors at the back 

of the tongue, is often confused with astringency, which is the dry, puckering feeling perceived 

throughout the oral cavity (Arnold et al., 1980; Peleg et al., 1999).  These two sensations are seen 

as “twin sensations”, as almost all phenolic compounds that cause astringency are also bitter 

(Bajec & Pickering, 2008).  Several mechanisms for bitter transduction have been identified, but 

there is no model that fits all the bitter compounds (Lesschaeve & Noble, 2005).  A recent study by 

Roland et al. (2013) on the structural features responsible for bitterness of flavonoids and 

isoflavonoids used 3D-pharmacophore modelling to understand which chemical characteristics 

influence bitter receptor interaction.  The model indicated that two (or three) hydrogen bond donor 

sites, one hydrogen bond acceptor site, and two aromatic ring structures, of which one had to be 

hydrophobic, are needed to activate some bitter receptors.  The perception of astringency is not 

instantaneous; it has a slow onset and can have a lingering effect.  Astringency is believed to be 

caused by many compounds; however, the chemical definition of astringency is the ability to 

precipitate proteins (Peleg et al., 1999).  Green (1993) suggested that astringency is largely a 

tactile sensation.  At first it was believed that astringency occurred as a result of de-lubrication of 

saliva, but this mechanism is no longer thought to be the main cause, as astringency may be 

caused by binding of polyphenols to the oral epithelial cells (Payne et al., 2009).  Perceived 

astringency varies between individuals; it is believed to be the result of the difference in protein 

composition and flow rate of saliva of each individual (Gawel, 1998).  Molecular size influences 
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bitterness and astringency, with bitterness decreasing and astringency increasing as the molecular 

size increases (Peleg et al., 1999). 

Investigation into the sensory profile of the infusions of Cyclopia species has shown that 

some species are more sweet, bitter and/or astringent than others (Theron, 2012).  Similarly 

qualitative and quantitative differences in the phenolic composition of different Cyclopia species 

have also been demonstrated (Joubert et al., 2008; De Beer & Joubert, 2010; De Beer et al., 2012; 

Beelders et al., 2014b; Schulze et al., 2014).  Hesperetin and eriodictyol, examples of Cyclopia 

polyphenols, have been linked to taste.  Reichelt et al. (2010) has identified hesperetin as a flavour 

modulating compound with sweet-enhancing properties, while eriodictyol has bitter-masking 

properties (Ley et al., 2005; Ley, 2008).  Theron (2012) determined the phenolic composition of 

infusions of C. sessiliflora, C. longifolia, C. genistoides, C. intermedia, C. subternata and C. 

maculata and found bitter taste to correlate with mangiferin and isomangiferin concentration.  

Cyclopia genistoides, shown to be bitter, had the highest concentrations of mangiferin (150.63 

mg/L) and isomangiferin (47.95 mg/L) of the species studied.  In this study no specific compounds 

could be identified as being linked to sweetness; however, the taste modality sweetness was 

significantly negatively correlated to compounds associated with bitterness (Theron, 2012). 

The objective of the present study was to develop a prediction model for the basic taste 

modalities (sweet, sour and bitter) and mouthfeel (astringency) of the infusions of C. genistoides, 

C. longifolia, C. maculata and C. subternata, based on their phenolic composition, soluble solids 

(SS) and total polyphenols (TP).  To confirm the results of Theron (2012), a comprehensive sample 

set was used for analyses and model building.  Prediction models for individual sensory attributes, 

based on phenolic content, were developed for each species separately, as well as for the 

combined data set, using the compositional data (Fig. 1). 

2. MATERIALS AND METHODS 

A summary of the samples and the different analyses conducted are displayed in Fig. 1. 

 Samples and sample preparation 2.1

The samples used in this study (N = 204) were the same as those used in Chapter 3 and Chapter 

4.  The C. genistoides, C. maculata and C. subternata samples were processed according to two 

temperature/time regimes (80°C/24 h and 90°C/16 h), whereas C. longifolia was processed 

according to eight temperature/time regimes (80°C and 90°C for 8, 16, 24 and 32 h).   

The same infusions prepared for descriptive sensory analysis (Chapters 3 and 4) were also 

used for compositional analysis.  A 100 mL aliquot of each of the latter infusions was filtered 

through Whatman No. 4 filter paper and allowed to cool.  The filtrate was used to determine the 

soluble solids content and the remaining filtrate was transferred to 2 mL microfuge tubes and 

stored at ­18°C until required for total polyphenol and high-performance liquid chromatography 

(HPLC) analyses. 
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 Descriptive sensory analysis 2.2

Descriptive sensory analysis (DSA) was conducted to determine the full sensory profile (aroma, 

flavour, taste and mouthfeel) of C. longifolia (Chapter 3) and C. genistoides, C. maculata and C. 

subternata (Chapter 4), using an unstructured line scale ranging from 0 (zero intensity) to 100 

(prominent intensity).  Only data for the three taste modalities (sweet, sour and bitter) and 

mouthfeel (astringency) were used in this study to relate to the compositional data of the respective 

Cyclopia species. 

 Chemicals 2.3

Folin-Ciocalteau‟s phenol reagent (Merck Millipore, Darmstadt, Germany), anhydrous sodium 

carbonate (Merck Millipore) and gallic acid (Sigma Aldrich, St. Louis, USA) were used for the 

quantification of the total polyphenol content.  The solvents used for preparation of the mobile 

phases for HPLC analysis were sourced from Merck Millipore and Sigma-Aldrich.  The following 

reference standards (purity > 95%) were sourced: hesperidin (Sigma-Aldrich), mangiferin, 

eriocitrin, luteolin (Extrasynthese, Genay, France) and isomangiferin (Chemos, Regenstauf, 

Germany).  Aspalathin (3-hydroxyphloretin-3′-C-glucoside) and nothofagin (phloretin-3′-C-

glucoside) were obtained from PROMEC (Medical Research Council of South Africa, Tygerberg, 

South Africa).  Iriflophenone-3-C-glucoside-4-O-glucoside and maclurin-3-C-glucoside were 

isolated by Beelders et al. (2014a) and iriflophenone-3-C-glucoside was obtained from Sigma 

Aldrich.  An Elix water purification system (Merck Millipore) was used to prepare deionised water 

and the water was further purified for HPLC analysis using a Milli-Q Academic water purification 

system (Merck Millipore). 

 Total polyphenol content 2.4

The total polyphenol (TP) content was determined using the Folin-Ciocalteau method as described 

by Arthur et al. (2011).  The sample was defrosted and diluted to obtain a soluble solid content 

between 0.2 and 0.3 mg/mL.  This is necessary to obtain absorbance values within the range of 

the calibration curve.  A calibration curve from 1 mg/L to 10 mg/L gallic acid in the final reaction 

volume was prepared.  Twenty µL of each standard, sample and control (deionised water) were 

transferred into a clear 96-well flat bottom plate (in triplicate) and 100 µL Folin-Ciocalteau‟s phenol 

reagent (10 x diluted) and 80 µL sodium carbonate solution (7.5% w/v) were added.  The reaction 

mixtures were then mixed mechanically, using an Eppendorf MixMate (Merck Millipore).  The 

plates were incubated (30°C/2 h) in a temperature-controlled laboratory oven.  After incubation, the 

absorbance was measured at 765 nm, using a Biotek Synergy HT multiplate reader (BioTek 

Instruments, Winooski, USA). The TP content was expressed as mg gallic acid equivalents 

(GAE)/L infusion. 

 Soluble solids content 2.5

The soluble solids (SS) content of the infusion filtrate was determined gravimetrically.  A twenty mL 

aliquot of the filtrate was pipetted, in triplicate, into weighed nickel moisture dishes, after which the 
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water was evaporated on a steam bath.  The remaining moisture was removed by drying the 

residue in a laboratory oven at 100°C for 1 h.  The moisture dishes were cooled in a desiccator 

before re-weighing.  The soluble solids content was expressed in mg/L infusion. 

 Quantification of individual phenolic compounds  2.6

Analyses were conducted on an Agilent 1200 series HPLC instrument, consisting of a quaternary 

pump, autosampler, column thermostat, in-line degasser and diode array detector (DAD), 

controlled by Chemstation software (Agilent Technologies Inc., Santa Clara, CA).  Stock solutions 

of standards were prepared using dimethylsulfoxide (DMSO) and were frozen at -20°C until 

analysis.  After defrosting the standards and samples, an aqueous ascorbic acid solution was 

added (final ascorbic acid concentration of 5 mg/L and 9 mg/L for standards and samples, 

respectively) to prevent oxidative degradation during analysis.  Following direct filtration into HPLC 

autosampler vials, using 0.22 µm pore-size Millihex-HV syringe filters (Millipore, Bedford, USA), 

the filtrates were injected.  Different injection volumes were employed to accommodate the varying 

levels of the compounds in the infusions.  The injection volumes were 10-20 µL for the standards, 

60 µL for minor and 5 µL for major compounds (mangiferin and isomangiferin) in C. genistoides 

(Beelders et al., 2014b), 10 µL for C. maculata (Schulze et al., 2014), 15 µL for C. subternata (De 

Beer et al., 2012) and 25 µL for C. longifolia (Schulze, unpublished).  Separation was carried out at 

30°C and a flow rate of 1 mL/min for all species.  The column, mobile phase and gradient profile 

used to analyse each of the four species (C. genistoides, C. maculata, C. subternata and C. 

longifolia) are displayed in Table 1.  All columns were supplied by Phenomenex (Santa Clara, CA, 

USA).  The notations for the phenolic compounds identified are displayed in Table 2.  Where no 

authentic standards were available, compounds of similar class (e.g. aspalathin for 3-

hydroxyphloretin-3',5'-di-C-hexoside) were used for quantification and results expressed as 

equivalent values. 

 Statistical analysis 2.7

SAS® statistical software (Version 9.2, SAS institute Inc., Cary, USA) and XLStat (Version 

2014.01.02, Addinsoft, France) were used to analyse the data.  The sensory data set (Chapter 3 & 

4) was pre-processed to confirm panel reliability (Næs et al., 2010).  The Shapiro-Wilk test was 

performed on the sensory and compositional data to test for normality (Shapiro & Wilk, 1965).  

Outliers were removed when the standardised residual for an observation deviated by more than 

three standard deviations from the model value.  

Pearson‟s correlation analysis was performed to determine the closeness of the linear 

relationships between the compositional parameters and sensory variables (Snedecor & Cochran, 

1989).  Principal component analysis (PCA), using the correlation matrix, was performed to 

determine the linear association of samples, sourced from different production seasons, and the 

full range of sensory attributes and compositional parameters (Næs et al., 2010).  Partial least 

squares regression (PLS) was conducted to determine the association between the compositional 
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parameters and the three basic taste modalities and the mouthfeel attribute, astringency (Abdi, 

2007; Jolliffe, 2002).   

Last, step-wise regression analysis was performed for selecting the best subset of predictor 

variables from the full set of individual compositional parameters that contribute significantly to the 

model, developed to predict the intensity of each individual dependent variable (sweet, sour, bitter 

and astringent).  The aim was thus to develop a simple model with good predictive ability. 

3. RESULTS 

 Phenolic content and sensory intensities 3.1

The minimum, maximum, mean and standard deviation values of the sensory attributes (taste and 

mouthfeel), soluble solids content, total polyphenol content and content of individual phenolic 

compounds of the respective Cyclopia species are summarised in Table 3.  Large qualitative and 

quantitative differences were observed for the content of individual phenolic compounds when 

comparing species.  Not all compounds were present in all species, and the concentration of 

compounds in the infusions also varied extensively between species, in particular that of 

mangiferin.  Cyclopia genistoides had the highest mean mangiferin (X1) content at 121.96 mg/L 

and C. longifolia the second highest at 75.61 mg/L.  Other major compounds present in C. 

genistoides were isomangiferin (X2), iriflophenone-3-C-glucoside-4-O-glucoside (B1) and 

iriflophenone-3-C-glucoside (B4), with mean content values of 38.71, 31.64, 22.69 mg/L, 

respectively.  Excluding mangiferin (X1), compounds present at the highest mean content values in 

C. longifolia included iriflophenone-3-C-glucoside-4-O-glucoside (B1) (27.64 mg/L), hesperidin 

(Fl3) (10.72 mg/L) and isomangiferin (X2) (31.54 mg/L).  In C. maculata infusions, mangiferin (X1) 

(16.40 mg/L), isomangiferin (X2) (12.21 mg/L) and hesperidin (Fl3) (16.91 mg/L) were present at 

mean concentrations of more than 10 mg/L.  The only compound present at a mean concentration 

of more than 10 mg/L in C. subternata was iriflophenone-3-C-glucoside-4-O-glucoside (B1) (21.26 

mg/L), while hesperidin (Fl3), eriocitrin (Fl4) and scolymoside (Fv2) were present at mean 

concentrations of ca. 5 mg/L.  Only four compounds, of those quantified, were present in all 

species, namely mangiferin (X1), isomangiferin (X2), hesperidin (Fl3) and vicenin-2 (Fv1).   

In contrast, limited variation was observed in the taste and mouthfeel attributes, scored on 

a 100-point intensity scale (Table 3).  Sweet taste varied between 19 and 22 for all four Cyclopia 

species, indicating an extremely narrow range.  Bitter taste was the only attribute that differed 

considerably between species: the mean intensity value was 12.87 for C. genistoides, while it was 

less than 5 for the other three Cyclopia species.  The mean intensity values for astringency ranged 

between 21 and 27 for the four species, again representing a fairly limited range.  Furthermore, 

given the intensity scale (0 – 100) these values are low, especially considering that intensity values 

below 5 are usually regarded as being barely perceptible. 

The data obtained for the respective Cyclopia species were combined and the minimum, 

maximum, mean and standard deviation values for the intensities of the sensory attributes (taste 

and mouthfeel) and phenolic content, as well as soluble solids content of the full data set are 
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summarised in Table 4.  The intensity ranges for the sensory attributes sour (0.5 – 10.17), bitter (0 

– 25.7) and astringent (14.80 – 33.53), were acceptable, but still relatively small for sweet (15.09 – 

24.37).  The ranges for the phenolic content showed considerable variation, especially for 

iriflophenone-3-C-glucoside-4-O-glucoside (B1) (0 – 62.10), iriflophenone-3-C-glucoside (B4) (0 – 

60.14), mangiferin (X1) (0 – 278.93) and isomangiferin (X2) (0.30 – 72.87) [Table 4].  Addendum C 

(Tables 1C – 4C) summarising the means per sample, indicates the variation between samples 

within species.   

 Association between samples, compositional parameters and sensory attributes  3.2

The association between C. genistoides samples (harvested in 2010, 2012 and 2013 and 

processed according to two different fermentation regimes), their compositional parameters 

(individual phenolic compounds, SS and TP) and the sensory attributes (basic taste modalities and 

mouthfeel) are illustrated in Fig. 2.  The PCA scores plot (Fig. 2a) indicates that, with the exception 

of two samples, the 2012 samples were separated from the 2010 and 2013 samples.  The PCA 

loadings plot (Fig. 2b) displays the corresponding compositional parameters and sensory 

attributes.  The four sensory attributes were separated from the compositional parameters along 

the first principal component (PC1, also Factor 1), indicating that the samples on the left side of the 

PCA scores plot (Fig. 2a) scored higher for the sensory attributes, while those on the right side of 

the PCA scores plot scored higher for the compositional parameters.  Separation of the 2012 C. 

genistoides samples from the others on the PCA scores plot (Fig. 2a) could possibly be attributed 

to their high scores for bitter taste.  The 2012 C. genistoides samples scored highest for bitter 

taste, but marginally lower for most of the phenolic compounds.  The average mangiferin content of 

the 2012 samples (109.48 mg/L) was lower than that of the 2010 (140.57 mg/L) and 2013 (120.47 

mg/L) samples (Addendum C, Table 1C).  

The C. longifolia samples were fermented at eight different temperature/time combinations 

(80°C and 90°C for 8, 16, 24 and 32 h) and the association between all samples, based on 

composition (individual phenolic compounds, SS and TP) and sensory attributes is displayed in 

Fig. 3.  The samples did not split according to processing conditions (Fig. 3a).  The attributes sour 

taste, bitter taste and astringency separated from sweet taste along PC1 (Fig. 3b).  The 

compositional parameters also lie on the same side of the PCA plot as bitter taste, sour taste and 

astringency, indicating some form of association between the composition and the latter sensory 

attributes.  Although there was no clear split in samples based on the processing conditions, it 

does seem that a number of samples, processed for 8 h and situated in the right bottom quadrant 

of Fig. 3a, associate with bitter taste and astringent mouthfeel.  According to data summarised in 

Addendum C (Table 2C), several of the C. longifolia  samples processed for only 8 h had high 

intensities (>10) for bitter taste, indicating that under-fermentation could easily result in infusions 

with a bitter taste.  

The PCA scores plot for C. maculata samples, harvested over three production years and 

processed according to two production regimes, indicate no clear split between the samples 
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according to production year or processing conditions (Fig. 4a).  The PCA loadings plot displays 

the corresponding compositional parameters and taste and mouthfeel attributes (Fig. 4b), with the 

samples on the right side of the PCA scores plot (Fig. 4a) associating with the compositional 

parameters and taste attributes on the right side of the PCA loadings plot (Fig. 4b).   

Similar to the other Cyclopia species, C. subternata did not indicate a clear split according 

to production season and processing conditions (Fig. 5a).  The PCA loadings plot indicates that 

sweet taste, sour taste, bitter taste and astringency split from the compositional parameters along 

the PC1 (Fig. 5b).  The sensory attributes associated with the majority of the 2012 and 2013 

samples, whereas the compositional parameters associated more closely with the 2010 samples.  

All the data of the four Cyclopia species were combined to provide a data set 

encompassing a larger range for individual parameters.  The PCA scores plot (Fig. 6a) shows that 

the samples of each species more or less clustered in groups.  From the PCA loadings plot (Fig. 

6b) it is evident that all the samples of C. maculata and C. subternata associated with sweet taste.  

The phenolic compounds, 3-hydroxyphloretin-3′-5′-di-C-hexoside (D1) and phloretin-3′-5′-di-C-

glucoside (D2), lie close to sweet taste on the PCA loadings plot (Fig. 6b) and associated with C. 

subternata.  The vast majority of the C. longifolia samples, and especially the C. genistoides 

samples, associated with the other compositional parameters and sensory attributes (especially 

bitter taste and astringent mouthfeel) situated on the right side of the PCA loadings plot (Fig. 6b).  

 Prediction of taste and mouthfeel based on phenolic composition 3.3

The predictive value of individual phenolic compounds, TP and SS (independent variables) for 

specific taste and mouthfeel attributes was assessed using Pearson‟s correlation analysis, PLS 

and step-wise regression analysis.  PLS was employed to determine the association between each 

individual sensory attribute and the full range of independent variables, whereas step-wise 

regression analysis determined the simultaneous contribution of the independent variables, 

whether positive or negative (i.e. according to the parameter estimates), towards predicting the 

variation within the taste and mouthfeel attributes (Snedecor & Cochran, 1989).  In order to 

achieve the latter, these three methods were applied to the data set of each Cyclopia species 

individually, as well as to the combined data sets.   

3.3.1 Cyclopia genistoides 

Pearson‟s correlation coefficients for C. genistoides are summarised in Table 5.  Significant (p ≤ 

0.05) but low negative correlations were obtained between sweet taste and naringenin-O-hexose-

deoxyhexose B (Fl2) (r = -0.365), hesperidin (Fl3) (r = -0.340) and mangiferin (X1) (r = -0.360).  

Similarly, significant (p ≤ 0.05) but low to moderate negative correlations between sour and 3-

hydroxyphloretin-3′-5′-di-C-hexoside (D1) (r = -0.320), naringenin-O-hexose-O-deoxyhexose A 

(Fl1) (r = -0.476), naringenin-O-hexose-O-deoxyhexose B (Fl2) (r = -0.328) and hesperidin (Fl3)  

(r = -0.535) were observed.  Significant positive correlations (p ≤ 0.05) were obtained between 

bitter taste and maclurin-di-O,C-hexoside (B2) (r = 0.496) and vicenin-2 (Fv1) (r = 0.459).  In 

contrast, four moderately strong significant negative correlations were observed between bitter 
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taste and 3-hydroxyphloretin-3′-5′-di-C-hexoside (D1) (r = -0.487), naringenin-O-hexose-O-

deoxyhexose A (Fl1) (r = -0.460), naringenin-O-hexose-O-deoxyhexose B (Fl2) (r = -0.451), and 

hesperidin (Fl3) (r = -0.609).  Astringency correlated negatively but moderately with 

tetrahydroxyxanthone-C-hexoside isomer A (X3) (r = -0.550), tetrahydroxyxanthone-C-hexoside 

isomer B (X4) (r = -0.549) and SS (r = -0.386).  All the significant correlations were negative, 

except for maclurin-di-O,C-hexoside (B2) and vicenin-2 (Fv1) that correlated positively with bitter 

taste.   

PLS regression analysis was conducted next to determine the relative association between 

the full range of compositional parameters of C. genistoides and its sensory attributes (Fig. 7).  Fig. 

7 indicates that the individual sensory attributes did not strongly associate with any specific 

phenolic compounds, TP or SS; however, the phenolic compounds indicated as being negatively 

correlated with the four sensory attributes (Table 5) are all situated on the far left side of dimension 

1 of the PLS plots (Fig. 7).  The two compounds that were positively correlated (r > 0.45) with bitter 

taste (B2 & Fv1) as indicated in Table 5, also associated with bitter taste as shown in Fig. 7c.  

The results for step-wise regression analysis are summarised in Table 6.  The model R-

square value was the highest for bitter taste (0.7422) and the second highest for sour taste 

(0.5755).  The model R-square value for astringent was a moderate 0.4748, and that for sweet 

taste a very low 0.1332.  Naringenin-O-hexose-O-deoxyhexose B (Fl2), although negatively 

correlated according to the parameter estimates, explained only 13.32% of the variance in sweet 

taste.  Hesperidin (Fl3), naringenin-O-hexose-O-deoxyhexose A (Fl1), 3-hydroxyphloretin-3′-5′-di-

C-hexoside (D1) and TP content explained 57.55% of the variation in sour taste intensity.  

Seventy-four percent (74.22%) of the variance in bitter taste intensity was explained by hesperidin 

(Fl3), soluble solids (SS), naringenin-O-hexose-O-deoxyhexose A (Fl1) and mangiferin (X1) 

content, while tetrahydroxyxanthone-C-hexoside isomer A (X3), maclurin-di-O,C-hexoside (B2) and 

naringenin-O-hexose-O-deoxyhexose B (Fl2) content explained 47.48% of the variance in the 

intensity of astringency.  According to step-wise regression analysis, hesperidin (Fl3) and 

naringenin-O-hexose-O-deoxyhexose A (Fl1) both contributed significantly to explaining the 

variance in sour and bitter taste, while naringenin-O-hexose-O-deoxyhexose B (Fl2) contributed 

significantly to explaining the variance in both sweet taste and astringency.  As indicated in Table 

6, some of the compositional parameters contributed positively to the model and some negatively.  

For example, the variation in the bitter taste intensity of C. genistoides infusions was explained by 

four variables, negatively by the compounds hesperidin (Fl3) and naringenin-O-hexose-O-

deoxyhexose A (Fl1), and positively by the SS and mangiferin (X1).   

3.3.2 Cyclopia longifolia 

The results of Pearson‟s correlation analysis of C. longifolia data are summarised in Table 7.  

Sweet taste correlated negatively with a number of compounds.  These correlations were 

significant (p ≤ 0.05), but low for vicenin-2 (Fv1) (r = -0.405), mangiferin (X1) (r = -0.516), 

isomangiferin (X2) (r = -0.438) and tetrahydroxyxanthone-di-O,C-hexoside (X5) (r = -0.314).  
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Significant, low positive correlations (p ≤ 0.05) were observed between sour taste and eriocitrin 

(Fl4) (r = 0.256), vicenin-2 (Fv1) (r = 0.329), mangiferin (X1) (r = 0.425), isomangiferin (X2) (r = 

0.411) and tetrahydroxyxanthone-di-O,C-hexoside (X5) (r = 0.242).  Low to moderate positive 

correlations (p ≤ 0.05) were observed between all the phenolic compounds quantified in C. 

longifolia infusions, as well as bitter taste and astringent mouthfeel, except for scolymoside (Fv2).  

The parameters, TP and SS, also correlated significantly with bitter taste and astringency.  The 

strongest correlation was observed between mangiferin (X1) and bitter taste (r = 0.800), and 

mangiferin (X1) and astringent mouthfeel (r = 0.779).  Isomangiferin (X2) also had a strong positive 

correlation with bitter taste (r = 0.728) and astringent mouthfeel (r = 0.724).  Mangiferin (X1) and 

isomangiferin (X2) thus had a positive correlation (p ≤ 0.05) with sour taste, bitter taste and 

astringency, while both compounds correlated negatively to sweet taste (p ≤ 0.05).   

PLS regression analysis revealed no association between the compositional parameters 

(Fig. 8) and the three taste modalities and astringency. 

Table 8 displays the results for the step-wise regression analysis for C. longifolia.  

Moderate R-square values were obtained for sweet taste (0.6025), bitter taste (0.7305) and 

astringency (0.6896), while a low model R-square value was obtained for sour taste (0.2675). 

Mangiferin (X1) and scolymoside (Fv2) both contributed negatively to the prediction of sweet taste, 

whereas both iriflophenone-3-C-glucoside (B4) and vicenin-2 (Fv1) contributed positively, 

explaining 60.25% of the variance within the intensity of this sensory attribute.  In the case of bitter 

taste, 73.05% of the variance in its intensity was explained by mangiferin (X1), eriocitrin (Fl4) 

(negative contribution) and iriflophenone-3-C-glucoside (B4) (positive contribution).  For 

astringency, 68.96% of the variance in this attribute‟s intensity is predicted by mangiferin (X1), 

eriocitrin (Fl4), iriflophenone-3-C-glucoside (B4) and SS content.  In this instance only mangiferin 

(X1) and SS added positively to the model.  Prediction of the sour taste intensity depended on the 

positive and negative contribution of mangiferin (X1) and iriflophenone-3-C-glucoside (B4), 

respectively.  However, these compounds explained only 26.75% of the variance in sour taste 

intensity.  According to the step-wise regression analysis, both mangiferin (X1) and iriflophenone-

3-C-glucoside (B4) contributed significantly to explaining the variance in the respective prediction 

models for the sensory attributes; however, in some instances the contribution of these two 

compounds was positive and in others negative.  These results are not clear and require further 

investigation.  

3.3.3 Cyclopia maculata 

Table 9 displays the results of Pearson‟s correlation analysis for C. maculata.  Low to moderate 

positive correlations (p ≤ 0.05) were observed between sweet taste and hesperidin (Fl3) (r = 

0.499), eriocitrin (Fl4) (r = 0.414), vicenin-2 (Fv1) (r = 0.380), mangiferin (X1) (r = 0.560), 

isomangiferin (X2) (r = 0.528) and total polyphenols (r = 0.313).  Sour taste correlated positively 

with mangiferin (X1) (r = 0.477), isomangiferin (X2) (r = 0.455) and total polyphenols (r = 0.445), 

however; these significant (p ≤ 0.05) correlations were all relatively low.  The attributes, bitter taste 
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and astringency correlated positively with mangiferin (X1) (r = 0.411) and eriodictyol-O-glucoside 

(Fl5) (r = 0.492), respectively.  Low, negative correlations (p ≤ 0.05) were also observed between 

astringency and mangiferin (X1) (r = -0.337), isomangiferin (X2) (r = -0.352) and total polyphenols 

(r = -0.304).  

According to the PLS regression analysis, no clear compositional drivers of sweet, bitter 

and sour taste (Fig. 9 a-c) were evident.  In contrast, astringency (Fig. 9d) associated with 

eriodictyol-O-glucoside (Fl5) on dimension 1.  This association is also evident in the Pearson‟s 

correlation table (Table 9).   

According to step-wise regression analyses (Table 10), all four sensory attributes had low 

model R-square values (R-square < 0.4).  Furthermore, a small number of compounds were used 

to explain variation in the intensities of the respective sensory attributes, most probably as a result 

of only six phenolic compounds being quantified for this species (Table 3).  The model R-square 

values for sweet taste and astringency were 0.3947 and 0.3779, respectively.  The model R-

square values for sour and bitter taste were even lower, at 0.2277 and 0.1688, respectively.  The 

model indicated that mangiferin (X1) contributed positively to sweet taste, sour taste and bitter 

taste of C. maculata, explaining 31.4%, 22.77% and 16.88% of the variance in these three taste 

modalities, respectively.  Hesperidin (Fl3) positively explained a further 8.0% of sweet taste.  

Eriodictyol-O-glucoside (Fl5) positively explained 24.23% of the variance in astringency, whereas 

isomangiferin (X2) negatively explained 13.56% of the variance in astringency.  

3.3.4 Cyclopia subternata 

Pearson‟s correlation analysis results for C. subternata are summarised in Table 11.  A small 

number of low to moderate negative correlations (p ≤ 0.05) were observed between the 

compositional parameters and sweet taste, sour taste and astringent mouthfeel.  No significant 

positive correlations were observed for any of the latter attributes.  Mangiferin and isomangiferin 

correlated negatively with sweet taste (r > 0.5).  None of the compositional parameters showed 

significant (p ≤ 0.05) correlations with bitter taste.  

PLS plots for sweet taste, sour taste and astringency (Fig. 10a, b and d, respectively) 

indicate similar associations as that found for Pearson‟s correlation analysis (Table 11), i.e. specific 

phenolic compounds and the SS variable associated negatively with these sensory attributes.  

According to PLS (Fig. 10c), no clear association between the compositional parameters and bitter 

taste existed, a result also evident from Table 11. 

Step-wise regression analysis (Table 12) did not “identify” any predictors of the bitter taste 

intensity of C. subternata, i.e. none of the variables met the 0.05 significance level for entry into the 

model.  In the case of astringency 9% of the variation in astringency was explained by SS (Table 

12).  The model R-square values for sweet taste and sour taste were 0.4068 and 0.3322, 

respectively.  Mangiferin (X1) explained 40.68% of the variance in the intensity of sweet taste, 

albeit negatively.  For sour taste, 3-hydroxyphloretin-3′-5′-di-C-hexoside (D1), hesperidin (Fl3) and 
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phloretin-3′-5′-di-C-glucoside (D2) explained 33.22% of the variance, with the first two compounds 

contributing negatively (D1 & Fl3) and the third compound (D2) contributing positively to the model. 

3.3.5 Combined Cyclopia species data set 

The combined data set of the Cyclopia species was analysed similarly to the individual data sets.  

Table 13 displays the Pearson‟s correlation results of the combined data set.  As expected with a 

much larger data set, there were a number of significant (p ≤ 0.05) correlations between the 

compositional parameters and sensory attributes.  Only significant correlations larger than 0.3 will 

be discussed from this point on.   

A range of low to high negative correlations (p ≤ 0.05) were observed between sweet taste 

and iriflophenone-3-C-glucoside-4-O-glucoside (B1) (r = -0.406), maclurin-di-O,C-hexoside (B2)  

(r = -0.350), maclurin-3-C-glucoside (B3) (r = -0.373), iriflophenone-3-C-glucoside (B4) (r = -0.497), 

naringenin-O-hexose-O-deoxyhexose A (Fl1) (r = -0.330), naringenin-O-hexose-O-deoxyhexose B 

(Fl2) (r = -0.373), vicenin-2 (Fv1) (r = -0.490), mangiferin (X1) (r = -0.676), isomangiferin (X2)  

(r = -0.660), tetrahydroxyxanthone-C-hexoside isomer A (X3) (r = -0.362), tetrahydroxyxanthone-C-

hexoside isomer B (X4) (r = -0.367), tetrahydroxyxanthone-di-O,C-hexoside (X5) (r = -0.330), 

soluble solids (r = -0.407), and total polyphenols (r = -0.448).  Only four positive correlations  

(r > 0.3; p ≤ 0.05) were observed between sweet taste and the phenolic compounds, i.e. 3-

hydroxyphloretin-3′-5′-di-C-hexoside (D1) (r = 0.308), phloretin-3′-5′-di-C-glucoside (D2)  

(r = 0.388), eriocitrin (Fl4) (r = 0.317) and scolymoside (Fv2) (r = 0.315).   

Similarly, sour taste had low (r > 0.3), but positive correlations with only two compounds, 

i.e. maclurin-di-O,C-hexoside (B2) (r = 0.340) and mangiferin (X1) (r = 0.312).  Low to strong 

positive correlations were obtained between bitter taste and iriflophenone-3-C-glucoside-4-O-

glucoside (B1) (r = 0.468), maclurin-di-O,C-hexoside (B2) (r = 0.737), maclurin-3-C-glucoside (B3) 

(r = 0.706), iriflophenone-3-C-glucoside (B4) (r = 0.633), naringenin-O-hexose-O-deoxyhexose A 

(Fl1) (r = 0.408), naringenin-O-hexose-O-deoxyhexose B (Fl2) (r = 0.437), mangiferin (X1)  

(r = 0.755), isomangiferin (X2) (r = 0.644), tetrahydroxyxanthone-C-hexoside isomer A (X3)  

(r = 0.656), tetrahydroxyxanthone-C-hexoside isomer B (X4) (r = 0.664) and total polyphenols  

(r = 0.312).  Bitter taste also correlated negatively with eriocitrin (Fl4) (r = -0.460) and scolymoside 

(Fv2) (r = -0.326).   

Astringency formed a strong positive correlation (p ≤ 0.05) with iriflophenone-3-C-

glucoside-4-O-glucoside (B1) (r = 0.527), iriflophenone-3-C-glucoside (B4) (r = 0.500), vicenin-2 

(Fv1) (r = 0.649), mangiferin (X1) (r = 0.674), isomangiferin (X2) (r = 0.701) and 

tetrahydroxyxanthone-di-O,C-hexoside (X5) (r = 0.639), soluble solids (SS) (r = 0.606) and total 

polyphenols (TP) (r = 0.630).  Low, negative (p ≤ 0.05) correlations were observed between 

astringency and 3-hydroxyphloretin-3′-5′-di-C-hexoside (D1) (r = -0.379), phloretin-3′-5′-di-C-

glucoside (D2) (r = -0.410) and eriodictyol-O-glucoside (Fl5) (r = -0.347). 

The PLS plot for sweet taste (Fig. 11a) shows its association with phloretin-3′-5′-di-C-

glucoside (D2), 3-hydroxyphloretin-3′-5′-di-C-hexoside (D1), scolymoside (Fv2), eriodictyol-O-
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glucoside (Fl5) and eriocitrin (Fl4), as indicated on dimension 1.  This indicates that the samples 

that scored high for sweet taste also contained high levels of these phenolic compounds in the 

infusions.  Interestingly, these compounds are all situated on the left side of dimension 1 of Fig. 

11b, 11c and 11d, indicating a lesser association with the attributes sour taste, bitter taste and 

astringency, respectively. 

The results obtained from the step-wise regression analysis are summarised in Table 14.  

In this case a larger number of variables were entered into the model than when models for each 

species were developed.  Furthermore, in two instances two compounds were removed from the 

model, i.e. when other compounds were able to contribute more effectively to the model.  The 

model R-square values were 0.5074 for sweet taste, 0.2783 for sour taste, 0.8140 for bitter taste 

and 0.6954 for astringency.  Mangiferin (X1), iriflophenone-3-C-glucoside (B4) and scolymoside 

(Fv2) explained a moderate 50.74% of the variance in sweet taste intensity.  Of these predictors, 

mangiferin (X1) content had an inverse effect.  Only 27.83% of the variance in sour taste intensity 

was explained by mangiferin (X1), naringenin-O-hexose-O-deoxyhexose A (Fl1), 

tetrahydroxyxanthone-di-O,C-hexoside (X5), hesperidin (Fl3), iriflophenone-3-C-glucoside-4-O-

glucoside (B1) and SS.  Of these parameters only mangiferin (X1) and SS contributed positively to 

the sour taste model.  Mangiferin (X1), maclurin-di-O,C-hexoside (B2), naringenin-O-hexose-O-

deoxyhexose A (Fl1), SS and tetrahydroxyxanthone-C-hexoside isomer B (X4) explained a 

reasonably high percentage (81.40%) of the variance in bitter taste intensity.  Of the latter 

variables, only mangiferin (X1), maclurin-di-O,C-hexoside (B2), and tetrahydroxyxanthone-C-

hexoside isomer B (X4) contributed positively to the bitter taste model, especially mangiferin with a 

substantial partial R-square value of 0.5698.  For  the astringency model, the compounds 

tetrahydroxyxanthone-di-O,C-hexoside (X5), eriocitrin (Fl4), mangiferin (X1), 

tetrahydroxyxanthone-C-hexoside isomer B (X4) and maclurin-di-O,C-hexoside (B2) explained a 

reasonably high percentage (69.54%) of the variance.  Of these, only tetrahydroxyxanthone-di-

O,C-hexoside (X5), mangiferin (X1) and maclurin-di-O,C-hexoside (B2) contributed positively to the 

astringency model.  

4. DISCUSSION OF RESULTS 

Enjoyment of a cup of honeybush tea depends on its aroma, flavour and taste.  Cronje (2010) 

recently identified a number of aroma-impact volatile compounds.  To date little is known about the 

non-volatile compounds that contribute to the taste and astringency of this beverage.  Theron 

(2012) indicated that mangiferin might contribute to the bitter taste of honeybush infusions.  A 

limited number of phenolic compounds have been quantified, i.e. mangiferin, isomangiferin, 

eriocitrin, narirutin and hesperidin with compounds A, B, C and F, quantified but unidentified 

(Theron, 2012).  Since then advances have been made in phenolic characterisation of several 

Cyclopia species and other major phenolic compounds belonging to the sub-classes 

benzophenones and dihydrochalcones have been identified (De Beer et al., 2012; Beelders et al., 

2014a, b; Schulze et al., 2014).  In view of this, a large sample set, consisting of four Cyclopia 
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species of commercial importance, was sourced (Fig. 1) for the present study, primarily to identify 

compounds that could potentially predict the intensities of the basic taste modalities and 

astringency.  Different statistical methodologies were therefore investigated to identify potential 

“candidate predictors” of the basic taste modalities and astringency in the respective Cyclopia 

species.  

 Phenolic content and sensory intensities  4.1

Substantial variation was observed between the SS content, TP content and phenolic composition 

of the infusions of the different Cyclopia species, as expected from previous studies showing both 

quantitative and qualitative differences between a number of Cyclopia species (Joubert et al., 

2003, 2008; De Beer & Joubert, 2010; Theron, 2012).  In the present study several compounds 

could be quantified in the infusions of Cyclopia species tested that were previously unidentified 

(Beelders et al., 2014 a, b).  Only mangiferin (X1) and isomangiferin (X2), both xanthones, 

hesperidin (Fl3), a flavanone, and vicenin-2 (Fv1), a flavone, were present in all four Cyclopia 

species (Table 3).  The species included in the present study ensured a large variation in the 

content of some of the phenolic compounds, in particular mangiferin and isomangiferin.  Cyclopia 

genistoides and C. longifolia represented species containing high levels of these xanthones, while 

C. maculata and C. subternata contained intermediate and low levels, respectively. 

Variation in the phenolic content within a Cyclopia species could be a result of external 

factors such as different harvesting times, harvest frequency, seed sources and variation in climate 

as indicated by Joubert et al. (2014).  Although the role of such factors on sensory quality was not 

the purpose of this study, samples were specifically selected to include possible causes of 

variation in the phenolic content to aid model building.  In addition, samples subjected to different 

fermentation conditions were included as processing conditions have been shown to affect 

composition (Du Toit & Joubert, 1999; Theron, 2012).  

Notwithstanding the large variation in the content of some of the phenolic compounds, the 

average intensity ranges for the respective sensory attributes were relatively small (<10) for the 

different Cyclopia species (Table 3).  The only exception was the bitter intensity of C. genistoides 

and C. longifolia, i.e. an approximate mean range of 20 on a 100-point scale.  In sensory analysis 

terms, a range of 20 on a 100-point scale is considered quite substantial.  When considering the 

combined data set (Table 4), comprising data of the four Cyclopia species, the average range for 

the intensities of sweet taste and sour taste was quite similar to that of the individual species, i.e. 

≤10, whereas the mean intensity range for astringency increased to approximately 17 and that of 

bitterness to approximately 25.  

The mean intensities of the respective sensory attributes also differed per species.  The 

mean intensity of bitterness in C. genistoides was more than 12, measured on a 100-point scale 

and less than 5 in the other three species (Table 3).  This clearly indicates that mangiferin content 

alone is not responsible for the bitterness of its infusions.  The mean intensities of astringency 

were quite similar in all four Cyclopia species, ranging between 21.17 for C. subternata and 26.74 
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for C. longifolia.  The mean intensities of sweet taste were also quite similar in the four Cyclopia 

species, ranging between 19.05 for C. genistoides and 21.99 for C. subternata.  The mean 

intensity of sour was ≤5 (barely perceptible) in all four species, and is thus considered of limited 

importance (Table 3). 

 Prediction of taste and mouthfeel based on phenolic composition 4.2

To potentially identify “candidate predictors” of sweet taste, sour taste, bitter taste, as well as 

astringency, in the respective Cyclopia species, based on composition, Pearson‟s correlation 

analysis, PLS and step-wise regression analysis were conducted. 

Pearson‟s correlation analysis was performed to determine the correlation between the 

phenolic compounds and the respective taste and mouthfeel attributes.  In most instances the 

correlations were not significant (p > 0.05), especially in C. genistoides, C. maculata and C. 

subternata.  When significant, the r-values were mostly low (+ 0.30) or moderate (+ 0.50), 

indicating that the respective phenolic compounds did not correlate strongly with the four sensory 

attributes.  There were, however, a few reasonably high r-values (r > 0.70) indicating a strong 

correlation between individual composition parameters and sensory attributes, especially when 

considering C. longifolia (Table 7) and the combined species (Table 13).  In C. longifolia the 

compounds mangiferin (X1) and isomangiferin (X2) correlated strongly with bitter taste, as well as 

astringency.  When combining the data sets of the four Cyclopia species, bitter taste correlated 

strongly with mangiferin (X1), maclurin-di-O,C-hexoside (B2) and maclurin-3-C-glucoside (B3), 

while astringency correlated strongly with isomangiferin (X2).  Although the concentrations of the 

respective phenolic compounds within a Cyclopia species, or over species, varied considerably, 

and are therefore ideal for correlation analysis, the low r-values could possibly be attributed to the 

limited variation in the intensities of the individual sensory attributes.   

Partial least squares (PLS) regression was also performed to ascertain the association of 

each individual sensory attribute with the full range of compositional parameters within a species, 

as well as over species.  The PLS plots illustrate the correlation between the respective taste or 

mouthfeel attribute and all the compositional parameters.  PLS takes into account the correlation of 

all the compositional parameters and not just one at a time, as done by Pearson‟s correlation 

analysis and step-wise regression analysis.  When considering the individual Cyclopia species 

separately, the respective PLS plots (Fig. 7 – 10) indicated that the individual sensory attributes did 

not strongly associate with any specific compositional parameters.  More associations were 

established, however, when the data sets of the four Cyclopia species were combined.  In this 

case the PLS plots (Fig. 11) showed that five phenolic compounds, phloretin-3′-5′-di-C-glucoside 

(D2), 3-hydroxyphloretin-3′-5′-di-C-hexoside (D1), scolymoside (Fv2), eriodictyol-O-glucoside (Fl5) 

and eriocitrin (Fl4) associated positively with sweet taste on the right side of the PLS plot (Fig. 

11a), showing some sort of predictive ability.  For sour taste (Fig. 11b), bitter taste (Fig. 11c) and 

astringency (Fig. 11d), these five compounds had a negative association with the latter three 

sensory attributes, i.e. all five compounds were situated on the opposite side of the respective PLS 
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plots on dimension 1.  This illustrates that in this sample set (N = 204), high levels of D1, D2, Fv2, 

Fl4 and Fl5 correlate with low intensities of sour taste, bitter taste, as well as astringency.  

Finally step-wise regression analysis was used to investigate the predictive value of the 

phenolic compounds, SS and TP, for the intensity of each sensory attribute, within species, but 

also for the combined data set of the four Cyclopia species.  This procedure first selects the 

independent variable (compositional parameters) for which the regression has the highest R-

squared.  The P-value must be below the tolerance level chosen in advance.  At the next and each 

following step, the variable that increases R-squared the most is selected.  After each step in which 

a variable is added, all variables in the model are checked for significance below the specified 

tolerance level.  This process continues until none of the remaining variables increase the R-

squared of the model below the specified tolerance level (Snedecor & Cochran, 1989).  A concern 

to be kept in mind when interpreting step-wise regression model results is that the procedure yields 

a single final model, although in practice there are often several equally good models available 

(Snedecor & Cochran, 1989).  Another concern is that collinearity in the data may result in different 

models using different selection criteria.  For example, when two phenolic compounds are highly 

correlated to each other and to the dependent variable, the step-wise regression procedure will 

only select one of the compounds to be present in the model.  It must also be considered that the 

compounds present in the model do not necessarily correlate positively with the dependent 

variable, as indicated by the parameter estimates, but they are responsible for explaining the 

variation in the dependent variable.  For example, a compound such as mangiferin has previously 

been associated with bitter taste (Theron, 2012).  In a model with sufficient variance for sweet 

taste, a compound such as mangiferin should have a negative parameter estimate, indicating that 

the presence of this compound in the infusion will not increase the sweet taste of the product in 

question, but predict a lower intensity value.   

In this study the respective step-wise regression models, Table 6 (C. genistoides), Table 8 

(C. longifolia), Table 10 (C. maculata) and Table 12 (C. subternata), as well as Table 14 (based on 

all four species), show that an assortment of compounds were used to build each model; in some 

instances the independent variables (compositional parameters) had negative parameter estimates 

and in other instances positive parameter estimates.  The prediction model for C. genistoides 

(Table 6) and C. longifolia (Table 8) resulted in relatively high model R-square values for bitter 

taste, indicating that 74.22% of the variation in the bitter intensity of C. genistoides could be 

explained by hesperidin (Fl3), SS, naringenin-O-hexose-O-deoxyhexose A (Fl1) and mangiferin 

(X1), while mangiferin (X1), eriocitrin (Fl4) and iriflophenone-3-C-glucoside (B4) explained 73.05% 

of the variation within the bitter intensity of C. longifolia.  The fact that mangiferin (X1) had a 

positive parameter estimate in the model for bitter taste of C. genistoides, and a negative 

parameter estimate in that of C. longifolia shows that a combination of variables build the model 

and collectively predict the intensity of a specific sensory attribute.   
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Furthermore, the final model R-square values of the respective dependent variables 

(sensory attributes) differed considerably (Tables 6, 8, 10, 12 and 14).  The latter is clearly 

illustrated in Table 14, which shows that the final model R-square value for sour taste was low 

(0.2783), whereas that of bitter taste was substantially higher (0.8140).  This difference can 

possibly be attributed to the fact that the intensity range for sour taste over all species was fairly 

narrow (0.5 to 10.17), whereas the intensity range for bitter taste over all species was substantially 

wider (0.0 to 25.7).  Similar tendencies were observed in a study on rooibos, where it was indicated 

that a limited sensory intensity range, as well as other factors such as variation in plant material or 

processing conditions, resulted in very low model R-square values (Jolley, 2014).  Although the 

prediction models of the current study cannot be guaranteed to be optimal in any specific case, it is 

expected that for future sample sets, the percentage of variance explained would be reasonably 

similar to that found in the present study.  It is, however, suggested that these models should be 

validated with a new data set, large enough to capture sufficient variation, before use.  A 

preliminary validation was conducted using 24 randomly selected batches as validation set to 

ascertain how well the validation sample could be predicted using the model values of the training 

set.  It was confirmed that the percentage variance explained in test and validation sets were 

similar (results not shown) (Addendum D; Fig. 1D – Fig. 4D). 

In view of the above, it is clear that the step-wise regression model used in this study only 

identified a combination of compositional parameters potentially influencing (positively and/or 

negatively) the variation in the respective sensory attribute intensities.  The fact that most of the 

model R-square values were low indicates that other factors are definitely influencing the predictive 

ability of the model.  When the bitter intensity is plotted against the sum of mangiferin (X1) and 

isomangiferin (X2) concentrations (mg/L), i.e. including data of all four Cyclopia species (Fig. 12), it 

is clear that C. maculata and C. subternata are both low in bitter intensity, as well as mangiferin 

(X1) and isomangiferin (X2) concentration.  This is, however, not true for the other two Cyclopia 

species, C. genistoides and C. longifolia, while the respective processing treatments within species 

show noticeable variable bitter intensities and mangiferin (X1) and isomangiferin (X2) 

concentrations.  Short fermentation times (8h), in particular, contributed to C. longifolia samples 

having high xanthone concentrations and high scores for bitter intensity.  Several C. longifolia 

samples had high xanthone concentrations (>200 mg/L) yet low bitter intensity (<10), indicating 

that other factors also play a role.  Similar results are indicated when bitter intensity is plotted 

against the benzophenone concentration (mg/L) (Fig. 13).  The diverse patterns of bitter intensity 

versus compound concentration thus indicate that external factors come into play.  It is possible 

that certain compounds can work as taste modulators, or that compounds can work in combination 

with one another to produce certain taste and mouthfeel attributes (Reichelt et al., 2010).  

Hesperidin is the precursor of the aglycone, hesperetin and was previously identified as a 

sweetness enhancer (Ley et al., 2008; 2011), as well as a bitter-masking compound (Reichelt et 

al., 2010), while the aglycone of eriocitrin, eriodictyol, is a bitter-masking compound (Kinghorn et 
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al., 2010).  The dihydrochalcone aglycone, phloretin, has been demonstrated to modulate 

bitterness, but could also impart bitterness at high concentrations (Ley et al., 2012).  It is clear that 

the model cannot account for the correlations between compounds or the modulating effects of 

certain compounds.  It is furthermore possible that non-phenolic compounds such as amino acids 

can result in a bitter taste (Solms, 1969).  Solms (1969) found that leucine, tryptophan, 

phenylalanine and tyrosine all elicit bitter taste in their L-form, but are sweet in the D-form, thus 

indicating that small changes in the structure of a compound can influence a basic taste modality.  

Beelders et al. (2014b) were the first group to identify the two aromatic amino acids, tyrosine and 

phenylalanine, in C. genistoides and the genus Cyclopia.  Several other factors such as compound 

size and structure could also influence the taste and mouthfeel of a compound (Peleg et al., 1999).  

As mentioned, these are all factors that the model cannot take into account.  In future other 

statistical methods should also be investigated to determine if a better model can be produced 

(Snedecor & Cochran, 1989). 

5. CONCLUSIONS 

This study investigated the phenolic composition of four Cyclopia species and their relationship 

with the taste and mouthfeel attributes within species and over all four species.  It was observed 

that the phenolic compounds present differed between Cyclopia species.  Hesperidin (Fl3), vicenin-

2 (Fv1), mangiferin (X1) and isomangiferin (X2) were the only phenolic compounds present in the 

infusions of all four species in sufficient levels to be quantified by HPLC-DAD.  Cyclopia 

genistoides and C. longifolia had the highest content of the xanthone, mangiferin (X1), as well as 

the highest bitter intensities.  Different statistical methods were used to determine the potential 

phenolic predictors of the taste (sweet, sour and bitter) and mouthfeel attributes.  The respective 

statistical methodologies were reasonably successful in identifying potential “candidate predictors”, 

but further studies are essential to confirm their predictive ability and to validate the step-wise 

regression models obtained in this study.  Validation would require the use of a large, new sample 

set, comprising sufficient variation, both in composition and intensity of the sensory attributes.  

Limitations of the step-wise regression method were detected and discussed in this study and it is 

suggested that other statistical methods be investigated.  On a composition level, studies should 

also be undertaken to identify taste-active phenolic compounds and to determine their contribution 

to the taste and mouthfeel properties of the Cyclopia infusions.  Furthermore, expanding the range 

of intensities used during descriptive sensory analysis might also improve the prediction ability 

based on composition.  
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Table 1 Column, mobile phase and gradient profile for HPLC analysis of infusions of C. 
genistoides, C. maculata, C. subternata and C. longifolia. 

Species Column Mobile phase Gradient profile 

C. genistoides
a 

Kinetex column 

(150 x 4.6 mm ID, 

2.6 µm; 

Phenomenex) 

A = methanol 

B = acetronitrile 

C = 1% formic acid 

0 min - 2.5% solvent A; 2.5% solvent B 

5 min - 2.5% solvent A; 2.5% solvent B 

45 min - 12.5% solvent A; 12.5% solvent B 

55 min - 25% solvent A; 25% solvent B 

56 min - 25% solvent A; 25% solvent B 

57min - 2.5% solvent A; 2.5% solvent B 

65 min - 2.5% solvent A; 2.5% solvent B 

C. maculata
b 

Gemini-NX C18 

column (150 x 4.6 

mm; 3 µm; 

Phenomenex)  

A = acetronitrile 

B = 2% acetic acid 

0 min - 8% solvent A 

2 min - 8% solvent A 

31 min - 38% solvent A 

32 min - 50% solvent A 

33 min - 50% solvent A 

34 min - 8% solvent A 

44 min - 8% solvent A 

C. subternata
c 

Gemini-NX C18 

column (150 x 4.6 

mm; 3 µm; 

Phenomenex) 

A = acetronitrile 

B = 2% acetic acid 

0 min - 8% solvent A 

2 min - 8% solvent A 

27 min - 38% solvent A 

28 min - 50% solvent A 

29 min - 50% solvent A 

30 min - 8% solvent A 

40 min - 8% solvent A 

C. longifolia
d 

Kinetex C18 

column (150 x 4.6 

mm; 2.6 µm; 

Phenomenex) 

A = acetonitrile  

B = 0.1% formic acid 

0 min - 4.5% solvent A 

4 min - 4.5% solvent A 

22 min - 8% solvent A 

49 min - 20% solvent A 

51 min - 50% solvent A 

52 min - 50% solvent A 

53 min - 4.5% solvent A 

59 min - 4.5% solvent A 

a
Beelders et al. (2014a). 

b
Schulze et al. (2014). 

c
De Beer et al. (2012). 

d
Schulze (unpublished). 
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Table 2 Notations used to indicate individual phenolic compounds, total polyphenols and soluble solids in Tables and Figures. 

Notations used in Tables and Figures Class Compositional parameters 

B1 Benzophenone Iriflophenone-3-C-glucoside-4-O-glucoside 

B2 Benzophenone Maclurin-di-O,C-hexosidea 

B3 Benzophenone Maclurin-3-C-glucoside 

B4 Benzophenone Iriflophenone-3-C-glucoside 

D1 Dihydrochalcone 3-Hydroxyphloretin-3′-5′-di-C-hexosideb 

D2 Dihydrochalcone Phloretin-3′-5′-di-C-glucosidec 

Fl1 Flavanone Naringenin-O-hexose-O-deoxyhexose Ad 

Fl2 Flavanone Naringenin-O-hexose-O-deoxyhexose Bd 

Fl3 Flavanone Hesperidin 

Fl4 Flavanone Eriocitrin 

Fl5 Flavanone Eriodictyol-O-glucoside 

Fv1 Flavone Vicenin-2e (apigenin-6,8-di-C-glucoside) 

Fv2 Flavone Scolymoside (luteolin-7-O-rutinoside) 

X1 Xanthone Mangiferin 

X2 Xanthone Isomangiferin 

X3 Xanthone Tetrahydroxyxanthone-C-hexoside isomer Af 

X4 Xanthone Tetrahydroxyxanthone-C-hexoside isomer Bf 

X5 Xanthone Tetrahydroxyxanthone-di-O,C-hexosidef 

TP  Total polyphenolsg 

SS  Soluble solidsh 

a
Quantified as maclurin-3-C-glucoside equivalents. 

b
Quantified as aspalathin equivalents. 

c
Quantified as nothofagin equivalents. 

d
Quantified as narirutin equivalents. 

e
Quantified as luteolin equivalents. 

f
Quantified as mangiferin equivalents. 

g
Quantified as galic acid equivalents. 

h
Gravametric mass. 
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Table 3 Minimum, maximum, mean and standard deviation for the intensities of the respective 
sensory attributes (scored on a 100 point scale), as well as the compositional parametersa (mg/L in 
water) for each species. 

 
Variable Minimum Maximum Mean Std. deviation 

C
. 

g
e
n

is
to

id
e

s
 

Sweet 16.67 21.07 19.05 1.04 

Sour 1.33 10.17 5.09 1.77 

Bitter 5.22 25.70 12.87 5.31 

Astringent 20.56 28.41 25.39 1.81 

SS 1670 2707 2108 257 

TP 303.1 493.9 381.7 44.9 

B1 10.96 47.46 31.64 10.00 

B2 0.22 2.39 1.21 0.52 

B3 0.73 8.92 3.59 2.01 

B4 5.73 60.14 22.69 11.43 

D1 0.32 1.53 0.92 0.29 

Fl1 0.67 19.01 5.67 4.53 

Fl2 0.80 17.76 6.64 4.86 

Fl3 4.20 15.90 9.74 2.63 

Fv1 3.30 7.57 5.67 0.90 

X1 73.29 227.32 121.96 37.03 

X2 28.74 71.20 38.71 8.87 

X3 0.50 1.97 1.13 0.37 

X4 0.40 1.62 0.88 0.29 

C
. 

lo
n

g
if

o
li

a
 

Sweet 15.09 22.02 19.73 1.83 

Sour 0.50 8.18 3.47 1.80 

Bitter 0.00 22.28 3.94 5.11 

Astringent 23.40 33.53 26.74 2.16 

SS 1904 3306 2585 327 

TP 223.5 743.6 482.6 138.3 

B1 12.68 62.10 27.64 13.25 

B3 0.00 2.53 0.38 0.66 

B4 1.33 47.85 9.07 12.06 

Fl3 7.10 18.28 10.72 2.52 

Fl4 1.45 7.57 4.01 1.44 

Fv1 5.43 11.55 7.98 1.26 

Fv2 1.19 6.41 3.01 1.06 

X1 13.70 278.93 75.61 61.85 

X2 9.40 72.87 31.54 15.05 

X5 0.36 3.11 1.21 0.49 

C
. 

m
a

c
u

la
ta

 

Sweet 19.78 22.93 21.12 0.78 

Sour 0.67 7.78 3.41 1.87 

Bitter 0.00 6.30 1.77 1.12 

Astringent 15.26 25.68 21.51 2.15 

SS 1264 2347 1833 268 

TP 103.4 377.4 270.8 72.2 

Fl3 12.39 21.80 16.91 2.76 

Fl4 0.86 10.61 5.00 2.16 

Fl5 0.39 1.49 0.86 0.30 

Fv1 3.28 7.72 5.55 1.01 

X1 2.00 42.00 16.40 8.77 

X2 2.10 20.80 12.21 4.91 
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C
. 

s
u

b
te

rn
a

ta
 

Sweet 19.27 24.37 21.99 1.17 

Sour 0.93 9.54 3.75 2.16 

Bitter 0.19 3.91 1.50 0.90 

Astringent 14.80 23.53 21.17 1.77 

SS 1248 2066 1641 238 

TP 94.6 364.3 212.0 66.0 

B1 3.21 49.19 21.26 11.67 

D1 1.23 4.61 2.46 0.86 

D2 1.24 9.45 3.14 1.84 

Fl3 2.60 11.10 5.66 2.04 

Fl4 1.49 13.14 5.13 2.46 

Fv1 1.16 5.42 3.07 1.07 

Fv2 0.91 13.00 5.53 2.96 

X1 0.00 6.00 2.16 1.50 

X2 0.30 6.80 2.66 1.66 
a
The notations used for the compositional parameters are explained in Table 2. 
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Table 4 Minimum, maximum, mean and standard deviation for the intensities of the respective 
sensory attributes (scored on a 100 point scale), as well as the compositional parametersa (mg/L in 
water) for the full data set, i.e. all four Cyclopia species. 

Variable Minimum Maximum Mean Std. deviation 

Sweet 15.09 24.37 20.37 1.74 

Sour 0.50 10.17 3.87 1.99 

Bitter 0.00 25.70 4.87 5.85 

Astringent 14.80 33.53 24.12 3.18 

SS 1248 3306 2116 472 

TP 94.6 743.6 356.8 145.0 

B1 0.00 62.10 21.16 15.72 

B2 0.00 2.39 0.26 0.55 

B3 0.00 8.92 0.91 1.74 

B4 0.00 60.14 8.09 12.39 

D1 0.00 4.61 0.73 1.06 

D2 0.00 9.45 0.68 1.55 

Fl1 0.00 19.01 1.22 3.13 

Fl2 0.00 17.76 1.43 3.53 

Fl3 2.60 21.80 10.76 4.50 

Fl4 0.00 13.14 3.60 2.61 

Fl5 0.00 1.49 0.19 0.38 

Fv1 1.16 11.55 5.90 2.12 

Fv2 0.00 13.00 2.26 2.64 

X1 0.00 278.93 56.99 60.76 

X2 0.30 72.87 22.69 17.20 

X3 0.00 1.97 0.24 0.49 

X4 0.00 1.62 0.19 0.39 

X5 0.00 3.11 0.43 0.65 

a
The notations used for the compositional parameters are explained in Table 2. 
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Table 5 Pearson's correlation table for taste, mouthfeel and compositional parametersa of C. genistoides infusions. 

Variables Sweet Sour Bitter Astringent SS TP B1 B2 B3 B4 D1 Fl1 Fl2 Fl3 Fv1 X1 X2 X3 X4 

Sweet 1 -0.045 0.038 -0.233 -0.144 -0.292 -0.123 0.084 0.108 -0.184 -0.296 -0.177 -0.365 -0.340 0.065 -0.360 -0.195 0.149 0.078 

Sour -0.045 1 0.726 0.326 -0.184 -0.055 -0.111 0.274 0.081 -0.261 -0.320 -0.476 -0.328 -0.535 0.233 -0.034 -0.229 -0.264 -0.218 

Bitter 0.038 0.726 1 0.307 0.041 0.120 0.109 0.496 0.225 -0.192 -0.487 -0.460 -0.451 -0.609 0.459 0.132 -0.157 -0.137 -0.065 

Astringent -0.233 0.326 0.307 1 -0.386 -0.130 0.060 0.195 -0.156 -0.026 -0.235 -0.191 0.129 -0.269 -0.114 0.156 -0.099 -0.550 -0.549 

SS -0.144 -0.184 0.041 -0.386 1 0.822 0.567 0.256 0.504 0.519 0.548 0.406 0.164 0.535 0.524 0.505 0.629 0.615 0.666 

TP -0.292 -0.055 0.120 -0.130 0.822 1 0.616 0.332 0.493 0.637 0.363 0.505 0.356 0.362 0.559 0.761 0.746 0.476 0.574 

B1 -0.123 -0.111 0.109 0.060 0.567 0.616 1 0.758 0.247 0.380 0.164 0.205 0.089 0.224 0.395 0.488 0.437 0.300 0.334 

B2 0.084 0.274 0.496 0.195 0.256 0.332 0.758 1 0.291 0.062 -0.238 -0.199 -0.293 -0.230 0.279 0.215 -0.009 0.150 0.159 

B3 0.108 0.081 0.225 -0.156 0.504 0.493 0.247 0.291 1 0.693 0.044 0.256 0.078 0.061 0.336 0.231 0.199 0.443 0.531 

B4 -0.184 -0.261 -0.192 -0.026 0.519 0.637 0.380 0.062 0.693 1 0.343 0.718 0.641 0.351 0.244 0.532 0.539 0.401 0.494 

D1 -0.296 -0.320 -0.487 -0.235 0.548 0.363 0.164 -0.238 0.044 0.343 1 0.403 0.444 0.865 -0.053 0.167 0.456 0.303 0.244 

Fl1 -0.177 -0.476 -0.460 -0.191 0.406 0.505 0.205 -0.199 0.256 0.718 0.403 1 0.844 0.375 -0.035 0.537 0.696 0.556 0.620 

Fl2 -0.365 -0.328 -0.451 0.129 0.164 0.356 0.089 -0.293 0.078 0.641 0.444 0.844 1 0.371 -0.149 0.575 0.642 0.127 0.211 

Fl3 -0.340 -0.535 -0.609 -0.269 0.535 0.362 0.224 -0.230 0.061 0.351 0.865 0.375 0.371 1 -0.068 0.145 0.407 0.271 0.227 

Fv1 0.065 0.233 0.459 -0.114 0.524 0.559 0.395 0.279 0.336 0.244 -0.053 -0.035 -0.149 -0.068 1 0.407 0.316 0.162 0.255 

X1 -0.360 -0.034 0.132 0.156 0.505 0.761 0.488 0.215 0.231 0.532 0.167 0.537 0.575 0.145 0.407 1 0.804 0.148 0.295 

X2 -0.195 -0.229 -0.157 -0.099 0.629 0.746 0.437 -0.009 0.199 0.539 0.456 0.696 0.642 0.407 0.316 0.804 1 0.349 0.469 

X3 0.149 -0.264 -0.137 -0.550 0.615 0.476 0.300 0.150 0.443 0.401 0.303 0.556 0.127 0.271 0.162 0.148 0.349 1 0.956 

X4 0.078 -0.218 -0.065 -0.549 0.666 0.574 0.334 0.159 0.531 0.494 0.244 0.620 0.211 0.227 0.255 0.295 0.469 0.956 1 

Values in bold are significantly different from 0 (p = 0.05).  Significant correlations between the taste and mouthfeel attributes and the other parameters are highlighted in yellow. 

a
The notations used for the compositional parameters are explained in Table 2. 
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Table 6 Step-wise regression model indicating the percentage variation in sweet, sour and bitter taste and astringent mouthfeel explained by the 
compositional parameters of C. genistoides infusions. 

Sensory attributes Step Variable entered Parameter estimate Partial R-square Model R-square 

Sweet taste 1 Naringenin-O-hexose-O-deoxyhexose B (Fl2) -0.07779 0.1332 0.1332 

Sour taste 

1 Hesperidin (Fl3) -0.69845 0.2860 0.2860 

2 Naringenin-O-hexose-O-deoxyhexose A (Fl1) -0.20763 0.0884 0.3744 

3 3-Hydroxyphloretin-3′-5′-di-C-hexoside (D1) 4.07129 0.1154 0.4898 

4 Total polyphenols (TP) 0.01370 0.0857 0.5755 

Bitter taste 

1 Hesperidin (Fl3) -1.44771 0.3708 0.3708 

2 Soluble solids (SS) 0.01048 0.1884 0.5591 

3 Naringenin-O-hexose-O-deoxyhexose A (Fl1) -0.63623 0.1420 0.7011 

4 Mangiferin (X1) 0.03883 0.0411 0.7422 

Astringent mouthfeel 

1 Tetrahydroxyxanthone-C-hexoside isomer A (X3) -3.22015 0.3025 0.3025 

2 Maclurin-di-O,C-hexoside (B2) 1.35007 0.0788 0.3813 

3 Naringenin-O-hexose-O-deoxyhexose B (Fl2) 0.12133 0.0935 0.4748 

The final model R-square value is highlighted in yellow.  
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Table 7 Pearson's correlation table for taste, mouthfeel and compositional parametersa of C. longifolia infusions. 

Variables Sweet Sour Bitter Astringent SS TP B1 B3 B4 Fl3 Fl4 Fv1 Fv2 X1 X2 X5 

Sweet 1 -0.817 -0.856 -0.814 -0.042 -0.128 -0.223 -0.150 -0.219 -0.119 -0.193 -0.405 0.156 -0.516 -0.438 -0.314 

Sour -0.817 1 0.763 0.754 0.174 0.147 0.214 0.148 0.207 0.042 0.256 0.329 -0.018 0.425 0.411 0.242 

Bitter -0.856 0.763 1 0.941 0.320 0.362 0.495 0.493 0.558 0.366 0.515 0.636 -0.038 0.800 0.728 0.503 

Astringent -0.814 0.754 0.941 1 0.401 0.424 0.513 0.487 0.565 0.358 0.524 0.681 -0.013 0.779 0.724 0.517 

SS -0.042 0.174 0.320 0.401 1 0.684 0.572 0.615 0.594 0.670 0.860 0.755 0.442 0.592 0.724 0.652 

TP -0.128 0.147 0.362 0.424 0.684 1 0.520 0.543 0.560 0.436 0.676 0.584 0.195 0.585 0.667 0.627 

B1 -0.223 0.214 0.495 0.513 0.572 0.520 1 0.734 0.940 0.356 0.697 0.801 -0.278 0.764 0.758 0.218 

B3 -0.150 0.148 0.493 0.487 0.615 0.543 0.734 1 0.843 0.630 0.755 0.724 0.133 0.731 0.750 0.545 

B4 -0.219 0.207 0.558 0.565 0.594 0.560 0.940 0.843 1 0.493 0.777 0.791 -0.113 0.851 0.818 0.359 

Fl3 -0.119 0.042 0.366 0.358 0.670 0.436 0.356 0.630 0.493 1 0.694 0.663 0.475 0.517 0.517 0.649 

Fl4 -0.193 0.256 0.515 0.524 0.860 0.676 0.697 0.755 0.777 0.694 1 0.781 0.406 0.820 0.891 0.656 

Fv1 -0.405 0.329 0.636 0.681 0.755 0.584 0.801 0.724 0.791 0.663 0.781 1 0.085 0.820 0.815 0.583 

Fv2 0.156 -0.018 -0.038 -0.013 0.442 0.195 -0.278 0.133 -0.113 0.475 0.406 0.085 1 0.080 0.194 0.505 

X1 -0.516 0.425 0.800 0.779 0.592 0.585 0.764 0.731 0.851 0.517 0.820 0.820 0.080 1 0.941 0.607 

X2 -0.438 0.411 0.728 0.724 0.724 0.667 0.758 0.750 0.818 0.517 0.891 0.815 0.194 0.941 1 0.670 

X5 -0.314 0.242 0.503 0.517 0.652 0.627 0.218 0.545 0.359 0.649 0.656 0.583 0.505 0.607 0.670 1 

Values in bold are significantly different from 0 (p = 0.05).  Significant correlations between the taste and mouthfeel attributes and the other parameters are highlighted in yellow. 

a
The notations used for the compositional parameters are explained in Table 2. 
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Table 8 Step-wise regression model indicating the percentage variation in sweet, sour and bitter taste and astringent mouthfeel explained by the 
compositional parameters of C. longifolia infusions. 

Sensory attributes Step Variable entered Parameter estimate Partial R-square Model R-square 

Sweet taste 

1 Mangiferin (X1) -0.03848 0.2662 0.2662 

2 Iriflophenone-3-C-glucoside (B4) 0.17830 0.1756 0.4418 

3 Scolymoside (Fv2) -0.43799 0.1342 0.5760 

4 Vicenin-2 (Fv1) 0.72115 0.0265 0.6025 

Sour taste 
1 Mangiferin (X1) 0.02631 0.1807 0.1807 

2 Iriflophenone-3-C-glucoside (B4) -0.08390 0.0868 0.2675 

Bitter taste 

1 Mangiferin (X1) -0.14628 0.6396 0.6396 

2 Eriocitrin (Fl4) -1.22225 0.0603 0.6999 

3 Iriflophenone-3-C-glucoside (B4) 0.11371 0.0306 0.7305 

Astringent mouthfeel 

1 Mangiferin (X1) 0.04745 0.6073 0.6073 

2 Eriocitrin (Fl4) -0.96865 0.0404 0.6476 

3 Soluble solids (SS) 0.00210 0.0225 0.6701 

4 Iriflophenone-3-C-glucoside (B4) -0.04947 0.0195 0.6896 

The final model R-square value is highlighted in yellow.   
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Table 9 Pearson's correlation table for taste, mouthfeel and compositional parametersa of C. maculata infusions. 

Variables Sweet Sour Bitter Astringent SS TP Fl3 Fl4 Fl5 Fv1 X1 X2 

Sweet 1 0.098 0.044 -0.414 0.258 0.313 0.499 0.414 -0.268 0.380 0.560 0.528 

Sour 0.098 1 0.336 0.089 0.278 0.445 0.071 0.233 0.182 0.240 0.477 0.455 

Bitter 0.044 0.336 1 0.301 0.261 0.162 0.021 0.145 -0.118 0.011 0.411 0.288 

Astringent -0.414 0.089 0.301 1 -0.171 -0.304 -0.266 -0.085 0.492 -0.078 -0.337 -0.352 

SS 0.258 0.278 0.261 -0.171 1 0.839 0.301 0.764 0.058 0.593 0.501 0.730 

TP 0.313 0.445 0.162 -0.304 0.839 1 0.285 0.652 0.090 0.662 0.602 0.810 

Fl3 0.499 0.071 0.021 -0.266 0.301 0.285 1 0.626 -0.024 0.363 0.434 0.442 

Fl4 0.414 0.233 0.145 -0.085 0.764 0.652 0.626 1 0.038 0.487 0.428 0.586 

Fl5 -0.268 0.182 -0.118 0.492 0.058 0.090 -0.024 0.038 1 0.392 -0.088 0.033 

Fv1 0.380 0.240 0.011 -0.078 0.593 0.662 0.363 0.487 0.392 1 0.539 0.730 

X1 0.560 0.477 0.411 -0.337 0.501 0.602 0.434 0.428 -0.088 0.539 1 0.831 

X2 0.528 0.455 0.288 -0.352 0.730 0.810 0.442 0.586 0.033 0.730 0.831 1 

Values in bold are significantly different from 0 (p = 0.05).  Significant correlations between the taste and mouthfeel attributes and the other parameters are highlighted in yellow. 

a
The notations used for compositional parameters are explained in Table 2. 
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Table 10 Step-wise regression model indicating the percentage variation in sweet, sour and bitter taste and astringent mouthfeel explained by the 
compositional parameters of C. maculata infusions. 

Sensory attributes Step Variable entered Parameter estimate Partial R-square Model R-square 

Sweet taste 
1 Mangiferin (X1) 0.03766 0.3140 0.3140 

2 Hesperidin (Fl3) 0.08908 0.0807 0.3947 

Sour taste 1 Mangiferin (X1) 0.10180 0.2277 0.2277 

Bitter taste 1 Mangiferin (X1) 0.05264 0.1688 0.1688 

Astringent mouthfeel 
1 Eriodictyol-O-glucoside (Fl5) 3.65681 0.2423 0.2423 

2 Isomangiferin (X2) -0.16161 0.1356 0.3779 

The final model R-square value is highlighted in yellow.   
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Table 11 Pearson's correlation table for taste, mouthfeel and compositional parametersa of C. subternata infusions. 

Variables Sweet Sour Bitter Astringent SS TP B1 D1 D2 Fl3 Fl4 Fv1 Fv2 X1 X2 

Sweet 1 0.006 0.221 0.145 -0.207 -0.132 -0.370 -0.050 -0.126 -0.129 -0.385 -0.382 0.116 -0.638 -0.585 

Sour 0.006 1 0.587 -0.144 0.223 0.282 -0.108 -0.330 0.034 -0.207 -0.051 -0.058 0.154 -0.182 -0.096 

Bitter 0.221 0.587 1 -0.044 0.117 0.137 -0.018 -0.131 -0.008 -0.126 0.024 -0.018 0.119 -0.156 -0.072 

Astringent 0.145 -0.144 -0.044 1 -0.301 -0.259 0.039 0.193 -0.020 -0.172 -0.164 -0.183 0.106 -0.164 -0.213 

SS -0.207 0.223 0.117 -0.301 1 0.802 0.426 0.015 0.364 0.061 0.470 0.561 0.294 0.411 0.516 

TP -0.132 0.282 0.137 -0.259 0.802 1 0.442 0.193 0.558 -0.279 0.509 0.318 0.491 0.186 0.259 

B1 -0.370 -0.108 -0.018 0.039 0.426 0.442 1 0.419 0.308 -0.272 0.482 0.670 0.236 0.601 0.597 

D1 -0.050 -0.330 -0.131 0.193 0.015 0.193 0.419 1 0.698 -0.410 0.556 -0.133 0.481 -0.046 -0.094 

D2 -0.126 0.034 -0.008 -0.020 0.364 0.558 0.308 0.698 1 -0.442 0.677 -0.095 0.667 -0.002 -0.015 

Fl3 -0.129 -0.207 -0.126 -0.172 0.061 -0.279 -0.272 -0.410 -0.442 1 -0.092 0.267 -0.578 0.359 0.311 

Fl4 -0.385 -0.051 0.024 -0.164 0.470 0.509 0.482 0.556 0.677 -0.092 1 0.167 0.351 0.321 0.349 

Fv1 -0.382 -0.058 -0.018 -0.183 0.561 0.318 0.670 -0.133 -0.095 0.267 0.167 1 -0.321 0.803 0.868 

Fv2 0.116 0.154 0.119 0.106 0.294 0.491 0.236 0.481 0.667 -0.578 0.351 -0.321 1 -0.263 -0.304 

X1 -0.638 -0.182 -0.156 -0.164 0.411 0.186 0.601 -0.046 -0.002 0.359 0.321 0.803 -0.263 1 0.901 

X2 -0.585 -0.096 -0.072 -0.213 0.516 0.259 0.597 -0.094 -0.015 0.311 0.349 0.868 -0.304 0.901 1 

Values in bold are significantly different from 0 (p = 0.05).  Significant correlations between the taste and mouthfeel attributes and the other parameters are highlighted in yellow. 

a
The notations used for the compositional parameters are explained in Table 2. 
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Table 12 Step-wise regression model indicating the percentage variation in sweet, sour and bitter taste and astringent mouthfeel explained by the 
compositional parameters of C. subternata infusions. 

Sensory attributes Step Variable entered Parameter estimate Partial R-square Model R-square 

Sweet taste 1 Mangiferin (X1) -0.49549 0.4068 0.4068 

Sour taste 

1 3-Hydroxyphloretin-3′-5′-di-C-hexoside (D1) -1.91104 0.1088 0.1088 

2 Hesperidin (Fl3) -0.35405 0.1409 0.2497 

3 Phloretin-3′-5′-di-C-glucoside (D2) 0.48515 0.0826 0.3322 

Bitter taste 
 No variable met the 0.05 significance level for entry 

into the model 

   

Astringent mouthfeel 1 Soluble solids (SS) -0.00224 0.0905 0.0905 

The final model R-square value is highlighted in yellow.   
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Table 13 Pearson's correlation table for taste, mouthfeel and compositional parametersa of all four Cyclopia species. 

Values in bold are significantly different from 0 (p = 0.05).  Significant correlations between the taste and mouthfeel attributes and the other parameters are highlighted in yellow. 

a
The notations used for the compositional parameters are explained in Table 2. 

  

Variables SS TP B1 B2 B3 B4 D1 D2 Fl1 Fl2 Fl3 Fl4 Fl5 Fv1 Fv2 X1 X2 X3 X4 X5 

Sweet -0.407 -0.448 -0.406 -0.350 -0.373 -0.497 0.308 0.388 -0.330 -0.373 -0.091 0.317 0.191 -0.490 0.315 -0.676 -0.660 -0.362 -0.367 -0.330 

Sour 0.047 0.119 0.152 0.340 0.295 0.211 0.007 -0.017 0.111 0.165 -0.147 -0.157 -0.085 0.039 -0.070 0.312 0.249 0.267 0.271 -0.074 

Bitter 0.213 0.312 0.468 0.737 0.706 0.633 -0.062 -0.253 0.408 0.437 -0.089 -0.460 -0.264 0.251 -0.326 0.755 0.644 0.656 0.664 0.010 

Astringent 0.606 0.630 0.527 0.211 0.264 0.500 -0.379 -0.410 0.123 0.184 -0.041 -0.247 -0.347 0.649 -0.074 0.674 0.701 0.148 0.146 0.639 

SS 1 0.876 0.508 0.020 0.193 0.446 -0.489 -0.397 0.061 0.019 0.220 0.100 -0.289 0.857 0.023 0.579 0.733 0.044 0.050 0.777 

TP 0.876 1 0.526 0.102 0.250 0.514 -0.446 -0.375 0.115 0.102 0.160 0.028 -0.283 0.788 -0.023 0.654 0.770 0.108 0.113 0.732 

B1 0.508 0.526 1 0.412 0.450 0.688 0.187 0.061 0.301 0.288 -0.377 -0.147 -0.660 0.391 0.178 0.664 0.621 0.359 0.362 0.321 

B2 0.020 0.102 0.412 1 0.798 0.570 0.071 -0.207 0.616 0.618 -0.133 -0.654 -0.231 -0.027 -0.405 0.533 0.441 0.870 0.869 -0.313 

B3 0.193 0.250 0.450 0.798 1 0.799 0.030 -0.229 0.696 0.654 -0.045 -0.550 -0.256 0.120 -0.353 0.635 0.569 0.843 0.858 -0.148 

B4 0.446 0.514 0.688 0.570 0.799 1 -0.089 -0.287 0.665 0.652 0.043 -0.361 -0.321 0.393 -0.280 0.862 0.802 0.640 0.654 0.144 

D1 -0.489 -0.446 0.187 0.071 0.030 -0.089 1 0.857 0.103 0.108 -0.611 0.126 -0.336 -0.701 0.553 -0.247 -0.397 0.101 0.098 -0.454 

D2 -0.397 -0.375 0.061 -0.207 -0.229 -0.287 0.857 1 -0.172 -0.178 -0.548 0.420 -0.215 -0.599 0.733 -0.397 -0.512 -0.216 -0.216 -0.290 

Fl1 0.061 0.115 0.301 0.616 0.696 0.665 0.103 -0.172 1 0.933 -0.021 -0.542 -0.192 -0.046 -0.335 0.520 0.476 0.828 0.844 -0.259 

Fl2 0.019 0.102 0.288 0.618 0.654 0.652 0.108 -0.178 0.933 1 -0.028 -0.562 -0.199 -0.062 -0.347 0.537 0.476 0.756 0.772 -0.269 

Fl3 0.220 0.160 -0.377 -0.133 -0.045 0.043 -0.611 -0.548 -0.021 -0.028 1 0.216 0.669 0.390 -0.541 0.093 0.192 -0.086 -0.089 0.091 

Fl4 0.100 0.028 -0.147 -0.654 -0.550 -0.361 0.126 0.420 -0.542 -0.562 0.216 1 0.269 0.044 0.440 -0.322 -0.283 -0.682 -0.680 0.199 

Fl5 -0.289 -0.283 -0.660 -0.231 -0.256 -0.321 -0.336 -0.215 -0.192 -0.199 0.669 0.269 1 -0.050 -0.419 -0.330 -0.297 -0.241 -0.240 -0.324 

Fv1 0.857 0.788 0.391 -0.027 0.120 0.393 -0.701 -0.599 -0.046 -0.062 0.390 0.044 -0.050 1 -0.240 0.573 0.709 -0.042 -0.035 0.742 

Fv2 0.023 -0.023 0.178 -0.405 -0.353 -0.280 0.553 0.733 -0.335 -0.347 -0.541 0.440 -0.419 -0.240 1 -0.275 -0.303 -0.422 -0.420 0.243 

X1 0.579 0.654 0.664 0.533 0.635 0.862 -0.247 -0.397 0.520 0.537 0.093 -0.322 -0.330 0.573 -0.275 1 0.942 0.543 0.556 0.366 

X2 0.733 0.770 0.621 0.441 0.569 0.802 -0.397 -0.512 0.476 0.476 0.192 -0.283 -0.297 0.709 -0.303 0.942 1 0.489 0.498 0.495 

X3 0.044 0.108 0.359 0.870 0.843 0.640 0.101 -0.216 0.828 0.756 -0.086 -0.682 -0.241 -0.042 -0.422 0.543 0.489 1 0.995 -0.326 

X4 0.050 0.113 0.362 0.869 0.858 0.654 0.098 -0.216 0.844 0.772 -0.089 -0.680 -0.240 -0.035 -0.420 0.556 0.498 0.995 1 -0.325 

X5 0.777 0.732 0.321 -0.313 -0.148 0.144 -0.454 -0.290 -0.259 -0.269 0.091 0.199 -0.324 0.742 0.243 0.366 0.495 -0.326 -0.325 1 
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Table 14 Step-wise regression model indicating the percentage variation in sweet, sour and bitter taste and astringent mouthfeel explained by the 
compositional parameters of all four Cyclopia species. 

Sensory 
attributes 

Step Variable entered Parameter 

estimate 

Variable removed Partial R-

square 

Model R-

square 

Sweet taste 

1 Mangiferin (X1) -0.02700  0.4564 0.4564 

2 Iriflophenone-3-C-glucoside (B4) 0.05060  0.0287 0.4851 

3 Scolymoside (Fv2) 0.10258  0.0223 0.5074 

Sour taste 

1 Maclurin-di-O,C-hexoside (B2)   0.1153 0.1153 

2 Mangiferin (X1) 0.02832  0.0239 0.1391 

3 Naringenin-O-hexose-O-deoxyhexose A (Fl1) -0.23605  0.0310 0.1702 

4 Tetrahydroxyxanthone-di-O,C-hexoside (X5) -1.70441  0.0299 0.2001 

5 Hesperidin (Fl3) -0.19199  0.0228 0.2229 

6   Maclurin-di-O,C-hexoside (B2) 0.0094 0.2135 

7 Iriflophenone-3-C-glucoside-4-O-glucoside (B1) -0.05884  0.0402 0.2537 

8 Soluble solids (SS) 0.00140  0.0246 0.2783 

Bitter taste 

1 Mangiferin (X1) 0.07383  0.5698 0.5698 

2 Maclurin-di-O,C-hexoside (B2) 2.20741  0.1568 0.7267 

3 Naringenin-O-hexose-O-deoxyhexose A (Fl1) -1.04763  0.0357 0.7624 

4 Soluble solids (SS) -0.00282  0.0248 0.7872 

5 Tetrahydroxyxanthone-C-hexoside isomer B (X4) 8.14799  0.0267 0.8140 

Astringent 

mouthfeel 

1 Isomangiferin (X2)   0.4908 0.4908 

2 Tetrahydroxyxanthone-di-O,C-hexoside (X5) 2.27513  0.1127 0.6035 

3 Eriocitrin (Fl4) -0.34212  0.0421 0.6456 

4 Mangiferin (X1) 0.02610  0.0265 0.6721 

5   Isomangiferin (X2) 0.0014 0.6707 

6 Tetrahydroxyxanthone-C-hexoside isomer B (X4) -3.00738  0.0135 0.6842 

7 Maclurin-di-O,C-hexoside (B2) 1.29910  0.0112 0.6954 

The final model R-square value is highlighted in yellow.

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



 

 
 

1
8
1
 

Cyclopia genistoides 

2010 - 12 samples 

2012 - 16 samples           44 samples 

2013 - 16 samples 

 
Cyclopia maculata 

2010 - 12 samples 

2012 - 16 samples           44 samples 

2013 - 16 samples 

 
Cyclopia subternata 

2010 - 12 samples 

2012 - 16 samples           44 samples 

2013 - 16 samples 

 
Cyclopia longifolia 

2013 -                              72 samples 

Compositional analyses 

 HPLC–DAD 

 Soluble solids 

 Total polyphenols 

Data analysis: 

 PCA 

 PLS 

 Step-wise regression 

Prediction models: 

 Modelling per species 

 Modelling over all four species 

Descriptive sensory analysis 

 Taste and mouthfeel 

Fig. 1 Summary of sample set, sample analysis, data analysis and outcome. 
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Fig. 2 a) PCA scores plot showing the position of C. genistoides samples (N = 44) and the relation of these samples with each other.  The 
abbreviation G in the sample name refers to the species, C. genistoides, 80 and 90 refer to the fermentation parameters, 80°C/16 h and 90°C/24 h, 
respectively and 10, 12 and 13 refer to the production years, 2010, 2012 and 2013, respectively.  b) PCA loadings plot illustrating the relationship 
between the compositional parameters and the taste and mouthfeel attributes.  The notations for the phenolic compounds are explained in Table 2.  

a) b) 
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Fig. 3 a) PCA scores plot showing the position of C. longifolia samples (N = 72) and the relation of these samples with each other.  The abbreviation L 
in the sample name refers to the species, C. longifolia, 80 and 90 refer to the fermentation temperature, 80°C and 90°C, respectively and 8, 16, 24 
and 32 refer to the fermentation time (h).  b) PCA loadings plot illustrating the relationship between the compositional parameters and the taste and 
mouthfeel attributes.  The notations for the phenolic compounds are explained in Table 2.   

a) b) 
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Fig. 4 a) PCA scores plot showing the position of C. maculata samples (N = 44) and the relation of these samples with each other.  The abbreviation 
M in the sample name refers to the species, C. maculata, 80 and 90 refer to the fermentation parameters, 80°C/16 h and 90°C/24 h, respectively and 
10, 12 and 13 refer to the production years, 2010, 2012 and 2013, respectively.  b) PCA loadings plot illustrating the relationship between the 
compositional parameters and the taste and mouthfeel attributes.  The notations for the phenolic compounds are explained in Table 2.   

a) b) 
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Fig. 5 a) PCA scores plot showing the position of C. subternata samples (N = 44) and the relation of these samples with each other.  The abbreviation 
S in the sample name refers to the species, C. subternata, 80 and 90 refer to the fermentation parameters, 80°C/16 h and 90°C/24 h, respectively and 
10, 12 and 13 refer to the production years, 2010, 2012 and 2013, respectively.  b) PCA loadings plot illustrating the relationship between the 
compositional parameters and the taste and mouthfeel attributes.  The notations for the phenolic compounds are explained in Table 2.  

a) b) 
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Fig. 6 a) PCA scores plot showing the position of all samples of four Cyclopia species (N = 204) and the relation of these samples with each other.  
The abbreviations Gen, Mac, Sub and Lon refer to C. genistoides, C. maculata, C. subternata and C. longifolia, respectively.  b) PCA loadings plot 
illustrating the relationship between compositional parameters and the taste and mouthfeel attributes.  The notations for the phenolic compounds are 
explained in Table 2.   

a) b) 
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Fig. 7 PLS regression plots for C. genistoides displaying the relation between compositional parameters and a) sweet, b) sour, c) bitter, d) astringent 
attributes, respectively.  The notations for the phenolic compounds used are explained in Table 2. 

a) b) 

c) d) 
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Fig. 8 PLS regression plots for C. longifolia displaying the relation between compositional parameters and a) sweet, b) sour, c) bitter, d) astringent 
attributes, respectively.  The notations for the phenolic compounds used are explained in Table 2. 

a) b) 

c) d) 
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Fig. 9 PLS regression plots for C. maculata displaying the relation between compositional parameters and a) sweet, b) sour, c) bitter, d) astringent 
attributes, respectively.  The notations for the phenolic compounds used are explained in Table 2. 

a) b) 

c) d) 
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Fig. 10 PLS regression plots for C. subternata displaying the relation between compositional parameters and a) sweet, b) sour, c) bitter, d) astringent 
attributes, respectively.  The notations for the phenolic compounds used are explained in Table 2. 

a) b) 

c) d) 
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a) b) 

c) d) 

Fig. 11 PLS regression plots for all four Cyclopia species displaying the relation between compositional parameters and a) sweet, b) sour, c) bitter, d) 
astringent attributes, respectively.  The notations for the phenolic compounds used are explained in Table 2. 
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Fig. 13 A scatter plot illustrating the mean concentration of benzophenones (B1 – B4) present in four Cyclopia species, as well as the mean intensity 
of bitter taste.  The abbreviations G, L, M and S refer to C. genistoides, C. longifolia, C. maculata and C. subternata, respectively, while 80 and 90 
next to G, M and S refer to the fermentation parameters 80°C/24 h and 90°C/16 h, respectively.  For C. longifolia (L) 80 and 90 refer to fermentation 
temperature 80°C and 90°C, respectively, while 8, 16, 24 and 32 refer to the fermentation time (h). 
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSIONS 
1. INTRODUCTION 

Food quality is a multifaceted concept that involves meeting the expectations laid down by 

consumers (Cardello, 1995; Van Boekel, 2008) and can be described as “the combination of 

attributes or characteristics of a product that have significance in determining the degree of 

acceptability of the product to a user” (Cardello, 1995).  The success of a food product usually 

depends largely on its sensory quality, but also on its consistency.  Therefore, ensuring food 

quality on a day-to-day basis is of the utmost importance to guarantee customer loyalty and market 

growth (Van Boekel, 2008).  For effective quality control and assessment of food products, it is 

necessary to have knowledge both of attributes responsible for perceived quality and tools to 

measure quality.  

The present study focused on honeybush tea, a traditional South African herbal tea, for 

which retail markets have been developed only during the past 20 years (Joubert et al., 2011).  

Poor and inconsistent product quality has been a concern since the development of the honeybush 

industry (Du Toit et al., 1998).  Implementation of factory-based processing played a major role in 

improving product quality, yet it does not always guarantee good quality.  Bergh (2014) pointed out 

that factors such as factory management, experience of processors and the type of processing 

equipment all have an impact on product quality.  Other challenges faced by the honeybush 

industry are the number of species used for production of honeybush tea and the small volumes 

produced.  Processing conditions therefore need to be optimised for each species (Theron, 2012; 

Bergh, 2014).   

Cyclopia intermedia, C. genistoides and C. subternata are most commonly used when 

producing honeybush, but with increasing consumer demand, the commercial potential of other 

species, i.e. C. maculata and C. longifolia, are currently being investigated (Joubert et al., 2011).  

Studies have found that the respective Cyclopia species have differing sensory profiles, opening 

the door for the production of different niche market products, with each product having its own 

unique sensory profile (Theron et al., 2014).  However, as a result of limited production yields and 

increased consumer demand, the respective honeybush species are often substituted with one 

another or blended without considering the effect of this on the resultant sensory profiles (Joubert 

et al., 2011).  Furthermore, environmental conditions, varying growth localities, along with inherent 

species differences, can lead to considerable differences in the volatile and non-volatile chemical 

profiles (De Beer & Joubert, 2010; Cronje, 2010; Theron, 2012; Joubert et al., 2014) and thus also 

the sensory profiles of commercially produced honeybush.   

With the growing interest in health-promoting food products, the consumption of herbal tea 

drinks has increased by 15% over the past few years (Bender, 2014).  The characteristic sensory 
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profile of honeybush, i.e. an herbal tea with “floral”, “fruity”, “woody” and “sweet-associated” 

sensory notes (Theron et al., 2014), as well the fact that it contains no caffeine and has a low 

tannin content (Joubert et al., 2011), makes honeybush an ideal product for the fast-growing herbal 

tea market.  It is therefore vitally important to define the specific sensory profiles of the 

commercially viable Cyclopia species and to determine optimum processing conditions for the 

current, but also the emerging Cyclopia species.  Recent attainment of a geographical indication 

(GI) for honeybush (Anon., 2013) places product characteristics, an essential element of GI, again 

in the spotlight.  To maintain the GI status, it is important to produce honeybush tea of good, 

consistent quality; therefore, it is vital to have procedures in place that will ensure product quality. 

Most honeybush products are sold in the so-called “fermented” form, produced through a 

high-temperature oxidation process required for development of the characteristic sweet-

associated flavour and dark-brown colour of the traditional product.  A range of processing 

conditions is currently being used by the honeybush industry (Joubert et al., 2011; Bergh, 2014).  It 

was only recently that Theron (2012) defined the effect of fermentation conditions on the sensory 

profiles of C. genistoides, C. maculata and C. subternata and established that the two optimum 

fermentation temperature/time regimes, 80°C/24 h and 90°C/16 h, deliver subtle differences in the 

sensory profiles of the respective species.  Fermentation of C. genistoides at 80°C/24 h resulted in 

a stronger “rose geranium” aroma than fermentation at 90°C/16 h.  It was recommended that C. 

maculata be fermented at 80°C/24 h to effectively reduce the intensity of negative sensory 

attributes such as “haylike”‟.  The fermentation of C. subternata at 80°C/24 h resulted in a more 

“floral” note, while a stronger “apricot jam” note was perceived at 90°C/16 h (Theron, 2012).  

Optimum fermentation conditions and the specific sensory profile required are therefore species-

dependent.  It is thus important to also determine the optimum fermentation parameters of 

Cyclopia species currently being investigated for commercialisation, e.g. C. longifolia. 

Whilst the distinct flavour profiles of herbal teas are responsible for their market appeal, a 

major driver of their increasing market share is the growing consumer awareness of the positive 

health impact associated with these products.  This trend has also provided the honeybush 

industry with leverage to boost its market share (Joubert et al., 2011).  The health-promoting 

properties of honeybush have been linked to its phenolic compounds (Joubert et al., 2008a).  High 

levels of these bioactive compounds, in addition to tea quality, are one of the selection criteria used 

in the breeding and selection of improved honeybush plant material by the Agricultural Research 

Council (Infruitec-Nietvoorbij) of South Africa (Bester, 2013).  Theron (2012), studying several 

Cyclopia species, linked a limited number of compounds to the taste and mouthfeel attributes of 

honeybush infusions.  Most prominently was the correlation of the bioactive xanthones, mangiferin 

and isomangiferin with bitter taste and astringency, indicating that sensory quality may be 

compromised when high levels of these bioactive compounds are present.  Consumer and 

marketing studies revealed that taste, as opposed to health value, is one of the major key 

influences when selecting food (Drewnowski & Gomez-Carneros, 2000).  In a study by Theron 
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(2012) on the potential link between phenolic compounds and the basic taste modalities, no 

compounds could be linked to sweet taste or the other basic taste modalities, and it was 

recommended that a larger sample set be used, encompassing more plant material variation, as 

well as processing variation to ultimately develop a prediction model that could indicate the 

chemical drivers of taste and astringency (Theron, 2012).   

In view of the above, the objectives of this study were thus as follows: 1) to investigate the 

effect of different temperature/time fermentation regimes on the sensory profile of C. longifolia in 

order to identify the optimum fermentation conditions for this Cyclopia species; 2) to determine the 

defining aroma, flavour, taste and mouthfeel attributes of C. genistoides, C. subternata, C. 

maculata and C. longifolia and using these results to validate the generic sensory wheel and 

lexicon for honeybush developed by Theron et al. (2014) and to further develop species-specific 

sensory wheels for the respective Cyclopia species, 3) to test the viability of a rapid sensory 

profiling technique, sorting, as a potential quality control tool suitable for industry use, and lastly, 4) 

to evaluate the  phenolic content of four Cyclopia species as potential predictors of the taste and 

mouthfeel attributes of honeybush infusions.  

2. ESTABLISHING OF PROCESSING PARAMETERS FOR C. LONGIFOLIA 

The sensory profile of seventy-two (N = 72) C. longifolia samples, fermented at eight 

temperature/time regimes (80°C and 90°C for 8, 16, 24 and 32 h), were investigated using 

descriptive sensory analysis (DSA).  It was seen in this study and in other studies (Bergh, 2014; 

Theron, 2012) that fermentation resulted in an increase of the positive sensory attributes, and a 

decrease of the negative sensory attributes of various Cyclopia species.  For the fermentation 

conditions tested, no new sensory attributes developed during fermentation; however, fermentation 

time is critical as fermentation for 8 h at 80°C or 90°C resulted in “under-fermented” products, with 

intense “green grass” and “hay-like” aromas and flavours.  It was found that a fermentation time of 

24 h at 80°C or 90°C effectively reduced the intensity of the negative sensory attributes.  The 

sensory profile of tea fermented at 80°C/24 h was similar to the sensory profile of tea fermented at 

90°C/24 h; however certain positive attributes such as “rose geranium”, “apricot/apricot jam” and 

“fruity-sweet” aroma were perceived at higher intensities in samples fermented at 90°C.  Thus, it 

was found that C. longifolia can be fermented at 80°C/24 h or 90°C/24 h to produce a tea of good 

sensory quality.   

3. DEVELOPMENT OF QUALITY-CONTROL TOOLS FOR THE HONEYBUSH 

INDUSTRY 

 Generic and species-specific wheels for honeybush 3.1

To validate the generic sensory wheel developed by Theron et al. (2014), a large set of honeybush 

tea samples was sourced (N = 150).  The diverse sample set consisted of three Cyclopia species 

(C. genistoides, C. maculata and C. subternata), harvested and processed over a four-year period, 
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as well as selected samples from the fermentation study of C. longifolia.  The latter plant material 

was harvested in 2013 only.  The samples came from different production regions and were 

processed according to different processing regimes, thus ensuring that natural sample variation 

was accommodated.  For all species only those samples processed at optimum conditions were 

used.  This was a major difference to the approach followed by Theron et al. (2014).  In the latter 

study both commercial and experimental samples were employed and many were of poor quality, 

specifically included to fully characterise the negative sensory attributes.  

Theron et al. (2014) defined the “characteristic” sensory profile of honeybush as having a 

“floral”, “sweet-associated”, “fruity”, “plant-like” and “woody” aroma and flavour, and a sweet taste 

and slightly astringent mouthfeel.  The latter results were based on six Cyclopia species (C. 

genistoides, C. subternata, C. maculata, C. intermedia, C. longifolia and C. sessiliflora); however, 

the full sample set of plant material included only 58 individual sample batches.  In the current 

study the “characteristic” or “primary” sensory profile of all four honeybush species was expanded 

and defined as having “fynbos-floral”, “woody”, “fynbos-sweet” aroma and flavour notes, as well as 

a sweet taste and slightly astringent mouthfeel.  All of the 150 samples investigated illustrated 

these eight sensory attributes at perceptible intensities.  This newly-established generic sensory 

profile of honeybush differs slightly from that proposed by Theron et al. (2014), most probably 

because the present study included more samples and thus more sample variation.   

It was furthermore established that the respective Cyclopia species could be classified 

according to their own unique set of sensory attributes, i.e. the so-called species-specific sensory 

profiles.  Cyclopia longifolia and C. genistoides had reasonably similar sensory profiles.  Cyclopia 

genistoides was defined by a prominent “rose geranium” note and perceptible bitter taste.  The 

“rose geranium” note was less prominent in C. longifolia, when fermented at optimum processing 

conditions (80°C or 90°C for 24 h).  Furthermore, these samples had no perceptible bitter taste.  

Cyclopia maculata and C. subternata were also characterised as being reasonably similar.  Both 

species can be described as having “caramel” and other sweet-associated notes and a slightly 

astringent mouthfeel.  Theron et al. (2014) found a prominent “cassia/cinnamon” note in C. 

maculata; however, this note was more prominent in some C. subternata samples prepared for the 

present study.  Breeding of plants that would consistently deliver this “spicy” aroma note could 

pose an interesting challenge for plant breeders.  

Using the above-mentioned results, two generic aroma and flavour wheels were developed 

for honeybush, as well as two species-specific aroma and flavour wheels for each of the four 

Cyclopia species.  Apart from the revision of the sensory attributes, the newly developed generic 

sensory wheels reflect the relative intensity of each attribute, depicted by the thickness of the slice 

in the wheel.  To provide the user with an indication of the expected occurrence of the major 

sensory attributes in honeybush tea, bar graphs indicating the percentage occurrence of each 

sensory attribute have been added to the generic aroma and flavour wheels.  The new generic 

aroma wheel for honeybush consists of 18 aroma attributes and the flavour wheel of 13 flavour, 3 
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taste and 1 mouthfeel attributes.  Similar to the first generic wheel, developed by Theron et al. 

(2014), the new aroma and flavour wheels have also been constructed in three tiers, with each tier 

depicting different classes of sensory quality.  The species-specific wheels, one aroma and one 

flavour wheel for each of the four Cyclopia species, were developed in a similar fashion.  The 

lexicon developed by Theron et al. (2014), i.e. a full list of sensory attributes, as well as a 

description of each attribute, was updated to include the changes made to the sensory wheels. 

These sensory tools can be used by the industry during quality control or grading, i.e. 

where it is important to ensure consistent product quality.  The use of standardised terminology 

throughout the industry would improve communication between various individuals involved in 

honeybush production, lessening the possibility of producing fermented products of poor quality.  

The species-specific sensory wheels can assist in the development of species-specific honeybush 

products for niche markets or during the blending of different species to produce blends with a 

specific sensory profile.  It is, however, important to note that these wheels need to be “validated” 

by industry.  Such a “validation” exercise was recently completed for the newly developed sensory 

wheels for rooibos, another indigenous herbal tea in South Africa (Jolley, 2014).  The rooibos 

wheels were “validated” using direct input from industry during a workshop.  Reference standards 

consisting of tea samples and chemical reference standards were tested during the workshop and 

the input of the industry was used to finalise the rooibos sensory wheels (Jolley, 2014). 

 Rapid profiling methods for an industry environment 3.2

Descriptive sensory analysis (DSA) is one of the most effective methods that can be used for 

determining the sensory profile of a product (Lawless & Heymann, 2010).  DSA is usually 

conducted in a research environment and has been used extensively for the sensory profiling of 

South African herbal teas, rooibos (Koch et al., 2012; Jolley, 2014) and honeybush (Bergh, 2014; 

Theron et al., 2014).  DSA usually results in a vast set of qualitative and quantitative data that can 

be correlated with instrumental or other types of data using standard univariate and multivariate 

analyses.  Even though DSA is a very effective method and results in a full sensory profile, it is 

sometimes viewed as being too time-consuming and expensive, especially within an industry 

environment when a large number of production samples need to be analysed in a short period of 

time.    

In food and beverage industries several rapid profiling methods have been investigated to 

determine faster alternatives for DSA (Valentin et al., 2012).  Sorting is one of the most popular 

rapid profiling methods currently used (Lawless et al., 1995; Valentin et al., 2012) and has recently 

been used for the profiling of commercial rooibos samples in terms of positive and negative 

sensory attributes (Jolley, 2014).  The sorting task groups samples according to their similarities, 

but it does not provide quantitative information (Chollet et al., 2011).  Both instructed and 

uninstructed sorting were investigated in this study to ascertain whether samples can be grouped 

according to species (C. genistoides, C. maculata and C. subternata).  During instructed sorting 
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the panellists are given a pre-defined set of attributes or sensory profiles according to which the 

samples need to be sorted, while no guidelines for grouping of samples are given during 

uninstructed sorting (Valentin et al., 2012).   

In the present study C. genistoides, C. maculata and C. subternata samples, harvested in 

the same production year (2013), were used for instructed sorting, primarily to ascertain whether 

the samples could be grouped according to the sensory attributes generally associated with the 

respective species.  An expert panel was used for the task, i.e. assessors with experience of the 

product in question.  The results indicated that the assessors were able to group the samples 

according to species.  Three or four sensory attributes were used to describe each grouping of 

samples.  These provided further insight into the decision-making process and allowed some 

comparison with the results of DSA.  The groupings of samples obtained from the instructed 

sorting experiment was similar to that obtained with DSA, as indicated by the Rv coefficients.  For 

both methodologies similar attributes were used to describe the sensory profiles of the respective 

Cyclopia species.  Instructed sorting can therefore be viewed as a possible rapid sensory profiling 

tool for the honeybush industry, especially when sample batches need to be classified or screened 

according to a list of sensory attributes that form part of a specification sheet.   

The samples used for uninstructed sorting spanned two production seasons (2012 and 

2013).  However, it was found that the variation within species over two production seasons was 

too high, making grouping according to species difficult.  Therefore, the results obtained from 

uninstructed sorting did not compare well with those obtained from DSA, especially when 

considering the low Rv coefficients.  However, this free sorting technique can still be viewed as a 

possible tool for the honeybush industry, i.e. when the aim is only to sort a group of samples freely 

according to similarities and thus to ascertain the natural categorisation of samples within a 

broader sample set.   

The sorting method is easy to understand and implement and can therefore be used by 

small-scale farmers or processors to quickly identify the profile of the tea samples to ensure 

consistent blending.  Sorting also has the potential to differentiate between products within a 

broader product range, typically a large sample set of honeybush teas can be categorised to 

identify groupings of samples that could be developed into potential niche markets. 

 Prediction of taste and mouthfeel attributes based on phenolic composition 3.3

As a reasonably encompassing sample set with a large amount of natural variation in sensory 

quality and phenolic content was available, a further attempt to that of Theron (2012) was made to 

identify phenolic compounds which associate with the basic taste modalities (sweet, sour and bitter 

taste), as well as the mouthfeel attribute astringency, to ultimately develop a prediction model for 

these sensory attributes.  The focus fell on the phenolic compounds as this class of compounds 

has been shown to contribute to taste, in particular bitter taste, as well as astringency of many food 

products (Drewnowski & Gomez-Carneros, 2000).  Whilst some flavonoids can activate bitter taste 
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receptors (Roland et al., 2013), others such as the dihydrochalcones (Ley et al., 2012) and 

flavanones (Ley et al., 2005) are known to mask bitterness.  Bitterness and astringency can also 

co-exist in polyphenols such as in catechins (Hayashi et al., 2010).   

The phenolic composition differed between the honeybush species tested.  This was also 

seen by Theron (2012) as well as in several other studies where the phenolic composition of an 

array of Cyclopia species was quantified (Joubert et al., 2003; 2008b; De Beer & Joubert, 2010).  

Hesperidin, vicenin-2, mangiferin and isomangiferin were the only four phenolic compounds 

present in all four Cyclopia species.  The variation in the phenolic composition of the different 

Cyclopia species definitely depends on the species in question; however, external factors could 

also contribute to this variation, especially the variation within species across production years.  

Other external factors, such as climate, harvesting areas and soil conditions have also been found 

to influence the phenolic content of Camellia sinensis (Owour et al., 2008; Jayasekera et al., 2014) 

and C. genistoides (Joubert et al., 2014).  Processing conditions, such as fermentation 

temperature and time can also result in variation of the phenolic composition (Du Toit & Joubert, 

1999).  In this study it was observed that C. genistoides and C. longifolia had the highest content of 

the xanthones, mangiferin and isomangiferin, and both Cyclopia species also illustrated the most 

intense bitter taste.  In the case of C. longifolia the bitter taste was prominent only in the samples 

fermented for a short period, while those fermented at the optimum conditions were not perceived 

as being bitter.  Certain samples had a high mangiferin and isomangiferin concentration, but were 

not perceived as bitter.  This could be a result of the presence of modulating compounds which can 

mask the bitterness or enhance the sweetness of the product. 

The large sample set (N = 204) was furthermore analysed using Pearson‟s correlation 

analysis, partial least squares (PLS) and step-wise regression analysis (Abdi, 2007; Snedecor & 

Cochran, 1989), primarily to ascertain the correlation between the chemical compounds and 

sensory attributes and whether individual polyphenols can predict taste and mouthfeel.  The results 

could not clearly identify the phenolic drivers of the individual taste and mouthfeel attributes, 

especially within species-specific context.  The species-specific stepwise-regression analyses 

resulted in moderately low model R-square values for all four sensory attributes, indicating a 

reasonably poor predictive ability of the models, especially for C. maculata and C. subternata.  This 

can be a result of the natural variation between plant material batches, lack of variation between 

the phenolic compounds, the narrow intensity range of some of the taste and mouthfeel attributes, 

or a combined effect of several compounds such as taste-modulating effects which the model 

cannot take into account.  In contrast, the model based on the combined data of all four Cyclopia 

species resulted in considerably higher prediction values, especially for the two attributes bitter 

taste and astringency, thus confirming the statement that more variation leads to a better prediction 

model.  Even though the model identified groups of potential “candidate predictors”, it is important 

to remember that these phenolic compounds are not necessarily the only compounds responsible 

for specific taste and mouthfeel attributes.  When interpreting the results of the step-wise 
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regression models, it should be kept in mind that this procedure yields only one final model, 

although in practice there can be several equally good models.  The collinearity of the data should 

also be taken into account, as it may result in very different models with different selection criteria.  

For example, when two phenolic compounds are highly correlated to each other and to the 

dependent variable, the step-wise regression procedure will select only one of the compounds to 

be present in the model.  One of the limitations of the step-wise regression model, as well as PLS 

and Pearson‟s correlation analysis, is the fact that it cannot account for interaction between 

phenolic compounds or take into account the modulating effects of the compounds (Soares et al., 

2013).   

In view of the above, other statistical methodologies such as multiblock analysis (Næs et 

al., 2013) could be considered, i.e. to ultimately indicate the phenolic drivers of the sensory quality 

attributes in question.  There are, however, also other options when the aim is to identify potential 

“candidate predictors”.  Single phenolic compounds might not be responsible for specific taste and 

mouthfeel attributes, as compounds could influence each other or work in combination to elicit 

certain basic tastes and/or an astringent mouthfeel.  Thus it might be beneficial to fractionate the 

infusions, identify the compounds within each fraction and then analyse the respective fractions 

using standard sensory analysis (Reichelt et al., 2012).  Furthermore, one could also investigate 

the taste and mouthfeel attributes of individual phenolic compounds, and their threshold effects 

(Scharbert et al., 2004), or use omission experiments to identify compounds contributing to taste 

and astringency (Yu et al., 2014).  Knowledge of the impact of individual compounds on taste 

modalities and astringency may aid in building a model that includes only the so-called “taste-

active” compounds. 

 

In view of the above, the following are recommended for future studies: 

 As optimum processing conditions for each species were only tested on laboratory scale, it 

is important to test the respective temperature/time regimes identified in this study on a 

commercial scale, primarily to determine if similar aroma and flavour profiles are obtained on a 

commercial scale and whether these fermentation temperature/time regimes are indeed viable 

processing parameters for industry. 

 The sorting task needs to be validated, firstly by testing more samples to determine the 

stability of the procedure and secondly by including more than two replicate sessions to 

determine whether this rapid profiling method is reproducible.  

 The step-wise regression models obtained in this study need to be validated using a new 

sample set encompassing sufficient sample variation.  Other statistical methods should also be 

investigated to determine the accuracy and validity of the model obtained in this study.  The 

intensity ranges of two of the sensory attributes were quite narrow, whereas the concentration 

ranges of the phenolic compounds were noticeably larger.  By expanding scale usage, and thus 

broadening the mean intensity ranges of the respective sensory attributes, a better model may 
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ultimately be developed.  Furthermore, targeted analysis of the phenolic compounds 

themselves might give some insight into their potential modulating effects or the relationship 

between phenolic compounds.  Analyses such as these might identify “predictor” compounds, 

thereby developing improved targeted tools for the honeybush industry.  
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ADDENDUM A 
 

Photographs illustrating the preparation of honeybush infusions for descriptive sensory 

analysis (DSA)   

Stellenbosch University  https://scholar.sun.ac.za



 
 

208 
 

 

 

 
a) 

b) 

c) 

Fig. 1A a) 12.5 g of tea infused in 1 L freshly boiled distilled water for 5 min before being strained 
into preheated stainless steel flasks.  b) Preheated, labelled white porcelain mugs.  c) Infusions 
were served in the labelled mugs and placed in a scientific water bath at 65°C to maintain 
temperature. 
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ADDENDUM B 
 

Examples of questionnaires used for the sorting of honeybush samples   
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Fig. 1B An example of the questionnaire for instructed sorting of honeybush samples 

Day 1 – Thursday. 6 June 2013 

SESSION 1   Instructed sorting according to AROMA 

 

Please read through the instructions thoroughly and do not hesitate to ask  

if you encounter any difficulties during the process. 

 

INSTRUCTIONS 

 You have been presented with 12 honeybush samples labelled from A to L. 

 The samples represent 3 different honeybush species (C. genistoides. C. maculata 

and C. subternata) 

 Please sort the samples according to the THREE AROMA profiles associated with 

each species. This is provided in Table 1 below. 

 You are allowed to smell the samples as many times as you like and in any order.  

 On the large A3 paper that is provided. place the samples that have a similar aroma 

profile in three groups only. Each group may contain no more than 6 samples.  

 Once you have placed all samples in one of the 3 groups. use the table provided 

on the separate A4 page to indicate which samples you have placed into which 

group.  

 Then please use the aroma attributes provided in Table 1 and any additional 

attributes you would like to add to describe the aroma profile of each group. Do 

not use more than 5 attributes to describe each group. 

 NOTE: Please try to work as quickly as possible to prevent the samples from 

cooling down too much. Place samples back in the waterbath while you are the 

smelling the other samples. 

Table 1   AROMA profiles of three honeybush species 

C. genistoides C. maculata C. subternata 

Apricot 

Fruity sweet 

Honey 

Rose geranium 

Fynbos floral 

Rose perfume 

Woody 

Fynbos sweet 

Cassia /cinnamon 

Cooked apple 

Caramel 

Coconut 
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Thank you for your participation and valuable input. We appreciate you ! 

 

 
Complete the table below by indicating which samples you have placed in the three respective groups.  
Then please write the major AROMA attributes associated with each group in the columns on the right. 

Group Samples AROMA attributes associated with the three groups 

1 

      1. 4. 

2. 5. 

3.  

2 

      1. 4. 

2. 5. 

3.  

3 

      1. 4. 

2. 5. 

3.  

Name:______________________________________ 
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Day 1 – Thursday. 6 June 2013 

SESSION 2   Instructed sorting according to PALATE 

Please read through the instructions thoroughly and do not hesitate to ask  

if you encounter any difficulties during the process. 

 

INSTRUCTIONS 

 You have been presented with 12 honeybush samples labelled from A to L. 

 The samples represent 3 different honeybush species (C. genistoides. C. maculata 

and C. subternata) 

 Please sort the samples according to the THREE PALATE profiles (flavour. taste and 

mouthfeel attributes) associated with each species. This is provided in Table 1 below. 

 You are allowed to taste the samples as many times as you like and in any order.  

 On the large A3 paper that is provided. place the samples that have a similar palate 

profile in three groups only. Each group may contain no more than 6 samples.  

 Once you have placed all samples in one of the 3 groups. use the table provided 

on the separate A4 page to indicate which samples you have placed into which 

group.  

 Then please use the palate attributes provided in Table 1 and any additional 

attributes you would like to add to describe the palate attributes of each group. Do 

not use more than 5 attributes to describe each group. 

 NOTE: Please try to work as quickly as possible to prevent the samples from 

cooling down too much. Place samples back in the waterbath while you are the 

tasting the other samples. 

Table 1   PALATE profiles of three honeybush species 
(flavour. taste and mouthfeel attributes) 
 

C. genistoides C. maculata C. subternata 

Bitter taste 

Strong astringency 

Rose geranium 

Apricot 

Hay 

Woody 

Fynbos floral 

Rose perfume 

Sweet taste 

Low astringency 

Cassia /cinnamon 

Cooked apple 
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Thank you for your participation and valuable input. We appreciate you !

 

 
Complete the table below by indicating which samples you have placed in the three respective groups.  
Then please write the major PALATE attributes associated with each group in the columns on the right. 

Group Samples PALATE attributes associated with the three groups 

1 

      1. 4. 

2. 5. 

3.  

2 

      1. 4. 

2. 5. 

3.  

3 

      1. 4. 

2. 5. 

3.  

Name:______________________________________ 
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Fig. 2B An example of the questionnaire for uninstructed sorting of honeybush samples 

Day 2 – Friday. 7 June 2013 

SESSION 1   Uninstructed sorting according to AROMA 

 

Please read through the instructions thoroughly and do not hesitate to ask  

if you encounter any difficulties during the process. 

 

INSTRUCTIONS 

 You have been presented with 13 honeybush samples labelled from  A  to  M. 

 Please sort the samples according to the SIMILARITY OF THEIR AROMA 

PROFILES 

 You are allowed to smell the samples as many times as you like and in any 

order.  

 On the large A3 paper that is provided. group together the samples that have a 

similar aroma profile  

 You may form as many groups as you wish. but NOT MORE THAN 6 

GROUPS.  

 Each group may contain as many samples as you like 

 Once you have assigned all samples to a group. use the table provided on the 

separate A4 page to indicate which samples you have grouped together  

 Then please write down the major aroma attributes associated with each of the 

sample groups. Do not use more than 5 attributes to describe the aroma 

characteristics of each group.   

 

 NOTE: Please try to work as quickly as possible to prevent the samples from 

cooling down too much. Place samples back in the waterbath while you are 

the smelling the other samples. 
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Complete the table below by indicating which samples you have placed in which group. 

Then please write down the major AROMA attributes associated with each group in the column on the right. 

Group Samples AROMA attributes associated with each group 

1 

      1. 4. 

2. 5. 

3.  

2 

      1. 4. 

2. 5. 

3.  

3 

      1. 4. 

2. 5. 

3.  

4 

      1. 4. 

2. 5. 

3.  

5 

      1. 4. 

2. 5. 

3.  

6 

      1. 4. 

2. 5. 

3.  

Name:______________________________________ 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



 
 

216 
 

Day 2 – Friday. 7 June 2013 

SESSION 2   Uninstructed sorting according to PALATE 

 

Please read through the instructions thoroughly and do not hesitate to ask  

if you encounter any difficulties during the process. 

 

INSTRUCTIONS 

 You have been presented with 13 honeybush samples labelled from  A  to  M. 

 Please sort the samples according to the SIMILARITY OF THEIR PALATE 

CHARACTERISTICS (i.e. Flavour. Taste and Mouthfeel attributes). 

 You are allowed to taste the samples as many times as you like and in any 

order.  

 On the large A3 paper that is provided. group together the samples that have 

similar palate characteristics 

 You may form as many groups as you wish. but NOT MORE THAN 6 

GROUPS.  

 Each group may contain as many samples as you like 

 Once you have assigned all samples to a group. use the table provided on the 

separate A4 page to indicate which samples you have grouped together  

 Then please write down the major palate attributes (flavour. taste and mouthfeel 

characteristics) associated with each of the sample groups. Do not use more 

than 5 attributes to describe the palate characteristics of each group.   

 

 NOTE: Please try to work as quickly as possible to prevent the samples from 

cooling down too much. Place samples back in the waterbath while you are 

the smelling the other samples. 
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Complete the table below by indicating which samples you have placed in which group. 

Then please write down the major PALATE attributes associated with each group in the column on the right. 

Group Samples PALATE attributes associated with each group 

1 

      1. 4. 

2. 5. 

3.  

2 

      1. 4. 

2. 5. 

3.  

3 

      1. 4. 

2. 5. 

3.  

4 

      1. 4. 

2. 5. 

3.  

5 

      1. 4. 

2. 5. 

3.  

6 

      1. 4. 

2. 5. 

3.  

Name:______________________________________ 
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ADDENDUM C 
 

The mean values of the phenolic compounds and the taste and mouthfeel attributes for C. 

genistoides, C. longifolia, C. maculata and C. subternata 
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Table 1C The variation between C. genistoides samples analysed as well as the mean for each year. 

 Samples Sweet Sour Bitter Astringent SS TP B1 B2 B3 B4 D1 Fl1 Fl2 Fl3 Fv1 X1 X2 X3 X4 

2
0

1
0
 

G80-10 19.13 3.28 10.63 23.24 2662 493.9 38.56 0.73 3.16 32.95 1.25 16.04 14.66 12.31 6.77 227.32 70.98 1.60 1.37 

G80-10 18.95 3.46 6.47 22.48 2131 365.7 24.68 0.91 0.73 5.73 0.96 3.59 3.42 9.95 5.31 83.28 33.59 0.92 0.73 

G80-10 17.76 3.19 11.63 23.76 2540 396.3 46.78 1.36 1.68 14.22 1.34 4.35 3.65 14.02 6.51 107.79 40.86 1.22 0.87 

G80-10 18.96 4.97 13.02 24.57 2393 435.2 39.01 1.77 3.79 30.16 0.93 9.63 8.76 9.65 6.95 177.63 34.47 1.49 1.04 

G80-10 19.33 2.67 5.78 23.85 2370 413.4 40.52 1.06 4.50 37.77 1.19 5.17 4.31 13.41 6.45 101.87 36.66 1.21 0.86 

G80-10 19.54 3.19 9.46 23.17 2537 484.4 44.48 1.48 8.90 60.14 1.00 19.01 17.76 11.19 6.32 177.65 53.23 1.70 1.52 

G90-10 18.33 3.78 8.28 22.83 2707 480.5 38.31 0.94 4.09 33.11 1.45 16.04 14.63 12.72 6.50 206.03 71.20 1.97 1.62 

G90-10 19.20 2.98 7.89 23.54 2209 366.6 25.74 0.90 0.90 6.21 1.07 3.45 3.12 13.52 5.18 85.64 35.71 1.09 0.87 

G90-10 19.06 4.00 10.58 24.13 2443 387.2 47.46 1.62 2.44 16.06 1.47 4.66 3.96 15.90 5.24 123.86 43.33 1.44 1.13 

G90-10 17.06 4.94 17.29 25.95 2143 396.7 38.45 2.01 4.37 30.00 0.85 9.47 8.56 8.18 5.31 145.95 32.11 1.79 1.46 

G90-10 19.71 1.33 7.61 23.81 2330 384.6 38.75 1.12 5.50 37.77 1.33 4.89 3.96 13.34 6.00 93.73 36.19 1.44 1.03 

G90-10 17.88 4.03 11.69 24.36 2410 442.3 41.99 1.36 8.92 56.87 0.92 18.32 17.11 11.10 5.59 156.10 50.80 1.77 1.61 

2
0

1
2
 

G80-12 17.30 6.59 18.96 24.88 1960 368.1 20.95 0.91 3.04 11.82 0.65 0.67 0.80 8.03 5.30 113.90 31.87 1.02 0.84 

G80-12 19.65 6.57 14.74 24.63 2123 360.9 21.90 1.11 6.92 16.83 0.98 1.55 1.48 9.63 5.90 84.23 29.83 1.19 0.94 

G80-12 20.30 7.67 16.11 25.24 2133 312.4 25.20 1.24 4.14 18.72 0.92 2.56 2.59 7.08 5.18 73.29 29.78 1.11 0.86 

G80-12 19.33 6.63 18.78 25.07 2013 354.9 19.33 0.97 3.56 14.83 0.69 1.74 1.74 8.84 7.05 78.34 31.05 1.18 0.93 

G80-12 17.89 8.02 25.17 27.65 2082 430.3 39.94 1.81 2.45 15.25 0.50 1.96 2.87 5.63 6.67 169.67 39.89 0.75 0.68 

G80-12 19.54 7.61 20.00 26.02 2112 382.0 34.12 1.20 3.88 20.64 0.77 4.15 4.12 7.07 7.57 101.29 38.46 1.15 0.92 

G80-12 20.06 5.69 25.70 27.35 2005 385.4 46.74 2.39 2.14 11.53 0.38 1.83 2.51 4.20 6.23 155.64 38.80 0.81 0.67 

G80-12 19.39 10.17 21.89 26.63 2233 409.3 30.60 1.85 6.56 25.05 0.97 2.10 2.40 8.94 5.62 111.03 37.62 1.18 0.87 

G90-12 18.00 7.07 10.96 20.56 1973 376.2 20.82 0.85 2.87 11.26 0.80 0.81 0.86 9.84 5.13 83.08 28.74 1.22 0.98 

G90-12 19.74 4.65 17.22 23.22 2150 350.6 24.63 1.08 6.72 16.18 0.64 1.43 1.98 8.55 6.42 127.19 34.31 1.10 0.88 

G90-12 19.72 6.54 20.37 24.76 2043 326.1 26.38 1.16 3.22 18.71 0.55 1.91 3.33 5.16 5.24 102.97 31.95 0.89 0.72 

G90-12 19.43 6.13 21.04 28.41 1911 368.4 19.63 0.86 2.44 13.54 0.32 1.07 2.26 5.59 6.83 118.33 33.18 0.72 0.65 

G90-12 20.48 6.63 13.87 24.06 2033 381.4 36.78 1.58 3.52 14.24 0.93 2.33 2.23 8.29 5.75 88.56 34.30 1.28 0.97 

G90-12 21.00 5.89 13.06 24.31 1877 354.0 31.83 1.08 3.45 19.04 0.63 3.72 4.15 6.88 7.02 105.43 36.80 1.09 0.92 

G90-12 21.07 6.54 14.80 25.77 1878 360.5 43.44 2.36 3.05 12.40 0.39 1.88 2.61 5.68 5.83 145.83 41.04 1.05 0.85 

G90-12 20.41 5.59 19.87 25.27 2378 427.7 30.97 2.05 6.83 24.05 1.20 2.30 2.33 9.96 5.62 92.87 36.46 1.41 1.00 
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G80-13 17.87 5.97 11.92 27.45 1992 371.5 25.23 0.65 2.18 26.47 1.40 5.93 15.13 12.59 5.39 157.68 44.87 0.50 0.44 

G80-13 18.77 3.98 7.22 26.53 1727 318.2 12.72 0.27 1.49 14.65 0.93 7.43 14.74 9.43 3.66 110.42 36.28 0.70 0.52 

G80-13 20.40 3.75 5.22 23.95 1717 314.7 12.11 0.26 1.90 24.69 0.88 8.45 11.39 8.24 5.20 87.68 33.96 1.06 0.84 

G80-13 19.33 3.33 8.90 26.80 1787 358.7 35.99 1.42 2.07 21.85 0.80 6.00 8.37 10.50 4.80 110.53 36.71 0.81 0.57 

G80-13 17.63 5.72 10.50 28.36 1760 353.5 35.61 1.35 1.66 19.82 0.84 4.10 10.30 8.62 4.86 116.00 36.61 0.55 0.40 

G80-13 18.35 3.73 12.41 27.02 2256 410.3 36.88 1.41 6.09 35.89 0.75 3.69 5.69 12.47 6.14 145.09 40.53 0.72 0.63 

G80-13 18.23 4.57 9.50 27.32 1962 362.2 39.41 1.55 1.90 21.06 0.98 4.90 10.07 11.46 5.33 137.23 41.63 0.62 0.55 

G80-13 16.67 7.43 13.70 28.22 2193 428.3 34.56 1.02 2.92 33.06 1.53 5.81 15.45 13.37 6.23 177.74 46.56 0.54 0.45 

G90-13 20.00 4.27 10.02 26.08 2133 382.9 23.87 0.59 3.15 24.06 1.08 9.48 8.72 11.72 4.95 114.28 40.10 1.85 1.23 

G90-13 19.47 3.12 7.07 25.72 1745 303.1 11.23 0.22 1.60 11.59 0.93 8.60 8.71 10.03 3.30 75.81 31.33 1.00 0.74 

G90-13 19.36 4.13 7.28 25.18 1670 315.1 10.96 0.22 1.79 21.97 0.89 8.22 7.36 8.79 4.80 104.62 35.44 0.73 0.51 

G90-13 18.93 4.10 6.81 25.63 1817 351.4 33.86 1.38 2.37 17.53 0.80 6.31 6.01 10.16 4.33 87.82 32.86 1.24 0.84 

G90-13 19.37 3.36 9.29 26.48 1821 346.2 34.86 1.39 2.51 18.63 0.71 6.11 6.30 7.73 4.50 98.01 33.63 1.17 0.80 

G90-13 18.97 5.02 13.25 27.55 2223 421.9 35.10 1.39 6.57 33.45 0.73 3.52 5.40 8.96 5.85 169.71 41.70 0.86 0.81 

G90-13 19.07 5.18 8.07 27.13 2112 360.8 40.90 1.64 2.73 19.78 0.94 6.50 6.15 10.26 5.01 95.06 36.15 1.37 0.98 

G90-13 17.47 6.37 12.23 28.05 2076 402.6 30.69 0.87 3.33 28.76 1.05 7.96 10.21 9.77 5.67 139.92 41.86 0.99 0.78 

                     

 Year Sweet Sour Bitter Astringent SS TP B1 B2 B3 B4 D1 Fl1 Fl2 Fl3 Fv1 X1 X2 X3 X4 

A
v
e

ra
g

e
 2010 18.74 3.48 10.03 23.81 2406 420.6 38.73 1.27 4.08 30.08 1.15 9.55 8.66 12.11 6.01 140.57 44.93 1.47 1.17 

2012 19.58 6.75 18.28 25.24 2057 371.8 29.58 1.40 4.05 16.51 0.71 2.00 2.39 7.46 6.09 109.48 34.63 1.07 0.85 

2013 18.74 4.63 9.59 26.72 1937 362.6 28.37 0.98 2.77 23.33 0.95 6.44 9.37 10.26 5.00 120.47 38.14 0.92 0.69 
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Table 2C The variation between C. longifolia samples analysed as well as the mean for temperature/time regime. 

 
Sweet Sour Bitter Astringent SS TP B1 B3 B4 Fl3 Fl4 Fv1 Fv2 X1 X2 X5 

L80_8 17.06 7.04 16.84 31.83 2711 584.1 43.57 1.67 27.49 11.89 5.98 9.12 2.42 209.52 61.62 1.96 

L80_8 15.20 7.98 22.28 33.53 3063 698.6 62.10 1.67 45.67 15.86 7.57 11.55 3.44 278.93 72.87 1.91 

L80_8 18.38 4.55 8.86 26.95 2861 547.3 15.02 1.67 1.98 18.28 5.21 9.10 5.48 80.46 34.31 1.84 

L80_8 18.31 6.31 9.22 29.41 2353 415.8 19.87 0.05 1.68 9.73 3.40 7.73 3.67 71.37 29.23 1.19 

L80_8 18.27 5.38 7.40 28.93 2446 449.8 19.20 0.05 1.72 10.64 3.62 8.03 4.05 71.60 30.50 1.47 

L80_8 17.45 5.98 5.31 27.45 2354 395.0 17.60 0.03 1.33 8.69 2.97 7.17 3.31 64.63 28.20 0.96 

L80_8 15.52 8.18 17.76 32.13 2712 734.9 25.84 0.04 6.35 10.63 4.57 8.74 2.61 146.27 49.29 1.96 

L80_8 16.43 6.73 8.03 30.08 2457 366.3 27.57 0.00 2.46 10.47 3.11 8.94 2.41 60.70 26.39 0.94 

L80_8 15.16 6.85 8.84 30.27 2517 428.0 24.16 0.00 3.54 10.34 3.48 8.54 2.41 84.68 34.77 1.17 

Mean 16.86 6.56 11.62 30.07 2608 513.3 28.33 0.57 10.25 11.84 4.43 8.77 3.31 118.68 40.80 1.49 

L80_16 18.21 4.21 10.44 29.77 2558 536.7 42.53 1.31 28.06 11.06 5.16 8.25 2.13 154.98 47.68 1.50 

L80_16 17.92 4.78 10.25 29.17 2864 619.2 59.75 1.62 40.32 13.90 6.57 10.57 2.85 210.06 57.73 1.40 

L80_16 20.16 2.26 1.72 25.82 2511 420.7 14.36 0.02 2.24 15.93 4.03 7.09 3.82 24.86 17.46 0.98 

L80_16 19.68 3.72 1.88 25.38 2242 359.7 18.65 0.05 1.74 8.18 3.09 7.18 3.16 43.32 22.23 0.94 

L80_16 18.62 1.87 1.82 25.33 2292 375.0 19.48 0.05 1.65 9.85 3.02 7.53 3.44 42.58 22.12 1.23 

L80_16 19.38 3.66 2.79 26.27 2449 371.8 16.71 0.03 1.67 8.94 2.99 7.00 3.21 50.24 24.90 0.92 

L80_16 20.45 2.16 0.35 25.42 2441 675.3 23.86 0.04 3.97 9.16 2.84 7.73 1.92 38.12 23.31 1.39 

L80_16 19.07 4.07 3.38 25.80 2152 262.5 24.56 0.00 1.96 9.10 2.15 7.44 1.73 25.46 14.48 0.47 

L80_16 19.31 4.65 4.25 27.83 3011 567.6 26.86 0.00 6.66 11.88 4.72 9.06 2.94 104.63 18.90 1.58 

Mean 19.20 3.49 4.10 26.75 2502 465.4 27.42 0.35 9.81 10.89 3.84 7.98 2.80 77.14 27.65 1.16 

L80_24 18.90 3.73 10.00 28.38 2568 528.5 41.29 0.96 22.96 10.86 5.21 8.46 2.07 178.11 51.43 1.51 

L80_24 20.08 1.70 6.02 28.43 2887 622.1 51.80 1.07 31.52 13.54 6.19 10.41 3.16 202.81 56.16 1.35 

L80_24 20.83 1.58 0.83 25.27 2426 396.8 13.95 0.02 2.01 15.44 3.78 7.18 3.97 29.05 19.44 1.20 

L80_24 21.52 3.60 1.50 26.93 2833 536.6 22.82 0.05 3.85 8.28 2.45 8.08 4.47 53.06 33.04 1.18 

L80_24 20.15 3.75 1.28 25.09 2139 317.0 16.99 0.05 1.65 7.91 2.51 6.55 2.70 25.85 15.88 0.98 

L80_24 20.17 1.83 0.95 24.42 2234 321.7 18.14 0.03 1.38 8.65 2.38 6.70 2.42 30.69 17.17 0.59 

L80_24 20.30 1.52 0.93 25.75 2466 665.0 25.10 0.03 4.06 9.36 2.96 7.79 2.08 43.85 26.50 1.47 

L80_24 19.92 1.88 1.63 26.22 2507 395.3 27.01 0.00 4.33 10.02 3.68 8.05 2.59 60.14 32.24 1.34 

L80_24 20.70 1.83 0.35 25.18 2236 294.2 22.79 0.00 2.54 9.12 2.30 7.39 1.74 26.46 17.03 0.72 

Mean 20.29 2.38 2.61 26.18 2477 453.0 26.65 0.24 8.26 10.35 3.50 7.85 2.80 72.22 29.88 1.15 

L80_32 20.81 1.85 5.83 27.72 2852 573.8 49.26 1.13 32.81 11.93 5.42 9.61 2.32 155.64 49.23 1.42 

L80_32 20.69 1.86 2.30 26.29 2831 614.1 50.86 0.90 27.42 12.73 6.11 10.47 3.06 197.20 52.97 1.18 

L80_32 21.05 1.42 0.90 24.83 2458 383.3 13.36 0.05 2.10 14.74 3.65 7.46 3.75 20.84 16.68 1.19 

L80_32 19.53 3.20 1.00 26.13 1994 282.2 18.41 0.05 1.58 7.92 2.37 6.75 2.59 30.92 15.94 0.78 

L80_32 20.93 1.85 0.65 24.97 1984 291.7 16.28 0.05 1.37 7.60 2.24 6.34 2.48 26.42 14.70 0.80 

L80_32 20.60 1.57 0.00 25.08 2153 295.6 19.93 0.03 1.34 8.40 2.15 6.32 2.37 22.06 14.54 0.57 
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L80_32 20.41 2.90 0.97 26.40 1904 721.9 20.52 0.03 2.07 7.10 1.45 6.32 1.19 13.70 9.40 0.63 

L80_32 21.07 2.98 1.32 25.35 2222 265.3 25.96 0.00 2.81 9.29 2.18 7.56 1.84 16.07 12.60 0.46 

L80_32 20.08 1.75 0.97 24.87 1948 223.5 20.23 0.00 1.95 7.77 1.70 6.54 1.40 17.79 11.84 0.36 

Mean 20.57 2.15 1.55 25.74 2261 405.7 26.09 0.25 8.16 9.72 3.03 7.49 2.33 55.63 21.99 0.82 

L90_8 16.92 5.05 16.76 33.16 3306 718.2 51.35 1.98 37.14 14.58 6.73 10.56 2.83 230.57 70.95 2.21 

L90_8 17.52 5.17 15.92 31.57 3111 709.7 61.43 2.53 47.85 15.45 7.10 11.25 3.34 231.67 67.51 1.83 

L90_8 22.02 0.93 0.50 26.42 3144 631.8 12.96 2.26 3.59 15.63 5.54 8.97 6.41 78.02 40.94 3.11 

L90_8 20.20 1.98 3.53 26.23 2813 626.3 21.73 0.05 4.07 10.52 5.83 7.64 5.09 112.07 47.82 1.64 

L90_8 20.18 3.10 2.72 25.72 2787 596.0 18.98 0.05 3.73 10.50 5.72 7.83 5.31 101.82 45.61 1.76 

L90_8 20.17 2.88 2.70 25.67 2554 512.6 22.36 0.03 2.86 9.46 4.30 6.87 3.81 86.14 39.41 1.33 

L90_8 16.02 6.35 11.88 28.73 2604 421.0 26.04 0.04 3.58 10.50 3.80 8.84 2.35 108.02 39.69 1.64 

L90_8 15.09 6.80 12.86 29.90 2589 428.8 29.59 0.00 3.80 10.09 3.97 8.83 2.68 101.01 37.96 1.31 

L90_8 15.09 6.57 10.73 28.55 2472 428.5 24.41 0.00 3.11 10.19 3.76 8.10 2.34 110.52 39.84 1.69 

Mean 18.13 4.32 8.62 28.44 2820 563.6 29.87 0.77 12.19 11.88 5.19 8.77 3.80 128.87 47.75 1.84 

L90_16 20.20 2.54 4.20 25.96 2799 573.4 41.71 1.24 24.75 11.45 5.49 8.45 2.24 152.60 50.02 1.54 

L90_16 21.95 2.70 0.87 25.78 3100 640.4 58.99 1.83 30.16 14.05 6.37 9.74 2.79 104.93 47.32 1.19 

L90_16 21.22 3.28 0.35 24.97 2863 507.4 14.18 0.05 2.95 15.09 4.30 7.97 4.85 31.48 24.36 1.88 

L90_16 21.10 3.53 1.52 26.12 2952 582.6 22.60 0.05 4.16 10.34 5.52 7.86 4.90 64.68 37.54 1.30 

L90_16 20.84 4.33 0.00 25.97 2622 484.2 17.63 0.03 3.49 7.88 4.68 6.93 4.19 48.42 30.09 0.91 

L90_16 20.98 3.79 1.68 25.15 2835 535.3 22.68 0.03 3.24 9.34 4.85 6.79 3.98 61.17 35.81 1.07 

L90_16 19.90 0.98 0.98 25.22 2343 718.5 23.28 0.03 3.50 9.13 2.46 7.37 1.80 30.31 19.53 1.28 

L90_16 20.28 2.79 1.88 26.00 2698 408.3 31.11 0.00 4.75 10.62 3.76 8.97 2.66 53.58 30.20 1.34 

L90_16 19.88 3.92 0.68 24.93 2469 396.0 23.83 0.00 3.78 9.69 3.22 7.58 2.04 43.18 25.68 1.49 

Mean 20.71 3.10 1.35 25.57 2742 538.5 28.45 0.36 8.98 10.84 4.52 7.96 3.27 65.59 33.39 1.33 

L90_24 20.81 4.76 2.13 26.63 2983 591.0 46.99 1.46 27.86 11.21 5.31 8.79 2.36 76.83 40.52 1.30 

L90_24 21.33 1.78 0.85 25.75 2861 581.5 48.07 0.89 19.98 12.03 5.37 8.89 2.73 74.78 38.27 0.96 

L90_24 21.78 2.26 0.00 25.40 2802 476.1 12.68 0.05 3.01 13.89 4.28 7.94 5.27 75.81 26.99 1.90 

L90_24 20.02 3.95 0.65 25.93 2491 397.9 20.54 0.05 3.23 9.34 3.07 6.99 3.34 26.46 19.59 0.88 

L90_24 20.77 4.38 0.33 26.09 2512 414.7 17.44 0.03 3.32 7.79 3.67 6.64 3.58 28.32 21.15 0.69 

L90_24 20.72 4.52 1.63 25.43 2293 393.6 20.98 0.03 2.80 8.55 3.11 5.94 2.93 26.54 20.08 0.64 

L90_24 20.12 2.77 0.63 25.59 2594 743.6 24.43 0.03 4.72 9.56 3.16 7.38 2.07 38.31 25.67 1.17 

L90_24 20.27 2.59 1.18 27.32 2729 428.2 30.03 0.00 4.85 10.05 3.68 8.50 2.50 46.74 28.66 1.00 

L90_24 20.60 3.48 1.98 26.73 2857 500.5 25.64 0.00 5.41 10.78 4.27 7.92 2.56 55.63 34.40 1.46 

Mean 20.71 3.39 1.04 26.10 2680 503.0 27.42 0.28 8.35 10.36 3.99 7.67 3.04 49.94 28.37 1.11 

L90_32 21.17 3.26 0.00 25.33 3019 573.8 44.12 0.79 17.00 10.81 4.74 8.00 2.43 50.68 31.03 1.07 

L90_32 21.53 3.36 1.75 25.43 3184 620.4 48.94 0.78 19.11 11.99 5.88 9.44 2.93 67.34 38.23 0.94 

L90_32 21.93 0.50 0.55 25.85 2724 450.8 12.79 0.05 2.97 14.61 3.87 7.18 4.33 59.01 20.18 1.49 

L90_32 20.40 4.48 1.05 25.80 2796 513.4 21.57 0.05 4.30 9.46 4.71 7.11 4.24 35.10 26.21 0.94 
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L90_32 21.76 2.47 0.82 23.40 2031 300.8 15.53 0.03 1.54 7.15 2.38 6.08 2.51 29.52 16.95 0.68 

L90_32 21.55 1.62 0.33 24.45 1966 296.2 20.05 0.03 1.56 7.59 2.45 5.43 2.35 29.08 17.36 0.63 

L90_32 21.07 2.72 0.22 24.77 2376 292.9 24.42 0.00 3.83 8.93 2.07 7.43 1.65 14.31 13.43 0.40 

L90_32 21.53 0.58 0.35 25.18 2668 368.1 31.10 0.00 4.47 9.57 3.06 8.52 2.30 24.47 19.68 0.67 

L90_32 21.33 2.53 0.40 25.55 2506 348.3 23.27 0.00 4.10 9.01 2.75 6.94 2.04 21.79 19.35 0.53 

Mean 21.36 2.39 0.61 25.08 2585 418.3 26.87 0.19 6.54 9.90 3.55 7.35 2.75 36.81 22.49 0.82 
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Table 3C The variation between C. maculata samples analysed as well as the mean for each year. 

 
 

Sweet Sour Bitter Astringent SS TP Fl3 Fl4 Fl5 Fv1 X1 X2 

2
0

1
0
 

M80-10 22.31 1.06 1.63 21.39 2347 332.7 21.8 10.45 0.74 6.62 18.00 17.1 

M80-10 20.22 1.85 0.89 20.74 1694 182.1 19.6 6.17 0.47 3.94 6.00 6.3 

M80-10 20.57 0.87 1.28 21.34 1264 103.4 16.6 0.86 0.94 3.63 2.00 2.1 

M80-10 20.65 3.65 0.96 21.02 1934 324.5 16.1 3.37 1.05 7.02 8.25 20.8 

M80-10 20.22 1.85 0.89 20.74 1518 228.5 12.39 2.39 0.77 3.28 3.97 4.18 

M80-10 20.57 0.87 1.28 21.34 1983 365.9 14.50 3.64 0.77 4.65 9.19 9.11 

M90-10 21.83 0.67 0.91 20.95 2336 350.4 21.6 10.61 0.84 6.82 18.00 16.6 

M90-10 20.83 1.06 2.87 21.22 2081 308.9 21 9.86 0.65 5.54 12.00 12.4 

M90-10 19.78 1.33 1.74 22.02 1461 155.0 18.8 1.55 0.82 4.35 7.00 5 

M90-10 20.87 3.52 1.30 21.89 1760 266.7 16.5 2.77 0.97 6.71 14.50 14.4 

M90-10 20.83 1.06 2.87 21.22 1608 247.8 13.48 2.03 1.11 6.24 22.18 14.04 

M90-10 19.78 1.33 1.74 22.02 1829 237.3 14.17 2.69 1.15 5.51 20.69 12.07 

2
0

1
2
 

M80-12 20.67 4.26 0.00 18.41 2121 329.6 12.8 4.92 0.57 5.13 17.00 14.1 

M80-12 21.70 5.15 1.19 20.07 1887 377.4 18.9 5.21 0.87 6.48 21.00 14.1 

M80-12 21.69 5.81 0.65 20.39 2060 364.6 18.3 6.58 1.04 7.72 26.00 17.7 

M80-12 21.93 3.22 3.15 21.50 2136 271.3 12.7 5.39 0.50 5.01 19.00 14.6 

M80-12 21.85 3.87 2.50 20.67 2016 329.2 16.4 5.06 0.61 5.97 15.00 13.2 

M80-12 22.87 3.04 2.22 18.63 1931 316.0 21.6 6.44 1.13 6.25 28.00 19.4 

M80-12 22.00 4.04 0.94 18.07 1933 300.5 21.6 6.45 0.90 5.21 20.00 15.2 

M80-12 22.19 5.94 2.59 20.44 1648 262.9 18.9 5.84 0.68 4.58 20.00 14.7 

M90-12 20.04 4.54 2.11 18.13 2210 313.1 13.6 4.93 0.74 4.93 12.00 11.8 

M90-12 21.83 2.87 0.61 15.26 1929 344.5 20.4 5.67 0.72 7.06 32.00 17.8 

M90-12 22.93 4.12 1.06 18.30 1935 338.0 17.8 5.94 0.80 7.37 32.00 18.2 

M90-12 21.13 4.92 4.15 21.60 2002 319.1 12.6 5.15 0.39 4.78 22.00 14.9 

M90-12 20.85 5.19 3.04 19.62 1994 364.5 16.5 5.31 0.41 5.93 23.00 16.2 

M90-12 21.74 5.35 6.30 23.27 2079 275.2 20.2 5.18 0.42 5.61 42.00 19.6 

M90-12 21.67 5.33 1.46 19.41 1551 254.4 20.5 5.54 0.45 4.72 26.00 14.8 

M90-12 21.98 5.52 1.33 19.46 1821 278.4 20.1 5.46 0.50 5.13 30.00 16.9 
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M80-13 21.07 1.45 0.34 21.42 1531 179.8 14.8 3.22 0.70 4.86 8.00 6.8 

M80-13 20.64 1.74 1.93 23.28 1584 185.9 16.2 3.71 0.70 5.56 7.00 5.7 

M80-13 20.83 2.60 1.88 23.79 1354 139.1 14.5 2.45 0.76 4.55 5.00 3.9 

M80-13 21.03 2.22 1.30 22.84 1538 229.8 15.2 4.5 0.73 5.38 10.00 8 

M80-13 20.72 1.65 0.95 22.68 1399 155.5 13.3 2.24 0.77 4.31 7.00 4.8 

M80-13 20.76 2.92 0.91 22.38 1358 125.2 14.1 2.03 0.71 4.19 5.00 3.6 

M80-13 22.00 1.60 1.88 23.68 1775 245.3 16.4 5.06 0.95 6.08 14.00 11.2 

M80-13 21.57 2.08 0.57 23.08 1535 179.5 15.9 3.21 0.85 4.86 8.00 6.1 

M90-13 20.88 3.75 1.77 22.78 1822 226.4 16.2 4.58 1.42 6.05 12.00 10.4 

M90-13 20.45 2.87 0.85 23.61 2026 267.4 17.8 5.96 1.31 6.37 13.00 10.5 

M90-13 20.53 7.78 2.83 25.68 1931 274.5 15.8 5.73 1.40 5.75 13.00 10.7 

M90-13 20.05 7.48 3.20 25.28 2038 365.0 17.2 7.2 1.39 5.99 18.00 13.5 

M90-13 20.27 6.07 1.72 24.37 1764 320.6 15.7 6.2 1.49 5.99 21.00 14.8 

M90-13 21.10 4.50 1.76 23.83 1852 269.4 16 5.78 1.08 5.45 15.00 11.5 

M90-13 20.67 4.57 2.26 24.85 2102 322.3 17.4 7.12 1.35 6.62 24.00 16.8 

M90-13 21.07 4.38 1.97 23.57 1987 289.0 18.2 5.7 1.21 5.84 15.00 11.7 

              

  Sweet Sour Bitter Astringent SS TP Fl3 Fl4 Fl5 Fv1 X1 X2 

A
v
e

ra
g
e
 2010 20.71 1.59 1.53 21.32 1818 259 17.21 4.70 0.86 5.36 11.81 11.17 

2012 21.69 4.57 2.08 19.58 1953 315 17.68 5.57 0.67 5.74 24.06 15.83 

2013 20.85 3.60 1.63 23.57 1725 236 15.92 4.67 1.05 5.49 12.19 9.38 
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Table 4C The variation between C. subternata samples analysed as well as the mean for each year. 

 
 

Sweet Sour Bitter Astringent SS TP B1 D1 D2 Fl3 Fl4 Fv1 Fv2 X1 X2 

2
0

1
0
 

S80-10 20.70 2.78 1.11 21.39 1903 188.1 43.02 2.94 1.89 7.10 4.56 5.08 5.69 3.20 3.60 

S80-10 21.30 2.35 1.52 21.36 1897 274.3 49.19 2.71 3.53 4.68 5.27 5.42 5.69 6.00 6.80 

S80-10 21.81 3.43 2.63 21.87 1627 220.9 32.64 4.33 6.01 4.60 12.26 2.59 6.16 2.00 2.20 

S80-10 21.72 2.94 0.87 20.01 1813 275.8 22.61 3.74 9.45 3.90 8.82 2.58 13.00 2.00 2.60 

S80-10 20.59 3.57 1.81 21.31 1648 261.8 24.40 4.50 8.48 3.60 7.44 2.32 9.45 2.00 2.50 

S80-10 20.46 2.61 1.87 21.85 1633 241.9 43.50 3.13 3.74 4.20 7.19 3.80 7.26 4.00 4.00 

S90-10 21.20 2.35 1.39 21.57 1831 220.2 41.24 3.07 2.62 6.90 5.53 4.73 6.82 3.20 5.00 

S90-10 21.37 1.90 0.39 20.98 1811 257.2 46.67 2.72 3.10 4.50 5.36 4.79 6.01 6.00 5.90 

S90-10 21.78 1.93 0.76 22.09 1703 253.2 32.97 4.61 6.87 4.50 13.14 2.65 6.58 2.00 2.60 

S90-10 21.76 2.41 0.19 20.78 1951 309.5 23.64 3.16 6.19 3.60 8.58 2.51 12.89 2.00 2.20 

S90-10 20.39 3.52 0.74 21.30 1919 364.3 24.82 3.75 5.99 3.30 7.74 2.39 10.00 2.00 2.10 

S90-10 20.20 4.96 1.06 22.00 1655 248.8 44.35 2.67 2.64 4.20 6.98 3.75 6.91 4.00 3.70 

2
0

1
2
 

S80-12 19.27 3.70 1.11 14.80 1747 231.9 16.98 1.31 1.33 8.40 6.21 4.42 0.91 4.00 5.20 

S80-12 22.07 5.37 2.43 17.15 1907 264.7 18.75 1.49 2.81 10.00 7.96 4.13 1.15 4.00 5.50 

S80-12 24.37 5.24 2.74 16.93 1691 255.4 27.52 3.09 4.03 4.60 5.19 3.31 5.60 1.00 1.80 

S80-12 21.56 6.52 1.41 21.76 1891 264.1 13.66 1.56 3.08 5.20 3.77 2.44 5.82 1.00 1.40 

S80-12 23.33 6.63 2.02 19.60 1751 226.5 3.67 2.76 2.91 4.10 3.35 1.82 6.18 0.00 0.80 

S80-12 24.14 9.54 2.87 22.24 2022 269.4 22.87 2.13 3.97 3.40 3.77 3.55 9.02 1.00 2.10 

S80-12 21.46 9.02 3.13 22.80 1526 245.8 22.04 2.00 2.98 4.70 4.63 2.55 7.39 1.00 1.60 

S80-12 23.52 5.65 3.04 21.42 2066 314.6 23.03 2.47 3.51 6.00 7.36 2.99 10.52 1.00 2.10 

S90-12 19.41 5.70 1.56 17.26 1993 232.1 19.08 1.23 1.47 8.50 6.65 4.92 1.02 5.00 6.10 

S90-12 19.50 6.28 2.00 22.40 1638 95.3 16.43 1.36 2.79 9.50 6.62 3.70 1.07 5.00 5.70 

S90-12 22.69 3.50 0.74 18.89 1792 294.7 26.81 1.62 3.48 4.10 4.04 3.30 4.74 1.00 1.40 

S90-12 22.07 7.48 2.78 20.94 1378 218.5 3.21 1.92 2.53 3.90 1.49 1.49 5.04 0.00 0.30 

S90-12 22.40 7.50 1.17 20.74 1425 154.4 12.66 1.23 2.70 4.60 2.39 2.16 6.90 1.00 0.90 

S90-12 22.63 2.68 2.93 21.15 1596 165.7 19.07 2.00 3.17 2.60 2.76 3.07 6.95 2.00 2.10 

S90-12 22.43 6.70 1.96 21.98 1248 199.0 19.14 1.74 2.15 4.00 3.90 2.21 6.57 1.00 1.50 

S90-12 23.21 4.37 3.91 21.22 1557 202.8 19.54 1.92 1.96 4.30 5.24 2.41 8.02 1.00 1.60 
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2
0

1
3
 

S80-13 22.35 1.58 0.67 21.78 1313 103.6 9.20 2.50 1.40 7.60 2.66 1.71 4.02 1.00 1.10 

S80-13 22.57 1.68 0.85 22.23 1292 113.5 13.72 2.49 2.04 4.60 3.17 2.40 2.84 1.00 1.50 

S80-13 22.62 3.00 1.35 22.57 1250 122.6 20.81 3.37 1.73 5.30 2.82 3.26 2.33 2.00 1.70 

S80-13 22.13 1.90 0.67 22.08 1318 117.3 13.72 3.19 3.21 6.31 3.06 2.22 4.13 1.00 1.50 

S80-13 22.37 2.12 1.91 23.53 1381 147.4 21.98 2.18 1.52 4.40 3.07 3.52 1.43 1.57 3.30 

S80-13 22.48 2.72 0.33 21.67 1322 121.7 11.25 2.40 1.98 5.40 3.21 2.38 3.41 2.00 1.50 

S80-13 23.12 1.22 1.18 21.02 1325 94.6 4.72 2.63 1.24 7.20 3.17 1.16 5.15 1.00 0.90 

S80-13 22.65 2.05 1.57 23.13 1551 171.5 13.63 1.99 2.22 9.70 2.78 3.83 1.96 3.00 2.20 

S90-13 22.91 0.93 0.33 21.38 1395 137.7 9.74 1.98 1.32 8.30 3.47 1.82 5.36 1.00 1.30 

S90-13 21.10 3.22 1.02 23.07 1521 196.9 14.19 2.00 2.34 4.70 4.65 2.58 4.19 2.00 2.10 

S90-13 22.43 1.30 0.67 21.62 1352 163.8 20.81 2.71 2.20 6.10 3.75 3.36 2.95 2.00 2.70 

S90-13 22.57 3.38 0.67 21.92 1614 203.3 13.86 2.23 2.83 6.96 4.54 2.57 6.44 2.00 2.20 

S90-13 22.42 3.16 0.83 23.52 1884 259.7 23.34 1.90 2.27 5.00 4.79 4.45 1.97 1.86 5.30 

S90-13 22.95 1.78 0.55 20.00 1537 179.4 11.26 1.71 2.19 5.80 4.12 2.72 4.08 1.00 1.60 

S90-13 22.55 1.97 1.83 22.05 1540 151.4 5.66 2.04 1.35 7.70 4.37 1.37 7.01 1.00 1.20 

S90-13 22.83 2.20 1.50 22.07 1972 291.5 14.12 1.61 2.83 11.10 4.09 4.53 2.70 4.00 3.50 

                 

  Sweet Sour Bitter Astringent SS TP B1 D1 D2 Fl3 Fl4 Fv1 Fv2 X1 X2 

A
v
e

ra
g
e
 2010 21.11 2.90 1.19 21.38 1783 259.7 35.75 3.44 5.04 4.59 7.74 3.55 8.04 3.20 3.60 

2012 22.13 5.99 2.24 20.08 1702 227.2 17.78 1.86 2.80 5.49 4.71 3.03 5.43 1.81 2.51 

2013 22.50 2.14 1.00 22.10 1473 161.0 13.88 2.31 2.04 6.64 3.61 2.74 3.75 1.71 2.10 
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ADDENDUM D 
 

Scatter plots (obtained from XLStat) of the predicted values from the step-wise regression model 

against the observed values for the training set as well as the validation set.   
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Model and Validation R-square for sweet taste 

Model R-square using full data set 0.5109 

Validation R-square using validation set 0.5686 

Model and Validation R-square for sour taste 

Model R-square using full data set 0.287 

Validation R-square using validation set 0.1742 

Fig. 1D Scatter plot of the predicted values from the step-wise regression model against the 
observed values for the training set as well as the validation set.  The R² (coefficient of 
determination) indicates the % of variability in sweet that is explained by the model. 

Fig. 2D Scatter plot of the predicted values from the step-wise regression model against the 
observed values for the training set as well as the validation set.  The R² (coefficient of 
determination) indicates the % of variability in sour that is explained by the model. 
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Model and Validation R-square for bitter taste 

Model R-square using full data set 0.8133 

Validation R-square using validation set 0.8793 

Model and Validation R-square for astringent mouthfeel 

Model R-square using full data set 0.6975 

Validation R-square using validation set 0.6626 

Fig. 3D Scatter plot of the predicted values from the step-wise regression model against the 
observed values for the training set as well as the validation set.  The R² (coefficient of 
determination) indicates the % of variability in bitter that is explained by the model. 

Fig. 4D Scatter plot of the predicted values from the step-wise regression model against the 
observed values for the training set as well as the validation set.  The R² (coefficient of 
determination) indicates the % of variability in astringent that is explained by the model. 
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