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Listeriosis and Anthrax are fatal zoonotic diseases caused by Listeria monocytogene and Bacillus Anthracis, respectively. In this
paper, we proposed and analysed a compartmental Listeriosis-Anthrax coinfection model describing the transmission dynamics
of Listeriosis and Anthrax epidemic in human population using the stability theory of differential equations. Our model revealed
that the disease-free equilibrium of the Anthrax model only is locally stable when the basic reproduction number is less than
one. Sensitivity analysis was carried out on the model parameters in order to determine their impact on the disease dynamics.
Numerical simulation of the coinfectionmodel was carried out and the results are displayed graphically and discussed.We simulate
the Listeriosis-Anthrax coinfection model by varying the human contact rate to see its effects on infected Anthrax population,
infected Listeriosis population, and Listeriosis-Anthrax coinfected population.

1. Introduction

Listeriosis and Anthrax are fatal zoonotic diseases caused by
Listeria monocytogene and Bacillus Anthracis, respectively.
Listeriosis in infants can be acquired in two forms. Mothers
usually acquire it after eating foods that are contaminated
with Listeriamonocytogenes and can develop sepsis resulting
in chorioamnionitis and delivering a septic infant or fetus.
Moreover, mothers carrying the pathogens in the gastroin-
testinal tract can infect the skin and respiratory tract of
their babies during childbirth. Listeria monocytogenes are
among the commonest pathogens responsible for bacterial
meningitis among neonates. Responsible factors for the
disease include induced immune suppression linked with
HIV infection, hemochromatosis hematologic malignancies,
cirrhosis, diabetes, and renal failure with hemodialysis [1].

Authors in [2] developed a model for Anthrax transmis-
sion but never considered the transmissions in both animal
and human populations. Our model is an improvement of
the work done by authors in [2, 3]. Both formulated Anthrax
models but only concentrated on the disease transmissions

in animals cases only. Anthrax disease is caused by bacteria
infections and it affects both humans and animals. Ourmodel
is an improvement of the two models as we considered
Anthrax as a zoonotic disease and also looked at sensitivity
analysis and the effects of the contact rate on the disease
transmissions.

Authors in [4] published a paper on the effectiveness
of constant and pulse vaccination policies using SIR model.
The analysis of their results under constant vaccination
showed that the dynamics of the disease model is similar
to the dynamics without vaccination [5, 6]. There are some
findings on the spread of zoonotic diseases but a number
of these researches focused on the effect of vaccination on
the spread and transmission of the diseases as in the case
of the authors in [7]. Moreover, authors in [8] investigated
a disease transmission model by considering the impact of
a protective vaccine and came up with the optimal vaccine
coverage threshold required for disease eradication.However,
authors in [9] employed optimal control to study a nonlinear
SIR epidemic model with a vaccination strategy. Several
mathematical modeling techniques have been employed to
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Figure 1: Flowchart for the coinfection model.

study the role of optimal control using SIR epidemic model
[10–12]. Authors in [13] formulated an SIR epidemic model
by considering vaccination as a control measure in their
model analysis. Authors in [14] developed a mathematical
model for the transmission dynamics of Listeriosis in animal
and human populations but did not use optimal control as
a control measure in fighting the disease. They divided the
animal population into four compartments by introducing
the vaccination compartment.

Authors in [15] formulated a model and employed opti-
mal control to investigate the impact of chemotherapy on
malaria disease with infection immigrants and [16] applied
optimal control methods associated with preventing exoge-
nous reinfection based on a exogenous reinfection tubercu-
losis model. Authors in [17] conducted a research on the
identification and reservoirs of pathogens for effective control
of sporadic disease and epidemics. Listeria monocytogenes
is among the major zoonotic food borne pathogen that is
responsible for approximately twenty-eight percent of most
food-related deaths in the United States annually and amajor
cause of serious product recalls worldwide. The dairy farm
has been observed as a potential point and reservoir for
Listeria monocytogenes.

Models are widely used in the study of transmission
dynamics of infectious diseases. In recent times, the appli-
cation of mathematical models in the study of infectious
diseases has increased tremendously. Hence the emergence
of a branch called mathematical epidemiology. Frequent
diagnostic tests, the availability of clinical data, and electronic
surveillance have facilitated the applications of mathematical
models to critical examining of scientific hypotheses and the
design of real-life strategies of controlling diseases [18, 19].

Authors in [20] constructed a coinfection model of
malaria and cholera diseases with optimal control but never
considered sensitivity analysis and analysis of the force of
infection. Sensitivity analysis determines the most sensitive
parameters to the model and the analysis of the force of

infections determines the effects of the contact rate on the
disease transmissions.

2. Model Formulation

In this section, we divide the model into subcompartments
(groups) as shown in Figure 1. The total human popula-
tion (𝑁ℎ) is divided into subcompartments consisting of
susceptible humans (𝑆ℎ), individuals that are infected with
Anthrax(𝐼𝑎), individuals that are infected with Listeriosis(𝐼𝑙), individuals that are infected with both Anthrax and
Listeriosis (𝐼𝑎𝑙), and those that have recovered from Anthrax,
Listeriosis, and both Anthrax and Listeriosis, respectively,(𝑅𝑎), (𝑅𝑙), and (𝑅𝑎𝑙). The total vector population is repre-
sented by 𝑁V; this is divided into subcompartments that
consist of susceptible animals (𝑆V) and animals infected with
Anthrax (𝐼V), where (𝐶𝑝) is population of carcasses of animals
in the soil that may have diet of Anthrax. Carcasses of
animals which may have not been properly disposed of have
the tendency of generating pathogens. The total vector and
human populations are represented as

𝑁ℎ = 𝑆ℎ + 𝐼𝑎 + 𝐼𝑙 + 𝐼𝑎𝑙 + 𝑅𝑎 + 𝑅𝑙 + 𝑅𝑎𝑙.
𝑁ℎ = 𝑆V + 𝐼V, (1)

where 𝜋 = 𝐶𝑝V/(𝑘 + 𝐶𝑝).
The concentration of carcasses and ingestion rate are

denoted as𝐾 and V, respectively. Listeriosis related death rates
are𝑚 and 𝜂, respectively, and Anthrax related death rates are𝜙 and 𝑛, respectively. Waning immunity rates are given by𝜔, 𝑘, and𝜓.𝛼, 𝛿, and 𝜎 are the recovery rates, respectively, and𝜏(1−𝜎) are the bi-infected persons who have recovered from
Anthrax only. The natural death rates of human and vector
populations are 𝜇ℎ and 𝜇V, respectively, and the modification
parameter is given by 𝜃. The coinfected persons who have



International Journal of Mathematics and Mathematical Sciences 3

recovered from Listeriosis are denoted by (1 − 𝜏)(1 − 𝜎). This
implies that

𝜎 + 𝜏 (1 − 𝜎) + (1 − 𝜏) (1 − 𝜎) = 1. (2)

The following differential equations were obtained from the
flowchart diagram of the coinfection model in Figure 1:

𝑑𝑆ℎ𝑑𝑡 = Ωℎ + 𝑘𝑅𝑎 + 𝜔𝑅𝑙 + 𝜓𝑅𝑎𝑙 − 𝛽ℎ𝐼V𝑆ℎ − 𝜋𝑆ℎ − 𝜇ℎ𝑆ℎ
𝑑𝐼𝑎𝑑𝑡 = 𝛽ℎ𝐼V𝑆ℎ − 𝜋𝐼𝑎 − (𝛼 + 𝜇ℎ + 𝜙) 𝐼𝑎
𝑑𝐼𝑙𝑑𝑡 = 𝜋𝑆ℎ − 𝛽𝑙𝐼V𝐼𝑙 − (𝛿 + 𝜇ℎ + 𝑚 + 𝜌) 𝐼𝑙
𝑑𝐼𝑎𝑙𝑑𝑡 = 𝛽ℎ𝐼V𝐼𝑙 + 𝜋𝐼𝑎 + (𝜎 + 𝜇ℎ + 𝜂 + 𝜃) 𝐼𝑎𝑙
𝑑𝑅𝑎𝑑𝑡 = 𝛼𝐼𝑎 − (𝑘 + 𝜇ℎ) 𝑅𝑎 + (1 − 𝜏) 𝛾𝜎𝐼𝑎𝑙
𝑑𝑅𝑙𝑑𝑡 = 𝛿𝐼𝑙 − (𝜔 + 𝜇ℎ) 𝑅𝑙 + (1 − 𝜏) (1 − 𝛾) 𝜎𝐼𝑎𝑙
𝑑𝑅𝑎𝑙𝑑𝑡 = 𝜏𝜎𝐼𝑎𝑙 − (𝜓 + 𝜇ℎ) 𝑅𝑎𝑙
𝑑𝐶𝑝𝑑𝑡 = 𝜌𝐼𝑙 + 𝜃𝐼𝑎𝑙 − 𝜇𝑏𝐶𝑝
𝑑𝑆V𝑑𝑡 = ΩV − 𝛽V (𝐼𝑎 + 𝐼𝑎𝑙) 𝑆V − 𝜇V𝑆V
𝑑𝐼V𝑑𝑡 = 𝛽V (𝐼𝑎 + 𝑐𝐼) 𝑆V − 𝜇V𝐼V

(3)

3. Analysis of Listeriosis Only Model

In this section, only the Listeriosis model is considered in the
analysis of the transmission dynamics.

𝑑𝑆ℎ𝑑𝑡 = Ωℎ + 𝜔𝑅𝑙 − 𝜋𝑆ℎ − 𝜇ℎ𝑆ℎ
𝑑𝐼𝑙𝑑𝑡 = 𝜋𝑆ℎ − (𝛿 + 𝜇ℎ + 𝑚) 𝐼𝑙
𝑑𝑅𝑙𝑑𝑡 = 𝛿𝐼𝑙 − (𝜔 + 𝜇ℎ) 𝑅𝑙
𝑑𝐶𝑝𝑑𝑡 = 𝜌𝐼𝑙 − 𝜇𝑏𝐶𝑝

(4)

3.1. Disease-Free Equilibrium. We obtain the disease-free
equilibrium of the Listeriosis only model by setting the sys-
tem of equations in (4) to zero. At disease-free equilibrium,
there are no infections and recovery.

Ωℎ + 𝜔𝑅𝑙 − 𝜋𝑆ℎ − 𝜇ℎ𝑆ℎ = 0
𝑆ℎ = Ωℎ𝜇ℎ
𝜉0𝑙 = (𝑆∗ℎ , 𝐼∗𝑙 , 𝑅∗𝑙 , 𝐶∗𝑝) = (Ωℎ𝜇ℎ , 0, 0, 0) .

(5)

3.2. Basic Reproduction Number. In this section, the concept
of the Next-Generation Matrix would be employed in com-
puting the basic reproduction number. Using the theorem
in Van den Driessche and Watmough [21] on the Listeriosis
model in (4), the basic reproduction number of the Listeriosis
only model, (R0𝑙), is given by

R0𝑙 = V𝜌Ωℎ𝜇𝑏𝜇ℎ𝐾(𝛿 + 𝜇ℎ + 𝑚) (6)

3.3. Existence of the Disease-Free Equilibrium

3.4. Endemic Equilibrium. The endemic equilibrium points
are computed by setting the system of differential equations
in the Listeriosis only model (4) to zero. The endemic
equilibrium points are as follows:

𝑆∗ℎ = Ωℎ + 𝜔𝑅∗𝑙𝜇ℎ + 𝜋∗ ,
𝐼∗𝑙 = 𝜋∗𝑆∗ℎ(𝛿 + 𝜇ℎ + 𝑚) ,
𝑅∗𝑙 = 𝛿𝐼∗𝑙𝜔 + 𝜇ℎ ,
𝐶∗𝑝 = 𝜌𝐼∗𝑙𝜇𝑏 .
𝜉0𝑙 = (𝑆∗ℎ , 𝐼∗𝑙 , 𝑅∗𝑙 , 𝐶∗𝑝)

= (Ωℎ + 𝜔𝑅∗𝑙𝜇ℎ + 𝜋∗ , 𝜋∗𝑆∗ℎ(𝛿 + 𝜇ℎ + 𝑚) ,
𝛿𝐼∗𝑙𝜔 + 𝜇ℎ ,

𝜌𝐼∗𝑙𝜇𝑏 ) .

(7)

𝑆∗ℎ = Ωℎ + 𝜔𝑅∗𝑙𝜇ℎ + 𝜋∗
𝐼∗𝑙 = 𝜋∗𝑆∗ℎ(𝛿 + 𝜇ℎ + 𝑚)
𝑅∗𝑙 = 𝛿𝐼∗𝑙𝜔 + 𝜇ℎ
𝐶∗𝑝 = 𝜌𝐼∗𝑙𝜇𝑏

(8)

3.5. Existence of the Endemic Equilibrium

Lemma 1. The Listeriosis only model has a unique endemic
equilibrium if and only if the basic reproduction numberR0𝑙 >1.
Proof. The Listeriosis force of infection, (𝜋 = 𝐶𝑝V/(𝐾 +𝐶𝑝)),
satisfies the polynomial;

𝑃 (𝜋∗) = 𝐴 (𝜋∗)2 + 𝐵 (𝜋∗) = 0 (9)

where 𝐴 = Ωℎ𝜌(𝜔 + 𝜇ℎ) + 𝜇𝑏𝐾(𝑚(𝜔 + 𝜇ℎ) + 𝜇ℎ(𝛿 + 𝜇ℎ + 𝜔)),
and

𝐵 = (𝜔 + 𝜇ℎ) (1 − 𝑅0𝑙) . (10)
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By mathematical induction, 𝐴 > 0 and 𝐵 > 0 whenever
the basic reproduction number is less than one (R0𝑙 < 1).
This implies that 𝜋∗ = −𝐵/𝐴 ≤ 0. In conclusion, the
Listeriosis model has no endemic equilibrium and the basic
reproductive number is less than one (R0𝑙 < 1).

The analysis illustrates the impossibility of backward
bifurcation in the Listeriosis model, because there is no
existence of endemic equilibrium whenever the basic repro-
duction number is less than one (R0𝑙 < 1).
4. Analysis of Anthrax Only Model

In this section, only the Anthrax model is considered in the
analysis of the transmission dynamics.

𝑑𝑆ℎ𝑑𝑡 = Ωℎ + 𝑘𝑅𝑎 − 𝛽ℎ𝐼V𝑆ℎ − 𝜇ℎ𝑆ℎ
𝑑𝐼𝑎𝑑𝑡 = 𝛽𝐼V𝑆ℎ − (𝛼 + 𝜇ℎ + 𝜙) 𝐼𝑎
𝑑𝑅𝑎𝑑𝑡 = 𝛼𝐼𝑎 − (𝑘 + 𝜇ℎ) 𝑅𝑎
𝑑𝑆V𝑑𝑡 = ΩV − 𝛽V𝐼𝑎𝑆V − 𝜇V𝑆V
𝑑𝐼V𝑑𝑡 = 𝛽V𝐼𝑎𝑆V − 𝜇V𝐼V

(11)

4.1. Disease-Free Equilibrium. The disease-free equilibrium
of theAnthrax onlymodel is obtained by setting the system of
equations in model (11) to zero. At disease-free equilibrium,
there are no infections and recovery.

Ωℎ + 𝑘𝑅𝑎 − 𝛽ℎ𝐼V𝑆ℎ − 𝜇ℎ𝑆ℎ = 0
𝑆ℎ = Ωℎ𝜇ℎ .
ΩV − 𝛽V𝐼𝑎𝑆V − 𝜇V𝑆V = 0
𝑆V = ΩV𝜇V .

(12)

𝜉0𝑎 = (𝑆∗ℎ , 𝐼∗𝑎 , 𝑅∗𝑎 , 𝑆∗V , 𝐼∗V ) = (Ωℎ𝜇ℎ , 0, 0,
ΩV𝜇V , 0) . (13)

4.2. Basic Reproduction Number. In this section, the concept
of the Next-Generation Matrix would be employed in com-
puting the basic reproduction number. Using the theorem in
Van denDriessche andWatmough [21] on theAnthraxmodel
in (11), the basic reproduction number of the Anthrax only
model, (R0𝑎), is given by

R0𝑎 = √ ΩℎΩV𝛽ℎ𝛽V𝜇ℎ𝜇2V (𝛼 + 𝜇ℎ + 𝜙) (14)

4.3. Stability of the Disease-Free Equilibrium. Using the next-
generation operator concept in Van den Driessche and

Watmough [21] on the systems of equations in model (11),
the linear stability of the disease-free equilibrium, (𝜉0𝑎), can
be ascertained.The disease-free equilibrium is locally asymp-
totically stable whenever the basic reproduction number is
less than one (R0𝑎 < 1). And it is unstable whenever the
basic reproduction number is greater than one (R0𝑎 > 1).
The disease-free equilibrium is the state at which there are no
infections in the system.At disease-free equilibrium, there are
no infections in the system.

4.4. Endemic Equilibrium. The endemic equilibrium points
are computed by setting the systemof differential equations in
theAnthrax onlymodel (11) to zero.The endemic equilibrium
points are as follows:

𝑆ℎ = Ωℎ + 𝑘𝑅∗𝑎𝜇ℎ + 𝛽ℎ𝐼∗V ,
𝐼∗𝑎 = 𝛽V𝑆∗ℎ𝐼∗V(𝛼 + 𝜇ℎ + 𝜙) ,
𝑅∗𝑎 = 𝛼𝐼∗𝑎𝑘 + 𝜇ℎ ,
𝑆∗V = ΩV𝜇V + 𝛽V𝐼∗𝑎 ,
𝐼∗V = 𝛽V𝑆∗V 𝐼∗𝑎𝜇V .

(15)

The endemic equilibrium of the Anthrax only model is given
by

𝜉0𝑎 = (𝑆∗ℎ , 𝐼∗𝑎 , 𝑅∗𝑎 , 𝑆∗V , 𝐼∗V ) = (Ωℎ + 𝑘𝑅∗𝑎𝜇ℎ + 𝛽ℎ𝐼∗V , 𝛽V𝑆∗ℎ𝐼∗V(𝛼 + 𝜇ℎ + 𝜙) ,
𝛼𝐼∗𝑎𝑘 + 𝜇ℎ ,

ΩV𝜇V + 𝛽V𝐼∗𝑎 ,
𝛽V𝑆∗V 𝐼∗𝑎𝜇V .)

(16)

𝜉0𝑎 = (Ωℎ + 𝑘𝑅∗𝑎𝜇ℎ + 𝛽ℎ𝐼∗V , 𝛽V𝑆∗ℎ𝐼∗V(𝛼 + 𝜇ℎ + 𝜙) ,
𝛼𝐼∗𝑎𝑘 + 𝜇ℎ ,

ΩV𝜇V + 𝛽V𝐼∗𝑎 ,
𝛽V𝑆∗V 𝐼∗𝑎𝜇V .)

(17)

4.5. Existence of the Endemic Equilibrium

Lemma 2. The Anthrax only model has a unique endemic
equilibrium whenever the basic reproduction number (R0𝑎) is
greater than one (R0𝑎 > 1).
Proof. Considering the endemic equilibrium points of the
Anthrax only model,

𝜉0𝑎 = (Ωℎ + 𝑘𝑅∗𝑎𝜇ℎ + 𝛽ℎ𝐼∗V , 𝛽V𝑆∗ℎ𝐼∗V(𝛼 + 𝜇ℎ + 𝜙) ,
𝛼𝐼∗𝑎𝑘 + 𝜇ℎ ,

ΩV𝜇V + 𝛽V𝐼∗𝑎 ,
𝛽V𝑆∗V 𝐼∗𝑎𝜇V ) .

(18)
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The endemic equilibrium point satisfies the given polynomial

𝑃 (𝐼∗𝑎 ) = 𝐴1 (𝐼∗𝑎 )2 + 𝐵1 (𝐼∗𝑎 ) = 0 (19)

where

𝐴1 = 𝛽V (ΩV𝛽ℎ (𝑘𝜙 + 𝜇ℎ (𝛼 + 𝑘 + 𝜙 + 𝜇ℎ))
+ 𝜇ℎ (𝑘 + 𝜇ℎ) (𝛼 + 𝜙 + 𝜇ℎ) 𝜇V) (20)

and

𝐵1 = (𝑘 + 𝜇ℎ) (1 − 𝑅20𝑎) . (21)

By mathematical induction,𝐴1 > 0 and 𝐵1 > 0whenever the
basic reproduction number is less than one (R0𝑎 < 1). This
implies that 𝐼∗𝑎 = −𝐵1/𝐴1 ≤ 0. In conclusion, the Anthrax
only model has no endemic any time the basic reproductive
number is less than one (R0𝑎 < 1).

The analysis illustrates the impossibility of backward
bifurcation in the Anthrax only model. Because there is
no existence of endemic equilibrium whenever the basic
reproduction number is less than one (R0𝑎 < 1).
5. Anthrax-Listeriosis Coinfection Model

In this section, the dynamics of the Anthrax-Listeriosis
coinfection model in (3) is considered in the analysis of the
transmission dynamics.

5.1. Disease-Free Equilibrium. The disease-free equilibrium
of the Anthrax-Listeriosis model is obtained by setting the
system of equations of model (3) to zero. At disease-free
equilibrium, there are no infections and recovery.

Ωℎ + 𝑘𝑅𝑎 + 𝜔𝑅𝑙 + 𝜓𝑅𝑎𝑙 − 𝛽ℎ𝐼V𝑆ℎ − 𝜋𝑆ℎ − 𝜇ℎ𝑆ℎ = 0
𝑆∗ℎ = Ωℎ𝜇ℎ

ΩV − 𝛽V (𝐼𝑎 + 𝑐𝐼𝑎𝑙) 𝑆V − 𝜇V𝑆V = 0
𝑆∗V = ΩV𝜇V

(22)

The disease-free equilibrium is given by

𝜉0𝑎𝑙 = (𝑆∗ℎ , 𝐼∗𝑙 , 𝐼∗𝑎 , 𝐼∗𝑎𝑙, 𝑅∗𝑙 , 𝑅∗𝑎 , 𝑅∗𝑎𝑙, 𝐶∗𝑝, 𝑆∗V , 𝐼∗V ) (23)

𝜉0𝑎𝑙 = (Ωℎ𝜇ℎ , 0, 0, 0, 0, 0, 0, 0,
ΩV𝜇V , 0) (24)

5.2. Basic Reproduction Number. The concept of the next-
generation operator method in Van den Driessche and
Watmough [21] was employed on the system of differential
equations in model (3) to compute the basic reproduction
number of the Anthrax-Listeriosis coinfection model. The
Anthrax-Listeriosis coinfection model has a reproduction
number (R𝑎𝑙) given by

R𝑎𝑙 = max {R𝑎,R𝑙} (25)
where R𝑎 and R𝑙 are the basic reproduction numbers of
Anthrax and Listeriosis, respectively.

R𝑎 = √ ΩℎΩV𝛽ℎ𝛽V𝜇ℎ𝜇2V (𝛼 + 𝜇ℎ + 𝜙) (26)

and

R𝑙 = V𝜌Ωℎ𝜇𝑏𝜇ℎ𝐾 ((𝜎 + 𝜇ℎ + 𝜂 + 𝜃) + 𝜃 (𝛿 + 𝜇ℎ + 𝑚)
(𝛿 + 𝜇ℎ + 𝑚) (𝜎 + 𝜇ℎ + 𝜂 + 𝜃) ) (27)

Theorem 3. The disease-free equilibrium (𝜉0𝑎𝑙) is locally
asymptotically stable whenever the basic reproduction number
is less than one (R𝑎𝑙 < 1) and unstable otherwise.
5.3. Impact of Listeriosis on Anthrax. In this section, the
impact of Listeriosis on Anthrax and vice versa is analysed.
This is done by expressing the reproduction number of one
in terms of the other by expressing the basic reproduction
number of Listeriosis on Anthrax, that is, expressing R𝑙 in
terms ofR𝑎

fromR𝑎 = √ΩℎΩV𝛽ℎ𝛽V/𝜇ℎ𝜇2V(𝛼 + 𝜇ℎ + 𝜙).
Solving for 𝜇ℎ in the above,

𝜇ℎ = −𝐺1R𝑎 + √𝐺21R2𝑎 + 4𝐺22𝜇VR𝑎 , (28)

where

𝐺1 = 𝜇V (𝛼 + 𝜙)
and 𝐺2 = ΩℎΩV𝛽ℎ𝛽V

(29)

Also, letting

√𝐺21R2𝑎 + 4𝐺2 = 𝐺3R𝑎 + 𝐺4, (30)

this implies

𝜇ℎ = R𝑎 (𝐺3 − 𝐺1) + 𝐺42𝜇VR𝑎 (31)

By substituting 𝜇ℎ into the basic reproduction number of
Listeriosis (R𝑙),

R𝑙 = R0𝑙 (𝐺4 + (𝐺3 − 𝐺1)R𝑎 + 2 (𝜎 + 𝜂 + 𝜃) 𝜇VR𝑎 + 𝜃 (𝐺4 + (𝐺3 − 𝐺1)R𝑎 + 2 (𝑚 + 𝛿) 𝜇VR𝑎))𝐺4 + (𝐺3 − 𝐺1)R𝑎 + 2 (𝜎 + 𝜂 + 𝜃) 𝜇VR𝑎 (32)
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where the basic reproduction number of Listeriosis only
model (𝑅0𝑙) is given in the relation

R0𝑙 = V𝜌Ωℎ𝜇𝑏𝜇ℎ𝐾(𝛿 + 𝜇ℎ + 𝑚) . (33)

Now, taking the partial derivative ofR𝑙 with respect toR𝑎 in
(32) gives

𝜕R𝑙𝜕R𝑎 =
2𝐺4𝜃 (𝑚 + 𝛿 − (𝜎 + 𝜂 + 𝜃)) 𝜇VR0𝑙[𝐺4 + (𝐺3 − 𝐺1 + 2 (𝜎 + 𝜂 + 𝜃) 𝜇VR𝑎)]2 . (34)

If (𝑚 + 𝛿) ≥ (𝜎 + 𝜂 + 𝜃), the derivative (𝜕R𝑙/𝜕R𝑎), is strictly
positive. Two scenarios can be deduced from the derivative(𝜕R𝑙/𝜕R𝑎), depending on the values of the parameters:

𝜕R𝑙𝜕R𝑎 = 0,
and

𝜕R𝑙𝜕R𝑎 ≥ 0. (35)

(1) If 𝜕R𝑙/𝜕R𝑎 = 0, it implies that (𝑚+𝛿) = (𝜎+𝜂+𝜃) and
the epidemiological implication is that Anthrax has
no significance effect on the transmission dynamics
of Listeriosis.

(2) If 𝜕R𝑙/𝜕R𝑎 > 0, it implies that (𝑚+𝛿) ≥ (𝜎+𝜂+𝜃), and
the epidemiological implication is that an increase in
Anthrax cases would result in an increase Listeriosis

cases in the environment. That is Anthrax enhances
Listeriosis infections in the environment.

However, by expressing the basic reproduction number of
Anthrax on Listeriosis, that is expressingR𝑎 in terms ofR𝑙,

𝜇ℎ = 𝐻1 − 𝐻2R𝑙 + √𝐻3R2𝑙 + 𝐻4R𝑙 + 𝐻5
2R𝑙 , (36)

where

𝐻1 = (1 + 𝜃)R0𝑙,𝐻2 = (𝑚 + 𝛿 + 𝜎 + 𝜂 + 𝜃)
𝐻3 = (𝜎 + 𝜂 + 𝜃 − 𝑚 − 𝛿) ,
𝐻4 = 2 (𝜃 − 1) (𝑚 + 𝛿 − 𝜎 − 𝜂 − 𝜃)R0𝑙
𝐻1 = (1 + 𝜃)2R20𝑙.

(37)

By letting

√𝐻3R2𝑙 + 𝐻4R𝑙 + 𝐻5 = 𝐻6R𝑙 + 𝐻7, (38)

it implies that

𝜇ℎ = (𝐻6 − 𝐻2)R𝑙 + 𝐻7 + 𝐻12R𝑙 . (39)

Therefore,

R
2
𝑎 = 4ΩℎΩV𝛽ℎ𝛽VR

2
𝑙[(𝐻6 − 𝐻2)R𝑙 + 𝐻7 + 𝐻1] [𝐻7 + 𝐻1 + 2 (𝛼 + 𝜙)R𝑙 + (𝐻6 − 𝐻2)R𝑙] 𝜇V (40)

Now, taking the partial derivative of R𝑎 with respect to R𝑙
in equation (40) gives

𝜕R𝑎𝜕R𝑙 =
4 (𝐻7 + 𝐻1) [𝐻7 + 𝐻1 + (𝛼 + 𝜙 + 𝐻6 − 𝐻2)R𝑙]ΩℎΩV𝛽ℎ𝛽VR𝑙[(𝐻6 − 𝐻2)R𝑙 + 𝐻7 + 𝐻1]2 [𝐻7 + 𝐻1 + (2 (𝛼 + 𝜙) + 𝐻6 − 𝐻2)R𝑙]2 𝜇V (41)

If the partial derivative of R𝑎 with respect to R𝑙 is greater
than zero, (𝜕R𝑎/𝜕R𝑙 > 0), the biological implication is that
an increase in the number of cases of Listeriosis would result
in an increase in the number of cases of Anthrax in the
environment. Moreover, the impact of Anthrax treatment on
Listeriosis can also be analysed by taking the partial derivative
ofR𝑎 with respect to 𝛼, (𝜕R𝑎/𝜕𝛼).

𝜕R𝑎𝜕𝛼 = − 𝛼𝛼 + 𝜙 + 𝜇ℎ . (42)

Clearly,R𝑎 is a decreasing function of 𝛼; the epidemiological
implication is that the treatment of Listeriosis would have an
impact on the transmission dynamics of Anthrax.

5.4. Analysis of Backward Bifurcation. In this section, the
phenomenon of backward bifurcation is carried out by
employing the centermanifold theory on the system of differ-
ential equations inmodel (3). Bifurcation analysis was carried
out by employing the center manifold theory in Castillo-
Chavez and Song [22]. Considering the human transmission
rate (𝛽ℎ) and V as the bifurcation parameters, it implies that
R𝑎 = 1 andR𝑙 = 1 if and only if

𝛽ℎ = 𝛽∗ℎ = 𝜇ℎ𝜇2V (𝛼 + 𝜙 + 𝜇ℎ)ΩℎΩV𝛽V
, (43)



International Journal of Mathematics and Mathematical Sciences 7

and

V = V∗ = 𝜇𝑏𝜇ℎ𝐾(𝛿 + 𝜇ℎ + 𝑚) (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)
𝜌Ωℎ (𝜎 + 𝜇ℎ + 𝜂 + 𝜃 + 𝜃 (𝑚 + 𝛿 + 𝜇ℎ)) . (44)

By considering the following change of variables,

𝑆ℎ = 𝑥1,
𝐼𝑎 = 𝑥2,
𝐼𝑙 = 𝑥3,
𝐼𝑎𝑙 = 𝑥4,
𝑅𝑎 = 𝑥5,
𝑅𝑙 = 𝑥6,
𝑅𝑎𝑙 = 𝑥7,
𝐶𝑝 = 𝑥8,
𝑆V = 𝑥9,
𝐼V = 𝑥10.

(45)

This would give the total population as

𝑁 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 + 𝑥8 + 𝑥9
+ 𝑥10. (46)

By applying vector notation

𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10)𝑇 . (47)

The Anthrax-Listeriosis coinfection model can be expressed
as

𝑑𝑋𝑑𝑡 = 𝐹 (𝑋) ,
where 𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8, 𝑓9, 𝑓10)𝑇 .

(48)

The following system of differential equations is obtained:

𝑑𝑥1𝑑𝑡 = Ωℎ + 𝑘𝑥5 + 𝜔𝑥6 + 𝜓𝑥7 − 𝛽ℎ𝑥10𝑥1 − 𝜋𝑥1
− 𝜇ℎ𝑥1

𝑑𝑥2𝑑𝑡 = 𝛽ℎ𝑥10𝑥1 − 𝜋𝑥2 − (𝛼 + 𝜇ℎ + 𝜙) 𝑥2
𝑑𝑥3𝑑𝑡 = 𝜋𝑥1 − 𝛽𝑙𝑥10𝑥3 − (𝛿 + 𝜇ℎ + 𝑚 + 𝜌) 𝑥3
𝑑𝑥4𝑑𝑡 = 𝛽𝑙𝑥10𝑥3 + 𝜋𝑥2 + (𝜎 + 𝜇ℎ + 𝜂 + 𝜃) 𝑥4

𝑑𝑥5𝑑𝑡 = 𝛼𝑥2 − (𝑘 + 𝜇ℎ) 𝑥5 + (1 − 𝜏) 𝛾𝜎𝑥4
𝑑𝑥6𝑑𝑡 = 𝛿𝑥3 − (𝜔 + 𝜇ℎ) 𝑥6 + (1 − 𝜏) (1 − 𝛾) 𝜎𝑥4
𝑑𝑥7𝑑𝑡 = 𝜏𝜎𝑥4 − (𝜓 + 𝜇ℎ) 𝑥7
𝑑𝑥8𝑑𝑡 = 𝜌𝑥3 + 𝜃𝑥4 − 𝜇𝑏𝑥8
𝑑𝑥9𝑑𝑡 = ΩV − 𝛽V (𝑥2 + 𝑥4) 𝑥9 − 𝜇V𝑥9
𝑑𝑥10𝑑𝑡 = 𝛽V (𝑥2 + 𝑥4) 𝑥9 − 𝜇V𝑥10

(49)

Backward bifurcation is carried out by employing the center
manifold theory on the system of differential equations in
model (3). This concept involves the computation of the
Jacobian of the system of differential equations in (49) at the
disease-free equilibrium (𝜉0). The Jacobian matrix at disease-
free equilibrium is given by

𝐽 (𝜉0)

=

[[[[[[[[[[[[[[[[[[[[[[
[

−𝜇ℎ 0 0 𝐽1 𝑘 𝜔 𝜓 𝐽2 0 𝐽30 −𝐽4 0 0 0 0 0 0 0 𝐽30 0 −𝐽5 𝐽1 0 0 0 𝐽2 0 0
0 0 0 −𝐽6 0 0 0 0 0 0
0 𝛼 0 𝐽7 −𝐽8 0 0 0 0 0
0 0 𝛿 𝐽9 0 −𝐽10 0 0 0 0
0 0 0 𝜎 0 0 −𝐽11 0 0 0
0 0 𝜌 𝜃 0 0 0 −𝜇𝑏 0 0
0 −𝐽12 0 −𝐽12 0 0 0 0 −𝜇V 0
0 𝐽12 0 𝐽12 0 0 0 0 0 −𝜇V

]]]]]]]]]]]]]]]]]]]]]]
]

(50)

where

𝐽1 = 𝜌Ωℎ𝜇ℎ ,
𝐽2 = 𝜇𝑏 (𝛿 + 𝜇ℎ + 𝑚) (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)

𝜌 (𝜎 + 𝜇ℎ + 𝜂 + 𝜃 + 𝜃 (𝛿 + 𝜇ℎ + 𝑚)) ,
𝐽3 = 𝜇3V (𝛼 + 𝜙 + 𝜇ℎ)ΩV𝛽V

,
𝐽4 = (𝛼 + 𝜙 + 𝜇ℎ) ,
𝐽5 = (𝛿 + 𝜇ℎ + 𝑚) ,
𝐽6 = (𝜎 + 𝜇ℎ + 𝜂 + 𝜃) ,
𝐽7 = (1 − 𝜏) 𝛾𝜎,
𝐽8 = (𝑘 + 𝜇ℎ) ,
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𝐽9 = (1 − 𝜏) (1 − 𝛾) 𝜎,
𝐽10 = (𝜔 + 𝜇ℎ) ,
𝐽11 = (𝜓 + 𝜇ℎ)

and 𝐽12 = ΩV𝛽V𝜇V .
(51)

Clearly, the Jacobian matrix at disease-free equilibrium has
a case of simple zero eigenvalue as well as other eigenvalues
with negative real parts. This is an indication that the center
manifold theorem is applicable. By applying the center man-
ifold theorem in Castillo-Chavez and Song [22], the left and
right eigenvectors of the Jacobian matrix 𝐽(𝜉0) are computed
first. Letting the left and right eigenvector represented by

𝑦 = [𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9, 𝑦10]
and 𝑤 = [𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7, 𝑤8, 𝑤9, 𝑤10]𝑇 , (52)

respectively, the following were obtained:

𝑤1 = 𝐾𝑤5𝜇ℎ + 𝑤2𝜇2V (𝛼 + 𝜙 + 𝜇ℎ)𝜇ℎ ,
𝑤2 = 𝜇2VΩV𝛽V

,
𝑤3 = 𝑤4 = 𝑤6 = 𝑤7 = 𝑤8 = 0,
𝑤5 = 𝛼𝜇2VΩV𝛽V (𝑘 + 𝜇ℎ) ,
𝑤9 = −𝑤10,
𝑤10 = 1.

(53)

And 𝑦1 = 𝑦3 = 𝑦5 = 𝑦6 = 𝑦7 = 𝑦8 = 𝑦9 = 0,
𝑦2 = V10ΩV𝛽V𝜇V (𝛼 + 𝜙 + 𝜇ℎ) ,
𝑦2 = 𝑦4,
𝑦10 = −𝜇V (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)ΩV𝛽V

.

(54)

Moreover, by further simplifications, it can be shown that

𝑎 = 𝜏𝑤10𝜇3V (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)ΩV𝛽V

− 2𝑤10𝛽V [𝜇2V (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)𝜇ℎΩV𝛽V

+ 𝛼𝐾𝜇2V (𝜎 + 𝜇ℎ + 𝜂 + 𝜃)
𝜇ℎΩV𝛽V (𝑘 + 𝜇ℎ) (𝛼 + 𝜙 + 𝜇ℎ)] ,

𝑏 = 𝑦2𝑤10Ωℎ𝜇ℎ > 0.

(55)
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Figure 2: Simulation of the coinfectionmodel showing the existence
of backward bifurcation.

It can be deduced that the coefficient 𝑏 would always be
positive. Backward bifurcation will take place in the system
of differential equations in (3) if the coefficient 𝑎 is positive.
In conclusion, it implies that the disease-free equilibrium is
not globally stable.

Figure 2 shows the simulation of the coinfection model
indicating the phenomenon of backward bifurcation as evi-
dence to the model analysis. This phenomenon usually exists
in cases where the disease-free equilibrium and the endemic
equilibrium coexist. Epidemically, the implication is that
the concept of whenever the basic reproduction number
is less than unity, the ability to control the disease is no
longer sufficient. Figure 2 confirms the analytical results
which shows that endemic equilibrium exists when the basic
reproduction number is greater than unity.

6. Sensitivity Analysis of
the Coinfection Model

In this section, we performed the sensitivity analysis of the
basic reproduction number of the coinfection model to each
of the parameter values. This is to determine the significance
or contribution of each parameter on the basic reproduction
number. The sensitivity index of the basic reproduction
number (R0) to a parameter 𝑃 is given by the relation

ΠR0

𝑃 = (𝜕R0𝜕𝑃 )( 𝑃
R0

) . (56)

Sensitivity analysis of the basic reproduction number of
Anthrax R0𝑎 and Listeriosis R0𝑎 to each of the parameter
values was computed separately, since the basic reproduction
number of the coinfection model is usually

R0 = max {R0𝑎,R0𝑙} . (57)
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Table 1: Sensitivity indices ofR0𝑎 to each of the parameter values.

Parameter Description Sensitivity IndexΩℎ Human recruitment rate 1.2164ΩV Vector recruitment rate 0.2433𝛽ℎ Human transmission rate 0.1216𝛽V Vector transmission rate 0.0243𝛼 Anthrax recovery rate −0.0037𝜇ℎ Human natural death rate −0.0122𝜇V Vector natural death rate −0.0061𝜙 Anthrax related death rate −0.0065𝜃 Modification parameter 3.42913 ∗ 10−6

6.1. Sensitivity Indices of R0𝑎. In this section, we derive the
sensitivity of R0𝑎, to each of the parameters. Table 1 shows
the detailed sensitivity indices of the basic reproduction
number of Anthrax (R0𝑎) to each of the parameter values.
From the values in Table 1, it can be observed that the
most sensitive parameters are human transmission rate,
vector transmission rate, human recruitment rate, and vector
recruitment rate. Since the basic reproduction number is less
than one, increasing the human recruitment rate by 10%
would increase the basic reproduction number of Anthrax by12.164%. However, decreasing the human recruitment rate
by 10% would decrease the basic reproduction number of
Anthrax by 12.164%.Moreover, decreasing human and vector
transmission rates by 10%would decrease the basic reproduc-
tion number of Anthrax by 1.216% and 0.243%, respectively.
However, increasing human and vector transmission rates
by 10% would increase the basic reproduction number of
Anthrax by 1.216% and 0.243%, respectively. The sensitivity
analysis determines the contribution of each parameter to the
basic reproduction number. This is an improvement of the
work done by authors in [2, 3].

6.2. Sensitivity Indices of R0𝑙. In this section, we derive the
sensitivity of R0𝑙 to each of the parameters. The detailed
sensitivity indices of the basic reproduction number of
Listeriosis (R0𝑙) to each of the parameter values are shown
in Table 2. We observe from the values in Table 2 that
the most sensitive parameters are bacteria ingestion rate,
Listeriosis related death, human recruitment rate, and Lis-
teriosis contribution to environment. Decreasing the human
recruitment rate by 10% would cause a decrease in the basic
reproduction number of Listeriosis by 0.201487%. However,
increasing the human recruitment rate by 10% would cause
an increase in the basic reproduction number of Listeriosis by0.201487%. Moreover, decreasing Listeriosis contribution to
environment and bacteria ingestion rate by 10%would cause
a decrease in the basic reproduction number of Listeriosis.
Increasing Listeriosis contribution to environment and bacte-
ria ingestion rate by 10%would cause an increase in the basic
reproduction number of Listeriosis.

7. Numerical Methods and Results

In this section, we carried out the numerical simulations of
the coinfectionmodel to illustrate the results of the qualitative

analysis of the model which has already been performed.The
variable and parameter values in Table 3 were used in the
simulation of the coinfection model in (3). For the purposes
of illustrations, we assumed some of the parameter values.
Table 3 shows the detailed description of parameters and
values that were used in the simulations of model (3). We
used a Range-Kutta fourth-order scheme in the numerical
solutions of the system of differential equations in model (3)
by using matlab program.

7.1. Simulation of Model Showing the Effects of Increasing Force
of Infection on Infectious Anthrax and Listeriosis Populations
Only. In this section, we simulate the system of differential
equations in model (3) by varying the human contact rate
to see its effects on infected Anthrax population, infected
Listeriosis population, and Anthrax-Listeriosis coinfected
population. This was done by setting the values of human
contact rate as 𝛽ℎ = 0.01,𝛽ℎ = 0.02,𝛽ℎ = 0.03, and 𝛽ℎ =0.04. Figure 3 shows an increase in the infected Anthrax
population as the value of contact rate increases.Moreover, as
the value of the human contact rate decreases, the number of
Anthrax infected population decreases with time. However,
an increase or decrease in the human contact rate increases
or decreases the Listeriosis infected population with time as
confirmed in Figure 4. The number of Anthrax-Listeriosis
coinfected population shows a sharp reduction in the number
of individuals infected with both diseases but the there is an
increase in the number of infectious population as shown in
Figure 5. An increase or decrease in the human contact rate
shows an increase or decrease in the number of Anthrax-
Listeriosis coinfected population as indicated in Figure 5.
Analysis of force of infection gives a better understanding of
the effects of the contact rate which was not considered by the
work of authors in [2, 3, 20].

7.2. Simulation of Model Showing Infected Anthrax, Listeriosis,
and Coinfected Populations. In this section, we simulate
the model (3) to see the behaviour of Anthrax infected
population, Listeriosis infected population, and Anthrax-
Listeriosis coinfected population. Figure 6 shows an increase
in the number of Anthrax infected individuals and a sharp
increase in the number of Listeriosis infected individuals.
Figure 7 shows a sharp reduction in the number of Anthrax-
Listeriosis coinfected population from the beginning and
it increases steadily at a point in time. Since the number
of susceptible human populations increases in the system
with time, there are higher chances of individuals being
infected with Anthrax, Listeriosis, and Anthrax-Listeriosis
coinfection. This is because the concept of mass action was
one of the assumptions that was incorporated in our model.

7.3. Simulation of Model Showing Susceptible Human Bacte-
ria Populations. In this section, we simulate model (3), to
observe the behaviour of the susceptible human population
and how the bacteria (carcasses) growth behaves with time
in the epidemics. Figure 8 shows an increase in both the
susceptible and bacteria growth. An increase in the number
of susceptible from the beginning confirms the increase in
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Table 2: Sensitivity indices ofR0𝑙 to each of the parameter values.

Parameter Description Sensitivity IndexΩℎ Human recruitment rate 0.0201487𝜎 Co-infected human recovery rate −5.41441 ∗ 10−6𝜇ℎ Human natural death rate −0.00014638𝜂 Listeriosis death rate among co-infected −5.41441 ∗ 10−6𝜃 Modification parameter 3.42913 ∗ 10−6
V Bacteria ingestion rate 0.0000402975𝜌 Listeriosis contribution to environment 0.0000309981𝐾 Concentration of carcasses −2.01487 ∗ 10−10𝛿 Listeriosis recovery rate −0.0000402218𝜇𝑏 Carcasses mortality rate −0.0080595𝑚 Listeriosis related death −0.0000402218

Table 3: Variable and parameter values of the coinfection model.

Parameter Description Value Reference
𝜙 Anthrax related death rate 0.2 (Health line, Dec., 2015)
𝑚 Listeriosis related death rate 0.2 Adak et al., 2002.
𝑞 Anthrax death rate among co-infected 0.04 assumed
𝜂 Listeriosis death rate among co-infected 0.08 assumed
𝛽ℎ Human transmission rate 0.01 [23]
𝛽V Vector transmission rate 0.05 assumed
𝑘 Anthrax waning immunity 0.02 assumed
𝜇V Vector natural death rate 0.0004 [23]
Ωℎ Human recruitment rate 0.001 assumed
ΩV Vector recruitment rate 0.005 [23]
𝛼 Anthrax recovery rate 0.33 [24]
𝛿 Listeriosis recovery rate 0.002 assumed
𝜓 Anthrax-Listeriosis waning immunity 0.07 assumed
𝜌 Listeriosis contribution to environment 0.65 assumed
𝜎 Co-infected recovery rate 0.005 assumed
𝜇𝑏 Bacteria death rate 0.0025 assumed
𝜇ℎ Human natural death rate 0.2 [23]
𝜔 Listeriosis waning immunity 0.001 assumed
𝜃 Modification parameter 0.45 assumed
𝜀 Co-infected who recover from Anthrax only 0.025 assumed
𝐾 Concentration of carcasses 10000 [20]
V Bacteria ingestion rate 0.5 [20]

the number of Anthrax infection and Listeriosis infection in
Figure 6. The increase in the number of susceptible human
populations could be attributed to our model being an open
system.

8. Conclusion

In this paper, we analysed the transmission dynamics of
Anthrax-Listeriosis coinfection model. The compartmen-
tal model was analysed qualitatively and quantitatively to

fully understand the transmission mechanism of Anthrax-
Listeriosis coinfection. Our model revealed that the disease-
free equilibrium of the Anthrax model only is locally
stable when the basic reproduction number is less than
one and a unique endemic equilibrium whenever the basic
reproduction number is greater than one. The disease-free
equilibrium of the Listeriosis model only is locally stable
when the basic reproduction number is less than one and
a unique endemic equilibrium whenever the basic repro-
duction number is greater than one. Our model analysis
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Figure 3: Simulation showing the effects of increasing the force of
infection on Anthrax infected population only.
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Figure 4: Simulation showing the effects of increasing the force of
infection on Anthrax infected population only.

also reveals that the disease-free equilibrium of the Anthrax-
Listeriosis coinfection model is locally stable whenever the
basic reproduction number is less than one.Thephenomenon
of backward bifurcation was exhibited by our model. The
biological implication is that the idea of the model been
locally stable whenever the reproduction number is less than
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Figure 5: Simulation showing the effects of increasing the force of
infection on Anthrax infected population only.

unity and unstable otherwise does not apply. This means that
the Anthrax-Listeriosis coinfection model shows a case of
coexistence of the disease-free equilibrium and the endemic
equilibrium whenever the basic reproduction number is less
than one.

We performed the sensitivity analysis of the basic repro-
ductive number to each of the parameters to determine
which parameter is more sensitive. The sensitivity indices of
the basic reproduction number of Anthrax to each of the
parameter values revealed that the most sensitive parame-
ters are human transmission rate, vector transmission rate,
human recruitment rate, and vector recruitment rate. Since
the basic reproduction number is less than one, increas-
ing the human recruitment rate would increase the basic
reproduction number. This analysis is an improvement of
the work done by [2, 3]. They considered the dynamics of
Anthrax in animal population but never considered sensitiv-
ity analysis to determine the most sensitive parameter to the
model.

The sensitivity indices of the basic reproduction number
of Listeriosis to each of the parameter values shows that the
most sensitive parameters are bacteria ingestion rate, Liste-
riosis related death, human recruitment rate, and Listeriosis
contribution to environment.

We simulate the Anthrax-Listeriosis coinfection model
by varying the human contact rate to see its effects on
infected Anthrax population, infected Listeriosis population,
and Anthrax-Listeriosis coinfected population. This analysis
is an improvement of the work done by authors in [2, 3, 20].
Our simulation shows an increase in the infected Anthrax
population, an increase the number Listeriosis infected pop-
ulation, and an increase in the number of Anthrax-Listeriosis
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Figure 6: Simulation showing infected Anthrax and infected Listeriosis population.
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Figure 7: Simulation of model showing Anthrax-Listeriosis coinfection population.

coinfected population as the value of the human contact rate
increases.

Data Availability

The data supporting this deterministic model are from
previously published articles and they have been duly cited
in this paper. Those parameter values taken from published

articles are cited in Table 3 of this paper. These published
articles are also cited at relevant places within the text as
references.
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Figure 8: Simulation of model showing susceptible human and bacteria populations.
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