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Abstract

System Identification and Modal Tracking on Ship
Structures

K. Soal
Department of Mechanical and Mechatronic Engineering,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Dissertation: PhD (Mechanical)
March 2018

Critical decisions regarding the safe and efficient operation of vessels in ice
are currently based mainly on dynamic response feedback. Navigators decide
on how to operate the vessel based on how they feel it pitching, heaving, rolling
and vibrating. The aim of this thesis is to investigate the idea of using system
identification and modal tracking on polar vessels towards the development of
a decision aiding system. System identification provides a powerful tool for
building mathematical models of dynamic systems. An open source toolbox
(openSID) for system identification using Stochastic Subspace Identification
(SSI) was developed as a research and learning tool. Full scale measurements
were performed on the research vessel Polarstern during an expedition to the
Arctic. This is the first comprehensive data set including vibration responses
and environmental parameters to span the entire operational profile of a re-
search voyage to the Arctic. System identification successfully identified seven
global modes in the bandwidth 2 - 10 Hz. Comparisons between different
methods were used to cross validate results. A modal tracking algorithm was
developed and relationships between identified modes and system inputs were
observed. A novel method is developed to improve the uncertainty and sensi-
tivity of system identification and tracking, based on a data driven statistical
model and a Kalman filter. A key objective is to make experimental data max-
imally informative by using additional system inputs. The model was found
to accurately re-create the training data set and was used to make predictions
based on future system inputs. The Kalman filter estimates were observed
to produce balanced and consistent results. These results demonstrate the
potential of an ice force estimation and structural health monitoring system.

iii

Stellenbosch University  https://scholar.sun.ac.za



Uittreksel

Stelselidentifikasie en Modale Naspeuring op Skip
Strukture

(“System Identification and Modal Tracking on Ship Structures”)

K. Soal
Departement Meganiese en Megatroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Proefskrif: PhD (Meganies)
Maart 2018

Kritieke besluite in terme van die veilige en doelgerigte bedryf van skepe
in ys is tans hoofsaaklik gebasseer op dinamiese hanterings terugvoer. Be-
sluite oor hoe om die vaartuig te navigeer word toegelig deur hoe seevaarders
die skip voel duik, heg, rol en vibreer. Die doel van hierdie tesis is om die
idee van stelselidentifikasie en modale naspeuring op poolskepe te ondersoek
ten einde die ontwikkeling van ’n besluitnemingstelsel. Stelselidentifikasie bied
’n kragtige metode vir die bou van wiskundige modelle van dinamiese stel-
sels. Oopbron gereedskap algoritme (openSID) vir stelselidentifikasie, met die
gebruik van Stochastiese Subspasie Identifikasie (SSI) is ontwikkel as ’n na-
vorsings en leer instrument. Volskaal metings is uitgevoer op die navorsing
skip Polarstern tydens ’n ekspedisie na die Arktiese gebied. Dit is die eerste
omvattende datastel wat vibrasierespons en omgewingsparameters insluit om
die hele operasionele profiel van ’n navorsingsreis na die Arktiese omgewing te
dek. Stelselidentifikasie het sewe globale modes in die bandwydte 2 - 10 Hz
geïdentifiseer. Vergelykings tussen twee metodes is gebruik om resultate te
bekragtig. Modale naspeuringsalgoritme is ontwikkel en verhoudings tussen
geïdentifiseerde modusse en stelselinsette is waargeneem. Nuwe metode is ont-
wikkel om die onsekerheid en sensitiwiteit van stelselidentifikasie en naspeuring
te verbeter, gebasseer op ’n data gedrewe statistiese model en ’n Kalman fil-
ter. ’n Hoof doelwit is om eksperimentele data maksimaal insiggewend te maak
deur addisionele stelsel insette te gebruik. Dit is gevind dat die model die op-
leidingsdatastel akkuraat naboots. Hierna is dit gebruik om voorspellings te
maak gebasseer op toekomstige stelselinsette. Beraming met die Kalman filter
is waargeneem om gebalanseerde en konsekwente resultate te lewer. Hierdie
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resultate demonstreer die potensiaal van ’n besluitnemingsstelsel om ys kragte
af te skat en strukturele integriteit te monitor.
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“Inferring models from observations and studying their properties
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Chapter 1

Introduction

1.1 Polar Research Vessels
Polar research vessels such as the SA Agulhas II and Polarstern, shown in
Figure 1.1 and 1.2, are relied upon by research institutes and their scientists
to re-supply bases as well as to serve as floating laboratories. These vessels
operate in the oceans surrounding Antarctica and the Arctic which provide
valuable scientific insights into the system of our planet (AWI, 2017). These
insights help decipher inter connectivities which are not only interesting, but
also useful in understanding our impact on the Earth as well as the effects of
changing climate.

Figure 1.1: SA Agulhas II in Antarctica.

1
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CHAPTER 1. INTRODUCTION 2

Polar vessels operating in these environments are exposed to complex dy-
namic forces due to ice, waves, wind, engines and propellers as shown in Figure
1.3 and 1.4. The dynamic response of the structure to these forces is directly
related to its performance in terms of stability, ice breaking capacity, power
consumption and safety. The response to these forces over time also determine
the vessel’s fatigue life. These forces cause the propagation of energy through
the structure resulting in vibration.

Figure 1.2: Polar research vessel Polarstern.

Vibration can damage the vessel’s structure as well as navigational or sen-
sitive scientific equipment. It can also cause fatigue of crew or scientists on
board. The importance of the human factor should not be underestimated
since humans are responsible for making decisions regarding the operation and
safety of vessels at sea.

Critical decisions regarding the safe and efficient operation of vessels in ice
are currently based mainly on dynamic response feedback. This means that
navigators decide on headings and speeds in challenging ice conditions based on
how they feel the ship responding i.e. how much it is pitching, heaving, rolling
and vibrating. In certain operating conditions this subjective experience may
not accurately reflect the magnitude of the associated forces.

A vision to develop a decision support system for polar vessels is therefore
proposed. The aim of such a system would be to display semi-real time infor-
mation about ice forces and structural health to the navigating officers on the
bridge. The use of system identification and modal tracking as tools to achieve
this goal will be further developed in the following section. Finally, this system
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CHAPTER 1. INTRODUCTION 3

would not replace the experience of captains and navigating officers but rather
provide a tool which integrated with ice radar, ice and weather forecasts and
satellite images could result in safer and more efficient navigational decisions.

Figure 1.3: Antarctic pack ice.

Figure 1.4: Southern ocean storm.

1.2 System Identification and Modal Tracking
System identification provides a powerful tool for building mathematical mod-
els of dynamic systems. A system is an object on which different variables
interact to produce observable signals. Models are aimed at linking these
observations together into a pattern from which useful information can be ex-
tracted (Ljung, 1987). In mechanical and civil engineering the system identifi-
cation framework has been successfully applied to structures, where vibration
responses are used to extract modal parameters (Ewins, 2000).
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This is not a trivial task when dealing with real structures with complex
inputs, low excitation forces and noise. A further challenge involves dealing
with unmeasurable input forces such as wind or wave loads on large structures
in actual operating conditions. Output only system identification or Oper-
ational Modal Analysis (OMA), see (Brincker and Ventura, 2015), was de-
veloped to identify modal parameters without knowledge of the input forces.
This is achieved by making assumptions about the unmeasured forces which
are modelled as stochastic white noise quantities. The advantages of OMA are
that modal parameters can be estimated from real data in actual operating
conditions. The drawback is that long time records are often needed to fulfil
assumptions.

For the purposes of this work we consider a polar vessel as our ‘system’.
This framework allows the identification of modal parameters consisting of
natural frequencies, damping and mode shapes from measured acceleration
signals. These parameters can be used to build modal models which have ap-
plications in Inverse Force Estimation (IFE) and Structural Health Monitoring
(SHM) (Peeters, 2000).

A key observation is that changes in physical parameters such as temper-
ature, draft or speed, cause detectable changes in the vibration properties
(Liu and DeWolf, 2007). Modal parameter tracking deals with identifying and
following the trail of system modes. The sensitivity of system identification
and modal tracking to changing environmental and operational parameters is
important for SHM and IFE. This is because damage to a structure can be
misidentified or masked by modal shifts as a result of environmental parame-
ters.

1.3 Project Aim and Novel Contribution
The aim of this thesis is to investigate the idea of using system identification
and modal tracking on polar vessels towards the development of a decision
aiding system. This is proposed through the use of a sensor network to transmit
signals for decision making in a similar way to the functioning of the nervous
system in the human body as shown in Figure 1.5. Signals from accelerometers,
gyroscopes and ship based weather stations can be used to build mathematical
models. These models can then be used to quantify ice forces and monitor the
health of the structure.

Investigations were first conducted into different system identification al-
gorithms such as Enhanced Frequency Domain Decomposition (EFDD), Least
Square Complex Frequency (LSCF), Ibrahim Time Domain (ITD) and Stochas-
tic Subspace Identification (SSI). Initial investigations on full scale data of po-
lar vessels by Soal (2014) as well as literature by Peeters (2000); Magalhães
et al. (2008); Reynders (2009) found improved estimates from SSI methods.

Current SSI methods were found to be available only as commercial closed
software. Open source software and development has proven to drive innova-
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(a) Human nervous system. (Sciepro,
2013)

(b) Polar vessel sensor network. (Soal,
2014)

Figure 1.5: Decision aiding network metaphor.

tion, result in more robust code and be a force multiplier (Balter, 2015). The
need for an open source toolbox which can be used both as a learning and
research tool was identified. The first aim of this thesis is the development
of an open source toolbox for system identification using SSI. It is envisioned
to use this platform to demystify SSI and help students and researchers gain
insights into the practical application of these techniques.

The second aim is to investigate the performance of SSI through a para-
metric study. Where the effect of key user defined parameters such as model
order and block size are investigated. The response of the algorithms to phys-
ical phenomena such as noise, damping, harmonics and linear time invariance
will subsequently be performed. The objective is to use analogies from simple
systems to aid in understanding more complex results from real structures.

The third aim of this thesis is to conduct full scale measurements on the po-
lar research vessel Polarstern during a voyage to the Arctic. There is currently
no comprehensive data set including vibration responses and environmental
parameters to span the entire operational profile of a vessel in the Arctic. It
is planned to instrument the Polarstern with over 2 km of cable in Germany.
Accelerometers and the Data Acquisition System (DAQ) will be installed be-
fore the vessel departs the harbour in Tromsø, Norway. Continuous vibration
measurements will be recorded throughout the voyage. Environmental and
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operational parameters such as weather, sea state, ice conditions, vessel speed,
ballast, trim and fuel will also be recorded during the expedition.

An associated aim is to make this data set openly available. The main
goals for making the data open access are (1) so that results in this thesis can
be tested, recreated and validated (2) opening the data to other researchers
has the potential to bring a diversity of ideas and optimal solutions and pro-
vide additional human capital to drive innovation (3) a variety of open source
data sets will allow open and transparent benchmarking of state of the art
algorithms.

The fourth aim is to investigate the potential of using system identification
and modal tracking to identify and follow the trail of system modes. Different
system identification techniques will be used to cross validate results. Investi-
gations into the performance of the identification algorithms during different
operating conditions will also be performed. The relationships between envi-
ronmental and operational inputs and system identification outputs will also
be investigated.

The fifth and final aim of this thesis is to investigate an idea to improve the
uncertainty and sensitivity of system identification estimates using a statistical
model and a Kalman filter. A key objective is to make experimental data
maximally informative by using additional system inputs.

A summary of the original contributions of this work are therefore as fol-
lows:

1. Development of an open source toolbox for system identification in struc-
tural dynamics using SSI (openSID), as an innovative platform for open
development and learning.

2. Provide fundamental insights into the mathematical algorithms of SSI
through a parametric study as a guide for users.

3. Conducting the first comprehensive full scale measurements including
vibration responses and environmental parameters on a polar vessel to
span the entire operational profile of a research voyage to the Arctic.

4. Investigate system identification and modal tracking using state of the
art algorithms on full scale data from a polar vessel.

5. Development of a novel method to improve system identification esti-
mates using a statistical model and a Kalman filter.

1.4 Readers Guide
The organisation of the thesis is presented in this section as an overview and
guide to the reader.
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Chapter 2

Provides a review of relevant literature into the ice force estimation and dy-
namic response of polar vessels. The chapter begins with key developments in
ice force estimation using direct methods followed by indirect methods. Ex-
amples of system identification applied to ship structures are then discussed
followed by relevant insights from other structures.

Chapter 3

The system identification framework and Stochastic Subspace Identification
(SSI) method are presented. Theory is presented together with implemented
code to provide hands on understanding and insight to students and researchers.
The openSID toolbox and GUI are then presented and demonstrated.

Chapter 4

A parametric simulation study is conducted to investigate the effects of model
order, block size, noise, reference channels, damping, harmonics, linear time
invariance and total prediction errors. This is intended as a guide to the user
interested in understanding the algorithms and their application.

Chapter 5

Presents a description of the polar research vessel Polarstern, the full scale
measurement setup and research voyage. The open data vision is further ex-
plained together with details of how to access the data.

Chapter 6

Presents the system identification and modal tracking results from full scale
data. The modal tracking algorithm is explained together with the signal
processing and statistical investigation.

Chapter 7

Proposes a novel approach to improve the uncertainty and sensitivity of system
identification and tracking based on a data driven statistical model and a
Kalman filter.
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Chapter 2

Literature Study

2.1 Introduction
This thesis aims at investigating the use of system identification and modal
tracking to model a ship’s dynamic behaviour. The objective is to develop a de-
cision support system capable of inverse force estimation and structural health
monitoring. This chapter provides a review of relevant work on the dynamic
response and ice force estimation of polar vessels. The chapter begins with key
developments in ice force estimation using direct methods. Limitations and
complexities in these methods lead to the idea of using the system response to
estimate the forces, known as indirect methods. The strengths and weaknesses
of indirect methods are discussed and the potential of system identification in
making a novel contribution is proposed. Examples of system identification as
applied to ship structures are then reviewed followed by relevant insights from
other structures. This review forms the basis for the idea development in the
current research.

2.2 Direct Ice Force Estimation

2.2.1 Full Scale Measurements

Edwards et al. (1972) conducted the first scientific investigations into ice load
estimation. They hypothesized that ice loads could be expressed as statistical
functions of environmental parameters such as ice thickness, strength, elastic
modulus and snow cover. The complexity of ship ice interaction however defied
the development of purely analytical ice load solutions. Edwards et al. (1972)
then conducted full scale measurements of local ice loads using strain gages
on the USCGC Mackinaw, shown in Figure 2.1a. Force estimates were plotted
against observations of ice thickness, ship speed and flexural ice strength. A
linear relationship was proposed between the product of ice thickness and ship
speed versus ice load. The results showed considerable scatter and were limited
by unobserved variables, and most significantly the variability in location of the

8
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CHAPTER 2. LITERATURE STUDY 9

ice impacts. Suominen et al. (2015) found that depending on the location of the
force applied to an instrumented panel, that the actual measured value could
vary from between 0 and 1.4 times the magnitude of the actual applied load.
The random nature of ice impacts on a dynamic structure pose a significant
limitation on direct force measurement.

(a) The USCGC Mackinaw on the Great
Lakes. (Wikimedia Public Domain)

 

(b) USCG Polar Sea and Polar Star assist-
ing a tanker in Antarctica. (Morris, 2002)

 

(c) The Oden in the Bay of Bothnia.
(Kerkmann, 2007)

 

(d) The Nathaniel B. Palmer in Antarc-
tica’s Ross Sea. (Eastman, 2013)

Figure 2.1: Icebreakers used for full-scale measurements.

The first investigations into global ice forces during ramming of heavily
ridged ice features were conducted by Chen et al. (1990) on the USCG Polar
Sea, shown in Figure 2.1b. The vessel was instrumented with strain gages and
accelerometers to measure longitudinal bending moments as well as compres-
sive strain of the hull. Chen et al. (1990) found the 2 node bending mode of
the hull at 3,1 Hz to be dominant during ramming. The exact location of the
impact force was found to be one of the most important factors. Variations in
the measured and predicted impact forces were largely attributed to not know-
ing the location of the impact. Minnick and John (1990) conducted full scale
measurements on the USCG Polar Star, shown in Figure 2.1b. Minnick and
John (1990) placed greater emphasis on accurately determining the location of
the ice impact from a centreline bulkhead compression gage. The method was
limited when the vessel moved deeper into the broken ice field and the impact
locations increased and distributed randomly around the hull.
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John and Minnick (1995) performed full scale measurements on the research
vessel Nathaniel B. Palmer, see Figure 2.1d. The main objectives were to
compare ice loads measured at the bow on the Nathaniel B. Palmer to those
measured on the USCG Polar Sea as well as the Swedish icebreaker Oden,
shown in Figure 2.1c. The Nathaniel B. Palmer has a similar bow shape to
the Polar Sea but is approximately half the displacement. While the Oden has
a similar displacement to the Polar Sea but a wide flat bow with a low stem
angle. The Nathaniel B. Palmer was instrumented in three different locations
which was the first time that ice loads were measured at multiple locations on
a ship hull. John and Minnick (1995) found that ice loads and pressures did
not show a clear trend with ice thickness, ice concentration or ship speed. Peak
loads or pressures occurred at the most common ice thickness, ice concentration
and speed, indicating the random nature of the loading. In other words more
impacts result in higher extremes. These results were consistent with those
from the Polar Sea and the Oden.

2.2.2 Model Scale Measurements

Mueller and Ettema (1984) conducted model scale tests in a tow tank and
measured the dynamic response. They proposed a characteristic equation,
V0/f0Lc relating the hull’s natural frequencies f0 of pitching and heaving to
the hull velocity V0 and characteristic ice sheet length Lc. This was related
to the distance between consecutive cracks formed around the bow and was
used to estimate the forcing function of ice loads. Model scale tests conducted
by Ettema et al. (1987) focused on the relationships between ice resistance
and patterns of ice breaking. Ettema et al. (1987) showed how these factors
are influenced by, and in turn influence hull motions. Key findings included
larger ship hull resistances during significant pitch, heave and roll motions as
well as strong correlations between ice breaking pattern, hull motions and the
dominant cycles of hull resistance.

2.2.3 Ice Mechanics

Varsta (1983) conducted investigations into the mechanics of ice loads. The
aim of this work was to analyse ice loads in detail and develop a mathematical
model to determine loads based on ice characteristics and ship parameters.
Comparisons of full scale ice loads to numerical predictions did not show strong
correlations due to the stochastic nature of the measured ice loading. Varsta
(1983) concluded that the level of knowledge of ice mechanics was not yet
sufficient for the accurate prediction of ice loading. This study sparked new
interest in ice mechanics.

Further investigations into ice loads from an ice mechanics perspective were
conducted by Yue et al. (2009). They observed that dynamic ice forces could
be separated by the ice encounter speed into three modes. Each mode had
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an associated force pattern which depended on the natural frequency of the
structure, the form of the impact area and the energy delivered by the ice
into the structure. The modes were classified as quasi-static, steady-state and
random. From the quasi-static ice force pattern in Figure 2.2a it can be seen
that the ice force increases slowly until a critical limit and then fails suddenly.
This process is dominated by plastic deformation and ductile behaviour. Figure
2.2b shows the steady-state mode which occurs in the ductile-brittle transition
zone and Figure 2.2c the random mode where the ice behaves in a brittle
manner. Yue et al. (2009) noted that the failure mode depended significantly
on the available energy of the ice which is related to the ice velocity (kinetic
energy) as well as the mass of the ice (potential energy) which can be related
to the thickness (Timco and Weeks, 2010). Timco and Weeks (2010) and
Kärnä and Jochmann (2003) observed that the ice thickness is one of the most
important engineering properties and is directly related to the way that ice
fails. Bjerkås et al. (2007) observed that the ductile to brittle transition zone
is related to rate dependency of the ice strength, which was found to be lower
in the brittle failure mode than the ductile failure mode. This means that
large forces could still occur on the ship hull when the vessel is stationary in a
moving ice field. During actual ice navigation the ice is expected to act mostly
in a brittle manner with a random force spectrum. However in very thick ice
conditions where the ice may completely stop the vessel, the low navigation
speeds can result in ice failing in the ductile-brittle or ductile regime.

Figure 2.2: Ice failure modes (a)quasi-static (b) steady-state and (c) random.
(Yue et al., 2009).

2.3 Indirect Ice Force Estimation
Matusiak (1982) conducted the first full scale vibration measurements on ice-
breaker SISU using two transducers. The main objectives of the study were
to identify the vibration modes and evaluate the vibration level during ice
breaking. Matusiak (1982) observed that forces due to ice hull interaction
were complex, and that ice loads could be regarded as a random broadband
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process. The analysis of the full scale measurements showed that the four
lowest natural modes were excited, the first bending mode excited by ice im-
pacts is shown in Figure 2.3. It was also found that the presence of the broken
ice field significantly increased the damping ratio and mass of the structure.
These findings provided novel insight into the effects of ship ice interaction on
structural dynamic response.

 

Figure 2.3: The hand drawn first vertical bending mode of icebreaker SISU
excited by ice impacts (Matusiak, 1982).

Since the complete characterization of ice loading is highly complex John-
ston et al. (2001) proposed a new method whereby ship motion was measured
using an inertial measurement system called MOTAN (MOTion ANalysis).
Measurements from the MOTAN system where then used to calculate global
ice forces. The MOTAN system provided time data of ship motion in six de-
grees of freedom. Full scale measurements were conducted on the USCGC
Healy during ice trials. A variety of loading conditions were sampled ranging
from light ice conditions to backing and ramming in first year and multi year
ice. It was found that pitch angles ranged from 0.2◦ to 0.8◦ and roll angles
ranged from 0.6◦ to 4.9◦. The method was however limited due to neglecting
roll motions which were significant during ice breaking.

The method for calculating the global vertical force was as follows. The
equations of motion for coupled heave and pitch motions, derived in Matusiak
(2013), are presented in Equations 2.3.1 and 2.3.2.

(m+ a)
d2z

dt2
+ b

dz

dt
+ cz + d

d2θ

dt2
+ e

dθ

dt
+ hθ = F (t) (2.3.1)

(Iy + A)
d2θ

dt2
+B

dθ

dt
+ Cθ +D

d2z

dt2
+ E

dz

dt
+Hz = M(t) (2.3.2)

where θ is pitch, z is heave, m is mass, a is added mass, Iy is mass moment
of inertia of the ship about the midship y-axis, F (t) is total external force,
M(t) is total external moment. Since MOTAN measures the rate of change
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of the pitch angle (dθ
dt
), Equation 2.3.2 was chosen as it is less sensitive to

integration error (since gyros measure velocity).
The cross-coupling coefficients D and E were neglected in Equation 2.3.2,

which then simplified the pitching moment equation to

(Iy + A)
d2θ

dt2
+B

dθ

dt
+ Cθ +Hz = M(t) (2.3.3)

where the first term is the moment due to the mass moment of inertia of
the ship (Iy) and the hydrodynamic added mass effects (A). The second term,
(B dθ

dt
) is the moment due to the hydrodynamic damping effects. The third

term (Cθ) is the hydrostatic restoring moment in pitch. The last term Hz is
the hydrostatic heave cross-coupling moment due to the difference between the
longitudinal centre of flotation and the longitudinal centre of buoyancy of the
vessel. The pitching moment equation is then used to obtain the ice impact
force based on

Fl(t) =
M(t)

R
(2.3.4)

where Fl(t) is the ice impact force at specified location along the hull,M(t)
is the pitching moment and R is the external ice impact force radius.

Johnston et al. (2008) furthered this idea by including the effects of sway,
roll and yaw in MOTAN7A. Six linear coupled differential equations were
solved to calculate three global excitation forces and three global excitation
moments. Additionally, two methods were used to calculate the global forces.
The centre of gravity (COG) approach determined the resultant global impact
force at the ship’s COG, and therefore did not require information about the
location of the ice impact. The second approach called the point of impact
(POI) approach assumed that the force acted at a single known point.

Johnston et al. (2008) then conducted full scale measurements on the CCGS
Terry Fox. The CCGS Terry Fox was also instrumented with an optical im-
pact panel and an array of strain gages to compare direct and indirect ice
force estimates. More than 150 controlled collisions with glacial ice at speeds
up to 12.8 knots were performed. The motions were filtered using a low-
pass filter with cut off frequency of 5 Hz in order to remove elastic dynamics.
The translational velocities and displacements were calculated using numeri-
cal integration from accelerometer signals, while the angular accelerations and
displacements were calculated using numerical differentiation and integration
respectively. Resultant global forces for 51 bergy bit impacts ranged from
0.5 MN to 6.7 MN for the POI approach and 0.9 MN to 10.6 MN for the
COG approach. These results did not compare well with the measured strain
gage ice loads with the POI approach varying between 17 % lower and 33 %
higher, while the COG approach forces were up to 120 % different from those
measured by the strain gages.

While direct force estimates were again limited by the variability of the
location of the ice impact, indirect force estimates faced their own unique lim-
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itation of static system coefficients. The vessel properties represented by the
generalized mass matrixM , added mass A, damping coefficients B and restor-
ing force coefficients C were developed from analytical methods for vessels in
open water and were static. The effect of ice impacts on changing the vessel
mass, damping and stiffness were found to be significant by Matusiak (1982).
Neglecting these effects will therefore result in inaccurate ice load predictions.

Broman and Nordqvist (2013) developed a similar system using a Motion
Reference Unit (MRU) on the KV Svalbard. Their rigid body model was
limited to perpendicular ice impacts from open water. This was due to previous
impacts resulting in a superposition of motions which would be difficult to
separate. This limited the usefulness of the method as a tool in real navigation.
Broman and Nordqvist (2013) noted that the rigid body assumption was a
limitation as it neglected the energy dissipated through elastic body response
and therefore underestimated the true force. Broman and Nordqvist (2013)
made an improvement to Johnston et al. (2008) work by including the use of
a Kalman filter to remove noise on the measurements. Broman and Nordqvist
(2013) also investigated the effects of the low pass filter cut off frequency. It was
found that if the cut off frequency was chosen too high, that contributions of the
elastic dynamics would propagate through the rigid body model equation, and
if chosen too low would reduce the amplitude of the rigid body response. This
would result in over or underestimates of the ice forces. It was suggested that
this filter would need to be designed individually for different vessels and would
need to update in different conditions or vessel configurations. Nyseth et al.
(2013) further discussed the strengths and limitations of using ship motion
to calculate global ice impacts with specific reference to the MRU system
on the KV Svalbard. An improvement is made in their model whereby they
account for the added mass, damping and restoring forces by determining
the hydrodynamic coefficients using the hydrodynamic software WASIM. The
software was further modified to account for the presence of ice. Matching
software predictions to actual operating conditions requires further research
and limits the ability to provide semi real time information for vessel navigation
and decision making.

The use of indirect ice load estimation has shown much potential. Further-
more motion units are already available on most vessels (Heyn and Skjetne,
2015). The key challenges facing the current state of the art techniques are (1)
static or non real time system parameters (mass, damping and stiffness) (2)
inability to provide reliable estimates in a broken ice field with multiple input
forces.

2.4 System Identification on Ship Structures
Rosenow et al. (2007) conducted the first Operational Modal Analysis (OMA)
on ships during full scale sea trials. The aim of this work was the extraction of
modal parameters in the presence of stochastic and harmonic excitation. Har-
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monic excitation results from imbalances in rotating machinery which occur
in the propulsion system of ships (main engine and propeller) as well as aux-
iliary machines on board. Harmonics provide a challenge to OMA since they
violate the assumption of Gaussian white noise excitation and can therefore
be identified as physical poles and can also bias closely spaced poles.

System identification was performed on measurements from a container
vessel and a Roll-on/Roll-off (RoRo) vessel. The Enhanced Frequency Domain
Decomposition (EFDD) and Stochastic Subspace Identification (SSI) methods
were used. It was found that harmonics could be detected from sharp peaks in
the Singular Value Decomposition (SVD) and could be removed using linear
interpolation in the frequency domain. If the harmonic was very close or
exactly coincident with the physical pole, a bias in the estimates was found to
occur. SSI was found to be more robust to the presence of harmonics however
biased estimates especially in damping were still observed. The first six global
modes of the RoRo vessel are presented in Figure 2.4. Rosenow et al. (2007)
observed that the dynamic properties depended on operational and boundary
conditions. Notable changes in the natural frequencies of the first and second
bending modes were observed as a result of increased propulsion power.

Figure 2.4: Mode shapes of a RoRo vessel. (Rosenow, 2007).
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Rocca et al. (2009) conducted full scale measurements on the Japanese
research vessel the BOSEI MARU. OMA was performed using the frequency
domain technique Operational PolyMAX. Modes were identified during engine
run up and run down tests, as well as during a wave induced vibration and
anchor drop test. Due to short impact durations during the wave induced
vibration and anchor drop test, the natural frequencies were only identified
using peak picking, as it was found that the PolyMAX technique was not
suited to the analysis of time histories with short durations. A pre-analysis of
the data was also performed to identify the engine and propeller harmonics.
Five modes were identified across the three cases and the modal parameters
were found to be dependent on the excitation.

Orlowitz and Brandt (2014) conducted full scale vibration measurements
on a Roll-on Lift-off (Ro-Lo) vessel to investigate the effects of different op-
erational conditions on the modal parameters using OMA. Three operating
conditions were defined consisting of cruising in calm open water at 10 knots
and 18 knots as well as an anchor condition in deep water. The Multiple-
reference Ibrahim Time Domain (MITD) method was used to estimate the
modal parameters. Five stable modes were identified and included vertical
bending, horizontal bending and torsional modes. A key finding was that
natural frequencies decreased with increasing cruising speed, while damping
ratios increased with increasing cruising speed. This was in agreement with
results from Rosenow (2007), however model scale results by Coppotelli et al.
(2008) found that both natural frequencies and damping ratios increased (non-
linearly) with increasing speed. A significant variation in modal damping was
found with approximately 400 %, 200 % and 400 % differences in the first three
global vertical bending modes respectively.

Soal et al. (2015) conducted full scale vibration measurements on the SA
Agulhas II while anchored in Cape Town harbour. The PolyMAX frequency
domain and SSI time domain techniques were used to estimate the modal
parameters. Both techniques identified three stable vertical bending modes,
and a comparison of the frequencies between the two methods agreed to within
1.2 %. The damping estimates however showed less agreement especially for
mode 3 which differed by 59 %. The results of OMA were also compared to
those of the Finite Element (FE) model developed by STX Finland, shown in
Figure 2.5. Soal et al. (2015) found that OMA frequencies were lower than FE
frequencies. The FE calculations were based on a vessel draught of 7.7 m which
was deeper than the 6.8 m draught during OMA testing. It was hypothesized
that based on the equation relating natural frequency to stiffness and mass that
increasing the draft would further lower the operational natural frequencies.
Resulting in a larger discrepancy between the model used to design the vessel
and the actual vessel behaviour.
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(a) f = 1,94 Hz, 2-node vertical bending. (b) f = 2,60 Hz, 2-node vertical bending.

(c) f = 3,37 Hz, 3-node vertical bending (d) f = 4,28 Hz, 3-node vertical bending

(e) f = 4,72 Hz, 4-node vertical bending (f) f = 5,63 Hz, 4-node vertical bending

Figure 2.5: OMA modes (left) and FE modes (right) of the SA Agulhas II.
(Soal, 2014)

2.5 System Identification Principles from other
Structures

Although only four full scale open water OMA studies on ships have been re-
ported in literature, several principles investigated on other structures provide
insight into future possibilities for output only system identification.

Since ship structures are inherently subject to harmonic forces, methods to
deal with these should be investigated. There are currently two classes of meth-
ods available for dealing with harmonics in system identification: Method (1)
includes the harmonics in the system identification and subsequently removes
them in post processing using pre-knowledge of rotational speeds, or unrealisti-
cally low damping estimates. Techniques aiming to detect and avoid harmonics
have been proposed by Brincker et al. (2000); Jacobsen et al. (2007); Peeters
et al. (2007). Investigations have also been conducted to include harmonic fre-
quencies as a priori in the identification by Mohanty and Rixen (2004) as well as
to make system identification robust in the presence of harmonics by Goursat
et al. (2010). The drawbacks of these methods are that the harmonics may bias
the modal parameter estimates of physical modes in a way which cannot be re-
versed in post processing. Method (2) removes the harmonic from the raw time
or frequency data before performing the system identification. These methods
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address the problem at the root and have been found capable of removing bias
when harmonics are close to physical poles. The current state of the art tech-
niques include the Gauss-Newton parametric time domain technique (Bienert
et al., 2015), the Periodogram smoothing non-parametric frequency domain
technique (Brandt and Linderholt, 2012), the Vold-Kalman filter (Vold et al.,
2017) and the Resampling semi-non-parametric method (Brandt, 2015). The
Gauss-Newton and Periodogram smoothing techniques require pre-knowledge
of the harmonics while the Vold-Kalman and Resampling techniques require a
measured tachometer channel to track harmonics. The Polarstern vessel op-
erates with constant engine rpm and propeller rotational speed. The effects
of stationary harmonics on modal estimates will therefore need to be weighed
against improvements and computational costs to determine the necessity for
harmonic removal in the current research focus.

Since the dynamic parameters of a structure are directly related to the
boundary and loading conditions, accurate modal models need to be sensi-
tive to these parametric changes. Peeters et al. (2005) conducted OMA on a
stadium during a football game, where the modal parameters where observed
to shift while the stadium was filling up, emptying as well as between when
people were sitting or standing to cheer for a goal. The natural frequencies
were reported to decrease when the stadium was filling up due to the added
mass while the damping ratios increased. The durations over which modal pa-
rameters were estimated was crucial, and due to slow changes in the stadium
structure, the PolyMAX technique was able to estimate and track the param-
eters. Goursat et al. (2010) conducted measurements on the space launcher
Ariane 5, which is an example of a complex structure with rapidly changing
system parameters. SSI was used with a sliding window to follow the time
evolution of specific natural frequencies based on eigenvector tracking. The
choice of sensor location was found to be critical for mode tracking and SSI
was in general able to provide reliable estimates despite highly non-stationary
data.

2.6 Conclusion
Direct ice force estimation provided valuable insight into the complex nature
of ship ice interaction. The major limitation was the effect of variability of
the impact location on the measured force. Indirect methods were proposed
as a possible solution, allowing force estimates from global ship motions rather
than local impact measurements. Indirect methods showed promising results
and were expanded to include all six rigid body motions to estimate resul-
tant forces. Current methods are limited by static system parameters mass
M, damping D and stiffness K. The current research proposes a novel addi-
tion through the use of system identification to provide semi-real time system
parameters. The concept is illustrated in Figure 2.6. Since OMA results in
unscaled eigenvectors investigations into sensitivity based scaling methods will
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also need to be performed. Techniques such as Parloo et al. (2002), Brincker
and Andersen (2003) and Foltête (2008) can be used as sensitivity based scaling
methods but are outside the scope of this thesis.

System identification also has the potential to monitor the health of a
ship structure. This is done by building a model of the operational profile
of a vessel in normal operation. Discrepancies in the measured behaviour
and the predictive models can provide an indication of structural damage.
This methodology could provide useful information in a broken ice field where
current ice force estimation methods are limited by complex superposition of
vessel motion.

Examples of system identification on ship structures provide a basis for
the current idea development and insights into associated challenges. This
was followed by insights regarding harmonics and modal tracking. In order
to achieve inverse force estimation and structural health monitoring, system
identification and modal tracking results need to be thoroughly investigated.

Figure 2.6: Simplified illustration of indirect force estimation method.
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Chapter 3

openSID Open Source Stochastic
Subspace Identification Toolbox

3.1 Introduction
System identification is a powerful tool for building mathematical models of
dynamic systems based on observed data. In mechanical and civil engineering
system identification is used to model the dynamic response of structures such
as aircraft, ships or bridges in order to optimize their design, estimate input
forces or perform structural health monitoring. Output only system identifica-
tion, also known as Operational Modal Analysis (OMA) deals with identifying
a mathematical model of a system without measured inputs. This is achieved
by making assumptions about the unmeasured forces which are modelled as
stochastic white noise quantities. This is particularly suited to large structures
which cannot be tested in a laboratory, or excited sufficiently with shakers or
modal hammers. It is also suited to structures where complex excitation forces
and boundary conditions affect the system properties.

Advances in technology have reduced the cost of measurement sensors,
data acquisition systems and computer hardware and software as well as im-
proved measurement quality. The result is that system identification is finding
new applications in various fields. It is therefore important that students
and researchers are equipped with an understanding of the theoretical and
experimental aspects of system identification in order to apply and innovate
in different fields. Lennart Ljung (1987) the author of ‘System Identification:
Theory for the User’ as well as the Mathworks System Identification toolbox
advocates that the best way to master system identification is to combine the-
oretical knowledge with hands on data processing. At present the Mathworks
System Identification toolbox remains proprietary over and above the standard
Mathworks license, limiting it’s usefulness as a learning and development tool.

A number of modal analysis software packages currently exist. Most deal
with the identification of systems from input/output data based on Frequency
Response Functions (FRFs) or Impulse Response Function (IRFs). Output
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only modal analysis software is also available, most notably from Siemens LMS
and ARTeMIS which are commercial closed software. This has the drawback
that it is impossible to access the implementation of the algorithm, and there-
fore not possible to add further developments, resolve bugs or innovate in ways
not envisioned by the developers. Other options such as Modal Analysis on
Civil Engineering Constructions (MACEC) from KU Leuven are Matlab based
but require annual renewal of a license which limits its ability as a learning
tool and innovative platform. Open source free toolboxes for signal processing
and experimental modal analysis such as Abravibe by Brandt (2013) and the
control engineering Subspace Identification for Linear Systems by van Over-
schee (2002) are examples of innovative learning and research platforms and
inspired the development of the openSID toolbox presented in this work.

openSID is an open source system identification toolbox for structural dy-
namics, developed in the open on github. Open source software and develop-
ment has proven to (1) drive innovation - by reducing developers time spent
re-inventing advanced wheels and rather focusing on novel and unresolved chal-
lenges. (2) increasing security and reducing bugs - due to more eyes reading
source code, as well as testing, applying and extending existing software. Since
software written by humans will always contain bugs open source allows users
to trouble shoot and implement bug fixes immediately rather than waiting
for future software releases. (3) open source software is a force multiplier -
Balter (2015) explains how this happens in three ways: firstly communities
form around shared challenges (as opposed to individuals in one organisation)
resulting in a diversity of ideas and optimal solutions. Secondly opening the
problem to other interested developers provides additional human capital to
solve the challenge. Thirdly more users mean more cases are explored result-
ing in more robust code. With software giants such as Microsoft, Apple and
IBM increasing their active participation in open source community, the cur-
rent software landscape is undergoing transformation, and open source is the
innovative way of the future.

For these reasons the need for an open source toolbox which can be used
both as a learning and research tool in output only system identification was
identified. The current chapter presents the theory behind a powerful tech-
nique called Stochastic Subspace Identification (SSI). The theory is presented
together with the relevant code as implemented in Matlab. Users can download
the toolbox from https://github.com/keithsoal/openSID. In the following
section the data driven and covariance driven SSI algorithms are presented,
compared and extended to modal analysis. The openSID toolbox and GUI are
then presented and discussed.
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3.2 Theory of Output Only System
Identification

The objective of system identification is to “identify” the unknowns in a math-
ematical model of a “system”. The concept of a system is illustrated in Figure
3.1 where u is the input, y is the output, w is the process noise and v is the mea-
surement noise. Output only system identification, also known as Operational
Modal Analysis (OMA) deals with identification of the system parameters from
the system outputs y in the absence of measured system inputs u,w or v.

Figure 3.1: A system with interacting input variables u, observable output
signals y, process noise w, and measurement noise v. (Adapted from Pintelon
and Schoukens (2001))

In structural dynamics the “system” represents the physical structure. In
this thesis this is the polar research vessel Polarstern. The input u are forces
from waves, ice, engines and propellers. The output y is the structural re-
sponse, which in this case is acceleration. The process noise w accounts for
disturbances and modelling noise, and the measurement noise v accounts for
noise from sensors and cables. The mathematical model of the system is de-
scribed by Newton’s equation of motion

Mz̈(t) +Dż(t) +Kz(t) = F (t) = bu(t) (3.2.1)

where M,D,K ∈ Rn×n are the mass, damping and stiffness matrices of
the n Degree Of Freedom (DOF) system. F (t) ∈ Rn×1 is the input force and
z(t) ∈ Rn×1 is the displacement vector at time t. The input force is factorised
into a matrix b ∈ Rn×m describing the spacial distribution of the inputs and a
vector u(t) ∈ Rm×1 describing the m inputs in time.

3.3 State Space Model
The SSI algorithm is used to identify the system parameters by writing equa-
tion 3.2.1 in state space. State space is an expanded space guaranteed to
contain the state description (Franklin et al., 1990). Equation 3.2.1 is trans-
formed into state space, through the introduction of a state vector x(t) ∈ RN×1

(N = 2n)
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x(t) =

(
z(t)
ż(t)

)
. (3.3.1)

The second order differential equation can then be written as a first order
state equation

ẋ(t) = Acx(t) +Bcu(t) (3.3.2)
with

Ac =

(
0 In

−M−1K −M−1D

)
, Bc =

(
0

M−1b

)
(3.3.3)

where Ac ∈ RN×N is the state matrix, and Bc ∈ RN×1 is the input matrix.
An observation equation is then defined, relating the l measured outputs y(t) ∈
Rl×1 to the state vector x(t)

y(t) = Cx(t) + Eu(t) (3.3.4)
through C ∈ Rl×N the output matrix and E ∈ Rl×m the direct transmission

matrix. Equations 3.3.2 and 3.3.4 represent a continuous time deterministic
state-space model. Since data is measured discretely (∆t), the input-output
data cannot be measured exactly (deterministically), and the input forces are
unknown (assumed to be Gaussian white noise) the model is modified to a
discrete-time deterministic-stochastic state-space model:

xk+1 = Axk + wk

yk = Cxk + vk
(3.3.5)

with discrete time k∆t, k ∈ N, where xk = x(k∆t) is the discrete time state
vector, A = e(Ac∆t) is the discrete state matrix. Stochastic noise components
are included as wk ∈ RN×1 process noise due to disturbances and modelling
inaccuracies and vk ∈ Rl×l measurement noise from the sensors, cables and
data acquisition system. The reference based data driven SSI algorithm is a
powerful time domain system identification technique, and will be explained
in the following section. The interested reader is refered to Peeters and De
Roeck (1999) and Van Overschee and De Moor (1996) for further details. The
aim is to now identify the above parameters based on measured data. The
main work flow of the SSI-Data method is illustrated in Figure 3.2 providing
contextualisation of the sections which follow.

3.4 Data Driven Stochastic Subspace
Identification (SSI)

The Stochastic Subspace Identification (SSI) algorithm is used to identify the
state matrix A in the mathematical model of the system. The output mea-
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Figure 3.2: Work flow for SSI-Data.

surements are built into a block Hankel matrix H, which is a square matrix
with constant skew diagonals. The Hankel matrix has 2 ∗ i block rows and
j = ny − 2 ∗ i + 1 columns, where ny is the number of samples. The first i
blocks are known as the past reference Y ref

p and have r rows. The last i blocks
are known as the future output Yf and have l rows.

H =
1√
j



yref0 yref1 · · · yrefj−1

yref1 yref2 · · · yrefj

· · · · · · · · · · · ·
yrefi−1 yrefi · · · yrefi+j−2

yi yi+1 · · · yi+j−1

yi+1 yi+2 · · · yi+j
· · · · · · · · · · · ·
y2i−1 y2i · · · y2i+j−2


=

(
Y ref

0|i−1

Yi|2i−1

)
=

(
Y ref
p

Yf

)
l r ∗ i
l l ∗ i ∈ R(r+l)i×j

(3.4.1)
Listing 3.1 shows the Matlab implementation of the Hankel matrix with no

reference channels. It can be seen that the size of the matrix is 2 ∗ i ∗ l x j,
is related to the maximum possible model order by maxorder = i/2 since the
poles occur in complex conjugate pairs. The structure of the Hankel matrix
reveals that the time data is shifted by k = 2i consecutive columns in total.
The Hankel matrix can therefore be thought of as a ‘data covariance’ matrix,
functioning in a similar way to the convolution of the impulse response and
shifted input vector resulting in the system response, which forms the basis of
system modelling.

Listing 3.1: Hankel matrix - no reference channels (r = l).
1 ih = 2*i;
2 H = zeros(l*ih,j);
3 for k = 1:ih
4 H((k−1)*l+1:k*l,:) = y(:,k:k+j−1);
5 end

Listing 3.2 shows the reference based implementation. Here the Hankel
matrix is built in two parts: Hp contains the first or ‘past’ measurements from
time index k = 1 : i of the selected reference channels Ir only. While Hf
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contains the ‘future’ part of the measurements from time shift k = i + 1 : 2i
for all the measurement channels.

Listing 3.2: Hankel matrix - reference channels (r < l).
1 Hp = zeros(r*i,j); % past part
2 for k = 1:i
3 Hp((k−1)*r+1:k*r,:) = y(Ir,k:k+j−1);
4 end
5 Hf = zeros(l*i,j); % future part
6 for k = 1:i
7 Hf((k−1)*l+1:k*l,:) = y(:,k+i:k+i+j−1);
8 end
9 H = [Hp;Hf];

The number of block rows i is an important user defined parameter. Van
Overschee and De Moor (1996) provide a suggestion where i = 2(max order)/
(no. outputs). Where the maximum order is the maximum number of modes
expected to occur in the relevant bandwidth. Since the exact number of modes
in a particular bandwidth is usually unknown, the maximum order is usually
over specified. Also due to noise the maximum order should be chosen higher
than the expected number of physical modes to account for the modelling of
noise modes.

3.4.1 Projection

A key step of the SSI algorithm is the projection of the row space of the future
outputs Yf onto the row space of the past outputs Y ref

p as shown in Figure 3.3.
In the projection step the algorithm finds the orthogonal component of the
future outputs in the direction of the past outputs. The idea of this projection
is to retain the information in the past that is useful to predict the future.

𝑌𝑌𝑓𝑓

𝑌𝑌𝑝𝑝
𝑟𝑟𝑟𝑟𝑓𝑓

𝑌𝑌𝑓𝑓(𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

Figure 3.3: Future output Yf projection onto past output Y ref
p .

The projection is achieved by performing a QR-factorisation of the block
Hankel matrix

H =

(
Y ref
p

Yf

)
= RQT (3.4.2)

where Q ∈ Rj×j is an orthonormal matrix QTQ = QQT = Ij and R ∈
R(r+l)i×j is a lower triangular matrix. Since (r + l)i < j we can omit the
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zeros in R and the corresponding zeros of Q. Due to their orthonormality
the Q factors cancel out, resulting in an important data reduction. The QR-
factorisation of the Hankel matrix is then written in the following form

H =
ri
r

l − r
l(i− 1)

l
l
l
l

ri
↔

r
↔

(l − r)
↔

l(i− 1)
↔

R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44


j →∞
↔
QT

1

QT
2

QT
3

QT
4

 (3.4.3)

Listing 3.3 presents the QR factorisation as well as the extraction of the R
spaces, see Peeters and De Roeck (1999), for both the reference channel, and
non-reference channel cases.

Listing 3.3: QR factorisation.
1 % QR Factorisation
2 R = triu(qr(H'))';
3 % {No reference channels}
4 Rf = R(l*i+1:2*l*i,:); % Future outputs
5 Rp = R(1:l*i,:); % Past outputs
6 % {Reference channels}
7 % Extract R spaces
8 R21 = R(r*i+1:r*i+r,1:r*i);
9 R31 = R(r*i+r+1:r*i+r+(l−r),1:r*i);

10 R41 = R(r*i+r+1+(l−r):r*i+r+(l−r)+l*(i−1),1:r*i);

In theory the projection Pref
i of the row space of the future outputs onto

the row space of the past reference outputs is defined as

Pref
i = Yf/Y

ref
p = YfY

refT
p (Y ref

p Y refT
p )†Y ref

p (3.4.4)

In practice this is achieved by substituting Equation 3.4.3 into 3.4.4. Re-
sulting in the following simple expression for the projection based on the struc-
ture identified in Equation 3.4.3

Pref
i =

R21

R31

R41

QT
1 ∈ Rli×j (3.4.5)

Listing 3.4 presents the projection matrices P for the non-reference r == l
and reference channel r < l cases. The variable AUXin is an auxiliary variable
to increase the speed of the algorithm.

Listing 3.4: Oblique Projection.
1 if (isempty(AUXin)) && r == l
2 % no reference channels
3 P = [Rf(:,1:l*i),zeros(l*i,l*i)];
4 elseif (isempty(AUXin)) && r < l
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5 % reference channels
6 P = [R21;R31;R41];
7 else
8 P = AUXin(bb+1:bb+l*i,1:2*(l)*i);
9 bb = bb+l*i;

10 end

3.4.2 Main Theorem

The main theorem of SSI (Van Overschee and De Moor, 1996) states that the
projection Pref

i can be factorised as the product of the observability matrix
Oi and the Kalman filter state sequence X̂i

Pref
i = OiX̂i (3.4.6)

where the observability matrix is defined as

Oi =


C
CA
CA2

· · ·
CAi−1

 ∈ Rli×n (3.4.7)

The Kalman filter state estimates form the Kalman filter state sequence X̂i

X̂i = (x̂ix̂i+1...x̂i+j−1) ∈ Rn×j (3.4.8)

from the iterative predictor-corrector Kalman filter (Kalman, 1960)

x̂k+1 = Ax̂k +Kk(yk − Cx̂k)
Kk = (G− APkCT )(Λ0 − CPkCT )−1

Pk+1 = APkA
T + (G− APkCT )(Λ0 − CPkCT )−1(G− APkCT )T

(3.4.9)

where x̂k+1 is the optimal prediction for the future state, x̂k is the current
state prediction, Kk is the Kalman filter gain, yk is the output measurement,
Pk+1 is the state covariance matrix, G is the state output covariance matrix
and Λ0 is the output covariance matrix.

The observability matrix Oi and the state sequence X̂i are obtained through
a Singular Value Decomposition (SVD) of the projection matrix as follows

Pref
i = U1S1V

T
1 (3.4.10)

Oi = U1S
1
2
1 , X̂i = O†iP

ref
i (3.4.11)

Before showing the implementation, a weighting technique is first intro-
duced.
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3.4.3 Weightings

There are three weighting methods for the projection matrix, the Principal
Component (PC), Unweighted Principal Component (UPC) and the Canonical
Variate Analysis (CVA). To the best of the authors knowledge there exists no
conclusive study on real data regarding when the different techniques work
best and why. The theory of the weighting methods can be found in Van
Overschee and De Moor (1996). The implementation, which has been adapted
by the current author to the reference based method, is presented in Listing
3.5.

Listing 3.5: Weighting methods (PC, UPC and CVA).
1 if W == 1 % PC algorithm
2 R11 = R(1:r*i,1:r*i);
3 Pw = P*R11';
4 elseif W == 2 % UPC algorithm
5 Pw = P;
6 else % CVA algorithm
7 R21 = R(r*i+1:2*i*r,1:r*i);
8 R22 = R(r*i+1:2*i*r,r*i+1:2*i*r);
9 wc = sqrtm(R21*R21'+R22*R22');

10 Pw = wc\P;
11 end

The weighted projection matrix Pw can then be decomposed using the SVD
as shown in Listing 3.6

Listing 3.6: Singular Value Decomposition (SVD).
1 [U,S,V] = svd(Pw);

3.4.4 Subspace Selection

An important step in the determination of the system parameters is the selec-
tion of a subspace n. The size of the subspace determines the size of the state
matrix A and therefore the number of modes contained in the model. The sub-
space must be chosen to include twice as many modes as occur in the analysis
bandwidth since the eigenvalues occur in complex conjugate pairs. Since the
number of modes occurring within a selected bandwidth is usually unknown at
this point, the significant singular values S1 can be used as an indicator of the
subspace dimension. Choosing the subspace dimension based on the signifi-
cant singular values works well when the physical modes are well excited and
when system, measurement and algorithm noise are negligible. This is usually
not the case for real data. In this case a stabilization diagram should be used
together with the singular values to determine the optimal subspace selection.
This will be shown in the section which demonstrates the openSID toolbox.
The subspace selection of the singular values S and vectors U is shown in
Listing 3.7, which can be performed interactively in openSID toolbox. The
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calculation of the observability matrix Oi and the state sequence Xh are also
presented in Listing 3.7.

Listing 3.7: Subspace selection.
1 S1 = S(1:n);
2 U1 = U(:,1:n);
3 % observability matrix
4 Oi = U1*diag(sqrt(S1));
5 % state sequence
6 Xh = pinv(Oi)*P;

3.4.5 Determining the System Matrices

The aim is to now recover the desired system matrices A and C and covariances
Q,R and S, from the observability matrix Oi and the state sequence X̂i. This
is achieved by introducing a shifted projection Pref

i−1

Pref
i−1 = Y −f /Y

ref+
p =

(
R41 R42

)(QT
1

QT
2

)
∈ Rl(i−1)×j (3.4.12)

It should be noted that in order to implement equation 3.4.12, it must be
zero padded to enable concatenation as shown in Listing 3.8.

Listing 3.8: Shifted projection matrix.
1 Ps = [R41,R42,zeros(size(R41,1),size(R33,2))];

The main theorem in equation 3.4.6 can be re-written in terms of the shifted
parameters as follows

Pref
i−1 = Oi−1X̂i+1 (3.4.13)

where Oi−1 is built by deleting the last l rows of Oi computed in Equation
3.4.11. The shifted state sequence is then obtained as

X̂i+1 = O†i−1P
ref
i−1 (3.4.14)

The Kalman state sequences X̂i and X̂i+1 are now calculated using only the
output data in Equations 3.4.11 and 3.4.14. The system matrices can then be
recovered using the original and shifted Kalman state sequences and one block
row of the Hankel matrix in the fundamental stochastic state space equation
defined in Equation 3.3.5:(

X̂i+1

Yi|i

)
=

(
A
C

)
(X̂i) +

(
ρw
ρv

)
(3.4.15)

where Yi|i is a Hankel matrix with only one block row. Yi|i is extracted
using the structure identified in the QR-factorization
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Yi|i =

(
R21 R22 0
R31 R32 R33

)QT
1

QT
2

QT
3

 ∈ Rl×j (3.4.16)

since the residuals (ρTwρ
T
v )T are uncorrelated with X̂i, the set of equations

can be solved for the system matrices A and C in a least-squares sense(
A
C

)
=

(
X̂i+1

Yi|i

)
(X̂†i ) (3.4.17)

Listing 3.9 shows the implementation of the above theory in order to de-
termine A and C.

Listing 3.9: Determination of A and C.
1 Ois = Oi(1:l*(i−1),:); % shifted observability matrix
2 Xhs = pinv(Ois)*Ps; % shifted state sequence
3 Yii = [R21 R22 zeros(size(R22,1),size(R33,2));R31 R32 R33];
4 Rhs = [Xh,zeros(n,l)];
5 Lhs = [Xhs;Yii];
6 sol = Lhs/Rhs; % Solve least squares
7 % Extract the system matrices A and C
8 A = sol(1:n,1:n); % state matrix
9 C = sol(n+1:n+l,1:n); % output matrix

The noise covariances Q,R and S, are recovered as the covariances of the
residuals in Equation 3.4.15, as implemented in Listing 3.10. This guaran-
tees the positive realness of the identified covariance sequence. A,C,Q,R and
S can be transformed into A,G,C,Λ0 by solving the Lyapunov equations.
This is shown in Listing 3.10 which uses the Matlab control toolbox function
dlyap.m which solve discrete Lyapunov equations to determine G and L0 and
the gl2kr.m function which solves for the Kalman gain K and the innova-
tion covariance Ro using A,G,C and L0 in the Riccati solution. Interested
readers are referred to Penzl (1998) regarding the details of dlyap.m, and Van
Overschee and De Moor (1996) for details of gl2kr.m.

Listing 3.10: Determination of Q, S, R, G, L0, K and Ro.
1 % Determine the residuals
2 res = Lhs − sol*Rhs;
3 % Determine QSR from the residuals
4 cov = res*res'; % Covariance
5 Qs = cov(1:n,1:n);
6 Ss = cov(1:n,n+1:n+l);
7 Rs = cov(n+1:n+l,n+1:n+l);
8 % Determine system matrices G,L0
9 sig = dlyap(A,Qs);

10 G = A*sig*C' + Ss;
11 L0 = C*sig*C' + Rs;
12 % Determine Kalman gain K and system noise covariance Ro
13 % Riccati solution
14 [K,Ro] = gl2kr(A,G,C,L0);
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While the parameters Q,S,R,G, L0, K and Ro are not required to deter-
mine the eigenvalues and eigenvectors of the system, they can be useful when
the intention of modelling the system is to perform inverse force estimation or
damage detection in state space. For this reason future versions of openSID
will also include Lyapunov and Riccati solution functions which do not rely on
the Matlab control toolbox.

3.5 Covariance Driven SSI
The covariance-driven algorithm is based on the covariance matrices between
all the outputs and a set of reference outputs. The covariance matrices are
defined as Λref

i = E[yk+i y
refT
k ]. The covariances are built in a block Toeplitz

matrix, where each diagonal from left to right is constant

T ref1|i =


Λref
i Λref

i−1 · · · Λref
1

Λref
i+1 Λref

i · · · Λref
2

· · · · · · · · · · · ·
Λref

2i−1 Λref
2i−2 · · · Λref

i

 ∈ Rli×ri (3.5.1)

The correlation matrix R is built using the xcorr.m function in Matlab as
shown in Listing 3.11. The correlation function with time lags greater than
zero is then selected and an additional user defined time lead is defined due to
improved numerical results.

Listing 3.11: Correlation matrix.
1 % correlation matrix
2 for nn = 1:ir
3 for m = 1:l
4 [R(:,m,nn),t] = xcorr(y(:,m),Y(:,nn),'unbiased');
5 end
6 end
7 % correlation from 0 lag with time shift (lead)
8 [~,lag] = find(t==0);
9 for nn = 1:ir

10 for m = 1:l
11 Rs(:,m,nn) = R(lag+lead:end,m,nn);
12 end
13 end

The Toeplitz matrix is built from the correlation matrix R by first building
a Hankel matrix and then flipping it as shown in Listing 3.12.

Listing 3.12: Toeplitz matrix.
1 % Build block Hankel matrix
2 Hank=zeros(l*i,r*i);
3 for c = 1:i
4 for w = 1:i
5 Hank(1+(w−1)*l:w*l,1+(c−1)*r:c*r)=squeeze(R(w+c−1,:,:))';
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6 end
7 end
8 % Flip Hankel matrix to Toeplitz matrix
9 Toep = flip(Hank,2);

An important user defined parameter is the block size of the Toeplitz matrix
i. This determines the length of covariance function, or the amount by which
the two random variables are shifted relative to one another. Since covariances
at large time lags are expected to have weaker relationships, less information
is included in the Teoplitz matrix as i increases.

Assuming ergodicity, where the time average is the same as the system state
average, the block Toeplitz matrix can be decomposed into an observability
matrix Oi, see equation 3.4.7, and a reference-reversed controllability matrix
Cref
i

T ref1|i = OiC
ref
i (3.5.2)

where

Cref
i = (Ai−1Gref Ai−2Gref · · ·AGref Gref ) ∈ Rn×ri (3.5.3)

The observability matrix Oi and the reference-reversed controllability ma-
trix Cref

i can be determined by finding the SVD of the block Toeplitz matrix

T ref1|i = USV T = (U1U2)

(
S1 0
0 0

)(
V T

1

V T
2

)
= U1S1V

T
1 (3.5.4)

Where U ∈ Rli×li and V ∈ Rri×ri are orthonormal matrices UTU = UUT =
Ili and V TV = V V T = Iri and S ∈ Rli×ri is a diagonal matrix containing
the singular values. The rank of the matrix product OiC

ref
i is found as the

number of non-zero singular values in S. Using equation 3.5.2 and 3.5.4 the
observability matrix Oi and controllability matrix Cref

i can be written as

Oi = U1S
1/2
1

Cref
i = S

1/2
1 V T

1

(3.5.5)

From equations 3.4.7 and 3.5.3, C can be seen to be the first l rows of Oi

and Gref the last r columns of Cref
i . The state matrix A can then be solved

by decomposing a shifted block Toeplitz matrix

T ref2|i+1 = OiAC
ref
i (3.5.6)

Which can be written in terms of A using equation 3.5.5

A = O†iT
ref
2|i+1C

ref†
i (3.5.7)

The main steps for determining the observability Oi and reference-reversed
controllability Ci matrices, the shifted Toeplitz matrix Toeps and the state
matrix A from the above theory are shown in Listing 3.13.
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Listing 3.13: The observability, controllability, shifted Toepltiz and state ma-
trices.

1 Oi = U1*diag(sqrt(ss(1:n))); % Observability
2 Ci = diag(sqrt(ss(1:n)))*transpose(V1); % Controllability
3 % Shifted Toeplitz
4 for c = 1:i
5 for w = 1:i
6 Hanks(1+(w−1)*l:w*l,1+(c−1)*r:c*r)=squeeze(R(w+c,:,:))';
7 end
8 end
9 Toeps = flip(Hanks,2);

10 A = pinv(Oi)*Toeps*pinv(Ci); % State matrix

3.6 Data vs. Covariance Driven SSI
The main similarities between SSI-Data and SSI-Covariance include a data re-
duction step: (SSI-Data) using QR factorisation and SVD and (SSI-Covariance)
a covariance estimation and SVD. Followed by a subspace selection in order
to determine the system matrices. The main differences include faster SSI-
Covariance computational times. This is due to the numerical implementation
of the covariance convolution performed by complex conjugate multiplication
in the frequency domain, outperforming the slower QR factorisation. The
drawback is that the covariance estimates may be less accurate due to leakage
as a result of the Fourier transform. Advantages of SSI-Data are that it is
a numerically robust square root algorithm unlike SSI-Covariance. SSI-Data
also has guaranteed positive realness which enables the determination of the
full G matrix which is necessary for the forward innovation form to estimate
the Kalman gain K, the system noise covariance Ro and the one step ahead
prediction x̂k.

3.7 Modal Analysis
The goal of modal analysis is to create a physically meaningful model which
describes the dynamic behaviour of the structure. This is achieved by describ-
ing a structure in terms of its modes of vibration which can be characterised
by a natural frequency, a damping ratio and a mode shape (eigenvalues and
eigenvectors). These modal parameters can be determined from an eigenvalue
decomposition of the state matrix (A)

A = ΨΛΨ−1 (3.7.1)

where Λ = diag(λq) ∈ Cn×n, q = 1, ..., n, is a diagonal matrix contain-
ing the discrete-time complex conjugate eigenvalues and Ψ ∈ Cn×n contains
the eigenvectors. Since the state matrix is discrete it must be related to the
continuous time equations in order to have physical meaning as follows
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A = e(Ac∆t) (3.7.2)

Ψc = Ψ, λcq =
ln(λq)

∆t
(3.7.3)

The eigenvalues occur in complex conjugate pairs and can be written as:

λcq, λ
∗
cq = −ζqωq ± jωq

√
1− ζ2

q (3.7.4)

where ωq is the natural frequency of mode q, and ζq is the damping ratio of
mode q. The estimated states of the system xk do not necessarily have a phys-
ical meaning, and the eigenvectors of the state matrix Ψc must be transformed
using the observation matrix C to obtain physical eigenvectors Φ

Φ = CΨc ∈ Cl×n (3.7.5)

This is achieved in Matlab as shown in Listing 3.14.

Listing 3.14: Modal analysis.
1 % eigenvalue problem
2 [Vs,Ds] = eig(A);
3 % Convert eigenvector to have physical meaning
4 Vs = C*Vs;
5 % extract modal parameters from state space identification
6 ws = abs(log(Ds)/(1/fs));
7 d = (−real(log(Ds)/(1/fs))./ws)*100;
8 fn = ws/(2*pi);

3.8 openSID Toolbox and GUI
This section describes the functionality of the openSID toolbox. openSID can
be downloaded for free at https://github.com/keithsoal/openSID , and added
to the Matlab path by running opensid.m. This provides access to the toolbox
without needing to navigate to the file locations. All openSID functions begin
with os_ standing for ‘open system’. openSID uses selected functions from
the Abravibe toolbox of Brandt (2011), and the system identification toolbox
by Van Overschee and De Moor (1996).

Since the aim of openSID is to provide a scripted toolbox for learning and
research purposes the functions and layout are kept flexible. A demonstration
is provided by opensid_demo.m, and displays the toolbox functionality as
follows: (1) a simulated data set is generated by os_generateData.m. (2) a
class is defined by ‘os_dataV isual.m’ which builds a GUI allowing the user to
view time data, see Figure 3.4, PSD’s see Figure 3.5 and statistical moments,
see Figure 3.6.

System identification can then be performed using SSI-Data os_ssid.m or
SSI-Covariance os_ssic.m algorithms. Both functions have the structure with
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Figure 3.4: Time data.

Figure 3.5: Power spectral density.

function inputs: y measured output data, i block size, fs sample frequency, Ir
reference channels, W weighting, n model order, AUXin auxilary variable to
increase computational speed and sil display variable. The function outputs
consist of sys = [A,C,K,Ro,AUX] and modal = [ss, EW, fn, d, EV ] where
A state matrix, C output matrix, K Kalman filter gain matrix, Ro system
error covariance, AUX optional auxilary variable to increase speed, ss sin-
gular values from the SVD of the projection matrix, EW complex conjugate
eigenvalues (Eigenvalue), fn eigenfrequency (Hz), d damping ratio (%) and
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Figure 3.6: Statistical moments.

EV mode shape (rotated but unscaled) (Eigenvector).
A stabilisation diagram is then built using os_stabilisation.m as shown

in Figure 3.7. A mode indicator function (MIF) is plotted in the background
together with the singular values from the SVD of the projection matrix. The
MIF is used as an indication of the agreement between the identified poles and
the frequency spectrum of the measured data, and the singular values provide
an indication of the number of physical poles and therefore the model order of
the system. The identified poles are then plotted at consecutive model orders
as ◦ representing poles stable in frequency within 0.1 % and damping within
5 %. Unstable poles are plotted as × . The user is then requested to select
physical poles by clicking close to the desired pole at the respective model
order.

The results of the system identification are then displayed in a plot of the
modal assurance criterion (MAC) Figure 3.8, the modal complexity Figure 3.9,
the mode shapes Figure 3.10 as a modal validation step.

3.9 Conclusion
In this chapter system identification was presented as a tool for building math-
ematical models of structural dynamic systems. The focus was to present
the theory together with the implemented code to provide insight and under-
standing for students and researchers interested in applying system identifi-
cation techniques. To this end SSI-Data and SSI-Covariance were described,
compared and extended to output only modal analysis. openSID was then
introduced as an open source toolbox for system identification in structural
dynamics, and an innovative platform for learning and research purposes.
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Figure 3.7: Stabilisation diagram.

Figure 3.8: MAC matrix.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. OPENSID OPEN SOURCE STOCHASTIC SUBSPACE
IDENTIFICATION TOOLBOX 38

Figure 3.9: Complexity plot.

Figure 3.10: Mode shapes.
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Chapter 4

Parametric Simulation Study

4.1 Introduction
In order to study the performance of SSI, a parametric study was conducted
using simulated data to investigate the following phenomena (1) model order,
(2) block size, (3) noise, (4) reference channels, (5) damping, (6) harmonics,
(7) linear time invariance and (8) total prediction error. These parameters are
investigated with regard to the following questions:

1. What is the relationship between block size i and model order n? How
should these parameters be chosen? And what is the effect of very large
block sizes and model orders i.e. over-specifying the model?

2. What provides more accurate estimates SSI-Data or SSI-Covariance?

3. What is the effect of noise, reference channels, damping, harmonics and
linear time invariance on the identification algorithms?

4. What is the relationship between the modal parameters, fn, ζ,Φ, and the
prediction error ε?

The simulated data for a 3 DOF system was generated in Matlab with
white noise excitation, sample frequency fs = 1000 Hz and data length of
480 000 samples.

4.2 Model Order
The model order n determines the size of the subspace used for the estimation
of the state matrix A. The size of the state matrix determines how many
complex conjugate eigenvalues can be estimated and therefore the number
of modes contained in the model. In practice n can be chosen by counting
the number of peaks in a frequency spectrum, or the number of significant
singular values. Practical experience with parametric models have shown that

39
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it is better to over specify the model order and eliminate spurious numerical
poles during post processing.

A popular approach for selecting the model order, see Ewins (2000) and
Maia et al. (1997), involves plotting the identification results at increasing
model orders in a stabilization diagram. By over specifying the model order
physical poles remain stable and can be separated from spurious poles which
are identified differently at different model orders. Stability limits are com-
monly set as ∆f < 1%, ∆ζ < 5% and ∆MAC < 2%. Using data from a 3
DOF simulated system excited with Gaussian white noise at all 3 DOFs results
in the stabilisation diagram shown in Figure 4.1. All three poles are identified
as stable from model order 8 to 30.

Figure 4.1: Stabilization diagram for SSI-Data with block size i = 30. • MIF,
+ Stable pole, × Unstable pole.

Figure 4.2 presents the percentage error compared to the analytical solution
of the frequency, damping and MAC for each mode using SSI-Data + and
SSI-Covariance ���. SSI-Covariance is seen to provide more accurate and stable
estimates of the frequency of mode 1 and 3. The system damping and mode
shapes are in general estimated more accurately by SSI-Data. Both methods
show the possibility of an estimation bias such as in the damping estimate for
mode 2. Furthermore SSI-Covariance shows a trend of underestimating the
mode shape. It is suggested in literature, (Ewins, 2000; Heylen et al., 1997;
Maia et al., 1997),that the model order be chosen at the lowest stable order,
as higher model orders result in over fitting which can distort the parameters
(especially the damping). In the current investigations the modal parameters
are however seen to remain stable even at high model orders. Finally, the three
DOF system is theoretically fully determined at a model order n = 6. The
best estimates are indicated in green, and are seen to occur at model orders
both higher and lower than 6, but never exactly at 6. There is also no clear
trend regarding either method as to how to choose the best model order.
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Figure 4.2: Frequency, damping and Modal Assurance Criterion (MAC) errors
for SSI-Data ’+’ and SSI-Covariance ’���’ with block size [i = 30]. Minimum
errors are indicated in green ’+, ���’
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4.3 Block Size
The block size i determines how much data is included in the Hankel matrix
[(r+l)i × j] in SSI-Data, and the length of the covariance sequences included in
the Toeplitz matrix [li × ri] in SSI-Covariance. In both cases r is the number of
reference sensors and l is the total number of sensors. The number of columns
of the Hankel matrix is j = ly−2i+1 where ly is the number of sample points
in each channel. Increasing the block size therefore has the effect of increasing
the row dimension by (r + l)i while decreasing the column dimension by 2i of
the Hankel matrix. The row size therefore increases faster than the column size
decreases. Together with the fact that Hcolumns >> Hrows this has the effect
that large block sizes result in very large Hankel matrices which become slow or
impossible (due to RAM availability) to solve. Increasing the block size of the
Toeplitz matrix has the effect of including longer covariance sequences known
as the tails of the covariance function which contain less information due to low
correlation at large time lags. The size of the Toeplitz matrix is significantly
smaller than the Hankel matrix due to the covariance data reduction step
which is also performed very efficiently in the frequency domain.

The mathematical relationship between the block size and model order is
that the maximum model order is determined by r × i where r is the number
of reference channels. Peeters (2000) states that the block size should be
chosen such that it is significantly larger than the desired model order i >> n.
Especially if the model is required to identify poles which are buried in noise.
The relationship between the block size, model order and identified parameters
has not been thoroughly investigated in literature. The use of large block
sizes has been recommended for future work by Zhang et al. (2015) due to
findings on full scale bridge measurements. The current authors have also
observed improved estimations using large block sizes on full scale ship data.
An important question is whether there may be divergence at large block sizes.

The results of the frequency, damping and MAC errors for increasing block
size i with model order n = 6 are presented in Figure 4.3. Both SSI-Data and
SSI-Covariance show convergence. SSI-Covariance shows improved frequency
estimates, while SSI-Data shows improved mode shape estimates. Damping is
equally well estimated by both methods. The result of increasing the maximum
block size to 300 is shown in Figure 4.4. Both SSI-Data and SSI-Covariance
remain stable and show convergence at high model orders. While the optimal
block size, indicated in green, is generally under 100, this could be different
when the estimations are performed on real data with higher modal densities
and more noise.

4.4 3D Visualisation
The relationship between block size i, model order n and % error for the
frequency estimates of SSI-Data are plotted in 3D in Figure 4.5. Large block
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Figure 4.3: Frequency, damping and MAC errors for SSI-Data + and SSI-
Covariance ��� for increasing block sizes to (i = 30) with a fixed model order
(n = 6).
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Figure 4.4: Frequency, damping and MAC errors for SSI-Data + and SSI-
Covariance ��� for increasing block sizes to (i = 300) with a fixed model order
(n = 6).

sizes often result in the identification of several closely spaced modes. When
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these estimates are close to a real pole it may be difficult to choose the best
solution. The three Figures in Figure 4.5 row (a) show the worst estimate
for the three modes respectively while row (b) shows the best estimate. It
is therefore an important task to determine the best identification parameter
from real data which does not have an analytical solution. It can be seen that
the % error is smallest in the region of high block size with low model order.

Figure 4.5: 3D plot or block size (i), model order (n) and % error in frequency.

4.5 Noise
Noise is a characteristic part of our physical universe. It is inherent in struc-
tural dynamic systems due to sensors, cables, modelling inaccuracies, finite
data length, finite precision numbers and signal pre and post processing tech-
niques. To investigate the effect of noise on the SSI algorithms, Gaussian white
noise was added to each channel with an RMS equal to x % of the RMS of the
respective channel. Figure 4.6 shows the result of (a) frequency, (b) damping
and (c) MAC errors as a result of 0 %, 10 %, 20 % and 50 % noise in a box
and whisker plot. Firstly it can be seen that for mode 1 frequency error and
mode 2-3 MAC error, adding noise to the signal has the effect of improving
the mean error. This should be kept in mind when adding noise to simulated
data in order to make it more realistic. It can also be seen that as the %
noise is increased the variance of the estimates increases. The variance in the
modal parameters is effected differently with frequency variance of ∼ 0.07 %,
damping variance ∼ 34 % and MAC variance ∼ 0.2 % at 20 % added noise.
The reason for this result is thought to be due to the basis assumption of SSI
which is that the system is excited by Gaussian white noise. Therefore as the
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input signal is made more white, the identification results improve, up to a
point where the signal is drowned out by the noise. Figure 4.6 (d) shows the
frequency spectra of a signal with (d1) 0 %, (d2) 10 % and (d3) 80 % noise.
Here it can be seen that the spectrum is more white at 10 % noise and that
the third peak disappears at 80 % noise.

Figure 4.6: (a-c) Box and whisker plots of errors as a result of different noise
levels. (d) FFT of signal with (d1) 0 % noise (d2) 10 % noise and (d3) 80
%noise

4.6 Reference Channels
Reference channels refer to a subset of channels (data subset) which can be
used to reduce the computational cost on large data sets, as well as to im-
prove estimates when certain sensors have lower S/N ratios or are measuring
predominantly local mode behaviour. The increased computational efficiency
when using a reference subset is clear and will not be investigated here - the
relationship between speed and accuracy is suggested for future work regarding
real time system implementation. The use of reference channels to improve the
identification when certain sensors contain more noise, or measure predomi-
nantly local modes has not been described in detail in literature and remains
an important question regarding the optimal use of SSI.
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The idea is that when a large number of response DOFs are measured si-
multaneously, the parametric model fit may suffer from the presence of many
noise modes in comparison to physical modes. Therefore by specifying a set
of user defined reference channels, the amount of redundant information is
decreased resulting in more accurate estimations. Reference channel selection
can be guided by calculating the correlation coefficients and identifying chan-
nels which represent highly correlated channel clusters. Furthermore it has
been found in practice that including sensors which are located on local struc-
tures such as aircraft engines or wing stores for example, reduce the accuracy
of the identified global modes. This phenomenon is investigated using a tuned
5 DOF example as illustrated in Figure 4.7a. DOF’s 4 and 5 are tuned, by
reducing the mass and stiffness to act as local modes. The simulated FRF of
the system to a step impulse is shown in Figure 4.7b with two local modes at
22 Hz and 57 Hz. The result of using all channels as references in SSI-Data
is shown with + and using channels [1 2 3] as reference with ��� in Figure
4.8. In Figure 4.8 (a) it is seen that using reference channels provides more
accurate results at lower model orders. From the zoomed view in Figure 4.8
(b) the effect of using reference channels shows a marginal improvement in the
identification of mode 1, but in general there is no clear trend or advantage to
using reference channels at higher model orders to estimate the global modes.

(a) Local mode model. (b) FRF for the simulated system.

Figure 4.7: Reference channel investigation.

Peeters and De Roeck (1999) investigated the effect of reference channels
on an antenna and found that the global modes agreed well when using all the
data or a reference subset. Changes in the identification results are however
observed and with no analytical solution it is impossible to tell which estimate
is more accurate. Peeters and De Roeck (1999) also used the Total Prediction
Error (TPE) to investigate reference channels and found that at best the chan-
nels which are chosen as reference will have the same TPE as when using all
channels, and that channels which are not chosen as reference will always result
in worse TPE. The TPE is however an indication of the ability to reconstruct
the time signal. This means that SSI could identify global modes accurately
but out of band, local or noise modes poorly resulting in a poor TPE. Further
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Figure 4.8: Frequency, errors for SSI-Data with all channels as references +
and [1 2 3] as reference ��� with block size [i = 10].

investigation of the TPE will be presented, and future investigations on a lab-
oratory structure designed to have distinct local and global mode behaviour is
recommended.

4.7 Damping
Energy dissipation through damping remains the greatest challenge for all the
current system identification methods to identify accurately. The effect of
damping on the SSI-Data modal parameter estimates for the 3 DOF system is
shown in Figure 4.9. Damping levels of ζ = 0.1 % +, ζ = 1 % ���, ζ = 5 % 4
were investigated. It can be seen that higher damping results in less accurate
frequency and mode shape estimates. SSI is however able to identify the higher
system damping levels more accurately than lower damping levels. It can also
be seen that once the model order exceeds n = 30 that the estimates become
more chaotic, which is most notable for the damping estimates.
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Figure 4.9: Frequency, damping and MAC errors for SSI-Data with ∼ 0.1 %
damping +, 1 % damping ��� and 5 % damping 4 with block size [i = 30].
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4.8 Harmonics
A harmonic is a periodic wave that is an integer multiple of a base sinusoidal
frequency, and occur when rotational machinery is present. Harmonics violate
the assumption in SSI of Gaussian white noise excitation and can therefore be
identified as physical poles or bias closely spaced physical poles. There are two
classes of methods for dealing with harmonics in system identification: Method
(1) includes the harmonics in the identification and subsequently removes them
in post processing, see Brincker et al. (2000); Mohanty and Rixen (2004);
Peeters et al. (2007). The drawbacks of these methods are that the harmonics
may bias the results in a way which cannot be reversed. Method (2) removes
the harmonic from the raw time or frequency data before performing the system
identification, see Bienert et al. (2015); Brandt and Linderholt (2012); Vold
et al. (2017). The drawbacks of these methods are that the harmonics must
either be known a priori or measured using a tachometer.

In this section the effect of harmonic bias on the modal parameter estimates
is investigated for harmonic frequencies of 1.001 and 1.01 times the natural
frequency of the third mode. Figure 4.10 shows the frequency, damping and
MAC errors for mode 3 using SSI-Data with no harmonic + , harmonic 1.001
fn ��� and harmonic 1.01 fn 4 for increasing model order with a fixed block
size (i = 10). It can be seen that the harmonics bias the estimate at low model
orders, which is most notable in the damping and MAC errors. However when
using higher model orders the algorithm is able to accurately identify the modal
parameters without bias even from an harmonic at 1.001 fn. It should however
be noted that with higher model orders SSI identifies the physical pole as well
as the harmonic, and in cases where the harmonics are not known, or are
changing they may be mistakenly identified as physical poles.

Figure 4.10: Frequency, damping and MAC errors for SSI-Data with no har-
monic + , harmonic 1.001 fn ��� and harmonic 1.01 fn 4 for increasing model
order with a fixed block size (i = 10).
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4.9 Linear Time Invariance
A system is said to be linear if the combined response consists of a summa-
tion of the individual system inputs, as well as when the system parameters
are independent of the scaling of the input. In terms of a physical system
this means that the resulting structural response can be decomposed into a
linear combination of the fundamental system modes. It also means that the
amplitude of the input excitation should not change the system properties. A
system is said to be time invariant if its response to a given input is indepen-
dent of absolute time. In a structural system this means that the mass M ,
damping D and stiffness K parameters are stationary. This is the basis of
system modelling, and though it may seem an oversimplification, it is found in
practice to produce useful results. Since no real structures are strictly linear
time invariant, the question is what is the result in the presence of non-linear
or time invariant systems?

In this section the result of a time varying system is investigated. A time
varying 3 DOF system was simulated as shown in the spectrogram in Figure
4.11a. The system was composed of 3 sections, Section 1: stationary, sym-
metric mass matrix 100 kg resulting in a time vector (10000 x 3), Section 2:
the mass matrix was increased linearly in 48 iterations of time vector length
200 from 100 kg - 148 kg, Section 3: stationary, symmetric mass matrix 148
kg resulting in a time vector (10000 x 3). The total time data length was
therefore (29600 x 3). Time data blocks of length 1000 with 75 % overlap
were used as inputs to SSI-Data with a block size i = 10 and a model order
n = 6. The resulting frequency identification is shown by the dashed lines on
top of the spectrogram in Figure 4.11a and are seen to track the time varying
changes accurately. The damping however shows large variations during the
time varying part in Figure 4.11b with largest variation for mode 1. Further
investigations are recommended into the effects of the magnitude of the time
variance on the system identification results.

(a) Frequency identification. (b) Damping identification.

Figure 4.11: SSI identification of a time varying system.
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4.10 Total Prediction Error (TPE)
The difference between the one step ahead prediction ŷk and the measured
response yk is the Total Prediction Error εc

εc =

√∑N
k=1(yk − ŷk)2∑N

k=1(yk)2
(4.10.1)

This is an indication of how well the system identification is able to re-
construct the time signal, and can therefore be used as a quality metric. The
5 DOF system was used to investigate the effect of model order, block size
and input force magnitude on the TPE. Figure 4.12 shows the Power Spectral
Density (PSD) where it can be seen that channels 1 and 2 have largest input
excitation while channels 3 and 5 have the lowest. The TPE results for in-
creasing model order are presented in Figure 4.13a. Firstly is can be seen that
the TPE initially improves with increasing model order, but then suddenly
becomes very poor around model order 30. This indicates that there is an
optimal TPE bandwidth. Secondly it can be seen that the lower the input
force the worse the TPE. Figure 4.13b shows the TPE for increasing block size
where it can be seen that the error becomes slightly worse for channels 1 and
2, and much worse for channels 3 and 5 but then stabilize around i = 8. Since
the goal of modal analysis is to estimate the natural frequency, damping and
mode shape, and not necessarily reconstruct the time signal it is important to
make a note of this connection to the TPE. From Figure 4.2 and 4.3 it was
seen that increasing the model order or the block size did not result in diver-
gence or worse estimates. The TPE should therefore be used with caution as
it includes the ability of the system identification to model noise and spurious
modes which is not a true indication of the usefulness of the identification.

4.11 Conclusion
A parametric simulation study was conducted to investigate the performance of
the SSI algorithms. Key findings include the effect of increasing model orders
n showing no trend in determining an optimal order selection. Increasing the
block size i showed convergence for both SSI-Data and SSI-Covariance even at
extremely large block sizes, and the smallest % errors were seen in the region
of high block size with low model order. Neither SSI-Data nor SSI-Covariance
showed a conclusive trend of superior performance in terms of identification
results. SSI-Covariance showed improved frequency estimates in some cases
and SSI-Data showed improved damping and MAC estimates in other cases
but this depended on the system, mode and input excitation. The ability to
combine different system identification techniques according to their respective
strengths rather than sticking to one method is proposed for future research.
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Figure 4.12: Power spectral density (PSD) of the 5 DOF system with different
input force levels. Channel 1 •, Channel 2 •, Channel 3 •, Channel 4 •,
Channel 5 •

(a) Total prediction error (%) versus
model order (n).

(b) Total prediction error (%) versus block
size (i).

Figure 4.13: Total prediction error (%) versus model order (n) and block
size(i). Channel 1 ��� , Channel 2 ���, Channel 3 ���, Channel 4 ���, Channel 5 ���

In terms of physical phenomena, adding noise to the signal had the effect
of improving the mean error in certain cases due to the Gaussian white noise
assumption, but with high noise levels also increased the variance on the es-
timates. Reference channels provided more accurate results at lower model
orders but did not make a significant improvement at higher model orders. In-
creased damping resulted in less accurate frequency and mode shape estimates
but more accurate damping estimates at low model orders. At high model
orders the results became more scattered. Harmonics were found to bias the
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estimates at low model orders, most notably in the damping and MAC er-
rors, but higher model orders were able to identify unbiased modal estimates.
SSI was found to track the frequency changes very accurately of a linear time
varying system, but showed large variations in the damping estimates. Total
Prediction Error TPE was seen to initially improve with increasing model or-
der, but then suddenly diverge at high model orders. It was also found that
the lower the input force the worse the TPE. The TPE stabilised for increas-
ing block sizes, but should be used with caution as a quality indicator since
it includes the ability of the system identification to model noise and spu-
rious modes which is not a true indication of the usefulness of the physical
eigenvalues and eigenvectors.
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Chapter 5

Polar Research Vessel, Arctic
Expedition and Open Data

5.1 Description of the Vessel
The FS Polarstern, shown in Figure 5.1, is a German research icebreaker op-
erated by the Alfred Wegener Institute for Polar and Marine Research (AWI)
in Bremerhaven. The vessel was built in Germany and commissioned in 1982.
It contains nine research laboratories for biological, geological, geophysical,
glaciological, chemical, oceanographic and meteorological research. The Po-
larstern operates around 310 days a year in harsh polar and ocean environments
as shown in Figure 5.2 and 5.3. The vessel has a design speed of 15.5 knots,
can break through 1.5 m of ice at 5 knots and up to 3 m of ice by ramming.

Figure 5.1: Polar research vessel Polarstern. (AWI/W von Appen)

The Polarstern is 118 m in length with a 25 m beam, 11 m draft and

55

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. POLAR RESEARCH VESSEL, ARCTIC EXPEDITION AND
OPEN DATA 56

a displacement of 17 300 tonnes. Four diesel engines provide 14 000 kW of
power through two shaft lines with variable pitch propellers. The vessel also
has a bow and stern thruster for dynamic positioning. The Polarstern has a
double hull design for ice breaking, resulting in a stiff hull structure. The main
cargo hold is located in the bow, with additional cargo storage in the stern.
The superstructure is positioned slightly towards the fore of the vessel, in the
classic icebreaker layout. This allows the vessel to use the weight to break
ice in bending rather than compression. For dynamic stability, the vessel has
retractable stabilizing fins which are deployed during open water transits as
well as a stabilizing water pump system.

Figure 5.2: Polarstern in an Arctic ice field.

Figure 5.3: Polarstern during a storm in open water. (AWI/F Mehrtens)

5.2 Measurement Setup and Equipment
The Polarstern was instrumented with 23 accelerometers as shown in Figure
5.4. Measurements were conducted in the hull on deck F and the bridge on
deck A. Accelerometers were orientated in the vertical direction along the
ship length to measure normal bending and were placed on both port and
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starboard to measure torsion. Horizontal measurements were conducted to
measure lateral bending and triaxial sensors were placed in the stern and bridge
respectively.

Figure 5.4: Measurement setup on the Polarstern: • Accelerometer locations,
• Vertical (+Z) measurements, • Transverse (+Y) measurements, • Triaxial
(+X, +Y, +Z) measurements

LMS Test.Lab Turbine Testing software and an LMS SCADAS III, see
Figure 5.5a, were used to make synchronous and continuous vibration mea-
surements saved in 5 minute files at sample frequency 2048 Hz. Over 2 km of
coaxial BnC cable was routed from sensor locations to the SCADAS III in the
centre of deck F. Cables were securely routed through cable trays, pipe ducts
and water tight points and were kept away from sources of magnetic interfer-
ence as far as possible. Before crimping the end connectors, all cables were
shorted and their resistances were measured to identify possible manufacturing
faults or installation damage.

Eight 100 mV/g PCB ICP accelerometers, see Figure 5.5c, capable of mea-
surements to 0.5 Hz and fifteen 200 mV/g PCB DC accelerometers, see Fig-
ure 5.5d, with high low frequency accuracy were used. Accelerometers were
mounted to main structural beams or plates to investigate global responses.
HBM X60 two component glue was used to secure the sensors during the
long voyage. Signal processing, system identification and modal tracking were
performed in Matlab using in house algorithms developed by the Sound and
Vibration Research Group at Stellenbosch University (South Africa) and the
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Institut für Aeroelastik at the Deutsches Zentrum für Luft end Raumfahrt
(Germany). Environmental conditions were logged to a data inventory sys-
tem called Dship, see Figure 5.5b, which could be accessed via the local ship
network.

(a) LMS SCADAS III and laptop. (b) Dship measurement station.

(c) ICP accelerometer. (d) DC accelerometer.

Figure 5.5: Measurement equipment.

5.3 Field Measurements in the Arctic
Full scale measurements were conducted during the PS100 research expedition
to the Arctic in 2016. The cruise track of PS100 is shown in Figure 5.6. The
expedition started in Tromsø, Norway, on the 18th July heading north west
into the Greenland sea. The dots on the cruise track indicate scientific stations.
A port call was made in Longyearbyen, Svalbard, followed by oceanographic
research on a westerly transect in Fram strait. Near the meridian the vessel
headed north into the Arctic sea ice reaching nearly 81◦ north, before mov-
ing west towards Greenland. Further oceanographic research was conducted
in Fram strait before sailing to the 79◦ north glacier on the East Greenland
coastline to conduct various research surveys. Finally the vessel headed back
to Fram strait, returning to Tromsø on 6th September after 51 days at sea.
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A wide variety of operational and environmental conditions were encountered
during the voyage. Operational conditions included different cruising speeds,
draft, trim and engine configurations. Different environmental conditions in-
cluded swell heights, swell directions, swell periods, ice types, ice thickness’s,
air and water temperature variations and wind speeds and directions.

Figure 5.6: Cruise track of the PS100 expedition. (AWI/J Schaffer)

5.4 Open Data
The full scale data set from the PS100 expedition on the Polarstern to the Arc-
tic is openly available at PANGAEA Data Archiving under publication num-
ber PDI-15785. The data set contains raw acceleration time data in .mat file
format from 23 accelerometers. Environmental data from the data inventory
system called Dship are also available. A metadata file contains information
regarding measurement parameters and sensor locations. There are three main
goals of making the data open source:

1. The results in this thesis can be tested, recreated and validated.

2. Opening the data to other researchers has the potential to be a force mul-
tiplier, bringing a diversity of ideas and optimal solutions and providing
additional human capital to drive innovation.

3. A variety of open source data sets will allow open and transparent bench-
marking of state of the art algorithms which can bring further innovation
in the field of system identification in structural dynamics.
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Chapter 6

Modal Tracking

6.1 Introduction
Modal parameter tracking deals with following the trail or movements of sys-
tem modes. Modal parameters are directly related to the system parameters
mass M, damping D and stiffness K. Changes in system parameters due to
changing mass during cargo loading, or vessel modification effecting stiffness
therefore change the modal parameters. Environmental conditions also effect
these parameters through changes in temperature effecting Youngs modulus
and thus stiffness. Operational changes such as increased vessel speed increase
the draft and bow wave which add mass to the structure. The system identi-
fication and tracking algorithms need to be sensitive to detect these changes.

Since modal parameters may be closely spaced and shift around, they are
able to cross one another. Modes may also be unidentified in certain condi-
tions and reappear during later measurements. A modal tracking algorithm
therefore needs to create a library of modes which it stores and references
when new modes are identified. More information than a scalar frequency
value is required to identify modal clusters or families and keep track of these
when modes cross or disappear. This is achieved by using the eigenvalue and
eigenvector properties of modal parameters.

Literature regarding full scale measurements on ships is rare. Significant
research contributions were made by Rosenow et al. (2007), Rocca et al. (2009),
Orlowitz and Brandt (2014) and Soal et al. (2015). This work was focused
on the potential of obtaining modal parameters from OMA. The ability to
characterise an operational profile for SHM however requires further research.

In this chapter system identification and modal tracking are performed on
the full scale data from the Polarstern. System identification is performed
using SSI and Least Squares Complex Frequency (LSCF). Investigations into
modal tracking using a pole weighted Modal Assurance Criterion (MACXP)
are conducted for different cases. Tracked modes are correlated with system
inputs to investigate and identify inter variable relationships. The theory and
implementation of SSI were presented in Chapter 3. The theory of the LSCF
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method will be briefly explained below.

6.2 Least-Square Complex Frequency (LSCF)
The LSCF algorithm identifies the system parameters in the frequency do-
main from the spectra of the measured signals. It computes very quickly due
to the efficiency of the Fast Fourier Transform (FFT) and can estimate the
eigenvalues and corresponding mode shapes in desired frequency bands using
a least-squares approach. A detailed description of LSCF can be found in
Pintelon and Schoukens (2001) and Jelicic et al. (2015). For a Linear Time
Invariant (LTI) system the Power Spectral Density (PSD) of the system out-
puts Syy is a function of it’s input power spectral densities Sxx and frequency
response function Hxy

Syy(iω) = Hxy(iω)Sxx(iω)Hxy(iω)H (6.2.1)

Assuming a constant broadband input spectrum Sxx(iω) = Sxx, the power
spectral density can be decomposed as a function of system poles λi , residues
Φi and references Li

Syy(iω) =
m∑
r=1

ΦrL
T
r

iω − λr
+

Φ∗rL
H
r

iω − λ∗r
+

ΦrL
T
r

−iω − λr
+

Φ∗rL
H
r

−iω − λ∗r
(6.2.2)

The measured spectra are described by rational polynomials in the discrete
z-domain as follows

Syy(iω) =
m∑
r=1

[βr]z
r
( m∑
r=1

[αr]z
r
)−1

(6.2.3)

where βr is the matrix of numerator polynomial coefficients, αr is the de-
nominator polynomial coefficients and m is the highest coefficient exponent
also called the model order. Both matrix coefficients are unknown and are
obtained using a least-squares approach. The eigenvalues of the system are
then determined from the roots of the denominator polynomial

m∑
r=1

[αr]e
−iω∆tr = 0, → λ, λ∗ i = 1, 2, ...,m (6.2.4)

6.3 Mode Tracking
Polar vessels have a large operational profile. This includes different open
water conditions, wave heights, swell periods and cruising speeds. A variety of
ice types, thickness’s and breaking and ramming manoeuvres. Different air and
water temperatures and wind speeds. As well as different cargo, ballast, fuel
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and trim configurations. The variation of these inputs cause shifts in the modal
parameters. The objective of modal tracking is to identify a reference cluster
or library of physical modes. Each new identification will then be compared
to this reference library. The library will then be updated by adding positive
identifications as well as storing unknown modes which may be identified in
future measurements.

Tracking the movements of scalar values such as the natural frequencies
is however not possible. This is due to modes which may be unidentified in
certain data blocks and reappear later. As well as modes which may come
close to or cross one another. This problem can be dealt with by using the
eigenvector associated with each natural frequency. The original Modal Assur-
ance Criterion (MAC), see equation 6.3.1, is the normalized inner dot product
of the eigenvector at each common node point. This can also be thought of
as the square of the correlation between two modal vectors φi and φj. If a
linear relationship exists between the vectors the MAC value will be one. If
the vectors are orthogonal the MAC value will be zero.

MAC(φi, φj) =
|φTi φj|2(

φTi φj

)(
φTj φj

) (6.3.1)

The MAC value is limited by a low number of measurement degrees of
freedom, low response amplitudes and complex mode shape patterns which
may not result in clear modal identification. The MAC from full scale data
on the FS Polarstern is shown in Figure 6.1b. Here it can be seen that an
indistinguishable mode family exists between modes 1, 2, 3 and 5.

The MACXP proposed by Vacher (2010) expands this criteria by a pole
weighting, see equation 6.3.2. Both the real and imaginary parts of the poles
are included as additional weighting on the correlation of two mode shapes.
The MACXP can also be interpreted as the correlation function between the
real decay responses of the associated modes. Figure 6.1a shows the MACXP
of the same FS Polarstern dataset which provides a clear correlation and is
able to differentiate between modes 1, 2, 3 and 5. This makes the MACXP a
sensible choice in a tracking algorithm.

MACXP (φi, φj) =

(
|φ∗iφj |
|λi+λj | +

|φTi φj |
|λi+λj |

)2

(
φ∗iφi
|Reλi| +

|φTi φi|
2|λi|

)(
φ∗jφj
|Reλj | +

|φTj φj |
2|λj |

) (6.3.2)

The mode tracking algorithm developed in the current work proceeds in
two steps. First a MACXP matrix is computed from the eigenvalues and
eigenvectors λ1, φ1 and λ2, φ2 of the first two time data blocks. The indices
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(a) MACXP. (b) MAC.

Figure 6.1: Modal assurance criterion.

of the MACXP values exceeding a user defined threshold mcpair, are then
used to build a reference library λrl, φrl. The parameters below the mcpair
threshold are then concatenated to the reference library resulting in λc, φc. In
the second step the MAXCP between λc, φc and λ3, φ3 is computed. The indices
of the values exceeding the mcpair are then used to build the time dependant
dimension of the mode library at time step t = 2. If new correlations are
found outside the reference library, these are added to λrl, φrl as new members.
The updated reference library λrl, φrl is then concatenated with the remaining
values from λ3, φ3 before continuing to λ4, φ4 at time step 3. The algorithm
then proceeds through all available time blocks t = 1, 2, 3..., n. It should also
be noted that the algorithm updates the available eigenvectors at each time
data block in order to correlate new data to the most recent mode shapes.

6.4 Results
Five cases were selected from the broad spectrum of operational and environ-
mental conditions for this study as presented in Table 6.1. Cases were chosen
to provide insight into key characteristics of a polar vessel’s operational pro-
file. A limited number of cases allow greater analysis depth and insight as
compared to investigating two months of data in one analysis. The time data
for all sensors from the five cases are shown in Figure 6.2.

6.4.1 Signal Processing

Time data was first detrended to remove linear DC offsets and then decimated
to fs = 64 Hz using a lowpass Chebyshev Type I filter. The time histories
show unique signatures for each case in Figure 6.2. The vibration amplitude
is observed to increase with speed which is most visible in case 3 and 5. Case
1 and 4 show relatively stationary time data. Case 2 shows impulsive vessel
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Table 6.1: Operational profile case study.

No. Case Date Time

1 Stationary 31-07-2016 14h00 - 16h00
2 Ice Breaking 31-07-2016 16h30 - 18h30
3 Temperature Variation 02-09-2016 06h00 - 09h00
4 Constant Speed 22-07-2016 12h00 - 14h00
5 Alternating Speed 25-07-2016 04h30 - 09h00

Figure 6.2: Time data of all accelerometers for five selected cases.

response due to ice loading. The largest vibration amplitudes occur during ice
breaking in case 2 at 1.5 m/s2 followed by case 3 in open water when the vessel
reaches 14 knots.

The measurement quality and data characteristics were investigated using
the first four principal moments as presented in Figure 6.3. The statistical
moments were calculated using a sliding window with 50 % overlap and a
window size of 20 000 samples (5.7 minutes). Mean values around zero were
observed with low variance < 0.08. The variance was seen to increase when
the vessel was moving at higher speeds or breaking ice. Skewness provides
a measure of how symmetric the distribution is around it’s mean value. All
cases except case 2 show fairly symmetric distributions. Kurtosis provides a
measure of the weight of the tails of the distribution. It is therefore well suited
to detect impulses. This was used during signal pre-processing to identify and
remove faulty signals, as well as during the voyage to detect and fix loose cable
connections. The kurtosis is seen to be low for all cases except case 2 where
the impulsive ice loading provides physically meaningful peaks in the vessel
response.
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Figure 6.3: Statistical moments.

6.4.2 Frequency Spectra

The Auto Power Spectral Densities (APSD) of the vertical accelerometer on
the starboard side of the bow for the five cases are shown in Figure 6.4. The
PSD’s are averaged using a Hanning window over a full data block from each
case with a block length of 8192 FFT points resulting in a frequency resolution
of 0.0078 Hz.

Figure 6.4: Auto power spectral densities (APSD) • Case 1 • Case 2 • Case
3 • Case 4 • Case 5.

Firstly the spectra show higher broadband response during case 2, in green,
due to the impulsive nature of ice loading. The peak around 2.9 Hz, later
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identified as the first elastic mode, is however an exception, showing largest
amplitude during case 5 in yellow. The rigid body motion can be identified
by peaks below 0.5 Hz which is lowest in case 1 when the vessel is stationary.
Distinct peaks are observed throughout all spectra, with peaks under 10 Hz
being broader and having higher amplitudes. This is an indication of physical
modes as opposed to the harmonics which can be seen as the narrow peaks
in the higher frequency range. Harmonic excitation from the rotational speed
of the shaft line at 174 rpm can be seen at 2.9 Hz. The rotational speed of
the engine at 650 rpm can be identified at 10.8 Hz, and the first blade pass
frequency at 11.6 Hz. Seven peaks can be counted in the range 2 - 10 Hz
indicating the density of global modes in this bandwidth. The peaks across
cases 1 - 5 are not exactly coincident and do not have the same amplitudes
or steepness. This indicates that modes are excited differently and modal
parameters should therefore be identified differently. Changes in frequency
(location of the peaks) and damping (steepness of the peaks) are expected to
change depending on the boundary conditions and vessel parameters (draft,
fuel, ballast etc.). It is also observed that certain operating conditions will be
more conducive to the excitation of certain modes. The fourth peak around
5.4 Hz is for example more excited during case 4 and 5 relative to the other
peaks than case 2 where it is barely visible. Rigid body modes below 0.5 Hz can
be seen to contain more energy than elastic modes and will be an important
consideration for inverse force estimation in future research.

The auto and cross power spectral densities of all accelerometers with the
vertical accelerometer on the starboard side of the bow for case 1 and 2 are
shown in Figure 6.5.

Figure 6.5: Auto and cross power spectral densities of all accelerometers with
the vertical accelerometer on the starboard side of the bow • Case 1 • Case
2.
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The shape of the spectra are seen to differ distinctly under 10 Hz. Larger ex-
citation results in higher amplitudes, and the peaks are observed to be broader,
indicating higher damping. Increased damping during ice breaking is thought
to be due to the dissipation of vibrational energy into the ice in the breaking
process. The first harmonic of the shaft line rotation is dominant in case 1 at
2.9 Hz. During case 2 the first normal bending mode which is coincident with
the first harmonic can be accurately identified. Investigations into harmonic
removal using the Gauss-Newton time domain method Bienert et al. (2015),
and Periodogram smoothing frequency domain method Brandt and Linder-
holt (2012) were conducted. It was found that the Gauss-Newton method was
extremely slow to converge, which would make processing large data sets im-
practical. The Periodogram smoothing did not significantly change the result,
and could not be used to recover a time domain signal for use in SSI. Since the
harmonics in the current data are stationary and only affect the first bending
mode, and since SSI has proven robust in the presence of harmonics, further
investigations into harmonic removal were not conducted in the context of the
current thesis aim.

Three peaks between 4.7 Hz and 5.4 Hz show distinct physical character in
case 2 unlike in case 1. Higher peaks between 7.1 Hz and 8.3 Hz also become
visible in case 2. A peak around 3.7 Hz in case 1 is however observed to
completely disappear in case 2. Since the mode shape could not be interpreted
physically this mode was not considered in the current analyses.

The spectrograms for case 1 and 2 are shown in Figure 6.6. A characteristic
pattern can be observed. The first harmonic and coincident first elastic mode
remain dominant in both cases at 2.9 Hz. Higher modes (horizontal yellow
lines) are more pronounced in case 2, where they are also seen to shift around
more than the stationary case 1. The most notable difference is the broadband
response due to the impulsive ice loads seen as vertical yellow lines in case 2.

(a) Case 1 CTD. (b) Case 2 Ice.

Figure 6.6: Spectrograms of case 1 and 2.
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6.4.3 System Identification

System identification provides estimates of the eigenvalues and eigenvectors
of the system. A plot of the identified eigenvalues versus model order, called
a stabilisation diagram, can be used to identify and separate physical and
spurious modes. Time data blocks of 20 minutes with 75 % overlap are used
for the identification - i.e. each 20 minute block is shifted 5 minutes after each
identification.

An automatic modal analysis algorithm was developed as described in
Schwochow and Jelicic (2015). This allows the removal of manual user in-
teraction which is impractical for large data sets and also standardizes the
modal parameter selection method. The SSI-Data algorithm uses a user de-
fined block size and maximum model order to identify a base library of modes
using the MACXP criterion. The base library is composed of modes existing
in five consecutive model orders below the user defined maximum. The algo-
rithm then proceeds to identify modes at decreasing model orders until one of
the base library is no longer identified. The automatic modal selection is then
made at the model order prior to the lost modal library member. Since SSI is
band sensitive it is important to first bandpass filter the data. In the current
work a lowpass filter with cutoff at 15 Hz is used. Figure 6.7 shows the SSI
stabilization diagram for a 20 minute time data block during ice navigation in
case 2. Stable poles can be clearly identified and the diagram has been cleaned
using the MACXP criterion. The model order selection is made at n = 194
and the mode indicator function in red confirms that poles have been identified
near peaks in the spectra.

Figure 6.7: SSI stabilisation diagram.
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The LSCF algorithm uses Cross Power Spectral Densities (CPSD) from
user defined references. References were chosen which contained the desired
spectral information, were normally distributed, stationary and had similar
variance to provide improved estimates. The LSCF stabilisation diagram in
Figure 6.8 contains 3 bands from 1 - 10 Hz with model order 5 up to 30.
Since every system pole requires four model orders up to 6 modes can be
identified per band. In Figure 6.8 the red line is the measured spectrum, the
blue line is the reconstructed spectrum using the identified modal parameters,
the vertical grey lines show the identified poles with the associated damping
value in black and Mode Indicator Function (MIF) in blue. LSCF makes
an automatic modal parameter selection at the user defined maximum model
order. The blue reconstructed spectrum is seen to fit well to the measured
spectrum in red.

Figure 6.8: LSCF stabilisation diagram.

The reference library of eigenvectors from SSI and LSCF is shown in Figure
6.9. Seven modes are identified in the bandwidth 2 - 10 Hz. These include the
first (2.9 Hz), second (5.2 Hz) and third (7.1 Hz) vertical bending modes, the
first (4.7 Hz) and second (7.6 Hz) lateral bending modes and first (5.4 Hz) and
second (8.3 Hz) torsional modes.

6.4.4 Mode Tracking

The results of the modal tracking algorithm on the automatic SSI system
identification results are shown in Figure 6.10. The tracked frequencies show
considerable scatter and the migration of the modal families is not immediately
clear. The damping estimates show larger scatter with no clear trends. The
modal library identified in Figure 6.9 was then flagged and plotted in Figure

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. MODAL TRACKING 70

Figure 6.9: Polarstern mode shapes.

6.11. The modal trails are then more visible, and much of the chaos is removed
from the damping estimates.

From Figure 6.11 it can be seen that not all eigenvalues are identified
or tracked at all time instants. Mode 1 is for example not identified at all
during case 1. This occurs when a mode is not excited sufficiently, or when
stochastic effects or noise distort the signal and violate the system identification
assumptions. An interesting phenomenon can be seen when modal clusters or
families change colour, see the first and second modes for case 5 in Figure 6.11.
Despite updating the eigenvectors at each new identification these parameters
are placed in new clusters despite very similar eigenvalues and eigenvectors.
This is an important observation regarding the ability to train a model to make
future predictions. This phenomenon will be further discussed in the section
on correlation.

The results of the modal tracking from the LSCF modal parameters are
presented in Figure 6.12. LSCF is found to identify fewer modes than SSI and

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. MODAL TRACKING 71

Figure 6.10: SSI mode tracking during the five selected cases.

Figure 6.11: SSI modal clusters.

provides lower damping estimates, mostly below 0.5 %. Figure 6.13 shows the
result of combining the SSI modal clusters across the five cases. Here it is
observed that the green squares of the second vertical bending mode at 5.2 Hz
have consistently the lowest damping values of below 0.5 % together with the
few identifications in orange of the first vertical bending mode at 2.9 Hz. The
first lateral bending mode at 4.7 Hz and the first torsion mode at 5.4 Hz have
the highest damping values reaching a maximum of 5 %.
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Figure 6.12: LSCF mode tracking during the five cases.

Figure 6.13: Modal clusters frequency and damping.

6.4.5 Modal Correlation

Correlation plots for cases 3, 4 and 5 are shown in Figure 6.14, Figure 6.15
and Figure 6.16. The tracked modes are correlated against ship speed (Speed),
water temperature (Wtemp), air temperature (Atemp), wind velocity (Wvel)
and wind direction (Wdir). Environmental parameters are averaged over 20
minutes for correlation with the system identification results.

Considering the complexity of the measured physical phenomena together
with the data processing techniques, useful correlation coefficients are expected
to occur in the range of 0.5 - 0.7. Correlation coefficients are plotted in each
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block and red values indicate a p value < 0.05 indicating the result is sta-
tistically significant. Statistically significant correlations are observed among
various modes and input parameters. The first vertical bending mode indicated
by var2 in Figure 6.14 for example, shows significant correlation with speed,
wind velocity and wind direction. This suggests that these input variables
would be good predictors of var2. The maximum correlation coefficient of 0.94
is between the first vertical bending mode at 2.9 Hz and water temperature
during case 5. Since the aim of the correlation investigation is to determine
whether trends can be used to make future predictions, correlation coefficients
above 0.5 which are also significant (p < 0.05) are considered useful.

Investigations were then conducted to determine if there are variables which
always trend together e.g. first bending and speed for example. It was however
found that despite strong inter variable relationships, that no constant rela-
tionship emerged across the five cases. Figure 6.17 shows the total correlation
after stitching together the data from all five cases. Here it can be seen that
the correlations decrease in general and that there are no obvious trends. This
is an important observation which confirms the complexity of the system. It
also indicates that useful modelling and prediction will rely on a detailed un-
derstanding and classification of operating and environmental parameters into
suitable cases. Models describing different cases can then be built and trained
on real data in order to make optimal future predictions.

Figure 6.14: Case 3 correlation.
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Figure 6.15: Case 4 correlation.

Figure 6.16: Case 5 correlation.
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Figure 6.17: Total correlation.

6.5 Conclusion
System identification and modal parameter tracking was conducted on full
scale data from the polar research vessel Polarstern. Similarities between two
different identification techniques working in time and frequency domain pro-
vided confirmation that physical modes were identified. Differences in the
estimates of the two methods were also observed, most notably in damping.
Future research into combined modal models using each methods respective
strengths is proposed.

A library of seven global modes was identified in the bandwidth 2 - 10 Hz.
These included the first (2.9 Hz), second (5.2 Hz) and third (7.1 Hz) vertical
bending modes, the first (4.7 Hz) and second (7.6 Hz) lateral bending modes
and first (5.4 Hz) and second (8.3 Hz) torsional modes. A mode tracking
algorithm using the MACXP was able to track modes across different oper-
ating cases. Statistically significant correlations were observed among various
modes and input parameters. This confirmed the hypothesis that inter variable
relationships exist and can be used for model training and prediction. Further-
more the identified relationships were found to be complex and did not trend
together across different operating cases. Useful modelling and prediction will
therefore rely on a detailed understanding and classification of operating and
environmental parameters into suitable cases. Models can then be built and
trained within their operating classifications in order to make optimal future
predictions for applications in structural health monitoring, automatic modal
parameter selection or inverse force estimation.
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Models for Modal Prediction using
System Inputs

7.1 Introduction
In order to perform Inverse Force Estimation (IFE) and Structural Health
Monitoring (SHM) modal parameters must be accurately identified and sen-
sitively tracked. This is not a trivial task when dealing with real structures
with complex inputs, low excitation forces and noise. As discussed in Chapter
3 OMA can be used to identify modal parameters without knowledge of the
input forces. This is achieved by making assumptions about the unmeasured
forces which are modelled as stochastic white noise quantities. The drawback
is that long time records are often needed to fulfil these assumptions. This
can result in a smearing of modal estimates across changing input parameters,
which can mask modal shifts due to structural damage and provide insufficient
resolution during force reconstruction.

The sensitivity of modal estimates to changing system inputs is therefore of
primary importance. A key observation is that changes in physical parameters
will cause detectable changes in the vibration properties (Liu and DeWolf,
2007). These physical changes are propagated through the system properties
(mass, damping and stiffness) as follows:

1. Environmental conditions - such as temperature, change the Youngs
modulus and consequently the system stiffness.

2. System configuration - through discrete mass changes due to cargo or
vehicle traffic for example.

3. Boundary conditions - such as ice compared to open water which effects
damping and added mass differently.

This chapter presents an idea to improve the sensitivity of system iden-
tification and tracking using a statistical model and a Kalman filter. A key

76

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. MODELS FOR MODAL PREDICTION USING SYSTEM
INPUTS 77

objective was to make observed data maximally informative. This lead to the
development of a sliding predictive model using an optimized linear regression
method to use system inputs which are not included in the standard system
identification. Since both the model prediction and the system identification
estimates contain different uncertainties the Kalman filter is proposed as a
method to combine both estimates in an optimal way.

7.2 Background
By considering a structure such as a bridge, ship or aircraft as a ‘system’ it
is possible to use the system identification framework to build a model relat-
ing the inputs to the outputs. This is illustrated in the context of a ship in
Figure 7.1. system identification techniques such as Stochastic Subspace Iden-
tification (SSI) (Peeters and De Roeck, 1999) estimate the system parameters
from output acceleration measurements with certain assumptions about the
input forces. There are however other system inputs such as environmental
and operational parameters. If the variation of these inputs are slower than
system identification estimation lengths then this does not present a problem.
However, if the input parameters change significantly during the system identi-
fication estimation, there will be a smearing of the modal estimates. Therefore
a thorough understanding of the sensitivity of the input parameters on the
system properties is essential (Zhou and Yi, 2014).

Figure 7.1: Ship system.

Research in this field has been conducted mainly into understanding the
effects of temperature on the vibration properties of long-span bridges. In-
vestigations were conducted into theoretical methods using equations relating
Youngs modulus to natural frequencies of beam elements by Xia et al. (2006).
The complexity of long-span bridges however limited the effectiveness of these
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closed form solutions. Trend analyses were conducted by various researchers
with notable contributions by Cornwell et al. (1999); Wahab and De Roeck
(1997); Peeters and De Roeck (2001); Gonzales et al. (2013). Significant corre-
lations were observed with modal frequencies decreasing with increasing tem-
peratures in general. It was also observed that different trends occurred with
increasing temperatures as compared to decreasing temperatures. The devel-
opment of quantitative models was investigated using linear models by Sohn
et al. (1999), nonlinear models by Ding and Li (2011) and learning models
using support vector machines by Ni et al. (2005). These models provided
valuable insight and predictive power into the relationships between temper-
ature and modal parameters. The use of quantitative models was established
as a powerful tool in system modelling.

Output only system identification was developed from deterministic input-
output system identification. Despite the usefulness of the assumptions made
about the unknown input forces, it is known from control theory, see Ljung
(1987); Franklin et al. (1990), that including any additional system inputs can
improve the identification. Reynders and De Roeck (2008) developed a com-
bined deterministic-stochastic subspace identification technique called OMAX.
OMAX included known input forces from shakers, resulting in improved modal
estimates as well as the ability to scale the mode shapes. The use of hybrid
techniques are emerging as robust and accurate identification techniques.

Finally, the automation of system identification is required to process large
amounts of data without expert user interaction. Automation is also impor-
tant to maintain consistency in the estimates. Especially when investigating
trends in data as a result of physical input parameters which could be masked
by variations of mathematical parameters within the system identification al-
gorithm. A large variety of state of the art automation techniques exist. Since
the method proposed in this chapter can also be implemented as an automatic
technique, a review of key automatic modal parameter selection methods is
provided in the following section.

7.3 Automated Modal Parameter Selection
An overview of relevant automatic modal parameter selection methods is pre-
sented in Table 7.1 and will be summarized in the following section. Non-
parametric techniques such as Frequency Domain Decomposition (FDD) are
based on simple peak picking. These methods have been automated using
the modal coherence around each identified peak in the singular value plot
according to predefined limits by Brincker et al. (2007) and Rainieri and Fab-
brocino (2010). Magalhães et al. (2008) found these methods to be sensitive
to noise in the spectra, user defined frequency resolution, signal periodicity
and spatial resolution affecting the Modal Assurance Criterion (MAC). FDD
does not provide estimates for damping and extensions such as Enhanced Fre-
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quency Domain Decomposition (EFFD) methods are known to underestimate
damping due to windowing in the FFT averaging.

Improved estimates using parametric methods have been reported in stud-
ies by Peeters (2000); Magalhães et al. (2008); Reynders (2009). Consequently
the automation of these techniques have attracted the most research inter-
est. The usefulness of the stabilisation diagram as a tool for all parametric
methods was used to develop the first automatic selection techniques. Scionti
et al. (2003) developed a methodology and algorithm to mimic the decisions of
an experienced modal analyst during examination of a stabilization diagram.
This rule-based intelligence approach was based on observations that an en-
gineer first selects a vertical column of poles which are then assessed based
on the variance of frequency and damping ratio. This translated into a col-
umn selection using histogram bins and Euclidean norm distance weightings.
These weightings were then used together with the frequency and damping
variance to make an automatic pole selection. The consistent mode indicator
method developed by Pappa et al. (1998) used a similar rule-based methodol-
ogy to condense multiple estimates from the eigensystem realization algorithm
(ERA) for the tail rudder of the NASA space shuttle. Govers (2012) and Mo-
hanty et al. (2007) built on the observation of vertical pole selection to develop
a Fully Automatic Modal Parameter Selection (FAMPS) technique. FAMPS
used overlapping bands to classify consistent modal families. Damping vari-
ance and MAC values were then used to make the final pole selection.

Deraemaeker et al. (2008) and Reynders and De Roeck (2008) used a metric
called the modal transfer norm which was based on the modal decomposition
of the positive output PSD. This provided a measure of the error made when
the ith mode was removed from the model. The modal transfer norm was
plotted in a stabilisation diagram as a rule-based criterion for automatic pole
selection. Schwochow and Jelicic (2015) used the MACXP to track mode
clusters at consecutive model orders starting from a user defined maximum.
The MACXP was found to produce clear stabilisation diagrams with accurate
model order tracking.

The grouping of modal clusters at different model orders lead naturally to
the use of clustering techniques which are capable of grouping objects based
on certain characteristics. Magalhães et al. (2009) used hierarchical clustering
based on the Euclidian norms to group poles. A user defined “tree cut level”
then determined the number of clusters from which to make the parameter se-
lection. Verboven et al. (2002) expanded this technique using fuzzy clustering
which allowed poles to belong to multiple clusters simultaneously. Statistical
criteria were used together with modal phase collinearity and mode complexity
to make the final mode selection. Andersen et al. (2007) developed a graph the-
ory approach using poles (vertices) to build edge connections. A user defined
minimum length of alignment was specified and used together with frequency,
damping and MAC differences to automatically select poles in the stabilisation
diagram. Neu et al. (2017) developed a multi stage clustering approach to deal
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specifically with the issue of removing all user defined parameters. This was
achieved using feature vectors and statistically profound threshold values from
the measured Probability Density Functions (PDFs).

All the methods presented thus far deal with the automatic modal parame-
ter selection from one set of data. A different approach to this problem involves
using current knowledge of the system to improve future identifications. This
can be especially beneficial when conducting continuous monitoring to ensure
optimal predictions using as much information as is available. Carden and
Brownjohn (2008) investigated the use of fuzzy C means clustering as a data
condensation technique to track changes in the system state from environmen-
tal inputs. The idea was that if the system changes with environmental inputs
the modes will shift. This would cause the centres of the fuzzy clusters to shift
also. The tracking of these cluster centres was therefore used as an indicator of
the dynamic characteristics based on an initial model. Goethals et al. (2004)
proposed a supervised learning approach for automatic interpretation of sta-
bilization diagrams. The algorithm was based on the theory of Least Squares
Support Vector Machines (LSSVM). The self learning method automatically
tuned thresholds and parameters based on a training data set. Since LSSVM
is a binary classifier it defined poles as belonging to a physical or spurious
group.

Table 7.1: Automatic modal parameter selection methods. (Stab = Stabilisa-
tion)

No. Method Lead Author Operation

1 Modal Coherence Brinker FDD
2 LEONIDA Rainieri FDD
3 Rule-based Intelligence Scionti Stab
4 Consistent Mode Indicator Pappa Stab
5 FAMPS Govers Stab
6 Modal Transform Norm Deraemaeker SSI (Stab)
7 MACXP Schwochow SSI (Stab)
8 Hierarchical Clustering Magelhaes SSI Con (Stab)
9 Fuzzy Clustering Verboven LSCF (Stab)
10 Graph Theory Andersen SSI (Stab)
11 Multi Stage Clustering Neu Stab
12 Fuzzy C-Means clustering Carden Tracking
13 Self Learning Goethals Tracking

The conceptual idea of using a statistical model and a Kalman filter to
improve system identification and tracking will now be developed, beginning
with the Kalman filter which plays a central role.
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7.4 Kalman Filter
The Kalman filter, Kalman (1960), is a predictor-corrector estimator that tries
to obtain an optimal estimate of desired quantities from uncertain and noisy
observations. It is based on a state space model of a system and real noisy
measurements. The discrete time, deterministic stochastic state space model
is presented in Equation 7.4.1.

xk+1 = Axk + wk

yk = Hxk + vk
(7.4.1)

where xk is the discrete time state vector and A is the discrete state ma-
trix. The measurement equation contains the measured outputs yk and the
observation matrix H. Stochastic noise components are included as wk pro-
cess noise due to disturbances and modelling inaccuracies and vk measurement
noise from the sensors and cables.

The filter progresses iteratively with (1) a forward prediction of the system
state in time (time update) followed by (2) a correction based on the predicted
and measured system output (measurement update). The filter is optimal in
the sense that if the noise is Gaussian, it minimizes the mean square error
(error covariance) of the estimated parameters. The process is illustrated in
Figure 7.2.

Figure 7.2: Kalman filter.

The Kalman filter is initiated with user defined parameters Q, R, Pk−1

and x̂k−1. Q and R are the time invariant process and measurement noise
covariances. The noise covariances are used to tune the model to rely more on
(trust) either the model or the measurements. The error covariance Pk−1 =
E[e−k−1e

−T
k−1] is used as a minimization function by the Kalman gain K and can

be initiated as any non zero value. The initial state estimate x̂k−1 can also be
chosen arbitrarily and updated if faster convergence is required.

The iterative filter begins with a forward prediction of the state from x̂k−1

to x̂−k based on the model as shown in Equation 7.4.2. This is known as the
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priori or ‘reason’ estimate. The error covariance is also projected forward
through the model to P−k in Equation 7.4.3. The measurement update then
estimates the Kalman gain matrix K in Equation 7.4.4. The Kalman gain
is then used to blend the priori estimate with the residual (yk − Hx̂−k ) to
determine the posteriori or ‘experience’ state estimate x̂k in Equation 7.4.5.
The error covariance is then also updated based on the new Kalman gain in
Equation 7.4.6. The filter then proceeds iteratively with forward predictions
followed by measurement updates with optimal error covariance updates.

(1) Time update equations

x̂−k = Ax̂k−1 (7.4.2)
P−k = APk−1A

T +Q (7.4.3)

(2) Measurement update equations

Kk = P−k H
T (HP−k H

T +R)−1 (7.4.4)
x̂k = x̂−k +K(yk −Hx̂−k ) (7.4.5)

Pk = (I −KkH)P−k (7.4.6)

7.5 Idea
The idea is to reduce the uncertainty of system identification and tracking
using a statistical model and a Kalman filter. The model will be trained using
environmental inputs and system identification outputs. In the current work
on the polar research vessel Polarstern, the environmental inputs include water
and air temperature - which effect the Youngs modulus and thus the stiffness,
ship speed - which effects the draft and bow wave, which add mass, and wind
velocity and wind direction. These will be used to build the state matrix A in
Equations 7.4.1 and 7.4.2. The predictive model will be used by the Kalman
filter to make forward predictions based on new environmental inputs and
then combined in an optimal way with the system identification estimate at
the future time step. The method can be implemented in two ways, as shown
in Figure 7.3.

The fundamental principle involves combining the forward prediction in
red, with a measured value in blue to produce a Kalman estimate in green.
Option A Kalman filters the regression model prediction from block b1 to
block b2, shown by the red arrow, with the automatic system identification
estimate indicated by the blue circle, resulting in the green diamond. Option
B Kalman filters the regression model prediction with the system identification
estimate nearest the future prediction in the stabilisation diagram, indicated
by the blue plus symbol. Option A therefore relies on a previous automatic
pole selection, while option B also functions as an automatic modal parameter
selection technique.
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Figure 7.3: Kalman filter options.

7.6 Numerical Simulation
The method is first demonstrated numerically using a five Degree Of Freedom
(DOF) system. A data set of 20 observations of each frequency is created and
a normally distributed random error is added to each observation. A sinu-
soidal temperature variation is simulated through an approximate relationship
between temperature, Youngs modulus and natural frequency. The measure-
ment noise covariance R is calculated from the simulated data and the model
noise covariance Q is tuned to trust the model slightly more than the mea-
surements. The error covariance matrix P is updated in a loop in order to
begin filtering with an optimal error covariance. The results of the simulation
are presented for mode 3 and mode 4 in Figure 7.4a and 7.4b. The Kalman
filter estimates are seen to be closer to the true values in general, and also
show the sinusoidal trend in the temperature variation. The cumulative error
is improved by 85 % for mode 3 and 89 % for mode 4.

(a) Mode 3. (b) Mode 4.

Figure 7.4: Numerical simulation. ∗ True value 99K True value + noise +
temperature variation→ Kalman filter estimate.
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7.7 Results

7.7.1 Signal Processing

The signal processing applied to the raw data is illustrated in Figure 7.5.
The response variables were detrended and decimated from 2048 Hz to 64 Hz.
The signal was then band pass filtered between 2 Hz and 12 Hz. Stochastic
Subspace Identification (SSI) was used to estimate the system’s eigenvalues
and eigenvectors. SSI was performed on 20 minute data blocks with 75 %
overlap. The 20 minute block was chosen to be long enough to include sufficient
spectral information and over 3000 cycles of the lowest frequency, without over
smearing the slower variations in environmental parameters. Modal tracking
was then performed using a pole weighted Modal Assurance Criterion called
the MACXP (Vacher, 2010). This enabled the identification and tracking of
modes belonging to the same cluster.

Figure 7.5: Signal processing of response and predictor variables.

The predictor variables were recorded by an on board system called Dship.
Each variable has a different sensor, measurement unit and sample frequency.
The signals were first re-sampled to 20 minute averages with 75 % overlap in
agreement with the SSI estimates. Missing data was padded with NaN for
indexing purposes. Investigations of faulty channels through the statistical
Kurtosis value revealed spurious measurements due to loose connectors, bad
grounding or other interference. Predictor variables were then normalized to
account for non-uniform measurement units and amplitudes which cause bias
in predictive models.

Correlations between measured predictor variables in Figure 7.6 were used
to define a parsimonious predictor subset. Trends can be seen between water
temperature and air temperature and wind velocity and wind velocity rela-
tive. Since two trend lines are observed between water and air temperature,
and since temperature is expected to be an important predictor of modal pa-
rameters, both variables are retained for model training. Only absolute wind
velocity is used since wind velocity relative includes ship speed which is al-
ready accounted for in the predictor set. The relative wind direction is used for
modelling since there is no information about the ship heading. Uncorrelated
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predictor variables are a good indication that each variable adds new (inde-
pendent) information. Histograms on the matrix diagonal are not normally
distributed, since certain conditions occur more often than others. The nor-
mal distribution of measured predictor variables is however not a requirement
for statistical modelling, but rather the normal distribution of the residuals or
error terms.

Figure 7.6: Correlation of measured predictor variables.

Figure 7.7 shows the vibration response channels which contained NaN
values during the voyage. It can be seen that channels 5, 6, 13 and 22 contained
most NaN values. This was due to a faulty cable on channel 5, poor grounding
on channel 6, a loose end connector on channel 13 and unknown electrical
interference on channel 22. These problems were detected and fixed during the
voyage. However due to matrix multiplication using the dot product in SSI
and mode tracking resulting in fully populated NaN matrices, it was decided
that these four channels would be removed from the data completely. These
are associated challenges of real data on large structures over long durations.

7.7.2 Model Training

The first predictive model investigations where aimed at identifying case spe-
cific models. This was based on research by Gonzales et al. (2013) who found
that data driven bridge models showed clearer trends when split between
increasing and decreasing temperature. Constant vessel speeds between 5 -
8 knots for over 100 minutes was defined as a test case. An algorithm was
written which allowed a user to navigate through the data and interactively
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Figure 7.7: Vibration channels containing NaN’s during the voyage (a) before
(b) after channel removal.

train the predictive model. The predictor variables of the current data cluster
were plotted by purple circles together with the corresponding modal tracking
and correlation results. The user could then select which modes to predict as
well as whether to accept the current cluster, which would then turn green, or
reject the current cluster, turning red. The results of the predictor variables
with 20 green clusters are shown in Figure 7.8.

Figure 7.8: Constant speed model training.

The corresponding modal tracking is presented in Figure 7.9. The global
modes can be identified by dominant lines at 2.9 Hz, 4.7 Hz, 5.2 Hz, 5,4 Hz,
7.1 Hz and 7.6 Hz. From the associated eigenvectors shown in Figure 7.10
these modes are seen to consist of the first 2.9 Hz, second 5.2 Hz and third 7.1
Hz vertical bending modes, the first 4.7 Hz and second 7.6 Hz lateral bending
modes and first 5.4 Hz torsional mode.

During the model training it was observed that modes were not tracked in
the same clusters or modal families throughout the data set, despite updating
the eigenvalues and eigenvectors at each identification. This can be seen by
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Figure 7.9: Constant speed modal parameter tracking.

the colour variations in the dominant lines in Figure 7.9. It was also observed
that other predictor variables could change considerably during constant speed
cases. No intuitive case equivalent to bridge temperature was observed. It was
also noted that significant structural changes took place during the voyage
due to burning approximately 2000 tons of diesel as well as changing ballast
at discrete intervals.

Figure 7.10: Polarstern mode shapes.

From these observations it was decided that the most logical model would
need to update or slide with the vessel - so called predictive sliding model.
This would account for modal cluster or family changes by making predictions
based on the most recent modes. The sliding model would also only use recent
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predictors which are appropriate for the current system parameters. Since the
vessel properties such as mass vary more slowly than the predictors this would
allow for accurate predictions in the vessels current configuration. The length
of the window used to train the forward prediction model could also be adjusted
by lengthening to account for operations with slowly varying parameters such
as open water navigation or reducing to account for more rapidly changing
conditions such as during ice navigation.

7.7.3 Predictive Sliding Model

The predictive sliding model was investigated on the two cases shown in Figure
7.11. Case 1 was a constant speed case containing 25 data blocks. Case 2 was
an alternating speed case between 0 and 10 knots containing 65 data blocks.

Figure 7.11: Acceleration time histories and ship speed for case 1 and 2.

Figure 7.12 presents the predictive model work flow for case 1. The nor-
malized predictor variables are shown in Figure 7.12a and are seen to be non-
stationary. The results of the modal tracking algorithm on the SSI estimates
is shown in Figure 7.12b. The first four modes are identified and flagged for
prediction. The correlation plot in Figure 7.12c indicates where linear trends
among variables exist. The predictor and response variables are then used to
fit a linear regression model in Matlab using fitlm.m. The model is then op-
timized using the Matlab step.m function which chooses the most significant
terms to add or remove. The histogram and normal probability of residuals
for the linear model and optimized linear model are shown in Figure 7.12d.
Plots of the residuals versus lagged residuals and residuals versus fitted values
are also shown to determine whether there was predictive power in the resid-
uals as indicated by trends. The residuals are seen to become more normally
distributed after the step optimization and no trends in the residuals were
observed.
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(a) Predictor variables. (b) Modal tracking.

(c) Correlation. (d) Residuals.

Figure 7.12: Predictive model work flow for case 1.

The statistical prediction model of each natural frequency fn was then
written in terms of the predictor variables and regression coefficients from the
optimized model as follows:

fn = Cn+αn∗Speed+βn∗Wtemp+γn∗Atemp+δn∗Wvel+µn∗WdirR+ϕn∗SpeedWtemp
(7.7.1)

The optimal predictive model parameters for each mode are shown in Table
7.2. In order to use this model in the Kalman filter the system matrix A and
state estimate x̂k−1 are written as shown in Equation 7.7.2.

Table 7.2: Predictive model parameters for case 1.

C α β γ δ µ ϕ
No. Intercept Speed Wtemp Atemp Wvel Wdir SpeedWtemp

1 4.0944 -0.3875 -0.1115 0 0.0836 0 0
2 -64.1856 25.2316 40.6531 1.0438 -0.3476 0 15.2423
3 5.0390 0 0.0527 0 0 0 0
4 -80.5023 31.9889 50.7084 0.1459 0 0 -18.9363
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A =



0 0 0 0 C1 α1 β1 γ1 δ1 µ1 ϕ1

0 0 0 0 C2 α2 β2 γ2 δ2 µ2 ϕ2

0 0 0 0 C3 α3 β3 γ3 δ3 µ3 ϕ3

0 0 0 0 C4 α4 β4 γ4 δ4 µ4 ϕ4

0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1



, x̂k−1 =



f1

f2

f3

f4

C
Speed
Wtemp
Atemp
Wvel
Wdir

SpeedWtemp


(7.7.2)

The results of the prediction model and Kalman filter for case 1 are shown
in Figure 7.13. The first 20 blocks are used to train the predictive model. The
blue circles are the SSI estimates, the red crosses show the model prediction
of the training data and the dotted line shows the 95 % confidence bound.
The model is seen to recreate the training data very accurately with a tight
confidence bound.

Figure 7.13: Kalman prediction for case 1. © SSI training set × Training set
prediction � Statistical model prediction© SSI estimates ♦ Kalman estimates

The forward prediction of the model is shown by blue squares at blocks
21 - 24, and SSI estimates are shown by green circles (were available). The
result of the Kalman filter is shown by the red diamonds. The model and
measurement noise covariance matrices Q and R were set to trust the SSI
estimates slightly more at roughly 65 %. The error covariance matrix P was
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optimized in a loop in order to initialize the final Kalman filter result with an
optimal P due to the short prediction sequence. The predictive model and SSI
estimates show good agreement and follow similar trends. The Kalman filter
shows promising results as an optimal blending technique between the model
and the data which both contain uncertainties and noise.

Case 2 contains a longer data sequence with significant changes in all pre-
dictor variables. The normalized predictor variables in Figure 7.14a show the
alternating vessel speed, decreasing water temperature, increasing air temper-
ature and varying wind conditions. The modes were not identified as clearly
and it was decided to track the first lateral, second bending and first torsional
modes as indicated in Figure 7.14b. The correlation plot in Figure 7.14c show
more dominant inter variable relationships. It should be noted that R2 val-
ues around 0.5 - 0.6 with p-value < 0.05 are considered significant due to the
nature of complex real data. The residual plots in Figure 7.14d show only a
slight improvement in the step optimization. A weak trend is visible in the
lagged residuals which is expected to have a negative influence on the results.

(a) Predictor variables. (b) Modal tracking.

(c) Correlation. (d) Residuals.

Figure 7.14: Predictive model work flow for case 2.

The optimal predictive model parameters for each mode are shown in Table
7.3. The results of the prediction model and Kalman filter for case 2 are shown
in Figure 7.15. The first 20 blocks are again used to train the model, with SSI
estimates indicated by blue circles and model predictions indicated by red
crosses. The model is therefore seen to accurately re-construct the training
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set (blocks 1 - 20). Two different methods were then investigated as shown in
Figure 7.15a and 7.15b.

(a) 34 block forward prediction. © SSI training set × Training set prediction �
Statistical model prediction © SSI estimates ♦ Kalman estimates

(b) 4 block forward prediction. © SSI training set × Training set prediction � � �
� Statistical model prediction © SSI estimates ♦ Kalman estimates

Figure 7.15: Kalman prediction for case 2.

Figure 7.15a shows the result of using the prediction model to make a
34 block forward prediction (from block 21 - 54) as shown by the light blue
squares, with dotted lines showing the 95 % confidence bound. Available SSI
estimates are indicated by green circles. The Kalman filter is iterated through
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Table 7.3: Predictive model parameters for case 2.

C α β γ δ µ ϕ κ ϑ
Intercept Speed Wtemp Atemp Wvel Wdir Speed- Speed- Wtemp-

No. Wtemp Atemp Wvel

1 4.8109 -0.0181 0 0 0.2566 0 0 0 0
2 5.6715 -0.4563 -0.2884 0.0166 -3.0647 0 0.2168 0.1267 1.8115
3 6.9366 -1.4661 -0.8861 0 -0.3652 0 0.8472 0 0

the 34 forward prediction blocks, and the Kalman estimate is shown by the
red diamonds. It can be observed that the Kalman estimates show a balanced
combination of the model predictions and SSI estimates. The Kalman esti-
mates are not overly or consistently biased by the SSI estimates. It is also
observed that in the absence of SSI data (blocks with no green circles) the
Kalman estimates do not show chaotic or unexpected variations and form a
smooth transition back to blocks where SSI estimates are once again available.

Figure 7.15b shows the results of using the 20 block predictive model to
make a 4 block forward prediction. The 4 blocks are then Kalman filtered and
the 20 block training model window is slid forward by 4 blocks to now include
the latest Kalman estimates. Each cluster of 4 block forward predictions is
indicated by a different colour grouping of squares. These forward predictions
show greater variability and lack continuity. Discontinuities are visible, most
notably where there are no SSI estimates such as blocks 28 - 29 in mode 1.
Very interestingly, the Kalman estimates show balance and continuity and do
not seem to be highly effected where large model discontinuities exist. This
is expected to be as a result of the Kalman filter optimization of the error
covariance P for each 4 block cluster in a loop. In fact when the Kalman
estimates are plotted on the same axes, as shown in Figure 7.16 they match
almost exactly. The exception is only the first estimate of each 4 block cluster
and furthermore only when there is no SSI estimate in the 4 block cluster
transition.

7.8 Conclusions
A new method to improve the uncertainties in system identification and track-
ing using a statistical model and a Kalman filter was presented. The idea
developed from the objective to make large data sets maximally informative.
This was achieved by using measured system inputs to build an optimized
regression model. The model was used in a Kalman filter together with SSI
estimates to make optimal predictions. The idea was demonstrated on a simu-
lated data set where it was found that the Kalman estimates improved system
identification predictions, and also contained underlying data trends.

The method was then investigated on full scale data from the polar re-
search vessel Polarstern. Initial model training led to the development of a
predictive sliding model, which was tested on two different cases. The statis-
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Figure 7.16: Kalman filter estimates for method 1 � and method 2♦.

tical model was trained on 20 data blocks and showed accurate reconstruction
of the training data. Forward predictions were demonstrated using a 34 and
4 block variation. The statistical model was found to make more consistent
future predictions for 34 blocks. The Kalman estimates were however not
overly or consistently biased by the SSI estimates or the model predictions.
It was also observed that in the absence of SSI data the Kalman estimates
did not show chaotic or unexpected variation and formed a smooth transition
back to blocks where SSI estimates were once again available. Comparison of
Kalman estimates showed very high agreement across both implementations.
In general the Kalman estimates show balanced and consistent results which
based on numerical testing provide improved system identification estimations.
Further research into understanding the effect of model training lengths and
forward prediction lengths for different operating conditions is suggested.
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Chapter 8

Conclusions and Future Research

8.1 Conclusions
This thesis investigated the use of system identification and modal tracking on
polar vessels towards the development of a decision aiding system. Current SSI
methods were found to be available only as commercial closed software. This
limited understanding of the data flow through the mathematical algorithms.
Open source software and development has proven to drive innovation, result
in more robust code and be a force multiplier (Balter, 2015). The need for
an open source toolbox which could be used both as a learning and research
tool was identified. This lead to the development of openSID, an open source
toolbox for system identification using SSI. The toolbox is available on github,
and interest from young researchers lead to improvements and new ideas. It is
also envisioned to use this platform to demystify SSI and help researchers find
new applications of these powerful techniques in different fields. A parametric
simulation study was conducted to investigate fundamental properties and
provide insight from simple systems which can aid in understanding more
complex results from real structures.

Full scale measurements were conducted on the research vessel Polarstern
during a voyage to the Arctic. This is the first comprehensive data set in-
cluding vibration responses and environmental parameters to span the entire
operational profile of a research voyage to the Arctic. The vessel was in-
strumented with over 2 km of cable in Bremerhaven, Germany. The final
instrumentation of accelerometers and the Data Acquisition System (DAQ)
was performed in Tromsø, Norway. The expedition from 18 July 2016 to 6
September 2016 generated a valuable data set containing a broad spectrum
of operational and environmental conditions. These include different cruis-
ing speeds, swell heights, swell directions and swell periods, ice types and ice
breaking manoeuvres, water and air temperature variations as well as different
vessel parameters such as draft, trim and engine configurations. Furthermore,
this data set has been made openly available at PANGAEA data archiving
under publication number PDI-15785. The main goals for making the data
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open access are (1) so that results in this thesis can be tested, recreated and
validated (2) opening the data to other researchers has the potential to bring a
diversity of ideas and optimal solutions and provide additional human capital
to drive innovation (3) a variety of open source data sets will allow open and
transparent benchmarking of state of the art algorithms.

System identification was investigated on full scale data where it was found
to identify seven global modes in the bandwidth 2 - 10 Hz. Not all modes were
identified at all time instances due to the different excitation forces and mag-
nitudes. Comparisons between SSI and LSCF were used to cross check modal
clusters based on the eigenvectors. A modal tracking algorithm using a pole
weighted Modal Assurance Criterion (MACXP) was developed and successfully
used to track modal clusters across different operational profiles.

A novel method to improve the uncertainty and sensitivity of system iden-
tification and tracking was presented based on a data driven statistical model
and a Kalman filter. A key objective was to make experimental data maximally
informative by using additional system inputs. The idea was demonstrated on
a simulated data set where it was found that the Kalman estimates improved
system identification results. Model training on full scale data led to the de-
velopment of a sliding predictive model using an optimized linear regression
method. The model was found to accurately re-create the training data set
and was used to make predictions based on future system inputs. Since both
the model prediction and the system identification estimates contain different
uncertainties the Kalman filter was used to combine both estimates in an opti-
mal way. The Kalman filter estimates were observed to produce balanced and
consistent results. The Kalman estimates were also not overly or consistently
biased by the SSI estimates or the model predictions.

8.2 Future Research
Based on the current research findings and with the vision of a decision support
system in mind, the following key points are proposed for future research.

Automation algorithms

Automatic algorithms are required to process large amounts of data without
expert user interaction. Automatic algorithms also allow for consistency across
results. In this thesis an automatic SSI technique using the MACXP was
explained. It was also shown how the novel Kalman filter method could be used
as an automatic modal parameter selection method. Further investigations into
the stability of these algorithms as well as their performance in real time is
suggested.
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Big data

Measurements lasting several months and years generates huge amounts of
data. The efficient storage and indexing of big data will facilitate optimal post
processing. Condensing large sets of results into key indicators would allow
these to be streamed to stations on land where alarms could alert researchers
to interesting phenomena.

Semi-real time performance

In order for the system to function as a useable tool semi-real time perfor-
mance is required. Since system identification estimates require a certain data
set length a sliding window could be used to provide estimates of a chosen
block length i.e 5 or 20 minutes. This block length could be made shorter
during ice breaking when conditions are changing more rapidly, aided by large
excitation amplitudes and a typical white noise spectrum, and made longer
during operations in calm open water when excitation is lower and longer data
blocks are required for accurate modal estimations. A software architecture
needs to be developed which automatically streams data in the desired format
to a computer performing signal processing, system identification and modal
tracking and then displays the result in a GUI over the local area network
connection on the bridge.

Permanent measurement technology

Full scale measurements on vessels operating in the ocean and polar regions
face challenges of corrosion, large temperature variations, moisture and im-
pact events. In order to make accurate measurements over many years the
sensor attachment methods, housings, cable and cable end connections, data
acquisition system (DAQ) and DAQ mounting need to be as robust as possible.

Combined system identification algorithms

As explained in Chapter 6 different system identification algorithms have dif-
ferent strengths and weaknesses. It is therefore proposed for future research
to investigate the potential of building modal models from combined system
estimates so that each system identification technique can be used according
to it’s respective strong points.

Operational and environmental profiling

In Chapter 6 it was observed that statistical relationships were complex and
did not trend together across different operating cases. It was proposed that
useful modelling and prediction would rely on a detailed understanding and
classification of operating and environmental parameters into suitable cases.
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In Chapter 7 this lead to the development of the predictive sliding model. Fur-
ther investigations into operational and environmental profiling could reveal
important patterns in the data and also allow for improved system identifica-
tion estimates and model predictions.

Harmonics

Although the Gauss-Newton and Periodogram smoothing harmonic removal
techniques were not found to significantly improve system identification esti-
mates on the current data set. Further investigations into the affects of the
shaft line harmonic on the first vertical bending mode are suggested.

Eigenvector scaling

The scaling of the identified eigenvalues is important for the reconstruction of
the mass, damping and stiffness matrices. Changes in vessel draft, ballast and
fuel were made during the voyage specifically to investigate the potential of
using sensitivity based scaling methods. This will be an interesting topic for
further investigation.
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