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Summary 

In diabetics, hyperglycemia, hyperlipidemia and inflammation potentiates the development of 

cardiovascular diseases (CVDs). These conditions provoke excessive generation of oxidative stress 

that has been implicated in the pathogenesis of diabetic cardiomyopathy (DCM). In the diabetic state, 

excessive generation of free radicals can cause oxidative damage to DNA and alter protein and lipids, 

leading to the activation of various death-induced signaling pathways. Activation of these death 

pathways result in structural and functional modifications to the myocardium. Current diabetic drug 

therapies do not protect the diabetic heart at risk from developing cardiovascular complications. Thus, 

in search for new therapeutics, we aim to unravel the molecular mechanisms associated with the 

protective effect of two major bioactive compounds from Aspalathus linearis, phenyl pyruvic acid-2-O-

β-D-glucoside (PPAG) and aspalathin against hyperglycemia-induced oxidative stress and apoptosis 

in H9c2 cardiomyocytes. 

The study showed that PPAG and aspalathin were able to decrease mitochondrial membrane 

depolarization and prevent hyperglycemia-induced myocardial apoptosis by increasing the Bcl2/Bax 

ratio. We revealed that while both compounds were able to reduce hyperglycemia-induced apoptosis, 

only aspalathin could ameliorate lipid toxicity and oxidative stress-associated with insulin resistance.  

An important feature of the failing heart is the observed shift in mitochondrial substrate preference that 

precedes the onset of oxidative damage. The current study revealed that aspalathin improved glucose 

metabolism by decreasing fatty acid uptake and subsequent β-oxidation. This was achieved through 

decreasing the expression of adenosine monophosphate-activated protein kinase threonine 172 

(pAMPK (Thr172)) and carnitine palmitoyltransferase 1 (Cpt1), while increasing that of acetyl-CoA 

carboxylase (Acc) and glucose transporter 4 (Glut4). Additionally, it is known that cardiomyocytes 

have a very low antioxidant capacity and a shift in mitochondrial substrate preference can result in 

accelerated oxidative damage. In this study, we showed that aspalathin ameliorated oxidative stress 

by increasing the antioxidant capacity of the cells through activation of the antioxidant response 

pathway, nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) and its downstream target genes. 

Moreover, we showed that aspalathin was able to reverse lipid toxicity by increasing the expression of 

Adiponectin, C1Q and collagen domain containing (Adipoq) and concomitantly decreasing cluster of 

differentiation 36 (Cd36) and Cpt1 mRNA expression. We further observed that Adipoq negatively 

regulated sterol regulatory element binding transcription factor 1 (Srebf1), stearoyl-Coenzyme A 

desaturase 1 (Scd1) and solute carrier family 27 (fatty acid transporter), member 3/5 (Slc27a3/5). This 

led to reduced lipid accumulation in H9c2 cardiomyocytes, with an associated decrease in total 

cholesterol, triglycerides and low-density lipoprotein in leptin resistant db/db mice. This was 

accompanied by decreased mRNA expression of inflammation markers in H9c2 cells, including 
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interleukin 3 and 6 (IL3 and IL6), tumor necrosis factor receptor superfamily, member 1b and 13 

(Tnfrsf1b and Tnfsf13), Janus kinase 2 (Jak2) and mitogen-activated protein kinase 3 (Mapk3). 

Together our results infer that aspalathin can slow down the progression of DCM, and thus protect the 

myocardium against causal factors associated with the development and progression of CVD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 v 

Opsomming 

In diabete, hiperglukemie, hiperlipidemie en inflammasie versnel die ontwikkeling van kardiovaskulêre 

siektes (CVDs). Hierdie toestande lei tot oormatige generasie van oksidatiewe stres wat betrokke is by 

die patogenese van diabetiese kardiomiopatie (DCM). In die diabetiese toestand, kan oormatige 

generasie van vrye radikale oksidatiewe skade aan DNA asook proteïne en vette verander, wat tot die 

aktivering van verskeie seldood seinpaaie kan lei. Aktivering van hierdie seldood seinpaaie 

veroorsaak strukturele en funksionele wysigings aan die miokardium. Huidige medikasie beskerm nie 

die diabetiese hart teen die ontwikkeling van kardiovaskulêre komplikasies nie. In die studie 

ondersoek ons die beskermende effek van twee hoof bioaktiewe verbindings van Aspalathus linearis, 

fenielpirodruiwesuur-2-O-β-D-glukosied (PPAG) en aspalatien, as nuwe terapeutiese middels, teen 

oksidatiewe stres en hiperglukemie-geïnduseerde apoptose in H9c2 kardiomiosiete en ontrafel ons die 

molekulêre meganismes wat betrokke is. 

Die studie het getoon dat PPAG en aspalatien mitokondriale membraan depolarisasie verminder en 

hiperglukemie-geïnduseerde miokardiale apoptose voorkom deur die Bcl2/Bax verhouding te verhoog. 

Die studie toon verder dat alhoewel beide verbindings in staat was om hiperglukemie-geïnduseerde 

apoptose te verminder, net aspalatien lipiedtoksisiteit en oksidatiewe stres, wat verband hou met 

insulien weerstand, verbeter. 

'n Belangrike kenmerk van hartversaking is die verskuiwing in mitokondrialesubstraat voorkeur wat die 

aanvang van oksidatiewe skade voorafgaan. Die huidige studie het getoon dat aspalatien glukose 

metabolisme verbeter deur vetsuuropname en daaropvolgende β-oksidasie te verminder. Dit word 

bereik deur die verlaagde uitdrukking van adenosienmonofosfaat geaktiveerde proteïenkinase 

threonien 172 (pAMPK (Thr172)) en karnitien palmitoyltransferase 1 (Cpt1), terwyl die ekspresie van 

asetiel-KoA karboksilase (Rek) en glukose transporter 4 (Glut4) verhoog word. Verder is dit bekend 

dat kardiomiosiete baie lae antioksidant kapasiteit het en gevolglik dat 'n verskuiwing in 

mitokondrialesubstraat oksidatiewe skade kan veroorsaak. Die studie wys dat aspalatien die 

antioksidantkapasiteit van die selle beskerm en oksidatiewe stres verlig deur aktivering van kernfaktor 

erythroïd-faktor (NF-E2)-verwante faktor 2 (Nrf2) antioksidant response element seintransduksie-pad. 

Aspalatien kon ook lipiedtoksisiteit verhoed deur adiponektien, C1Q en kollageen domein-verwante 

(Adipoq) ekspressie te verhoog met gepaardgaande afname van groepering van differensiasie 36 

(Cd36) and Cpt1 mRNA uitdrukking. Ons het verder opgemerk dat Adipoq sterol regulatoriese element 

bindende transkripsie faktor 1 (Srebf1), stearoyl-koënsiem A desaturase 1 (Scd1) en opgeloste stof-

draer familie 27 vetsuur transporter lid 3/5 (Slc27a3/5) ekspresie onderdruk, wat lipied akkumulasie in 

H9c2 kardiomiosiete teenwerk. In leptien weerstandige db/db muise het aspalatien totale cholesterol, 

trigliseriede en lae-digtheid lipoproteïen verlaag. Dit het gepaard gegaan met 'n afname in mRNA 
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uitdrukking van inflammasie merkers, wat interleukin 3 and 6 (IL3 and IL6), tumor nekrose faktor 

reseptor superfamilie, lede 1b and 13 (Tnfrsf1b and Tnfsf13), Janus kinase 2 (Jak2) en mitogen-

activated protein kinase 3 (Mapk3) insluit. 

In samevatting toon ons resultate dat aspalatien die ontwikkeling van DCM kan vertraag en daardeur 

die miokardium teen oorsaaklike faktore wat met die ontwikkeling en vordering van CVD verbind word, 

beskerm. 
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Introduction 

The prevalence of diabetes mellitus (DM) is increasing at an alarming rate worldwide. According to the 

International Diabetes Federation (IDF) the number of individuals living with DM is 415 million and this 

figure is estimated to reach 642 million by the year 2040 (IDF, 2015). The World Health Organization 

(WHO) lists three main types of diabetes: gestational DM, which can be defined as a degree of 

glucose intolerance during pregnancy; type 1 DM (T1DM), also known as juvenile or insulin dependent 

diabetes that is usually diagnosed in children and young adults; and type 2 DM (T2DM) which is 

related to obesity and represents approximately 90% of diabetes cases worldwide (WHO, 2012). DM 

is characterized by disturbances in insulin secretion and chronic hyperglycemia. Literature suggests a 

strong correlation between chronic hyperglycemia and micro- and macro- vascular complications, 

including retinopathy, nephropathy, neuropathy and cardiovascular diseases (CVDs) such as heart 

failure (HF) (Ginsberg and Mazze, 1994; Swan et al., 1997; Boudina and Abel, 2010).  

Chronic hyperglycemia remains the leading risk factor associated with HF in a diabetic state. Through 

various pathways, it is responsible for augmented production of oxidative stress (Fiordaliso et al., 

2004; Kukidome et al., 2006; Giacco and Brownlee, 2010; Mapanga and Essop, 2016). Oxidative 

stress may directly induce cardiac structural remodeling, a prominent sign of diabetic cardiomyopathy 

(DCM) (Watanabe, 1998). DCM is a distinct clinical entity that was first described about four decades 

ago (Rubler et al., 1972). The diagnosis of DCM remains nebulous and the precise mechanisms 

explaining DCM remain to be fully elucidated. Although therapeutic drugs certainly play a significant 

role in the treatment of DM and its co-morbidities, there is currently no treatment specific for DCM. 

Insulin and metformin are the first line antidiabetic drugs with known cardioprotective properties 

(Jonassen et al., 2001; Eurich et al., 2005; Yin et al., 2011). However, the rise in CVD related deaths 

in people with DM is still a major concern (Boudina and Abel, 2010; American Diabetes Association, 

2014). Furthermore, lifestyle interventions of caloric restriction and physical activity in patients with 

impaired glucose tolerance has been shown to improve CVD function. Nonetheless, most individuals 

do not adhere to such lifestyle interventions. On the other hand, antioxidants are among the leading 

therapies being investigated for their efficacy against various metabolic complications (Maritim et al., 

2003; Rahimi et al., 2005; Ford, 2006). In the last decade, there has been much interest in the 

potential health benefits of plant polyphenols such as resveratrol and mangiferin as dietary 

antioxidants (Sellamuthu et al., 2009; Szkudelski and Szkudelska, 2011; Wang et al., 2014). In 

addition, our laboratory has increasingly investigated and reported on the antidiabetic properties of 

compounds found in Aspalathus linearis (rooibos) (Muller et al., 2012; Mazibuko et al., 2013; 

Sanderson et al., 2014). However, the use of rooibos and its efficacy as a cardioprotective agent have 

not yet been investigated. 
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For this study we hypothesized that compounds specific to Aspalathus linearis (rooibos) protect the 

myocardium against hyperglycemia-induced oxidative injury by activating nuclear factor (erythroid-

derived 2)-like 2 (Nrf2) antioxidant response pathway. Thus, we aim to investigate the mechanism by 

which phenylpyruvic acid-2-O-β-D-glucoside (PPAG) and aspalathin are able to protect the 

myocardium against oxidative stress associated with diabetes mellitus. 

 

This thesis is divided into the following themes which include: 

I. Literature review (Chapter 1) 

II. Phenylpyruvic acid-2-O-β-D-glucoside attenuates high glucose-induced apoptosis in H9c2 

cardiomyocytes (Chapter 2) 

III. Aspalathin, a dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against high 

glucose-induced shifts in substrate preference and apoptosis (Chapter 3) 

IV. Aspalathin protects the heart against hyperglycemia-induced oxidative damage by up-

regulating Nrf2 expression (Chapter 4) 

V. Transcription profile unveils the cardioprotective effect of aspalathin against lipid toxicity 

(Chapter 5) 

VI. General conclusions (Chapter 6) 

 

Each chapter is structured according to the journal in which the article was published and if the results 

in a particular chapter have not been published yet, the specifications prescribed for the journal to be 

submitted to have been used. 
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Chapter 1: Literature review 

 

1.1. Cardiovascular diseases: a leading cause of death worldwide 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide (Fig. 1.) (World Health 

Organization [WHO], 2012). The continuous rise in non-communicable diseases such as diabetes 

mellitus (DM) and obesity remains a major burden causing an increase in CVDs worldwide (Boden 

and Salehi, 2013; WHO, 2014). Acute myocardial infarction (AMI) that may cause heart failure (HF) is 

often closely associated with risk factors such as DM, hypertension, obesity and smoking (Anand et 

al., 2000; Smith, 2007). Ischemic heart disease (IHD), also known as coronary artery disease (CAD), 

is the most common type of CVD (Reaven and Sacks, 2005; McCullough, 2007; Kealey, 2010). 

According to WHO, CAD was accountable for up to 42.3% of the 17.5 million CVD-related deaths 

reported in 2012, of which 9.2% was in the African region (Kengne et al., 2005; WHO, 2014). 

Moreover, diabetes can also affect cardiac structure and function independent of CAD, a condition 

identified as the diabetic cardiomyopathy (DCM) (Rubler et al., 1972; Boudina and Abel, 2010; Forbes 

and Cooper, 2013). 

 

1.2. Diabetic cardiomyopathy 

Cardiomyopathies are diseases of the myocardium that are characterized by a measurable 

deterioration of heart muscle function. As the condition worsens, less blood is pumped through the 

heart to maintain normal contractile function leading to a decrease in electrical rhythm and subsequent 

HF. According to a report by the American Heart Association (AHA), cardiomyopathies can be divided 

into 2 major groups based on predominant organ involvement (Maron et al., 2006). Primary 

cardiomyopathies are those exclusively or mainly limited to the heart muscle while secondary 

cardiomyopathies are a result of an underlying condition such as DM. Although they remain mainly 

non-ischemic, distinctively affecting the heart muscle, cardiomyopathies play a pre-dominant role in 

inducing HF and are one of the major causes of death in Africa (Kengne et al., 2008, 2005; Mbanya et 

al., 2010; Dalal et al., 2011). 
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Figure 1. The top 10 leading causes of mortality in 2012 (compiled by author, based on statistics by 

World Health Organization, 2014). Heart diseases are the leading cause of death in the world, with ischemic 

heart disease being the most prominent, followed by stroke. Heart failure is responsible for 3 in every 10 deaths 

worldwide and approximately 17.5 million deaths globally.  

 

DCM is a disease of the heart muscle in persons with DM. The prevalence of DCM is between 30-65% 

depending on the population under study (Miki et al., 2013; Dandamudi et al., 2014). DCM is 

characterized by left ventricular (LV) dysfunction accompanied by decreased systolic and diastolic 

function (Fonarow and Srikanthan, 2006). The precise mechanisms explaining LV impairment that is 

associated with systolic dysfunction in DCM remains to be fully elucidated. However, chronic 

hyperglycemia and hyperlipidemia, in the absence of CAD and hypertension is central in the etiology 

of DCM (Rubler et al., 1972; Poornima et al., 2006; Boudina and Abel, 2010). Epidemiological studies 

consistently report on a significantly increased LV wall thickness in both men and women with DM 

(Fig. 2.) (Devereux et al., 2000; de Simone et al., 2002). Moreover, these structural changes are 

distinctively identified in patients with DM but not in patients with impaired glucose tolerance (IGT) 

(Devereux et al., 2000; Adeghate and Singh, 2014; Cassidy et al., 2015). This indicates that 

myocardial modifications associated with a diabetic condition might not be an early defect but rather a 

result of prolonged exposure to hyperglycemia. In the diabetic heart, chronic exposure to 
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hyperglycemia can result in a shift in substrate preference leading to reduced cardiac efficiency 

(Stanley et al., 2005; Rijzewijk et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. An illustration of a hypertrophic heart from a diabetic patient compared to a normal heart from 

a non-diabetic individual. Hearts of patients with diabetes mellitus display irregularly enlarged left ventricular 

mass, which is a conspicuous sign of diabetic cardiomyopathy.  

 

1.3. Diabetic heart and energy substrate metabolism 

The derangement of cardiac energy substrate preference plays an important role during HF. In the 

normal heart, free fatty acids (FFAs) are the predominant energy substrate and are accountable for up 

to 70% of the energy supply (Stanley et al., 2005). The remaining proportions are mainly from glucose 

(up to 40%) and lactate oxidation (up to 10%) (Lei et al., 2004). Glucose is the preferred energy 

substrate for metabolism and ATP generation during diabetic-induced HF and this is attributable to its 

greater efficiency to produce high-energy products per oxygen consumed compared to the use of 

FFAs (Nagoshi et al., 2011). Insulin resistance inhibits this adaptive response, by almost exclusively 

using FFAs as an energy source, further contributing to the progression of ventricular remodeling and 

cardiac contractile dysfunction (Marfella et al., 2009).  
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FFAs enter cardiac cells either passively or actively using fatty acid transporters such as fatty acid 

translocase (FAT)/CD36 and fatty acid binding protein (FABP) (Lopaschuk et al., 2010). Upon entry, 

long chain FFAs can be converted to triacylglycerides (TAGs) by glycerolphosphate acyltransferase, 

resulting in an intramyocardial TAG pool; and this is simultaneous to increased accumulation of 

diacylglycerol (DAG) levels within heart cells in a diabetic state (Inoguchi et al., 1939; Schmidt et al., 

1999). DAG signaling may result in enhanced production of extracellular matrix proteins within a 

diabetic heart (Sharma and Ziyadeh, 1995; Zhao et al., 2014). Excess production of extracellular 

matrix proteins within the myocardium is closely associated with fibrosis, leading to adverse effects on 

cardiac structure and function (Mandavia et al., 2013). 

Increased intracellular DAG favours synthesis of dihydroacetone, a triose carbohydrate that is 

associated with increased free radical damage as well as the activation of protein kinase C (PKC) 

(Connelly et al., 2009; Geraldes and King, 2010). PKC exists in various isoforms and those known and 

most investigated in diabetes research include beta, alpha, gamma and delta isoforms. The main 

function of PKC is to control the function of target proteins through phosphorylation (Mochly-Rosen et 

al., 2012). Its inhibition through in vivo study models of diabetes reveals that PKC mediates a variety 

of activities including inflammation (Cameron et al., 1999; Brownlee, 2001; Connelly et al., 2009). In 

addition, its overexpression in the heart is implicated in the development of hypertrophy, leading to 

decreased ventricular compliance (Sentex et al., 2006). Treatment with antioxidants and decreased 

FFA uptake appears to attenuate DAG-PKC induced diabetic complications (Beckman et al., 2002; Xu 

et al., 2009). However, more clinical studies are required to investigate the precise role PKC plays in a 

diabetic heart and whether its inhibition can prevent diabetic associated vascular complications 

(Mapanga and Essop, 2016). 

 

1.3.1. Free fatty acid metabolism in the diabetic heart 

Adenosine monophosphate-activated protein kinase (AMPK) is a heterotrimeric protein composed of a 

catalytic α, non-catalytic β and γ subunits. The main function of this kinase is to preserve ATP or to 

promote alternative methods of ATP generation. It functions as a sensor during low energy states 

such as ischemia to change substrate utilization and thereby increase or decrease ATP synthesis. Its 

activation is controlled by an increase in the AMP:ATP ratio (Carling, 2004; Zungu et al., 2011). 

Stimulation of AMPK leads to phosphorylation of many target proteins important for ATP synthesis and 

utilization while concurrently inhibiting ATP-consuming pathways such as fatty acid synthesis. In the 

diabetic heart, AMPK activation is linked to phosphorylation of both acetyl-CoA carboxylase (ACC) 

and malonyl-CoA decarboxylase (MCD); however its association with the latter in the heart remains to 

be fully elucidated (Park et al., 2002, 2002; Sambandam et al., 2004; Brownsey et al., 2006). ACC and 
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MCD are both important for the interconversion of acetyl-CoA to malonyl-CoA. Phosphorylation of 

ACC by AMPK reduces the generation of malonyl-CoA; thus prompting more FFAs to enter 

mitochondria through carnitine palmitoyltransferase I (CPT1) for β-oxidation (Fig. 3.) (Makaula et al., 

2006). Resultant increased levels of ATP and citrate through β-oxidation are responsible for the 

allosteric inhibition of glycolysis through phosphofructokinase-1 (PFK1) (Randle et a., 1963, 1998). 

This causes accelerated reactive oxygen species (ROS) production and associated membrane 

peroxidation (Giacco and Brownlee, 2010; Rains and Jain, 2011). Hence, adequate control in the 

uptake and oxidation of FFAs remain crucial for optimal functioning of the myocardium, especially in a 

diabetic state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. AMPK is associated with the phosphorylation of both ACC and MCD to regulate myocardial 

energy metabolism in the heart muscle. Chronic hyperglycemia activates AMPK, resulting in the 

phosphorylation of ACC, releasing the inhibitory effect of malonly-CoA on CPT1 and subsequently leading to 

enhanced entry of FFAs via CPT1 into the mitochondria for β-oxidation. Abnormally increased β-oxidation is 

further accountable for mitochondrial membrane damage through peroxyl radicals. ACC: acetyl-CoA 

carboxylase; AMPK: 5’ adenosine monophosphate (AMP)-activated protein kinase; CPT1: carnitine 

palmitoyltransferase 1; FFA: free fatty acid; MCD: malonyl-CoA decarboxylase. 
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1.3.2. Glucose metabolism in the diabetic heart 

Under specific pathological conditions glucose becomes the preferred substrate in the heart, as it can 

provide greater efficiency by producing high energy products per oxygen consumed compared to 

FFAs (Nagoshi et al., 2011). However, insulin resistance impedes this adaptive metabolic shift. In the 

diabetic heart, myocardial glucose uptake is suppressed due to increased uptake and oxidation of 

FFAs (Fig. 4.) (Aroor et al., 2012). This of course more complex as high glucose uptake still continues 

in endothelial cells of the heart (Mapanga and Essop, 2016). Concurrently, the rate of oxygen (O2) 

consumption by the mitochondria is severely increased, causing the myocardium to be more 

susceptible to ischemic damage (How et al., 2006; Mandavia et al., 2013). Impaired myocardial 

glucose metabolism is observed in animal studies, where the rate of glycolysis was shown to be 

depressed by up to 48% in the hearts of untreated diabetic mice when compared to untreated lean 

control counterparts (Belke et al., 2000). A similar finding was reported in a study done on diabetic 

Zucker rats maintained on a high fat diet, showing an increased rate of fatty acid oxidation (FAO) with 

a concomitant decrease in glucose oxidation (Van den Brom et al., 2009, 2010).  

As part of cardiac substrate homeostasis, glucose transportation and sensing plays an integral role in 

the disease pathology of T2DM. Glucose transport into cardiomyocytes is mediated by two members 

of the glucose transporter family of proteins, glucose transporter 1 (Glut1) and glucose transporter 4 

(Glut4) (Fig. 4.). Glut1 is responsible for the basal uptake of glucose, whereas Glut4 is the main 

insulin-sensitive glucose transporter (Tsirka et al., 2001). For greater glucose demands, the 

stimulatory effect of insulin is responsible for the translocation of Glut4 to the plasma membrane for 

enhanced glucose uptake (Russell et al., 1999). When demand for glucose is lower Glut4 remains 

concealed in intracellular vesicles to a greater extent and less cycling to the plasma membrane. The 

potential association of Glut4 and increased glucose uptake is shown by various studies (Camps et 

al., 1992; Watson et al., 2004; Chen et al., 2007). Zisman and colleagues showed that mice lacking 

the Glut4 gene show signs of insulin resistance (Zisman et al., 2000). Furthermore, impaired 

myocardial substrate metabolism in the diabetic heart is associated with abnormally increased 

oxidative stress due to altered mitochondrial function (Lei et al., 2004; Joseph et al., 2014). This is 

characterized by morphological remodeling, occurring in parallel to contractile dysfunction (Boudina 

and Abel, 2007). Hence, the ideal ameliorative strategy to halt HF in DM should target moderately 

increasing intracellular glucose uptake while avoiding cardiac glucotoxicity. 
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Figure 4. Cardiac structural remodeling as a consequence of fatty acid and glucose oxidation. While 

Glut1 is responsible for the basal uptake of glucose, Glut4 is the main glucose transporter in the heart. Impaired 

substrate preference due to abnormally increased oxidation of FFAs is associated with inhibition of glucose 

oxidation and subsequent cardiac remodeling. ATP: adenosine triphosphate; FFAs: free fatty acids; Glut1: 

glucose transporter 1; Glut4: glucose transporter 4. 

 

1.4. Role of oxidative stress in a diabetic heart 

Altered cardiac energy substrate utilization and increased oxidative stress are linked to the onset of 

cardiac hypertrophy (Ingwall, 2009). Chronic hyperglycemia enhances oxidative stress and 

exacerbates myocardium injury, subsequent to the development of DCM (Boudina and Abel, 2010; 

Tarquini et al., 2011; Joseph et al., 2014; Mapanga and Essop; 2016). This has been confirmed by 

various laboratory studies showing strong correlation between oxidative stress and matrix remodeling 

in cardiomyocytes isolated from diabetic heart tissue (Uemura et al., 2001; Soliman et al., 2008; 

Dludla et al., 2014). Oxidative stress is aggravated by enhanced levels of ROS within cardiomyocytes 

(Rajamani and Essop, 2010; Essick et al., 2011). Abnormal ROS production elicits an increased pro-
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inflammatory response resulting in myocardial apoptosis (Sabri et al., 2003; Kim et al., 2005). Some of 

the well-known reactive oxygen substances, associated with myocardial damage include superoxide 

anion (O2
• −) and hydrogen peroxide (H2O2). Generation of ROS is generally a cascade of reactions 

that starts with the formation of O2
• − (Sharma et al., 2012). Superoxides rapidly dismutate to H2O2 

either spontaneously or catalytically by superoxide dismutase (SOD), while H2O2 is decomposed to 

water (H2O) and O2 through catalase (Cat).  

The mitochondrial electron transport chain (ETC) and the actions of the nicotinamide adenine 

dinucleotide phosphate-oxidase (NADPH oxidase) enzymes remain the foremost sources of stress in 

cardiomyocytes (Giacco and Brownlee, 2010; Kuroda et al., 2010; Sovari et al., 2013). Augmented 

activity of NADPH oxidase is demonstrated in the myocardium of a failing heart at the same rate as 

oxidative damage (Kuroda et al., 2010). Correspondingly, mitochondrial structural modification is 

affiliated with reduced endogenous antioxidant status in cardiomyocytes from diabetic heart tissue 

(Sivitz and Yorek, 2010; Ansley and Wang, 2013). 

 

1.4.1. Mitochondrial stress 

The mitochondrion remains an essential organelle for intracellular energy production. However, an 

increased capacity of the mitochondrion to produce energy is associated with increased ROS 

production. Given that a diabetic heart has a diminished mitochondrial antioxidant capacity (Huynh et 

al., 2014), it is therefore not surprising that minor alterations in mitochondrial structure or function 

induced by increased ROS are associated with major changes in the heart muscle (Marín-García et 

al., 2013; Zorov et al., 2014). Increased ROS and mitochondrial depolarization, subsequent to diastolic 

dysfunction has been reported in patients with metabolic disturbances (Sack, 2009; Montaigne et al., 

2013). Though the precise role of mitochondrial dysfunction in a diabetic heart is still lacking, 

consensus is that defects in ETC and its oxidative status play a major role in impaired mitochondrial 

morphology and function. 

Simultaneous to energy generation, there is constant generation of O2
• − within mitochondria (Zamzami 

et al., 1995). Accumulation of these radical substances result in the induction of the mitochondrial 

permeability transition (MPT) pore (Baines, 2009). MPT occurs at the same time with altered redox 

state of the mitochondria (Crompton, 1999; Zorov et al., 2014). With diseased states, the MPT pore is 

unique for being nonselective and allowing for the accumulation of excessive calcium (Ca2+) and other 

toxic compounds (Lemasters et al., 1998). Recent literature shows that the fate of the cell after an 

insult depends on the extent of the MPT pore formation (Orrenius et al., 2003; Kwong and Molkentin, 

2015; Morciano et al., 2015). If MPT pore formation occurs to only a limited extent, the cell may 
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recover through cell recovery mechanisms such as activation of mitophagy/ubiquitination, whereas if 

pore formation is exacerbated it accelerates apoptosis (Galluzzi et al., 2014). If it occurs to an even 

larger degree, the cell is likely to undergo necrotic cell death. Thus prevention of mitochondrial 

membrane depolarization may play a role in reducing myocardial injury associated with chronic 

hyperglycemia. 

 

1.4.2. NADPH oxidase 

NADPH oxidase (Nox) is an important enzyme that plays a notable role in the generation of ROS in 

many cell types, including cardiomyocytes. Nox generates intracellular ROS by transferring electrons 

from NADPH across the cell membrane and coupling these to molecular oxygen to produce O2
• −. Nox 

exists as different isoforms, from Nox1 to Nox4 and those predominant in the heart muscle are Nox2 

and Nox4 (Bedard and Krause, 2007; Mapanga and Essop, 2016). Nox1 has been identified to be the 

major source of ROS production in vascular tissues, resulting in low levels of nitric oxide (Paravicini 

and Touyz, 2008; Fu et al., 2014). Decreased levels of nitric oxide are associated with impaired 

endothelium-dependent vasodilatation of coronary arteries (Stockklauser-Färber et al., 2000). Human 

aortic endothelial cells exposed to high glucose, display upregulated expression of Nox1, concomitant 

to enhanced oxidative stress and pro-inflammatory markers (Gray et al., 2013). The same study 

showed that diabetic mice lacking Nox1 had a profound anti-atherosclerotic outcome related to 

reduced ROS and inflammation. Although Nox2 and Nox4 are predominant in the heart muscle, these 

ROS generating enzymes are also co-expressed in other cell types and are implicated in agonist-

stimulated redox-sensitive signal transduction (Bedard and Krause, 2007). Nox2 has been shown to 

play a central role in insulin resistance-mediated oxidative damage in vascular tissue (Sukumar et al., 

2013; Kowluru and Kowluru, 2014). Nox2 knockout transgenic mice with endothelial-specific insulin 

resistance present enhanced ROS production and vascular dysfunction (Guichard et al., 2006; 

Sukumar et al., 2013). On the other hand, the Nox4 isoform is specifically expressed in mitochondria 

of cardiomyocytes; and mice lacking Nox4 gene show accelerated free radical damage coupled by 

mitochondrial dysfunction (Kuroda et al., 2010; Maalouf et al., 2012). Its overexpression in the mouse 

heart deteriorates cardiac dysfunction by initiating apoptosis, leading to cytochrome-c release (Kuroda 

et al., 2010).  

 

1.5. Inflammation as a precursor for apoptosis 

Inflammation is the initial protective biological response of the body against harmful stimuli. There are 

various risk factors linked with the onset of inflammation; namely age, obesity, stress and smoking 
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(Willerson and Ridker, 2004; Sastre et al., 2011). However, hyperglycemia is one condition that has 

been shown to activate various pro-inflammatory transcription factors, including nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB) (Esposito et al., 2002; Castello et al., 2010). NF-κB is 

the most significant regulator of pro-inflammatory gene expression and is strongly associated with 

fibrosis in heart tissue (Miguel-Carrasco et al., 2010; Lorenzo et al., 2011). Overexpression of NF-kB 

accelerates apoptosis in a diabetic state (Cameron and Cotter, 2008; Kumar et al., 2013). By contrast, 

its inhibition in diabetic mice ameliorates ROS-induced damage through improving mitochondrial 

structural integrity (Mariappan et al., 2010; Gordon et al., 2011). 

Recent literature suggests that hyperglycemia-induced cardiomyocyte apoptosis is further deteriorated 

by the increased stimulation of inflammatory cytokines (Esposito et al., 2002; Pickup, 2004; King, 

2008). Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL6) are significantly increased in 

patients with uncontrolled hyperglycemia (Goyal et al., 2008). The activation of c-Jun N-terminal 

kinases (JNKs) pathway acts as a direct inducer of apoptosis in heart cells (Turner et al., 1998; Liu et 

al., 2004); and it triggers enhanced expression of pro-inflammatory cytokines (Lysiak et al., 2003; 

King, 2008). It is well known that inflammatory cytokines and chemokines are predictive makers for 

most cardiovascular events (Melter et al., 2001; Inoue et al., 2008). TNF-α is released by a variety of 

immune cells and is a prognostic marker for MI (Ridker et al., 2000). The reduced expression of TNF-α 

in the heart signals improved myocardial performance (Saini et al., 2005). Other well-known cytokines 

and chemokines include interleukin-1 beta (IL1β), Interleukin-8 (IL8), IL6, chemokine (C-C motif) 

ligand 3 (CCL3), and monocyte chemotactic protein 1 (MCP1) (Melter et al., 2001; Shanmugam et al., 

2003). These cytokines not only stimulate adhesion molecules within vascular tissue in DM, but can 

indirectly cause AMI via the inhibition of the PKB pathway (Kidd et al., 2008). A number of studies 

support the concept that IL1β and IL18 might be implicated in the pathogenesis of DCM (Van Linthout 

et al., 2007; Westermann et al., 2007; Lorenzo et al., 2011). The major mechanism by which such pro-

inflammatory cytokines may be associated with the development of DCM has been through initiating 

apoptosis (Wang et al., 2010; Wen et al., 2013). Inhibition of JNK phosphorylation, along with 

cytokines such as TNF-α and IL1β has been shown to deter high glucose-induced inflammation and 

apoptosis in cardiomyocytes from diabetic tissue (Thomas et al., 2014; Yu et al., 2016). 

 

1.6. The role of apoptosis in the diabetic heart  

Apoptosis is a regulated process of programmed cell death that forms a vital component in various 

biological systems. In a diabetic state, persistent hyperglycemia is understood to be the key mediator 

of myocardial apoptosis (Cai et al., 2002; Rajamani and Essop, 2010). Apoptosis signaling varies with 

different cell types and there are two main types of apoptotic pathways: intrinsic and extrinsic. 
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Literature has shown that both intrinsic and extrinsic apoptotic pathways in the diabetic myocardium 

are involved in HF and DCM (Li et al., 2007; Giacco and Brownlee, 2010; Kim and Kang, 2010). The 

intrinsic apoptotic pathway is mediated mainly through intracellular signals that involve the 

mitochondrion. Stimuli for the intrinsic pathway include generation of free radical species leading to 

alteration in the inner mitochondrial membrane resulting in loss of transmembrane potential, causing 

the release of pro-apoptotic proteins (Rajamani and Essop, 2010). This mitochondrial membrane 

depolarization is linked to a number of disturbances within the myocardium, including ATP depletion 

and bioenergetic failure (Johnson et al., 2016). In addition, deterioration of the proton-translocating 

ATPase and intracellular Ca2+ overload may occur concurrent the release of cytochrome-c (Webster, 

2012).  

Cytochrome-c is a vital component of the mitochondrial-ETC, acting as an electron shuttle during 

redox generation of ATP (Boekema and Braun, 2007). Its release and mitochondrial depolarization are 

considered key physiological events of apoptosis (Elmore, 2007). Earlier evidence shows that loss of 

cytochrome-c from mitochondria is one of the earliest changes in mitochondria during heart ischemia 

(Borutaite and Brown, 2003). In high glucose exposed cardiomyocytes, independent of mitochondrial 

depolarization status, cytochrome-c release is enough to cause apoptosis (Yu et al., 2008). However, 

once released into the cytosol, cytochrome-c may form an apoptosome by interacting with apoptotic 

protease activating factor 1 in the presence of deoxyadenosine triphosphate (dATP). This process 

results in the activation of pro-caspase-9 and caspase-3, respectively. Conversely, an extrinsic 

apoptotic pathway similarly lead to the cleavage of caspase-3, however the initial stimuli is usually 

external, such as pro-inflammatory cytokines (Elmore, 2007). Generally, myocardial remodeling is 

affiliated with increased activity of caspase-3, -7, and -9 (Schwarz et al., 2006). These observations 

are consistent with mitochondrial dysfunction found in heart cells of diabetic mice (Cai et al., 2002). 

Caspases are proteases that become incongruously activated as zymogens and may prompt 

apoptosis by activating poly (ADP-ribose) polymerase (PARP) proteins (Boulares et al., 1999). PARP 

activation plays a central role in the pathogenesis of diabetic cardiovascular dysfunction by inducing 

cardiac hypertrophy and fibrosis in the hearts of diabetic animals (Boulares et al., 1999; Joseph et al., 

2014).  

Pro-apoptotic proteins associated with accelerated myocardial damage are not only restricted to the 

cysteine-aspartic-specific caspases. B-cell lymphoma 2 (Bcl2) protein homologs are also needed for 

the modulation of apoptotic actions. These proteins can induce either pro-apoptosis or cellular survival 

depending on the cell’s fate. This family of proteins consists of two classes: anti-apoptotic Bcl2 

proteins or the pro-apoptotic proteins such Bax and Bad. Bax translocation and cytochrome-c release 

are regarded as two significant upstream molecular events of apoptosis (An et al., 2004). Bax is 

confined in the cytoplasm as a monomer and can be triggered by the BH3-only proteins such as Bim 
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and Puma, causing it to translocate into the mitochondria where it induces changes in mitochondrial 

membrane potential (An et al., 2004). Accumulative data suggests that drug agents that inhibit either 

Bax translocation or activation of caspases may alleviate MI induced by DM (Webster, 2012; Dludla et 

al., 2015; Johnson et al., 2016). Therefore, interventions that could inhibit pro-apoptotic proteins and 

mitochondrial cytochrome-c release could salvage myocardial injury. 

 

1.7. Endogenous cardiac protective mechanisms 

Free radicals within mitochondria are generally removed by mitochondrial SOD, thereby generating 

H2O2. This process allows H2O2 to be further reduced to water by glutathione (GSH)/thioredoxin (Txn) 

peroxidase or Cat enzymes. GSH remains an important intracellular antioxidant to prevent free radical 

damage. GSH and thioredoxins (Txns) can easily be oxidized to their disulfide form during oxidation 

reactions; thus, NADP transhydrogenase enzymes remain important to maintain the reduced form of 

these co-factors (Revollo et al., 2007). NADP transhydrogenase functions by transferring electrons 

from a reduced form of nicotinamide adenine dinucleotide (NADH) to NADP+ in order to regenerate 

GSH and Txn (Rydström, 2006). Txns are proteins that act as antioxidants and they serve as electron 

donors for enzymes such as ribonucleotide reductases (Berndt et al., 2008). The antioxidant 

mechanism of Txns involves facilitating protein reduction through cysteine thiol-disulfide exchange. 

Thioredoxin reductase (Txnrd) is the only known enzyme to reduce Trxn and is crucial during 

embryogenesis (Jakupoglu et al., 2005). Reduced expression of both GSH and Txns is consistently 

reported in experimental models investigating a diabetic heart (Chen et al., 2009; Giacco and 

Brownlee, 2010; Dludla et al., 2014). This is confirmed when investigated in either type 2 diabetic 

subjects or mice that are chronically subjected to hyperglycemia and hyperlipidemia, respectively 

(Bhatt et al., 2013; Marnewick et al., 2011).  

 

1.7.1. Activation of Nrf2 within the diabetic heart 

Expression of most antioxidant response genes, including GSH and Txns is regulated by the redox-

sensitive transcription factor, nuclear factor erythroid-2-related factor 2 (Nrf2) (He et al., 2009). Nrf2 is 

a transcriptional regulator that is activated in response to intracellular stress (Bryan et al., 2013). 

Genes activated by Nrf2 can be classified into numerous groups including phase II detoxifying and 

cytoprotective enzymes (Fig. 5.). Nrf2 resides in the cytoplasm, where it is subjected to continuous 

degradation by the ubiquitin-proteasome (Kobayashi et al., 2006). However, under stressful conditions 

such as ischemia or oxidative stress, it is activated by disassociating from its negative regulator Kelch-

like ECH-associated protein 1 (Keap1) and translocate to the nucleus. Once in the nucleus, it forms a 
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heterodimer with Maf protein before binding to the antioxidant response element (ARE) to initiate and 

activate antioxidant defence genes (Bai et al., 2013). Activation of Nrf2 in epithelial cells has been 

shown to induce GSH synthesis and thus protect against oxidative stress (Kode et al., 2008). In 

addition to its negative regulation of Nrf2, Keap1 also acts as a sensor for a wide array of stressors 

that could activate Nrf2.  

Antioxidant response components linked with Nrf2 activation include heme oxygenase-1 (Hmxo1/HO-

1), Txnrd, glutathione-S-transferase (Gst), and NAD(P)H:quinone oxidoreductase (Nqo1) (Chen et al., 

2009). Nrf2 also mediates gene expression of SOD, Cat, and nonenzymatic scavengers such as GSH 

and sulfiredoxin, which are vital for the reduction of oxidized protein thiols (Dinkova-Kostova and 

Abramov, 2015). Significant down-regulation of cardiac Nrf2 expression is concomitant to increased 

ROS and reactive nitrogen species damage in hearts of diabetic animals (Kode et al., 2008; He et al., 

2009; Bai et al., 2013; Dinkova-Kostova and Abramov, 2015). Thus, agents that can significantly up-

regulate Nrf2 expression have a potential to protect cardiomyocytes against high glucose induced 

apoptosis.  

 

1.7.1.1. Nrf2 and mitochondrial function 

Increased mitochondrial oxidative phosphorylation is associated with increased ROS production within 

the diabetic heart (Giacco and Brownlee, 2010). In a recent study, heart muscle cells exposed to H2O2 

display increased uncoupling protein 3 (UCP3) expression simultaneous to nuclear accumulation of 

Nrf2 (Anedda et al., 2013). However, silencing of Nrf2 significantly reduced UCP3 expression in these 

cells resulting in enhanced oxidative damage. There are few studies linking activation of Nrf2 and 

reduction of ROS by transcriptional upregulating uncoupling proteins which influences mitochondrial 

biogenesis. Uncoupling proteins (UCPs) are a family of proteins that are located in the inner 

mitochondrial membrane of mammalian cells (Dinkova-Kostova and Abramov, 2015). They act as 

proton transporters within the mitochondrial matrix to disintegrate increased membrane potential 

(Kadenbach, 2003). These transporter proteins are expressed in a variety of cell types, whereas 

UCP1 and UCP2 are predominantly found in the heart muscle where they act as negative regulators 

of mitochondrial derived ROS production (Kadenbach, 2003; Essop et al., 2004). Although it has been 

shown that UCPs may ameliorate mitochondrial stress by modulating mitogen-activated protein 

kinases (MAPK) pathways and preserving Ca2+ homeostasis (Boudina and Abel, 2006; Valouskova 

and Modriansky, 2008), it has been reported that mitochondrial membrane potential is significantly 

increased in the absence of Nrf2 (Dinkova-Kostova and Abramov, 2015). Enhanced mitochondrial 

membrane potential and accelerated rate of oxidative respiration are constant with increased levels of 

mitochondrial free radical damage leading to increased MPT pore opening. However, this increased 
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ROS production is neutralized by the Nrf2-dependent transcriptional upregulation of UCP3 which 

improves proton conductance of the mitochondrial inner membrane and consequently decreases the 

production of O2
• −.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The role of Nrf2 in response to increased ROS within a diabetic heart. Nox and mitochondrial-

ETC cause augmented production of O2
‒, which damages the cell through ROS/RNS. The cell reacts by 

activating the Nrf2-mediated antioxidant response system. Activated Nrf2 causes it to dissociate from Keap1 and 

migrate into the nucleus where it binds ARE and causes increased expression of cytoprotective genes and 

phase II detoxifying enzymes to combat ROS/RNS. ARE-antioxidant response element; ETC-electron transport 

chain; GPx2- glutathione peroxidase 2; Gst- glutathione S-transferase; Gclc- glutamate-cysteine ligase catalytic 

subunit; Keap1- Kelch-like ECH-associated protein 1; Nqo1- NADPH dehydrogenase [quinone] 1; Nox- NADPH 

oxidase; O2
‒ superoxide ion; Txn- thioredoxin; Txnrd1- thioredoxin reductase 1; HO-1- Heme oxygenase 1; 

Nrf2- nuclear factor (erythroid-derived 2)-like 2; RNS-reactive nitrogen species; ROS-reactive oxygen species. 
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1.8. Current antidiabetic agents and cardiac protection 

Primary interventions that may salvage a diabetic heart at risk from MI include lifestyle changes and 

maintaining blood sugar levels (American Diabetes Association, 2014). While such interventions are 

achievable and beneficial to the heart; adherence to lifestyle changes such as maintaining physical 

activity, remains a big challenge. Therefore, antidiabetic agents that could suppress postprandial and 

chronic hyperglycemia may be effective in decreasing the risk of HF. Although substantial work is 

required to confirm its long-term cardiac protective effect; metformin displays strong blood glucose 

lowering and potential cardiac protective effects (Kahn et al., 2006; Khurana and Malik, 2010; Yin et 

al., 2011). 

Despite overwhelming evidence on the efficacy of other antidiabetic drugs such as beta statins and 

dipeptidyl peptidase-4 (DDP4) inhibitors (Magkou and Tziomalos, 2014), metformin remains the 

leading first line antidiabetic drug for T2DM individuals with known cardiac complications (Khurana 

and Malik, 2010; Messaoudi et al., 2011). In addition to its accomplished antidiabetic properties (Kahn 

et al., 2006; Yin et al., 2011), metformin is associated with improved clinical outcomes in diabetic 

patients with heart failure (Eurich et al., 2005). It enhances the efficacy of a number of synthetic drugs 

and novel medicinal compounds currently screened for metabolic benefits (Eurich et al., 2013; Dludla 

et al., 2016; Johnson et al., 2016). Metformin monotherapy or its use as an add-on effect to 

glibenclamide improves the intracellular antioxidant status of the myocardium in streptozotocin (STZ)-

induced Sprague-Dawley rats (Erejuwa et al., 2010). Previous work also found that the benefit of 

metformin in the heart can be mediated through AMPK activation and improved antioxidative capacity 

(Gundewar et al., 2009; Johnson et al., 2016). However, there is an increasing toll of mortality due to 

cardiovascular complications within a diabetic population.  

 

1.9. Polyphenols as a cardioprotective intervention 

In recent years, more research has focused on the use of plant-derived products as a cardioprotective 

therapy (Marnewick et al., 2011; Muller et al., 2012; Chen et al., 2013; Mazibuko et al., 2013). Ideally, 

every plant has a potential medicinal use while for every disease there is likely a perfect natural cure. 

Medicinal plants have been extensively used in the pharmaceutical industry for the production of novel 

drugs to counteract various illnesses (Mukhtar and Ahmad, 2000; Pandey and Rizvi, 2009). Most 

medicinal plants contain a variety of compounds termed phytochemicals. Polyphenols are naturally 

occurring phytochemicals with variable phenolic structures. A polyphenol is classified according to the 

number and characteristics of the phenolic structure it contains. These functional phenol structures are 

unique to each class of polyphenols, giving it their distinct chemical and biological property. 
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Polyphenols are predominantly found in vegetables, fruits and teas. Furthermore, a profound 

relationship between a diet rich in polyphenols and health has given hope to long-term effective 

interventions that could prolong the onset of diabetes and it co-morbidities (Marnewick et al., 2011; 

Mazibuko et al., 2013; Sanderson et al., 2014).  

 

1.10. The major polyphenolic compounds present in rooibos 

Aspalathus linearis (Brum.f) Dahlg. (Fabaceae), commonly known as rooibos, is a popular South 

African plant that is used to make one of the leading herbal teas on the market. Rooibos tea is well 

known for its robust antioxidant activity and this has resulted in increased interest in its commercial 

value (Raynolds and Ngcwangu, 2010). Rooibos tea exists in two forms: a fermented one which is an 

oxidized form; and an unfermented one which is an unoxidized form. The fermentation process gives 

fermented rooibos its distinctive reddish-brown colour, while unfermented rooibos tea maintains its 

green color (Von Gadow et al., 1997). In addition to catechin, epicatechin, gallocatechin, and 

epigallocatechin; esters of gallic acid, catechin gallate, epicatechin gallate, gallocatechin gallate and 

epigallocatechin gallate are distinct polyphenolic compounds found in unfermented rooibos (Del Rio et 

al., 2013). Other bioactive compounds found in rooibos with ameliorative effect against various 

metabolic diseases, include its dihydrochalcones (aspalathin and nothofagin), flavones (orientin, 

isoorientin, luteolin, and apigenin), flavonols (quercetin, rutin), and the infrequently occurring 

phenylpyruvic acid-2-O-β-D-glucoside (PPAG) (Joubert et al., 2013). Therefore, due to their growing 

interest, it is important to assess the beneficial effects of major polyphenols from rooibos against 

oxidative-induced myocardial injury. 

 

1.10.1. Cardioprotective potential of flavanols present in rooibos 

The unfermented rooibos is unique from the fermented form by containing an additional group of 

flavonoids termed flavanols. This polyphenolic group is characterized by a 2-phenyl-3,4-dihydro-2H-

chromen-3-ol skeleton and flavanols found in abundance in unfermented rooibos include epicatechin, 

epicatechin gallate and epigallocatechin gallate (Fig. 6.) (Snijman et al., 2009). Accompanying its well-

documented antioxidant capacity (Von Gadow et al., 1997; Bramati et al., 2003; Joubert et al., 2004); 

unfermented rooibos has been shown to decrease body fat mass and levels of oxidized lipids in fat 

cells and human subjects, respectively (Marnewick et al., 2011; Sanderson et al., 2014). An 

aspalathin-enriched green rooibos extract (GRE) has been shown to display potential as an agent to 

induce hypoglycemia by inhibiting α-glucosidase in vitro and suppressing fasting plasma glucose 

(FPG) levels in Wistar rats; and ameliorate palmitate induced insulin resistance when tested in skeletal 
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muscle cells (Muller et al., 2012; Mazibuko et al., 2013; Mikami et al., 2015). In cultured skeletal 

muscle cells and pancreatic β-cells, GRE promotes GLUT-4 translocation to the plasma membrane 

and suppresses advanced glycation end products (AGEs)-induced ROS, respectively (Kamakura et 

al., 2015). In addition, this study shows that subchronic feeding with GRE for five weeks lowered the 

increased FPG levels found in a type 2 diabetic mouse model. In the heart, an aqueous extract of 

GRE protects against ischemic-induced reperfusion injury by modulating the phosphatidylinositol 3-

kinase/protein kinase B (PI3K-Akt) pathway (Pantsi et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The chemical structure of major flavanols present in Aspalathus linearis (rooibos). Unfermented 

rooibos is distinct by containing an additional group of flavonoids termed flavanols that is characterized by a 2-

phenyl-3,4-dihydro-2H-chromen-3-ol skeleton. 

 

In addition to the aforementioned synergistic amelioration of DM-associated complications by GRE, 35 

day treatment of STZ-induced diabetic rats with epigallocatechin gallate at doses of 15 and 30 mg/kg, 

respectively, significantly improved FPG levels and combats oxidative stress by increasing 

antioxidants such as GSH, Cat, SOD and glutathione peroxidase (Sabarimuthu Darlin Quine, 2005). In 

Wistar rats, administration of epigallocatechin gallate at a dose of 25 mg/kg for eight weeks displays a 

hypoglycemic effect in addition to attenuating oxidative stress (Roghani and Baluchnejadmojarad, 

2009, 2010). This flavanol further protects type 2 diabetic rats against hyperglycemia-induced 

oxidative stress by reducing the degree of autophagy (Kim et al., 2013). Other mechanisms by which 

Stellenbosch University  https://scholar.sun.ac.za



 22 

unfermented rooibos/GRE and its flavanols may protect the heart against diabetes-induced damage 

include regulating cardiac lipid metabolism, directly increasing intracellular antioxidants, and 

modulating the activation of AMPK (Pantsi et al., 2011; Mazibuko et al., 2013; Kamakura et al., 2015;). 

 

1.10.2. Cardioprotective potential of dihydrochalcones present in rooibos 

Dihydrochalcones are a family of bicyclic flavonoids containing two distinct benzene rings joined by a 

saturated three-carbon bridge (Fig. 7.). Dihydrochalcones, aspalathin and nothofagin are the unique 

polyphenolic compounds found in rooibos with potent therapeutic properties. These two compounds 

primarily have known antioxidant properties (Von Gadow et al., 1997; Snijman et al., 2009; Van Der 

Merwe et al., 2010; Chen et al., 2013) and are found in abundance in GRE (Manley et al., 2006). The 

biological of activity of aspalathin and its structural analog, nothofagin, is associated with 

antithrombotic activity (Ku et al., 2015) and display an ameliorative effect against high glucose-

induced inflammation when tested in endothelial cells from human umbilical vein and mice (Ku et al., 

2015; Lee and Bae, 2015).  

 

 

 

 

 

 

 

Figure 7. The chemical structure of major dihydrochalcones present in Aspalathus linearis (rooibos). 

Aspalathin and its structural analogue, nothofagin belong to a family of bicyclic flavonoids containing two distinct 

benzene rings joined by a saturated three-carbon bridge. 

 

Aspalathin has demonstrated an even greater efficacy to prevent diabetes-associated complications. 

This is evident through its potential antidiabetic properties when tested in in vitro muscle cells and an 

in vivo type 2 diabetic mouse model (Kawano et al., 2009). There was further confirmation of its 

hypoglycemic activity after it was tested in obese mice (Son et al., 2013). Our laboratory has 

presented recent evidence that aspalathin reverses palmitate-induced insulin resistance in cultured 
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adipocytes; while it prevents apoptosis by improving substrate metabolism and recuing oxidative 

stress in H9c2 cardiomyocytes (Mazibuko et al., 2015; Johnson et al., 2016). Despite limited literature 

on the in vivo cardioprotective activity of aspalathin, the molecular mechanism of protection is 

associated with activation of AMPK (Mazibuko et al., 2015; Johnson et al., 2016). Optimal modulation 

of AMPK within the diabetic heart is crucial in the regulation of myocardial substrate preference 

(Johnson et al., 2016). 

 

1.10.3. Cardioprotective potential of flavones present in rooibos 

Flavones, in general, appear as crystalline compounds and they provide yellow or white pigments in 

certain plants. The group of flavones present in rooibos includes orientin, isoorientin, luteolin and 

apigenin (Fig. 8.) (Schloms and Swart, 2014). The number of functional hydroxyl groups on the 

structure of luteolin is directly correlated to its scavenging effect of hydroxyl radicals (Brown et al., 

1998). In addition to its antidiabetic properties (Liu et al., 2013; Kim et al., 2014; Kwon et al., 2015), 

luteolin and its glycoside, luteolin-7-glucoside, attenuate myocardial oxidative damage and diabetic 

nephropathy by upregulating cellular antioxidants and inhibiting apoptosis (Fang et al., 2011; Qi et al., 

2011; Hwang et al., 2013; Madhesh and Vaiyapuri, 2013). They further reverse early onset of DCM by 

hindering the destructive actions of aldose reductase and nitrogen oxide synthase (NOS) in diabetic 

animals (Wang et al., 2012, 2013). Transgenic mice broadly overexpressing the human aldose 

reductase gene have been shown to display enhanced ROS production concurrent to MPT pore 

opening and ischemic injury (Ramasamy and Goldberg, 2010). The effect of luteolin in preventing 

ischemia/reperfusion injury in diabetic rats has also been reported to be associated with upregulation 

of myocardial nitric oxide synthase (Sun et al., 2012). Furthermore, there is very limited on the 

cardioprotective effect of orientin and isoorientin; except for a few studies which have reported on the 

inflammatory properties of both compounds when tested in either cultured adipocytes or endothelial 

cells (Alonso-Castro et al., 2012; Ku et al., 2015).  

Apigenin on the other hand has the unique ability to activate the transient receptor potential cation 

channel subfamily V member 4 (TRPV4) gene in endothelial cells (Ma et al., 2012). The expression of 

TRPV4 has been shown to be significantly reduced in the retinal microvascular endothelium 

(Monaghan et al., 2015). Apigenin inhibits lipopolysaccharide-associated inflammatory complications 

in mice by down-regulating increased mRNA expression of IL-6 and IL-1β via hindering actions of 

extracellular-signal-regulated kinases 1/2 (Zhang et al., 2014). Moreover, this flavone has recently 

been shown to combat diabetes-associated cognitive decline in rats by inhibiting oxidative stress and 

apoptosis in rats (Mao et al, 2015); and attenuates 2-deoxy-D-ribose-induced oxidative cell damage in 

pancreatic β-cells (Suh et al., 2012). Its hypoglycaemia-associated effect is linked with its capacity to 
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inhibit α-glucosidase activity and mediate glucose and lipid homeostasis when tested in vitro and 

diabetic animals (Panda and Kar, 2007; Cazarolli et al., 2012; Ohno et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The chemical structure of major flavones present in Aspalathus linearis (rooibos). The group of 

flavones present in rooibos includes orientin, isoorientin and apigenin, which are classified by a basic chemical 

structure consisting of a chromone (1,4-benzopyrone) moiety connected to a phenyl ring in position 2-(2′-

phenyl)-chromen-4-one or 2-phenyl-1,4-benzopyrone) . 

 

1.10.4. Cardioprotective potential of flavonols present in rooibos 

Quercetin and its glycoside, rutin are classified by a distinct 3-hydroxyflavone backbone and are the 

most explored group of flavonols in rooibos (Fig. 9.). Quercetin exhibits a broad range of 

pharmacological activities with the myocardium. It protects against atherosclerosis by inhibiting 

lipoxygenase-induced lipoprotein oxidation in endothelial cells and high fat-induced obese 

apolipoprotein E knockout mice (Reiterer et al., 2004; Russo et al., 2012; Shen et al., 2013). Its 

experimental use at a dose of 10 mg/kg body weight for 28 days protects against autoimmune 

myocarditis by suppressing oxidative stress in rats (Arumugam et al., 2012). Quercetin is thought to 
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exert its cardiac protection through quenching lipid peroxidation, as it is a known scavenger of peroxyl 

radicals (Terao et al., 1994; Da Silva et al., 1998). 

 

 

 

 

 

 

 

 

Figure 9. The chemical structure of major flavonols present in Aspalathus linearis (rooibos). Quercetin 

and its glycoside, rutin are classified by a distinct 3-hydroxyflavone backbone chemical structure. 

 

Quercetin ameliorates hyperglycemia and dyslipidemia by improving the antioxidant status and 

inflammatory response in diabetic mice and rats (Cho et al., 2003; Oršolić et al., 2011; Maciel et al., 

2013; Alam et al., 2014). In a double-blind randomized clinical trial done on women (n=72), quercetin 

supplementation (500 mg capsule daily) significantly reduced systolic blood pressure (Zahedi et al., 

2013). In combination with rutin, it enhances glucose uptake in muscle cells subjected to oxidative 

stress (Dhanya et al., 2014). It also attenuates STZ-induced hepatocellular damage and kidney 

muscle dysregulations such as intracytoplasmic vacuolization and brush border loss (Elbe et al., 2015; 

Gomes et al., 2014). Quercetin has a high affinity to inhibit AGEs such as methylglyoxal and glyoxal in 

the bovine serum albumin system (Li et al., 2014). Its proposed potential mechanism against high 

glucose-induced damage is associated with the modulation of sirtuin-1-dependent endothelial nitric 

oxide synthase upregulation in endothelial progenitor cells (de Boer et al., 2006; Allard et al., 2009). It 

may also act by activating AMPK, causing increased GLUT-4 translocation associated with enhanced 

glucose uptake in rat muscle and liver cells (Eid et al., 2015). Likewise, rutin has been shown to 

display strong properties halt myocardial damage in a diabetic state decreasing postprandial 

hyperglycemia and slowing down formation of AGEs in various experimental models (Odetti et al., 

1990; Stanley and Kamalakkannan, 2006; Fernandes et al., 2010; Wang et al., 2015).  
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1.10.5. The phenyl-propenoic acid glucoside present in rooibos 

The occurrence of PPAG in rooibos was described for the first time about a decade ago (Fig. 10) 

(Marais et al., 1996). Phenylpyruvic acids apparently play a key role in the biosynthesis of a number of 

secondary metabolites, including PPAG (Joubert et al., 2013). Likewise, the biological activity of 

polyphenolic compounds with similar structures to PPAG such as 3-phenylpyruvate and β-

phenylpyruvate have long been reported to display antidiabetic properties (Malaisse et al., 1983; Ben-

Abraham et al., 2003). A fermented rooibos extract has been shown to contain abundant levels of 

PPAG compared to its unfermented form (Joubert et al., 2013). Exposure of cardiomyocytes isolated 

from diabetic rats to a low concentration of fermented rooibos that contains high levels of PPAG 

prevents oxidative stress and apoptosis (Dludla et al., 2014). Recent findings, studying PPAG have 

shown that this compound attenuates insulin resistance and protect beta cells from obese mice 

against endoplasmic reticulum stress-induced apoptosis by improving glucose tolerance (Muller et al., 

2013; Mathijs et al., 2014; Himpe et al., 2016). Although an in vitro study on H9c2 cardiomyocytes 

recently showed that PPAG abolishes high glucose-induced altered myocardial substrate metabolism 

and apoptosis by increasing Bcl2/Bax ratio and reducing caspase 3/7 activity (Dludla et al., 2016), 

very limited data is available on the cardioprotective properties of PPAG.  

 

 

 

 

 

 

 

 

Figure 10. The chemical structure of a phenylpropenoic acid-2-O-β-D-glucoside (PPAG) present in 

Aspalathus linearis (rooibos).  
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1.11. Problem statement 

The World Health Organization is constantly reporting on the rise in the burden of non-communicable 

diseases. The increased percentage (up to 80%) in premature deaths resulting from non-

communicable diseases in low and middle countries places a growing burden on healthcare resources 

in managing this worldwide epidemic. The largest proportion of non-communicable diseases are 

caused by complications associated with CVDs and DM. Furthermore, blood glucose lowering 

therapies such as insulin and metformin have played a major role in prolonging lives of diabetic 

patients. However, tight control of blood glucose still remains a challenge in such patients. By contrast, 

ameliorative therapies for oxidative stress, including polyphenols as an adjunct to current blood 

lowering drugs, show promise in protecting diabetic hearts in experimental models. In recent years 

rooibos has gained popularity due to its potential use as a dietary supplement that is rich in 

polyphenols. An increasing number of rooibos polyphenols present robust antioxidant properties that 

are associated with ameliorative effects on inflammation and apoptosis, leading to improved cardiac 

function in different animal models. However, the mechanisms by which rooibos and its polyphenolic 

compounds modulate hyperglycemia-induced oxidative stress are not fully elucidated, and the present 

dissertation aimed to improve on this understanding. 
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Abstract 

 

Chronic hyperglycemia is closely associated with impaired substrate metabolism, dysregulated 

mitochondrial membrane potential and apoptosis in the diabetic heart. As adult cardiomyocytes 

display limited capacity to regenerate following an insult, it is essential to protect the myocardium 

against the detrimental effects of chronic hyperglycemia. This study therefore investigated whether 

phenylpyruvic acid-2-O-β-D-glucoside (PPAG), present in Aspalathus linearis (rooibos), is able to 

attenuate hyperglycemia-induced damage in H9c2 cardiomyocytes. H9c2 cardiomyocytes were 

exposed to a high glucose concentration (33 mM) prior to treatment with PPAG (1 µM), metformin (1 

µM), or a combination of PPAG and metformin (both at 1 µM). Our data revealed that high glucose 

exposure increased cardiac free fatty acid uptake and oxidation, mitochondrial membrane potential 

and apoptosis (caspase 3/7 activity and TUNEL) and decreased the Bcl2/Bax protein expression ratio. 

PPAG treatment, alone or in combination with metformin, attenuated these glucose-induced 

perturbations, confirming its protective effect in H9c2 cardiomyocytes exposed to chronic 

hyperglycemia. 

 

Key words: Phenylpyruvic acid-2-O-β-D-glucoside, hyperglycemia, fatty acid uptake and oxidation, 

myocardial apoptosis. 
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Introduction 

Cardiovascular diseases (CVD) are a leading cause of death worldwide [1]. Moreover, the continuous 

rise in non-communicable diseases such as diabetes mellitus (DM) and obesity remains a major 

burden contributing to increased CVD onset [1]. There are currently ~415 million individuals burdened 

with DM and this is estimated to reach ~642 million by the year 2040 [2]. Patients with DM are at 

increased risk of developing CVD [2, 3]. In addition, the chronic hyperglycemia of DM contributes to 

the development of diabetic cardiomyopathy [4, 5]. Cardiomyopathies are a class of heart diseases 

that distinctly affect the structure of the heart muscle independently of coronary artery disease and 

hypertension [4, 5]. Although mainly non-ischemic of nature, cardiomyopathies play a predominant 

role to induce heart failure and are one of the major causes of death in southern Africa [5, 6].  

The mechanisms by which chronic hyperglycemia induces myocardial injury are varied and have not 

been fully elucidated [7]; however, enhanced intracellular flux of free fatty acids (FFAs) is implicated 

as it can result in mitochondrial deficiencies and subsequently trigger myocardial apoptosis [8-10]. 

FFAs are the preferred substrate for energy generation within the normal mammalian heart, while 

glucose provides the majority of the remaining proportion [11]. The diabetic heart utilizes a high 

proportion of FFAs as an energy source that can elicit detrimental effects, e.g. the deterioration of 

heart function and a state of energy deficiency [11-13]. Furthermore, increased FFA uptake within 

cardiomyocytes subjected to elevated concentrations of glucose is accompanied by aberrant 

mitochondrial membrane potential, preceding myocardial apoptosis [14, 15]. 

 

 

Figure 1. The chemical structure of phenylpyruvic acid-2-O-β-D-glucoside (PPAG). 

 

Phytochemicals, especially those present in plant foods, are gaining increasing popularity due to 

potential health-promoting properties. Such compounds are therefore actively screened for novel 

antidiabetic and cardioprotective properties [16-19]. For example, Aspalathus linearis (Brum.f) Dahlg. 

(Fabaceae) used to brew a popular herbal tea known as rooibos, contains polyphenols such as the 
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novel dihydrochalcone, aspalathin, with robust antioxidant properties [17]. A precursor in the flavonoid 

biosynthesis pathway and a non-phenolic compound, phenylpyruvic acid-2-O-β-D-glucoside (PPAG) 

(Fig. 1) [20], is not unique to rooibos, but it occurs rarely in nature and only few studies have reported 

on its presence in plants [21]. Of note, in vitro and in vivo models of diabetes previously demonstrated 

that PPAG improved metabolic parameters such as glucose intolerance and it also protected 

pancreatic β-cells against endoplasmic reticulum stress and palmitate-induced apoptosis [19, 22]. 

However, as its effects within the mammalian heart are unknown, this study aimed to establish 

whether PPAG can protect heart cells exposed to chronic hyperglycemia. 

 

Results 

Compared to the experimental control (cells exposed to media only) (100.0 ± 8.2%), PPAG induced a 

concentration-dependent response with the highest ATP concentrations at 1 µM (119.4 ± 0.5%, p = 

0.0001) (Fig. 2). We therefore employed this dosage for the remainder of experiments conducted in 

this study.  

 

 

 

 

 

 

 

 

 

Figure 2. Determination of optimal PPAG treatment dose. H9c2 cardiomyocytes were treated for 12 hours with 

various concentrations of PPAG (0.01 to 1000 µM) to determine ATP content as a measurement of metabolic 

activity. Results are the mean ± SD of 3 independent biological experiments, each done in triplicate. *p ≤ 0.05, 

**p < 0.01, ***p < 0.001 compared to experimental control (EC; untreated cells). 

 

High glucose (33 mM) induced a robust increase in fatty acid uptake (FAU) (135.2 ± 4.9%, p = 0.0001) 

and fatty acid oxidation (FAO) (140.0 ± 7.0%, p = 0.0002) in H9c2 cardiomyocytes when compared to 
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the normal glucose control (100.0 ± 3.9% and 100.0 ± 4.2%, respectively) (Fig. 3A, B). Post-treatment 

with metformin (123.2 ± 6.1%, p = 0.05 and 120.1 ± 8.2%, p = 0.05), PPAG (115.0 ± 4.7%, p = 0.001 

and 112.1 ± 3.2%, p = 0.001), as well as a combination of metformin + PPAG (114.0 ± 2.4%, p = 

0.001 and 113.2 ± 3.9%, p = 0.001) significantly reduced FAU and FAO, respectively (Fig. 3A, B).  

 

 

 

 

 

 

 

 

 

Figure 3. Effect of PPAG, metformin (MET) and MET + PPAG on high glucose-induced alteration of fatty acid 

uptake and oxidation in H9c2 cardiomyocytes. (A) Rate of fatty acid uptake (FAU) and (B) fatty acid oxidation 

(FAO). Mannitol (MAN) did not have an effect on either FAU or FAO and was comparable to the normal glucose 

(NG) control. Results are the mean ± SEM of 3 independent biological experiments relative to the NG control, 

each done in triplicate. ***p < 0.0001 versus NG; #p < 0.05, ##p < 0.001, ###p < 0.0001 versus high glucose (HG). 

Ψp < 0.05 versus MET. 

 

2', 7’-dichlorfluorescein diacetate (DCFH-DA) fluorescence intensity as a representative of reactive 

oxygen species (ROS) formation was significantly increased (141.3 ± 4.9%, p = 0.0001) after 

chronically exposing H9c2 cells to 33mM glucose when compared to the normal glucose control 

(100.1 ± 3.1%) (Fig. 4A). Enhanced ROS in high glucose exposed cells occurred concomitant to the 

reduction of glutathione (GSH) content (CellTracker fluorescent intensity) (62.4 ± 1.6%, p = 0.0001) 

and superoxide dismutase (SOD) activity (59.4 ± 3.9%, p = 0.0001) (Fig. 4AB). Although PPAG was 

able to reduce enhanced ROS production (127.3 ± 5.0%, p = 0.05), it failed to improve decreased 

GSH content (68.4 ± 4.0%) and SOD activity (61.4 ± 4.8%). Interestingly, metformin and its 

combination with PPAG showed more potency in ameliorating ROS generation (123.4 ± 2.9%, p = 

0.001 and 110.4 ± 5.0%, p = 0.0001) and improving GSH content (81.2 ± 4.2%, p = 0.0001 and 88.4 ± 

4.4%, p = 0.0001) and SOD activity (86.0 ± 4.5%, p = 0.0001 and 75.2 ± 4.9%, p = 0.001) when 

compared to PPAG monotherapy (Fig. 4ABC). 
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Figure 4. Effect of PPAG, metformin (MET) and MET + PPAG on oxidative stress markers. (A) Formation of 

reactive oxygen species (ROS), (B) glutathione (GSH) content and (C) superoxide dismutase (SOD) activity. 

Dichlorofluorescein diacetate (DCF-DA) fluorescent stain was used to detect the generation of ROS while 

CellTracker Blue CMAC fluorescent stain was used to detect the amount of GSH. Mannitol (MAN) did not have 

an effect on oxidative stress markers and was comparable to the normal glucose (NG) control. Results are the 

mean ± SEM of 3 independent biological experiments relative to the NG control, each done in triplicate. *p < 

0.05, **p < 0.001, ***p < 0.0001 versus NG; #p < 0.05, ##p < 0.001, ###p < 0.0001 versus high glucose (HG). 

 

Exposure of H9c2 cardiomyocytes to high glucose increased mitochondrial membrane potential in 

cells stained with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) 

fluorescence stain (Figure 5A). Treatment with metformin, PPAG or metformin + PPAG ameliorated 

this effect (Figure 5A). Quantitative fluorescent analysis revealed that high glucose increased 
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mitochondrial membrane potential by 138.0 ± 4.1% (p = 0.0001) when compared to the normal 

glucose exposed cells (100.0 ± 3.6%) (Fig. 5B). PPAG, metformin and metformin + PPAG treatment 

attenuated this effect (110.4 ± 5.3%, p = 0.0001; 121.2 ± 4.1%, p = 0.006; and 115.3 ± 7.3%, p = 0.05, 

respectively) (Fig. 5A, B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of PPAG, metformin (MET) and MET + PPAG on mitochondrial transmembrane potential (ΔΨm) 

measured by JC-1 stain. (A) Representative images of H9c2 cardiomyocytes exposed to 33 mM glucose for 48 h 

before treatment with either PPAG, MET or MET + PPAG; cells with non-depolarized mitochondria exhibited an 

orange fluorescence while depolarized cell mitochondria displayed green fluorescence. Mannitol (MAN) did not 

have an effect on mitochondrial membrane potential and was comparable to the normal glucose (NG) control. 

(B) Quantitative analysis of JC-1 fluorescence staining. Results are the mean ± SEM of 3 independent biological 

experiments relative to the NG control, each done in triplicate. ***p < 0.0001 versus NG; #p < 0.05, ##p < 0.001, 

###p < 0.0001 versus high glucose (HG). 

 

High glucose-induced cells displayed increased levels of fluorescence intensity associated with late 

apoptosis (propidium iodide and TUNEL staining) when compared to the normal glucose controls (Fig. 

6A). In support, H9c2 cardiomyocytes exposed to high glucose exhibited increased caspase 3/7 
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activity (132.2 ± 6.1%, p = 0.05), with a concomitant upregulation in TUNEL positive cells (8.4 ± 1.1, p 

= 0.001) when compared to normal glucose treated cells (101.0 ± 8.7% and 2.6 ± 0.7, respectively) 

(Fig. 6B, C). Treatment with PPAG and metformin + PPAG decreased both the activity of caspase 3/7 

(109.3 ± 5.3%, p = 0.05 and 4.6 ± 0.4, p = 0.05), and TUNEL positive cells (108.2 ± 3.7%, p = 0.001 

and 4.1 ± 1.0, p = 0.05) (Fig. 6A, B, C). 

A 
 

 

B       C 
 

 

 

 

 

 

 

Figure 6. Effect of PPAG, metformin (MET) and MET + PPAG on high glucose-induced cell apoptosis in H9c2 

cardiomyocytes. (A) Representative images of H9c2 cardiomyocytes exposed to 33 mM glucose for 48 h before 

treatment with either PPAG, MET or MET + PPAG; cells positive for propidium iodide nuclear stain exhibited red 

fluorescence, while those positive for TUNEL, displayed green fluorescence. (B) The anti-apoptotic potential of 

PPAG to reduce caspase 3/7 activity, (C) and TUNEL fluorescent staining was comparable to an additive effect 

of MET and PPAG. Results are the mean ± SEM of 3 independent biological experiments, each done in 

triplicate. *p < 0.05, **p < 0.001 versus normal glucose (NG); #p < 0.05, ##p < 0.001 versus high glucose (HG). 
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Bcl2/Bax protein expression ratio was robustly diminished in H9c2 cells exposed to high glucose (80.1 

± 8.8%, p = 0.03) when compared to normal glucose treated cells (100.0 ± 1.7%) (Fig. 7). Treatment 

with PPAG (107.4 ± 4.8%, p = 0.009) and metformin (104.4 ± 3.6%, p = 0.01) was able to ameliorate 

this effect (Fig. 7). However, treatment with metformin + PPAG (95.2 ± 2.5%) was ineffective (Fig. 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Effect of PPAG, metformin (MET) and MET + PPAG on Bcl2 and Bax protein expression. While high 

glucose (HG) reduced Bcl2/Bax expression ratio, treatment with PPAG was able to improve the survival ratio 

when compared to MET alone or in combination with PPAG. Results are the mean ± SEM of 3 independent 

biological experiments relative to the normal glucose (NG) control, each done in triplicate. *p < 0.05 versus NG; 

#p < 0.05, ##p < 0.001 versus HG.  

 

Discussion 

Previous studies found that rooibos can trigger a peripheral hypoglycemic effect, improve glucose 

uptake and relieve endoplasmic reticulum stress-induced cell apoptosis in muscle, liver and pancreatic 

β-cells of diabetic animals [19, 22]. Focusing on the heart, selective rooibos compounds can attenuate 
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myocardial dysfunction by improving endothelial function and limiting ischemia/reperfusion injury [23, 

24]. However, it remains unknown whether PPAG is able to protect the myocardium against 

hyperglycemia-mediated apoptosis. The current study therefore focussed specifically on this 

phenylpropenoic acid glucoside, present in rooibos, by employing an in vitro cardiac model of chronic 

hyperglycemia. Our findings demonstrate that relatively low PPAG doses attenuated high glucose-

induced apoptosis in H9c2 cardiomyocytes, thus offering early promise as a novel cardioprotective 

agent. 

The initial experiments revealed that low PPAG doses increased metabolic activity of H9c2 

cardiomyocytes. However, higher PPAG concentrations significantly reduced cell viability. These data 

are in agreement with earlier work demonstrating that a lower PPAG dose stimulated glucose uptake 

in Chang cells [19], unlike the high dose that resulted in reduced uptake.  

Chronic hyperglycemia can result in a number of pathophysiologic disturbances that contribute to 

myocardial injury [7, 9]. Such perturbations include derangements in both glucose and fatty acid 

metabolic pathways, with increased ROS generation emerging as a central, damaging outcome in this 

process. This study found that high glucose availability resulted in altered cardiac FAU and FAO 

concomitant to increased ROS and reduced intracellular antioxidant capacity of the cells. In parallel, 

mitochondrial membrane potential was higher together with increased myocardial apoptosis. This is 

consistent with the findings of others [15, 25], where high glucose exposure induced mitochondrial 

membrane hyperpolarization and apoptosis in undifferentiated H9c2 cells compared to controls. It is 

likely that in our model elevated fuel substrate availability (e.g. fatty acids) results in increased flux 

through the mitochondrial electron transport chain leading to enhanced proton extrusion into the inter-

mitochondrial membrane space [11, 12, 14]. Higher intracellular glucose levels will also lead to 

increased mitochondrial membrane potential due to greater availability of reducing equivalents for the 

mitochondrial electron transport chain [7]. Subsequently, this will generate increased mitochondrial 

ROS levels (due to impaired electron flow at electron transport complexes) and contribute to 

myocardial apoptosis [15, 26]. For example, others found that chronic hyperglycemia and associated 

mitochondrial deficiency are key factors that trigger myocardial apoptosis in a diabetic state [10, 11]. 

Increased mitochondrial membrane potential can also cause the release of pro-apoptotic proteins into 

the cytosol [27]. In agreement, our data show lower Bcl2/Bax protein expression together with 

increased caspase activity and higher propidium iodide and TUNEL staining. These observations are 

consistent with enhanced propidium iodide and TUNEL staining found in isolated heart cells of diabetic 

mice [28, 29]. Higher intracellular glucose and fatty acid levels can also trigger multiple, non-

mitochondrial effects that can also contribute to the onset of myocardial cell death [30, 31].  
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Our data revealed that 1 μM PPAG treatment for 12 h attenuated several of the high glucose-induced 

perturbations earlier discussed. For example, PPAG treatment limited cardiac FAU and FAO, 

decreased mitochondrial membrane potential and lowered cardiac apoptosis. These findings are in 

agreement with the other results showing that PPAG ameliorated apoptosis by increasing Bcl2 

expression and inhibiting Bax translocation to the mitochondrion. Similar findings were also reported in 

pancreatic β-cells of mice fed a high-fat diet [22]. In agreement with this, fermented rooibos extract 

with abundant levels of PPAG protected primary rat cardiomyocytes against oxidative stress-induced 

myocardial injury [16]. We have previously demonstrated that aspalathin, the major phenolic 

compound in rooibos protected against shifts in substrate preference in H9c2 cardiomyocytes exposed 

to high glucose concentrations and that this protective effect was enhanced if aspalathin was 

combined with metformin [32]. PPAG also decreased ROS production; interestingly, this effect was 

enhanced by metformin.  

The potential mechanism by which PPAG inhibits hyperglycemia induced myocardial injury remains to 

be fully elucidated. However, recent research is highlighting a strong connection between activation of 

tumor protein p53 (p53) and increased expression of Bax or inhibition of Bcl2 in various disease 

models [33-35]. In hearts of diabetic mice, upregulated expression of p53 is associated with enhanced 

lipid accumulation and mitochondrial generated ROS, leading to apoptosis [35]. Thus, we propose that 

PPAG prevents hyperglycemic induced cardiac apoptosis through modulating increased FFA 

substrate flux into mitochondrial respiration complexes with a concomitant amelioration of the 

Bcl2/Bax ratio. However, further studies are required to assess the involvement of the p53 tumor 

suppressor gene in our model. 

In summary, this study reveals the cardioprotective potential of PPAG against hyperglycemia-induced 

cell injury and provides impetus for future investigations into its long-term effects on CVD in diabetic 

individuals. 

 

Materials and Methods 

Materials 

The ViaLight plus ATP kit, cell culture tested water, Dulbecco’s modified Eagle’s medium, Hank’s 

balanced salt solution and Dulbecco's phosphate-buffered saline (DPBS) were obtained from Lonza; 

14C-palmitate from American Radiolabelled Chemicals; fetal bovine serum and horse serum from 

Biochrom; Bcl2 antibody from Cell Signaling Technology; secondary antibodies, Bax and β-actin from 

Santa Cruz Biotechnology; and the Caspase-Glo 3/7 kit from Promega. PPAG (99% purity; batch: 

MC1(2)-248-91D) was synthesized by High Force Research. H9c2 rat derived cardiomyoblasts 
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(ECACC No. 8809294) were purchased from European Collection of Cell Cultures. All consumables 

and reagents, including metformin (99% purity) and mannitol (99% purity) were purchased from 

Sigma-Aldrich Corp., unless otherwise specified. 

 

Preparation of PPAG solution 

PPAG (MW: 326) at 10 mg was dissolved in 1 mL cell culture-tested water to give a final concentration 

of 30.67 mM stock solution which was stored at –80°C. Working solutions of 1 mM were made up from 

the initial stock using Dulbecco’s modified Eagle’s medium to give dilutions ranging from 0.01 to 1000 

µM.  

 

H9c2 cell culture and treatment with PPAG 

Embryonic heart-derived H9c2 cardiomyoblasts were cultured in supplemented Dulbecco’s modified 

Eagle’s medium (10% fetal bovine serum) for 48 h under standard tissue culture conditions (37°C in 

humidified air and 5% CO2). Depending on the assay performed, 60-80% confluent cells were seeded 

at a density of 2 x 104 or 0.8 x 104 cells /mL in 6-well or 96-well multi-plates, respectively. After 48 h of 

culture, H9c2 cardiomyoblasts were differentiated into cardiomyocytes by substituting growth media 

with differentiation media consisting of Dulbecco’s modified Eagle’s medium supplemented with 1% 

horse serum and 10 nM all-trans-retinoic acid for 6 days [36]. All experiments were initiated on day 7. 

H9c2 cells were exposed to a range of PPAG log concentrations (0.01 to 1000 µM) for 3, 6, 12, 24 and 

48 h, respectively. Thereafter, the effect of PPAG on hyperglycemia-induced cell apoptosis was 

tested. Here H9c2 cells were exposed to 33 mM glucose for 48 h prior to treatment with either PPAG 

(1 µM), metformin (1 µM) or metformin + PPAG (both at 1 µM) for an additional 12 h. Cells exposed to 

either 5.5 mM glucose, 33 mM glucose or 33 mM mannitol served as controls for normal glucose, high 

glucose and osmotic stress, respectively [25]. 

 

Measurement of metabolic activity 

ATP production as a measurement of metabolic activity in H9c2 cells was determined using the 

ViaLight plus ATP kit, according to the manufacturer’s instructions. Briefly, treated cells were lysed 

and incubated for 10 min at room temperature. Thereafter, ATP monitoring reagent was added and 

the luminescence determined after 2 min, using a BioTek FLx800 plate reader with data acquisition 

using Gen 5 software (Bio-Tek Instruments, Inc.). 
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Fatty acid uptake and oxidation 

FAU and FAO were determined as previously described [32, 37]. Following treatment, H9c2 cells were 

washed twice with warm DPBS and re-cultured in high glucose Dulbecco’s modified Eagle’s medium 

(without phenol red) containing 0.5 µCi/mL final concentration of palmitate-D-[14C (U)] in clear 6-well 

multi-plates. Each well was covered with filter paper wetted with 0.1 M NaOH for collection of 14CO2 

released from 14C-palmitate. The filter paper was replaced every 3 h and at the end of the experiment, 

14C activity was measured by liquid scintillation (2220 CA, Packard Tri-Carb series, PerkinElmer) to 

calculate FAO. The remaining cells were rinsed in ice cold DPBS to stop metabolism, then lysed with 

0.3 M NaOH + 1% sodium dodecyl sulfate buffer. The cell lysate was used to assess 14C-palmitate by 

liquid scintillation, as well as protein content using the Bradford’s protein assay [38]. The counts per 

minute (CPM) over specific activity (pre-determined using GraphPad radioactivity calculator: 

http://www.graphpad.com/quickcalcs/radcalcform.cfm) was used to determine fmol/mg protein.  

 

Measurement of oxidative stress markers 

Intracellular production of ROS was detected using DCFH-DA fluorescent dye (Cell Biolabs Inc.) as 

previously described [32]. Briefly, 100 µL of a 1 µM DCFH-DA final solution prepared in Hank’s 

balanced salt solution was added to H9c2 cells in a multi well plate and incubated at 37°C for 30 min 

in humidified air with 5% CO2. After 30 min, the dye was aspirated and cells rinsed in Hank’s balanced 

salt solution. DCFH-DA fluorescent intensity (Ex 485 ± 20 nm; Em 528 ± 20 nm) was measured using 

a BioTek FLx800 plate reader. 

GSH content was determined using 7-amino-4chloromethylcoumarin (CellTracker Blue CMAC) 

(Invitrogen). Briefly, 100 µL of 2.5 μM CellTracker solution was added to H9c2 cells and incubated at 

37ºC for 30 min. Thereafter, media containing CellTracker solution was removed and cells rinsed in 

DPBS before fluorescence intensity (Ex 360 ± 20 nm; Em 460 ± 40 nm) was measured using a BioTek 

FLx800 plate reader. 

SOD activity was quantified using a Biovision kit. Briefly, following treatment, H9c2 cells were lysed by 

the addition of 100 µL lysis buffer. Ten-microliter cell lysate was then transferred to a new 96 well plate 

to which 200 µL tetrazolium working solution was added. SOD activity was measured at an 

absorbance of 450 nm using a BioTek ELx800 plate reader. 
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Determination of mitochondrial membrane potential (ΔΨm) 

Membrane depolarization was assessed by staining H9c2 cardiomyocytes with JC-1 according to a 

previously described method [15]. Briefly, treated H9c2 cells were washed twice with warm DPBS, 100 

µL of 2 µM JC-1 solution (made up in Dulbecco’s modified Eagle’s medium without phenol red) was 

added and the cells then incubated at 37°C in humidified air and 5% CO2 for 30 min the dark. After 

JC-1 exposure, cells were rinsed in DPBS before fluorescence (Ex 485 ± 20 nm; Em 530 ± 25 nm and 

590 ± 35 nm) was measured using a BioTek FLx800 plate reader and Gen 5 software. In addition, 

fluorescent photomicrographs were taken at 10x magnification using a Nikon Eclipse Ti inverted 

microscope and NIS-Elements imaging software. 

 

Propidium iodide fluorescent stain 

Propidium iodide staining assay was performed following a published protocol [39]. Briefly, treated 

cells were exposed to 1 μg/mL propidium iodide solution for 30 min at 37°C in humidified air with 5% 

CO2. After 30 min, cells were rinsed in DPBS and analyzed as described for determination of 

membrane depolarization. Fluorescent photomicrographs were taken at 10x magnification using a 

Nikon Eclipse Ti inverted microscope and NIS-Elements imaging software. 

 

Caspase 3/7 activity assay 

In this assay, Caspase-Glo 3/7 reagent is cleaved by caspases producing a luminescent signal 

proportional to caspase activity. Briefly, treated cells were washed twice with warm DPBS before 

being lysed. Caspase-3/7 Glo reagent was mixed with cell lysates and the mixture was incubated in 

the dark at 37°C in humidified air with 5% CO2 for 30 min. Luminescence was measured using an 

integration time of 1 s and equipment described for measurement of metabolic activity. Results were 

normalized to the protein content determined according to the method of Bradford [38].  

 

TUNEL assay 

DNA fragmentation, as a measure of apoptosis in H9c2 cells, was detected using a DeadEnd 

Fluorometric TUNEL kit, according to the manufacturer’s instructions. Briefly, treated cells were 

washed twice in DPBS and permeabilized with 0.2% Triton X-100. Thereafter, the equilibration buffer 

and TdT reaction mix (supplied with the kit) were added before incubation at 37°C in humidified air 

with 5% CO2 incubator for 60 min. The apoptotic rate was calculated as the average number of 
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condensed TUNEL-positive cells in non-overlapping fields of 1 mm2 under 10x magnification field 

(average of at least 5 fields per well) using a Nikon Eclipse Ti inverted fluorescent microscope and NIS 

Elements imaging software.  

 

Western blot analysis 

Protein extracts were isolated from different treatment groups and Western blot analysis performed 

according to an already described method [40]. Membranes were immunoblotted for 16 h at 4°C with 

the following primary antibodies: anti-Bax (1:250 dilution), anti-Bcl2 (1:1,000 dilution) and anti-β-actin 

(1:1,000 dilution) antibody, included as a loading control. The relevant horseradish peroxidase 

conjugated secondary antibodies were applied the following day for 90 min at room temperature. The 

protein signal was detected using a chemiluminescence solution and quantified using a Chemidoc-

XRS imager (Bio-Rad). 

 

Statistical analysis 

Results were expressed as the mean ± SEM of 3 independent biological experiments. Statistical 

analysis was performed using GraphPad Prism software (GraphPad Software, Inc.). Comparisons 

between treatment groups were performed using a one way ANOVA followed by a Tukey post hoc test 

or unpaired Student t-test where appropriate. P-value of ≤ 0.05 was deemed as statistically significant. 
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Abstract 

 

Scope: Energy deprivation in the myocardium is associated with impaired heart function. This study 

aims to investigate if aspalathin (ASP) can ameliorate hyperglycemic-induced shift in substrate 

preference and protect the myocardium against cell apoptosis. 

Methods and results: H9c2 cells were exposed to, either normal (5.5 mM) or high (33 mM) glucose 

concentrations for 48 hours. Thereafter, cells exposed to 33 mM glucose were treated with metformin 

(1 µM) or ASP (1 µM), as well as a combination of metformin and ASP for 6 hours. In vitro studies 

revealed that ASP improved glucose metabolism by decreasing fatty acid uptake and subsequent β-

oxidation through the decreased expression of adenosine monophosphate-activated protein kinase 

threonine 172 (pAMPK (Thr172)) and carnitine palmitoyltransferase 1 (Cpt1), while increasing acetyl-

CoA carboxylase (ACC) and glucose transporter 4 (Glut4) expression. ASP inhibited high glucose-

induced loss of membrane potential in H9c2 cells as observed by an increase in 5,5',6,6'-tetrachloro-

1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) ratio (orange\red fluorescence) and 

decreased apoptosis by reducing intracellular reactive oxygen species and DNA nick formation, while 

increasing glutathione, superoxide dismutase, uncoupling protein 2 (UCP2) and Bcl-2\Bax ratio.  

Conclusion: Our study provides evidence that ASP increases glucose oxidation and modulates fatty 

acid utilization producing a favorable substrate shift in H9c2 cardiomyocytes exposed to high glucose. 

Such a favorable shift will be of importance in the protection of cardiomyocytes in the diabetic heart.  
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Apoptosis; diabetes; cardiomyopathy; fatty acid oxidation. 
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1. Introduction 

In the last two decades, the incidence of diabetes mellitus (DM) has increased worldwide with a 

concomitant increase in cardiovascular complications [1]. This is not surprising as diabetes is a known 

contributor to the development of cardiovascular disease (CVD), with diabetic individuals having a 2-3 

times higher risk of developing cardiovascular complications compared to the non-diabetic population 

[2]. This makes CVD the most common cause of mortality and morbidity in the diabetic population [2, 

3]. However, the underlying pathogenesis of diabetic-induced cardiomyopathy (DICM) is still unclear. 

Current consensus is that exposure to chronic hyperglycemia enhances the production of reactive 

oxygen species (ROS) which may contribute to the development of DICM [4-6].  

Hyperglycemia, dyslipidemia, and inflammation increase the generation of ROS or nitrogen species 

(RNS), key factors associated with the pathogenesis of DICM. The diabetic heart is particularly 

vulnerable to increased oxidative stress due to a deficient endogenous antioxidant defense 

mechanism [5, 7-9]. This impaired equilibrium between production and elimination of reactive species 

associated with the diabetic state results in structural remodeling of the myocardia and left ventricular 

dysfunction, which is the hallmark of DICM [3, 4, 10]. 

The mitochondria can be described as “the power house of the cell” and apart from increased ROS 

production, mitochondrial dysfunction and impaired energy metabolism have been associated with 

many forms of heart disease including DICM [11]. An increased shift in fatty acid β-oxidation (FAO) 

relative to carbohydrate oxidation has the potential to decrease cardiac efficiency and increase 

contractile dysfunction as observed in DICM. Increasing evidence suggests that therapies aimed at 

decreasing FAO, or directly stimulating glucose oxidation would be of benefit to the diabetic heart 

during and following myocardial ischemia [12, 13]. 

Metformin is a first-line antidiabetic drug known to reduce the risks of heart disease in people with 

diabetes. To date, several studies have shown that metformin is able to preserve left ventricular 

function by reducing endogenous glucose production and hepatic gluconeogenesis through the 

stimulation of AMP-activated protein kinase activity [14]. However, the efficacy of metformin to protect 

the diabetic heart at risk from increased chronic hyperglycemia decreases over time [15].  

The antioxidant efficacy of dietary flavonoids and their beneficial effect on health have been reported 

on previously [16-18]. The use of plant-based products as a means to increase the antioxidant 

defense in the body is gaining popularity. The balance between oxidation and the body’s antioxidant 

system is critical in maintaining optimal cellular function. Flavonoids as antioxidants have the ability to 

scavenge and reduce free radical formation [19]. In the human body, flavonoids function as 

antioxidants and exert their protective effect through their ability to increase levels of endogenous 
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antioxidant defenses such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) 

and glutathione (GSH) which allow for the elimination of excessive ROS in the body [20, 21]. 

Therefore, preventing redox disequilibrium caused by increased oxidative stress.  

Aspalathin (ASP) a dietary flavonoid present in Aspalathus linearis (rooibos) has known antioxidant 

and antidiabetic properties. Muller et al (2012) reported that ASP has a sustained glucose lowering 

effect comparable to metformin in STZ-induced diabetic rats [22]. Furthermore, ASP was shown to 

suppress ROS induced by advanced glycation end products (AGEs) in vivo [23]. Therefore, ASP, as a 

dietary supplement, through its beneficial effect on glycemia and associated oxidative stress may 

protect the diabetic heart. A systematic review of literature led us to believe that a combination of ASP 

with metformin may have an additive effect on glycemia, reduce oxidative stress and lower the risk for 

DICM [22-28]. The aim of our study was to investigate the ameliorative effect of ASP as a 

monotherapy or in combination with metformin on oxidative stress and FAO in H9c2 cardiac muscle 

cells exposed to a high glucose (HG) concentration. 

 

2. Materials and Methods 

2.1. Reagents list 

Dulbecco's Modified Eagle's Medium (DMEM), Dulbecco`s phosphate buffered saline (DPBS) and 

penicillin/streptomycin were from Lonza BioWhittaker (Verviers, Belgium). All other cell culture 

reagents were obtained from Sigma-Aldrich (Saint Louis, Missouri, MO, USA). Protease and 

phosphatase inhibitor tablets were purchased from Roche Diagnostics (Mannheim, Germany). Radio-

immunoprecipitation assay (RIPA) buffer and all primary antibodies were purchased from Cell 

Signaling Technologies (Beverly, MA, USA). Secondary antibodies and β-actin were obtained from 

Santa Cruz Biotechnology (Dallas, TX, USA). Fetal bovine serum (FBS) and horse serum (HS) were 

from Biochrom (Berlin, Germany). Aspalathin (ca. 98%, batch SZI-356-54) was synthesized according 

to the method of Han et al (2014) [29] by High Force Research LTD (Durham, UK). Two-deoxy-[3H]-D-

glucose and 14C palmitate were obtained from American Radiolabeled Chemicals (St Louis, MO, 

USA). Palmitic acid (C18:O) and all other chemicals (analytical grade) were obtained from Sigma-

Aldrich (Saint Louis, MO, USA). 

 

2.2. In vitro culturing of embryonic ventricular rat heart derived cells (H9c2) 

Embryonic rat heart-derived cardiac myoblasts H9c2 (ATCC, CRL-1446) were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) (supplemented with 10% (v/v) FBS, 100 U/ml of penicillin and 100 
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mg/ml of streptomycin) under standard tissue culture conditions (37°C in a water-saturated 

atmosphere of 5% CO2) in 75 cm2 culture flasks at a seeding density of 1 x 106. After 48 hours, sub-

confluent (60%) cells were split and plated in either 6-, 24- or 96-well plates in DMEM (containing 10% 

FBS) at seeding densities of 2 x 104, 1 x 104 or 0.8 x 104, respectively for 48 hours. Thereafter, cells 

were differentiated for 6 days in DMEM supplemented with 1% horse serum and 10 nM retinoic acid 

(RA). The culture medium was replaced daily and experiments were initiated on day 7. To assess the 

effect of normal glucose (NG; 5.5 mM) compared to HG (HG; 33 mM), H9c2 cells were first washed in 

glucose free DMEM before exposure to DMEM containing 5.5 mM or 33 mM glucose for 24 and 48 

hours, respectively. Control cells were treated with 33 mM mannitol to rule out the effect of osmolarity.  

 

2.3. Effect of aspalathin on H9c2 treatment 

A stock solution of ASP was prepared according to Muller et al (2012) [22]. Following pre-treatment of 

cardiomyocytes, with either 5.5 mM or 33 mM glucose for 48 hours, H9c2 cells were treated with or 

without either ASP (1 μM), metformin (MET) (1 µM) or a combination of ASP and MET (both at 1 µM). 

Experimental groups consisted of (1) NG control (5.5 mM); (2) HG control (33 mM); (3) HG + MET (1 

µM); (4) HG + ASP (1 µM) and (5) HG + MET+ ASP (both at 1 μM).  

 

2.4. ATP assay 

Cellular ATP content used as a measure of metabolic activity was performed using a ViaLight™ plus 

ATP kit (Lonza, Basel, Switzerland), following the manufacturer’s instructions. Luminescence was 

quantified using a BioTek® FLx800 plate reader and Gen 5® software (BioTek Instruments Inc., 

Winooski, VT, USA). 

 

2.5. Fatty acid uptake and oxidation 

Fatty acid uptake (FAU) and FAO were determined using a modified method of Nugent (2001) [30]. 

Briefly, ASP treated cells were cultured in DMEM (without phenol red) containing a final 0.5 µCi/mL of 

palmitate-D-[14C (U)] for 6 hours in 6-well tissue culture plates, overlaid with filter paper moistened with 

0.1 M NaOH. After 6 hours, the filter paper was removed and the absorbed 14CO2 as a product of 

palmitate-D-[14C (U)] was detected by liquid scintillation. Thereafter, medium was removed and cells 

washed with 1 mL DPBS. Cells were then lysed with 0.3 M NaOH, and FAU of palmitate-D-[14C (U)] 

was assessed in the lysate by liquid scintillation (2220 CA, Packard Tri-Carb series, PerkinElmer, 

Downers Crove, IL, USA. Results were calculated as fmol/mg. Counts per minute (CPM) divided by 
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specific activity (calculated by Graphpad radioactivity calculator 

(http://www.graphpad.com/quickcalcs/radcalcform.cfm)), normalized to protein content was used to 

estimate fmol/mg. Data are expressed in relative to the control in arbitrary units. 

 

2.5.1. 2-Deoxy-[3H]-D-glucose uptake 

2-Deoxy-[3H]-D-glucose uptake (GU) was measured using the method described by Muller et al 

(2012). Briefly, after 6-hours of incubation with the relevant treatments or controls, in 24 well plates, 

the cells were incubated with a final concentration of 0.5 μCi/mL 2-deoxy-[3H]-D-glucose for 15 

minutes at 37 °C in 5% CO2 and humidified air. 2-Deoxy-[3H]-D-glucose uptake was assessed by 

liquid scintillation [22]. Results were calculated as fmol/mg as described in subsection 2.5. Data are 

expressed relative to the control in arbitrary units. 

 

2.5.2. Glucose oxidation  

Glucose oxidation (GO) was determined as described by Mazibuko et al (2013) [31]. Briefly, following 

6 hour treatment, cells were cultured in DMEM containing 0.5 µCi/mL glucose D-[14C (U)] and CO2 

released from the culture media was trapped with filter paper moistened with 0.1 M NaOH. After 6 

hours, the filter paper was removed and placed in scintillation vials for quantification of GO by liquid 

scintillation. Data are expressed relative to the control in arbitrary units. 

 

2.6. Measurement of pro-oxidant and antioxidant activity  

Intracellular production of ROS was detected using 2', 7’-dichlorfluoresceindiacetate (DCFH-DA) 

fluorescent dye (Cell Biolabs Inc., San Diego, CA, USA). Briefly, 100 µL of a 1 µM DCFH-DA final 

solution prepared in Hank’s balanced salt solution (HBSS) was added to H9c2 cells in a multi well 

plate and incubated at 37 °C for 30 minutes in humidified air with 5% CO2. After 30 minutes, the dye 

aspirated, the cells rinsed in HBSS and DCFH-DA fluorescent intensity measured using a BioTek® 

FLx800 plate reader. GSH content was determined using 7-amino-4chloromethylcoumarin 

(CellTracker™ Blue CMAC) (Invitrogen Corporation, Carlsbad, CA, USA). Briefly, 100 µL of 2.5 μM 

CellTracker solution was added to H9c2 cells and incubated at 37ºC for 30 minutes. Thereafter, media 

containing CellTracker solution was removed and cells rinsed in DPBS before fluorescence intensity 

was measured using a BioTek® FLx800 plate reader. SOD activity was quantified using a Biovision kit 

(Mountain View, CA, USA). Briefly, following treatment, H9c2 cells were lysed by the addition of 100 

µL lysis buffer. Ten-microliter cell lysate was then transferred to a new 96 well plate to which 200 µL 
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tetrazolium working solution was added. SOD activity was measured using a BioTek® ELx800 plate 

reader.  

 

2.7. Determination of mitochondrial membrane potential  

Mitochondrial membrane potential was assessed using the cationic dye 5,5',6,6'-tetrachloro-1,1',3,3-

tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) (Sigma-Aldrich, St Louis, MO, USA). In healthy 

cells with normal mitochondrial membrane potential, JC-1 forms complexes known as J-aggregates 

producing an orange/red fluorescence. In cells with mitochondrial dysfunction, JC-1 remains in the 

monomeric form and exhibits a green fluorescence. To assess mitochondrial membrane potential, 

H9c2 cells were washed with DPBS, 2 µM of JC-1 solution was added to the cell mixture and 

incubated in the dark at 37°C for 30 minutes. JC-1 fluorescent intensity was measured using a 

BioTek® FLx 800 plate reader (Ex 485 nm, Em 530±25 nm and 590±35). In addition fluorescent 

photomicrographs were captured at 10x magnification using NIS elements software, with a Nikon 

Eclipse Ti inverted microscope. 

 

2.8. TUNEL assay 

DNA nicks were detected by DeadEnd™ Fluorometric TUNEL assay according to manufacturer’s 

instructions (Promega Corporation, Madison, USA). Briefly, TdT solution was added to the treated 

cells and incubated at 37°C for 60 minutes. After incubation, cells were rinsed twice in SSC buffer for 

15 minutes each. TUNEL-positive cells were detected by direct visualization of fluorescent staining. 

The apoptotic rate was calculated as the average number of condensed TUNEL-positive cells of non-

overlapping fields of 1 mm2 under x 100 magnification (average of at least 5 fields per well). 

 

2.8. Caspase-3/7 activity 

Caspase-3 and caspase-7 activities of H9c2 cells exposed to HG concentration were measured using 

a Caspase-Glo® 3/7 luminescent kit (Promega Corporation, Madison, USA), following manufacturer’s 

instructions. Briefly, following treatment, cells were lysed and 20 µl of the cell lysate transferred to a 

white 96-well plate. An equal amount of Caspase-3/7 Glo reagent was added to each well; and 

incubated for 30 minutes. Luminescence was measured in a BioTek® FLx 800 plate reader. Results 

were normalized to pre-determined protein content determined using Bradford assay. 
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2.9. mRNA expression analysis 

Total RNA was extracted from H9c2 cells using Trizol reagent. Briefly, H9c2 cells were homogenized 

using a TissueLyser (Qiagen, Hilden, Germany) at 25 Hz for 2 minutes according to the 

manufacturer’s instructions. RNA was purified using an RNeasy Mini kit (Qiagen, Germantown, MD, 

USA) and genomic DNA was removed using the Ambion Turbo DNase kit (Applied Biosystems, 

Austin, Texas, USA) according to the manufacturer’s instructions. RNA samples were converted to 

cDNA using the High Capacity Reverse Transcription kit (Applied Biosystems, Austin, Texas, USA) as 

recommended by the manufacturers. Quantitative RT-PCR was performed on an ABI 7500 Instrument 

(Applied Biosystems, Austin, Texas, USA). The reaction mix was prepared by adding 12.5 µL Taqman 

universal PCR master mix, 1.25 µL Taqman Gene Expression Assay (for Glut4, ACC and UCP2), 25 

ng of cDNA, and RNAse free water to a final volume of 25 µL. The quantitative RT-PCR protocol was 

conducted as follows: 50°C for 2 minutes and 95°C for 10 minutes, followed by 40 cycles of 95°C for 

15 seconds and 60°C for 1 minute. Gene expression data were normalized to hypoxanthine-guanine 

phosphoribosyltransferase (HPRT). 

 

2.10. Western blot analysis 

H9c2 cells were lysed in ice-cold RIPA buffer (Pierce Biotechnologies, Rockford, CA, USA). The 

lysates were centrifuged and the supernatant collected. Twenty micrograms of cell lysate were 

denatured and loaded onto a 10% SDS-polyacrylamide gel and transferred to a polyvinylidene fluoride 

(PVDF) membrane. Nonspecific binding on the membranes were blocked, using 5% (w/v) low-fat milk 

in Tris-buffered saline with Tween-20 (TBS-T; 10 mmol/L Tris-HCl, pH 7.5, 200 mmol/L NaCl, 0.05% 

Tween-20) at room temperature for 2 hours. Subsequently, the membrane was incubated overnight at 

4ºC with the following primary antibodies: anti-Bcl-2 (1:1 000 dilution), anti-Bax (1:1000), pAMPK 

(Thr172) (1:1000) and CPT1 (1:1000) with the relevant horseradish peroxidase (HRP) conjugated 

secondary antibodies applied the following day for 90 minutes at room temperature. β-Actin (1:4000) 

antibody was added as a loading control. Proteins were detected and quantified using a Chemidoc-

XRS imager and Quantity One software (Bio-Rad Laboratories, Hercules, CA, USA). 

 

2.11. Statistical analysis 

Data were expressed as the mean ± SEM of three independent biological experiments with each 

experiment containing at least 3 technical replicates. GraphPad Prism software (GraphPad Software 

Inc. La Jolla, CA, USA) was used for calculation of one-way multivariate ANOVA, followed by a Tukey 
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post hoc test or student t-test where appropriate. A p value of ≤ 0.05 was deemed as statistically 

significant. 

 

3. Results 

3.1. Effect of high glucose concentration on cardiac muscle cells  

The effect of HG on metabolic activity was determined by exposing H9c2 cells to NG (5.5 mM) and 

HG (33 mM) over a 24 and 48-hour period, respectively. Culturing cells exposed to 33 mM glucose for 

24 hours did not show a significant difference in metabolic activity when compared to the control. 

However, chronic exposure of cardiomyocytes to HG for 48 hours resulted in a decrease in metabolic 

activity when compared to the NG control (Figure 1). ASP does not have an effect on H9c2 cells 

treated with 5.5 mM glucose (unpublished data). 

 

Figure 1. Effect of 33 mM glucose on metabolic activity. H9c2 cells treated with 5.5 mM glucose (normal 

glucose, NG) and 33 mM glucose (high glucose, HG) for (A) 24 and (B) 48 hours. Results are expressed as the 

mean ± SEM of three independent experiments. ATP luminescence results are presented in arbitrary units (AU). 

***p < 0.0001 versus NG. 

 

3.2. Energy metabolism in the diabetic heart 

H9c2 cells exposed to HG showed a significant increase in FAU while GU was significantly decreased 

(1.5 ± 0.09; p < 0.0001 and 0.6 ± 0.04; p < 0.001). Treatment with MET resulted in a decrease in FAU 

with a concomitant increase in GU (1.2 ± 0.04; p < 0.01 and 0.9 ± 0.05). Similarly, ASP (1.2 ± 0.07; p 

< 0.0001 and 0.9 ± 0.07; p < 0.001) and a combination of MET and ASP (1.1 ± 0.04; p < 0.0001 and 

0.9 ± 0.09; p < 0.001) were effective in decreasing FAU while increasing GU (Figure 2A and B).  
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Results obtained also showed that HG elicited a significant increase in FAO with a concomitant 

decrease in GO (0.84; p < 0.0001 and 0.22; p < 0.001) (Figure 2C). Treatment with MET decreased 

FAO by 16% (p < 0.01) while GO was increased by 16% (p < 0.01). Treatment of H9c2 cells with 

either ASP or a combination of MET and ASP decreased FAO by 18% (p < 0.01) and 23% (p < 0.001) 

and increased GO by 18% and 23% (p < 0.01 and p < 0.0001), respectively (Figure 2C). 

 

     A                                                                            B 
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Figure 2. Effect of ASP on shift in substrate preference. Fatty acid uptake (A), glucose uptake (B) and fatty acid 

and glucose oxidation combination stacked bar graph (C) of H9c2 cells treated with 33 mM glucose (high 

glucose, HG) for 48 hours and post treated with metformin (MET; 1 μM), aspalathin (ASP; 1 μM) and the 

combination of MET and ASP (1 μM each) for 6 hours. Mannitol (MAN) at a concentration of 33 mM was used to 

rule out the effect of osmolarity. Glucose uptake and palmitate uptake are expressed in arbitrary units (AU) for 2-

Deoxy-[3H]-D-glucose and palmitate-D-[14C (U)], respectively. Results are expressed as the mean of three 

independent experiments relative to the normal glucose (NG) control (5.5 mM). **p < 0.001 and ***p < 0.0001 

versus NG control. #p < 0.01, ##p < 0.001 and ###p < 0.0001 versus HG control. 
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3.3. Increased ROS production 

A 41% increase in ROS production was observed in H9c2 cells exposed to HG (141 ± 2.3%; p < 

0.0001) (Figure 3). Treatment of cells with MET decreased ROS production by 20% (121 ± 2.2%; p< 

0.0001), while ASP (121 ± 2.1%; p < 0.0001) and the combination of MET and ASP (115 ± 2.6%; p< 

0.0001) subdued the HG-induced increase of intracellular ROS by 20% and 26% respectively.   

 

 

 

 

 

 

 

 

Figure 3. Effect of ASP on intracellular ROS formation. DCFH-DA fluorescence intensity of intracellular ROS 

formation of H9c2 cells treated with 33 mM glucose (HG) for 48 hours and post treated with metformin (MET; 1 

μM), aspalathin (ASP; 1 μM) and the combination of MET and ASP (1 μM each) for 6 hours. Mannitol (MAN) at a 

concentration of 33 mM was used to rule out the effect of osmolarity. Results are expressed as the mean of 

three independent experiments relative to the normal glucose (NG) control (5.5 mM) at 100% ± SEM. ***p < 

0.0001 versus NG control  ###p < 0.0001 versus HG control. 

 

3.4. Mitochondrial transmembrane potential (ΔΨm) 

Pre-treatment of cells with HG resulted in an increase in green fluorescence after H9c2 cells were 

stained with JC-1 (Figure 4A and B), indicating a reduction in mitochondrial transmembrane potential 

(ΔΨm). The HG concentration significantly increased mitochondrial depolarization by a ratio of 0.46 

(from 1 ± 0.05 to 1.46 ± 0.1; p < 0.0001). Both MET (1.16 ± 0.044; p < 0.01) and ASP (1.13 ± 0.07; p < 

0.01) were able to ameliorate this effect. An enhanced effect was observed when H9c2 cells, exposed 

to glucose, were treated with the MET and ASP combination (1.02 ± 0.07; p < 0.0001). The observed 

effect was similar to that of the normal control and slightly better than either MET or ASP alone. 
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Figure 4. Effect of ASP on mitochondrial membrane potential. Fluorescent photomicrographs of JC-1 fluorescent 

mitochondrial depolarization of H9c2 cells treated with 33 mM glucose (high glucose, HG) for 48 hours and post 

treated with metformin (MET; 1 μM), aspalathin (ASP; 1 μM) and the combination of MET and ASP (1 μM each) 

for 6 hours. Mannitol (MAN) at a concentration of 33 mM was used to rule out the effect of osmolarity. Results 

are expressed as the mean of three independent experiments relative to the normal glucose (NG) control (5.5 

mM). ***p < 0.0001 versus NG control. #p < 0.01 and ###p < 0.0001 versus HG control. 

 

3.5. GSH content and SOD activity 

Chronically exposing H9c2 cells to HG decreased SOD activity to 47% (47 ± 9%; p < 0.0001). MET 

increased SOD activity by 57% (104 ± 5.3%; p < 0.0001) while both ASP (118 ± 4.9%; p < 0.0001) 

and the combination of MET and ASP (118 ± 5.2%; p < 0.0001) increased de-novo SOD synthesis by 

87% (Figure 5A). The effect of ASP was marginally better than that of MET alone, although non-

significant. HG also reduced the GSH content of H9c2 cells (0.59 ± 0.03; p < 0.0001), while treatment 

with MET (0.82 ± 0.03; p < 0.0001), ASP (0.89 ± 0.03; p < 0.0001) or the combination of MET and 
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ASP (0.94 ± 0.02; p < 0.0001) increased GSH content under HG conditions (Figure 5B). The observed 

effect was comparable to that of the NG control (1 ± 0.02; p = NS). 

 

      A                                                                          B 

 

 

 

 

 

 

 

Figure 5. Effect of ASP on SOD activity and GSH fluorescence. Superoxide dismutase (SOD) activity (A) and 

CellTrackerTM Blue CMAC fluorescence as a measure of glutathione (GSH) content (B) was assessed in H9c2 

cells treated with 33 mM glucose (high glucose, HG) for 48 hours and post treated with metformin (MET; 1 μM), 

aspalathin (ASP; 1 μM) and the combination of MET and ASP (1 μM) for 6 hours. Mannitol (MAN) at a 

concentration of 33 mM was used to rule out the effect of osmolarity. Results are expressed as the mean ± SEM 

of three independent experiments relative to the normal glucose (NG) control (5.5 mM). ***p < 0.0001 versus NG 

control. ###p < 0.0001 versus HG control. 

 

3.6. H9c2 cell apoptosis 

HG significantly increased Caspase-3/7 activity in H9c2 cell (139 ± 6.9%; p < 0.0001), while treatment 

with ASP (116 ± 5.3%; p < 0.01) or the combination of MET and ASP (116 ± 3.8%; p < 0.01) 

decreased HG-induced apoptosis (Figure 6). Increased numbers of TUNEL-positive cells were 

observed in H9c2 cells exposed to HG compared to that of the NG control (7.7 ± 0.5 compared to 1.2 

± 0.2; p < 0.0001). Treatment with ASP and the combination of MET and ASP significantly decreased 

the amount of TUNEL positive cells (3.6 ± 0.12; p < 0.001 and 4.4 ± 0.6; p < 0.01). However, no 

significance was observed with MET treatment (5.2 ± 0.48) (Figure 7). 
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Figure 6. Effect of ASP on cell apoptosis. Caspase-3/7 activity of H9c2 cells treated with 33 mM glucose (high 

glucose, HG) for 48 hours and post treated with metformin (MET; 1 μM), aspalathin (ASP; 1 μM) and the 

combination of MET and ASP (1 μM) for 6 hours. Results are expressed as the mean of three independent 

experiments relative to the normal glucose (NG) control (5.5 mM) at 100% ± SEM. ***p < 0.001 versus NG 

control. #p < 0.01 versus HG control. 

 

3.7. Western blot analysis 

3.7.1. Bcl-2\Bax ratio  

A significant decrease in the Bcl-2\Bax ratio was observed when cells were exposed to HG (71 ± 

2.2%; p < 0.01). Treatment with MET (106 ± 6.1%; p < 0.001), ASP (111 ± 6.5%; p < 0.001) and a 

combination of MET and ASP (115 ± 10.7%; p < 0.0001) was able to ameliorate this effect significantly 

(Figure 8). 

 

3.7.2. β-Oxidation  

Exposure of H9c2 cells to a HG concentration increased pAMPK (Thr172)  and CPT1 expression by 5.9 

fold (p < 0.001) and 1.4 fold (p < 0.01), respectively. Treatment with ASP and the combination of MET 

and ASP decreased the expression of pAMPK (Thr172) by 1.96 fold (p < 0.01) and 1.84 fold (p < 0.01), 

respectively. MET had no effect. Treatment with ASP, MET and combination of MET and ASP 

decreased CPT1 expression by 1.4 fold (p < 0.0001), 2.1 (p < 0.0001) and 1.3 fold (p < 0.0001), 

respectively, when compared to the HG control (Figure 9A and B). 
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Figure 7. Effect of ASP on diminishing DNA fragmentation of apoptotic cells. Fluorescent photomicrographs of 

TUNEL positive H9c2 cells and B) treated with 33 mM glucose (high glucose, HG) for 48 hours and post treated 

with metformin (MET; 1 μM), aspalathin (ASP; 1 μM) and the combination of MET and ASP (1 μM each) for 6 

hours. White arrows illustrate apoptotic TUNEL positive cells. Mannitol (MAN) at a concentration of 33 mM was 

used to rule out the effect of osmolarity. Results are expressed as the mean of three independent experiments 

relative to the normal glucose (NG) control (5.5 mM) at 100% ± SEM. *p < 0.05, **p < 0.001, ***p < 0.0001 

versus NG control. #p < 0.01 and ##p < 0.001 versus HG control. 

 

3.8. mRNA expression analysis 

Exposure of H9c2 cells to a HG concentration decreased the expression of GLUT4 by 2.2 fold (p < 

0.01) and ACC by 2.5 fold (p < 0.001), respectively when compared to that of the NG control. MET, 

ASP and the combination of MET and ASP significantly increased mRNA expression of GLUT4 by 1.1 

fold (NS), 2.3 fold (p< 0.01) and 2.8 fold (p < 0.01) and that of ACC by 1.9 fold (p < 0.0001), 3.3 fold (p 

< 0.0001) and 4.7 fold (p < 0.0001) when compared to that of the HG control (Figure 10A and B). HG 

also decreased the expression of UCP2 by 2.2 fold (p < 0.01) in H9c2 cells (Figure 10C). Aspalathin 
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and the combination of MET and ASP reversed this effect by 2.6 fold (p < 0.001) and 2.3 fold (p < 

0.001), respectively. MET monotherapy was less effective.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Effect of ASP On Bcl-2 and Bax protein expression. H9c2 cells treated with 33 mM glucose (HG) for 

48 hours and post treated with metformin (MET; 1 μM), aspalathin (ASP; 1 μM) and the combination of MET and 

ASP (1 μM each) for 6 hours. Results are expressed as the mean of three independent experiments relative to 

the normal glucose (NG) control (5.5 mM) at 100% ± SEM. *p < 0.01 versus NG control. ##p < 0.001 and ###p < 

0.0001 versus HG control. 
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Figure 9. Effect of ASP on pAMPK and CPT1 protein expression. pAMPK(Thr172) (A) and CPT1 (B) protein 

expression of H9c2 cells treated with 33 mM glucose (high glucose, HG) for 48 hours and post treated with 

metformin (MET; 1 μM), aspalathin (ASP; 1 μM) and the combination of MET and ASP (1 μM each) for 6 hours. 

Results are expressed as the mean of three independent experiments relative to the normal glucose (NG) 

control (5.5 mM) at 100% ± SEM. *p < 0.01 versus NG control. #p < 0.01, ##p < 0.001 and ###p < 0.0001 versus 

HG control. 
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Figure 10. Effect of ASP on GLUT4, ACC and UCP2 mRNA expression. GLUT4 (A), ACC (B) and UCP2 (C) 

mRNA expression in H9c2 cells treated with 33 mM glucose (high glucose, HG) for 48 hours and post treated 

with metformin (MET; 1 μM), aspalathin (ASP; 1 μM) and the combination of MET and ASP (1 μM each) for 6 

hours. Results are expressed as the mean of three independent experiments relative to the normal glucose (NG) 

control (5.5 mM) at 100% ± SEM. *p < 0.01, **p < 0.001 and ***p < 0.0001 versus NG control. #p < 0.01, ##p < 

0.001 and ###p < 0.0001 versus HG control. 
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4. Discussion  

In normal cardiomyocytes FAO contributes to approximately 70% and GO to the remaining 30% of 

energy production. This balance in energy production is crucial for optimal contractile function of the 

heart. In the diabetic heart, there is a shift in mitochondrial substrate preference from glucose towards 

an almost complete reliance on FAO (80-90%) as the preferred energy source [10]. This 

compensatory shift in energy substrate is believed to be involved in impaired cardiac function of the 

failing heart [32]. Studies done in T2DM rodent models with associated HF, showed a dramatic 

increase in lipid accumulation and FAO with a concomitant decrease in GO [33, 34]. Similar findings 

were also reported for studies of the hearts of human patients with T2DM [35]. In this study, a shift in 

substrate preference with an associated decreased metabolic activity was observed when H9c2 cells 

were chronically exposed to a HG concentration of 33 mM. ASP, as well as the combination of MET 

and ASP, was able to reverse this effect. These findings can indirectly improve heart contractile 

function as energy metabolism is closely linked to cardiac function [36]. Our findings are supported by 

a study conducted by Kantor et al (2000) demonstrating that trimetazidine, an anti-anginal agent and 

FA inhibitor, was able to protect the diabetic heart by decreasing FAO and increasing GO in the hearts 

of Zucker rats [36]. 

This shift in substrate preference and the ability of cells to survive metabolic dysfunction relies, in part, 

on the response of intracellular kinases [37]. A change in contractile activity of diabetic 

cardiomyocytes results in a temporal increase in the adenosine monophosphate/triphosphate 

(AMP/ATP) ratio, which induces a conformational change within AMPK, making it accessible for 

phosphorylation (pAMPK). Increased pAMPK suppresses acetyl-CoA carboxylase (ACC) activity, 

decreases malonyl-CoA levels and subsequently the inhibitory effect of malonyl-CoA on CPT1 is 

lessened with a resultant increase in FAO. Our findings support such a hypothesis whereby exposure 

of the cells to a HG concentration decreased ATP and increased pAMPK expression. This brought 

about a decrease in ACC and increased CPT1 with a subsequent increase in FAU and FAO. ASP and 

the combination of MET and ASP was able to reduce FAU and FAO while increasing glucose uptake 

as observed by decreased fatty acid translocase (FAT/CD36) (supplementary data) and increased 

GLUT4 mRNA expression. This infers that ASP can improve myocardial energy balance by switching 

energy preference from FAO to GO and thus protecting the diabetic heart against contractile 

dysfunction. This is an important finding, as both FAT/CD36 and GLUT4 are major transporter proteins 

with fundamental roles in fatty acid and glucose uptake respectively. In T2DM FAT/CD36 remains 

localized at the sarcolemma whereas GLUT4 internalizes, resulting in a shift in substrate preference 

[38]. This shift in substrate utilization results in increased FAU, at the expense of glucose as observed 

in this study. The effect of ASP on GLUT4 gene expression with concomitant increased GU results in 
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an improved glucose to fatty acid utilization ratio. In addition, we showed that ASP has a modulating 

effect on FAT/CD36 that could culminate in an improved substrate utilization in the diabetic heart. 

Chronic hyperglycemia is also known to be responsible for cardiac dysfunction through the generation 

of increased oxidative stress [4, 6]. Oxidative stress is defined as the imbalance between the 

production and elimination of ROS, which plays a critical role in left ventricular remodeling and HF 

[39]. The cardiomyocytes have a very low antioxidant capacity and a shift in mitochondrial substrate 

preference can result in increased ROS production. Uncoupling protein 2 (UCP2) is a negative 

regulator of mitochondrial derived ROS and plays an important role in mitochondrial cellular redox 

homeostasis. Augmentation of UCP2 expression could result in decreased ROS production and 

protect the cell against oxidative damage [40, 41]. Data from this study showed that chronic exposure 

of H9c2 cells to 33 mM glucose triggered increased ROS production. This increase in ROS was 

associated with decreased UCP2 mRNA expression. Both ASP alone and the combination of MET 

and ASP were able to attenuate intracellular ROS through up regulation of UCP2. Furthermore, 

excessive ROS production can induce intracellular mitochondrial damage including opening of the 

mitochondria permeability transition (MPT), leading to mitochondrial depolarization. This results in the 

expression and leakage of various proteins including endogenous antioxidant enzymes, GSH and 

SOD, as observed in this study. Treatment with ASP enhanced the endogenous antioxidant capacity 

of the cell and potentially could protect the myocardium against HG-induced oxidative stress and 

subsequent mitochondrial depolarization.  

Furthermore, the mitochondrial apoptotic pathway is largely mediated through Bcl-2 family proteins. 

Bcl-2, a human proto-oncogene, protects against mitochondrial permeability and subsequent 

programmed cell death [39, 42]. Bax, a pro-apoptotic member of the Bcl-2 family, initiates apoptosis 

by inserting its C-terminal end into the mitochondrial outer membranes upon induction of cell death. A 

shift in the Bcl-2\Bax ratio can therefore result in increased mitochondrial depolarization and 

cytochrome-c release, a crucial molecule in the induction of apoptosis. In this study, the 33 mM 

glucose (HG) treatment resulted in a significant decrease in the Bcl-2\Bax ratio and a subsequent 

increase in cell apoptosis. ASP, MET or the combination of ASP and MET were able to reverse HG-

induced apoptosis by increasing the Bcl-2\Bax ratio, decreasing mitochondrial membrane 

depolarization, caspase-3/7 activity and reducing tunnel positive cells. However, in terms of efficacy 

no differences were found between the treatments, suggesting that there was no additive effect 

between MET and ASP.  

The mechanism by which ASP modulates cellular antioxidant defenses and function of 

cardiomyocytes remains to be fully elucidated. However, unpublished data from our group suggest 

that ASP is able to activate the redox-sensitive transcription factor, nuclear factor erythroid 2-related 
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factor (Nrf2). Nrf2 is a transcriptional regulator that plays a key role in regulating phase II detoxifying 

and antioxidant enzymes in response to stressful conditions. Niture and Jaiswel (2012) demonstrated 

that Nrf2 regulates Bcl-2 gene expression and prevents apoptosis in human lung cancer cells [42]. 

Based on their findings and evidence obtained from the current study, we proposed that ASP also 

activates Nrf2 during chronic hyperglycemia. Activation of Nrf2 upregulates various antioxidant genes 

including GSH and SOD [43]. Furthermore, this increase in hyperglycemic-induced oxidative stress 

activates AMPK, a kinase like Nrf2 that controls the redox-status of the cell. AICAR, an AMPK 

activator, induces Nrf2 activation by an AMPK-independent mechanism in hepatocarcinoma cells [44]. 

Thus, we proposed that although both AMPK and Nrf2 maintain cellular homeostasis, they act 

independently of each other. AMPK increases cell survival by regulating FAT/CD36 expression and β-

oxidation while Nrf2 increase cell survival by decreasing oxidative stress and increasing the 

antioxidant capacity. 

In conclusion, our study provides evidence that ASP is able to protect H9c2 cardiomyocytes against 

HG-induced shifts in substrate preference by decreasing FAU and FAO, inferring that ASP might act 

as a FAO modulator in the heart of the diabetic individuals. Furthermore, results obtained from this 

study showed that ASP was as effective as metformin to inhibit glucose-induced increased fatty acid 

β-oxidation and subsequent increased oxidative stress. Additional evidence produced, demonstrated 

that ASP enhances endogenous antioxidant defenses and protects against HG-induced membrane 

depolarization and subsequent apoptotic cell death of vulnerable cardiomyocytes under hyperglycemic 

conditions. Interestingly, the effect of ASP or the combined effect of ASP and MET was more effective 

than MET alone. 
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Supplementary 

mRNA expression analysis 

Total RNA was extracted from H9c2 cells using Trizol reagent. Briefly, H9c2 cells were homogenized 

using a TissueLyser (Qiagen, Hilden, Germany) at 25 Hz for 2 minutes according to the 

manufacturer’s instructions. RNA was purified using an RNeasy Mini kit (Qiagen, Germantown, MD, 

USA) and genomic DNA was removed using the Ambion Turbo DNase kit (Applied Biosystems, 

Austin, Texas, USA) according to the manufacturer’s instructions.  

 

RT2-PCR arrays 

Quantitative reverse transcription real-time PCR (qRT-PCR) was used to quantify the amounts of 

mRNA in the H9c2 cells using a Rat Insulin resistant RT2 Profiler PCR Arrays (PARN -145Z) ( 

Qiagen/SA Biosciences). The arrays included 84 assay genes, 5 housekeeping genes, and reverse 

transcription efficiency and DNA contamination controls. cDNA was synthesized from 2 µg of RNA 

using RT2 PCR Array First Strand Kit (Qiagen/SA Biosciences) and the arrays were performed 

according to the manufacturer instructions using Qiagen/SA Biosciences Master Mix. Each experiment 

was performed on RNA pooled samples from 3 biological replicates and repeated only once for each 

condition. 

 

Results 

Fatty acid oxidation is the source of energy for cardiac myocytes and changes in fatty acid metabolism 

have been implicated in the diabetic-induced cardiac disease state. To give insight into the 

intracellular transportation of fatty acids, we investigated the expression of fatty acid translocase 

(FAT/CD36) using an Insulin resistant RT2-PCR array. The result obtained confirmed an increased in 

CD36 (3.7 fold) mRNA expression after 33mM glucose treatment, however treatment with ASP and 

MET + ASP decreased this effect (1.27 and -1.37 fold, respectively). 

 

Table1. Summary of CD36 gene expression in H9c2 cells treated with ASP 

Symbol Description Name RT2 Catalog HG ASP MET+ASP 

Cd36 CD36 FAT/CD36 PPM03796D 3.75  1.27  -1.37  
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Abstract 

Background and aim: Aspalathin, a C-glucosyl dihydrochalcone, can protect H9c2 cardiomyocytes 

against high glucose (HG)-induced shifts in myocardial substrate preference, oxidative stress and 

apoptosis. While the protective mechanism of aspalathin remains unknown, nuclear factor (erythroid-

derived 2)-like 2 (Nrf2) has emerged as a crucial factor for intracellular responses against oxidative 

stress. Therefore, we hypothesized that aspalathin protects the myocardium against hyperglycemia-

induced oxidative damage by up-regulating Nrf2 expression in H9c2 cardiomyocytes and diabetic 

(db/db) mice. 

Methods: H9c2 cardiomyocytes exposed to HG for 48 hours were treated with aspalathin (1 µM) for 6 

hours. RT2 Profiler PCR array was used to measure differential expression of genes associated with 

oxidative damage. Nrf2 siRNA was employed to further evaluate our hypothesis and to gain novel 

mechanistic insights. We also evaluated our hypothesis in an in vivo context and here db/db mice and 

their non-diabetic (db/+) littermate controls were treated daily for 6 weeks with either a low (13 mg/kg) 

or high (130 mg/kg) aspalathin dose versus metformin (150 mg/kg dosage), a known antidiabetic 

agent. Cardiac fibrosis was assessed by histopathological examination and the degree of oxidative 

stress determined by qRT-PCR. 

Results and discussion: Aspalathin protected H9c2 cardiomyocytes against HG-induced oxidative 

stress. However, Nrf2 silencing abolished this protective response and exacerbated cardiomyocyte 

apoptosis. In parallel, daily aspalathin treatment of db/db mice (130 mg/kg dose for 6 weeks) reversed 

cardiac fibrosis and oxidative stress versus untreated, control hearts. The higher aspalathin dosage 

also resulted in the most effective response when compared to the lower aspalathin dosage and 

metformin. In addition, the higher aspalathin dose elicited enhanced cardiac Nrf2 expression and its 

downstream antioxidant genes such as glutathione peroxidase 2, glutathione synthetase and 

Parkinson protein 7.  

Conclusion: These results indicate that aspalathin maintains cellular homeostasis and protects the 

myocardium against hyperglycemia-induced stress through activation of Nrf2 and its downstream 

target genes. 

 

Keywords 

Diabetes mellitus; cardiomyopathy; hyperglycemia; oxidative stress; antioxidants, aspalathin. 
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Introduction 

The International Diabetes Federation (IDF) recently reported a rapid rise in cases of diabetes mellitus 

(DM) worldwide (IDF, 2015). The current number of individuals living with DM is estimated to be 415 

million and this figure is expected to reach 642 million by the year 2040 (IDF, 2015). Diabetes is a 

major risk factor for the development of cardiovascular complications. Hyperglycemia, a hallmark of 

DM, is associated with rising cardiovascular deaths in the diabetic population (Inzucchi et al., 2015). 

Coronary artery disease (CAD) remains the causal factor linked to the increase of cardiovascular-

related deaths in diabetic persons (Inzucchi et al., 2015). However, diabetic cardiomyopathy (DCM) is 

a frequent but commonly unrecognized pathology that exists in the absence of CAD or hypertension 

(Rubler et al., 1972). DCM is characterized by left ventricular (LV) dysfunction leading to decreased 

cardiac efficiency in diabetic individuals (Fonarow, 2005). Alterations in myocardial substrate 

preference and mitochondrial dysfunction are some of the metabolic perturbations implicated in the 

onset of LV dysfunction (Bayeva et al., 2013). Oxidative stress is another factor linked with cardiac 

structural and functional modifications observed in a diabetic heart (Thandavarayan et al., 2011). The 

mechanisms related to the development of oxidative injury are often multifactorial and may involve a 

cascade of events associated with various cell signaling pathways. 

Humans are equipped with a defense system that controls free radical species and reduces oxidative 

stress. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an emerging regulator of cellular 

resistance to oxidants. Nrf2 plays a crucial role in controlling basal and induced expression of an array 

of cytoprotective and antioxidant defense genes important for the regulation of physiological and 

pathophysiological outcomes in response to oxidative exposure (He et al., 2009). In cultured 

cardiomyocytes and endothelial cells, suppression of Nrf2 expression results in oxidative stress-

induced insulin resistance (Tan et al., 2011), while heart tissues isolated from Nrf2 knockout mice 

display a marked increase in the production of reactive oxygen species (ROS) compared to wild type 

mice (He et al., 2009). Nrf2 preserves intracellular redox homeostasis by increasing the expression of 

antioxidant and detoxifying genes such as glutathione peroxidase 2 (Gpx2), superoxide dismutase 

(SOD) and NAD(P)H dehydrogenase [quinone] 1 (Nqo1) (Chen et al., 2013). Under conditions of 

oxidative stress, Nrf2 is activated by disassociating from its negative regulator Kelch-like ECH-

associated protein 1 (KEAP1) and translocating to the nucleus, where it binds to the antioxidant 

response element (ARE), activating detoxifying enzymes and genes to inactivate the stressors and 

restore homeostasis (Bai et al., 2013).  

Various phytochemicals from food substances, such as sulforaphane, derived from a major 

glucoslinolate of broccoli and quercetin, an aglycone, derived from flavonol glycosides, common to 

plant foods, can prevent oxidative injury by up-regulating Nrf2 expression (Bai et al., 2013 and 
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Granado-Serrano et al., 2012). Several studies carried out in our laboratory demonstrated the 

beneficial effects of rooibos (Aspalathus linearis), a popular South African herbal tea and some of its 

major polyphenolic compounds in ameliorating metabolic complications associated with DM (Dludla et 

al., 2014, Mazibuko et al., 2015, Muller et al., 2012 and Sanderson et al., 2014,). Aspalathin (ASP), a 

C-glucosyl dihydrochalcone unique to rooibos, can improve glucose and lipid metabolism by 

modulating 5' adenosine monophosphate-activated protein kinase (AMPK) expression in 3T3-L1 

adipocytes (Mazibuko et al., 2015). Similarly, in a recent study we demonstrated that ASP protects 

H9c2 cardiomyocytes against high glucose (HG)-induced oxidative damage by improving myocardial 

substrate metabolism via AMPK regulation (Johnson et al., 2016). While AMPK plays a noticeable role 

in regulating energy metabolism in cardiomyocytes, the control of hyperglycemia-induced oxidative 

stress may be additionally enhanced through other redox-related pathways such as Nrf2 

(Zimmermann et al., 2015). Hence we tested the hypothesis that ASP can prevent hyperglycemia-

induced oxidative injury by up-regulating the transcriptional expression of Nrf2 by using an in vitro 

H9c2 cardiomyocyte model and a leptin receptor-deficient db/db mouse model. 

 

Materials and methods 

Reagents and kits 

H9c2 rat derived cardiomyoblasts (ECACC No. 8809294) were purchased from the European 

Collection of Cell Cultures (Salisbury, Wiltshire, UK), while ASP was synthesized according to Han et 

al., 2014 and obtained from High Force Research (ca. 98%, batch SZI-356-54) (Durham, UK). 

Hematoxylin, eosin, xylene, and formalin were obtained from Merck-Millipore (Billerica, MA, USA), 

halothane was from , Safeline Pharmaceuticals (Johannesburg, RSA), Dulbecco’s Modified Eagle’s 

Medium (DMEM), Dulbecco's phosphate-buffered saline, penicillin and streptomycin from Lonza 

(Verviers, Belgium), and fetal bovine serum and horse serum from Biochrom (Berlin, Germany). High 

Capacity Reverse Transcription Kit, RNAse free water, small interfering RNA (siNrf2) (AM16708), 

scrambled Nrf2 (scrRNA) (AM4615), Trizol reagent, Turbo DNase Kit, Lipofectamine RNAimax 

reagent, and all Taqman gene expression assays were supplied by ThermoFisher Scientific, Inc. 

(Waltham, MA, USA). RT2 SYBR Green qPCR Master Mix, RT2 Array First Strand Kit and RNeasy 

Mini Kit were obtained from Qiagen (Valencia, CA, USA). All other consumables and reagents were 

purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA), unless otherwise specified. 

 

In vitro experiments on H9c2 cardiomyocytes 

Cell culture 
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H9c2 cardiomyoblasts were cultured in supplemented DMEM (10% fetal bovine serum, 100 μg/mL 

penicillin and 100 μg/mL streptomycin) overnight under standard tissue culture conditions (37°C in 

humidified air and 5% CO2). Cells were seeded in a 6-well plate at a seeding density of 2 X 104 

cells/well. Confluent H9c2 cardiomyoblasts were differentiated into adult cardiomyocytes by 

substituting growth media with differentiation media consisting of DMEM supplemented with 10 nM all-

trans-retinoic acid and 1% horse serum for 6 days (Karagiannis et al., 2010). On day seven, 

differentiated cells were exposed to 33 mM glucose for 48 h prior to treatment with ASP (1 µM) for an 

additional 6 h. Cells exposed to either 5.5 mM glucose or 33 mM glucose served as controls for 

normal glucose (NG) and HG, respectively. Cells exposed to 33 mM mannitol were used to rule out 

the effect of osmolarity (Johnson et al., 2016). 

 

Preparation of ASP for cell culture treatment 

A stock solution of ASP (22.1 mM), prepared in dimethyl sulfoxide (DMSO), was diluted using DMEM 

media to give a final solution of 1 µM. The toxic effect of DMSO at a concentration of 0.004% was 

tested and ruled out in all the experiments performed. 

 

RNA isolation and purification 

Total RNA was extracted using Trizol reagent, according to a previously described protocol (Johnson 

et al., 2016). RNA was purified using an RNeasy Mini Kit, while the Turbo DNase Kit was used to 

remove genomic DNA, as per manufacturer’s instructions. RNA integrity was determined using an 

Agilent 2100 Bioanalyser (Agilent Technologies, Inc., Palo Alto, CA, USA), according to 

manufacturer’s instructions.  

 

RT2-PCR array analysis 

cDNA was synthesized from 2 µg RNA using the RT2 First Strand Kit, according to manufacturer’s 

instructions. Rat Oxidative Stress and Atherosclerosis RT2 Profiler PCR Arrays were used (PARN-

065ZA and PARN-065ZA) to analyze the differential expression of multiple genes. Briefly, cDNA was 

added to the RT2 SYBR Green qPCR Master Mix and aliquotted onto each well of the 96-well RT2 

Profiler PCR Array plate. An ABI 7500 Instrument (ThermoFisher Scientific, Inc., Waltham, MA, USA) 

was used for mRNA quantification at the following cycling conditions: 50ºC for 1 min, 1 cycle of 95°C 

for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. Analysis of PCR array data 

was done using a Microsoft Excel sheet with macros made available by the manufacturer 
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(http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php). As controls, each array with 84 

assay genes includes 5 housekeeping genes, as well as a reverse transcription efficiency and DNA 

contamination control. RNA from 3 biological replicates was pooled and repeated only once for each 

condition.  

 

Real-time PCR to confirm oxidative stress and apoptosis markers 

Quantitative RT-PCR was performed on an ABI 7500 Instrument. cDNA was synthesized from 1 µg of 

RNA using the High Capacity Reverse Transcription Kit, as per manufacturer’s instructions. 

Thereafter, the PCR reaction mix was prepared by adding 5 µL Taqman universal PCR master mix, 

0.5 µL Taqman gene expression assay [in vitro study (Casp3, Gpx2, Nox4, Nrf2, Park 7, SOD2 and 

UCP2) and in vivo study (Casp3, Gpx2, Gss, Nox4, Nrf2 and Park 7)], 1 µL of cDNA, and 3.5 µL 

RNAse free water to a final volume of 10 µL. The quantitative RT-PCR protocol was conducted as 

follows: 50°C for 1 min and 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 30 

sec. Gene expression data were normalized to hypoxanthine-guanine phosphoribosyltransferase 

(Hprt). 

 

Knockdown of Nrf2 using small interfering RNA 

Nrf2-siRNA was done using a Lipofectamine RNAimax reagent, according to the manufacturer′s 

instructions. Briefly, H9c2 cells at approximately 70% confluence were transfected with siNrf2 or 

scrRNA for 24 h, respectively. Thereafter, transfected cells were exposed to HG for 24 h before 

treatment with ASP for 6 h. The degree of Nrf2 knockdown after 24 h of transfection was confirmed by 

RT-PCR. Non-transfected cells, exposed to either 5.5 mM glucose or 33 mM glucose served as 

controls for NG and HG, respectively.  

 

In vivo experiments using C57BL/KS mice 

Animals  

Male C57BL/KS leptin receptor-deficient (db/db) mice and nondiabetic heterozygote littermate (db/+) 

controls were obtained and housed at the Primate Unit and Delft Animal Centre (PUDAC) of the South 

African Medical Research Council (SAMRC). Animals were kept in a controlled environment with a 12 

h light/dark cycle and a temperature range of 23-25ºC (relative humidity: ∼50%). The mice received 

standard laboratory chow pellets (Afresh Vention, Cape Town, South Africa) ad libitum and had free 
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access to water. Ethical clearance for the use of animals in this study was granted by the SAMRC 

Ethics Committee for Research on Animals (ECRA no. 07/13), and the Stellenbosch University Ethics 

Committee (SU-ACUM13-00021). 

 

Treatment of mice with ASP 

Nine-week old diabetic (db/db) mice and their non-diabetic (db/+) littermate controls were treated daily 

for 6 weeks through oral gavage with either a low (13 mg/kg) or high (130 mg/kg) ASP dose and 

compared to metformin (MET) at a dose of 150 mg/kg. Dose selection was based on a previous study 

by Kawano et al., 2009. Treatment groups (n=6/group) included; i) db/+ untreated controls (db/+_UC), 

ii) db/db untreated controls (db/db_UC), iii) db/db MET (db/db_MET), iv) db/db ASP low dose 

(db/db_ASP_LD), v) and db/db ASP high dose (db/db_ASP_HD). ASP and MET were prepared fresh 

daily for the duration of the study by dissolving in distilled water, while animals belonging to the 

untreated control groups were given water only. 

 

Heart tissue staining and left ventricular hypertrophic measurements 

After the 6-week treatment period, mice were fasted for 4 h before being weighed and anesthetized 

with halothane. Animals received the anesthetic until no reaction could be recorded by pedal reflex 

before removal of the heart. The heart tissue was weighed and fixed in 10% formalin for a minimum of 

16 h before it was processed using a Leica TP 1020 automated processor (Leica Biosystems, Buffalo 

Grove, IL, USA) and embedded in paraffin wax. Paraffin embedded tissue was cut into sections and 

attached to aminopropyltriethoxysilane coated glass slides. Tissues were then stained with H&E as 

previously described (Page et al., 2004). Stained sections were visualized using a Nikon Eclipse Ti 

inverted microscope (Tokyo, Japan). Micrographs for heart LV and median wall thickness were taken 

in non-overlapping fields of 1 mm2 under 40x magnification and measurements were done using NIS 

Elements imaging software (Tokyo, Japan). 

 

Measurement of fasting plasma glucose (FPG) concentrations 

In mice fasted overnight for 16 h, FPG concentrations were measured by tail prick using a OneTouch® 

Select® handheld glucometer (LifeScan Inc., Milpitas, CA, USA), according to the manufacturer’s 

instructions. 
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Oral glucose tolerance tests (OGTTs) 

After the 6 weeks of treatment, OGTTs were performed. Briefly, after a 16 h fast, a glucose bolus of 2 

g/kg was orally administered through gastric gavage. Plasma glucose levels were determined by tail 

prick at time intervals of 0, 30, 60, and 120 min. 

 

Statistical analysis 

Data were expressed as the mean ± SEM. Results for in vitro experiments were expressed as the 

mean of 3 independent biological experiments with each experiment containing at least 3 technical 

replicates, unless otherwise stated. For in vivo experiments, each treatment group contained 6 mice. 

Statistical analysis was performed using GraphPad Prism software (GraphPad Software, Inc., La Jolla, 

USA). Comparisons between groups were performed using one-way multivariate ANOVA, followed by 

unpaired Student t-test, and a p-value of ≤ 0.05 was deemed as statistically significant.  

 

Results 

In vitro screening of ASP in H9c2 cardiomyocytes 

ASP maintained cellular homeostasis in vitro 

High glucose exposure decreased endogenous antioxidant capacity of the cells. RT2-PCR analysis 

revealed that ASP post-treatment at a dose of 1 µM was able to enhance mRNA expression of a 

number of antioxidant genes and phase II detoxification enzymes. Results obtained showed that ASP 

increased the expression of catalase (Cat; 11.8 fold), Gpx2 (15.8 fold), peroxiredoxin 1, 3, 4, and 6 

(2.4, 3.0, 2.1, and 2.8 fold, respectively) SOD1 and SOD2 (2.1 and 1.2 fold) (Table 1). The increased 

expression of antioxidant genes correlated with the up-regulation of glutathione-associated and 

reducing genes, including glutamate-cysteine ligase catalytic subunit (Gclc; 6.9 fold), glutamate-

cysteine ligase, modifier subunit (Gclm; 5.8 fold) and glutathione reductase (Gsr; 3.2 fold) (Table 1). 

Increased expression of thiol reducing genes and cytoprotective genes by ASP included sulfiredoxin 1 

(Srxn1; 6.3 fold), thioredoxin 1 (Txn1; 2.0 fold), thioredoxin reductase 1 (Txnrd1; 13.7 fold), thioredoxin 

reductase 2 (Txnrd2; 1.0 fold), heme oxygenase 1 (Hmox1; 3.9 fold), Nqo1 (11.4 fold), and uncoupling 

protein 2 (UCP2; 2.8 fold) (Table 1). Interestingly, the effect of ASP was not only restricted to 

activation of antioxidant-associated genes, but the anti-apoptotic properties of this flavonoid were also 

displayed as it was able to increase the expression of B-cell lymphoma 2 (Bcl2; 2.6 fold) and down-

regulate that of Caspase 8 (Casp8; -1.3) (Table 1). 
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Table 1. Aspalathin treatment (1 µM) increased the expression of antioxidant genes and phase II cytoprotective 

enzymes in H9c2 cardiomyocytes pre-exposed to 33 mM glucose for 48 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ASP regulated expression of Nrf2 and its downstream target genes in vitro 

To investigate if ASP activates Nrf2, siRNA was employed. H9c2 cardiomyocytes exposed to siNrf2 

for 24 h resulted in a significantly reduced Nrf2 mRNA expression (0.5 ± 0.05, p ≤ 0.0001) when 

compared to the scrRNA control (2.0 ± 0.2) (Fig. 1A). Furthermore, to define the role ASP plays in the 

activation of Nrf2, HG-exposed H9c2 cells were treated with either siNrf2 or scrRNA. HG exposure 

decreased the expression of Nrf2 when compared to the NG control (0.4 ± 0.12 compared to 1.0 ± 

0.13, p ≤ 0.001) (Fig. 1B). ASP treatment ameliorated this effect compared to the HG control (0.8 ± 

GENE Fold regulation 
after high 
glucose 

exposure 

Fold regulation 
after post-

treatment with 
aspalathin 

Antioxidant genes 

Catalase (Cat) -1.63 11.80 
Glutathione peroxidase 2 (Gpx2) -1.20 15.86 

Peroxiredoxin 1 (Prdx1) -1.33 2.49 
Peroxiredoxin 3 (Prdx3) -1.21 3.09 

Peroxiredoxin 4 (Prdx4) -1.72 2.14 
Peroxiredoxin 6 (Prdx6) -2.65 2.89 

Superoxide dismutase 1 (SOD1) -1.25 2.18 
Superoxide dismutase 2 (SOD2) -1.17 1.22 

Glutathione synthesis genes 

Glutamate-cysteine ligase catalytic subunit 
(Gclc) 

-1.84 6.96 

Glutamate-cysteine ligase, modifier subunit 
(Gclm) 

-1.40 5.89 

Glutathione reductase (Gsr) -1.50 3.29 
Reducing agent genes 

Sulfiredoxin 1 (Srxn1) -3.43 6.34 
Thioredoxin 1 (Txn1) -1.08 2.05 

Thioredoxin Reductase 1 (Txnrd1) -2.88 13.70 
Thioredoxin Reductase 2 (Txnrd2) -3.25 1.08 

Cytoprotective genes 

Heme oxygenase 1 (Hmox1) -2.77 3.98 

NAD(P)H dehydrogenase (quinone 1) 
(Nqo1) 

-4.57 11.45 

Uncoupling protein 2 (UCP2) -3.95 2.83 
Uncoupling protein 3 (UCP3) -2.01 -1.61 

Apoptotic genes 

B-cell lymphoma 2 (Bcl2) -1.8 2.6 

Caspase 8 (Casp8) 3.9 -1.3 
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0.04 compared to 0.4 ± 0.12, p = 0.01) (Fig. 1B). As anticipated, cells treated with siNfr2 + ASP failed 

to increase Nrf2 mRNA expression when compared to the scrRNA control (Fig. 1B). 
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Figure 1. Aspalathin (ASP) increased the expression of Nrf2 in H9c2 cardiomyocytes. (A) The degree of Nrf2 

knockdown in H9c2 cardiomyocytes after transfection with either small interfering RNA (siNrf2) or scrambled 

RNA (scrRNA) for 24 h. (B) H9c2 cardiomyocytes transfected with siNrf2 or scrRNA for 24 h were exposed to 33 

mM glucose (HG) for 24 h, followed by treatment with 1 µM ASP for 6 h. Results are expressed as the mean ± 

SEM of 3 independent biological experiments relative to the normal glucose (NG) control, each done in triplicate. 

**p ≤ 0.001, ***p ≤ 0.0001 vs. NG, #p ≤ 0.05 vs. HG, †††p ≤ 0.0001 vs. scrRNA + ASP. 
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Figure 2. siNrf2 inhibited the effect of aspalathin (ASP) in vitro. The relative mRNA expression of antioxidant 

genes, including (A) Gpx2, (B) Park7, (C) SOD2, and (D) UCP2, and oxidative damage associated genes (E) 

Casp3 and (F) Nox4 after transfection of cells with either small interfering RNA (siNrf2) or scrambled RNA 

(scrRNA) for 24 h followed by treatment with 1 µM ASP for 6 h. Results are expressed as the mean ± SEM of 3 

independent biological experiments relative to the normal glucose (NG) control, each done in triplicate. *p ≤ 0.05, 

**p ≤ 0.001, ***p ≤ 0.0001 vs. NG, #p ≤ 0.05, ##p ≤ 0.001 vs. HG, †p ≤ 0.05, †††p ≤ 0.0001 vs. scrRNA + ASP. 

 

The effects of siNrf2 on ASP treatment on mRNA expression of antioxidant and oxidative genes. 

These results show that HG exposure significantly reduced the mRNA expression of oxidative stress 

protective genes, Gpx2 (0.4 ± 0.04, p = 0.01), Park7 (0.3 ± 0.04, p ≤ 0.001), SOD2 (0.1 ± 0.03, p ≤ 

0.001), and UCP2 (0.3 ± 0.33, p ≤ 0.001) when compared to the NG controls (1.0 ± 0.38, 1.0 ± 0.28, 

1.0 ± 0.49, and 1.0 ± 0.30, respectively) (Fig. 2A-D). Treatment with ASP at 1 µM for 6 h was able to 

prevent this by up-regulating the expression of Gpx2 (1.0 ± 0.32, p ≤ 0.02), Park7 (0.85 ± 0.17, p ≤ 

0.001), SOD2 (0.6 ± 0.13, p ≤ 0.001), and UCP2 (0.9 ± 0.15, p ≤ 0.001) when compared to the HG 

controls (Fig. 2A-D). Interestingly, the effect on cells exposed to siNrf2 + ASP was down-regulated 

when compared to scrRNA + ASP and similar to when compared to HG (Fig. 2A-D). 

Moreover, the mRNA expression of genes associated with oxidative damage (Casp3 and Nox4) was 

up-regulated in HG exposed cells (1.6 ± 0.43, p = 0.04; and 1.8 ± 0.4, p = 0.03) when compared to the 

NG controls (1.0 ± 0.61, and 1.0 ± 0.20, respectively) (Fig. 2E and F). ASP treatment was able to 

abolish this effect for both Casp3 and Nox4 (0.9 ± 0.42, p = 0.04; and 0.6 ± 0.06, p = 0.01, 

respectively) when compared to the HG controls (Fig. 2E and F). However, treatment with siNrf2 + 
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ASP failed to reduce expression of both these genes when compared to cells subjected to scrRNA + 

ASP (Fig. 2E and F). The effect was similar to the HG control. 

 

In vivo confirmation studies on db/db mice 

Effect of ASP on FPG and OGTT  

Db/db mice and their db/+ controls were treated daily with either a low (13 mg/kg) or a high (130 

mg/kg) dose of ASP, as well as MET at 150 mg/kg for 6 weeks. The db/db_UC group displayed 

elevated FPG levels from week 9 to week 14 (21.0 ± 1.73, 15.5 ± 1.29, 23.7 ± 1.15, 24.7 ± 2.91, 19.7 

± 1.46, and 22.3 ± 2.85, respectively) when compared to the untreated db/+_UC control group (6.1 ± 

0.30, 5.9 ± 0.50, 6.2 ± 0.38, 5.3 ± 0.44, 6.0 ± 0.20, and 4.3 ± 0.49, respectively) (Fig. 3A). Although 

both the low and high dose ASP treatments did not reduce the increased FPG levels in db/db mice, 

MET was able to reduce the raised FPG levels from week 12 to week 14 (17.3 ± 1.92, 17.0 ± 1.67, 

and 17.4 ± 2.56, respectively), though not significantly (Fig. 3A). 

 

Assessment of OGTTs after administration of a 2 g/kg glucose bolus in mice 

Results obtained showed a marked increase in FPG levels 30 min after glucose administration, and 

this was significantly different when the db/db_UC (33.8 ± 0.40, p ≤ 0.0001) was compared to the 

db/+_UC control (9.6 ± 0.50) (Fig. 3B). High dose ASP treatment at 60 and 120 min (30.8 ± 1.53 and 

28.6 ± 1.63) was comparable to MET (30.2 ± 1.61 and 28.8 ± 2.22) in reducing the increased FPG 

concentrations when compared to the untreated diabetic controls, though not significantly (Fig. 3B). 

Treatment with a low dose of ASP was, however, ineffective. 

 

ASP prevented diabetes-induced LV mass enlargement in vivo 

Heart hypertrophy associated measurements, including heart weight (HW)/body weight (BW) ratio, LV 

wall and interventricular septum thickness, and occurrence of cardiac muscle remodeling were 

assessed after mice were treated with ASP for 6 weeks. Results showed that the db/db_UC group 

presented with increased HW/BW ratio (0.0061 ± 0.00005, p ≤ 0.0001), LV wall and interventricular 

septum thickness measurements ((1588 ± 42, p ≤ 0.0001 and 1556 ± 70, p ≤ 0.001, respectively) 

occurring concurrent to enhanced cardiac remodeling in comparison to the db/+_UC control group 

(HW/BW ratio: 0.0048 ± 0.0001, LV wall: 1151 ± 9; and interventricular septum: 1120 ± 29) (Fig. 4A-

C). Interestingly, treatment with a high dose ASP was able to ameliorate these dysregulations 
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associated with cardiac hypertrophy, including prevention of changes in HW/BW ratio (0.0043 ± 

0.0003, p ≤ 0.001), LV wall (1278 ± 96, p = 0.01) and interventricular septum thickness (1160 ± 42, p ≤ 

0.001) (Fig. 4A-C). Neither MET or a low dose ASP had any effect on the altered cardiac muscle fibers 

or ventricular wall thickness. 
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Figure 3. Aspalathin (ASP) treatment did not reduce increasing fasting plasma glucose (FPG) levels, however a 

high dose of 130 mg/kg of ASP was able to improve oral glucose tolerance in diabetic mice after 60 and 120 

minutes from baseline. (A) FPG levels (B) Oral glucose tolerance tests (-60: baseline reading). Results are 

expressed as the mean ± SEM and each treatment group contained 6 mice. ***p ≤ 0.0001 diabetic control mice 

(db/db_UC) vs. untreated nondiabetic mice (db/+_UC). db/db_MET: diabetic mice treated with metformin (150 

mg/kg); db/db_ASP_LD: diabetic mice treated with aspalathin low dose (13 mg/kg); db/db_ASP_HD: diabetic 

mice treated with aspalathin high dose (130 mg/kg). 
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Figure 4. Aspalathin (ASP) prevented diabetes-induced cardiac muscle structure modifications associated with 

hypertrophy in diabetic mice. (A) Heart weight (HW) to body weight (BW) ratio, (B) left ventricular (LV) wall 

thickness, (C) interventricular septum thickness, and (D) photomicrographs of cardiac remodeling. Results are 

expressed as the mean ± SEM and each treatment group contained 6 mice. **p ≤ 0.001, ***p ≤ 0.0001 versus 

untreated nondiabetic mice (db/+_UC), #p ≤ 0.05, ##p < 0.001 versus untreated diabetic mice (db/db_UC). 

db/db_MET: diabetic mice treated with metformin (150 mg/kg); db/db_ASP_LD: diabetic mice treated with 

aspalathin low dose (13 mg/kg); db/db_ASP_HD: diabetic mice treated with aspalathin high dose (130 mg/kg). 
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ASP regulated the expression of Nrf2 and its target genes in vivo 

In support of the in vitro data on H9c2 cardiomyocytes, we assessed the expression of Nrf2 and its 

associated downstream cytoprotective genes in vivo, and results showed a significant enhancement of 

Nrf2 mRNA expression in the db/db_UC group (2.54 ± 0.63, p ≤ 0.001) in comparison to the db/+_UC 

control group (0.99 ± 1.49) (Fig. 5A). Although MET and low dose ASP treatments were not effective, 

the high dose ASP (4.1 ± 0.93, p = 0.01) significantly increased mRNA expression of Nrf2 when 

compared to both db/db_UC and db/+_UC groups (Fig. 5A).  

Further analyzing mRNA expression of genes activated by Nrf2, it was noted that the expression of 

Gpx2 (0.69 ± 0.11, p = 0.04) and Gss (0.66 ± 0.05, p = 0.03) was reduced in the db/db_UC group 

when compared to the db/+_UC group (1.0 ± 0.15, 1.0 ± 0.11, respectively) (Fig. 5B and C). The 

expression of Park7 was not significantly affected (0.94 ± 0.06). Treatment with MET and the low dose 

ASP did not have any effect, while the high dose ASP significantly up-regulated expression of Gpx2 

(1.56 ± 0.66, p = 0.04), Gss (1.0 ± 0.15, p = 0.03), and Park7 (1.35 ± 0.06, p ≤ 0.001) when compared 

to db/db_UC group (Fig. 5B-D). 

Expression of oxidative damage-associated genes (Casp3 and Nox4) was significantly enhanced in 

the db/db_UC group (1.53 ± 0.24, p = 0.02; and 1.8 ± 0.37, p = 0.01) when compared to the db/+_UC 

group (1.0 ± 0.06; and 1.0 ± 0.07, respectively) (Fig. 5E and F). No effect was observed for MET or 

low dose ASP treatments, while the high dose ASP treatment was able to down-regulate the 

expression of both Casp3 (0.97 ± 0.03, p = 0.01) and Nox4 (0.96 ± 0.10, p = 0.01) when compared to 

db/db_UC group (Fig. 5E and F). 
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Figure 5. Aspalathin (ASP) prevented oxidative damage by increasing the expression of Nrf2 and its down-

stream target genes in diabetic mice. The relative mRNA expression of (A) Nrf2 and associated antioxidant 

genes, including (B) Gpx2, (C) Gss, and (D) Park7, and oxidative damage associated genes (E) Casp3 and (F) 

Nox4 after the 6 week treatment period with metformin, and a low or high dose ASP. Results are expressed as 

the mean ± SEM and each treatment group contained 6 mice. *p ≤ 0.05, **p ≤ 0.001 versus untreated 

nondiabetic mice (db/+_UC), #p ≤ 0.05, ##p ≤ 0.001 versus untreated diabetic mice (db/db_UC). 
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Discussion 

Evidence of the antidiabetic properties of ASP, through the use of cell culture and animal models, has 

been increasingly reported (Kawano et al., 2009, Muller et al., 2012 and Son et al., 2013). In addition 

to its robust antioxidant properties (Snijman et al., 2009 and von Gadow et al., 1997), this C-glucosyl 

dihydrochalcone protects the myocardium against HG-induced oxidative stress and subsequent 

metabolic dysregulations (Johnson et al., 2016). Metabolic dysregulations associated with oxidative 

stress are complex, but two cellular signaling processes, namely AMPK and Nrf2 play crucial roles 

and are essential in maintaining cellular homeostasis (Bai et al., 2013 and Johnson et al., 2016). 

Previously, we showed that ASP was able to prevent shifts in substrate preference by decreasing 

AMPK phosphorylation resulting in reduced oxidative damage (Johnson et al., 2013). In addition, 

various studies have shown that activation of Nrf2 decreases oxidative stress by increasing 

intracellular antioxidant defences (Chen et al., 2013 and He et al., 2009). Hence, this study aimed to 

investigate if ASP can improve the bioenergetics of the cell through enhancing Nrf2 expression. 

During accelerated free radical damage that occurs mainly through ROS the cell adapts by 

dissociating Nrf2 from KEAP1. This dissociation results in the translocation of Nrf2 into the nucleus 

and binding to the ARE that activate the endogenous antioxidant defense system (Dinkova-Kostova et 

al., 2015). Accumulative evidence has shown that certain dietary phytochemicals are able to activate 

Nrf2 and thereby increase its cytoprotective response (Chen et al., 2013, Cheng et al., 2015 and 

Granado-Serrano et al., 2012). Presence of a catechol group may be a pivotal structural feature of 

flavonoids that contributes to Nrf2 activation as demonstrated for shogaol derivatives (Zhu et al., 

2016). Furthermore, a dihydrochalcone glycoside, neohesperidin dihydrochalcone, has recently been 

shown to prevent carbon tetrachloride-induced hepatic injury by increasing the expression of Hmox1 

and Nqo1 through activation of Nrf2 in HepG2 cells (Su et al., 2015). In agreement to others (Bai et 

al., 2013, Chen et al., 2013 and Su et al., 2015), our study showed that activation of Nrf2 promoted 

cell survival by increasing the expression of an array of antioxidant genes and enzymes. We showed 

that a 6 h treatment with 1 µM ASP protected cardiomyocytes exposed to HG against oxidative 

damage by up-regulating the expression of antioxidant genes and cytoprotective enzymes such as 

Nqo1 and Hmox1. In addition, by using RNA interference we showed that activation of Nrf2 by ASP is 

crucial for the antioxidant response against hyperglycemia-induced oxidative injury in H9c2 

cardiomyocytes. While it was expected that Nrf2-knockdown may exacerbate susceptibility of such 

cells to oxidative damage, ASP treatment showed an even higher capacity to enhance Nrf2 

expression and its downstream target genes and thus protect against HG-induced stress. 

Following in vitro experiments on H9c2 cardiomyocytes, it was important to confirm such findings in an 

in vivo system. For this we made use of db/db mice, which represent a type 2 diabetic mouse model. 
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These mice display a whole-body phenotype of DM and are frequently used in the pharmacological 

study of compounds including ASP (Kawano et al., 2009 and Zheng et al., 2015). Moreover, they have 

been reported to spontaneously become obese and develop hyperglycemia from the age of eight 

weeks (Ritchie et al., 2008). At the age of ten to eighteen weeks these mice display signs of cardiac 

interstitial fibrosis and hypertrophy as a result of increased LV wall thickness, occurring simultaneous 

to enhanced generation of ROS (Belke et al., 2000 and Ritchie et al., 2008). Accelerated ROS 

production induces deleterious modifications to DNA, proteins and lipids concomitant to the 

pathophysiological state observed within the diabetic heart (Mapanga and Essop, 2016). To support 

this, we showed that, in addition to impaired OGTT, db/db mice presented elevated FPG levels, an 

increased HW/BW ratio that occurred concomitant to a thickened left ventricle and interstitial fibrosis 

when compared to the db/+ control group. An enlarged heart LV wall is a conspicuous sign of DCM 

and is identified as an early defect associated with chronic hyperglycemia in diabetic patients 

(Fonarow, 2005 and Rubler et al., 1972). The latter state has been associated with elevated oxidative 

stress and various studies have reported on the effect of oxidative stress on vascular remodeling and 

how antioxidant therapy prevents progressive remodeling and improves cardiac function (Bai et al., 

2013, Dludla et al., 2014 and Johnson et al., 2016). Correspondingly, in this study we observed that 

morphological derangements within db/db mouse hearts occurred concurrently to accelerated 

oxidative stress and a modest increase in Nrf2 expression. It has been previously reported that the 

expression of Nrf2 is initially elevated in response to stress, and then diminishes at a later stage 

leading to adverse complications such as apoptosis (Bai et al., 2013 and Dinkova-Kostova et al., 

2015).  

Despite inability protective effects displayed by ASP treatment on reducing elevated FPG 

concentrations, this polyphenol at a dose of 130 mg/kg was able to ameliorate oxidative damage via 

Nrf2 activation, resulting in attenuated cardiac hypertrophy and remodeling. However, an unexpected 

finding was the inability of ASP to attenuate increased FPG concentrations, since it has been 

previously reported to have blood glucose lowering effects (Kawano et al., 2009 and Muller et al., 

2012). A similar finding was observed where treatment of streptozotocin (STZ)-induced diabetic mice 

with sulforaphane failed to reduce FPG, but was able to protect the heart against oxidative stress 

associated with heart tissue remodeling (Bai et al., 2013). The inability of ASP to reduce blood glucose 

can also be due to other factors, such as the duration of treatment, as our group has previously 

demonstrated that ASP reduces blood glucose concentrations in STZ-induced diabetic rats over a 

period of 6 h (Muller et al., 2012). In contrast, while current antidiabetic agents including MET 

effectively reduce FPG concentrations, there is still an increasing number of cardiovascular-related 

deaths in diabetic patients (Inzucchi et al., 2015). Correspondingly, this study showed that even 

though MET-treated mice presented with moderately reduced FPG levels, it was unable to prevent 
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oxidative stress associated myocardial structural modifications. Therefore, the use of potential 

nutraceutical agents such as ASP, especially in combination with current antidiabetic agents to 

alleviate oxidative injury and protect diabetic individuals at risk of myocardial infarction are of foremost 

importance. 

In summary, consistent with previous findings, ASP displays strong properties to improve myocardial 

ultrastructure by preventing HG-associated complications. However, dose selection remains important 

to induce desired efficacy, since the low dose of 13 mg/kg did not show any effect in protecting the 

heart when compared to the high dose of 130 mg/kg in our study. In addition to its modulatory effects 

of AMPK, the ability of ASP to regulate Nrf2 may be a key factor to protect against DCM. However, 

further studies to assess the impact of ASP on cardiac functional parameters in diabetic rodents are 

required to confirm this exciting proposal.  
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Abstract 

In the pathological condition of type 2 diabetes mellitus, myocardial fatty acid uptake exceeds the rate 

of β-oxidation leading to lipid toxicity. Increased lipid storage within the diabetic heart correlates with 

the development of diabetic cardiomyopathy (DCM). Aspalathin, a C-glucosyl dihydrochalcone, can 

protect cardiomyocytes against hyperglycemia-induced shifts in substrate preference and subsequent 

apoptosis. However, the precise gene regulatory network associated with the protective effect of 

aspalathin remains to be fully elucidated. Db/db mice and their non-diabetic (db/+) littermate controls 

were treated daily for 6 weeks with either a low (13 mg/kg) or high (130 mg/kg) aspalathin dose. 

Results obtained showed that aspalathin significantly lowered plasma lipid levels. To provide insight 

into the molecular mechanisms associated with the improved plasma lipid profile, an in vitro H9c2 

cardiomyocytes model was employed. H9c2 cardiomyocytes were exposed to high glucose for 48 

hours before treatment with or without aspalathin (1 µM) for 6 hours. Thereafter, RNA was extracted 

and RT2 PCR Profiler Arrays were used to profile the expression of 336 genes involved in cardiac 

metabolism. Results obtained showed that among the 336 genes assessed, 57 were differentially 

regulated by more than 2-fold in the high glucose or high glucose + aspalathin treated groups. 

STRING analysis revealed lipid metabolism and molecular transport to be the top two biological 

processes that were altered after high glucose treatment, followed by inflammation and apoptosis. 

Interestingly, aspalathin was able to modulate key regulators associated with lipid metabolism (Acads, 

Adipoq, Apob/e, Cd36, Cpt1, Pparγ, Srebf1/2, Scd1 and Vldlr), insulin resistance (Igf1, Akt1, Pde3 and 

Map2k1), inflammation (Il3, Il6, Jak2, Lepr, Socs3, and Tnf13) and apoptosis (Bcl2, Bbc3 and Chuk). 

Collectively, our results indicate that aspalathin was able to reverse lipid toxicity that can lead to 

subsequent inflammation and myocardial death. 
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Introduction 

In the last decade, there has been much interest in the use of plant-derived polyphenols as 

nutraceuticals to protect against the development of metabolic diseases [1, 2]. Aspalathus linearis 

(commonly known as rooibos) is a rich source of plant polyphenols with known health promoting 

properties. In addition to reversing ischemia/reperfusion injury in the isolated perfused rat heart [3], 

rooibos has been shown to improve lipid profiles as well as oxidative stress in diabetics at risk of 

developing cardiovascular disease [4, 5]. Furthermore, literature has indicated that polyphenols 

specific to rooibos may present strong ameliorative properties against diabetes mellitus and its 

associated complications [6-8]. Of note, aspalathin, a C-glucosyl dihydrochalcone found in rooibos has 

displayed an even greater potency to prevent diabetes-induced cardiovascular complications [9-11]. 

For example, a fermented rooibos extract containing abundant levels of aspalathin protected 

cardiomyocytes isolated from diabetic rats against experimentally-induced oxidative stress and 

ischemia [9]. Moreover, recent data from our laboratory demonstrated that aspalathin protects cultured 

cardiomyocytes exposed to chronic hyperglycemia from shifts in substrate preference and subsequent 

cell apoptosis [10].  

Enhanced intracellular lipid accumulation that results in impaired cardiac substrate metabolism is 

consistently reported in diabetic hearts [10, 12]. For example, obese mice display elevated 

intramyocardial lipid accumulation concomitant to suppressed glucose oxidation that was linked to 

contractile dysfunction [12, 13]. Increased lipid storage in the hearts of diabetic patients correlates with 

the development of diabetic cardiomyopathy (DCM) [14]. DCM is a disease of the myocardium that is 

characterized by a measurable deterioration in the heart function. In animal models of DCM, a 

significant increase in FFA transporter expression alters intracellular signalling pathways and 

promotes apoptotic cell death [15, 16]. Therefore, targeting myocardial metabolism as a therapeutic 

intervention to protect a diabetic heart is a powerful therapeutic strategy. This study made use of RT2 

PCR Profiler Arrays to unravel the transcriptional mechanisms that underlie the cardioprotective effect 

of aspalathin against the development of high glucose-induced cardiomyopathy. 

 

Materials and methods 

Reagents and kits 

Pure aspalathin (ca. 98%, batch SZI-356-54) was synthesized according to a previously published 

protocol [17] and was obtained from High Force Research (Durham, UK) while H9c2 rat derived 

cardiomyoblasts were purchased from the European Collection of Cell Cultures (ECACC No. 

8809294; Wiltshire, UK). Radioimmunoassay Kit was from Linco Research (St. Charles, USA), 

Stellenbosch University  https://scholar.sun.ac.za



 124 

halothane from Safeline Pharmaceuticals (Johannesburg, RSA), Dulbecco’s Modified Eagle’s Medium, 

penicillin, and streptomycin were obtained from Lonza (Verviers, Belgium), and fetal bovine serum 

was from Biochrom (Berlin, Germany). RNeasy Mini Kit, RT2 First Strand Kit, RT2 Profiler PCR Arrays 

and RT2 SYBR Green qPCR Master Mix were from Qiagen (Valencia, USA), while Trizol reagent and 

Turbo DNase Kit were from ThermoFisher Scientific (Waltham, USA). All other consumables and 

reagents were purchased from Sigma-Aldrich Corp. (St. Louis, USA), unless otherwise specified. 

 

Animal work 

Male C57BL/KS leptin receptor deficient (db/db) mice were obtained from and housed at the Primate 

Unit and Delft Animal Centre (PUDAC) of the South African Medical Research Council (SAMRC) in a 

controlled environment with a 12 h light/dark cycle in a temperature range of 23-25ºC (relative 

humidity: ∼50%). The mice received standard laboratory chow pellets (Afresh Vention) ad libitum and 

had free access to drinking water. The study was performed in agreement with the principles and 

guidelines of the SAMRC (ECRA no. 07/13) as well as Stellenbosch University Ethics Committee (SU-

ACUM13-00021).  

 

Animal treatment with aspalathin 

After acclimatizing for one week, nine-week old db/db mice together with their nondiabetic lean 

littermates (db/+) (n=6 per group), caged in individual cages, were randomly divided in five groups. 

Mice were treated daily for six weeks through oral gavage with either a low (13 mg/kg) or high (130 

mg/kg) aspalathin dose and compared to metformin (150 mg/kg). Treatment groups included: i) 

untreated nondiabetic controls (db/+_UC), ii) untreated diabetic controls (db/db_UC), iii) diabetic 

treated with metformin (db/db_MET), iv) diabetic treated with low dose aspalathin (db/db_ASP_LD) 

and v) diabetic treated with high dose aspalathin (db/db_ASP_HD). Aspalathin and metformin were 

dissolved in water before orally administered at the same time every day for six weeks, while 

untreated animals were given water in place of treatment. 

 

Homeostasis model assessment: insulin resistance (HOMA-IR) determination 

Mice were fasted overnight before plasma glucose levels were measured. This was done on a weekly 

basis by tail pricks using OneTouch Select handheld glucometer (LifeScan, Milpitas, USA). Fasting 

plasma insulin was detected using Radioimmunoassay Kit, as per manufacturer's instruction. HOMA-
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IR was calculated using fasting plasma glucose levels and insulin values, according to an already 

described method [18]. 

 

Organ weight measurements and lipid profiles 

After the 6-week treatment period, mice were fasted for 4 h and body weight (BW) measurements 

documented before being anesthetized with halothane. Animals received the anesthetic until no 

reaction could be recorded by pedal reflex before an average of 1 mL of blood was collected from the 

abdominal vena cava and organs were removed from each mouse. Heart, liver muscle, and fats 

(gonadal and intraperitoneal) were removed and weighed to determine heart weight (HW), liver weight 

(LW) and fat weight (FW), respectively, using an Adventurer analytical balance (OHAUS Corp., 

Parsippany, USA). For lipid profiles, blood was collected and centrifuged at 4000 g at 4ºC for 15 min 

before serum was removed and stored at -80ºC. Serum was sent to PathCare Medical Diagnostic 

Laboratories to screen for total cholesterol, triglycerides, low density lipoprotein (LDL), and high-

density lipoprotein (HDL). 

 

Cell culture and treatment 

Embryonic ventricular rat heart-derived H9c2 cardiomyoblasts were cultured in supplemented 

Dulbecco’s Modified Eagle’s Medium (10% foetal bovine serum, 100 U/ml of penicillin, 100 mg/ml of 

streptomycin) for 48 h under standard tissue culture conditions (37°C in humidified air and 5% CO2). 

Confluent cells (60-80%) were seeded at a density of 2 x 104 in 6-well multi-plates. Thereafter, H9c2 

cardiomyoblasts were differentiated into adult cardiomyocytes for 7 days using retinoic acid according 

to previously described method [19]. On day 8, H9c2 cells were exposed to 33 mM glucose for 48 h 

prior to treatment with aspalathin (1 µM) for an additional 6 h. Cells exposed to 5.5 mM glucose were 

used as a normal glucose control [10].  

 

RT2-PCR array analysis 

Total RNA was extracted using Trizol reagent, according to a previously described protocol [10]. RNA 

was purified using an RNeasy Mini Kit, while the Turbo DNase Kit was used to remove genomic DNA, 

as per manufacturer’s instructions. RNA integrity was determined using an Agilent 2100 Bioanalyser 

(Agilent Technologies, Palo Alto, USA) and cDNA was synthesized from two microgram RNA using 

the RT2 First Strand Kit, according to relevant manufacturer’s instructions. Rat Atherosclerosis (PARN-

038ZA-2), Cytokine (PARN-011ZA-2), Fatty Acid Metabolism (PARN-007Z), and Insulin Resistance 
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(PARN-156ZA-2) RT2 Profiler PCR Arrays were used for mRNA profiling studies using ABI7500 

(ThermoFisher Scientific, Waltham, USA). Analysis of PCR array data was done according to 

manufacturer’s instructions, using a Microsoft Excel sheet with macros 

(http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php). Each array contained five house 

keeping genes (Actb, B2m, Gapdh, Gusb and Hsp90ab1) against which the sample data was 

normalized. Using the online software, the transcript level of each candidate gene was quantified by 

using the ΔΔCT method. Ant Ct value > 35 was not included in the analysis and considered as 

negative. To determine the gene interaction and network analysis, Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING; http://string-db.org/) database was used to represent information 

of known and anticipated gene interactions [20, 21]. 

 

Statistical analysis 

Data were expressed as the mean ± SEM of three independent biological experiments with each 

experiment containing at least three technical replicas, unless stated otherwise. For in vivo 

experiments, each treatment group contained six mice. Statistical analysis was calculated using 

GraphPad Prism software (La Jolla, USA). Comparisons between groups were performed using one-

way multivariate ANOVA followed by using unpaired Student t-test. P-value of ≤ 0.05 was deemed as 

statistically significant. 

 

Results and discussion 

In vivo effect of aspalathin 

Hyperglycemia, lipidemia and insulin resistance are the key risk factors associated with the 

development of cardiovascular complications. Chronic hyperglycemia results in shifts in substrate 

preference that precede the onset of heart failure. Aspalathin, a C-linked dihydrochalcone glucoside, 

plays an important role in maintaining cellular homeostasis by preventing shifts in substrate preference 

through reducing excess uptake of free fatty acids that may result in lipid toxicity in H9c2 

cardiomyocytes [10].  

 

Effect of aspalathin on biometrical measurements: Results from this study demonstrated that 

leptin receptor deficient db/db_UC mice displayed significantly increased water and food intake when 

compare to the db/+_UC littermate control group (Table 1). Concomitantly, an increase in BW, FW, 

HW and LW was observed. The results obtained were expected as leptin deficient db/db mice have 

Stellenbosch University  https://scholar.sun.ac.za



 127 

high circulating leptin levels which are actively associated with increased BW, FW, food intake, 

HOMA-IR and decreased adiponectin levels in type 2 diabetic individuals [22-24]. Interestingly, chronic 

treatment (daily for 6 weeks) with a high dose of aspalathin reduced all biometrical measurements 

except for food intake when compared to the db/db_UC mice. Of interest, aspalathin treatment at a 

high dose was more effective than either metformin or a low dose of aspalathin treatment (Table 1).  

 

Table 1. The effect of aspalathin on body weight, fat weight, heart weight, liver weights, food intake and 

water intake. 

Weight 
(g) 

db/+_UC db/db_UC db/db_MET db/db_ASP_LD db/db_ASP_HD 

BW 
 

27.1 ± 0.33 37.9 ± 0.82*** 38.0 ± 0.61*** 37.7 ± 0.74*** 35.0 ± 0.99***
#
 

FW 
 

0.93 ± 0.08 2.6 ± 0.12*** 2.9 ± 0.17*** 2.9 ± 0.19*** 1.9 ± 0.15***
##

 

HW 
 

0.1 ± 0.01 0.2 ± 0.02** 0.2 ± 0.02 0.2 ± 0.03 0.1 ± 0.01
#
 

LW 
 

1.2 ± 0.08 2.5 ± 0.14*** 2.5 ± 0.09*** 2.2 ± 0.09***
#
 1.9 ± 0.15**

#
 

FI 
 

24.9 ± 0.67 45.68 ± 1.87*** 41.12 ± 2.20*** 44.63 ± 1.50*** 40.95 ± 1.59*** 

WI 
 

57.3 ± 4.73 213.9 ± 6.49*** 172.1 ± 7.41***
##

 188.6 ± 3.98***
#
 181.8 ± 9.86***

#
 

 

Results are the mean ± SEM, with each treatment group containing six mice. *p < 0.05, **p < 0.001, ***p < 

0.0001 versus untreated nondiabetic mice (db/+_UC); #p < 0.05, ##p < 0.001 versus untreated diabetic mice 

(db/db_UC). BW: body weight, db/db_ASP_LD: diabetic mice treated with low dose aspalathin (13 mg/kg), 

db/db_ASP_HD: diabetic mice treated with high dose aspalathin (130 mg/kg), db/db_MET: diabetic mice 

treated with metformin (150 mg/kg), FI: food intake, FW: fat weight, HW: heart weight, LW: liver weight, WI: 

water intake. 

 

Effect of aspalathin on lipid profiles: Increased morbidity observed in type 2 diabetes individuals is 

primarily associated with heart failure with lipid toxicity being the key pathological mechanism 

underlying the condition [5, 12, 14]. To investigate if aspalathin can improve lipoprotein clearance, a 

total lipid profile was performed on mice treated with and without aspalathin (Table 2). Interestingly, 

we observed that the db/db_UC mice had increased HDL levels with associated elevated triglycerides, 
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total cholesterol, LDL and no change in HOMA-IR when compared to the db/+_UC group (Table 2). 

Aspalathin treatment at a high dose was able to ablate this response and the effect was better than 

either the low dose aspalathin or the metformin treated groups. However, similar to metformin, 

aspalathin treatment was unable to change HDL cholesterol (Table 2). An unexpected finding was the 

increased HDL levels on untreated db/db mice, while metformin or aspalathin failed to have any effect. 

However, it had been suggested that obese mice display a marked catabolic defect for the major HDL 

apolipoprotein A-1 (Apoa1) [13]. 

 

Table 2. The effect of aspalathin on blood lipid profiles and HOMA-IR. 

 db/+_UC db/db_UC db/db_MET db/db_ASP_LD db/db_ASP_HD 

Total cholesterol 
(mmol/L) 

2.4 ± 0.09 3.5 ± 0.18*** 2.9 ± 0.18*
#
 3.2 ± 0.18** 2.7 ± 0.24

#
 

LDL 
(mmol/L) 

0.1 ± 0.06 0.4 ± 0.07* 0.2 ± 0.04
#
 0.2 ± 0.05 0.1 ± 0.04

##
 

HDL 
(mmol/L) 

1.7 ± 0.06 2.5 ± 0.10*** 2.2 ± 0.13** 2.3 ± 0.13** 2.3 ± 0.14** 

Triglycerides 
(mmol/L) 

0.9 ± 0.04 3.2 ± 0.38*** 2.3 ± 0.46* 2.6 ± 0.19*** 2.3 ± 0.28** 

HOMA-IR 0.1 ± 0.01 0.6 ± 0.28 0.3 ± 0.05 0.4 ± 0.07 0.2 ± 0.03 

 

Results are the mean ± SEM, with each treatment group containing six mice. *p < 0.05, **p < 0.001, ***p < 

0.0001 versus untreated nondiabetic mice (db/+_UC); #p < 0.05, ##p < 0.001 versus untreated diabetic mice 

(db/db_UC). db/db_ASP_LD: diabetic mice treated with low dose aspalathin (13 mg/kg), db/db_ASP_HD: 

diabetic mice treated with high dose aspalathin (130 mg/kg), db/db_MET: diabetic mice treated with metformin 

(150 mg/kg), HDL: high density lipoprotein, HOMA-IR: homeostasis model assessment: insulin resistance, LDL: 

low density lipoprotein. 

 

In vitro effect of aspalathin 

To confirm our in vivo findings and to decipher the molecular mechanism used by aspalathin to 

improve hyperglycemia-associated lipid toxicity in the heart, gene expression profiling was employed 

using H9c2 cardiomyocytes exposed to high glucose. The expression profiles of 336 genes were 

assessed, 57 genes (17%) were differentially expressed and of these, 45 and 12 genes (79% and 
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21%) were hyper-expressed in the high glucose and aspalathin treated groups, respectively (Table 3). 

STRING data analysis confirmed that aspalathin treatment largely improved the expression of genes 

involved in metabolic processes, identifying fatty acid and lipid metabolism as the top two regulatory 

processes. 

 

In vitro effect of aspalathin on fatty acid and lipid metabolism 

Data analysis identified 26 of the 57 (46%) differentially expressed genes to be involved in fatty acid 

and lipid metabolism (Table 3). STRING network analysis identified three clusters encoding interactive 

nodes representing genes associated with fatty acid/lipid transport, lipid metabolism and fatty acid 

metabolism (confidence score, 0.7) (Fig. 1). Lipids are the large and diverse group of naturally 

occurring organic compounds that are essential for energy storage while FFAs are a sub-group of 

lipids that are commonly derived from triglycerides. FFAs are the preferred substrate for energy 

production within cardiomyocytes, contributing up to 70% of ATP when compared to other substrates 

such as glucose and lactate. 

 

Increased β-oxidation: Enhanced FFA uptake and lipid storage are causal factors known to precede 

the development of diabetic heart failure [14, 25]. In this study, we demonstrated that high glucose 

increased the expression of fatty acid transporters including; cluster of differentiation 36 (Cd36; 3.7-

fold), fatty acid-binding proteins 3 (Fabp3; 2.7-fold), solute carrier family 25, member 30 (Slc25a30; 

2.6-fold) and solute carrier family 27, member 1, 3 and 5 (Slc27a1, 3 and 5) by 1.0, 6.3-fold and 2.0-

fold, respectively (Fig. 1 and Table 3). This increased fatty acid transport was concomitant to raised 

expression levels of genes associated with β-oxidation; including carnitine palmitoyltransferase 1b 

(Cpt1b; 3.3-fold), acyl-CoA thioesterase 2 (Acot2, 2.8-fold), acyl-CoA oxidase 2 (Acox2, 2.8-fold) as 

well as lysophospholipase 1 (Lypla1; 3.5-fold) (Fig. 1 and Table 3). Additionally, we observed that high 

glucose exposure upregulated mRNA expression of stearoyl-CoA desaturase 1 (Scd1, 5.5-fold), an 

enzyme crucial for the synthesis and storage of fatty acids. However, aspalathin treatment supressed 

this effect, which was associated with reduced FFA uptake and oxidation (Fig. 1 and Table 3). This 

result was in agreement with our previous findings [10, 26], where we showed that aspalathin and 

phenyl acid-2-O-β-D-glucoside prevented loss of metabolic flexibility by preventing shifts in myocardial 

substrate preference, from an almost compete reliance on fatty acid oxidation towards increased 

glucose utilization. 
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Increased supply of long-chain fatty acids (LCFAs): Chronic hyperglycemia has been associated 

with increased supply of circulating FFAs in cardiomyocytes [10, 26]. When this enhanced supply of 

FFAs exceed the rate of β-oxidation, myocardial triglyceride accumulation occurs, leading to 

lipotoxicity [14, 15]. The latter can subsequently lead to left ventricular dysfunction, a major 

characteristic of DCM. In a study done by Drosatos et al. [25], they showed that mice with cardiac-

specific overexpression of LCFA acyl-CoA synthetase (Acsl) genes developed lipid toxicity and 

diastolic dysfunction, directly implicating LCFAs in the development of cardiac fibrosis and subsequent 

myocardial remodeling [25]. In our dataset, STRING analysis identified a network of genes with nodes 

linking long-chain fatty acyl-CoA synthetase enzymes (Fig. 1). These data confirm previous findings 

[25], where high glucose exposure resulted in increased mRNA expression of acyl-CoA synthetase 

long-chain family member 4 and 6 (Acls4, 5.6-fold and Acls6, 2.4-fold) as well as acyl-CoA synthetase 

medium-chain family member 3 and 4 (Acsm3, 14.2-fold and Acsm4, 6.1-fold) (Fig. 1 and Table 3). 

Results obtained showed that aspalathin treatment was able to attenuate this effect.  

 

Altered lipid metabolism and increased cholesterol flux: Scientific evidence has shown that 

excessive cardiac lipid accumulation may lead to fibrosis and reduced ventricular compliance, 

contributing to the development of cardiac dysfunction [10-13]. Lipid toxicity in the myocardium has 

been associated with the transcriptional factor sterol regulatory element-binding protein 1/2 (Srebf1/2) 

and the transcriptional coactivator peroxisome proliferator-activated receptor-gamma (PPARγ) [25, 

27]. Srebf1/2 and PPARγ are important switches that regulate lipid accumulation and lipotoxicity. In a 

study done by Marfella et al. [27] on biopsies from diabetic patients with left ventricular dysfunction, 

they found that increased cardiac lipid deposits were concomitant with enhanced mRNA expression of 

Srebf1/2, PPARγ as well as genes associated with accelerated β-oxidation. Notably, in this study, 

elevated levels of circulating FFAs were observed after high glucose exposure. This was in parallel to 

enhanced mRNA expression of Srebf1 and 2 (3.4 and 2.0-fold, respectively) as well as PPARγ (8.3-

fold) (Fig. 1 and Table 3). Increased expression of Srebf1 is further linked to the development of an 

artherogenic apolipoprotein profile, a characteristic of cardiac hypertrophy [29, 30]. The main function 

of apolipoproteins is to transport triglycerides and cholesterol in the blood [30]. Apoa1 is the major 

protein component of HDL. HDL promotes efflux of cholesterol, phospholipids, and other lipophilic 

molecules from cells by an active process mediated by a cell-membrane transporter, ATP-binding 

cassette transporter (Abca1) [28, 30]. By contrast, apolipoprotein B (Apob) is the main apolipoprotein 

of chylomicrons and LDL and its elevated levels may cause heart failure [28, 30]. In this study, we 

observed an increased mRNA expression of Apob (7.7-fold), apolipoprotein E (Apoe; 4.4-fold) and 

very low density lipoprotein (Vldlr; 2.0-fold) that was decreased after aspalathin treatment (Fig.1). 

Similar to increased HDL cholesterol in db/db mice, Apoa1 and its transporter Abca1 were increased 
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by 4.2-fold and 2.0-fold, respectively, after high glucose exposure. Aspalathin treatment reversed this 

effect. Of interest, increased Apob has been associated with increased expression of Cd36, the 

receptor for oxidized LDL. Furthermore, insulin sensitivity and improved lipotoxicity have also been 

linked to adiponectin (Adipoq) [29]. Adipoq encodes the circulating protein adiponectin and is 

expressed primarily in the adipose tissue [31], but can also be found in vascular tissue [22, 32]. In this 

study, high glucose exposure resulted in the reduced expression of Adipoq (-6.0-fold), while aspalathin 

was able to reverse this effect. 

Our results support the work of others that increased cardiac lipid toxicity as a result of chronic 

hyperglycemia may lead to heart failure [30, 32]. Aspalathin treatment was able to reverse lipid toxicity 

by modulating key regulatory genes, such as Adipoq and Sreb1/2, that are involved in metabolic, 

hormonal and energy processes. Adipoq plays an important role in controlling lipid metabolism by 

negative regulating Srebf1/2 [29]. Thus, by upregulating Adipoq, aspalathin improved insulin sensitivity 

and suppressed LDL by reducing Srebf1/2 (Fig. 1). We predict that aspalathin can prevent lipid 

accumulation and subsequent death due to cardiac failure.  

 

In vitro effect of aspalathin on the development of insulin resistance 

It is well-known that increased LCFAs result in the intramyocardial accumulation of diacylglycerol that 

activates protein kinase C (theta isoform), leading to the inhibition of insulin receptor substrate 1 (Irs1) 

and development of insulin resistance [10-12]. The latter can have a profound effect on cardiac 

performance, as the heart is an insulin-responsive organ and hyperglycemic-induced insulin 

resistance decreases cardiac performance. Our data analysis revealed that 14 (25%) of the 57 

differentially expressed genes were associated with the development of hyperglycemic-induced insulin 

resistance (Table 3). Network mapping of the differential expressed genes identified two major 

interconnecting clusters (genes associated with protein kinase activity and development of insulin 

resistance) with serine/threonine-protein kinase homolog 1 (Akt1) and mitogen activated protein 

kinase (Mapk) being the major nodes of connection (confidence score, 0.7) (Fig. 2). 
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Figure 1. Aspalathin prevented high glucose-induced impaired cardiac substrate metabolism by reducing the 

uptake and oxidation of free fatty acids. (A) Search Tool for the Retrieval of Interacting Genes (STRING) 

database confirmed a strong interaction between genes associated with lipid toxicity. (B) Representative 

diagram of the proposed protective mechanism of aspalathin against increased lipid accumulation and oxidation. 

Cd36: cluster of differentiation 36; Cpt1: carnitine palmitoyltransferase 1; FFAs: free fatty acids; Fabp3: fatty 

acid binding protein 3; FAO: fatty acid oxidation; Pparɣ: peroxisome proliferator activated receptor gamma; 

Scd1: stearoyl-Coenzyme A desaturase 1; Srebf1/2: Sterol regulatory element binding transcription factor 1/2; 

TAG: triacylglycerides. 
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Insulin signalling and effect on myocardium: Akt1 is a pro-survival protein kinase that plays an 

important role in the regulation of various cellular functions, including metabolism (glucose and lipids), 

growth, migration, proliferation and cell survival [33]. STRING network analysis identified Akt1 as the 

central node associated with 12 of the 14 differentially expressed genes. Akt1 constitutes an important 

node with diverse signalling cascades. In this study, a direct link was observed between 

phosphodiesterase 3B (Pde3b) and Akt1. Studies have demonstrated that cAMP-dependent protein 

kinase signaling is impaired in diabetes and is associated with cardiac dysfunction [34, 35]. Cyclic 

AMP (cAMP) plays a significant role in the thermogenic process as well as potentiating glucose-

stimulated insulin release [34, 35]. In contrast, Pde3b is a negative regulator of cAMP and increased 

expression of this gene has been shown to block and diminish the effect of cAMP [28]. Pde3b is highly 

expressed in the myocardium and is known to decrease myocardial smooth muscle contractility [36]. 

In studies done on isolated rat islets, inhibition of Pde3 was reported to improve insulin release [37]. In 

this study, high glucose exposure resulted in the upregulation of Pde3b by 2.1-fold (Fig. 1 and Table 

3). However, treatment with aspalathin was able to ablate this response, implying that aspalathin 

might act as a possible inhibitor of Pde3 and could be used as a potential therapeutic target to protect 

the diabetic heart. Furthermore, Akt1 was found to be associated with various antioxidant genes 

including superoxide dismutase 2 (Sod2) and uncoupling protein 1 (Ucp1). Although predominantly 

found in the brown adipose tissue, Ucp1 is also expressed in cardiac cells where together with Sod2 

inhibit the damaging effects of reactive oxygen species (ROS) [38]. Aspalathin was able to improve 

Sod2 (3.1-fold) activity while the effect of high glucose on Ucp1 (58.6-fold) expression was decreased 

(-1.7-fold) (Fig. 2). Interestingly, in a study done by Barreto et al [39], where they investigated the 

mechanism of Ucp1 action on stress response, they observed that increased Ucp1 expression 

induced the upregulation of various antioxidant stress-response genes, such as Sod1, glutathione-S-

transferase and glutathione peroxidase, concomitantly reducing ROS. Similarly, in a study by Dludla et 

al. [9], a rooibos extract with abundant aspalathin levels significantly enhanced glutathione levels of 

cardiomyocytes isolated from diabetic rats exposed to ROS. Based on these findings, we speculate 

that the observed increased Ucp1 expression could have been a compensatory mechanism used by 

the cells to prevent the adverse effects of increased FFA and hyperglycemia-induced ROS. 

 

Impaired myocardial energy metabolism, due to aberrant FFA levels and insulin resistance, activates a 

myriad of other maladaptive signaling pathways. This includes activation of insulin-like growth factor 1 

(Igf1), a hormone similar in structure to insulin and known to be a physiological regulator of glucose 

transport and glycogen synthesis [40]. Igf1 activates and phosphorylates Akt1 to attenuate the 

development of diabetes-induced myocardial apoptosis, through inhibiting tumor protein 53 [41]. In this 

study, high glucose moderately reduced the mRNA expression of Igf1 (1.3-fold) and Akt1 (-2.2-fold) 

Stellenbosch University  https://scholar.sun.ac.za



 134 

(Fig. 2). Conversely, the tumor necrosis factor ligand superfamily member 6 (Faslg) that interacts with 

Akt1 has been shown to induce apoptosis through binding and inhibiting the pro-survival gene Cflar 

[42]. In this study, high glucose treatment increased mRNA expression of Faslg (4.8-fold), while 

aspalathin ablated this response. Thus, our results infer that aspalathin protected cardiomyocytes 

exposed to chronic hyperglycemia against Faslg-induced apoptosis by activating the Igf-PI3K-Akt pro-

survival pathway (Fig. 2). Additionally, STRING data analysis showed that an interactive network was 

formed between Igf1, Akt1, serpin peptidase inhibitor, member 1/2 (Serpin1/2) and vascular 

endothelial growth factor A (Vegfa) (Fig. 2). High glucose treatment increased the expression of Vegfa 

by 2.0-fold while reducing that of Serpinb2 and Serpine1 by -2.7 and -46.1-fold, respectively (Fig. 2 

and Table 3). Similarly, Xue et al. [43] as well as Natarajan et al. [44] observed that chronic 

hyperglycemia upregulates Vegf and accelerates diabetic-induced cardiac fibrosis. They further 

speculate that the observed increase in high glucose-induced Vegf expression may be due to elevated 

inflammation consistent with a hyperglycemic state. The role of Serpine1 in cardiac fibrosis remains 

controversial however; Serpine1 deficient mice display cardiac fibrosis, enhanced inflammation, along 

with increased microvascular permeability and haemorrhage [45]. Thus, concluding that Serpine1 is 

cardio protective, and functions in maintaining normal microvasculature integrity. Thus, based on the 

latter findings we would speculate that increased expression of Serpine1 might be cardioprotective. 

However, this hypothesis requires further investigation.  

 

Protein kinases and mitochondrial function: Damaged structural components of the heart as a 

result of insulin resistance are known to activate signaling pathways such as p38 mitogen-activated 

protein kinases (Mapk) [46]. STRING network analysis identified three distinct nodes within this 

network, including dynamin 1-like (Dnm1l), Map2k1 and cAMP-dependent protein kinase catalytic 

subunit (Prkacb), which is known to be involved in the process of mitophagy. Mitophagy is responsible 

for the removal of damaged mitochondria proteins as a result of lipotoxicity and defects in this process 

have been linked to cardiovascular dysfunction [47]. Dnm1l is a mitochondrial protein that is involved 

in the apoptotic process and is crucial for maintaining mitochondrial function through increased Dnm1l-

dependent mitophagy. Roy et al. [48] showed that mice lacking Dnm1l demonstrate impaired heart 

contraction with an associated reduction in mitochondrial fission, concluding that Dnm1l is critical for 

sustaining mitochondrial morphology and heart function. Interestingly, Dnm1l was increased 2.8-fold 

after aspalathin treatment. Furthermore, mitophagy induction can be regulated/activated through the 

Prka-MTOR-ULK1 mediated signaling pathway [48]. STRING analysis showed a strong interaction 

between protein kinase, AMP-activated, gamma 1 non-catalytic subunit (Prkag) and Mapk. Activation 

of Mapk has been implicated in FFA-induced cardiac toxicity and subsequent cardiac failure [49]. In 

this study we observed that high glucose resulted in enhanced expression of Map2k1 (2.3-fold), with 
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an associated decrease in the mitophagy activator Prkag1 (-2.6 fold). However, aspalathin treatment 

reversed this effect (Fig. 2). Thus, we speculate that aspalathin might possibly protect the myocardium 

from chronic hyperglycemia through enhanced cAMP-mediated mitophagy, thereby alleviating FFA-

induced-MAPK toxicity and subsequent intracellular lipid accumulation in vitro. 

 

In vitro effect of aspalathin on inflammation 

In a diabetic state, a complex interplay between impaired cardiac substrate metabolism, insulin 

resistance and inflammation underlies the progression of DCM. Furthermore, accumulating evidence 

is available on the important role inflammation plays in the development of cardiac hypertrophy and 

failure. Aberrant and/or prolonged suppressors of cytokine signaling (Socs) proteins and JAK-induced 

signaling is detrimental and can give rise to a number of inflammatory pathologies known to affect 

cardiac function [50, 51]. Accordingly, 11 of the 57 (19%) differentially expressed genes were 

associated with cytokine signaling (Table 3). STRING analysis identified a network with five distinct 

nodes that include interleukins, Cd3e antigen (Cd3e), Socs3, and leptin receptor precursor (Lepr), with 

Janus kinase 2 (Jak2) being the predominant interactive node (Fig. 3).  

 

Leptin action: Leptin is an adipokine that is mainly expressed in adipose tissue, but is also expressed 

in cardiac heart muscle cells [22]. Accumulative evidence suggests that leptin impairs myocardial 

energy metabolism by favouring a complete reliance on FFAs as an energy source leading to cardiac 

hypertrophy [22, 50]. Leptin is known to bind to the leptin receptor to activate the JAK/Signal 

Transducers and Activators of Transcription (STAT) pathway. Activation of this pathway results in the 

translocation of STAT to the nucleus where it can activate Socs3, inhibiting leptin action as well as 

insulin signaling [51]. A meta-analysis of our data showed that the Lepr was increased (7.2-fold) after 

high glucose treatment. Interestingly, this increase was concomitant with an upregulation in the mRNA 

expression of both Jak2 (3.9-fold) and Socs3 (4.5-fold). This result is of interest as increased Lepr 

expression is known to enhance Socs3 with an associated altered β-oxidation [51], as observed in this 

study.  
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Figure 2. Aspalathin prevented high glucose-induced insulin resistance. (A) Search Tool for the Retrieval of 

Interacting Genes (STRING) database confirmed a strong interaction between genes associated with insulin 

resistance. (B) Representative diagram of the proposed protective mechanism of aspalathin against insulin 

resistance and resultant oxidative stress. Akt1: v-akt murine thymoma viral oncogene homolog 1; cAMP: cyclic 

adenosine monophosphate; Dnm1l: dynamin 1-like; Faslg: fas ligand (TNF superfamily, member 6); Igf: insulin-

like growth factor 1; Map2k1: mitogen-activated protein kinase kinase 1; Prkag: protein kinase, AMP-activated, 

gamma 1 non-catalytic subunit; Serpine1: serpin peptidase inhibitor, clade E (nexin, plasminogen activator 

inhibitor type 1), member 1; Sod2: superoxide dismutase 2; Vegfa: vascular endothelial growth factor A. 
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Cytokine signaling: In the diabetic heart, increased lipotoxicity and insulin resistance triggers the 

recruitment of macrophages and leukocytes before the release of pro-inflammatory cytokines such as 

interleukin 3 and 6 (Il3 and Il6), tumour necrosis factor superfamily (Tnf) and cluster of differentiation 

(Cd). Il6, Tnf and Cd cause the endothelial cells of blood vessels to express cellular adhesion 

molecules, such as Selectin E (Sele) and Cd44, resulting in an acute localized cellular inflammation. 

Both Cd44 and Sele are cell-surface glycoproteins that mediate neutrophil, monocyte, lymphocyte and 

platelet rolling in the ventricular wall. These glycoproteins have also been found to play an important 

role in atherosclerotic lesion development and calcification of the lesion [52, 53]. Studies 

demonstrated that Cd44 as well as Sele null mice display increased atherosclerosis plaque formation 

[52, 53]. Our results showed that high glucose treatment increased the expression of various pro-

inflammatory cytokines including, Il3 (2.3-fold), Il6 (2.7-fold), Tnsf13 (4.7-fold) and Tnfsf13b (2.1-fold), 

Sele (13.8-fold) and Cd44 antigen (Cd44, 2.3-fold) (Fig. 3 and Table 3). Based on our gene 

expression data, we propose that during chronic hyperglycemia, pro-inflammatory cytokines (Il3, Il6 

and Tnf-α) are activated. This increased inflammatory cytokine response releases Sele and Cd44 from 

the storage granules in activated platelet and endothelial cells and recruits them to mediate the first 

step of leukocyte extravasation. Additionally, Il6 and Tnf activate the JAK/STAT and Map kinase 

pathways respectively, resulting in increased hypertrophy and apoptosis. Increased expression of 

Socs3 has been linked to inflammation-induced insulin resistance and enhanced JAK/STAT signaling 

as observed in this study [54]. However, aspalathin treatment was able to reverse this effect (Fig. 3).  

 

In vitro effect of aspalathin on apoptosis 

Chronic hyperglycemia, insulin resistance and inflammation have been shown to exacerbate oxidative 

stress and cardiomyocyte apoptosis [23, 26]. In this study, 6 of the 57 (11%) differentially expressed 

genes were associated with apoptosis signaling. STRING data analysis identified one network with 

five interactive nodes, centralized around B-cell lymphoma 2 (Bcl2). 

Genes identified in this network included Bcl2, Bcl2 binding component 3 (Bbc3), mitogen activated 

protein kinase 3 (Mapk3) and optic atrophy 1 homolog (Opa1) (Fig. 4 and Table 3). The Bcl2 family of 

proteins are known to be strong modulators of apoptosis and can induce either pro-apoptosis or cell 

survival depending on the cell’s fate [10, 26]. Two pro-survival genes were identified (Bcl2 and Bcl2a1) 

and their expression was reduced after high glucose exposure (Fig. 4 and Table 3). Contrary, four pro-

apoptotic proteins (Bbc3, Chuk, Mapk3 and Opa1) were identified. Activation of Mapk3 together with 

pro-apoptotic proteins such as Bbc3 has been associated with myocardial dysfunction [23, 55], while 

upregulation of Opa1 is directly linked to the reversal of mitochondrial fragmentation [56]. Furthermore, 

in vivo and in vitro data has confirmed that activation of Mapk proteins, including Mapk3 together with 

Stellenbosch University  https://scholar.sun.ac.za



 138 

pro-apoptotic proteins is associated with hyperglycemia induced myocardial dysfunction [23, 55]. 

Hence, this emphasises the importance of ameliorative strategies that target apoptosis to alleviate 

myocardial structural remodeling. Increased Bcl2 expression has an inhibitory effect on Mapk3. Thus, 

we proposed that aspalathin prevents myocardial apoptosis through the inhibition of Mapk3 while 

simultaneously increasing Bcl2-mediated cardiomyocyte survival.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Aspalathin prevented high glucose-induced inflammation. (A) Search Tool for the Retrieval of 

Interacting Genes (STRING) database confirmed a strong interaction between genes associated with 

inflammation. (B) Representative diagram of the proposed protective mechanism of aspalathin against high 

glucose induced inflammation. Cd44: cluster of differentiation 44; Il3: interleukin 3; Il6: interleukin 6; Map2k1: 

mitogen-activated protein kinase kinase 1; Socs3: suppressor of cytokine signaling 3; Tnf: tumor necrosis 

factor; Vegfa: vascular endothelial growth factor A. 
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Figure 4. Aspalathin limited high glucose-induced apoptosis. (A) Search Tool for the Retrieval of Interacting 

Genes (STRING) database confirmed a strong interaction between genes associated with high glucose induced 

apoptosis.  

 

 

Conclusion: Results obtained in this study lead us to propose that aspalathin could protect the 

myocardium against lipid toxicity in two ways. In the first instance, such treatment significantly 

improves the blood lipid profile to a far less damaging one therefore attenuating fuel substrate 

availability to the diabetic heart. It is likely that aspalathin mediates such effects by acting on targets in 

the liver, although this was not further investigated in the current study. Secondly, our data 

demonstrate that aspalathin also exerts direct, protective effects within the myocardium to protect the 

heart against excess fuel substrate availability. Here our data indicate that aspalathin may protect the 

myocardium against lipotoxicity and subsequent cell apoptosis by increasing the expression of Adipoq 

and subsequently decreasing the expression of Cd36 and Cpt1. Furthermore, aspalathin reduced lipid 

transport via Slc27a3/5, which together with reduced PPARγ and Srebf1 resulted in decreased total 

cholesterol and subsequent cell apoptosis. Moreover, we proposed that the reversal of lipid toxicity 

results in a decreased inflammatory response via the Il6/Jak/Stat pathway, which together with an 

observed increase in Bcl2 prevents myocardium cell apoptosis. Together, these findings propsed a 

probable mechanism by which aspalathin reverses metabolic abnormalities associated with the failing 

myocardium (Fig 5). However, this warrants further investigation. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 140 

Table 3 Aspalathin improves gene expression derangements associated with hyperglycemia in H9c2 

cardiomyocytes. 

 

    Gene fold regulation 

Gene name Gene 
symbol 

High 
glucose 
(33 mM) 

Aspalathin 
(1 µM) 

Lipid metabolism 
 

      

ATP-binding cassette, subfamily A (ABC1), member 1 Abca1 2.0776 -1.1921 

Acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain Acads -1.6611 -2.425 

Acyl-CoA thioesterase 2 Acot2 2.8239 -1.2178 

Acyl-Coenzyme A oxidase 2, branched chain Acox2 2.0959 1.8895 

Acyl-CoA synthetase bubblegum family member 2 Acsbg2 4.3205 -1.5973 

Acyl-CoA synthetase long-chain family member 4 Acsl4 5.6547 1.7361 

Acyl-CoA synthetase long-chain family member 6 Acsl6 2.465 -1.5973 

Acyl-CoA synthetase medium-chain family member 3 Acsm3 14.2353 5.697 

Acyl-CoA synthetase medium-chain family member 4 Acsm4 6.1301 3.1806 

Adiponectin, C1Q and collagen domain containing Adipoq -6.0324 3.2588 

Apolipoprotein A-I Apoa1 4.2006 2.9178 

Apolipoprotein B Apob 7.7651 -3.0228 

Apolipoprotein E Apoe 4.4207 -1.0317 

CD36 antigen Cd36 3.7512 1.7387 

Carnitine palmitoyltransferase 1b, muscle Cpt1b 3.3366 2.0449 

Fatty acid binding protein 3, muscle and heart Fabp3 2.7003 -1.5135 

Lysophospholipase 1 Lypla1 3.5198 1.6047 

Peroxisome proliferator activated receptor gamma Pparγ 8.3847 -1.6135 

Stearoyl-Coenzyme A desaturase 1 Scd1 5.5982 1.0879 

Solute carrier family 25, member 30 Slc25a30 2.6123 1.6634 

Solute carrier family 27 (fatty acid transporter), member 1 Slc27a1 1.0514 -2.2919 

Solute carrier family 27 (fatty acid transporter), member 3 Slc27a3 6.323 2.2207 

Solute carrier family 27 (fatty acid transporter), member 5 Slc27a5 2.0184 -1.5973 

Sterol regulatory element binding transcription factor 1 Srebf1 3.4573 -4.544 

Sterol regulatory element binding factor 2 Srebf2 2.0208 -26.826 

Very low density lipoprotein receptor Vldlr 2.0148 1.3077 
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Insulin resistance 
 

      

V-akt murine thymoma viral oncogene homolog 1 Akt1 -2.2173 1.2477 

Dynamin 1-like Dnm1l 1.4367 2.8522 

Fas ligand (TNF superfamily, member 6) Faslg 4.8622 -1.4856 

Insulin-like growth factor 1 Igf1 1.3447 2.4477 

Mitogen-activated protein kinase kinase 1 Map2k1 2.3446 -2.1822 

Phosphodiesterase 3B, cGMP-inhibited Pde3b 2.1481 1.5951 

Protein kinase, cAMP dependent, catalytic, beta Prkacb 1.687 2.4466 

Protein kinase, AMP-activated, gamma 1 non-catalytic subunit Prkag1 -2.6381 1.3516 

Serpin peptidase inhibitor, clade B (ovalbumin), member 2 Serpinb2 -2.7789 1.8746 

Serpin peptidase inhibitor, clade E (nexin, plasminogen activator 
inhibitor type 1), member 1 

Serpine1 -46.1814 -1.4005 

Superoxide dismutase 1, soluble Sod1 2.8805 1.0032 

Superoxide dismutase 2, mitochondrial Sod2 -1.5522 3.1195 

Uncoupling protein 1 (mitochondrial, proton carrier) Ucp1 58.6622 -1.7821 

Vascular endothelial growth factor A Vegfa 2.0015 1.2082 

Inflammation 
 

      

CD3 antigen, epsilon polypeptide Cd3e 5.4019 1.3557 

Cd44 molecule Cd44 2.3883 1.322 

Interleukin 3 Il3 2.3815 -1.1606 

Interleukin 6 Il6 2.7362 1.9106 

Janus kinase 2 Jak2 3.9723 1.721 

Leptin receptor Lepr 7.2781 -1.6135 

Selectine E Sele 13.8787 -1.5233 

Suppressor of cytokine signaling 3 Socs3 4.5848 -2.4959 

Tumor necrosis factor receptor superfamily, member 1b Tnfrsf1b 1.0099 -3.114 

Tumor necrosis factor (ligand) superfamily, member 13 Tnfsf13 4.7142 1.2849 

Tumor necrosis factor (ligand) superfamily, member 13b Tnfsf13b 2.0522 1.8583 

Apoptosis 
 

      

Bcl-2 binding component 3 Bbc3/puma -1.3703 -3.1586 

B-cell CLL/lymphoma 2 Bcl2 -2.6947 1.8312 

B-cell leukemia/lymphoma 2 related protein A1d Bcl2a1 -7.13 1.8085 

Conserved helix-loop-helix ubiquitous kinase Chuk 4.2959 2.1502 
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Mitogen-activated protein kinase 3 Mapk3 1.2583 -3.0871 

Optic atrophy 1 homolog (human) Opa1 1.3949 2.0255 
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Chapter 6: General conclusions 

Summary of findings 

Urbanization and obesity remain important causal factors responsible for the dramatic rise in cases of 

diabetes mellitus (DM) worldwide (International Diabetes Federation, 2015). The rising incidence of 

DM has been associated with an increase in cardiovascular mortality. Currently, insulin and metformin 

remain the leading first line antihyperglycemic drug therapies (Jonassen et al., 2001; Yin et al., 2011). 

However, these drugs have a limited capacity to protect the diabetic myocardium against the 

development of cardiovascular complications. Currently, researchers are increasingly exploring the 

use of plant-derived materials as an adjunct to current drug treatment (Chellan et al., 2014; Mazibuko 

et al., 2015; Muller et al., 2016). Numerous edible plants are known to contain plant polyphenols, 

flavonoids, terpenoids and other constituents, which may contribute to the reduction of blood glucose 

levels as well as counteract oxidative-induced tissue damage through their robust antioxidant effect 

(Kawano et al., 2009; Bai et al., 2013; Ezuruike et al 2014). Previously, our group and others have 

demonstrated that Aspalathus linearis, a plant indigenous to South Africa and commonly known as 

rooibos, displayed protective properties against the development of obesity, insulin resistance and 

cardiovascular disease in various experimental models (Muller et al., 2012; Son et al., 2013; Dludla et 

al., 2014; Sanderson et al. 2014). In a study done by Dludla et al 2014, we showed that a fermented 

rooibos extract with abundant levels of phenyl pyruvic acid-2-O-β-D-glucoside (PPAG) and aspalathin 

was able to decrease oxidative stress and subsequent cell apoptosis in primary rat cardiomyocytes 

from diabetic rats. However, the protective mechanism afforded by PPAG and aspalathin to modulate 

oxidative-induced myocardial damage remained to be fully elucidated. Therefore, in this study we 

aimed to unravel the mechanisms by which PPAG and aspalathin protect against the development of 

hyperglycemia-induced myocardial injury.  

 

PPAG protected against hyperglycemia-induced cardiac apoptosis 

The mitochondrial apoptotic pathway is largely mediated through the B-cell lymphoma 2 (Bcl2) family 

of proteins. Bcl2, a human proto-oncogene, protects against mitochondrial permeability and 

subsequent programmed cell death. Following a death signal, pro-apoptotic proteins such as Bax 

undergo a conformational change that enable it to integrate into the outer mitochondrial membrane 

and initiate cell death. In contrast, anti-apoptotic proteins such as Bcl2 are important for protecting the 

mitochondrial membrane against Bax translocation, making Bcl2/Bax ratio crucial for cell survival. In 

this study, we observed that PPAG treatment led to an enhanced Bcl2/Bax ratio thus preventing 

mitochondrial depolarization and subsequent cell apoptosis as observed by a reduced caspase 3/7 
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activity and inhibition of DNA fragmentation (Fig. 1). We further observed that PPAG treatment 

resulted in increased glucose uptake with a concomitant decrease in oxidative phosphorylation. It is 

well-known that tumor suppressor 53 (p53) plays an important role in energy metabolism by activating 

TP53-inducible glycolysis and apoptosis regulator (TIGAR), resulting in the blockade of glycolysis and 

accelerated apoptosis. Thus, we speculate that PPAG may protect the myocardium from cell death 

through an increased Bcl2/Bax ratio as well as improved glucose uptake by inhibiting p53. However, 

this mechanism will be further explored in a follow up study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Pyruvic acid-2-O-β-D-glucoside (PPAG) protects H9c2 cardiomyocytes against hyperglycemia-induced 

damage by reducing mitochondrial membrane depolarization and inhibiting apoptosis through increasing Bcl-

2/Bax ratio. ΔΨm: mitochondrial transmembrane potential, Bax: Bcl2-like protein 4, Bcl2: B-cell lymphoma 2. 
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The role of aspalathin in preventing shifts in energy substrate preference, oxidative damage 

and subsequent lipid toxicity 

The role aspalathin plays in modulating fatty acid oxidation (FAO) and glucose oxidation (GO): 

An important feature of the failing heart is the observed shift in substrate preference that precedes the 

onset of oxidative damage. The myocardium has a high-energy demand that is primarily achieved 

through FAO, accounting for 60-80% of ATP production at the expense of glucose. In a diabetic heart, 

an adaptive response is observed where there is diminished utilization of glucose with an increase in 

FAO. This results in a shift in substrate preference with an almost complete reliance on FAO as an 

energy source, with an associated decrease in glucose oxidation. This compensatory shift is believed 

to be involved in impaired cardiac function of the failing heart. In this study we showed that aspalathin, 

via 5' AMP-activated protein kinase (AMPK) was able to efficaciously decrease myocardial FAO, 

causing a reciprocal increase in glucose oxidation. Shifting energy substrate preference away from 

FAO towards glucose utilization is a promising therapeutic approach that could possibly slow down the 

progression of heart failure (HF) in a diabetic state. However, there is a fine line in the balance of 

substrate preference. Decreasing the cell’s capacity for FAO may result in the accumulation of long-

chain fatty acyl intermediates and triglycerides, which may in turn lead to the generation of toxic lipid 

build-up and potentially accelerate the progression of HF (Lionetti et al 2011). However, as will be 

discussed below, we showed that aspalathin was able to decrease lipid toxicity as a result of reduced 

FAO. Additionally, we showed that aspalathin was able to enhance endogenous antioxidant defense 

genes and protect against hyperglycemia-induced membrane depolarization and subsequent cell 

apoptosis (Fig. 2). 

 

Aspalathin decrease oxidative damage by increasing the expression of Nrf2: Impaired 

myocardial energy substrate utilization and increased oxidative stress are linked to the onset of 

cardiac hypertrophy. In this study, we demonstrated that in addition to impaired substrate preference, 

cardiomyocytes exposed to a simulated hyperglycemic state displayed increased generation of 

reactive oxygen species and reduced expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 

(Fig. 2). Nrf2 plays a crucial role in the cells ability to response to endogenous oxidative stress, by 

increasing the expression of an array of cytoprotective and antioxidant defense genes. 

Correspondingly, in this study, after high glucose exposure, we observed accelerated oxidative stress 

concurrent to heart tissue morphological derangements and increased apoptosis. However, aspalathin 

treatment was able to abolish the observed myocardial injury by upregulating the expression of Nrf2 

and its associated down-stream cytoprotective and antioxidant genes (Fig. 2).  
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Aspalathin role in lipid metabolism: DM has been associated with an increase in FFA availability 

with a concomitant increase in lipid toxicity. This lipid overload is known to decrease respiratory 

efficiency of the heart resulting in increased hypertrophy and subsequent HF. In this study, we showed 

that aspalathin was able to reverse lipid toxicity by increasing the expression of Adipoq and 

subsequently decreased Cd36 and Cpt1 mRNA expression (Chapter 5, Fig. 1B). We speculate that 

Adipoq negatively regulates FFA synthesizing genes, such as sterol regulatory element binding 

transcription factor 1 (Srebf1) and stearoyl-Coenzyme A desaturase 1 (Scd1), leading to a decrease in 

lipid accumulation. Moreover, aspalathin reduced intracellular FFA uptake via solute carrier family 27 

(fatty acid transporter), member 3/5 (Slc27a3/5) which together with reduced Srebf1 result in the 

decrease of total cholesterol, hypertrophy and subsequent HF. Moreover, reversal of lipid toxicity was 

associated with an observed decrease in inflammatory markers, such as interleukin 3 and 6 (Il6 and 

Il3), tumor necrosis factor receptor superfamily, member 1b and 13 (Tnfrsf1b and Tnfsf13), Janus 

kinase 2 (Jak2) and mitogen-activated protein kinase 3 (Mapk3) (Fig. 2).  

 

In summary, in this study showed that while PPAG and aspalathin were able to reduce hyperglycemia-

induced apoptosis, only aspalathin could ameliorate lipid toxicity and oxidative stress-associated with 

the insulin resistances state by activating Nrf2 expression. In conclusion, this study was able to prove 

the hypothesis that rooibos-specific compounds (PPAG and aspalathin) can protect the myocardium 

against hyperglycemia-induced oxidative injury by activating Nrf2 antioxidant response pathway.  
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Figure 2. Aspalathin protects against hyperglycemic-induced myocardial injury. A leptin receptor-deficient (db/db) 

mouse model displayed increased food intake and body weights that was concomitant to elevated lipid profiles. 

Similarly, cultured cardiomyocytes exposed to a simulated hyperglycemic state demonstrated impaired 

myocardial energy substrate preference (that was associated with increased inflammation, insulin resistance and 

subsequent apoptosis. However, aspalathin treatment was able to prevent these complications, with activation of 

AMPK and Nrf2 the most prominent mechanisms of protection involved. ΔΨm: mitochondrial transmembrane 

potential, AMPK: 5' AMP-activated protein kinase, Bax: Bcl-2-like protein 4, Bcl-2: B-cell lymphoma 2, Casp3: 

caspase 3, CPT1: carnitine palmitoyltransferase 1, FAO: fatty acid oxidation, FFAs: free fatty acids, Gss: 

glutathione synthetase, Il3: interleukin 3, Il6: interleukin 6, Jak2: Janus kinase 2, Mapk3: mitogen-activated 

protein kinase 3, Nox4: NADPH oxidase, Nrf2: nuclear factor (erythroid-derived 2)-like 2, Opa1: Optic atrophy 1 

homolog (human) 4, PPARɣ: peroxisome proliferator-activated receptor gamma, ROS: reactive oxygen species, 

Socs3: suppressor of cytokine signaling 3, Sod1/2: superoxide dismutase 1 or 2, Srebf1/2: sterol regulatory 

element-binding protein 1 or 2, TAG: triacylglycerides, Tnfrsf1b: tumor necrosis factor receptor superfamily, 

member 1b, UCP1: uncoupling protein 1, VLDL: very low density lipoprotein. 
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Study limitations and future work 

Limitations of study: 

1. Due to financial constraints, we were unable to investigate the precise gene regulatory network 

used by PPAG to decrease hyperglycemia-induced apoptosis. 

2. To establish a successful animal model for DCM, it is crucial to detect the precise age at which 

animals develop left ventricular dysfunction. A Tissue Doppler Imaging echocardiography (TDI) 

would have been a more precise and relevant technique to detect such changes. However, this 

technique could not be used due to the unavailability of a TDI echocardiography sensitive 

enough to detect left ventricular dysfunction in rodent animals. 

3. The combinational use of metformin with either PPAG or aspalathin was effective in enhancing 

the cardioprotective effect of these polyphenols in vitro. However, the in vivo potential of 

metformin in combination with both PPAG and aspalathin was not investigated. 

 

Future work: 

PPAG 

 Targeting the role of p53, the known modulator of apoptosis within a diabetic heart.  

 We will also make use of an in vivo model, e.g. type 2 diabetic (db/db) mice to confirm the 

protective mechanisms of PPAG in relation to apoptosis. 

 We will perform additional studies where we treat db/db mice with a combination of metformin 

and either PPAG or aspalathin before measuring relevant markers associated with 

hyperglycemia-induced myocardial injury. 

 

Aspalathin 

 Although aspalathin was expected to prevent oxidative-induced injury due to its known 

abundant antioxidants, an unexpected finding was its effect to act as a lipid lowering agent by 

significantly decreasing cholesterol related markers such as very low density lipoprotein and 

triglycerides both in high glucose-induced cardiomyocytes and diabetic mice. Thus, it is of 

interest to further employ more robust in vitro techniques such as lentiviral vector gene 

silencing to unravel the mechanism linked to its ameliorative effect of lipid toxicity and to 

confirm such findings in an in vivo model. 
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ADDENDUM 1: Animal ethical clearance 
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