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Thesis: M.Eng (Mechatronic)
December
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INTRODUCTION: Seizures are periods of abnormal electrical activity in the
brain, which induce brain injury to the sufferer. A patient that suffer seizures
may need to be monitored for several hours, days, or even weeks. Seizure
identification using electroencephalography (EEG) can be achieved through
the use of seizure detection algorithms. Continuous EEG monitoring with
early-detection algorithms to warn of the onset of seizures has many benefits
as it allows for early intervention. In this study, the desired seizure monitoring
software is designed for immediate application in the clinical environment to any
patient. The aim of this research is to develop a robust, completely automatic
software solution intended for real-time whole-brain seizure detection that
uses EEG data, and no patient- or seizure-specific tuning. The training and
testing is performed using a large, publicly available data corpus. The current
state-of-the-art algorithm is improved upon. Detection should be possible as
soon as a patient is rushed into the intensive care unit (ICU) and the EEG
electrodes are connected properly.

METHODS: The CHB-MIT data corpus is used. Included for analysis are
24 patients, 185 seizures, 979.9 hours of data, and 18 channels. Independent
training and testing sets are used, with a train:test ratio of 80:20. Preprocessing:
If a frame is corrupted by abnormal channel amplitude, mains noise, or phase re-
versal, then it is rejected without being passed to the next processes. Otherwise,
the frame is bandpass filtered between 0.5 and 70 Hz, and a 5-level db2 wavelet
filterbank is used for sub-band coding. Frequency bands γ(high), γ(low), β, α,
θ, and δ are thereby approximated. The Relative Average Amplitude (RAA),
Relative Scale Energy (RSE), and Coefficient of Variation of Amplitude (CVA)
features of bands β, α, and θ are taken. Classification: A probabilistic Bayes
classifier is trained and used for classification. Ictal/inter-ictal and high-/low-α
classifiers are used. A novel automatic procedure for α training-data selection
is implemented. Postprocessing: A sequential hypothesis test and persistence
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ABSTRACT iii

is used for false positive reduction. The objective function in the train-validate
phase is the F1 score, which is the harmonic mean of Positive Predictive
Value (PPV ) and True Positive Rate (TPR). Leave-one-out-cross-validation
(LOOCV) is used in the train-validate phase. The TPR, PPV , and False
Positive Rate (FPR) are reported for convenience.

RESULTS: The offline train-validate phase yielded TPR = 58.73 %, PPV
= 59.89 %, FPR = 0.2045 /h. The online test phase yielded TPR = 58.5 %,
PPV = 40.61 %, FPR = 0.3536 /h.

CONCLUSIONS: The algorithm presented here is an improvement to the
current state-of-the-art. For clinical applicability, the issues of overall algorithm
performance and inter-patient variability should be further improved.
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Uittreksel

Toepassing van Masjienleer met Elektroënsefalografie in
Stuipe Deteksie

Volschenk, A.D.
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Universiteit Stellenbosch,
Privaatsak X1, 7602 Matieland, RSA.

Tesis: M.Ing (Megatronies)
Desember

2017

INLEIDING: Stuipe is periodes van abnormale elektriese aktiwiteit in die
brein, wat breinbesering aan die lyer veroorsaak. ‘n Pasiënt wat aan stuipe
ly moet vir ‘n paar uur, dae, of selfs weke gemonitor word. Die identifikasie
van stuipe word gedoen met behulp van elektroënsefalografie (EEG) deur die
gebruik van stuipe-opsporingsalgoritmes. Die gebruik van deurlopende EEG
monitering met vroeë opsporingsalgoritmes waarsku teen die aanvang van
stuipe en het baie voordele aangesien dit voorsiening maak vir vroeë ingryping.
In hierdie studie is die gewenste stuipe-monitering sagteware ontwerp vir on-
middellike toepassing op enige pasiënt in die kliniese omgewing. Die doel van
hierdie navorsing is om ‘n robuuste, heeltemal outomatiese sagteware-oplossing
te ontwikkel wat gebruik kan word vir intydse hele-brein stuipe opsporing
wat EEG data gebruik, en geen pasiënt- of stuip-spesifieke verfyning benodig
nie. Die opleiding en toetsing is uitgevoer deur gebruik te maak van ‘n groot,
openlik-beskikbare data corpus. Daar word verbeteringe aangebring op die
huidige beste-van-die-beste algoritme. Opsporing moet moontlik wees sodra ‘n
pasiënt in die intensiewe sorgeenheid ingebring word en die EEG-elektrodes
behoorlik aangeheg is.

METODES: Die KHB-MIT data corpus word gebruik. Vir analise is 24
pasiënte, 185 stuipe, 979.9 ure se data, en 18 kanale ingesluit. Onafhanklike
opleiding- en toetsstelle word gebruik, met ‘n oplei:toets verhouding van 80:20.
Voorverwerking: Indien ‘n raam besmet is deur abnormale kanaalamplitude,
kraglyn-geraas of fase-omkering, dan word dit afgekeur sonder om aan die
volgende prosesse oorgedra te word. Andersins word die raam deur ‘n band-
deurlaat filter tussen 0.5 en 70 Hz gefiltreer, en ‘n 5-vlak db2 golfie filterbank
word gebruik vir subband kodering. Frekwensiebande γ(hoog), γ(laag), β, α,
θ, en δ word sodoende beraam. Die relatiewe gemiddelde amplitude (RGA),
relatiewe skaalenergie (RSE) en koeffisiënt van variasie van amplitude (KVA) ei-
enskappe van bande β, α, en θ word geneem. Klassifikasie: ‘n Waarskynlikheids
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UITTREKSEL v

Bayes-klassifiseerder word opgelei en gebruik vir klassifikasie. Ictale/inter-ictale
en hoë/lae α klassifiseerders word gebruik. ‘n Nuwe outomatiese prosedure
vir α opleiding-data seleksie word geïmplementeer. Na-verwerking: ‘n Op-
eenvolgende hipotese toets en blywendheid word gebruik vir vals-positiewe
vermindering. Die teiken funksie in die opleidingsvalidereringsfase is die F1

telling, wat die harmoniese gemiddeld van Positiewe Voorspellende Waarde
(PVW ) en Ware Positiewe Koers (WPK) is. Laat-een-uit-kruis-validering
(LEUKV) word gebruik in die opleidingsvalidereringsfase. Die WPK, PVW
en vals-positiewe koers (V PK) word gemeld vir gerief.

RESULTATE: Die aflyn opleidingsvalidereringsfase het WPK = 58.73 %,
PVW = 59.89 %, V PK = 0.2045 /h opgelewer. Die aanlyn toetsfase het
WPK = 58.5 %, PVW = 40.61 %, V PK = 0.3536 /h opgelewer.

GEVOLGTREKKINGS: Die algoritme wat hier aangebied word is ’n ver-
betering van die huidige beste-van-die-beste. Vir kliniese toepaslikheid moet
die kwessies van algehele algoritme prestasie en interpasiënt veranderlikheid
verder verbeter word.
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Chapter 1

Introduction

1.1 Background
Seizures are periods of abnormal electrical activity in the brain, which may or
may not manifest clinically. A seizure will take place when a burst of electrical
impulses in the brain exceed their normal limits. These impulses will spread
to adjacent areas and cause an uncontrolled storm of electrical activity in the
brain. If the electrical impulses are conducted to muscle fibres, twitches or
convulsions may result. If this happens, the seizure is said to be a clinical (also
called convulsive) seizure.

There is an extensively long list of possible causes for seizures. Just some
of the pathological causes for seizures include diet, medical conditions (includ-
ing brain tumours, brain abscesses, epilepsy, encephalitis, meningitis, among
many others), some medications and drug or alcohol abuse, fevers (especially in
young children), head injury, and hypoglycaemia. Seizures induce brain injury
to the sufferer (Bergen, 2006; Bronen, 2000), and so a patient diagnosed with a
serious case of any of the possible causes for seizures may need to be monitored
for several hours, days, or even weeks.

The first line of treatment for seizures is anticonvulsant medication, also
called anti-epileptic drugs (AEDs) or anti-seizure drugs. AEDs are a successful
form of treatment for about 70 % of patients (Sander, 2004). Besides AEDs,
electrical stimulation, and therapeutic hypothermia are treatments used for
harm reduction. Other interventions may be more appropriate for non-epileptic
seizures. Electroencephalography (EEG) is commonly used for diagnosis and
accurate quantification of convulsive- as well as non-convulsive seizures (NCS)
(also called sub-clinical seizures). There is an increasing amount of evidence that
suggest that NCS occur in a significant portion of obtunded or unresponsive
patients in Intensive Care Unit (ICU) settings. Retrospective analysis suggest
that 11 % to 55 % of patients in neurologic ICUs may be experiencing NCS
(Scheuer, 2002). NCS may prolong the need for intensive care and worsen the
degree of brain injury. A diagnosis of NCS often results in intensification of
AED therapy, however NCS is often identified late in the course of an illness, and
as such the clinical impact of the treatment may be suboptimal (Scheuer, 2002).

EEG can be used to screen for clinical- as well as sub-clinical seizures and to

1
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CHAPTER 1. INTRODUCTION 2

provide additional prognostic information related to neurologic outcome. Only
continuous EEG monitoring can however reliably provide timely and therapeu-
tically important information to guide AED therapy, since seizures may occur
outside the routine EEG recording session, and because many seizures are NCS
which makes it difficult to know when to use EEG (Abend et al., 2011; Scheuer,
2002). Modern ICUs have equipment to monitor almost all vital functions of a
patient, except for the brain, despite recommendations in literature (Ponten
et al., 2010; Shellhaas and Clancy, 2007).

Seizure identification can be very difficult. Intensivists and ICU staff are
not adequately trained for interpreting EEG data (overall mean of 61 % for
recognition of epileptiform discharges) (Rijsdijk et al., 2008). Another issue is
that long term continuous EEG would be incredibly labour intensive. Perhaps
the greatest challenge to using continuous EEG in clinical practise is the lack
of reliable method for online seizure detection to determine when ICU staff
evaluation of the patient is required (Ponten et al., 2010).

The problem of seizure identification using continuous EEG can be alleviated
through the use of seizure detection algorithms. Continuous EEG monitoring
with early detection and prediction algorithms to warn of onset of seizures has
many benefits as it allows for early intervention (van Putten and Tavy, 2004),
such as timely administering of fast-acting AEDs, electrical stimulation, or
therapeutic hypothermia (Fisher et al., 2010; Hill et al., 2000; Morrell, 2006;
Mormann et al., 2007; Stein et al., 2000). One offline post-monitoring benefit of
automated seizure detection is the potentially massive reduction in the amount
of EEG data that needs to be stored and reviewed (Fisch, 1999).

Two scenarios for how a seizure can occur are proposed: First is that the
seizure is caused by a sudden and abrupt state transition, in which case it is
not preceded by detectable dynamic change. In the second case, the transition
is gradual. In the abrupt first case, seizure detection algorithms could be used
to detect a seizure, but prediction algorithms would fail to predict the onset of
seizures. In the second, gradual case, detection and prediction algorithms could
potentially be successful (Niedermeyer and Lopes da Silva, 2012). This implies
that an ideal monitor may need both a detection, and a prediction algorithm
concurrently.

1.2 Problem identification
The ideal monitoring algorithm should be designed for application in the clinical
environment. For the purposes of this study, the aspects in which publications
in literature do not meet the requirements of a monitoring algorithm designed
for immediate clinical implementation shall be referred to as ‘limitations’. It is
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acknowledged that not all publications in literature have the aim of developing
such a monitor, and as such these limitations should be regarded as impedi-
ments to immediate clinical use of the given algorithm, rather than a limitation
of the research publication itself.

Reports of the performance of monitoring techniques suffer from one or more
of the following limitations:

1. Seizure prediction accuracy is highly variable between patients.

2. Researchers report different performance metrics.

3. The technique requires careful patient- or seizure-specific tuning.

4. The technique is not evaluated on long-term continuous EEG and/or the
technique is not evaluated on independent data.

5. The software is tested using intracranial EEG (iEEG), or with some other
idealized data that do not accurately simulate clinical conditions.

6. Training and testing are done on a private data corpus and/or small data
corpora are used for performance evaluation.

7. Only 1 channel (usually the focus channel) or 1 small cluster or channels
and/or only 1 seizure-type is used to train and evaluate the system.

8. Data preprocessing includes manual removal of data intervals of ocular-
or muscle artefacts, or some other data pre-selection.

Limitations 1 and 2 are further described in Section 2.3.2, and limitations 3
through 8 are further described in both Sections 2.3.3 and 2.3.5.

1.3 Research motivation
Ideally a continuous EEG monitoring algorithm should address all limitations
listed in Section 1.2. The ideal monitor should be able to function immediately
and independently as soon as the EEG device is placed correctly on the patient.
Monitoring can then be started immediately. EEG hardware is available com-
mercially in various grades and prices from a number of international suppliers.
In fact it is the software component of the proposed device that requires most
of the research and development.

In order to fulfil the need identified, software needs to be developed in order to
detect seizures online using EEG as input data. Online testing in this context
implies feeding data to the software consecutively from start to end, without
prior manipulation, to simulate the clinical environment conditions. In this
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research, a detection algorithm is trained and optimized, and then tested online.
The development of a prediction algorithm is not within the scope of this thesis.

The Saab and Gotman (2005) method addresses the limitations listed in
Section 1.2, with the exception that a private data corpus is used for training
and testing. The method in this study is based on the Saab and Gotman (2005)
method, however it will be applied to a publically available data corpus. In this
way the results are reproducible for future researchers. The method presented
in this study will not replicate the Saab and Gotman (2005) method exactly.
The Saab and Gotman (2005) method makes use of many parameters which it
does not attempt to optimize. Optimizing many inter-dependent parameters
simultaneously is time- and computationally expensive. Previously optimized
as well as previously unoptimized parameters are all optimized in this study.
Furthermore, additional procedures are introduced in this work in an attempt
to improve on the Saab and Gotman (2005) method.

1.4 Aims and objectives
Study aims

The aim of this research is to develop a robust, completely automatic software
solution intended for real-time whole-brain seizure detection that uses EEG
data, and no patient- or seizure-specific tuning. The training and testing is
to be performed using a large, publicly available data corpus. The current
state-of-the-art seizure detector is improved upon. The final deliverable of this
research is the online performance data of the algorithm and a discussion that
addresses each limitation in Section 1.2.

Study objectives

1. Develop software for EEG seizure detection based on the current state-
of-the-art.

2. Introduce improvements to the method, by reducing FPR while attempt-
ing to maintain TPR.

3. Train and optimize the technique offline.

4. Test the technique online with independent data and report the online
performance results.
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1.5 Scope
In this study, the Saab and Gotman (2005) method is applied to the publicly
available CHB-MIT corpus. Previously unoptimized parameters (xphase, xNTH ,
xes) are optimized. Leave-one-out-cross-validation (LOOCV) is used in the
train-validation phase iterations, and training data from each patient is given
equal weight. A sequential hypothesis test is introduced. The α-data selection
heuristic is completely automated. LOOCV, weighing patient data, and the
sequential hypothesis test are additional procedures to improve on the method.
The online performance is given and discussed with reference to the limitations
given in Section 1.2. The study was started on 03 June 2016 and the deadline
for final submission is 08 September 2017.

1.6 Contributions
• The current state-of-the-art method is applied to a publicly available

data corpus, in order to make it reproducible.

• The method is improved upon by optimizing more of its parameters,
introducing a sequential hypothesis test, weighing patient data equally
in the training phase, and applying LOOCV to the train-validate phase
iterations.

• The tedious manual procedure for α-data selection is automated. Auto-
mated procedures save time and bode well for possible future dynamic
learning implementations.
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Chapter 2

Literature study

2.1 Physiology and pathology
The human brain is a remarkable organ of the most incredible complexity. Such
an organ is understandably expensive to maintain. Despite the fact that the
brain is only about 2 % of the weight of the body, it uses approximately 20
% of both its total energy, as well as approximately 20 % of its oxygen intake
(Raichle and Gusnard, 2002). The brain, like any other organ, is composed of
cells. The cells that enable the brain to perform its function as a biological
computer are called neurons. The latest estimates for the number of neurons in
the brain is set at 86 billion, with an average of 40 000 synapses on each neuron,
and about 10 times as many neuroglia as neurons to maintain homoeostasis.

2.1.1 The human brain

The human brain is the major functional unit of the central nervous system
(CNS). The brain is composed of four major regions as shown in Figure 2.1a,
namely the cerebrum (also called cerebral cortex), diencephalon, cerebellum,
and the brain stem. The cerebrum is the largest part of the human brain and
is divided into four lobes which express its location, as shown in Figure 2.1b.
The locations are: the frontal lobe, parietal lobe, occipital lobe, and temporal
lobe.

The frontal lobe contains the majority of dopamine-sensitive neurons. It
is associated with many functions, including: reward, attention, short-term
memory, planning, decision-making and problem-solving, motivation, behaviour,
consciousness, and emotion. The parietal lobe integrates sensory information
and various modalities, including spatial sense and navigation (proprioception),
in its somatosensory cortex in the postcentral gyrus. The homunculus is often
used to show distribution of the somatosensory cortex according to which
body part it renders. The parietal lobe is furthermore important for language
processing, mathematical analysis, and writing tasks. The occipital lobe is the
visual processing centre and contains the vast majority of the visual cortex. The
temporal lobe is involved in processing sensory input into derived meanings for
the retention of visual memory, language comprehension and speech, hearing,
learning, and emotional association.

6
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(a) The regions of the brain (Marieb,
2015)

(b) The lobes of the cerebrum (Marieb,
2015)

Figure 2.1: The human brain (Marieb, 2015)

The cerebrum, also called cerebral cortex, is further divided into the left-
and right cerebral hemispheres by a deep longitudinal fissure. Figure 2.1b
also shows the ridges (gyri), grooves (sulci), and deep grooves (fissures) on the
cerebrum. The entire CNS is protected by three connective tissue membranes
that are collectively referred to as the meninges. The CNS is further protected
by cerebrospinal fluid (CSF), which is a fluid with similar composition as blood
plasma.

2.1.2 Aetiology and epidemiology of seizures

In this section some of the causes (aetiology) of seizures, and the prevalence
(epidemiology) of the cause, are discussed briefly. First a distinction must
be drawn between epileptic seizures and non-epileptic seizures (NESs). The
aetiology of epileptic seizures are abnormal electrical activity originating the
brain only, whereas the aetiology of NES are factors external to the brain that
in turn induce abnormal electrical activity in the brain. For example, high
temperature (fever), low oxygen levels, low blood sugar, poisons, and high levels
of alcohol are all factors with origin external to the brain that may induce NESs.

Epilepsy is the most common cause for seizures, but is the second most common
neurological disorder in humans, after stroke. Epilepsy is a chronic disorder
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and its mechanisms are still poorly understood. There are a number of possible
causes for a patient to develop epilepsy, namely brain injury, stroke, genetic
disorders, birth defects, cerebral infection, or brain tumors. According to
Shorvon (2005) there are a significant amount of cases of epilepsy that have
unknown aetiology. In childhood the most common causes may be genetic
disorders or birth defects, in adulthood non-genetic external factors are more
likely, and among the elderly vascular diseases are an increasingly common
cause. The prevalence of epilepsy is relatively high. It is estimated that 1 % of
humans (approximately 65 million) suffer epilepsy. The highest incidence of
epilepsy is found in the toddlers and the elderly (Forsgren, 2008; Shorvon, 2005).

Brain injury is the second most common cause of seizures. There are a number
of causes for brain injury: A concussion occurs when the brain collides with
the inner skull wall. A skull fracture results due to severe trauma, usually
severe enough to cause brain injury. A haematoma is the collection or clotting
of blood just outside the intracranial blood vessels, and leads to intracranial
pressure build up. A haemorrhage is an uncontrolled intracranial bleeding.
Brain injury can result in a number of symptoms: A swelling of the brain leads
to an oedema, where intracranial pressure builds up and may cause the brain
to press against the skull. A diffuse axonal injury, or sheer injury, is damage
to the white matter neurons over a large area. Although no bleeding may
occur, the result is permanent brain damage and even death. Traumatic Brain
Injury (TBI) is a common pathology globally. In the United States of America
the incidence is approximately 538 per 100 000 (Rutland-Brown et al., 2006),
while the incidence is estimated at 235 per 100 000 in Europe and 322 per
100 000 in Australia (Tagliaferri et al., 2006). The incidence of TBI is peak in
young adults (15 to 24 years) and the elderly (> 65 years). The epidemiology
in developing nations are difficult to estimate, however it is reported that the
incidence rate is growing due to an increase in motorization combined with
inadequate traffic education and implementation (Roozenbeek et al., 2013).
The prevalence of seizures in TBI patients are estimated at between 5 % to 7
% (Teasell et al., 2007).

Malignant hypertension (arteriolar nephrosclerosis) is an abnormally high
blood pressure (above 180/120 mm Hg). This condition may lead to heart at-
tack, stroke, and kidney failure, among others. Possible causes for hypertension
include autonomic hyperactivity, head trauma, pre-eclampsia, and eclampsia,
among others. Eclampsia is the condition whereby seizures are caused in women
only during pregnancy. Fortunately eclampsia is a rare condition that follows
pre-eclampsia, characterized by high blood pressure after the 20th week of
pregnancy. Although rare, eclampsia is a highly serious condition with high
risk of contraction in women that have: hypertension, diabetes, a history of
poor diet or malnutrition, their first time pregnancy, pregnancy with twins,
or are over 35 or under 20 years of age. Approximately 10 % of pregnancies
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are complicated by hypertensive disorders, with eclampsia and pre-eclampsia
accounting for about half of such cases worldwide (Hutcheon et al., 2011). More
generally, hypertension is suffered by between 1 % and 5 % of children, 15
% of young adults, and more than 60 % of adults above the age of 65 years
(Sharifian, 2012). One study found that long-term severe hypertension increase
the risk of seizures by 11 fold compared to a control group (Hesdorffer et al.,
1996).

Alcohol withdrawal delirium (AWD) is experienced by an approximately 51
% of individuals with alcohol addiction when they are denied alcohol. Of the
individuals that do experience AWD, between 3 to 5 % experience grand mal
seizures (see Section 2.1.3) and severe confusion (McKeon et al., 2008).

Cerebral palsy is caused by abnormal brain development or injury to the
developing brain before-, during-, or shortly after birth, and often causes
seizures in the sufferer. Cerebral palsy cause motor-, coordination-, and posture
disabilities in children. The prevalence of cerebral palsy is well over 2.0 in every
1000 births, with an incidence of epilepsy at 20 % to 40 % (Odding et al., 2006).
In another study, the prevalence of seizures in patients with cerebral palsy is
estimated at as high as 62 % (Bruck et al., 2001).

Cerebral hypoxia refers to the condition in which the brain is deprived of
adequate oxygen supply at the tissue level. Cerebral ischaemia is the restriction
of blood supply to neural tissue, causing cerebral hypoxia and neuroglycopaenia.
Any disease or disorder of the brain is referred to as encephalopathy. Hypoxic
ischaemic encephalopathy (HIE) is the condition that occurs when the entire
brain endured a period of below normal oxygen level (but not total oxygen
deprivation) due to inadequate blood supply. HIE (also called hypoxic brain
damage) occurs most often as a result of cardiac arrest (CA), or neonatal
asphyxia in the case of a neonate (Busl and Greer, 2010). According to the
American Heart Association (AHA), prolonged untreated seizures are detri-
mental to the brain, and are common after return of spontaneous circulation
(ROSC), occurring in 5 % to 20 % of comatose CA survivors (Peberdy et al.,
2010). According to the World Health Organization (WHO), in developed
nations neonatal asphyxia affects 3-5 neonates per 1000 live births, with 0.5-1
neonates per 1000 developing HIE. The estimate for HIE in developing nations
are difficult to estimate, but the danger posed by HIE is even greater than
in developed nations (WHO, 2016). It has been estimated that only 30 %
of neonatal encephalopathy cases are in developed nations (Kurinczuk et al.,
2010). HIE is incredibly harmful, as it causes approximately two thirds of
neonatal seizures (Tekgul et al., 2006).

Hyponatraemia is the condition whereby the sodium electrolyte levels in the
blood is abnormally low. Hyponatraemia is the most common electrolyte abnor-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 10

mality encountered clinically. Homoeostasis of intra-cellular water balance and
blood pressure is complicated by hyponatraemia. In one retrospective study,
hyponatraemia was the cause of seizures in 70 % of infants under 6 months old
who lacked other aetiology (Farrar et al., 1995).

Brain cancer is the uncontrolled overgrowth of brain cells that form masses
called tumours. Whether cancerous or malignant, the brain tumour displays
a characteristic of fast expansion, thereby disrupting normal bodily control
and presenting a life-threatening condition. Fortunately brain cancer is an
uncommon condition with far lower than 1 % chance of development in humans
(American Cancer Society, 2017). The epidemiology of seizures due to brain
tumours are dependent on tumour type, grade, and location. The prevalence is
estimated at between 20 % to 45 % in patients with brain tumour (Maschio,
2012).

Hypoglycaemia is an abnormally low level of blood sugar (below 50 mg/dL),
common in diabetics. The epidemiology of hypoglycaemia is difficult to ascer-
tain. In one retrospective study, the frequency of hypoglycaemia (≤ 55 mg/dL)
in non-critical hospital admissions was 36 per 10 000 admissions (Nirantharaku-
mar et al., 2012). Another study found that a severe event (seizures or coma)
due to hypoglycaemia had an incidence of 4.8/100 patient-years (Davis et al.,
1997).

A brain aneurysm (also called intracranial- or cerebral aneurysm) occurs
when a weak point in the wall of an artery or vein that supplies blood to
the brain dilates locally, thereby ballooning the vessel when the dilation is
filled with blood. In the United States of America, the prevalence of brain
aneurysms are 1 % to 5 % (10-12 million), with incidence 1 per 10 000 per
year. The highest incidence is encountered in persons aged 30 to 60, with
higher occurrence in women (Brisman et al., 2006). A brain aneurysm, whether
ruptured or not, may lead to seizures in the sufferer (American Heart Asso-
ciation and American Stroke Association, 2012). A ruptured aneurysm has
incidence of seizure or epilepsy of about 11 %, whereas an unruptured aneurysm
has an incidence of seizure or epilepsy of between 6 % and 9 % (Hoh et al., 2011).

Encephalitis is an inflammation of the brain. Seizures and convulsions are
known symptoms. Infection is the most common cause for encephalitis, with
viruses being the most common aetiological agents. The incidence of encephali-
tis is estimated to be between 3.5 and 7.4 per 100 000 patient-years (Granerod
and Crowcroft, 2007). One study found that seizures occurred in 42.6 % of
patients with encephalitis (Misra and Kalita, 2009).

Other causes of seizures exist, however it is not within the scope of this
thesis to review all possible causes. Evidently, from the discussion provided,
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there are a host of possible causes for seizures. Patients suffering from any of
the above conditions should ideally be monitored continuously for seizures to
allow for early diagnosis and intervention.

2.1.3 Taxonomy of seizures

Seizure types are grouped and defined according to the classifications by the
International League Against Epilepsy (ILAE, 1981). Seizure classification is
based on clinical and EEG observation, instead of the underlying pathophysio-
logical or anatomical distinctions. With regards to the origin within the brain,
seizures are classified as either focal or generalized. A simple classification
scheme is illustrated in Figure 2.2.

Focal

Simple Complex

Generalized

Absence
(petit mal)

Tonic-conic
(grand mal)

Myotonic Atonic Clonic

Figure 2.2: Seizure types

A focal seizure (also called partial- or localized seizure) originates in one
location in the brain, either a cerebral hemisphere, or in part of a lobe of the
cerebrum. When the patient retains consciousness during the partial seizure,
then it is said to be a simple partial seizure. In contrast, if the consciousness
of the patient is impaired, then the seizure is said to be a complex partial seizure.

Symptoms vary based on the location of the focal seizure (Epilepsy Foun-
dation, 2013). In the frontal lobe, symptoms include a wave-like sensation in
the head and unusual eye and body movements. In the parietal lobe, the feeling
that the body is distorted, or that limbs are missing or foreign, difficulty in
understanding language or doing simple maths, numbness, a tingling sensation
or some other sensations are all symptoms. In the occipital lobe the symptoms
are: visual disturbance, hallucination, uncontrollable eye or eye-lid movements
(or the sensation thereof). In the temporal lobe a feeling of déjà vu, confusion,
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and a difficulty in speaking. The connection between the symptom and its lobe
of origin can be understood when considering the primary functions of each
lobe as discussed in Section 2.1.1.

A generalized seizure distorts electrical activity of the whole, or a large portion
of the brain. The types of generalized seizures include: absence, tonic-clonic,
myoclonic, atonic, and clonic seizures. Absence (petit mal) seizures are char-
acterized by a brief loss and return of consciousness. The tonic-clonic (grand
mal) seizure are seizures that affect the entire brain and results in stiffening of
the muscles, and then convulsions (repeated muscle jerking). The tonic-clonic
seizures are perhaps the most well-known seizure type, since its effects are
dramatic compared to all other relatively subdued seizure types. Myoclonic
seizures are characteristically manifested clinically as brief jerks of muscles
with the patient remaining fully conscious. Atonic seizures are a type of seizure
that cause brief alteration in muscle tone, which can lead to loss in motor
control for balance. Clonic seizures result in convulsions (clonus-phase), but
unlike tonic-clonic seizures, there are no preceding stiffening of the muscles
(tonus-phase).

Seizures may also be further classified according to the method of termination.
There are two categories: self-limited epileptic seizures, and status epilepticus.
Self-limiting (or self-terminating) seizures last up to several minutes and is
terminated by natural mechanisms. Status epilepticus is a life-threatening
condition whereby prolonged repetitive seizures continue for 30 minutes or
more, since the natural mechanisms responsible for seizure termination fail.

2.2 Electroencephalography
Electroencephalography (EEG) is a method to record electrical activity in
areas of the brain. This is achieved by placing non-invasive electrodes on the
scalp of the patient. The device that measures and processes the data is called
an electroencephalograph. These devices are capable of providing excellent
temporal resolution with decent spatial resolution. An electroencephalogram
(EEG) is the graphical output of the electrical activity of the brain from the
electrodes.

Whereas a routine short (up to approximately 1 or 2 hours) duration brain-wave
recording is called an EEG, long-term (longer than routine) recordings are
termed continuous EEG (cEEG or CEEG). Despite this differentiation, cEEG
is often simply referred to as EEG. Confusingly, EEG is also sometimes referred
to as ‘conventional EEG’ and abbreviated cEEG or CEEG. The terms EEG
and cEEG/CEEG refer strictly to recordings with electrodes placed on the
scalp. In this work, the term EEG shall be used to denote scalp EEG (whether
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short- or long-term). When electrodes are placed inside the scull, it is called
intracranial EEG (iEEG or IEEG) or electrocorticography (ECoG).

2.2.1 Mechanisms of measurement

The electrophysiological signals measured by scalp electrodes are weakened
due to obstructing structures of the skull, skin, and meninges that separate
the electrodes from the neuronal layers. The electrodes can only measure
signals that are of sufficient duration and strength such that it is observable.
For neurons it is typically only the excitatory- and inhibitory post-synaptic
potentials (EPSP and IPSP, respectively) that can readily fulfil those criteria
and is the most significant source of EEG potentials (Olejniczak, 2006). EEG
has a poor measure of the subcortical parts of the brain, because it is even
further obstructed by the cerebral cortex. For this reason it is mainly the
neural activity from the cortex (cerebrum) that is measured.

The primary excitation neurons found in the cerebrum are called pyrami-
dal neurons (or pyramidal cells). These neurons have a triangular shaped soma,
a large apical dendrite, multiple basal dendrites, and dendritic spines. What
makes pyramidal cells special is the abundance of Na+, Ca2+, and K+ ion
channels in its dendrites, their synchronous timing and parallel alignment with
one another, and the fact that they are superficial to the skull, so they emit the
strongest electrophysiological signal of the neuron types. When depolarization
begins at the dendritic end of the neuron, repolarization occurs at the axonal
end. The change in polarity causes a dipole over the neuron, thus conducting a
current. The activity of one single neuron is not strong enough to record, but
when thousands or millions of neurons are active at the same time, then the
combined signal is observable by EEG electrodes. When an electrophysiological
signal is generated by the summed electric current flowing from neurons within
a small volume of nervous tissue, the small volume is referred to as a local field
potential (LFP). It can then be said that EEG electrodes measure mostly the
currents that flow during synaptic excitations of the dendrites of pyramidal
neurons in a LFP on the cerebral cortex (Teplan, 2002).

When currents flow in the aforementioned LFP, it is as a result of ion pumping
across neuronal membranes. When the positively charged ions move out of
the neuron, they repel other ions in their neighbourhood, which in turn repel
other ions in its neighbourhood, and so on, in a wave. This process is referred
to as volume conduction. An LFP is large enough such that when ions are
pushed out of the neuron, the volume conduction wave reaches up to the scalp,
which pushes or pulls electrons in the electrode metal. The magnitude of the
push or pull on electrons is different for all electrodes, and so the difference
in push/pull between any two electrodes can be measured using a voltmeter.
The peak-to-peak voltages for such recordings are typically in the microvolt
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(µV) range, despite the fact that actual neuronal voltages are in the millivolt
(mV) range. The EEG recording of a typical adult lies between 10 to 100 µV
in amplitude, while the actual neuronal signal is 10 to 20 mV (Aurlien et al.,
2004). When the electrode recording is plotted over time, the graphical output
is called the EEG. The graphical lines themselves are often referred to as ‘brain
waves’ or ‘waveforms’.

2.2.2 Artefacts

Artefacts are features in the EEG which do not originate from the cerebrum.
Artefacts may therefore be considered as noise in the EEG. Artefacts may
be divided into physiological artefacts, and non-physiological artefacts. The
origins of artefacts as described by Fisch (1999) are summarized next.

Physiological artefacts are due to movements, bioelectric potentials, or skin
resistance changes. Movements of the head, body, scalp, or other skeletal mus-
cles generate electrical activity called Electromyography (EMG). Bioelectrical
potentials are induced by moving electrical potentials (which can be caused by
the eye, tongue and pharyngeal muscle movement) or by electrical potentials
from the scalp muscles, heart, or sweat glands. Electrical activity caused by
heart beats are termed electrocardiography (EKG or ECG). Skin resistance
changes are due to sweat gland activity, perspiration, and vasomotor activity.

Non-physiological artefacts arise mainly due to external electrical interfer-
ence, or internal electrical malfunctioning. Noise is generated by alternating
current at the frequency of mains electricity and is called mains (or electric-
or power line-) hum/noise. Mains noise can be caused by nearby appliances,
transformers, or wiring and is set at 50 Hz or 60 Hz, depending on local power
line frequencies. Internal electrical malfunctioning of the recording system
arise from faults with the electrodes, electrode positioning method, or amplifiers.

Fortunately artefacts can, in many instances, be identified immediately by
applying the following two spatial analysis rules:

1. Medium to high amplitude potentials that occur at only one electrode
are classified as artefacts.

2. Repetitive, irregular or rhythmical waveforms that appear simultaneously
in separate regions on the scalp are classified as artefacts.

2.2.3 Brain wave frequency bands

Neural oscillation at various frequencies are present in brain waves. Most
rhythmic activities in the cerebrum fall in the range 1 to 20 Hz. Oscillations
above or below this bracket are likely to be artefacts (Section 2.2.2). The
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frequency of EEG activity is often divided into a number of frequency bands.
There is no universal convention as to exactly how many bands there are and
what the exact ranges are for each band should be, and as such the ranges will
vary slightly between sources (Niedermeyer and Lopes da Silva, 2012; Noachtar
et al., 1999). Only some of the most common thresholds for these frequency
bands are given.

• The delta (δ)-band ranges from 0 Hz to 4 Hz.

• The theta (θ)-band ranges taken from 4 Hz to 7 or 8 Hz.

• The alpha (α)-band ranges from 7 or 8 Hz to 12, 13, 14, 15, or 16 Hz.

• The beta (β)-band ranges from the upper limit of the α-band to an upper
limit usually taken from somewhere between 30 to 40 Hz.

• The gamma (γ)-band begins from the upper limit of the β-band, but its
upper limit is unbounded. The upper limit is sometimes taken as 70 Hz,
since artefacts are encountered above this frequency.

In the δ-band, for practical purposes, the lower frequency limit is sometimes
taken as 0.5 Hz, since DC potential differences are not monitored in conven-
tional EEG (Noachtar et al., 1999). The lower limit is alternatively taken as
1 Hz, since the bandwidth below this is described either as noise, or the K
complex (Steriade et al., 1993; Niedermeyer and Lopes da Silva, 2012). The β
and γ bands are sometimes combined and simply referred to as the β band.

For the purposes of this study, a simplistic frequency band division is pre-
sented in Table 2.1.

Table 2.1: Brainwave frequency bands

Band Lower limit [Hz] Upper limit [Hz]
δ > 0 4
θ > 4 8
α > 8 16
β > 16 32
γ > 32 ∞

2.2.4 Instrumentation

The modern digital electroencephalograph device always has the following
components: electrodes, input box (also called jack box or electrode/input
board), calibrator, filters, amplifiers, A/D (Analog to Digital) converter, and
recording device (with write out). Figure 2.3 shows a flowchart for a typical
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modern digital system.

Figure 2.3: Digital EEG instrumentation (Karmos and Dombovári, 2011)

The electrodes are shown on the head of the subject in Figure 2.3. The
function of the electrodes are to measure the brain waves from the scalp of
the subject. The terminal end of the electrodes are inserted into the input box.
In many modern devices, a pre-filter amplifier is included in the input box in
order to mitigate external electrical interference. The role of the calibrator is to
supply a precise preselected voltage, which lie within the range of EEG signals,
to the input of all amplifiers.

Adjustable high- and low-pass filters are used to suppress the signals out-
side the frequency band of interest. Signals outside this band are typically
noise. In routine EEG recording, it is suggested that the high-pass filter should
be no higher than 1 Hz, and the low-pass filter should be no lower than 70 Hz,
to prevent loss of useful information (Ebner et al., 1999). Noise is generated
by alternating current at the frequency of mains electricity, either 50 or 60
Hz (depending on local power-line frequencies). This noise is called mains (or
electric- or power line-) noise. Mains noise can be caused by nearby appli-
ances, transformers, or wiring. Mains noise should ideally be removed from
EEG signals. A 50 Hz or 60 Hz notch filter should be used only if no other
measure is sufficient, because the notch filter can distort sharply contoured
components in the EEG. In fact, filters will distort to a degree both amplitude
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and inter-channel phase of signals, so it is ideal to minimize the use of filters
(Ebner et al., 1999). In modern EEG amplifiers, the task of filtering is done by
the amplifier discussed next.

It has been mentioned that the electrical signals recorded by electrodes are in
the order of microvolts (µV ). These signals must be magnified by an amplifier
such that they may be digitized accurately and made compatible with display,
recorder, and A/D converter devices (Teplan, 2002). The differential amplifier
is used to measure the potential difference between two (active) electrodes.
This refers to a subtraction of one signal (relative to the reference electrode)
from another signal (also relative to the reference), and then amplification of
that difference. What the differential amplifier achieves is to suppress signal
variations that are common (common modes) to both electrodes, this is called
common mode rejection (CMR). This is useful for instance in the filtering of
the electric hum. Two electrodes will both have their signal distorted in almost
identical fashion by the electric hum, but the effect of this will be reduced
by CMR. When two similar input channels are subtracted from each other
(In1 − In2), the result is a straight line with spikes where the inputs differ. By
the polarity rule convention, when the spike is an upward deflection, then In1
is negative with respect to In2. When the spike is a downward deflection, then
In2 is negative with respect to In1. In such an unintuitive convention, it may
be useful to think of the term ‘negative’ as meaning ‘large’.

Modern digital EEG systems take the amplified signal and digitize it us-
ing an A/D converter. The A/D converter is interfaced to a computer system
where each sample is saved in memory. The recording device stores or records
the data such that it may be used for write out. In modern EEG devices, the
recording device is a computer and the write out is done on a monitor.

For a more detailed description of the recommended standards and speci-
fications for EEG device components, refer to Ebner et al. (1999) and Teplan
(2002).

2.2.5 Electrode placement and montages

The benefits of subtracting two signals to implement CMR is discussed in
Section 2.2.4. EEG output waves displayed on a monitor are thus always the
magnitude of a particular signal relative to another. A channel is therefore
one continuous line of EEG recording, which is the difference between the two
signals connected to the differential amplifier. A derivation is a description
of the relation between the two electrodes (for example In1 - In2). Deciding
which electrode signals to subtract from each other depends on the desired
EEG montage (set of derivations), and each montage is associated with its own
set of advantages and disadvantages. To understand the definitions of mon-
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tages, the location that electrodes are placed on the scalp must be discussed first.

The international 10-20 system is the standard for the placement of scalp
electrodes for EEG applications. The placement locations for electrodes are
based on known skull landmarks, so that the standard could be applied to
any person. The landmarks used are the nasion, inion and the left and right
pre-auricular points. The pre-auricular points are felt as depressions at the root
of the zygoma, just anterior to the tragus. The placement method is distance de-
pendent and is described using percentages of the distance between landmarks.
A detailed guide for placement is prescribed by the International Federation
of Clinical Physiology (IFCP) (Klem et al., 1999), but will not be repeated here.

The international 10-20 system electrode location and relative distances are
shown in Figure 2.4a. In total 21 electrodes are used for the international 10-20
system. Note that the points that are enclosed by a rectangle are not electrode
positions, they are merely landmarks. The international 10-20 system requires
the electrode designation to be expressed in terms of what area measurement is
done. In Figure 2.4a the locations are denoted Fp (Fronto polar), F (Frontal),
C (Central), P (Parietal), O (Occipital), T (Temporal), and A (Auricular).
The auricular electrodes are placed on the earlobes. Some designations are
followed by the letter ‘z’, which denotes ‘zero’, as these are vertex electrodes.
The landmarks Nz and Iz are the nasion and inion respectively. When addi-
tional electrodes are required, the international 10-10 system (also called 10
% system or extended 10-20 system) may be used, as shown in Figure 2.4b.
The new locations are halfway between locations of the 10-20 system. Note
that for the 10-10 system, the positions highlighted in black have different
designations compared to the top illustration. These alternate designations are
also sometimes used in the 10-20 system.

The most common EEG montages are (in descending order): Bipolar (also
called Sequential) montage, Referential (also called Common electrode refer-
ence) montage, Average (also called Common average) reference montage, and
Laplacian montage.

In the Bipolar montage, each channel represents the difference between two
adjacent electrodes. The standard direction for bipolar montages are the
interior-posterior (longitudinal) direction. Considering only the electrodes in
the 10-20 system: when the adjacent electrodes of Figure 2.4a are connected
by a hypothetical line, it forms a grouping of electrodes, called a chain. The
longitudinal direction has 5 chains (left to right by convention): [Fp1, F7, T3,
T5, O1], [Fp1, F3, C3, P3, O1], [Fz, Cz, Pz], [Fp2, F4, C4, P4, O2], and [Fp2,
F8, T4, T6, O2]. The derivations for chain 1 are Fp1-F7 (channel 1), F7-T3
(channel 2), T3-T5 (channel 3), T5-O1 (channel 4). Derivations and channels
are derived in similar fashion for all 5 chains, in the sequence given, such that
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(a) The 10-20 system (adapted from Klem et al. (1999))

(b) The 10-10 system (Klem et al., 1999)

Figure 2.4: Placement of EEG electrodes (Klem et al., 1999)
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there are a total of 18 channels (channel 1 to channel 18). A less common
direction in which to take the bipolar montage is the transverse (coronal)
direction. The transverse bipolar montage also has 5 chains (top to bottom
by convention): [Fp1, Fz, Fp2], [F7, F3, Fz, F4, F8], [A1, T3, C3, Cz, C4, T4,
A2], [T5, P3, Pz, P4, T6], and [T5, O1, O2, T6]. This montage will have 19
channels if using only the electrodes in the 10-20 system.

2.3 Seizure analysis

2.3.1 Seizure analysis terminology

Some basic seizure analysis and machine learning terminology used in this
research must be clarified:

• An epoch is a continuous segment of EEG record.

• The ictal epoch is the epoch in which the seizure itself occurs.

• The inter-ictal epoch is the time between successive ictal epochs, i.e. the
non-seizure state.

• Preictal- and postictal -epochs refer to the time directly before and after
a seizure, respectively.

• In seizure detection, the aim is to discriminate EEG signals in the ictal
state from the signals in the inter-ictal state.

• In seizure prediction, the aim is to discriminate EEG signals in the
pre-ictal state from the signals in the inter-ictal state.

• Seizure analysis refers collectively to the problems of seizure detection
and seizure prediction.

• Focus channel is the electrode location that exhibits the earliest evidence
of ictal activity or, if this is simultaneous in more than one channel, the
channel in which the activity is maximal in amplitude.

• A class-imbalance problem in machine learning applications refers to
applications with datasets where one class constitutes a small fraction
relative to other classes. Seizure analysis problems are an example of a
class-imbalance problem, since it is estimated that ictal data represent
less than 0.05 % of all data (Gardner, 2004).

• A binary classification problem in machine learning refers to problems
where data must be classified between one of two classes only. The binary
classes are often termed as the ‘positive’ and ‘negative’ class.
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• The positive class is all ictal data. The negative class is all inter-ictal
data.

• A positive declaration refers to the event whereby the classifier declares a
sample of data as ictal (positive class). A negative declaration refers to
the event whereby the classifier declares a sample of data as inter-ictal
(negative class).

• Windowing refers to the process of segmenting data into discrete data
‘blocks’.

• In a block processing approach, data is windowed and advanced in time.

• Typically, data is imported from a pool of data in frames. A frame is the
smallest data window used in an application.

• The training set is a portion of all available data that is used to create
the optimal classifier.

• The testing set is the remaining portion of all available data. The test
set is used to evaluate the optimal classifier. The performance of the
classifier as applied to the test set is reported.

More Machine Learning terminology is provided in Section 2.5.1.

2.3.2 Performance metrics

In this subsection the performance metrics used in seizure detection/prediction
algorithms are detailed. When a classifier labels an epoch (as ictal or inter-
ictal), the classification is in reality one of the following:

• True Positive (TP ): The classifier declares an ictal interval that overlaps
with an actual ictal (pre-ictal for prediction) interval.

• True Negative (TN): The classifier declares an interval as inter-ictal, and
that interval is indeed inter-ictal.

• False Positive (FP ): The technique declares an ictal interval, which is
actually inter-ictal.

• False Negative (FN): The technique declares an interval as inter-ictal,
but that interval is actually ictal.

The classification outcomes could be visualized by the confusion matrix given
in Figure 2.5. In statistics, a FP is also called a Type 1 error and a FN is also
called a Type 2 error.
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Detected/
predicted
 label = ICTAL

Detected/
predicted 

label = INTER-
ICTAL

Actual label = 
ICTAL

(or pre-ictal)

Actual label = 
INTER-ICTAL

TP FN

FP TN

Figure 2.5: Confusion matrix

In seizure analysis problems, if a single positive declaration is made for a
given seizure, then the entire seizure is considered detected and a single TP is
counted. Additional positive declarations for the same seizure are not counted
as additional TP s. Similarly, if no positive declaration is made within the
seizure duration, then the seizure is missed, and a single FN is counted. In
contrast to this, every FP is counted, regardless of vicinity to other FP s. This
harsher rule is used, because each time a positive declaration is made the
monitor alarm would go off to notify ICU staff.

In continuous EEG evaluation, there is a difficulty with using the TN metric.
If the TN is counted in the same way as the FP , i.e. every sample of data
can be declared TN , then the TN value would often be incredibly large and
offer little performance information. This is a common in class-imbalance
problems. In methods that use short-sample evaluation (see Section 2.3.3),
data is partitioned into short, equal duration epochs. Only if the entire epoch
has no positive declarations is a TN counted. An issue with this is that the
selection of the epoch duration is still arbitrary, so selecting a smaller epoch
size will invariably yield high TN . Another option is to select TN as the entire
epoch between successive seizures, but this would likely yield high TN for pa-
tients with seizures in short succession, and does not add valuable performance
information. These options confound comparison of methods, which is the
entire purpose of performance metrics. Instead, publications in literature that
test their method on long-term continuous data to simulate clinical conditions
often take TN as a duration. This implies that the TN for a given patient is
the duration of time for which the detector had TN declarations. Since TN is
taken as a duration, it can only be added to other durations. Metrics TP , FP ,
or FN are taken as durations when added to TN .

Based on the labels described above, the performance of a classifier can be
measured by creating performance metrics. There is unfortunately no standard
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name or symbol for the metrics in seizure analysis literature. The most common
performance metrics are given:

• True Positive Rate (TPR), also called Sensitivity or Recall or Probabil-
ity of detection: The percentage of existing seizures that are correctly
detected/predicted.

TPR = TP

TP + FN (2.1)

This metric is most often referred to as sensitivity in seizure analysis
publications, and is likely the most consistently reported metric.

• False Positive Rate (FPR), also called Fall-out or Probability of false
alarm: The percentage of inter-ictal epochs incorrectly classified as ictal.

FPR = FP

TN + FP (2.2)

Since TN is taken as a duration, this metric estimates the number of
times that a classifier would produce a false positive over the entire
inter-ictal recording duration. FPR is often reported as a rate per hour,
and is a very often reported metric.

• Positive Predictive Value (PPV ), also called Selectivity or Precision: The
percentage of detections that are indeed seizures.

PPV = TP

TP + FP (2.3)

This metric is most often referred to as selectivity in seizure analysis
publications.

• Detection latency (tdl), also called Detection delay: The time lag associ-
ated with seizure detection.

tdl = td − to (2.4)

where td is the time at which a seizure is detected and to is the time
at which the onset of the seizure actually occurs according to the EEG
data. Prediction has occurred if tdl < 0. This metric is commonly used in
seizure detection applications where it is reported in seconds.

• Prediction horizon (tph), also called Prediction time: The amount of time
before seizure onset that a seizure was predicted.

tph = to − td ≡ −tdl (2.5)

where td is the time at which a seizure is detected and to is the time
at which the onset of the seizure actually occurs according to the EEG
data. Prediction has occurred if tph > 0. This metric is commonly used in
seizure prediction applications where it is reported in minutes.
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• There are some other statistical measures that are used in seizure analysis
literature. Defining each of these is not in the scope of this thesis, however
they are listed below:

– True Negative Rate (TNR), also called Specificity

– False Negative Rate (FNR), also called Miss-Rate

– Negative Predictive Value (NPV )

– Accuracy (ACC)

– False Omission Rate (FOR)

– False Discovery Rate (FDR)

– Prevalence

– Positive Likelihood Ratio (LR+)
– Negative Likelihood Ratio (LR−)
– Diagnostic Odds Ratio (DOR)

Publications in literature most often report only sensitivity (TPR), false posi-
tive rate (FPR), and detection latency (tdl) or prediction horizon (tph).

Ideally, the entire confusion matrix should be reported for each patient. The
confusion matrix metrics should be reported in terms of count and duration
(where applicable). Along with the confusion matrix, the detection latency (or
prediction horizon) should be reported. Using only these metrics, any other
metrics can be formed. The problem with only reporting more refined metrics
such as TPR, FPR, and PPV is that researchers use various metrics to evalu-
ate the efficacy of their algorithm. Comparison of algorithm performance is
then hindered. Furthermore, if only mean performance metrics are reported
(instead of reporting metrics for each individual patient), then the inter-patient
variability of the algorithm performance cannot be assessed. The issue with
inter-patient variability is that the algorithm is not robust, implying that
for some patients, the solution is not reliable. This is undesirable in clinical
technology. Medical staff prefer having knowledge of the accuracy of medi-
cal technology before even using it, as this can greatly influence decision-making.

A given classifier will output metrics TP , TN , FP , and FN based on its
parameter settings. To optimize the parameters, a grid-search approach can
be used to generate classifier performance over many parameter settings. The
model parameters can be used to ‘tune’ the classifier toward good metrics. In
order to decide whether one set of classifier parameters are superior to the next,
the metrics must be combined into a single metric or objective function, such
that a single measure of performance can be compared.
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The formation of the objective function is an open-ended problem in seizure
analysis applications. There are no universal standards for creating such a
function, and so each researcher is left to define or select one for themselves.
Some researchers define new objective functions that is formed by some new
combination of a few of the performance metrics described. There are a number
of common combinations used in research. One metric that has become more
popular in recent years in the seizure analysis community is the F1 score (also
called F-score or F-measure). F1 is the harmonic mean of precision (PPV )
and recall (TPR). The harmonic mean for positive real numbers x1, x2, ..., xn
is given by:

H = n
n

∑
i=1

1

xi

(2.6)

The F1 is the harmonic mean of PPV and TPR:

F1 = 2 ⋅ 1
1

PPV
+ 1

TPR

= 2 ⋅ PPV ⋅ TPR
PPV + TPR (2.7)

The harmonic mean is used when the average of two rates (also called ratios)
are required. Since PPV and TPR are both rates, the harmonic mean is the
preferred method of determining the average.

For example, consider the seizure analysis problem: two different models
are compared. Model A outputs TPR=0.4 and PPV=0.6. The arithmetic
mean is 0.5 for this model. Model B yields TPR=1 and PPV=0. The arith-
metic mean is also 0.5 for this model. Clearly the first model is superior, since
the second model merely labels all data as seizure. Using the harmonic mean,
model A and B would have F1 = 0.48 and F1 = 0, respectively. Clearly the
harmonic mean is a preferred averaging technique. The benefit of the F-score is
that both TPR and PPV have to be high in order to obtain a high F1. This
metric is particularly convenient since it scales [0,1].

2.3.3 Types of methods and data

The types of classifier train-validate-test methods in seizure analysis vary
significantly and the results from each have a unique meaning. Furthermore, the
data used to accomplish these methods also play a role in the final interpretation
or statistical power of the results. It is acknowledged that publications in
literature have various intended applications. For example, some publications
have the aim to develop implantable iEEG patient-specific devices, and others
seek to develop offline post-monitoring tools.
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Application

In this study, the application of the method is the intended use of the final
algorithm. In seizure analysis publications, the application can be described as:

• A patient-specific method: data from the patient to be evaluated is
required to train the classifier, and/or model parameters need to be tuned
for the specific patient(s) to be evaluated.

• A seizure-specific method: morphologies (templates) of seizures of a given
type and /or location is needed to train the classifier to detect similar
seizures.

• A generalized method: strictly neither patient-specific nor seizure-specific.

Patient-specific and seizure-specific methods are intended for use by known
epileptics, after a some prior EEG data have been collected from the patient.
Generalized methods can be applied to a new patient, without requirement for
any prior data collected.

Test type

Some methods in literature extract short samples of ictal and inter-ictal data to
train, validate, and test their classifier. Commonly all seizures, and relatively
short samples of non-seizure data is extracted from the training and testing
sets. After classifier optimization using the training samples, the classifier
would be evaluated using the short samples of the test set. Other methods in
literature test their classifiers on long-term continuous EEG data to generate
performance metrics. The long-term evaluation is considered a more reliable
and statistically significant test of a seizure analysis classifier.

In machine learning data is commonly split into a training set and a test-
ing set. The training set is used for classifier training and tuning. After the
classifier is optimized, the classifier is applied to the independent (unseen)
testing set. If the method does not keep its training and testing sets separate,
i.e. there is significant overlap between the sets, then the machine learning
classifier performance reported cannot be considered entirely reliable.

Data used

Researchers often collected data from the local ICU or hospital at great expense.
If the data corpus is not made available to the public, it is referred to as a
‘private’ corpus. A data corpus that is made publicly available (whether free of
charge or not) is termed a ‘public’ corpus. There are surprisingly few public
corpora. Table 2.2 summarizes the public corpora used in seizure analysis.
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Table 2.2: Public data corpora

Abbr Details (at the time of writing)
Bonn The University of Bonn’s “Klinik für Epileptologie” EEG time series

database (Andrzejak et al., 2001).
Contains 5 subjects, each with 100 single channel EEG records of 23.6 sec
duration. 5 seizures are recorded. The segments are selected to contain
no artefacts. The corpus is free and available online (Universität Bonn,
2017).

FSPP The Freiburg Seizure Prediction Project (Winterhalder et al., 2003)
Contained 21 iEEG patients, 88 seizures. 128 channels. 509 hours of data
is stored. The corpus was free and available online (FSPP, 2017), but it
is now part of the EU database.

FHS The Flint Hills Scientific, L.L.C., Public ECoG Database (Flint Hills
Scientific, 2017a)
Contains 1419 hours of continuous iEEG recordings for 10 patients, with
59 seizures, and 48 to 64 electrodes per patient. Over 1400 hours of
EEG is recorded. The corpus was free and available online (Flint Hills
Scientific, 2017b), however it is now unavailable.

CHB-
MIT

The Children’s Hospital of Boston - Massachusetts Institute of Technology
data corpus (Shoeb, 2009; Goldberger et al., 2000).
Contains 24 EEG cases with 198 seizures and a total duration of 982.9
hours. Most records have 23 channels. The corpus is free and available
online (PhysioNet, 2016).

KU The Karunya University EEG database (Selvaraj et al., 2014).
Contains 176 records, each of duration 10 seconds. 16 channels of EEG is
provided. The corpus is free and available online (Karunya University,
2017).

EU The European Epilepsy Database was developed in the EPILEPSIAE
project (Ihle et al., 2010).
Contains more than 250 epilepsy patients, 50 of which have iEEG taken,
the remainder are EEG. There are 2400 seizures in the corpus. The total
duration is more than 40 000 hours. The corpus is not free of charge, but
is available (EPILEPSIAE, 2017).

TUH The Temple University Hospital EEG Data Corpus (Obeid and Picone,
2016).
The completed corpus comprises 16 986 sessions from 10 874 unique
subjects. Minimum 24 channels. Corpus is free and available online
(Picone, 2017).

Data corpora that are publicly available, but not free of charge can be purchased
by anyone. The prices for such corpora are quite high, which impedes their use.
Only publicly available data corpora that are free of charge may be downloaded
directly from the source website. These are the more popular corpora.
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From Table 2.2 it can be seen that the Bonn and KU corpora are only suited
for short-sample methods. At the time of writing 1, the CHB-MIT and EU
datasets are the only remaining available databases for long-term continuous
EEG evaluation. Between these two corpora, only the CHB-MIT corpus is
available free of charge.

Either EEG or iEEG/ECoG data is used. iEEG have several advantages
over EEG: high-frequency signals are not attenuated by the skull and scalp,
the signals are furthermore not heavily contaminated by EMG artefacts, and
smaller clusters of neurons can be monitored. This makes iEEG much cleaner
than EEG. The use of iEEG is, however, limited to clinical necessity due
to its invasive nature. The use of iEEG is generally restricted to use for
planning/management of epilepsy surgery. EEG is non-invasive, relatively in-
expensive, quick and easy to apply, and provides excellent temporal resolution.
For these reasons, EEG is the only promising recording method for immediate
monitoring of patients.

The size of the database used also influences the statistical power of the
results. In machine learning it is known that simpler models with larger
amounts of training data can show better performance than a complex model
with less training data. A model trained with too little training data may not
yield performance true to its potential. Furthermore, a classifier evaluated on
only few different patients cannot claim strong generalization ability as can a
classifier evaluated on many different patients. For these reasons the volume
and specifics of the database used is relevant. Researchers should ideally report
the number of patients, number of seizures, and total duration of data used for
the training set and for the testing set.

Other factors

There are a number of other factors that may influence the interpretation of
the results of a given method. Often the classifier is only trained and tested on
seizures of a certain type(s) and/or location(s). The classifier performance on
non-selected seizure types/locations is therefore unknown.

In other methods, only a single electrode or small cluster of electrodes are
used. Often a priori knowledge of the focus channel is used to select channels,
since the focus channel often provides the easiest and earliest differentiation
between ictal and inter-ictal states. The classifier performance on non-selected

1 The TUH EEG database was released in 2016. Unfortunately the author only discovered
this resource late into 2017. The ‘TUH EEG Seizure Corpus’ is a subset of the entire TUH
corpus that groups the EEG of patients suffering seizures. This subset can be used for
automated seizure detection evaluation, and is conveniently separated from the rest of the
corpus on the website (Picone, 2017).
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electrodes is unknown, since they are not evaluated. In the case where the
focus channel is selected, the performance of the classifier will likely only be
sustained if the focus channel of the independent data is known a priori. One
cannot simply train a classifier on one channel and then apply that classifier to
any other channel. A classifier trained on a patient with focal seizures in, for
example, the occipital lobes, would be trained on features from occipital elec-
trodes since these would be the best at detecting the seizure. These classifiers
would perform poorly if the patient being monitored had a seizure in, say, the
frontal lobes (Fergus et al., 2015). It is unfortunately impossible to know on
which channel a focal seizure can be detected before performing the test. The
problem is then that seizure detection/prediction cannot be generalized across
multiple subjects with only one focus channel.

Some methods cannot be applied to real-time (online) applications. If any
data after the actual seizure is required for classification, then the method is
applicable only for offline use. If any form of data preselection (incl. manual
artefact removal) is performed, then the method can obviously not be applied
in real-time.

2.3.4 Publications in literature
Seizure analysis through computational methods was first introduced by Got-
man et al. (1973). Since then a multitude of research papers regarding seizure
analysis have been published. Discussing each publication would require an
entire dedicated chapter in this study. Instead the extensive literature study
is summarized in Table 2.3. Although mentioning all relevant papers is not
within the scope of this study, Table 2.3 contains many of the most significant
publications in the field of seizure analysis. The publications are listed accord-
ing to the date released.

In Table 2.3, sensitivity (TPR), mean detection latency (tdl) in seconds, and
False Positive Rate (FPR) per hour are tabulated if reported. A negative tdl
indicates prediction. Further details of the methods are encoded (PS, SS, Gen,
S, L, O, I, 1 → 3) in Table 2.3. The implications of these details were discussed
in Section 2.3.3. The number of cases (patients), the number of seizures, and
the total duration, in hours, of the data used (training and testing sets together)
is given if reported.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 30

Table 2.3: Literature Review

Publication Applic-
ation*A

Test
type*B

Data [cases,
seizures, hours]

TPR
(%)

FPR
(/h)

tdl
(sec)

Gotman (1990) Gen*3 L,I Private (EEG) 73 0.84
Private (iEEG)
All: [49,244,5303]

83 1.35

Qu and Gotman
(1995)

PS & SS L,I Private (mixed)
All: [17, 77, ≈ 65]

100 0.21 9.6

Gabor (1998) Gen L,I Private (EEG)
[65, 181, 4550]

92.8 1.35

Osorio et al. (1998) Gen*1 S,I Private (iEEG)
[16, 125, ]

100 0 2.1

Le Van Quyen et al.
(1999)

Gen*1 S,I Private (iEEG)
[13, 23, ]

83 -345

Le Van Quyen et al.
(2001)

SS*1,3 S,O Private (EEG)
[23, 8, ]

96 -420

Iasemidis et al.
(2003)

Gen L,O
Private (iEEG)
[5, 55, 433]

82 0.16 -4302

PS L,O 84 0.12 -4464
PS L,I 82.6 0.17 -6018

D’Alessandro et al.
(2003)

PS*1 L,I Private (iEEG)
[4, , ≈160]

62.5 0.2775

Hively and
Protopopescu (2003)

Gen*1 L,O Private (EEG)
[41, 40, ≈261]

87.5 0.021 -2100

Khan and Gotman
(2003)

Gen L,I Private (iEEG)
[22, 163, 451.5]

85.6 0.3

Acır and Güzeliş
(2004)

Gen S,I Private (EEG)
[25, , ≈4.25]

90.3

Gardner (2004) Gen*1,2 L,O Private (iEEG)
[16, 118, ≈1078]

97.85 1.74 -13.3

Shoeb et al. (2004) PS S,I Private (EEG)
[36, 139, 60]

94 0.25 8

Wilson et al. (2004) Gen L,O Private (EEG)
[459, 670, 1514]

76 0.11

Grewal and Gotman
(2005)

Gen L,I Private (iEEG)
[49, 312, 796.1]

86 0.47 16.2

PS 89.4 0.22 17.1
Jia et al. (2005) Gen*1,2 L,O Private (iEEG)

[2, 24, 14]
72.25 0.4 ≈-690
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Le Van Quyen et al.
(2005)

PS &
SS*1,2

L,O Private (iEEG)
[5, 52, 305]

70 -
11220

Saab and Gotman
(2005)

Gen L,I Private (EEG)
[28, 126, 652]

77.9 0.86 9.8

PS 76 0.34 10
Meier et al. (2008) SS L,O Private (EEG)

[57, 91, 1403]
96 0.5 1.6

Aarabi et al. (2009) Gen*2,3 L,O FSPP (iEEG)
[21, 78, ≈302]

98.7 0.27 11

Khamis et al. (2009) Gen*1,2 L,I Private (EEG)
[12, 101, 1939]

91.57

Kuhlmann et al.
(2009)

Gen*3 L,I Private (EEG)
[21, 88, 525]

81 0.6 16.9

Patel et al. (2009) Gen*2 S,O FSPP (iEEG)
[13, , ]

90.9
PS*2 94.2

Shoeb (2009) PS L,I CHB-MIT (EEG)
[23, 163, 844]

96 0.13 4.6

Minasyan et al.
(2010)

PS*1,3 L,I Private (EEG)
[25, 86, ≈ 625]

100 ≡ 0.04 ≡
-26.8

Polychronaki et al.
(2010)

Gen*1,2,3 L,I Private (EEG)
[8, 55, 553.14]

100 0.42 8.82

Park et al. (2011) PS*2,3 S,I FSPP (iEEG)
[18, 80, 433.2]

97.5 0.27

Williamson et al.
(2011)

PS*2 S,I FSPP (iEEG)
[19, 83, ≈500]

90.8 0.094

Yuan et al. (2012) PS*2 S,I FSPP (iEEG)
[21, 86, 179.57]

91.72

Fergus et al. (2015) Gen*3 S,O CHB-MIT (EEG)
[24, 171, 5.7]

93

Table with sensitivity (TPR), false positive rate (FPR) per hour, and mean detection la-
tency (tdl) in seconds. A negative tdl indicates prediction.
*AThe application is Patient-Specific (PS), Seizure-Specific (SS), or Generalized (Gen). Gen-
eralized solutions are strictly neither PS nor SS.
*B The test-type (final evaluation) is on discontinuous short-samples (S) or long-duration
continuous data (L). The testing set significantly overlaps (O) or is independent (I) of the
training set.
Some methods used data that *1 have only 1 seizure-type or that *2 have 1 channel/group
of channels.
*3 Some methods cannot be applied in real-time as they are developed for offline use or
include some form of manual data or channel preselection.
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2.3.5 Discussion of publications

In this study, the desired seizure monitoring algorithm is one that is designed for
immediate application in the clinical environment. The desired system should
begin monitoring as soon as a patient is rushed into the ICU and the scalp
EEG system is connected properly. It is acknowledged that not all publications
in literature have the aim of developing such a monitor.

Reliability and clinical application

Methods that are generalized (Gen), involve no limitations (1→ 3) indicated in
Table 2.3, and are evaluated on long-term (L) scalp EEG with independent (I)
training and testing sets are considered more promising in achieving the aims
of this study. With such prerequisites, very few methods may be considered
promising.

From Table 2.3, it is evident that some of the best algorithm performances
reported in literature are from publications that are less promising in achieving
the aims of this work. As part of this study, some of these high performing
methods were evaluated on a test that simulate clinical conditions. The pur-
pose was to investigate the degree by which the excellent reported performance
would degrade under such a test. In general it was found that the performance
metrics of these methods degraded heavily when applied to evaluations that
simulate clinical conditions. The original report (Volschenk et al., 2017a) is
summarized in terms of its overall results:

The 1-class ν-SVM method by Gardner (2004) was implemented, however
with no set overlap, and no a priori focus channel knowledge. Good TPR
with very poor FPR was obtained. The 2-class SVM method by Shoeb (2009)
was implemented, however no patient-specific training was allowed. Unsur-
prisingly, very poor TPR and FPR was yielded. The 2-class SVM method
by Fergus et al. (2015) was implemented, with no set overlap, and additional
postprocessing procedures for FPR reduction. Good TPR with very poor
FPR was obtained. In these evaluations, the LIBSVM 3.21 (Chang and Lin,
2011) software package was used. Finally, the promising Saab and Gotman
(2005) method was implemented, with results similar to those reported in the
original publication. These findings support the notion that methods that
involve any of the limitations indicated in Table 2.3 are to be considered less
promising in achieving the aims of this work.

Of the methods presented in Table 2.3, the Saab and Gotman (2005) and
Gabor (1998) methods are considered most promising for application in this
study. The reliability of the Saab and Gotman (2005) method is reinforced
since the method was repeated with good results on an entirely different data
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corpus (Kuhlmann et al., 2009). Choosing between the methods is essentially
a trade-off between sensitivity and FPR. Although the Gabor (1998) method
yields an impressive TPR=92.8 %, its FPR=1.35 /h implies that the detector
will have a false alarm 32.4 times in a single day. The Saab and Gotman (2005)
method yields a more modest TPR=77.9 %, however its FPR=0.86 /h yields
a more promising 20.6 false alarms per day. Evidently neither of these methods
can be applied clinically, since the high false alarm rate would likely result in
the monitor being switched off by the ICU staff. Due to its significantly lower
FPR at the cost of ≈ 15 % sensitivity, the Saab and Gotman (2005) method
shall be considered more applicable, and therefore the ‘state-of-the-art’, in this
study.

The Saab & Gotman (2005) method

The Saab and Gotman (2005) method has been highlighted as promising for
clinical application. The method is described only briefly here, but is clarified
throughout the remainder of Chapter 2 as well as Chapter 3.

Clinical as well as sub-clinical seizures were included, only seizures
that showed no EEG manifestation were excluded from analysis. Their method
begins with filtering out frequencies below 0.5 Hz and frequencies above 70 Hz.
Their data was sampled at 200 Hz, and represented in either 24 or 32 channel
bipolar montage.

Data is segmented into 2 second frames (no overlap). For each chan-
nel in the frame, the signal is split into frequency bands using a 5-level db2
wavelet transform. Frequency bands 50-100, 25-50, 12-25, 6-12, 3-6, and 0-3
Hz were formed. These bands correspond to wavelet coefficients (scales) D1,
D2, D3, D4, D5, and A5, respectively.

For each channel, only scales D3,D4,D5 are used for feature extraction.
For each scale, the Relative Average Amplitude (RAA), Relative Scale En-
ergy (RSE), and the Coefficient of Variation of Amplitude (CVA) are calculated.

A Naïve Bayes Classifier (NBC) is used for training and testing. Seizure
training data was extracted and processed frame by frame. For each feature
(in each scale in each channel), a histogram with 5 bins are constructed,
where each bin has the same number of samples. The bins of all three scales
for a given channel-scale are combined. When a frame is imported then, a
channel-scale can fall in one of 53 = 125 bins. The ratio of these bin counts
to the total number of training samples serve as a priori probabilities in the
NBC. The same bin ranges determined from the seizure training data is then
used to generate probabilities for the non-seizure training data.
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EEG with high α-band activity that is uncorrupted by artefacts were
searched for visually. Low α-band data without seizures was also searched for
manually. These datasets were stored separately. The same formulation used
to characterize seizure and non-seizure activity using the NBC was used to
characterize the high α and low α data. The bin ranges are based off the high
α training data. In this process, only features from D4 were used.

During classification, when a frame is imported, it is rejected if it con-
tains significant non-physiological artefact corruption (abnormally high signal
amplitude, main noise, or phase reversal). To determine the mains noise,
spectral analysis was used. If the frame is not rejected, it undergoes the
wavelet transform and feature extraction. For each channel scale (D3,D4,D5),
the NBC outputs a probability. The probability that a seizure is detected
in a channel is found by summing the probabilities of the three scales for
that channel. The 6 channels with the highest probabilities are then summed
to obtain PSEZ_EPOCH . The probability that high α-activity is present is
calculated in the same manner, except the probability for a given channel
is equal to the probability from D4 only. The 6 channels with the highest
probabilities are summed to obtain PALP_EPOCH .

The seizure probability is scaled by the EMG activity PSEZ_SCALED =
PSEZ_EPOCH(1 −EMGAmpRatio). Here EMGAmpRatio is the ratio of the
sum of amplitudes in D1 and D2 to the sum of amplitudes in D1,D2,D4,D5.
The final detection variable PSEZ is found by summing the PSEZ_SCALED of
the last three frames. The PALP is found by summing the PALP_EPOCH of the
last three frames. The thresholds PTH and ATH are now used. If PSEZ > PTH
and PALP < ATH , then the frame is declared seizure. If PSEZ > PTH and
PALP > ATH then the frame is declared seizure only if the top 6 channels
summed for PSEZ_EPOCH are not from different hemispheres of the brain. If a
single frame is declared seizure, then a detection is considered declared.

2.4 Signal processing
Spectral analysis (also called spectrum analysis) refers to signal processing
methods that allow a signal to be characterized by its spectrum of frequencies
or related quantities such as energies, and eigenvalues, among others. In this
study, the mains noise (either 50 or 60 Hz) need to be evaluated for each signal
in each frame of data being processed. Furthermore, signals in each frame need
to be separated by its frequency content. To obtain the mains noise from a
signal, and to separate a signal into frequency-bands, spectral analysis must be
done.
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2.4.1 The Fourier Transform

One method of to perform spectral analysis is to apply the Fourier Transform
to the signal. Brain-wave signals obtained via EEG are discrete signals. The
mains noise in the EEG is caused by alternating current (AC), which is
cyclical/periodic in nature. The component of interest is therefore part of the
discrete-periodic signal class. A Fourier Transform applied to a discrete-periodic
signal is called a Discrete Fourier Transform (DFT).

By far the most efficient method for DFT application is the Fast Fourier
Transform (FFT), and there are a number of FFT algorithms. The FFT is one
of the most complicated digital signal processing algorithms, however due to its
incredible speed and accuracy relative to other methods, it is an indispensable
algorithm widely used in science, engineering, and mathematics. To properly
understand the FFT, a lengthy explanation is required. Such an explanation is
not within the scope of this study. Instead the higher-order workings of the
FFT shall be described in this section, based off the guide by Smith (2003).

The FFT performs three main tasks:

1. Decompose an n point time domain signal into n time domain signals
(each is therefore composed of one point).

2. For each of the n time domain signals, calculate its individual frequency
spectrum.

3. Synthesize the n frequency spectra into a single frequency spectrum.

Time domain decomposition

The time domain decomposition is shown with an example in Figure 2.6. In the
figure, an example 16-point signal is decomposed. Four stages are required to
break the signal into n=16 signals. When a signal is split in two, an interlaced
decomposition is applied. This means the signal is separated into its even and
odd numbered samples. Consider the signal {0 2 4 6 8 10 12 14} obtained after
the first decomposition stage, as shown in Figure 2.6. The sample originally
in position 14 is now in position 7 (numbering starts at 0). This sample is
grouped with other samples with odd indices: 2, 6, 8, 10. Using this simple
heuristic, a signal of any length n can be decomposed. What the decomposition
achieved, in essence, is to exchange samples whose indices are binary reversals
of one another. For example the final position of sample 1 (0001) is exchanged
with the final position of sample 8 (1000).
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Figure 2.6: FFT time domain decomposition (Smith, 2003)

Determine frequency spectra

The FFT procedure must determine the frequency spectrum for each of the n
time domain signals. Fortunately this is trivial, the frequency spectrum of a 1
point signal is simply equal to itself. There are now n frequency spectra.

Synthesize frequency spectra

The FFT must now recombine the n frequency spectra into a single frequency
spectrum. This is done in the reverse order that the time decomposition took
place. In the example, 16 frequency spectra (1 point each) are synthesized
into 8 frequency spectra (2 points each). This synthesis procedure is repeated
until the final 16 point frequency spectrum is formed. The procedure to
synthesize frequency spectra is where the FFT algorithm becomes complex. An
explanation of procedure that the FFT takes to synthesize frequency spectra is
therefore not within the scope of this study. Further clarification is provided in
the sourcebook by Smith (2003).

Output

The output of the Fourier Transform is the frequency domain data. The Fourier
Transform essentially approximates the periodic time domain input signal using
a set of sinusoids. When the sinusoids undergo summation, an approximation
of the original signal is formed. The frequency domain data is typically plotted
with the sinusoidal amplitude on the y-axis, and the frequency of the sinusoid
on the x-axis. This plot over frequencies may be referred to as the frequency
spectrum. An example is given in Figure 2.7. In this simple example, the input
time domain signal shown is almost square-wave in appearance (on the left side
of the image, in red). The Fourier Transform approximates the signal using,

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 37

Figure 2.7: Time and frequency domains (Barbosa, 2013)

in this example, only 6 sine-wave sinusoids. In this example, the frequency
domain is illustrated with the sinusoidal peak amplitude (also called half the
sinusoidal peak-to-peak amplitude) as a function of the sinusoid frequency (on
the right side of the image, in blue).

An EEG signal is a far more complex time domain signal than the
simple signal in Figure 2.7. An EEG will be approximated by many more
sinusoids, and so the frequency spectrum will have a full range of frequency
components. When applying an FFT to an EEG signal, the amplitude of the
mains noise (either 50 or 60 Hz) can be evaluated.

2.4.2 The Wavelet Transform

The Fourier Transform family is not the only method by which spectral
analysis may be performed. The Wavelet Transform family is a popular
alternative used in digital signal processing. To understand why a wavelet
method may be preferred over the highly efficient FFT, some limitations of
the Fourier Transform must be discussed. An overview based on the guide
by Valens (1999) will describe briefly the motivation and procedures of the
Wavelet Transform.

Real world signals, including EEG, often exhibit slowly changing trends, or
oscillations, interspersed with abrupt changes, called transients. Transients
are non-periodic waveforms. Transients within a signal often contain valuable
information about the signal in question. The Fourier Transform represents
data as a sum of infinite sinusoids, so we can determine every frequency
present in the signal, but not when the signal is present. It is said that the
Fourier Transform is well localized in frequency, but not well localized in time.
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One method to overcome this is to window the signal by using a Windowed
Fourier Transform (WFT). The problem is that the WFT causes frequency
components to smear over the frequency axis. The phenomena is attributed to
Heisenberg’s uncertainty principle, which (in signal processing terms) states
that it is impossible to know the exact frequency and time simultaneously
in a signal. This principal leads to difficult trade-off between time- and
frequency resolution. A solution to this problem is the Wavelet Transform. To
understand how the problems faced by the Fourier Transform can be overcome,
some basic Wavelet Transform concepts must first be discussed.

Properties

Wavelets are a class of functions that are well localized in both frequency and
time, so they can be used to study local behaviour of a signal, like discontinu-
ities or spikes. Wavelet functions shall be represented with φ(t). The most
important properties of wavelets are the admissibility- and regularity conditions.

The admissibility condition implies that the Fourier Transform of φ(t)
vanishes at zero frequency. This means that wavelets have a bandpass-like
spectrum. It further implies that wavelets are wave-like oscillations, with
zero mean in the time-domain. The regularity condition implies that the
wavelet should have some smoothness and concentration in both the time- and
frequency domains. Wavelets should be a rapidly decaying (i.e. compactly
supported) function with some smoothness. Because of its rapid decay,
wavelets exist for a finite duration. The regularity of a signal is a complex
concept, and the theory of vanishing moments could be used to to help clarify
regularity, however such an in depth explanation is not within the scope of this
study.

Scaling

Scaling a signal refers to stretching or shrinking the signal in time. Scaling factor,
s, corresponds to the degree with which a signal is scaled in time. The notation
is φ(t/s), where s > 0. The factor s is inversely proportional to the signal’s
frequency magnification. For example, a 6 Hz sine wave scaled with s=2 will
have a new frequency of 3 Hz. For a wavelet, there is a reciprocal relationship
between the scale and the frequency, with a constant of proportionality called
the center frequency (Cf ) of the wavelet. Unlike the sinusoid, the wavelet has
a band-pass characteristic in the frequency domain. The equivalent frequency
(Feq) is given by:

Feq = Cf
s ⋅∆ = Cf ⋅ fs

s
(2.8)

where ∆ is the sampling interval/period, and fs is the sampling frequency.
We may say that scaling a wavelet by s = 2 reduces the Feq by 2. Stretched
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wavelets are used to capture the slow varying oscillations in a signal, whereas
shrunken wavelets are used to capture abrupt changes.

Shifting

Shifting (or translating) a wavelet refers to delaying/advancing the onset of
the wavelet along the length of the signal. The notation is φ(t − τ), where the
wavelet is centred at τ . The wavelet is shifted to align to the feature in the
signal that need to be represented.

The Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) uses a fully scalable modulated
window to solve the windowing problem. A window is shifted along the
signal to determine the frequency spectrum at every instance. The process is
then repeated many times with a slightly shorter (or longer) window for each
iteration. The stretching/shrinking of the window is referred to as the scale.
The collection of time-frequency representations is referred to as the time-scale
representations in wavelet analysis. The CWT is given by Equation 2.9.

Γ(s, t) = ∫ f(t) ⋅ ψ∗s,τ(t) dt (2.9)

The equation shows how function f(t) is decomposed into a set of basis func-
tions, ψs,τ(t), called wavelets. The ∗ operator indicates complex conjugation.

The wavelets that f(t) is decomposed into are generated from a single
template wavelet, called the mother wavelet. The wavelets ψs,τ(t) are generated
from the mother wavelet φ(t) by scaling (s) and translation (τ) as shown in
Equation 2.10.

ψs,τ(t) = 1√
s
⋅ ψ (t − τ

s
) (2.10)

Discrete Wavelets

The CWT is not an efficient method for three reasons:

1. There are a large number of redundancies in the procedure of continuously
shifting a continuously scalable function over the signal to determine
correlation.

2. There are an infinite number of wavelets in the Wavelet Transform.

3. Most signals will have no analytical solutions, they can only be calculated
numerically or using an optical analog computer.
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To overcome these problems, discrete wavelets must be used. The wavelet is
therefore scaled and translated discretely. The scale is set using s = sj0. The
translation is set using τ = k ⋅ τ0 ⋅ sj0. Note that j and k are integers, and τ0 is
the translation factor. Equation 2.10 is modified:

ψj,k(t) = 1√
sj0

⋅ ψ (t − k ⋅ τ0 ⋅ s
j
0

sj0
) (2.11)

Usually s0 = 2 is selected. The use of base 2 for this procedure is often
referred to as dyadic sampling. Furthermore τ0 = 1 is usually selected such
that we also have dyadic sampling of the time axis. To completely remove the
final redundancies of the CWT method, the discrete wavelets must be made
orthonormal. This procedure can only be done on discrete wavelets. To make
wavelets orthonormal to their own scales and translations, special choices for
the mother wavelet must be made such that:

∫ ψj,k(t) ⋅ ψ∗m,n(t)dt = { 1 if j =m and k = n
0 otherwise (2.12)

The redundancy of the CWT procedure is therefore removed.

There are still an infinite number of scaling and translations to calcu-
late the Wavelet Transform. The number of allowable translations and scales
must be minimized. The translations of the wavelets are limited by the
length of the signal analysed, so the upper bound on translation is set. The
question is then, how many scales are needed to adequately represent the signal?

One of the properties of wavelets are that they have a bandpass-like
spectrum. Fourier theory states that compression in time is equivalent to
stretching the frequency spectrum and shifting it upwards. This means that
a time compression of the wavelet by a factor a will stretch the frequency
spectrum of the wavelet by a factor a and also shift the frequency components
up by a factor a. This means that the finite frequency spectrum of the signal
analysed can be covered with the spectra of scaled wavelets. This is analogous
to how the time-domain is covered by translated wavelets. To adequately
cover the entire signal spectrum, the scaled wavelet spectra should overlap
slightly. This can only be done by properly designing the wavelets. The first
scale will be low, such that the top half of the frequency spectrum is covered.
Subsequent wavelets are stretched to cover lower frequency spectra. One
problem is that every time the wavelet is stretched, only half the remaining
spectrum is covered. This means that an infinite number of wavelets would
be needed to cover the frequency spectrum to zero. The solution is to simply
not cover the entire spectrum with wavelets. Instead a low-pass spectrum,
also called an averaging filter, is used to cover the lower frequencies. The
infinite set of wavelets at lower frequencies is replaced by what is properly
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referred to as the scaling function, also called father wavelet, and is denoted
by φ. Note scale information in frequencies covered by the scaling function is
lost. For this reason the wavelet spectra should reach low enough to capture
scale information in low frequencies. The extent of this is application-specific.
As an example, if the entire EEG frequency range needs to be analysed, then
frequencies below ≈ 1 Hz may be covered by the scaling function since signal
content below 1 Hz is likely noise (Section 2.2.2). Figure 2.8 shows how the
signal spectrum is covered by wavelet frequency bands and a scaling function.

Full signal bandwidth

Ψ 1Ψ 2Ψ 3Φ 

ω ω/2ω/4

Figure 2.8: Covering the frequency spectrum

The scaling function is valuable as it replaces the infinite wavelets re-
quired beyond scale j. There are now therefore a finite number of wavelets.
In summation then, a series of scaled wavelets together with a single scaling
function acts as a series of bandpass filters with one low pass filter, respectively.
The wavelets with the scaling function acts as a filter-bank.

Subband coding

Applying a filterbank to a signal is referred to as subband coding. The Wavelet
Transform is an example of subband coding, more specifically, it is an iterated
filterbank. The signal is split into high-pass and low-pass parts. Each split is
subsampled by a factor 2. The low-pass part has some valuable information, so
it is split again. This process is iterated until the information output by the low-
pass part is not useful. By doing this, the Wavelet Transform is implemented as
an iterative filterbank, and the wavelets do not need to be explicitly specified.

The Discrete Wavelet Transform

In many practical applications the signal analysed is a discretely sampled signal.
To implement the discrete wavelet on such a signal, the Wavelet Transform
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must be discretized. Currently the discrete wavelets are only discrete with
scale and translation, but not time-discrete. The wavelet filterbank can
however simply be implemented as a digital filterbank. In this study, the EEG
channels in each frame need to be separated into frequency-bands.

The Discrete Wavelet Transform (DWT) is commonly used to imple-
ment the filterbank. Figure 2.9 illustrates the procedure with a simple example.
The original signal, x(t) is subband-coded using 4 levels of decomposition.

x(t)
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Figure 2.9: Discrete Wavelet Transform

Let x(t) be a 200 Hz signal. According to the Nyquist-Shannon sampling
theorem, a signal with sampling rate 200 Hz can have frequencies from 0 to
100 Hz resolved. The frequencies from the level 1 high-pass filter is 50 - 100 Hz.
The scale used is s = 21 for wavelets. Since wavelets are used to describe this
band, the output is detailed coefficients of level 1, denoted D1. The remaining
spectra is covered by the scaling function, so wavelets are not used. The
remaining spectra 0 - 50 Hz is referred to as the approximate coefficients A1.
Both A1 and D1 are subsampled by a factor of 2, each now a 100 Hz signal.
The next step is to apply level 2, i.e. scale s = 22. Here the signal from A1
undergoes the same process as level 1. This 100 Hz signal can have frequencies
0 - 50 Hz resolved. Detail coefficients D2 for 25 - 50 Hz are obtained from the
high-pass filter and approximate coefficients A2 for 0 - 25 Hz are obtained
from the low-pass filter. Again the resulting signals are subsampled by a
factor of 2. The signal A1 is not kept, since the to half of its spectrum has
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been ‘detailed’ by wavelets. This process is repeated to yield D3 (12.5 - 25
Hz), D4 (6.25 - 12.5 Hz), and A4 (0 - 6.25 Hz). Since no additional levels are
implemented, the signal A4 is not discarded. The final output of the 4-level
DWT is D1, D2, D3, D4, and A4.

2.4.3 Application

The strengths and weaknesses of the FFT and DWT algorithms have been
discussed. In our application each signal in each frame must be checked for
mains noise. If no signal in the frame is rejected, then each signal must be sent
into a filterbank to form subbands.

It is evident that in order to separate each signal into its frequency
bands without heavy loss of information, the DWT will need to be used, This
is important, since the information output from the DWT is used in further
characterization of the signal.

The speed of the FFT could be used to evaluate the periodic mains
component in each signal in the frame. This procedure is computationally
inexpensive, so if the frame is corrupted with noise, then the frame is rejected
without being processed by the more computationally expensive wavelet
filterbank.

2.5 Machine learning

2.5.1 Machine learning terminology

Some machine learning terminology is already provided in Section 2.3.1. Some
additional explanations are provided below:

• In the training phase, some parameters (‘A’) are selected and a model is
created with which classification can be done. The training set data is
used in this process, except for the hold-out data.

• In the validation phase, some other parameters (‘B’) are selected that
are applied to the classifier. The parameters ‘A’ may also influence the
classifier. The classifier is then used to evaluate the held-out training
set data. From evaluation, some new parameters ‘A’ and ‘B‘ may be
selected.

• The parameters ‘A’ may significantly influence parameters ‘B’, but pa-
rameters ‘A’ cannot be evaluated directly from the validation phase, they
are required for the model creation step. The parameters denoted ‘A’ are
appropriately termed hyperparameters, whereas the parameters denoted
‘B’ are simply termed parameters.
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• After the parameters and hyperparameters are optimized, the optimized
classifier is used in the testing phase. In the testing phase the independent
testing set is evaluated by the optimized classifier. No further tuning or
optimization is allowed. The performance results are reported.

• The training and validation phases may be repeated over and over again.
These phases are often collectively termed the offline phase.

• The testing phase may only be performed once, as if the data is streaming
in real-time. This phase is alternatively termed the online phase.

2.5.2 Naïve bayes classifier

The Naïve Bayes Classifier (NBC) is also referred to as the simple- or
independence Bayes classifier in some literature. The NBC refers to a
family of simple probabilistic classifiers that are based on the Bayes theorem,
where a naïve assumption is made of independence between features. In
probability theory, two events are (statistically/stochastically) independent
if the occurrence of one does not affect the probability of occurrence of the other.

The NBC uses a conditional probability model. For a given sample of
data represented by features (also called evidence) x = {x1, x2, ...xn}, the n
features are assumed independent. The sample may be classified in one of k
classes C = {C1,C2, ...Ck}. The probability that the sample is in class 1 is
given by P (C1∣x). The notation is read as “P of C1 given x”. This refers to
the probability of C1 being true, given observations x.

More generally, the array of probabilities for an array of classes C,
given x, are referred to as the probability distribution of C given x, denoted
P (C ∣x). To determine P (C ∣x), Bayes’ theorem is used:

P (C ∣x) = P (x∣C) ⋅ P (C)
P (x) (2.13)

In Equation 2.13 the following constituents are used:

• P (C ∣x) is the probability distribution over C, given x. This term is also
referred to as the posterior.

• P (x∣C) is the probability distribution over x, given C. This term is also
referred to as the likelihood function.

• P (C) is the probability distribution over C. This term is also referred to
as the prior.

• P (x) is the probability distribution over x. This term is also referred to
as the normalization constant.
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The prior may be described as the probability distribution of observing
each class. The normalization constant may be described as the probability
distribution that each given feature is observed in the training data. Both
of these can be determined from the training data. The NBC may classify a
sample by comparing the posterior to some threshold value.

One convenient aspect of the NBC is that its terms can be updated
immediately as soon as new evidence is presented. No computationally-
expensive iterative optimization is required. The ease with which probability
distributions can be updated bodes well for dynamic learning applications.
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Chapter 3

Methodology

3.1 Data preparation

3.1.1 Data corpus

The CHB-MIT data corpus described in Shoeb (2009) was retrieved elec-
tronically from PhysioNet (2016) (website by Goldberger et al. (2000)).
The corpus was collected by a team of researchers from Children’s Hospital
Boston (CHB) and the Massachusetts Institute of Technology (MIT).
Data was collected on site at CHB and consists of scalp EEG recordings
from subjects with intractable seizures several days after withdrawal from AEDs.

This dataset was selected for a number of reasons: the large size of
the dataset makes it statistically significant, the large number of channels
available is good for optimal feature selection, and the fact that the data is
presented raw and contains all the most common artefacts of EEG recording
(Shoeb, 2009) makes it a good data corpus for estimating clinical performance
of a classifier. The corpus contains male and female patients, with a wide
range of ages, and with seizures of different types and locations. This diversity
presents a thorough challenge to seizure detection algorithms. Finally, the fact
that the corpus is publically available means that the results obtained in this
study is reproducible. A short description of the most important aspects of the
corpus is detailed on PhysioNet (2016) and is summarized next.

Recordings are grouped into 24 cases and were collected from 23 sub-
jects. Case number designations range from chb01 to chb24 as shown in Table
3.3. Case chb01 is the same subject as chb21, where chb21 is a recording 1.5
years after chb01. Since chb01 and chb21 are significantly separated from
each other chronologically, their data characteristics should not be assumed to
be similar. For this reason chb01 and chb21 shall be considered and referred
to as separate subjects/patients for machine learning purposes in this research.

For each case there are multiple EEG recording files. The beginning
‘[’ and end ‘]’ of each seizure is annotated in the .seizure annotation files by
the CHB-MIT project experts. In total there are 198 seizures and 982.9 hours
of EEG data in the corpus. Information about the montage used for each
recording and the elapsed time in seconds from the beginning of each .edf file to

46
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the beginning and end of each seizure is given in the chbnn-summary.txt files.

All signals were sampled at 256 samples per second with 16-bit resolu-
tion. Data is contained in continuous .edf files. Files are usually 1 hour in
duration, but for cases chb04, chb06, chb07, chb09, and chb23 the files
are usually 4 hours in duration, and for case chb10 the files are usually
2 hours in duration. Hardware limitations resulted in short gaps between
consecutively-numbered .edf files, during which signals were not recorded.
Generally the time gaps are about 10 seconds or less, but some are much longer.

The majority of files contain 23 EEG channels in the bipolar montage,
and the international 10-10 system is used. Channel derivations and labels
according to the CHB-MIT convention are given in Table 3.1. In some records

Table 3.1: CHB-MIT channels

Label Derivation Label Derivation Label Derivation
1 FP1-F7 9 FZ-CZ 17 T8-P8
2 F7-T7 10 CZ-PZ 18 P8-O2
3 T7-P7 11 FP2-F4 19 P7-T7
4 P7-O1 12 F4-C4 20 T7-FT9
5 FP1-F3 13 C4-P4 21 FT9-FT10
6 F3-C3 14 P4-O2 22 FT10-T8
7 C3-P3 15 FP2-F8 23 T8-P8
8 P3-O1 16 F8-T8

non-EEG signals such as ‘ECG’, ‘VNS’, or dummy signals (named “-") were
interspersed among EEG channels, but these can be ignored. Channel 19 is the
inverse derivation of channel 3, and that channel 23 is the inverse derivation of
channel 17, so channels 19 and 23 offer no additional information.

3.1.2 Data set formation

Channel selection

Although most files in the CHB-MIT corpus contain at least the 23 channels
given Table 3.1, a significant number of files do not have channels 19 through
23. These files are summarized in Table 3.2. The files in Table 3.2 only have
the 18 standard bipolar channels of the international 10-20 system. In order to
use the same channels from each record it was decided to only use channels 1
through 18 that are common to all records in the bipolar montage.
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Table 3.2: Files with only 18 channels

Case Files Number of
seizures

chb13 04→16, 18, 24, 30, 36→40, 47 2
chb15 01 0
chb16 18,19 2
chb17 c_13 0
chb18 01 0
chb19 01 0
TOTAL 4

Exclusions

In the CHB-MIT corpus there are some records that are not in the bipolar
montage. In case chb12 files 27→29 are not in the bipolar montage. These
files were excluded from the data set used in this study. In total 13 seizures
(within 3 hours of data) are excluded from analysis.

Dividing the data sets

It was decided to partition the corpus into a ratio of 80:20 for training and
testing sets, respectively. For the testing set it was desirable to select cases
with a single long continuous recording session. A single recording session is
defined to be consecutive recording files. Records are consecutive if the start
time of one file is no more than 6 minutes after the end time of the previous
record. Table 3.3 uses the definition of recording session to tabulate data for
each case after exclusions (Section 3.1.2) were removed. The corpus holds
diverse seizure types, including Simple Partial (SP), Complex Partial (CP),
and Generalized Tonic-Clonic (GTC) seizures from various locations over the
brain. These locations include the Frontal (F), Temporal (T), and Occipi-
tal (O) lobes on either hemisphere of the brain (Nasehi and Pourghassem, 2013).

As shown in Table 3.3, there are 5 cases that are only 1 continuous
session. These cases are assigned to the testing-set. In the testing phase, all
data will be processed sequentially in order to simulate clinical conditions.
The training set simply consists of all patients that are not in the testing set.
During the train-validate phase, data from some patients in the training set
is used for training the classifier, and the data of the remaining patients is
used for validating the classifier performance. The division of the training
set is explained in Section 3.6.4. Although it has been decided to consider
cases chb01 and chb21 as separate patients, the fact that these are both
assigned to the training set further assures no possibility of patient-specific
tuning between the train-validate and test phases.
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Table 3.3: Case information after exclusions

Case Gender Age
[years]

Seizure
type

Seizure
origin

Recording
sessions

Duration
[hours]

Seizures

chb01 F 11 SP,CP,GTC T 3 40.6 7
chb02 M 11 SP,CP F 5 35.3 3
chb03 F 14 SP,CP,GTC T 6 38 7
chb04 M 22 SP,CP,GTC T, O 5 156 4
chb05 F 7 SP,CP F 1 39 5
chb06 F 1.5 SP,CP,GTC T 3 66.7 10
chb07 F 14.5 SP,CP,GTC T 1 67.1 3
chb08 M 3.5 SP,CP,GTC T 3 20 5
chb09 F 10 SP,CP F 1 67.9 4
chb10 M 3 SP,CP,GTC T 6 50 7
chb11 F 12 SP,CP F 8 34.8 3
chb12 F 2 SP,CP F 5 20.7 27
chb13 F 3 CP, GTC T, O 10 33 12
chb14 F 9 SP,CP,GTC T 11 26 8
chb15 M 16 CP,GTC F, T 12 40 20
chb16 F 7 SP,CP,GTC T 1 19 10
chb17 F 12 SP,CP,GTC T 7 21 3
chb18 F 18 CP, GTC T, O 9 35.6 6
chb19 F 19 SP,CP F 8 29.9 3
chb20 F 6 SP,CP,GTC T 8 27.6 8
chb21 F 13 SP,CP,GTC T 8 32.8 4
chb22 F 9 CP, GTC T, O 6 31 3
chb23 F 6 SP,CP F 3 26.6 7
chb24 ? ? ? ? 1 21.3 16
TOTAL 979.9 185

Table 3.4 details the final data set division. The desired train:test ra-

Table 3.4: Data sets

Data set cases Number
of
seizures

Number
of data
hours

Training : 147 765.6
01, 02, 03, 04, 06, 08, 10, 11, 12, 13, 14, 15, 17, 18, 19,
20, 21, 22, 23
Testing : 38 214.3
05, 07, 09, 16, 24

tio of 80:20 was achieved, since the testing set has 5 of 24 cases (20.8 % of
patients), 38 of 185 seizures (20.54 % of seizures), and 214.3 of 979.9 hours of
data (21.87 %).
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3.2 Experimental design

3.2.1 Experimental layout

Figure 3.1 illustrates the layout of the experimental design in this research by
means of pseudo-code. The individual steps, parameters, and phases that are

Figure 3.1: Experimental Design
1 while Πh(r) optimization not converged do
2 Select Πh(r).
3 while Πh(m) optimization not converged do
4 Select Πh(m)

5 Training phase //generate models
6 while Πp optimization not converged do
7 Select Πp

8 Validation phase // obtain performance metrics
9 end

10 end
11 end

12 Training phase // using entire training set
13 Testing phase //obtain final performance of classifier

given in the experimental layout pseudo-code are detailed in this section, as
well as throughout the remainder of Chapter 3. The Πh(r), Πh(m), and Πp sets
are defined in Section 3.6.2. The training-, validation-, and testing phases are
subroutines that are discussed next.

The training, validation, and testing phases are detailed by means of
pseudo-code in Figure 3.2. The steps and parameters given in Figure 3.2 are
detailed in this section, as well as throughout the remainder of Chapter 3. The
train-phase is further detailed in Section 3.4. The classification procedure used
in the validation and testing phases are detailed in Sections 3.4.5, and 3.5.
Performance metrics generated are discussed in Section 3.6.1. The rationale
behind using ‘hold-out’ cases for cross-validation is discussed in Section 3.6.4.
Note that in the testing phase, the non-‘hold-out’ cases are the entire training
set.

3.2.2 Software architecture

In Figure 3.2, the train steps were given in the training phase. The validate-
and test steps were given in the validation- and testing phases, respectively.
The train and validate/test software architectures used in this study is illustrated
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Figure 3.2: Experimental phases
1 Function Training phase
2 for ictal, then α do
3 for each non-‘hold-out’ case in the training set do
4 train step //store ictal/α features
5 end
6 determine bin ranges
7 for each non-‘hold-out’ case in the training set do
8 train step // Determine ictal/α likelihood model
9 end

10 for each non-‘hold-out’ case in the training set do
11 train step //store inter-ictal/low-α features
12 end
13 for each non-‘hold-out’ case in the training set do
14 train step // Determine inter-ictal/low-α likelihood model
15 end
16 end
17 for each non-‘hold-out’ case in the training set do
18 Determine and store ictal posterior model
19 Determine and store high-α posterior model
20 end
21 end

22 FunctionFunction Validation phase
23 validate step // hold-out case only
24 // Generate performance metrics
25 end

26 FunctionFunction Testing phase
27 for each case in the testing set do
28 test step // generate final performance metrics
29 end
30 end
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in Figures 3.3 and 3.4. Note that the software architectures are always repeated
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Figure 3.3: Training software architecture
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Figure 3.4: Validation/testing software architecture

in a loop until all data in the ‘EEG pool’ have been imported and processed.
The meanings of each block function, signal, and parameter in Figures 3.3 and
3.4 are explained throughout the remainder of Chapter 3.

3.3 Preprocessing

3.3.1 Block processing and frame rejection

In this study the frame size is selected to be 2 seconds in duration with no
frame overlap. A frame imported contains 2 seconds of data from channels 1
through 18.

After a frame is imported, it is evaluated for data corruption. If the
data of a given frame is corrupted, then the entire frame is rejected instead of
being passed to the next process. A data frame is considered corrupted if the
data indicates electrode failure due to high levels of non-physiological artefacts.
The non-physiological artefacts considered in this step are:
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• Mains noise, caused by nearby appliances, transformers, or wiring.

• Abnormal channel amplitude, caused by electrode movement, amplifier
disconnection and reconnection, recording phase faults, or physiological
interference.

• Phase reversal in channels containing the same loose electrode.

An example each non-physiological artefact is given in Appendix A.

Mains noise

The mains noise in the CHB-MIT corpus is at 60 Hz, since the corpus is taken
from the United States of America (Boston, MA). If the 60 Hz component in
any channel exceed some threshold xmains then the frame should be rejected. In
order to determine the 60 Hz component in a given channel, a spectral analysis
can be performed. For each channel in the frame, the Fast Fourier Transform
(FFT) is used to obtain spectral information. If the 60 Hz component is greater
than xmains (given in µV ) then the frame is rejected.

Abnormal channel amplitude

If the amplitude of any channel in the frame equals or exceeds the maximum
channel-amplitude threshold xhigh (given in µV ) at any point in time, then the
frame is rejected.

Inspection of the CHB-MIT data showed that, for some cases, records
had instances of missing data of various durations, originally represented
as dashes. The dashes are stored and displayed as zeros in MATLAB.
Although no explanation is given for these dispersed clusters of zeros in
the data, possible reasons could include recording phase faults, or physi-
ological symptoms such as body movement or sweat interference with electrodes.

The “high signal amplitude” check proposed by Saab and Gotman (2005) was
added to in this study to reject missing data in a frame that would otherwise
not be rejected. If the amplitude of any channel in the frame equals exactly
zero at any point in time, then the frame is rejected.

Phase reversal

When an electrode is loosened, the channels using that electrode will display
phase reversal. When two channels (A and B) share an electrode, the channels
form a channel-pair. Channel-pairs (A-B) are {1-5, 1-2, 2-3, 3-4, 4-8, 5-6, 6-
7, 7-8, 9-10, 11-15, 11-12, 12-13, 13-14, 14-18, 15-16, 16-17, 17-18}. The order
of channels A and B in the given electrode-pairs is arbitrary.
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To detect phase reversal, the following heuristic is performed for each
channel-pair:

If mean(∣A +B∣) <mean(∣ A

xphase
∣) then reject frame (3.1)

A new parameter xphase is used to set the strictness of the phase-reversal
heuristic. If a single channel-pair in the frame has status ‘reject’, then the
entire frame is rejected.

3.3.2 Filtering

Band-pass filter

In order to shed a large portion of artefacts, each channel in the frame is filtered
to remove low- and high-frequency content. A 2nd order Butterworth bandpass
filter is applied to each channel between 0.5 to 70 Hz. The 2nd order filter offer
good transition band characteristics at low coefficient orders and as such they
can be implemented efficiently. Experimenting with higher order filters showed
serious instability around 0.5 Hz.

Wavelet Filter-bank

A filter-bank is used to separate each channel in the frame into frequency bands.
For each channel, a 5-level wavelet transform is applied using a Daubechies
4-tap (also called D4, also called DAUB4) wavelet. Since the DAUB4 wavelet
has 2 vanishing moments, it is also often denoted db2. The db2 wavelet is
recommended in Khan and Gotman (2003) and well documented in the use
of non-stationary signals, including EEG (Gabor et al., 1996; Gabor, 1998;
Osorio et al., 1998; D’Alessandro et al., 2003; Shoeb et al., 2004; Saab and
Gotman, 2005).

With signal frequency of 256 Hz, the 5-level wavelet transform pro-
duces decomposition scales D1, D2, D3, D4, D5, and A5. Since the bandpass
filter have been applied to the 0.5-70 Hz range, the decomposition scales have
bandwidths D1 (64-70 Hz), D2 (32-64 Hz), D3 (16 - 32 Hz), D4 (8-16 Hz), D5
(4-8 Hz), and A5 (0.5-4 Hz). Decomposition scales D1, D2, D3, D4, D5, and
A5 approximate the brain-wave frequency bands γ(high), γ(low), β, α, θ, and
δ, respectively. Figure 3.5 illustrates the filtering procedure.

Scale A5 is discarded due to high levels of activity in that band ob-
served during inter-ictal sleep. Furthermore, seizures with content in a very
low frequency range often have some content in a higher frequency range as
well (Saab and Gotman, 2005). According to Gotman (1982), seizure activity
ranges primarily between 3 and 29 Hz. For this reason, seizure activity is
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Figure 3.5: Filtering procedure

characterized by scales D3, D4, and D5. According to O’Donnell et al. (1974),
EMG artefacts are not significant below 14 Hz. The EMG is characterized by
scales D1 and D2. Scale D3 is omitted to avoid overlap between seizure and
EMG characterization. Scale D4 is also used to represent the α-band activity
in this study.

3.3.3 Feature processing

Only scales D3, D4, and D5 are required in the feature processing stage. The
frame output from the filtering stage therefore has 18 channels with 3 scales
each, forming 54 signals at 256 Hz each with 2 second duration. The 54 signal
frame is input to the feature processing stage. For each of the 54 signals, three
wavelet-scale-based features are computed:

• Relative Average Amplitude (RAA)

• Relative Scale Energy (RSE)

• Coefficient of Variation of Amplitude (CVA)

Relative Average Amplitude

For a given signal, the RAA is the ratio of the mean of the peak-to-peak
amplitudes in the current epoch to the mean of the peak-to-peak amplitudes
in the background epoch. The current epoch is in the current frame, and
the background epoch is a 30 second block ending 1 minute earlier than the
current epoch. Likewise it could be stated that the background epoch begins
45 frames before the current epoch, and ends 30 frames before the current
epoch. Figure 3.6 clarifies this process by means of pseudocode.
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Figure 3.6: Relative Average Amplitude
1 localMax = peaks( signalk ) // for a signal in current frame (k)
2 localMin = peaks( -1 × signalk )
3 for each max-min pair do
4 ampk(i) = localMax(i) - localMin(i) // peak-to-peak amplitude
5 end

6 RAA = mean(ampk)
mean ( history[k−45] to [k−30] )

≡ mean(ampk)
mean ( history[t−90] to [t−60] )

7 add mean(ampk) to end of history

The rationale is that the first minute of potential ictal EEG is com-
pared to EEG that is highly likely inter-ictal. By moving the background
window with the current frame ensures that the comparison is made to the
recent state of the patient’s EEG.

Relative Scale Energy

The RSE of the signal described by scale j in channel i is the ratio of the
energy (E) of the given scale to the energy in all scales in the channel. Scales
j = {D3,D4,D5} are used for channels i = {1 → 18}. The simple formulae are
given below for an n-sample discrete-time signal x(n):

Eij =
n

∑
n=0

∣xij(n)2∣ (3.2)

RSEij = Eij

∑Ei (3.3)

where ∑Ei sums energies of all scales (D1 → D5 and A5) in channel i.

Coefficient of Variation of Amplitude

The CVA of a signal uses the peak-to-peak amplitude (ampk) used in the RAA
heuristic as shown in Figure 3.6. The formula for CV A is given by:

CV A = ( σamp
µampk

)
2

(3.4)

where σampk is the standard deviation of the peak-to-peak amplitudes of the
signal and µampk is the mean of the peak-to-peak amplitudes of the signal.

Feature vector

EEG signal amplitudes are influenced by the patient, the electrodes
used, the data acquisition and amplification system, among others. The
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features extracted are all relative to the patient and the time period.
This serves to eliminate inter-patient and inter-system variability, which im-
plies that a more representative training model can be created from the features.

The 54 signals (18 channels, 3 scales) in a frame each have 3 features
extracted, which equates to 162 features. The benefit of feature extraction is
that further processing is performed only with the 162 single-value features,
instead of the frame of 54 signals of 512 (256 Hz, 2 seconds) samples each.
For a given frame, a 162 parameter feature vector is therefore created. The
transformation of frame to feature vector is illustrated in Figure 3.7.
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Figure 3.7: Feature vector

3.4 Naïve bayes classification and training
The method requires classification of a frame as either ictal or inter-ictal. The
frame may also need to be labelled as high α or low α activity. The Naïve
Bayes Classifier (NBC) can label a frame if the following Bayes’ formulae are
generated:

P (ictal∣features) = P (features∣ictal) ⋅ P (ictal)
P (features) (3.5)

P (high α∣features) = P (features∣high α) ⋅ P (high α)
P (features) (3.6)

Equation 3.5 is used to determine whether the frame is ictal and Equation 3.6
is used to determine whether the frame contains high α activity. The posteriors
P (ictal∣features) and P (high α∣features) are referred to as the ictal-model
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and high-α-model respectively in this work. Posteriors will collectively be
referred to as ‘models’.

The so called ‘training phase’ of the NBC involves determining the
posteriors in Equations 3.5 and 3.6. Only data from the training-set is used in
this phase. The training phase was given in Figure 3.2.

3.4.1 Ictal and inter-ictal training

Store ictal features

First the ictal likelihoods must be determined. Individually for non-‘hold-out’
case in the training set, the records containing ictal data is processed to store
the feature-vector of every ictal frame. A maximum duration of 60 seconds
of ictal data per seizure is used. This is done to avoid having longer seizures
overwhelm shorter seizures in the likelihood model, and to avoid using ictal data
as background data (Section 3.3.3). As per Figure 3.3, the EEG pool in this
instance is records containing ictal data, and the procedure is continued until all
ictal records have been processed. Keep in mind that the ictal feature-vectors
of each case is stored separately.

Determine bin ranges

In this study, a new weighing procedure is introduced. Each case in the
training set is assigned a weight. The case with the most training samples
is assigned a weight of 1. This is referred to as the largest case. Then
other samples have weights based on the inverse of their number of training
samples, normalized to the largest case. For example, if the largest case
has 200 samples, and case A has 153 samples, then case A will have a
weight of 200/153 ≈ 1.3072. Each case is assigned a weight normalized
to the largest case. The number of samples in a case multiplied by its
weight shall be referred to as the number of weighted-samples in this study.
The total number of weighted-samples is equal to the number of cases in
the training set (i.e. 19) multiplied by the number of samples in the largest case.

The total number of weighted-samples is divided by 5, the output is
the number of weighted-samples allowable in each of the 5 histogram bins.
Now a histogram for each feature may be formed. Weights are divided evenly
into 5 histogram bins. This can be done by first sorting all values for a given
feature. Features are added to a bin from lowest to highest. When a value is
assigned to a bin, the weight of that value is counted towards the bin count.
As soon as the number of weighted-samples is equal to or exceed the number
of weighted samples allowed per bin, then the next bin gets filled. When
the next bin exceeds the number of weighted samples allowable, then the
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next is filled, etc. Of course this means that not all bins will have the same
number of actual samples, however the number of weighted samples will be
approximately equal. The procedure effectively creates 162 histograms, with
each of the 5 bins containing approximately equal weight. Histogram bin
ranges should cover the entire spectrum (0,∞). The boundaries of higher
and lower bins are selected by taking the mean of the highest value in the
lower bin and the lowest value in the higher bin. Only the lower limit of the
lowest bin and the higher limit of the highest bin are set to 0 and∞, respectively.

Only by assigning weights to the samples, are the ranges made more
representative of the entire training set instead of being biased towards the
‘larger cases’. Figure 3.8 illustrates this procedure with a simplified example.
In the example, only 2 cases are used. The figure only shows how ranges

0.5  1.1  5.2  6.2  5.3  5.5  3.5  2.1  3.7  4.5
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Range Range Range        Range Range
0 →1.6 1.6 → 3.6 3.6 → 5.3      5.3 → 5.7 5.7 → ∞
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Figure 3.8: Finding ranges

for the first feature is determined. Case 01 has the most samples. Case 02
has a weight of 10/5 = 2. The simplified example shows how bin ranges are
determined for the first feature. This procedure is performed for every feature
in the feature-vector. Note how the mean is taken between the highest value in
the lower bin and the lowest value of the higher bin at each bin boundary.

Determine ictal likelihood model

The features (RAA, RSE, CV A) in each scale in each channel may now be
used to determine a joint probability. Each feature has 5 bins into which
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a signal may fall. For each scale in each channel there are 53 = 125 unique
combinations of the three feature bins, these unique combinations shall be
called ‘joint-bins’ in this study. Since there are 18 channels and 3 scales, and
125 joint-bins for every scale in every channel, there are 125 × 3 × 18 = 6750
joint-bins, of which 3 × 18 = 54 are true per frame.

The ictal data is reprocessed to determine the number of times that
each of the 6750 joint-bins are true. Note that in the train step of the
train-validation phase, data from the ‘hold-out’ patient is not reprocessed. In
the train step of the testing phase, data from every case in the training set is
reprocessed. The likelihood, P (features∣ictal), in Equation 3.5 is then the
count in each joint bin divided by the number of frames (also called samples)
stored for ictal training during reprocessing.

Inter-ictal feature storage and likelihood model

The bin ranges of the ictal class is used directly. The inter-ictal data is
processed to generate a count for each of the 6750 joint bins. The counts are
divided by the number of frames stored for inter-ictal training to determine
P (features∣inter − ictal).

3.4.2 High α and low α selection

Rationale of α data selection

The overlap of frequency ranges for α-activity and seizures result in a large
number of false alarms (Saab and Gotman, 2005). To prevent labelling of
high-α data as ictal, the probability that a given frame contains high α data is
implemented as given in Equation 3.6.

First the high-α and low-α data must be separated. This task is non-
trivial. Saab and Gotman (2005) visually inspected their data corpus to
extract 56 minutes of α activity that is free of artefacts from 6 of 28 patients,
non-α activity data free of seizures was extracted from 13 of 28 patients. They
used only features from scale D4. This process is tedious and labour intensive.
Kuhlmann et al. (2009) aimed to address this by proposing a semi-automatic
high-α and low-α selection heuristic. If the RSE in scale D4 was lower than
some threshold in a subset of channels, then the data was stored as ‘low-α’
data. If the RSE in scale D4 was greater than some threshold in a subset of
channels, then the data is stored for review. The stored data was visually
inspected for artefacts. If no significant artefacts were found, then the data was
held out for use in training. The threshold and number of channels considered
was patient-specific for each patient in the training set.
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In this study, a fully automated ‘high-α and low-α selection heuristic’
is proposed. If the heuristic is successful, it holds further promise in dynamic
learning applications. As in Kuhlmann et al. (2009), the RSEs of scale D4 in
each channel is considered. The EMG level is characterized by its Amplitude
Ratio (ampEMG). First the amplitudes of scales D1, D2, D4, and D5 must
be determined. For example, consider scale D1: the sum over the absolute
amplitudes of all samples in the D1 scale signal is obtained for channels 1
through 18. These are then summed together to obtain one value for scale D1
over all channels. The value is denoted EMGD1. The EMG amplitude ratio is
then

ampEMG = EMGD1 +EMGD2

EMGD1 +EMGD2 +EMGD4 +EMGD5

(3.7)

Procedure for α data selection

First all data from every patient in the training set is processed and the
(xchn)th highest D4 RSE as well as the ampEMG for each frame is stored
in memory. The xchn th highest D4 RSE is denoted D4RSE. High-α data
without high EMG needs to be stored for training. For a given patient,
consider only data with ampEMG below the (xEMG)th percentile of all data
for that patient. Within the low EMG data, only data where the D4RSE is
above the top (xALP )th percentile of all data for that patient is considered.
Within this remaining data, only data that are inter-ictal are used for the
training phase (to avoid using ictal data in the α-classifier). In this study
low-α data is stored when a frame has a D4RSE below the xNALth percentile
without regard for EMG level, or whether a seizure takes place. Note that
percentiles xEMG, xALP , and xNAL are determined by excluding rejected frames.

The rationale for using the percentiles relative to the patient’s own
data is to avoid having to select a unique threshold for each patient, as was
done by Kuhlmann et al. (2009). The proposed method is therefore generalized,
as it finds optimal thresholds xEMG, xALP , and xNAL over all patients. All
training set data is processed once in order to determine the D4RSE values,
and ampEMG value that corresponds to the percentiles xEMG, xALP , and xNAL.
Note that the percentiles are not-patient specific, but the values are. The
values are needed such that data may be processed and stored. These values
are used when processing data from a case, so that features for the ‘low EMG,
high α’ and ‘low α’ classes may be stored. This is discussed next.

3.4.3 High α and low α training

The procedure outlined for generating likelihood models for ictal and inter-ictal
classes is repeated for high-α and low-α classes. In this instance the posteriors
P (high α∣features) and P (low α∣features) of Equation 3.6 must be generated
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as the training step.

First, all data is processed sequentially. When a frame is ‘low EMG,
high α’ and it is inter-ictal, then it is stored. Only features from scale D4 are
stored such that the feature vector is a (18 channels, 1 scale, 3 features) 54
parameter feature vector. A histogram is made for each of the 54 parameters,
each with 5 bins, in the same way as done with the ictal class. Again each
frame is characterized jointly by the three features in the wavelet scale. Again
there are 125 joint bins per scale, but since there is only one scale per channel,
the total number of joint-bins are only 2250. Data is reprocessed so that a
counter is made for each time a frame falls within one of the joint-bins. The
likelihood P (features∣high α) is determined by dividing the bin counts by the
number of low-α frames stored for training.

Data is reprocessed again. When a frame is ‘low α’ then it is stored.
Again only features from scale D4 are stored. The bin ranges determined in
the high-α procedure are used to generate bin counts for the low-α class. The
likelihood P (features∣low α) is then determined by dividing the bin counts by
the number of high-α frames stored for training.

3.4.4 Posterior model creation

Ictal model

Next the prior, P (ictal), of Equation 3.5 may be determined by taking the
ratio of the number of ictal frames over all frames stored. Similarly prior
P (inter − ictal) is found by taking the ratio of the number of inter-ictal frames
over all frames. Finally the normalization constant, P (features) is determined
using:

P (features) = (features∣ictal) ⋅ P (ictal) + (3.8)
P (features∣inter − ictal) ⋅ P (inter − ictal) (3.9)

With all other terms determined, posterior P (ictal∣features) is generated.
Note that in the train-validate phase a unique posterior is formed for each
‘hold-out’ case, since terms used to determine the posterior is unique for each
case (since the ‘hold-out’ case data is not used). In the testing phase only one
posterior model is formed since there is no ‘hold-out’.

High-α model

The prior P (high α) is determined by taking the ratio of the number of high-
α frames stored over all frames stored (high-α and low-α). Similarly prior
P (low α) is determined by taking the ratio of the number of low-α frames
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stored over all frames stored (high-α and low-α). Finally the normalization
constant P (features) used for Equation 3.6 is determined as:

P (features) = (features∣high α) ⋅ P (high α) + (3.10)
P (features∣low α) ⋅ P (low α) (3.11)

With all other terms determined, posterior P (high α∣features) is generated.
As for the ictal model, a unique posterior is generated for each ‘hold-out’ case
in the train-validate phase, whereas only one posterior is created for the testing
phase.

3.4.5 Classification

Classification occurs in the validation phase, as well as the testing phase.
Once posterior models P (ictal∣features) and P (high α∣features) have been
obtained, classification of frames can be performed by the ictal- and the α-
NBCs. Note that a rejected frame is automatically assigned inter-ictal (y =
-1). For rejected frames the NBCs are not used, they is completely bypassed.
Note further that a frame is only processed by the NBCs if the frame has
enough non-rejected history. The last 6 minutes of frame history is stored. If
the current frame is i, then it is only processed by the classifiers if there is at
least 90 seconds of non-rejected frames in the 6 minutes before frame i. The
feature RAA requires 90 seconds of history (Section 3.3.3). The 90 seconds
need not be consecutive, however frames from more than 6 minutes before the
current frame shall be considered as too far back in history. If the frame was
not assigned a label of y=-1 for either of these reasons, then the frame is sent
to the NBCs. The entire NBC classification procedure is illustrated by means
of pseudo-code in Figure 3.9.

The frame is classified into a joint-bin based on the ictal bin ranges
from the training-phase. The probability (for each scale in each channel) that
the frame is ictal is taken directly from the posterior P (ictal∣features). The
probability that a given scale j in a given channel i represents ictal activity is
denoted PICT (i, j). The probability that channel i represents ictal activity
is given by PICT_CHN(i) = ∑5

j=3PICT (i, j), since only scales 3, 4, and 5 are
used for seizure characterization. The probability that the current frame
is ictal, PSEZ_FRAME, is obtained by summing the top xchn channels with
highest probability. The rationale is that limiting the number of channels
that contribute to the frame probability to xchn increases the chance for focal
seizures to be detected.

The probability that a frame contains high-α is determined similarly.
Recall that only scale 4 is used. The probability PALP (i) that scale 4 in
channel i represents high α activity is taken directly from the posterior
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Figure 3.9: Classification heuristic
1 if (frame was rejected) OR (< 45 frames in previous 6 minutes) then
2 y = -1
3 else
4 frame is sent to the ictal-NBC
5 Determine ictal joint-bin of all 162 signals in frame
6 for each channel i and scale j do
7 Obtain PICT (i, j) directly from P (ictal∣features)
8 end
9 for each channel i do

10 PICT_CHN(i) = ∑5
j=3PICT (i, j)

11 end
12 sort(PICT_CHN) // in descending order
13 PSEZ_FRAME = ∑xchni=1 PICT_CHN(i) // top xchn summed
14 PICT_scaled = PICT_FRAME ⋅ (1 − ampEMG ⋅ xNTH)
15 PICT = ∑i+1−xesn=i PICT_scaled // sum last xes samples
16 if PICT < ITH then
17 y = -1
18 else
19 Determine high-α joint-bin of all 18 D4 signals
20 for each channel i in scale D4 do
21 Obtain PALP (i) directly from P (high α∣features)
22 PALP_CHN(i) = PALP (i)
23 end
24 sort(PALP_CHN) // in descending order
25 PALP_FRAME = ∑xchni=1 PALP_CHN(i) // top xchn summed
26 PALP = ∑i+1−xesn=i PALP_FRAME // sum last xes samples
27 if If PALP < ATH then
28 y = 1
29 else
30 if PALP_CHN(1→ xchn) all from same hemisphere then
31 y = 1
32 else
33 y = -1
34 end
35 end
36 end
37 end
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P (high α∣features). The probability that a given channel i represents high
α activity is then simply PALP_CHN(i) = PALP (i). The probability that
the current frame represents high α activity, PALP_FRAME, is obtained by
summing the top xchn channels with highest probability.

Since EMG activity often causes false positives (Saab and Gotman,
2005), the ictal probability for the frame is scaled by its EMG activity:
PICT_scaled = PICT_FRAME ⋅ (1 − ampEMG ⋅ xNTH) where xNTH is a scaling
factor on ampEMG. Finally, temporal context is introduced by summing
PICT_scaled over the last xes frames to determine the final detection variable
PICT . The final detection variable for high α activity is obtained by summing
PALP_FRAME over the last xes epochs and denoted PALP . Finally, the final
variable PICT is compared directly to ictal threshold ITH and final variable
PALP is compared directly to high α threshold ATH .

When a frame is passed to the NBC, a heuristic is performed. The
PICT at the current frame is determined. If PICT < ITH then the frame is
immediately labelled as inter-ictal. The classifier output is y = −1. If however
PICT ≥ ITH then the frame is sent to the α-classifier. If PALP < ATH then
the frame is labelled ictal, with classifier output y = 1. If PALP ≥ ATH then
the frame is labelled inter-ictal, unless all xchn channels used to determine
the current PALP_FRAME is within the same hemisphere, in which case the
frame is labelled ictal. In the convention of this study, if the channels used
to determine PALP_FRAME includes channels of only one hemisphere along
with Fz, Cz, or Pz, then the channels are considered to be from the same
hemisphere. The rationale here is that a seizure-like epoch is encountered,
but there is α activity generalized over the brain, then the epoch is likely α
activity that merely resembles seizure activity. This is done since α activity is
more likely to be dual-hemispheric than seizures are (Saab and Gotman, 2005).

3.5 Postprocessing

3.5.1 Sequential hypothesis test

Despite every effort made, some instances of misclassification of data is bound
to occur. Some ictal frames will be labelled inter-ictal, and vice-versa. In a
system meant for monitoring a patient in an attempt to detect seizures and
sound an alarm when it does, misclassification is always serious. A high False
Negative count would render the monitor worthless for seizure detection, and a
high False Positive count would cause a lot of work for hospital staff who need
to check up on the patient after every alarm.

A new process is introduced whereby the the software architecture
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does not declare an ictal event from just one frame label output, y, by the
NBC. A higher form of data windowing is introduced, whereby the software
architecture determines the probability that a seizure has taken place based
off the last N frame labels. Parameter N is the number of frames used for
probability estimation.

Number of frames

In order to limit misclassification, a simple sequential hypothesis test can be
used (Gardner, 2004). The test is used to estimate the probability that a given
window of N frames is an ictal event. For N sequential output frames labelled
y ∈ {−1, +1}:

N = N+ +N− =
N

∑
i=1

y[i] (3.12)

Intuitively, N+ is the number of frames labelled +1, and N− is the number
frames labelled −1. Again the window is advanced in time, this time the window
overlap is N − 1 frames. This means when a new frame is labelled, the last N
frames (including the current frame) is evaluated.

Probability threshold

The probability estimate, p̂, that an ictal event occurred within the last N
frames is given by the following equations:

p̂ = N+

N
(3.13)

The decision function, z[i], that declares a window of size N as ictal or
inter-ictal is given by:

z[i] = sgn (p̂ − p) (3.14)

where z[i] = −1 (inter-ictal) and z[i] = 0 or + 1 (ictal). Parameter p is the
detection threshold probability. Therefore, only when p̂ ≥ p will the frame be
declared ictal. The window length N and the threshold p are parameters that
need to be optimized.

The output label z[i] is the label assigned strictly to the last (also
called current ith) frame in the size N window. This means that for metric
tdl calculation, the seizure is only considered detected on the last frame. An
observation that can be made from this is that the detection latency tdl will
degrade if the window length N is large.

3.5.2 Persistence refractory period

There are instances where the seizure may be detected shortly before its
annotated onset. To avoid labelling such early detections as False Positives,
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detection persistence by means of a refractory parameter, T , is introduced.
Parameter T specifies an interval during which the detector, if triggered,
maintains its state and ignores subsequent triggers. This means that, after an
ictal period is detected and the detector output set to z[i] = +1, the detector
outputs remain z[i] = +1 for T seconds, regardless of incoming data. If the T
second block of frames classified as ictal overlap with an actual ictal event,
then only is the ictal event considered detected. The detection is made at the
onset of the detection block.

Importantly, persistence will also diminish the amount of FP declara-
tions, since a burst of FP s may be declared within a short time period. The
persistence block can contain these FP s within one detection block and
therefore label it as one FP . This ‘trick’ should be considered acceptable,
since a single FP will notify ICU staff, but FP s that are immediately after
will not cause additional disturbance to staff. As a trade-off, a large T will
diminish the TN duration.

Parameter T has a real-world influence besides only the classifier per-
formance. Consider the event where a detection is made. The ICU staff is
alerted, and a nurse tends to the patient being monitored. For a very large T ,
subsequent detections would not be made, so the staff would not be alerted
again for this duration. So then for the duration of T , the nurse should attend
to the patient. Evidently a large T is problematic, however the diminishment of
TN due to large T may not even register an effect compared to the advantages
of a large T in the train-validate phase objective function. Some maximum
threshold for T should be set. Gardner (2004) reports this same problem. In
his work he obtains an increasingly improved objective function with higher T .
He selected T = 180 seconds to be the maximum allowable persistence period.
His choice of maximum T is applied in this work for practical considerations.

3.6 Optimization

3.6.1 Performance metrics and objective function

In this study the metrics that constitute the confusion matrix are reported.
In this way comparison of performance between this work and the work of
future researchers are facilitated, since any performance metric can easily
be constructed with only the primary confusion matrix metrics (count and
duration) TP , TN , FP , and FN , and the detection latency tdl.

The objective function (OF) used in the train-validate phase shall be
the F1 score. The F1 score is the harmonic mean of precision (PPV ) and
recall (TPR), given by Equation 2.7. To obtain PPV and TPR of Equation
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2.7, the arithmetic mean (µ) over all cases is taken. The procedure is therefore
as follows: the PPV and TPR for each patient is generated, the µ(TPR) and
µ(PPV ) over all patients are determined, the F1 score is determined as in
Equation 2.7 using µ(TPR) and µ(PPV ):

F1 = 2 ⋅ 1
1

µ(PPV ) +
1

µ(TPR)
= 2 ⋅ µ(PPV ) ⋅ µ(TPR)

µ(PPV ) + µ(TPR)

3.6.2 Parameter vectors

The parameters described so far that require optimization are listed:

• {xhigh, xmains, and xphase} from Section 3.3.1.

• {xEMG, xALP , and xNAL} from Section 3.4.2.

• {xchn} from Sections 3.4.2 and 3.4.5.

• {ITH , ATH , xNTH , and xes} from Section 3.4.5.

• {N , p, and T} from Section 3.5.

The parameters listed all need to be optimized in this study.

For their corpus, Saab and Gotman (2005) found optimal parameters
{xmains, xhigh, xphase} = {20µV, 1000µV, 2}. Kuhlmann et al. (2009) determined
optimal parameters: {xmains, xhigh, xphase} = {300µV, 1000µV, 2} for their data
corpus. What this implies is that there is no universal optimum for these
parameters, even when using the same methodology. These parameters are
unfortunately unique for each recording equipment set, since the characteristics
of the recording signal is unique for each set.

Parameters xmains, xhigh, and xphase cannot be selected arbitrarily for
the CHB-MIT corpus. These parameters must be optimized in the
training-validation phases to ensure that they maximally reject artefacts,
without rejecting clean data. The parameters xmains, xhigh, and xphase
will be selected over the entire database, since it is likely that the entire
CHB-MIT corpus has been collected using the same recording equip-
ment (Guttag, 2017). These parameters affect the seizure and α classifiers.
In other words they affect the posteriors in Equations 3.5 and 3.6 in Section 3.4.

Parameters xEMG, xALP , and xNAL are novel, and are intended for the
implementation of the automatic α data selection heuristic. These parameters
affect the model created for the α-classifier. In other words these parameters
affect the posterior in Equation 3.6. All remaining parameters {xchn, PTH ,
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ATH , xNTH , xes, N , p, T} do not affect the model, however they do affect the
classifier.

The parameter vector that is optimized within a single train-validate iteration
is denoted Πp = {ITH , ATH , xNTH , xchn, N, p, xes, T}. The hyper-parameter
vector in this study is denoted Πh = {xmains, xhigh, xphase, xEMG, xALP , xNAL}.
A further distinction within Πh is made. Πh(r) = {xmains, xhigh, xphase} are
the rejection hyper-parameters. Πh(m) = {xEMG, xALP , xNAL} are the model
hyper-parameters. The distinction is made for a number of reasons. Firstly,
Πh(r) will influence the model created using Πh(m). Secondly, Πh(r) is also used
in the validate and testing phase in the frame rejection procedure, whereas
Πh(m) influences only the (α) model creation step. The set Πh(r) can be
thought of as some sort of hyper-hyper-parameters, as is evident from Figure
3.1.

3.6.3 Optimization schedule

As shown in Figure 3.1, parameters Πp are optimized in a loop under Πh(m),
which are optimized in a loop under Πh(r). A simple grid-search procedure is
used to optimize each.

The model-creation procedure makes use of Πh, and occurs in the training
phase. For each new model that must be created, the entire training set needs
to be processed multiple times. Creating multiple models simultaneously is
possible, however, a separate feature-vector storage would be required for each
model, which in turn significantly slows computational performance. The
validation/testing phase is, compared to the training phase, time inexpensive.
After model creation, the train/test set is processed once, however, multiple
classifiers can be evaluated simultaneously, since only one feature storage is
necessary. This means that only one variable for mean of the peak-to-peak
amplitudes (amp) of the last 45 frames (Section 3.3.3), and only one variable
for the rejection history of the last 180 frames (Section 3.4.5) are required,
regardless of the number of classifiers. The only storage variables that increase
with the number of classifiers are the sequential hypothesis window of size N
(Section 3.5.1) and number of sets of performance metrics. For this reason,
although the grid of 8 parameters where the number of values for each
parameter is given by {n1, n2, ..., n8} will yield Π8

i=1ni combinations, it can
still be evaluated simultaneously with acceptable speed. Here Π refers to the
product operator.

3.6.4 Cross-validation

Cross-validation is useful to limit overfitting, and to provide a more accurate
metric to evaluate how well a classifier will generalize to an independent
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(unseen) dataset. In short, cross-validation is used for more accurate evaluation
of classifier performance.

It is standard practice in the fields of machine learning and data min-
ing to perform k-fold cross-validation. First, data is partitioned into k equal
sized subsamples. The train-validation phases are each repeated k times. In
each iteration, of the k subsamples, only one subsample is kept for testing, and
the other k − 1 are used for training. The subsample kept for testing is termed
the hold-out sample/patient/case. This means that each subsample will be
used only once for validation. The number of results will therefore be k, and
these results can be averaged or consolidated in some other way. Additionally,
when k is equal to the sample size, the technique is specifically referred to as
leave-one-out cross-validation (LOOCV).

In this study a special method of performing cross-validation is used.
A 19-fold LOOCV method is used with each patient in the training-set being
a single subsample. The purpose of the train-validate phase is to optimize
parameters for performance on independent data, for this reason data from
the validation case should not be used in the training phase. Furthermore
the statistics presented for optimization are global statistics taken as the
(arithmetic) mean over individual patients (see Section 3.6.1) rather than per
seizure. This is done to avoid optimization bias toward training cases with
many seizures. In effect the train-validate phase becomes non patient-specific,
so the performance metrics in the validation phase is a more accurate
representation of what the metrics in the testing phase will be, using the same
parameters.

3.6.5 Resources used

The software for this research was coded in MATLAB® by Mathworks®,
and tested successfully using the R2014a through R2017a releases. The
University of Stellenbosch hosts a High Performance Computing (HPC) cluster,
designated ‘HPC1’ (Universiteit Stellenbosch, 2017). Computational processing
was performed on HPC1.

In order to diminish processing time, the HPC1 was used for parallel
computing. In the training and validation phases, the 19 cases training-set is
used. One node on the cluster is assigned for each case, and an additional
node is assigned as the remote host for administration. A total of 20 nodes are
therefore used in the training and validation phases. Similarly, in the testing
phase, 6 nodes on the cluster are used for the 5 cases.
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Results

4.1 Offline evaluation
The offline evaluation refers to the train-validate phase iterations. In this
section the offline evaluation is detailed.

The selections of Πh(r), Πh(m), and Πp are given in Appendix B. Table
B.4 gives the final confusion matrix and detection latency of the optimized
algorithm. Table 4.1 presents some of the most common performance metrics
for discussion, along with the mean seizure duration (D) of each patient.

Table 4.1: Offline performance metrics

Case D [sec] TPR PPV FPR

01 63.1426 0.5714 1 0
02 57.3333 0.6667 1 0
03 57.4285 0.5714 1 0
04 94.5 0.75 0.375 0.0321
06 15.3 0.1 0.0588 0.24
08 132.6 0.8 0.8 0.0505
10 63.8571 0.5714 1 0
11 98 1 0.4286 0.1155
12 36.6296 0.4074 0.6875 0.2636
13 44.5833 0.0833 0.1667 0.1519
14 21.1250 0 0 0.0769
15 99.6 0.5 0.7692 0.0764
17 97.6667 1 0.0698 1.9179
18 52.8333 0.6667 0.3333 0.2256
19 78.6667 0.6667 0.0909 0.6703
20 36.75 0.8750 1 0
21 49.75 0.5 1 0
22 68 1 0.6 0.0648
23 60.5714 0.4286 1 0

The optimal parameter sets Πh(r), Πh(m), and Πp as determined in the
offline phase are given below:

71
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• Πh(r) = {NA,NA,1.6}
• Πh(m) = {NA, NA, NA}
• Πp = {1.45,NA,1.1,3,15,0.35,2,180}

The offline mean values of the common performance metrics of Tables B.4 and
4.1 are given for convenience:

• TPR = 58.73 %

• PPV = 59.89 %

• FPR = 0.2045 /h

• tdl = 23.1313 sec

4.2 Online evaluation
In the online evaluation, the previously unused testing-set is evaluated. No
further parameter selection or optimization is allowed in this phase. Each case
is processed only once and performance metrics are generated.

The confusion matrix and detection latency for the online evaluation
is given in Table B.6. Table 4.2 presents some of the most common performance
metrics for discussion, with the mean seizure duration (D) of each patient.
The online mean values of some common performance metrics of Tables B.6

Table 4.2: Online performance metrics

Case D [sec] TPR PPV FPR

05 111.6 0.8 0.3636 0.1804
07 108.3333 1 0.3333 0.0897
09 69 1 0.6667 0.0296
16 8.4 0 0 1.4211
24 40.9375 0.1250 0.6667 0.0471

and 4.2 are given for convenience:

• TPR = 58.50 %

• PPV = 40.61 %

• FPR = 0.3536 /h

• tdl = 29.4167 sec
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Discussion

5.1 Evaluating contributions
The intended contributions listed in Section 1.6 are discussed in this section.

5.1.1 Automated α heuristic

The offline evaluation in Section 4.1 has indicated that the α-classifier yields
no significant improvement. The optimal offline algorithm has no α detection
whatsoever. It appears that the automatic α-training data selection heuristic
lacks efficacy, since a review of ictal and α probabilities showed that high-α
probabilities almost never coincided with high ictal probabilities from inter-ictal
EEG. For this reason parameter set Πh(m) is NA (not applicable), as shown in
Section 4.1.

5.1.2 Improving on the state-of-the-art

As per Section 2.3.5, the Saab and Gotman (2005) method is considered
the state-of-the-art. They report performance of TPR = 77.9 %, and
FPR = 0.86 /h. The algorithm presented in this study is based on their
work. Previously unoptimized parameters (xphase, xNTH , xes) are however
optimized, and additional procedures are introduced. The final performance
metrics reported in the online evaluation is TPR = 58.5 %, PPV = 40.61
%, and FPR = 0.3536/h. The method of this study captures 19.4 % less
seizures, however, the FPR is reduced by more than half. The significance
of this is made evident when comparing the FPR per day. The Saab and
Gotman (2005) method registers FPR = 20.64 /day, whereas the method
in this study registers FPR = 8.4864 /day. Although neither is likely to
be used clinically, the algorithm presented here arguably better approaches
clinical applicability. For this reason it is maintained that the algorithm pre-
sented in this study is an improvement to the Saab and Gotman (2005) method.

In Section 3.5.2 the rationale for setting some maximal threshold to
avoid converging to a very large value for T was discussed. From Table B.3 it
is evident that this threshold was necessary also in this work. More accurate
algorithms should enable normal optimization of parameter T as a trade-off
between FP s and TN . In algorithms such as the one presented in this work, a
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higher T will almost inevitably lead to better results due to the high number
of FP s that it covers.

The sequential hypothesis test that was introduced to the Saab and
Gotman (2005) method in this study is utilized in the final classifier. What
is however concerning is that patients with a short mean seizure duration
(D) in the offline (Table 4.1) and online (Table 4.2) evaluations did not show
good sensitivity (TPR). This is likely due to the large value number of frames
(N=15) selected in the offline phase. The sequential hypothesis test therefore
likely plays a large role in the inter-patient variability in the offline and online
evaluations.

Besides the unexpected exclusion of the α-classifier, the optimal Πh(r)

were also highly surprising. Section 4.1 indicates that no mains noise-
(xmains) or abnormally high channel amplitude (xhigh) rejection is necessary
for algorithm improvement. Parameter set Πh(r) therefore has two NA
(not applicable) parameters, as shown in Section 4.1. This is a positive
outcome, since rejecting a high portion of data would make the algorithm
less implementable clinically. The ICU staff would be notified every time
a continuous period of frame rejection takes place, so that the source of
contamination could be mitigated. An algorithm that operates with minimal
frame rejection demonstrates good robustness on noisy data. Clinical data
may be quite noisy, and so the low levels of required data rejection is therefore
a welcome result.

It is noteworthy that one parameter has not been optimized in this
study, namely the number of histogram bins. If n histogram bins are used
per feature, then n2 joint-bins are created. Some further optimization could
be performed, however the number of bins will correlate with the size of the
training set of the data corpus. With more training data, the histograms
can be made more precise, since there is enough samples for every joint-bin.
To avoid such a corpus-specific parameter, a different method of creating
probability distributions may be considered. A probability density function
(PDF) is a continuous function used to represent probability. Constructing a
PDF from a discrete set of points is non-trivial. To encode the probabilities
associated with joint-bins, a 4-dimensional PDF is created, where 3 dimensions
encode the 3 feature values, and 1 dimension encode the likelihood.

5.1.3 Use of a publicly available data corpus

Comparing the proposed method to any other method in literature proposes
a problem. Unless the publication in question has used the CHB-MIT data
corpus, a comparison of results to compare algorithm performance it not
entirely appropriate. It was discussed in Section 2.3.3 that use of private data
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corpora hinders algorithm comparison. The fact that Saab and Gotman (2005)
have more data channels to analyse and that they have only adult patients
(whereas the CHB-MIT corpus contains patients with age range from 1.5 to 22
years) may also benefit their final performance. This is substantiated by the
fact that younger children (under the age of 5 years) have markedly different
EEG to older children and adults (Page et al., 2015). Finally, a comparison of
detection latency tdl is also meaningless in this context, since the seizures in
the CHB-MIT corpus annotates seizure start and end times, whereas on the
Saab and Gotman (2005) data corpus seizures are annotated to start when
the EEG displays a clear seizure discharge, without returning to background.
To be able to properly compare algorithms, the same data corpus should be
evaluated. For this reason it is maintained that implementing this method
on a public data corpus is a contribution to the field of seizure detection.
Reporting the full confusion matrix in terms of counts as well as duration is
also considered beneficial for future comparison.

Of course performing the online evaluation on only 5 cases is insuffi-
cient for making statements with strong statistical significance. It is
recommended that more patients be sourced from other databases to evaluate
the algorithm more thoroughly. The Temple University Hospital (TUH) data
corpus (Section 2.3.3, Table 2.2) is a good candidate.

5.2 Achievement of the aims and objectives

5.2.1 Achievement of the aims

The aim of this study, as given in Section 1.4, was to develop a robust,
completely automatic software solution intended for real-time whole-brain
seizure monitoring that uses EEG data, and no patient- or seizure-specific
tuning. The training and testing was to be performed using a large, publicly
available data corpus. The current state-of-the-art is improved upon. The final
deliverable of this research was the online performance data of the algorithm
and a discussion that addresses each limitation in Section 1.2.

The solution proposed is not highly robust in terms of inter-patient
variability of performance. This is evident from Table 4.2. The algorithm
presented is however remarkably robust despite noisy data (see Section 5.1.2),
requiring very little data rejection to achieve its peak performance. The
method presented in this study does not require any manual data inspection or
manipulation. It is therefore fully automatic.

Every effort was made during the programming of the software to en-
sure that the processing requirement is minimal. The processing requirement
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is benchmarked using an Intel® Core™ i7 3.40 GHz processor. Using this
machine, the speed at which software is processed is evaluated 5 times. Over
5 repetitions, it was determined that 3600 seconds of 256 Hz EEG data
(all 18 channels) is processed in 167.3523 seconds (mean). Equivalently,
21.5115 seconds of EEG data is processed per second. The software speed
benchmark implies that the method proposed could be run on computers of
lower processing capacity if required. This is promising for real-time clinical
application using dedicated devices.

The CHB-MIT corpus contains seizures of many locations and types
(see Table 3.3). Seizures of all types and locations have been detected in
the offline and online phases. This suggests that the procedure is capable
of whole-brain monitoring. The methodology of this study ensures that
the solution is generalized (neither patient-specific, nor seizure-specific).
The training- and testing data were strictly separated, and no training or
optimization was done using the test-set. Seizures of various types and
locations are mixed indiscriminately into the training- and testing sets. Finally,
the data corpus used for all phases in this study is the publicly available
CHB-MIT corpus. This means that the results obtained in this study can be
reproduced exactly. Future solutions may be compared to this solution, by
evaluating using the same data corpus.

The proposed algorithm is discussed with regards to the limitations of
Section 1.2:

1. The LOOCV procedure was used to minimize inter-patient variability of
performance. From Table 4.2 it can be seen that despite this, there is still
significant inter-patient variability. Inter-patient performance variability
is an inherit problem for a number of patient-monitoring applications,
including seizure analysis.

2. In this study the detection latency, along with the confusion matrix (both
counts and durations) for the final offline (Table B.4) as well as online
(Table B.6) evaluations are reported. This enables future researchers to
easily compare any performance metric to this work.

3. No patient- or seizure-specific tuning is required for this procedure.

4. The technique was evaluated on long-term continuous (independent) EEG
data in the online phase.

5. The data used is representative of clinical data.

6. Training and testing were done using the large CHB-MIT public data
corpus.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. DISCUSSION 77

7. Multiple channels (without prior focus channel knowledge) is used in
training and testing. Multiple seizure types and locations are evaluated.

8. No manual removal of data intervals of ocular- or muscle artefacts or any
other data pre-selection is required.

5.2.2 Achievement of the objectives

In this study, EEG-based seizure detection software was developed based off
the current state-of-the-art Saab and Gotman (2005) method. The method was
improved by automating the procedure and achieving improved performance
through further optimization and introduction of additional heuristics. The
system was trained and optimized offline, and then tested online with inde-
pendent data. The final online performance metrics was reported in Table 4.2.
Evidently the objectives of the study (Section 1.4) have been completed.

5.3 Recommendations for future research
The probability density function (PDF) replacement of the histogram method
used in this study warrants further investigation. Furthermore, it has been
mentioned that more patients need to be evaluated online for stronger
statistical significance of the final performance metrics reported. These
recommendations were discussed in Sections 5.1.2 and 5.1.3. More training
data may also be valuable, as it may significantly contribute to improved
model creation.

In Appendix C, Section C.1, the probability output history of variable
PICT is provided for each case during the online evaluation. It is shown that
selecting any global threshold ITH is performs rather poorly in separating
ictal from inter-ictal probabilities over multiple patients. Instead some
dynamic threshold could be applied that changes with patient-data. This
could potentially improve the algorithm performance.

A further method for improving both inter-patient variability, as well
as overall algorithm performance, is to introduce some form of dynamic
learning. With dynamic learning, data being monitored may be added to
the classifier model in real-time such that the model is primed for improved
performance on the patient being monitored. In Appendix C, Section C.2,
a simplistic, unoptimized dynamic learning method is implemented. The
technique (once further sophisticated and optimized) shows significant promise
for improving the algorithm performance.

Ideally a forewarning of seizure onset should be given, that is, seizures
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should ideally be predicted. In hospital settings, for the administration of fast-
acting AEDs (commonly called Rescue Medication or Rescue treatment) the
medication may be injected directly into the patient’s bloodstream. A 2-minute
prediction time is required (Schelter et al., 2006) for fast-acting AEDs to take
effect. Such a prediction time corresponds to a detection latency tdl = −120
[sec] or equivalently a prediction horizon tph = 120 [sec]. Methods where the
mean tdl < 0 or the mean tph > 0 may be referred to as prediction-oriented
methods. There are unfortunately no seizure prediction methods that may be
considered reliable for application to clinical EEG as defined in this study. The
development of a seizure prediction algorithm with tph > 120 is therefore needed.

The prediction classifier is desirable, since seizures should ideally be
predicted. The detection classifier is valuable, since seizure prediction
algorithms may not be able to predict or detect seizures with sudden onsets
(as explained in Section 1.1). This novel combination of the detection and
prediction classifiers may result in a superior new algorithm. An evaluation on
the improvement of performance when implementing a seizure detector with a
seizure predictor, as opposed to using these independently may be valuable.

Since the variation between ictal and inter-ictal EEG is more pronounced than
the variation between pre-ictal and inter-ictal EEG, the seizure prediction
classifier will likely benefit greatly from using patient-specific training data.
To achieve this without patient-specific tuning, implies that dynamic learning
for the predictor may need to be implemented.
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Conclusion

In this study a software solution intended for robust, completely auto-
matic, real-time, whole brain EEG seizure monitoring with no patient- or
seizure-specific monitoring. The aims listed here were addressed, however
the algorithm could not perform robustly between patients, showing high
inter-patient variability in performance. The algorithm was trained and
evaluated on a publicly available data corpus, and the online performance
(Table 4.2) and full confusion matrix (Table B.6) are reported. This facilitates
future replication and comparison to this work.

The algorithm was trained offline using 19 cases (147 seizures, 765.6
hours of data) and tested online on an independent test set of 5 cases (38
seizures, 214.3 hours of data). The database contains patients with ages
between 1.5 to 22 years of age. In the online evaluation a sensitivity (TPR)
of 58.5 %, a selectivity (PPV ) of 40.61 %, and a false positive rate (FPR)
of 0.3536 /h was achieved. The results obtained here are more likely to be
implementable clinically than the current state-of-the-art due to the lower
FPR (See Section 5.1.2). For this reason it is maintained that this solution
represents an improvement to the current state-of-the-art.

This solution, similar to those before it, cannot yet overcome all im-
pediments to clinical applicability. In particular, the inter-patient variability
and even the overall classifier performance is still not satisfactory. The
requirements of a clinically applicable universal seizure detection monitor are
not easy to solve, however promising solutions for future research are provided
in Section 5.3.
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Appendix A

Non-physiological artefacts

In this Appendix, data corruption by non-physiological artefacts are illustrated.
Abnormal signal amplitude, mains noise, and phase reversal are illustrated.

The seizure in Figure A.1 is taken from chb18_35. The seizure takes
place at time [2196 → 2264] in the file. The EEG is contaminated by mains
noise in channels 4, 8, 14, and 18. The seizure is rejected on the basis of high
mains noise. The mains noise in channels 4 and 8 are around 67 µV and
the mains noise in channels 14 and 18 are around 25 µV. From Figure A.1
it can clearly be seen that, compared to other channels, there is significant
high frequency contamination in channels 14 and 18, while the mains noise in
channels 4 and 8 are excessive.

Figure A.2 shows a segment of EEG that displays abnormally high
amplitudes. Detail is provided in Figure A.3 of a select few channels. In the
example given, the xhigh = 1000µV threshold caused frame rejection for time
t = [246→ 266]. The signals in these figures seem to be almost flat-lined before
and after the high signal amplitudes, however this is only due to the scaling on
the figures. Figure A.4 shows an example of missing data, represented as zero
amplitude signals. Note that ’chb17_303’ refers to ’chb17c_03’. The frame
that spans t = [2746→ 2748] is the first frame rejected.

Figure A.5 shows phase reversal due to electrode T8. Clearly the sig-
nals based of this electrode exhibit phase reversal relative to each other. From
Equation 3.1:

If mean(∣A +B∣) < mean(∣ A

xphase
∣) then reject frame

for xphase = 2 ∶ 21.4896 < 22.8545 = reject !

Evidently the frame that spans t = [1130→ 1132] should be rejected.

A-1
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Figure A.1: Rejected seizure due to mains noise
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Figure A.2: High amplitude segment
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Figure A.5: Phase reversal segment
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Appendix B

Iterations

This appendix contains the grid settings of Πh(r), Πh(m), and Πp over every
iteration in the train-validate phase. The optimal parameters are encircled.
Furthermore the F1 score along with common performance metrics sensitiv-
ity (TPR), selectivity (PPV ), and false positive rate (FPR) per hour are given.

As indicated in Figure 3.1, a number of parameter selections must be
made. These parameter sets Πh(r), Πh(m), and Πp must first be initialized.

B.1 Initialization

B.1.1 Select rejection hyperparameters Πh(r)
Some initial rejection hyperparameters Πh(r) = {xmains, xhigh, xphase} needed to
be selected. These parameters are used to set the strictness of frame rejection.
It was decided that the first set of rejection hyperparameters should not
encode a great deal of noise into the model, but should ideally not miss any
seizures. The rationale is that some decent estimate of the other parameters
(Πh(m) and Πp) should be obtained before finally optimizing Πh(r). Too much
data rejection or seizure rejection would mean that iterations are not adequate
evaluations of the data, and too little rejection would mean that the models
may be corrupted by noise.

To obtain some decent set, Πh(r), the data in the training set was
evaluated. The selection by Saab and Gotman (2005) seemed appropriate
also for the CHB-MIT corpus. The settings Πh(r) = {20µV,1000µV,2} did not
reject a very high portion of the data. With these settings, only 1 seizure is
rejected in the entire training set. The rejected seizure from patient 18 (file 35)
is shown in Figure A.1 in Appendix A. The seizure is rejected on the basis of
high mains noise. The mains noise in channels 4 and 8 are around 67 µV. No
other seizures in the entire training set have mains noise above 20 µV. Since
other seizures have much lower noise, it was considered acceptable to maintain
the threshold at 20 µV. Since only 1 seizure is rejected for the first selection of
Πh(r), there are still 146 seizures that are not rejected in the training set.

B-1
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B.1.2 Select model hyperparameters Πh(m)
The (α) model hyperparameters Πh(m) = {xEMG, xALP , xNAL} must be selected
next. These parameters contribute to the α-classifier used to reject detections
that are more likely α activity than seizures. As mentioned in Section 3.6.2, the
model creation step is an expensive process. Some proposed low-high values
for Πh(m) are xEMG = {50,90}, xALP = {1,5}, and xNAL = {15,50}. Once the
low-high combinations are evaluated, improved selections can be made. The
values for model hyperparameters Πh(m) are taken as percentiles as proposed
in Section 3.4.2.

B.1.3 Select parameters Πp

The parameters Πp = {ITH , ATH , xNTH , xchn, N, p, xes, T} must be selected
next. As explained in Section 3.6.2, multiple classifiers can be evaluated
simultaneously, so more than one value for each of the parameters may be
selected. Every possible combination is evaluated.

Parameter T is optimized last. Parameter T essentially removes a
block of data from analysis. In order to use as much data as possible for the
optimization of all other parameters in Πp, a low value T = 60 [sec] is selected
initially. As discussed in Section 3.5.2, parameter T may reduce FP s, but at
the same time reduce TN .

B.2 Offline evaluation performance data
Table B.1 contains the selections of Πh(m) and Πp evaluated in a grid
throughout numerous offline iterations. The optimal algorithm settings are

Table B.1: Offline parameter set

Parameter Value(s)
Πh(r) = { 20, 1000, 2 }
xEMG 50 90 100 NA
xALP 1 5 15 25 35 50 NA
xNAL 15 50 75 95 NA
ITH 0.8 1 1.3 1.4 1.45 1.5 1.6 1.7 2 2.5 3 3.8
ATH 0.8 1 1.5 2.5 5 NA
NTH 0.7 0.8 0.9 1 1.1 1.2 1.3
xchn 2 3 4 5 6
N 1 7 8 10 13 14 15 16 18 20
p 0.2 0.3 0.35 0.4 0.45 0.5 0.6 1
xes 2 3 4
T 60
TPR= 0.5999 PPV= 0.5749 FPR= 0.25 /h F1 = 0.5871
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encircled. The performance of the optimal combination of settings is given at
the bottom of the table.

Next the rejection hyperparameters Πh(r) can be optimized. Table B.2
tabulates all selections for Πh(r), and optimal settings are encircled. Again the
performance of the optimal parameter settings are given.

Table B.2: Offline rejection hyperparameter set

Parameters Value(s)
xmains NA 140 100 70 50 30 25 20 15 10
xmax NA 1500 1250 1000 750 500
xphase 2.4 2.2 2 1.8 1.6 1.5 1.4 1.3 1.2 1.1
Πh(m) = { NA, NA, NA }
Πp = { 1.45, NA, 1.1, 3, 15, 0.35, 2, 60 }
TPR=0.5873 PPV=0.5989 FPR=0.2045 /h F1 =0.5931

Further optimization of Πh(r), Πh(m), and Πp (excluding T ) yielded no
improvement in algorithm performance, and so these iterations are not
detailed here. The optimal Πh(r), Πh(m), and Πp (excl. T ) have therefore been
determined.

The persistence parameter T is evaluated next. It was explained in
Section B.1.3 that parameter T should ideally be optimized last to allow for
other parameters to be optimized. Table B.3 tabulates the selections for T .
The algorithm performance increases with increasing T . Since the maximum
threshold for parameter T is set at 180 seconds (see Section 3.5.2), the optimal
is selected where T = 180 seconds.

It can be said that the offline phase converged with a final classifier.
Table B.4 presents the confusion matrix metrics, along with the detection
latency. For the provided metrics, counting terms (units) are provided with
corresponding durations below in italics, if applicable.
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Table B.3: Persistence test

Param. Value(s)
Πh(r) = { NA, NA, 1.6 }
Πh(m) = { NA, NA, NA }
Πp = { 1.45, NA, 1.1, 3, 15, 0.35, 2, ? }
T 10 20 30 60 80 120 150 180 240 360 480 1080
TPR=0.6929 PPV=0.4999 FPR=0.3297 /h F1 = 0.5808
T = 10 TPR = 0.6929 PPV = 0.4728 FPR = 0.4144 F1 = 0.5620
T = 20 TPR = 0.6929 PPV = 0.4728 FPR = 0.4115 F1 = 0.5621
T = 30 TPR = 0.6929 PPV = 0.4748 FPR = 0.4057 F1 = 0.5635
T = 60 TPR = 0.6929 PPV = 0.4931 FPR = 0.3934 F1 = 0.5761
T = 80 TPR = 0.6909 PPV = 0.4957 FPR = 0.3821 F1 = 0.5773
T = 120 TPR = 0.6909 PPV = 0.4959 FPR = 0.3683 F1 = 0.5774
T = 150 TPR = 0.6909 PPV = 0.4968 FPR = 0.3476 F1 = 0.5780
T = 180 TPR = 0.6929 PPV = 0.4999 FPR = 0.3297 F1 = 0.5808
T = 240 TPR = 0.6968 PPV = 0.5069 FPR = 0.3000 F1 = 0.5868
T = 360 TPR = 0.6968 PPV = 0.5108 FPR = 0.2742 F1 = 0.5894
T = 480 TPR = 0.6968 PPV = 0.5149 FPR = 0.2583 F1 = 0.5922
T = 1080 TPR = 0.7057 PPV = 0.5464 FPR = 0.2179 F1 = 0.6159
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Table B.4: Offline confusion matrix

Case TP TN FP FN tdl
[count] [count] [count]
[seconds] [seconds] [seconds] [seconds] [seconds]

01 4 0 3
720 145078 0 189.4278 23.25

02 2 0 1
360 126541.6667 0 57.3333 22

03 4 0 3
720 135913.7145 0 172.2855 23.25

04 3 5 1
900 559579.5 1260 94.5 20.3333

06 1 16 9
180 235052.3 4876 137.7 17

08 4 1 1
720 70990.4 180 132.6 17.75

10 4 0 3
720 179172.4287 0 191.5713 18.75

11 3 4 0
540 123997 720 0 15.6667

12 11 5 16
5724 66304 1980 468 -11.2727

13 1 5 11
180 117340 1158 122 28

14 0 2 8
0 93071.04 360 168.96 NA

15 10 3 10
2160 139785 1620 471 40.1

17 3 40 0
540 36266 38818 0 34.3333

18 4 8 2
640 125731.3334 1808 105.6667 21.75

19 2 20 1
332 98401.3333 8934 78.6667 24.5

20 7 0 1
1980 97349.25 0 36.75 24.2857

21 2 0 2
360 117729.5 0 99.5 35

22 3 2 0
540 110711 360 0 21

23 3 0 4
900 94488 0 222 40.6667
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B.3 Online evaluation performance data
Table B.5 tabulates the optimal settings from the offline phase, as well as the
performance metrics generated in the online evaluation.

Table B.5: Online test set

Πh(r) = {140µV,1500µV,1.6}
Πh(m) = Not Applicable
Parameter Value(s)
ITH 1.45
ATH Not Applicable
NTH 1.1
xchn 3
N 15
p 0.35
xes 2
T 180
TPR=0.5850 PPV=0.4061 FPR=0.3536 /h F1 = 0.4794

Table B.6 presents the confusion matrix metrics, along with the detec-
tion latency for each case. For the provided metrics, counting terms (units) are

Table B.6: Online confusion matrix

Case TP TN FP FN tdl
[count] [count] [count]
[seconds] [seconds] [seconds] [seconds] [seconds]

05 4 7 1
720 137730.4 1848 111.6 30.75

07 3 6 0
540 238867 1981 0 19.6667

09 4 2 0
1080 242898 360 0 42.25

16 0 27 10
0 48892 19424 84 NA

24 2 1 14
238 75650.875 180 573.125 25

provided with corresponding durations below in italics, if applicable.
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Appendix C

Probability histories

In this Appendix, the probability (PICT ) output histories are given over time
for selected cases. In every figure, PICT is given as a solid blue line, and the
onsets of seizures are given by dotted red lines.

C.1 Online evaluation probability history
In this section the probability histories of output during the online evaluation
(Section 4.2) is provided. The histories of Cases 05, 07, 09, 16, and 24 are
illustrated in Figures C.1, C.2, C.3, C.4, and C.5, respectively.
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Figure C.1: Probability history of Case 05

In this section it is clear that the global seizure detection threshold ITH should
be made relative. Evidently for each case (aside from case 16), a good threshold
could be selected for high TPR and PPV . The threshold would however not
be a set, global threshold. Some investigation into relative thresholding may
lead to promising improvements to the current algorithm.

C-1
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Figure C.2: Probability history of Case 07
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Figure C.3: Probability history of Case 09
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Figure C.4: Probability history of Case 16
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Figure C.5: Probability history of Case 24

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. PROBABILITY HISTORIES C-4

C.2 Probability histories with dynamic
learning

In order to evaluate the potential of dynamic learning, an addition to the
current method is implemented. When processing a given patient in the
training set, dynamic learning is implemented. The cases on which the classifier
performed poorly in the train-validate phase is evaluated. Cases 06, 13, 14,
and 17 are evaluated.

The procedure shall be explained with reference to the Bayes’ formula
given in Equation 3.5:

P (ictal∣features) = P (features∣ictal) ⋅ P (ictal)
P (features)

When a given patient is monitored, that patient is referred to as the hold-out
case. All other cases in the training set are non-hold-out cases. For the
hold-out case, the likelihood function (P (features∣ictal)) is still derived from
all non-hold-out cases, as was done in this study. All other terms of Equation
3.5 are initially derived from non-hold-out cases, however a total of only one
hour of inter-ictal data is used. A memory storage variable is created to be
filled with the joint-bin counts of new frames. After the hold-out patient has
been monitored for 5 minutes, the entire memory storage variable is used
to derive a new prior (P (ictal)) and normalization constant (P (features)),
since the terms P (features∣inter − ictal), P (inter − ictal) are updated. The
posterior (P (ictal∣features)) is therefore updated. After every new frame
imported, the joint-bins represented by the new frame replaces the oldest frame
in the memory variable. A new posterior is then created every 5 minutes.

In this procedure all incoming data is assumed to be inter-ictal. This
assumption is acceptable, since the ictal data within the last hour, at any time,
will be heavily outweighed by the inter-ictal class. Further optimization of this
procedure would be required to optimally implement dynamic learning. The
purpose for this experiment is however only to evaluate the potential algorithm
improvement that dynamic learning could bring.

Figures C.6, C.8, C.10, and C.12 illustrate he probability histories of
the selected cases prior to dynamic learning. Figures C.7, C.9, C.11, and C.13
illustrate the histories with the simplistic dynamic learning scheme.

A comparison of the figures provided show that the probability value
at actual seizure onset is increased relative to background when implementing
dynamic learning. This simplistic implementation would already result in
improved results if dynamic thresholding could be implemented successfully.
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Figure C.6: Probability history of Case 06 (no dynamic learning)
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Figure C.7: Probability history of Case 06 (with dynamic learning)
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Figure C.8: Probability history of Case 13 (no dynamic learning)
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Figure C.9: Probability history of Case 13 (with dynamic learning)
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Figure C.10: Probability history of Case 14 (no dynamic learning)
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Figure C.11: Probability history of Case 14 (with dynamic learning)
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Figure C.12: Probability history of Case 17 (no dynamic learning)

0 1 2 3 4 5 6 7 8

Time [sec] #104

0

2

4

6

8

10

12

P
IC

T

Figure C.13: Probability history of Case 17 (with dynamic learning)
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Note that the dynamic learning evaluated here is naïve, simplistic, and
unoptimized. Optimized selection of the memory variable size as well as a
few other parameters may result in further emphasis on the probabilities at
actual seizure onset. This supports the promising improvements that could be
achieved with dynamic learning.

According to Saab and Gotman (2005), seizures generally fill the more
extreme bins in the histogram (Section 3.4.1). The ictal probability distribu-
tion is less clustered than that of inter-ictal probability distributions. Recall
that the bin ranges are derived from all non-hold-out patients. When the bin
ranges are determined it may not encapsulate the seizure ranges for some
patients to satisfaction. This leads to inter-patient variability of algorithm
performance, and very poor performance on some patients. A novel heuristic is
proposed that may overcome there problems. When the mean probability of
seizure remains high (above some threshold) then that is indicative that there
is not an adequate seizure model. To overcome this, it is proposed that the
seizure bin ranges are made more extreme when the mean of the probability
history is too high. In doing this, the mean probability will diminish, and
seizure events may be highlighted from background. Coupled with dynamic
thresholding, this presents a novel heuristic for completely automatic retuning.
This novel heuristic is theoretically very promising, and greatly improves the
potential for the dynamic learning method proposed.
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