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Abstract 

 
Automatic speech recognition (ASR) systems are an attractive means for companies to deliver value added 
services with which to improve customer satisfaction. Such ASR systems require a telephony interface to 
connect the speech recognition application to the telephone system. Commercially available telephony 
interfaces are usually operating system specific, and therefore hardware device driver issues complicate the 
development of software applications for different platforms that require telephony access. The drivers and 
application programming interface (API) for telephony interfaces are often available only for the Microsoft 
Windows operating systems. This poses a problem, as many of the software tools used for speech recognition 
research and development operate only on Linux-based computers. These interfaces are also typically in 
PCI/ISA card format, which hinders physical portability of the device to another computer. A simple, cheaper 
and easier to use USB telephony interface device, offering cross-platform portability, was developed and 
presented, together with the necessary API. 
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Opsomming 

 
Outomatiese spraak herkenning stelsels bied ‘n aanloklike metode vir maatskappye om hulle kliëntediens uit te 
brei en te verbeter. Automatiese spraak herkenning stelsels benodig ‘n telefoon koppelvlak om die spraak 
herkenning sagteware toegang te gee tot die telefoon netwerk. Komersieël beskikbare telefoon koppelvlakke is 
gewoonlik platvorm afhanklik en dus bemoeilik hul drywer sagteware die ontwikkeling van sagteware vir 
verskeie platvorms wat ‘n telefoon verbinding benodig. Die drywers en programmeringskoppelvlak vir die 
telefoon koppelvlak is gewoonlik slegs beskikbaar vir die Microsoft Windows bedryfstelsel. Dit skep ‘n 
probleem, aangesien baie van die sagteware gereedskap wat gebruik word vir die onwikkeling en navorsing van 
spraak herkenning stelsels, slegs beskikbaar is vir gebruik op Linux-gebaseerde rekenaars. Hierdie telefoon 
koppelvlakke kom gewoonlik ook net in ‘n PCI/ISA-kaart formaat voor. Dit bemoeilik die fisiese 
oordraagbaarheid van die telefoon koppelvlak na ‘n ander rekenaar. ’n Eenvoudiger en goedkoper en makliker 
om te gebruik USB telefoon koppelvlak, wat multi-platform oordraagbaarheid bied, was ontwikkel en getoon, 
tesame met die nodige programmeringskoppelvlak.  
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Chapter 1 

1. Introduction 

Introduction 

 

1.1 Project motivation 
With computer telephony (CT), the telephony interface device replaces the telephone and a software application 
replaces a human attendant. The application can take over all functions of an attendant including dialling and 
receiving calls, connecting calls, call routing and sending faxes. Computer telephony interfaces are used in 
many applications, such as PBX systems, call centres and by software applications such as automatic speech 
recognition (ASR) systems that require telephony access.  
 
Commercially available telephony interface cards are very expensive, inflexible and platform-specific. In 
particular, it is very difficult to integrate such a telephony interface with open-source software and an open 
platform operating system, such as Linux. Generally, the hardware and software interface to the device is 
proprietary and the manufacturers do not provide documentation on how to develop a device driver to access 
their hardware under other operating systems. In some cases, the hardware devices are specially designed to be 
operated under the Microsoft Windows operating system by removing embedded intelligence from the device 
and shifting it instead to the Windows driver and hence host CPU. This lowers the cost of the hardware device, 
but places a greater burden on the host CPU, since the telephony interfaces often require real-time priority.  
 
These interfaces have a myriad of hardware and software settings to configure the device for the application that 
it is to be used for, and to select the correct address and IRQ values for the device to work properly. Many of 
these interfaces also contain a variety of other features such as data compression schemes (V.35, V.65 etc.) and 
error detection circuitry for when the device is to be used as a modem to send data, which are redundant when 
only voice access is required. 
 
The aim of this research project is to replace a complex and expensive telephony interface device, based on 
high-speed DSP and application specific voice processors, with a simpler, microcontroller-based device that can 
provide adequate functionality to speech recognition applications. 
 

1.2 Project description 
This project involves the development of a hardware telephony interface to be connected via the USB port of a 
PC, as well as the development of the necessary software to establish communication between the device and 
the software application. The USB port is chosen for communication with the telephony interface device, 
because it makes it possible to use the same device on different operating systems, as USB devices are 
supported by most operating systems. USB devices also have many other advantages, such as portability and 
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‘plug and play’ functionality, as described in section 2.2. A complete USB prototype device that interfaces with 
one or more telephone lines and the computer’s USB port has to be developed. 
 
Microsoft and Linux implement their core, host controller and device drivers differently, but there is a software 
library and driver available (LibUSB) for Windows and Linux that makes it possible to develop and compile the 
same user space application code for both Windows and Linux platforms. This library provides a generic device 
driver that handles all basic USB communications on Linux (LibUSB) and Microsoft Windows (LibUSB-Win32) 
computers. Both device drivers share the same API, which makes it possible to compile the same application 
that uses this library for USB communications on both Microsoft Windows and Linux platforms. The software 
to be developed will use the generic USB functions of this library to provide an application interface to the USB 
telephony interface. The telephony interface must be designed to cater for the requirements of an automatic 
speech recognition (ASR) application.  
 

1.3 Design considerations for an automatic speech recognition (ASR) 
application 
ASR is a technology that enables a computer telephony system to recognise a user’s spoken words via a 
telephone connection. It provides the ability to deliver voice services to customers, without the need for a 
telephone attendant. The ASR application would typically first prompt the user with pre-recorded or synthesised 
speech. A speech recogniser then listens for a user utterance. If an utterance is detected, it assumes that it was a 
reply from the user, and the application will attempt to match this to a vocabulary of known words and 
sentences in order to determine which words were spoken by the caller. 
 
A telephony interface suitable to be used by an ASR application would require the following features: 
• The telephony interface needs to transfer speech data between the telephone channel and the speech 

recognition application at a rate high enough to enable real-time processing of speech data (speech 
recognition). 

• The telephony interface must be able to store a few seconds of both incoming and outgoing speech data, as 
the ASR application would not necessarily be able to process speech data immediately.  

• The telephony interface must provide the means to send audio data to and record speech data from the 
telephone channel.  

• The telephony interface must be able to notify the ASR application if a “barge-in” or “barge-through” 
condition has occurred. Barge-in functionality allows users to interrupt a system prompt and to speak 
without waiting for the prompt to finish playing. This allows a more rapid and natural exchange of 
information between the user and the system, especially for regular users of the voice service. The 
telephony interface must stop the playback of a prompt if a barge-in has occurred.  

• The telephony interface must provide adequate echo cancellation. Echo cancellation is an essential feature 
used by speech recognition technologies, as it is used to avoid confusing echoed traces of an outgoing 
prompt with incoming user speech.  

• The telephony interface must provide the means to notify the ASR application of an incoming call and when 
a call is dropped. It must be able to answer incoming calls, disconnect active calls, dial telephone numbers 
and transfer calls. 
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1.4 Literature study 
Before any development can be done, a study has to be made of the following topics: 

• The USB protocol, USB I/O devices and USB microcontrollers ([1], [2], [3], [4], [5] and [6]). 
• The device driver environment in the Microsoft Windows and Linux operating systems and the LibUSB 

driver and software library ([2], [3], [7], [8] [9] and [10]). 
• Computer telephony, the public switched telephone network (PSTN) and how to interface to the 

telephone network ([11], [12], [13] and [14]). 
 

1.5 Thesis outline 
This thesis starts by giving an overview of the literature study that was done. The hardware and software design 
of the USB telephony interface device is discussed in the subsequent chapters.  
 
An overview of the USB protocol and USB transfers, USB I/O devices and USB microcontrollers is given in 
Chapter 2.  
 
Chapter 3 discusses the device driver environment for both the Microsoft Windows and Linux operating 
systems, and how the LibUSB driver and library is used in these operating systems to develop the software 
needed to communicate with the USB telephony device. 
 
It would be required for the USB device to interface to the PSTN. Chapter 4 gives an overview of the telephone 
network and the circuitry needed to interface to the telephone network.  
 
Chapter 5 gives an overview of the proposed system as a whole and the design process that was followed.   
 
The next chapter (Chapter 6) describes how the USB microcontroller, the telephony interface circuitry and the 
other components would be integrated in the prototype hardware design to meet these system specifications. The 
microcontroller code (firmware) to control the telephony interfacing circuits, as well as the PC host software 
(API) that is designed for the prototype is briefly discussed in this chapter. 
 
Chapter 7 involves the detail hardware design of the final prototype device. The result of this chapter is a 
schematic design, which is used to design the printed circuit board (PCB).  
 
The firmware design (software running on the device’s microprocessor and on the programmable logic device) 
is discussed in Chapter 8. 
 
Chapter 9 presents the PC host software (API) design.  
 
The final prototype is tested and its operation is verified. The testing procedures and the results of the evaluation 
are given in Chapter 10.  
 
Finally, Chapter 11 presents a summary and conclusions.  
 



 

 

 

Chapter 2 

2. The USB protocol 

The USB protocol 

 

2.1 Overview 
This chapter covers the basic elements of the Universal Serial Bus protocol needed to develop and implement 
USB devices. 
 

2.2 Why USB? 
As computer power and the number of peripherals have increased, older interfaces like the Centronics parallel 
interface and the serial RS-232 interface became a bottleneck of slow communications, with limited options for 
expansion. Several PC component vendors such as IBM, Intel and Compaq worked together to define the 
Peripheral Components Interconnect (PCI) bus, a high-bandwidth internal expansion bus that was included 
alongside the ISA bus in the PC. The PCI bus made automatic software configuration in Windows possible, but 
PCI was seen as excessively complex for simpler I/O devices. It is also more cumbersome to add a device, 
because the PCI slots are inside the PC. Several industry leaders worked together to define a simple, low-cost 
external bus: the Universal Serial Bus. Serial was preferred over parallel because it is more easily and cheaply 
implemented, and it would be simpler to implement “dynamic configuration”. Dynamic configuration means 
that the bus can be extended and devices configured while the computer is running. 
 
The copyright of the USB 2.0 specification is jointly held by seven corporations (Compaq, Hewlett-Packard, 
Intel, Lucent, Microsoft, NEC and Philips). They have agreed to make the specification available without charge 
and founded a non-profit organisation, The USB Implementers Forum (www.usb.org). The USB-IF’s website 
has the latest versions of all USB specifications and provides help, information and tools to developers. Tools 
include software and hardware to assist development and testing of USB devices, including compliance tests to 
verify proper operation. 
 

2.2.1 Benefits of using USB 
• Single interface: A single universal interface is provided that can be used by many kinds of devices. The 

cables are simple and cannot be plugged in the wrong way. The connectors are small and compact in 
contrast to other connectors. 

• Automatic configuration: When a USB device is connected to a powered system, it can automatically be 
detected and configured.  

• No settings: USB peripherals do not have port addresses or interrupt request (IRQ) lines. This frees 
hardware resources for use by other devices. 

http://www.usb.org/
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• Easy to connect and “hot pluggable”: There is no need to open the computer. Most computers have at 
least two USB ports, and more ports can be added. USB devices can be connected and disconnected as and 
when needed. 

• No power supply required: The USB bus provides power on a +5V and ground lines. A device that 
requires up to 500mA can draw all its power from the bus, instead of requiring its own power supply.  

• Speed: USB supports three bus speeds: high speed (480 Mbps), full speed (12 Mbps) and low speed (1.5 
Mbps). Every USB-capable computer supports low and full speed. High speed was added in the version 2.0 
USB specification. Low speed devices are cheaper as the cables do not require shielding. 

• Automatic error checking: The developer does not have to provide error checking algorithms in software 
to check that the data is correctly transmitted and received. This is done by the hardware (host controller 
hardware). 

• Flexibility: The USB protocol defines a number of data transfer modes which make it very flexible for the 
application that it is to be used for. 

 

2.3 The USB specification 
The USB specification 2.0 [1] was released on April 27, 2000. It is a revision of the 1.1 specification to include 
“high-speed” mode. The specification describes the bus attributes (mechanical and electrical), the protocol 
definition (protocol layer, USB data flow model and the USB device framework), types of transactions, bus 
management and the interface required (hardware and software) to design and build systems and devices that are 
compliant with the standard. The following section gives an overview of the USB. 
 

2.4 USB terminology 
• Host controller: The interface between the host computer and the USB peripheral. Each host controller 

supports and controls a single USB bus and all devices on the bus share this same data path. At least one 
host controller resides in a host computer. The host controller is integrated on most PC motherboards.  

• USB port: Each connector on a USB bus represents a USB port, but all devices on the same bus must share 
the available bandwidth. 

• Host: The host computer (that must contain at least one host controller) which controls all traffic on the bus. 
All devices connected to the bus are slaves, with respect to the host. Traffic flow on the USB bus can thus 
be upstream (toward the PC host) and downstream (toward the I/O device).  

• Hub: A USB device that allows multiple downstream USB devices to connect to a single USB port. 
• Function: A function is a device that provides a capability to the host. In other words, it is the same as a 

USB peripheral.  
• Compound device: A device that includes both I/O and hub functionality.  
• Composite device: A singe device that implements two or more functions. 
• USB class: Grouping of USB devices with similar characteristics, e.g. mass-storage devices, printers, audio 

devices etc. A single device can belong to multiple classes. If a USB device belongs to a class, it must 
adhere to the USB specification for that specific class, although it may implement additional vendor-specific 
functions.   

 

2.4.1 The PC host 
Once connected to the host, a device is enumerated and assigned a unique identifier. Enumeration is a process 
in which the device sends a series of descriptors to the host. The descriptors are data structures that describe the 
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USB device’s capabilities and how they will be used (see section 2.7.3). The identifier is used to match an 
appropriate device driver to the device. If the device is successfully enumerated, the host runs the client 
software to communicate with the USB peripheral. See section 2.7 for an overview of device enumeration and 
Chapter 3 for an overview of how operating systems use device drivers to communicate with user applications 
and the USB device. 
 

2.4.2 Hub device 
A hub has two functions: power management and signal distribution. A host computer usually has at least one 
internal root hub, which is also called a virtual root hub, because it is simulated with the software drivers of the 
PC host. All other hubs on the USB bus are external. An external hub has one upstream port and multiple 
downstream ports. Hubs must be able to repeat USB traffic in both directions, and contains intelligence to 
manage power and prevent full-speed data from being transmitted to low-speed devices. A USB 2.0 compliant 
hub supports high-speed USB traffic. A full-speed hub can connect to a high-speed hub, but it will only 
communicate at 12 Mbps. Multiple full-speed hubs may connect to a high-speed hub and each will receive their 
own 12 Mbps channel. Bandwidth is not shared at this level. Figure 2.1 shows a typical system using the two 
hub types: the high-speed (HS) hub and full-speed (FS) hub.  
 

A hub can be self-powered or bus-powered. If it is self-powered, it has its own power source and can provide up 
to 500mA to each downstream port. A bus-powered hub relies on the bus power delivered by the USB cable. It 
will use 100mA for itself, and 400mA will be divided by the number of downstream ports that it must be able to 
support. During enumeration, a device may not use more than 100mA. If it does, the device will not be 
enumerated. After enumeration, the device may request up to 500mA from the hub. If the hub can supply the 
requested power, it does so; otherwise the device will not be configured.  
 

FS Device

HS Hub

FS Device HS Device LS Device

FS Hub

HS Device

FS Device

LS Device

HS: High-Speed
FS: Full-Speed
LS: Low-Speed

Port 1

Port 2

PC Host, host-controller
and HS root hub

 
Figure 2.1: A typical system using two hub types. 

 

2.4.3 I/O device 
All transmissions travel to or from a device endpoint, which is a buffer that can store multiple bytes. The USB 
specification defines a device endpoint as “a uniquely addressable portion of a USB device that is the source or 
sink of information in a communication flow between the host and device” [1]. All devices must at least contain 
endpoint 0, which is a bidirectional endpoint used for control purposes. A typical device will have a collection 
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of IN and OUT endpoints. This collection of endpoints is called an interface. A pipe describes the logical 
connection between the PC host software and an interface. A USB device may have multiple interfaces. A 
configuration is a collection of interfaces, and only one configuration can be active at a time. A configuration 
describes the attributes and features of a specific model. By using different configurations, a USB device can 
change its characteristics according to the specific functions that it needs to perform. See Figure 2.2 (from [2], p. 
15) for a logical view of an I/O device communicating with the host PC device driver and application software. 
 
A USB device may belong to any of the defined USB classes, such as the display class, audio class, 
communication class, mass-storage class or human interface class. These classes specify protocols and functions 
that a device must be able to support if it belongs to that class. If a device belongs to a class, existing device 
drivers included in the operating system could access the USB device, otherwise a custom or generic USB 
device driver must be used to access the USB device.  
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Figure 2.2: A logical view of a USB I/O device (from [2], p.15). 

 

2.5 USB transfers 
This section describes the method of data transfer in USB communications. 
 

2.5.1 Signalling 
A USB cable contains 4 wires: Two are used for power (+5V and ground) and two are used for signalling 
(called D+ and D-). D+ en D- are a pair of differential signals, and the signalling is half-duplex and 
asynchronous (there is no clock signal). The basic element of communication on the USB bus is the packet.  
 

2.5.2 The basic packet 
The basic structure of a packet is shown in Figure 2.3. The bus can be in two states: idle (“low”) or active 
(“high”). The transmitter uses a few transitions to produce a SYNC sequence. The receiver uses this sequence to 
tune it’s receive clock with the transitions of the received data. The end of the SYNC sequence is indicated by 
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two active (“high”) states. The SYNC sequence is followed by 8 bits called the Packet Identifier (PID), which 
defines how the data contained in the packet (if any) will be interpreted. The type of packet is thus determined 
by the PID. The PID types (packet types) and their codes are defined in the USB specification ([1], Table 8.1, p. 
196), and are briefly discussed in the following sections. Optional data bits follows after the PID. The end of a 
packet is indicated by an end-of-packet (EOP) identifier (indicated by two idle states)  
 
 
 
 
 
 
 

Figure 2.3: Basic packet structure (from [2], p. 26). 

 

2.5.3 Basic packet types 
There are four packet categories (indicated by their respective PID): token packets are used to set up data 
packets, which are acknowledged by handshake packets. There are also special packets, which are used for 
“speed conversion” connections [1]. The first three types are briefly discussed. 
 

2.5.3.1 Token packets 
Token packets are used to set up data transactions. 
 
Start-of-frame (SOF) token packets are used to indicate the beginning of a frame, which the root hub transmits 
every 1 ms. A high-speed root hub will also transmit a SOF token every 125 μs to indicate the start of a 
microframe. Without microframes, a high-speed device (480 Mbps) would need to be able to buffer 480 Mbps × 
1 ms =  480000 theoretical bits per frame, or about 60 MB of data per second. Microframes allow high-speed 
devices to be designed with smaller buffers. For a full-speed link (12 Mbps), there are 12 Mbps × 1 ms = 12000 
theoretical bits per frame or about 1.5 MB of data per second.  
 
The format of the SOF packet is shown in Figure 2.4. Only the PID and the “optional” bits indicated in Figure 
2.3 are shown in the following figures, as all packets start with a SYNC sequence and end with an EOP. The 
SOF packet has a SOF PID, followed by 11 data bits and a 5 bit cyclic redundancy check (CRC) used for error-
checking purposes. The data bits and the CRC bits represent the “optional” bits of the packet structure shown in 
Figure 2.3. The 11 data bits are used for the frame number. The frame number is a monotonically increasing 
frame number that is used by real-time devices to synchronise their data transfer. The SOF packet is the only 
packet that does not have a destination address and that does not require acknowledgement.   
 

 
Figure 2.4: Start-of-Frame packet (from [2], p. 29). 
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The other types of token packets are IN, OUT and SETUP packets, and have the format shown in Figure 2.5. 
They all contain their respective PID, device address (7 bits), an endpoint address (4 bits) and a 5-bit CRC. The 
device address, which is assigned to the device by the host PC during enumeration, will specify one of 126 
possible addresses (address 0 is reserved and the root hub uses one address). The endpoint address is a 
subaddress within the device that specifies the endpoint to which data is sent or from which it is received.  
 
An IN packet initiates a data transfer from the device to the PC host, and an OUT packet initiates a data transfer 
from the PC host to the device. IN and OUT packets can address any endpoint on any device. A SETUP packet 
is a special case of an OUT packet, but it is “high priority” and all devices are required to accept it. SETUP 
packets are used to send and receive device information and to configure a device before it is used. SETUP 
packets are always sent to the bidirectional control endpoint 0. 
 
 
 
 

 
 

Figure 2.5: IN, OUT and SETUP token packets (from [2], p.30). 

 

2.5.3.2 Data packets 
The data transfers initiated by the IN, OUT and SETUP token packets are implemented with DATA0, DATA1, 
DATA2 and MDATA packets. They carry between 0 and 1023 bytes of data and a 16-bit CRC. A transmitter will 
alternate between DATA0 and DATA1 packets, and the receiver must check that alternate DATA0 and DATA1 
packets are received for error-checking purposes. DATA2 and MDATA packets are only used for high-speed 
isochronous transfers, and are not discussed here. The format of a DATA0 packet is shown in Figure 2.6 (other 
DATA  packets have the same format). 
 
 
 
 

 

 
Figure 2.6: Typical Data packet (from [2], p.31). 

 

2.5.3.3 Handshake packets 
Handshake packets are used by a receiver to indicate the good, bad or no reception of token or data packets. The 
types of handshake packets are shown in Figure 2.7.  
• An ACK (acknowledgement) handshake indicates successful reception of a token and/or data packet. 
• A NAK (negative acknowledgement) handshake indicates that the device cannot receive the token or data 

packets. This usually occurs when the receiver is too busy to process the transaction or if there is not enough 
buffer space available for the data. A device is allowed to respond with a NAK to all transfers, except for a 
SETUP token. 
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• For high-speed devices it is inefficient bus utilisation to send NAK’s in response to an OUT transaction, 
especially if there is a high frequency of not-acknowledged transactions. Sending a NAK is inefficient, since 
the data for the OUT transaction has already been transmitted on the bus. A high-speed device may use a 
special PING token to inquire if the receiver can receive the OUT transaction. If an ACK is received, the 
receiver will schedule a transaction, if a NYET (not yet) is returned, then the transmitter will continue to 
inquire with PINGs.  

• If something is wrong with the device, then a STALL packet will be sent to tell the host PC that an error has 
occurred. For example, a device may send a STALL handshake in response to a request that it does not 
support. 

 

 

 
 

 

Figure 2.7: Handshake packets (from [2], p.31). 

 

2.5.4 Endpoints 
As already mentioned, all data travel to and from a device endpoint. The endpoint is a buffer which is typically a 
block of data memory or a register of the USB controller chip that reside in the USB device. The address of each 
endpoint consists of an endpoint number and a bit indicating the direction of data flow. The endpoint number 
may range between 0 and 15 and the direction is IN or OUT, depending on whether the endpoint sends or 
receives data. Every data transaction on the USB bus includes an endpoint number and the direction bit. A 
device may have a number of endpoints, but all devices must at least have an endpoint 0, configured as a control 
endpoint. A device may have more than one control endpoint, although only one (endpoint 0) is really needed. 
A control endpoint must be able to send and receive data. It is therefore a bidirectional endpoint that consists of 
an IN and OUT endpoint that share the same endpoint number. Only control endpoints are bidirectional.  
 

2.5.5 Pipes 
Before a data transaction can take place, the host and device must establish a pipe. A pipe is an association 
between the device’s endpoint and the host controller’s software. Every device has a Default Control Pipe that 
uses the bidirectional endpoint 0. This pipe is called a message pipe because it is used to transfer control and 
status data. All other pipes are called stream pipes. The data transferred with a stream pipe has no format 
defined by the USB specification, but there are a few transfer types defined that make use of a stream pipe.  
 

2.5.6 Transfer types 
There are four different transfer types used in the USB protocol: control, bulk, interrupt and isochronous 
transfers. Each of these transfer types uses a stream pipe to transfer data to an endpoint. Table 2.1 (adapted from 
[3], p. 54) summarises the four transfer types. 
 

2.5.6.1 Control transfers 
All USB devices must support control transfers. Control transfers are the only transfer type that has specific 
functions defined by the USB specification. This type of transfer allows the host to receive status information 
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from the device (control read transfer) and to set a device’s address, select configurations and other settings 
(control write transfer). Control transfers require a lot of protocol overhead to ensure that the data are correctly 
sent and received. A control transfer is divided into three phases: a setup phase, data phase and status phase. 
Each phase consists of a token packet, data packet and handshake packet.  
 
The setup phase starts with a setup token packet. The data packet (DATA0) always contains 8 bytes, and the 
format is predefined. The handshake packet must always be sent by the device, as a device is not allowed to 
NAK or STALL a setup packet. The setup phase will specify if a data phase is required for the transfer. Some 
setup commands can be completely specified by the 8 bytes of data in the setup phase, others might require 
more data to be written or read from the I/O device which are transferred by using the data phase. If all the data 
cannot be sent in a single data packet in the data phase, then the device must send the data in multiple packets, 
each packet containing 8, 16, 32 or 64 bytes. If multiple data packets are sent, the data packets will alternate 
between DATA0 and DATA1 data packets, as described in section 2.5.3.2. 
 
All control transactions must end with a status phase. The USB device must acknowledge the receipt of the 
setup phase (if there was no data phase). If the setup phase was a control read transfer, then the host must 
acknowledge the receipt of data from the device. If the setup phase was a control write transfer to the device, 
then the device must acknowledge receipt of the data from the host. A status phase consists of an IN or OUT 
transaction (depending on whether the transmitter or receiver must acknowledge) with a zero-length data packet 
that signifies a successful control transfer. A NAK or STALL condition will indicate an error condition. 
 

2.5.6.2 Bulk transfers 
Bulk transfers are intended for applications where the rate of transfer is not critical, and where there are large 
blocks of data that need to be transferred, e.g. to printers and from scanners. If there are other transfers pending 
on the USB bus, bulk transfers will receive the lowest priority and will only complete when bandwidth is 
available. If bandwidth is available, bulk transfers is the fastest type of transfer. Only full- and high-speed 
devices support bulk transfers. A bulk transfer has only one data phase, with a data packet size of 8, 16, 32 or 64 
bytes for full-speed transfers. High-speed bulk transfers have a maximum packet size of 512 bytes.  
 

2.5.6.3 Interrupt transfers 
Interrupt transfers are used for devices that require the host’s attention periodically. The PC host polls the device 
to inquire if it needs attention. Typical devices that use interrupt transfers are mice and keyboards. Interrupt 
transfers are efficient, since the device can respond with a NAK when polled and it has no new data to send. An 
interrupt transfer has only one data phase that contains between 1 and 1024 bytes per data packet. Low-speed 
devices only support a maximum data packet size of 8 bytes. 
 

2.5.6.4 Isochronous transfers 
Isochronous transfers have a guaranteed delivery time, but include no error checking and are not acknowledged. 
They are generally used for real-time data like audio or video. Isochronous transfers occur every (micro)frame, 
and the PC host will ensure that there is available bandwidth within the frame before agreeing to set up the 
connection. If there is no bandwidth available, the setup of the device (enumeration) will fail upon connection to 
the USB bus.  
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Table 2.1: Summary of the four USB transfer types (adapted from [3]). 

 

2.6 PC host requests 
PC host requests are commands or requests sent from the PC to devices connected on the USB bus. All PC host 
requests are thus control transactions (as described in section 2.5.6.1). Table 2.2 shows the format of the data 
packet in the setup phase of the control transaction (from [1], p.248). 
 
 
 
 
 
 

 

Table 2.2: Format of a PC host request (from [1], p. 248). 

 
All field and descriptor names defined in the USB specification use a prefix to indicate the format of the data in 
that field: b = byte (8 bits), w = word (16 bits), bm = bit map, bcd = binary-coded decimal, i = index, id = 
identifier. 
 
The bmRequestType byte is a bit field, with the following definitions: 
Bit  7:  0: transfer host data to device 
  1 : transfer device data to host 
Bit 6-5:  00: standard request 
  01: class request 

10: vendor request 

Transfer type Control Bulk Interrupt Isochronous 

Typical use Configuration Printer, scanner Mouse, keyboard Audio 

Required by device? Yes No No No 

Allowed on low-speed devices? Yes No Yes No 

Max. data transfer rate (bytes/millisecond) 
High-speed 

15,872 53,248 24,576 24,576 

Max. data transfer rate (bytes/millisecond) 
Full-speed 

832 1216 64 1023 

Max. data transfer rate (bytes/millisecond) 
Low-speed 

24 - 0.8 - 

Direction of data flow IN and OUT IN and OUT IN or OUT (1.0 
supports IN only) 

IN or OUT 

Error correction? Yes Yes Yes No 

Message or stream data Message Stream Stream Stream 

Guaranteed delivery rate? No No No Yes 

Guaranteed latency (max. time between 
transfers) 

No No Yes Yes 

Stages in transaction Setup, Data (IN 
or OUT) optional, 
Status 

Data (IN or OUT) Data (IN or OUT) Data (IN or OUT) 

Packets per stage Token, Data, 
handshake 

Token, Data, 
handshake 

Token, data, 
handshake 

Token, data 

Offset Field Size Value 
0 bmRequestType 1 Bitmap 

1 bRequest 1 Value 
2 wValue 2 Value 
4 wIndex 2 Index 
6 wLength 2 Count 
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  11: reserved 
Bit 4-0:  00000: device request 
  00001: interface request 
  00010: endpoint request 
  00011: other 
  (all other codes reserved) 
 
Bit 7 indicates the direction of the data flow. Bit 5 and 6 indicates the type of the request. All devices must be 
able to support standard requests. Class requests are specific requests that a device must support if it belongs to 
that class. A vendor request is a type of request that vendors (manufacturers) can use to implement customised 
requests for their specific device. Bit 0 to 4 specifies the destination of this request (device, interface or 
endpoint). The bmRequestType parameter indicates how the next byte, the bRequest parameter, should be 
interpreted.  
 
The bRequest parameter indicates which information the PC host requires. Table 2.3 (from [1], p. 250) lists the 
standard requests for a device (defined by the USB specification), which all I/O devices must be able to respond 
to. The remaining bytes in the control transfer are used to support the request. If further data or a value is 
needed, it is supplied in byte offset 2 and 3 (wValue), if an index is required, it is supplied in byte offset 4 and 5 
(wIndex) and the length of a subsequent data transfer is supplied in byte offset 6 and 7 (wLength).  
 

 

Table 2.3: Standard device requests 

 

bmRequestType bRequest wValue wIndex wLength Data 
source 

Recipient Data stage (if 
required) 

10000000B 
10000001B 
10000010B 

Get_Status 
(00h) 

0 Device,  
Interface, 
Endpoint 

2  Device Device,  
Interface, 
Endpoint 

status 

00000000B 
00000001B 
00000010B 

Clear_Feature 
(01h) 

Feature 
  

Device,  
Interface, 
Endpoint 

0  None Device, 
Interface, 
Endpoint 

None 

00000000B 
00000001B 
00000010B 

Set_Feature  
(03h) 

Feature  Device,  
Interface, 
Endpoint 

0  None Device, 
Interface, 
Endpoint 

None 

00000000B Set_Address 
(05h) 

Device address 0 0  None Device None 

10000000B Get_Descriptor           
(06h) 

Descriptor type 
& index 

Device or 
language ID 

Descriptor 
length 

 Device Device Descriptor 

00000000B Set_Descriptor 
(07h) 

Descriptor type 
& index 

Device or 
language ID 

Descriptor 
length 

 Host Device Descriptor 

10000000B Get_Configuration 
(08h) 

0 Device 1  Device Device Configuration 

00000000B Set_Configuration 
(09h) 

Configuration Device 0  None None None 

10000001B Get_Interface 
(0Ah) 

0 Interface 1  Device 
 

Interface Alternate  
setting 

00000001B Set_Interface 
(0Bh) 

Interface # Interface 0  None Interface None 

10000010B Synch_Frame 
(0Ch) 

0 Endpoint 2  Device 
 

Endpoint Frame  
number 
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A summary of these standard requests are given below, but refer to the USB specification ([1], p. 250-260) for 
details. 
 
Get_Status: The host requests the status of the features of a device, interface or endpoint. The USB 
specification defines only two features: DEVICE_REMOTE_WAKEUP (01h) which applies to devices, or 
ENDPOINT_HALT (00h), which applies to endpoints. 
 
Clear_Feature: The host requests to disable a feature of a device, interface, or endpoint. When the host clears 
the DEVICE_REMOTE_WAKEUP feature, a suspended device cannot signal the host to resume 
communications. When the host clears the ENDPOINT_HALT feature, communication to and from an endpoint 
is resumed. An endpoint is halted when the PC host detected an error, e.g. if the endpoint buffer is empty when 
it is expected to contain data. 
 
Set_Feature: When the host sets the DEVICE_REMOTE_WAKEUP feature, a suspended device can signal the 
host to resume communications. When the host sets the ENDPOINT_HALT feature, communication to an 
endpoint is stopped, and can only be resumed using the “Clear_Feature” request.  
 
Set_Address: The host specifies an address to use in future communications with the device. This request is 
typically used during enumeration (refer to section 2.7). 
 
Get_Descriptor: The host requests a descriptor (descriptors are explained in section 2.7.3). 
 
Set_Descriptor: The host adds a descriptor or updates an existing descriptor. 
 
Get_Configuration: The host requests the value of the current device configuration. 
 
Set_Configuration: The host instructs the device to use the selected configuration.  
 
Get_Interface: For devices with configurations that support multiple settings for an interface, the host requests 
the current setting. 
 
Set_Interface: For devices with configurations that support multiple settings for an interface, the host requests 
the device to use a specific setting. 
 
Synch_Frame: The device sets and reports an endpoint’s synchronisation frame. In isochronous transfers, the 
communication between an endpoint and the host may vary in data packet size according to a specific sequence 
e.g. 8, 8, 8, 64 bytes. This request enables the host and endpoint to agree on which frame will begin the 
sequence.  
 

2.7 Enumeration 
Before any communication can take place between the PC host and the USB device, the host needs to determine 
the device type and its capabilities so that it can assign a device driver. This initial communication is called 
enumeration.  
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2.7.1 Device detection 
Inside the root hub, there are two biasing resistors connected to the D+ en D- signals of the USB bus. These 
resistors are connected to the ground voltage to ensure that D+ and D- are low when no device is connected to 
the bus. A USB device has resistors connected between either the D+ or D- signal of the USB bus and the 
positive supply voltage (Vcc). When a device is connected to the bus, the biasing resistors on the device’s side 
will cause D+ or D- to rise above ground voltage, and this change in voltage is recognised by the hub to detect 
the connection of a device. If the biasing resistor is connected to D+ , the device is informing the hub that it is a 
full-speed device, whereas a biasing resistor on D- indicates a low-speed device. A high-speed device is first 
detected as a full-speed device, and will later inform the root hub of its high-speed capabilities. After device 
detection, the PC host will initiate the enumeration process. 
 

2.7.2 Enumeration steps 
1. After the hub detected a newly attached device and determined its speed, the host controller requests the hub 

to reset the port to which the device is connected. The hub places the device’s USB data lines in the reset 
condition (both data lines at logic low) for at least 10 milliseconds. 

2. The host detects whether a full-speed device also supports high-speed. 
3. The hub establishes a signal path between the device and the bus. The device is in its default state where it 

will respond to control transfers over the default pipe at endpoint 0. The device can now communicate with 
the host, using the default address of 00h.  

4. The host sends a Get_Descriptor request to determine the maximum packet size of the default pipe. The 
request is sent to device address 0, endpoint 0. The host enumerates only one device at a time, and only one 
device will thus respond to this request, even if several devices are attached at once. The device descriptor 
contains the maximum packet size supported by endpoint 0 (descriptors are discussed in section 2.7.3). 

5. The host assigns a new unique address to the device using the Set_Address request.  
6. The host learns about the device’s abilities using the Get_Descriptor request. The host continues to request 

the different configuration descriptors specified in the device descriptor (see section 2.7.3). 
7. The host assigns and loads a device driver. After the host determined the device’s properties from the device 

descriptors, it assigns a matching device driver to the device. The device driver enables communication 
between the software applications and the hardware device. In selecting a driver, Microsoft Windows tries 
to match the information stored in the system’s .inf files with the vendor and product IDs retrieved from the 
device. The .inf files specifies which device driver should be used with which device.  

8. The device driver selects a device configuration to use. The device driver requests a configuration by 
sending a Set_Configuration request to the device. The device is now ready for use. 

 

2.7.3 Descriptor types 
During the enumeration process, the host PC requests descriptors from the device. Descriptors are data 
structures that contain information about the device’s configuration. All USB devices must be able to respond to 
requests for descriptors, therefore they must store these descriptors in memory and respond to requests for them 
in the expected format. The USB specification defines a hierarchy of descriptors ([1], p. 261), but not all of 
them are required. A device must contain at least one device descriptor. A device descriptor must contain at 
least one configuration descriptor, and a configuration descriptor must contain at least one interface descriptor 
(see Figure 2.8, p.17). If there are endpoints (other than control endpoint 0), the interface descriptor must 
contain descriptors for them as well. The most important descriptors are briefly explained in the following 
sections. Refer to the USB specification for more detailed explanations of the descriptors. 
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As an example, the field values for the device, configuration, interface and endpoint descriptors are also given in 
these sections for a basic USB device. This device is a vendor-specific, full-speed data acquisition device, with 
only one configuration, interface and endpoint descriptor (other than the control endpoint 0).  
 

Device descriptor

Configuration descriptor (0) Configuration  descriptor (1)

Interface descriptor (0) Interface descriptor(1)

Endpoint descriptor (0) Endpoint descriptor (1)

More interface and
endpoint descriptors

Endpoint descriptor (2)

 
Figure 2.8: Descriptor hierarchy. 

 

2.7.3.1 Device descriptor 
The device descriptor contains basic information about the device. The following table shows the structure of a 
device descriptor. 
 

 

Table 2.4: The device descriptor (from ([1], p. 262). 

 

2.7.3.2 Device_qualifier descriptor 
This descriptor is only required by devices that support both full-speed and high-speed transfers. Some fields in 
the device descriptor may change if the device changes its speed. The values that change are given in this 

Offset Field Size Description Example device 

0 bLength 1 Descriptor size in bytes. 18 bytes =  0x12h 

1 bDescriptorType 1 The constant for the descriptor type: DEVICE (01h). DEVICE = 0x01h 

2 bcdUSB 2 USB specification release number that device comply with (e.g. 0200h) 
in BCD format. 

USB 2.0 = 0x0200h 

4 bDeviceClass 1 USB Class code (if device belongs to a class). Vendor class =  0xFFh 

5 bDeviceSubclass 1 USB subclass code (if device belongs to subclass within a class). None = 0x00h 

6 bDeviceProtocol 1 Specify protocol to use if defined by the selected class or subclass. None = 0x00h 

7 bMaxPacketSize 1 The maximum packet size for endpoint 0 (8,16, 32 or 64 for full speed 
devices). 

64 bytes = 0x40h 

8 idVendor 2 Vendor ID. VID = 0x01h 

10 idProduct 2 Product ID. PID = 0x01h 

12 bcdDevice 2 The device’s release number in bcd format. 1.0 = 0x0100h 

14 iManufacturer 1 An index to a string describing the manufacturer. Optional. None = 0x00h 

15 iProduct 1 An index to a string describing the product. Optional. None= 0x00h 

16 iSerialNumber 1 An index to a string that contains device’s serial number.  0 = 0x00h 

17 bNumConfigurations 1 The number of configurations that the device supports. 1 = 0x001h 
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descriptor and they swap values with the device descriptor when the device’s speed changes. The following 
table shows the structure of the device_qualifier descriptor. 
 

 
Table 2.5: The device_qualifier descriptor (from [1], p. 264). 

 

2.7.3.3 Configuration descriptor 
After the device descriptor is retrieved by the host, the device’s configuration, interface and endpoint descriptors 
are retrieved. Each device has at least one configuration descriptor, as shown in the following table. Often a 
single configuration is enough, but a device with multiple modes or uses can support multiple configurations. A 
data acquisition device, for example, may be configured to support multiple A/D (analogue to digital) channels 
at a lower speed or to support a single, high-speed A/D channel. Each configuration requires a descriptor. The 
configuration descriptor contains information about the device’s use of power and the number of interfaces that 
it supports.  
 

 
Table 2.6: The configuration descriptor (from [1], p. 265). 

 

2.7.3.4 Other_speed_configuration descriptor 
This descriptor is required by devices that support both full- and high-speed. It is the same as the configuration 
descriptor, but it describes the configuration when the device is operating at the speed that is not currently 
active. 
 
 

 

Offset Field Size Description 

0 bLength 1 Descriptor size in bytes. 

1 bDescriptorType 1 The constant for the descriptor type: DEVICE_QUALIFIER (06h). 

2 bcdUSB 2 USB specification release number that device comply with (e.g. 0200h) in bcd format. 

4 bDeviceClass 1 USB Class code (if device belongs to a class). 

5 bDeviceSubclass 1 USB subclass code (if device belongs to subclass within a class). 

6 bDeviceProtocol 1 Specify protocol to use if defined by the selected class or subclass. 

7 bMaxPacketSize 1 The maximum packet size for endpoint 0 (8,16, 32 or 64 for full speed devices). 

8 Reserved 1 For future use. 

Offset Field Size Description Example device 

0 bLength 1 Descriptor size in bytes. 9 bytes = 0x09h 

1 bDescriptorType 1 The constant for the descriptor type: CONFIGURATION (02h). CONFIG = 0x02h 

2 wTotalLength 2 Size of all data returned for this configuration in bytes (total number of 
bytes contained in configuration, interface and endpoint descriptors). 

26 bytes =0x1Ah 

4 bNumInterfaces 1 Number of interfaces the configuration supports. 1 = 0x01h 

5 bConfigurationValue 1 Identifier for Set_Configuration and Get_Configuration requests. 1 = 0x01h 

6 iConfiguration 1 Index of string descriptor for this configuration. None = 0x00h 

7 bmAttributes 1 Self power/bus power and remote wakeup settings. Bit 7=1, bit 6=1 if 
the device is self-powered, bit 5=1 if device supports remote wakeup 
feature, bit 4-0=0000 unused. 

Bus powered, no 
remote wakeup 
10000000b= 0x80h 

8 MaxPower 1 Bus power required, expressed as (max. mA / 2). 300mA /2 = 0x96h 
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Table 2.7:  The other_speed_configuration descriptor (from [1], p. 267). 

 

2.7.3.5 Interface descriptor 
The interface descriptor, shown in the following table, contains information about the endpoints that the 
interface supports. Each configuration must support at least one interface, but a configuration can have multiple 
interfaces that are active at the same time. Each interface has its own interface and endpoint descriptors. A 
device with multiple interfaces that are active at the same time is called a composite device and the host loads a 
driver for each interface. The host requests an alternate interface with the Set_Interface request, and reads the 
current interface number with the Get_Interface request.  
 

 

Table 2.8: The interface descriptor (from [1], p. 268). 

 

2.7.3.6 Endpoint descriptor 
Each endpoint specified in the interface descriptor must have a corresponding descriptor to describe its 
properties. Endpoint 0 does not have an endpoint descriptor because every device must support endpoint 0. 
Table 2.9 (p. 20) shows the structure of the endpoint descriptor. 
 

2.7.3.7 String descriptor 
A string descriptor contains descriptive text about the manufacturer, product, serial number, configuration or 
interface. Each string has an index. String 0 has the special function of providing language ID’s (wLANGID), 
which are ID codes that indicate the languages that the strings are available in. String 1 and upwards may 
contain any text (bSTRING) that are encoded in Unicode. Unicode uses 16 bits to represent each character. 
Table 2.10 (p. 20) shows the structure of the string descriptor. 

Offset Field Size Description 

0 bLength 1 Descriptor size in bytes. 

1 bDescriptorType 1 The constant for the descriptor type: OTHER_SPEED_CONFIGURATION (07h). 

2 wTotalLength 2 Size of all data returned for this configuration in bytes. 

4 bNumInterfaces 1 Number of interfaces the configuration supports. 

5 bConfigurationValue 1 Identifier for Set_Configuration and Get_Configuration requests. 

6 iConfiguration 1 Index of string descriptor for this configuration. 

7 bmAttributes 1 Self power / bus power and remote wakeup settings. Bit 7 = 1, bit 6 = 1 if device is self-
powered, bit 5 = 1 if device supports remote wakeup feature, bit 4-0 = 0000 unused. 

8 MaxPower 1 Bus power required, expressed as (max. mA / 2). 

Offset Field Size Description Example device 

0 bLength 1 Descriptor size in bytes. 9 bytes = 0x09h 

1 bDescriptorType 1 The constant for the descriptor type: INTERFACE (04h). INTERFACE = 0x04h 

2 bInterfaceNumber 1 Number identifying this interface. 1 = 0x01h 

3 bAlternateSetting 1 Value used to select an alternate setting. None = 0x00h 

4 bNumEndpoints 1 Number of endpoints supported (excluding endpoint 0). 1 = 0x01h 

5 iInterfaceClass 1 Class code for devices with a class specified by the interface. Vendor = 0xFFh 

6 bInterfaceSubclass 1 Subclass code. Vendor = 0xFFh 

7 bInterfaceProtocol 1 Protocol code. None = 0x00h 

8 iInterface 1 Index of string descriptor for the interface. None = 0x00h 
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Table 2.9: The endpoint descriptor (from [1], p. 269). 

 
Offset Field Size Description 

0 bLength 1 Descriptor size in bytes 

1 bDescriptorType 1 The constant for the descriptor type: STRING (03h) 

2 wSTRING or wLANGID varies  Contains Language ID codes or a Unicode string 

 

Table 2.10: The String descriptor (from [1], p. 247). 

 

2.8 A USB I/O device 
A USB I/O device requires the basic elements shown in the block diagram of Figure 2.9. 
 
 
 
 
 
 
 
 

 

 

 

Figure 2.9: Block diagram of an USB  I/O device (adapted from [2], p.73). 

 

The USB transceiver must meet and adapt the electrical characteristics of the bus (differential, bidirectional 
signalling) to the TTL/CMOS voltage levels of the serial interface engine (unidirectional). USB transceivers are 
available from Sipex, NEC, Philips and Lucent. The serial interface engine (SIE) receives bits or bytes from 
the USB transceiver, validates them and provides valid bytes to the SIE interface. Similarly, bytes are received 
from the SIE interface and transmitted serially onto the USB bus. The SIE must be able to synchronise with the 
transitions of the SYNC packet to recover a clock rate to be able to send and receive packets, and it must also 
manage noise rejection. The SIE interface could perform error correction before passing the data to the protocol 
controller. The protocol controller handles error conditions, responds to USB events such as implementing the 
USB handshake protocol and formats incoming and outgoing data to be compatible with the USB packet 
protocol. The protocol controller can be implemented with a microcontroller or DSP. 

Offset Field Size Description Example device 

0 bLength 1 Descriptor size in bytes. 8 bytes = 0x08h 

1 bDescriptorType 1 The constant for the descriptor type: ENDPOINT (05h). ENDPOINT = 
0x05h 

2 wEndpointAddress 2 Endpoint number and direction. Bit 7 = 0 (OUT) or 1 (IN), Bit 4-6 = 000 
(unused), Bit 0-3 = endpoint number. 

10000001b = 
0x81h 

3 bmAttributes 1 Transfer type supported. Bit 0 -1 = transfer type (00=control,  1=isochronous, 
10=bulk, 11=interrupt), bit 2-5=0000 (non-isochronous endpoints), bit 6-7 =00. 

Bulk = 0x02h 

4 wMaxPacketSize 2 Maximum packet size supported. 64 bytes = 0x40h 

 bInterval 1 Maximum latency / polling interval (for isochronous endpoints). n/a = 0x00h 

Tranceiver Serial Interface
Engine SIE Interface Protocol

controller Microcontroller

Program
Memory RAM

Custom I/O

Data

control

D+
D-
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Together these components handle all the USB communication functions, but to design a functional USB device 
one needs some input and output, together with a microcontroller, microprocessor or DSP to control these input 
and output signals. The microcontroller would most likely require some RAM and/or ROM to store temporary 
data and the program code that runs on the microcontroller (firmware). Fortunately, these components can be 
integrated and some vendors include them on a single chip, called an USB controller. There is a vast variety to 
choose from, all differing in architecture and complexity.  
 
USB controller chips vary in how much firmware support they require for USB communications. Some require 
the device’s program code to manage USB communications such as ensuring that the appropriate handshake 
packets and device descriptors are sent to the host. Others require little more than accessing a series of registers 
to store and retrieve USB data. Some controllers include a general-purpose CPU, while others interface to an 
external CPU to handle the non-USB tasks. Some controllers are designed from the ground up for USB 
applications. These are optimised for USB applications, instead of just adding USB functionality to an existing 
architecture. Those controllers that are based on existing architectures (like the very popular 8051) have the 
advantage that developers are already familiar with their architecture. All controller types include at least one 
USB port as well as buffers, registers and some I/O ports. A controller chip with a general-purpose CPU will 
also include on-chip program and data memory, or at least an interface to these as external components. One 
needs to study the specifications of these devices carefully, as they do not necessarily support all the transfer 
types and bus speeds, and some provide only a few endpoints.  
 
For high-volume applications that require fast performance, another option is to design and manufacture an 
application-specific integrated circuit (ASIC). The components for the design of these chips are available in 
synthesisable VHDL (very high speed integrated circuit hardware description language) or Verilog source code. 
Some companies derive their business by developing and supporting libraries of VHDL components. They are 
called SIP (semiconductor intellectual property) vendors. One can licence an entire USB controller design from 
a SIP vendor to add USB peripheral functionality to a FPGA design.  
 
For the purposes of this project, a controller that includes a general-purpose CPU and some on-chip RAM 
would be ideal. This would save development costs and time, and it would be an advantage if the chip is based 
on a familiar architecture, such as the 8051. In choosing a USB controller, there are some aspects to consider.  
 

2.8.1 USB microcontroller selection criteria 
1. The USB port: The USB controller must have an integrated USB transceiver and SIE. It must provide 

buffers to retrieve data received from the USB bus and for storing data to be transmitted to the bus. 
Registers that are structured as FIFOs (first in, first out) would be ideal. The USB port should require very 
little firmware support for USB communications. This simplifies firmware design and allows the processor 
to perform other tasks. 

2. The USB controller must support a number of endpoints. For this project, it is envisaged to have four 
telephony channels (at the most) that must be able to interface with the USB controller. It is thus required to 
have 4 IN endpoints (buffers to store telephony data to be sent to the PC host) and 4 OUT endpoints (buffers 
to store telephony data received from the PC host), as well as the required control endpoint 0. 

3. Bus speed: The USB controller must be able to operate at the bus speed and support the transfer type 
required to send and receive telephony audio data. Generally, high- and full-speed controllers are more 
expensive. For this project we would, at most, have four telephony channels, each operating at 8 kHz with 
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8-bit sampling. That translates to a maximum data rate of 256 Kbps if all four channels are used 
simultaneously. Control data would primarily be sent to and received from the telephony interface device 
when it is initialised, so that would not contribute to the steady-state data rate. The low-speed bus 
specification does not support bulk transfers, which would be required for this application. The full-speed 
specification supports all transfer types, and the bus speed would be sufficient for the required data rate. A 
USB controller for this project should thus support full-speed bus transfers.  

4. The CPU: A CPU is required to transfer telephony data between the USB and the telephony circuit. The 
CPU must be based on a general-purpose microcontroller such as the 8051, which has a familiar architecture 
and instruction set.  

5. Program memory: The USB controller must include storage for program memory. This could be EEPROM 
(electrically erasable programmable read-only memory) or RAM. EEPROM is a non-volatile type of 
memory, whereas RAM is volatile. During development it is likely that program memory will change often, 
therefore it is essential that it must be easy to change and store the program memory of the USB controller. 
Some chips are OTP (one-time programmable) and a new chip must be used if there are changes to the 
firmware. We require a USB controller that can be reprogrammed. 

6. Data memory: The USB controller must have internal RAM, or at least access to external RAM for data 
memory. This project requires RAM to store telephony data that is transferred between the PC and the 
telephony interface. 

7. Other I/O: The microcontroller must have general purpose input and output pins that can be used to 
interface to other circuits. The microcontroller must be able to send and receive control and data to 
telephony interfacing circuits. Some microcontrollers include built-in support for serial interfaces such as 
RS-232, I2C, microwire and SPI.  

8. Other USB controller selection criteria include the ease of development, price and availability. Besides the 
abilities and features of the chip itself, ease of development is a major factor in how long it takes to get a 
project up and running. Some vendors have development boards available for their microcontroller which 
makes it easier to get started. A development board simplifies downloading and debugging of firmware. 
Detailed and well-organised documentation and sample firmware code are essential to start development 
with a microcontroller. 

 
To save development time, the most firmware development is done in a high level language, like C, instead of 
assembly language which can be difficult to read and maintain. By using a language like C, the programmer 
does not have to be intimately familiar with the architecture of the microcontroller, and code developed in C 
will also be more portable to other systems than code developed in assembly. One must be sure that there is a 
compiler available that can compile the C code for the chosen chip architecture. If it is not available, the chip 
vendor must be able supply the compiler and tools that are needed to download the code to the USB controller’s 
program memory. Compilers for 8051-compatible chips are freely available, which is further motivation to 
choose a chip based on this architecture. 
 
Cypress, Infineon and Microchip are the most popular vendors that offer 8051-compatible, USB-capable 
microcontrollers. The Microchip PIC 16C7X5 series only have OTP program memory, which makes them 
unsuitable, while the USB microcontroller from Infineon requires a special “JTAG” programmer to download 
the firmware code.  
 
Cypress’ EZ-USB microcontroller family is notable because the chips support a different and flexible approach 
to storing firmware. Instead of storing the firmware on-chip in non-volatile memory, it stores the firmware on 
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the PC host, and downloads it from the PC host via the USB cable on each attachment. This makes it very easy 
to update firmware, so there is no need to replace the chip or use a special programmer. The downside is 
increased driver complexity on the PC host and longer enumeration time, but once the firmware development is 
complete, the program code can be stored on an on-board EEPROM. Cypress also offers a development kit for 
the EZ-USB family, which includes the software and drivers required to download the firmware to the chip. 
This chip has been chosen for this project, because it meets all the selection criteria, it is available and its 
flexible features make it very suitable for a project of this nature. 
 

2.8.2 The Cypress EZ-USB FX microcontroller 
The Cypress EZ-USB FX microcontroller is an 8051-compatible USB controller. A block diagram of the EZ-
USB FX is shown in Figure 2.10 (from [4], p. 4). It has an enhanced 8051 core which uses four clock cycles per 
instruction cycle (compared to the 8051’s twelve). The EZ-USB FX supports full-speed, has 14 bulk/interrupt 
endpoints, 16 isochronous endpoints and 1 control endpoint. It has 8K internal memory, which is combined for 
data and program memory, but it can be expanded by adding 64K of external RAM. It has 40 general-purpose 
I/O pins, 2 UARTS, an I2C port, a general programmable interface (GPIF), 4 slave FIFO buffers and 3 
timers/counters. Cypress also added a DMA engine that transfers data between slave FIFOs, memory and ports 
at high speed (one clock cycle per byte).  
 
As mentioned, the Cypress EZ-USB FX controller stores its firmware on the host PC or in an external 
EEPROM. When the EZ-USB is attached to the bus, the EZ-USB core (not the 8051 microcontroller) knows 
how to enumerate, even though the firmware has not yet been downloaded. The EZ-USB FX core 
communicates with the host during enumeration, while holding the 8051 circuits in the reset state. The EZ-USB 
core downloads the firmware from the PC host (via USB) or from an EEPROM connected to the I2C port of the 
controller. When the firmware download is complete, the 8051 microcontroller exits the reset state and starts 
executing the downloaded firmware. The firmware electrically simulates removal from, then reattachment to the 
USB bus. When the PC host detects the simulated re-attachment, it enumerates the device again, this time 
retrieving the newly stored descriptors and uses the information contained in them to select a device driver to 
load. Cypress has trademarked the term “ReNumeration” to describe this process [38].  

U
S

B
T
ra

n
ce

iv
e
r

Enhanced USB
Serial Interface

Engine (SIE)

8 KB RAM

2 KB FIFO
(ISO)

DMA Engine

x4 PLL 8051 Core 48/24 MHz
4-clock instruc. cycle

D
a
ta

 B
u

s 
(8

)

GPIF

UART0 UART1 3 timers

4 FIFO's Each
64 bytes

I2C compatible
controller

Up to 5 I/O ports (ports A-E)

8/16 bits

D
a
ta

 (
8

)

A
d

d
re

ss
 (

1
6

)

1
2

 M
H

z

USB

 
Figure 2.10: The EZ-USB FX microcontroller (from [4], p. 4]). 
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2.8.3 Firmware development environment 
Cypress included an evaluation version of Keil Corporation’s C compiler in the development kit. The evaluation 
version can only compile firmware programs up to 4 kilobytes (K), but the firmware for this project would most 
likely be larger than 4 K. To bypass this restriction, we can use a compiler called SDCC (Small Device C 
Compiler), which is an ANSI C compiler designed for 8051-based microprocessors. The entire source code for 
this compiler is distributed under GPL (GNU Public Licence). GPL is a licence created by the Free Software 
Foundation and provides for free software published under its terms (users are allowed to copy, modify and 
redistribute GPL software). The SDCC Compiler User Guide [5] is used as a reference.  
 
The compiler is very easy to use. It is a command line compiler that compiles and links the .c source file and 
creates .asm and .ihx output files. The .ihx file is a load module containing Intel hex records, which is 
downloaded to the microcontroller RAM. Cypress includes a software tool called “EZ-USB Control Panel” in 
the developer kit that has a function to download the firmware file to the microcontroller. Refer to Chapter 7 and 
8 for the firmware design of the EZ-USB FX controller.  



 

 

 

Chapter 3 

3. The PC host software environment 

The PC host software environment 

 

3.1 Device drivers 
A device driver is a software component that enables applications to access a hardware device. A device driver 
insulates applications from requiring details about the physical connections, signals, protocols, addresses or 
ports the device attaches to. It translates between application-level and hardware-specific code. The application-
level code uses functions supported by the operating system to communicate with the device, while the 
hardware-specific code handles the protocols necessary to access the peripheral’s circuits. 
 
A device driver can be a monolithic driver that handles everything from communicating with applications to 
reading and writing to the ports or memory addresses that connect to the device’s hardware. Other drivers use a 
layered driver model, where each driver in a series performs a portion of the communication between the 
application and the physical device. The top layer contains a function driver that manages communications 
between applications and the lower-level bus drivers. The bottom layer contains a bus driver that manages the 
communication between the function driver and the device. 
 
The layered driver model is more complicated as a whole, but it simplifies the task of writing a device driver, as 
many of the low-level hardware drivers may already exist, and only function drivers need to be written. It is also 
more efficient, because it enables different devices that have tasks in common to use the same driver for those 
tasks.  
 
For this project, the LibUSB driver will be used, which is a generic USB driver that allows user space 
application access to USB devices. To understand how this device driver works, one needs a basic 
understanding of how Microsoft Windows and Linux device drivers interface with application software and 
USB hardware.  
 

3.2 Microsoft Windows driver environment 
The Microsoft Windows operating system uses the Win32 Driver Model (WDM) architecture to interface with 
USB devices. The Win32 Driver Model is a layered device driver architecture, shown in Figure 3.1. In 
Windows, code runs in either user mode or kernel mode. Applications must run in user mode and most drivers 
run in kernel mode. In user mode, Windows limits access to memory and other system resources, while in kernel 
mode, code has unrestricted access to system resources. 
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Figure 3.1: The Win32 driver stack (adapted from [3], p.236). 

 
The function driver enables applications to communicate with a USB device using a set of software functions, 
called an application programming interface (API). The API functions are part of Windows’ WDM subsystem. 
To communicate with a USB device, an application does not have to know anything about the USB protocol. 
The function driver knows how to communicate with the lower level device drivers. The kernel drivers 
communicate with each other using I/O Request Packets (IRPs).  
 
Windows includes class drivers for many standard device types (e.g. disk drives, printers etc.). If a USB device 
falls within a class specification and it has features or capabilities beyond what the class driver supports, a 
device-specific filter driver can support these as needed.  
 
Some devices are custom built and intended to be used only with a specific software application. These devices 
may use custom drivers, or they may be designed so that they comply with the specifications of a supported 
class. A custom driver would replace the function driver, but it would still need to fit into the layered 
architecture. The LibUSB driver (see section 3.4) is a custom driver. 
 
The USB bus driver consists of the root hub driver, the bus class driver and the host controller driver. The bus-
class driver manages bus power, enumeration, USB transactions and the communications between the root hub 
driver and the host controller driver. The host controller driver enables the host controller hardware (which 
connects to the USB bus) to communicate with the upper USB drivers. The root hub driver manages the 
initialising of ports and manages communications between the function drivers and the bus class driver. 
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The bus drivers are part of Windows, and device driver programmers have very little information about how 
they work. Because USB device drivers for Windows must conform to the Win32 Driver Model (WDM), one 
needs software tools that are capable of compiling a WDM driver (like Visual C++). Beyond this requirement, 
one needs the Windows Device Developer’s Kit (DDK) which can be obtained from Microsoft at a cost. The 
DDK includes developer-level documentation and example code for developing WDM drivers. 
  

3.3 Linux driver environment 
The Linux USB stack was started in 1998 and rapid development took place for USB devices. Today Linux has 
almost complete support for USB-class devices. USB is supported by version 2.2.18 (and later) of the Linux 
kernel.  
 
Linux’s implementation of device drivers is similar to that of Windows. In Linux, there is a subsystem called 
the USB core (usb-core.o). The USB core provides functions that are common to all USB devices as well as a 
communications pathway between the different device drivers and the Linux kernel. The Linux USB system can 
be grouped into an upper and a lower API, as shown in Figure 3.2. The lower API provides for the host 
controller driver (uhci-hcd.o, ohci-hcd.o) and the upper API provides for the USB device drivers (printer.o, 
hid.o etc.). The host controller driver communicates between the host controller hardware and the USB core, 
and the device drivers provide an interface between applications and the USB core. Linux device drivers 
communicate with the USB core using data structures called USB Request Blocks (or URBs). 
 
 

 

 

 

 

 

 

 

 

 

Figure 3.2: Linux USB core API layers. 

 
These drivers are Linux kernel modules that load and unload during runtime to add new functionality to a 
running kernel. A module is object code (not linked into a complete executable) that can be dynamically linked 
to the running kernel. The Linux kernel offers support for different types of modules, including device drivers.  
 
With Linux, a user can access block and character devices via a file name in /dev e.g. /dev/lp0 for a printer. The 
most USB devices are block or character devices. A block device is a device that can host a file system such as a 
disk. A block device can only be accessed as multiples of a block, where a block is usually 1 K of data. A 
character device is one that can be accessed as a stream of bytes (like a file). The only relevant difference 
between a character device and a regular file is that you can always move back and forth in the regular file, 
whereas most character devices are just data channels, which can only be accessed sequentially.  
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A module implements one of these device types, and can thus be classified as a character module (character 
driver) or a block module (block driver). A character module implements the open, close, read and write system 
calls. A block driver offers the kernel the same interface as a character driver, as well as an additional block-
oriented interface that is invisible to the user or applications opening the /dev files. A block interface, though, is 
essential to be able to mount a file system.  
 
Most USB device classes are supported in Linux. To write a custom driver, one needs basic knowledge of kernel 
compilation and some extensive programming experience in C under Linux.  
 

3.4 LibUSB 
Since Windows and Linux implement their device drivers differently, the user space application interface to 
these drivers will differ as well. This is so, even if the device belongs to a class which both operating systems 
support. The API for the USB telephony interface device must be developed in such a way that  it remains the 
same under both Windows and Linux development environments.  
 
LibUSB (http://libusb.sourceforge.net/) is a generic USB driver that that provides an API to user space 
applications to access USB devices, regardless of the operating system. It supports Linux, FreeBSD, NetBSD, 
OpenBSD, Darwin and MacOS.  
 
LibUSB-win32 (http://libusb-win32.sourceforge.net) is a ported version of LibUSB to the Windows operating 
systems (Win 98SE, Win ME, Win 2k, and Win XP). LibUSB-win32 is 100% API compatible with the main 
LibUSB project. It can be used as a filter driver for existing devices, or it can be used as a normal device driver 
for devices for which no driver exists (custom devices). The latest version (0.1.8) of LibUSB supports bulk, 
interrupt and control transfers. Unfortunately, isochronous transfers are not supported yet. This should not pose 
a problem, as the speed of bulk transfers should be sufficient for this project if we provide adequate buffering 
for incoming and outgoing telephony data. In this case, the only prerequisite would be that no other devices with 
a high bandwidth requirement may be connected on the same bus as the telephony interface device, as bulk 
transfers would receive the lowest priority. The following section briefly describes the LibUSB API (see [10] for 
details). 
 

3.4.1 LibUSB functions 
 

3.4.1.1 Core functions 
usb_init: 
Prototype: void usb_init(void); 

Initialises the LibUSB internal structures for USB communication. This function must be called before any of 
the other LibUSB functions. The actual process initiated by this function is platform-specific. 
 
usb_find_busses:  
Prototype: int usb_find_busses(void); 

Finds all busses on the system. It iterates through all of the USB resources and counts the number of changes on 
the bus (since the previous call to this function) and returns this number.  If it is called for the first time, it will 

http://libusb.sourceforge.net/
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record all of the busses into a previously empty list of busses and return the total number of busses on the 
system.  
 
usb_find_devices:  
Prototype: int usb_find_devices(void); 

Similar to usb_find_busses, but iterates through each bus to find the number of devices on each bus. 
Returns the number of changes since the previous call to this function. 
 
usb_get_busses: 
Prototype: struct usb_bus *usb_get_busses(void); 

Returns the linked list of USB busses found. This was implemented for languages that support C calling 
conventions and that can use shared libraries, but do not support C global variables (like Delphi). 
 

3.4.1.2 Device operations 
usb_open: 
Prototype: usb_dev_handle *usb_open(struct *usb_device dev); 

Opens a USB device so that it can be used. It allocates memory for the data structures associated with an open 
USB device. This function must be called before attempting to perform any operations on the device. Returns a 
handle to be used in future communication with the device, or a null value on failure. 
 
usb_close: 
Prototype: int usb_close(usb_dev_handle *dev); 

Closes a device opened with usb_open. It clears the data structures and releases control of the resources on 
the host computer. Without this function, it would be impossible to access the claimed USB hardware until the 
PC is rebooted. No further operations may be performed on the handle after usb_close is called.  
 
usb_set_configuration: 
Prototype: int usb_set_configuration(usb_dev_handle *dev, int configuration); 

Sets the active configuration of a device. The configuration parameter is the value as specified in the 
descriptor field bConfigurationValue. Returns a 0 on success or an error value on failure. 
 
usb_set_altinterface: 
Prototype: int usb_set_altinterface(usb_dev_handle *dev,int alternate); 

Sets the active alternate setting of the current interface. The alternate parameter is the value as specified in 
the descriptor field bAlternateSetting. Returns 0 on success or an error value on failure. 
 
usb_resetep: 
Prototype: int usb_resetep(usb_dev_handle *dev, unsigned int ep); 

Resets the state of an endpoint specified by the ep parameter. Returns 0 on success or an error value on failure. 
 
usb_clear_halt: 
Prototype: int usb_clear_halt(usb_dev_handle *dev, unsigned int ep); 
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Clears any halt status on an endpoint specified by the ep parameter. Returns 0 on success or a value (<0) on an 
error condition. 
 
usb_reset: 
Prototype: int usb_reset(usb_dev_handle *dev); 

Resets a USB device. Any configuration that was made since it was opened will be lost, and the device will be 
forced to enumerate. Returns 0 on success or a value (<0) on an error condition. 
 
usb_claim_interface: 
Prototype: int usb_claim_interface(usb_dev_handle *dev, int interface); 

Claims an interface of a device, specified by the interface parameter. This function must be called before 
any operations related to an interface are performed. The default interface can be claimed by using the 
descriptor field bInterfaceNumber. Returns 0 on success or a value (<0) on an error condition. 
 
usb_release_interface: 
Prototype: int usb_release_interface(usb_dev_handle *dev, int interface); 

Releases a previously claimed interface, specified by the interface parameter. This function releases any 
previously claimed interface. Once this interface is released, a new interface must be claimed before any USB 
transfers can occur. Returns 0 on success or a value (<0) on an error condition. 
 

3.4.1.3 Control transfers 
usb_control_msg: 
Prototype: int usb_control_msg(usb_dev_handle *dev, int bmRequestType, int 

bRequest, int wValue, int wIndex, buffer *byte, int wLength, int 

timeout); 

Sends a control message (refer to section 2.6) to a device (using the default control pipe). The type of request is 
specified by the bRequestType parameter and the request itself by the bRequest parameter. The 
parameters wValue and wIndex corresponds to the arguments needed to support the request.  The buffer 
parameter is a pointer to where the data is located, or where it is to be stored (depending on the type of request). 
The wLength parameter indicates the number of data bytes in the control transfer and timeout is the time 
after which the request will return with an error code (<0) if it is not processed. Returns 0 on success.  
 
usb_get_string: 
Prototype: int usb_get_string(usb_dev_handle *dev, int index, int langid, char 

*buffer, int bLength); 

Retrieves a string descriptor from device. The index parameter contains the index of the string, langid is the 
language ID of the string, buffer is the buffer where the string is to be stored and bLength is the size of this 
buffer. Returns 0 on success or a value (<0) on an error condition. 
 
usb_get_descriptor: 
Prototype: int usb_get_descriptor(usb_dev_handle *dev, unsigned char type, 

unsigned char index, void *buffer, int buf_size); 
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Retrieves a descriptor (via a device’s default control pipe), specified by the type and index parameters. The 
buffer parameter specifies where the descriptor is to be stored and bLength is the size of this buffer. 
Returns 0 on success or a value (<0) on an error condition. 
 

usb_get_descriptor_by_endpoint: 
Prototype: int usb_get_descriptor_by_endpoint(usb_dev_handle *dev, int ep, 

unsigned char type, unsigned char index, void *buf, int buf_size); 

The same as usb_get_descriptor, but retrieves a descriptor via a control endpoint specified by ep, and 
not the default control endpoint 0. Returns 0 on success or  a value (<0) on an error condition. 
 

3.4.1.4 Bulk transfers 
usb_bulk_write: 
Prototype: int usb_bulk_write(usb_dev_handle *dev, int ep, buffer *bytes, int 

length, int timeout); 

Writes data to a bulk endpoint specified by ep. The data to be written is stored in buffer and the size of the 
buffer is specified by length. Returns 0 on success or a value (<0) on an error condition. The USB transfer 
will fail if it takes longer than timeout (milliseconds) to complete. 
 
usb_bulk_read: 
Prototype: int usb_bulk_read(usb_dev_handle *dev, int ep, buffer *bytes, int 

length, int timeout); 

Reads data from a bulk endpoint specified by parameter ep. The data is to be stored in buffer and the size of 
the buffer is specified by length. Returns 0 on success or a value (<0) on an error condition. The USB transfer 
will fail if it takes longer than timeout (milliseconds) to complete. 
 

3.4.1.5 Interrupt transfers 
usb_interrupt_write: 
Prototype: int usb_interrupt_write(usb_dev_handle *dev, int ep, buffer *bytes, 

int length, int timeout); 

Writes data to an interrupt endpoint specified by parameter ep. The data to be written is stored in buffer and 
the size of the buffer is specified by length. Returns 0 on success or a value (<0) on an error condition. The 
USB transfer will fail if it takes longer than timeout (milliseconds) to complete. 
 
usb_interrupt_read: 
Prototype: int usb_interrupt_read(usb_dev_handle *dev, int ep, buffer *bytes, 

int length, int timeout); 

Reads data from an interrupt endpoint specified by parameter ep. The data is to be stored in buffer and the 
size of the buffer is specified by length. Returns 0 on success or a value (<0) on an error condition. The USB 
transfer will fail if it takes longer than timeout (milliseconds) to complete. 



 

 

 

Chapter 4 

4. The telephony interface 

The telephony interface 
 

The USB device must interface to the telephone network to be able to provide telephony access. The wireline 
telephone system is generally referred to as the public switched telephone network (PSTN), which is the total 
telephone network accessible by the public. 
 

4.1 The telephone network 
The telephone network may implement different technologies, but for this project we are mainly interested in an 
analogue telephone connection. PSTN is a circuit-switched network, which means that the connection is only 
made for the duration of the telephone call. The connection between the customer premises equipment (CPE) 
and the central office (CO) is called the local loop. The central office (CO) connects the calling and called 
parties.  
 
The local loop usually consists of two twisted pairs of copper cable that runs between the central office and the 
customer premises. Only one pair is used, the other pair is for a second telephone line. The analogue loop 
between the CO and the customer premises is also referred to as a POTS (plain old telephone system). All 
computer telephony interfaces are connected either directly to the CO via the local loop or to a company PBX 
(Private Branch Exchange). A PBX connects to the CO with cables called trunks. A trunk is a digital or 
analogue connection between the PBX and the CO that allows a number of telephone conversations to occur 
simultaneously. 
 
All analogue and digital terminal equipment (TE) that connect to the telephone network must be compatible 
with the electrical and signalling requirements of the telephone network. The European Telecommunication 
Standards Institute (ETSI) and the International Telecommunication Union (ITU) are responsible for the setting 
of these standards used by telephony companies. Despite these standards however, analogue and digital 
telephony systems differ to some extent around the world. The South African telecommunication network, 
operated by Telkom, adheres to the ETSI and ITU specifications, and all equipment connecting to the network 
must be approved for use on the network. 
 

4.1.1 Analogue vs. digital 
The analogue loop from the CO to the customer premises can be replaced with a digital line and digital 
equipment. The disadvantage of analogue telephony is that sound can be distorted or could carry an echo. 
Analogue lines also only transmit in the signal bandwidth from 300Hz to 3400Hz. Digital lines provide better 
sound quality, greater bandwidth and faster data transmission than analogue lines, but 
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establishing and maintaining digital lines can be costly. Nevertheless, digital telephony is rapidly replacing 
analogue telephony systems. The increasing change from analogue to digital telephony is prompted by the 
development of T1/E1 and ISDN technologies, which are formats for transmitting digital signals. T1 is the 
standard in the US, Canada, Japan and Hong Kong, while E1 is used in Europe, Latin America, Asia and South 
Africa.  
 
For this project, an analogue POTS interface will be used for the computer telephony interface, as it is easier 
and cheaper to design and test an analogue system. If it is required to connect the analogue interface to a digital 
line, a terminal adapter (TA) could be used. A TA provides an analogue port to be used by POTS equipment 
connecting to a digital line.  
 
4.1.2 Local loop signals 
When a telephone is on-hook (hook-switch open), there is a -48 V DC voltage across the lines (DC open circuit) 
and no current flows in the loop. Figure 4.1 illustrates a simplified version of the loop circuit. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.1: The central office and subscriber telephone loop (adapted from [14]). 

 
The voltage is supplied by a battery at the CO, which is constantly charged from a power line. Batteries are used 
to make sure that the telephone system will operate in the case of a mains power failure. The -48V voltage is 
used because it is high enough to be used over long distances, but still low enough to be considered as safe. The 
line feeding voltage is selected to be negative to delay corrosion due to the electrochemical reactions on wet 
telephone wiring. If the wires are at a negative voltage compared to the ground, the metal ions travel from the 
ground to the wire, instead of the situation where a positive voltage would cause quick corrosion due to ions 
leaving the wire. The two lines are called tip (green) and ring (red). This terminology comes from the old 
switchboard plugs.  
  
To ring a subscriber telephone, the CO supplies an AC ringing signal to the loop. A capacitor in the subscriber 
telephone will allow the AC signal to pass to the ringer coils, which will signal an incoming call. The ringing 
signal is typical between 60 and 80 Vrms.  
 
When the telephone handset is taken off-hook (hook-switch closes), a current of 20-80mA will flow in the loop, 
depending on the length of the loop and the resistance of the phone. The voltage across the phone will be 5-10V 
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and the rest will be dropped over the line resistance. When the hook-switch is closed, the voice circuits supply 
voice energy to the telephone line. To place a call, telephone systems use either the loop start or ground start 
method to initiate a call. In a loop start system, the telephone closes the hook-switch which creates a loop 
current. When the CO detects the loop current, it generates a dial tone and allows outward dialling. In a ground 
start system, one of the two telephone wires (tip or ring) is grounded. When the CO detects a ground wire, it 
generates a dial tone and allows outward dialling. 
 
Modern telephones use dual-tone multi-frequency (DTMF) tones to dial a number. In DTMF dialling, each key 
has two tones associated with it. The DTMF frequencies for each key (specified by ETSI) are shown in Table 
4.1. The keys A to D are not found on a telephone keypad. They are DTMF frequencies used by military 
applications.  
 
 

 

 

 

Table 4.1: DTMF frequencies. 

 
The telephone network uses audible tones called progression tones to indicate the progress of a call. These tones 
include the dial tone, busy tone, hang-up tone and ringing tone. The different tones vary in frequency and 
cadence. Cadence is the alternating pattern of sound and silence, or on-time and off-time of the tone. Tones can 
either have one or two cycles, referred to as singe cycle or double cycle cadencies. The progression tones and 
cadencies are also specified by the ETSI and the ITU. 
 

4.2 The POTS interface 
For this project, we need an interface circuit that would be able to connect the telephone network to the USB 
microcontroller. Pre-packaged circuits, called direct access arrangements (DAAs), are available and are used in 
modems, PBX systems and computer telephony applications. These are hybrid circuits or modules that contain 
many components in a single package. To find a suitable DAA, the requirements of a POTS interface for this 
project must be investigated. 
 

4.2.1 Requirements 
• A complete DAA integrated solution is required, i.e. the circuit must interface to the telephone line and 

provide a digital interface to the microcontroller. The DAA must require as few possible external 
components and the minimal analogue design. The digital interface must provide a data and control 
interface to the microcontroller.  

• The DAA must include a hook-switch for breaking and closing the loop circuit. Traditionally, this is 
implemented using a hook-switch relay, but a transistor can also be used. It must provide control to put the 
device on- or off-hook. 

• The DAA must have a hybrid network (2-to-4 wire converter). Since both transmit and receive signals are 
on the same telephone line pair at the same time (full-duplex), a mechanism is required such that the 
transmitted signal from the USB device is removed or minimised at the device’s receive path. The loss from 
the transmit path to receive path is known as the transhybrid loss, and it is desirable to have this loss as high 

f(Hz) 1209 1336 1477 1633 

697 1 2 3 A 

770 4 5 6 B 

852 7 8 9 C 

941 * 0 # D 



CHAPTER 4: THE TELEPHONY INTERFACE 

 

34

as possible. Unfortunately, as voice signals are transmitted from the four-wire to the two-wire sections of 
the network, energy in the four-wire sections is reflected back (because of an impedance mismatch at the 
hybrid circuit), creating echoed speech. The actual amount of signal that is reflected back depends on how 
well the balance circuit of the hybrid matches the two-wire line. Additional echo cancellation circuitry in the 
echo path can reduce the echo. 

• The DAA must provide the correct AC and DC termination required for the country’s telephone network. 
The DC termination determines the maximum loop current that will flow in off-hook conditions. If the loop 
current is too high, the DAA or PSTN equipment may be damaged. The AC termination must be selected to 
ensure that the maximum voice energy will be transmitted from the CO to the customer telephone. Improper 
impedance matching and termination can cause reflections that create noise and thus degrade the overall 
signal quality. Termination for telephone audio frequencies (300-3400 Hz) is typically specified to be 600Ω, 
but some counties, like South Africa, requires a complex AC termination impedance to satisfy the minimum 
return loss requirements. The hybrid circuit must be adjusted for each AC termination setting to achieve a 
maximum transhybrid loss. 

• The interface must include a codec (coder/decoder), which is a device that encodes and decodes a signal. It 
is used to convert a digital signal to an analogue signal and vice versa. The analogue speech signal received 
from the telephone line must be converted to a digital format to be transmitted on the USB bus. A codec can 
also include compression and decompression technology. By discarding redundant data and reconstituting 
the signal on the receiving end, the amount of data to transmitted on the USB bus is reduced (conserving 
bandwidth). Section 4.2.2 presents an overview of voice digitisation and compression methods. 

• The telephony interface must provide high-voltage isolation of the USB device circuitry from the telephone 
network. This is very important, as the voltages on the telephone network are very high in comparison with 
the voltages in the digital circuitry of the USB device. The analogue front end (AFE), which is the section of 
the circuit that interfaces to the telephone network, must be isolated from the rest of the telephony circuit 
(control circuitry and codec). It must be possible to separate the components in the PCB layout to form a 
high-voltage isolation barrier between the high-voltage circuitry (AFE) and the rest of the device circuitry. 
Traditionally, an isolation transformer is used to provide an isolated link between the high-and low-voltage 
circuitry, but capacitors and optocoupler-based techniques are also becoming popular.  

• The DAA must provide surge and overvoltage protection, mostly for lightening induced transients, which 
could cause damage to equipment. The DAA must also include over-current protection that prevents the 
DAA from failing in such a way that it could compromise the isolation between the telephone network and 
the USB device circuitry.  

• The DAA must have an incoming ring detector. 
• It must be possible to connect multiple DAAs in parallel to support multiple telephone channels. 
• The interface must meet ITU and ETSI specifications. 
 
The block diagram shown in Figure 4.2 shows the general components of a DAA required for this project. 
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Figure 4.2: DAA block diagram. 

 

4.2.2 Voice digitisation 
The frequencies present in a speech signal transmitted over the telephone system extend up to a maximum of 4 
kHz. To be able to transmit the voice signal on the USB bus, it must be digitised to a sequence of binary digits. 
The Nyquist sampling theorem states that a digitised signal can be reconstructed from its samples, if the samples 
are taken at a minimum frequency of twice the maximum frequency component of the original signal. This 
means that a sampling frequency of 8 kHz is required, which is the standard frequency used in the PSTN for 
voice digitisation.  
 
Each sample is quantised and encoded in a process known as pulse code modulation (PCM). If linear coding is 
used, 12 or 14 bit samples will be needed to ensure adequate resolution over the full amplitude range of the 
voice signal. Low amplitudes are more likely in ordinary speech signals, and a uniform approximation error 
over the full amplitude range will result in larger relative error for lower amplitudes (see Figure 4.3). In practice, 
the quantisation of a voice signal is usually chosen to be non-uniform (A-law or μ-law coding), with smaller 
quantisation intervals at lower amplitudes (Figure 4.4). Typically, 12 or 14 bit samples (linear scale) are 
companded to 8 bit samples (using A-law or μ-law coding). By transferring voice data as 8-bit samples, USB 
bandwidth is conserved. At the receiving end (host PC) the data is then converted back to a linear scale. A-law 
and μ-law differ only in the logarithmic scale used for the coding. A-law is used in European telecommunication 
networks (specified by the ITU standard G.711), while μ-law is mainly used in North-American 
telecommunication networks. 
 
   
 
 
 
 
 
 
 
 
 
 
    Figure 4.3: Uniform quantisation. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4: Non-uniform quantisation. 
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4.2.3 Silicon Laboratories DAA 
A Silicon Laboratories DAA (Si3050) was chosen as the DAA for use in this project, because it meets all the 
requirements as described in section 4.2.1, and it eliminates the need for an analogue front end (AFE), isolation 
transformer, relays, optocouplers and a 2-to 4-wire hybrid. These components are included in two integrated 
circuits, the Si3050 (system-side device) and the Si3019 (line-side device). The system side device contains the 
control and line data interface, as well as the codec. The line-side device interfaces to the telephone system, 
provides AC and DC line termination, and performs functions such as taking the line off-hook and detecting 
ringing signals.  A functional block diagram of these two ICs is shown in Figure 4.5 (from [12], p. 1).  
 
The DAA uses high-voltage capacitors for the communication link across the isolation barrier. Silicon 
Laboratories patented this technique as the ISOcap technology. It modulates the analogue data with a high-
frequency carrier (2 MHz) and passes it across the isolation barrier via a capacitor. A second capacitor is used to 
provide a path for control and status data. This capacitive-isolation approach is very novel, as it saves board 
space and it makes PSTN integration easy. The downside of this method is that problems with EMI can occur.  
 

 
Figure 4.5: Functional block diagram of Si3050 and Si3019 DAA (from [12], p. 1). 

 
Features of the Si3050 are the following (from [12], p. 1): 
• PCM data interface (μ-law/A-law companding). 
• SPI control interface. 
• Loop current monitor and overload detection. 
• Parallel handset detection. 
• Programmable line interface for AC termination, DC termination, ring detect threshold and the ringer 

impedance. 
• Integrated codec and 2- to 4-wire hybrid. 
• Programmable digital hybrid for near-end echo cancellation. 
• Programmable digital gain in 0.1 dB increments. 
• Integrated ring detector. 
• 3.3V power supply. 
• Daisy-chaining for up to 16 devices. 
• Up to 5kV isolation. 
• Tip/ring polarity detection. 
• Ground start and loop start support 
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The Si3050 requires a few external components for the AC and DC termination, the ISOcap link, voltage 
regulation and to provide the correct internal bias voltage to the line-side device. It also requires an external 
overvoltage protection device, a few transistors, noise suppression filters, a zener diode and a diode bridge to 
function.  

 
4.2.3.1 Communication interface 
The Si3050 DAA provides two digital interfaces: a SPI (serial peripheral interface) for control and a PCM 
highway for the transmission and reception of digital PCM samples. Although the Cypress EZ-USB FX 
microcontroller does not have a dedicated SPI port, the microcontroller can still interface to the DAA using 
other techniques (refer to section 6.2.3.6). A CPLD is used to interface the PCM highway with the 
microcontroller (described later in this section). 
 
The SPI protocol is a serial communication standard defined by Motorola. SPI specifies four signals: clock 
(SCLK), serial data input (SDI), serial data output (SDO) and slave chip select (CS). The signal that carries data 
from the master device to the slave device can be labelled as “master-out, slave-in” (MOSI), while the signal 
that carries data from the slave device to the master device can be labelled as “master-in slave-out” (MISO). A 
slave device is selected when the master asserts the CS signal. In addition, the DAAs include a serial data 
through pin (SDITHRU) which allows up to 16 Si3050 DAAs to be connected in a daisy chain configuration, as 
shown in Figure 4.6 (adapted from [12], p.44) . 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6: SPI daisy chain architecture (from [12]). 

 
Each byte transfer on the SPI bus consists of eight clock cycles, and each read and write operation consists of 
three bytes: a control byte, an address byte and a data byte (as shown in figures 4.7 and 4.8). The control byte 
defines the type of operation (read or write) and the channel number that is targeted. The address byte contains 
the address of one of the 59 control registers of the DAA, and the data byte contains the data to be written or the 
data read from the control register. Refer to the Si3050 datasheet ([12]) for details regarding the read and write 
operations and the DAA’s control registers. 
 
 
 

MISO

MOSI
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Figure 4.7: SPI write operation (from [12], p. 46). 

 

 
Figure 4.8: SPI read operation (from [12], p. 46). 

 
The PCM highway consists of two signals, one for sending PCM samples to the microcontroller (DTX) and one 
for receiving PCM samples (DRX). The 8-bit PCM samples (A-law or μ-law) contain the telephony data to be 
sent to or received from the DAA channels. It is a synchronous bus that requires a specific PCM clock signal 
(PCLK), depending on how many DAAs are used on the same bus (for multiple telephone channels). It also 
requires an 8 kHz frame signal (FSYNC), which is synchronous to the PCM highway clock signal. The frame 
signal is a pulse indicating the start of a new frame, and its frequency is equal to the sampling frequency (8 
kHz). Each DAA on the bus transmits and receives its serial data in a predetermined timeslot within each frame. 
Timeslot assignment for a channel is done by programming registers with the number of PCLK cycles following 
the rising edge of the FSYNC pulse. Figure 4.9 shows an example of a DAA channel which is programmed to 
start its data transfer 1 PCLK cycle following the rising edge of the FSYNC pulse. Data is always transmitted 
and received most significant byte (MSB) first. 
 
 
 
 
 
 

 

 

 

 
Figure 4.9: PCM highway transmission (from [12], p. 38). 

 
The PCM highway signals can be interfaced to the parallel slave FIFO ports of the EZ-USB FX microcontroller 
if we use external shift registers to convert the serial bit streams to and from bytes. The shift registers, PCM 
clock signals (PCLK, FSYNC) and the logic needed to control the shift registers and the slave FIFO buffers can 
be implemented in a CPLD (complex programmable logic device). Chapter 8 discusses the CPLD design for 
interfacing the microcontroller with the PCM highway signals.  



 

 

 

Chapter 5 

5. System design overview 

System design overview 
 

5.1 Overview 
The design considerations and the key building blocks for this project in terms of the hardware device, PC 
interfacing software and the communication protocol (USB) have been discussed in the previous chapters. This 
chapter discusses the design trajectory that was followed to develop the USB telephony interface device and 
presents an overview of the system as a whole.  
 

5.2 Design process 
 

Functional Prototype
         Design

PCB Prototype
     Design

Firmware Design

API / software
     Design

Prototype Testing

System
Specifications

Determining
Requirements

Schematics

PCB

Hardware I/F
Protocol

   Design error
  improvements

Design errors

 
Figure 5.1: System design trajectory. 

 

A design trajectory (Figure 5.1) was followed to develop the USB telephony interface device, and consists of 
the following steps: 
1. A system specification has to be defined. In order to obtain the specification, an investigation of the system 

requirements, restrictions and of the development environment needs to be done. The design considerations 
for the device to be used in an ASR application (section 1.3), the requirements in terms of the hardware 
interface (USB) and the PSTN interface requirements have been discussed. 

2. The hardware device has to be designed, which consists of the following sub-steps: 
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(a)  Schematic design of the prototype device (Chapter 7).  
(b) Design of a printed circuit board (PCB). Please refer to Appendix B for relevant background 
information regarding the PCB design. 

3. The firmware for the EZ-USB FX microcontroller and the Altera CPLD has to be designed (or adapted) to 
be able to utilise the hardware functionality (Chapter 8). 

4. The software API has to be developed (or adapted) to be able to communicate with the hardware device 
(Chapter 9). 

5. The prototype design has to be tested and verified and the results analysed (Chapter 10). 
6. The prototype has to be redesigned according to the results of the verification step and to accommodate for 

the added hardware functionality required in the later prototype.  
 
The development of the hardware device was divided into stages, because it allows the integration of the 
components to be carefully designed and tested, without the additional complexity or influence of other 
hardware components.  
 

5.3 System overview 
Figure 5.2 shows a conceptual diagram of how the key hardware and software building blocks will be 
integrated. The shaded blocks indicate those hardware and software components that must be designed (or 
integrated). 
 

Host USB driver

LibUSB

API

Application software
(ASR system)

PC

USB telephony interface device

Cypress EZ-USB FX RAM

CPLD

Telephony interface
channel 1

Telephony interface
channel 2

Universal Serial Bus

telephone
line

telephone
linefirmware

firmware

echo
canceller

EEPROM

 
Figure 5.2: Conceptual overview of the system. 

 

5.3.1 Hardware and firmware 
The hardware device contains the components already selected: the Cypress EZ-USB FX microcontroller and 
the Silicon Laboratories Si3050 DAA chipset which provides the telephony interface. The number of telephony 
channels that the final prototype will contain was initially undefined, and would be determined during the 
design process. Other components such as a CPLD, RAM, voltage transceivers, voltage regulators, EEPROM 
and an echo canceller are also required, but these will be discussed in the prototype design (Chapter 6).  
 
The microcontroller is required to handle all the USB communications between the hardware device and the 
host PC. It must also perform tasks such as the control of the other hardware components and the transfer of 
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data between RAM and the USB endpoint buffers. The firmware required for the microcontroller to perform 
these tasks must be developed. 
 
As mentioned in section 4.2.3.1, a CPLD is required to implement the shift registers which interface between 
the microcontroller’s slave FIFO buffers and the PCM highway signals. The CPLD is also required for other 
purposes, such as generating the slave FIFO control logic, generating the PCM clock signals and to perform 
memory bank switching. The CPLD firmware must be developed. 
 

5.3.2 Software 
The API which provides an interface to the USB telephony interface device must be developed. It must provide 
the necessary functions to make the telephony interface device suitable for use by ASR applications, as 
discussed in section 1.3. The API is written in ANSI C and may only use libraries that are platform-independent, 
such as LibUSB (refer to section 3.4) which provides the USB communications interface. This will allow the 
API to be compiled under both Microsoft Windows and Linux operating systems. The design of the API is 
discussed in Chapter 9.  
 

 



 

 

 

Chapter 6 

6. Prototype design 

Prototype design 
 

6.1 Overview 
The EZ-USB FX development board (CY3671) from Cypress was used to develop and test the first two 
prototype designs. The development board reduces development time, since all the hardware components and 
software drivers are already in place for a basic USB device to be attached to a PC and be enumerated.  The 
development board allows firmware for the EZ-USB FX to be downloaded via the USB cable, which makes it 
easy to test and update the firmware for the device. The board also provides expansion and interfacing signals 
on 6 20-pin headers. This allows a mating prototype board to be attached to the development board during the 
construction and testing phase of a USB design. Finally, the development board contains components such as 
128K of RAM, an in-circuit programmable CPLD and EPPROM that was used in the prototype designs, as well 
as other miscellaneous components (RS-232 level converters, I/O expander chips, seven-segment LED display 
etc.) that were not used.    
 
Two prototypes were designed using the development board, and are briefly discussed in this chapter. The 
hardware and firmware of the final stand-alone prototype design is discussed in detail in Chapters 7 and 8. 
  

6.2 First prototype 
The first prototype design contained two DAA chipsets (for two telephone channels) and an Altera CPLD. The 
prototype was designed in the form of a mating board to be attached to the development board.  
 

6.2.1 Hardware design 
The typical application circuit for the Si3050 ([12], p. 17) was used to design the DAA section of the circuit 
diagram. It specifies the components recommended by Silicon Laboratories for the external components 
required by the DAAs to operate correctly. 
 
A CPLD is required to interface between the PCM highway signals (from the DAAs) and the microcontroller’s 
slave FIFO buffers. An Altera CPLD was chosen, since the development software (MaxPlus II) and an in-circuit 
programmer was already available. One of the MAX 7000S family devices was chosen (EPM7160SLC), as this 
device meets the speed requirements needed for this project and was judged to have sufficient available 
resources (I/O pins and usable logic blocks). Section 6.2.2 describes the CPLD firmware design. 
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The 128K RAM and the Cypress CPLD on the development board is utilised. The RAM is used for program 
and data memory and the CPLD is used to perform memory bank switching (refer to section 6.2.3.1). 
 
Figure 6.1 is a conceptual diagram of the components integrated for the first prototype design. The following 
sections will discuss the problems and solutions encountered during the firmware design for the prototype 
device. 
 
 

 

 

 

 

 

 

 
 

Figure 6.1: Conceptual diagram of the first prototype design. 

 

6.2.2 CPLD firmware design 
Figure 6.2 illustrates the signal interconnections between the DAAs, the CPLD and the EZ-USB FX 
microcontroller. The CPLD generates the PCM timing signals: the frame signal (FSYNC) and the PCM highway 
clock (PCLK) signal. The SPI control interface of the DAAs consists of the chip select (CS), serial clock 
(SCLK), serial data (SDI) and serial data out (SDO) signals. These signals are connected to I/O pins of the  
microcontroller. The PCM and SPI interfaces are explained in section 4.2.3.1. 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.2: CPLD, EZ-USB FX and DAA signal interconnections. 
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The PCM highway clock frequency (PCLK) is selected to be 1.024 MHz, as this frequency would allow a 
number of timeslots per frame for multiple telephony channels and because this is one of the selectable 
frequencies at which the DAAs will operate [12].  
 
The only dedicated CPLD function pin used is the global clock pin, which is connected to an 8.192 MHz clock 
oscillator. This clock frequency was chosen, because it is a multiple of the PCM highway clock frequency. If 
this frequency is divided by 8, an accurate clock signal is obtained to provide the required 1.024 MHz PCM 
clock (PCLK) signal. This 1.024 MHz signal is then further divided by 128 to obtain the required 8 kHz frame 
signal (FSYNC). 
 
The other important task of the CPLD is to convert the serial PCM bit streams (DTX and DRX) to and from 
bytes, and then interface this 8-bit data bus to the slave FIFO buffers of the EZ-USB FX microcontroller. The 
microcontroller contains two slave FIFO buffers (A and B), each containing two sub-buffers (IN and OUT) for 
separate data flow directions. The buffers are slave buffers in the sense that their read and write signals are 
provided by external circuitry, in this case the CPLD. The microcontroller may also read and write to these 
buffers as needed, as the buffers exist in its internal RAM. The CPLD contains two shift registers as shown in 
Figure 6.3: shift register 1 shifts in 8 bits from the PCM DTX signal and presents them as a byte to be written to 
the slave FIFO buffer, and shift register 2 reads a byte from the FIFO buffer which is then shifted out as a serial 
bit stream on the PCM DRX signal.  
 
 
 
 
 
 
 
 
 

 

 

Figure 6.3: Shift register logic. 

 
A tri-state buffer is needed, as the same bidirectional I/O pins of the microcontroller are used to read and write 
data to or from the FIFO buffers. The tri-state buffer must be activated when the output data from shift register 1 
is to be written to the FIFO buffer, and disabled when a byte is read from the FIFO buffer into shift register 2. 
The logic needed to clock, load and enable the shift registers, the read and write strobes for the slave FIFO 
buffers and the tri-state buffer logic are also generated by the CPLD. See section 8.3 for details of the final 
CPLD firmware design. 
 

6.2.3 EZ-USB FX firmware design 
The microcontroller firmware for the first prototype device performs the following functions: 
• Sets up the I/O pins and 8051 interrupts. 
• Handles standard USB device, interface and endpoint requests. 
• Creates a SPI interface in firmware for communication between the microcontroller and the DAAs.  
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• Initialises the DAAs. 
• Handles requests from the host PC, such as requesting size of buffers, requesting status of a channel, 

answering calls, hanging up calls etc. 
• Detects if a DAA is connected to a telephone line, if a ringing signal is detected or if it is off-hook.  
• Transfers data between the FIFO buffers, RAM and endpoint buffers. 
 

6.2.3.1 Memory issues 
The 8051 microcontroller has a modified Harvard architecture with separate address spaces for program and 
data memory (although it has only one address and data bus). It can address 64K of external data memory and 
64K of external program memory, which may be two separate blocks of memory. The microcontroller generates 
two read signals, RD# and PSEN#. The first signal (RD#) is used to read from the external data memory while 
PSEN# is used to read from external program memory. The two read signals may be combined with a logic 
AND operation so that the same block of memory is mapped to act as both program and data memory. This is 
referred to as the Von Neumann architecture1.  
 
In this project, it is preferred to use the Harvard architecture as the microcontroller’s memory capacity is 
doubled and it is easier to use separate blocks of RAM for program and data memory. It is, however, an 
awkward architecture to use with the EZ-USB FX microcontroller, because firmware needs to be loaded into 
external program memory during enumeration. The microcontroller has 8K of internal RAM available for 
program memory, which is insufficient space for a project of this scale. Also, during enumeration the USB core 
can only write downloaded firmware code to the internal memory of the microcontroller (section 2.8.2). By 
adopting the Von Neumann architecture, firmware code may be written to external memory as data bytes, and 
then executed as program instructions. To implement this, a second-stage boot loader, which is capable of 
writing firmware code to external RAM, is required (discussed in section 6.2.3.2). 
 
The development board’s CPLD, which controls the memory access, was reprogrammed so that it is possible for 
the microcontroller to switch between using the Harvard or the Von Neumann architecture. The CPLD Verilog 
source code, developed by Cypress ([15], p. 4-17), was adapted for this purpose. To program the Cypress 
development board CPLD, an “UltraISR” programming cable is required [20]. A programming cable, based on 
a HC244 CMOS buffer chip ([20], p. 4, Figure 3), was built and used to reprogram the Cypress CPLD.  
 
A control signal between the microcontroller and the CPLD selects the memory architecture to use. When the 
Harvard architecture is selected, the CPLD will use the first 64K bank of the 128K RAM on the development 
board for the program memory and the second 64K bank will be used for data memory. When the Von 
Neumann architecture is selected, the first 64K bank is used for both program and data memory. This 
architecture is only selected when the boot loader is running on the microcontroller, as it is required to write 
firmware code to external program memory as data bytes.   
 
The addresses between 0x7800 and 0x7FFF are used for bulk endpoint buffers of the EZ-USB FX, and are also 
mapped to the region 0x1B40-0x1FFF in internal RAM to remain compatible with a previous version of the 
microcontroller that had the buffers mapped to this area. These areas may not be used for program or data 
memory. Figure 6.4 illustrates the internal RAM usage of the EZ-USB FX.  
 

                                                 
1 Named after John Von Neumann, a mathematician and computer scientist of the 20th century. 
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Figure 6.4: Internal RAM usage. 

 

6.2.3.2 Boot loader 
The boot loader firmware (refer to section 8.1 for details) is developed and programmed to the EEPROM of the 
development board. During enumeration, the USB core downloads the boot loader from the EEPROM to the 
internal RAM of the microcontroller, while the 8051 is held in a reset condition. After the boot loader has been 
downloaded, the 8051 is brought out of reset and begins to run the boot loader program. The actual firmware 
code, that provides the telephony interface functionality, is then downloaded from the host PC to the 
microcontroller. The boot loader writes the received firmware code to external memory. Only the code bytes 
belonging to the external program memory are downloaded and written, after which the 8051 is reset by the host 
PC. The host PC then downloads any remaining firmware code that belongs to the internal program memory, 
which the USB core writes to the internal memory addresses. The final step is for the host PC to release the 
8051 reset so that the new firmware program can start running on the microcontroller. The entire firmware 
downloading process is transparent to the user. The disadvantage of storing the firmware on the host PC is a 
longer enumeration time, but the advantage is that firmware can be easily updated if required.  
 
The boot loader program cannot write code bytes at the address 0x1B40-0x1FFF and at 0x7800-0x7FFF, as 
these areas are occupied by the bulk endpoint buffers of the EZ-USB FX microcontroller (as shown in Figure 
6.4). One of the limitations of the 8051 compiler (SDCC) that we are using is that the code segment of the 
firmware program must be continuous in the program memory. We can therefore not have “gaps” in the code 
segment at the addresses occupied by the bulk endpoint buffers. If the firmware program is larger than 6976 
bytes, the entire program must therefore be placed in external memory, starting either at address 0x2000 or at 
address 0x8000 (next available addresses after the endpoint buffers). Because of these constraints and 
limitations imposed by the EZ-USB FX memory architecture and the SDCC compiler, the resulting memory 
map is as shown in Figure 6.5, where the shaded blocks indicate where the firmware may be placed. The 
maximum firmware program size (shaded areas) is thus limited to 22K or 32K, depending on the starting 
address of the code segment. Although the entire firmware program will then execute in external RAM, the 
internal RAM of the microcontroller can still be utilised by the firmware for variables and data structures.  
 
A jump instruction to the start of the code segment, followed by the interrupt vector table, should always be 
placed at address 0x0000 in the program memory, even if the code segment is relocated to an address in external 
memory. However, when the code segment was relocated, the SDCC compiler generated this jump instruction 
to be placed at the beginning of the code segment in external memory, and not at address 0x0000. This bug was 
reported to the SDCC developers, and an updated version of the compiler should become available in the future. 
In the meanwhile, this problem was remedied by linking an extra assembly module when compiling the main 
firmware program. This assembly module contains the necessary jump instruction and interrupt vector table, and 
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is placed at address 0x0000 (assembly modules can be linked to specific memory locations). See section 
Appendix C for details of the assembly module (ivect.asm). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5: Internal and external memory map. 

 

6.2.3.3 Direct memory access 
Data is transferred to and from the USB endpoint buffers and the slave FIFO buffers by first storing it in a 
temporary RAM buffer. Bytes are transferred between the different RAM locations by copying them one at a 
time using firmware instructions (e.g. for-loops). This seemed to be an ineffective method, as it required many 
CPU cycles to complete. When a telephone call is active, data is transferred to and from the microcontroller 
endpoint buffers and the host PC, as well as to and from the microcontroller slave FIFOs and the CPLD, at a 
rate of 8000 bytes per second. The 8051 firmware must read the incoming data and move it to the temporary 
RAM, as well as move outbound data from the RAM to the buffers. A measurement indicated that 61.2% of the 
CPU time was required to perform this task for a single, active telephone channel. A second, simultaneous 
telephone call would thus be impossible if this method of data transfer is used. 
 
The EZ-USB FX incorporates a direct memory access (DMA) engine that transfers data between internal and 
external RAM without 8051 intervention. Data can be transferred very quickly (as fast as one byte per 48-MHz 
clock cycle). The 8051 firmware sets up a DMA transfer by initialising registers with the source and destination 
addresses and the number of bytes to be transferred. The firmware then writes to a control register to initiate the 
DMA transfer.  
 
There are a few restrictions when using DMA transfers, one of these are that the 8051 firmware code must be 
executing in internal code memory while the DMA transfer is in progress. This is to ensure that the external data 
bus is available for use by the DMA engine. This poses a problem, as it is required to use external program 
memory for this project (section 6.2.3.2). This problem can be solved if the microcontroller can be forced to 
execute program instructions fetched from internal memory while the DMA transfer is in progress. Another 
assembly module is created, which is linked to the internal memory of the microcontroller and which may be 
called as a function from the main firmware program. The purpose of this function is to write to the control 
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register which will initiate the DMA transfer and to wait for the DMA transfer to complete. When the DMA 
transfer is complete, the function would return and execute the next instruction in external program memory. 
Please refer to Appendix C for details about the DMA assembly module (DMA_start.asm).  
 
A second measurement indicated that 8% of the available CPU cycles are required to perform all the data 
transfers for one active telephone channel, when all the data transfers are implemented using DMA transfers. 
This is a significant improvement, and will allow the CPU to handle at least two simultaneous telephone calls, 
while still having spare CPU cycles available to perform other tasks. 
 

6.2.3.4 Slave FIFO buffers 
The EZ-USB FX has four 64 byte FIFOs grouped into identical A and B pairs, each pair consisting of an IN and 
an OUT FIFO. Each pair is used for a telephone channel. The FIFO buffers provide a fast and efficient 
mechanism to send or receive data to and from outside logic, as they require little 8051 intervention. As 
described in section 6.2.2, the outside logic (in this case a CPLD) supplies the timing signals. The 8051 
firmware accesses the slave FIFOs using four registers (AOUTDATA, AINDATA, BOUTDATA, BINDATA). 
These registers can be read and written by 8051 code, or they can serve as sources and destinations for the DMA 
mechanism.  
 
The size of the slave FIFO buffers are monitored in the main firmware loop. If there are new incoming data 
available in an IN FIFO buffer, they are transferred to external RAM using DMA transfers. In the same manner, 
outgoing data (sent from the host PC) are placed in an OUT FIFO buffer if it is determined that there is free 
space available in the FIFO buffer. It is important that the IN FIFO buffers do not overflow, as the inbound 
telephony data would then be lost. Also, the OUT FIFO for the outgoing data may never run empty, as this 
would cause an interruption in the audio signal sent over the telephone line.  
 

6.2.3.5 Interrupt handling 
The firmware is responsible for writing and reading of the USB endpoint buffers. The microcontroller handles 
all USB events (data transfers) via interrupt service routines (ISRs). It is therefore important that the frequency 
of the USB interrupt requests (IRQs) are not too high, otherwise the microcontroller would be preoccupied with 
handling interrupt events, instead of executing the instructions of the main firmware loop (monitoring the slave 
FIFO buffers, controlling hardware components etc.). The frequency of USB interrupts can be lowered by 
implementing fewer, but larger data transfers at time, instead of using a high volume of small data transfers.   
 
To make real-time processing of telephony data possible, the rate of data transfer between the microcontroller 
and the host PC, as well as between the microcontroller and the CPLD must be the same, or at least a minimum 
of 8 K/second. Therefore, the data transfers between the 64-byte USB endpoint buffers and external RAM must 
receive the same priority as the data transfers between external RAM and the 64-byte slave FIFO buffers.  
 
The handling (monitoring, reading and writing) of the FIFO buffers could be changed to also be interrupt driven 
like the USB events, as the FIFO buffers could generate an IRQ if their sizes reach a certain level, but USB 
IRQs receive a higher priority than the FIFO IRQs. There are also various complications if the one interrupt 
interrupts another, or if an interrupt is not handled within a certain time frame. It would be ideal if the reading 
and writing of the FIFO buffers and the USB endpoints could be handled within the main firmware loop instead 
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of being completely interrupt driven. This would give us more control and flexibility over the execution of the 
processes. An alternative solution was investigated. 
 
To send data to the host PC, the 8051 firmware must load the required endpoint buffer with the number of bytes 
in a packet, and then load the byte count register for that endpoint. This action sets the endpoint’s busy bit and 
enables the endpoint to transfer the data packet when the host PC requests an IN transfer by issuing an IN token. 
If the host received the data packet error-free, it will issue and ACK token. This would clear the endpoint’s busy 
bit and generate an interrupt request (IRQ) for that endpoint. These interrupts could be used to indicate when an 
endpoint is ready to be loaded with new data. This would suffice if all transfers consisted only out of a few data 
packets, but if a large number of packets are used per data transfer, the microcontroller would be preoccupied 
with the handling of USB transfers, as an interrupt would occur for each packet sent.  
 
If the host PC requests an IN transfer by issuing an IN token, but the device’s endpoint is not yet loaded with a 
data packet, the microcontroller will respond with a NAK handshake, indicating busy. The EZ-USB FX can be 
configured to generate an IRQ upon a NAK event. This interrupt could be used to indicate that the host PC is 
requesting data and to initialise the beginning of a new data transfer. In the interrupt service routine for a NAK 
interrupt, a flag is set to indicate that the start of a new data transfer has occurred, and all future NAK interrupts 
for that endpoint are disabled until the transfer has completed. This flag and the endpoint’s busy bit can be 
monitored in the main firmware loop to control the writing to endpoint buffers for USB data transfers to the 
host. The NAK interrupt is only re-enabled when the last packet of the data transfer has been sent.  
 
The same principle is applied to OUT transfers (data sent from host PC). An OUT IRQ can be generated when 
an endpoint receives a data packet from the host PC. The interrupt service routine will then disable all future 
OUT interrupts and a flag is set to indicate that an OUT transfer is in progress. This flag and the endpoint’s busy 
bit can be monitored in the main firmware loop to control the reading of endpoint buffers for USB data transfers 
from the host. The OUT interrupt is only re-enabled when the last packet of the data transfer has been sent.  
 
In this manner, only one interrupt occurs per data transfer, and the data transfers can be configured to contain a 
large number of bytes, e.g. 8000 bytes, per data transfer. This gives more control to the main firmware loop and 
allows critical processes to receive priority over others when it is required.  
 

6.2.3.6 SPI interface 
The Si3050 DAAs used for this project provide a SPI interface for microcontroller control (see section 4.2.3.1). 
The EZ-USB FX microcontroller does not have a dedicated SPI port, but a method commonly referred to as 
“bit-banging” can be used to create a software SPI port. This method uses general-purpose I/O lines to emulate 
a serial port. With bit-banging however, each write to the port causes a single transition at the port pin. It is the 
user’s responsibility to provide the correct number of transitions to obtain the desired waveform and to ensure 
that the timing requirements (particularly setup and hold times for reading and writing data) are met. Due to the 
overhead associated with the number of writes to the port, the bit-bang throughput rate is usually very slow. 
This technique is very inefficient from a software perspective, but it may be acceptable in some applications 
where the communication overhead is low. The bulk of the serial communication between the microcontroller 
and the DAAs would occur during device initialisation; thereafter the DAAs would occasionally be polled to 
obtain the status of channel. The required SPI data rate for communication with the DAAs is thus low, and the 
bit-banging implementation would suffice.  
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The SPI timing diagrams ([12], p. 11, p. 45-46) and the Silicon Laboratories application notes is consulted to 
develop the firmware functions to enable SPI communication between the EZ-USB FX microcontroller and the 
DAAs [27]. Refer to Appendix C for details regarding these functions.  
 

6.2.4 Prototype results 
The hardware, CPLD firmware, microcontroller firmware and a basic API for the first prototype was developed 
and tested. The purpose of the first prototype was to integrate the key hardware and software components to 
create a framework from which further development can be done, and to test the suitability of the components 
for the purpose for which they have been selected.  
 
The key hardware and software components were successfully integrated, and the device was successful in 
communicating with the API. It could detect incoming calls, as well as answer and hang-up calls. A prompt 
could be played to a caller, and the caller’s voice could be recorded on the host PC. 
 
The main shortcoming of the first prototype was the presence of an echo of the outgoing signal (prompt being 
played to the caller) in the incoming signal. Echo is the result of outgoing signals that are reflected within the 
telephone network. In normal telephony, this is not a problem, but ASR systems require echo cancellation so 
that speech recognition can be performed during barge-in conditions. An echo of a prompt being played to a 
user may trigger false recognition, or the echo may combine with the user’s voice which may cause the system 
to incorrectly recognise the spoken words. Even a small amount of echo from the outgoing prompt can affect 
recognition accuracy, the usability and the value of an ASR system. According to the datasheet, the DAA 
contains an on-chip echo canceller that performs “near-end” echo cancellation [12]. It was expected that this 
echo canceller would provide sufficient echo cancellation, but the datasheet was misinterpreted. Additional echo 
cancellation will be required on the hardware device. 
 

6.3 Second prototype 
The second prototype includes an additional echo cancellation component. Before a suitable component can be 
chosen, an investigation is done to determine the source and nature of echoes generated within the PSTN 
network. 
 
6.3.1 Hybrid echo 
In PSTN networks, the primary type of echo is the hybrid echo (or line echo). As described in section 4.2.1, 
hybrid echo is due to an impedance mismatch between the two-wire local loop (between the subscriber premises 
and the central office or exchange) and the four-wire PSTN network. Components called “hybrids” are used to 
join the four-wire and two-wire sections of the network, and are intended to separate the incoming and outgoing 
signals. A hybrid is by nature a leaky device. As voice signals pass from the four-wire section to the two-wire 
portion of the network, the energy in the four-wire section is reflected back, creating an echo of the speech 
signal. The actual amount of signal that is reflected back depends on how well the balance circuit of the hybrid 
matches the impedance of the two-wire line. During normal telephone conversations, the echo results in a user 
perception that the call is ‘live’ by adding a sidetone. Provided that the total round-trip delay of the echo occurs 
within a few milliseconds, this echo makes a positive contribution to the quality of the telephone call. In ASR 
applications however, it is required that the signal received is separated from the signal transmitted. The Silicon 
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Laboratories DAA that is used in this design contains an on-chip analogue hybrid that performs this 2- to 4-wire 
conversion. 
 
Figure 6.6 illustrates the sources of echo in the PSTN network, the various two-wire and four-wire sections and 
how the USB telephony interface device is connected to the two-wire network by means of the internal hybrid 
of the DAA. As shown in the figure, near-end echo results from the closest of these hybrids, while the far-end 
echo results from the other end of the network connection (caller side). The DAA analogue hybrid has a 
minimum transhybrid loss (see section 4.2.1) of 20dB [12]. The Si3050 also has a digital hybrid stage that 
provides additional near-end echo cancellation. The digital hybrid is composed of an 8-tap digital filter that can 
be programmed with coefficients to produce 10dB or greater of echo cancellation. The eight coefficients are 
programmed by writing to eight registers with values according to a lookup table ([22], p.11) for the country in 
which the DAA is to be used. The digital filter internal to the DAA affects only the echo resulting from its own 
internal hybrid, and cannot attenuate echoes with longer delays resulting from hybrid reflections in the PSTN 
network. The near-end and far-end hybrid that connects the local loops with the PSTN network causes echoes 
with longer delays (typically 5ms – 35ms) and must be removed with an echo canceller capable of filtering 
echoes with a longer delay.  
 
 

 
 

 

 

 

 

 

Figure 6.6: Echo in the PSTN network (adapted from [21]). 

 
After the DAA’s digital hybrid coefficients was programmed appropriately, a simple measurement was done to 
determine the typical echo return loss (ERL) between the transmit and the receive paths of the DAA. The ERL 
is the average magnitude of the reflection caused by the near-end hybrid and far-end hybrid. Note that the ERL 
measurement depends on the echo path, and is thus only valid for the specific telephone call used for the 
measurement. Telephone calls originating from other locations will have different echo paths and may result in 
different ERL measurements.  
 
An audio sample was played over the telephone line to a caller. The caller’s telephone handset was unplugged 
from the telephone, so that no additional noise picked up by the handset microphone could contribute to the 
received signal. The signal received by the device thus consisted only of the echo of the outgoing audio signal, 
and was recorded for the same duration that the audio file was played to the caller.  
 
A Matlab function was written to determine the power present in the received echo signal relative to the 
outgoing signal. The Matlab function first converts all the A-law samples to their linear values and then 
calculates the energy by summing the squares of the sample values ( 2

0
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and outgoing signals is then used to calculate the power of the incoming signal relative to the outgoing signal by 
using the following equation: 

 

The incoming echo was recorded and measured to be -22.2dB relative to the outgoing signal. The ERL due to 
the echo path is thus 22.2dB. The ERL is not large enough to suppress the echo (the echo could clearly be 
heard), and further echo cancellation is required to make speech recognition and barge-in detection possible. 
According to studies, the echo signal is negligible when the ERL is approximately 55dB or more [25]. An 
additional echo canceller would typically provide 30dB to 40dB of echo return loss enhancement (ERLE). 
ERLE is a figure of merit for the amount of echo attenuation that an echo canceller can achieve. 
 

6.3.2 Additional near-end and far-end echo cancellation 
The ITU-T defined several standards for echo cancellation. The most relevant of these are G.164, G.165, and 
G.168, which provides the basic guidelines for echo canceller functionality and performance. It is expected of 
echo cancellers to be compliant to these standards.  
 
Figure 6.7 (adapted from [24]) describes the signal flow in an echo canceller. 
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Figure 6.7: Echo canceller configuration (adapted from [24]). 

 
First, the expected echo signal )(ˆ ir  is estimated by comparing the outgoing signal )(iy  with the incoming 
signal )()( irix + . The incoming signal consists of the caller’s speech )(ix  and the echo )(ir  of the outgoing 
signal. This is done by storing and comparing the outgoing and incoming signal for a period of time known as 
the “tail length”. The tail length should at least be the same as the total roundtrip echo delay. By comparing the 
incoming signal with the reference signal (outgoing signal), the echo path is measured and the result is used to 
adjust a transversal filter (tapped-delay line) that estimates and replicates the echo. The presumed echo signal is 
then subtracted from the incoming signal to remove the echo of the outgoing signal. 
 
The most echo cancellers use a long FIR (finite impulse response) transversal filter, and ideally the tap weights 
of the filter would be adjusted to match the impulse response of the echo path. Figure 6.8 (adapted from [24]) 
shows how echo estimation is accomplished using a transversal filter.  
 
A convergence algorithm is used to continuously adapt the filter coefficients (a0 to an-1) to minimise the 
cancellation error )(ie  when no caller speech )(ix  is present. The number of taps required in the transversal 
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filter depends on the duration of the impulse response of the echo path from port C to D. It is usually assumed 
that the echo tail is fairly limited, rarely exceeding 12 ms but in some situations, additional network delays 
caused by multi-party conference calls and calls transferred through multiple PBX configurations, may generate 
longer echo tails [23]. All conditions considered, for the most PSTN networks, the worst-case echo tail capacity 
needed for an echo canceller is approximately 64 ms. For an echo tail of 64 ms, 512 filter taps is required if an 8 
kHz sampling frequency is used.  
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Figure 6.8: Echo estimation using a transversal filter (adapted from [24]). 

 
Echo canceller performance is based on how fast the filter’s coefficients can be adapted and the amount of echo 
suppression that can be achieved. The more samples used for comparing during the adaptation process (the 
longer the tail length), the longer it will take for the filter to converge (state where the filter is adapted). The 
ITU-T G.165 performance standard specifies a minimum echo attenuation of 24 dB after a 250 ms convergence 
period.  
 
Filter adaptation is difficult if the other party begins to talk during convergence (“double talk”), therefore the 
echo canceller must be able to detect a double talk condition and stop adaptation when it occurs.  
 
After the presumed echo signal is subtracted from the incoming signal, there is usually a residual echo which 
should be minimised. This residual echo may become large if the echo canceller’s tail length is too short, or if it 
has not effectively converged. Generally, echo canceller systems deploy a non-linear processor (NLP) to remove 
residual noise by muting the signal that falls below a certain threshold. Care must be taken however, because the 
NLP can mask the low energy speech that ASR systems require to achieve accurate recognition results. The 
echo canceller must provide the ability to enable or disable the NLP. Activation of the NLP results in an 
additional attenuation of the received signal. To prevent a perceived decrease in background noise due to the 
activation of the NLP, comfort noise injection is performed by some echo cancellers. This keeps the perceived 
noise level constant so that the user cannot hear the activation and de-activation of the NLP. 
 
Narrow-band signals such as DTMF tones may cause the echo canceller to incorrectly adapt or may even cause 
it to diverge. Echo cancellers require a narrow-band detector to detect these discrete tones and to freeze filter 
adaptation when it occurs. This would keep the echo canceller adapted and maintain performance.  
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Echo cancellation can be software-based or hardware-based. In this project, it would be preferred if echo 
cancellation could be done in the hardware device itself, as it is the only location where the incoming and 
outgoing signals are synchronised and available in real-time. Software-based echo cancellers are designed to run 
on DSP processors because of their high computational demand and a general-purpose CPU (like our 8051 
microcontroller) would not be suitable for this purpose. A DSP processor would increase the cost and 
complexity of our design. Hardware-based echo cancellers include FPGA-based echo cancellers and application 
specific integrated circuit (ASIC) echo cancellers. ASICs are usually cheaper and provide better performance 
than a DSP or a FPGA solution, as the circuit has been specifically designed to perform echo cancellation.  
 
Infineon, OKI semiconductor and Zarlink semiconductor are manufacturers of ASIC echo cancellers. A 2-
channel echo canceller is required for the two telephony channels in the prototype design. OKI has a 2-channel 
echo canceller available (MSM7617), but the device has no microcontroller interface available, whilst Zarlink’s 
MT9123 2-channel echo canceller can be used in a “controller” or “controllerless” mode. Controller mode 
allows microcontroller access to features and allows customising the behaviour of the device. The following 
section describes the features of the Zarlink MT9123 echo canceller, and how the first prototype was adapted to 
integrate the echo canceller into the design.  
 

6.3.3 Zarlink MT9123 2-channel echo canceller  
This device conforms to all the requirements of an echo canceller, as described in the previous section. To 
summarise, each echo canceller of the Zarlink MT9123 contains the following elements [25]:  

• Adaptive filter for estimating and cancelling the echo. 
• Double-talk detector with programmable threshold for disabling the filter adaptation during periods of 

double-talk. 
• Non-linear processor (NLP) with comfort noise injection for suppression of residual echo. The NLP can 

be disabled.  
• Narrow-band detector for disabling the filter adaptation and preventing divergence caused by narrow-

band signals. 
• Offset null filters for removing the DC component in the PCM signals. 
• Optional 12dB attenuator for signal attenuation. Disabled by default. 
• Serial peripheral interface (SPI), compatible with Motorola, National and Intel microcontrollers. 
• PCM encoder and decoder compatible with μ-law/ A-law coding. 

 
The echo canceller provides 64 ms of echo cancellation for two channels, or the two echo cancellers may be 
configured to provide 128ms of echo cancellation for a single channel. Figure 6.9 (from [25], p. 1) illustrates the 
elements of the Zarlink echo canceller. 
 
The echo canceller has four functional states: Mute, Bypass, Disable Adaptation and Enable Adaptation. The 
Mute state forces the echo canceller to transmit “quiet code” for the PCM output data and halts the filter 
adaptation process. The value of the quiet code depends on the companding method used. The Bypass state 
directly transfers the PCM signal from Rin to Rout and from Sin to Sout (refer to Figure 6.9). If the Disable 
Adaptation state is selected, the filter coefficients are frozen at the current values, but the echo canceller 
continues to cancel echo. Enable Adaptation is the normal operating state, where the adaptive filter coefficients 
are continually updated to model the echo return path. The two echo cancellers operate independently of each 
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other. In controller mode, the functional states of the echo cancellers can be selected by adjusting the control 
registers. The register summary ([25], p.17) contains the details of these registers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9: Zarlink MT9123 echo canceller (from [25], p.1). 

 
Adaptive filters in general do not operate correctly if a DC offset is present in the reference (Rin) or incoming 
signal (Sin). The Zarlink echo canceller incorporates offset null filters in both inputs to remove the DC 
component from the PCM signal.   
 

6.3.4 Hardware design 
Figure 6.10 shows a conceptual diagram of the second prototype, which illustrates how the echo canceller was 
integrated into the design.  
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6.10: Conceptual diagram of the second prototype. 
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The echo canceller’s PCM interface consists of data inputs (Rin, Sin), data outputs (Sout, Rout), a bit clock 
(BCLK) and four enable pins (ENA1, ENB1, ENA2, ENB2) for PCM transfer enable strobes. The bit clock 
(BCLK) is the same 1.024 MHz clock signal that is used for the PCM highway clock signal (PCLK). Instead of 
transferring PCM data in a predetermined timeslot within the 8 kHz frame (like the DAAs), the Zarlink echo 
canceller requires enable strobes (ENA1, ENB1, ENA2, ENB2) to define each timeslot boundary. These signals 
enable the serial PCM data transfers for the input and output ports (port 1 and port 2) of the two echo cancellers 
(A and B), and they must be 8 BCLK cycles in duration. These signals can be easily generated with the CPLD, 
as all the required time instances and bus frequencies are already available. See section 8.3 for the final CPLD 
design. 
 
The SPI port of the echo canceller is compatible with both the Intel MCS-51 and the Motorola SPI 
specifications. The same SPI bus used for communication between the microcontroller and the DAAs can thus 
be utilised for communicating with the Zarlink echo canceller. The master clock signal (MCLK) input requires a 
20 MHz clock signal, which is only used by the echo canceller for the execution of algorithms, and may thus be 
asynchronous with the PCM clock and enable signals. An external oscillator supplies this clock signal. Figure 
6.11 shows the signal connections to the echo canceller.  
 
 

 

 

 

 
 

 

Figure 6.11: Echo canceller signal connections. 

 

6.3.4.1 Voltage translation 
The Zarlink echo canceller is a 5V CMOS device, while the most of the other components used in the design are 
3V TTL (transistor-transistor logic) devices. The lower power consumption of 3V devices is the motivation 
behind the transition from 5V to 3V systems (and even lower operating voltages) in new systems. Very often, 
not all components are available as 3V devices. Mixed voltage designs are possible as long as we have a reliable 
signal transfer between the 5V and the 3V systems. The required supply voltages are not a problem, as the USB 
bus supplies +5V to the device, which a voltage regulator uses to provide the 3.3V to the other components. 
 
All 5V CMOS families can drive 3V inputs and 3V TTL devices have an output voltage swing that is large 
enough to drive 5V TTL inputs reliably. The problem arises when a 3V TTL system needs to drive a 5V system 
that has CMOS input levels. CMOS logic levels require an input voltage of 4.5V for a logic high level. A 
voltage translator, which is able to convert signals from 3V TTL (transistor-transistor logic) to CMOS levels, is 
required.  
  
All the echo canceller’s input pins are compatible with TTL logic levels, except for the MCLK, Sin and Rin pins 
which require CMOS compatible logic levels. It is thus required to translate these 3.3V signals to 5V logic for 
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+3.3V +5V

R
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input to the echo canceller. The Altera CPLD and the DAA’s inputs are compatible with the 5V output logic 
levels of the echo canceller.  
 
A common technique used to 3.3V logic to 5V, is to use an external pull-up resistor, as shown in Figure 6.12. 
The external resistor (typically 1kΩ - 10kΩ) connects to the higher secondary voltage. 
 
 
 
 
 
 
 
 

 

Figure 6.12: Raising voltage using external pull-up resistor. 

 

This method has a few disadvantages. If the driver is driving a low signal, there is a current flow in the circuit 
because of a potential difference across the resistor. As a result, the power dissipation of the system will 
increase. Another disadvantage is the slow transition time of the signal. The low-to-high transition time will be 
determined by the RC time constant of the resistor and the load, and it becomes an important factor if high 
frequency signals are being translated. A higher resistor value will reduce the power dissipation, but a lower 
resistor value is desired to have minimal low-to-high transition time.  
 
Sometimes a system does not only require a signal to be translated from a low voltage to a high voltage, but vice 
versa and at a high frequency. The method of using external passive components is not capable of voltage 
translation without sacrificing system performance. Specific devices, called translating transceivers are used to 
interface between a 3V and 5V system. Translating transceivers has the following advantages: 

• Translators can be used in long trace applications on PCBs. 
• Translators have the ability to drive heavier loads, and can thus act as a bus driver.  
• Translators can translate higher frequency signals. 
• Translators provide isolation for the input capacitance of the device. 

 
The Philips 74LVC4245A, an octal translating transceiver, was chosen for this project. It provides 3-state 
outputs, a direction control pin (DIR) and an output enable (OE) pin that controls the outputs so that the busses 
are effectively isolated.  It can translate signals in both directions (3V to 5V or 5V to 3V). Although only three 
input signals to the echo canceller need to be translated (MCLK, Sin, Rin) to 5V levels, all the signals to and 
from the echo canceller are routed though a translator. This provides a better driving capability to the clock 
signals (FSYNC, PCLK) which are routed to more than one device. It would also cancel the effect of the 
propagation delay, as the same delay is introduced to all the signals to and from the echo canceller (although the 
delay is minimal, typically 5-8ns). Figure 6.13 (from [28], p. 4) shows the logic diagram of the translating 
transceiver.  
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Figure 6.13: Logic diagram of the 74LVC4245A transceiver. 

 

6.3.5 EZ-USB FX firmware design 
The microcontroller firmware was adapted to be able to interface with the Zarlink MT9123 echo canceller via 
the SPI bus. The echo canceller’s operation is controlled by the microcontroller.  
 
The echo canceller is polled regularly to determine whether it has detected a double-talk condition. A double-
talk condition occurs when the input signal level (Sin) is greater that the expected echo return level. The relative 
signal levels of the input signal (Sin) and the reference signal (Rin) are compared according to the following 
expression: 

)(log20 10 DTDTRinSin +> , 

where Sin and Rin are the relative signal levels expressed in dBm02, and DTDT is the double-talk detector 
threshold register of the echo canceller, which must be programmed with a threshold value. According to the 
ITU G.165 standard, the echo return loss (ERL) is expected to be at least 6dB. This implies that the double-talk 
detector threshold (DTDT) should be set to 0.5 (- 6dB), which is also the default value of the DTDT register. 
The ERL may vary, but the MT9123 echo canceller allows adjustment of the DTDT register (via the SPI bus) 
according the application’s requirements. The microcontroller firmware also allows the user to change the value 
of the echo canceller’s DTDT register via the API.  
 
The 16-bit DTDT value (hexadecimal) can be calculated with the following equation [25] : 

)32768()( )( ×= decDTDThexhexDTDT  

 where 10 )( << decDTDT  

                                                 
2 dBm0: Power in dBm referred to at zero transmission level point (0TLP). The zero transmission level point is the point in 
a communication system at which the reference level is 1 mW, i.e. 0 dBm.  
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If the echo canceller indicates that a double-talk condition has occurred, a voice activity detection (VAD) 
algorithm on the microcontroller is activated. The echo canceller uses the double-talk detection threshold to halt 
filter adaptation when a double-talk condition occurs. Setting the DTDT incorrectly may cause the adaptive filter 
coefficients to diverge during a double-talk condition, and the VAD algorithm may not function properly.  
 

6.3.5.1 Voice activity detection 
The microcontroller periodically polls the echo canceller’s double-talk detection register. If a double-talk 
condition has occurred, a voice activity detector (VAD) algorithm is activated (refer to section 8.2.6). The 
purpose if the VAD algorithm is to determine if speech is present in the incoming signal (to provide for barge-in 
functionality) and to determine the beginning and the end of an utterance (endpoint detection). If the barge-in 
feature is enabled (via the API), the device will stop the playback of the outgoing signal to the user, and flush 
the remaining buffered signal if a barge-in condition has occurred.  
 
The accurate detection of a word’s start and end points would reduce the subsequent processing of the data. 
USB bandwidth is also conserved if the endpoints are located and only the data containing speech are 
transmitted to the PC. Endpoint detection can be enabled via the API to record speech if voice activity is 
detected. The computational load of real-time endpoint detection algorithms makes it difficult to implement 
them on a microprocessor. However, a combination of the signal energy and the zero-crossing rate (ZCR) 
measurements can be used to make a simple speech / no speech decision. The ASR application can perform 
more accurate endpoint detection if it is required. 
  
If the VAD is activated, the energy and the zero-crossing rate (ZCR) are measured for each frame, until the 
VAD is deactivated. The frame size (N) is usually 128 samples. The energy per frame is the sum of the squares 
of the samples in the frame ( 2

0
N
i iE s=∑= ). The energy measured per frame for voiced speech tends to be higher 

than for unvoiced speech. The zero-crossing rate is the number of times that the zero axis is crossed per frame. 
The ZCR of unvoiced speech is generally higher than for voiced speech due to its more random character. 
Figure 6.14 is a recording of the word “speakers”, which indicates the voiced and unvoiced sections. 
 

unvoiced "s" voiced "spea" voiced "ker" unvoiced "s"

example: "speakers"

 
Figure 6.14: Example recording. 

 
The Matlab graphs of Figure 6.15 illustrate how endpoint detection of this signal is performed by using energy 
and ZCR measurements.  
 
The measured energy per frame, shown in Figure 6.15 (b), is compared to a threshold value (red line), and the 
result of this comparison is given in Figure 6.15 (c). In the same manner, the measured ZCR per frame, shown 
in Figure 6.15 (d), is compared to a threshold value (red line), and the result of this comparison is given in 



CHAPTER 6: PROTOTYPE DESIGN 

 

60

Figure 6.15 (e). By combining the results of the energy and ZCR measurements, reasonable endpoint detection 
can be achieved as shown in Figure 6.15 (f). 
 
Other parameters that are used during voice activity and endpoint detection, are the number of frames that must 
contain speech before the VAD indicates that speech is present in the incoming signal, as well as the time period 
that the signal must be below the threshold values before the end of an utterance is assumed. These parameters, 
as well as the frame size and the threshold values can be adjusted according to the application’s requirements 
via the API. Refer to the firmware design of section 8.2.6 and Appendix C for details regarding the voice 
activity detection algorithm.  
 
 
(a) 
 
 
 
 
(b) 
 
 
 
 
(c) 
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Figure 6.15: Endpoint detection using energy and ZCR measurements. (a) Speech signal, (b) Energy measurement, (c) 

Threshold energy, (d) Zero crossing rate (ZCR) measurement, (e) Threshold ZCR, (f) Combined detection decision. 
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6.3.6 CPLD firmware design 
The CPLD firmware is adapted to provide the additional data transfer enable strobes (ENA1, ENB1, ENA2, 
ENB2) required by the echo canceller, as shown in Figure 6.12. These strobes are synchronised with the FSYNC 
and PCLK PCM highway timing signals routed to the DAAs, and they must coincide with the DAA’s pre-
programmed timeslot allocations for PCM data transfers. The strobes are each 8 PCLK (BCLK) clock cycles in 
length. Refer to the CPLD design in section 8.3 for more details.  
 

6.3.7 Prototype results 
The measurement that was performed in section 6.3.1 (before the echo canceller was added) was repeated to 
determine the amount of echo suppression that the Zarlink echo canceller provided.  
 
Initially, the echo canceller did not perform as expected. It was slow to converge, and echo suppression was 
poor. This problem was due to a gain that was applied in the DAA to the transmitted signal, which caused the 
signal to be slightly clipped when it reached the maximum output swing capabilities of the DAA circuit. The 
signal transmitted on the telephone line therefore differed from the reference signal supplied to the echo 
canceller, which also meant that the received echo signal did not match the estimated echo signal. The problem 
was corrected by disabling the transmit path gain of the DAA.   
 
The incoming signal level (after the echo canceller) relative to the outgoing signal level was measured to be       
-60.1dB. The ERLE for the echo canceller is thus 37.9dB. This is satisfactory performance for an echo 
canceller, and no remaining echo could be heard in the incoming signal.  
 
The voice activity detection (endpoint detection and barge-in detection) was tested by developing a simple 
dialogue test application. A problem was found with the ZCR measurement. The echo canceller only attenuated 
the echo in the signal, but the zero-crossing rate information of the outgoing signal was still present in the 
incoming signal. To prevent the voice activity detector from detecting the echoed ZCR information, the signal 
energy was also considered when performing the ZCR measurements. This ensures that the ZCR measurement 
was only applicable to the user speech. The ZCR measurement could however be compromised during a barge-
in condition, when both system and user speech ZCR information is present in the incoming signal. In such a 
case, the ZCR measurement could be higher than expected, making endpoint detection more sensitive to the 
ZCR measurement. The ZCR measurement could be adapted during double-talk conditions, but testing of the 
device during barge-in conditions concluded that this effect was negligible, as no loss in endpoint and voice 
activity detection performance could be observed. 
 
The 128K of RAM on the development board is not large enough to store the firmware code and to buffer 
enough incoming and outgoing telephony data. A 512K RAM chip must be used in the final prototype design. 
This would allow buffering of at least 6 to 8 seconds of data for both incoming and outgoing data (for both 
telephony channels). The CPLD and microcontroller firmware would need to be adapted so that memory bank 
switching can be performed. 
 
Finally, the firmware for the final prototype device must be adapted so that it would be able to transfer an 
incoming call to another telephone number. It must be possible to transfer a call using an external PBX or by 
relaying the call through the second telephone channel of the device (refer to section 8.2.4). 
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Final prototype: hardware design 
 

The final prototype includes all the components, design aspects and solutions of the previous prototypes, but is 
designed as a stand-alone device so that the development board is no longer required. The result of this chapter 
is a schematic design (Appendix A), and it is used to design the Printed Circuit Board (PCB). Refer to Appendix 
B for the PCB design considerations and layout. The schematic design is a logical representation of the 
hardware device that includes all components and electrical connections.   
 
The Protel 99 SE software suite was used to create the schematic design entries. The following steps are 
performed in order to create the schematic design: 

1. Logic symbols are created for each of the components used. 
2. Annotation of components (assigning designators and footprints to the parts). 
3. Creation of all electrical connections between components. 
4. Verification of the schematic design. Verification is done by using Protel’s Electrical Rule Checker 

(ERC). The ERC examines the schematic design for electrical inconsistencies (short circuits, floating 
pins etc.) and drafting inconsistencies (duplicate designators, unconnected net labels etc.). 

 
The following sections describe the design of the final prototype device. Although the schematic entries are 
discussed individually, signal interconnections exist between the schematic entries using net labels (red text in 
the schematic entries). Net labels connect a wire or pin to another wire or pin elsewhere in the design with the 
same net label. The complete circuit schematic can be found in Appendix A. 
 

7.1 User I/O interface 
The only user I/O provided are LEDs and a button to reset the USB device.  
 

7.1.1 LEDs 
Light-emitting diodes (LEDs) are required to display the device’s current status, and to signal error conditions. 
A bank of 6 HSMH C650 surface mount LEDs (red and green) is connected to I/O pins of the EZ-USB FX. The 
maximum output current of an EZ-USB FX pin is 10 mA [4]. To keep power dissipation to a minimum, we 
limit the current though a LED at 4 mA. According to the LED datasheet, the forward voltage ( fV ) is 
approximately 1.7 V at a forward current ( fI ) of 4 mA [32]. This implies a voltage drop of 1.6 V across the 
series current limiting resistor (see schematic entry of Figure 7.1). The value of this resistor should be: 

 Ω=
×

== − 400
104
6.1

3I
VR



CHAPTER 7: FINAL PROTOTYPE: HARDWARE DESIGN 
 

 

63

We use a 390 Ω resistor. Another pair of LEDs is used to indicate that the 5 V and 3.3 V power supply is 
applied to the board. A 560 Ω series resistor is used for the LED connected to 5 V to limit the forward current to 
approximately 6 mA. 
 
 
 
 
 
 
 
 
 

Figure 7.1: Schematic entry for LED circuitry. 

 

7.1.2 Reset generation 
An active low signal is required to reset the EZ-USB FX in the event of a firmware failure. A method similar to 
the one used on the EZ-USB development board is used to create the reset signal. A pushbutton is used to create 
an active low signal, which is routed to two inverting Schmitt trigger inputs. A pushbutton generates a noisy 
signal as the switch opens and closes. The Schmitt trigger employs hysteresis in order to create a switching 
voltage which is less susceptible to noise. Typically, the input must be taken to about 70% of the rail voltage 
before the output will change, while the lower level for change is about 30%. The Schmitt trigger will transform 
the slowly changing input signal into a rectangular and sharply defined, jitter-free output signal [33]. The 
74LCX14 IC, which has 6 inverter gates with Schmitt trigger inputs, is used. The signal is routed to a second 
Schmitt trigger input so that it is inverted again to provide an active low reset signal. This output (BUFRST#) is 
then connected to the RESET# pin of the EZ-USB FX microcontroller. Figure 7.2 illustrates a logic diagram of 
the reset generation circuit and Figure 7.3 is the schematic entry of the circuit. The power supply and input 
signal is decoupled with 100nF capacitors. 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2: Reset generation circuit. 

 

 

 
Figure 7.3: Schematic entry for reset generation 

circuit. 

 

The EZ-USB FX can simulate a USB disconnect and reconnection by floating the DISCON# pin. The DISCON# 
pin is connected to the data line (D+) of the USB bus via a 1.5kΩ resistor. Floating the DISCON# causes the 
host to see a disconnection of the device, since there is now no pull-up resistor connected to the D+ line of the 

+3.3V

BUFRST#

reset button
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USB bus. When the pin is driven high again, the host will recognise a new device connected to the USB bus and 
the device will be enumerated. To disconnect and reconnect the device when the reset button is pressed, some 
additional circuitry is required. The same concept used on the development board is applied, as shown in the 
schematic entry of Figure 7.4. The reset signal (BUFRST#) is connected to the collector of a 2N4401 transistor. 
When the reset button is pressed, the 1.5 kΩ resistor is driven low, and the host will “see” a device 
disconnection. When the button is released, the D+ line would again be pulled high by the pull-up resistor, as 
the resistor would be connected to 3.3 V. The host will detect a device connection if the data line (D+) has been 
pulled high for longer than 2.5 µs [1]. 
 
 
 
 
 
 
 
 
 

 

Figure 7.4: Schematic entry for disconnect on reset circuit. 

 

7.2 USB port protection 
Any cable or connector can be subjected to electrical noise transients from various sources. Noise transients can 
cause damage to the USB device if they are of sufficient duration or magnitude. To provide additional 
electrostatic discharge (ESD) protection to the EZ-USB FX microcontroller, a transient voltage suppressor is 
connected to the two data lines of the USB bus. A voltage suppressor (SN75240) from Texas Instruments was 
selected, and connected to the D+ and D- lines as shown in figure 7.5 [34]. 
 
 
 
 
 
 
 
 

 

Figure 7.5: Schematic entry for USB transient suppressor circuit. 

 

7.3 Power supply 
Table 7.1 shows the maximum power supply current required by the components in the design (from datasheets 
[4], [12], [16], [25], [32], [37] and [40]). 
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Component Max. supply current required (mA) 
Altera CPLD 100 
Cypress EZ-USB FX 50 
RAM 180 
EEPROM 3 
Zarlink echo canceller 100 
Silicon Labs DAA x2 20 
LEDs 34 
Total 487 

 

Table 7.1: Maximum power consumption. 

 
The maximum current that can be supplied by the USB is 500 mA. The maximum power supply requirement of 
all the components is estimated to be 487 mA (Table 7.1), therefore the device can receive all its power from the 
bus without the need of an external power supply.  
 
The schematic entry for the power supply, regulation and filtering is shown in Figure 7.6. A 5 V and 3.3 V 
power supply is required. The 5 V is supplied by the USB bus, and 3.3 V can be generated by using a voltage 
regulator. A linear 5 V / 3.3 V voltage regulator from Maxim, capable of delivering output currents up to 500 
mA, was selected (MAX604) [35]. The voltage regulator input is decoupled with a 100nF capacitor. 
 
To filter low-frequency noise caused by power supplies, electrolytic capacitors must be placed in the power 
supply circuit. For this purpose, 100uF electrolytic capacitors (C3 and C4) are used for the 5V and 3.3V 
supplies. These capacitors also provide extra current when needed, such as when many outputs switch 
simultaneously in a circuit. 
 
A ferrite bead (FB1) is also placed in series with the 5V power supply (Vcc). Ferrite beads have a minimal DC 
impedance, but at a higher frequency it generates an impedance which mainly consists of a resistive element. A 
ferrite bead is thus an effective component in noise suppression. A ferrite bead capable of handling a maximum 
current of 1A, and which provides an impedance of 100Ω at 100MHz is placed in series with the USB power 
supply.  
 
The jumper connection (JP2) provides a means of measuring the current supplied to the USB device. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.6: Schematic entry for power supply circuit. 
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7.4 Silicon Laboratories DAA 
The “Typical Application Circuit” ([12], p.17) and manufacturer recommendations were followed for the 
integration of the Silicon Laboratories DAAs into the design. The external components required by the DAAs 
mainly consist of transistors, resistor networks, capacitors and diodes. These components provide a bias voltage 
to the DAAs and provide the DC and AC termination to the telephone network. One of the transistors is used as 
the hook switch. If a component specified by Silicon Laboratories was not available, a suitable alternative 
component was selected.  
 
Two Y2-class capacitors (C37a and C38a) are used for the communication link between the line-side and the 
system-side device. It is important that the high-voltage isolation barrier between the digital circuitry (USB bus 
and system-side device) and the analogue circuitry (line-side device) is not compromised. Y2-class capacitors 
adhere to interference-suppression requirements and are used to bridge basic isolation barriers. It provides 
isolation for line voltage up to 250 V AC, and is impulse tested to 5 kV.  
 
The line-side device connects directly to the telephone line without the need of an isolation transformer. Voltage 
limiting is thus required to prevent damage from the line transients caused by lightning and power line crosses. 
The protection device specified by Silicon Laboratories was not available, but a similar device, a Totally 
Integrated Surge Protector (TISP), was used. The protector consists of a symmetrical voltage-triggered thyristor 
[18]. Overvoltages are initially clipped by breakdown clamping until the voltage rises to the breakover level, 
which forces the device in a low-voltage on state. The on state causes the current resulting from the overvoltage 
to be safely diverted through the device.  
 
The DTX (incoming telephony signal) and DRX (outgoing telephony signal) pins are connected to the echo 
canceller (via voltage translators), while the SPI control interface pins (CS, SDI, SDO, SCLK) are connected to 
the SPI bus controlled by the EZ-USB FX microcontroller. The frame (FSYNC) and PCM (PCLK) clock signals 
are generated by the CPLD.  
 
The schematic entry is shown in Figure 7.8. This circuit is duplicated for a second telephony channel (refer to 
the full schematic diagram in Appendix A). 

 
 

Figure 7.8: Schematic entry for DAA circuit. 
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7.5 Altera CPLD 
To comply with the operating requirements for Altera devices, a general-purpose 100uF electrolytic capacitor is 
used to stabilise the power supply and 100nF ceramic capacitors are used between Vcc (positive power supply) 
and the ground plane at each Vcc pin [17]. The MaxPlus compiler generates a device utilisation report file, 
which provides information regarding the pin-outs and connectivity of the device used in the project, including 
the dedicated and unused pins.  
 
An 8.192 MHz clock oscillator ([36]) is connected to device’s global clock 1 pin (GCLK1), and the 48 MHz 
clock output signal from the EZ-USB FX is connected to the global clock 2 pin (GCLK2). A small resistor (22 
Ω) is placed in series with the switching outputs (FSYNC, PCLK) to reduce noise.  
 
A JTAG programming interface is required to program the CPLD. The four JTAG signals (TDI, TMS, TDO, 
TCK) is routed to an 8 x 2 header connection, where a compatible programmer can be connected to the board.  
 

 
Figure 7.9: Schematic entry for Altera CPLD circuit. 

 

7.6 EZ-USB FX microcontroller 
The EZ-USB FX requires very few external components. All power supply pins (Vcc) are decoupled with 100nF 
capacitors. The USB data lines (D+ and D-) and the clock output pin (CLKOUT) are connected via 22 Ω 
resistors to reduce noise on these high-frequency lines. A 12 MHz series-resonant, fundamental mode crystal is 
connected between the XIN and XOUT pins, as well as two 33 pF capacitors connected to ground. A 1 MΩ 
resistor must also be connected between these pins.  
 
The I/O pins of the microcontroller are used for the LEDs, FIFO buffer I/O, control pins connected to the CPLD 
and the SPI bus. The address (A0-A15) and data lines are connected to the static RAM. The RESET# pin of the 
microcontroller is connected to the reset generation circuit. Three additional I/O pins used for the higher 
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memory address lines (A16-A18), as well as the RD#, WR#, PSEN# and the 48 MHz clock (CLKOUT) signals 
are connected to the CPLD and are used to perform bank switching of the 512 K static RAM. 

 

 
Figure 7.10: Schematic entry for EZ-USB FX microcontroller. 

 

7.7 Static RAM  
A 512 K static RAM IC is required for the final prototype. To be able to utilise the quick data transfer 
capabilities of the microcontroller’s DMA engine, we must use high-speed static RAM. A 512 K static RAM 
(CY7C1049BV33) component from Cypress, with a 15 ns access time is selected [40]. The address lines (A0-
A15) and the data lines (D0-D7) are directly connected to the EZ-USB FX microcontroller, while the higher 
address lines (A16, A17 and A18) as well as the control signals (WEn, CEn, OEn) are connected to the CPLD. 
The memory bank switching is performed by the CPLD and the microcontroller (refer to sections 8.2.3 and 
8.3.1). The power supply pins are decoupled with 100 nF capacitors, and the address lines connected to the 
CPLD are connected to Vcc with 10 kΩ pull-up resistors to prevent the signals from ‘floating’ when they are not 
being driven by the CPLD.  
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Figure 7.11: Schematic entry for static RAM circuitry. 

 

7.8 EEPROM 
The EZ-USB FX microcontroller requires an I2C serial EEPROM, connected to its I2C port, to store the device 
descriptors and the boot loader firmware. A 64K I2C serial EEPROM from Microchip is selected [37]. This is a 
double-address-byte (16-bit) EEPROM and the I2C controller of the EZ-USB FX needs to identify the 
EEPROM as such. A double-address-byte EEPROM’s address pins must be strapped to ‘001’ (A2, A1, A0) 
[38]. The I2C lines (SCL, SDA) require 1 kΩ pull-up resistors.  
 

 

 

 

 

 
 

 

Figure 7.12: Schematic entry for EEPROM circuitry. 

 

7.9 Zarlink MT9123 echo canceller 
The echo canceller requires a 20 MHz clock input which is provided by a clock oscillator. All signals to and 
from the echo canceller are translated by two voltage translators (see section 6.3.4.1). Although the translator’s 
direction of translation can be changed by toggling the DIR pin, we use two translators with fixed translation 
directions. One translator is used for the echo canceller’s input signals (3 V to 5 V) and the other translator is 
used for the echo canceller’s output signals (5 V to 3 V) 
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Figure 7.13: Schematic entry for Zarlink echo canceller and voltage translation circuitry. 

 
The enable strobes (ENA1, ENB1, ENA2, ENB2) are generated by the CPLD (refer to section 6.3.4). The Rin 
input (reference signal) is connected to the CPLD, and the Sin input (incoming telephony signal) is connected to 
the PCM transmit output signal of the DAAs. The Rout output (outgoing telephony signal) is connected to the 
PCM receive input of the DAAs and the Sout output is routed to the CPLD. The echo canceller’s serial interface 
(DATA1, DATA2, CS, and SCLK) is connected to SPI bus, which is controlled by the EZ-USB FX 
microcontroller and also used for communication with the DAAs. All power supply inputs of the echo canceller 
and the voltage translators are decoupled with 100nF capacitors. 
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Final prototype: firmware design 
 
This chapter describes the firmware for the EZ-USB FX microcontroller and the Altera CPLD. Two firmware 
programs for the microcontroller are developed: the boot loader program (section 8.1) and the actual program 
that performs the functionality required for the telephony interface device (section 8.2).  
 

8.1 Boot loader firmware 
The boot loader firmware is stored in the EEPROM, and is automatically downloaded to the internal RAM of 
the microcontroller when the device is powered. The boot loader’s function is to write the code bytes of the 
telephony interface firmware, which is stored and downloaded from the host PC, to the external RAM of the 
microcontroller (refer to section 6.2.3.2).  
 
The firmware program that is transferred to the boot loader is compiled by using SDCC, which generates an 
Intel hex-record file. An Intel hex-record file contains the firmware program as a number of Intel hex-records. 
Each Intel hex-record has a length, address, type and data field. The length field specifies the number of bytes 
contained in the data field that must be written to a memory address, specified in the address field. The type 
field specifies the type of record, which is usually ‘0’ to indicate a data record or ‘1’ to indicate a termination 
record (the last record in the file). The hex2c utility from Cypress is used to generate C source code that 
represents the Intel hex-record file. This source code declares an array of INTEL_HEX_RECORD structures. 
This array is included and compiled with the API library. If the user application initialises the device, but the 
telephony firmware is not running on the microcontroller, the API will send the firmware code contained in the 
Intel hex-records to the microcontroller (running the boot loader program) via control transfers.  
 
The Intel hex-record file for the boot loader firmware is converted to a binary file, using Cypress’ hex2bix 
utility. This binary file can be programmed to the EEPROM via the USB bus and the microcontroller by using 
the software supplied by Cypress, or by using an EEPROM programmer. 
 

8.1.1 Firmware main() loop 
The main() section of the boot loader firmware performs the actions shown in the flowchart of Figure 8.1. It 
starts by disconnecting and reconnecting the device, which is where the 8051 takes control from the USB core 
and when the device is renumerated. Thereafter, the global variables are initialised, the interrupts are set up and 
the device is initialised (I/O pins configured etc.). The firmware then remains in an endless while() loop. It 
waits for the host PC to send the firmware data via control transfers, which is handled by the USB interrupt 
service routine. 
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Figure 8.1: Boot loader firmware. 

 
The firmware signals the CPLD (using the memory address lines A16, A17 and A18) to use memory bank 0 
(first 64 K block) for both program and data memory access. This allows the firmware data received from the 
host PC to be written to RAM as data memory, which is thereafter used as program memory (when the device is 
reset by the host PC).   
 

8.1.2 Interrupt handling 
All USB transfers, including requests to download firmware code to RAM, are interrupt driven. The flowchart 
of Figure 8.2 shows the interrupt service routine for USB interrupts. Every control transfer sent to control 
endpoint 0 of the device generates a Setup Data Available (SUDAV) interrupt request, which is handled by the 
parser() function. If data is sent to endpoint 3 of the microcontroller, an interrupt is generated if the data is 
ready to be read by the firmware. This interrupt is used to send the “firmware version request” 
(REQUEST_FIRMWARE_VER) to the device, upon which the firmware will respond with a “0” to indicate to 
the API that the boot loader program is running on the microcontroller.  
 
 

 

 

 

 

 

 

 

 
 

Figure 8.2: USB interrupt service routine (boot loader). 
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The parser() function (Figure 8.3) determines the type of standard request sent by the host PC, and calls the 
function that will respond to the request. These requests are usually standard device, interface or endpoint 
requests (refer to section 2.6). The parser() function must also be able to interpret the “firmware download” 
(VDR_RAM_DOWNLOAD) command, which is the command that the API uses to download firmware that must 
be written to memory. If this command is received, the do_RAM_download() function is called, which 
writes the hex-record that is received to its specified address in memory. This function can also write to the 
CPUCS register to halt or reset the 8051. This allows the API to reset the microcontroller when firmware 
download is complete, so that the microcontroller can run the new firmware. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 8.3: Parser() function. 

 
Please refer to source code (CD-ROM) and Appendix C for details regarding the functions of the boot loader 
firmware. The boot loader source file (bootloader.c) includes a file containing the memory addresses of 8051 
registers (8051.h) and a file containing the memory addresses of registers unique to the EZ-USB FX 
microcontroller, as well as definitions applicable to USB standard requests and descriptor types (ezusb_reg.h).  
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8.2 Telephony interface device firmware 
The actions performed by main() of the microcontroller firmware are illustrated in the flowchart of Figure 8.4. 
The EZ-USB FX will simulate a disconnection and then reconnect to the USB bus. After the I/O ports, 
interrupts, echo canceller, DAAs and the device itself is configured and initialised, the firmware will remain in a 
loop where its main function is to transfer data between the FIFO buffers and the RAM, and between the 
endpoint buffers and the RAM. All other tasks are interrupt driven, and are initiated by a host request.  
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4: Main() of  telephony interface firmware. 

 
If the device has been instructed to perform a call transfer to another telephone number, the 
InitCallTransfer() function will be called. This function will allow telephony data to be exchanged 
between the two channels, instead of between the host PC and a channel (see section 8.2.4). The “Do Channel 0 
data transfer” and “Do Channel 1 data transfer” blocks (shown in Figure 8.4) perform the data transfers 
between the telephony channels and the USB endpoint buffers. The flow of data between these buffers is shown 
in Figure 8.5. If a call transfer is in progress and a hang-up was detected on a channel, the call transfer will be 
terminated by calling the EndCallTransfer() function. 
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Figure 8.5: Data flow between endpoint, RAM and FIFO buffers. 

 

8.2.1 Telephony data transfers 
The flowchart of the “Do Channel x data transfer” blocks (Figure 8.4) are shown in Figure 8.6. If the channel is 
on-hook (no call in progress), any telephony data remaining in the buffer (from a previous call) will be sent to 
the host PC. No new data will be transferred to or from the telephony channels. If a telephone channel is off-
hook (call in progress), voice activity detection is performed (refer to section 8.2.6). If a call transfer is in 
progress between the two channels, hang-up detection (refer to section 8.2.7) is performed instead of voice 
activity detection.  
 
This procedure transfers buffered outgoing data from RAM to the output FIFO buffer (if there is buffer space 
available) and read incoming data from the input FIFO and save it to RAM. Also, if an OUT transfer (data sent 
from PC) is in progress, it will read the next 64-byte packet (if it is available) from the OUT endpoint associated 
with the channel and transfer it to RAM. If an IN transfer is in progress (data transfer to PC), it will read the 
next 64-byte packet from RAM and transfer it to the IN endpoint associated with the telephony channel. 
 
If a call transfer is in progress, the DoCallTransfer() function is called, which transfers data between the 
two channels, instead of transferring data between a channel and the host PC. 
 
All telephony data are transferred by using the DMA mechanism (see section 6.2.3.3). The 
BufferDataFromPC(), SendBufferedDataToPC(), GetDataFromTelephone(), 
SendBufferedDataToTelephone() and the DoCallTransfer() functions implement DMA 
transfers. No telephony data may be written to the memory area at addresses 0x7800-0x7FFF, as this area is 
occupied by the USB endpoint buffers. DMA transfers are done in blocks of memory that are copied from one 
memory address to another. The functions that implement DMA transfers, must therefore compensate for this 
memory “gap”, by subdividing any DMA block that will overlap with this area into smaller blocks that can be 
written before and after the memory “gap”.  
 
After a DMA transfer has been configured (source address, destination address and number of bytes to transfer), 
the DMA_start() function is called. This is an assembly module that will initiate the DMA transfer, and will 
only return when the transfer has completed. Refer to Appendix C and the source code for more information 
regarding the assembly module and the functions shown in Figure 8.6.  
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Figure 8.6: Channel data transfer. 

 

8.2.2 Interrupt handling 
The interrupts that are enabled by the setup_int() function are the USB interrupts, FIFO interrupts and the 
timer interrupts. The FIFO interrupts are only used for debugging purposes (to indicate if a FIFO buffer 
overflow has occurred) and are handled with the FIFO_ISR() interrupt service routine (refer to Appendix C). 
The timer 0 and timer 1 interrupts, which occur when one of the timers overflow, are used for timing purposes 
during ringing tone and hang-up tone detection. The flowchart of the USB interrupt service routine is shown in 
Figure 8.7. 
 
The parser() function, which handles the standard USB requests, is similar to the boot loader’s parser() 
function shown in Figure 8.3.  
 
As described in section 6.2.3.5, we use NAK events to indicate the beginning of a new data transfer to the host 
PC. NAK interrupts for endpoint 1 IN (channel 1) and endpoint 2 IN (channel 2) are enabled. If a NAK interrupt 
occurs for an endpoint, a flag is set to indicate that an IN transfer for the channel is in progress and the NAK 
interrupt will be disabled until the data transfer has completed. This flag is read in the main() loop to 
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determine if the SendBufferedData() function must be called, which will transfer data to the IN endpoint 
buffer associated with the channel. 
 
In the same manner, OUT transfers (transfers from the host PC) are initiated by an OUT interrupt for endpoint 1 
(channel 1) or endpoint 2 (channel 2). The USB interrupt service routine will set a flag to indicate that an OUT 
transfer for the channel is in progress and future OUT interrupts for the endpoint will be disabled until the data 
transfer has completed. This flag is read in the main() loop to determine if the BufferDataFromPC() 
function must be called, which will transfer the received data from the OUT endpoint to the RAM buffer. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 8.7: USB interrupt service routine. 

 
Commands or requests relating to the telephony channels, such as answering calls, placing a channel on-hook, 
requesting the size of buffers etc. are sent to endpoint 3. If an OUT interrupt occurs for endpoint 3, the 
ChannelCommand() function is called to respond to the command or request. There are 36 commands that 
this function must be able to interpret (refer to the source code for details).   
 
The interrupt vector table is written in assembly (ivect.asm), and is compiled as a separate module. This module 
is then linked to the main firmware project and is placed at address 0x0000 in memory. Refer to Appendix C for 
details.  
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8.2.3 Memory bank switching 
The three highest address lines (A16, A17, A18) for the 512 K RAM, as well as the microcontroller’s program 
read enable (PSEN#) and data read/write strobes (RD#, WR#) are routed to the CPLD. If program memory is 
accessed, the CPLD will keep the three highest address lines low, so that only bank 0 is used. For any data read 
or write operation, the higher address lines will be active so that the microcontroller can select the bank to use. 
The CPLD therefore separates the program and data memory so that the modified Harvard memory architecture 
is implemented. The RAM_BankSelect(char bank) function selects the bank number (0-7) to use for the 
next data read or write operation.  
 

8.2.4 Call transfer 
The host PC can request to transfer an incoming call to another telephone number, by routing the call through 
the second telephone channel (if the second channel is on-hook and available). The application will need to take 
the second telephone channel off-hook and dial the required telephone number. A command 
(CALL_TRANSFER) is then sent to endpoint 3, which will provoke the InitCallTransfer() function. 
From this instance, all incoming data received for the incoming call, will be transmitted to the second telephony 
channel (to the dialled telephone number) and data received on the second telephony channel (from the dialled 
number) will be transmitted to the first channel (incoming call). No more telephony data will be transferred to or 
from the host PC. Figure 8.8 shows the flow of data between the channels when a call transfer is in progress.  
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Figure 8.8: Flow of telephony data for a call transfer. 

 
The microcontroller will perform hang-up detection (see section 8.2.7) to determine when a call transfer has 
completed. If a hang-up condition has been detected, the call transfer will be terminated by disconnecting the 
telephone calls (channels placed on-hook). The host API can also send a command to terminate the call transfer 
if it is required.  
 

8.2.5 Line status detection 
The Silicon Laboratories DAA has the ability to detect incoming ringing signals. If an incoming ringing signal 
was detected, the ring detect flag (register 5) of the DAA is set, which is read by the microcontroller via the SPI 
control interface [12]. 
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A ringing signal is defined if a voltage greater than the positive ring threshold, or if a voltage less than the 
negative ring threshold is detected on the line. If a ringing signal is detected (positive or negative), the ring 
detect flag will be set. The threshold values can be adjusted by writing new values to the threshold registers of 
the DAA. Invalid ringing signals could be detected if line-voltage changes occur due to pulse dialling, line tests 
or a parallel handset going off-hook. The DAA can perform additional ring validation which prevents false 
triggering of the ring detection circuitry. This is done by validating ring parameters, which is programmed in a 
series of control registers. The ring validation circuit calculates the time between alternating crossings of the 
positive and negative ringing signal. The ringing signal must be validated within a high and low frequency 
tolerance for a certain time interval (register 23). The high and low frequency tolerances are programmed to 
register 22 and 24 respectively. Once the signal has been validated for this time interval, the circuitry begins to 
check for the end of the ring signal, which is defined as the lack of additional threshold crossing for a specified 
time interval (register 23). If the DAA’s ring validation feature is enabled, the ring detect flag will only indicate 
a ringing signal that has been validated by these parameters. As soon as the microcontroller detected that the 
ring detect flag is set, it will report the channel status as “RINGING” and it will start a timer. If no new ring 
signals are detected before the timer has expired, the channel status is reset to “ON-HOOK”.  
 
If a large negative line voltage (approximately –45 V DC) is measured by the DAA, it is assumed that the 
telephone line is properly connected to the device and the channel status will be reported as “ON-HOOK”. If the 
line voltage is measured to be 0 V, there is an error with the telephone line connection and the line status will be 
changed to “NO-LINE”. If a channel is taken off-hook by issuing the DAA with an off-hook command, the line 
status will be changed to “OFF-HOOK” until an on-hook command is received.   
 

8.2.6 Voice activity detection 
The state diagram of the Voice Activity Detector (VAD), implemented with the  
VoiceActivityDetection(Byte channel) function, is shown in Figure 8.9. The voice activity 
detection algorithm will only execute if the “barge-in” or “record on voice activity” feature is enabled via the 
API. 
 
The echo canceller’s double-talk flag is continuously polled to determine if there is any caller speech present in 
the incoming signal (state 1). If the flag is active, the VAD algorithm is activated (state 2). The VAD algorithm 
measures the energy and zero-crossing rate of the incoming signal, as described in section 6.3.5.1. If a sufficient 
number of frames are measured above the energy and ZCR threshold values, speech is indicated. If the energy 
and ZCR measurements indicate that there is no speech present, the voice activity detection algorithm returns to 
the idle state (state 1). If speech is detected (state 3) and the “record on voice activity” feature is enabled, the 
microcontroller will start recording incoming speech data. If barge-in is enabled, a barge-in condition will also 
be indicated. As long as caller speech is present in the incoming signal (indicated by the energy and ZCR 
measurements), the VAD will remain in state 3. A timer is activated, which is reset every time that voice 
activity is detected. The VAD enters state 4 as soon as the timer reached a threshold value (no speech present 
for PostSpeechTimeout seconds). This state indicates that the end of an utterance was detected, and it will 
remain in this state until the RESET_VAD command from the API was received. 
 
All the parameters used during voice activity detection (threshold values, timeout values etc.) can be adjusted 
via the API (refer to Chapter 9). 
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Figure 8.9: Voice activity detector state diagram. 

 

8.2.7 Hang-up detection 
During a call transfer, hang-up detection is performed to determine when the call has finished. This is required 
so that the DAAs can place the channels back on-hook to allow a new incoming call.  
 
If a caller has hung-up, the PBX or central office (CO) equipment will generate a hang-up tone for a few 
seconds. Hang-up tone detection is performed, which is similar to voice activity detection (section 8.2.6) but 
with some additional constraints. A hang-up tone is detected if the measured ZCR and energy falls within 
minimum and maximum threshold values for a specified time interval. To determine the default minimum and 
maximum threshold values, the hang-up tone was recorded and, by using Matlab, the energy and ZCR were 
measured. The hang-up tone parameters (threshold values, time interval) can be adjusted via the API.  
 
Unfortunately, the ringing tone that is received from the dialled telephone number has the same frequency as the 
hang-up tone. The two signals are only differentiated by their cadencies (on-time and off-time). The EZ-USB 
FX has limited computational capabilities, and cannot perform the signal processing required to distinguish 
between the two signals. We can therefore only perform hang-up tone detection on the caller’s incoming signal, 
and not on the incoming signal of the dialled telephone number (which contains a ringing signal until the 
telephone is answered).  
 
If hang-up tone detection should fail for any reason, we would still be able to detect a hang-up condition. The 
microcontroller will automatically assume that a call transfer has ended if there is no more speech activity for 
“NoSpeechTimeout” seconds on both channels. This is determined by activating a timer, which is reset 
every time that voice activity is detected on either channel. If the timer reaches a threshold value, the end of the 
call transfer is assumed and both channels are placed back on-hook.  
 

8.3 Altera CPLD design 
The Altera CPLD performs the following functions: 

• Memory bank switching and control of the 512 K RAM. 
• Generation of PCM timing signals for the DAAs and the echo canceller (PCM highway clock signal and 

frame signals). 
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• Generation of PCM timeslot enable strobes for the echo canceller. 
• Generation of read, write and control signals for the slave FIFO buffers of the microcontroller. 
• Interfacing of the PCM transmit and receive signals to the microcontroller. 

 

8.3.1 Bank switching and RAM control 
Figure 8.10 shows the schematic GDF (graphical design file) entry for the bank switching and RAM control 
logic. 

 

Figure 8.10: Memory bank switching and RAM control logic schematic. 
 
The EZ-USB FX microcontroller has a 16-bit address bus, and can thus only access 64K of external RAM 
directly. Three I/O pins of the microcontroller are used to provide additional “address lines”, which allows us to 
divide the 512 K RAM into eight 64 K banks. The RAM_Bank_select block is a graphical symbol for an entity 
([39], p. 37), and its function is defined by the following VHDL code segment: 
 
 
library ieee; 
use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all; 
 
entity ram_bank_select is 
    port(clkin : in std_logic; PSENn : in std_logic; A16 : in std_logic; A17 : in    std_logic; A18 

: in std_logic; RAM_A16 : out std_logic; RAM_A17: out std_logic; RAM_A18 : out std_logic); 
end entity ram_bank_select; 
 
architecture ram_bank of ram_bank_select is 
begin 
 process (clkin) is 
  variable counter : integer := 126; 
  begin 
   if rising_edge(clkin) then 
    if (PSENn='0') then 
     RAM_A16 <= '0'; 
     RAM_A17 <= '0'; 
     RAM_A18 <= '0'; 
    else 
     RAM_A16 <= A16; 
     RAM_A17 <= A17; 
     RAM_A18 <= A18; 
    end if; 
   end if; 
  end process; 
end architecture ram_bank; 

 

 
The code inside the “architecture” block is a process which only executes when the 48 MHz clock signal 
from the microcontroller (clkin), changes. When a rising edge of the clock signal is detected, the code in the 
“begin-end process” block will be executed. If the PSEN signal is active, the code will force the output 
address lines (RAM_A16-RAM_A18) to 0, otherwise the input address signals are directly routed to the output 
signals. The PSEN signal is active when code is read, thus code will always be fetched from bank 0. The other 
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banks are used for data RAM. The higher address lines (A16-A18) are modified by the EZ-USB FX firmware to 
select one of these banks.  
 
The Ram_Control_Logic entity generates the active-low chip enable (CEn), read-enable (RDn) and write-enable 
(WEn) signals required to access the external RAM. The write-enable signal is the same as the WE signal 
generated by the EZ-USB FX, but the read-enable signal is modified to be active on both the EZ-USB FX data 
read (RD#) and code fetch (PSEN#) signals, as the RAM IC does not distinguish between code or data read 
operations. The EA output signal, which is routed to the microcontroller, determines the placement of the 
bottom segment of code memory, inside (EA=0) or outside (EA=1) the EZ-USB FX chip [38]. We utilise the 
internal memory for the code memory (interrupt vector table and the DMA_start() module), therefore the EA 
signal is tied to ‘0’. The VHDL code for the Ram_Control_Logic  entity is as follows: 
 

 

8.3.2 PCM timing signals 
The freqdif Altera macrofunction (Figure 8.11) is used to divide the 8.192 MHz clock input by 8. This generates 
the 1.024 MHz PCM highway clock signal (PCLK), which is routed to the DAAs and the echo canceller. The 8 
kHz frame signal (FSYNC) is generated by the control_logic block (section 8.3.3). 
 

 
Figure 8.11: PCM clock generation schematic. 

 
 

8.3.3 Shift registers and control logic 
The control_logic entity (shown in Figure 8.12) generates the 8 kHz frame signal (FSYNC), the control signals 
for the slave FIFO buffers and shift registers and the enable strobes for the echo canceller. It is clocked by the 
same 1.024 MHz clock signal that is generated for the PCM highway, as the echo canceller and shift register 
control signals must be synchronised with the transitions of the PCM signals. The 8 kHz frame signal for the 

 
library ieee; 
use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all; 
 
entity ram_control_logic is 
      port(clkin : in std_logic; PSENn : in std_logic; WR : in std_logic; RD : in std_logic; RDn : 

out std_logic; WEn: out std_logic; CEn : out std_logic; EA : out std_logic); 
end entity ram_control_logic ; 
 
architecture ram_control of ram_control_logic is 
begin 
 process (clkin) is 
  begin 
   if rising_edge(clkin) then 
    CEn <= '0';  
    RDn <= not ((not PSENn) or (not RD)) ; 
    WEn <= WR; 
    EA  <= '0'; 
   end if; 
  end process; 
 
end architecture ram_control; 
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DAAs is obtained by counting 128 PCLK cycles and then setting FSYNC high for the duration of one PCLK 
cycle (see the simulation in Figure 8.13). 
 

The DAAs are programmed to input and output data for channel 1 upon the rising edge of the FSYNC pulse 
(timeslot 1) and 20 PCLK cycles after the FSYNC pulse for channel 2 (timeslot 2). Shift register 1 must be 
enabled (for 8 PCLK cycles) during these timeslot periods to allow bits to be shifted in from the DTX signal 
(data from telephone channel). The enable1 signal, generated by the control_logic entity, provides the enable 
signal for shift register 1. In the same manner, shift register 2 must be enabled to allow the byte that is read from 
the FIFO[7..0] bus, to be shifted out serially for the DRX signal (data to telephony channel). The enable signal 
for shift register 2 (enable2) is also generated by the control_logic entity. This enable signal however, must 
appear 1 PCLK before the FSYNC pulse, and at its rising edge, shift register’s 2 load input must be pulsed for 1 
PCLK cycle. This is to allow time for the shift register to read a byte from the FIFO[7..0] bus, before shifting 
out the bits for the DRX signal (upon the rising edge of FSYNC). The load signal is also generated by 
control_logic. All bits are shifted in and out to the left (MSB first).  

 

Figure 8.12: Schematic for the control_logic block and shift registers. 

 
The simulation shown in Figure 8.13 shows the signals that are generated to read and write 1 sample value for 
timeslot 1 (channel 1) from and to the microcontroller slave FIFO buffers. A sample value of 0x85H is placed 
on the bus connected to the microcontroller’s FIFO buffers (FIFO[7..0]) and is clocked into shift register 2 
upon the rising edge of load and enable2. This value’s bit pattern (“10000101”) is shifted out serially on the 
DRX pin upon the rising edge of FSYNC. At the same instance, a sample bit stream (“10101010”) on the DTX 
pin is clocked into shift register 1. The value of this sequence (0xAAH) appears on the bus connected to the 
microcontroller’s FIFO buffers (FIFO[7..0]) 8 PCLK cycles later.  
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Figure 8.13: Simulation of signals generated by control_logic. 

 

8.3.4 Echo canceller enable signals 
Another task of the control_logic block is to generate the data transfer enable strobes (ENA1, ENB1, ENA2, 
ENB2) for the echo cancellers. The enable strobes must coincide with the same instances (timeslots) that the 
DAAs use to input and output data on the PCM highway. Echo canceller A’s enable strobes (ENA1, ENA2) 
must thus be generated at the same instance as the rising edge of the FSYNC signal (for telephony channel 1), 
and are 8 PCLK cycles in length. Echo canceller B’s enable strobes (ENB1, ENB2) must be generated 20 PCLK 
cycles later (for telephony channel 2). Figure 8.14 shows the simulation results of the echo canceller strobe 
signals. 
 

 

Figure 8.14: Simulation of echo canceller strobe signals. 

 

8.3.5 Slave FIFO buffer control logic 
Finally, the control_logic block must generate the read, write and select strobe signals for the internal slave 
FIFO buffers of the EZ-USB FX microcontroller, as well as the enable signal for the tri-state buffer. The ASEL 
signal (active low) must be asserted when slave FIFO buffer A (for telephony channel 1) is accessed, and will 
therefore coincide with the rising edge of the enable2 and load signals (when data is read) and on the falling 
edge of the enable1 signal (when data is written). BSEL must be asserted in the same manner when slave FIFO 
buffer B (for telephony channel 2) is accessed (see the simulation diagram of Figure 8.15). These signals are 
asserted for the duration of 1 PCLK cycle. SLRD and OEA must be asserted when any of the FIFO buffers are 
read, and SLWR must be asserted when data is written to the FIFO buffers. 
When data is read from the FIFO buffers, the tri-state buffer (refer to Figure 8.12) must be disabled to allow 
shift register 2 to read data from the bidirectional FIFO[7..0] bus. The tri-state buffer must then be enabled 
again to allow shift register 1 to output data on the bidirectional bus. The control_logic block generates the 
TRIBUF signal which controls the tri-state buffer.  Figure 8.15 shows the simulation results of the FIFO buffer 
and tri-state buffer control logic. 
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Figure 8.15: Simulation of FIFO buffer control  signals. 

 
The VHDL code for the control_logic entity is shown on the next page. All signals are asserted upon a certain 
value of the counter variable, which is incremented with each rising edge of the PCLK signal. This VHDL 
entity is thus an implementation of a state machine, where the state depends on the value of the counter 
variable. This variable counts from 0 to 128, which defines one period of the 8 kHz FSYNC cycle (PCM frame), 
and all events occur within this frame. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
library ieee; 
use ieee.std_logic_1164.all, ieee.std_logic_unsigned.all; 
 
entity control_logic is 
 port(clkin : in std_logic; fsync: out std_logic; enable1: out std_logic; enable2: out 

std_logic; load: out std_logic; SLWR : out std_logic; SLRD : out std_logic; TRIBUF: out 
std_logic; ASEL: out std_logic; BSEL: out std_logic; ENA1: out std_logic; ENB1: out 
std_logic; ENA2: out std_logic; ENB2: out std_logic); 

end entity control_logic ; 
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architecture generator of control_logic is 
       constant Slot2: integer:= 20; 
       constant Slot1: integer:= 0; 
begin 
 process (clkin) is 
  variable counter : integer := 126; 
  begin 
   if rising_edge(clkin) then 
    counter := counter+1; 
    SLWR <=  '1';        SLRD <=  '1'; 
    fsync <= '0';       ASEL <=  '1'; 
    BSEL <=  '1'; 
             
    if (counter=Slot1+7) then 
            enable2 <= '0';  
    end if; 
    
    if (counter=Slot1+8) then   
     enable1 <= '0';  SLWR <=  '0';  
     ASEL <=  '0';  TRIBUF <= '1';  
     ENA1 <=  '0';  ENA2 <=  '0'; 
    end if; 
     
    if (counter=Slot2-1) then   
     enable2 <=  '1';  load <= '1';  
     SLRD <=  '0';  BSEL <= '0';  
     TRIBUF <=  '0';  
                              end if; 
 
    if (counter=Slot2) then  
     ENB1 <=  '1';  ENB2 <= '1'; 
     enable1<= '1';  load <=  '0';  
    end if; 
 
    if (counter=Slot2+7) then 
     enable2 <= '0'; 
    end if;    
     
    if (counter=Slot2+8) then  
     enable1 <= '0';  SLWR <=  '0';  
     BSEL <=  '0';  TRIBUF <= '1'; 
     ENB1 <=  '0';  ENB2 <=  '0'; 
    end if;      
            
    if (counter=127) then --slot1-1 
     enable2 <= '1';  load <= '1'; 
     SLRD <=  '0';  ASEL <=  '0';  
     TRIBUF <= '0'; 
    end if; 
 
    if (counter=128) then --slot1 
     counter:=0; 
     fsync <=  '1';   enable1 <= '1';  
     load <=  '0';   ENA1 <=    '1'; 
     ENA2 <=  '1';  
                              end if; 
   end if; 
  end process; 
end architecture generator; 
 
 

 
 



 

 

 

Chapter 9 

9. API design  

API design 
 
The application programming interface (API) is a collection of functions, developed using the open-source, 
platform-independent USB library, LibUSB (refer to section 3.4 for the LibUSB API). The API can be compiled 
under both Microsoft Windows and Linux operating systems. This chapter describes the functions available in 
the API. Refer to the source code on the CD-ROM for more details.  
 

9.1 Initialisation functions 
This section describes the functions relating to the opening, initialisation and closing of the hardware device. 
 

9.1.1 InitTID 
Prototype:  int InitTID(Byte Verbose)  

This function searches for the USB telephony interface device on the USB bus. If the device is found, it 
initialises the device for use. This function must be called before any of the other functions of the API may be 
called.  

Inputs: Verbose – Use “1” to display and “0” to hide tracing information. 
Outputs: Integer – Code indicating device status. 
 0 = No USB telephony interface device found on USB bus.  

1 = Device found, but the boot loader is waiting for the telephony interface firmware to be 
downloaded. Use the DownloadTIDfirmware() function. 
2 = The USB telephony interface device is found on the bus and ready for use. 

 

9.1.2 DownloadTIDfirmware 
Prototype: int DownloadTIDfirmware(BYTE verbose, void UpdProgress)(int,char)) 

This function downloads the telephony interface device firmware to the device running the boot loader program. 
Use the InitTID() function first to test if the boot loader firmware is running. After the download is 
completed, the device is initialised and ready for use (InitTID() need not be called again). 

Inputs: verbose – Use “1” to display trace information and “0” to hide.  
*UpdProgress – Function pointer to a callback function (optional). The user must provide this 
optional callback function, which is called during the download process. It can be used, for 
example, to update a download progress display. Use NULL if the callback function is not required. 
The first parameter of the callback function is an integer, indicating the percentage of the download 
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process completed, and the second parameter (char) is the same verbose parameter that is passed 
to this function.  

Outputs: Integer – Code indicating if download process was a success.  
0 = Success, telephony interface firmware running. 
1 = Failure. 

 

9.1.3 TestTID 
Prototype: int TestTID(BYTE verbose) 

This function tests the communication interface between components on the hardware device.  

Inputs: verbose – “1” will output the results of the tests and “0” will hide this information. 
Outputs: Integer - Indicates the result of the test. 

0 = No problems detected. 
1 = Communications failure between one or more hardware components. 

 

9.1.4 CloseTID 
Prototype: int CloseTID() 

This function will release the handle on the USB telephony interface device. 

Inputs: None. 
Outputs: Integer – Indicates success or failure. 

0 = Device successfully closed. 
1 = Problem closing device (probably already closed, or never initialised). 

 

9.2 Buffer-related functions 
This section describes the functions relating to the management of the buffers used for the incoming and 
outgoing telephony data, as well as the sending and receiving of the buffer data.  
 

9.2.1 CreateTelephonyBuffer 
Prototype: TelephonyBuffer *CreateTelephonyBuffer(int iChannel) 

This function creates a new buffer in memory (of the TelephonyBuffer type) to use for incoming and 
outgoing telephony data, and assigns this buffer to a specific telephony channel (channel 1 or channel 2) of the 
hardware device. The function returns a pointer to the new telephony buffer in memory. Many of the functions 
in this API require a pointer to a telephony buffer, and this pointer must point to a valid buffer, which is created 
and initialised by this function. The buffers in the TelephonyBuffer structure that are used for the incoming 
and outgoing audio data, are based on the Audio_Buffer type, from Dr. T.R. Niesler (please refer to the 
“audio.incl.c” file in the source code).  

Inputs: iChannel – The channel number to assign to this buffer (1 or 2). 
Outputs: A pointer to the new buffer in memory. 
 

9.2.2 DeleteTelephonyBuffer 
Prototype: void DeleteTelephonyBuffer(TelephonyBuffer *TheBuffer) 
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This function deletes a telephony buffer that is no longer required (to free memory). 

Inputs:  *TheBuffer – The buffer to be deleted. 
Outputs: None. 
 

9.2.3 ClearTelephonyBuffer 
Prototype: void ClearTelephonyBuffer(TelephonyBuffer *TheBuffer) 

This functions clears the argument telephony buffer of all incoming and outgoing telephony data. This function 
is rarely required by an application. Instead, other API functions use this function when the telephony buffer 
must be cleared.  

Inputs: *TheBuffer – The buffer to be cleared. 
Outputs: None. 
 

9.2.4 GetTelephonyHardwareBufferSize 
Prototype: long GetTelephonyHardwareBufferSize(TelephonyBuffer *TheBuffer) 

This function retrieves the current size of the hardware buffer that is used to store outgoing telephony data. This 
function is used by the API’s SendTelephonyBufferData() function to determine how much data can be 
sent to the device to be buffered, and is usually not used by an application. If it is used however, care must be 
taken to limit the frequency at which this function is called, as this function sends a USB request to the device. 
If too many requests are received, the device’s performance will be affected. Do not place this function inside a 
loop. 

Inputs: *TheBuffer – The buffer (and associated channel) of which the size must be retrieved. 
Outputs: Long – The current size in bytes of the outgoing hardware buffer for the channel specified in 

TheBuffer. 
 

9.2.5 SendTelephonyBufferData 
Prototype: long SendTelephonyBufferData(TelephonyBuffer *TheBuffer, long 

nBytes); 

This function will send the number of bytes specified (which is stored in the outgoing channel buffer) to the 
device. It must be called at a high enough frequency to ensure that the user receives an uninterrupted audio 
signal. The channel must be off-hook before this function can be called. The hardware buffer space that is 
available is determined, and if the buffer can accommodate the requested number of bytes, it will be transferred 
to the device (up to a maximum of 8000 bytes per transfer). The function returns with the actual number of 
bytes that was sent to the device. The total number of bytes sent since the last time that the outgoing buffer was 
loaded with new data, is indicated by the Bytes_sent field of the telephony buffer. Time stamping is 
performed to prevent this function from sending too many USB requests to the device. If the function is called 
before the time interval specified for this function has expired, it would return with zero as the number of bytes 
sent. Also, if a call transfer is in progress, this function will have no effect, and would also return with zero as 
the number of bytes sent.  

Inputs: *TheBuffer - The buffer (and associated channel) to which the data will be sent.  
nBytes – The number of bytes that must be sent to the device. 



CHAPTER 9: API DESIGN 
 
 

 

90

Outputs: Long – The number of bytes that was successfully sent to the device.  
 

9.2.6 FlushTelephonyBuffer 
Prototype: long FlushTelephonyBuffer(TelephonyBuffer *TheBuffer) 

This function uses the SendTelephonyBufferData() function to send all the available data in the 
outgoing buffer, and would only return once all the data is sent. This function is usually not used from an 
application, as it could take long to complete if there are a large number of samples stored in the outgoing 
buffer. This time delay could cause the incoming hardware buffer to overflow, since the 
FetchAllTelephonyBufferData() function is not called while this function is executing. It is used by 
other API functions to send DTMF tones to the device.  

Inputs: *TheBuffer – The buffer (and associated channel) to which the data will be sent.  
Outputs: Long – The number of bytes that was successfully sent to the device. 
 

9.2.7 FetchAllTelephonyBufferData 
Prototype: long FetchAllTelephonyBufferData(TelephonyBuffer *TheBuffer) 

This function will retrieve all the available incoming data that is buffered on the hardware device. It must be 
called often enough to avoid buffer overflow and the loss of inbound data. The channel must be off-hook before 
this function can be called. The function will request 8000 bytes for each transfer, but less will be transferred if 
less is available in the hardware buffer. The function will return with the number of samples read from the 
buffer. Time stamping is performed to prevent this function from sending too many USB requests to the device. 
If this function is called within a specified time interval, it returns zero as the number of bytes received from the 
device. Also, if a call transfer is in progress, this function will have no effect and returns zero as the number of 
bytes received.  

Inputs: *TheBuffer - The buffer whose data must be fetched. 
Outputs: Long – The number of bytes successfully retrieved from the device. 
 

9.2.8 TelephonyBufferDataFinishedPlaying 
Prototype: BOOLEAN TelephonyBufferDataFinishedPlaying(TelephonyBuffer 

*TheBuffer) 

This function will determine if all the outgoing telephony buffer data has been sent to the device and if the 
hardware device has finished playing all buffered data (buffer empty). This function is used by other API 
functions to confirm that all the telephony data is sent on the telephone line before continuing to the next event, 
for example, such as dialling DTMF tones or before disconnecting a call (putting the channel on-hook). Time 
stamping is performed to prevent this function from sending too many USB requests to the device. If the 
function is called within a specified time interval, it returns with the same status as the previous call to this 
function (unless new outgoing telephony data has been loaded into the buffer).  

Inputs: *TheBuffer - The buffer associated with the channel to query. 
Outputs: BOOLEAN – Indicating whether or not a prompt has finished playing (all data transmitted on the 

telephone channel).  
0 (FALSE) – Still busy sending outgoing telephony data. 
1 (TRUE) – All data has been sent to the telephone channel and device finished playing the data.  
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9.3 Telephony functions 
This section describes the API functions relating to the telephone channel operations (answering calls, hang-up 
etc.). 
 

9.3.1 AnswerTelephoneCall 
Prototype: int AnswerTelephoneCall(TelephonyBuffer *TheBuffer) 

This function answers an incoming call by taking the channel off-hook. The buffer will be cleared of all data, 
therefore existing buffer data must be saved (if required) before calling this function, and the loading of new 
data into this buffer must only take place after this function has returned. 

Inputs: *TheBuffer - The buffer where future incoming and outgoing telephony data will be saved 
(TheBuffer also contains the channel number to answer). 

Outputs: Integer – Code indicating success or failure. 
0 = Success, channel off-hook. 
1 = Failure (possible failure if telephone line is not connected, device disconnected, the buffer not 
created or if channel is already off-hook). 

 

9.3.2 HangupTelephoneCall 
Prototype: int HangupTelephoneCall(TelephonyBuffer *TheBuffer) 

This function disconnects the current active call by placing the channel on-hook. This enables a new incoming 
call to be detected.  

Inputs: *TheBuffer- The buffer (containing the channel number) of which the active call must be ended 
(channel placed on-hook).  

Outputs: Integer – Code indicating success or failure. 
0 = Success, channel on-hook. 
1 = Failure (device failure). 

 

9.3.3 TransferTelephoneCallPBX 
Prototype: int TransferTelephoneCallPBX(char TelNum[14], TelephonyBuffer 

*TheBuffer, int TransferDelay, int HookFlashDelay) 

This functions transfers an incoming call to another telephone number, by using an external PBX’s call transfer 
functionality. A call transfer is done by making a hook-flash (channel briefly put on-hook and then taken off-
hook again). A hook-flash signals to the PBX that the user would like to transfer his incoming call to a another 
telephone number. The telephone number is dialled after the hook-flash, after which the user places his 
telephone back on-hook. The channel used, must be off-hook (incoming call active), before this function can be 
called.  

Inputs: TelNum – An array containing the telephone number that the call must be transferred to. 
*TheBuffer – The buffer associated with the channel.  
TransferDelay – The number of milliseconds to wait before placing the channel back on-hook 
after the number has been dialled. This will depend on how fast the PBX can transfer the call to the 
new telephone number (use 1000 as default value). 
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HookFlashDelay – The delay between the on-hook and off-hook events during a hook-flash 
(default value is 0 milliseconds, but use 150 milliseconds for older PBX systems). 

Outputs: Integer – Code indicating success or failure. 
0 = Success, call transferred. 
1 = Failure (hook-flash failure or error placing the channel on-hook). 

 

9.3.4 DialTelephoneNumber 
Prototype: int DialTelephoneNumber(char TelNum[14], TelephonyBuffer 
*TheBuffer) 

This function is provided, but normally not called from the user application. The function loads the outgoing 
telephony buffer with DTMF digits for a telephone number, takes the channel off-hook and waits until all the 
DTMF tones have been sent to the channel (to “dial” the number). Note that the outgoing telephony buffer is 
cleared before loading the DTMF tones, therefore any data that is stored in the buffer must be saved first (if 
required).  

Inputs: TelNum - An array containing the telephone number that must be dialled. 
*TheBuffer – The buffer associated with the call (and the channel) to use. 

Outputs: Integer – Code indicating success or failure. 
0 = Success, telephone channel off-hook and number is dialled. 
1 = Failure, channel could not be taken off-hook.  

 

9.3.5 StartTelephoneCallTransfer 
Prototype: BOOLEAN StartTelephoneCallTransfer(TelephonyBuffer *SourceCh, 

TelephonyBuffer *DestCh, char TelNum[14]) 

This function transfers a call to another telephone number, but it uses the second channel (if available) to relay 
the call transfer. Both channels are thus occupied (off-hook) during the call-transfer. The device will place the 
channels back on-hook when a call transfer has ended (when a hang-up is detected). The 
StopTelephoneCallTransfer() function can also be called to abort the call transfer. The 
GetTelephoneChannelStatus() function will return CALL_TRANSFER when the call transfer is in 
progress, and will return ON_HOOK when the call has ended. The channel that received the incoming call, must 
be off-hook and the other channel must be available (on-hook) to be able to relay the outgoing call for the call 
transfer, else this function will return with an error code.  The second channel (used to perform the call transfer) 
is taken off-hook and the telephone number to where the call must be transferred, is dialled. Thereafter, the 
device will connect the two channels until the call transfer has completed. During this time, no other API 
function may be called, except GetTelephoneChannelStatus() or 
StopTelephoneCallTransfer().  

Inputs: *SourceCh – The buffer associated with the incoming call (and the channel) to be transferred to 
another telephone number.  
*DestCh – The buffer associated with the outgoing call (and the channel) that will be used during 
the call transfer.   

 TelNum – An array containing the telephone number to which SourceCh must be transferred. 
Outputs: BOOLEAN (unsigned char) indicating success or failure of the transfer. 
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0 (FALSE) – Error during call transfer, possibly SourceCh not off-hook or DestCh not on-hook 
before the call transfer attempt. 
1 (TRUE) – Call transfer successful, both channels off-hook.  

 

9.3.6 StopTelephoneCallTransfer 
Prototype: BOOLEAN StopTelephoneCallTransfer(TelephonyBuffer *Ch1, 
 TelephonyBuffer *Ch2) 

This function will abort a call transfer if it is in progress. Both channels will then be on-hook and ready to 
receive a new incoming call.  

Inputs: Ch1 – The buffer associated with one of the channels used during the call transfer (SourceCh or 
 DestCh). 
 Ch2 – The buffer associated with the other channel used during the call transfer (SourceCh or 
 DestCh). 
Outputs: BOOLEAN (unsigned char) indicating success or failure. 
 0 (FALSE) – Device error occurred when placing channels back on-hook. 
 1 (TRUE) – Call transfer successfully aborted, both channels on-hook. 
 

9.3.7 GetTelephoneChannelStatus 
Prototype: int GetTelephoneChannelStatus(TelephonyBuffer *TheBuffer) 

This channel will determine the current status of the specified channel. The channel status can be ON_HOOK, 
OFF_HOOK, CALL_TRANSFER, RINGING or NO_LINE. Time stamping is performed to prevent this function 
from sending too many USB requests to the device. If the function is called within a specified time interval, it 
returns the same channel status previously retrieved. The Status field in the telephony buffer indicates the last 
channel status that was retrieved, and the Status_Changed flag indicates if the status of a channel has 
changed since the last call to this function.  

Inputs: *TheBuffer – The buffer associated with the call (and the channel) of which the status is 
required. 

Outputs: Integer – The status of the channel. 
 0 = ON_HOOK 
 1 = RINGING 
 2 = OFF_HOOK 
 3 = CALL_TRANSFER 
 4 = NO_LINE  
  

9.4 Voice activity detection 
The section relates to API functions that control voice activity detection and features (such as barge-in 
detection).  
 

9.4.1 SetupTelephonyVAD 
Prototype: void SetupTelephonyVAD(TelephonyBuffer *TheBuffer, unsigned long 

Energy_Threshold, int ZCR_Threshold, int FrameSize, int 
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FramesToSpeechDetected, int FramesToSilenceDetected, int DTDT,  

int PostSpeechTimeout) 

This function changes the default values of the voice activity detector. Each channel has its own set of 
parameters, and the default values of the parameters are given below. Changing these parameters affects the 
performance of voice activity and barge-in detection. Refer to section 8.2.6 for an overview of the voice activity 
detection algorithm, and the source code for more information regarding this function.  

Inputs: *TheBuffer – The buffer (and associated channel) to which the new VAD parameters apply.  
Energy_Threshold - The measured energy per frame must be above this energy threshold for 
FramesToSpeechDetected frames before voice activity or barge-in is detected (default: 
70000). 
ZCR_Threshold - The measured ZCR must be above this threshold for 
FramesToSpeechDetected frames before voice activity or barge-in is detected (default: 15). 
FrameSize – The number of samples in a frame for energy and ZCR measurements (default: 
256). 
FramesToSpeechDetected – The number of frames that must contain voice activity 
(according to the energy and ZCR threshold values) before voice activity or a barge-in condition is 
detected (default: 10). 
FramesToSilenceDetected – The number of frames whose energy and ZCR measurements 
must be below the threshold values before silence is detected.  
DTDT – The value of the echo canceller’s double talk detection threshold register (default: -5dB = 
0x4800). The voice activity detection algorithm is only triggered when the echo canceller detects a 
double-talk condition. The echo canceller detects a double-talk condition if the equation: input 
signal > reference signal + 20 log(DTDT) is true. The DTDT value is stored in a 16-bit register, and 
its value is determined according to the equation: ( ) ( ( ) 32768)DTDT hex HEX DTDT dec= × .  
PostSpeechTimeout – The duration of silence (in seconds) that must be detected before the 
end of an utterance is assumed (default: 4). 

Outputs: None. 
 

9.4.2 SetupTelephonyHangupDetector 
Prototype: void SetupTelephonyHangupDetector(TelephonyBuffer *TheBuffer, int 

HangupDt_ZCR_MIN, int HangupDt_ZCR_MAX, unsigned long 

HangupDt_Energy_MIN, unsigned long HangupDt_Energy_MAX, int 

Framesize, int FramesToDetectTone, int FramesToDetectSilence, int 

NoActivityTimeout) 

During a call transfer, the hang-up tone detector is activated by the device to determine when the call has ended. 
If a hang-up tone or hang-up condition (long silence) has been detected, the device will place both channels on-
hook. A signal energy and ZCR must fall within specified bands for a specified time interval to be considered as 
a hang-up tone. Each channel has its own set of parameters for  hang-up tone detection. Please refer to section 
8.2.7 for an overview of hang-up tone detection and the source code for more details regarding this function.  

Inputs: *TheBuffer – The buffer (and associated channel) to which the new hang-up tone detection 
parameters apply. 
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 HangupDt_ZCR_MIN – The minimum per-frame zero crossing rate for a tone to be considered as 
a hang-up tone (default: 22). 

 HangupDt_ZCR_MAX – The maximum per-frame zero crossing rate for a tone to be considered as 
a hang-up tone (default: 28) 

 HangupDt_Energy_MIN – The minimum per-frame energy for a tone to be considered as a 
hang-up tone (default: 1000000). 

 HangupDt_Energy_MAX – The maximum per-frame energy for a tone to be considered as a 
hang-up tone (default: 2000000). 
FrameSize – The number of samples in a frame for energy and ZCR measurements (default: 
256). 

 FramesToDetectTone – The number of frames that a tone must be measured to be within the 
specified energy and ZCR ranges before a hang-up tone is detected (default: 35). 

 FramesToDetectSilence – The number of frames of silence (after a hang-up tone has been 
detected) that we expect for a hang-up tone to be confirmed (default: 40).  

 NoActivityTimeout – The number of seconds that silence must be detected (since the last 
activity was measured) before we assume that a call transfer has ended although no hang-up tone 
was detected (default: 10). 

Outputs: None. 
 
9.4.3 EnableTelephonyVADrec 

Prototype: void EnableTelephonyVADrec(TelephonyBuffer *TheBuffer) 

This function configures the device to record incoming telephony data only when voice activity is detected. This 
conserves USB bandwidth, as telephony data that contains “silence” is not transferred to the PC. Note that this 
function will also activate the voice activity detector on the hardware device. Use the 
GetTelephoneSpeechDetectorResult() function to retrieve the status of the speech detector. Use the 
DisableTelephoneVADrec() function to disable this feature.  

Inputs: *TheBuffer – The buffer (and associated channel) to which the new settings apply. 
Outputs: None. 
 

9.4.4 DisableTelephonyVADrec 
Prototype: void DisableTelephoneVADrec(TelephonyBuffer *TheBuffer) 

This function disables the device to record incoming telephony data when voice activity is detected. All 
incoming telephony data will be recorded. Use the EnableTelephoneVADrec() function to record only 
incoming telephony data that contains speech.  

Inputs: *TheBuffer – The buffer (and associated channel) to which the new settings apply. 
Outputs: None. 
 

9.4.5 EnableTelephonyBargeInDetection 
Prototype: void EnableTelephonyBargeInDetection(TelephonyBuffer *TheBuffer) 

This function enables the barge-in detection of the device. The BargeInDetection() function will 
consequently return TRUE if a barge-in condition has occurred. Note that any user speech will be considered as 
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a “barge-in”, and not only user speech detected while an outgoing prompt is played. Use the 
DisableTelephoneBargeInDetection() function to disable barge-in detection. 

Inputs: *TheBuffer – The buffer (and associated channel) to which the new settings apply.  
Outputs: None. 
 

9.4.6 DisableTelephonyBargeInDetection 
Prototype: void DisableTelephonyBargeInDetection(TelephonyBuffer *TheBuffer) 

This function disables barge-in detection. Use the EnableTelephoneBargeInDetection() function to 
enable barge-in detection. 

Inputs: *TheBuffer –The buffer (and associated channel) to which the new settings apply.  
Outputs: None. 
 

9.4.7 BargeInDetection 
Prototype: BargeInDetection(TelephonyBuffer *TheBuffer) 

This function returns the status of the barge-in detector. Barge-in detection must be enabled before this function 
will return TRUE upon a barge-in condition. 

Inputs: *TheBuffer – The buffer (and associated channel) to which this query applies. 
Outputs: BOOLEAN indicting the status of the barge-in detector. 
 0 (FALSE) – No barge-in was detected. 
 1 (TRUE) – Barge-in detected. 
 

9.4.8 GetTelephonySpeechDetectorResult 
Prototype: int GetTelephonySpeechDetectorResult(TelephonyBuffer *TheBuffer) 

This function returns the status of the speech detector. If the end of an utterance has been detected, the 
RestartTelephoneSpeechDetector() function must be called before the speech detector will detect 
the beginning of a new utterance.  

Inputs: *TheBuffer – The buffer to which this query applies. 
Outputs: Integer indicating the status of the speech detector 
 0 = NO_SPEECH 
 1 = SPEECH 
 2 = END_OF_SPEECH 
 3 = BARGE_IN 
 

9.4.9 RestartTelephonySpeechDetector 
Prototype: void RestartTelephoneSpeechDetector(TelephonyBuffer *TheBuffer) 

This function resets the speech detector after the end of an utterance was detected, and allows a new utterance to 
be detected.  

Inputs: *TheBuffer – The buffer whose speech detector must be restarted.  
Outputs: None. 



 
 

 

 

Chapter 10 

10. Testing and evaluation  

Testing and evaluation 
 
A test application was developed to test and evaluate the functionality of the USB telephony interface device 
and the API. This application and the resulting performance are described in the following sections. 
  

10.1 Test application for experimental evaluation 
The USB telephone interface device was connected to the USB port of a PC, and the two telephony channels 
were connected to two telephone lines of a PBX system, as shown in Figure 10.1 
 
 
 
 
 
 
 
 

Figure 10.1: Test configuration 

 
A test user uses telephone 1 to dial the telephone number (via the PBX) assigned to channel 1 of the device. The 
PBX provides the local loop signals required (section 4.1.2) and allows the telephone channel characteristics to 
remain constant during testing of the device. The test application running on the host PC answers the incoming 
call and plays four prompts to the user. The user is prompted for his first name, surname, current day of the 
week and the current month, and in each case the user’s response is recorded. In this way, the recordings can be 
inspected to evaluate the effectiveness of the endpoint detection. Thereafter, the application continuously plays a 
prompt, asking the user to interrupt the prompt by speaking. While barge-in detection is also enabled for the first 
four prompts, this final prompt explicitly tests the barge-in detection. The call is then transferred to telephone 2 
via the second channel of the telephony interface device. The user is prompted to hang up when the user can 
hear telephone 2 ringing. In this way, the call transfer functionality, as well as hang-up detection could be tested. 
Figure 10.2 shows the algorithm of the test application. 
 
For each call, a log file was created in which events such as ring tone detection, barge-in etc. are noted. Twenty 
people were asked to call the system, and 80 recordings where thus made. The recordings were made in both 
quiet and noisy environments. 
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Figure 10.2: Test application algorithm 

 

10.2 Evaluation results  
The test application was written in C and compiled using Microsoft Visual C++ with LibUSB-win32 0.1.10.1, 
and also under Ubuntu Linux (kernel version 2.6.10) and with LibUSB 0.1.10.a using the GNU C Compiler 
(GCC). The compilation and execution of the test application and API was successful under both the Microsoft 
Windows and the Linux operating systems, demonstrating the platform independence of the device. 
 
The log files indicate any errors that have occurred during the handling of the calls. The recordings of the user’s 
speech were inspected to determine whether the endpoints of the spoken words were accurately located. We 
expect each utterance to be preceded and followed by a short period of silence or background noise, and not to 
have been incorrectly truncated. The results of the evaluation are summarised in Table 10.1. 
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Table 10.1: Summary of evaluation results. 

 
As shown in the table, all incoming calls were detected and answered successfully. Furthermore, all the basic 
events, such as detecting voice activity, barge-in conditions etc., were handled without any errors. Barge-in 
detection was proven to be very responsive. 
 
10.2.1 Endpoint detector performance 
In most recordings, the speech segments were reliably separated from the nonspeech segments. In some cases 
however, problems occurred during the detection of the beginning and the end of an utterance. 
 
In 5 cases, the beginning of the utterance was not properly detected. This was mainly due to words beginning 
with low-energy sounds, for example, an unvoiced fricative, such as ‘s’ and ‘sh’, or a nasal such as ‘m’ or ‘n’. 
These sounds seem to be difficult to detect when the user does not speak clearly or loudly enough. In 4 cases, 
only the last syllables were recorded, for example ‘tem-ber’ for the word ‘september’. Some speech samples 
preceding the frame at which voice activity is detected are included in the user response sent to the PC. 
However, utterance-initial unvoiced sounds can be lost when they are pronounced with a pause between the 
unvoiced and voiced units of the word, or when they are too long. By lowering the ZCR threshold value of the 
voice activity detector, the endpoint detection can be made more sensitive to unvoiced speech. Also, increasing 
the number of samples preceding the frame at which voice activity is detected, unvoiced sections which failed to 
trigger the voice activity detector, could be captured. In one case, the voice activity detector was prematurely 
activated due to a speaker generated artifact (in this case breathing).  
 
The end of the utterance was detected incorrectly in 3 cases due to the presence of background noise which 
caused the recordings to continue for a period longer than expected. This is a general problem in endpoint 
detection, especially when the recordings are made over a telephone channel. Backgrounds noises (e.g. 
background conversations, doors slamming, chairs moving etc.), speaker generated artifacts (e.g. lips smacking, 
clicks, pops, coughs, breathing etc.) and noises introduced by the transmission system complicate endpoint 
detection considerably [41]. The ASR application will usually request the user to repeat the word if a 
recognition error occurred due to poor endpoint detection of an utterance.  
 
The results presented indicate that the endpoint detector is reasonably accurate, even when the speech signal 
contains some artifacts and background noise. Optimisation of the endpoint detector parameters, which can be 
set via the API, may lead to improved results. However more accurate endpoint detection can also be performed 
by the ASR application itself. 
 

Events tested % Successful 
Incoming calls detected  100 % (20 out of 20) 
Calls answered (taken off-hook) 100 % (20 out of 20) 
User responses (voice activity) detected. 100 % (80 out of 80) 
Barge-in detected 100 % (20 out of 20) 
Call-transfers successful 100 % (20 out of 20) 
Hang-up detected  100 % (20 out of 20) 
Calls ended (placed on-hook) 100 % (20 out of 20) 
Beginning of utterance estimated correctly 92.5% (74 out of 80) 
End of utterance estimated correctly 96.3% (77 out of 80) 



 
 

 

 

Chapter 11 

11. Summary and conclusions 

Summary and conclusions 
 
This thesis has described the development of a low-cost, platform-independent USB telephony interface device 
that is designed for use by speech recognition applications. 
 

11.1 Review of conducted work 
The Universal Serial Bus was selected as a communication interface with the telephony interface device to 
allow platform independence. A study was performed to select a suitable microcontroller to control device 
operations, but which is also able to perform USB communications. To be able to interface to the USB device, 
the host PC requires device drivers and interfacing software. A study of the PC host software environment was 
undertaken, which provides the background knowledge required to develop the application programming 
interface (API). To be able to interface to the telephony network, the DAA components had to be selected 
according to the requirements of this device. A methodological approach of prototype design and testing was 
followed to develop the hardware, firmware and software (API) for the telephony interface device. Finally, the 
device was tested to verify proper operation and to evaluate the endpoint and barge-in detection performance of 
the device. 
 
The hardware design involved three phases, the first of which consisted of the integration and testing of a 
number of components in conjunction with a development board. The most important components (external to 
the development board) that were used are: 

• Two Silicon Laboratories DAAs to provide access to the telephone network. 
• An Altera CPLD interface the PCM signals between the DAAs and the microcontroller. 

 
The second phase involved the addition of a Zarlink MT9123 echo canceller to the design of the first prototype.  
 
The third phase consisted of the development and construction of a self-contained prototype. This final 
prototype included the following core components: 

• An Microchip 24LC64 EEPROM to store the boot loader firmware. 
• Cypress 512K Static RAM to buffer incoming and outgoing telephony data and to store firmware. 
• An EZ-USB FX microcontroller which provides USB communications and controls the hardware 

components of the device. 
 
The firmware for the EZ-USB FX microcontroller was developed and compiled by using an open-source C 
compiler. The firmware is responsible for controlling the peripheral components of the device (DAAs and the 
echo canceller) and it manages the data flow between the USB buffers and the telephony channels. It provides 
functions for detecting the status of the telephone lines, detecting incoming calls, transferring calls, taking 
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channels off-hook or placing them on-hook. It also performs (in conjunction with the echo canceller) voice 
activity detection, barge-in detection and hang-up detection. 
 
The firmware for the Altera CPLD was developed and is responsible for memory bank switching, generation of 
PCM timing and enable signals for the DAAs and the echo canceller, generation of the read, write and control 
signals for the slave FIFO buffers of the microcontroller and for interfacing the PCM transmit and receive 
signals between the echo canceller and the microcontroller.  
 
Finally, the application programming interface (API) was developed in ANSI C so that it remains platform-
independent. It uses the cross-platform LibUSB driver and library to provide a generic USB interface to the 
device. It provides all the functions required by an ASR application to be able to interface to the telephone 
network. 
 

11.2 Topics for future investigation 
In order to provide at least two telephony channels that can be used simultaneously, the firmware for the 
microcontroller had to be optimised. The EZ-USB FX microcontroller is not only responsible for USB 
communications, but is also burdened by the tasks such as moving data around between the different buffers, 
voice activity detection and  the control of the other hardware components.  
 
If a larger number of telephony channels are required, the design could be adapted to cater for a secondary or 
more powerful CPU. The EZ-USB FX1 microcontroller was released recently, which is an upgrade to the EZ-
USB FX component. It is also a full-speed USB controller, but includes new features, such as a larger on-chip 
RAM (16K) and enhanced USB buffering options. Together with the EZ-USB FX1, external FIFO buffers could 
be used, as shown in Figure 11.1. 
 
 
 
 
 
 
 
 

 

Figure 11.1: Adapted design with EZ-USB FX1 and external FIFO buffers. 

The EZ-USB FX1 core is able to move data directly between USB endpoint buffers and external FIFO buffers. 
This process can be automated, so that the only task of the 8051 core is to control the peripheral hardware 
components and perform voice activity detection. It is therefore not required of the microcontroller to perform 
the buffering of incoming and outgoing telephony data, as these are performed by the external FIFO buffers. 
The firmware size will then also be reduced and will most likely fit into the 16 K of internal RAM.  
 
A more powerful CPU, such as a DSP processor, could be added to the design to perform more robust endpoint 
detection.  
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Another future possibility is to adapt the design to provide for ISDN channels, as single-chip ISDN interfaces 
are becoming available on the market. Companies such as Freescale, Infineon and Zarlink offer ISDN ICs or 
chipsets, which combine the line interface, PCM interface, controllers and codecs required to interface to an 
ISDN line. 
 

11.3 Final conclusion 
The design goals of this project were to develop a low-cost, platform-independent telephony interface device 
that is easy to install and use and which provides adequate functionality to speech recognition applications. 
These goals have all been met. Although the EZ-USB FX microcontroller has limited processing capabilities, it 
successfully demonstrated the feasibility of designing a telephony interface device with a general-purpose CPU, 
low-cost components and non-proprietary software tools and libraries.  
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Appendix A 

Appendix A: Schematic design  

Schematic design 
 
The next page presents the complete schematic design for the final prototype USB telephony interface device. 
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Appendix B 

Appendix B: Printed circuit board design  

Printed circuit board design 
 

B.1 Introduction 
Printed circuit boards (PCBs) comprise a sheet of epoxy-impregnated fibreglass material with thin copper sheets 
affixed to one or both sides of the sheet. The outer copper surface of the PCB is processed to form traces that 
make the electrical connections between the components mounted on the PCB. Generally there are three types 
of PCBs: single-sided, double-sided or multi-layered PCBs. The single-sided PCB has only through-hole 
components mounted on one side of the board while traces (and surface mount components) are routed on the 
other side of the board. A double-sided board uses both sides for components and traces. Finally, a multi-layered 
board has, besides the top and bottom layers, one or more layers embedded between the top and bottom side 
used for electrical routing. A four-layered board has been used for this design. 
 
Microprocessors and FPGA / CPLD devices often has high-speed external interfaces connected to other devices. 
High-frequency signals experience analogue effects that must be investigated before a PCB can be designed. 
There are issues such as ground bounce, stable power distribution and transmission line effects that must be 
understood. Electromagnetic interference (EMI), cross-talk and noise must me minimised. This section 
describes the PCB design flow and the design considerations involved in the PCB design and layout. 
 

B.2 PCB design flow 
In order to design a PCB, a number of steps need to be followed, as shown in Figure B.1  
 

Functional
schematic
design and

analysis

Footprint
Creation

Floor
planning

Trace
routing

Design Rules

Design Rule
Verification

 
Figure B.1: Overview of the PCB design flow. 

 
After the schematic for the circuit has been designed, footprints must be assigned to each component that is used 
in the design. Footprints consist of land pads and solder mask prints. The solder mask is a plastic coating on a 
PC board which is designed to insulate and protect the copper traces and to protect the circuitry from 
environmental damage. The footprint is created according to the PCB design rules and restrictions, e.g. the 
minimum size of a land pad specified by the manufacturer datasheet. 
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The floor planning is a layout of the components on the PCB so that they comply with the PCB design rules. 
PCB design rules that apply are, for example, the spacing between the DAA’s components, spacing from the 
digital ground plane etc. [19]. During floor planning, the layout for power distribution, user I/O (switches, 
buttons etc.) and external connectors must also be considered.  
 
Trace routing is the layout of traces on the PCB to create the electrical connections between the components. 
The usual order for routing signals is to start with critical traces such as high-frequency and high-voltage 
signals, because these signals usually have more routing constraints than the other signals. Design rules that 
apply during trace routing, are for example the minimum width constraint that must be adhered to for certain 
traces connected to the DAAs [19]. 
 
To ensure that all signals are routed correctly and that all the specified design rules are adhered to, design rule 
verification is performed to detect any errors. The Protel 99 SE software package has been used for the 
schematic design, footprint design, PCB layout and to perform design rule verification.  
 

B.3 High-speed board designs 
When designing a PCB that contains high frequency signals (>25Mhz), it is important to consider the analogue 
effects of these signals, reduce noise in signals, minimise cross-talk between parallel traces and reduce the effect 
of ground-bounce.  
 

B.3.1 Power filtering and distribution 
To filter low-frequency noise caused by power supplies, an electrolytic capacitor must be placed after the 
voltage regulator that provides the power supply to the PCB devices. Altera recommends using a 100μF 
electrolytic capacitor. Capacitors not only filter low-frequency noise from the power supply, but they also 
provide extra current when needed, such as when many outputs switch simultaneously in a circuit. A ferrite 
bead is also placed in series with the power supply. Ferrite beads have a minimal DC impedance, but at a higher 
frequency it generates an impedance which mainly consists of a resistive element. A ferrite bead is thus an 
effective component in noise suppression.  
 
PCB components add high-frequency noise to the PCB power planes. To filter this noise at a device, decoupling 
capacitors must be placed as close as possible to each of the power supply pins of the device.  
 
Placing the power and ground planes in parallel and on opposite sides of the PCB also reduces high-frequency 
noise, as the dielectric material of the PCB provides further bypass capacitance.  
 
If power planes are not used, the power traces on the PCB must be as wide as possible to reduce the DC 
resistance. The analogue and digital power planes must be separated to prevent unwanted interference between 
the two circuit types. There must be a dielectric width of at least 1 – 2.5 mm between the two power planes. 
 

B.3.2 Clock signal routing 
The following principles must be applied during routing of clock signals to maximise the quality of the clock 
signal [29]: 

• Clock traces should be as straight as possible. 
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• Avoid using multiple layers when routing a clock signal. 
• Avoid using vias in the clock trace, as vias van contribute to the impedance and cause reflection. A via 

is a hole in the PCB which connects two signal layers.  
• Terminate clock signals properly. 

 

B.3.3 Cross-talk 
Cross-talk is the unwanted coupling of signals between parallel traces, and this effect increases when two or 
more traces run parallel to one another for some distance. Cross talk may also occur between signals and the 
ground plane. To minimise cross-talk, the center-to-center separation between two traces should be at least 4 
times the trace width [29]. This principle has been applied during trace routing wherever it was possible. Also, 
decreasing the distance between the trace and the ground plane reduces cross-talk. If a low dielectric material 
for the PCB is used, the thickness of the PCB can be reduced between the trace and the ground plane. The 
standard board dielectric material (FR4) has been used, with a nominal board thickness of 1.6mm 

A A

4A

Trace

Dielectric Material

GND

 
Figure B.2: Separation of traces for cross-talk prevention (from [29], p. 12). 

 

B.3.4 Ground bounce 
Ground bounce occurs when multiple outputs simultaneously switch from a high to a low logic level. This 
switching causes a discharge of the load capacitances and causes higher transient currents to flow into a device. 
These transient currents exits the device through inductances to the ground plane, which generates a voltage 
determined by the equation:  

dt
diLV ×=  

This causes the voltage difference between the ground plane and the device ground (logic low) to temporarily 
rise (bounce). The magnitude of the bounce may be large enough to cause higher output levels on adjacent 
outputs and can cause inputs to be misinterpreted.  
 
Altera recommends the following methods to reduce ground bounce (adapted from [29]): 

• Add decoupling capacitors for as many of the power supply pins as possible. 
• Place decoupling capacitors as close as possible to the power supply pins. 
• Limit load capacitances by buffering loads with an external driver, or reduce the number of devices 

connected to a signal / bus.  
• Reduce the number of outputs that can switch simultaneously. 
• Add 10 to 30 Ω resistors in series to each of the switching outputs to limit the current flow into the 

outputs. 
• Spread outputs to avoid local bunching of switching outputs.  
• Eliminate IC sockets where possible and use surface mount components. This reduces lead inductance. 
• Use bigger vias to connect the capacitor pads to the power and ground plane to reduce inductance. 
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• Connect each GND pin to the ground plane individually. 
 
These principles have been applied during the PCB design and layout. 
 

B.3.5 Transmission lines 
When driving circuits, we need to consider whether a circuit interconnection must be treated as a simple 
interconnection (lumped circuit model) or as a transmission line. If the circuit is a transmission line, 
transmission line theory must be applied to determine the response of the circuit. A transmission line must be 
terminated properly, otherwise problems with ringing delays, overshoot and undershoot will occur [30]. We 
prefer to treat all traces, especially the ones that are being driven (clock signals) to be treated as a lumped 
circuit, as this will ease circuit design. We therefore need to determine the maximum trace lengths allowed for 
the traces to still be classified as a lumped circuit connection.  
 
The following equation determines the velocity ( pV ) at which signals will flow [29]:  

             (1) 

where: 

8103×=C  

rE = relative dielectric constant of the PCB material. 
The propagation delay ( PDt ) for a given trace length ( l ) is given by: 

P

PD V
lt =             (2) 

A circuit can be considered a lumped circuit if the signal edge rate ( PDt ) is greater than four times the 
propagation delay ( PDt ) [29]. The signal edge rate is the high-to-low or low-to-high transition time, and is a 
function of the load capacitance.  
 
In this design, the Altera CPLD generates the most of the clock signal outputs, and the CPLD’s output drive 
characteristics must therefore be investigated. The CPLD’s output signal has a falling edge that has a sharper 
edge rate than the rising edge, and is thus taken as the signal edge rate ( PDt ). The falling edge is more 
susceptible to transmission line effects. An equation based on the Altera CPLD’s output drive characteristics, is 
given for the falling edge rate ( Ft ) [29]: 

PDt = CtF ×= 19.39 ,           (3) 

where: 
C = load capacitance  
Substituting equation (1) and (3) into (2), and solving for l  yields the following equation for the length at which 
the line must be treated as a transmission line: 

R

F

E
Ctl

4
×>   

If this equation is solved for a typical load capacitance of 35pF, and if FR4 is used for the PCB material 
( 1.4=RE ), the length at which the line must be treated as a transmission line is calculated to be 5.07 cm. The 
objective is thus to keep all traces, especially the clock signals, shorter than 5.07 cm. If the traces becomes 
longer, reflections could occur which would cause unwanted effects.  

r

p
E
CV =
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B.4 PCB design 
All the footprints for the PCB are created according to the PCB design rules and the component manufacturer’s 
recommendations. Standard footprints, e.g. the 0805 footprint for resistors and capacitors, are available in 
libraries, but custom footprints for ICs and connectors had to be created manually. Important PCB layout 
guidelines that had to be followed during the floor planning for the DAAs, as the DAAs operates in a mixed 
signal environment (high-frequency and high-voltage signals). The guidelines ([19]) give recommendations for 
the placement of components and tracks to minimise cross-talk, EMI and noise. The isolation barrier must also 
be carefully designed to guarantee its integrity.  
 
A four layer board was designed, with the layer stack-up as shown in Figure B.3 
 

Top layer

Powerplane

Groundplane

Bottom layer

PCB  isolation
material (Prepeg)

 
Figure B.3: Four layer PCB stack-up. 

 

The PCB layout was performed according to the proposed layout of Figure B.4.  
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Figure B.4:  PCB floor planning. 

 

The split analogue/digital ground plane and power plane layout is shown in Figure B.5 
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Figure B.5: Power and ground plane layout. 

 
The final floor plan layer (top) can bee seen in Figure B.6, and a photo of the populated PCB is shown in Figure 
B.7 
 

 
Figure B.6: PCB top layer assembly drawings. 

 

 

 

 

 

 

 

 

Digital Ground

Analogue
Ground

3V

Ground plane Power plane

5V



APPENDIX B: PCB DESIGN 
 

 

114

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure B.7: Photo of assembled PCB. 

 

B.5 Component and PCB cost 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table B.1: PCB and component cost estimation. 

 

Table B.1 estimates the cost of the components and the PCB manufacturing cost. Please note that the PCM 
origination cost (R990) is a once-off cost for the first PCB. Duplicates of the PCB would cost R633.03 

Description Estimated cost 

EZ-USB FX microcontroller R88 

Altera MAX7000S CPLD R240 

Silicon Labs Si3050 DAA x 2 R66 

Zarlink MT9123 echo canceller R40 

512K Static RAM R29 

64K I2C EEPROM R4.8 

Voltage translators R25 

USB transient suppressor R2.5 

Hex Schmitt tigger, 74LCX14 R3 

MAX604 voltage Regulator R18 

Crystal – 12MHz R14.63  

Oscillators 20Mhz & 8.192 MHz R80 

passive components (resistors, capacitors), connectors and cables R291.21 

PCB manufacturing R552 

PCB testing R81.03 

PCB origination R990 

Total  R2525.17 
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(manufacturing and testing). Also, the price of some components is high, as they were not purchased in bulk 
quantities. If, for example, a batch of 10 boards were to be produced, the cost per board (including components) 
would be in the region of R1500 per board.  
 

B.6 PCB bill of materials 
Table B.2 presents the PCB bill of materials, consisting of all the components used for the prototype design. 
 

Manufacturer / Supplier Description Amount 
Molex 2m USB cable (Type A / Type B) 1 

3M Rubber adhesive PCB mountings 4 

Molex USB B-type connector (PCB, through-hole mount) 1 

Molex 8x2 male header (JTAG connector) 1 

Molex 1x2 male header (jumper) 1 

Molex RJ11 socket 2 

Molex PLCC 84 pin socket 1 

Molex PDIP 28 pin socket 1 

Conrad Miniature push button 1 

Murata EMC suppression filter (ferrite), 100Ω @ 100 MHz – 1A 1 

Multicomp 0.1uF capacitor, 0805, X7R, 10 % 36 

Panasonic 100uF capacitor, electrolytic, 25V 2 

Vishay/ Panasonic/ Phycomp 2.2uF capacitor, 1206, 16V 3 

Vishay/ Panasonic/ Phycomp 4.7nF capacitor, 1206, 250V 1 

Vishay/ Panasonic/ Phycomp 33pF capacitor, 0805, 20% 2 

Murata 33pF capacitor, Y2, X7R 4 

Murata 680pF capacitor, Y2, X7R 4 

Vishay/ Panasonic/ Phycomp 1uF capacitor, tantalum, 10% 2 

Vishay/ Panasonic/ Phycomp 2.7nF capacitor, 50V, X7R, 0805, 10% 2 

Vishay/ Panasonic/ Phycomp 10nF capacitor, 250V, X7R 4 

Vishay/ Panasonic/ Phycomp 10nF capacitor, 0805, 10% 2 

Multicomp 560 Ω resistor, 0805, 1% 2 

Multicomp 100kΩ resistor, 0805, 1% 7 

Multicomp 22Ω resistor, 0805, 1% 3 

Multicomp 1.5kΩ resistor, 0805, 1% 1 

Multicomp 10kΩ resistor, 0805, 1% 4 

Multicomp 1kΩ resistor, 0805, 1% 3 

Multicomp 1 MΩ resistor,0805, 1% 3 

Multicomp 4.7kΩ resistor, 0805, 1% 4 

Multicomp 56Ω resistor, 0805, 1% 4 

Multicomp 1kΩ resistor, 1206, 1% 2 

Multicomp 68Ω resistor, 1206, 1% 4 

Multicomp 470Ω resistor, 1206, 1% 2 

Multicomp 2.2kΩ resistor, 1206, 1% 2 

Multicomp 5.6Ω resistor, 1% 2 

Multicomp 68 Ω resistor, 2512, 1W 2 

Multicomp 150Ω resistor, 0805, 1% 2 

Multicomp 3.3kΩ resistor, 1206, 1% 2 

Multicomp 330Ω resistor, 1206, 1% 2 

Multicomp 18Ω resistor, 1206, 1% 4 

Multicomp 270Ω resistor, 1206, 1% 2 

Multicomp 10MΩ resistor, 5% 4 
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Manufacturer / Supplier Description Amount 
Multicomp 390Ω resistor, 0805, 1% 8 

Multicomp 1.8 Ω resistor, 1% 2 

Fairchild Zener diode BZX85C43, 43V 2 

Fairchild Diode bridge DF04S 2 

Maxim-IC Voltage regulator, MAX604 1 

Cypress EZ-USB FX microcontroller, CY7C64613-128NC 1 

Texas Instruments USB transient suppressor, SN75240PW 1 

Fairchild HEX Schmitt trigger inverting, 74LCX14 1 

Microchip EEPROM, serial I2C, 24LC64 1 

Cypress Static RAM, CY7C10149BV33 1 

Altera CPLD, MAX7000s (EPM7160SLC84-10) 1 

Horizonxtal 8.192MHz clock oscillator, 5V  1 

Horizonxtal 20Mhz clock oscillator, 5V 1 

Fairchild Voltage translators, 74LVC4245A 2 

Zarlink Echo Canceller, MT9123 1 

Silicon Laboratories Si3050 DAA chipset 2 

CMAC 12 MHz crystal, 2-pin DIP 1 

Fairchild Transistor, MMBTA06 4 

Fairchild Transistor, MMBTA42 2 

Fairchild Transistor, MMBTA92 2 

Fairchild Transistor, MMBT2N4401 1 

Power Innovations Ltd Transient Voltage Suppressor, TISP4180F3SL 
 

2 

 

Table B.2: PCB bill of materials. 

 

B.7 PCB specifications 
Table B.3 presents the PCB specifications and design rules used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table B.3: PCB specifications. 

 

 

Specification Description 
PCB size 215.34 mm x 202.04 mm 

PCB thickness 1.6 mm 

PCB Material FR-4 

Number of layers 4 

Number of vias 206 

Number of components 186 

Minimum hole size diameter 0.3 mm 

Maximum hole size diameter 10mm 

Minimum trace width 0.2 mm 

Minimum trace clearance 0.2 mm 

Maximum trace width 2 mm 

Power plane clearance 0.254 mm 

Number of pad / via holes 430 
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B.8 PCB Gerber files 
In this section, the Gerber files for the PCB are presented. The Gerber files (Figure B.8 - B.16) contain all the 
information required to manufacture the PCB. Note that these figures are not to scale.  

 
Figure B.8: PCB top Layer. 
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Figure B.9: PCB bottom Layer. 
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Figure B.10: PCB power plane. 
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Figure B.11: PCB ground plane. 
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Figure B.12: PCB top paste mask layer. 
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Figure B.13: PCB top solder mask layer. 
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Figure B.14: PCB bottom solder mask layer. 
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Figure B.15: PCB top silkscreen (overlay) mask layer. 
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Figure B.16: PCB drill guide. 

 

 



 

 

 

Appendix C 

Appendix C: Firmware functions 

Firmware functions 
 
C.1 Boot loader firmware 
This section describes the functions of the boot loader firmware for the EZ-USB FX microcontroller. Please 
refer to the source code, which can be found on the CD-ROM in the ‘\firmware\Bootloader’ directory, for 
details regarding these functions.  
 

RAM_bankselect 
Prototype: void RAM_bankselect(Byte Bank) 

This function changes the memory bank to use for data access. Code is always stored and fetched from bank 0, 
regardless which data bank is selected. The three highest address lines (A16,A17, A18) of the 512 K RAM are 
used for selecting the memory bank. 

Inputs:  Bank – The memory bank (0-7) to use for next data read or write operation. 
 

config_ports 
Prototype: void config_ports() 

This function selects the function of the I/O ports and configures the pins as inputs or outputs. 

 

Device_init 
Prototype: void Device_init() 

This function turns on the LEDs, which indicate that the microcontroller is functioning and that the boot loader 
is ready to receive firmware data. 

 

setup_int 
Prototype: void setup_int() 

This function enables the USB and endpoint interrupts that are allowed. Only the interrupts for standard USB 
requests and endpoint 3 OUT transfers are enabled.  

 

do_RAM_download 
Prototype: void do_RAM_download() 
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This function writes the data that is received from the host via a control transfer, to external RAM. The number 
of bytes to write and the memory address are specified in the setup data packet of the control transfer. 

 

do_get_descriptor 
Prototype: void do_get_descriptor() 

This function determines which descriptor is requested, and loads the Setup Data Pointer (SUDPTR) with the 
memory address of the requested descriptor. The Setup Data Pointer is used to read descriptor information and 
transfer it to the host. 

 

do_std_dev_in 
Prototype: void do_std_dev_in() 

This function handles standard device requests where device information must be transferred to the host PC. If a 
device descriptor was requested, the do_get_descriptor() function is called.  

 

do_std_dev_out 
Prototype: void do_std_dev_out() 

This function handles standard device requests where data was sent by the host PC. Typical requests are to set 
the device address, configuration or a feature. 

 

do_std_if_in 
Prototype: void do_std_if_in() 

This function handles standard interface requests where interface information must be transferred to the host PC. 
If an interface descriptor was requested, the do_get_descriptor() function is called.  

 

do_std_if_out 
Prototype: void do_std_if_out() 

This function handles standard interface requests where data was sent by the host PC. Typical requests are to set 
or clear interface settings and features.  

 

do_std_ep_in 
Prototype: void do_std_ep_in() 

This function handles standard endpoint requests where endpoint information must be transferred to the host 
PC.  

 

do_std_ep_out 
Prototype: void do_std_ep_out() 
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This function handles standard endpoint requests where data was sent by the host PC. Typical requests are to set 
or clear endpoint features.  

 

parser 
Prototype: void parser() 

This function determines the type of standard request that was sent by the host PC, and calls one of the ‘do’-
functions to respond to the request.  

 

usb_isr() 
Prototype: void usb_isr() 

The USB interrupt service routine, which is automatically called when interrupt 8 (USB interrupts) occur. It 
determines the type USB interrupt that occurred (Setup Data Available, endpoint etc.) and performs the actions 
required for the specific USB interrupt.  

 

C.2 Telephony interface device firmware 
This section describes the functions of the telephony interface firmware for the EZ-USB FX microcontroller. 
The telephony interface firmware share the following basic functions with the boot loader firmware: 
RAM_BankSelect, config_ports, Device_init, setup_int, do_get_descriptor, 
do_std_dev_in, do_std_dev_out, do_std_if_in, do_std_if_out, do_std_ep_in, 
do_std_ep_out, parser, usb_isr. 
 
Please refer to the source code, which can be found on the CD-ROM in the ‘\firmware\Telephony_interface’ 
directory, for details regarding these functions.  
 

C2.1 General functions 
apply_reset_values 
Prototype: void apply_reset_values() 

This function apply the default values to all the buffer indices, VAD parameters and control flags and 
variables. This function is called when the device is initialised.  

 
ChannelCommand 
Prototype: void ChannelCommand() 

This function is called by the USB interrupt service routine if data is sent from the host PC to endpoint 
3. Endpoint 3 is used by the API to send commands relating to the telephony interface. This function 
decodes the command byte that was sent to determine the appropriate action to take.  

 
Fifo_ISR 
Prototype: void Fifo_ISR() 
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This function is automatically called when a FIFO interrupt occurs (interrupt service routine). FIFO interrupts 
are generated when a FIFO buffer overflow or underflow occurred. This function determines which FIFO 
generated the interrupt, and turns a LED on to indicate an error condition. 

 

timer0_ISR 
Prototype: void timer0_ISR() 

This is the interrupt service routine which is called when timer 0 overflows. The function only increments a 
counter variable, which is used to time certain events for channel 1 when it is activated.  

 

timer1_ISR 
Prototype: void timer1_ISR() 

This is the interrupt service routine which is called when timer 1 overflows. The function only increments a 
counter variable, which is used to time certain events for channel 2 when it is activated.  

 

SendBufferedDataToTelephone 
Prototype: void SendBufferedDataToTelephone(FIFOBuffer *TheBuffer, int 

nBytes, Byte channel) 

This function is called when there is buffer space available in the outgoing slave FIFO buffer of a channel. It 
would use DMA transfers to transfer nBytes from RAM to the channel FIFO buffer. Data to be sent over the 
telephone line, is buffered in the RAM bank associated with the channel. The read and write indices for this 
buffer are stored in the FIFOBuffer structure. Data placed in the outgoing FIFO buffer will be read by the 
DAA and be sent over the telephone line.  

Inputs: *TheBuffer – Pointer to a structure containing the buffer indices.  
nBytes - The number of bytes to transfer. 
channel – The channel where data must be transferred to.  

 

GetDataFromTelephone 
Prototype: void GetDataFromTelephone(FIFOBuffer *TheBuffer, int nBytes, Byte 

channel) 

This function is called when there is data available to be read from the incoming slave FIFO buffer of a channel. 
It would use DMA transfers to transfer nBytes from the FIFO buffer to a RAM buffer. Data received from the 
telephone channel is buffered in RAM in the memory bank associated with the channel. The read and write 
indices for this buffer are stored in the FIFOBuffer structure. Data placed in the RAM buffer will later be 
sent to the host PC.  

Inputs: *TheBuffer – Pointer to a structure containing the buffer indices.  
nBytes - The number of bytes to transfer. 
channel – The channel from where data must be read.  
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BufferDataFromPC 
Prototype: void BufferDataFromPC(FIFOBuffer *TheBuffer, Byte channel) 

This function is called when there is an IN transfer (data sent from host PC) in progress. Data collected in the IN 
endpoint will be transferred to RAM using DMA transfers. The data is written to the memory bank associated 
with the channel. The read and write indices for this buffer are stored in the FIFOBuffer structure. This data 
will be read at a later stage, and sent to the telephone channel.  

Inputs: *TheBuffer – Pointer to a structure containing the buffer indices.  
channel – The channel to where data must be transferred to.  

 

SendBufferedDataToPC 
Prototype: void SendBufferedDataToPC(FIFOBuffer *TheBuffer, Byte channel) 

This function is called when there is an OUT transfer (data sent to host PC) in progress. Data is fetched from the 
RAM buffer, using DMA transfers, and placed in an endpoint buffer from where it will be sent to the PC. Data 
is read from the memory bank associated with the channel. The read and write indices for this buffer are stored 
in the FIFOBuffer structure. 

Inputs: *TheBuffer – Pointer to a structure containing the buffer indices.  
channel – The channel to fetch data from.  

 

InitCallTransfer 
Prototype: void InitCallTransfer() 

This function enables hang-up tone detection, initialises variables and sets the flags that would allow a call 
transfer to take place.  

 

DoCallTransfer 
Prototype: void DoCallTransfer( int nBytes, FIFOBuffer *SrcBuffer, FIFOBuffer 

*DstBuffer) 

This function is called when there is a call transfer in progress. It will copy nBytes of data from the incoming 
buffer for a channel (buffer information contained in *SrcBuffer) to the outgoing buffer of the other channel 
(buffer information contained in *DstBuffer. 

Inputs: nBytes – The number of bytes to transfer.  
*SrcBuffer – Structure containing source buffer indices.  
*DstBuffer – Structure containing destination buffer indices.  

 

EndCallTransfer 
Prototype: void EndCallTransfer() 

If a hang-up condition has been detected, this function will end the a call-transfer by placing both channels back 
on-hook. 
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C2.2 DAA functions 
These functions relate to the DAAs, and uses the SPI bus to read or write the DAA registers.  
 

WriteByte 
Prototype: void WriteByte(Byte byte_to_write) 

This function writes a single byte to the SPI bus by appropriately toggling (“bit banging”) the MOSI (Master 
Out Slave In) , CS (chip select) and the SCLK (serial clock) pins. 

Inputs: byte_to_write – The byte that we wish to write on the SPI bus. 
 

ReadByte 
Prototype: Byte ReadByte() 

This function reads a single byte from the SPI bus by appropriately toggling (“bit banging”) the CS (chip select) 
and the SCLK (serial clock) pins and reading the MISO (Master In Slave Out) pins. 

Outputs: Byte – The byte that was read from the SPI bus. 
 

SPI_write_reg 
Prototype: void SPI_write_reg(Byte channel, int address, Byte value) 

This function writes three bytes to the SPI bytes by using the WriteByte() function. The three bytes are the 
control byte, address byte and the value byte. The control byte determines the DAA channel to which the value 
must be written. The second byte contains the address of the register that we wish to write, and the third byte 
contains the value to be written. 

Inputs: channel – The channel number that the write operation applies to. 
address  - The register address that we wish to write. 
value – The value that is written to the register. 

 

SPI_read_reg 
Prototype: void SPI_read_reg(Byte channel, int address) 

This function writes two bytes to the SPI bytes by using the WriteByte() function. The two bytes are the 
control byte and the address byte. The control byte determines the DAA channel from which a register value 
must be read. The second byte contains the address of the register that we wish to read. The value of this register 
is then returned on the SPI bus, and is read by using the ReadByte() function. 

Inputs: channel – The channel number that the read operation applies to. 
address  - The register address that we wish to read. 

 

DAA_init  
Prototype: void DAA_init() 

This function initialises the DAAs by resetting the devices. After the devices have been reset, they are 
configured by setting the required parameters such as the AC and DC termination, the timeslot allocations for 
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PCM transfers, the SPI/PCM communications mode, the companding method used (A-law) and the ring 
validation parameters. 

 

DAA_off_hook 
Prototype: Byte DAA_off_hook(Byte channel) 

This function takes the specified channel off-hook. 

Inputs: channel – The channel to take off-hook. 
Outputs: Byte – Indicates success or failure. 

0 = Channel successfully taken off-hook. 
1 = Failure (insufficient line current). 

 

DAA_on_hook 
Prototype: Byte DAA_on_hook(Byte channel) 

This function places the specified channel on-hook. 

Inputs: channel – The channel to place on-hook.  
Outputs: Byte – Indicates success or failure. 

0 = Channel successfully taken off-hook. 
1 = Failure. 

 

DAA_check_ringing 
Prototype: Byte DAA_check_ringing(Byte channel) 

This function checks if the ring detect flag for a channel is set. If it set, the timer is reset and activated. If the 
timer expired before a second ringing signal was received, the channel status will be set to ON_HOOK. 

Inputs: channel – The channel to query.  
Outputs: Byte – Indicates status of the channel (ON_HOOK or RINGING). 
 

DAA_status 
Prototype: Byte DAA_status(Byte channel) 

If the channel is on-hook, this function will call the DAA_check_ringing() function to check for a ringing 
signal. It also measures the line voltage to check if a line is connected. 

Inputs: channel – The channel to query.  
Outputs: Byte – Indicates status of the channel (ON_HOOK, OFF_HOOK, RINGING or NO_LINE). 
 

Test_DAA 
Prototype: Byte Test_DAA(Byte channel) 

This function reads a arbitrary register from of the DAA and writes the value that was read back to the register. 
This is only to test to SPI communications interface between the microcontroller and the DAA. 

Inputs: channel – The channel to test. 
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Outputs: Byte – Indicates success or failure. 
0 = Success, SPI communications successful 
1 = Failure, could not communicate with DAA. 

 

C2.3 Echo canceller functions 
The following functions relate to the echo canceller. 
 

EC_write_register 
Prototype: void EC_write_register(Byte address, Byte io_byte) 

This function toggles (“bit banging”) the echo canceller CS3 (chip select),  MOSI (Master Out Slave In) and 
SCLK (serial clock) pins connected to the microcontroller to write two bytes to the SPI bus. The first byte is the 
address of the register that must be written, and the second byte is the value that must be written to the register. 

Inputs: address – The address of the echo canceller’s register that must be accessed.  
 io_byte – The byte to be written to the register. 
 

EC_read_register 
Prototype: Byte EC_read_register(Byte address) 

This function toggles the echo canceller CS3 (chip select) and SCLK (serial clock) pins connected to the 
microcontroller to write one byte on the SPI bus (the address of a register). A byte is then returned on the SPI 
bus, which is the value of the requested register.  

Inputs: address – The address of the echo canceller’s register that must be accessed.  
Outputs: Byte – The value of the register. 
 

EC_init 
Prototype: void EC_init() 

This function initialises both channels of the echo canceller by resetting the device. 

 

TestEC 
Prototype: Byte TestEC() 

This function reads a arbitrary register from of the echo canceller and writes the value that was  read back to the 
register. This is only to test to SPI communications interface between the microcontroller and the echo 
canceller. 

Outputs: Byte – Indicates success or failure 
0 = Success, SPI communications successful 
1 = Failure, could not communicate with the echo canceller. 
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C2.4 Voice activity detection 
The functions in this section relate to voice activity, barge-in and hang-up tone detection. 

 
DoubleTalkDetect 
Prototype: BOOLEAN DoubleTalkDetect(Byte Channel) 

This function reads the double-talk detection flag of the echo canceller to determine if the echo canceller 
detected a double-talk condition. This is used to trigger the voice activity detection algorithm. It also performs 
other housekeeping, such as checking if timers have expired since the last time that voice activity was detected. 
Finally, a flag is set if a long silence is detected in the incoming signals (used to detect a hang-up condition 
during a call transfer).  

Inputs: channel – The channel to query. 
Outputs: BOOLEAN – Indicates whether or not a double-talk condition was detected.  

0 (FALSE) = No double-talk detected. 
1 (TRUE) = Double-talk detected. 

 

VoiceActivityDetection 
Prototype: void VoiceActivityDetection(Byte Channel) 

This function performs voice activity detection. If a double-talk condition was detected, the VAD algorithm is 
activated so that the energy and ZCR per frame can be measured in the 
GetDataFromTelephone()function. These measurements are performed on new incoming telephony data. 
If the measurements span one frame, this function will check if the measured energy and ZCR are above 
threshold values. If the measurements are above the threshold values for a number of frames, voice activity is 
indicated (as well as barge-in if barge-in detection was enabled). Also, if the device is configured to record data 
upon voice activity, the function will allow new data to be buffered until the end of the utterance is detected (no 
voice activity detected for a period). If the energy and ZCR measurements indicate that no voice activity is 
present, the VAD algorithm will be disabled until the echo canceller again detects a double-talk condition.  

Inputs: channel – The channel on which voice activity detection is performed. 
 

HangupDetection 
Prototype: void HangupDetection(Byte Channel) 

This function is similar to the VoiceActivityDetection(). It is called when a call transfer is active, and 
uses the energy and ZCR measurements to detect a hang-up tone. For a hang-up tone to be detected, the 
measured energy and ZCR must fall within a certain range for a defined time interval.  

Inputs: channel – The channel on which hang-up tone detection is performed. 
 

ClearBuffer 
Prototype: void ClearBuffer(Byte Channel) 

This function is called when barge-in detection is enabled and a barge-in condition was detected. It erases the 
remaining buffered data to stop the prompt currently being played to the caller.  

Inputs: channel – The channel of which the buffers must be erased.  
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C2.5 Assembly modules 
These modules are compiled separately, but are linked with the main firmware program. 
 

ivect 
The assembly module (ivect.asm) shown below, contains the interrupt vector table. The interrupt vector table 
contains jump instructions to the interrupt service routines.  
 

 
.module ivect    ; Interrupt Vector Table 
 .area IVECT (CODE) 
  
 ljmp __sdcc_gsinit_startup ; jump to first code instruction 
 reti 
 .ds 7 
 ljmp _timer0_ISR 
 .ds 5 
 reti 
 .ds 7 
 ljmp _timer1_ISR 
 .ds 5 
 reti 
 .ds 7 
 reti 
 .ds 7 
 reti 
 .ds 7 
 reti 
 .ds 7 
 ljmp _usb_isr 
 .ds 5 
 reti 
 .ds 7 
 ljmp _Fifo_ISR 

 

 

DMA_start 
This assembly modules represents a function which can be called from the main firmware program. It writes to 
the DMAGO register, which initiates the DMA transfer. Thereafter, the code remains in a loop until the DONE 
bit in the DMAGO register is set, which indicates that the DMA transfer is complete. This module is placed in 
the DMASTART segment, which is assigned a specific memory location in internal memory during linking with 
the main firmware program.  
 
 
.module DMA_transfer 
 .area DMASTART (CODE) 
 .globl _DMA_start 
 
_DMA_start: 
 mov dptr, #_DMAGO  ;starts the DMA transfer 
 clr a 
 movx @dptr,a 
 
_wait:     ;waits until DMA transfer complete 
 movx a, @dptr 
 mov r2, a 
 cjne r2, #0x80, _wait 
 ret 



 

 

 
Appendix D 
Appendix D: Miscellaneous API functions 
Miscellaneous API functions 
 
This section contains functions that are included in the API, but which does not directly relate to the operations 
of the telephony interface device. 
 

D.1 File I/O 
The section describes API functions that transfers audio data between files and the telephony buffers.  
 

LoadTelephonyBufferFromAlawFile 
Prototype: void LoadTelephonyBufferFromAlawFile(char *Filename, 

TelephonyBuffer *TheBuffer) 

This function opens a file that contains A-law samples, and reads them into the outgoing buffer of the specified 
channel.  

Inputs: *Filename – The name of the file to open. 
*TheBuffer – The buffer to which the audio samples must be copied to.  

Outputs: None. 
 
SaveTelephonyBufferAsWaveFile 

Prototype: void SaveTelephonyBufferAsWaveFile(TelephonyBuffer *TheBuffer) 

This function converts the A-law samples contained in the specified incoming telephony buffer to linear values, 
and saves the data to a file in the WAVE file format. The filename used by this function is set by the 
SetTelephonyBufferRecordFile() function. 

Inputs: *TheBuffer – The buffer from which to copy the audio samples. 
Outputs: None. 
 

SaveTelephonyBufferAsAlawFile 

Prototype: void SaveTelephonyBufferAsAlawFile(TelephonyBuffer *TheBuffer) 

This function copies A-law samples directly from the specified incoming telephony buffer to a file. The 
filename used by this function is set by the SetTelephonyBufferRecordFile() function.  

Inputs: *TheBuffer – The buffer from which to copy the audio samples. 
Outputs: None.
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SetTelephonyBufferRecordFile 

Prototype: int SetTelephonyBuffer RecordFile(char * filename, TelephonyBuffer 

*TheBuffer) 

Sets the record file name for a telephone channel.  

Inputs: *filename – Name of the file to use for recording.  
TheBuffer – The buffer for which to set the record file name.  

Outputs:  None. 
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