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Abstract 

 

In the rainfed areas of the South African sugar industry the unpredictability of rainfall 

is of major concern for producers.  Currently, research into the drought tolerance of 

South African sugarcane varieties is very limited.  Knowledge of varietal drought 

tolerance potential would allow for more informed decision making when it comes to 

planting a crop that stays in the ground for between five and fifteen years.  The aim of 

this study was to ascertain the drought tolerance potential of commercial sugarcane 

varieties using historical field trial data by employing statistical modelling.  The first step 

was to establish a reliable methodology of quantifying the level of drought stress, defined 

through a drought stress index (DSI), employing the sugarcane growth modelling 

software Canesim.  The second step was to use the selected DSI to evaluate and rate the 

drought tolerance potential of commercial varieties. 

 

Of the six DSI’s calculated, the index comprising a ratio of Canesim simulated rainfed 

yield (representative of a water stressed environment) to Canesim simulated irrigated 

yield (representative of a water unstressed environment) was the best at quantifyingthe 

level of trial drought stress.  Using three varieties with previously identified drought 

potential, two intermediate susceptible (IS) and one intermediate (I) variety, this was the 

only DSI that was able to quantify all the differences between the varieties.   

 

Using the selected DSI, two different methodologies were used to evaluate varietal 

drought tolerance potential:  General linear regression and Residual maximum likelihood 

meta-analysis.  The regression method proved to be a better method of varietal rating 

when using historical field data.  The two rainfed regions, coastal and midlands were 

analyzed separately due to the difference in climatic conditions.  Using the regression 

analysis, with N12 as the observed intermediate reference variety, coastal varieties were 

rated as being susceptible (N16, N19, N39 and NCO376) or intermediate (N27, N29, N33, 

N36, N41, N45, N47).  Rating of the midlands varieties, with both statistical methods, 

were unsuccessful.   

 

Stellenbosch University http://scholar.sun.ac.za



iv 
 

Opsomming 

 

Binne die droëland produksiegebied van die Suid-Afrikaanse suikerindustrie is die 

wisselvalligheid van reënval ŉ groot bron van kommer vir produsente.  

Navorsingsresultate aangaande die droogtetoleransie van Suid-Afrikaanse 

suikerrietvariëteite is baie beperk.  Aangesien suikerriet aanplantings vir vyf tot vyftien 

jaar in produksie mag bly, is kennis aangaande droogtetoleransie noodsaaklik vir ingeligte 

besluite rondom variëteit keuse.  Die doel van hierdie studie was om die 

droogtetoleransie van kommersiële variëteite met behulp van historiese veldproef 

resultate en statistiese modellering te bepaal.  Die eerste stap was die ontwikkeling van 

betroubare metodiek wat die graad van droogtestremming kwantifiseer deur middel van 

droogtestremmingsindekse (DSI’s) wat met die suikerriet produksiemodel, Canesim, 

bereken is.  Die tweede stap was om die DSI’s te gebruik om geselekteerde kommersiële 

variëteite vir droogtetoleransie te evalueer en volgens toleransie te rangskik. 

 

Van die ses DSI’s wat geëvalueer is, was die indeks wat die verhouding tussen Canesim 

gesimuleerde droëland opbrengs (verteenwoordigend van ŉ omgewing met droogte) en 

Canesim gesimuleerde besproeide opbrengs (verteenwoordigend van ŉ omgewing 

sonder droogte) omskryf het, die mees effektiefste om die graad van droogtestremming 

te kwantifiseer.  Hierdie DSI was vervolgens die enigste wat verskille in droogtetoleransie 

tussen drie variëteite van bekende droogte toleransie kon kwantifiseer.   

 

Deur gebruik van hierdie DSI is twee verskillende metodes aangewend om die 

droogtetoleransie van variëteite te evalueer naamlik: Algemene Lineêre Regressie en 

Residuele Maksimum Aanneemlikheid.  Die regressiemetode was die mees effektiefste 

om variëteite volgens droogtetoleransie, op grond van historiese veldproef resultate, te 

rangskik.  Die twee droëland produksiegebiede, naamlik die kusstrook en Natalse 

Middellande is afsonderlik geanaliseer as gevolg van klimaatsverskille. Met behulp van 

die regressiemetode is die kus-variëteite as droogtesensitief of -intermediêr 

geklassifiseer, met N27, N29, N33, N36, N41, N45 en N47 as droogte-intermediêr en N16, 

N19, N39 en NCO376 as droogtesensitief.  Soortgelyke klassifisering van die variëteite 
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wat in die Natalse Middellande verbou word was nie met enige van die statistiese 

metodes suksesvol gewees nie.   
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Chapter 1 

Introduction 
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Chapter 1: Introduction 

 

Sugarcane (Saccharum sp.) is the second largest South African field crop by gross value, 

surpassed only by maize.  The South African sugar industry is responsible for generating an 

average direct income of R8 billion.  Approximately 1 million people, more than 2% of the 

South African population, depend on the industry for a living.  There are approxiamtely      

29 130 registered sugarcane growers that produce an estimated average of 2.2 million tons 

of sugar per season.  Of this, approximately 0.7 million tons is exported to markets in Africa, 

Asia and the Middle East.  The South African sugar industry therefore makes a very 

important contribution to the national economy (SASA, 2011/2012). 

 

For any crop to obtain maximum yield, water is essential during its vegetative growth.  

Sugarcane is a high yielding biomass crop thereby requiring substantial amounts of water to 

sustain optimal development (Zingaretti et al., 2012).  Drought is one of the major abiotic 

stresses that can affect sugarcane productivity worldwide (Venkataramana et al., 1986).  

Drought stress affects the growth and physiological processes in sugarcane which can lead 

to the yield and quality being significantly affected (Wiedenfeld, 1995; Nyati, 1996; Qing et 

al., 2001).  Therefore, the ability of a plant to maintain photosynthesis under conditions of 

drought stress is an indication of potential drought tolerance (Silva et al., 2007). 

 

The level of drought stress experienced by a plant can be evaluated by growth analysis 

and plant productivity under stressed conditions (Silva et al., 2007).    Some varieties 

tolerate stress more effectively than others, but there is a range of different drought 

tolerance mechanisms that a plant can use under water limiting conditions (Qing et al., 

2001).  Different varieties can show the same phenotype (drought tolerance) due to very 

different physiological mechanisms.    In addition, drought tolerance can also vary according 

to the age of the plant, water use efficiency and the severity of stress.  All these factors 

make drought tolerance a very complex process to study (Blum, 1996). 

 

Variety choice is an important part of a farmer’s risk-management strategy.  This is 

especially true with sugarcane, as the same crop may be in the ground for five to fifteen 
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years, and annual replanting with different varieties is not a cost effective risk management 

option (Inman-Bamber, 1994).  The effects of climate change have resulted in periods of 

drought stress becoming more frequent and unpredictable, and this can be a major limiting 

factor to the growth of sugarcane in rainfed areas (Inman-Bamber et al., 2005; 

Bezuidenhout and Schulze, 2006; Koonjah et al., 2006; Silva et al., 2008). 

 

The amount of scientific research on drought tolerance of South African sugarcane 

varieties is very limited.  Although there is merit in conducting complex, measurement 

intensive experiments, the aim of this study was to evaluate the general yield response of 

commercial varieties to drought stress, using historical field trial data. 

 

  The study was divided into two parts.  In part one, a pilot study was conducted to 

establish a methodology to quantify the amount of drought stress experienced by historical 

field trials, a drought stress index (DSI).   This was done by: 

- Using different definitions to calculate 6 DSI’s;  

- Using only varieties with observed* differences in drought tolerance, to evaluate the 

suitability of the different DSI’s (*from anecdotal evidence, as this was the only 

information available on varietal yield performance when subjected to drought 

stress); and 

- Identifying the DSI that was able to most accurately capture the amount of drought 

stress experienced by a sugarcane crop. 

 

The second part of the study involved the evaluation of all commercial varieties, with 

both observed and unknown drought tolerance.  This was done by: 

- Creating a varietal database for the two rainfed regions in the South African 

sugarcane industry, coastal and midlands (inland); 

- Using the DSI, identified in part one of the study, to quantify the amount of stress 

experienced during each trial and to evaluate the corresponding varietal yield 

responses; and 

- Rating the different varieties based on their yield response to drought stress. 
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The results of this study will be useful in classifying the drought tolerance potential of the 

commercial varieties, and this information can be provided to the sugarcane farmers to 

facilitate more informed choices in variety selection.  In addition, the varieties with 

differential responses to drought stress can be used for more detailed analysis in future 

designed experiments. 
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1.  Sugarcane Biology  

 

The sugarcane plant (Saccharum sp.) can simplistically be divided into three parts:  stalks, 

leaves and a root system. 

 

1.1  Stalks 

 

The sugarcane plant is made up of a number of unbranched stalks that are tall and 

cylindrical in shape.  The stalk is the most important part of the plant to a sugarcane farmer 

as it is the site of sucrose storage.   Each stalk is made up of nodes and internodes (Figure 

2.1). 

 

The nodes are the ring-like structures along the stalk, where the leaves are attached.  

There is one leaf per node, generally on alternate sides of the stalk.  The node is made up of 

a leaf scar, root band, lateral bud and growth ring.  The leaf scar is the remnants of the leaf 

sheath base that was attached to the node (but has since detached).   The root band consists 

of many root primordia and one lateral bud.  Each bud occurs on opposite sides of the stalk.  

The lateral bud is an embryonic shoot, that is, when the bud germinates a young shoot 

develops from the growth point of the bud.  The size and shape of the buds varies with 

varieties.  The growth ring is a narrow band above the root band.  In some varieties a 

pronounced, shallow, depressed vertical groove extends from the lateral bud, extending into 

the internode, this is called a bud furrow.  Nodes can vary in diameter, colour, configuration 

and cross-sectional form (Humbert, 1963; Barnes, 1974). 
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Figure 2.1:  Components of a sugarcane stalk (adapted from Humbert (1963)). 

 

The internode is the stem tissue between two nodes.   The internodes are covered in a 

waxy layer and the amount of wax is variety dependent.    The length and thickness of the 

internodes are affected by climatic and cultural conditions.   If there is sufficient water 

available to the plant and the temperature is conducive to growth, then the internodes will 

be longer because the plant will be growing at a faster rate.  However, if the weather 

conditions are reversed, that is, cool temperatures and limited water availability, the 

internodes will be shorter (Humbert, 1963; Barnes, 1974).   Sucrose is stored in the 

internodes therefore longer and thicker internodes are preferred by the sugarcane farmer. 

 

The outer portion of the stalk is very hard, consisting of a tough rind.  This encloses a soft, 

fibrous interior, thereby providing protection from damage by external factors, for example, 

rodents and stem borers.  At the upper (younger) end of the stalk the immature internodes 

are smaller in diameter and shorter, decreasing in size until the stalk growing point (apical 

meristem) is reached.  The stalk growing point is tightly enclosed by the youngest leaf 
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sheaths.  As the plant produces sucrose it is stored in the bottom most internodes first. 

Therefore the topmost part of the stalk contains much less sucrose than the lower part of 

the fully grown stalk (Hogarth and Allsopp, 2000; Inman-Bamber et al., 2002).   

 

1.2  Leaves 

 

Each leaf arises from a node, on alternate sides of a stalk.  As the plant develops, the 

leaves increase in size, up to leaf 14, after which leaf size remains constant.  The leaf 

consists of two principal parts, a lower part (sheath) and an upper part (blade) (Figure 2.2).  

The sheath is attached to the stalk by a basal ring, completely enclosing the stalk tightly to a 

height of 7 to 30 cm.  The lateral bud is enclosed in the sheath, being protected in its early 

stages of development (Barnes, 1974).   The sheath can be smooth or covered by spiny hairs 

which may fall off as the leaf matures.  In some varieties a purplish tint occurs on the outer 

surface of the leaf sheath (Humbert, 1963).  

 

At the upper end, the leaf sheath develops into a leaf blade.  The junction between the 

two is a band called the blade joint or collar.  At this point, on the inside of the leaf, there is 

a projection called the ligule.  The two wedge-shaped areas called dewlaps are found just 

above the blade joint.  At the margin of the leaf at the collar, a membranous projection 

called the auricle can be found in some varieties (Barnes, 1974). 

 

 

Figure 2.2:  Structure of a sugarcane leaf (adapted from 

http://www.sugarcanecrop.com/growth morphology). 
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1.3  Roots 

 

The root system of the sugarcane plant is capable of adjusting to its environment.  When 

there is limited water available the plant will extend roots into the deeper layers of the 

subsoil to extract water.  Conversely, when there is excessive soil moisture at the deeper 

depths, the deeper roots die and the plant develops a much more extensive network of 

lateral roots (Humbert, 1963; Barnes, 1974).   

 

Sugarcane is planted commercially using pieces of the stalk called setts, where each sett 

contains at least one node.  When the sett is planted a primary shoot develops from the 

lateral bud and sett roots develop from the root primordia of the root band (Figure 2.3).  

From the underground lateral buds on the primary shoot, secondary shoots develop.  The 

collection of secondary shoots per sett is called a stool; this will be discussed later on in the 

chapter.  The degree of rooting is variety dependent.  These sett roots are thin and branched 

and provide the young developing plant with nutrients and water.  However, this root 

system limits potential growth rate because the absorbing surfaces of these roots are small 

so they only last for approximately three months, until the shoot roots take over this 

function.  The shoot roots develop from the root primordia of the lower nodes of the young 

shoots (Figure 2.3).  These roots are thick, white and fleshy.  Aside from water and nutrients, 

they also provide the plant with anchorage (Humbert, 1963). 
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Figure 2.3:   A young sugarcane plant showing sett roots and shoot roots (adapted from 

http://www.sugarcanecrop.com/growth morphology). 

 

The mature root system of established sugarcane plants arises from root bands of shoots, 

after the initial flush of shoot roots.  There are three main types of mature roots:  

superficial, buttress and rope roots (Figure 2.4). 

 

 

Figure 2.4:  The mature root system of a sugarcane plant (adapted from Barnes (1974)). 
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The root primordia on the nodes higher up on the young shoots give rise to the 

superficial roots (Figure 2.4).  Initially they spread out shallowly but once they have finished 

extending, they branch vigorously.  The main part of these roots is dark and ribbed.  When 

the soil has enough moisture these roots supply the stools with most of the water.  

However, because these roots are so shallow, they are unable to provide the plant with 

sufficient moisture under drought conditions.  The buttress roots grow downwards, at an 

angle, thereby providing good anchorage to the plant (Figure 2.4).  An added advantage of 

this root in limited water conditions is that it can penetrate the subsoil, providing the plant 

with water.  The third type of mature root is the rope roots (Figure 1.4).  These grow straight 

down in strands of 15 to 20 individual roots.  Like the buttress roots, these roots also 

provide anchorage and water.  They penetrate very deeply into the soil; therefore they are 

very important in times of drought.  The extent, configuration and optimal functioning of the 

root system are heavily influenced by the physical conditions and the depth of the soil 

(Humbert, 1963; Barnes, 1974). 

 

2.   Sugarcane sucrose formation and storage 

 

The stalk has many roles in a sugarcane plant; it orientates the leaves for maximum 

radiation interception, translocates water and nutrients from the soil to the leaves, 

translocates photosynthates from the leaves to the rest of the plant and stores excess 

photosynthate as sucrose (Barnes, 1974).  Most of the sugarcane plant’s daily sucrose 

production is translocated to the stalk, where it moves towards the base of the plant and 

the roots with smaller amounts moving towards the apical meristem and immature leaves 

(Hatch and Glasziou, 1964; Hartt, 1967).    

 

While the plant is still in its active growth phase the photosynthate is predominantly used 

to increase the mass of the plant body.  At this time the number and size of the leaves, 

stalks and roots are all rapidly increasing.  Once the leaves approach full development the 

rate of photosynthate import (to the leaves) decreases whilst export increases.  Maturation 

(also referred to as ripening) occurs when the plant develops a maximum leaf area, number 

of stalks and roots that can be maintained under competition for light, water and nutrients.   
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During ripening the earlier growth processes slow down and are replaced by accelerated 

accumulation of the photosynthate in the form of sucrose in the internodes.   As discussed 

earlier, sucrose is deposited in the basal internodes first.   However, the storage of sucrose 

does not suddenly begin once the stalk has fully elongated, rather during stalk elongation 

and for some time post full stalk elongation sucrose is stored in increasing quantities in the 

stalk (Moore and Maretzki, 1996).    Different sugarcane genotypes vary in their ability to 

store sucrose due to the diversity in net photosynthesis rates and partitioning of the 

photosynthate (Inman-Bamber et al., 2009).   

 

Ultimately, more than half the biomass produced is partitioned into the stalk (Moore and 

Maretzki, 1996).  Of the biomass partitioned to the stalk, 30% is dry matter which is 

composed of 60% sucrose and 40% fibre (Moore and Maretzki, 1996).  The accumulation of 

sugarcane biomass is dependent on the amount of radiation intercepted by the leaves of the 

plant and the radiation use efficiency (RUE) of the leaves (Robertson et al., 1996).  The RUE 

of a crop is defined as the ratio of biomass accumulated to intercepted radiation 

(McGlinchey and Inman-Bamber, 1996). The final sugarcane biomass is important because 

commercial sugarcane yield is based on the fresh weight of millable stalks, which is 

dependent on the proportion of stalks in the above ground biomass.  The sucrose yield is 

determined by the partitioning of the biomass to sucrose which controls the final yield of 

sucrose in the millable stalks (Robertson et al., 1996).   

 

The rate of photosynthesis depends largely on the prevailing weather conditions.  When 

large amounts of radiation, water and adequate nutrients are available, maximum growth 

rates can be maintained.  However if any of these factors are limiting the growth rate is 

reduced (Barnes, 1974).  Hartt (1967) showed that subjecting sugarcane to drought stress 

resulted in an 80% reduction in 14C-labeled sucrose transported within 24 hours after stress 

imposition, however over the long term the quantity (%DM) of sucrose stored increased.  

This is because the amount of sucrose stored during a crop’s cycle depends on the balance 

between the production and consumption of sucrose.  When production exceeds 

consumption sucrose is stored.  In a mildly drought stressed plant for example, the growth 

of the plant (consumption) is limited therefore allowing a bigger proportion of the sucrose 

produced to be stored.  In irrigated regions some agriculturists manage their sugarcane crop 
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by growing the bulk of the crop under conditions of optimal irrigation followed by a period 

of “drying off” (irrigation terminated towards the end of the crop cycle) or chemical ripening 

to encourage sucrose storage (Clements, 1980). 

 

3.   The role of soil moisture, soil depth and water movement in the growth of 

sugarcane 

 

Soil is a valuable resource that supports plant life, and water is an essential part of this 

system.   By understanding the physical properties of a soil, the strengths and weaknesses of 

the particular soil can be better defined.  There are a number of different roles that soil 

plays in the growth of sugarcane; however, for the purpose of this study the focus of this 

section will be on the role of soil moisture and soil depth. 

 

3.1  Soil Moisture 

 

Soil texture and structure greatly influence the water holding capacity of a soil. 

 

3.1.1  Soil texture 

 

Soil is made up of soil particles of different shapes and sizes, with coarse sand being the 

largest particle and clay the smallest (Table 2.1).  These particles may exist on their own or 

in aggregates and are arranged together either tightly or loosely.  The spaces between these 

particles are called the soil pores.  The different types of soils originate from the different 

combinations of soil particle shapes, sizes and arrangements (Marshall and Holmes, 1979).  
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Table 2.1:  Particle size class limits for the South African system of soil classification 

(Marshall and Holmes, 1979). 

Particle size Class Particle Diameter (mm) 

Coarse sand 2 - 0.5 

Medium sand 0.5 -  0.2 

Fine Sand 0.2 – 0.02 

Silt 0.02 – 0.002 

Clay 0.002 – 0.0002 

 

The relative proportions of sand, silt and clay differ for different soil types (Humbert, 

1963).  Different soil types therefore have different textures and can be classified into 

different textural classes.  Figure 2.5 shows an example of soil classification.  Consider a soil 

of 60% sand, 30% clay and 10% silt, projection of any two of these components along their 

respective axes (indicated by green dotted lines) intersect in the block “sandy clay loam”, 

which is the textural class of this soil (indicated by blue circle). 

 

The importance of soil textural classes with respect to sugarcane growth is that different 

textural classes have different secondary properties which are important to plant growth.  

Some of these properties include water holding capacity, nutrient retention, erosion 

susceptibility, permeability and mechanical strength.  Table 2.2 summarises the differences 

in some soil properties across different soil textural classes.  For example, a clay soil type has 

the potential to hold more water for the plant as compared to a sandy soil.   Therefore if a 

sugarcane crop was grown on a very sandy soil and subjected to drought conditions, the 

crop would experience drought stress far quicker than if it was planted on a clay soil type 

(Silva et al., 2007).   Approximately 50% of the rainfed sugarcane crop in South Africa is 

planted on sandy soils (SASRI, 1999), highlighting the vulnerability of these crops to drought 

events. 
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Figure 2.5:  Soil textural classification system based on particle size (adapted from Marshall 

and Holmes (1979)). 

 

 

Table 2.2:  Agricultural significance of soil textural classes (Marshall and Holmes, 1979). 

Soil Property Sand Loam Silt Loam Clay 

Internal drainage Excessive Good  Fair Fair – poor 

Plant available 

water 

Low Medium  High High 

Erosion hazard High Medium Low Low 

Run off potential Low Low– Medium Medium-High High 
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3.1.2  Soil Water Holding Properties 

 

Water is held in the soil by the capillarity in the pore spaces and by a force of attraction 

between the soil particles and the water molecules. The soil pores are interconnected 

thereby allowing the soil to act as a medium for the transport of air and water (Barnes, 

1974; Marshall and Holmes, 1979).  When it rains (or irrigation occurs) gravity causes the 

water to move into the soil via soil cracks or fissures.  Water continues moving down into 

the soil until the capillary pressure holding the water in the soil pores exceeds the force of 

gravity.  When this occurs the soil is said to be at its field capacity (FC).  FC is the upper limit 

of water available to the plant, and it is the level at which optimum plant growth occurs 

(Figure 2.6) (Barnes, 1974).  The FC differs across different soil textural classes.  Soils with 

smaller particles (silt and clay) have a larger surface area than those with larger sand 

particles.  A large surface area allows the soil to hold more water, therefore, the FC in sandy 

soils is much lower than in clay or silt soils (Alway and McDole, 1917; Veihmeier and 

Hendrickson, 1931; Barnes, 1974). 

 

Water can be removed from the soil by surface evaporation or by plant roots.  There is a 

direct relationship between the amount of water that is removed from the soil and the force 

with which the water molecules are held within the soil pores; the drier a soil gets the 

tighter the soil particles hold on to the water molecules (Marshal and Holmes, 1979).  On a 

very hot day, when the surface evaporation rate is very high, plants will wilt because the 

rate that water is lost by surface evaporation exceeds the rate at which plants can take up 

water from the soil.   The permanent wilting point (PWP) of the soil is reached when the soil 

holds onto the water so tightly that the plant is unable to take up any water.  This is the 

lower limit of the soil water available to the plant.  The available water capacity (AWC) is the 

amount of water available in the soil that can be removed by the plant.  AWC is the 

difference between upper and lower limits of available soil water, that is, the FC and PWP 

respectively (Figure 2.6) (Marshal and Holmes, 1979; Van den Berg and Driessen, 2002).   
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Figure 2.6:  The effect of soil moisture on the rate of plant growth (adapted from Barnes 

(1974)). 

 

AWC depends greatly on the soil texture, as the clay% of a soil increases so does the AWC 

(Table 2.3) (Barnes, 1974).   The growth potential of a crop and its response to drought 

stress is directly related to the type of soil that it is grown on.  The sandier the soil the more 

affected the crop will be by limited water conditions due to the lower AWC of the field.   

 

Table 2.3:  AWC ratings based on clay% ranges (adapted from Barnes, 1974). 

Clay Content % AWC (mm/m) 

0-6 <80 

7-15 81-100 

16-35 101-140 

36-55 141-180 

>55 >180 
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3.2  Soil Depth 

 

When evaluating the moisture availability of a soil type, both AWC and soil depth have to 

be considered simultaneously.  The depth of soil is important for plant growth because the 

deeper the soil, the deeper the plant roots can penetrate for extraction of water and 

nutrients, and the less likely it will be for the plant to become drought stressed.  The 

effective rooting depth (ERD) of a soil is defined as the soil depth in which 85-90% of the 

plant roots are found (Humbert, 1963; Barnes, 1974).   The ERD is important as it is used in 

the calculation of the total available moisture (TAM) of a soil.  TAM represents the water 

available to a plant given the depth of the soil (equation 2.1). 

 

Equation 2.1:  TAM (mm) = AWC (mm/ m) * ERD (m)  

    

For example, if a soil has an AWC of 100 mm/m and an ERD of 0.8m then the TAM of the 

soil would be 80mm.  If the AWC of another soil was also 100mm/m but the ERD was 

shallow, 0.4m, the TAM of the soil would be only 40mm.   Focusing on the AWC in Equation 

2.1, if there was a soil that had a very deep ERD (e.g. 2m) this would be of little benefit to 

the plant if the AWC of that soil was low.  A low AWC would result in a low TAM, irrespective 

of the deep ERD. 

 

The ability of a crop’s roots to extract water from the soil depends on the distribution and 

depth of the roots (Dardanelli et al., 2004).  The amount of water received (either via rain or 

irrigation) will determine if the roots need to penetrate further into the soil profile.  If the 

plant water availability decreases, this forces the roots to penetrate deeper into the soil 

profile to try to find water.   In soils where there is a high clay% in the deeper layers of the 

soil, the ERD will be lower as roots will be unable to penetrate through this layer.  The same 

occurs for soils where there is a rocky layer in the deeper layers of the soil (Barnes, 1974).   
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3.3 The movement of water in the soil-plant-atmosphere continuum 

 

Understanding the movement of water between the soil, plant and atmosphere (soil-

plant-atmosphere continuum) helps with the understanding of how a plant can become 

drought stressed.  In this continuum, water always moves spontaneously from higher to 

lower water potentials (Hillel, 1980).    When water reaches the soil surface (via either rain 

or irrigation) it moves into the soil by a process of infiltration (Figure 2.7a). 

 

The water then moves through the soil and to the plant roots by a process called 

hydraulic flow (Figure 2.7b).  When the water leaves the root zone, this is called internal 

drainage.  Water leaves the soil via two processes, the process of transpiration (loss of water 

vapour from the leaves of the plant) and evaporation (loss of water from the surface of the 

soil), collectively termed evapotranspiration (ET) (Figure 2.7d,e) (Humbert, 1963; Barnes, 

1974; Taylor and Klepper, 1978).   The rate of ET depends on the environment that the plant 

is growing in, for example, the hotter and/or windier an environment, the greater the loss of 

water from a water saturated plant and or soil into the dry atmosphere.    During a drought 

event, there is less moisture available therefore less infiltration occurs and less water is 

available to the roots of the plant.  However, the movement of water out of the soil via ET 

still takes place leading to increasingly less water being made available to the roots of the 

plant.  The impact of this water deficiency on the growth of sugarcane is dependent on the 

growth phase that the crop is in when experiencing the drought event and the duration of 

the drought stress event (Robertson et al., 1999; Cattivelli et al., 2008). 
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Figure 2.7:  The process of water gains and losses in a soil (adapted from Barnes (1974)). 

Legend to Figure 2.7:   

(a) Water (from rain/irrigation) moves through the soil by a process of infiltration; (b) Movement of 

water through the soil to the roots by hydraulic flow; (c) Water leaving the root zone by internal 

drainage; (d) transpiration, process by which water is lost from the leaves of the plant and (e) 

evaporation, process by which water is lost from the soil surface.  (d) and (e) are collectively termed 

evapotranspiration. 
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4.  The impact of drought stress on sugarcane growth 

 

Before looking specifically at the growth phases it is important to first understand the 

South African climate. 

 

4.1   The climate of the South African sugarcane industry  

 

South Africa is the southernmost sugarcane industry in the world.  It extends between 

the latitudes 25°S - 31°S.  There is 375 590 hectares (ha) under commercial sugar cane 

production during the 2010/2011 season, 85% of which is rainfed (SASA, 2010/2011, S.I.A.B. 

Planning and Development Surveys - IA/47/33, 2011).    The rainfed area include the coastal 

area of Kwa-Zulu Natal (highlighted green) and the Midlands region (highlighted orange), 

each making up 65% and 35% of the total rainfed crop respectively (Figure 2.8).  The coastal 

and midlands areas differ in their climatic conditions, with the midlands being cooler and 

drier than the coastal region (Table 2.4).  Irrigated cane (highlighted blue) makes up 15% of 

the South African sugar industry, and is located mostly in the north eastern regions of South 

Africa (Mpumalanga and Pongola) (Figure 2.8) (SASA, 2010/2011). 
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Figure 2.8:  A map representing the distribution of the sugarcane industry in South Africa. 

(GIS department, SASRI, 2011.) 

 

Table 2.4:  Annual long term mean climatic conditions at the Midlands, Coastal and the 

Irrigated regions of the South African sugarcane industry. 

Climatic Zone Maximum 

Temperature 

(°C) 

Minimum 

Temperature 

(°C) 

Rainfall 

(mm/year) 

Sun Hours 

(hours/day) 

South Coast 

North Coast 

Midlands 

Pongola (Irrigated) 

Mpumalanga(Irrigated) 

24.9 

26.3 

24.7 

27.3 

29.2 

15.1 

15.9 

12.3 

15.8 

15.6 

1032 

994 

864 

898 

605 

6.6 

6.4 

6.5 

6.6 

6.7 

(Source: SASRI Weather web http://portal.sasa.org.za.  Date Accessed:  19 June 2011) 
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The ideal climate for sugarcane growth includes warm temperatures, sufficient rainfall 

and high solar radiation.   In the rainfed sugarcane areas of South Africa, most of the rainfall 

occurs during the summer months (November – March).  A plant is defined as being drought 

stressed when it does not have access to sufficient water to sustain its growth and/or 

productivity (Alexander, 1973).   Due to the effects of climate change, the periods of drought 

stress are becoming more frequent and unpredictable.  Therefore, in rainfed areas rainfall 

can be a major limiting factor to the growth of sugarcane (Koonjah et al., 2006; Silva et al., 

2008).   

 

4.2. The impact of drought stress on sugarcane growth phases 

 

The growth of sugarcane can be divided into three growth phases; formative, grand 

growth and ripening phase (Ellis and Lankford, 1990; Tejera et al., 2007).  These phases are 

affected differently by drought stress because there is a change in plant water requirements 

through the different phases (Zingaretti et al., 2012).   

 

4.2.1  Formative Phase 

During the formative phase (FP) germination, tillering and the full development of the 

leaf canopy occurs (Figure 2.9a).  The growth rate in this phase is as fast as the grand growth 

phase (GGP) (Tejera et al., 2007).     
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Figure 2.9: The three growth phases of a sugarcane plant. 

(adapted from http://www.sugarcanecrops.com/crop_growth_phases/, 2011) 

 

Germination of the setts is only established if there are favourable temperatures and 

moisture levels (Hogarth et al., 2000).   This includes the development of sett roots, growth 

of the bud into a primary shoot and the formation of shoot roots (Humbert, 1963; Barnes, 

1974).     The sett only contains enough nutrients and water necessary for the germination 

of the primary shoot, after which the shoot has to become independent.  This is facilitated 

by producing leaves to allow it to photosynthesize and support its own growth (Barnes, 

1974; Hogarth et al., 2000).   

 

Once it has emerged through the soil, the primary shoot grows quickly producing leaves 

(above the soil) and short internodes (below the surface).  The shoot roots support the plant 

for the rest of the crop cycle.  The buds germinate to produce secondary shoots known as 

tillers (Figure 2.10) (Hogarth et al., 2000).  These in turn develop buds at its base and give 

rise to tertiary shoots.  The primary shoot is now independent of the sett.  This process is 
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known as stooling or tillering and the structure composed of many secondary shoots is 

called a stool.  The number of secondary shoots determines the number of stalks of cane 

that makes up a stool.  The process of tillering continues until it is limited by factors such as 

light, space and nutrient availability.  Tillering is important as it ultimately determines the 

productivity of the crop.  The more stalks (tillers) that are formed from a stool the higher the 

productivity of the stool as there will be more volume to store sucrose (when mature). 

Tillering is very sensitive to environmental conditions (Barnes, 1974; Venkataramana et al., 

1986; Hogarth et al., 2000).     

 

 

Figure 2.10: The formation of a stool (adapted from Barnes (1974)). 

 

The development of a good leaf canopy is also an important part of the FP and 

consequently crop growth and final crop yield as it is the leaves which intercept light energy 

to facilitate the process of photosynthesis (Smit and Singels, 2006).   Any light that is not 

intercepted by the leaf is wasted energy.  The canopy also shades out possible growth of 

weeds.  Therefore, the time taken for the leaf canopy to fully form, that is, be able to 

intercept at least 85% of the incident light should be as short as possible.   

 

The development of the leaf canopy is also sensitive to insufficient water availability.  The 

development of the leaf canopy slows down because there is a decrease in the rate of leaf 
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appearance and an increase in the rate of senescence of the older leaves (Inman-Bamber, 

2004; Smit and Singels, 2006). Venkataramana et al., (1986) showed that drought stress 

imposed during the FP can significantly reduce the final cane yield, sucrose content and 

number of millable cane stalks.  In a similar study done by Zhao et al. (2010), drought stress 

imposed during the FP resulted in a reduced number of tillers, green leaf area and number 

of stalks. 

 

There is a debate in the literature about which phase is the critical water demanding 

period with respect to sugarcane growth.  Singh and Reddy (1980), Naidu and 

Venkataramana (1987) and Wagih et al. (2003) believe that the FP is the most sensitive 

phase to drought stress.   Robertson et al., (1999) showed that when drought stress was 

imposed during the FP, there was a reduction in the above ground biomass, stalk numbers, 

leaf area and a reduction in tillering; however the crop recovered rapidly when the drought 

stress was relieved.  The final harvest biomass and sucrose yield were not significantly 

different to the well-watered control.  This suggests that if the drought stress is relieved the 

crop can respond by increasing the rate of tillering and leaf appearance so that the leaf 

canopy can be re-established.    This compensatory growth is the reason for the drought 

stress imposed during this phase not markedly affecting the final yield.  This is supported by 

work done by Roberts et al. (1990), Ellis and Lankford (1990) and Inman-Bamber (1994).     

 

4.2.2  Grand Growth Phase 

 

During the grand growth phase (GGP) the sugarcane plant is growing at a very fast rate 

with a rapid stalk elongation rate (SER), leaf extension rate (LER) and biomass accumulation 

(Hogarth et al.,  2000; Smit and Singels, 2006).  This leads to an increase in the demand for 

water and consequent increase in photosynthetic rate.  Therefore, this phase is extremely 

sensitive to environmental conditions, in particular temperature and soil moisture 

(Robertson et al., 1999).  Rapid growth will occur if these conditions are at an optimum and 

vice versa if they are sub-optimum.  Rapid growth will give rise to longer internodes with 

slow growth producing shorter internodes.  At the end of this phase the sugarcane plant is 

almost fully grown with respect to yield, but the level of sucrose stored is still low as most of 
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the photosynthate has been used to facilitate the growth (Barnes, 1974; Ellis and Lankford, 

1990; Hogarth et al., 2000).   

 

Robertson et al. (1999) showed that when sugarcane was exposed to drought stress 

during this phase, there was a significant reduction in the biomass and sucrose yield at final 

harvest when compared to the well watered control.  The period of drought stress was of a 

shorter duration during the GGP compared to the FP, but the impact on final yield was 

markedly larger showing that the GGP was the more sensitive phase.   The numbers of stalks 

were not significantly reduced but there was a significant reduction in the length of the 

internodes (p<0.05).  When the drought stress was relieved, it was not possible for the crop 

to recover because the loss of stalk length could not be recovered.   Silva et al. (2008) 

showed that stalk height, stalk width and stalk number are three attributes of sugarcane 

that directly affects the final yield of a crop therefore a shorter internode implies less 

storage space for sucrose, hence a negative impact on the final yield of the crop.    Koehler 

et al. (1982) further showed that SER is more sensitive to drought conditions than LER.  In 

addition to being more sensitive to drought stress SER also recovers slower than LER when 

the stress is relieved (Roberts et al., 1990; Batchelor et al., 1992; Inman-Bamber, 1995).   

 

Inman-Bamber (1991) also showed that the number of green leaves per stalk was 

postively correlated with soil water availability (r=0.85, p<0.001).  As mentioned previously, 

the crop’s ability to maintain the canopy development process is very important for its 

growth.  The ability of the crop to recover from stress imposed during this phase is limited 

because the crop canopy struggles to re-establish to full cover (Robertson et al., 1999).   

Smit et al. (2005) showed that when a crop is stressed in the GGP this results in a decrease 

in leaf appearance rate and an increase in a leaf senescence rate, consequently decreasing 

radiation interception.   

 

4.2.3 Ripening Phase 

 

During the ripening (maturation) phase the internode completes its elongation.  This 

occurs while the leaf is still attached.  By the time the attached leaf has died, the internode 
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has completed its cycle.  The ripening phase happens once the vegetative growth phase is 

completed, and the product of photosynthesis (sucrose) is deposited in the internodes 

instead of being used to sustain growth (Barnes, 1974; Hogarth et al., 2000).   

 

Sucrose is accumulated in the older internodes first, that is, at the base of the stalk, as 

these will be the first internodes to reach maturation.   The accumulated sucrose can be 

mobilized to be used to support growth when environmental conditions are not conducive 

to photosynthesis.  As the stalk matures, more internodes accumulate sucrose and the 

overall sucrose level of the stalk increases (Hartt et al., 1963; Hatch and Glasziou, 1964; 

Inman-Bamber et al., 2002).   

 

Natural sugarcane ripening occurs under cool and dry conditions.  Stalk elongation is 

more sensitive to these conditions than photosynthesis, therefore under these conditions 

photosynthesis continues, but stalk elongation slows down (Hogarth et al., 2000).  The 

photosynthate that would have been used to facilitate growth is now directed to sucrose 

accumulation.  The result is an increase in the overall sucrose levels (Hogarth et al., 2000).  

Therefore, drought stress experienced during this phase results in a positive effect in the 

final sucrose yield (Barnes 1974; Hogarth et al., 2000; Inman-Bamber et al., 2002).   

However, sucrose yields only increase if drought stress reduces stalk biomass (tonnes cane 

per hectare - TCH) by less than 4% (Donaldson and Bezuidenhout, 2000). 

 

In South Africa, the sucrose content in cane is lowest in January – March and at its 

highest in September – October (Lonsdale and Gosnell, 1976; Sweet and Patel, 1985).  

Sugarcane under irrigation is “ripened”, in order to increase the final amount of sucrose of 

the crop (Barnes, 1974).  This is done by withholding water prior to harvest, also known as 

“drying off” (Inman-Bamber and De Jager, 1986; Hogarth et al., 2000; Inman-Bamber and 

Smith, 2005).  The application of chemical ripeners also effectively stimulates cane ripening 

(Barnes, 1974). The sugarcane milling season in South Africa starts from March and ends 

between October-December.   During these periods growers would like to increase sucrose 

content of the crop to improve milling efficiency.   Chemical ripeners allow the growers to 

effectively manipulate the sucrose content of their crop in a short period of time prior to 

harvesting. 

Stellenbosch University http://scholar.sun.ac.za



 

31 
 

4.2.4  Ratooning 

 

In South Africa, a sugarcane crop is normally harvested for the first time between 12 – 24 

months after planting, depending on the production area.  When the sugarcane is harvested 

there is still a portion of the stalk that is left underground, and it is this portion that gives 

rise to the subsequent crops known as ratoons (Barnes, 1974).  Germination of the 

underground portion of the stalk is inhibited while the stalk is growing because of apical 

dominance.    This occurs when the apical meristem produces a class of hormones, auxins, in 

each stalk which suppresses bud development.  When the stalk is harvested, the apical 

meristem is removed and the hormone is not produced hence germination can occur, given 

favourable temperatures and soil moisture content (Barnes, 1974; Hogarth et al., 2000). 

 

Ratooning is very similar to germination except that the primary root system is already 

present, however this quickly dies once the new growth progresses (Barnes, 1974). Hence 

the ratoon crop grows much faster than the plant crop.  Sugarcane can be repeatedly 

ratooned for up to 20 years, however stool damage incurred during harvesting and 

cultivation and/or pest and disease damage is cumulative, and therefore there is a yield 

decline with successive ratoons. Today, crops are generally ratooned for five to fifteen 

ratoons (Inman-Bamber, 1994). 

 

Drought stress, if severe, can have a major impact on the ratooning ability of a crop.  For 

example, the drought event in 2010/2011 season in South Africa caused major stool death in 

the coastal farms with poor soils (Singels et al., 2011).  This resulted in very poor ratooning 

and additional replanting that had to be done to replace damaged crops.   

 

4.3 The impact of drought stress on photosynthesis 

 

At the whole plant level drought stress generally leads to a decrease in photosynthesis 

and growth.  Water available to the plant for photosynthesis depends on the amount of 

water lost to the atmosphere and the amount of water that can be extracted from the soil.   

During transpiration energy (or potential) gradients are formed along the transpiration 
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pathway, allowing for water to flow from the soil, through the xylem to the leaves for 

photosynthesis.  The energy status of water in a plant is expressed as water potential (Ψ) 

(Rose, 1966).  In practical terms, water in the leaves is usually under tension during 

transpiration therefore the Ψ in the leaves is more negative than in the roots for example 

(Zingaretti et al., 2012).  The pressure required to balance the tension is a measure of the 

water potential of the leaf water.  The Ψ of a plant is a useful indicator of understanding the 

plant’s water status. 

 

Leaf water potential (LWP) decreases, that is, becomes more negative in the morning 

when transpiration is high.  It is increased, closer to zero, in the evenings when transpiration 

is low.  A reduction in the rate of photosynthesis occurs only when the LWP reaches below a 

certain level (Inman-Bamber and De Jager, 1986).  Hsiao (1973) showed that when a 

sugarcane plant is subjected to drought stress photosynthesis continues long after stalk 

extension and leaf extension is reduced.  In some drought tolerant varieties, when subjected 

to drought stress their leaves roll up (to reduce surface area) and/or their stomata close to 

help reduce the amount of water that is lost through transpiration (Yordanov et al., 2000). 

 

5.  Evaluating a crops yield response to drought stress 

 

Drought affects sugarcane both physiologically, biochemically and morphologically in a 

complex mechanism which may be further confounded by genotype x environment (G x E) 

interactions (Singh and Reddy, 1980; Silva et al., 2007).  One of the major limitations of 

breeding for varieties that are potentially drought tolerant is that there has not been a 

single trait identified as being directly related to drought tolerance (Silva et al., 2008), rather 

there is a great deal of interaction between traits  (Rizza et al., 2004; Smit et al., 2005).  

Another limitation is that there is a large degree of variability in varietal responses to 

drought (Moore and Maretzki, 1996; Inman-Bamber and Smith, 2005) for example, stalk 

diameter is affected not only by drought stress but also by variety type (Da Silva and Da 

Costa, 2004) and the rate of canopy development (Smit et al., 2005).  Sugarcane varieties 

can be classified according to their tolerance to drought stress.   A drought susceptible (S) 

variety would wilt and show reduced cane production early on during the drought event and 
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a tolerant (T) variety would remain turgid and maintain near-optimum growth for longer 

(Moore and Maretzki, 1996; Silva et al., 2007).   The need for researchers to create a 

quantifiable variable to describe the environment that a crop is exposed to has led to 

development of drought stress indices (DSI’s). 

 

5.1  The use of Drought Stress Indices (DSI’s)  

 

Researchers have used a drought stress index (DSI) to quantify the amount of drought 

stress experienced by a crop.  Bakumousky and Bakumousky (1972) calculated a DSI using 

the yield of the crop under different conditions, rainfed and irrigated.  The latter was meant 

to represent an unstressed condition. The DSI was calculated by expressing the rainfed crop 

yield as a function of the irrigated (unstressed) yield (equation 2.2a). 

 

Equation 2.2 (a):  DSI = 1-[(Yi-Yni)/Yi]  

 

Bouslama and Schapaugh (1984) calculated a similar type of index in evaluating the 

response of soyabean varieties to drought stress, called a yield stability index (YSI) (shown in 

equation 2.2b). 

 

Equation 2.2 (b):  YSI = Yni/Yi        

Where: 

Yi = the yield obtained under unstressed conditions (irrigated) 

Yni = the yield obtained under drought stressed conditions 

   

In a similar manner, Fischer and Maurer (1978) also calculated a stress susceptibility 

index (SSI) for measurement of yield stability in wheat cultivars by expressing the yield of a 

crop grown under stressed conditions as a function of the yield under unstressed (irrigated) 

conditions. 
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Equation 2.2 (c):  SSI = (Yi-Yni)/(YiD) 

Where: 

D (stress intensity) = 1-(HYni/Yi) 

HYni = mean yield of all cultivars in drought stressed trials 

 

Hossain et al., (1990) also estimated an index, tolerance, for wheat cultivars, which was 

calculated as the difference in yields between irrigated and rainfed conditions.   

 

Equation 2.2 (d):  Tolerance = Yi-Yni 

 

Fernandez (1992) proposed a stress tolerance index (STI), which was calculated for each 

mungbean genotype by multiplying the yield of a genotype grown under rainfed conditions 

by the yield of the genotype grown under irrigated conditions and dividing the multiplied 

value by the square of the average mean yield for all genotypes grown under irrigated 

conditions.  

 

Equation 2.2 (e):  STI = (Yi*Yni)/(Yi)
2   

 

In a study using alfalfa Idso et al., (1981) suggested using a “crop water stress index” 

(CWSI) derived from the increase in average canopy temperature in relation to that of a 

well-watered reference plot using infrared thermometry.   This index was also used in similar 

research done on wheat genotypes by Alderfasi and Nielsen (2001) and on broccoli by 

Erdem et al., (2010).   

 

Equation 2.2 (f):  CWSI= {[(Tc−Ta) −D2]/ [D1−D2]} ×10 

Where: 

Tc = average plant canopy temperature (°C) 

Ta = air temperature (°C) 

D2 = 0.41−1.5×mean atmospheric vapor pressure deficit  

D1 = is the maximum difference between Tc−Ta 
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Motzo et al., (2001) calculated a seasonal water stress index (SWSI) based on the soil-

plant-atmosphere interaction where stress was quantified as 1-(fraction of transpirable soil 

water) (FTSW).    

 

Equation 2.2 (g):  SWSI = 1-FTSW 

 

Rizza et al. (2004) proposed an integrated DSI based on the reduction of plant 

transpiration relative to the potential transpiration in barley genotypes.   

 

Equation 2.2 (h):  DSI (%) = (1-AET)/PET * 100 

Where: 

AET = actual evapotranspiration 

PET = potential evapotranspiration 

 

Voltas et al. (2005) calculated a DSI using the AWC and ET.  

 

Equation 2.2 (i):  1-(AWC/ET) 

 

Mohammadi et al. (2010) proposed that the YSI was a more useful index to discriminate 

between drought-tolerance and drought-sensitive wheat genotypes.   

 

5.2. Statistical methods to evaluate a crops response to drought stress 

 

Various statistical methods have been used to relate the yield of a crop to the amount of 

drought stress it was subjected to.  Motzo et al. (2001) and Muthuramu et al. (2011) used 

the Additive Main effects and Multiplicative Interaction (AMMI) analysis to evaluate spring 

triticale and rice yield responses to drought stressed and unstressed environments.  The 

AMMI model is a hybrid model involving both additive and multiplicative components of 

variance of a two way data structure. The AMMI model separates the additive variance from 

the multiplicative variance and then applies principal component analysis (PCA) to the 
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interaction portion to extract a new set of coordinate axes which explains the interaction 

pattern in more detail.  However, one of the limitations of AMMI is that it requires a 

balanced data set (Genstat, v14.1). Rizza et al. (2004) used regression analysis to evaluate 

the yield of different barley varieties over different drought stress levels.   The intercept and 

gradient (m1) of the regression line was seen as measure of a varieties yield potential and 

response to drought stress respectively.     In a similar manner, Richardson et al. 2009 used 

regression analysis to identify drought tolerant bluegrass varieties.   Voltas et al. (2004) used 

a combination of a Genotype main effect (G) plus G x E interaction (GGE) biplot analysis and 

factorial regression to evaluate wheat varietal yield response to eight different 

environments.  A DSI was calculated for each environment.  The advantage of the GGE biplot 

is that it allows visual evaluation of varietal suitability to different environments.  A 

disadvantage however, is that it requires a balanced data set (Genstat, v14.1).  Ndiso et al. 

(2007) and Girdthai et al., (2010)  used analysis of variance (ANOVA) with post hoc testing to 

evaluate maize and peanut varietal yield  response, respectively, to well-watered and 

drought stressed experimental conditions.  Nouri et al., (2011) calculated seven different 

types of drought tolerance indices, based on the yields of different wheat varieties 

subjected to both rainfed and irrigated conditions.   Using cluster analysis, the varieties were 

then classified according to their drought tolerance potential:  Tolerant, Intermediate or 

Susceptible. 

 

5.3. Canesim – crop forecasting model 

 

Crop growth modelling began in the 1960’s with the aim of increasing insight into crop 

growth processes by expressing existing knowledge into a series of mathematical equations 

(Bouman et al., 1996). Crop modelling is a widely used tool in agriculture, being used for 

research and management decisions. 

 

The need for a crop forecasting model, was highlighted by an in depth survey conducted 

for the growers and millers of the South African sugarcane industry (Bezuidenhout, 2001). 

Estimating the expected size of a sugarcane crop is essential to the industry for optimizing 

milling as well as sugar marketing.  The milling season in South Africa is from March to 
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December.  At the beginning of the season, an accurate forecast of the size of the crop 

expected to arrive at the mill is essential to ensure the profitability and efficiency of the mills 

(Bezuidenhout and Singels, 2007a).    

 

Canesim is a version of the CERES-MAIZE model (Jones and Kiniry, 1986) that has been 

modified to simulate the growth and yield of sugarcane over a wide range of climatic and 

soil conditions in South Africa (Inman-Bamber, 1991).  The Canesim model is a daily time 

step, point-based simulation model predominantly driven by water (Bezuidenhout and 

Singels, 2007b).  The model inputs include soil data (TAM and the amount of water available 

at the start of the crop), weather data (obtained from the weather stations situated 

throughout the industry), crop data (start date, harvest date, row spacing, plant/ratoon 

crop) and irrigation system (if the crop is irrigated).   The model accounts for partial canopy 

conditions and soil water content (SWC) using a single layer soil profile and yield is 

calculated as a function of transpiration.  The model can also simulate irrigated and rainfed 

crops.  For irrigated crops, the crop is “irrigated” when the SWC drops below 50% of the 

TAM.  This threshold was chosen to prevent drought stress (Singels et al., 2000).   

 

The weather data used in Canesim comes from a database that collects information from 

a network of 41 automatic weather stations (AWS) and 8 manual weather stations (MWS) 

(Singels, 2007).  These stations record daily rainfall, solar radiation, relative humidity, wind 

run, minimum and maximum temperature.   

 

Yield estimates of a crop are calculated by running Canesim model with actual weather 

data from the start date to the end date of the crop (Singels et al., 1999).  The yield 

estimates are often overestimated because the model does not take into account sub-

optimal management practices, pests and diseases (Bezuidenhout and Singels, 2007b).  

Yields of future crops are calculated by using recent weather data (up to the previous day) 

and data representing a likely future weather scenario (Singels et al., 1999).   

 

 The daily partitioning of assimilate between the roots and aerial parts is simulated as a 

non-linear function of total biomass.  Partitioning of the stalk dry matter is regulated by the 

sink capacity and the source to sink ratio.  The former is controlled by the current growing 
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conditions, current stalk mass and varietal characteristics.  The sucrose accumulation is 

based on a framework of sucrose distribution within stalks as it is affected by temperature 

and drought stress (Singels and Bezuidenhout, 2002). The model simulates the interception 

of radiation by the crop canopy as a direct function of thermal time (Singels and Donaldson, 

2000) 

 

Canesim can be used in many different ways:  1.) to assist with agronomic management 

decisions 2.) yield forecasts (using historical weather data patterns) 3.)  identifying factors 

that may cause yield decline (by estimating yield potential using different scenarios) (Singels 

et al., 1999). 

 

In a Canesim validation study, Bezuidenhout and Singels, (2007b) compared simulated 

versus actual yields for 22 years (1978-2002).  The actual yields for the industry as a whole 

and for each of the 15 mill areas were obtained from the South African Cane Growers 

Association.  If no weather data was available the nearest weather station was used.  One of 

the tools used to evaluate the model was estimation skill.  This is a measure of the quality of 

an estimate compared to that of a reference estimate, such as the long-term mean, 

persistence or random guessing (Murphy, 1993).  Bezuidenhout and Singels (2007b) showed 

that the skill for the industry (over the 22 years) was medium, 57.2%.  The model was also 

verified, at mill level, by Gers et al. (2001), who reported excellent agreement between 

simulated and observed regional yields (R2 = 0.87, p <0.001). 
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A pilot study to establish a method of quantifying drought stress in 

sugarcane 

C. Sewpersad 

South  African Sugarcane Research Institute (SASRI), Private Bag X02, Mount Edgecombe, 

4300, South Africa. 

Abstract 

In the rainfed sugarcane growing regions of South Africa periods of drought stress is a 

real risk for farmers, with the unpredictability of climate change further compounding this 

problem.   This study employed available historical data to identify sugarcane varieties that 

are classified, by observation, as intermediate (I, variety N12) and intermediate-susceptible 

(IS, N19 and NCO376) in their response to drought stress. The variety yields from 66 rainfed 

trials, in the coastal regions, were extracted from the South African Sugarcane Research 

Institute’s (SASRI’s) database, which stretches over 43 years.  Canesim, a crop simulating 

model, was used to generate crop performance data for each individual trial under 

simulated rainfed and irrigated conditions.  Validation of Canesim generated data was 

achieved by regressing the observed trial data on simulated Canesim yields.  This showed 

that the simulated data were very reliable (R2=0.85, p<0.001). The Canesim data and  the 

actual trial data were subsequently used to quantify drought stress by means of six different 

drought stress indices (DSI’s): percentage (%) drought stressed days (DSI1); weighted % 

drought stressed days (DSI2); average Canesim stress (DSI3); weighted average Canesim 

stress (DSI4); ratio of the observed trial yield over the irrigated Canesim yield (DSI5) and 

ratio of the rainfed Canesim yield over the irrigated Canesim yield (DSI6).  The weightings 

used were based on the timing of the drought stress event according to the crop’s 

development phase.  The varietal yields were regressed on each of the indices.    The most 

sensitive DSI was selected based on its ability to statistically distinguish between varietal 

yield performances in response to different degrees of drought stress, as quantified by the 

gradients of the regression lines.  DSI 6 was the only index that was able to satisfactorily 

distinguish between the I and IS sugarcane varieties (R2=0.75, p<0.001), and was selected for 
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use in subsequent screening of historic data sets available for breeding material and 

commercially available varieties in rainfed environments (chapter 4). 

Keywords:  drought stress index, growth phase, Canesim, regression 
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Introduction 

South Africa is host to the southernmost sugarcane industry in the world with 375 590 

hectares under commercial sugar cane production during the 2010/2011 season.  

Depending on the amount of rainfall received, sugarcane farms are either rainfed or 

irrigated.  In South Africa, 85% of the sugarcane industry is rainfed (SASA, 2010/2011, 

S.I.A.B. Planning and Development Surveys - IA/47/33, 2011).   The ideal climate for 

sugarcane farming is warm temperatures, sufficient rainfall and high solar radiation (Barnes, 

1974).   Due to the effects of climate change periods of drought stress are becoming more 

frequent and unpredictable, and this can be a major limiting factor to the growth of 

sugarcane in rainfed areas (Inman-Bamber and Smith, 2005; Bezuidenhout and Schulze, 

2006; Koonjah et al., 2006; Silva et al., 2008). Bezuidenhout and Schulze (2006) showed that 

the South African sugarcane industry was subject to prolonged periods of drought stress, 

commonly referred to as droughts, during 1983, 1992 and 2003, with the most recent 

drought event occurring in 2010. 

A sugarcane plant is defined as being drought stressed when it does not have access to 

sufficient water to sustain its growth and/or productivity (Alexander, 1973).  Sugarcane 

varieties differ in their response to periods of drought stress, with some being more tolerant 

than others.  A drought susceptible variety would wilt and show reduced cane production 

early on during the drought event, whereas a more tolerant variety would remain turgid and 

maintain near-optimum growth for longer (Moore, 1987; Silva et al., 2007). This makes 

variety choice an important part of a farmers risk management strategy, as the same crop 

will be in the ground for between five to fifteen years (Inman-Bamber, 1994). 

The impact of a period of drought stress on the final yield of a sugarcane crop is 

dependent on the crop’s growth phase, and the length of the drought stress event. 

Commercially sugarcane is a vegetatively propagated plant, and its growth can be divided 

into three phases: formative, grand growth, and a ripening phase (Ellis and Lankford, 1990; 

Tejera et al., 2007).  The formative phase (FP) involves germination, tillering, and the full 

development of the leaf canopy.  In the grand growth phase (GGP) the cane is growing at a 

very fast rate with a rapid stalk elongation rate (SER), leaf extension rate (LER), and biomass 
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accumulation rate (Hogarth and Allsopp, 2000).  During the ripening phase, the SER 

decreases, in part, due to environmental and/or management factors.  This leads to the 

accelerated deposition of sucrose in the internodes, and a consequent increase in the whole 

stalk juice purity (Barnes, 1974; Hogarth and Allsopp, 2000).  There is a debate in the 

literature about which phase is the critical water demanding period with respect to growth 

translating into final sugarcane yield.  Singh and Reddy (1980), Naidu and Venkataramana 

(1987) and Wagih et al. (2003), all reported that the FP was the most sensitive to drought 

stress.   However, Robertson et al. (1999) showed that when drought stress was imposed 

during the FP of a plant crop, the crop recovered rapidly when the drought stress was 

relieved.  This is supported by work done by Roberts et al. (1990), Ellis and Lankford (1990), 

and Inman-Bamber (1994).  Robertson et al. (1999) further showed that when cane was 

exposed to stress during the GGP, there was a significant reduction in the biomass and 

sucrose yield at final harvest.  The period of drought stress was of a shorter duration during 

the GGP compared to the FP, but the impact on final yield was markedly larger, showing that 

the GGP was the more sensitive to drought stress (Koehler et al., 1982; Domaingue, 1996; 

Ramesh and Mahadevaswamy, 2000; Inman-Bamber, 2004; Silva et al., 2007).  However, 

Wiedenfeld (2000) showed that the effect of drought stress on the final yield of a sugarcane 

crop was primarily dependent on the degree of drought stress experienced relative to the 

ET, rather than the growth phase during which the stress occurred.   

Drought affects crops physiologically, biochemically and morphologically in a complex 

mechanism which may be further confounded by genotype by environment (GxE) 

interactions (Singh and Reddy, 1980; Inman-Bamber et al., 2005; Silva et al., 2007).  One of 

the major limitations of breeding for sugarcane varieties that are potentially drought 

tolerant is that there has not been a single trait identified as being directly related to 

drought tolerance (Silva et al., 2008), rather there is a great deal of interaction between 

traits (Smit et al., 2006). 

The calculation of a drought stress index (DSI) has proven to be a popular method of 

quantifying the amount of stress experienced by a crop.  Some indices were calculated by 

comparing a crop’s yield response when subjected to drought in relation to well-watered 

experimental conditions (Bakumousky and Bakumousky, 1972; Bouslama and Schapaugh, 
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1984; Fischer and Maurer, 1978; Hossain et al., 1990; Fernandez, 1992).  In a slightly 

different approach, using alfalfa, Idso et al.  (1981) used a crop DSI derived from the 

increase in average canopy temperature in relation to that of a well-watered reference plot 

using infrared thermometry.  This index was also used in similar research done on wheat 

genotypes by Alderfasi and Nielsen (2001), and on broccoli by Erdem et al. (2010).  Inman-

Bamber and De Jager (1986), Khera and Sandhu (1986), Boroomand-Nasab et al.  (2005) and 

Lebourgeois et al.  (2010) all used the method proposed by Idso et al. (1981), to calculate a 

DSI for sugarcane.   

Motzo et al. (2001) calculated a DSI based on the soil-plant-atmosphere interaction 

where stress was quantified as 1-(fraction of transpirable soil water).  Rizza et al. (2004) 

proposed an integrated DSI based on the reduction of actual plant transpiration relative to 

the potential transpiration.  Mohammadi et al. (2010) proposed that using yield to calculate 

a DSI was a more useful index to discriminate between drought-tolerant and drought-

sensitive wheat genotypes. 

A crop growth simulation model (from now on referred to as crop model) is defined as a 

quantitative scheme for predicting the growth, development and yield of a crop, given a 

certain set of genetic features (genotype) and environmental variables (Monteith, 1996).  

Since the late 1960’s, crop models have typically been used in agriculture.  Crop models are 

used for many different purposes, one of which is as a decision based tool (Boote et al., 

1996, Todorovic et al., 2009).    With climate change being a more prominent factor in the 

current agricultural world, crop models have been used to assess the impact of changes in 

climate on the final yield of a crop (Parry et al., 2005; Rosenberg, 2010). 

A concern around crop models is the amount of error associated with the simulated final 

crop yield.  Palosuo et al. (2011) compared the performance of eight different crop 

simulation models, all of which predicted the yield of winter wheat.  These models required 

input information like daily weather data, soil data, variety type and crop management.  The 

study showed that there was a lot of variability in the different predictions, with three of the 

models overpredicting yield, three underestimating, and only two of the eight giving 

reasonable estimates.  This shows the uncertainties associated with model predictions – 
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which is mainly due to inaccurate input data, parameterization and model structure 

(Palosuo et al., 2000), the latter of which is the most difficult to quantify (Chatfield, 1995).   

Todorovic et al. (2009) compared three different sunflower growth simulation models 

under different irrigation regimes, as well as rainfed conditions, and they found that the 

models predicted the actual yield with the index of agreement ranging from 0.80-0.99 across 

the different models and environmental conditions.  The models did underestimate yields 

when the crop was severely drought stressed, but the estimated yields were not significantly 

different to the observed yields.   

Given the limitations of crop models Van Oijen and Ewert (1999) showed that there is a 

lot of variability associated with the observed crop yield itself due to sources of variation 

arising from crop characteristics, the environment and a high sampling error.  In addition, 

crop models generally do not take into account the effect of weeds, diseases or pests on the 

crop yield. 

More recently Ramburan et al. (2011) used Canesim to calculate three different DSI’s 

using the following Canesim predicted variables: a) evapotranspiration, b) simulated final 

yields, and c) actual yield and simulated yields.  Canesim is a sugarcane crop model that uses 

a sugarcane water balance crop model and an on-line weather database to simulate the 

crop’s day-to-day growth status (Singels, 2007).  The online weather database contains 

weather information for the past 80 years.  The information is retrieved from the 41 

automatic weather stations (AWS) and 8 manual weather stations (MWS) that are located 

on or near the different farms within each sugarcane growing region in South Africa.    These 

weather stations record daily rainfall, solar radiation, temperature, wind speed and air 

humidity and the data is downloaded onto the weather database.  The crop parameters are 

then calculated and the model output includes day-to-day values for the sugarcane crop’s 

yield and quality, the crop and soil water status and canopy cover (Bezuidenhout and 

Singels, 2002; Singels, 2007, Singels et al., 2011).  The model has an irrigation function, 

which if selected, allows for the simulation of a trial an irrigated (drought unstressed) trial.  

If unselected the trial is simulated as a rainfed (susceptible to drought stress) trial.     
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 The accuracy of Canesim has been investigated and validated by Singels et al. (1999), 

Singels and Donaldson (2000), Gers et al. (2001) and Singels and Bezuidenhout (2002), 

revealing that the percentage variation in the observed yields accounted for by the Canesim 

predicted yields (R2) was on average greater than 80%, with no significant difference 

between the observed and predicted mean yields.   

The South African Sugarcane Research Institute (SASRI) was established in 1925 and has 

the main organizational goal of produciing new improved hybrid sugarcane varieties for the 

different agroclimatic zones (irrigated, coastal short cycle, coastal long cycle, coastal 

hinterland, midlands) of the sugar industry (Parfitt, 2005).  The plant breeding programme 

conducts varietal evaluation trials within each agroclimatic zone and the trial information is 

stored in an Oracle database which contains 43 years’ (1968-2011) worth of trial and variety 

data (SASRI Oracle Database (10gR2), 2011). 

The aim of this pilot study was to make use of the available historical varietal information 

in the SASRI Oracle database and Canesim to establish a valid methodology for calculating a 

DSI to accurately quantify the amount of drought stress experienced by sugarcane.  The 

objectives of this study were therefore to: 

- Calculate DSI’s using different definitions; 

- Use varieties, with observed drought tolerance, to evaluate the suitability of the 

different DSI’s; 

- Identify the DSI that best describes the amount of drought stress experienced by a 

sugarcane crop. 
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Materials and Methods 

 

Variety and trial selection 

 

Varieties were selected based on three criteria, the varieties had to: a.) be a current 

commercially planted variety in the rainfed coastal regions; b.) have sufficient historical data 

available in the SASRI Oracle database (n>12) and c.)  have an observed yield response to 

drought stress.  Even though anecdotal evidence should never be accepted at face value, 

this is the only information SASRI has available that reveals varietal yield performance when 

exposed to drought stress.  Following the application of these three criteria the following 

three varieties were identified: N12 (intermediate (I) response to drought stressed 

conditions), N19 (intermediate-susceptible response to drought stressed conditions (IS)), 

and NCO376 (IS) (Table 3.1).   

Early work by Inman-Bamber (1982) showed that when N12 was subjected to different 

levels of drought stress (mild, moderate, severe) it was able to survive these conditions 

relatively well and recover quickly when the conditions were alleviated.  This is supported by 

observations recorded by SASRI (2006b).  Mcintyre and Nuss (1996) showed that N19 

responds to drought stress in an IS manner.  N19 responded relatively well to drought stress 

if the conditions were not prolonged and if the soils were of moderate depth.  However, if 

the soils are shallow and clay %< 20% then N19 has a very marked negative yield response 

to drought stress (SASRI, 2006d).  Similarly, NCO376 has been observed to also have an IS 

response to drought stress (SASRI, 2006a).   

Table 3.1:  Details of the number of coastal trial data available for N12, N19, and NCO376. 

Variety Year of Release 
Observed 
Rating 

No. of  
Trials 

N12 1979 I 38 

N19 1986 IS 28 

NCO376 1955 IS 57 

(Source:  SASRI Oracle Database (10gR2).  Date Accessed:  14 June 2011.) 
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The selection criteria for the coastal farms were selected based on:  a.) presence of a 

weather station on the farm; b.) availability of field soil information and c.) trials that 

contained N12/N19/NCO376.    Based on these criteria four coastal trial sites Empangeni, 

Gingindlovu, Kearsney and Mount Edgecombe were selected (Figure 3.1).   

 

Figure 3.1:  Location, within the South African sugar industry, of the four coastal trials 

selected for this study (GIS department, SASRI, 2011). 

 

Only trials that had information on the ERD and clay% of the fields were considered for 

this study.  Table 3.2 shows the number of trials, for different harvest years (1987-2011), 

within each of the four farm locations that were selected for this study.   
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Table 3.2:  The number of trials selected from each farm location from 1987-2011.    The 
green, blue and red numbers represent trials that contain 1, 2 or 3 of varieties of interest 

respectively. 

 Mount 
Edgecombe 

Kearsney Empangeni Gingindlovu 

GPS 
Coordinates 

Latitude 

(degrees) 
Longitude 

(degrees) 
Latitude 

(degrees) 
Longitude 

(degrees) 
Latitude 

(degrees) 
Longitude 

(degrees) 
Latitude 

(degrees) 

Longitude 

(degrees) 

29.70 31.03 29.28 31.27 28.80 31.92 29.03 31.60 

%Clay 43.8 23.6 53.2 27.7 

1987 1    
1988 3    
1989 4, 1    
1990 4, 1    
1991 2, 1    
1992 3    
1993 3    
1994 3    
1995 1    
1996     
1997 1    
1998 3    
1999 3    
2000 2    
2001  4   
2002  4  2 
2003  2  2 
2004  1   
2005    2 
2006     
2007    1 
2008    3 
2009   1 2 
2010   1,1 1 
2011   1 2 

(Source:  Oracle Database (10gR2). Date Accessed:  14 June 2011.) 

When SASRI variety trials are harvested several parameters are measured whilst others 

are calculated (from the measured parameters).  For example, percentage sucrose and the 

weight of sugarcane (kg) are measured parameters while tonnes sucrose per hectare (TSH) 

and tonnes cane per hectare (TCH) are the calculated parameters.  All parameters, 

measured and calculated, are uploaded into the SASRI Oracle database.  For the evaluation 
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of varietal performance under drought stressed conditions the calculated yield parameter 

TCH was used. 

Drought stress index (DSI) Methodologies 

For the purposes of this study, drought stress is defined as the soil water content (SWC) 

below which a crop does not grow/yield at its full potential (as it would in an unstressed 

state).  Canesim was used to estimate the yield potential of a crop in an unstressed state. 

Running the Canesim model 

The Canesim model required certain basic field input data for each trial, including the 

initial soil water content (ISWC), soil drainage rate, total available moisture (TAM) and cane 

row spacing.  The ISWC is the amount of water in a soil at the time of planting/ratooning the 

crop.  The ISWC of the crop could not be accurately measured as all the trials evaluated 

were historical trials, therefore the ISWC of the plant crop of a trial was assumed to be 50% 

TAM of the field (Thompson, 1976).  For each of the subsequent ratoon crops, the final SWC 

of the previous crop was used as the ISWC for the current crop.  TAM was estimated using 

the clay% and the effective rooting depth (ERD) of the soil (Van Antwerpen et al., 1994).  

The soil drainage rate was classified as being slow, medium or fast dependent on the clay%.  

The cane row spacing for all coastal trials was 1.2m.  For each model run, the crop planting 

date and harvest date were also required. 

The Canesim model was run twice (rainfed and irrigated) for each crop of every trial, 

where the irrigated run represented the full yield potential of an unstressed crop.  The 

irrigated runs for each crop required irrigation information which included the type of 

irrigation, the irrigation cycle, the soil depletion level (the SWC at which irrigation would 

have to start) and the amount of water supplied during each irrigation event.  Overhead 

irrigation on a minimum irrigation cycle was used as a standard for all trials.  The depletion 

level was set at 70% TAM, that is, the model provided the crop with water (via irrigation) 

when the SWC dropped below 70% of TAM.   A crop is said to experience drought stress 

when the SWC drops below 50% of the TAM (Thompson, 1976), therefore by setting the 

depletion level to 70% TAM ensured that the simulated crop would never experience any 
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drought stress.  The amount (mm) of water supplied at each irrigation event was the 

difference between TAM and 70%TAM.   

Estimation of Canesim input variables  

The plant crop of a trial planted at Empangeni, TV0105, is shown as an example to 

illustrate some of the Canesim input and output variables.  This crop was planted on 12 

March 2005 and harvested on 12 May 2006.  The variables TAM, ISWC, irrigation depletion 

level and the irrigation refill level had to be estimated for each trial.  To estimate TAM, the 

available water content (AWC) of the soil had to first be calculated.  This was done by 

estimating the field capacity (FC) and permanent wilting point (PWP) of the soil (equation 

3.1 and equation 3.2), both of which are dependent on clay% (Van Antwerpen et al., 1994).  

The FC (%) and PWP (%) were calculated as follows: 

Equation 3.1:  Y (%) =  
         

       
 

Where Y% = the soil limits (either FC or PWP)%; a = 54.7, for FC and 91.9 for PWP 
estimation; and b = 24.5, for FC and 135.3 for PWP estimation. 

Using the estimated FC and PWP, the AWC (per meter depth of soil) was calculated as 
follows: 

Equation 3.2:  AWC (mm/m) = (FC% – PWP%) * 
        

    
 

The clay% of the field that TV0105 was planted on was 45.6%.  Using equation 3.1 the FC 

and PWC were estimated to be 35.6% and 23.2% respectively.  The AWC was calculated to 

be 124.2mm/m (equation 3.2).   

The ERD of the field for TV0105 was estimated to be 2.0m.  This was estimated by SASRI’s 

standard practice.  A soil auger was used to dig soil pits at each soil sampling point.  The 

auger has the capacity to dig into 20cm of soil at a time.  Each soil pit was sampled to a 

depth of 2.0m.  The depth was only less than 2.0m in cases where the soil profile would not 

let the auger through, either due to very high clay content or a rocky profile.   

The TAM of the field was then estimated using the average ERD and AWC of the field 

(equation 3.3) as 248.4 mm. 
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Equation 3.3:  TAM (mm) = AWC (mm/m) x ERD (m) 

The ISWC, of the plant crop of a trial, assumed to be 50% of the TAM, the ISWC was 

124.2mm.  This was the ISWC used for the plant crop of this trial, for both the rainfed 

Canesim runs and the irrigated Canesim runs.   The final SWC of the Canesim run was used 

as the ISWC for the subsequent crops simulation.  The parameter TAM was kept constant 

across all crops for a trial.    

  Figure 3.2(a) shows how the simulated SWC (blue shaded area) varied according to the 

amount of daily rainfall received (red bars).  For example, on day 344, there was a rainfall 

event of 123.4mm, and this resulted in a sharp increase in the SWC, which was very low at 

that time.  The drought stress point (green line) was 50% TAM.  Figure 3.2 (a) shows that the 

SWC was below this stress point for most days highlighting that the crop experienced 

drought stress for most of its life.    

For the irrigated Canesim simulations the depletion level of the soil, the SWC at which 

irrigation occurred, had to be estimated.  The depletion level, for the plant crop of TV0105, 

was calculated (equation 3.4) as 173.9mm. The refill level, maximum SWC to which the crop 

should be irrigated, was equal to the TAM 248.4mm. 

 
Equation 3.4:  Depletion Level (mm) = 70% * (TAM) 

The amount of water to be applied during an irrigation event was the difference between 

the TAM and the Depletion level and was calculated as 74.5mm using the following 

equation: 

Equation 3.5:  Fixed Amount (mm) = Refill Level – Depletion Level 

Therefore for the irrigated runs of trial TV0105, the Canesim model would irrigate the 

crop, with 75.5mm, as soon as the SWC dropped below 173.9mm. Figure 3.2 (b) shows the 

SWC (blue shaded area) of the irrigated run of the plant crop of trial TV0105.  The depletion 

level is represented by a red line on the graph and the drought stress point by a green line.  

Whenever the SWC reached the depletion level, the crop was irrigated.  The SWC of the 

irrigated crop never dropped below the drought stress point, so the irrigated run of this crop 

represented an unstressed crop. 
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Figure 3.2:  The soil water content (SWC) and daily rainfall received, from the Canesim 
output, of the plant crop of trial TV0105 for the two simulations (a) rainfed and (b) irrigated. 
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(b) Irrigated 
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Calculation of the six DSI’s 

Canesim output parameters were used to calculate DSI’s according to six different 

definitions.   

DSI1:  Percentage (%) Drought Stressed Days 

Drought stress can simplistically be viewed as the number of days where the TAM of the 

soil is less than 50%, that is, the number of days that the plant does not have sufficient 

water for optimum growth.  If the number of stressed days is expressed as a percentage of 

the crop age, an index “Percentage drought stressed days” can be calculated as follows: 

Equation 3.6:                        
                     

                   
*100 

The plant crop of TV0105 was planted on 14 March 2005 and harvested on 12 May 2006; 

therefore the crop age at harvest was 424 days.  The number of days where the SWC was 

below 50% of TAM, less than 124.2mm, was estimated by examining the daily crop SWC of 

the Canesim output.  The SWC was below 50% of TAM for a total of 386 days.  The 

percentage drought stressed days was calculated as follows 91%. This implies that for the 

424 days of the plant crop of TV0105, the crop was drought stressed for 91% of its life, 

during which optimal growth rates were not possible (Figure 3.2a). 

DSI2:  Weighted % Drought stressed Days 

The objective of this index was to incorporate the relationship between the timing of 

drought stress, that is, which growth phase the drought stress event/s predominantly occur 

in and the consequent effect on final cane yield.   

Temperature is the main environmental driver of the rate of sugarcane development and 

in this study temperature effects was measured in terms of thermal time (TT) (Doorenbos 

and Kassam, 1986).  TT, measured in degree days (°Cd), is the summation of cumulative 

differences between daily mean temperatures and a crop specified base temperature 

(equation 3.7). The base temperature is defined as the temperature below which there is no 
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growth/development and is estimated to be 10°C for sugarcane (Inman-Bamber, 1994).  

Thermal time was calculated as follows: 

Equation 3.7:  TT (°Cd) = ∑
             

 

 
     - Tbase 

 

Where n = total number of crop days and Tbase = 10°C (Inman-Bamber, 1994). 

Singels and Donaldson (2000) showed that stalk elongation in sugarcane starts after 

1050°Cd.  A TT of 1050°Cd was taken to mark the end of FP and beginning of GGP.  The start 

of the ripening phase is dependent on temperature and a farmer’s management practice; 

therefore there was no unbiased way of separating the GGP and the ripening phase in 

historical trials.  The presence of drought stress in both the GGP and the ripening phase will 

lead to a decrease in the final cane yield (TCH).  Therefore, for the purposes of this study, 

these two phases were combined.  The crop was thus divided into two phases, a FP (FP) and 

a grand growth and ripening phase (GGRP).   

Based on research on the impact (on final crop yield) of drought stress during the 

different growth phases, a weighting factor was allocated to each of the two phases, namely 

a weight of 0.3 and 0.7 to the FP and GGRP respectively. The weighted percentage drought 

stressed days index was calculated by calculating the percentage of stressed days (equation 

3.6) within each of the two phases.  Each calculated percentage was then multiplied by the 

phase specific weighting factor and the two values were added.   

The weighted DSI was calculated as follows:  

Equation 3.8:  

                                                                

                           

Table 3.3 shows the summary of the information used for the calculation of DSI2 for the 

plant crop of TV0105.  The information includes the total number of days that the crop was 

in each growth phase, the number of drought stressed days within each phase and the 

calculated percentage drought stressed days (equation 3.6) within each growth phase. 
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Table 3.3:  Summary of the information of the plant crop of the trial TV0105 used for the 
calculation of DSI2. 

 Growth 
Phase Group 

Length of Growth 
Phase (days) 

Number of Stressed 
Days(<50%TAM) in growth phase 

% 
Stressed 

Days 

FP 200 166 83% 
GGRP 224 220 98% 

Table 3.3 shows that there was more stress experienced during the GGRP, leading to a 

consequently more heavily weighted DSI compared to DSI1.  For the plant crop of TV0105 

the negative impact of drought stress on the optimal TCH potential occurred for 93.7% of 

the crop’s life span. 

DSI3: Average Canesim Stress  

Part of the Canesim daily output was a variable called ’Stress’.  This simulated variable 

was based on the SWC, and it gave an indication of the extent of the drought stress, when 

present.  Canesim stress was calculated by expressing the daily SWC content as a percentage 

of 50% TAM level of the soil (Raes et al., 2009).  The range of the variable was between 0 

and 100.  If the SWC was greater than 50% TAM then the value of the stress variable was 

always 100, regardless of how much greater than 50% TAM the SWC was.  However, if the 

SWC dropped to below 50% TAM then the stress variable was calculated as a proportion of 

50% TAM level.  The lower the SWC dropped, below 50% TAM, the closer to 0 the stress 

variable would approach. Figure 3.3 shows the daily Canesim output, stress (blue line) and 

SWC (red line) of plant crop of TV0105.  The 50% of TAM crop drought stress point is also 

displayed (green dotted line). 
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Figure 3.3:  The daily values of Canesim variable stress, the SWC and the 50%TAM level for 

the plant crop of the trial TV0105. 

DSI3 was calculated, using equation 3.9, where the daily Canesim stress values were 

averaged over the crop age as follows: 

Equation 3.9:                          
            

              
 

Where xi = the Canesim simulated stress experienced on the ithday of the crop.  

DSI3 of the plant crop TV0105 was calculated to be 44.2.  This was an average estimate of 

the amount of drought stress experienced over the duration of the crop.  The stress variable 

ranged from 100, where there was no drought stress to 5.8, where the soil had almost no 

soil water available.  A value of 100 means that the SWC was at 50% TAM or above, 

therefore a value of 50 would mean that the average SWC was only 25% of the TAM.  By this 

token, an average value of 44.2 indicates that the plant crop of TV0105 was severely 

stressed for most of its life, having on average less than 25% TAM as a SWC.   

This index differed from DSI1 in that it took into account the extent to which the SWC 

dropped below the drought stress point. 
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DSI4:  Weighted Average Canesim Stress 

A weighted average Canesim stress index was calculated as follows: 

Equation 3.10:  

                                                                      

                              

Table 3.4 shows the information used in the calculation of DSI4 for the plant crop of 

TV0105.  The information included the total number of days that the crop was in each 

growth phase and the average Canesim stress experienced within each phase. 

Table 3.4:  Summary of the information of the plant crop of the trial TV0105 used for the 
calculation of DSI4. 

Growth Phase  Length of Growth Phase 

(days) 

Average Canesim Stress 

Level  

FP 200 52.47 

GGRP 224 36.71 

The weighted average Canesim stress index was calculated to be 41.4. This value 

indicates that the SWC for this trial was on average approximately 20.7% of TAM, that is, the 

crop was severely stressed for most of its life.  Most of the stress occurred during GGRP 

(Table 3.4); therefore the calculated stress value was lower than that for DSI3. 

DSI5:  Stress Ratio I (observed yield: simulated irrigated yield) 

The first stress ratio was calculated by expressing the observed trial yield as a fraction of 

the final Canesim irrigated yield.  If the ratio was equal to 1.0, this would imply that the crop 

being evaluated experienced no drought stress at all because the simulated yield of the 

rainfed crop was the same as the yield of the unstressed irrigated crop.  If, for example, the 

ratio equalled 0.5, this would indicate that the rainfed crop was stressed such that it only 

achieved half its potential yield.   
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The stress ratio was calculated as follows: 

Equation 3.11:                
                    

                            
 

 

For the plant crop of TV0105 stress ratio I was 0.43, indicating that the crop only achieved 

43% of its optimal yield potential. 

DSI6:  Stress Ratio II (simulated rainfed yield: simulated irrigated yield) 

A second stress ratio was calculated by expressing the final Canesim yield of the rainfed 

crop as a fraction of the final Canesim yield of the irrigated crop.  As with DSI 5, if the ratio 

was equal to 1.0, this would imply that the crop being evaluated experienced no drought 

stress at all because the simulated yield of the rainfed crop was the same as the yield of the 

unstressed irrigated crop.   The stress ratio was calculated as follows: 

Equation 3.12:                 
                          

                            
  

 

For the plant crop of TV0105 stress ratio II was calculated as 0.33, indicating that the 

rainfed crop would have only achieved 33% of its full potential yield.  

Doorenbos and Kassam (1986) showed that temperature is one of the main drivers of 

crop growth, with the other main driver being rainfall (Bezuidenhout and Schulze, 2006).  

The advantage of DSI6 was that by using the rainfed and irrigated Canesim yields in the 

simulation, the effects of both temperature and rainfall were accounted for.  In addition, the 

errors associated with the final yields, both rainfed and irrigated, were the same as both 

were generated using Canesim. This was not the case with DSI5.   

Statistical Analysis 

Genstat v.14.1 (VSN Intl. Ltd, 2011) was used for all data analyses.  Prior to any analyses, 

the data were first tested for normality and homoscedasticity using the Shapiro-Wilk and 

Levene’s tests respectively.  All significance testing were done at the 0.05 level.  

Transformations were applied as necessary.  For graphical representation of data that had to 
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be transformed prior to analysis, the raw data was presented for ease of interpretation. The 

letters from the post hoc Holm-Sidak tests were added to the graph. 

The yields were first annualized to account for the variation due to the differences in crop 

age among all the crops used in this study, with crop ages varying between 346 - 593 days 

(equation 3.13).  Canesim model validation was done by regressing the annualized observed 

trial mean, which is the average cane yield of all the varieties planted within a trial, on the 

annualized simulated (rainfed) yields.   

Equation 3.13:  Annualized Yield (TCH) = 
   

               
 * Actual Yield (TCH) 

To validate the observed varietal yield performances of N12, N19 and NCO376, when 

subjected to different levels of drought stress, the performance was evaluated across 

different rainfall classes.  The annual rainfall for the lifespan of each weather station was 

downloaded from the SASRI weather web (http://portal.sasa.org.za, 2011).  This was done 

for each of the four weather stations used in the study.  The annual rainfall data from each 

station was sorted from lowest to highest.  All the years in the lower third group were 

classified as ‘Below Average’, the middle group was classified as ‘Average’, and the upper 

third as ‘Above Average’.  For each weather station the range of rainfall received within each 

of the three classes was noted.  The rainfall for each trial was annualized (equation 3.14) and 

was classified into one of the three rainfall classes. A residual maximum likelihood (REML) 

analysis was performed, to establish if there was a significant interaction between variety 

and rainfall class (y-variate=annualized variety yield; fixed effects=rainfall class*variety; 

random effects=trial location.  This was followed by the post hoc multiple comparison Holm-

Sidak test. 

Equation 3.14:  Annualized Rainfall (mm) = 
   

               
 * Actual Rainfall (mm) 

To examine the relationship between the unweighted and weighted DSI’s a Pearson’s 

correlation matrix was produced.   

To investigate how well the DSI’s differentiated between the yield performances of the 

three varieties, the annualized yield of each variety was regressed on each of the 6 DSI’s.  As 
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stated previously, N12 has an observed intermediate (I) yield response to drought stress 

where as N19 and NCO376 both have an observed intermediate-susceptible (IS) yield 

response to drought stress.  The ability of a DSI to detect the fine difference between the I 

and IS yield performance of the three varieties would be indicative of its sensitivity for 

accurately quantifying the level of drought stress experienced.  To evaluate the yield 

response of a variety to changing levels in drought stress, as quantified by the DSI’s, the 

gradients (m1) of the regression lines were statistically compared (Rizza et al., 2004).  

A general linear regression model was used to compare the gradients of the different 

varieties.  The regression analysis was run twice.  The first regression model included N12 as 

the reference variety, allowing comparisons (of regression parameter estimates) of N12 with 

N19 and NCO376.   

Genstat Regression Model 1: 

MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] Annualized Variety Yield 

TERMS[FACT=9]Variety*Variety.DSI+Trial Type + FarmLocation + TrialMean + Crop + Harvest 

Year + Harvest Season 

FIT[PRINT=model,summary,estimates;CONSTANT=estimate;FPROB=yes;TPROB=yes; FACT=9] 

Variety*Variety.DSI+FarmLocation +TrialMean + Crop + HarvestYear + HarvestSeason. 

 

Using the results of the Student’s t-tests, the m1’s of N19 and NCO376 were evaluated.  If 

the m1’s were significantly higher than N12 were classified as being potentially IS varieties, 

respectively.  If the m1 was not significantly different to N12 the variety would be classified 

as being a potentially I variety.   

The second regression model allowed the separate estimation of regression parameters 

of individual varieties.   
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Genstat Regression Model 2: 

MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] Annualized Variety Yield 

TERMS[FACT=9;FULL=yes]Variety*Variety.DSI+FarmLocation+TrialMean+Crop+Harvest 

Year+HarvestSeason 

FIT [PRINT=model,summary,estimates; CONSTANT=omit; FPROB=yes;TPROB=yes;FACT=9] 

 Variety+Variety.DSI+FarmLocation+TrialMean+ Crop + HarvestYear + HarvestSeason. 

To validate the chosen DSI, a Student’s t-test was used to determine if there was a 

statistical significant difference between each of the calculated DSIs among the three 

different rainfall classes (below average, average, above average). 

Results 

Canesim Data Validation  

The plot of the annualized actual trial yield mean versus the simulated annualized rainfed 

trial yield mean revealed a few outliers, that is, data points that are distinctly different to 

the expected average.  Further investigation showed that these outliers were due to 

technical problems with the weather station at the Kearsney farm.  This was a result of 

inaccurate capturing of weather data during 2001-2002, therefore any simulations done 

during this period were very unreliable. There were 6 outliers subsequently removed from 

the data set, leaving a total of 60 trials to be analysed.  The Shapiro-Wilk test was not 

significant.  Figure 3.4 shows the regression of the observed trial yield mean on the 

simulated rainfed trial yield mean, excluding the outliers.  The Canesim yield accounted for 

85% of variation in the observed yields (p<0.001).  
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Figure 3.4:  Regression of the observed trial yield means versus Canesim rainfed yields. 
 

Validation of observed varietal yield performance to drought stress  

The Shapiro-Wilk’s test showed that the data was normally distributed.  However, the 

Levene’s test showed that the variances of the three varieties were heteroscedastic.  The 

data was log (base 10) transformed.  For ease of interpretation, the raw data was presented 

in Figure 3.5. 

REML analysis showed that there was a significant interaction between rainfall class and 

variety (F4,109=4.58, p=0.002).  Both N19 and NCO376 produced significantly lower observed 

yields across each of the rainfall classes (Figure 3.5).  For N12, there was only a significant 

difference between the above average class and the average class (Figure 3.5).  This 

highlighted that there was less of an effect of rainfall on cane yield for the I variety 

compared with the two IS varieties.   
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Figure 3.5:  The observed yield performance of varieties N12, N19 and NCO376 across the 

three rainfall classes.  The error bar represents the standard error.  Classes that do not share 

the same letters are significantly different to each other (p<0.05). 

 

Note:  Holm-Sidak (p<0.05) tests were done separately for the different rainfall classes within each 
variety.   

 

Evaluating the DSI’s 

Figure 3.6 shows the interrelationships between the different indices where the 

Pearson’s correlation coefficients (r) have quantified the nature and strength of each 

relationship.  There were both negative (shown as blue in Figure 3.6) and positive (shown as 

red in Figure 3.6) r’s due to the different types of data used for each of the DSI calculations.  

For example, DSI1 (and DSI2) range from 0-100% where a value of 100% represents a 

completely stressed environment (the crop was stressed for every day of its life) whereas a 

value of 0 represents a completely unstressed crop.  DSI3 (and DSI4) were calculated using 

the Canesim stress variable.  As discussed earlier, this variable ranged from 0-100 however, 

a calculated index value closer to 0 indicates a highly stressed crop and a value of 100 

represents a crop that was completely unstressed.   
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Figure 3.6:  A Pearson’s correlation matrix graph of the 6 DSI’s. 

The r’s were all significant (p<0.001) and ranged from 0.56-0.90 (Figure 3.6).  The 

unweighted and respective weighted indices (DSI1/2 & DSI3/4) were the most strongly 

positively correlated (p<0.001) with r=0.89 and r=0.90 respectively, as shown by the red 

blocks in Figure 3.6.     

After removal of the six outliers, there were 35 data points for N12, 28 for N19 and 58 for 

NCO376.  Figure 3.7 shows the regression of the annualized observed yields of the three 

varieties on each of the six DSI’s.  The Shapiro-Wilk and Levene tests were not significant.  

Regression lines were fitted separately for each variety (Genstat Regression Model 2) and 

the gradients of the each line were tested for differences (Genstat Regression Model 1).  The 

variables (TrialMean, Crop, Harvest Year, Harvest Season) and factor (Farm Location) did not 

account for significant variation so was not included in the final regression models. 
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Figure 3.7:  Regression lines of the annualised observed cane yield of N12, N19 and NCO376 
on each of the 6 DSI’s. 
 

 

(a) %Water Stressed Days (DSI1) 
 

 

(b) Weighted %Water Stressed Days (DSI2) 
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(c) Average Canesim Stress (DSI3) 

 

(d) Weighted average Canesim Stress (DSI4) 
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(e) Stress Ratio I (Actual: Simulated Irrigated) (DSI5) 

 

(f) Stress Ratio II (Simulated Rainfed:Simulated Irrigated) (DSI6) 
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Figure 3.7 (a) showed that the gradients (m1) of N12, N19 and NCO376 regression lines 

were all negative.  This indicated that as the level of drought stress increased there was a 

consequent decrease in the observed varietal yield.  The gradients of N19 and NCO376 were 

very similar (m1=-1.02 and -0.96 respectively) and larger than that of N12 (m1=-0.73), 

indicating that the yield response of N19 and NCO376 to changes in drought stress similar to 

each other with each variety losing 1.02TCH and 0.96TCH per 1% increase in stress levels as 

quantified by DSI1.  However, N12 seemed to have a more moderate response to drought 

stress, compared to N19 and NCO376, losing 0.73TCH per 1% increase in stress levels as 

quantified by DSI1.  The regression analysis, using N12 as the reference level (Genstat 

regression model 1), could not detect any significant differences between the gradients of 

N12 compared to N19 or NCO376.  Similar results were found with DSI2 (Figure 3.7b).   

DSI3 displayed similar results to DSI1 and DSI2 (Figure 3.7c), with N19 and NCO376 having 

a similar observed yield response to stress whereas N12 was less responsive.  However, with 

DSI3 there was a smaller amount of unexplained error (R2=0.66) compared with that of DSI1 

(R2=0.56) and DSI2 (R2=0.50).  The Student’s t-tests from the first regression analysis showed 

that there was a significant difference between the gradients of N12 (m1=0.77) and N19 

(m1=1.80).  However, no significant difference could be detected between the gradients of 

N12 and NCO376 (m1=1.28).  Even though Annualized Yield vs. DSI4 regression had a slightly 

lower R2 (R2=0.60) compared to DSI3, the same results were achieved (m1: N12=0.45, 

N19=1.46, NCO376=0.75) (Figure 3.6d).   

DSI5, accounted for 57.3% of the variation in observed varietal yield performance.  

However, the index was unable to detect significant differences between the gradients of 

N12 (m1=70.36) compared to N19 (m1=80.21) or N12 compared to NCO376 (m1=83.34) 

(Figure 3.6e) 

DSI6 accounted for the most variation (in yield performance) compared to the other five 

DSI’s (R2=0.75) and was also able to detect significant difference between the gradients of 

N12 (m1=66.70) and N19 (m1=115.86) as well as between N12 and NCO376 (m1=108.25). 
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Validation of the chosen DSI 

DSI6 was the only DSI that was able to make the distinction between the I variety (N12) 

and both the IS varieties (N19 and NCO376) and it accounted for the most amount of 

variation in varietal yield performance.  Figure 3.8 shows the average DSI6 for each rainfall 

class.  The Shapiro-Wilk’s test showed that the data was normally distributed.  The Levene’s 

test showed that the variances across the three rainfall classes were stable. Figure 3.8 shows 

that as the amount of rainfall decreases, the more severe (lower) are the calculated DSI 

values.  The Student’s t-test showed that the calculated index values for the above average 

rainfall class was significantly higher compared with the average rainfall class (p<0.001) and 

the below average rainfall class (p<0.001).  In addition, the calculated index values within 

the average rainfall class was significantly higher compared with the below average class 

(p=0.02). 

 

Figure 3.8: Average DSI6 for each of the rainfall classes.  The bars represent the standard 

error. Classes that do not share the same letters are significantly different to each other 

(p<0.05). 
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Discussion 

Validation of the Canesim model highlighted six data points that were considered to be 

outliers.  Further investigation into the data for each of these points revealed erroneous 

Canesim final yield predictions due to large amounts of missing weather data, within the 

weather database, during the 2001-2002 period, at the Kearsney farm.  Some of the reasons 

for missing weather data include theft and technical problems with instrumentation which 

cause parameters to be incorrect or missing and manual records (for an entire month) going 

missing during mailing (Bezuidenhout and Singels, 2007).  When weather data are missing, 

Canesim uses a data patching algorithm to fill in missing data. However, zero values are 

substituted for rainfall (Singels et al.,  1999).  De Lange and Singels (2003) showed that this 

could lead to serious discrepancies in Canesim yield predictions, especially if the weather 

station is out of order during a period of significant rainfall.  Once these outliers were 

removed the validity of the data simulations were excellent (R2=0.85, p<0.001).  When Gers 

et al. (2001) validated the Canesim model they obtained similar results (R2=0.87, p<0.001).    

Therefore it was assumed that the trimmed Canesim data could be used with confidence for 

the calculation of the different DSI’s. 

Research has shown that the timing of the drought stress significantly affects the final 

cane yield (Robertson et al., 1999; Ramesh and Mahadevaswamy, 2000; Inman-Bamber, 

2004; Silva et al., 2008).  However, for this study there was a very strong positive correlation 

(p<0.001) between the unweighted and weighted DSI’s showing that weighting the timing of 

the stress within the FP and GGRP did not prove to provide any significant information on 

yield response to drought stress.  In addition, the regression analysis showed that the 

unweighted indices accounted for more variation in the varietal yield performance when 

compared to the (respective) weighted indices.   There were 60 trials that were evaluated in 

this study, with the first crop being planted in March 1986 and the last crop harvested in July 

2011.  With the 25 year span of crops being evaluated, it was assumed that there was an 

adequate coverage of the environments (Bezuidenhout and Schulze, 2006).  However, the 

results suggest that the timing of the drought stress event was not a significant element in 

determining the final yield of the crop.    
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Different types of information were used to calculate the different DSI’s and this had a 

large impact on how much variation in the observed varietal yield performance the index 

was able to account for.  DSI1 was based on a very basic calculation, where the number of 

days where the SWC dropped below the drought stress point was counted.  The crop days 

were evaluated according to the number of days where the SWC dropped below 50% TAM.  

This simple technique of categorising each crop day as being either drought stressed or 

unstressed was inadequate.  This index was unable to adequately quantify the amount of 

stress in the environment such that it could explain the varietal performances of N12, N19 

and NCO376.  Since accounting for the timing of the stress did not prove to be useful in this 

study, DSI2 was also unable to adequately quantify drought stress.    

The daily Canesim stress output variable, used to calculate DSI3 (and DSI4), was more 

sophisticated than the information used to calculate DSI1 and DSI2.  The stress output 

variable quantified the extent to which the SWC dropped below the 50%TAM drought stress 

point.  The stress variable therefore took into account whether the crop was drought 

stressed or not (similar to DSI1/DSI2), as well as the degree to which the crop was 

experiencing drought stress.     

The calculation of a stress ratio, to quantify the amount of drought stress experienced by 

a crop, has been extensively used in many different fields of crop research, other than 

sugarcane.  These include crops like wheat, barley, broccoli and alfalfa.      However, using 

this methodology to quantify the amount of drought stress experienced by a historical crop 

has not been published until recently.  Ramburan et al.  (2011) found that of the three ratios 

calculated (Canesim rainfed ET:Canesim irrigated ET, Canesim rainfed yield:Canesim 

irrigated yield, actual trial yield:Canesim irrigated trial yield),  the ratio of the observed trial 

yield to simulated irrigated yield accounted for the most varietal variation in response to 

changes in environmental differences.  These environmental differences include TAM, 

organic matter, clay% and the soil N mineralization categories.   The large error associated 

with using simulated values to calculate a ratio was the reason Ramburan et al.  (2011) 

proposed the observed trial yield to simulated irrigated yield as the best ratio to use to 

quantify the amount of stress.   
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The research done in this pilot study showed that the use of the observed trial mean to 

calculate a stress ratio proved to be a lot less effective compared with using the Canesim 

rainfed yield.  Expressing the actual trial yield as a fraction of the simulated irrigated trial 

yield makes the assumption that the actual and the simulated (rainfed) yields are similar.  It 

ignores the fact that the actual trial yield is subjected to the natural variation whereas the 

Canesim simulated yields are only subjected to the error associated with the model.  The 

amount of variation in yield performance when subjected to differing levels of drought 

stress was the lowest for DSI5 (R2=0.57), which was approximately 20% less than with DSI6 

(R2=0.75).  By expressing the yield of one Canesim yield over another cancels out the error 

associated with the model and the calculated ratio becomes a relative value of the degree of 

stress experienced.   

DSI6 quantified drought stress in such a way that it accounted for a significant amount of 

variation in the varietal yield performances over changing levels of drought stress (R2=0.75, 

p<0.001).  This index was able to distinguish between the I and each of the IS varieties.  A 

significant difference between the gradients of N12 (m1=66.7) and N19 (m1=115.86) as well 

as between N12 and NCO376 (m1=108.25) were found.  The ability of this index to detect 

the fine differences between I and IS varietal performance highlights its superior sensitivity 

in quantifying degrees of drought stress.  Furthermore, there was a significant difference in 

average DSI6 among the three different rainfall classes, validiting the index’s potential of 

quantifying drought stress. 

Conclusion 

Of all the DSI’s calculated in this study, DSI6, was the only index that was able to make 

the complete distinction between the I variety and both the IS varieties.  This ability to pick 

up the fine difference between varieties is indicative of its sensitivity and strength as a tool 

for measuring the amount of drought stress experienced by a trial.  The growth of a crop is 

affected by both temperature and drought stress, and both of these factors are taken into 

account by the Canesim model.  DSI6, was calculated using only the final Canesim yields, 

therefore one of the strengths of this index is that it takes into account both the drought 

stress and/or temperature stresses that the crop is exposed to during its development.   
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Based on this information DSI6 can confidently be used to accurately quantify the amount of 

stress experienced by a crop in the analysis of all released varieties in Chapter 4. 
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A desktop evaluation of the drought tolerance potential of released sugarcane 

varieties 

C. Sewpersad  

South African Sugarcane Research Institute (SASRI), Private Bag X02, Mount Edgecombe, 

4300, South Africa. 

Abstract 

Climate change could result in an increase in frequency and intensity of drought events and 

is of major concern in the rainfed sugarcane areas of South Africa.  In response, the breeding 

strategy has to now incorporate breeding for drought tolerant varieties.  This study used 

historical yield data, from a SASRI Oracle database, from the rainfed Coastal and Midlands’s 

regions.  There were 7 farms (416 trials, 12 varieties) and 6 farms (161 trials, 11 varieties) 

used for the evaluation of the coastal and midlands regions respectively.  Varietal databases 

containing trial, field, variety information and calculated DSI (from Chapter 3) were created 

for each region, which were analysed separately using Genstat v14.1.  To ensure validity of 

the calculated DSI’s the Canesim model was validated by plotting the actual trial yield 

against the simulated Canesim rainfed yield.  The simulated data were reliable for both 

regions (Coastal: R2= 0.72, p<0.001; Midlands: R2= 0.73, p<0.001).  A correlation analysis 

between the DSI and trial mean showed that there was a moderate relationship between 

the two variables for the coastal region (r=0.54, p<0.001) and a strong relationship for the 

midlands regions (r=0.82, p<0.001).  A correlation analysis between the distance of a 

weather station (used in Canesim model) from a farm and the yield deviation (observed 

yield – Canesim rainfed final yield) showed no relationship between the two variables for 

either the Coastal (r=0.08, p=0.12) or Midlands regions (r=-0.05, p=0.59).  To evaluate and 

rate varietal yield response to drought stress, two different statistical methods were used:  

1. General Linear Regression analysis and 2.  Residual maximum likelihood (REML) meta-

analysis.  For the first method, the varietal yield was plotted on the DSI.  N12, observed to 

have an Intermediate (I) yield response to drought stress, was used as a reference variety.  

The gradients (indicators of yield response to drought stress) of all varieties were compared 

to that of N12, and varieties were rated accordingly.  For the coastal region: N27, N29, N33, 
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N36, N41, N45, N47 were all rated as having an Intermediate (I) response to drought stress 

and N16, N19, N39 and NCO376 were rated as Susceptible (S) varieties.  Due to the smaller 

gradient differences at the midlands and the 24 month cutting cycle, the regression analysis 

could not distinguish between the yield response of N12 and the other varieties.  For the 

REML meta-analysis, the DSI’s were categorized into four stress environments:  ≤0.3, >0.3-

0.6, >0.6-0.8, >0.8, representing “environments” of different levels of drought stress.  The 

performance of the different varieties across these environments were evaluated, and rated 

based on the presence of significant yield differences with an increase in the level of stress 

experienced.  For the coastal regions the ratings were as follows:  N12, N27 were rated as 

being Tolerant (T), N16 and NCO376 were rated as S and the rest, except for N36 and N47, 

were rated as I.  There was insufficient information to evaluate N36 and N47.    THE REML 

meta-analysis was unable to differentiate varietal performance for the midlands data.  This 

was primarily due to a severely unbalanced data set across the different stress 

environments. The general linear regression method of the rating the yield response of 

varieties to drought stress is recommended.   

 

Keywords:  drought stress index, sugarcane, REML meta-analysis, regression 
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Introduction 

One of the consequences of global warming is the increase in variability of climatic 

parameters (Arnell and Liu, 2001).  This results in an increase in the unpredictability and 

intensity of drought events which has become a major concern in the rainfed South African 

sugar producing areas (Schmidt and Purchase, 2002) especially since  85% of the sugarcane 

industry is rainfed (SASA, 2010/2011, S.I.A.B. Planning and Development Surveys - IA/47/33, 

2011).   

 

As part of a drought-adaptation strategy a breeding programme should breed for drought 

tolerant varieties.  However, this is challenging task for conventional breeding as drought 

affects a number of physiological and morphological traits in plants in a complex manner 

(Yordanov et al., 2000, Silva et al., 2008) and there is also a low genetic variance for yield 

components under drought conditions (Gosal et al., 2009).  Furthermore, the effect of 

drought stress on C4 plants is influenced by the duration and severity of the drought event 

(Yang et al., 1993; Pinheiro and Chaves, 2011) and the age and stage of development at the 

time of exposure (Chimenti et al., 2006). 

 

Research on drought tolerance, involves first identifying drought tolerant and susceptible 

varieties and subsequently evaluating these varieties, in planned experiments with or 

without other varieties (of unknown tolerance), for drought related quantifiable traits.  Silva 

et al. (2008) showed that there was a positive correlation between productivity (under 

drought stressed conditions) and cane stalk number, stalk height and stalk weight.  Wagih et 

al. (2003) also showed that stalk height and weight were the parameters that could be used 

for identifying drought tolerant varieties; however there was a high degree of diversity in 

the 26 sugarcane genotypes evaluated.  In another study, Silva et al. (2007) identified three 

physiological traits in cane that could be used to distinguish between drought tolerant and 

susceptible varieties: chlorophyll fluorescence, leaf chlorophyll content and thermal 

imaging.           

 

The primary goal of SASRI is to produce sugarcane varieties that yield more sucrose per 

stalk.  SASRI has a five-stage breeding programme that takes between 11-15 years before a 
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variety is released (Parfitt, 2005).  This programme is run within each of the five agroclimatic 

zones of the sugar industry (irrigated, coastal short cycle, coastal long cycle, coastal 

hinterland, midlands).     Only the last two stages of the programme, the primary variety 

(VT1) and secondary variety trials (VT2), are planted as sugarcane trials.  Each trial is 

replicated three times and evaluated over a plant and two ratoons.  These VT1 and VT2’s are 

either planted on SASRI owned research farms, or on farm land leased from sugarcane 

growers.  The latter are called off-station farms.  At the end of the five-stage selection 

process, only one or two varieties are identified as being potentially superior.   This 

variety/ies will be planted on co-operator farms, and further evaluated to confirm its 

superiority (Parfitt, 2005).  If the variety performs well, it is then released to the South 

African sugarcane industry to be adopted by the sugarcane farmers.   

 

The variety NCO376 was released in 1955 and was one of the first varieties selected for 

commercial propagation (SASRI, 2006a).  Since then many other “N” varieties have been 

released to the industry (Parfitt, 2005) (Table 4.1).  The industry has experienced many 

drought stressed growing seasons over time, which has allowed observations of varietal 

yield performance under such conditions.  However, it is important to note that these 

observed ratings are made by individuals and are therefore subjective. Matibiri (1997) 

demonstrated how the Zimbabwe Sugar Association Experiment Station also took advantage 

of the drought experienced during the 1995-1996 season, by observing varietal yield 

response to drought.   

 

There is a variation in variety distribution, between the coastal and midlands region, due 

to the prevailing conditions within these regions (Table 4.1).  They differ with regards to soil 

type, aspect, altitude, climate and pest and disease levels. The coastal areas have high levels 

of the pest Eldana saccharina Walker and disease Sporisorium scitamineum (Syd.), whereas 

the Midlands areas have high incidence of the disease sugarcane mosaic virus as well as 

Glomerella tucumanensis and Phaeocytostroma sacchari.  The climate in the Midlands is 

cooler, drier and at a higher altitude compared with the Coastal regions.   
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Table 4.1: List of varieties (per region), the year of release and the observed growth during 

drought stress. 

Coastal Midlands Year of Release Observed growth during  

drought stress 

Reference 

NCO376 NCO376 1955 Poor Nuss, 2001; Inman-

Bamber, 1982; SASRI, 2006a 

N12 N12 1979 Moderate to good Nuss, 2001; Inman-

Bamber, 1982; SASRI, 2006b 

N16 N16 1982 Poor SASRI, 2006c 

N19  1986 Moderate to Poor Mcintyre and Nuss, 

1996; SASRI, 2006d 

N27  1996 Good SASRI, 2006e 

N29  1997 Moderate to Poor SASRI, 2006f 

 N31 1997 Good SASRI, 2006g 

N33  1998 Good SASRI, 2006h 

N36  2000 Moderate SASRI, 2006i 

 N37 2001 Moderate to Poor SASRI, 2006j 

N39  2002 Poor SASRI, 2006k 

N41  2002 Moderate to poor SASRI, 2006l 

N42  2002 *Moderate to good SASRI, 2006m 

 N44 2006 *Moderate to good SASRI, 2006n 

N45  2006 *Moderate SASRI, 2006o 

N47  2007 *Moderate SASRI, 2006p 

 N48 2007 *Moderate to Poor SASRI, 2006q 

 N50 2008 *Good SASRI, 2006s 

*Note:  These ratings were based one or more observations by SASRI plant breeders.  The 

ratings have not been recorded in SASRI varietal information sheets because of the 

insufficient number of observations. 
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Varieties N31, N37, N44, N48 and N50 are all specifically recommended for the Midlands 

area.  N31 is specifically recommended for the Midlands area where, E. saccharina, is not a 

problem (SASRI, 2006g).   N37 is recommended for the high potential humic soils in the 

Midlands area (SASRI, 2006j).  N44, N48 and N50 are recommended for higher altitudes 

(>600m) and a longer cutting cycle (>20months), therefore suitable for planting in the 

Midlands area (SASRI, 2006n; SASRI, 2006q; SASRI, 2006s).  N50 is also resistant to 

sugarcane mosaic virus.   

 

For the past 43 years, SASRI has stored varietal yield data from all the VT1 and VT2’s, in 

an Oracle database (Oracle Database (10gR2), 2011).  As a first step, towards a breeding 

strategy for drought tolerant varieties, the aim of part of the study is to investigate the 

drought tolerance potential of released varieties, using the historical yield information 

combined with the DSI, identified in Chapter 3.    The objectives of this study were therefore 

to: 

- Create a varietal database for the two rainfed regions, midlands and coastal; 

- Use the DSI, identified in Chapter 3, to quantify the amount of stress experienced 

during a trial and to evaluate the corresponding varietal yield response; 

- Rate the different varieties based on their response to drought stress. 
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Materials and Methods 

 

Variety and Trial Selection 

 

The varietal selection criteria were the same as per Chapter 3 (Table 4.1).  Variety 

performance data, tonnes cane per hectare (TCH), were obtained from two different types 

of trials, primary variety (VT1) and secondary variety (VT2).  There were a total of 416 trials 

selected from the coastal area and 161 from the midlands area.  The trials used varied in 

different aspects, the trials: i.)  were from different farms ii.) were either a plant or ratoon 

crop iii.)  had different average trial means iv.) were planted and harvested in different years 

and seasons. 

 

Table 4.2 shows the details of the different farms, within each region, that were used in 

the study.  The details include information on whether the farm was a coastal or midlands 

farm, farm name, whether the farm was an off-station farm or a research farm, the number 

of trials from the farm that were used in this study, distance of the farm from the closest 

weather station and the time period for which the weather station was active.  Depending 

on the planting date of the crop being simulated the weather station that was i.) active and 

ii) closest to the farm was used for Canesim simulations.    The coordinates of each farm site 

was obtained using a Trimble Juno GPS (global positioning system) device.  The coordinates 

of each weather station used was obtained from the SASRI weather web 

(http://portal.sasa.org.za/weatherweb, 2011).  Using the WGS-84 method the distance 

between the farm and the weather station used was calculated (Table 4.2) (Campbell, 1998).   
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Table 4.2:  Details of the farms used. 

Region Farm Name Farm type No. of 

Trials 

*Time 

Period 

*Distance 

(km) 

Coastal Crookes Brothers Off station 37 pre 1993 9.92 

    post 1993 12.74 

Coastal Musa Off station 31 pre 2004 7.8 

    post 2004 0.25 

Coastal Colin Frost Off station 29 pre 2004 16.16 

    post 2004 8.92 

Coastal Gingindlovu Research  135 pre 2004 7.04 

    post 2004 1.3 

Coastal Empangeni Research  50 1998-2004 2.84 

    post 2004 10.05 

Coastal Kearsney Research  58 pre 2004 6.83 

     14.33 

    post 2004 1.2 

Coastal Mount Edgecombe Research  76 pre 1999 1.59 

    post 1999 0.32 

Midlands Anton Woerner Off station 12 pre 1999 5.44 

    post 1999 11.88 

Midlands Fred van Breda Off station 13 pre 1999 6.17 

    post 1999 6.3 

Midlands Conrad Klip (B1) Off station 21 pre 1999 3.54 

    post 1999 8.13 

Midlands Conrad Klip (B2) Off station 9 pre 1999 5.34 

    post 1999 9.65 

Midlands Glenside Research  44 pre 1999 8.5 

    post 1999 11.83 

Midlands Bruynshill Research  61 pre 1999 7.2 

    post 1999 0.77 

*Note:  Time period refers to the time period for which the weather station was/is active.  Distance 
refers to the distance of the farm from the weather station used.   
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Quantification of Drought Stress 

 

Through the work of the pilot study (Chapter 3), a drought tolerance index (DSI) of 

Canesim simulated rainfed yield to Canesim simulated irrigated yield (equation 3.12), was 

identified as the best method of quantifying drought stress in a desktop study.  For each trial 

evaluated in this study, the Canesim model was run twice, a rainfed and an irrigated run.  

The calculated DSI was representative of the amount of drought stress experienced by the 

sugarcane crop for that trial.  The values ranged from 0-1.0 with 1.0 representing a crop that 

experienced no drought stress at all and 0 representing a crop that was completely drought 

stressed.  A DSI value of 0.5 would indicate that the crop was stressed to a point that it was 

only able to achieve half of its full (unstressed) potential yield.   

 

Creation of a Varietal Database 

 

Two varietal databases were created, one for each region, coastal and midlands.  The 

database was a collation of information on each trial that was used in the study.  It included 

information on the trial name, the varieties that were used from each trial,  the crop 

(plant/ratoon), the field that the trial was planted on, soil information (clay%, Effective 

Rooting Depth (ERD), Total Available Moisture (TAM)), the rainfall received during the life of 

the crop, the start and harvest date, crop age, weather station used, distance of weather 

station from the farm, calculated DSI, Canesim rainfed final yield, Canesim irrigated final 

yield, observed trial mean yield, variety mean yield, annualized varietal mean yields 

(equation 3.13).   

 

Statistical Analysis 

 

As with Chapter 3, all data was first tested for normality and homoscedasticity using the 

Shapiro-Wilk and Levene tests respectively. Where necessary transformations were applied 

(Genstat v.14.1, 2011).  In the case of transformed data, for ease of graphical presentation 

raw data was used with the statistics from the transformed data anlaysis.   All significance 

testing were done at the 0.05 level.  Post hoc comparisons were done using the Holm-Sidak 

test.  All statistical analyses were done separately for the coastal and midlands regions.   
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Validation of the Canesim model 

 

The Canesim model was validated as per methodology in Chapter 3.  Outliers were 

identified and further investigated (see Chapter 3).  In addition, a Pearson’s correlation 

coefficient (r) was calculated to evaluate the relationship between the observed trial mean 

yield and the Canesim rainfed final yield.  For each variety, the observed trial mean was 

regressed on the Canesim rainfed final yield, with all the data as well as with the data 

excluding outliers.   

 

Evaluation of the trial data used  

 

Box and whisker plots were used to examine the data used from each farm.  A REML 

analysis was used to compare the annualized trial means across the different farms (y 

variate=annualized trial mean; fixed effects=farm; random effects=crop).    A similar REML 

analysis was done to compare the DSI’s across each of the farms.   A correlation anlaysis was 

performed between the variables: annualized trial means and DSI. 

 

To examine the relationship between the observed yield minus the Canesim rainfed yield 

(from here on referred to as yield deviation) and the distance from a weather station, a 

Pearson’s correlation coefficient was calculated.   The distances were grouped into four 

classes <1km, 1-5km, >5-10km and >10km.  A REML analysis was conducted on the absolute 

yield deviation values to establish significant differences among the different distance 

classes (y variate=absolute yield deviation; fixed effects=distance class; random 

effects=crop).     

 

Evaluation of Varietal Yield Response to drought stress 

 

As an initial evaluation of varietal yield response to drought stress, a simple linear 

regression analysis was performed separately for each of the varieties.   The annualized 

varietal yield (TCH) for each trial was plotted against its calculated DSI.       
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The next step involved analysing the regional database as a whole, with all the varietal data 

combined into one dataset.  A general linear regression model was used to to compare the 

gradients (m1) of the different varieties.  The gradient was representative of the varietal 

yield response to drought stress (Rizza et al., 2004).    The regression analysis was run twice.  

The first regression model included N12 as the reference variety, allowing comparisons (of 

regression parameter estimates) of N12 on all other varieties, using the Student’s t-test.  

Varieties with m1’s that were significantly higher or lower than N12 were classified as being 

potentially Susceptible (S) or Tolerant (T) varieties, respectively.  Varieties with m1’s not 

significantly different to N12 were classified as being potentially I varieties.   

Genstat Regression Model 1: 

MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] Annualized Variety Yield 

TERMS [FACT=9]Variety*Variety.DSI+ FarmLocation + TrialType + Farm + TrialMean + Crop + 

Harvest Year + Harvest Season 

FIT[PRINT=model,summary,estimates;CONSTANT=estimate;FPROB=yes;TPROB=yes; FACT=9] 

Variety*Variety.DSI+ FarmLocation + TrialType + Farm + TrialMean + Crop + Harvest Year + 

Harvest Season. 

 

The second regression model allowed the separate estimation of regression parameters 

of individual varieties.   

Genstat Regression Model 2: 

MODEL [DISTRIBUTION=normal; LINK=identity; DISPERSION=*] Annualized Variety Mean 

TERMS[FACT=9;FULL=yes]Variety*Variety.DSI+ FarmLocation + TrialType + Farm + TrialMean 

+ Crop + Harvest Year + Harvest Season 

FIT [PRINT=model,summary,estimates; CONSTANT=omit; FPROB=yes;TPROB=yes;FACT=9] 

 Variety+Variety.DSI+ FarmLocation + TrialType + Farm + TrialMean + Crop + Harvest Year + 

Harvest Season. 
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REML meta-analysis was the second type of analysis used to rate varieties.  The DSI’s 

were grouped into four drought stress classes:  0.3, >0.3-0.6, >0.6-0.8, >0.8.  These classes 

represent a very stressed, stressed, moderately stressed and mildly stressed environment, 

respectively.  A meta-analysis was conducted using REML (y variate=annualized varietal 

yield; fixed effects=Variety*Drought Stress Class; random effects=Farm Location + Trial Type 

+ Farm + Trial Mean + Crop + Harvest Year + Harvest Season).  The variance components of 

the random model were examined to determine which variables/factors were included in 

the REML model.  A Holm-Sidak post hoc test was used to establish if there were significant 

yield differences across the four stress classes, for each variety.  Comparisons were limited 

to classes of increasing levels of stress.  If there were no significant differences among the 

classes, the variety was rated as a T variety.  If there was a significant difference in one of 

the classes, the variety was rated as an I variety.  If there two or more differences between 

classes, the variety was rated as a S variety. 
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Results and Discussion 

 

Coastal Data Analysis 

 

Of the 416 trials initially selected for this study only 346 trials were used.  Table 4.3 shows 

(highlighted purple) the details of the number of trials that contained a variety/ies of 

interest after the removal of the outliers.  Trials often contained more than one variety of 

interest.  With NCO376 being released in 1955 (Table 4.1) the most data was available for 

this variety (n=341).  A third of the trial data came from the Gingindlovu farm.  For varieties 

N12 and N19 approximately half of the data on these varieties came from trials at the 

Gingindlovu farm.  Even though N33 was released in 1998 there were only 23 trials available 

for analysis of this variety.  N33 was not a popular variety with farmers because it did not 

yield as expected in commercial plantings.    
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Table 4.3:  The total number of trials from each coastal farm and the number of trials per 

variety (purple highlighted text). 

 Colin 

frost 

Crookes 

Bros 

Empangeni Gingindlovu Kearsney Mount 

Edgecombe 

Musa 

Total 

number of 

trials 

included 

20 33 44 111 44 66 28 

NCO376 19 33 43 110 44 66 26 

N12 15 9  34  17  

N16  20   37 16  

N19   23 47  28 9 

N27 3 23 42 40 29 3 28 

N29 5 13 5 12 31 3 5 

N33 2 9  6 2 3  

N36   12 2   14 

N39 13 15 3 36 25  2 

N41 10 9 24 27 25 2 17 

N45 3 6 3 15 5  8 

N47 3 5 3 8 7  3 

 

The correlation between the 346 observed trial mean yields and Canesim rainfed final 

yields was r=0.87 (p<0.001).   Figure 4.1 shows the regression between these two variables.  

The Shapiro-Wilk’s test was not significant.  The regression analysis showed that 72% of the 

variation in the observed trial means could be explained by the Canesim rainfed simulated 

final yields.  The Canesim model inputs could therefore be considered to be relatively 

accurate for the Canesim simulations.  As the DSI was calculated using only Canesim output 

variables, the correlation and regression statistics provide evidence that the DSI’s could be 

used with a high degree of confidence. 
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Figure 4.1:  Regression of the observed trial mean vs. Canesim rainfed final yield. 

 

Table 4.4 shows the percentage variation accounted for (R2) between the observed trial 

mean and the simulated rainfed mean for each variety. 

 

Table 4.4:  The R2 of each varietal regression.  The total numbers of trials used are in 

brackets. 

Variety R2 

N12 0.55 (67) 

N16 0.62 (63) 

N19 0.59 (106) 

N27 0.77 (158) 

N29 0.77 (71) 

N33 0.83(22) 

N36 0.45 (28) 

N39 0.74 (90) 

N41 0.75 (109) 

N45 0.74 (38) 

N47 0.56 (24) 

NCO376 0.72 (321) 
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Figure 4.2 shows the box and whisker plots of the annualized trial means among the 

different coastal farms.  The Shapiro-Wilk and Levene tests were significant.  A square root 

transformation was applied to the data.  The REML analysis showed that there were 

significant differences between the annualized trial means among the coastal farms (F6,337 = 

38.21, p<0.001).    

 

Figure 4.2:  Box and whisker plot of the annualized trial mean (TCH) for each coastal farm.  

Farms that share the same letter are not significantly different to each other (p<0.05)1.  

 

The Mount Edgecombe farm had a significantly higher trial mean compared with all other 

farms.  This farm had a very high clay% (>40%).  Some of the trials at this farm had 

annualized means of greater than 100TCH.  Musa (clay%=28.0%) had significantly lower trial 

means compared to all farms except Gingindlovu (clay%=39.6%).  The latter was also not 

significantly different to Colin Frost (clay=24.5%).  There were a few outliers (as shown by 

the green crosses in Figure 4.2).   The weather data for these outliers were accurate; 

therefore these trials were not excluded from the analysis. Further investigation showed 

that a trial at Empangeni had an annualized mean of 22.4TCH and a DSI of 0.21.  This 

                                                           
1 Raw means are presented in the box and whisker plots, however the a’s and b’s come from 
the Holm-Sidak post hoc test on square root transformed data. 
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indicated that the trial was severely drought stressed, yielding only approximately 21% of its 

full yield potential.  In contrast the DSI of three low yielding trials at Musa were >0.65 

indicating that the trials were not severely drought stressed.  The range of annualized trial 

means at Gingindlovu was 20.2TCH-90.7TCH. Most of the trials with annualized means 

<40TCH were severely drought stressed.   

 

Figure 4.3 shows the box and whisker plots of DSI for the different farms.  The Shapiro-

Wilk and Levene tests for the DSI were significant.  A square root transformation was 

applied to the data.  The REML analysis showed that there were significant differences in the 

amount of drought stress experienced among the farms in the coastal regions (F6,339 = 56.62, 

p<0.001).   

 

 

Figure 4.3:  Box and whisker plot of the DSI for each coastal farm.  Farms that share the 

same letter are not significantly different to each other (p<0.05)2. 

 

                                                           
2 Raw means are presented in the box and whisker plots, however the a’s and b’s come from the 
Holm-Sidak post hoc test on square root transformed data. 
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The farms Mount Edgecombe experienced significantly less stress compared to all farms. 

Most of the trials at Crookes Bros experienced moderate to little drought stress, however 

there were a few trials that experienced more severe drought stress (as shown by the red 

crosses in Figure 4.3).    For Mount Edgecombe, the low stress levels at this site were 

reflected in the high yields achieved at the farm (Figure 4.2 and 4.3).  Despite having lower 

drought stress levels the yields at Crookes Bros were not as high as would be expected 

(Figure 4.2 and 4.3).  Musa had significantly lower yields compared with five of the six other 

farms, even though it was one of the farms with little drought stress (Figure 4.2) and had a 

very high clay content (>40%).   Gingindlovu and Empangeni experienced the most drought 

stress (Figure 4.3).  Despite Empangeni having similar drought stress levels as Gingindlovu, 

the trials at this farm had significantly higher yields compared to Gingindlovu (Figure 4.2).  

There was a moderate correlation between the level of drought stress experienced and the 

annualized yields for the coastal farms (r=0.54, p<0.001).        Even though some trials 

experienced a higher degree of drought stress, they did not necessarily have lower yields.  

This could be attributed to the types of varieties planted within the trial, as well as to the 

type of soils that the trials were planted on.    A sandier soil is a lot more susceptible to 

drought stress compared to a soil with a higher clay%.  

 

Figure 4.4 shows the box and whisker plots of the absolute yield deviations of each of the 

four distance from weather station classes.  The Shapiro-Wilk and Levene tests were not 

significant.  The Pearson correlation coefficient showed that there was no significant 

relationship between the two variables (actual distance from weather station and 

annualized trial yield) (r=0.08, p=0.12).    REML analysis also showed that there was no 

significant difference in absolute yield deviation between the different weather classes 

(F3,342=2.62, p=0.052).  It can therefore be concluded that there was no significant 

relationship between the yield deviation and distance from the weather stations.  This is an 

important finding as 69 and 84 trials had to use weather stations that were >10km and >5-

10km away from the farms, respectively.   
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Figure 4.4:  Box and whisker plot of the absolute yield deviation for each distance class. 

 

Table 4.6 shows the results of the first general linear regression analysis (annualized 

varietal yield on DSI, with variety as the group factor). N12 was the reference variety.  The 

Shapiro-Wilk and Levene tests were not significant.  The t-probability, in the table, refers to 

the comparison of each variety m1 with the m1 of N12.  Only the factor farm location and the 

variable trial mean accounted for significant variation, 17.0% and 16.8% of the variation 

respectively, hence these two were included in the final regression model.  A Genstat 

default alphabetical reference level (reference level = Colin Frost) was allowed for the factor 

farm location, as comparison of this factor was not the aim of this analysis. 

 

Table 4.5 shows the results of the second regression model, with individual parameter 

estimations for each variety.   
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Table 4.5:  General Linear Regression output parameters showing individual parameter 

estimates (Ho: m1=0). 

Parameter estimate SE t(1070) t pr. 

Variety N12 20.79 3.65 5.70 <.001 

Variety N16 -5.42 5.98 -0.91 0.365 

Variety N19 9.10 3.12 2.92 0.004 

Variety N27 22.20 3.13 7.09 <.001 

Variety N29 11.18 4.13 2.71 0.007 

Variety N33 19.03 6.90 2.76 0.006 

Variety N36 17.76 8.12 2.19 0.029 

Variety N39 6.77 4.18 1.62 0.106 

Variety N41 16.65 4.10 4.06 <.001 

Variety N45 19.23 6.04 3.18 0.002 

Variety N47 27.81 7.45 3.73 <.001 

Variety NCO376 9.35 2.37 3.95 <.001 

DSI.Variety N12 3.59 5.90 0.61 0.54 

DSI.Variety N16 49.53 8.89 5.57 <.001 

DSI.Variety N19 28.22 4.92 5.74 <.001 

DSI.Variety N27 6.69 4.96 1.35 0.18 

DSI.Variety N29 18.98 6.92 2.74 0.006 

DSI.Variety N33 6.40 11.3 0.56 0.57 

DSI.Variety N36 19.50 12.50 1.56 0.12 

DSI.Variety N39 30.63 6.50 4.71 <.001 

DSI.Variety N41 12.26 6.46 1.90 0.058 

DSI.Variety N45 16.49 9.65 1.71 0.088 

DSI.Variety N47 -10.20 12.70 -0.80 0.42 

DSI.Variety NCO376 29.46 3.57 8.25 <.001 

Farm Location Colin frost -4.48 1.73 -2.59 0.01 

Farm Location CrookesBros -0.70 1.54 -0.45 0.65 

Farm Location Empangeni 12.99 1.47 8.81 <.001 

Farm Location Ging 3.78 1.45 2.61 0.009 

Farm Location Kearsney 3.27 1.60 2.04 0.041 

Farm Location Mt Edge 14.64 1.56 9.41 <.001 

Farm Location Musa 1.94 1.00 1.94 0.052 

Trial Mean 0.42 0.018 23.66 <.001 

 

 

 

 

 

 

 

 

m1 
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Table 4.6:  General Linear Regression output parameters showing the comparison of the 

parameters of 11 varieties with the parameters of the reference variety, N123. 

Parameter estimate SED t(1070) t pr.* 

Constant 16.31 3.58 4.56 <.001 

DSI 3.59 5.90 0.61 0.54 

Variety N16 -26.21 6.68 -3.92 <.001 

Variety N19 -11.69 4.21 -2.77 0.006 

Variety N27 1.41 4.23 0.33 0.74 

Variety N29 -9.61 5.10 -1.88 0.06 

Variety N33 -1.76 7.48 -0.24 0.81 

Variety N36 -3.03 8.53 -0.35 0.72 

Variety N39 -14.02 5.17 -2.71 0.007 

Variety N41 -4.14 4.92 -0.84 0.40 

Variety N45 -1.56 6.62 -0.24 0.81 

Variety N47 7.02 8.01 0.88 0.38 

Variety NCO376 -11.44 3.70 -3.09 0.002 

DSI.Variety N16 45.9 10.1 4.55 <.001 

DSI.Variety N19 24.64 7.01 3.51 <.001 

DSI.Variety N27 3.1 7.18 0.43 0.67 

DSI.Variety N29 15.39 8.58 1.79 0.073 

DSI.Variety N33 2.8 12.30 0.23 0.82 

DSI.Variety N36 15.9 13.70 1.17 0.24 

DSI.Variety N39 27.04 8.53 3.17 0.002 

DSI.Variety N41 8.68 8.34 1.04 0.30 

DSI.Variety N45 12.9 11.00 1.17 0.24 

DSI.Variety N47 -13.8 13.80 -1 0.32 

DSI.Variety NCO376 25.88 6.11 4.24 <.001 

FarmLocation CrookesBros 3.78 1.50 2.52 0.012 

Farm Location Empangeni 17.46 1.47 11.89 <.001 

Farm Location Ging 8.25 1.34 6.16 <.001 

Farm Location Kearsney 7.74 1.42 5.45 <.001 

Farm Location Mt Edge 19.12 1.59 12.05 <.001 

Farm Location Musa 4.48 1.73 2.59 0.01 

Trial Mean 0.418 0.018 23.66 <.001 

 
 

 

 

 

Figure 4.5 shows the fitted model of the combined regression analysis.  N12, which has 

been observed to be an I variety, displayed a more T response, with a m1 of 3.6TCH/0.1DSI.  

This indicates that with a 10% increase or decrease in the level of drought stress 

                                                           
3 Standard Error of Difference (SED), DSI.Variety refers to the difference in gradient (m1) of a 
variety to N12 , the t-probability, column 5 in Table 4.10, refers to the comparison of each varietal 
parameter with that of N12. 
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experienced by N12, there would be a corresponding yield decrease or increase of 3.6TCH, 

respectively.    The t-probabilities from Table 4.6, shows that there were only two groupings 

of varieties:  N16, N19, N39 and NCO376 all had significantly higher m1’s compared to N12; 

meaning that they had a larger yield response to drought stress when compared to N12.  

These varieties were classified as S varieties.   All the other varieties had m1’s that were not 

significantly different to N12, were classified as I varieties.     Variety N47 showed a negative 

response to changes in drought conditions, with a m1 of -10.2TCH/0.1DSI. When N47 

experienced a 10% increase or decrease in the level of drought, there was a corresponding 

yield increase or decrease of 10.2TCH, respectively.  N47 has been shown to perform better 

in poorer soils and yield worse (than other varieties) under good conditions (SASRI, 2006p).  

The R2 for the N47 regression alone was 36.7% indicating that a straight line does not fit the 

data well.   This could be due to the fact that the variety was exposed to very little drought 

stress (the highest DSI for the N47 data set was 0.78).  Variety N16 had the largest yield 

response to drought with a m1 of 49.5TCH/0.1DSI, indicating that with a 10% decrease or 

increase in the amount of drought, there will be corresponding 49.5TCH yield increase or 

decrease, respectively.  
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Figure 4.5:  The fitted model of the general linear regression analysis of coastal varieties. 

 

 

The Shapiro-Wilk and Levene tests for the REML meta-analysis were not significant.  

REML meta-analysis showed that only the trial type (off station/research) did not account 

for any variation in the data, so this term was removed from the model.  There were highly 

significant interaction effect, Variety.Drought stress class (F30,1050=2.26, p<0.001).   Figure 4.6 

illustrates the significant interaction between Variety and the Drought tolerance classes.  

The Holm Sidak post hoc test showed that the varieties N12 and N27 had a T response to 

drought.  N16 and NCO376 had a S response to drought.  N19, N29, N33, N39, N41, N45 all 

had an I response to drought.  N19, N39, N41 and N45 had no significant yield difference 

among the lower three classes, but there was a significant increase in yield when the 

drought tolerance index is >0.8. With varieties N29 and N33, when the DSI was ≤0.3 the 

varietal yields were significantly lower than all the other classes.  However, there was no 
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significant difference among the yields of the classes >0.3-0.6, >0.6-0.8, >0.8.  It is important 

to note that N29 had 8 data points for the ≤0.3 class whereas N33 had only 2 data points.   

 

Variety N47 showed no significant difference across the three drought stress classes, 

there was no information available for this variety within the >0.8 drought tolerance class.  

Therefore, this variety could be rated as either an I variety or a T variety.  More information 

was needed to classify N36 according to this method, because there was no information 

available for the >0.8 class and there was only one data point for the ≤0.3 class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



 

122 
 

 

Figure 4.6:  Annualized varietal mean for each of the drought stress classes (from REML 

meta-analysis).  The comparisons are limited to only within each variety.  Classes that do not 

share the same letters are significantly different to each other (p<0.05). 

 

Table 4.7 shows the comparisons of the varietal drought stress ratings derived from two 

different methodologies, regression analysis and REML meta-analysis.  N16 and NCO376 

were both classified as S varieties with both methods.  N29, N33, N41, N45 were also 

classified as I varieties with both methods.  N12 was classified as a tolerant variety with the 

REML analysis but was assumed to be an I variety with the regression analysis (based on 

anecdotal evidence).  N19 and N39 were rated as S with the regression analysis and I with 

the REML analysis.  N27 was rated as an I variety with the regression analysis and a T variety 

with REML analysis. 
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Table 4.7:  Summary of the drought stress ratings using regression analysis and REML meta-

analysis. 

Variety Regression Rating REML meta-analysis Rating 

N12 I (reference rating) T 

N16 S S 

N19 S I 

N27 I T 

N29 I I 

N33 I I 

N36 I * 

N39 S I 

N41 I I 

N45 I I 

N47 I * 

NCO376 S S 

*Note: More information is needed to rate this variety with REML meta-analysis. 
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Midlands Data Analysis 

 

Table 4.8 (blue text) outlines the number of trials, from each midlands farm after the 

removal of trials due to inaccurate weather data.  Of the 161 trials initially selected for this 

study, after the removal of the outliers, only 113 trials were used, with Conrad Klip B2 

having more than half of the initial number of the trials discarded.  Table 4.8 (purple 

highlighted text) also shows the details of the number of trials (from each farm) that 

contained a variety/ies of interest, after the removal of the outliers.  At least half of the 

trials for each variety, except N44, came from the Bruynshill farm.   

 

Table 4.8:  The total number of selected trials from each midlands farm (blue) and the 

number of trials per variety (in purple highlighted text). 

 Anton 

Woerner 

Bruynshill Fred van 

Breda 

Glenside Conrad 

Klip B1 

Conrad 

Klip B2 

Total 

number of 

trials 

included 

10 45 20 8 13 17 

NCO376 6 40 8 16 20 8 

N12 9 42 11 17 10 5 

N16 4 40 1 7 16 8 

N31 10 21 8 14 11 2 

N37 3 25 1 9 13 7 

N44 6 6 5 1 2 4 

N48 1 6 1 5 3 0 

N50 2 6 2 0 2 0 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



 

125 
 

Table 4.9 shows the percentage variation accounted for (R2), between the observed trial 

mean and the simulated rainfed mean, for the simple regression of each variety. 

 

Table 4.9:  The R2 of the observed trial mean vs. Canesim rainfed final yield, excluding the 

outliers.  The total numbers of trials used are in brackets. 

Variety R2 

N12 0.70 (94) 

N16 0.68 (76) 

N31 0.72(66) 

N37 0.67 (58) 

N44 0.79 (24) 

N48 0.78 (16) 

N50 0.77 (12) 

NCO376 0.50 (98) 

 

Figure 4.7 shows the relationship between the observed trial mean yields and Canesim 

rainfed final yields.  The Shapiro-Wilk’s tests were not significant.  73.3% of the variation in 

observed trial means could be explained by the simulated rainfed final yields (p<0.001).  As 

with the coastal data, this shows that the model inputs that were used for the Canesim trial 

simulations significantly and closely approximated the true trial conditions.  As the DSI’s  

were calculated using only Canesim values, these DSI’s could be trusted to accurately 

represent  the level of drought stress experienced by a trial. 
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Figure 4.7:  Regression of the observed trial mean vs. Canesim rainfed final yield for all 

midlands trials. 

 

Figure 4.8 shows the average annualized trial yield among the midlands farms.    The 

Shapiro-Wilk and Levene tests were not significant.  The REML analysis showed that there 

were significant differences among the farms (F5,107 = 20.94, p<0.001) (Figure 4.8). 

 

Anton Woerner was the lowest yielding midlands farm, being significantly lower than all 

other farms except for Fred van Breda (Figure 4.8).  A contributing factor could have been 

the low clay% at this site. Anton Woerner had a very low clay% of 10% while Fred van Breda 

had a clay% of 19%.  Conrad Klip (B2) (clay%=50%) and Bruynshill (clay%=35%) farms had 

significantly higher yields than all farms, except Conrad Klip (B1) (clay%=21%).  Glenside 

(clay%=20%) had a similar clay% to Conrad Klip B1, and the yields at this farm were not 

significantly different to that at Conrad Klip B1. 
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Figure 4.8:  Box and whisker plot of the annualized trial mean (TCH) for each midlands farm.  

Farms that share the same letter are not significantly different to each other (p<0.05). 

 

Figure 4.9 shows that the box plots of the level of drought stress experienced across the 

different farms.  The assumptions of normality and homoscedasticity were not violated.   

The REML analysis showed that there were significant differences in the average DSI’s 

among the midlands farms (F5,107 = 16.68, p<0.001) (Figure 4.9). 

 

  Anton Woerner had a significantly smaller DSI compared with all other farms, except for 

Fred van Breda.  The low clay% content at Anton Woerner could be a reason for the extreme 

level of drought stress experienced at this farm.  The high levels of stress at Fred van Breda 

and Anton Woerner was reflected in the low yields obtained at these farms (Figure 4.8). The 

trials that had the lowest levels of drought stress, of all midlands farms, were Bruynshill, 

Conrad Klip (B1) and Conrad Klip (B2).  The clay% at these farms was higher than at the 

other farms.  These farms had, on average, a DSI of 0.6, indicating that the yield potential at 

these farms was only 60% of its full potential.   The average annualized trial yield and the DSI 

among the different farms were significantly positively correlated (r=0.82, p<0.001) (Figure 
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4.8 and Figure 4.9). Unlike the coastal farms, at the midlands farms, when the DSI was high, 

this indicated a low level of drought stress and led to a consequently higher average 

annualized yield. 

 

 

 

Figure 4.9:  Box and whisker plot of the DSI for each midlands farm.  Farms that share the 

same letter are not significantly different to each other (p<0.05). 

 

The correlation coefficient between the variables: distance from the weather station and 

yield deviation, showed that there was no linear relationship between the two (r=-0.05, 

p=0.59).  Figure 4.10 shows spread of the absolute yield deviation for each of the four 

weather distance classes.   The REML analysis found no significant differences among the 

distance classes (F3,109=0.29, p=0.83).  As 74% of all midlands trials used weather stations 

that were at least >5km away from the farm site, a non-significant effect of distance on yield 

deviation was important. 
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Figure 4.10:  Box and whisker plot of the absolute yield deviation for each distance class for 

midlands trials. 

 

Table 4.11 shows the results of the first combined regression analysis, with N12 as the 

reference variety.  The assumptions of normality and homoscedasticity were not violated.  

With the midlands data, only the variable trial mean accounted for significant variation 

(20.9%), hence this variable was included in the final regression model.   
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Table 4.10 shows the results of the second combined regression analysis, with individual 

regression parameters for each variety. 

 

Table 4.10:  General Linear Regression output parameters showing individual parameter 

estimates (Ho: m1=0). 

Parameter estimate SE t(427) t pr. 

Variety N12 -1.20 2.88 -0.42 0.677 

Variety N16 -1.97 3.99 -0.49 0.622 

Variety N31 10.44 3.44 3.04 0.003 

Variety N37 -10.27 4.54 -2.26 0.024 

Variety N44 12.84 4.4 2.92 0.004 

Variety N48 -0.61 6.47 -0.09 0.925 

Variety N50 0.18 9.15 0.02 0.984 

Variety NCO376 4.40 3.19 1.38 0.168 

DSI.Variety N12 14.42 6.24 2.31 0.021 

DSI.Variety N16 22.64 7.7 2.94 0.003 

DSI.Variety N31 17.95 7.26 2.47 0.014 

DSI.Variety N37 29.36 8.54 3.44 <.001 

DSI.Variety N44 12.61 9.03 1.4 0.163 

DSI.Variety N48 29.90 11.9 2.52 0.012 

DSI.Variety N50 35.60 16.2 2.21 0.028 

DSI.Variety NCO376 2.04 6.3 0.32 0.746 

Trial Mean 0.46 0.020 22.65 <.001 

 

Table 4.11:  General Linear Regression output parameters for the comparison of the 

parameters of 7 varieties against the parameters of the reference variety, N12. 

Parameter estimate SED t(427) t pr.
4
 

Constant -1.2 2.88 -0.42 0.68 

Stress_Ratio 14.42 6.24 2.31 0.021 

Variety N16 -0.77 4.91 -0.16 0.88 

Variety N31 11.64 4.48 2.6 0.01 

Variety N37 -9.07 5.37 -1.69 0.092 

Variety N44 14.04 5.24 2.68 0.008 

Variety N48 0.59 7.09 0.08 0.93 

Variety N50 1.38 9.59 0.14 0.89 

Variety NCO376 5.6 4.27 1.31 0.19 

DSI.Variety N16 8.22 8.65 0.95 0.34 

DSI.Variety N31 3.53 8.30 0.43 0.67 

DSI.Variety N37 14.94 9.37 1.59 0.11 

DSI.Variety N44 -1.82 9.98 -0.18 0.86 

DSI.Variety N48 15.5 12.40 1.25 0.21 

DSI.Variety N50 21.2 16.70 1.27 0.20 

DSI.Variety NCO376 -12.38 7.64 -1.62 0.11 

Trial Mean 0.4616 0.020 22.65 <.001 

 

 
                                                           

4 The t-probability, column 5 in the table, refers to the comparison of each varietal 
parameter with that of N12, DSI.Variety, in Table 4.11, refers to the difference in gradient 

(m1) between a variety and N12. 

 

m1 
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The combined regression analysis was unable to distinguish between the m1 of N12 and 

the rest of the varieties, even though the size of the varietal m1’s varied (2.04–

35.6TCH/0.1DSI) (Figure 4.10).  The levels of variation of the m1
’s were similar to that of the 

coastal region, however, the limiting factor may have been that the gradient differences 

(between a variety and N12) was larger (3.1-45.9) compared with midlands (1.82-21.1). 

Another contributing factor is that a midlands crop is grown over 24 months, so a drought 

event would have to persist for a considerable length of time in order to cover the entire 

growing period.  Normally drought events occur and are then relieved, allowing the plant to 

recover.  Therefore, with the long growing season, the midlands varieties are more buffered 

against intermittent stresses like drought.  This therefore makes it difficult to quantify the 

effect of a drought event on final varietal yield.  

 

Looking at the m1
’s in Table 4.10 NCO376 seemed to have had the lowest response to 

drought stress with a m1 of 2.04 TCH/0.1DSI.  This showed that NCO376 had a more tolerant 

response to drought stress.  This was unexpected, as NCO376 has been observed as having a 

more susceptible response to drought stress (Table 4.1).  N31 and N44 had m1
’s similar to 

N12, suggesting that these varieties showed a more intermediate response to drought 

stress.  N37 and N48 had very similar yield responses to drought stress (Table 4.10), and the 

m1
’s suggest that these two varieties had a more susceptible response to drought stress.  

N50 had the largest yield response to drought stress (m1=35.6TCH/0.1DSI), suggesting that it 

also had a susceptible response to drought.  N50, however, has been observed to have a 

tolerant response to drought stress (Table 4.1).  Even though there were only 12 data points 

available for analysis, the amount of stress experienced ranged from DSI 0.34-0.80, so there 

was a representative range of drought stressed environments.  Pair-wise Student’s t-tests 

was used to tentatively classify midlands varieties.   
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Figure 4.11:  The fitted model of the general linear regression analysis of midlands varieties.    

 

For the REML meta-analysis, the Shapiro-Wilk test showed that the data was normally 

distributed, however, the Levene’s test showed that the variance among the different 

varieties were not stable.  A square root transformation improved the result.  For the REML 

meta-analysis, the drought tolerance class, >0.8, was excluded from the analysis as there 

were only two trials within this class.  For the midlands, there were only four trials were the 

DSI was  0.3.  Of the 113 trials, 65% trials were classified as 0.3-0.6, with 31% being in the 

0.6-0.8 class.  For this analysis, Farm area was the only factor that accounted for variation in 

the data set.  There was no significant interaction (F10,416=0.52, p=0.97), indicating that there 

was no significant difference in the way different varieties responded to varying levels of 

drought stress.  There was a significant increase in yield from one drought stress class to the 

next (F2,18=25.31, p<0.001).  There were also a highly significant Variety main effect 

(F7,370=25.07, p<0.001).    Figure 4.12 shows raw means of the eight varieties being 
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evaluated, information was only completely available for three of drought stress classes in 

four varieties.  N12, N31, N44, NCO376 showed a higher mean yield for the  0.3 class, 

compared with the 0.3-0.6 class. It should be noted that there were only 4, 2, 3 and 2 data 

points available for each variety, respectively, for the  0.3 class.   Therefore more data 

needs to be available for the  0.3 class to properly evaluate the varietal performance. 

 

 

Figure 4.12:  Annualized varietal means (midlands) for each of the drought tolerance classes 

(from REML meta-analysis). 

 

  

Stellenbosch University http://scholar.sun.ac.za



 

134 
 

Table 4.12:  Tentative drought tolerance ratings for midlands varieties. 

Variety m1 Tentative Drought 

Tolerance Rating5 

N12 14.42 I 

N16 22.64 S 

N31 17.95 S 

N37 29.36 S 

N44 12.61 T 

N48 29.9 S 

N50 35.6 S 

NCO376 2.04 T 

 

The tentative ratings of the midlands varieties correspond to some degree to the 

observations in the field.  N12 is observed to have an intermediate to good response, and 

statistically it has shown a similar response to drought stress.    N16, N37 and N48 which 

have been observed to have a poor response to drought stress (Table 4.1), all had a m1 that 

corresponded with the performance of a susceptible variety (Table 4.10).  N31 had a more 

susceptible response to drought stress, even though this variety has been observed to have 

a more tolerant response to stress.  N44 has been observed to have a tolerant response to 

drought stress.  NCO376 has been observed to have a poor response to drought stress, 

however it has been tentatively rated as tolerant (Table 4.1). 

 

 

 

 

 

 

 

 

 

                                                           
5 Based on the m1

’s of the coastal varieties (Table 4.6). 
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Conclusion 

 

Valid Canesim simulations gave confidence that the calculated DSI’s closely approximated 

the level of drought stress experienced by a trial.  Within the coastal region, varieties were 

rated as either intermediate or susceptible to drought stress.  N12, N27, N29, N33, N36, 

N41, N45 and N47 were all rated as having an intermediate response to drought stress.  

Although N12, N27 and N33 showed a more tolerant yield response to drought stress, this 

was not picked up with the regression analysis.  However, the REML analysis rated N12 and 

N27 as having a tolerant response to drought stress.      N16, N19, N39 and NCO376 were all 

rated as having a susceptible response to drought stress.  These ratings are closely aligned 

with the observations that have been made on these varieties over time.  Even though the 

REML meta-analysis offered more separation between varieties, the limitation to using this 

method is the requirement of sufficient data, for each water stress class for each variety, to 

confidently rate varietal response to stress.  Rating of the midlands varieties, with either 

method, was not possible.  This could be attributed to smaller differences in gradients.  The 

inability to distinguish between varieties was compounded by longer cutting cycle for a 

midlands crop (24 months).   Given the limitations of a desktop study, a regression analysis is 

recommended as a first step towards rating sugarcane varieties.    
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General discussion and conclusion 

 

Research has shown that the impact of drought stress on the growth of the sugarcane is 

affected by the growth phase within which the stress event occurs.  However, in this study, 

taking into account the timing of the stress event in the calculation of the DSI did not 

account for any additional variation in varietal yield response to drought stress.  This held 

true when applied to the simple index of %drought stressed days (DSI2) as well as to the 

Canesim stress variable (DSI4).   Of the 60 trials analysed, in the pilot study, 67% of the trials 

were planted on fields that had a high clay% (>40%), with the rest of the trials being planted 

on fields with a medium clay% (+/-25%).  Fields with higher clay% take a longer time to 

respond to periods of drought stress because they have a higher TAM.  This may therefore 

have been a confounding factor, contributing to the inability of account for the impact of 

stress within the different phases.  Another potential factor may have been the grouping of 

the GGP and the ripening phase. Even though the impact of drought stress has a negative 

effect on TCH within each of these phases, the impact during the GGP is much larger.   

 

Attempting to quantify the amount of drought stress experienced by a historical trial is 

very challenging, especially as trials in the study dated back to the 1980’s.  Field soil 

properties, clay% and ERD, had to be estimated for the older trials.  Due to erosion and land 

preparation these factors could have changed to some extent over time, with this change 

potentially contributing to the amount of unexplained variation in the relationship between 

the  DSI’s and varietal yield data.  The six indices, in the pilot study, accounted for 50-75% of 

the variation in varietal yield data.  DSI6, captured the most variation in varietal yield data 

(R2=75%).  The other five indices accounted for 50-66% of variation, significantly lower than 

DSI6.  In the calculation of DSI6 only Canesim simulated yields (rainfed:irrigated) were used, 

whereas with DSI5 the actual yield to the irrigated simulated yields were used.  The errors 

associated with the actual yield (e.g. natural variation, pests, diseases, management factors) 

are different to that of the Canesim simulated yields (model error).   DSI5 accounted for 

approximately 20% less variation in the varietal yield compared with DSI6.  A further 

advantage of DSI6 using only Canesim generated yields was that the Canesim model took 

into account the extent to which the crop is drought stressed, that is, how much the SWC 
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dropped below the 50% TAM threshold.  The Canesim model also accounted for the effect 

of temperature, which is a very important driver of crop growth. 

 

The use of the Canesim model came with its own limitations.  This included the model not 

being able to account for the effect of pests and diseases or the effect of farm management 

practises on the growth of sugarcane.  The inconsistencies in some weather stations to 

record daily weather data, proved to be another limitation.  This was especially true for the 

Midlands farms. 

 

For the analysis of the released varieties, the coastal and midlands varietal database 

comprised of 346 and 113 trials respectively.   Of the 346 coastal trials, 40% of the trials 

were planted on soils with high clay% (>40%) whereas there were only 7% of midlands trials 

with high clay%.  Given the soil composition alone, it would be expected that it would be 

easier to detect differences in drought tolerance at Midlands, however, the ability of DSI6 to 

distinguish differences in the drought tolerance of the different varieties proved to be more 

limited in the midlands region compared with the coastal (Table 5).   

 

Some of the reasons for the inability of the DSI to quantify varietal differences at the 

midlands could include the fact that the gradient differences (between a variety and N12) 

was smaller at midlands (1.82-21.1) compared with coastal region (3.1-45.9).  The midlands 

trials were also exposed to different environmental conditions compared to the coastal 

trials, with the weather being colder and drier in the midlands.  It is for this reason that the 

crop cutting cycle in the midlands is a 24 month cycle.  With a longer cutting cycle a drought 

event would have to persist for a considerable length of time in order to cover the entire 

growing period.  The long growing period therefore acts a buffer against intermittent stress.    

Farmers and researchers have observed that a drought event may for example occur in the 

midlands for four months and then when good conditions return the crop is able to recover.   

This compared to a coastal crop harvested at 12 months, if a drought persists for four 

months, this represents a considerable portion of the crops total life. It therefore does not 

have the time to recover compared to a 24 month crop which can capatilize when good 

condtions return.    
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The two methods of analysis both had their strengths and weaknesses.  A strength of the 

REML analysis was that when there was sufficient data for all stress classes it was able to 

pick up finer differences between varieties compared to the regression analysis.  For the 

Coastal region, I and S varieties were easily identified, using regression analysis.  However, it 

was unable to detect T varieties.  The REML analysis identified N12 and N27 as T varieties.   

A weakness of REML analysis was that it would be unable to accurately rate varieties if the 

data (for the stress classes) were severely unbalanced.   The REML analysis also involved 

dividing the DSI into classes, to create different stress “environments”.  This division could 

lead to a loss of information and precision in the analysis.  The strength of the regression 

analysis was that with the gradient, it was able to quantify rate of change in yield over 

varying levels of drought stress.  The unequal spread of data points across the different 

levels of DSI was not as much of a disadvantage for the regression anlaysis compared with 

the REML analysis.   

 

This study was meant to be the first step in investigating the drought tolerance potential 

of released varieties in South Africa.  This study used anecdotal evidence of varietal yield 

performance when subjected to drought stress.  In general, anecdotal evidence should 

never be accepted at face value because it is based purely on observation and the response 

of varieties during drought may be affected by a range of other environmental factors.  

However, anecdotal evidence is the closest possible information that SASRI has to the truth 

therefore it was the only comparative information available.  This is the reason why the 

crude ratings were used as validation.  One of the limitations of this study is that there was 

no scientific validation of the drought ratings derived for the different released varieties 

(Table 5).  However, when SASRI does embark into a scientific drought tolerance project, 

using the information from this study, SASRI will be able to validate these ratings. 

 

It is recommended that before a trial is planted, soil sampling be conducted on the field.  

This soil data should be added to the current SASRI varietal database.  This can give 

scientists more insight into the crop yield performance.  The management of the weather 

stations also needs to be improved, with flags within the system to detect any outliers 

immediately, so that these can be investigated.   Also, additional notes on anything that 
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occurred during the life of the crop needs to be noted and uploaded into the database.  For 

example, diseases, pests, hail or poor management practices.  This will improve the 

understanding of crop yield performance and the validity of future ratings of varieties.  It is 

recommended that regression analysis be used for rating of varieties.  If at such time there is 

enough varietal information, within each of the drought stress classes, the REML analysis 

can be revisited.  It is also recommended that the results of this study be workshopped with 

the sugarcane farmers in South Africa, to provide them with more varietal information and 

to get feedback on their experience. 

 

Table 5:  Summary of the drought tolerance ratings for the coastal and midlands released 

varieties. 

 Coastal Variety 

Rating 

Midlands (only) 

Variety Rating6 

N12 I I 

N16 S S 

N19 S  

N27 I  

N29 I  

N31  S 

N33 I  

N36 I  

N37  S 

N39 S  

N41 I  

N44  T 

N45 I  

N47 I  

N48  S 

N50  S 

NCO376 S T 

                                                           
6 These ratings are tentative based on individual Student’s t-tests. 
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