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Abstract

Within a slightly simplified version of the electroweak standard model we investigate the stabilization of 
cosmic strings by fermion quantum fluctuations. Previous studies of quantum energies considered variants 
of the Nielsen–Olesen profile embedded in the electroweak gauge group and showed that configurations 
are favored for which the Higgs vacuum expectation value drops near the string core and the gauge field is 
suppressed. This work found that the strongest binding was obtained from strings that differ significantly 
from Nielsen–Olesen configurations, deforming essentially only the Higgs field in order to generate a strong 
attraction without inducing large gradients. Extending this analysis, we consider the leading quantum cor-
rection to the energy per unit length of a hedgehog type string, which, in contrast to the Nielsen–Olesen 
configuration, contains a pseudoscalar field. To employ the spectral method we develop the scattering and 
bound state problems for fermions in the background of a hedgehog string. Explicit occupation of bound 
state levels leads to strings that carry the quantum numbers of the bound fermions. We discuss the pa-
rameter space for which stable, hedgehog type cosmic strings emerge and reflect on phenomenological 
consequences of these findings.
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1. Introduction and motivation

The electroweak standard model and many of its extensions have the potential to support 
string-like configurations. These field configurations are the particle physics analogs of vortices 
or magnetic flux tubes in condensed matter physics. They are usually called cosmic strings to 
distinguish them from the fundamental variables in string theory, and also to indicate that they 
typically stretch over cosmic length scales. In the context of the standard model they are also 
called Z (or W ) strings [1–3] to illustrate that are composed of massive gauge fields.

The topology of string-like configurations is described by the first homotopy group �1(M ), 
where M is the manifold of vacuum field configurations far away from the string. In typ-
ical electroweak-type models, a Higgs condensate breaks an initial gauge group G down to 
some subgroup H , so that M � G/H . Topologically stable strings are therefore ruled out in 
the electroweak standard model SU(2) × U(1) → U(1) because G/H is simply connected. 
Nevertheless, one could envision a GUT and/or supersymmetric extension in which a simply 
connected group G breaks down to the electroweak SU(2) ×U(1) at a much higher scale, so that 
�1(G/(SU(2) × U(1))) is nontrivial and strings would be topologically stable in such GUTs. 
These strings would have enormous energy densities, so that they could be seen by direct obser-
vation using gravitational lensing [4,5] or by signatures in the cosmic microwave background [6].

The absence of topological stability does not imply that the Z strings at the electroweak scale 
are unstable or irrelevant for particle physics. While their direct gravitational effects are small, 
Z-strings can still be relevant for cosmology at a sub-dominant level [7,8]. Their most interesting 
consequences originate, however, from their coupling to the standard model fields. Z-strings 
provide a source for primordial magnetic fields [3] and they also offer a scenario for baryogenesis 
with a second order phase transition [9]. In contrast, a strong first order transition as required by 
the usual bubble nucleation scenario is unlikely in the electroweak standard model [10] without 
non-standard additions such as supersymmetry or higher-dimensional operators [11]. When a 
string changes its shape baryon number violation may occur, but for baryogenesis to prevail after 
the string has disappeared an additional process, e.g. via a sphaleron transition, is required [12]. 
Also de-linking closed Z-strings changes their helicity (Chern–Simions number) which in turn 
induces baryon number violation [13]. Yet, the baryon number generation from Z strings is not 
sufficient to explain the observed abundance [14].

However, such effects are only viable if the cosmic strings are at least meta-stable, such that 
they live long enough to have a cosmological impact. Classically, the energy required to wind up 
an electroweak string of astrophysical length scales is huge, but it may eventually be overcome 
by quantum effects induced by the coupling to the remaining fields. In this respect, the most 
important contributions are expected to come from heavy fermions, since their quantum energy 
dominates in the limit NC → ∞, where NC is the number of QCD colors or other internal degrees 
of freedom. Heavier fermions are expected to provide more binding since the energy gain per 
fermion charge is higher and their Yukawa coupling to the string is larger; a similar conclusion 
can also be drawn from decoupling arguments [15]. Generally, the string background deforms the 
Dirac spectrum and typically leads to the formation of either an exact or near zero mode [16], so 
that fermions can substantially lower their energy by binding to the string, which may eventually 
overcome the classical energy cost of building the string. For consistency, however, one must 
include all contributions which have the same formal loop order; in particular, this means that 
the deformation of the continuous part of the spectrum (the vacuum polarization energy) must be 
taken into account as well.
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A number of previous studies have investigated quantum properties of string configurations. 
Naculich [17] has shown that in the limit of weak coupling, fermion fluctuations destabilize the 
string. The quantum properties of Z-strings have also been connected to non-perturbative anoma-
lies [18]. The emergence or absence of exact neutrino zero modes in a Z-string background and 
the possible consequences for the string topology were investigated in Ref. [19]. A first attempt 
at a full calculation of the fermionic quantum corrections to the Z-string energy was carried out 
in ref. [20]. In that work, the authors could not compare the cosmic string to the perturbative 
vacuum because of the non-trivial winding of the string background at spatial infinity. Methods 
to overcome that technical problem were developed a decade later [21,22]. The first compre-
hensive calculation of the fermionic vacuum polarization energy of the Abelian Nielsen–Olesen 
vortex [23] has been estimated in ref. [24], where subtractions were carried out in the heat-kernel 
expansion, which is not easily connected with the standard perturbation counterterms. Quan-
tum energies of bosonic fluctuations in string backgrounds were calculated in ref. [25]. Finally, 
the dynamical fields coupled to the string can also result in (Abelian or non-Abelian) currents 
running along the core of the string. The time evolution of such structured strings was studied in 
ref. [26], where the current was induced by the coupling to an extra scalar field. Circular strings of 
this type (vortons) will acquire an angular momentum that may lead to stabilization [27]; a sim-
ilar effect can be achieved without extra fields through quantum fluctuations [28]. Other notable 
scenarios include thermal baths of photons [29], or couplings to invisible (scalar) sectors [30].

Mathematically, the problem of computing the leading quantum energy of a string background 
amounts to the computation of the determinant for the Dirac operator within this background. 
Previously, we have employed the spectral method to study the quantum energy of a special type 
of cosmic string in a reduced version of the standard model [31,32]. Even though we allowed for 
a non-trivial gauge-field structure in the cosmic string background, the findings from Ref. [32]
indicate that the preferred string configuration has very little gauge field admixture. Instead, it 
reduces to a narrow ditch carved in the Higgs condensate. In the present study, we will follow up 
on the observation that the Higgs field is the dominating factor but consider a different mecha-
nism, inspired by topological solitons, in order to produce attraction in the scalar potential for the 
fermions and thus generate binding for the fermions. In many non-linear bosonic models such as 
the Skyrme model [33], the classical solutions of the field equations (i.e. the static configurations 
with minimal energy) that support an extended region of suppressed condensate have a character-
istic hedgehog structure. When coupled to fermions, as e.g. in the Nambu–Jona–Lasinio soliton 
model [34], the hedgehog configuration produces strong binding even when the magnitude of the 
scalar component of the Higgs field is homogeneous. Hence this configuration may contribute 
a significantly lower classical energy for the same gain from the fermion quantum energy. We 
formulate the two dimensional analog of the hedgehog configuration in the plane perpendicular 
to the string and extend it uniformly along the string. We couple fermions to this configuration 
and compute the resulting spectrum. After proper renormalization this spectrum yields the vac-
uum polarization energy, the numerical simulation of which will determine whether or not such 
hedgehog structures with shallow scalar Higgs components are energetically favored.

This paper is organized as follows: In the next section we describe our model and introduce 
the hedgehog type of string configuration. In section 3, we adapt methods from Refs. [31,32] to 
compute the fermion vacuum polarization energy to this hedgehog configuration. This calcula-
tion requires finding the Jost determinant from scattering data and, via the Born series, combining 
the spectral method with explicit calculations of low-order Feynman diagrams. Then the quan-
tum energy can be renormalized with conventional (MS or on-shell) schemes, allowing for the 
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model parameters to be specified from phenomenological data. In that section we also explain 
how the string is equipped with charge.

In section 4, we present our results for both neutral and charged strings. We also relax our 
string background profile to allow for a more shallow suppression of the scalar component of 
the Higgs background, which has smaller classical costs but also tends to bind the majority of 
fermions less deeply. In our variational approach the optimal configuration for each given charge 
is selected from several hundred distinct string profiles, and the minimal fermion mass required 
for a stable configuration is estimated. In section 5, we briefly summarize and discuss our findings 
and comment on possible consequences for cosmology or particle physics. The technicalities of 
the scattering problem and the renormalization procedure are described in detail in appendices.

2. Cosmic strings in a simplified electroweak model

A cosmic string is a line-like soliton within electroweak or grand unified type theories. If 
the gauge group is simply connected (π1(G) = ∅), there is no topological argument in favor of 
(classical) stability, and the string must be stabilized dynamically, e.g. by reducing its energy via 
quantum fluctuations. In Ref. [32], we have studied this scenario in a slightly simplified version 
of the SU(2) electroweak theory,

L = −1

2
tr
(
Gμν Gμν

)
+ 1

2
tr
(
Dμ�

)† (
Dμ�

)− λ

2
tr
(
�†� − v2)2+

+ i �̄
(
PL /D + PR /∂

)
� − f �̄

(
�PR + �† PL

)
� . (1)

Here, the first three terms describe the bosonic sector made up of weak gauge bosons Wμ with 
non-Abelian field strength Gμν = ∂μWν − ∂νWμ + ig[Wμ, Wν], and gauge coupling g as well 
as the Higgs doublet � in the fundamental representation of the weak isospin group SU(2). The 
fourth and fifth terms denote the fermion sector with the minimal coupling of the left-handed 
quarks to the bosonic sector. Both, the Higgs and the fermion fields couple to the gauge bosons 
via the covariant derivative Dμ = ∂μ − igWμ. The simplifications of Eq. (1) as compared to the 
standard model are: (i) the Weinberg angle is set to zero and the U(1) hypercharge is discarded,
(ii) the fermion doublet is taken to be degenerate in mass with inter-family fermion mixing ne-
glected, (iii) only the heaviest quark doublet is retained, since it has the strongest coupling to the 
Higgs field; see Ref. [32] for further details on the justification of these assumptions.

The string configuration is translationally invariant and is infinitely extended along its symme-
try axis. We adapt an ansatz that has the typical string-like suppression of the Higgs condensate 
in the vicinity of the symmetry axis, with no gauge field, i.e. Wμ = 0, since previous studies have 
shown that gauge fields contribute very little to the string binding [32]. The suppression of the 
Higgs condensate defines the string core. In contrast to the Nielsen–Olesen configuration, the 
component of the Higgs field which carries the azimuthal dependence, i.e. the winding, decays 
asymptotically for the background that we entertain here. This difference from the Nielsen–
Olesen string is due to the non-Abelian character of our model and allows us to indeed set 
Wμ = 0, because there is no need to compensate for the gradients of the Higgs field at spatial in-
finity.1 However, we now require independent profile functions for the charged and neutral Higgs 
fields in the plane perpendicular to the symmetry axis, which we take to be the z-axis with polar 

1 A Higgs winding at spatial infinity could be introduced by means of a suitable gauge transformation, which would 
also induce a non-vanishing gauge field in the background.
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coordinates r and ϕ in the xy-plane. Then the two profile functions ρ(r) and θ(r), called chiral 
radius and chiral angle, respectively, parameterize the Higgs field in its matrix representation via

� = v ρ(r)

(
cos θ(r) ieiϕ sin θ(r)

ie−iϕ sin θ(r) cos θ(r)

)
, (2)

which is related to the common doublet notation by

ϕ =
(

ϕ+
ϕ0

)
⇐⇒ � =

(
ϕ∗

0 ϕ+
−ϕ∗+ ϕ0

)
. (3)

The string background can then be re-written in the form

� = v
[
s(r) + i (τ · r̂)∗ p(r)

]
(4)

where τ are the isospin Pauli matrices. This defines the scalar and pseudo-scalar profile functions

s(r) = ρ(r) cos θ(r) and p(r) = ρ(r) sin θ(r) , (5)

which illuminate the relation to the Skyrme model,2 justifying the identification of our configu-
ration as a hedgehog background.

The vacuum expectation value (vev) of the Higgs doublet is at the minimum of the potential, 
i.e.

〈‖ϕ‖2〉 = 〈|ϕ0|2 + |ϕ+|2〉 = 〈det(�)〉 = 1

2
tr〈�†�〉 = v2 . (6)

(Note that our convention differs slightly from the standard one, which parameterizes the 

classical minimum as μ2

2 .) The Yukawa coupling to the quarks gives rise to the quark mass 
m = vf = μf/

√
2. Phenomenologically, the standard Higgs scale is μ = 246 GeV, so that 

v = 174 GeV. For the top quark this corresponds to a Yukawa coupling of

f (top) = 173 GeV

174 GeV
= 0.99 . (7)

The Higgs coupling λ determines the ratio of the Higgs mass and vev. More precisely, our con-
vention for the potential gives m2

H = 4λv2 and hence

λ = m2
H

4v2
= (125 GeV)2

4(174 GeV)2
= 0.129 . (8)

It should be stressed again that the two couplings, f and λ, are dimensionless and independent: 
once the Higgs vev is fixed, the Yukawa coupling determines the fermion mass, and the Higgs 
coupling determines the Higgs mass. In particular, λ is completely obtained from properties of 
the Higgs field alone. It is therefore convenient to leave the Higgs sector fixed with λ = 0.129, 
and vary the Yukawa coupling from its top quark value, Eq. (7) to study the effect of different 
quark masses.

The classical energy per unit length of the string configuration (4) is obtained by substituting 
the profiles, Eq. (2), into the (negative) Lagrangian, Eq. (1), integrating over space, and dividing 
by the (infinite) length, Lz of the string:

2 It should be emphasized, however, that the Skyrme equations are merely a motivation and the configuration (2) is not
necessarily a solution of the equations of motion for the model eq. (1), nor is this necessary for the following.
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Ecl

m2
= Ecl/Lz

m2

= 2π

f 2

∞∫
0

dr r

(
ρ(r)2

r2
sin2 θ(r) + ρ(r)2 θ ′(r)2 + ρ′(r)2 + λ

f 2

[
1 − ρ(r)2]2)

= 2π

f 2

∞∫
0

dr r

(
p(r)2

r2
+ s′(r)2 + p′(r)2 + λ

f 2

[
1 − s(r)2 − p(r)2]2). (9)

Here and in the following, all dimensionful quantities are measured in appropriate units of the 
quark mass m: for instance, the dimensionless radial distance r in eq. (9) is really r̂ ≡ mr , but 
we omit the hat for simplicity.

We require that the background configuration has finite classical energy (per unit length). At 
large distances from the string core, this implies that the Higgs is in its vacuum state (ρ = 1), and 
sin θ = 0 to avoid the logarithmic divergence in the first term under the integral in Eq. (9). Unless 
sin θ → 0 as r → 0, the same term has divergences at short distances because we want to allow 
ρ(0) = ρ0 to take any value. Altogether, the requirement of finite energy enforces the following 
boundary conditions for the two profile functions in our configuration:

r → 0 : ρ(r) → ρ0 θ(r) → ν0π (ν0 ∈ Z)

s(r) → ∓ρ0 p(r) → 0

r → ∞ : ρ(r) → 1 θ(r) → ν∞π (ν∞ ∈ Z)

s(r) → ±1 p(r) → 0 . (10)

The integer numbers in the boundary condition for the chiral angle are conventionally chosen as 
ν0 = −1 and ν∞ = 0, leading to the upper sign in the boundary values for the scalar profile s(r). 
For most of this study, we will assume that the Higgs condensate vanishes at the string core, 
ρ0 = 0, since this leads to deeply bound fermion states located near the string core, which is 
beneficial for a possible quantum stabilization. Alternatively, more shallow configurations with 
0 < ρ0 < 1 induce less binding in the quantum energy, but also have a smaller classical energy 
to overcome, so that an attractive net effect may emerge as motivated in the introduction.

3. Quantum corrections to the string energy

In the limit of a large number of external quantum numbers (e.g. the number of quark colors 
Nc � 1), the leading quantum corrections to the classical energy of the cosmic string originate 
from the fluctuations of the Dirac fermion � . For time-independent background fields, this sector 
is governed by the single-particle Hamiltonian

H = −iα · ∇ ⊗ 1I + f

2
β
(
� + �†)+ f

2
βγ5

(
� − �†) , (11)

where α, β and γ5 are the usual Dirac matrices and 1I is the (2 × 2) unit matrix in weak isospin 
space. The entire Hamiltonian acts on 8-component Dirac × isospin spinors. We split the Dirac 
Hamiltonian in a free and interaction part, H = H0 + Hint, with

H0 =
[
− iα · r̂ ∂r − i

[
α · ϕ̂ 1

r
∂ϕ − i α · ẑ ∂z + βm

]
⊗ 1I (12)
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Hint = β

(
f

2

[
� + �†]− 1I

)
+ β γ5

f

2

[
� − �†]

= β ⊗ 1I

[
s(r) − 1

]
m + i (βγ5) ⊗ Iϕ p(r)m , (13)

where the Dirac and isospin matrices in the interaction are given explicitly by

β =
(

1 0

0 −1

)
, β γ5 =

(
0 1

−1 0

)
, Iϕ ≡ (τ · r̂)∗ =

(
0 eiϕ

e−iϕ 0

)
. (14)

Form the boundary conditions, Eq. (10) we observe that Hint → 0 as r → ∞. This differs sig-
nificantly from configurations that are variants of the Nielsen–Olesen string and approach a pure 
gauge configuration asymptotically. This difference simplifies the computation considerably, 
since no auxiliary gauge field is needed to map this pure gauge onto the trivial configuration [21].

We have omitted the trivial part (−iα3∂z) ⊗ 1I in H0, since the background is translationally 
invariant in z-direction. It produces the factor ∼ eipz for the full wave functions and its contribu-
tion to the vacuum polarization energy is accounted for by the interface formalism that we will 
introduce below.

The spectrum obtained from H will always be charge conjugation invariant because 
{H,α3} = 0. This invariance implies that the polarized vacuum has zero charge and that the 
biggest energy gain from a single particle level is m. In contrast, the three-dimensional hedgehog 
does not have this symmetry, so it can carry a vacuum charge and can have an energy gain as big 
as 2m from a single level.

3.1. Contributions to the quantum energy

The energies of single particle harmonic fluctuations are altered by the interaction with the 
background, which causes differences in the spectra of H0 and H0 + Hint. At one loop order 
the quantum energy is the renormalized sum of these energy differences, which we compute 
using the spectral method [35]. In this formalism, both isolated bound states (with eigenvalues 
εi ) and continuum scattering states (with eigenvalues 

√
k2 + m2) contribute to the quantum or 

vacuum polarization energy. The continuum contribution can be expressed as the momentum 
(k) integral over the product of single particle energies ω = √

k2 + m2 and the change in the 
density of states for this k, which in turn is related to the momentum derivative of the scattering 
phase shift δ(k) [36]. In multi-channel problems, as in Eq. (11), the phase shift reads δ(k) =
1
2i

ln detS(k), where S(k) is the scattering matrix. For the following general argument we do not 
make explicit the partial wave decomposition and its degeneracy factor, but details are given 
below and in Appendix A. As stated above, the trivial dimension z in the string background 
induces an exponential factor eipz which in turn changes the dispersion to ω =√k2 + p2 + m2. 
Formally, the vacuum polarization energy then becomes

Eq ∼ −Nc

∫
dp

2π

⎡⎣ ∞∫
0

dk

2π

√
k2 + p2 + m2 d

dk
δ(k) + 1

2

∑
i

√
p2 + ε2

i

⎤⎦ , (15)

which is still subject to regularization and renormalization. Potential divergences originating 
from the integral over the momentum p in string direction cancel between the bound state and 
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continuum contributions due to particular sum rules for scattering data [37,38]. This cancellation 
allows to integrate over p yielding the vacuum polarization energy per unit length [39]

Eq ∼ −Nc

4π

⎡⎣ ∞∫
0

dk

2π

√
k2 + m2 log

k2 + m2

μ2
δ(k) − 1

2

∑
i

(
ε2
i log

ε2
i + m2

μ2
− m2 + ε2

i

)⎤⎦ .

(16)

Here μ is an arbitrary scale whose contribution cancels by the same sum rules that rendered 
the p-integral finite in the first place. It is thus admissible and convenient to choose μ = m. For 
calculational purposes the phase shift is expressed as the phase of the Jost function, or in the 
multi-channel case the Jost determinant F(k) = |F(k)|eiδ(k) [40]. Though k is the real momen-
tum of the scattering states, the Jost function has the important property of being analytic in 
the upper half complex plane, Im(k) ≥ 0. In particular F(k) has simple roots at imaginary mo-
menta representing the bound states. We may thus re-write the integral in Eq. (16) as a contour 
integral in the complex plane.3 Since the integrand in the complex plane involves the logarith-
mic derivative of the Jost function, its simple poles on the imaginary axis account for the bound 
state contribution, and the only remaining part comes from the discontinuity of the integrand in 
Eq. (16) along the cut on the imaginary axis, k = it for real t ≥ m [35,41]. This produces the 
spectral integral

Eq ∼ −Nc

∞∫
m

dt

4π
t u(t) = −Nc

∞∫
0

dτ

4π
τ u
(√

τ 2 + m2
)

, (17)

which, as mentioned above, is a formal result because regularization and renormalization has yet 
to be implemented. The integrand u(t) is obtained from the Jost function for complex momenta 
and has the partial wave decomposition

u(t) ≡ 2uF (t) = 2
∞∑

�=−1

D� ν�(t) . (18)

In Appendix A we describe in great detail the partial wave decomposition of ν�(t) and how it is 
obtained as the logarithm of the Jost determinant from the solutions to the Dirac equation. The 
degeneracy of the angular momentum channel � ∈ {−1, 0, 1, . . .} is 2D� = 2(2 − δ�,−1), with 
the factor of two due to the sum over both Riemann sheets in the relativistic fermion dispersion 
relation.

As it stands, Eq. (17) is divergent and must be combined with counterterms to obtain a mean-
ingful result. First, we note that the integral in Eq. (17) is rendered finite by subtracting a suitable 
large t behavior from ν�(t). The large momentum behavior of scattering data can, however, be 
estimated from the Volterra integral equation for the wave-function [40] which, by iteration, turns 
into a series with ascending powers of the background potential, in our case Hint. This expansion 
is known as the Born series, with the first term being the Born approximation. In Appendix A we 
compute the leading terms of the Born series by iterating the Dirac equation without reference to 
an integral equation. Hence we obtain a finite integral in Eq. (17) by subtracting sufficiently many 
leading terms of Born series from its integrand. Of course, we need to add them back, and we do 

3 We refer to Ref. [35] for details on the deformation of the integration contour and how the renormalization procedure 
also removes the contribution from the semi-circle at infinity.
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so in a form which is suitable for renormalization. To identify that suitable form we consider the 
alternative formulation of the vacuum polarization energy via the functional determinant

A≡ −T LzEq ∼ (−i) ln det
(
i/∂ − m − βHint

)
, (19)

which is valid for static configurations. The Feynman series generated via

E (n)
FD = λn

n!
i

T Lz

∂n

∂λn
ln det

(
i/∂ − m − λβHint

)∣∣
λ=0

is also an expansion of Eq in the interaction strength and thus it is equivalent to the Born series 
order by order in Hint. We detail the calculation of the Feynman diagrams, i.e. the various orders 
of the above expansion in Appendix B. These Feynman diagrams are rendered finite when com-
bined with standard counterterms whose contribution to the vacuum polarization energy is ECT. 
It remains to be observed that for the present model in D = 3 + 1 dimensions, the leading four 
Feynman diagrams are divergent. Hence we need to subtract the four leading terms of the Born 
series to render the integral in eq. (17) finite:

Eq = −Nc

∞∫
m

dt

4π
t
[
u(t)

]
4 +

4∑
n=1

E (n)
FD + ECT . (20)

Here and in the following, the notation [. . .]N indicates N Born subtractions of scattering data 
inside the bracket. We stress that both the integral and the combined Feynman-counterterm con-
tribution are individually finite. Thus no further (numerical) cut-off is required.

Even though Feynman diagrams appear in Eq. (20) we emphasize that they only serve as a 
tool to impose perturbative renormalization conditions within a non-perturbative expression. The 
whole calculation is of non-perturbative character. This is, for example, established by the fact 
the Born series, and equivalently the Feynman series, do not capture bound states.

We have already mentioned that (in the numerical simulations) we measure length scales in 
units of the inverse fermion mass m. From Eqs. (12), (13), (17) and (19) it then follows that 
measuring the single particle energies and momenta in units of m turns Eq into a dimension-
less number that depends on any of the model parameters only via the counterterm coefficients. 
Similarly the classical energy has a nontrivial parameter dependence. Yet, the model parameters 
only enter local contributions to the (total) energy, which are easy to compute. This simplifies 
considerably the variational scan.

In principle, Eq. (20) could be used directly to compute the vacuum polarization energy. How-
ever, the exact calculation of the third- and fourth-order Feynman diagrams (including all finite 
parts) is very cumbersome. Fortunately, this is not really necessary: since the purpose of the Born 
subtraction is to render the spectral integral finite, we can subtract any function with the correct 
asymptotic behavior, as long as we can associate this subtraction with a renormalizable Feynman 
diagram to be added back in. The third- and fourth-order Feynman diagram have a logarithmic 
divergence, which is also found for a second-order diagram of a simple scalar boson scattering 
off a background potential. If we adjust the size of this “fake potential” carefully, we can arrange 
for the logarithmic divergence in the second-order Boson diagram E (2)

B to match the one from 

the fermion diagrams E (3)
FD + E (4)

FD exactly. Instead of subtracting the third- and fourth- order Born 
approximation and adding back in the corresponding fermion diagram, we can then subtract the 
(properly scaled) second Born approximation to a fake boson, and add back in the corresponding 
second-order boson diagram:
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Eq = −Nc

∞∫
m

dt

4π
t
{

2
[
uF (t)

]
2 + λ

Nc

u
(2)
B (t)

}
+ E (1,2)

F,ren + λE (2)
B + E (3,4)

CT . (21)

Note the sign and the missing factor of 2 in the fake boson subtraction, which is due to the 
bosonic interface formula,4

E (2)
B = +

∞∫
m

dt

4π
t u

(2)
B (t) . (22)

Next, we must choose the scaling factor λ (not to be confused with the Higgs coupling in Eq. (1)) 
such that the logarithmic divergences in the fake boson and fermion diagram match:

λ ≡
(
E (3)

FD + E (4)
FD

)∣∣∞
E (2)

B |∞
= cF

cB

. (23)

Here, cF and cB are simple radial integrals over the fermion profile functions or the fake boson 
potential, respectively, which parameterize the logarithmic divergence according to{

E (3)
FD + E (4)

FD

E (2)
B

}
= −iπ

{
cF

cB

}
mD−4

∫
dDk

(2π)D

1

(k2 − m2 + iε)2
+ finite . (24)

Explicit formulae for cF and cB are listed in Appendices B and C. Even without inspecting these 
formulae, it is clear that cF is linear in Nc because it originates from a fermion loop. Hence λ

Nc

does not depend on Nc.
For the last step, we note that the fermion counterterms for the third- and fourth-order fermion 

diagram are, within the MS scheme, just the negative bare divergence E (3,4)
CT = −(E (3)

FD +E (4)
FD

)∣∣∞. 

Since this has been carefully matched to equal −λE (2)
B

∣∣∞, the last two terms in Eq. (21) combine 
to the renormalized second-order fake boson diagram in MS,

λE (2)
B + E (3,4)

CT = λ
[
E (2)

B − E (2)
B

∣∣∞]= λE (2)
B

∣∣
MS

. (25)

Collecting all pieces, we can now rewrite the properly renormalized quantum correction to the 
energy per unit length of the string background as

Eq = −Nc

∞∫
m

dt

4π
t
{

2
[
uF (t)

]
2 + cF

cBNc

u
(2)
B (t)

}
+ E (1,2)

∣∣∣
MS

+ cF

cB

E (2)
B

∣∣∣
MS

+ �Eren

= Evac + [Efermi
]
MS

+ [Efake
]
MS

+ �Eren . (26)

We note that simplifying the renormalization calculation by introducing the fake boson subtrac-
tion has been repeatedly tested for consistency. For example, in Ref. [22] isospin and gauge 
symmetries were verified for Eq even though the individual terms on the right hand side of 
Eq. (26) are gauge variant. In Eq. (26) we have also added a finite counterterm contribution 
�Eren, which arises when we pass from the MS scheme to the more physical on-shell scheme, 
such that the renormalized mass parameters agree with the actual physical particle masses. The 

4 We have chosen the background potential in Appendix C to be independent of Nc , so the overall prefactor of Nc is 
absent.
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contribution �Eren contains the same terms as the classical energy Eq. (9), but has different 
coefficients computed from the finite parts of the second-order Feynman diagrams,

�Eren = Nc

∞∫
0

dr r

{
c2

[
s′(r)2 + p′(r)2 + p(r)2

r2

]
+ c4

[
1 − s(r)2 − p(r)2

]2
}

. (27)

Details on the coefficients c2 and c4 are presented in Appendix D. Eq. (26) is the master for-
mula for the quantum energy of a neutral (uncharged) cosmic string. All four contributions are 
manifestly finite and well suited for numerical evaluation.

3.2. Charged cosmic strings

The quantum fluctuations computed from Eq. (26) usually do not lead to string stabilization. 
In fact, previous calculations [32,42] for Nielsen–Olesen type configurations showed that, at 
least for wide profiles, the quantum corrections in D = 3 + 1 have the same sign as the classical 
energy. This implies that a stable string does not emerge, even when the quantum part is enhanced 
by e.g. assuming the heavy quark f → ∞ or the large Nc → ∞ limits. Physically, this is not 
unexpected, as a negative total energy would suggest that the vacuum is unstable against cosmic 
string condensation.

However, individual strings can become bound if they manage to attract and bind sufficiently 
many fermions. In this scenario, fermions explicitly occupy bound states located near the string 
core, and the complete configuration is charged, carrying the quantum number(s) of the trapped 
fermions. If the charge in question is conserved (at least to the extent that all charge-changing 
processes are suppressed by a large energy barrier), the charged string becomes (meta-)stable 
once its total energy is less than the masses of equivalently many free fermions.

More precisely, let εi,� be the eigenvalues of a square-integrable eigenstate of the single par-
ticle Hamiltonian, Eq. (11). Their computation is detailed in Appendix E. Such bound states can 
occur in any angular momentum channel �. As the repulsion of the angular barrier increases 
with �, the number of bound states decreases and they disappear when � is sufficiently large. We 
introduce a chemical potential μ and stipulate that all bound states 0 ≤ εi,� ≤ μ ≤ m are occu-
pied explicitly. Emptying any of those levels and filling one that has εi,� > μ only increases the 

energy. Assuming a quasi-continuum of states with energy 
√

p2 + ε2
i,� and integrating over the 

momentum p along the symmetry axis of the string yields the charge per unit length [32]

q(μ) = Nc

π

∑
0≤εi,�≤μ

Pi,�(μ)D� , (28)

where Pi,�(μ) =
√

μ2 − ε2
i,� is the Fermi momentum associated to a particular bound state of 

single particle Hamiltonian, Eq. (11). We have also included the degeneracy NcD� of each state 
due to angular momentum and color. As discussed after Eq. (20), the charge per unit length is 
measured in multiples of m, as are the bound state energies and the chemical potential. Next 
we invert the relation in Eq. (28) to compute μQ, for a prescribed charge per unit length and 
calculate the binding energy per unit length. In practice this requires three steps:

1. prescribe a value Q ≥ 0 for the charge per unit length;
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2. determine the chemical potential μQ by increasing μ in small steps, starting at μ =
mini,� |εi,�|, until the condition q(μQ) = Q is met or μ > m (whence the chosen charge 
Q cannot be accommodated);

3. Then, sum over all single particle bound states, integrate over p up to the Fermi momentum 
and subtract q(μQ)m, the equivalent energy of free fermions, to obtain the binding energy 
per unit length [32]

Eb(Q) = Nc

∑
0≤εi≤μQ

Pi(μ)∫
0

dpz

π

[√
ε2
i + p2

z − m

]
D(εi)

= Nc

2π

∑
0≤εi,�≤μQ

[
Pi,�(μQ) (μQ − 2m) + ε2

i,� ln
Pi,�(μQ) + μQ

εi,�

]
D� . (29)

Since Eb(Q) < 0 by construction, charging the string always has a binding effect, though it 
may not be strong enough to overcome the other contributions to the total energy. In addition, 
the total number of bound states in a given string background is finite, so that there is a maximal 
charge per unit length Qmax = q(m) that can be placed on the string, and hence also a limit to 
the binding effect generated by charging the string.

Equations (26) and (29) comprise all contributions to the quantum energy of a hedgehog type 
of cosmic string, at least in the limit Nc → ∞ when the fermion determinant dominates all 
quantum corrections. Since Eq and Eb(Q) saturate the O(Nch̄) contribution to the energy, any 
consideration of Eb(Q) requires the inclusion of Eq for consistency.

4. Numerical studies and results

In this section we present the numerical results of our investigation. In the first part, we discuss 
the individual contributions to the string energy separately, and perform numerical tests on their 
computation. In the second part we report the results of our variational search for optimal string 
profile parameters. In all calculations we employ the hedgehog ansatz, Eq. (4) consistent with 
the boundary conditions derived in Eq. (10). We introduce two variational width parameters wr

and wa for the background profiles

ρ(r) = 1 − a exp

(
− r2

2w2
r

)
, θ(r) = −π exp

(
− r

wa

)
, (30)

of the chiral radius and chiral angle, respectively. The amplitude a describes the decrease in the 
Higgs condensate at the core of the string: ρ0 = 1 − a. Inspired by the Nielsen–Olesen profiles 
this amplitude is often chosen as a = 1 so that ρ0 = 0. This results in strongly bound states, 
since fermions located in the vicinity of the string core have near zero mass. Taking a → 1 pro-
duces more “shallow” profiles. Though they produce less deeply bound states, a non-zero a may 
nevertheless be beneficial in reducing the total energy because its smaller gradients decrease the 
classical energy. The complete ansatz, Eq. (30) thus comprises three variational parameters a, wr

and wa . The restriction to three variational parameters is, of course, a simplifying approximation 
as the full back-reaction of the fermion fluctuations on the string profile requires infinitely many 
such parameters.
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Table 1
Contributions to the total energy per unit length for a sample hedgehog string background with parameters wa = wr =
3/m and a = 1. The model parameters are taken from the physical top quark and Higgs masses: f = 0.99 and λ = 0.129, 
cf. Eqs. (7) and (8). The charge per unit length is set to a typical value of Q = 5m.

contribution comment equation depends on value [m2]

Ecl classical energy (9) Yukawa coupling f 14.96

E(1,2)
FD |

MS
2nd order fermion diagram (B.3) – −0.13

�Eren finite counterterm MS → on shell (D.1) Yukawa coupling f 0.27

E(2)
B |

MS
2nd order fake boson diagram (C.3) – 0.02

Evac vacuum polarization energy (26) – 0.94
Eb charge energy (29) string charge Q −1.85

Etot total energy per unit length (f,Q) 14.21

4.1. Numerical details for a single string background

In this section, we survey our numerical procedure for a single background configuration for 
the case of

wr = wa = 3/m and a = 1 . (31)

The total energy per unit length of the string background in our framework comprises six con-
tributions, which are listed in Table 1. For a fixed string background, only the classical energy and 
the finite counterterm (which is always significantly smaller than the classical part) depend on the 
Yukawa coupling f , since the fermion determinant contribution, ln det

(
i/∂ − m − βHint

)
, is in-

dependent of f when all energies are measured in units of m. Increasing the Yukawa coupling f , 
i.e. the ratio between the fermion mass and the Higgs vev, reduces the classical contribution so if 
the net contribution of the quantum corrections is negative, we can always get a stable string by 
increasing f to the point where the classical energy penalty becomes negligible. From Table 1, 
we recognize that this mechanism requires having the string carry charge, since the remaining 
quantum corrections (i.e. the pure fermion determinant) is typically positive and hence does not 
cause binding. The energy from Eq. (26) may indeed become negative for large Yukawa coupling 
and very narrow profiles (wr, wa → 0) [32]. The Fourier momentum of such profiles then ap-
proaches the Landau ghost [43], indicating that the one loop approximation fails. We thus ignore 
configurations that are afflicted by the Landau ghost problem.

Of all the contributions shown in Table 1, only the vacuum polarization and the charge energy 
are numerically expensive to compute. The remaining pieces are just simple integrals in coor-
dinate or momentum space. We will now present some numerical details on the computation of 
these expensive contributions:

Vacuum energy
The main ingredient for the vacuum polarization energy Evac in Eq. (26) is the sum over 

the twice Born subtracted logarithm of the Jost function, D� [ν�(t)]2, defined in Eq. (18). Its 
numerical evaluation is costly because many angular momenta must be included. We present 
a double logarithmic plot of D� [ν�(t)]2 in Fig. 1. As can be seen, the individual contributions 
eventually decay with power law �−3, which allows for the use of series accelerators. Still, at 
least 200 channels, and up to 500 channels at higher momenta, need to be summed to get an 
accurate estimate of [uF (t)]2, and likewise for the fake boson contribution u(2)

(t).
B
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Fig. 1. The contributions to the twice Born subtracted channel sum uF (t) in eq. (18), for various imaginary momenta t . 
The left chart corresponds to a narrow string with wa = wr = 2/m, while the right chart shows the case of a wide string 
with wa = wr = 7/m. As can be seen, wider strings generally require more channels to reach the asymptotic region with 
a power law decay. Also, the shift of the asymptotic region to larger channels with increasing momentum is much more 
pronounced for wider strings.

Fig. 2. Left: The fermionic and fake boson contributions to the integrand eq. (32) for the vacuum polarization energy. 
For clarity, the contribution is multiplied by τ to emphasize the asymptotic decay ∼ 1/τ . Right: The full integrand s(τ )

eq. (32) for the vacuum energy.

In order to further analyze the vacuum energy, we separate the integrand in Evac into the 
fermion and fake boson parts,

sF (τ ) ≡ −Nc

4π
τ
[
2uF (

√
τ 2 + m2)

]
2

,

sB(τ ) ≡ +Nc

4π
τ

cF

cBNc

u
(2)
B (
√

τ 2 + m2) , (32)

where we have also changed the momentum variable t → τ ≡ √
t2 − m2. Here, each function 

u(t) is the sum of the logarithmic Jost function over all angular momenta, cf. Eqs. (18) and (C.5).
The fake boson method relies on the fact that a properly rescaled second-order boson contribu-

tion possesses the same logarithmic divergence as the third- and fourth-order Feynman diagrams, 
i.e. the large-momenta behavior of the two integrands sF (τ ) and sB(τ ) in Eq. (32) must match. In 
the left panel of Fig. 2, we present the products τ sF (τ ) and τ sB(τ ), because they should asymp-
totically approach the (same) constant in order to cancel the (same) logarithmic divergence in 
Evac. This is indeed the case to a very high accuracy. Though the full calculation is computa-
tionally expensive, it has the advantage to provide an independent test for the precision of our 
numerics.
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Table 2
Energies and angular momenta of the fermion bound states in the background of the hedgehog soliton with wa = wr =
3/m and a = 1.

channel index � # bound states positive bound state energies [m]

−1 14 0.133, 0.601, 0.702, 0.807, 0.903, 0.930, 0.970
0 10 0.427, 0.616, 0.807, 0.866, 0.996
1 8 0.672, 0.859, 0.957, 0.973
2 2 0.862
> 2 0 –

Fig. 3. Left: The charge per unit length q(μ) induced on the hedgehog string by filling all levels lower than a chemical 
potential μ, for the string background with wa = wr = 3/m. Right: The binding energy Eb(Q) due to a prescribed charge 
per unit length Q, for the same string background.

In the right panel of Fig. 2, we show the complete integrand s(τ ) ≡ sF (τ ) − sB(τ ) of the 
integral in Evac. With the fake boson subtraction, the integrand vanishes very quickly already 
for moderate momenta, which allows for an accurate evaluation5 of Evac ≈ 0.94m2, as listed in 
Table 1.

Bound state energy
We compute matrix elements of the Hamiltonian H = H0 + Hint, Eqs. (12) and (13) with 

respect to the eigenfunctions of H0. The details of this calculation are described in Appendix E. 
The would-be scattering and shallow bound states near threshold will still vary considerably with 
the artificial numerical parameters; but the real bound-state spectrum of eigenvalues < 0.95m is 
stable. In Table 2, we list the positive bound states for all angular momentum channels for the 
string background with wa = wr = 3/m. As discussed above, the interaction is charge conjuga-
tion invariant, so for each positive energy solution there is a negative one.

With the bound states at hand, we can evaluate the binding effect from charging the string as 
laid out in section 3.2. Here we first report the maximal charge (per unit length) which the string 
with the parameters from Eq. (31) can accommodate. It is obtained by equating the chemical 
potential with the fermion mass in Eq. (28): q(m) = 13.78m.

5 We truncate the τ -integral at a very small and a very large cutoffs and estimate the remainder in both regions by 
fits to the integrand which are then extrapolated and integrated analytically. At small τ , we use a quadratic polynomial 
fit, while at large momenta τ � 1, we assume a power-law decay. The cutoffs are determined such that the low- and 
high-momentum extrapolations are less than 5% of the bulk contribution. Stability of this procedure against moderate 
variations of the cutoffs was verified.
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Fig. 4. The total energy per unit length, Eq. (33) of a cosmic string background with widths wa = wr = 3/m as a function 
of the Yukawa coupling at fixed charge per unit length.

Secondly, we plot the charge, Eq. (28), as function of the chemical potential in Fig. 3. It is 
monotonically increasing by construction and can be inverted numerically to yield the chemical 
potential μ(Q) necessary to produce a given charge Q. With this relation, the energy per unit 
length Eb(Q) induced by the string charge Q can be evaluated from Eq. (29). For our model 
string, Eq. (31), Eb(Q) is plotted in the right panel of Fig. 3. By construction, Eb(Q) is negative 
and monotonically decreasing up to the maximal charge q(m) allowed by the Pauli principle. 
Fig. 3 shows that the binding energy due to a maximally charged string is Eb(q(m)) = −2.5 m2, 
while a realistic value for a moderate charge Q ≈ 5m is Eb(Q) = −1.85 m2.

Total energy
Comparing the binding effect of charging the string with the remaining contributions to the 

string energy in Table 1, obviously shows that the charged string with wa = wr = 3/m is not
stable when the Yukawa coupling f is adjusted to the physical top quark mass. A slight increase 
of f to reduce the large classical energy as in Fig. 1 indeed gives a bound object. In Fig. 4, we 
show the total energy per unit length

Etot(Q) = Ecl + Eq + Eb(Q) (33)

of a charged string with variational parameters wa = wr = 3/m as a function of the Yukawa 
coupling f . For a moderate charge, Q = 5 m, the string becomes bound around f ≈ 3.66, which 
corresponds to a fermion mass of m = 637 GeV (assuming the empirical vev, v = 174 GeV). If 
instead we allow the string to be maximally charged, the threshold for binding drops to f ≈ 2.55
corresponding to a fermion mass of m = 443 GeV.

4.2. Variational searches for bound cosmic strings

The results for the single configuration presented above are representative for a typical string 
background. They give an upper limit on the fermion mass needed to bind a (charged) cos-
mic string. We can improve this limit by varying the variational parameters of the background 
profile to identify the optimal string shape for any given coupling or charge. For this purpose, 
we have varied the width parameters wa and wr in the string profile eq. (30) within the range 
wa, wr ∈ [1/m, 10/m]. Smaller values may yield a lower Eb as an artifact of the Landau pole 
and are therefore discarded. In addition to testing (several hundred) configurations that all have 
a vanishing Higgs background at the string core, we have also included about 30 “shallow” con-
figurations with amplitude parameter a ∈ [0.1, 0.9] in the set of sample string profiles. For each 
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Fig. 5. The total energy per unit length of the optimal string configuration, as a function of the string charge per unit 
length, Q, and for various values of the Yukawa coupling f .

of these configurations we have computed the vacuum polarization energy and the bound state 
spectrum. We then select a value for the Yukawa coupling f and compute the total binding en-
ergy Etot(Q), Eq. (33) as a function of Q, the string charge per unit length, for all configurations. 
Finally, at any given Q we determine the minimal Etot(Q). In Fig. 5, we show the final result of 
this variational search. Typically a particular configuration is optimal for a finite interval in Q. 
When Q is increased eventually the maximal charge q(m) that this configuration can accom-
modate is reached and a switch occurs to another optimal configuration that can hold a larger 
charge. This switching of optimal configurations gives rise to small bends in the curves. For 
small Yukawa couplings, the total binding energy stays positive and no stable string is found. As 
we increase the Yukawa coupling, the total binding energy decreases for large Q and eventually 
turns negative. We find that the smallest Yukawa coupling, for which a stable charged string is 
observed is f ≈ 1.86. This corresponds to a quark mass of m ≈ 324 GeV. This binding occurs 
at an almost maximal charge per unit length of Q ≈ 13 m. As we further increase the Yukawa 
coupling, less and less charge is necessary to obtain a bound string. At f ≈ 2.82 or a quark mass 
of m ≈ 490 GeV, a relatively moderate charge of Q ≈ 5 m is sufficient to bind the cosmic string.

We find four general features of the optimal string configuration:

1. All optimal configurations have a = 1, i.e. it is preferable to have the Higgs field vanish at the 
origin, as in the Nielsen–Olesen profile. This is somewhat unexpected as it contrasts with the 
motivation for the hedgehog configuration, Eq. (2). The profiles with a = 1 have fewer, but 
deeper bound states and a considerable classical energy. The “shallow” configurations with 
a non-vanishing Higgs condensate at the string core are not optimal, even though they cost 
less classical energy to form. Since for shallow configurations all bound states are close to 
threshold, the loss in binding energy at large charges outweighs the gain in classical energy.

2. All optimal configurations have wa = 2m, i.e. the angular twisting of the Higgs emerges 
close to the string core, even when the radial distribution of the string profile is rather wide.6

3. The width of the radial Higgs profile generally increases with increasing charge Q, as can 
be seen from Fig. 6. Since wider strings bind charge more easily, the optimal configurations 
are fairly wide for the lightest possible quarks masses. However, we have included radial 

6 We have also investigated configurations with smaller wa = 1.1m and wa = 1.5m, which were not optimal, so that 
the value wa = 2m is not a corner case.
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Fig. 6. The radial width wr of the optimal string configuration (in units of m−1) for various charges and Yukawa cou-
plings at a fixed angular width wa = 2/m.

widths up to wr = 10/m in our variational search, and extremely wide configurations with 
wr ≥ 7/m are not preferable.

4. For f > 1.86, we find bound strings at a critical charge Q > Q∗, which decreases with 
increasing quark mass. At the same time, the radial width of the chiral radius of the optimal 
configuration for the critical charge Q∗ actually decreases for higher fermion masses, e.g.
from w∗

r = 4.0/m at f = 1.86 to w∗
r = 1.90/m at f = 5.0.

5. Summary and conclusions

We have investigated the dynamical stabilization of a cosmic string in an SU(2) gauge theory 
that is a slightly reduced version of the electroweak standard model. The string configuration 
itself consists of a twisted string-like deviation from the Higgs vev without any gauge field ad-
mixture, i.e. a thin line defect carved into the Higgs condensate. This ansatz is inspired by the 
well-known hedgehog ansatz for the chiral soliton in quark models. In contrast to the Nielsen–
Olesen configuration, the present one is characterized by two profile functions for the Higgs field, 
a chiral radius and a chiral angle. The latter is similar to the Skyrme model solution. Classically, 
the string configuration is not stable, but it tends to attract fermions which may be bound in 
the vicinity of the string core to produce a charged string. As a consequence the charged string 
becomes stable if the quark mass is large enough. For consistency of the h̄ expansion we must 
also include the contribution of the scattering states to the quantum energy, and renormalize con-
ventionally to make contact with empirical model parameters. This is the most complicated and 
numerically expensive part of the calculation.

We find that at a fairly large charge the string becomes bound when the fermion mass exceeds a 
value of about 320 GeV. By charge conservation it can only decay into a system of equally many 
free fermions which, however, has a bigger energy. The resulting string profiles are characterized 
by a fairly narrow chiral angle that has a width of about wa = 2/m while the chiral radius is 
more extended with a width wr = 4/m. To put this in perspective, consider the optimal string at 
the smallest possible fermion mass of 320 GeV. If it extends over a length equal to the diameter 
of the sun, the mass of the optimal string would only be a fraction (10−20) of the sun’s mass, 
however all concentrated in a thin filament with a thickness of less than 0.004 fm.

The results presented here are qualitatively similar to those from previous investigations that 
instead of featuring a twisted Higgs field allowed for a non-trivial gauge-field admixture in the 
cosmic string [32] as variants of the Nielsen–Olesen configuration [23]; the gauge field com-
ponent of the optimal configuration turned out to be marginal. In fact, the presently obtained 
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fermion mass and charges necessary to stabilize a string are only about 10% larger than those 
in the previous study. This indicates that the dominant mechanism in the binding of the cosmic 
string, i.e. the attraction of fermions, is mainly due to the small Higgs vev seen by fermions that 
are strongly bound in the vicinity of the string. Complicated gauge field additions or topological 
windings play, apparently, a minor role.

The results presented in this work are interesting in their own right, as they show that a po-
tential fourth generation of heavy quarks (with masses m > 320 GeV) that couple to the Higgs 
condensate in the standard way can exist neither today nor in the early universe (in sufficient 
numbers) without causing the generation of stable cosmic strings that eventually form networks. 
Such networks would be detectable e.g. by their gravitational lensing or their distortion of the 
cosmic microwave background, and can therefore be ruled out by experiment. Although our rea-
soning was made in a simplified version of the standard model, we believe that the qualitative 
effect carries over to the full electroweak theory since enlarging the variational space can only 
lower the energy.

The simplified configuration of a bound string achieved in the present work allows to study 
extended networks of realistic cosmic strings in a more accessible framework in which fermions 
couple to a prescribed Higgs background without dynamical gauge fields.

Nevertheless, the hedgehog string configuration for the Higgs field can be augmented by a 
gauge field component. Adopting Weyl gauge the decomposition of a possible hedgehog gauge 
field must have the same structure as �†∇� from Eq. (2),

W (r) = r̂

(
A(r) ieiϕ B(r)

ie−iϕ B(r) A(r)

)
+ i

r
ϕ̂

(
a(r) −ieiϕ b(r)

ieiϕ b(r) −a(r)

)
, (34)

which introduces up to four additional radial functions in the plane perpendicular to the string; all 
of which vanish asymptotically. Of course, this expands the variational computation significantly. 
As a first simplification, the Higgs configuration would be fixed at the optimal configuration 
established in the current study.
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Appendix A. Scattering off a hedgehog type of string

We solve the multi-channel scattering problem of a Dirac fermion in D = 2 + 1 dimensions 
subject to the single particle Hamiltonian, Eq. (11). We employ planar polar coordinates (r, ϕ)

and perform a partial wave decomposition. Since neither the z-component of the total angular 
momentum Jz = Lz + Sz nor isospin Iz are separately conserved, we label the solutions of the 
free Dirac equation by the eigenvalue G ∈ Z of the grand spin operator Gz = Jz + Iz. The 
quantum number � ∈ Z of Lz is determined by the angular dependency ei�ϕ . For each value of 
� there are four solutions of the free Dirac equation with given energy ε (and 4 solutions with 
energy −ε related by charge conjugation). These degenerate solutions do not all have the same 
angular dependence, since the free Hamiltonian contains ϕ-dependent terms and � is not a good 
quantum number. However, we can still use it as an angular momentum channel index in the 
partial wave decomposition. The actual angular dependence of the four degenerate solutions to 
the free Dirac equation is
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〈ϕ|(� + 1) + +〉 = ei(�+1)ϕ

(
1
0

)
S

⊗
(

1
0

)
I

〈ϕ|� + −〉 = (−i)ei�ϕ

(
1
0

)
S

⊗
(

0
1

)
I

〈ϕ|(� + 2) − +〉 = i ei(�+2)ϕ

(
0
1

)
S

⊗
(

1
0

)
I

〈ϕ|(� + 1) − −〉 = ei(�+1)ϕ

(
0
1

)
S

⊗
(

0
1

)
I

. (A.1)

The subscripts S and I indicate that the corresponding two-component spinors dwell in spin 
and isospin spaces, respectively. Each of these solutions is then considered as a four-component 
angular spinor. These states have grand spin G = � or G = � + 2, respectively, and this quantum 
number is conserved by the free Hamiltonian. The channel index � ∈Z is signed, but channels �
and −(� +2) are related by symmetry, so that we can restrict � = −1, 0, 1, 2, . . . with degeneracy 
D� = 2 − δ�,−1.

From the set of spinors in Eq. (A.1) we always combine those with equal grand spin and dress 
them by radial functions to establish the basis of the partial wave decomposition,

ψ1(r, ϕ) =
(

f1(r)〈ϕ|(� + 1) + +〉
g1(r)〈ϕ|(� + 2) − +〉

)
G = � + 2

ψ2(r, ϕ) =
(

f2(r)〈ϕ|(� + 0) + −〉
g2(r)〈ϕ|(� + 1) − −〉

)
G = �

ψ3(r, ϕ) =
(

f3(r)〈ϕ|(� + 2) − +〉
g3(r)〈ϕ|(� + 1) + +〉

)
G = � + 2

ψ4(r, ϕ) =
(

f4(r)〈ϕ|(� + 1) − −〉
g4(r)〈ϕ|(� + 0) + −〉

)
G = � . (A.2)

Each of these eight-component spinors is a regular solution to the free Dirac equation when

f
(0)
i (r) = Jα(kr) and g

(0)
i (r) = ε − m

k
Jβ(kr) , (A.3)

where |ε| ≥ m with k = √
ε2 − m2 > 0. The order of the Bessel function is determined by the 

angular momentum associated with radial function, i.e. for i = 3 we have α = � + 2 and β =
� + 1.

When the interaction Hint in Eq. (13) is switched on, the radial functions differ from the 
free case eq. (A.3) and mix among each other. To compactly formulate the resulting scattering 
problem we define two-component objects

�u(r) =
(

f1(r)

f4(r)

)
, �v(r) =

(
g1(r)

g4(r)

)
, �w(r) =

(
f2(r)

f3(r)

)
and �h(r) =

(
g2(r)

g3(r)

)
.

(A.4)

The Dirac equation reduces to two sets of ordinary differential equations (ODE)

(ε − m) �u = D · �v − X · �u + Y · �v
(ε + m) �v = D · �u + X · �v − Y · �u (A.5)
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for �u and �v and

(ε − m) �w = D̂ · �h − X · �w − Y · �h
(ε + m) �h = D̂ · �w + X · �h + Y · �w (A.6)

for �w and �h. The separation into two decoupled sets is a feature of the hedgehog configuration, 
Eq. (2) and does not occur when gauge fields are included [32]. The boldface objects are 2 × 2
matrix operators. The radial derivatives and the centrifugal barriers are combined in the diagonal 
matrices

D = diag

(
� + 2

r
+ ∂r ,

�

r
− ∂r

)
D = diag

(
� + 1

r
− ∂r ,

� + 1

r
+ ∂r

)
(A.7)

D̂ = diag

(
� + 1

r
+ ∂r ,

� + 1

r
− ∂r

)
D̂ = diag

(
�

r
− ∂r ,

� + 2

r
+ ∂r

)
. (A.8)

The interaction matrices are expressed in terms of the profile functions in Eq. (5),

X = m

(
1 − s(r) 0

0 1 − s(r)

)
Y = m

(
0 p(r)

−p(r) 0

)
. (A.9)

For given energy |ε| > m and angular momentum � we identify outgoing free polar waves, which 
are parameterized by Hankel functions of the first kind H(1)

ν (kr). We concentrate on the system 
Eq. (A.5); the second system Eq. (A.6) can be treated analogously. In the free case, the two linear 
independent complex polar wave solutions for �u (0) and �v (0) can be conveniently placed into the 
columns of two 2 × 2 matrices,

Hu = diag
(

H
(1)
�+1(kr), H

(1)
�+1(kr)

)
and Hv = κ diag

(
H

(1)
�+2(kr), H

(1)
� (kr)

)
,

(A.10)

where

κ = k

ε + m
= ε − m

k
. (A.11)

It is important to parameterize κ as an odd function of k because although κ =
√

ε−m
ε+m

is correct 
for k ≥ 0, it is deceptive for analytic continuation. Similarly we put the two linearly independent 
solutions of the full ODE system (A.5) for �u = (f1, f4) and �v = (g1, g4) into the columns of 
2 × 2 matrices

U =
(
�u(1)(r), �u(2)(r)

)
and V =

(
�v(1)(r), �v(2)(r)

)
, (A.12)

respectively. It is convenient to factor out the free part and define

U =F ·Hu V = G ·Hv , (A.13)

where the new Jost matrices obey the boundary conditions

lim
r→∞F(r) = lim

r→∞G(r) = 1 . (A.14)

Inserting these ansätze Eq. (A.5) yields the following equations for the 2 × 2 Jost matrices
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∂rF =
[
�F − CY

]
F +F

[
+ k C ZF − �F

]
+
[
− k C + κ CX

]
G ZF

∂rG =
[
�G − CY

]
G + G

[
− k C ZG − �G

]
+
[
+ k C + 1

κ
CX
]
F ZG . (A.15)

Here, the 2 × 2 matrix C = diag(1, −1) inverts the sign of the lower component. The Hankel 
functions and centrifugal terms, which are of kinematic origin, enter through the matrices

ZF = diag

(
H

(1)
�+2(kr)

H
(1)
�+1(kr)

,
H

(1)
� (kr)

H
(1)
�+1(kr)

)
, ZG = diag

(
H

(1)
�+1(kr)

H
(1)
�+2(kr)

,
H

(1)
�+1(kr)

H
(1)
� (kr)

)
,

�F = 1

r
diag (� + 1 , −(� + 1)) , �G = 1

r
diag (−(� + 2) , �) . (A.16)

We observe that asymptotically, i.e. r → ∞, the first columns of U and V correspond to an 
outgoing wave only in the channel ψ1 while the second columns have an outgoing wave only 
in the channel ψ4. Finally noting that the complex conjugate of the Jost solution also solves the 
(real) radial ODE system the scattering wave function is the linear combination

�u =F∗ ·H∗
u +F ·Hu · S . (A.17)

The S-matrix is determined by the requirement that �u is regular at the origin r → 0, with the 
result

S = − lim
r→0

H−1
u ·F−1 ·F∗ ·H∗

u = − lim
r→0

H−1
v · G−1 · G∗ ·H∗

v . (A.18)

As mentioned in the main text, it is advantageous to find the Jost matrix for momenta analyt-
ically continued to the imaginary axis, k → it with t > 0, since the resulting spectral integral, 
Eq. (17) fully accounts for the bound state contribution to Eq . The continuation must, in princi-
ple, be carried out separately for both signs of the energy ε = ±√

m2 + k2. In the present case, 
the theory is charge-conjugation invariant for real momenta and we can select one sign of the 
energy (say, ε > 0). The second Riemann sheet then contributes an overall factor of two to the 
vacuum energy per unit length, cf. Eq. (21). For simplicity, we only present the derivation for 
Eq. (A.5); the corresponding results for Eq. (A.6) can be obtained by some simple sign changes 
and angular momentum relabelings.

If we assume that the Jost matrices F and G, Eq. (A.15) are analytic functions of the momen-
tum, the continuation k → it yields

∂rF =
[
�F − CY

]
F +F

[
t CZF − �F

]
+
[
− t C + z∗

k CX
]
GZF

∂rG =
[
�G − CY

]
G + G

[
− t CZG − �G

]
+
[
t C − zk CX

]
F ZG . (A.19)

Here, F =F(it, r) and G = G(it, r) are again complex 2 × 2 matrices. The kinematical factor κ
from Eq. (A.11) has turned into a pure phase

κ
k→it−→ i z∗

k , zk = m + i
√

t2 − m2

t
= 1

z∗
k

(A.20)

and the Hankel functions are replaced by modified Bessel functions contained in

ZF ≡ iZF (itr) = diag

(
K�+2(tr)

K�+1(tr)
, − K�(tr)

K�+1(tr)

)
ZG ≡ iZG(itr) = diag

(
−K�+1(tr)

K�+2(tr)
,

K�+1(tr)

K�(tr)

)
. (A.21)
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The Born series is obtained by expanding these differential equations in powers of the interaction. 
The leading term is always the 2 × 2 unit matrix, so that F = 1 + F1 + F2 + . . . and G =
1 + G1 + G2 + . . . . This expansion leads to

∂rF1 = [�F , F1
]+ t

(
F1 C − CG1

)
ZF + z∗

k CXZF − CY

∂rG1 = [�G , G1
]+ t

(
CF1 − G1 C

)
ZG − zk CXZG − CY

∂rF2 = [�F , F2
]+ t

(
F2 C − CG2

)
ZF + z∗

k CXG1 ZF − CYF1

∂rG2 = [�G , G2
]+ t

(
CF2 − G2 C

)
ZG − zk CXF1 ZG − CYG1 . (A.22)

For the quantum energy we require the logarithmic Jost functions ̃ν(t) defined by

exp [̃νF (t)] = lim
r→0

detF(it, r) and exp [̃νG(t)] = lim
r→0

detG(it, r) . (A.23)

These quantities have the Born expansion

ν̃F (t) = trF1 + tr
(
F2 − 1

2
F1 ·F1

)
+ · · · ≡ ν̃

(1)
F (t) + ν̃

(2)
F (t) + · · ·

ν̃G(t) = trG1 + tr
(
G2 − 1

2
G1 · G1

)
+ · · · ≡ ν̃

(1)
G (t) + ν̃

(2)
G (t) + · · · . (A.24)

To find the relationship between ̃νF (t) and ̃νG(t) and, most importantly ν(t) = ν�(t) that enters 
Eq. (18), we recall that the Jost function is defined by the Wronskian between the Jost solution 
and the regular solution. The latter is defined by a momentum-independent boundary condition 
at the origin r → 0. As r → 0 the Higgs field does not assume its vev, i.e. s(0) �= 1, cf. Eq. (5). 
This changes the kinematical quantities in Eq. (A.3) of the regular solution to

f
(0)
i (r) = Jα(qr) and g

(0)
i (r) = ζ Jβ(qr) , (A.25)

where

q2 = ε2 − m2s2(0) and ζ 2 = ε − ms(0)

ε + ms(0)
. (A.26)

Working out the Wronskian yields the following correction for the logarithmic Jost function and 
its Born series [32],

νF (t) ≡ ν̃F (t) + 2 ln

(
τ − im

τ − ims(0)

)
νG(t) ≡ ν̃G(t) + 2 ln

(
τ + im

τ + ims(0)

)
ν

(1)
F (t) ≡ ν̃

(1)
F (t) + 2

1 − s(0)

1 + i τ/m
ν

(1)
G (t) ≡ ν̃

(1)
G (t) + 2

1 − s(0)

1 − i τ/m

ν
(2)
F (t) ≡ ν̃

(2)
F (t) +

(
1 − s(0)

1 + i τ/m

)2

ν
(2)
G (t) ≡ ν̃

(2)
G (t) +

(
1 − s(0)

1 − i τ/m

)2

, (A.27)

where τ = √
t2 − m2 and the factor two arises because there are four channels: lnζ 4 = 2 ln ζ 2.

With these modifications we find that νF (t) and νG(t) are indeed real and identical. This is 
also true at any order in the Born series. The pseudo-scalar profile component does not contribute 
to the correction because p(0) = 0.
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Appendix B. Feynman diagrams

The Feynman diagrams are generated by the expansion of the fermion determinant

A ≡ −T Lz EF = (−i)Nc ln det (−/∂ − m − V )

= (−i)Nc ln det (/∂ − m) + iNc

∞∑
n=1

1

n
Tr
[(

i/∂ − m
)−1

V
]n ≡

∞∑
n=0

An ,

(B.1)

where V = βHint is the interaction potential from Eq. (13). The first-order (n = 1) diagram is 
local and can be eliminated completely by a counterterm of the form

LCT = c3

[
tr(�†�) − 2v2

]
which contains s(r) − 1, [s(r) − 1]2 and p2(r) terms. The linear term eliminates the tadpole and 
keeps the Higgs vev at its classical value. The quadratic terms serve to renormalize A2, together 
with the quadratic part of the second counterterm

LCT = c4

[
tr(�†�) − 2v2

]2
. (B.2)

This counterterm also contains pieces cubic and quartic in the profiles. They renormalize the 
third- and fourth-order diagram below. Choosing the no-tadpole scheme for A1 and MS for A2
yields

E (2)
FD

∣∣∣
MS

≡ −1

T Lz

[
A1 +A2

]
= −Nc

∞∫
0

dk k

4π
I1(k/m)

(
4m2 α̃H (k)2 + k2 [̃αH (k)2 + α̃P (k)2]) (B.3)

with the explicit parameter integral

I1(t) ≡
1∫

0

dx ln
[
1 + x(1 − x) t2]= 2

t

√
4 + t2 arcsinh(t/2) − 2 (B.4)

and the Fourier–Bessel transform of the background potential

α̃H (k) = m

∞∫
0

dr r J0(kr)
[
s(r) − 1

]
(B.5)

α̃P (k) = m

∞∫
0

dr r J1(kr)p(r) . (B.6)

The contribution quadratic in ̃αP (k) starts with a prefactor k2, i.e. the pseudo-scalar excitations 
remain massless.

The third- and fourth-order diagrams are more complicated. Fortunately, within the fake boson 
method, cf. the following appendix, we only need to identify their (logarithmic) divergences
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[
A3 +A4

]= i π cF T Lz μ4−D

∫
dDk

(2π)D
(k2 − m2 + i0)−2 + . . . , (B.7)

where D is the number of spacetime dimensions in dimensional regularization and the ellipsis 
indicates finite pieces. Since the only counterterm for these diagrams is Eq. (B.2) and the coef-
ficient c4 has already been determined by the second-order diagram above, we can predict cF

directly if we assume that the theory is renormalizable. Alternatively, we can compute cF from 
the divergence of the third- and fourth-order diagram, which yields the same expression

cF = 4m4Nc

∞∫
0

dr r
[
(s(r) − 1)2 + p2(r)

] [
(s(r) − 1)2 + p2(r) + 4s(r) − 4

]
(B.8)

where the prefactor four results from the Dirac trace.

Appendix C. Fake boson subtraction

The second-order Feynman diagram of a scalar boson scattering off a radially symmetric back-
ground potential VB(r) is logarithmically divergent. By proper rescaling it replaces the third- and 
fourth-order fermion diagrams and Born subtractions. To be specific, we choose a one-parameter 
profile

VB(r) ≡ m2 r

wB

exp

(
−2

r

wB

)
, (C.1)

where wB is an arbitrary width which should not play a role in the final result. The logarithmic 
divergence of the second-order contribution to the effective action

A(∞)
2 = i π cB T Lμ4−D

∫
dDq

(2π)D
(q2 − m2 + i0)−2

cB ≡ −1

2

∞∫
0

dr r VB(r)2 = −3m4 w2
B

256
, (C.2)

where μ is an arbitrary renormalization scale introduced by dimensional regularization to D
spacetime dimensions. This should be compared to the corresponding expression Eq. (B.7) from 
the third- and fourth-order fermion diagrams. Employing the MS scheme, the renormalized en-
ergy per unit length is

E (2)
B

∣∣∣
MS

= + 1

32π

∞∫
0

dq qI1(q)V B(q)2, (C.3)

where I1 is given in Eq. (B.4) and q ≡ k/m is dimensionless. The Fourier transform of the 
background is also dimensionless

V B(q) ≡
∞∫

0

dr rVB(r) J0(qmr) = (ŵB)2 8 − (ŵBq)2[
4 + (ŵBq)2

] 5
2

, (C.4)

where ŵB ≡ mwB is the fake boson profile width measured in inverse units of the fermion 
mass m.
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The second-order Born approximation, ν(2)
� (k), to the logarithm of the Jost function for a 

scalar boson scattering off the background VB can be computed by standard techniques, cf.
Ref. [41]. After analytic continuation to the imaginary axis it gives rise to the function

u
(2)
B (t) ≡

∞∑
�=0

[2 − δ�0] ν
(2)
� (it) , (C.5)

which enters Eq. (22) and produces a finite spectral integral in Eq. (21). Numerically we have 
verified invariance of the vacuum polarization energy, Eq. (26) with respect to the artificial width 
parameter wB .

Appendix D. On-shell renormalization scheme

All finite counterterm contributions contain pieces from the classical Lagrangian with finite 
coefficients,

�Eren = Nc

∞∫
0

dr r

{
c2

[
s′(r)2 + p′(r)2 + p(r)2

r2

]
+ c4

[
1 − s(r)2 − p(r)2

]2
}

, (D.1)

where the prime denotes the derivative with respect to the radial coordinate r . When passing 
from the MS to the physical on-shell scheme, the finite coefficients c2 and c4 are determined 
such that the renormalized Higgs propagator has a pole at 4λv2 with unit residue. The general 
expressions are readily taken from Ref. [32]. Fortunately they simplify considerably for the case 
of the hedgehog string,

c2 = 1

π

[1

3
+ 3 I2(iμH )

]
and c4 = 1

4π

[
μ2

H + 6 I1(iμH )
]

(D.2)

where I1(iμH ) is given in Eq. (B.4), μH = mH /m = 2
√

λ/f , and

I2(iμ) =
1∫

0

dx x(1 − x) ln
[
1 − x(1 − x)μ2]

= −μ(12 + 5μ2)
√

4 − μ2 + 6(μ4 − 2μ2 − 8) arcsin(μ/2)

18μ3
√

4 − μ2
. (D.3)

Appendix E. Bound states

In this appendix we describe the computation of the single particle bound state energies, εi,�. 
We follow Ref. [32] and diagonalize the interaction Hamiltonian, Eq. (11) in the free grand spin 
basis used in Appendix A, cf. Eqs. (A.2) and (A.3). The discretized momenta k(�)

n in the angular 
momentum channel � are determined such that no flux emerges from the string core through a 
large circle of radius R around the core. The flux combines upper and lower components of the 
spinor in Eq. (A.2) and vanishes when any of them is zero. From Eq. (A.3) it is obvious that the 
most compact condition is

J�+1(k
(�)
n R) = 0 , n = 1,2, . . . .

Since for any given � there is only one set of discretized momenta, we will omit that label for 
simplicity.
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We impose a numerical cutoff � such that only the kn < � are included in the basis. The total 
number N of such momenta kn depends on both the angular momentum channel � and the size 
of the radius R. For each momentum kn there are two, which we sort in ascending order:

ε(0)
n =

⎧⎨⎩−
√

k2
N+1−n − m2 : n = 1, . . . ,N

+
√

k2
n−N − m2 : n = N + 1, . . . ,2N .

(E.1)

The free Hamiltonian, Eq. (12), exhibits a four-fold degeneracy from spin and isospin invariance, 
which we assemble into a single super-index that has two entries α = (n, i) with i = 1, 2, 3, 4, 
according to Eq. (A.2). The interaction matrix elements are worked out explicitly using the super-
indices α = (n, i) and β = (m, j)

V̂(n,i)(m,j) = 〈ni |Hint |mj〉

= δij

R∫
0

dr r
[
f

(0)
i (knr)f

(0)
j (kmr) − g

(0)
i (knr) g

(0)
j (kmr)

]

+ σij

R∫
0

dr r
[
f

(0)
i (knr) g

(0)
j (kmr) − g

(0)
i (knr)f

(0)
j (kmr)

]
, (E.2)

where f (0)
i and g(0)

i are the radial functions from Eq. (A.3) with momenta kn and

σij =

⎛⎜⎜⎝
0 0 0 +1
0 0 −1 0
0 +1 0 0

−1 0 0 0

⎞⎟⎟⎠ .

Numerical diagonalization of the symmetric 8N × 8N matrix Ĥ = Ĥ0 + V̂ (Ĥ0 is a diagonal 
matrix that contains four copies of ε(0)

n ) yields 8N eigenvalues ε(n,i). Those with |ε(n,i)| < m are 
stable against changes of sufficiently large � or R and are identified as the true bound state ener-
gies. The numerical tests in section 4 indicate that � ≈ 10m and R ≈ 80/m, which corresponds 
to N ≈ 250, can be considered sufficiently large for all contributing angular momentum chan-
nels �. In that case we have to diagonalize a 2000 × 2000 matrix in every angular momentum 
channel.
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